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Abstract

A Simulation Game to train data processors in optimal data
recovery techniques is included in this report. Also, we studied
the triple-multiplexing respons¢ to a point source for s future
scanning spectrometer. Three basic motions are required to modu-
late the wavelength and angular coordinates of the source. When
pexforming preliminary experiments with the Multiplex Scamner,
we discovered that the underlying Talbot effect is useful also for
measuring phase objects. The theory of this new "Talbot Interfer-
ometer" is explored and experimental results of a cendle flame
are reported. For axially symmetric objects, tais setup is modi-
fied by replacing the straight line gratings with circular gratings.
In this way the radial gradient of the deformed wavefront is
coserved. Finally a means of simply, yet accurately collimating
a 1{ght source using the Talbot Interferometer is described.
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Introduction

The goal is to measure infrared radiation from a balloon at
an elevation of 30 lm. Maximum coverage of the sky by the scanning spectro-
meter during the flight of the balloon is desired. To this end our previous
Annual Report of 30 June 1970 devoted its efforts in describing: (1) the
optimum scanning mode for the existing LMSC instrument, (2) a scheme for pro-
cessing the data gathered by this instrument and (3) a future instrument based
on the Talbot effect. Our efforts since then have been to support data pro-
cessing for the existing equipment (see §2) and to continue the exploration of
future methods of instrumentation {§1).

During our investigation of the scanning spectrometer we f£ound that the
collimating lens had to be good. Furthermore, it was discovered that the Talbot
interferometer cculd be set up to test the lens and other optical components
(53 and Appendix A). The straight line gratings of our setup laterally shears
the wavefront that passes through the test object, giving multiple-interferences.
Our theory showed that if we allow only the zeroth diffracted order to pass to
the plane of observation, the second derivative of the object transmittance
would be chserved. On the other hand if either of the first diffracted orders
were allowed to pass, then we would observe the first derivative. Good colli-
mation of the light source was a critical factor in this experiment. By
separating the two gratings to a maximum distance over which interference could
still be observed, a very sensitive test of the degree of collimation was
obtained (54 and Appendix B). Objects with axial symmetry are best tested by
interferometers that radially shear the deformed wavefront. For this reason
we modified our Talbot interferometer by replacing the straight line gratings
with circular gratings. Our theory and experiments are not quite complete.

We reporf. here on the theory of the Talbot effect in cylindrical coordinates
for axially symmetric objects (§5).

§1 The Scanning Spectrometer

In the previous Annual Report of 30 June 1970, a spectrometer based on the
Talbot effect was described. A schematic representation of this instrument is
shown in Figure 1. Sources to be observed are assumed to be sufficiently far
away so that waves impinging upon the first grating are essentially plane. We
use the collimating lens and point source to simulate a sky scene. The plane
wave is diffracted by the first grating and ghe Talbot images so formed are
detected by the second grating. The photodiode receiver collects the light
which passes through both gratings. There are three variables of interest in
the spectrum of a source, namely the wavelength and the elevation and ezimuth
angles that locate the direction from which the radiation is emitted. Since
we have essentially only one signal parameter (i.e. the intensity of light
source on the photodiode current), a triple-multiplexing scheme is required in
order to place the three parameter function onto the one-parameter signal. The
following motions of the spectrometer will accomplish this task. The movement
of the second grating in the x-direction is used for obtaining cosinusoidal
coding of the frequency of the spectrum. Rotation of the instrument will encode
the angular position of the sources (a, B) and z-motion of the second grating

1
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will increase the delay time for good spectral resolution and is necessary to
recover the spectrum.

Our studies of the triple-multiplexing response to a point source for
this instrument show that we have three main carrier frequencies produced as a
consequence of the three independent motions. They are: wj,. = 2mvx/d; Wlong
= 1vz2/d%; and wgpe = ¢. Here vx and v are the velocities in the x- and z-
directions, d is tge grating period, A is the wavelength of the radiation, ¢ is
the time derivative of the angular position @ of the point source as shown in
Fig. 1, and wy,¢y Wigpg» Wapng are the carrier frequencies associated with the
¥- and z-ditection anﬁ the rotational motions respectively. The relative
wotions will have to be regulated in a manner so that the three main carrier
frequencies can be separated. This in turn will be determined by the desired
resolutions of the three spectrum parameters (A, a, B). The analysis is incom-
plete but a detailed report will be made later.

§2 A Simulation Game

A "Signal Processing Game" was devised for the purpose of training the
person in charge of signal processing whom we call the "investigator". The
game consists of digital data (64 samples) which describe a signal plus noise.
The investigator is supposed to devise a strategy for improving the signal-to-
noise ratio. In problem #1 the investigator knows very little about the
statistical behavior of signal and noise. Hence only a mild improvement is
possible. In the subsequent problems the investigator is supplied with more
and more statistical information, which allow for better and more sophisticated
data improvement schemes.

The rules request that the game keeper hand the "Introduction'" and
"Recorded Data'" sections to the investigator. Next the game keeper gives the
investigator problem #1. It is important that only one problem be given the
investigator at a time, because the formulation of problem #2 reveals part of
the answer to #1. Also the last section, "About the Signal Synthesis', should
be well~-hidden from the investigator since it explains everything which the
"investigator" shall find for himself, among others the correct noise-free
signal.



§2.1 Introduction to a Signal Processing Game

The aim of this game is to develop skills in signal processing. At the
same time errors in the computer program for this job will become apparent. E

The definitions are essentially those of the 1970 final report. Notice:
there is an error on pg. 38 of that report. In the denominator of equ. (13.18)
ing|2 should read Iﬁg/ilz.

The input data for this gume are the cecorded data UR(t). It is assumed
that the non-uniform scanning velocity of the spinning gondola has been
cocrrected for already. The time coordinate is given in discreet numbers t =
0, 1, 2...63. We may consider Up(t) as being about one quarter of a single
horizontal scan (B = constant).

The rules of the games are as follows. The "investigator" gets the
sheet "Recorded Data Up(t)" and the sheet '"Problem #1". After solving this
problem ke will give the solution to the "monitor" and to the ''game constructor".
Now he may start on problem #2, and so on. But it is important that the inves-
tigator does not get the next problem sheet Hefore he has finished the previous
problem. The reason is that the formulation of the later problems contains
parte of the answers to the earlier problems. This has to do with the basic
structure of this simulation game: for performing any meaningful signal pro-
cessing operation one must have some knowledge about the original signal and/or
the noise. For example in problem #1 the investigator is told that the noise
is additive and non-negative. In the later problems the investigator will be
supplied with even more a pitori information. Naturally, this should enable

him to extract the signals better and better. But the methods for doing this



increase in complexity.

On the very last pages, folilowing the problems, the design of the
"recorded data" is explained, and the true original signal is unveiled.
Obviously those pages should not be given to the investigator before he has

solved all the problems.

