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ABSTRACT 

The two-dimensional,  steady,  compressible,  inviscid flow of 
ionized gas through linear,  segmented electrode,  magnetohydrodynamic 
(MHD) channels is computed in the plane of the applied electric field. 
The solutions obtained for the gas dynamic and electrical quantities 
satisfy the coupled fluid mechanical conservation laws and Maxwell's 
equations at all points of the flow field simultaneously.   The nonuniform 
profiles which are obtained include the effects of transverse variations 
in incoming gas dynamic profiles,  local Hall currents in Faraday chan- 
nels, transverse currents in Hall devices,  and axial magnetic field 
gradients. 

111 
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SECTION I 
INTRODUCTION 

The channel flow of an electrically conducting gas has been of 
engineering interest in recent years because of the capability of pro- 
ducing an electromagnetic interaction with the fluid which results in 
either energy addition to or extraction from the flow, thus causing an 
acceleration of the fluid or a generation of electrical power.    In order 
to make theoretical predictions of the performance of these devices, 
previous investigators introduced assumptions to obtain tractable formu- 
lations which led to analytical models at some variance to their physical 
counterparts.    Representative of these approaches are the solutions 
discussed in Ref.   1.    These include exact solutions to certain simpli- 
fied, linearized versions of the magnetohydrodynamic (MHD) equations 
(Chapter 10 of Ref.   1),  and a discussion of numerical solutions to 
approximations of the describing equations (Chapter 11 of Ref.  1).   The 
numerical cases considered there utilize the quasi-one-dimensional 
approximation to MHD channel flow.    Another,type of analytical model 
which has been studied is exemplified by Ref.  2 in which the two- 
dimensional, compressible, laminar boundary layer form of the equa- 
tions of motion are solved across the entire channel in the E-plane. 
There the assumptions are made that the gas obeys an ideal equation of 
state, the insulator walls are parallel, the ratio of the electric field 
components Ey/Ex is constant,  and Ex is a function only of the x co- 
ordinate.    These latter two assumptions remove the requirement for 
solving an elliptic equation for the electrical properties.    The analysis 
has been formulated in a very general manner in Ref.   3 where solutions 
have been obtained that include finite chemical reaction rates,  elec- 
trical thermal nonequilibrium,  thermal and concentration diffusion, 
electron energy relaxation, turbulent boundary layers,  and a one- 
dimensional inviscid core.    The electrical portion of the problem is 
solved by combining separate solutions for an electric current stream 
function in the inlet region,  exit region,  and periodic main part of 
Faraday accelerator channels.    The geometry considered permits 
diverged electrode walls,  and assumes parallel insulator walls. 

The analysis performed in this investigation considers compress- 
ible,  inviscid,  two-dimensional flow between the electrode walls.    The 
distinguishing feature of this study is that the calculation of the coupled 
gasdynamic and electrical variables is performed in a manner such 
that the fluid mechanical conservation laws and Maxwell's electrical 
differential equations are satisfied simultaneously throughout the entire 
field.    In particular,  this means that the solenoidal property of current 
density and the irrotational property of the electric field are satisfied 
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at all points of the flow field where electric current is flowing.    The 
significance of this   is that it is possible to observe the changing char- 
acter of the current paths down the channel,  which would not be possible 
if separate solutions to the electrical portion of the problem were ob- 
tained over portions of the flow field and then joined together.    The 
results of this study show that there exists a nonnegligible coupling in 
the currents paths along the channel.    The mass and current continuity 
equations are formulated in a manner which permits the B-walls,  as 
well as the E-walls,  to be nonparallel. 

In order to demonstrate the physically realistic effects of the MHD 
variables being coupled together at all points of the flow field, the 
elliptic differential equations for electrical variables are solved 
throughout the portions of the channels where the magnetic field is 
nonzero (the B-field is assumed to extend beyond the electrically 
powered portions of the channels).    Attempts to achieve the numerical 
solutions of these elliptic equations by iterative methods were unsuc- 
cessful.    This was primarily a consequence of the large gradients in the 
unknown variables and,  secondarily,  a result of mixed boundary condi- 
tions in the Hall channel analysis.    It was only when a direct nonitera- 
tive method given in Ref.  4 was used that the solutions were effected. 
The results of the numerical experiments performed in the course of 
this study indicate that this method can be rendered stable on a grid- 
work limited in size only by available computer memory,  in contrast 
to other direct methods which are subject to truncation error instabili- 
ties when the system is sufficiently large.    This particular method 
seems to provide not only a sine qua non for problems with numerical 
complexities as severe as those of this study, but a more efficient tech- 
nique for simpler problems than iterative methods provide. 

The work described in this report was carried out with the follow- 
ing objectives:   (1) to develop computation techniques for two-dimensional 
MHD channel flow,  (2) to assess the utility of using quasi-one-dimensional 
calculations for design purposes,  and (3) to test the capability of the 
theory to predict results which will compare favorably with available 
experimental data.    The second objective is tested by averaging the two- 
dimensional results in a direction transverse to the channel centerline, 
and then comparing these values with those obtained from corresponding 
uniform profile solutions.    The correspondence of the two methods of 
solution is established by matching the average values of the assumed 
two-dimensional profiles at the channel entrance to the specified one- 
dimensional variables characterizing the flow. 

The third objective is tested by comparing theoretical predictions 
with available impact pressure measurements made at the exit of an 
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accelerator channel.   Since the initial profiles entering the channel were 
not measured,  an empirical method is employed in choosing the profiles 
that gives agreement with the experimental impact pressure measured 
in the B-field plane for a given accelerator run.    The details of the 
method are described in Ref.  5. 

SECTION II 
DESCRIBING EQUATIONS AND ASSUMPTIONS 

The analytical model of the MHD flow field considered is obtained 
by introducing simplifying assumptions into the equations that express 
the conservation of mass, momentum, and energy of an ionized gas 
flowing through crossed electric and magnetic fields.   The solutions to 
these equations describe the flow in the plane of the applied electric 
field (the x-y plane),  while at the same time they include the effect of 
diverging conductor walls since,   in general,   the channel dimension W 
in the z direction is both finite and a function of x.    Thus, both dimen- 
sions,  height and width,   are permitted to vary with x.    In order to 
analyze such a three-dimensional physical model with two-dimensional 
equations, the assumption of source flow is made (this is described in 
detail in Appendix II).   This is supplemented with the additional gas 
dynamic assumptions that the flow is steady,   inviscid,  and nonheat- 
conducting.    It is further postulated that the magnetic field is applied 
in the z direction and that the induced magnetic field is negligible; the 
electric field and current density vectors have components only in the 
x and y directions.    The formulas for the variables which enter into 
the describing equations are discussed in the following sections. 

