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ABSTRACT 

We have developed a random walk model of interstitial diffusion of 

light impurity atoms in a host lattice of heavy atoms in the presence of a 

thermal gradient. To take account of the effect of the thermal gradient on 

the flux of impurity atoms we introduce a bias in the jump direction of the 

interstitial impurity. We assume that this bias is due to the temperature 

dependence of the excluded volume effects which arise during the jump of the 

impurity atom between interstitial sites. The resulting random walk equation 

for thermal diffusion is consistent with both positive and negative heats of 

transport in agreement with experimental data. Using a cell model approach 

and the assumption of local equilibrium, we then develop equations which per- 

mit the calculation of the bias in jump direction. The theory of interstitial 

diffusion developed here clarifies and supports the classic Wirtz model for 

interstitial thermal diffusion. 
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I. INTRODUCTION 

The dynamics of diffusion in a crystalline solid maintained at con- 

stant temperature is fairly well understood at the present time.  Both the 

fl-3) simple random walk models    and the recently developed "dynamical" 

theories "  give much insight into the process of diffusion and produce at 

least qualitative agreement with experiment. For the more complicated problem 

of diffusion in solid subjected to a temperature gradient, the theoretical 

(7) description is less satisfactory. 

f3) Allnatt and Rice   have derived general random walk equations which 

describe the flux of matter in a crystalline solid with both concentration 

and temperature gradients present. To apply this general theory to any 

specific problem, certain parameters which predict both the magnitude and 

the direction of the matter flux must be determined outside this theory. An 

example of such a parameter is the heat of transport. Using the random walk 

model together with certain specific physical assumptions, Allnatt and Rice 

concluded that the heat of transport is always positive and equal to the 

activation energy of isothermal diffusion. Experiments, however, have shown 

that the heat of transport can be positive or negative, depending upon the 

specific system under study. The random walk model itself is consistent with, 

and can predict, both negative and positive heats of transport. Further work 

on the determination of the parameters entering into the random walk theory 

is thus desirable. 

In order to be able to examine in some detail the physical basis of 

the parameters in a random walk model for thermal diffusion we decided to 

study a particularly simple system. The system we chose is that of inter- 

stitial diffusion under the influence of a thermal gradient of a dilute 

solution of light impurity atoms in a stationary host lattice of heavy atoms. 

2 - 
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In order to develop the relevant random walk equations we consider first 

interstitial diffusion in an isothermal system and then extend our equations 

to interstitial diffusion in a thermal gradient (Sections II and III).  By 

introducing a bias in the jump direction of the random walker due to the 

thermal gradient we are able to obtain both positive and negative heats of 

transport. To evaluate this bias we introduce a simple physical model 

according to which the bias is due solely to the temperature dependence of 

excluded volume effects which arise from the repulsive forces between host 

lattice and impurity atoms during the jump of the impurity atom between inter- 

stitial sites (Section IV). This simple model does not take into account 

other possible mechanisms which might also produce a bias in jump direction 

under the influence of a thermal gradient such as, for instance, chemical 

host-impurity interactions. From our model we then calculate the jump bias 

to a first approximation and use it to estimate heats of transports for the 

diffusion of H and C in a-(bcc)Fe, These estimated heats of transport are 

in order of magnitude agreement with experimentally determined ones and have 

the correct sign. 

We find that there is a close relationship between the random walk 

approach, Rice's "dynamical" theory1 '  and the Wirtz model1 ^ for thermal 

diffusion. These relationships are discussed in some detail in the last 

section of this paper. 

- 3 
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II.  INTERSTITIAL DIFFUSION OF IMPURITIES 

A. Isothermal Diffusion 

In order to describe the isothermal diffusion of impurity atoms via 

an interstitial mechanism we make the following assumptions:  (a) the light 

impurity atoms diffuse in a stationary host lattice of heavy atoms, (b) the 

impurity atom concentration is sufficiently low that interstitial lattice sites 

on either side of a given interstitial impurity atoms can be taken as unoc- 

cupied and that we can work with concentration rather than activities, i.e. 

the system is ideal, (c) the diffusion is one dimensional (in cubic crystals 

diffusion in the three normal directions can be treated independently). 