§2.2 Recorded Data Ug(t)

t is the discrete time variable, running from t=0 to t=63.

t Up(t) t Ugp(t) t Up(t) t Ug(t)
0 55 16 110 32 39 48 383
1 25 17 184 33 56 49 10
2 85 18 29 K 05 50 69
3 61 19 51 35 15 51 58
4 20 20 42 36 95 52 52
5 95 21 78 37 09 53 66
6 07 22 09 38 81 54 79
7 00 23 15 39 21 55 134
8 62 24 13 40 81 56 94
9 79 25 50 41 399 57 102
10 148 26 929 42 372 58 108
11 105 27 54 43 348 59 94
12 125 28 99 44 303 60 56
13 125 29 35 45 383 61 67
14 173 30 98 46 317 62 51
15 181 31 02 47 317 63 63




§2.3 Problems

Problem #1
Given are the recorded data Up(t) with t = 0, 1...63. Wanted are the
original data Uyp(t), which represent the "one-dimensional equivalent object
radiation" Sg(a). We assume that the known influences of the telescope
[M{x',y'); R(x',y')] and of the electrical system [G(t)] have been compensated
already or are negligible. But the recorded signal Up(t) is corrupted .
by additive noise N(t):
Up(t) = Up(t) + N(t).
The only features known about the original signal Up(t) and about the noise
N(t) are that they are non-negative:
Up(t) = 0; N(t) = 0.
Furthermore the noise N(t) is stationary, which means that the noise properties
are not "drifting". 1In other words, short-term average features of the noise
remain the same from the beginning to the end of the observation.
Try to utilize the given a priori information for computing a new signal
U;(t) from Ug(t), which somehow is better than Ug(t) as an approximated
representation of Up(t). Plot U'(t) as a continuous curve, and also Ug(t) for

comparison.



Problem #2
Given are the facts:
Ug(t) = 0; N(t) = 0; N = 50.
By N we mean the linear average of the noise. This N can be visualized as the
dark current of the photoreceiver as measured with an instrument which rejects
high frequencies.
Based on these facts try to compute a better signal U,(t) from Up(t).

Plot both Uy (t) and Ug(t).

(to be cut by game monitor)

Problem #3
Given are the same facts as in the previous problem. In addition it is
known that the noise is approximately "white".

-2nivt dv;

N(t) = N + n(t); n(v) = fn(t) e
vemn/6s; == -32, -31,...~-1,0,+1,...430, +31;
|#(v)|2 ~ constant. The value of this "constant” is not known. Try to
deduce it from the recorded data Up(t). You might have to make an intelligent

guess.



Problem #4
Given are the same facts as in the previous probleaw, including the

"constant" which describes the noise power level.

[a(v) |2 =~ l%10"1:: - s\»:.:+—§-.

Now that |A(v)|? is known and Up(t) 18 computable, can you apply the

N

Wiener-filter theory, at least in a guessed approximation? Try it and compute
Uy(t). Plot U,(t) and Ug(t). Hint: represent |Uy(v)|2 by a gaussian function
of suitable peak power and width. Signal processing specialists always try

it with a gaussian function if they don't know a better way.

|Ug(v) |2 ~ Py O

(to be cut by game monitor)

Problem #5
Try the same approach as in the previous problem, but with a guessed

sinc2-ghaped |Uy(v)|2.

sinrz

|Ug(v) |2 » Pg sinc2(v/vs); sinc z = ==

Plot the result Ug(t) and also Un(t) for comparison.




Problem #6
Try the same approach as in the previous problem, but a somewhat
different guess for |Uy(v)|2:
[Ug(v) |2 = Pg sinc?(v/vg) + (Py - Pg)éy;
Herein §; aeans a function which is equal to 1 for v = 0 and equal to O for

v # 0. Plot Ug(t) and Up(t).

(to be cut by game monitor)

Problem #7
Bas:d on all of the accumulated experience try vour own signal processing
approach or simply guess what Up(t) might have been. Call it Us(t). Plot

U7(t) and Ug(t).



§2.4 About the Signal Synthesis

The noise N(:) covers a time range t = 0, 1, 2...63 and an amplitude
range 0 < N(t) < 99 = N, The values for N(t) are picke' from a table of

random numbers. Hence we may assume

N(t) = N/2 ~ 50; N = 99;
N(t) = N + n(t); -N/2 < N(t) < +N/2.
Since the time resolution step is &t = 1 the frequency range Av is Av =

1/6t = 1:

1

2 .

The time duration At is At = 64. Hence the frequency resolution is

-'% =Ev=+

dv = 1/At = 1/64. In other words the Fourier transformation by means of a
digital computer provides a frequency spectrum at v = -32/64, -31/64,...-1/64,
0, +1/64,...+31/64.
Since n(t) has a zero-mean, and since n(t) consists of (almost) unrestrained
random numbers, we may expect a "white'" noise power spectrum.
(|n(v)|2) = constant + rect(v);
(1 1n-%5v5+%
rect(v) =
i 0 elsewhere

The value of the constant can be computed on the basis of the Plancherel-

theorem:

ﬁh(v)lz dv = ﬁn(t)lz de.

The right-hand side will be computed based on the histogram-method. It is
obviously: T _—
[n(t)|2 dt = T |n(t)|2
0

The probability for n is constant between -N,/2 and +N/2, the constant being

defined by the normalization integral

10



p(n) = constant * rect(n/N);

1= p(n) dn = N - constant; constant = 1/N.

Now we can compute the mean square of n(t) by means of the histogram

method:
P +N/2
|n(t)|2 = |n2 p(n) dn = (1/N)/ n? dn = N2/12,
-N/2
Since it is
+Hy ' -
/ [#(v) |2 dv = |8|2
=g
and

/|n(t)|2 dt = T |n|2 = T N3/12

we conclude on the basis of the Plencherel theorem

|#]2 = T N2/12; |a]2 = (16/3) 10%.
In our case it 18 T = 64 and N ~ 100.

Now we will devise the object. It shall consist of several square boxes,
all with the same width B, but with different amplituiles Ay, and with center
locations tg:

Ug(t) = E Ay rect((t - tg5)/B].
The number M 1nd1cat::1the totel number of square-boxes. We chose so that
less than half of the time-domain is covered by square-boxes. The reletive
éoverage is given by:

"relative coverage" = MB/T.
We will select the locations tgy such that there is no overlep among square-
boxes. The object spectrum is:

-2xivt de

e-Zuivt..

Ug(v) = [Ug(t) e

= ) Ay B sinc(va)
The peak power is:

|G9(0) |2 = (- AGB)2 = B2( Y Ag)2.

11



At other frequencies the object power spectrum is:
|Go(v)|2 = B2 sinc2(vB) |:E:A- e-2"1Vt“|2.
The modulus-square expression can be re-written in a form suitable for com-

puting the ex)ectation value:

|ZAm e-2'n1vmt|2 'ZZAN Ay e-2niv(tm-tj) =

- th + zz vy 2Mv(tnty)
The D D (mf)) will not be exactly zero, bl(l:*?:in be expected to be zero in average
over the v-domain (except for v = 0). Hence we get as expected value
(|50(v)|2) = B2 sinc2(vB) D Ay2.

We may also compute the total power spectrum, most easily on the basis of the

Plancherel theorem:

ﬁuo(v)lz dv = /Uoz(t) dt = BZA.,Z.

gsguirelenta

The relative coverage of the time domain by square-box signals shall be
less than 50%:
MB/T <~%.

The sinc-square function of the object power spectrum shall cover not more
than half of the frequency range. Specifically we request that the second zero
of sinc-square is halfway out to the bandlimit 1/2:

vB = 2;: v=1/4 B =8,

Let the ratio of object power spectrum to noise power spectrum be about

2 at the second side-maximum of the sinc-square function. The second side

maximum occurs at the argument 5/2. The sinc-square function is there

s8inc2(5/2) = (57/2)"2 ~ 16/1000. Hence we request:

|Uo(5/2B) |2 » B2(16/1000) 2 =2 |al2.
Ap

12



1t was TETE = T N2/2; T = 64; N=100; B = 8. Hence we get:
D Ap? 10 N2 = 105,

The relative coverage requirement yields with B = 8 and T = 64 for the
number M of square-box signals M < 4. We will take M = 3, which corresponds
to a relative coverage of 3/8.