2.1  GAS DYNAMIC FORMULAS 

The fluid mechanical relationships are derived from the conserva- 
tion of: 

Mass (Source Flow) 

7   .   Wpv = 0 (1) 

Momentum 
DV* 

P 

Energy 

p m + *p = jxB <2> 

DH       -• -. 
P  M  " *' (3) 
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The analysis is performed using a streamtube method.    For this 
purpose a transformation of coordinates is introduced which uses the 
von Mises variables (x, <P) where 0 is a normalized stream function 
defined to satisfy continuity of mass and possessing the properties 
that ffj is constant along streamlines,  and the increment in >p between 
streamlines is directly proportional to the mass flow in the streamtubes 
they bound.    The system of gas dynamic equations is closed by postu- 
lating that the streamtube slopes in the x-y plane vary linearly in the 
transverse direction from the centerline to the walls 

Sy(x,f)      y    d d 

öx d    dx 2 (4) 
2 

Although the problem is solved using von Mises coordinates, 
several of the describing equations can be written in a more compact 
form by using natural coordinates in the notation.    Thus, the use of s 
and n as subscripts indicates vector components in these directions, 
and gradients in these directions can be related to gradients in the 
von Mises coordinates from geometrical considerations. 

When the assumption of steady flow is incorporated into Eqs. (1) 
to (3) the conservation relations are 

Mass (Source Flow) 

Momentum 

Energy 

di|r        2W 

— = T- P3 (5) dn       m 

d    q2       dp dx 
P ax" T + ä^ =   W     jnB (6) 

dv       di)r   dp 

0     , q2x pu —  (h  + ^-)   = E.j (8) 

Subsequent to the solution of these equations the streamline locations 
are determined from the integrated form of the definition of the mass 
stream function 

m I     dt|f       d 
= 2W     J      pü ~  2 (9) 

-1 
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In order to facilitate the numerical integration of the equations of 
motion,  they are transformed into an equivalent system of equations as 
explained in Appendix III. 

Separate calculations were performed where the inertial term 

pu 7j— in the transverse momentum relationship, Eq. (7), initially was 

included in the pressure prediction scheme and subsequently was not in- 
cluded.    The results of the calculations were virtually insensitive to the 
choice of these two different assumptions, and hence all the results of 
this report were produced neglecting this term since it simplifies the 
numerical analysis. 

To complete the formulation of the gas dynamic flow,  relations are 
needed to compute the thermodynamic and the electrical transport 
properties of the working fluid.    The accelerators considered in this 
report use either air or nitrogen.   The generator is supplied with the 
products of combustion gases (toluene plus methanol; 7C7Hg + 2 CH3 OH + 
66 O2 + 67 N2). 

The thermodynamic functions derived for air and nitrogen (N2) 
assume these gases to be in chemical equilibrium and include real-gas 
effects.    They have been derived by postulating functional relationships 
which simultaneously satisfy a thermal equation of state and the second 
law of thermodynamics.    Additional considerations involved in the selec- 
tion of these relationships are that they should provide accurate curve 
fits to the exact values given in Refs.  6 and 7.    The detailed results are 
presented in Appendix IV. 

The thermodynamic functions of combustion gas products are ob- 
tained from curve fits to unpublished data computed at AEDC. 

The electrical conductivity of seeded air and nitrogen is computed 
from the method described in Ref.  8.   The method incorporates the 
known theoretical expressions for electrical conductivity of a singly 
ionized plasma in the two limiting cases of fully ionized and slightly 
ionized plasma into a form proposed by Lin,  Resler,  and Kantrowitz 
(Ref. 9) to approximate the conductivity (denoted by oQ in this approxi- 
mation) between these two limiting cases 

V1 - CTen^ + aei_i <10> 

where oen is determined by electron-neutral collisions and Ogi by 
electron-ion collisions.    Subsequently, Demetriades and Argyropolous 
(Ref.  10) have developed a higher order approximation,  written as 
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a  (11) 
1 - AT 

in the notation of Ref.   8.    Equation (11) is found by using Grad's 
13-moment approximation to derive a generalized Ohm's law for a 
multicomponent, nonisothermal plasma,  including temperature and 
pressure gradients,  as a function of the electric and magnetic fields. 
The electrical conductivity is obtained in two successive approximations 
which are equivalent to the first and second approximations in the ex- 
pansion of Sonine polynomials in the Chapman-Enskog approach. 

The Hall parameter is computed from 

alBl 
ÜBT   =   (12) 

ene 

where ene is the product of electronic charge times electron number 
density. 

The electrical conductivity and Hall parameter of a seeded com- 
bustion gas product are obtained from curve fits to unpublished data 
computed at AEDC. 

2.2 MAGNETIC FIELD 

It is assumed that the magnetic Reynolds number is sufficiently low 
so that no magnetic field is induced by the flow of electrical current. 
It is further assumed that the only nonvanishing component of the 
applied magnetic field vector is in the z direction,  and that this com- 
ponent is a function of the x coordinate only.   A functional relationship 
B(x) is determined for each channel by approximating the measured 
distribution with an analytical expression. 

2.3 ELECTRIC FIELD AND ELECTRIC CURRENT DENSITY 

The method for posing the analytical model describing the elec- 
trical variables in a given channel is determined by the manner in 
which the boundary conditions are prescribed.   In the case of the 
Faraday channels the normal component of current density is specified 
on all the boundaries; hence,  it is natural to solve a partial differential 
equation for a current stream function since in this formulation the 
boundary conditions possess the desideratum of being of the Dirichlet 
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type.   The formulation of the current stream function equation is per- 
formed in Appendix V and the method of solution is described in 
Appendix VII.   In the case of the Hall channel, the terminals are equi- 
potential surfaces; it is natural to solve a differential equation for an 
electric potential in this application.    The formulation of such an equa- 
tion is performed in Appendix VI,  and the method of solution is described 
in Appendix VII. 

