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Abstract 

A Simulation Gase to train data procassora in optiaal data 
recovery tachniquaa la includad in this report. Also, we studied 
the trlple-nultiplezing respons* to a point source for a future 
scanning spectrometer. Three beslc motions sre required to modu- 
late the wavelength and angular coordinate« of the source. When 
performing preliminary experiments with the Multiplex Scanner, 
we discovered that the underlying Talbot effect is useful also for 
measuring phase objects. The theory of this new "Talbot Interfer- 
ometer" is explored and experimental results of a candle flame 
are reported. For axlally symmetric objects, this setup is modi- 
fied by replacing the straight line gratings with circular gratings. 
In this way the radial gradient of the deformed wavefront is 
observed. Finally a means of simply, yet accurately collimeting 
a 1Ight sourcs using the Talbot Interferometer la described. 
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Introduction 

The goal Is to measure Infrared radiation from a balloon at 
an elevation of 30 km. Maximum coverage of the sky by the scanning spectro- 
meter during the flight of the balloon Is desired. To this end our previous 
Annual Report of 30 June 1970 devoted Its efforts In describing:  (1) the 
optimum scanning mode for the existing LMSC Instrument» (2) a scheme for pro- 
cessing the data gathered by this Instrument and (3) a future Instrument based 
on the Talbot effect. Our efforts since then have been to support data pro- 
cessing for the existing equipment (see §2) and to continue the exploration of 
future methods of Instrumentation (§1). 

During our Investigation of the scanning spectrometer we found that the 
colllmatlng lens had to be good. Furthermore, It was discovered that the Talbot 
Interferometer cculd be set up to test the lens and other optical components 
(§3 and Appendix A). The straight line gratings of our setup laterally shears 
the wavefront that passes through the test object, giving multiple-Interferences. 
Our theory showed that If we allow only the zeroth diffracted order to pass to 
the plane of observation, the second derivative of the object transmlttance 
would be observed. On the other hand If either of the first diffracted orders 
were allowed to pass, then we would observe the first derivative. Good colli- 
matlon of the light source was a critical factor In this experiment. By 
separating the two gratings to a maximum distance over which Interference could 
still be observed, a very sensitive test of the degree of colllmatlon was 
obtained (§4 and Appendix B). Objects with axial symmetry are best tested by 
Interferometers that radially shear the deformed wavefront. For this reason 
we modified our Talbot Interferometer by replacing the straight line gratings 
with circular gratings. Our theory and experiments are not quite complete. 
We report: here on the theory of the Talbot effect in cylindrical coordinate« 
for axial.\y symmetric objects (§5). 

§1 The Scanning Spectrometer 

In the previous Annual Report of 30 June 1970, a spectrometer based on the 
Talbot effect was described. A schematic repvesentation of this instrument is 
shown in Figure 1. Sources to be observed are assumed to be sufficiently far 
away so that waves impinging upon the first grating are essentially plane. We 
use the colllmatlng lens and point source to simulate a sky scene. The plane 
wave is diffracted by the first grating and the Talbot images so formed are 
detected by the second grating. The photodlode receiver collects the light 
which passes through both gratings. There are three variables of interest in 
the spectrum of a source, namely the wavelength and the elevation and azimuth 
angles that locate the direction from which the radiation is emitted.  Since 
we have essentially only one signal parameter (i.e. the intensity of light 
source on the photodlode current), a triple-multiplexing scheme is required in 
order to place the three parameter function onto the one-parameter signal. The 
following motions of the spectrometer will accomplish this task. The movement 
of the second grating in the x-direction is used for obtaining cosinusoldal 
coding of the frequency of the spectrum. Rotation of the Instrument will encode 
the angular position of the sources (a, 0) and z-motion of the second grating 

i 
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will Increase the delay time for good spectral resolution and is necessary to 
recover the spectrum. 

Our studies o£ the triple-multiplexing response to a point source for 
this instrument show that we have three main carrier frequencies produced as s 
consequence of the three independent motions. They are: ^iat 

m  2irvx/d; uiong 
• irvzA/d

2; and wang - <p.    Here vx and vz are the velocities in the x- and ■- 
directions, d is the grating period, A is the wavelength of the radiation, $ is 
the time derivative of the angular position <p of the point source as shown in 
Fig. 1, and o^ac» 

uiong' uang are t^e carrier frequencies associated with the 
v.-  and z-directlon ana the rotational motions respectively. The relative 
uotions will have to be regulated in a manner so that the three main carrier 
frequencies can be separated. This in turn will be determined by the desired 
resolutions of the three spectrum parameters (A, a, ß). The analysis is incom- 
plete but a detailed report will be made later. 

§2 A Simulation Game 

A "Signal Processing Game*' was devised for the purpose of training the 
person in charge of signal processing whom we call the "investigator". The 
game consists of digital data (64 samples) Which describe a Signal plus noise. 
The investigator is supposed to devise a strategy for impvoving the signal-to- 
noise ratio. In problem #1 the investigator knows very little about the 
statistical behavior of signal and noise. Hence only a mild improvement is 
possible. In the subsequent problems the investigator is supplied with more 
and more statistical information, which allow for better and more sophisticated 
data improvement schemes. 

The rules request that the game keeper hand the "Introduction" and 
"Recorded Data" sections to the investigator. Next the game keeper gives the 
investigator problem #1. It is important that only one problem be given the 
investigator at a time, because the formulation of problem #2 reveals part of 
the answer to #1. Also the last section, "About the Signal Synthesis", should 
be well-hidden from the investigator since it explains everything which the 
"investigator" shall find for himself, among others the correct noise-free 
signal. 
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f2.1 Introduction to • Signal Processing Game 

The sis of this gase Is to develop skills in signal processing. At the 

same time errors In the computer program for this Job will become apparent. 

The definitions ere essentially those of the 1970 final report. Notice: 

there Is an error on pg. 38 of that report. In the denominator of equ. (13.18) 

ingj2 should read |ng/E|2. 

The Input data for this game ere the ecorded dste UR(t). It Is assumed 

that the non-uniform scanning velocity of the spinning gondola hss been 

corrected for alreedy. The time coordinate Is given In discreet numbers t - 

0» 1, 2...63. We may consider UR(t) es being about one quarter of a single 

horizontal scsn (0 - constent). 

The rules of the games ere es follows. The "Investigator" gets the 

sheet "Recorded Dete UR(t)" end the sheet "Problem #1". After solving this 

problem he will give the solution to the "monitor" end to the "game constructor". 

Now he may start on problem #2, and so on. But It Is important  that the Inves- 

tigator does not get the next problem sheet before he has finished the previous 

problem. The reason Is that, the formulation of the leter problems contains 

parts of the answers to the eerller problems. This has to do with the beslc 

structure of this simulation game:  for performing any meaningful signal pro- 

cessing operation one must have some knowledge about the original signal and/or 

the noise. For example in problem #1 the inveetigetor is told that the noise 

is additive and non-negetive. In the leter problems the investigator will be 

supplied with even more a priori  information. Naturally, this should enable 

him to extract the signals better and better. But the methods for doing this 
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Increase in complexity. 

On the very last pages, following the problems, the design of the 

"recorded data" Is explained, and the true original signal Is unveiled. 

Obviously those pages should not be given to the investigator before he has 

solved all the problems. 

§2.2 Recorded Data ÜR(t) 

t is the discrete tine variable, running from t-0 to t-63. 

t üR(t) t üR(t) t üR(t) t UR(t) 

0 55 16 110 32 39 383 

25 17 184 33 56 10 

85 18 29 34 05 69 

61 19 51 35 15 58 

20 20 42 36 95 52 

95 21 78 37 09 66 

07 22 09 38 81 79 

00 23 15 39 21 134 

62 24 13 40 81 94 

79 25 50 41 399 102 

148 26 99 42 372 108 

105 27 54 43 348 94 

125 28 99 44 303 56 

125 29 35 45 383 67 

173 30 98 46 317 51 

181 31 02 47 317 63 

. . 
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§2.3 Problems 

Problem #1 

Given are Che recorded deta UR(t) with t - 0, 1...63. Wanted are the 

original data Uo(t), which represent the "one-dimensional equivalent object 

radiation" Sgta). We assume that the known influences of the telescope 

[liix',y');  iKx'ty')] and of the electrical system [G(t)] have been compensated 

already or are negligible. But the recorded signal UR(t) is corrupted 

by additive noise N(t): 

üR(t) - üo(t) + N(t). 