Now we select the object amplitudes A;, A, A3. Let us introduce for
convenience the term "relative amplitudes' by dividiné the amplitudes by the
mean noise value N/2: agp = Ay/(N/2) = 2Aq/N. This reduces the former ampli-
tude requirement to:

2(11/2)2 ap? ~ 10 N2; Z'-z ~ 4.
We select now

ay =6, a; = 2, a; = 1.
It is to be expected that the square-box #1 exceeds the noise clearly, the
square-box #2 is barely bigger than the noise, while the third square-box
%111l be very difficult to detect, if at all. Maybe it 18 not quite as based
since the root-mean-square noiaeJm = JW = /NZ/12 1s less
than the mean noise N = N/2.

The square-box pusitions t, were chosen as t; = 44.5; t; = 13.5; t3 =

55.5. The true original signal Uy(t) is plotted below.

13
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§3 The Talbot Interferometer

Testing optical components with the Talbot interferometer setup resulted
from the necessity of having a good collimating lens for our scanning Talbot
Spectrometer. Thus we have a sensitive and inexpensive means for testing these
components. The Ronchi rulings used with the setup give us the lateral deriva-
tive of the wavefront deformed by the test object. Thus the deviations from the
expected surface shape can be observed. The following is a detailed report that
explains this setup.

§3.1 Introduction to the Application of the Talbot Effect
for Measuring Phase Objects.

A phase object changes the amplitude of a wave passing through it by a
constant factor but alters the phase from point to point, which yields a trans-
mittance function t(x, y) = a e ¢(x,y). Examples of phase objects are trans-
parent biological objects whose index of refraction is nearly equal to that of
its surrounding medium, and objects made of a transparent medium such as lenses
and prisms. The techniques now available to examine phase objects include
Zernike's phase contrast microscopy, interferometric methods, Ronchi grating
techniques, Schlieren methods and moiré fringes.

The "Talbot effect"1 is also known as "Fourier-imaging" or "self-imaging".
As Talbot observed in 1836, an image of a grating is formed at a distance 2d2/)
(where d = grating period) behind the grating, which has been illuminated by a
monochromatic plane wave. The space between the grating and its Talbot image
is empty. In other words the Talbot effect is a method for forming images of
a perilodic object without any lenses or mirrors. When properly modified the
Talbot effect affords a unique method for quantitatively observing phase objects,
through the use of two Ronchi rulings, one of which is self-imaged onto the
second. The complete theory requires scalar wave diffraction theory and is
presented in §3.3.

An explanation using rays will acquaint the reader with the basic opera-
tion of the instrument. However, this is only a crude explanation since it
does not take into account the wave nature of light which results in some
possibly useful color effects. Therefore in the third section wavelength con-
siderations will be added to show the limitations and uniqueness of the instru-
ment.

§3.2 Qualitative Explanction

A Ronchi ruling is illuminated with collimated light as shown in Figure
2. The diffracted waves are modulated and form"Fresnel Images"2. At integer.
multiples of the distance z7 s 2d2/)\, where d 1s the grating period, an image
of the Ronchi ruling is formed. If a second grating is placed at one of these
image planes in anti-position to the image, no light will be transmitted beyond
the second grating. Herce a ray that passes through a slit of the first grating
is blocked by the second grating as shown in Figure 2. A prism of wedge angle
a is introduced at a distance z from the sec.nd grating and normal to the
incident rays. The rays passing through the prism will be bent through an
angle ¢. Thus the intensity of the light as seen by the observer varies with
the angle ¢ as sketched in Figure 3, with peak intensities given by

14
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€% tan g « (m + 1/2) d/2
and dark fringes by

€™ tan £y = md/z. (1)

The angle ¢ is related to the wedge angle a under small angle approximation by
e=(n~-1) a. (2)

A prism’'s thickne.s Increcses linearly with the distance from its apex, and
the wedge angle a giving

a ™~ tan a = At/Ax, where At & prism thickness
Ax = distance from apex.

Now a phase object can be thought to be made up of prisms, a fact which
is often uszd to explain the action of a lens, so that for any point (x, y) on
the object, the prism angle a is given by

a(x, y) ] a_tu

9x
which ir turn 1s related to e by substitution into (2)

elx, y) = (n - 1) 2yl (3)

The y derivative 3t(x, y)/9y is of no concern here since the grating bars are
parallel to the y-axis.

Thus a dark fringe structure is obtained whenever e¢(x, y) meets the con-
ditions of equatin (1). Equations (1) and (3) are plotted in Figure 4 as a
function of x. Dark fringes occur at the intersections of equations (1) and (3).
In other words the fringes indicate lines of equal 3t/3x, which is the x-compo-
nent of the surface gradient At. Where the lines are close together, the slope
dt/3x changes rapidly. Hence the fringe density or fringe frequence is propor-
tional to the x-component of the curvature 32t/3x2. The maximum detectable
curvature is determined by the minimur detectable fringe separation. 1In a
sense what 1is observed is the second derivative of the phase object.

There are two problems of fringe detection. The first occurs when the
fringes beoome too fine for the eye to resolve them. This is only a practical
limitation and a magnifying glass would extend the sensitivity. But ¢he secomd
probler is more fundamental. The field of view is finite, say B = Nd, where N
is the number of lines in the grating. For an object whose curvature is at the
minimum detectable sensitivity its curvature must be large enough for at least
one full (or maybe one-half) fringe across the field. Hence

[(Btlax)max - (Btlax)min] (n~-1) 2 d/2z.
1f (atlax)max is at x = + Nd/2 and (a:/ax)min is at x = -Nd/2, then
at(x + Nd/2, y)/ax - at(x - Nd/2, y)/ax = 32t/ax? Nd.
Hence
’ > d/2 - 1
|a%e/ax?| 2 2"y ¥ e o D) (“)

The maximum Talbot distance is given by3
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Zpay = MAZ/20.
Using this as z in equation (4) yields

> x - A
|a%¢/ax?| 2 Gz =T Bm-1)

For_example if A = 5 x 10°“ mm, n - 1 = 1/2, B = 102 mm we obtain |32t/3x2| 2
10°7 am=! = 1/10 km.

As an example of the system a perfect thin lens is considered. The phase
of this lens is given by‘

o(x, y) = (n/Af)x? + y2)

where £ is the focal length of the lens, and (x, y) its coordinates. The
relative phase of any object is

?(x, y) =Q@n/2) (n - 1) t(x, y)

C.t(x, y) = =(x2 + y2Y[2f(n - 1)),
and
at(x, y)/ax = -~ x/I(n - 1)f)

which when substituted into equation (3) gives
e(x, y) = -x/f.

This is a straight line which when plotted onto Figure 4 gives equally-spaced
fringes of fd/z. An imperfect lens will not have straight equally spaced fringes,
vhereby its quality can be determined.

It is worth noting that this system likewise tests the collimator objective
and can serve as a good method for testing lenses. In addition the ability to
completely darken the field behind the second grating is a test of the degree
of collimetion of the objective since converging or diverging waves produce
moiré fringes behind the second grating due to unequal grating periods.