Subsequent to the solution of the appropriate elliptic equation for * 
or 4>, the electric field and current density are related through an Ohm's 
law.    The formulas which are combined to describe the electrical por- 
tion of the problem are Faraday's law 

7  x E = 0 <13> 

continuity of current in two-dimensional source flow (this is derived in 
Appendix II) 

V   •   yfj   = 0 (14) 

and an Ohm's law 

j °——  [Es  -  wx(En   -  qB)] 
1  + (IDT) 

jn  =  [E_  -  qB + UUTE   ] 
n       1  +  (UUT)

2
       

n S (15) 

Equation (15) implies that the total1 energy addition occurring in the 
energy Eq. (8) can be written as 

j   2   +3   2 

E-j   = -2 2- + q jn  B (16) 

In all cases,  the accelerator cathodes are assumed to be contained 
in the upper walls. 

SECTION III 
RESULTS 

A series of flow-field profiles has been computed in order to 
demonstrate quantitatively the two-dimensional characteristics of the 
variables describing MHD channel flow,  as well as to show the differ- 
ences between two-dimensional and quasi-one-dimensional assumptions. 



AEDC-TR-71-181 

The two-dimensional characteristics are displayed by assuming shapes 
for the initial profiles of temperature and velocity,  and then following 
the development of these profiles through the length of the channel.   In 
addition, the integration of the equations of motion concurrently with 
Maxwell's equations gives the current components in the x-y plane that 
are induced by the interaction of the gas dynamic and electromagnetic 
fields. 

The theoretical calculations have been carried out for flows through 
three accelerators and one Hall generator that are analytical models 
simulating channels constructed at AEDC.    These will be referred to as 
Accelerator A, Accelerator B (a 20-MW accelerator designed for oper- 
ation in the AEDC  LORHO Pilot Complex; the actual slant-wall boundary 
conditions were approximated by those appropriate to a Faraday ac- 
celerator),  and Accelerator C (described in Ref.   11).    The generator 
calculations were performed for a linear (square cross section) device, 
as an approximate model of the circular cross section channel described 
in Ref.   12.    The assumption of linearity was made because the inter- 
action of the applied magnetic field with the flow in the circular chan- 
nel produces three-dimensional effects. 

3.1  FARADAY ACCELERATORS 

In order to show the differences in accelerator results obtained by 
solving the equations of motion in one and two dimensions, the two- 
dimensional profiles are averaged in the transverse direction and then 
one-dimensional solutions are computed,  using in both instances the 
same channel entrance values of appropriately selected variables which 
characterize the flow.   In particular, the following initial values were 
matched: 

Accelerator A 

Static pressure 
Mass averaged total enthalpy 
Mach number 

Accelerator B 

Static pressure 
Mass averaged total enthalpy 
Mass flow 

The two-dimensional computations incorporate the above matching con- 
ditions in conjunction with additional assumed conditions at the channel 
entrance as given in Tables I and II (Appendix VIII).    For each Accel- 
erator A and B, two cases of two-dimensional calculations have been 
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performed,  one in which the initial temperature and velocity profiles 
are uniform in the transverse direction and a second in which the initial 
profiles are nonuniform.    A characteristic feature of the temperature 
profiles is that initially uniform profiles develop overshoots at the walls 
and initially nonuniform profiles tend to flatten; the latter effect is 
particularly significant and is primarily attributable to the joule heating 
that occurs at the electrode-insulator junctions.    These results are 
shown in Figs.   1 and 2 (Appendix I).    The differences in the electric 
current paths are shown in Figs,   lc and 2c (resulting from initially 
uniform gas dynamic profiles),  and Figs.   Id and 2d (resulting from 
initially nonuniform profiles). .Two significant characteristics of the 
electric current paths are found to be (1) appreciable eddy current flow 
both upstream and downstream of the powered section - in fact, the 
length of the current carrying zone is on the order of twice the length 
of the powered section,  and (2) the current path between the ends of the 
powered section is directed approximately straight across the channel 
if the transverse temperature profile is nearly uniform,  but it follows 
an irregular path (jx is comparable in magnitude to jy) if the tempera- 
ture profile is nonuniform.    In all the test cases that were computed for 
these two accelerators,  it was found that the wall temperature at the 
downstream electrode-insulator junctions is a highly nonlinear function 
of the electrode current density at the points, which in fact determined 
the downstream values of jn that were specified in the analysis. 

The typical differences in downstream values between variables 
calculated from (1) quasi-one-dimensional analyses and (2) transverse 
averages of two-dimensional analyses initiated with nonuniform pro- 
files are as follows: 

p 9 percent 
u 2 percent 
T 7 percent 
H 3 percent 

Calculations have been performed for flow through Accelerator C 
to test the capability of the theory to predict results which will compare 
favorably with available experimental data.    This objective is tested by 
comparing theoretical predictions with impact pressure measurements 
made at the channel exit.    Since the initial profiles entering the channel 
were not measured,  an empirical method is employed in choosing the 
profiles that gives agreement with the experimental impact pressure 
measured in the B-field plane for a given run.   The details of the method 
are described in Ref. 5.   It contains the premise that since the de- 
scribing equations are inviscid the initial profiles should include non- 
uniformity to compensate for the effects of boundary-layer buildup. 
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The salient feature of the technique is the hypothesis that the appropriate 
du 