The only features known about the original signal UQU) and about the noise 

N(t) are that they are non-negative: 

MO > 0; N(t) > 0. 

Furthermore the noise N(t) is stationary, which mesns that the noise properties 

are not "drifting". In other words, short-term average features of the noise 

remain the same from the beginning to the end of the observation. 

Try to utilize the given a priori  information for computing a new signal 

Ui(t) from UR(t), which somehow is better than UR(t) as an approximated 

representation of Uo(t). Plot U.Ct) as s continuous curve, and also üR(t) for 

comparison. 



Problea #2 

Given are the facts: 

üo(t) > 0;        N(t) 2 0;        5 - 50. 

By N we mean the linear average of the noise. This N can be visualised as the 

dark current of the photorecelver as measured with an Instrument which rejects 

high frequencies. 

Based on these facts try to compute s better signal U?(t) from U8(t). 

Plot both U2(t) and UR(t). 

(to be cut by game monitor) 

Problem #3 

n(v) -   In N(t) - N + tt(t); Ä(v) -   /n(t) e"2irlvt dv; 

v - m/64;  m - -32, -31,.. .-lf0,-»-l,.. .+30, +31; 

ja(v)|2 M constant. The vslue of this "constant" Is not known. Try to 

deduce It from the recorded data UR(t). You might have to make an Intelligent 

guess. 

Given are the asms facts as In the previous problem. In addition It Is 

known that the noise Is approximately "white". 
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Problem #4 

Given are the same feet* •• In the previous problems including the 

"constant" which deacribes the noise power level. 

|fl(v)|2« illO1» in -|< v.-i + |. 

Now that |n(v)|2 is known and UR(t)  is computable, can you apply the 

Wiener-filter theory, at least in a guessed approximation? Try it and compute 

Mitit).    Plot Uit(t) and Ug(t). Hint: represent |üo(v)|2 by a gaussian function 

of suitable peak power and width. Signal processing specialists always try 

it with a gaussian function if they don't know a better way. 

|üo(v)|^P, .-,r(v/v-)2. 

(to be cut by game monitor) 

Problem #5 

Try the asms approach as in the previous problem, but with a gueesed 

slnc2*shsped |u0(v)|
2. 

|üo(v)l2 * p5 •lnc2(v/v5);        sine s - 
sinirs 

ta 

Plot the result Us(t)  and also UR(t) for comparison. 



Problca #6 

Try the saae approach as In the previous problem, but a soaevhat 

different guaas for |Üo(v)|2: 

|üo(v)|2 - Pe «in^Cv/ve) + (Po - P6)«o; 

Herein 60 means a function which Is equal to 1 for v - 0 and equal to 0 for 

\> t 0.    Plot U6(t) and üR(t). 

(to be cut by gaaa aonltor) 

Problem #7 

Baatd on all of the accumulated experience try vour own signal processing 

approach or simply guaas «hat U0(t) might have bean. Call It Ü7(t). Plot 

U7(t) and UR(t). 



§2.4 About the Signal Synthesis 

The noise N( ) covers a time range t - 0, 1, 2...63 and an aaplltude 

range 0 < N(t) < 99 - N. The values for N(t) are picke1 fron a table of 

random numbers. Hence ve may assume 

N(t) - N/2 «50;        N - 99; 

N(t) - N + n(t);        -N/2 < N(t) < +N/2. 

Since the time resolution step is 6t - 1 the frequency range Av Is Av - 

l/6t - 1: 

The time duration At Is At - 64. Hence the frequency resolution Is 

6v • 1/At - 1/64.  In other words the Fourier transformation by means of a 

digital computer provides a frequency spectrum at v - -32/64, -31/64,.,.-1/64, 

0, +1/64,...+31/64. 

Since n(t) has a zero-mean, and since n(t) consists of (almost) unrestrained 

random numbers, we may expect a "white" noise power spectrum. 

<|fl(v)|2) - constant • rect(v); 

(lln-i<v< + i 
rect(v) --   i 

/ 0 elsewhere 

The value of the constant can be computed on the basis of the Plancherel- 

theorem: 
/|fl(v)|2 dv - /|n( >(t)|2 dt. 

The right-hand side will be computed based on the histogram-method. It Is 

obviously:  Z"1 

/ 
|n(t)|2 dt - T |n(t)|2 

0 

The probability for n Is constant between -N/2 and +N/2, the constant being 

defined by the normalisation Integral 

10 
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p(n) ■ constant  •  rect(n/N); 

1 -  p(n) dn • N • constant;  constant * 1/N. 

Now we can conpute the mean square of n(t) by neans of the hlstograa 

method: 
    f f+H/2 
|n(t)|2 - In2 p(n) dn - (1/N) /    n2 dn - N2/12. 

J J-m 
Since It Is 

••*   

|fl(v)|2 dv - |ft|2 

-1« and 

|n(t)|2 dt - T |n|2 - T N2/12 

we conclude on the basis of the Plancherel theorem 

"jflp" - T N2/12;        "jftf2" - (16/3) 10*. 

In our case It is T - 64 and N w 100. 

Now we will devise the object. It shall consist of several square boxes, 

all with the same width B, hut with different amplitudes Ag, and with center 

locations t^: 
M 

MO - E Am r«ctl(t - t,)/!]. 
-1 

The number M indicates the total number of square-boxes. We chose so that 

less than half of the time-domain is covered by square-boxes. The relative 

coverage is given by: 

"relative coverage" - MB/T. 

We will select the locations tn such that there is no overlap among square- 

boxes. The object spectrum is: 

Üo(v) - /üo(t) ,-2,rlvt dt 

- EA«Bsinc(vB) e-2,,lvt-. 

The peak power is: 

|üo(0)|2 - (EV)2 -B2(i:A,)2. 

11 
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At other frequencies the object power spectrum Is: 

|ü0(v)|2 - B2 8lnc2(vB) I^A, e-
2,,lvt»|2. 

The modulus-square expression can be re-written In s font suitable for com- 

puting the expectation value: 

IZA« e-2*1^!* -H A« Aj e"2"1^-^ ' 

-ZA.2* IZ Vj e"2^^^. 
The ^^(mi*J) will not be exactly zero, but can be expected to be zero in average 

over the v-domaln (except for v - 0). Hence we get as expected value 

<|Uo(v)|2> - B2 slnc2(vB) Z A,«2- 

We may also compute the total power spectrum, most easily on the basis of the 

Plancherel theorem: 

/|U0(v)|
2 dv - /u0

2(t) dt - BZV- 

Requirements 

The relative coverage of the time domain by square-box signals shall be 

less than SOZ: 

MB/T < y. 

The sine-square function of the object power spectrum shall cover not more 

than half of the frequency range. Specifically we request that the second zero 

of sine-square Is halfway out to the bandllmlt 1/2: 

vB - 2;    v - 1/4  B - 8. 

Let the ratio of object power spectrum to noise power spectrum be about 

2 at the second side-maximum of the sine-square function. The second side 

maximum occurs at the argument 5/2. The sine-square function Is there 

sine2(5/2) - (5IT/2)~2 «» 16/1000. Hence we request: 

|üo(5/2B)|2 * B2(16/1000) Z V " 2 l*!*' 

12 
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It was |fl|2 - T N2/2; T - 64; N - 100; B - 8. Hence we get: 

The relative coverage requirement yields with B - 8 and T - 64 for the 

number M of square-box signals M < 4. We will take H ■ 3, which corresponds 

to a relative coverage of 3/8. 

Now we select the object amplitudes A}, A2, A3. Let us Introduce for 

convenience the term "relative amplitudes" by dividing the amplitudes by the 

mean noise value N/2: Sm - Am/(N/2) - ZAm/N. This reduces the former ampli- 

tude requirement to: 

2](N/2)2 a,,2 - 10 N2; ^Ta.2 « 40. 

We select now 

aj • 6, a2 ■ 2, aj ■ 1. 