The work of Nisniiima and Oster can be explained by rnyl? However, on
the other hand a complete explanation of our instrument requires the use of
diffraction theory which accounts for the color effect and which explains the
ultimate limitation of this instrument. The location of the grating image is
wavelength dcpgndent. a fact that has been exploited in designing filters and
a spectrometer®. Furthermore, the complete setup (vide Figure 5) allows the
selection of the first or second derivative of the phase object.
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Figure 5. Test setup incorporating a spatial filter plane for selecting

firet or second derivative.
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§3.3 Theoretical Explanation

The ray explanation, which is essentially due to Nishijima and Oster and
is presented in §3.2, helped one to understand the basic operation of the instru-
ment. In this section a rigorous derivation is presented based on scalar
diffraction theory. The result will be an interpretation of the image as two,
three or many shifted object wave fronts, sometimes tilted. Accordingly we
will use the terms "shearing interferometry" as is common when two shifted
object wavefronts interact. In generalization thereof we will introduce the
terms '"triple shearing interferometry' and "multiple shearing interferometry".
In somz instances these shearing interferences will represent the first or the
second derivative of the object. The instrument is diagrammed in Figure 6,
which illustrates the pertinent distances.

Consider a monochromatic plane wave incident on grating Gl in the plane
at ~z). The field behind this grating is
[ J
u(x, y, -2z,) = e 121 I ¢, 2" inx/d
n.-ﬂ
vwhere the periodic grating is considered infinite in extent and of period d,
and is expressed as a Fourier exponential series; k = 2n/) where A = wavelength
of light. Following a line of reasoning like Edgar's7, the incident plane
wave is by action of the grating replaced by a set of plane wavefronts whose
x-direction cosines are niA/d and whose field strength is proportional to C,.
This gives a propagating field behind Gl as
-1kz) 2 c e1k[nAx/d+(z1+z)v‘l-(nA?d)zl
n

u(x, Y, 2) e

n
which at the object plane z = 0 reduces to
ulx, y, 0-) = ¢ 1k21 I Cq eik[nkx/d+11/1-(nA/§$7].
n

Applying the Kirchoff boundary conditions to the field as it passes
through the object as we did through grating Gl, we have

-1kz, ik[nAx/d+z,V1-(nr/d)2) (5)

u(x, Yy, 0+) = e 2 cn Uo(x. y) e
n

where ug(x, y) is the two dimensional object transmittance function.

Each of the plane waves is diffracted as it passes through the object.
At this point, the concept of the angular spectrum is very useful .8 1In this
formulation the diffraction phenomenon is a multiplicative quadratic phase
factor exp(ikzvl - A2(v¢ + u4) ) in the Fourier domain which increases with the
propagation distance z. Let 4(v, u; O+) be the angular spectrum of equation
(5) defined by

d(v, u; O+) = JJ u(x, y, 0+) e

=2ni(vx+uy) dxdy

where the integration in this section will be over the interval (-«, =) when
unspecified, and (v, u) are the Fourier spatial frequency components. The
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angular spectrum for the plane just preceding G2 (z = z,~) is

ikzZVI-Az(v§+u§)

(v, u; 2zp-) = (v, u; 0+) e

- e-ikzl Z cn (v - n/d, u) eik[zl/1'(nkld)2+22/1-kz(v2+u2)]
n

where dg(v, u) is the angular spectrum of the object. The Kirchoff boundary
conditions are applied to the second grating at z = z;.

u(x, y, z2+) = u(x, y, z2-) } Cq i™ ez“mx/d
m

i
where the e ™ factor accounts for the fact that the second grating is shifted
by half a period with respect to Gl1. In the Fourier domain this becomes a con-
volution which results in

a(v, u; 2,+4) = e-ikcl z Z Cn C‘ eimn dg(v - (ntm)/d, u)
nm eik{zlfi-(nkldff + 22V1=-A%[(v-m/d)*+u‘]}
(6)

The image plane is conjugate to the object plane z = 0. Therefore we
compute the field virtually back to the z = 0 plane in order to find the
resultant field in the plane of observation, and give the field a new symbol
v(x, y) with ¥(v, u) as its Fourier spectrum

~1kz, /112 (v2+u2)

0(\)’ D) - 0(\), U, 22+) e

Substituting equation (6) into this and simplifying by using the first two
terms in the Taylor series expansion of the square roots in the exponential
terms yields

- 2_ 2
3, W = ] CqCaet™ a0 - (im)/d, W) o1klz2A?va/d =21 (A /d)%-z; (mA/)®]
nm

But as explained in the first section the two gratings are separated by some
multiple M of the Talbot distance zy. Thus putting zp + 2) = M z7 ™ 2Md2/x
into the above equation reduces it to

Vv, w) = Llc,Gy ™ do(v - (n+m)/d, u)
nm

eZﬂi[Azz\m/d-zzA(mz-nz)/ZdZ]. (7

Taking the Fourier transform of this gives the resultant field in the image
plane.
2n1[m/2+(m+n)? n+m)x/d
v(x, y) = [ [ Cp Cpuolx + mz22/d, y) e [/ 2+(mn) 2y [2ph(ntm)x/]

nm (8)

Thus multiple-shearing interferences are observed in the image plane. In
ordinary shearing interference only two terms are present, u(x + Ax, y) - u(x, y).
In order to reduce the large number of terms of the double series we will perform
certain spatial filtering operations. The field expressed by equation (7) is
found 1in the spatial filter plane located one focal length behind the first
lens of the telecentric system. In order to filter just the n + m = O or
n+m=1 term, which we will show leads to special interferences, we must
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Figure 6. Talbot Interferometer setup. Telecentric system is focused onto
the object. The spatial filter plane is used to simplify the
multiple-shearing interferences.
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Figure 7. The spatial filter plane with an arbitrary object spectrum. The
spectrum is shifted along the v-axis by 1/d.
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assume that the shifted spectrums Gp(v - (n+m)/d, u) do not overlap. This is
shown in Figure 7 along with the bandwidth restriction of the object, |Av| S
1/2d, i.e., Ly(v, u) = O whenever |v| = 1/2d.

§3.4 Zero Order Filtering

The multiple shearing interferences can be simplified by spatial filtering.
Our first consideration is the zero order filtering case, n + m = 0. Thus
equation (8) reduces to
imm
vix, y) = E CoCp
where z; is written as z without the subscript 2 and is the distance from the
object to the second grating. If we restrict ourselves to only considering
either amplitude or phase modulated gratings that are symmetrical about the
origin then C,'s are real and Cp = C-m. Equation (9) becomes

ug(x + mz)/d, y) 9)

vix, y) = Coz{uo(x, y) + g (Cm/Co)2 eimIl ug(x + mz)/d, y)}.
m¥0
These multiple-shearing interferences can be simplified to tripde-shearing
interferences if (Cp/Cy)2 terms for all but the first pair are negligibly
small. By using a special grating whose transmittance is given by g(x) = 1 +
cos(2nx/d), triple-shearing interferances would result, since Cy = O, |m| > 2.
Alternatively, a grating can be designed which is still binary and yet meet
this condition. We now consider the use of an inexpensive Ronchi ruling as
the grating. The Fourier coefficients are Cyp = 1/2 sinc(m/2); all even Cy = O,

where sinc(x) = sin(mx)/nx. Thus

vix, y) = Coz{uo(x, y) - )] sinc?(m/2) up(x + mz)/d, y)}. (10)

mp0

(odd)
These multiple-shearing interferences can be approximated by triple-shearing
interferences in this case since the |m| = 3, 5, 7,... terms can be neglected.