amount of initial nonuniformity is that which results in w~ = 0 in the 
wall 

accelerator exit region.    In order to complete the specification of the 
initial-boundary value problem it is necessary to prescribe the applied 
current on the electrode walls.   In the analyses for Accelerators A 
and B it is stipulated that jn(x) is the same on the cathode and anode 
walls.    This is done in view of the fact that the segmented electrodes in 
those channels are small in length compared to channel height.    The 
postulated boundary condition that jn is a specified function of x would 
seem appropriate since this implies infinitely fine segmentation.    This 
same assumption was used in an initial attempt to calculate the flow 
through Accelerator C even though this device has large electrodes.   The 
solutions for the gas dynamic variables were almost symmetric about 
the centerline (Fig.  3) in contrast to experimental results (impact pres- 
sures measured in the exit region) for this channel (Fig.   3c), which 
demonstrates the necessity of including current concentration.    Subse- 
quent calculations have been made in which the specified jn distribution 
on the walls has been chosen to cause the current to flow in a direction 
generally from the anode downstream corner to the cathode upstream 
corner, which is known to occur from both theoretical considerations 
and physical observations.    The results for impact pressures (Fig.  3c)i 
do indicate asymmetry,  and furthermore,  the larger theoretical values 
of impact pressures occur along the anode wall in accord with experi- 
ment.    However,  although the average impact pressures show favorable 
agreement between theory and experiment, the theoretical results do not 
display nearly as much nonuniformity as the measured quantities.    The 
current paths in the powered portion of the accelerator (Fig.  3d) naturally 
reflect the assumed boundary constraints on (jn)     ..,  but in the entrance 
and exit regions the fringing that occurs is relatively independent of the 
assumption that is made of current distribution along the walls.   Theme 
theoretical results were obtained by assuming that the magnitude of 
electric current applied to the channel was that which had resulted 
experimentally when the applied voltage equaled four times the induced 
voltage.    Another attempt to compare theory and experiment was per- 
formed at a higher power level (applied voltage equal to six times in- 
duced voltage) but resulted in numerical instabilities that could not be 
resolved as a consequence of the temperature becoming unbounded on 
the anode wall. 

3.2 HALL GENERATOR 

The one- and two-dimensional Hall generator programs have been 
used to compute a case simulating a design point of the LORHO 20-MW 

10 
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generator described in Ref.   12.    The values of the gas dynamic state 
upstream of the magnetic field, terminal voltage,  and seed rate are the 
same for both methods.    It is found that the two-dimensional solution 
has higher values of pressure,  temperature,   and axial current (Fig.  4). 
Since the potential difference between the terminals is the same for 
both analyses the higher current implies a greater generation of power 
(greater by 16 percent for the case selected).    The change in pressure 
across the channel is also found to be 16 percent.    The electrical cur- 
rent paths and Hall voltage distribution are shown in Figs. 4c and d, 
respectively.    The current paths are the resultant of the generated axial 
current and the transverse current which is short-circuited tl.rough the 
external circuitry.    The values of Hall voltage obtained from one- and 
two-dimensional approximations to the describing equations compare 
closely (Fig.   4d),  differing by 3 percent at most. 

SECTION IV 
CONCLUSIONS 

The comparison of the averaged two-dimensional with the quasi- 
one-dimensional calculations of gas dynamic variables shown in 
Figs,   lb and 2b indicates that the closeness of agreement depends upon 
whether the gas influx to the channel in question is uniform (using com- 
pression heated flow as a gas source,  for example) or nonuniform (such 
as that emanating from an electric arc heater).    In the former case the 
comparison is quite close, which would seem to indicate that in such an 
application the quasi-one-dimensional solution could be used for the 
purpose of carrying out design calculations.    In the latter case (initial 
nonuniform profiles) the differences can be as much as 10 percent, 
which would tend to indicate a greater need to use two-dimensional 
solutions for performance predictions in these applications.   In both 
instances there is a dissipation of applied electric power because of 
current fringing in the end regions, the effective current carrying zone 
being almost twice as long as the length of the electrode section. 
Initially,  nonuniform profiles result in additional power dissipation in 
the electrode region as is shown by the existence of appreciable local 
Hall currents (on the order of the applied Faraday current) even though 
the average Hall current is constrained to be zero.    In any case if the 
flow at the accelerator exit is to be used as a uniform test medium,  a 
two-dimensional solution will have to be carried out for the particular 
inlet condition considered.    The two-dimensional" nature of the flow 
can be severely aggravated as a result of being accelerated by MHD 
forces. 

11 
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The comparison of theory with experiment in the one case tested 
reveals that the predicted impact pressures are greater on the anode 
wall than on the cathode wall,  in accord with measurements,  and the 
average values are comparable.    However,  more refined criteria for 
specifying the nonuniformity in the initial profiles is needed since there 
is substantial disagreement between theory and experiment in the amount 
of nonuniformity in the exit region. 

The comparison of one- and two-dimensional solutions for flow 
through a linear Hall generator operated in a two-terminal mode shows 
that if the upstream gas dynamic state, seed rate, and terminal voltage 
are matched, the generated power is larger in the two-dimensional case 
(16 percent in the test case analyzed).    The two-dimensional analysis 
gives the end effects caused by (1) the fringing magnetic field and 
(2) the conduction of the electrical current through the terminals into 
the flowing gas.    Although a small difference in generated power was 
experienced because of the end effects in the case considered {16 per- 
cent as previously noted) each generator design should be investigated. 
A more important aspect of the two-dimensional analysis is the calcu- 
lation of the pressure gradient transverse to the flow.    This gradient 
can have adverse effects on the boundary layer in the channel. 

It would not have been possible to obtain any of the two-dimensional 
solutions presented in this report without using the direct method of 
Ref.  4 to solve the finite difference relations.    The simplicity,  stability, 
and accuracy of the method is such that it is recommended in general 
to solve systems of second-order finite difference equations in prefer- 
ence to other methods that have been proposed in the literature. 
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APPENDIX II 
CONTINUITY OF MASS AND ELECTRIC CURRENT 

(SOURCE FLOW) 

The usual forms in which the mass and electric current conserva- 

tion equations are given, V .  pV = 0 and V • j = 0,  are applicable to 
plane or three-dimensional flows.    However,  it is incorrect to apply 
these formulas to the flow model analyzed in this report because the flow 
is quasi-two-dimensional in the sense described below. 

It is intended that the analysis should have the capability of com- 
puting flows through channels with divergence of both pairs of sidewalls 
(the B-field as well as E-field walls) while at the same time expressing 
the equations of motion as functions of only two spatial coordinates 
(x and y).   In order to accomplish this it is assumed: 

1. The x and y components of velocity and current density 
are functions only of x and y 

2. The ratio of the z and x components of velocity and 
current density satisfy 

and 

w 
u 

Jx 

z dW 
W dx" 

z dW 

W dx 
Inlet 

Exit      —. 

x 

This latter assumption states that the slope of the streamline projection 
in the x-z plane is a linear function of the z coordinate. 
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Let F = [FX, Fyj Fz]  represent either of the two solenoidal vectors, 

pV or j.    The combination of the above assumptions with V ■   F(x, y, z) = 0 
yields 

a a drvzdWl 
v.F(x,y,z)   = g- Fx(x,y)  + ^ Fy(x,y) + 5- \FJX.J) - — J 

a a F„   dw 
=   F +   F + -*      

dx   x ay   y w   dx 

l a a 
 WF + — F 
w ax    x       ay   y 

The conclusions are 

a a 
— Wpu  + — Wpv = 0 (II-l) 
dx ay 

and 

hWJ*+i WJ* - ° (n-2) 