It Is to be expected that the square-box #1 exceeds the noise dearly, the 

square-box #2 Is barely bigger than the noise, while the third square-box 

will be very difficult to detect, If at all. Maybe It Is not quite as based 

since the root-mean-square noisev(N(t) - N)2 ■ 7ln(t)l2 " ift2/12 Is less 

than the mean noise N • N/2. 

The square-box positions t,,, were chosen as tj - 44.5; C2 ■ 13.5; ta ■ 

55.5. The true original signal Uo(t) Is plotted below. 

Uo(t) 

5N - 
- 

- 
L. 1 l 1 • • r . 1 
8 16 24 32 40 41 t 56 64 

13 
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S3 The Talbot Interferometer 

testing optical components with the Talbot interferometer setup resulted 
from the necessity of having a good collimating lens for our scanning Talbot 
Spectrometer. Thus we have a sensitive and inexpensive means for testing these 
components. The Ronchi rulings used with the setup give us the lateral deriva- 
tive of the wavefront deformed by the test object. Thus the deviations from the 
expected surface shape can be observed. The following Is a detailed report that 
explains this setup. 

§3.1 Introduction to the Application of the Talbot Effect 
for Measuring Phase Objects. 

A phase object changes the amplitude of a wave passing through it by a 
constant factor but alters the phase from point to point, which yields a trans- 
mittance function t(x, y) - a e1^*»)') , Examples of phase objects are trans- 
parent biological objects whose index of refraction is nearly equal to that of 
its surrounding medium, and objects made of a transparent medium such as lenses 
and prisms. The techniques now available to examine phase objects include 
Zernike's phase contrast microscopy, interferometrlc methods, Ronchi grating 
techniques, Schlieren methods and moir^ fringes. 

The "Talbot effect" is also known as "Fourier-imaging" or "self-imaging". 
As Talbot observed in 1836, an image of a grating is formed at a distance 2d2/A 
(where d - grating period) behind the grating, which has been illuminated by a 
monochromatic plane wave. The space between the grating and its Talbot image 
is empty. In other words the Talbot effect is a method for forming images of 
a periodic object without any lenses or mirrors. When properly modified the 
Talbot effect affords a unique method for quantitatively observing phase objects, 
through the use of two Ronchi rulings, one of which is self-imaged onto the 
second. The complete theory requires scalar wave diffraction theory and is 
presented in S3.3. 

An explanation using rays will acquaint the reader with the basic opera- 
tion of the Instrument. However, this is only a crude explanation since it 
does not take into account the wave nature of light which results in some 
possibly useful color effects. Therefore in the third section wavelength con- 
siderations will be added to show the limitations and uniqueness of the instru- 
ment. 

§3.2 Qualitative Explanation 

A Ronchi ruling Is Illuminated with collimated light as shown in Figure 
2.  The diffracted waves are modulated and form"Fresnel Imases"2. At integer 
multiples of the distance zj » 2d2/A, where d is the grating period, an image 
of th? Ronchi ruling is formed.  If a second grating is placed at one of these 
image planes in anti-position to the image, no light will be transmitted beyond 
the second grating. Herce a ray that passes through a slit of the first grating 
is blocked by the second grating as shown in Figure 2. A prism of wedge angle 
a is Introduced at a distance z from the second grating and normal to the 
incident rays. The rays passing through the prism will be bent through an 
angle c. Thus the intensity of the light as seen by the observer varies with 
the angle e as sketched in Figure 3, with peak intensities given by 

14 
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Figurt 2. Basic Inatruoent with a prism as a test objact. 

0I d/z 2d/z        « 
Figura 3.  Intensity aa a function of tha ray diatribution. 

15 



e « tan t^ "  (m + 1/2) d/z 

and dark fringes by 

e « tan <•;„, - md/z. (1) 

The angle e Is related to the wedge angle a under small angle approximation by 

e - (n - 1) a. (2) 

A prism's thickness increrses linearly with the distance fron its apex, and 
the wedge angle a giving 

a M tan a ■ At/Ax,  where At * prism thickness 
Ax - distance from apex. 

Now a phase object can be thought to be made up of prisms, a fact which 
is often used to explain the action of a lens, so that for any point (x, y) on 
the object, the prism angle a is given by 

a(x, y)«iÜ2^ 

which ir turn is related to e by substitution into (2) 

e(x, y) - (n - 1) ^^r
yl ■ (3) 

The y derivative dt(x, y)/dy is of no concern here since the grating bars are 
parallel to the y-axis. 

Thus a dark fringe structure is obtained whenever e(x, y) meets the con- 
ditions of equati>n (1).  Equations (1) and (3) are plotted in Figure A as a 
function of x. Dark fringes occur at the intersections of equations (1) and (3). 
In other words the fringes indicate lines of equal dt/9x, which is the x-compo- 
nent of the surface gradient At. Where the lines are close together, the slope 
3t/dx changes rapidly. Hence the fringe density or fringe frequence is propor- 
tional to the x-component of the curvature d2t/9x2.  The maximum detectable 
curvature is determined by the minimum detectable fringe separation.  In a 
sense what is observed is the second derivative of the phase object. 

There are two problems of fringe detection.  The first occurs when the 
fringes become too fine for the eye to resolve them.  This is only a practical 
limitation and a magnifying glass would extend the sensitivity. But ehe second 
probJem is more fundamental.  The field of view is finite, say B ■ Nd, where N 
is the number of lines in the grating. Foi an object whose curvature is at the 
minimum detectable sensitivity its curvature must be large enough for at least 
one full (or maybe one-half) fringe across the field.  Hence 

I(3t/3x)max - Ot/3x)nln] (n - 1) > d/2z. 

If (dt/dx)m&x  is at x - + Nd/2 and Ot/dx)^ is at x - -Nd/2, then 

at(x + Nd/2, y)/9x - 3t(x - Nd/2, y)/3x « 32t/3x2 Nd. 

Hence, ./- , 

3 
The maximum Talbot distance is given by 
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zuaix - nd2/2x. 

Using this as z In equation (4) yield» 

l32t/3'2'-(Kd)^n-i) ' VT^T) 

17 

For example If A • 5 * lO"1* mm, n - 1 - 1/2, B - iO2 am we obtain |d2c/dx2| > 
lO"7 BB-1 - 1/10 km. 

As an example of the system a perfect thin lens is considered. The phase 
of this lens is given by^ 

<P(x, y) - (-ir/AfXk2 + y2) 

where f is the focal length of the lens, and  (x, y)  its coordinates.    The 
relstive phase of any object is 

9(x, y) -(2iTA)(n - 1} t(x. 7) 

.*.  t(x, y) - -(x2 + y2y[2f(n - 1)J. 
and 

at(x, y)/3x - - x/Kn - l)fj 

which when substituted into equation (3) gives 

e(x, y) - -x/f. 

This is a straight line which when plotted onto Figure 4 gives equally-spaced 
fringes of fd/z. An Imperfect lens will not have straight equally spacsd fringes» 
whereby its quality can be determined. 

It is worth noting that this system likewise tests the colllmator objective 
and can serve as s good method for testing lenses. In eddltion the ability to 
completely darken the field behind the second grating is a test of the degree 
of colllmatlon of the objective since converging or diverging waves produce 
moixi  fringes behind the second grating due to unequal grating periods. 

The work of Nishijima and Oster can be explained by rays. However, on 
the other hand a complete explanation of our instrument requires the use of 
diffraction theory which accounts for the color effect and which explains the 
ultimate limitation of this Instrument. The location of the grating image is 
wavelength dependent, a fact that has been exploited in designing filters and 
a spectrometer". Furthermore, the complete setup (vide Figure 5) allows the 
selection of the first or second derivative of the phase object. 



wnp—(—■ - -1- i . i  ■ 

♦ e(x,y) 

* x 

Figure 4. Plot of equations (1) and (3). Equation (1) is the set of hori- 
zontal straight lines. X marks the locations of the fringes for 
this test object. 

spatial 
filter plane 

image 
plane 

Figure 5. Test setup Incorporating a spatial filter plane for selecting 
first or second derivative. 
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i3.3 Theoretical Explanation 

The ray explanation, which 1« essentially due to Nlshljlaa and Oster and 
Is presented In 13.2, helped one to understand the basic operation of the Instru- 
ment.  In this section s rigorous derivation Is presented based on scalar 
diffraction theory. The result will be sn Interpretation of the Image as two, 
three or many shifted object wave fronts, sometimes tilted. Accordingly we 
will use the terms "shearing interferometry" as Is common when two shifted 
object wsvefronts Interact.  In generalisation thereof we will Introduce the 
terms "triple shearing Interferometry" and "multiple sheering Interferometry". 
In some Instances these shearing Interferences will represent the first or the 
second derivative of the object. The Instrument Is diagrammed In Figure 6, 
which Illustrates the pertinent distances. 