Consider now two interstitial planes 1 and 3 which are a distance a 

apart.  (See Figure 1.) Let the number of impurity atoms per unit area on 

plane 1 be n(l) and on plane 3 be n(3). The total jump rate T,  which is 

assumed to be a function of temperature only, is defined so that n(l)r(l) gives 

the total number of atoms per second per unit area jumping from plane 1 to 

planes on both sides of 1. We wish to consider the net flux J of impurity 

atoms across the host lattice plane 2 between interstitial planes 1 and 3. 

This is clearly given by 

J(2) = PR(l)r(l)n(l) - PL(3)r(3)n(3) (2.)) 

where PR(1) represents the probability on a given jump that an atom on plane 

1 will jump to the right and where P,(3) is the probability of an atom on 

plane 3 jumping to the left. Right and left refer respectively to jumps 

toward positive or negative x in Figure 1. In the isothermal case jumps to 

the right and left are equally probable so PR(1) = pi (3) ' j and tlie JumP rate 

IXT) is the same in planes 1 and 3. Equation (2.1) then becomes 

J(2) = ±|n(l) " n^l HT) (2.2). 

 .  



Since n(lj = ac(l), where 0(1) is the number of atoms per unit volume around 

plane 1 we can write 

J(2J = ja[c(l) - c(3} | rCn (2.3). 

We assume that the concentration is a slowly varying function "  x over the 

range of the jump distance £ and write 

c(l) - c(3) -  -a|^ (2.4). 

Equation (2.3) now takes the form of Pick's first law of diffusion: 

J = - ja2r(T) 1^- (2.5). 

We can then identify the empirical diffusion constant Ü(T) in Pick's first 

law 

J = -D(T) || 
ÖX (2.6) 

with 

D(T) = ia2r(T) (2.7). 

Thus, as is well known, the isothermal jump rate r(T) can be determined from 

measurements of the diffusion constant D(T) over a range of temperatures. 

B. Diffusion in a Temperature Gradient 

We consider now the efftct of imposing a temperature gradient across 

the crystal. The host lattice diffusion is assumed to be negligible and a 

well-defined tempei'ature distribution T(x) is therefore established which can 

be defined in terms of the mean square oscillations of the host lattice atoms 

around their equilibrium positions. In a given experimental situation, this 

temperature gradient could either be measured by appropriate probes or calcu- 

lated by Pourier's law. A local temperature T. s T(x.) and local temperature 
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gradient AT(xJ at plane 1 can be defined by 

AKxp  S ATj S a <|M a   T(x3)   - Kxp (2.8) 
x=x1 

We assume that the total jump rate F for the impurity atoms on plane 

1 in the presence of a temperature gradient AT is a function of T. and AT, such 

that when AT =0 the jump rate is that of an isothermal system at temperature 

T. . We expand F in a Taylor series in AT 

nT,AT3 = F(T) + A(T)AT + B(T)(AT)2 + ... (2.9) 

where F(T) is the total jump rate in an isothermal system and A(T) and B(T) 

are functions describing the effect of the temperature gradient on the jump 

rate F. However, the term proportional to AT must vanish, i.e. A(T)=0, 

because the total jump rate F(T,AT) must not change if the direction of the 

temperature gradient is reversed. Thus to first order in AT, the total jump 

rate F(T) at a local temperature T. and a local temperature gradient AT. is 

the same as that in an isothermal system at the temperature T.. The tempera- 

ture gradient, to first order, thus does not cause a change in the total 

jump rate but rather a bias in the jump direction -- i.e. a redistribution of 

the fraction of molecules going to the right or the left. For the isothermal 

case, P_(T,AT=0) = P. (T,AT=0) = «.; in a temperature gradient we write an ex- 

pansion in AT 

PR(T,AT3 = i + W(T)AT + ... (2.10) 

where W(T)AT gives the bias in the jump direction to first order in AT due to 

the effects of the temperature gradient on the host lattice. Analogously 

PL(T,AT) = j -  W(T)AT v ... (2.11), 

where we assume the temperature increases in the positive x direction. From 

. .„_; Süä 
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Eqs.   (2.1),   (2.10)  and  (2.11)  we now find for the flux across plane 2 

J(2)  =   [|+ KCrpAT^ r(T1)n(l)   -   [i - W(T3)AT3] r(T3)n(3)     (2.12). 

Note that the r(T) refer to the jump rates in an isothermal system (at tempera- 

tures T. and T_ respectively) and that, to first order, the effect of the 

temperature gradient shows up only in the W's. Wc take AT. = AT_ since the 

temperature gradient cannot change significantly over distances of the order 

of a lattice spacing. Also since W(T)AT is already first order in AT we can 

set W(TJAT = WCT^AT in Eq. (2.12) to obtain 

J(2) =   [i+ W^^ATJ r(T1)n(l)  -   [| - WCr^ATj] r(T3)n(3)    (2.13). 