The |m|= 3 term 1s only one-ninth that of the|m|= 1 term. Higher order terms
are much smaller than this. Therefore equation (10) reduces approximately to

vix, y) =~ 1/4{u0(x, y) - (2/7)2 up(x + zA/d, y)
- (2/7)2 up(x = z)r/d, y)}- (11)

These triple-shearing interferences will sometimes be ioughly the second
derivative, 32u/3x? of the object if the shift zA/d is smaller than the resolu-
tion length §x, which 18 the inverse of the object bandwidth Av = 1/éx.
Actually zA/d = (1/3)8x is still good, as we will show by making use of the
Bernstein theorem. First we expand the last two terms in equation (11) in a
Taylor series around zi/d.

u(x + 22/d, y) = § uP (x, y) 1/p! (za/a)P

p=0

up(x - za/d, ) = § P (x, v -1)P/p! (2a/a)P
p=0
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vhere ugp)(x, y) = apuo(x, y)/axp. Therefore equation (11) becomes

vix, y) = llb{uo(x, y) = (2/7)? [2up(x, y) - 2 Z ugp)(x, y)

p=2
1/p! (zx/d)"l}.
The summation term can be approximated by the second derivative, i.e.,

T ol x, y) 1/pt (AP & u§B (x, y) 1/2(22/4)2 (12)
p=2
(even)

if the terms p = 4, 6,.. are small compared to p = 2. This can be shown as
follows. Let

fp = 1/p! (zr/d)P uép)(x. y).
Then equation (12) becomes

) £~ £

pe2 P
(even)

if

|fp| s 1/10 £22%.

The factor of 1/10 is picked as a figure of merit, but other values may
be used. As we shall see, this factor determines the maximum distance that the

object can be placed from the second grating G2. Now,

|£2] = £32% = 1/2(2zr/d)2 u(()z)m. (13)

By the theorem of Bernlteinlo, the derivatives of a bandlimited function are
bounded by the maximum value that the function attains. That is,

|g(p)(x)| < (21rL)p By

where By = {g(x))pax and L is the maximum frequency of g(x) in the Fourier
domain. Call 2L = Av; we have

€] s 1/p1 (20/0) (ron)P? ufP = 2/p1 (zanav/a)PE £3o

a
which when compared with equation (13) implies that
2/p! (zMrA\a/d)p--2 =1/10,
22 /d = (p1/20)} P72/ (nav).

The factorial dominates the root process as can be shown using the Stirling's
approximation for factorial,

(pl/ZO)]‘/p"2 ~ (/2_11/20)1/"-2. p/e for large p.
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Therefore the smallest p, (p = 4) is the tightest bound for z, and we have
zA/d g v24/20 / nav ™ 8x/3 . (14)

Recall that for spatial filtering we require that Av < 1/d. Therefore the most
stringent condition is for Av = 1/d. This is required in order that the shifted
object spectrum will not overlap,as shown in Firare 6. Thus the object to G2
distance z in this instance must be less than about 1/6 of a Talbot distance,

or more exactly,

z <1.1 zT/2n. (15)

Under the above restrictions as given by either equation (14) of (15) for the
maximum distance z, the field in the image plane is given by

v(x, )~ 140 - 810 {uolx, V) - =g (M2 ufD &, )
1720 {ug(x, y) + 5/7 (2M/d)2 uiP (x, )]. (16)

§3.5 First Order Filtering

The mathematics for this case follows simply from the previous section.
Here we filter either the n +m = 1 or n + m = -1 term. The only difference is
in the sign of & phase factor which is unimportant when detecting the signal.
The field in the image plane becomes for the n + m = +1 case,

e2ﬂi[x/d+z/z'r] {ug(x, y) - uglx + zr/d, y)} (A7)

v(x, y) = Cy C;
This surprising result is obtained since the even coefficients are zero. Those
terms which contribute under the n + m = 1 condition are Cp C, * Cy Cy-). This
combination implies that for any m,one coefficient will always be even and henee
equal to zero. This is very much like ordinarv shearing interferometry and we
will again show that under a certain condition this is approximately the deriva-
tive of the object. We ignore the phase since it is the intensity which is
observed in the image plane, and deal with the bracketed terms. The last term
is expanded in a Taylor series around z)/d and when combined with ugp(x, y) gives

(...} = 2 u(p)(x, y) (zA/d)p 1/p! »~ ugl)(x, y) (z)/d).

pzl
Using the same kind of arguments as in the previous section this approximation
is valid if the shift is less than 1/15 éx (equation 18).
zA/d g 1/5n8v =(1/15) éx. (18)

Under the strictest condition |Av| < 1/d the condition of equation (18) means
that the object to G2 distance is

z = z7/10n. (19)

Therefore the field in the image plane for first order filtering under the
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conditions of equation (18) or (19), whichever may apply, is given by

2"1[!/d+z/zT] (2r/d) ugl)(x’ y). (20)

vix,y) » 1/n e

One other case has been under investigation. Here we record the intensity
pattern on film or on a diffuser (like a rear-projection screen), then view it
with a low pass detector such as the eye. The experimental results were shaown
in the previous case where no filtering was done. The reader's eye performed
the filtering as he observed the results. Unfortunately the mathematics has
proven cumbersome. But we hope to find the necessary approximation to yield
a simple interpretable solution.

§3.6 Experiments

The Talbot interferometer for testing phase objec:s was placed on a
laboratory optical bench. It used two Renchi rulings of 10 lines per mm.
Although they were quite scratched, they performed satisfactorily because the
resultant intensity in the plane of observation is summed over a large number
of lines. One grating was mounted for rotational motion while the other had
translational movement. These two motions allowed the gratings to be aligned

as desired. The gratings were held in bench carriers which accomplished longi-
tudinal motion.

Both He-neon laser and white light sources were used. The laser beam was
focused onto a pinhole and thereafter collimated (diameter 50mm). For the
white light source experiments, a 500 wa.t slide projector was used. To increase
the throughput an adjustable slit was ured instead of a pinhole; it was aligned
parallel to the bars of Gl. The width of the slit was then made sufficiently
narrov so that the self-images would appear with good color contrast. It was
discovered that the moiré fringes obtained behind the second grating when both
gratings were aligned was a measure of the degree of collimation. This work
has been accepted for publication and the manuscript is provided in Appendix B.

The mechod of observing the interference fringes was to project the image
of the object with its fringe structure onto a screen. The phase objects tested
were: various lenses, prisms, plastic bags and boxes, the change of index of
refraction caused by heat of a candle flame, and drops of plastic resin or var-
nish arranged into different configurations on glass slides.

Photographs of these experiments were made. Two of these appear in our
paper that appeared in Optics Communications, February 1971. A copy of this
paper is provided in Appendix A. The photographs are of a candle flame that
was placed between gratings separated by about 12 cm. To fully eppreciate the
filtering aspect of this instrument we have separated the gratings by about
30 cm. with the flame placed close to Gl. In this case the multiple-shearing
interferences are readily observed by the great number of candle wicks in the
field of view. By allowing only the zeroth diffracted order to propagate beyond
the spatial filter plane, triple-shearing interferences are obtained, as veri-
fied by the presence of the wick which appears at three separate locations
corresponding to the amount of shear introduced. Lateral shearing interferences
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are obtained when first order filtering is used, as indicated by observing
only two wick images. Photographs of this along with some beautiful color
pictures for a whité light source were shown at the 1971 Annual Spring Meeting
of the Optical Society of America ths: was held in Tucson, Arizona..