Consider a monochromatic plane wave Incident on grating Gl In the plane 
at -ij. The field behind this grating Is 

,       .   -Ikri  r „  2Tilnx/d 
u(x, y, -Sj) - e   1  Z cn • 

n—• 
where the periodic grating Is considered Infinite In extent and of period d, 
and Is expressed ss a Fourier exponential series; k - 2n/A where X - wavelength 
of light. Following a line of reasoning like Edgar's^, the Incident plane 
wave Is by action of the grating replaced by a set of plane wavefronts whose 
x-dlrectlon cosines are nA/d and whose field strength Is proportional to Cn. 
This gives a propagating field behind Gl es 

,     .   'Iksi  r _  lkInAx/d+(s i+s)/l-(nX/d)1] u(x, y, z) - e   l    I    Cn •    l w / 
n 

i object plane z - 0 reduces to 

, n .        -lksi    r    r      lk[nAx/d+ti/l-(nA/d)zJ u(x, y, 0-) - s        1    2.    Cn e    l * '   J. 
n 

Applying the Klrchoff boundsry conditions to the field as It pssses 
through the object as we did through grating Gl, we have 

.<.. r. o*) - .-lk"  I c„ „„(x. r) ^W^firiSim   (5) 
n 

where UQ(X,  y) Is the two dimensional object trsnsmlttance function. 

Each of the plane waves Is diffracted as It passes through the object. 
At this point, the concept of the angular spectrum Is very useful.^ In this 
formulation the diffraction phenomenon Is a multiplicative quadratic phase 
factor exp(lkz/l - X2(vz + p*) ) in the Fourier domain which Increases with the 
propagation distance z. Let ü(v, u; 0+) be the angular spectrum of equstlon 
(5) defined by 

ü(v, y; Of) j u(x. y. (H) e-
2"1^^ dxdy 

where the Integration In this section will be over the Interval (-<*•, •} when 
unspecified, and (v, u)  are the Fourier spatial frequency components. The 
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angular spectrum for the plane Just preceding G2 (z ■ Z2-) is 

ü(v. u;  z2-) - a(v. u; Of) *'2^2(v2*»2) 

e'ikZl I Cn üo(v  n/d. M) .ikl.i^STdP^i^T^OTW] 
n 

where ü0(v, u) is the angular spectrum of the object. The Kirchoff boundary 
conditions are applied to the second grating at l a tj« 

u(x. y. s2+) - u(x. y. .2-) [ C,, eilm e2****'* 

iim m 

where the e   factor accounts for the fact that the second grating is shifted 
by half a period with respect to Gl.  In the Fourier domain this becomes a con- 
volution which results in 

Ü(v, Mi z2+) - e'
ikei 11 CnCu  elTO UQCV - (n4m)/d, u) 

ik{tiA-(nX/d)2  + Z2/l-Az((v-m/d)z+»i2]) 
n m 

1 

(6) 
The image plane is conjugate to the object plane z « 0.  Therefore we 

compute the field virtually back to the z - 0 plane in order to find the 
resultant field in the plane of observation, and give the field a new symbol 
v(x, y) with v(v, p) as its Fourier spectrum 

>K 
i  -./      ^ -ikz2/l-X2(v2-hi2) >, u)  - ü(v, w; z2+) e   *    x  H  . 

Substituting equation (6) into this and simplifying by using the first two 
terms in the Taylor series expansion of the square roots in the exponential 
terms yields 

w   v   V ? n    r      i*» -. /   / ^WJ  x ikIz2X
2vm/d -zi(nX/d)2-Z2(mX/d)2] «(v, w) - 2 Z cn Cm e   üo(v " (fH«)/d, u) e l ^       iv ' /  z^ 

n m 
But as explained in the first section the two gratings are separated by some 
multiple M of the Talbot distance if. Thus putting z2 -f z^ - M zT «* 2Md

2/A 
into the above equation reduces it to 

*(v, u) - II Cn C,, eiim  üo(v - (irtm)/df w) 
n m e2iri[Xz2vm/d-z2X(m

2-n2)/2d2]    (7) 

Taking the Fourier transform of this gives the resultant field in the image 
plane. 

vC. y) - H Cn C. Mx + M2X/d, y) .2'i(W2*<^)'.2/.^(«-)^j 
n m (8) 

Thus multiple-shearing interferences are observed in the image plane. In 
ordinary shearing interference only two terms are present, u(x + Ax, y) - u(x, y). 
In order to reduce the large number of terms of the double series we will perform 
certain spatial filtering operations. The field expressed by equation (7) is 
found  in the spatial filter plane located one focal length behind the first 
lens of the telecentric system.  In order to filter Just the n + m - 0 or 
n + m = 1 term, which we will show leads to special interferences, we must 
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sourc 

spatial 
filter plane 

Figure 6.  Talbot Interferometer setup.  Telecentrlc system is focused onto 
Che object. The spatial filter plane is used to simplify the 
multiple-shearing interferences. 

|v(v-l/d,g)| 
/ 

|0(v-2/d,p) 

Figure 7. The spatial filter plane with an arbitrary object spectrum. The 
spectrum is shifted along the v-axis by 1/d. 
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assume that the shifted spectiruas üc(v - (n-ftD)/d, p) do not overlap. This is 
shown In Figure 7 along with the bandwidth restriction of the objact, |Av| 5 
l/2d, I.e., i-oCv, u) ■ 0 whenever |v| > l/2d. 

S3.4 Zero Order Filtering 

The multiple shearing Interferences can be simplified by spatial filtering. 
Our first consideration Is the zero order filtering case, n + m > 0. Thus 
equation(8) reduces to 

v(x, y) - [ CB C^ eiim  uo(x + mzA/d, y) (9) 
m 

where zt   Is written as z without the subscript 2 and is the distance from the 
object to the second grating. If we restrict ourselves to only considering 
either amplitude or phase modulated gratings that are symmetrical about the 
origin then Cm's are  real and Cm • C_n.  Equation (9) becomes 

v(x, y) - C0
2(uo(x, y) + [ (CVCQ)

2
 elnm UQCX + mzX/d,  y)}. 

I        m»»0 i 
These multiple-shearing interferences can be simplified to trlpie-shearing 
Interferences if (CJ^/CQ)2  terms for all but the first pair are negligibly 
small.  By using a special grating whose transmittance is given by g(x) * 1 + 
cos(27rx/d), triple-shearing Interferences would result, since Cg, - 0, |m| > 2. 
Alternatively, a grating can be designed which is still binary and yet meet 
this condition.  We now consider the use of an inexpensive Ronchi ruling as 
the grating.  The Fourier coefficients are C,, - 1/2 8inc(m/2); all even Cn - 0, 
where slnc(x) = sin(irx)/irx. Thus 

v(x, y) - C0
2juo(x, y) -    I    8inc2(m/2) u0(* + mzX/d,  y)l.  (10) 

I        m^O > 
(odd) 

These multiple-shearing Interferences can be approximated by triple-shearing 
interferences in this case since the |m| ■ 3, 5, 7,... terms can be neglected. 
The|m|= 3 term is only one-ninth that of the |m| - 1 term.  Higher order terms 
are much smaller than this. Therefore equation (10) reduces approxinately to 

v(x, y) «» 1/4' u0(x, y) - (2/ir)2 u0(x + zA/d, y) 

- (2/Tr)2 uo(x - zA/d, y)|.      (11) 

These triple-shearing interferences will sometimes be roughly the second 
derivative, 32u/dx2 of the object if the shift zA/d is smaller than the resolu- 
tion length 6x, which is the inverse of the object bandwidth Av ■ l/6x. 
Actually zA/d ■ (1/3)6x is still good, as we will show by making use of the 
Bernstein theorem.  First we expand the last two terms in equation (11) in a 
Taylor series around zA/d. 