Equation (II-l) suggests the definition of a (normalized) mass stream 
function which satisfies 

a* 2W 
- - - _ pv 

ra 
(II-3) 

ay       rh 

where the normalization has been chosen such that <P = 1 on the upper 
wall and i> = -1 on the lower wall.    Equation (II-2) suggests the defini- 
tion of an electric current stream function which satisfies 

äx y (II-4) 

i*(*,y) - Wi 
ay 
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The solution of the describing equations is performed using 
von Mises coordinates; this requires *P to be expressed as a function of 
(x, (//) as follows 

dY(x,ijr) [dx(s,n)|      w. 

fc ="Us         J        Jn 

äY(x,t)r) = r^Cx.y)!      WJ 

at Uy        J        x 

where (s,  n) are orthonormal coordinates measured tangential and 
normal to fluid particle paths. 
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APPENDIX III 
TRANSFORMATION OF EQUATIONS OF MOTION 

The gas dynamic equations are solved after rearranging the steady- 
state form of the conservation equations for 

Mass (Source Flow) 

?•   WpV     = 0     . (III-l) 

Momentum 

p     +  Vp   =  JXB (III-2) 
Dt 

Energy 
DH       ^ -• 

p — - E-J (m.3) 

into a system of differential equations where the dependent variables 
are q(x, <P), p(x, ^), T(x, I}J) in the accelerator analysis,  and q(x, ip), 
p(x, 0),  H(x, ip) in the generator analysis.    These variables were 
selected because they are of special importance,  and because the 
thermodynamic functions are expressed as functions of p and T in the 
accelerator analysis, and p and h in the generator analysis. 

The equation for q is obtained by combining the components of the 
momentum Eq. (Ill-2) to yield (in von Mises coordinates) 

pu — -=- + u ~ =   [VjB] (III-4) 
dx   2 ox 

-*■ 

The assumption that B has a component in the z-direction only implies 

[VjB]   =   (|^)"1 ujB (III-5) 
os " 

where 

-1/2 

dx   . dy   . 
Jn   ds Jy " dS 

Jx 

ay 
dy "die  

Ss= {1 + (l'° }1/2 
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and       ..yCXjV)    is given by Eq. (4). 
dx 

The result is 

in which form the solution is obtained using a Runge-Kutta method, and 
the pressure gradient that appears on the right-hand side is evaluated 
below. 

The pressure is computed on two levels of approximation.    The first 
level of approximation consists of solving a system of streamline differ- 
ential equations for pressure.    This is followed by a second level of 
approximation in which the pressure is recomputed by integrating the 
transverse momentum equation in the y direction.    These approxima- 
tions are obtained from the following sequence of calculations:   con- 
servation of mass is expressed in integral form; this integral relation- 
ship is differentiated in the streamline direction; by invoking an equation 
of state, and momentum and energy conservation,  a system of integral 
equations for streamline pressure gradient is obtained; these integral 
equations are then formally inverted to obtain the required formula for 
pressure prediction to be performed in an explicit manner. 

The detailed derivation of the formula for ~— p^(x, ip), where p^ is 

the pressure on the ith streamline, begins by differentiating 

■S i i 
/2                                   ■ i 

dy            ±    Wj A        d*          =-   J     (— pq)'1 d* 
* dy                             2    J        ds 
-1 -1 

d 
"2 

to obtain 

dA       m     (     ä     ,dx       v-1 

    /    T- <— pq) 
dx      2   J      dx    ds 

dty 
Qir       riss 

-1 

The next step is to substitute into the previous equation either 
Eqs. (III - 6) to (III-10) in the case of the accelerator analysis. 
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P    =   p(p,T) (III-6) 

3p   = dp   dp  + dp_ ^T (III-7) 
dx       dp  dx       dT  SX 

^.(M)"1    r(l _ dh) ^E + g'T-  tYJBl] (m.B) 
dx dT L P       ^p     öx Pu J 

(Eq. (III-8) follows from Eqs.  (8) and (III-4)) 

M»-q«r|£ + |£(i.p|t)(p^)  i      (in-9) ,.   .»i^   |£ (1_p ^(PIV1! 
dT dp dT        J 

Fl = (iH)"1^ (111-10) 
dT oT 

or Eqs. (Ill-11) to (III-15) in the case of the generator analysis 

p   = p(p,h) (III-ll) 

.^E. = ^£ $E  . £*£ .^Jl (111-12) 
dx       dp  dx       dh  ox 

£h  s M _ 2- Si (111-13) 
dx       pu ox 2 

(Eq. (Ill-13) follows from Eq.  (8)) 

M2   = £-    fl   -   p  —   (RZD   - —   (RZT)l (111-14) 
RZT    L öp öh J 

Fi = & (111-15) 
oh 

In addition both analyses use Eq.  (16),  which implies 

S*.j   „  E«j   -   [VjB] 

V * In 
2 
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and the identity which makes it possible to formally invert the pressure 
integral equations 

^PJ   =-^(P3   -   Pi)   +^Pi 

to achieve the result 

2  dA 
- T — + F2  -  F3 

m dx 
— P.   = 
ax 

where 

i fl 

J     (|* PV)"1 (M2 - 1) 
-1     ds 

1 

d* 

F2 = 

/, 

,-i a )x -1 

(pq)~*— (—)      <Mr 
äx     ÖS 

F3 =    f    & PV)""/  (MS -  1) f-  (P1  - P.) 
J OS [_ ox        J 

+  (?)   "   (J„B +  P_1q  E*-j   FjW .or ~l 

'da n 

The notation ^j used for the dummy variable of integration in the second 
integral of the numerator means that the quadrature is to be performed 
with the streamlines labeled with j subscripts.    This is done in order to 
define the meaning of p^ - p^ which occurs in this same integral; thus 

p.: - p^ means the difference between pressures on the jth and ith stream- 

lines.    Formally, this pressure difference can be evaluated from the 
transverse momentum equation where 

bv        64   bp 
pu — + = -  j   B 

dx       dy  by x 

is integrated in the transverse direction and then differentiated in the 
axial direction to give 

—  (P,   -  P.)   = B   
dx       J x dx 

d    B 

dx W r^HfH"11"1 6) 
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3v 
and -5— is evaluated from 

M1 ♦<->'] 
-1/2 

v   = —     1   +   (—; q 
ox L ox   J 

and the streamline slope 7p is obtained from Eq.  (4).    For channels 

whose conductor walls are only slightly diverged such as that of Ref. 11, 
the last term on the right-hand side of Eq.  (Ill-16) * 0. 