Setting 

n(3)  = n(l) + |ja (2.14) 

r(T3)  = HTj) + ^IP-AT (2.15). 

substituting the relations (2.14) and (2.15) into Eq. (2.13) and keeping only 

terms proportional to the first power of AT or ^— , we obtain 

J(2) = - jarCTj) ^—- j—g—ATnd) + 2W(T1)ATr(T1)n(l) (2.16). 

The use of the relation n.  = ac.  and Eq.   (2.8)  finally yields the thermal 

diffusion equation 

J(2) = - 1 a2nT) || - i .2cnT) f [S^II . 4W(T)] (2.17) 

where IXT), f~ » c» ^ an^ w are all t0 be evaluated on plane 1. Using Eq. 

(2.7), which relates r(T) to the isothermal diffusion constant D(T), we can 

also write Eq. (2.17) in the form 

J(2) = -D(T) ^ - c |I [y§P- -  4W(T)| } (2.18) -1! 
The first term in Eq. (2.18) is the familiar isothermal result. The second 

term which is, proportional both to the temperature gradient and the local 
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concentration, reflects the effect of the temperature gradient. Our sub- 

sequent discussion is concerned with the analysis and interpretation of the 

thermal diffusion Eqs. (2.17) and (2.18). 

We can relate our jump bias parameter W to an experimental parameter 

0 , usually referred to as the "measured heat of transport." It is defined by 

the equation^ J 

-kT d&nc Ox \W (2.19) 

from which 0 is to be evaluated when the measured concentration gradient 

of the diffusing species has become independent of time. In our approach the 

concentration gradient becomes independent of time when there is no net flux. 

Thus we set J(2) =0 in Eq. (2.18) and rewrite the resulting equation as 

&i,nc   _  ,.^2/öÄnD tu,\   him 
-kT "ST" B kT \^T 4W 

) dx (2.20). 

Comparing Eqs. (2.19) and (2.20) we sec that our random walk theory relates 

W to C^ by 

„2 kT (^ - <") (2.21). 

It will be noted that the heat of transport, 0 , is given by the difference 

between two quantities. The first of these. dT can be evaluated from 

measurements on isothermal systems.    The second, the jump bias W(T), can be 

estimated, in principle, on the basis of an appropriate physical model.    We 

present such a model in Section IV.     It is clear from Eq.   (2.21)  that 0    can 

be positive or negative depending upon the relative magnitudes of    .„   and W, 

8 - 



III. PHYSICAL INTliUPKETATlON OF THE THERMAL DIFFUSION EQUATION (2.18) 

Equations (2.17) and (2.18) give the flux across a lattice plane as a 

function of the diffusion constant, the concentration gradient and the tempera- 

ture gradient. The only term in (2.18) which cannot be evaluated from 

isothermal measurements is W, the bias in jump direction due to the effect of 

the temperature gradient on the host lattice. An a priori evaluation of W is 

very difficult. It could be taken as a disposable parameter to be evaluated 

from experimental data. This approach would be similar to that taken by 

(9) Girifalcov  and our theory can easily be related to his. 

We shall now indicate how our model of interstitial thermal diffusion 

and the flux Lqs. (2.17) and (2.18) resulting from it can be used to interpret 

the available experimental data. It is clear that -u.-  or [ •u^.'l'* j is a posi- V dT ) 
live  quantity — the total jump rate F certainly increases as the temperature 

is increased, and experimental measurements confirm that the diffusion con- 

stant is an increasing function of the temperature. We would also expect, in 

general, that W is positive since a temperature gradient biases the jump 

direction towards the region of higher temperature (which for simplicity we 

shall call the hot side). This is due to the fact that the host lattice atoms 

have, on the average, larger vibration amplitude: on the hot side and thus 

the interstitial atom can jump more easily in this direction. Equation (2.20) 

shows that it is the interplay between W and -- that determines the steady 

state concentration gradient established by a temperature gradient. If the 

lattice bias effect is sufficiently large so that 4W > —jlE then |^ > 0 in the 
oi     ox 

steady state, i.e. there is a net motion of the impurity atoms towards the hot 

side starting from an initial homogenous distribution. When the lattice bias 

d£.nl)     tSc 
W is smül and 4W < .,,. then ^— < 0. In thin  case there is a net motion of 

o'      ox 

impurity atoms towards the cold side. This would tend to be the case for small 

- 9 - 

  



interstitial impurities.  In the limit of no lattice bias on the jump direction, 

i.e. for W=0, one lias ^r < 0 and the impurity atoms always move toward the cold 

side simply because the total jump rate, FVO is hiyhcr in the high temperature 

region than in the low temperature one. 