00 

u(x + ZA/d, y) - I ujp)(x. y) 1/p! (zA/d)p 

p-0 

u0(x - zA/d, y) - I    u0
(p)(x, y) (-l)P/p! (zA/d)P 

p-0 

22 



where UQ    (X,  y) ■  8Puo(x,  y)/dxP.     Therefore equation  (11)  becomes 

v(x. y) - l/4uo(x, y) - (2/ir)2  I2u0(x, y)  - 2    J    ujp)(x, y) 
I p-2 

1/pl   (tA/d)Pl|. 

The suamacion term can be approximated by the second derivative, i.e., 

I      u0
(p)(x, y) 1/pl (zX/d)P« u0

(2)(x, y) l/2(zX/d)2       (12) 
p-2 
(even) 

if the terms p * 4, 6,.. are small compared to p - 2. This can be shown as 
follows. Let 

fp - 1/pl («X/d)p uo<p)(xf y). 

Then equation (12) becomes 

I        f *• f 2 
P-2   P 

(even) 
if 

|fpl^i/ioffx. 

The factor of 1/10 is picked as a figure of merit, but other values may 
be used. As we shall see, this factor determines the maximum distance that the 
object can be placed from the second grating G2. Now, 

|f2l 2 ff* - l/2(xA/d)2 uP^. (13) 

By the theorem of Bernstein , the derivatives of a bandlimited function are 
bounded by the maximum value that the function attains. That is, 

|g(p)(x)| < (2irL)PB0 

where BQ - (g(x))max and L is the maximum frequency of g(x) in the Fourier 
domain. Call 2L - Av; we have 

|f | < 1/p! (zX/d) (irAv)
P"2 uPM, - 2/pI (zATTAv/d)1*'2 f?*X 

p max 

which when compared with equation (13) implies that 

2/p! (zATrAv/d)P"2 < 1/10, 

zX/d < (pl/20)l/p'2/(irAv). 

The factorial dominates the root process as can be shown using the Stirling's 
approximation for factorial. 

(p!/20)1/p"2« i/2^/20)1/v'2
tp/e for large p. 
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Therefore the smallest p, (p * 4) is the tightest bound for z, and we have 

lA/d ^ /2Ä72Ö / ITAV *» ox/3 . (14) 

Recall that for spatial filtering we require that Av s 1/d. Therefore the most 
stringent condition is for Av - 1/d.  This is required in order that the shifted 
object spectrum will not overlap,as shown in Fi'are 6.  Thus the object to G2 
distance z in this instance must be less than about 1/6 of a Talbot distance, 
or more exactly, 

z < 1.1 zT/27T. (15) 

Under  the above restrictions as given by either equation  (14)  of  (15) for the 
maximum distance z,  the field  in the image plane is given by 

v(x,  y) « 1/4(1 - 8/ir2)   {UQU,  y)  -  fpflf)  - 2    <zX/d>2 ^(xt y)} 

~ 1/20 {u0(x,  y) + 5/7   (zA/d)2 uo(2)(x,  y)}. (16) 

§3.5 First Order Filtering 

The mathematics for this case follows simply from the previous section. 
Here we filter either the n+m-lorn + m«-! term. The only difference is 
in the sign of a phase factor which Is unimportant when detecting the signal. 
The field in the image plane becomes for the n + m ■ +1 case, 

v(x, y) - C0 C! e2"i[x/d+z/zT] {uo(x> y) _ ^ + zA/d> y)} (17) 

This surprising result is obtained since the even coefficients are zero. Those 
terms which contribute under the n + m - 1 condition are Cm Cn * Cm Cg,.!. This 
combination Implies that for any m,one coefficient will always be even and henee 
equal to zero. This is very much like ordinary shearing interferometry and we 
will again show that under a certain condition this is approximately the deriva- 
tive of the object. We ignore the phase since it is the intensity which is 
observed in the image plane, and deal with the bracketed terms. The last term 
is expanded in a Taylor series around zA/d and when combined with UQCX, y) gives 

{...}- I    u(p)(x, y) (zA/d)p 1/p! «u^Cx, y) (zA/d). 

Using the same kind of arguments as in the previous section this approximation 
is valid if the shift is less than 1/15 6x (equation 18). 

zA/d ^ l/5TtAv «(1/15) 6x. (18) 

Under the strictest condition |Av| 5 1/d the condition of equation (18) means 
that the object to G2 distance is 

z < zx/lOn. (19) 

Therefore the field in the image plane for first order filtering under the 
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conditions of equation (18) or (19), whichever may apply, Is given by 

v(x.y) * lh  e2,rl^/d+'/zT] (zA/d) u^>iXt  y). (20) 

One other case has been under Investigation. Here we record the Intensity 
pattern on film or on a diffuser (like a rear-projection screen), then view It 
with a low pass detector such as the eye. The experimental results were shown 
In the previous case where no filtering was done. The reader's eye performed 
the filtering as he observed the results. Unfortunately the mathematics has 
proven cumbersome. But we hope to find the necessary approximation to yield 
a simple interpretable solution. 

§3.6 Experiments 

The Talbot Interferometer for testing phase objects was placed on a 
laboratory optical bench. It used two Renchl rulings of 10 lines per mm. 
Although they were quite scratched, they performed satisfactorily because the 
resultant intensity in the plane of observation is summed over a large number 
of lines. One grating was mounted for rotational motion while the other had 
translstlonal movement. These two motions allowed the gratings to be aligned 
as desired. The gratings were held in bench carriers which accomplished longi- 
tudinal motion. 

Both He-neon laser and white light sources were used. The laser beam was 
focused onto a pinhole and thereafter collimated (diameter SOom). For the 
white light source experiments, a 500 wa.t slide projector was used. To increase 
the throughput an adjustable slit was ur.ed instead of a pinhole; it was aligned 
parallel to the bars of Gl. The width of the slit was then made sufficiently 
narrow so that the self-images would appear with good color contrast.  It was 
discovered that the moiri  fringes obtained behind the second grating when both 
gratings were aligned was a measure of the degree of collimatlon. This work 
has been accepted for publication and the manuscript is provided in Appendix B. 

The method of observing the interference fringes was to project the image 
of the object with its fringe structure onto a screen. The phase objects tested 
were: various lenses, prisms, plastic bags and boxes, the change of index of 
refraction caused by heat of a candle flame, and drops of plastic resin or var- 
nish arranged into different configurations on glass slides. 

Photographs of these experiments were made. Two of these appear in our 
paper that appeared in Optics Communications, February 1971. A copy of this 
paper is provided in Appendix A. The photographs are of a candle flame that 
was placed between gratings separated by about 12 cm. To fully appreciate the 
filtering aspect of this instrument we have separated the gratings by about 
30 cm. with the flame placed close to Gl.  In this case the multiple-shearing 
interferences are readily observed by the great number of candle wicks In the 
field of view. By allowing only the zeroth diffracted order to propagate beyond 
the spatial filter plane, triple-shearing interferences are obtained, as veri- 
fied by th?. presence of the wick which appears at three separate locations 
corresponding to the amount of shear introduced.  Lateral shearing interferences 
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are obtained when first order filtering is used, as Indicated by observing 
only two wick Images. Photographs of this along with some beautiful color 
pictures for a white light source were shown at the 1971 Annual Spring Meeting 
of the Optical Society of America th^t was held In Tucson, Arizona. 

