CONVERSATIONAL PROGRAMMING -~ LCC

A REFERENCE MANUAL FOR A
LANGUAGE FOR
CONVERSATIONAL COMPUTING

J. MITCHELL
NEWCOMER
PERLIS
VAN ZOEREN
WIiLE

) /
-
e
P
et
P
lf)’(
/
/ rd
~
AN
4
{ -
13

Reproduced by

NATIONAL TECHNICAL
& INFORMATION SERVICE

Springfivid, Va. 22151

4

."

\ CONVERSATIONAL PROGRAMMING -~ LCC
“ A REFERENCE MANUAL FOR A »

LANGUAGE FOR

_ CONVERSATIONAL COMPUTING

- J. MITCHELL

| J. NEWCOMER .

A. PERLIS '
. ~ H. VAN ZOEREN
- : D. WILE
. N V
| P
- s
‘1, P 7 .) /,/""
e e
o Jf,r
" / "/
. o
N ’
(. - .
’ £ '
) R ' NATIONAL TECHNICAL ~
" . INFORMATION SERVICE
\ . , 1 Springfivld, Va

—

CONVERSATIONAL PROGRAMMING =-- LCC

A REFERENCE MANUAL FOR A
LANGUAGE FOR
CONVERSATIONAL COMPUTING

J. MITCHELL
J. NEWCOMER
A. PERLIS

H. VAN ZOEREN
D. WILE

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pa.
June 1971

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense
(F46620-70-C-0107) and is monitored by the Air Force
Office of Scientific Research, This-document_has-been

R g L=~ s e—ana—HaTe T3 (

Security Clagsifieation .

DOCUMENT CONTROL DATA-R&D

(Security clavsilication of t1ils, body of abstiact and Indexing annsiation must be entered when the overali repott s classlllod)

ORIGINATING ACTIVITY (Cotporate author) 28, REPORY SECURITY CLASSIFICATION

Department of Computer Science UNCLASSIFIED

Carnegie-Mcllon University £k GROUS
Pittsburgh, Pennsylvania 15213

REPORT TITLE

CONVERSATIONAL PROGRAMMING -- LCC A RF¥IRENCE MANUAL FOR A LANGUAGE FOR CONVERSATIONA!
COMPUTING ’ '

OESCRINTIVE NOTES (Type of report end (nclusive detes)
Scientific Interim

L
S AUTHORIS) (Firel name, middle inltiat, lext name) . j‘
L} i
J. Mitchell, J. Newcomer, A. Perlis, H. Van Zoeren, D. Wile.
¢. PEPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
Jupne 1971 . . 85 None
ia. CONTRACT OR GRANT NO. ° 98, ORIGINATOR'S REPORT NUMBER(S)
F44620-70~C-0107
5, PROJECT NO.
A0827-5
= 9b. OTHER REPORT NO(S) (Any other numbere thot may be assigned
thte report)

61101D

AFGSR-TR-71-2375

. OISTRIBUTION STATEMENT

Approved for public release;
distribution unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
TECH, OTHER) Air Force Office of Scientific Research
1400 Wilson Boulevard LAVEL W
Arlington, Virginia 22209

. aRSTRACT

" This document describes 1CC, a Language for Ccuversational Computing which rums

under TSS on an IBM 360/67. The statement syntax of LCC stems from that of Algol
60 and JOSS, but LCC has been designed to exploit as fully as possible the dynamic
nature of conversational computing. Thus LCC is a fully interpretive system

with extensive features for conversational control and with capabilities for

a) dynamic block structure, block expressions, and recursion, b) interspersed
editing and execution (use of program text as data and vice versa), ¢) dynamic
variaole attributes, and @) interlaced program execution and creation (program-
directed program preparation). The complete LCC syntax and a sample conversation
are included. .

D

D . 201473

Security Clussification

PURPQSE

THE PURPOSE OF THE LCC EFFORT WAS TO STUDY AND CREATE A
CONVERSATIONAL LANGUAGE. TIME SHARING IS NOW ACCEPTED AS AN
EXCELLENT WAY TO PROVIDE COMPUTER RESOURCES FOR PROBLEM
SOLVING., YET, WITH FEW EXCEPTIONS, THE LANGUAGES IN WHICH
PROGRAMS MUST BE COUCHED WERE DESIGNED FCR BATCH PROCESSING
ENVIRONMENTS. |IF ONE IS TO INPUT PROGRAMS FROM A TERMINAL
AND THE OUTPUT (OR SOME PART OF IT AT LEAST) IS TO RETURN TO
THE TERMINAL, IT IS NATURAL TO CORRECT (EDIT} PROGRAMS FROM
THE TERMINAL,

WHAT THEN ARE THE CONSEQUENCES OF PROGRAM CREATION AT
THE TERMINAL? CERTAINLY INTERSPERSING EDITING AND EXECUTION
SHOULD BE ENCOURAGED. |IF THE PROBLEMS TO BE PROGRAMMED ARE
¢SMALL® =-- SO RESPONSE WILL BE GOOD == THEN THE PROGRAMS
SHOULD BE RUN INTERPRETIVELY, ESPECIALLY IF FREQUENT
MODIFICATION IS TO BE EXPECTED, THUS THE COMBINATION OF
SMALL PROGRAMS AND FREQUENT MODIFICATICN LEADS TO AN
INTERPRETIVE PROCESSOR.