Allnatt and Rice1 ' implicitly assumed K=0 in their random walk treat- 

ment of interstitial diffusion and thus concluded that 0 is always positive 

and, from Eq. (2.21), equal to the activation energy for isothermal diffusion, 

kT £T-    .     In the general case where there is a lattice bias effect one must, 

however, consider both terms in tq. (2.21) to predict the sign and magnitude 

of the heat of transport. 

10 - 
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IV.  ESTIMATION OF THE LATTICE BIAS EFFECT 

A.  Isothermal Cell Model 

We assume that the lattice bias effect W is primarily determined by 

the relative size of the impurity atom as compared to the interstitial cavity , 

in the host lattice. The impurity atom causes a lattice strain and a jump 

from one interstitial site to anotijer can occur only when (a) the amplitude 

of vibration of the impurity atom is large and directed towards the adjacent 

interstitial site, and (b) the atoms immediately surrounding the impurity 

atom move apart to permit the impurity to fit between them, and there is at 

the same time a local expansion of the lattice at the adjacent interstitial 

site which permits the impurity to fit comfortably into its new site. This 

(41 
dynamical description of diffusion has been discussed extensively by Rice. 

In a temperature gradient it seems reasonable that condition (b) occurs more 

frequently on the hot side, where the lattice atoms will more often have 

sufficient energy to reach the "critical configuration." This then establishes 

a bias in the jump direction. 

We present below a method for the calculation of W which makes use of 

the ideas in Rice's dynamical theory of diffusion. This treatment also leads 

to a more precise description of the ideas behind the Wirtz modelv '  and sug- 

gests that it has some validity in the description of interstitial diffusion. 

f4) Following Rice, *  we assume that a particle moves irreversibly to 

a neighboring interstitial site whenever (a) fluctuations cause it to achieve 

a critical displacement along the line joining the old to the new site and (b) 

all host lattice particles which might interfere with the jump have moved out 

of the way. The jump rate T is given by the frequency with which conditions 

(a) and (b) occur simultaneously. Rice then makes the physically reasonable 

approximation that condition (a), which involves a very large amplitude 

- 11 



fluctuation, occurs  loss frequently than  (b).    The jump rate in a particular 

direction rX can then be written symbolically as 

IkH Pxr= vCa)p(b) (4.1) 

where v(a) is the frequency with which condition (a) occurs and p(b) is the 

probability that the neighboring host lattice atoms have the appropriate 

configuration for the passage of the interstitial impurity independent of the 

position of the jumping interstitial atom.  In our one dimensional model the 

total jump rate T is given by rR + F.. 

The computation of v(a) is very difficult since the motion of the 

interstitial impurity during a jump involves large fluctuations which certainly 

cannot be well described by the harmonic approximation customarily used. Further- 

more the critical amplitude of this fluctuation leading to diffusion and the 

appropriate "reaction coordinate" cannot be obtained from the dynamical theory 

itself. Fortunately, under certain approximations to be detailed below, the 

lattice bias effect in a thermal gradient depends only upon p(b) so that one 

does not have to calculate v(a). 

Rice has pointed out that in the isothermal case the probability p(b) 

could be estimated fairly accurately by a 'harmonic potential model since the 

vibrations of the host lattice atoms will be of relatively small amplitude 

about their equilibrium positions and since the equilibrium positions of the 

host lattice atoms are fixed in space. To extend the calculation of p(b) to a 

crystal in a thermal gradient we make two basic assumptions. First, we assume 

a cell model for the crystal and second, we assume that the magnitude of the 

vibrations of a host lattice atom in its cell is a function of the local cell 

temperature. In addition to these fundamental approximations we will make 

several additional non-essential approximations for computational and concep- 

tual simplicity. We will first discuss the calculation of p(b) for an 

isothermal system. 