§4 The Talbot Autocolllmator 

We found that collimatlon of the source was critical when using the 
Talbot interferometer setup (13). Otherwise It was not possible to completely 
darken the field. By Increasing the separation of the gratings to Its maximum 
permissible extent, a very sensitive means for accurately locating a point 
source in the focal plane of the lens was obtained. Thus the problem of 
accurately and inexpensively colllmating the light sources for use with the 
Fourier Spectrometer was solved. A manuscript on "A Simple Interferometric 
Method of Beam Collimatlon" has been accepted for publication in Applied Optics 
this August. The manuscript Is reproduced in Appendix B. 
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§5 The Talbot Interferometer vlth Circular Gratings 

Earlier (S3), we discussed the use of the Talbot Interferometer for 
testing optical components. This setup "oed Ronchi rulings and displayed the 
derivative of the phase obJe<:t along & direction transverse to the ruling axis. 
Thus the testing of an axlally syametrlc object such as a lens requires that 
It be rotated for complete examination.  Ideally, such objects are well suited 
for testing with interferometers that give a constant shear to the wavefront 
in the radial direction. Therefore we intend to modify the Talbot interfero- 
meter by replacing the straight line gratings with circular gratings.  In this 
way the radial gradient of the deformed wavefront can be observed. A circular 
grating (see Fig. 9) is defined in this report as consisting of a number of 
concentric circular rings of constant radial spacing on a transparent surface. 
Our description will be brief since the experiments and theory of this new 
modification are not quite complete. We present here our analysis on whether 
the circular grating will self-image when illuminated by a plane wave. 

§5.1 Theory of the Talbot Effect in Cylindrical Coordinates 

The theory for the Talbot set of self-Imaging objects in cartesian coor- 
dinates has been presented in a paper by W. Montgomery.11 What Montgomery 
essentially did was to solve the wave equation while asking the following 
question! "What are the necessary and sufficient conditions that the object 
must satisfy in order that a faithful image of It be found in a parallel plane 
z •» d > C?"*2 Our solution uses this approach. 

We want to solve the wave equation In cylindrical coordinates for the set 
of axlally symmetric objects of finite aperture which are periodic In the 
direction of wave propagation, the z-axis of Figure 8. Therefore we have the 
following boundary conditions; 

u(r, 9, z) > u(r, t) axial symmetry (1) 

u(r, Az) - u(r, 0)       periodicity along z-axls (2) 

u(r, 0) - 0 for ril finite aperture        (3) 

where u(r, 0) is the Talbot set of objects we desire, Az is the period of the 
repeating image and the cylindrical coordinates (r, 9, z) are related to the 
cartesian coordinates (x, y, z) by 

x2 + y2 " r2;    x ■ r cos «p;    y " r sin 9. 

The wave equation in cylindrical coordinates is 

32u ^ 1 3u ^ 1 32u . a2u . . 2     n 
a?r + 737 + 7?39? + ä^+ku   "   0 

where u - u(r, 9 z), k - 2ir/A, and X is the wavelength of the light source. 
Applying the axial symmetry condition equ.   (1)  to the above equation reduces 
ltt0       i!» + i is + |!u + k2u . 0 w 

3r2      r 3r      3z2 
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Next the separation of variables technique Is employed, letting 

u(r, z) - R(r) Z(«) - RZ. (5) 

The boundary conditions of equ. (2) anj (3) become 

R(l) • 0 (6) 

Z(Az) - Z(0). (7) 

Inserting equ. (S) Into (4) we obtain 

R^'Z + - R'Z + RZ" + k2RZ - 0. 

Rearranging this and dividing by RZ we have 

R"  1 R'   * 7." 
R + r R~ + ^   con8t*nt " * F (8) 

The left and right hand sides of this equation are equal to a constant 
since they are respectively functions of r and z only. If we let the constant 
be given by (ley)2 and solve the right hand side of equ. (8), we have 

Z" - - k2Y2Z 

which yields the solution 

Z(z) - Z(0) e±ikYZ. 

The constant is chosen positive and real (k2Y2 > 0) to avoid evanescent 
waves that are attenuated within a few wavelengths along the z-axls. These 
waves would not be present over distances that our Instrument will operate. 
Thus our solution Is a wave propagating In a direction given by the direction 
cosine, Y (Y - i). Furthermore we choose the positive sign in the exponent 
since forward propagation is of interest here. 

Now the boundary condition of equ. (7) is applied to this solution, 

giving us mA      ,, 
e '  - 1      or    ym » — » myi < I. 

This last inequality comes from our earlier statement. Hence there is a 
maximum value that m can obtain, 

1 
m   ■ t, 
max   Yi 

where 0 < c < 1 is a positive number that makes mmax an Integer. Thus our 
eigenvalues, Ym, form a discrete set due to the self-imaging requirement. 
Consider now the left hand side of equ. (8) which when multiplied by R yields 

R" + - R' + k2(l - yi)*  - 0. 

Let  5 ■ r k /l - Y2 and substitute it into the above equation. We have 

^ + i ffiii + R(0 . o. 

This Is the Bessel's differential equation of order zero that has the solution 

R(0 - JoOcr /I - Y2) 

Applying the boundary conditions of equ. (6) to this solution gives 
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R(l) - 0 - JQCV«) 

where vm - k /I - y2  are the zeros of J0.  Thus our elementery solution Is, 
Co within a constant, given by 

u^ir,  t) - e Y*1 J0(vBr). 

Our total solution is a superposition of all our separate eigenvalue 
solutions. a, 

u(r. z) - ^  C, eitoYlz J0(kr/1 - imrO*  ) (9) 
BI-0 

In order to evaluate the CB'S we use 

f1 1 
JoK1) Jo^0r) rdr - f «„ Ji2(vB) (10) 

where vm, vn are zeros of J0, and 6  is the Kronecker delta, 

6 
nin 

/ 0, n ^ m 
\ 1, n - ■ 

Our initial condition is u(r, 0), that is u(r, 0) is rhe Talbot set of objects 
with axial symnetry. From equ. (9) 

u(r. 0) -  X  C« Jo(%«-)- (ID 
m-0 

By integrating this as follows 

I 1 u(r, 0) Jo(vnr) rdr 
the Cg's can be determined. Substituting equ. (11) into the above, and 
exchanging summation and integration yields, 

rl mm*x        rl 
I u(r, 0) Jo(vnr) dr - J  C.   Jo(vBr) Jo(vnr) rdr 
^0 «-0    ^0 

m-0 

•=■ Cn Ji2(vn/. 2 ^n Jl ^vn' 

Therefore, 

Thus our solution for the Talbot set of axial syametric objects Is: 

2 f1 
:n "   j12(Vn)    J    u<r» 0> Jo(^r) rdr. 

"max it—v f^ 
u(r, t) -    I     C, •imeri Jo(vB),      ^ " 17   O J    UiT* 0) J0<w«r) rdr 

where m^, " ~ " e»    yjmm k/1 - (mYi)2. 
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§5.2  Self-Imaging of a Circular Grating 

The circular grating (see Fig. 9) can be expressed In a Fourier Series as 
follows: 

G(r) - I C, e2,'lnr/' 
m-O 

where (^ - a sine na, a is the period and a Is that fraction of the period for 
which the grating Is transparent. Our exact solution for the Talbot set of 
axially symmetric gratings Is In Bessel functions which for large arguments 
behave approximately like A coalnusoldal function. 

Jo(vnr) « —l— cos(vnr - | ); var > 25. (12) 
/irvnr 

Therefore our elementary solution In r will build up to a periodic structure 
like a circular grating If v,, - a/2wR, I.e. k-A - (my^Z - a/2nR. 

However, the l/Sr  factor In equ. (12) means that the contrast will dimin- 
ish with Increasing r. That Is, an object which belongs to s Talbot set of 
axially symmetric objects must have decreasing values of transmittance as r 
Increases In order to be faithfully self-Imaged. Thus the circular grating only 
approximately belongs to this Talbot set of objects. 

Circular gratings were made on AGFA SCIENTIA 10E75 glass photc.graphic 
plates. These were used to replace the Ronchl rulings of our Talbot interfero- 
meter. The Talbot Images observed showed a decreased contrast toward the 
grating edges which can be explained by the 1/^r factor mentioned previously. 
This may limit the maximum size of the object that can be tested. We have 
looked at 50 mm diameter objects without difficulty. A full report can not be 
made at this time as the worl: is not quite complete. 
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Figure 8. The geometry and coordinates used in §5. Aperture Is circular 
and has values u(r, 0). 