WHAT ARE THE CONSEQUENCES OF [INTERPRETATION? THE
REJECTION OF THE COMPILER APPROACH SURELY MUST HAVE SOME
IMPORTANT EFFECTS ON THE LANGUAGE BEING PROCESSED. ONE
EFFECT TO BE DESIRED IS AN INCREASED ABILITY TO INTERLACE
EXECUTION AND CREATION., ALGORITHMS DO NOT SPRING INTACT
FROM ThE MIND BUT EVOLVE == BOTH OVER THE SHORT TERM AND THE
LONG TERM. MUCH OF THE DEVELOPMENT OF A PROGRAM SPRINGS
FROM EXPERIENCE =- THE ACTUAL BEHAVIOR OF THE PROGRAM UNDER
EXECUTION.,

ONE IS STRUCK WITH THE POSSIBILITY OF EXECUTING
INCOMPLETE ALGORITHMS AND LETTING THE FLOW OF COMPUTATION ON
DATA SAMPLES AID IN THE SEQUENCING OF PROGRAM PREPARATION,
IT IS TRUE THAT PROGRAMS ARE DECOMPOSED INTO PARTS OR
MODULES FOR A VARIETY OF REASONS: LOGICAL DECOMPOSITION OF
A TASK INTO ITS SEPARATE PARTS; DECOMPOSITION IMPOSED BY THE
LIMITS OF HUMAN ATTENTION (NOT EVERYTHING CAN BE PROGRAMMED
AT ONCE):; DECOMPOSITION IMPOSED BY THE UNEVEN UNDERSTANDING
OF THE MECHANICS OF MODULES EVEN WHEN THEIR LOGICAL FUNCTION
IS UNDERSTOOD (PROGRAMMERS TEND TO DO FIRST WHAT THEY KNOW
HOW TO DO BEST). WHAT IS MORE NATURAL THAN HAVING THE
COMPUTER, THROUGH THE PROCESSOR IN WHOSE LANGUAGE ONE IS
WRITING, ASSIST IN THE SCHEDULING OF THE TASKS?

IT 1S NOT ONLY THE PRESENCE OF THE PROGRAMMIR IMN THE
LOOP BUT THE WHOLE STYLE OF PROGRAM PREPARATION THAT CAUSES
THIS KIND OF PROGRAMMING TO BE CALLED CONVERSATIONAL. ONE
MUST NOT CLAIM TOO MUCH, THE PROCESSOR IS A WEAK ALLY IN
THE PROCESS OF CREATION AND THE BURDEN OF PROGRAMMING IS
STILL IN THE PROGRAMMER®S HANDS. LET US SAY THAT A MORE
WILLING ASSISTANT IS BEING FASHIONED THAN WAS EVER PRESENT
IN THE OLD STYLE COMPILER=DOMINATED ENVIRONMENT.

ABPROAGH

THE APPROACH USED FOR THE DESIGN AND CONSTRUCTION OF
THE LANGUAGE FOR CONVERSATIONAL GOMPUTING WAS QUITE
SIMPLE. THE COMPUTER ON WHICH LCC WAS TO BE FASHIONED =--
THE |BM 350/67 == HAD AN AMBITIOUS TIME SHARING SYSTEM UNDER
DEVELOPMENT ==TSS=- AND IT SEEMED REASONABLE TO UTILIZE THAT
SYSTEM AS THE UNDERLYING TIME SHARING SYSTEM SUPPORTING OUR
CONVERSATIONAL LANGUAGE AND ITS SYSTEM. THE ONLY AVAILABLE
TOOL FOR CONSTRUCTING THE LCC SYSTEM WAS THE $ ASSEMBLER
AND IT WAS IN THAT LANGUAGE THAT THE SYSTEM WAS BUILT. IT
WAS BELIEVED =-- AND STILL IS == THAT THE USE OF ANY
PROGRAMMING LANGUAGE LEADS TO THE DEVELOPMENT OF A STYLE OF
PROGRAMMING AND THAT EACH LANGUAGE HAS A *CONVERSATIONAL
ANALOGUE®., THE DESIGNERS OF LGC HAD THE GREATEST AFFINITY
FOR THE SYNTAX AND STYLE OF ALGOL 60 AND SO IT WAS CHOSEN AS
THE BASE FROM WHICH TO DEVELOP A~ CONVERSATIONAL ANALOGUE.
MANY OF THE CONSTRUCTIONS WERE BORROWED FROM JOSS, THOUGH
LCC ATTAINS A POWER FAR BEYOND THAT OF J0SS. IN RETROSPECT
IT PROBABLY WOULD HAVE BEEN BETTER TO HAVE CHOSEN 1VERSON’S
APL AS THE BASE SINCE THE ARRAY PROCESSING OF APL 1S SO MUCH
MORE NATURAL THAN THE ALGOL SCALAR PROCESSING.