- 12 - 
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Since most thermal diffusion experiments occur at high temperatures 

(500oC to 2000oC), it seems reasonable to consider the simple Einstein inde- 

pendent oscillator model to describe the host lattice vibrations.  J To 

apply this model to our calculation of p(b) we make use of a single occupancy 

cell model for the crystal (in the presence of the impurity atoms) where each 

atom moves within its cell in the potential fields of its neighbors which are 

taken to be fixed at their static equilibrium positions. This is simply the 

Lennard-Jones and Devonshire theory,  ' which though developed for liquids, 

(12) 
is really a theory for the solid state.  ' To simplify the problem, the 

nearest neighbors are now treated as uniformly ••smeared" over a spherical 

surface. This yields a spherically symmetric potential which can be expanded 

to second order about the potential minimum and in this form leads to the 

Einstein independent oscillator model. Let r. represent the displacement of 

molecule i from its equilibrium position at the center of its cell. The 

subscript 1 will refer to the interstitial atom. For this simple cell model 

the classical canonical n particle probability density P*" (j^JU-• •£  +i)» 
t^at 

is, the probability density for finding host lattice atom 2 in d^- at ;:_, atom 

3 in djr, at %-  etc., is the product of single probability densities 

P^Ct^-.-W = P(1)Cr2)P
(1)(r3)...P^(rn+1) (4.2) 

where 

pt'Vp 
•ßV.(r.) 

iv i' 

" -ßV(r.) 
Je   1 

(4.3) 

dr. 

an d ß = p=- . Here V.(r.) is the spherically symmetric (smeared) potential 

which atom i feels when displaced a distance r. from its equilibrium position. 

Within the harmonic lattice approximation, we expand V.(r.) about the 

minimum r.=0 to obtain 
i 

V.(r.) = V.(0) + i K.r? (4.4) 

- 13 - 
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We furthermore assume that the normalization integral in Eq. (4.3), which 

properly should extend only over the i  cell, can be extended to infinity 

since V.(r.) dies off so rapidly. With these approximations Eq. (4.3) 

becomes 
6Ki 2 ^ -m 

The probability density p  U^Xj-•'Xn+i) in Ecl- (4-2) can now be calculated 

for all those n host lattice atoms which can conceivably interfere with the 

jump of the interstitial atom in a particular direction. 

The physical basis of our calculation is that a jump can take place 

only when the host lattice atoms have moved in such a way that a passage has 

been opened for the interstitial atom. Note that by considering only those 

particular configurations of the host lattice atoms which permit a jump we 

are in effect improving the inaccurate treatment of the repulsive forces 

between the host lattice and interstitial atoms inherent in the harmonic 

lattice model. 

We assume for simplicity that the repulsive forces between the host and 

interstitial atoms can be approximated by hard core interactions. The host lattice 

configurations which permit a jump of the interstitial atoms can then be estimated 

from the geometry of the system. From the geometry one can determine a critical 

wh: 

(4) 

displacement £. of the i  lattice atoms along a particular direction }L  which 

is essential for the passage of the impurity between interstitial sites. 

For example, the nearest neighbor cell atoms to the impurity must move 

sufficiently far in a direction perpendicular to the "jump path" of the 

impurity that the radius of the resulting hole is equal to or larger than the 

hard sphere radius of the interstitial atoms. Motions of these host lattice 

atoms in other directions are probably less important and for simplicity, we 

assume that they do not effect the jump probability. With these assumptions, 

whose validity can admittedly be verified only £ postcrori, the probability 

- 14 - 



p(b)  can be written as the product of the probabilities n.(C-)  for all the n 

neighboring atoms that the i      host lattice atom has a displacement along X 
~i 

equal to or greater than the necessary critical displacement ?•• From Eq. 

(4.5) we find 

VV =icrfc 
. .2 V/2 

\2kT  / (4.6) 

where the integration over r. is from £. to infinity in the direction X. and 
o 11 "^l 

from minus infinity to infinity in the other normal directions. The comple- 

mentary error function used in Eq. (4.6) is defined by 

erfc z — I  e  dt (4.7). 

Kith these approximations, the jump rate rR of our one-dimensional model in 

the absence of a temperature gradient then becomes  [see Eq.   (4.1)] 

n+1 
I^Tj.AT-O) = v(a)pCb) = vCajp     77    ß-U^Tj) (4.8) 

where we have explicitly indicated the temperature dependence of the terms. 