§4 The Talbot Autocollimator

We found that collimation of the source was critical when using the
Talbot interferometer setup (§3). Otherwise it was not possible to completely
darken the field. By increasing the separation of the gratings to its maximum
permissible extent, a very sensitive means for accurately locating a point
source in the focal plane of the lens was obtained. Thus the problem of
accurately and inexpensively collimating the light sources for use with the
Fourier Spectrometer was solved. A manuscript on "A Simple Interferometric
Method of Beam Collimation" has been accepted for publication in Applied Optics
this August. The manuscript is reproduced in Appendix B.
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§5 The Talbot Interferometer with Circular Gratings

Earlier (§3), we discussed the use of the Talbot Interferometer for
teating optical components. This setup *ced Ronchi rulings and displayed the
derivative of the phase obje:t along & direction tranaverse to the ruling axis.
Thus the testing of an axially symmetric object such as a lens requires that
it be rotated for complete examination. Ideally, such objects are well suited
for testing with interferometers that give a constant shear vo the wavefront
in the radial direction. Therefore we intend to modify the Talbot interfero-
meter by replacing the straight line gratings with circular gratings. In this
way the radial gradient of the deformed wavefront can be observed. A circular
grating (see Fig. 9) is defined in this report as consisting of a number of
concentric circular rings of constant radial spacing on a transparent surface.
Our description will be brief since the experiments and theory of this new
modification are not quite complete. We present here our analysis on whether
the circular grating will self~imsge when illuminated by a plane wave.

§5.1 Theory of the Talbot Effect in Cylindrical Coordinates

The theory for the Talbot set of self~imaging objects in cartesian coor-
dinites has been presented in a paper by W. Hontgonery.ll What Montgomery
essentially did was to solve the wave equation while asking the following
question: "What are the necessary and sufficient conditions that the object
must aatisfl in order that a faithful image of it be found in a parallel plane
z =d> 0?"12 OQur solution uses this approach.

We want to solve the wave equation in cylindrical coordinates for the set
of axially symmetric objects of finite aperture which are periodic in the
direction of wave propagation, the z~axis of Figure 8. Therefore we have the
following boundary conditions:

u(r, ¢, z2) = u(r, 2z) axial symmetry (1)
u(r, Az) = u(r, 0) periodicity along z-axis (2)
u(r, 0) = 0 forr 21 finite aperture (3)

vhere u(r, 0) is the Talbot set of objects we desire, Az is the period of the
repeating image and the cylindrical coordinates (r, ¢, z) are related to the
cartesian coordinates (x, y, z) by

x2 + y2 = r2; X = r cos P; y = r 8in 9.
The wave equation in cylindrical coordinates is

%y ., 193u , 1 3%u, %u, .,

W rra Ttttk = 0
where u = u(r, ¢ z), k = 2n/), and A is the wavelength of the light source.
Applying the axial symmetry condition equ. (1) to the above equation reduces

it to 2 2
3“u . 1 3u _ 3u 2, a
or2 r or + 322 + kv 0 CY
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Next the separation of variables technique is employed, letting

u(r, z) = R(r) Z(z) = RZ. (5)
The boundary conditions of equ. (2) and (3) become

R(1) = 0 (6)

Z(Az) = 2(0). (7)

Inserting equ. (5) into (4) we obtain

R"Z + % R'Z + RZ" + k?RZ = 0.
Rearranging this and dividing by RZ we have
[ 1] ] "
-::—+-:7:—+k2 = constant = -%— (8)

The left and right hand sides of this equation are equal to a constant
since they are respectively functions of r and z only. If we let the constant
be given by (ky)? and solve the right hand side of equ. (8), we have

z" = - k2y22z
which yields the solution

2(z) = 2(0) e 1%,

The constant is chosen positive and real (k2y2 > 0) to avoid evanescent
waves that are attenuated within a few wavelengths along the z-axis. These
waves would not be present over distances that our instrument will operate.
Thus our solution is a wave propagating in a direction given by the direction
cosine, vy (y = 1). Furthermore we choose the positive sign in the exponent
since forward propagation is of dnterest here.

Now the boundary condition of equ. (7) is applied to this solution,
giving us
eikYAz =1 or Ym ™ %% = my; = 1.
This last inequality comes from our earlier statement. Hence there is a
maximum value that m can obtain,
m = — - €,
max Y1
where 0 < € < 1 is a positive number that makes m;,,, an integer. Thus our
eigenvalues, vy, form a discrete set due to the self-imaging requirement.
Consider now the left hand side of equ. (8) which when multiplied by R yields

R" + % R' + kK2(1 - y2)R = 0.

Let E=srk vl -~ yi and substitute it into the above equation. We have

2
0. 186 1 - o

This is the Bessel's differential equation of order zero that has the solution

R(E) = Jolkr /T = 12)
Applying the boundary conditions of equ. (6) to this solution gives
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R(1) = 0 = Jo(vp)

where vy, = k V1 - y2 are the zeros of J;. Thus our elementary solution 1is,
to within a conatant. given by

up(r, z) = eiky‘z Jo(vpr) .

OQur total solution is a superposition of all our separate eigenvalue
solutions. n

w(r, 2 = ] Ca INE ke T~ (@) ) (9
me

In order to evaluate the Cp's we use

N

1
J Jolvgr) Jo{vgr) rdr = $om J12(vg) (10)
0

where vy, v, are zeros of J;, and Gnn is the Kronecker delta,
5 e/ 0nénm
nm l, n=mn

Our initial condition is u(r, 0), that is u(r, 0) is rhe Talbot set of objects
with axial symmetry. From equ. (9)

Bpax
u(r, 0) = J Cp Jo(vmr). (11)
n=0

By integrating this as follows

1
I u(r, 0) Jo(var) rde
0

the Cm'a can be determined. Substituting equ. (11) into the above, and
exchanging summation and integration yields,

1 Tmax 1
I u(r, 0) Jo(vgr) dr = § Gy J Jo(wgr) Jo(vyr) rdr
0 a=0 0

Bmax

- );o Ca 3 Som J12(w)
me

1 .
o - E cn le(vnl°

'Therefore,

1
2
Cn - -J—l—z(-v—ns- Jo \l(r, 0) Jo(\)nr) rdr.

Thus our solution for the Talbot set of axial symmetric objects is:
Bnax 1

u(r, z) = | €y liay) Jo(vg)y Cm =35 \——T J u(r, 0) Jo(vgpr) rdr
o=0 1 Vml Jg

where mp o = %T - €, vg= k- (my)2.

29



§5.2 Self-Imaging of a Circular Grating

The circular grating (see Fig. 9) can be expressed in a Fourier Series as

follows: -
6(r) = ] cp MinT/e
m=0
where Cp = o sinc na, a is the period and a is that fraction of the period for
which the grating is transparent. Our exact solution for the Talbot set of
axially symmetric gratings is in Bessel functions which for large arguments

behave approximately like a cosinusoidal function.

cos(vgr - %-); var > 25, (12)
T

Therefore our elementary solution in r will build up to a periodic structure

like a circular grating if v, = a/2mR, i.e. k1 - 5m71$2 = a/2nR.