The second approximation for pressure alluded to above is given by 
the integral of the radial momentum equation 

i 

The difference of current fluxes on the ith and jth streamlines, 4^ - Wi, 
is obtained in the case of Faraday channels by the theory described in 
Appendix V,  and from 

J   1   j  v  j xdt(r 

for channels in which the describing electric equation is that of an elec- 
tric potential. 
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APPENDIX IV 
THERMODYNAMIC FUNCTIONS 

Expressions for thermodynamic functions of air and nitrogen, 
respectively, are derived in closed form in such a manner as to ap- 
proximate their'tabulated values given in Refs.  6 and 7.    The starting 
point in the derivation is to develop formulas relating the thermodynamic 
variables p,  T,  p,   Z,  h,  and S which will (1) approximate the tabulated 
values and (2) satisfy the thermodynamic relationships 

p  = RZpT 

and 

T dS = dh - -^ 

It facilitates the development of the results to combine the previous 
two equations with- the postulated relationships 

| = fi(T,Z) 

p" =  f2(T,Z) 

and the' identities 

and 

which yields 

öS öS 
dS - -- dT + —- dZ 

ÖT dZ 

ö    as       a    es 

a i   a   h 

ÜlnP"^toR (IV-2) 

as a differential relationship which must be satisfied by the assumed 
empirical relationship.   At this point the remaining details of the 
derivation become peculiar to the particular gas being considered. 

AIR THERMODYNAMIC FUNCTIONS 

Let the static enthalpy have the functional form 

£ =  f(T)   +   (Z  -   1)   g(T) 
K 
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When this is substituted into Eq. (IV-2) the integrated result is 

'g(T) 

F(Z>  eJ    T2 /■ dT 

The arbitrary functions appearing in the two previous equations are 
evaluated by matching the exact values in the higher range of tempera- 
tures representative of MHD operation.    However,  the results are in- 
sufficiently accurate at lower temperature values.    In order to extend 
the range of validity a separate empirical fit is performed to yield 
comparable low temperature accuracy while at the same time render- 
ing all the thermodynamic functions continuous (as functions of both p 
and T) at a matching temperature.    For the sake of simplicity the low 
temperature formula for enthalpy (that is used when T < Tmatcn) is not 
required to satisfy the entropy condition of integrability (Eq. (IV-1)). 
Thus, the solution of the equations of motion for an adiabatic,  reversible, 
flow when obtained using these functions is exactly isentropic when 
T > Tmatch,  but only approximately so (typically in error by 1 percent) 
when T < Tmatch-   The results are: 

<     match 

— = 4.05 x  104 

56,500 
(1.2  -  Z)   _ T 

P (Z  -   1) 

T >  T 
match 

ii = 4.96T  +   (Z  -   1) (56,500  + T)   -  2000 

| = 3.96  In  T +  (Z  -  1)(1  + 56>500)   -  In  p 

-  0.2   In   (1.2   -  Z)   -   0.919146 

T  <  T match 

J={ai+ a2T)T  +   (Z  -   1) (56,500  + T)   +  a£ 

| -  (ai -  1)   In T  + 2a2T +  (Z  -   1)(1  + 56^00) 

-  In — -  0.2   In   (1.2  -  Z)   + a4 
P. 
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Solve for T^^tch from 

ai + 2a2 T    '     .    ■ 
match 

ai=     3.322661 

4.96 

a2 =    3.24611x10-* 
a3   =  64.6859 
a4   -    9.9744 

The values of a^ and a2 are determined from the observation that 

at sufficiently low temperatures ■== versus T is virtually a linear func- 

■h 
tion; i. e., -^p  = aj + a2T.   The value of Tmatch is determined by re- 

quiring continuity in Cp; a3 and a^ are given by fulfilling continuity of 
h/R and S/R, respectively,  at the matching temperatures. 

NITROGEN THERMODYNAMIC FUNCTIONS 

A single set of expressions is obtained for the entire range of 
interest by postulating the expressions for h/R and Z given below where 
the constants are evaluated by optimizing the accuracy of Cp. 

9v 
+ —Q-Jf  + C2T  + Z | T  + Ca (Z  -   1) Hci 

(e -   1)T 

;] 

Z-l =  Cg 

P 

LCVT 

-Ca C7 

(- -y) 

S 
R 

C 1 
(1  + Ci)   In T + 2C2T -  in ^- +  (Z -  1)(1  + -=- + —-) 

P» 1 C8 

9V ^v ®v 
+ — coth — -  ln(sinh —)   + C8 

2T 2T 2T 

CI = 2.5 C8 = .496404 

c2 = 7.57143xlO"B c7 = 55830.65 

c3 = c7/c6 C8 = 2.38 

c4 - 3.66099xl0_a 9v 
= 3340 

CB   = ?76.6027 
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APPENDIX V 
ELECTRIC CURRENT DENSITY IN FARADAY CHANNELS 

Since the boundary conditions for the electrical portion of the prob- 
lem of flow through Faraday channels is posed in terms of current (on 
the insulator portion of the walls jn = 0,  along the electrode section 
jn(x) is specified,  and at the upstream and downstream ends of the 

region of computation j = 0), it is natural to solve a differential equa- 
tion for a current stream function (rather than an electric potential) 
since this results in the boundary conditions being of the Dirichlet type. 
The derivation of this equation is performed by substituting E as a 
function of j,  from Ohm's law,  into the steady-state form of Faraday's 
law, and then substituting a current stream function for j from con- 
servation of current.    The analytical expressions of these statements 
are 

7  X  E =0 

s s n (v_1) 

a(En-qB)     =    _  OUT  js  + jn 

Wj =    7  x   fo,   0,   Y] 

Since the curl operation is invariant under an orthonormal curvilinear 
coordinate transformation it follows that 

d-Ks.n) 