A6(r) 

1.0 inn n r- 
a/R  2a/R 1.0   r 

Figure 9. The circular grating. The normalized transmlttance function Is 
shown on the right side. 
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The molrtf effect la vary aenaltlva In detecting »mall difference« betwe« n two similar gratings. These 
differences might be cauaed by an object with phase gradient placed between the two gratings. The perform- 
ance of such an instrument can be understood in terms of the »Talbot effect* (also called 'Fourier 
Imaging" or "self-Imaging"). Slight modificationa provide ahearing interferencea and the aecond deriva- 
tive of the object. 

The moire effect reveals very small imperfec- 
tions of two gratings placed on top of each other. 
Lord Rayleigh used this effect for testing dif- 
fraction gratings. The same basic idea has been 
used for many other purposes. For example, in 
electron microscopy the imperfections in two 
pieces of crystal lattice can be made visible in 
this way [1]. Essentially the same moirl effect 
is utilized for studying the shape ot a diffusely 
reflecting surface, when the shadow of a grating 
falls onto that surface. The grating shadow is 
observed through the same grating [2]. Also the 
shape of a refracting object can be investigated 
by means of the moirtf effect [3]. The refracting 
object is placed before or behind a first grating 
(fig. 1). The shadow of the first grating will be 
deformed due to the refractive gradient. The 
moiri fringes observed behind the second grating 
placed at a distance t from the object are lines 
of equal deviation [eq. (1)]. 

€^x,y) * md/x;       m > 0, ±1, ±2... .(1) 
We intend to extend this method of observing 

refractive gradients by means of moirl. As de- 
scribed so far this method is based entirely on 
rays. This point of view is not satisfactory since 
it is kncm that wave optical color effects occur 
when white light passes through two gratings at 
a finite distance. This happens with uncollimated 
[4] and with collimated light f5). Such color ef- 
fects may well prove to be useful. A more im- 
portant objection against the ray-optical point of 
view is the inability to explain the fundamental 
limitation of this method. Baaed on eq. (1), one 
might suspect that an arbitrarily small deflec- 
tion angle can be detected if only the distance 2 
of the two gratings is sufficiently large. Since 
such unlimited detectibility is never attainable 

Fig. 1. The Talbot Interferometer. Gl. G2 gratings 
with period d; ray deflection angle c in object O. 

Fig. 2. Overlapping diffraction ordere behind a grating 
of finite width B = Nd. 

413 



      ^ u»yj| w^ . U« I liWI II!-»     WJLI ■« I 

Volump 2, number 9 OPTICS COMMUNICATIONS 

(a) 

February 1971 

Fig. 3. Talbot interferences with a candle flame as object between the two gratings, a. Gratings parallel, b. One 
grating slightly rotated. 
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one might try to patch on the following wave-op- 
tical argument. 

Ute light pasting through a grating slit of 
width d/2 does not behave like a ray anymore 
after It has travelled over a distance s„ where 
the diffraction spread tRx/(d/2) equals the slit 
width d/2 [eq. (2)]. 

«RX/(d/2) = d/2 ;     «R « <Mx . (2) 

Based on this criterion one might expect «R to 
be the smallest detectable deflection [eq. (3)]. 

*R = d/2ef( " 2X/a"' (3) 

With X a 0.5 x 10'3 mm and <f = 10'1 this leads 
to cR - 19"', which is only moderately good. 

Fortunately the method is capable of detecting 
angles much smaller than cR [eq. (3)]. This is 
due to the Talbot effect [6], which is also known 
as "Fourier imaging" [7] and "seif-iriaglng" [8]. 
Talbot discovered about 135 years ago that 
images can be formed without any lenses or 
mirrors If the object is a grating which is il- 
luminated in colllmated monochromatic light. 
These "Talbot images* occur at distances 2d2A, 
4dz/x, etc. behind the grating. When a second 
grating at a slight angular rotation to Gl Is 
placed into the plane at a Talbot image, moirt 
fringes of high contrast are observed. Iliese 
moirl fringes will be deformed if a refractive 
phase object is placed for example close to the 
first grating. As before these moirl fringes in- 
dicate lines at equal deflection by the object 
[eq. (1)]. 

The largest possible distance x j (or maybe 
2«T) depends on the finite width £ * Mf of the 
first grating. At «x the first grating diffraction 
orders have moved to both sides by half at the 
grating width B [fig. 2; eq. (4)]. 

trX/d = B/2 = Nd/2 ;     «T * Nefi/2X .   (4) 

When the two gratings are separated by s j the 
smallest detectable deflection €T is now smaller 
by a factor UN, where N is the number of periods 
in the first grating [eq. (S)]. 

«T = cf/2«T • X/AW = X/B = €n/2N . (5) 

We have performed some experiments with 
this "Talbot interferometer" as shown in fig. 1. 
In fig. 3a the object is a flama, and again in 

fig. 3b, but now with the second grating slightly 
rotated around the optical axis. In some addi- 
tional experiments we have placed a telecentric 
lens system behind the Talbot interferometer. 
When introducing a spatial filter into this tele- 
centric system and rejecting everything but the 
zeroth diffraction order from the two-grating 
system one observes in essence the second 
derivative d'u/dx2 of the object «(v.y). When 
shifting the spatial fiKer to one of the first 
grating diffraction orders the image represents 
shearing interferences ufr +Xz/d, y) -u(x, y). 
In a white light one obtains beautiful color 
fringes which are unlike ordinary interference 
fringes. For example for a specific grating 
distance the image contains many blue-orange 
fringes. These color fringes are at such high 
contrast that E. Lau found a similar setup useful 
in designing tablecloths [9]. Our method is also 
applicable for the detection of small differences 
between two quite Irregular but similar objects. 
One begins by recording photographically the 
fringes from the first object. After development 
the photograph is placed where the fringes had 
been observed. The first object is now replaced 
by the second object, which might actually be 
the first object but somewhat deformed. The 
molrtf fringes between subsequently produced 
Talbot interference fringes will reveal small 
differences between the two objects. The quanti- 
tative evaluation is similar to that for Lau's 
dupligram method [10] and for life-fringe holo- 
graphic interferometry. 
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There are two common methods of determining the degree of colllmatlon: 

autocolllmatlon and shearing Interferometry. The simplest method Is the auto- 

colllmatlon technique, but it only indicates colllmatlon by comparing the size 

of the source with its Image. On the other hand the spacing of the fringes In 

shearing interferometry is a direct measure of the degree of colllmation. 

Recently, Langenbeck derived a method that used two tiny corner-cube reflectors 

to sample the beam. In this fashion he was able to translate the measurement 

2 
from fringe spacing to fringe rotation, resulting in Increased sensitivity. 

3 
The method presented here is an application of the Talbot Interferometer and 

has the same limitations as the other interferometric techniques. The main 

advantages of this technique are the inexpensive components (two Ronchi rulings) 

and the relative insensitivity to component alignment. 

As Talbot observed in 1837, an image of a grating appears at Integral 

multiples of the distance 2d2/A (where d is the grating period) when the grating 

is illuminated by a plane monochromatic wave. A Ronchi ruling would therefor« 

be Imaged at 2d2/A, 4d2/X, etc. If we place another identical Ronchi ruling 

in one of these self-image planes (see Figure 1) moir£ fringes will be formed, 

4 
as observed by J. Burch.  The fringe spacing P can be calculated by using the 

vector diagrams described by Rogers to be 

P - d/2 sin(e/2) (1) 

where 6 is the angle with which the two gratings meet. As the grating 62 is 

rotated avound the optical axis, the fringe spacing increases until we have 

uniform brightness (or darkness) when grating bars of Gl and 62 are parallel 

to each other. 

The plane wave that Illuminates 61 of the interferometer is obtained by 

placing a point source at the focus of a lens as shown in Figure 1. When this 

lens is defocused the plane monochromatic wave becomes spherical. Cowley and 

■ . 



Moodle have shown that the positions of the self-image planes of a grating 

illuminated by a spherical wave are given by 

1/Zj + 1/ZW - 1/2JZT, (2) 

where J is a positive integer, 1/Zy is the curvature of the incident wave at 

Gl, Zj is the location of the self-image as measured from Gl and ZT is the 

distance 2d2/A. The self-image will be magnified by a factor 

M  -  1  +  Zj/Zy . (3) 

This image, when superimposed with the second grating, again produces 

moir£ fringes. Now the grating G2 is rotated around the optical axis until 

the grating bars of Gl and G2 are parallel to nach other. In this case, the 

Rogers vector diagram gives a fringe spacing 

P - did2/|di - dal 

where dj is the period of the self-image, da the period of the second grat.'ng, 

and dj ■ Md. The fringe spacing in terms of the grating period d is therefore 

P - Md/|M - l(. 