B. Cell Model in a Temperature Gradient 

According to the local equilibrium approximation, Eq. (4.8) will 

still be valid in a thermal gradient where now each cell is characterized by 

its own temperature T.. In general to first order in AT we can write 

T. = T, ♦ a.AT 
ill 

where a. is a dimensionlcss quantity given by 

AX. 
1 

ai = -T-' 

(4.9) 

(4.10) 

AX. is the distance from plane 1 at temperature T. to cell i at temperature 

T. and a is the jump length defined earlier. Thus, in a temperature gradient, 

Eq. (4.8) becomes 

15 - 



n+1 
r^Tj.&T) = vCajp n     fiiUi,T1*aiAT) (4.11). 

The frequency v(a) in our local equilibrium model is a function only of the 

local temperature T. of the cell around the impurity-atom and not of the 

temperature gradient. It is now easy to relate the quantities of Eq. (4.11) 

to W(T), the parameter in our random walk model. By definition, to first 

order in AT, we have 

F (T AT) 
P^.AT) S i + WOVAT = r.O^ATj'r.Cl^AT) 

1 ^(Tj.AT)   l    f   ÖHn^^j.AT^O)  "1 

•= 2 r^r^AT^) = I Ll + —5TST5 ATJ (4-12) 

where we have used the fact [see Eq. (2.9)] that the total jump rate rR 
+ F. 

is the same, to first order in AT, as that for the isothermal system with 

AT=0. Substitution of Eq. (4.11) into (4.12) yields for WCrp 

. n+l a*nn.U.,T ) 
WCTp = y E   aT     \ (4-13). 

Note that v(a,T.), which would be difficult to calculate, drops out of the 

theory as discussed above. The bias in jump direction is thus due to the 

different probabilities p(b) with which the host lattice can achieve the 

critical configurations on either side of the impurity in a thermal gradient. 

Equation (4.13) allows us to relate the random walk parameter W to 

the local lattice geometry and the force constants K.. From Eq. (4.6) we 

obtain 

dlnfl 
1 " X" 1'    \   1 , 
-ST "   

-t £ e"1 at 

where 

^i= \wril (4.15). 
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Using the inequalities 
(13) 

1 

z+(z +2) 
< e' 

•a 

Jz 
e"1 dt ^ " / 2 ^ 4\l7"i 

(4.16), 

Eq. (4.14) becomes 

öfcnMC.JJ      yi      r        A1     .  2,1/2' 
§T 2T      L 1       J 

where 

l^n <2 
it 

(4.17) 

(4.18) 

2 12 Usually Y » n since y K.£;., the potential energy of the host lattice 

oscillator at its critical displacement, is much greater than kT., the average 

energy per degree of freedom of the host lattice oscillator at temperature T.. 
2 

To a first approximation we can therefore neglect the n/y term in Eq. (4.17) 

and write 

öan^U.Jj)  K.q (4.19). 

IT 2kT 

We then finally obtain from Eq. (4.13). for the bias W^) in the jump diree- 

tion 

(4f20). 
W(T1) = 2T7 ^  (^ )ai 

*   * — — 

The lattice bias around the impurity site 1 is thus simply related to the sum 

of the reduced potential energies of the n nearest neighbor independent 

oscillators (atoms) of the host lattice at their critical displacement 

weighted by the distance parameters o.. 

If we assume that the isothermal diffusion constant can be written 

as 

D(T) = Doe 

&E 
(4.21) 

where ÄE is the activation energy for diffusion, then the heat of transport, 

defined in Eq. (2.21), becomes, using Eqs. (4.20) and (4.21), 

17 
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n+1 .2., 

1=2 ■ 
(4.22) 

The heat of transport for interstitial thermal diffusion can thus, in principle, 

be calculated from Eq. (4.22) if the isothermal activation energy for diffusion 

is known. 

There are, however, some ambiguities in calculating the parameters. 

K., £. and a. for any given host lattice-impurity system. These ambiguities 

are compounded by the paucity of experimental data for Q for the type of 

interstitial diffusion we consider hero — reliable data seems to be available 

only for a few systems. J    This lack of data and the ambiguities inherent 

in the calculation of K., C- and a. makes it impossible to check at this time, 

by comparing calculated and measured heats of transport, whether heats of 

transport calculated from Eq. (4.22) are in reasonable agreement with experi- 

mental values. We have obtained order of magnitude agreement, as well as the 

f7al 
correct sign, for 0 for the thermal diffusion of C and H in a-(bcc)Fev "* by 

(14) calculating K. from compressibility data using the simple Einstein theory J 

and estimating ?., o. and n from the atomic radii of C, H and Fe and the 

known crystal structure of the body centered cubic Fe lattice. This agreement 

is encouraging and suggests that this theory should get a more careful test 

when additional data becomes available. Hopefully, this attempt at a theory 

will stimulate some relevant experimental work. 