Jo(vgr) ~

However, the 1//r factor in equ. (12) means that the contrast will dimin-
ish with increasing r. That is, an object which belongs to a Talbot set of
axially symmetric objects must have decreasing values of transmittance as r
increases in order to be faithfully self-imaged. Thus the circular grating only
approximately belongs to this Talbot set of objects.

Circular gratings were made on AGFA SCIENTIA 10E75 glass photcgraphic
plates. These were used to replace the ‘Ronchi rulings of our Talbot interfero~
meter. The Talbot images observed showed a decreased contrast toward the
grating edges which can be explained by the 1//r factor mentioned previously.
This may limit the maximum size of the object that can be tested. We have
looked at 50 mm diameter objects without difficulty. A full report can not be
made at this fime as the wor). is not quite complete.
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The moiré effect is very sensitive in detecting smali differences between two similar gratings. These
differences might be caused by an object with phase gradient placed between the two gratings. The perform-
ance of such an instrument can be understood in terms of the *Talbot effect® (aiso called *Fourier
imaging" or "self-imaging®). Slight modifications provide shearing interferences and the second deriva-

tive of the object.

The moiré effect reveals very small imperfec-

tions of two gratings placed on top of each other.
Lord Rayleigh used this effect for testing dif-
fraction gratings. The same basic idea has been
used for many other purposes. For example, in
electron microscopy the imperfections in two
pieces of crystal lattice can be made visible in
this way [1]. Essentially the same moiré effect
is utilized for studying the shape of a diffusely
reflecting surface, when the shadow of a grating
falls onto that surface. The grating shadow is
observed through the same grating [2]. Alao the
shape of a refracting object can be investigated
by means of the moiré effect [3]. The refracting
object is placed before or behind a first ;rating
(fig. 1). The shadow of the first grating will be
deformed due to the refractive gradient. The
mofiré fringes observed behind the second grating
placed at a distance z from the object are lines
of equal deviation [eq. (1)].

x4 0 G2

<

Fig. 1. The Talbot tnterferometer. G1, G2 gratings
with period d; ray deflection angle € in object O.

€dx,9) = md/z; m=0,+1, +2... .(1)

We intend to extend this method of observing
refractive gradients by means of moiré. As de-
scribed so far this method is based entirely on
rays. This point of view is not satisfactory since
it is knc'wn that wave optical color effects occur
when white light passes through two gratings at
a finite distance. This happens with uncollimated
[4] and with collimated light [5]. Such color ef-
fects may well prove to be useful. A more im-
portant objection against the ray-optical point of
view is the inability to explain the fundamental
limitation of this method. Based on eq. (1), one
might suspect that an arbitrarily small deflec-
tion angle can be detected if only the distance 2
of the two gratings is sufficientiy iarge. Since
such unlimited detectibility is never attainable

zero

Fig. 2. Overlapping diffraction orders behind a grating
of finite width B = Nd.
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(b)
Fig. 3. Talbot interferences with a candle flame as object between the two gratings, a. Gratings parallel. b. Oune
grating slightly rotated.
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one might try to patch on the following wave-op-
tical argument.

The light passing through a grating slit of
width d/2 does not behave like a ray anymore
after it has travelled over a distance z,, where
the diffraction spread z2gA/(d/2) equals the slit
width d/2 [eq. (2)].

2pA/(d/2) =d/2; 2zp = d2/4x . (2)

Based on this criterion one might expect €p to
be the smallest detectable deflection [eq. (g)]

€g = d/2tg = IV 3

With A = 0.5 x 103 mm and d = 1071 this leads
to iB = 192, which is only moderately good.

Fortunitely the method is capable of detecting
angles much smaller than €p [eq. (3)]. This is
due to the Talbot effect [6], which is also known
as "Foirier imaging” [7] and "seif-imaging” [8].
Talbot discovered about 135 years sgo that
images can be formed without any lenses or
mirrors if the object is a grating which is il-
luminated in collimated monochromatic light.
These "Talbot images® occur at distances 242/,
4d2/), etc. behind the grating. When a second
grating at a slight angular rotation to Gl is
placed into the plane of a Talbot image, moiré
fringes of high contrast are cbserved. These
moiré fringes will be deformed if a refractive
phase object is placed for example close to the
first grating. As before these moiré fringes in-
dicate lines of equal deflection by the object
[eq. (1)].

The largest possible distance 2 (or maybe
2zy) depends on the finite width B = Nd of the
first grating. At & the first grating diffraction
orders have moved to both sides by half of the
grating width B [fig. 2; eq. (4)].

z2pA/d=B/2 =Nd/2; &7 =Nd%/2x. (4)

When the two gratings are separated by £ the
smallest detectable deflection € is now smaller
by a factor 2N, where N {s the number of periods
in the first grating [eq. (5)].

ep=d/2tp=2/Nd=2/B=eq/2N. (5

We have performed some experiments with
this "Talbot interferometer” as shown fn fig. 1.
In fig. 3a the object is a flama, and again in
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fig. 3b, but now with the second grating slightly
rotated around the optical axis. In some addi-
tional experiments we have placed a telecentric
lens system behind the Talbot interferometer.
When introducing a spatial filter into this tele-
centric system and rejecting everything but the
zeroth diffraction order from the two-grating
system one gbserves in essence the second
derivative 3%u/3x2 of the object u(x,y). When
shifting the spatial filier to one of the first
grating diffraction orders the image represents
shearing interferences u(x + Az /d, y) - u(x, y).
In a white light one obtains beautiful color
fringes which are unlike ordinary interference
fringes. For example for a specific grating
distance the image contains many blue-orange
fringes. These color fringes are of such high
contrast that E. Lau found a similar setup usaful
in designing tablecloths [8]. Our method is also
applicable for the detection of small differences
between two quite irregular but similar objects.
One begins by recording photographically the
fringes from the first object. After development
the photograph is placed where the fringes had
been observed. The first object is now replaced
by the second object, which might actually be
the first object but somewhat deformed. The
moiré fringes between subsequently produced
Talbet interference fringes will reveal small
differences between the two objects. The quarti-
tative evaluation is similar to that for Lau's
dupligram method [10] and for life-fringe holo-
graphic interferometry.
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There are two common methods of determining the degree of collimation:
autocollimation and shearing interferometry. The simplest method is the auto-
collimation technique, but it only indicates collimation by comparing the size
of the source with its image. On the other hand the spacing of the fringes in
shearing interferometry is a direct measure of the degree of collimation.1
Recently, Langenbeck derived a method that used two tiny corner-cube reflectors
to sample the beam. In this fashion he was able to translate the measurement
from fringe spacing to fringe rotation, resulting in increased sensitivity.z
The method presented here is an application of the Talbot 1nterferometer3 and
has the same limitations as the other interferometric techniques. The main
advantages of this technique are the inexpensive components (two Ronchi rulings)
and the relative insensitivity to component alignment.

As Talbot observed in 1837, an image of a grating appears at integral
multiples of the distance 2d2/)A (where d is the grating period) whea the grating
is illumirated by a plane monochromatic wave. A Ronchi ruling would therefore
be imaged at 2d2/A, 4d2/A, etc. If we place another identical Ronchi ruling
in one of these self-image planes (see Figure 1) moiré fringes will be formed,
as observed by J. Burch.“ The fringe spacing P can be calculated by using the
vector diagrams described by Rogers5 to be

P = d/2 sin(6/2) (1)
where 6 is the angle with which the two gratings meet. As the grating G2 is
rotated avound the optical axis, the fringe spacing increases until we have
uniform brightness (or darkness) when grating bars of Gl and G2 are parallel
to each other.