0      on 
and 

When a further coordinate transformation to the von Mises variables, 
with which the problem is solved,  is introduced the result is 

,     dy   5        d*    3, 

and 

WJ»-(-ää>T(M) 
(V-2) 

44 



AEDC-TR-71-181 

The combination of Eqs. (V-l) and (V-2) results in the elliptic differen- 
tial equation 

T        +  Ü2?,,    + A3Y     +  A4Y,    = AB   +  ASY 

where 

dn 

r rax/äi   4WCT   w <** o f!ljLlis'ii 
A3   - -    u)T (—)    —- +   + Wa — — 1  f 

L      ds       dx2 Wa dn  df   L Wa J J 

dt dt 

i. .*[<„*&»<_£_> + ft i. (-S_,l + * *L • 
|_ ds       os     ox       Wa dn  di|i       Wa    J      ds    dx   dn 

*-*55" 

A9   = 2 
dy  di|f 

ds  dn 

The term containing the mixed derivative is included on the right-hand 
side where it can be treated as a known quantity in the method of 
successive approximations that is used to simultaneously solve the 
coupled gas dynamic-electrical problem.    The motivation for proceed- 
ing in this manner is that the inclusion of mixed derivative terms on the 
left-hand side adds complexity to the finite difference method of solu- 
tion. 
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APPENDIX VI 
ELECTRIC POTENTIAL IN HALL CHANNELS 

The boundary conditions for the electrical portion of the problem of 
flow through the Hall channel considered in this report (two-terminal 
operation with equipotential surfaces on the ends: 

V    = 0 and j   (x) 
y n upper n 

wall 
lower 
wall 

in the electrode region) are such that it is natural to solve a differen- 
tial equation for an electric potential (rather than for a current stream 
function) since this results in the boundary conditions on the ends being 
of the Dirichlet type.    The derivation of this equation is performed by 

-»• -*■ 

substituting j as a function of E,  from Ohm's law,  into the equation 
describing conservation of current,  and then substituting an electric 
potential for E as a consequence of Faraday's law.    The analytical ex- 
pressions of these statements are 

7-Wj     =     0 

i        =    TE    -  u)T(En  -  qB)] 
Js 1  +   (uvr)2   Ls J (VI-1) 

j        =       Z   \v     -  qB  + u)T   E n ,      ,   ,2Ln SJ 
1  +   (IDT) 

E     =    -  vqp 

Since the gradient operation is invariant under an orthonormal curvi- 
linear coordinate transformation, it follows that 

Es  =- 

En  - - 

dcp(s,n) 

dcp(s,n) 

dn 

When a further coordinate transformation to the von Mis es variables is 
introduced, the result is 

E
s - C- ——•) cp(x,0 
to os  dx (Vl-2) 

.by   d d-i     o 
E     =   (-— —■ - — —)   Cp(x,*) 

" os  ox       dn  oijf 
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The combination of Eqs. (VI-1) and (VI-2) results in the elliptic 
differential equation 

A*pxx + AB«p#t   + A3cpx + A4q>#   = AE   + Ae^ 

where 
Wa 

Ai =  §■ 
1 +   (OUT) 

A     _        Wa ^2 

1  +  (UUT)
2

    
dn 

Wa dt   d ,dyN        9 /      Wa \ 

1  +  (OUT)       dn  cH  as dx\l  +  (urr)   / 

K 

cty r dx   d / Wa  UJT        \      dy   d /      Wa \ -i 

dn[ds  di|i\l  +   (UUT)
2
/      ds  d|r \1  +  (CUT)

2
/ J 

Wa I"    dy   d    dijf ^       dijf   d    du;. 

1  +   (UUT)     L    ds  dx dn dn dijr   dn 

d^ f    dx _S /   Wa (CT     \      ^y _^ /      Wa \ 
+ dn   L    ds  dx\l  +  (CUT)

2
/       ds  dxYL  +   (UUT)

2
/ 

d*   d  /        Wa       \   -l 

dn  di|Al  +  (UUT)
2
/   J 

= ^1 -i.  f    Wa HIT "I      dy   d r      Wa "1 
AS   " ds  dx  |_1  +  (UUT)

2
 

qBJ  + ds  äx"[l  +  (OUT)
2
 

qBJ 

■BÄi  r 5_ ql 
dn  d*   Ll  +  (UUT)       J 

A«   - 2 -i. 

df 

dy Wa di|> 

ds  1  +  (UUT)
2
 dn 
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APPENDIX VII 
DIRECT METHOD OF SOLUTION OF FINITE DIFFERENCE EQUATIONS 

The partial differential equations for electric current stream func- 
tion and potential that are derived in Appendixes V and VI are written in 
implicit finite difference forms using central differences as approxima- 
tions to the derivatives.    The resulting matrix equation is block tridiag- 
onal; i. e., the partitioned form of the coefficient matrix is tridiagonal. 
The methods that have been proposed in the literature for solving such 
an equation (i. e. ,  a system of linear algebraic relationships) fall into 
the general categories of iterative,  direct,   and block iterative which is 
a hybrid of the first two methods.    Several iterative schemes have been 
applied by various authors to the solution of implicit finite difference 
equations when their numerical properties were sufficiently simple.   An 
extensive test of block iterative techniques in the course of the analysis 
that forms the subject of this report was made and it was found that 
iterative methods are incapable of solving the electrical boundary value 
problems that are described herein.    The problems were ultimately 
solved by the use of a direct method on a numerical gridwork whose 
size is limited only by the available memory of the digital computer 
being used.    It has been shown by substitution that the values computed 
for the unknown variable invariably satisfy the given matrix equation. 
That the success of such an approach was not a priori obvious is ex- 
plained by the well-known fact that the finite word length of a computer 
results in an accumulation of truncation error that,  in general, pre- 
cludes the successful employment of a direct method.    However,  it was 
found that one particular variant of the direct algorithm proposed by 
Schechter in Ref. 4 has the capability of negating truncation error accumu- 
lation.    The method proceeds by accomplishing a forward elimination 
with a conventional factorization of the coefficient matrix into a product 
of lower and upper diagonal matrices.    The distinguishing character- 
istic of the Schechter method is that instead of performing the entire 
backsweep by obvious recurrence relations (which would invariably lead 
to numerical instabilities), the backsweep operation is periodically 
interspersed with formulas for the unknowns that involve the use of 
intermediate calculations performed and stored in the computer memory 
during the forward elimination process.    Thus by limiting the number of 
consecutive applications of straightforward recurrence relationships,  it 
has been found possible in all cases to perform the calculations within 
numerical stability boundaries.    The efficacy of the method is attribut- 
able to this property and also to the simplicity of the algorithm, which 
is presented below in the notation of Ref.  4.    In order to display this 
simplicity the entire matrix algebra necessary to effect the solution 
(given by Eqs. (VII-1) through (VII-5)) is presented first, then a defini- 
tion of terms is given. 
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FORWARD ELIMINATION 