- 18 

 -_ : ■ ■    ■  ■-^ 



■ 

V.  RELATION TO THE WIRTZ MODEL 

The spirit of this treatment and the resulting Oq. (4.22) are very 

reminiscent of the classic Wirtz model.*- }    The Wirtz model for interstitial 

diffusion can be interpreted to state that the jump rate to the right, rR, is . 

given by 

rR = vexp i^/Tj + E2/T2 + E3/T3^ (5.1) 

where v is a vibration frequency. The quantity E. is interpreted as that 

part of the total activation energy needed to move the impurity atom away 

from its initial site on plane 1, (see Fig. I), E2 that part needed to move apart 

the adjacent lattice atoms on lattice plane 2 and thus permitting the impurity 

atom to pass through, and E_ the part necessary to enlarge the adjacent 

interstitial site on plane 3 to accomodate the impurity. Thus a very specific 

distribution of the overall activation energy is considered and it is assumed 

that each component is supplied at the local temperature of the particular 

plane involved. Using Eq. (4.12) we find that the Wirtz model predicts a 

lattice bias W given by 

N(V=^ hE2+a3E3l      ' (5^ 

where a? i= 2" and as s *'    As exPected» Ei does not contribute to W. From 

Eqs. (2.21) and (4.21) the predicted heat of transport is then 

(^ = AE - ( 2a2E2 + 2a3E3 j (5.3). 

Wirtz takes the activation energy AE to be AE=E +E2+E3 which yields 

^m = ErE3 (5-4) 

for the heat of transport. Equation (5.4) predicts that the heat of transport 

is always less than the activation energy AE and indeed obeys the stronger 

inequality 

iQj ^ AE (5.5). 

- 19 - 



This latter result has been criticized since negative heats of transport, 

(7) larger in magnitude than Aü, have been observed experimentally, J 

Our random walk treatment, together with the liinstein model of 

independent oscillators, has lead to an equation for 0 [liq. (4.22)] which 

is very similar to Eq. (5.3) of the Wirtz model. The random walk model 

predicts that the heat of transport will be less than the activation energy 

AE, though (depending on the values of a., K. and £;. )negiltivc heats of trans- 

port larger in magnitude than AE may occur. This conclusion is in agreement 

with the experimental data of Allnatt and Chadwick  ^ and of Oriani. } 

The parameters £_ and E_ in the Wirtz model are related to the probabilities 

of achieving critical configurations in the host lattice. The cell model sug- 

gests that E_, the part of the activation energy related to enlarging the 

3 
adjacent interstitial site on plane 3, should involve an a, of •=■ rather than 1 

since host lattice atoms must move on the two planes adjacent to the new inter- 

stitial site. In this case Eq. (5.4) now reads 

% - Er2E3 (5-6) 

and the Wirtz model can predict a negative 0 with |o | > AE. The Wirtz 

model also predicts that the heat of transport is independent of temperature 

(to the degree that E. and E- are), though a temperature dependence is sometimes 

observed experimentally. Both the general random walk model, Eq. (2.21), and 

the cell model, Eq, (4.13), clearly permit a temperature dependent 0 . When 

the Einstein model approximations are valid and Eq. (4.22) holds, this pre- 

dicted temperature dependence will be small. 

One can thus interpret the Wirtz model of thermal diffusion as a local 

equilibrium generalization of Rice's isothermal diffusion model. The specific 

equations of the model, e.g. Eq. (5.1) for the jump rate and Eq. (5.4) for 

0 , are over-simplified versions of a more complicated cell model approach, but 

under certain circumstances the cell model theory gives expressions closely 

- 20 - 



resembling the Wirtz model. The physical picture behind the Wirtz model 

appears to be a plausible and suggestive description of thermal diffusion by 

an interstitial mechanism for those systems where the bias in jump direction 

is primarily due to an "excluded volume" effects. 
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FIGURE CAPTION 

F^urc 1:    Schematic representation of interstitial planes  1 and 3 separated 

by lattice plane 2 in the one dimensional model. 
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