The plane wave that illuminates Gl of the interferometer is obtained by
placing a point source at the focus of a lens as shown in Figure 1. When this

lens is defocused the plane monochromatic wave becomes spherical. Cowley and



Moodie6 have shown that the positions of the self-image planes of a grating

illuminated by a spherical wave are given by
1/zy + 1/zy = 1/2JzZy, (2)

where J is a positive integer, 1/Zy is the curvature of the incident wave at
Gl, Zy is the location of the self-image as measured from Gl and Zy is the

distance 2d?/). The self-image will be magnified by a factor
M o= 1+ Z,/z, . (3)

This image, when superimposed with the second grating, again produces
moiré fringes. Now the grating G2 is rotated around the optical axis until
the grating bars of Gl and G2 are parallel to <ach other. In this case, the

Rogers vector diagram gives a fringe spacing
P = didy/ld; - dzf

where d; is the period of the self-image, d; the period of the second grating,

and d; = Md. The fringe spacing in terms of the grating period d is therefore
P = Md/|M - 1].

Thus the fiiuge spacing is a quantitative measure of the degree of collimation
since |M - 1| is proportional to the curvature 1/Zy.

Now we wart to discuss the accuracy obtainable, that is, the smallest
detectable deviation from perfect collimation. If the collimation is perfect,
the magnification M of the Talbot image is 1, and hence the moiré period P is
infinite. Thus our task is to find how small must the period P become in
order to be detectable. Experience has shown that the presence of a moiré

effect is clearly visible if at least one half of the moiré period P falls




within the limited field of observation with width B. Thus one fringe will
be detected whenever the number of lines between grating G2 and the image of
Gl differ by one-half. With divergent illuminaticn we count N lines of G2
in the observation fie' ., or width B and N -~ 1/2 1lines of the image of Gl. Thus

the nagnification M required for fringe cdetection is bounded by

N
M ———
= N - 1/2 1 + 1/2N, %)

and in convergent illumination,

N

M = §T12

~ ) - 1/2N. (5)
By combining equations (2) and (3) we have
M= (1-2] 27/20)"  m 1+ 23 24/2. (6)

If M falls outside the bounds of equ. (4) and (5), no fringes will appear,
limiting the sensitivity of this test. Solving equ.(6) with the bounds of

equ. (4) and (5) we find that the minimum detectable field curvature 1/Zy is
[1/zyl 2 (4N 2p)-?

where the absolute signs obviate the necessity of assigning a sign convention
for field curvature. By substituting equ. (2) into the above equation we
obtain, for N >> 1,
|1/24] 2 (28 25)7) 7

From equ. (7) it follows that a large value of Z; is desired in order to
detect small collimation defects 1/Zy . The furthest distance to which we can
go is limited by the "walkoff" of the first-order grating diffraction. As
indicated in Figure 2, the longest distance at which there is still a connected
interference field of width D is at ZJ = Dd/2)A. Perhaps one could perform

collimation tests up to about twice this distance, but we will restrict ourselves



to Z; < Dd/2X. Inserting this limit into equ. (7), together with N = D/d, we

get

l1/zy| = 2a/p2, (8)

The curvature of the wave incident on Gl is related to the defocusing of

the collimating objective by

1| . |£ - 2o L le-z
Zy chf = Zol + Zof Zof

¢))

where Zy is thz distance of the collimating objecti:r?;o- the point source,
Zg is the distance from objective to Gl,and f is focal length of the objective
lens. The approximation is permissible since the distance Zg <<Zof/|f = Zol
in the test. Call § = |f - Z| the focusing erfor. and substitute equ. (8)

into equ. (9). We have

§ = 2x(£/D)2 (10)

vwhere we have used the fact Zg » f. Thus the focusing error is simply related
to the wavelength, and the square of the focal length to beam diameter ratio.
The focusing error can be reduced by simply rotating one grating with
respect to the other, thereby producing moiré fringes in the field of observa-
tion. In this fashion we change our detection scheme from the condition of
uniform brightness to a system cf rotating fringes. It is known that fringe
detection is more accurate than use of the uniform brightness condition. We
rotate both gratings in opposite directions by angles 6/2 with the y-axis. If
both gratings have the same period, moiré fringes will appear in the field of
obezrvation parallel to the x-axis with spacings given by equ. (1). When the

periods are unequal, the friage spacing is given by

dyd; did;

P = ~
(4% + d3 - 2d,d, cos0) ? ld) - d,|



where the approximation is for small angular rotations of 6, and d;, d, are the
grating periods of Gl image and G2 respectively. It can be shown by using the
vector arguments of Rogers thai these fringes of unequal grating periods are
rotated through an angle ¢ with respect to the x-axis, and the direction of

this rotation depends on whather the illumination is corverging or diverging.
Thus the experimenter knows in which direction to move the objective lens. This
rotation is related to the magnification M by

cotd/2 + tan¢

M= cotd/2 - tan¢ °

Substituting this equation into equ. (3) we obtain

1 . | 2 tan¢é

Zy 2 cotd/2 - tang

(11)

Our ability to measure ¢ limits the sensitivity of this test. If we say the
minimum detectable fringe angle ¢ is about one-half of a fringe (see Figure 3),

then equation (11) reduces to
|1/zy| = 2a/p2.

This lower bound is identical to that of the uniform brightnese condition,
equ. (8). In the laboratory one-quarter of a fringe was easily discernible,
producing results which were a factor of two better than predicted. If we
want to achieve even higher accuracy we may use photodetectors instead of the
eye. Assuming 1% brightnecs accuracy, we can detect fringes one hundred times
larger than the field of view. Hence the photoelectrical approach would
improve the detectibility of collimation errors by a factor of about fifty
over that which was predicted.

The visual experiments have confirmed our theoretical performance pre-
dictions. An objective lens of 20 ca focal length was used to produce a 5 ca

beam. The light from a helium-neon laser was focused with a 3.9 m focal



length lens onto a & u pinhole. The position accuracy was 0.001 cm, whereas
the calculated accuracy was 0.002 cm. This improvement was due to the fact
that 1/4 fringe was used with the angular measurement technique.

Last, one can mprove the accuracy of the test by increasing the distance
Z3. This distance was limited by the walkoff as shown in Figure 2. By the addi-
tion of one or two mirrors placed where the borderline rays of the =eroth
diffraction order propagate (Figure 2), the diffracted first-order beam can
be reflected back into the zeroth-order beam to create the shearing inter-
ferences. This should increase Zj and the accuracy of the test manyfold.
However, this has not been verified experimentally.

The author is indebted to Adolf Lohmann for his support and interest in
this work and for his helpful suggestions in the preparation of this letter.

This work was performed under Air Force contract AF-F19628-69-C-0268.
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FIGURE CAPTIONS
Talbot Interferometer setup for observing fringes due to defocusing of
collimator objective (Zo ¥ f). Fringes are observed on G2.

The self-imaging effect occurs within overlapping orders. Test done at
distance where the two first order diffraction spots begin to separate.

Moiré fringes which are rotated through angle ¢ because of defocusing of
collimator objective.