Ai = Mi 

"n n 

{yn}3{g
n} 

-DA       -l E    n,     1  < n <:  q, (VII-1) 
n    n-1 n-1   ' k 

-D    A       "l (y     .),   Kns n    n-1       1/n-lJ 
(VII-2) 

BACKSWEEP 

K}" V1    {»»}    " V* En {%+l} 

(VII-3) 

k-lh V*{{«n}   " "n  K} - E„  Vn+l}}       (V1I-4) 

(VII-5) 

The braces around the terms indicate vector matrices of length p,  and 
the other matrices are rectangular. 

The symbolism used in Eqs. (VII-1) through (VII-5) (which is the 
same as that used in Ref.  4) is related to the physical problem as 
follows.   Denote the first upstream column of gridpoints by n = 1 and 
the last downstream column by n = q^ where k denotes the number of 
changes in the number of unknowns to be solved for on the individual 
columns.    Let pr denote the number of rows on column qr. 

1 
pi rows 

T 

—r 
pr rows 

 L_ 
p.   rows 

n=l 
I 

n=qi 
I I 

n=qp  n=qk 

Physical Array 

As is well known the finite difference relations for a linear second- 
order partial differential equation without mixed derivatives can be 
written in partitioned matrix form as 
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Mi Ei 

Da  M2  Es 

D     M     E 
n    n    n 

•              1 
gi- 

va gs 

< 

o 

V 
n >   = < 

« e • 

M V 
qk .V 

(VII-6) 

where Dn,  Mn,  En are matrices with the same number of rows, 
En» Mn+i, Dn+2 have the same number of columns,  and the Mn are 

square (pr x pr).    The vectors |vn | are the unknowns; in the context of 

this report these are successive approximations to the current stream 
function (Faraday channels) or electrical potential (Hall channels). 

The derivation of the solution algorithm is performed as follows. 
Denote the coefficient matrix by Q;  Eq. (VII-6) can then be written as 

Q i v f = 1 S \ •    Equation (VII-7) results from the factorization of the 

coefficient matrix Q into a product of lower and upper diagonal matrices 
Q = LU. 

[L] tu] w-w 

Q{v} = 

[DaAi-1]     I 

[D. 
qk  ^k 

-rli 

Ai Ei 

A3 Es 

^k 

va ga 

(\ai-7) 

Equation (VII-2) is obtained by solving for jy | from |y \  = U |v| and 

Equation (VII-3) is obtained from the last row of 

Equation (VII-4) is obtained by rewriting the nth row of 

L ■ 

u. v II 
  

  
 I

I g 

y 

Q. V ,  = g 
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Dn {Vl} + Mn {%} * En  K+l) " {*„} 

Equation (VII-5) is obtained by solving for |vn ] from the nth row of 

Uf v j  = [y}( which is An |vn } + En {vn+1}  = |ynJ.    The reader is 

referred to Ref. 4 for additional details of the matrix algebra that 
are required. 
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APPENDIX VIII 

TABLE I 
INITIAL CONDITIONS-UNIFORM AND NONUNIFORM INLET PROFILES, 

ACCELERATOR A 

> 
m 
D 
o 

30 

The initial conditions listed below are values at the entrance to the electrode section 
that would result from an isentropic expansion through the channel. 

UNIFORM INITIAL PROFILES 

p/p  =0.5 
en 
CO 

Assumptions  < 

M = 1.6 

H = 5.4168 (106) 
2 ,    2 m /sec 

The assumptions imply values of 
velocity and temperature. 

NONUNIFORM INITIAL PROFILES 

P/P„ =0-5 00 

Assumptions < 

M = 1.6 

M is uniform in 
transverse direction 

T is a quadratic 
function of the 
transverse coordinate 

H 
H 

= 1.5 x T wall 

3600*K 

The assumptions imply H   = 5.4168 (108) 
m2/sec , and a velocity profile. 



TABLE II 
INITIAL CONDITIONS-UNIFORM AND NONUNIFORM INLET PROFILES, 

ACCELERATOR B 

The  initial conditions   listed below are values  at   the  entrance  to  the  electrode 
section  that  would result  from  an  isentropic  expansion  through  the  channel. 

en 

UNIFORM INITIAL PROFILES 

p/p  =0.5 
GO 

Assumptions {       u = 3000 m/sec 

T = 3400°K 

The assumptions imply 

m = 0.7158 kg/sec 

H = 10.262 (10s) 
m2/sec 

NONUNIFORM INITIAL PROFILES 

p/p  =0.5 

Assumptions < 

p  is uniform in 
transverse direction 

H  is a quadratic function 
of the transverse 
coordinate 

H g       '•" - "wall 

m 

H avg 

=  1.5  x Hv 

=  0.7158  kg/sec 

=   10.262   (10s)   m2/sec2 

The assumptions imply profiles of velocity 
and temperature. 

> 
m 
D 
O 
■H 
3D 



TABLE III > 
INITIAL CONDITIONS-NONUNIFORM INLET PROFILES, S 

ACCELERATOR C " 
31 
■ 

The initial conditions listed below are values at the entrance to the electrode section       r 
that would result from an isentropic expansion through the channel. S 

The following one-dimensional values are from Ref. 11, Run 1323: 

P/P. = 4.7 

T, J.  - 3100°K 1-dim 

ii. ..  = 2960 m/sec 1-dxm 

The criterion for choosing the following relationships is explained in Ref. 5. 

 wall  = ,  r \ -(-H T£ " Twall 

T      - T 
1-dim   wall = 2_ 

TA  -  T        3 
t wall 

1-dim   wall _ £ 

u,* - u. --     3 lg " Uwall 

T£ 

Twall 

1.22 

- - 1.5 
u  i 1 wall 
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