Thus the fringe spacing is a quantitative measure of the degree of collimatlon 

since |M - l| is proportional to the curvature 1/Zy. 

Now we want to discuss the accuracy obtainable, that is, the smallest 

detectable deviation from perfect collimatlon. If the collimatlon is perfect, 

the magnification M of the Talbot image is 1, and hence the moir£ period P is 

Infinite. Thus our task is to find how small must the period P become in 

order to be detectable. Experience has shown that the presence of a molrf. 

effect is clearly visible if at least one half of the moiri period P falls 



within the United field of observation with width B. Thus one fringe will 

be detected whenever the number of lines between grsting G2 and the image of 

Gl differ by one-half. With divergent illuainaticn we count N lines of G2 

in the observation fie1 > 01 width B and N - 1/2 lines of the image of Gl. Thus 

the Magnification M required for fringe detection is bounded by 

M -  N -
Wi/2   m 1 ■*■  v*** <*> 

and in convergent Illumination, 

M - TTTii   ~  l ' 1/2N- (5) 

By combining equations (2) and (3) we have 

M - (1 - 2J Zx/Zw)"1 w 1 + 2J Zx/Zy. (6) 

If M falls outside the bounds of equ. (4) and (5), no fringes will appear, 

limiting the sensitivity of this test. Solving equ.(6) with the bounds of 

equ. (4) and (5) we find that the minimum detectable field curvature l/Zy is 

|i/Zwl - <4NJ ZT)"1 

where the absolute signs obviste the necessity of assigning a sign convention 

for field curvature. By substituting equ. (2) into the above equation we 

obtain, for N » 1, 

ll/Z«! ^ (2N Zj)"1 (7) 

From equ. (7) it follows that a large value of Zj is desired in order to 

detect small colllmation defects 1/Zy . The furthest distance to which we can 

go is limited by the "walkoff" of the first-order grating diffraction. As 

indicated in Figure 2, the longest distance at which there is still a connected 

interference field of width D is at Z. - Dd/2A. Perhaps one could perform 

colllmation tests up to about twice this distance, but we will restrict ourselves 



to Zj 5 Dd/2A. Inserting this limit into equ. (7), together with N ■ D/d, we 

get 

|1/ZW| > 2X/D2. (8) 

The curvature of the wave Incident on Gl la related to the defocuslng of 

the collimating objective by 

- Znl \f   _ 7.1  M 
(9) ZW 

lf~ Znl        |f-20| 

/elfcrc 

:af 1« 

zG|f - Zo| + Zof     z0f 

where ZQ is ths distance of the colliipating obJective|kom the point source, 

ZQ  is the distance from objective to Gl.and f Is focal length of the objective 

lens. The approximation is permissible since the distance ZQ  «Zof/|f - ZQ| 

in the test. Call 6 - |f - ZQI the focusing error, and substitute equ. (8) 

into equ. (9). We have 

6 > 2A(f/D)2 (10) 

where we have used the fact Z0 « f. Thus the focusing error is simply related 

to the wavelength, and the square of the focal length to beam diameter ratio. 

The focusing error can be reduced by simply rotating one grating with 

respect to the other, thereby producing molrt fringes in the field of observa- 

tion.  In this fashion we change our detection scheme from the condition of 

uniform brightness to a system cf rotating fringes. It Is known that fringe 

detection is more accurate than use of the uniform brightness condition. We 

rotate both gratings in opposite directions by angles 6/2 with the y-axls.  If 

both gratings have the same period, moirt fringes will appear In the field of 

obe^rvation parallel to the x-axis with «pacings given by equ. (1). When the 

periods are unequal, the fringe spacing is given by 

did2 did2 
P - 

(df + d^ - 2d1d2 cose)
15  jd! - dal 



vhere Che approxination Is for small angular rotations of 6, and dj, 62  are the 

grating periods of Gl image and G2 respectively. It can be shown by using the 

vector arguments of Rogers that these fringes of unequal grating periods are 

rotated through an angle t with respect to the x-axis, and the direction of 

this rotation depends on whether the Illumination is converging or diverging. 

Thus the experimenter knowii in which direction to move the objective lens. This 

rotation is related to the magnification M by 

^ M - cote/2 + tan» 
cote/2 - tan» * 

Substituting this equation into equ. (3) we obtain 

L.   m   I 2  t»nt  , 
ZW    Zj cote/2 - tan» U1' 

Our ability to measure » limits the sensitivity of this test. If we say the 

minimum detectable fringe angle » Is about one-half of a fringe (see Figure 3), 

then equation (11) reduces to 

11/2,, I > 2A/D2. 

This lower bound is identical to that of the uniform brightness condition, 

equ. (8). In the laboratory one-quarter of a fringe was easily discernible, 

producing results which were a factor of two better thin predicted. If we 

want to achieve even higher accuracy we may use photodetectors Instead of the 

eye. Assuming 1Z brightnecs accuracy, we can detect fringes one hundred times 

large? than the field of view. Hence the photoelectrical approach would 

improve the detectlbllity of collimatlon errors by s factor of about fifty 

over that which was predicted. 

The visual experiments have confirmed our theoretical performance pre- 

dictions. An objective lens of 20 cm focal length was used to produce a 5 cm 

beam. The light from a helium-neon laser was focused with a 3.9 tm  focal 
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length lens onto a iS p pinhole. The position accuracy was 0.001 cm, whereas 

the calculated accuracy was 0.002 cm. This improvement was due to the fact 

that 1/4 fringe was used with the angular measurement technique. 

Last, one can ^morove the accuracy of the test by increasing the distance 

Zj. This distance was limited by the walkoff as shown in Figure 2. By the addi- 

tion of one or two mirrors placed where the borderline rays of the ^eroth 

diffraction order propagate (Figure 2), the diffracted first-order beam can 

be reflected back into the zeroth-order beam to create the shearing inter- 

ferences. This should increase Zj and the accuracy of the test manyfold. 

However, this has not been verified experimentally. 

The author is indebted to Adolf Lehmann for his support and inttxest in 

this work and for his helpful suggestions in the preparation of this letter. 

This work was performed under Air Force contract AF-F19628-69-C-0268. 



x,^_-^,™^ v ., j , , „IJ _w, ,A.,... .L«.Lf U^I^P • n...-.!'. t ,.i-J ■, UM-. w ...i in I '■ ii'iiUL -, ^.ti»»!. II> . 

■ 

1. 

2. 

3. 

REFERENCES 

Murty, M. V. R. K.. Appl. Opt. 3, 531 (1964) 

Langenbeck, P.»  Appl. Opt. 9, 2590 (1970) 

Lehmann, A. W., Froc. Conf. Opt. Instruments and Techniques (1961) 
London, Chapman and Hall (1962), 58 

Klages, H., J. Fhys. 28, C2-40 (1967). 

Lehmann, A. V., and Silva, D. E., Opt. Comm. 2, 413 (1971). 

4. Burch, J., Frogr. Opt. 2, 75 (1963) 

5. Rogers, G. L., Froc. Fhys. Society (London) 73, 142 (1959) 

6. Cowley, J. M. and Hoodie, A. F., Froc. Fhys. Society B70, 486 (1957) 

• 



j,',„M^-.^i|tM».'!J<MiiimpiM»i)i-jLJMJlJ^ ' i.iiiiiJ«.»:W»ipni>in»ii.ifi»^ ■ it '..imm 

FIGURE CAPTIONS 

1. Talbot Interferometer setup for observing fringes due to defocuslng of 
collimator objective (ZQ t  f).  Fringes are observed on G2. 

2. The self-imaging effect occurs within overlapping orders. Test done at 
distance where the two first order diffraction spots begin to separate. 

3. Moir£ fringes which are rotated through angle $  because of defocuslng of 
collimator objective. 
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