A GROUP EFFORT
THIS REPORT IS THE END PRODUCT OF TWO YEARS WORK BY A

gg?chéT CARNEG!I E-MELLON UNIVERSITY®S DEPARTMENT OF COMPUTER
NCE.

THE LANGUAGE AND SYSTEM DESIGN EFFORT WAS DONE BY E.
MCCREIGHT, J. MITCHELL, A. PERLIS, H. VAN ZOEREN AND D.
WILE. H. VAN ZOEREN WAS LARGELY RESPONSIBLE FOR THE
DETAILED SYNTAX SPECIFICATION.

THE SYSTEM ORGANIZATION AND PROGRAMMING EFFORT WAS DONE
MAINLY BY J. MITCHELL, J. NEWCOMER, AND D. WILE. H. WACTLAR
WAS RESPONSIBLE FOR FINAL EDITING AND CORRECTION OF ERRORS
WHEN THE SYSTEM WAS FIRST BEING USED. J. NEWCOMER HAS
PREPARED A DOSSIER OF SYSTEM ROUTINES AND INTERNAL DATA
STRUCTURES NECESSARY FOR ANY REAL UNDERSTANDING OF THE
INTERNAL MECHANICS OF THE SYSTEM.

THE USER®'S MANUALS (ISSUED UNDER SEPARATE COVER) WERE
WRITTEN BY A. LANKFORD (VOLUME | AND VOLUME 11) AND W.
MULLINS (VOLUME 1). THE EXAMPLES AT THE END OF VOLUME 11
WERE WRITTEN BY: Jo. MITCHELL == ¢TREE DISPLAY PROGRAM?®;
DIANA BUTRICK -- ¢SIMULA/LCC®; A. LANKFORD =-- ¢ALGEBRAIC
EQUATION SOLVER®; D. WILE == ¢AN |[INFORMATION RETRIEVAL
SYSTEM®, THESE PROGRAMS WERE ALL EDITED BY A. LANKFORD TO
IMPROVE THEIR READABILITY.

THE LANGUAGE DEFINITION DOCUMENT WHICH FOLLOWS WAS
PREPARED BY H. VAN ZOEREN.

IABLE QF CONIENIS

Introduction

LCC Statements

ALTER
APRAY
BEGIN +e¢ END
CASE
COMBINE
CoPY
DELETE
DISPLAY
EXIT

FOR

GO

GOTO

IF

LINE

LOAD

NEW
NUMBER
QFF

PART
PAUSE
PRINT
RECOVER
RETURN
SAVE
STEPS
TYPE

UsSE

WRITE

?

23

€ eoe 1}
.

a
Assignments
pProcedure calls

i

LCC

LCC

Metavariables

expression
extractor
for-clause
group
identifier
logic-literal
number-literal
operand
pointer
primary
procedure
statement
save-obiject
string-literal
structure
subscript-iist
type-object
variable

Operands

BEGIN ... END
CASE

STEPS

£

L3N I)

g v) Y

appendices

A. Explanation of Syntax Notation
B. LCC Syntax

C. Logging On at a 2741 Terminal
D. Typing LCC Text at a 2741

E. Errotr Messages

F. LCC syntax (SX) Error Descriptions

G. Automatic Reload File
H. Standard Functioms

I. Built-in Functions and Procedures

J. Exaaple LCC Conversation

iv

30

30
34
35
35
36

38
39
39
4N
40
t1
42

44
44
u5
45

46

114
u6
46
47
48
49
49
9

51

51
53
59
61
62
63
6u
65
66
70

i ‘nf"mmm"

Lt

Hiidl

UHITHET

E
%

" Wm:mwmmmmmmnmmmmmmm]ummmmum“mmmw;ummmﬂmmmﬁmmnmnmnwm«mamm e TR R T LT e i
E—————s_LLL B i il o IS i b diliiiiaii f ik

-=-=- Introduction ----

LCC 1is a language for conversational computing which operates
within the TSS monitor system on the IBM 360/67 computer at
Carnegie-Mellon University. Tn its fundameantal design, LCC began
as an amalgamation of (1) the bhasic elements and statements of the
alqgorithmic 1language ALGOL 60 and (2) the input-output, control,
editing, and filing statements of the conversational language
JOSS, but extensive modifications have been made to exploit as
fully as possible the dynaamic nature of conversational computing.
The resulting language, with its underlying processing systenm,
gives you, the LCC wuser, a very high degree of power and
flexibility,

The working sentences of the LCC languaqge are statements, a
statement (abbreviated s) being a command which causes LCC to
perform an action (e.g., a modification of data, an input/output
operation, a modification of control). You may type an arbitrary
number of statem2nts, separated from one another by semicolons
(:), on a single line. Such a statement list is called a step, and
LCC will execute the statements within it from left to right.

Steps in LCC may be used in two different ways, either delayed
or immediate. Delayed steps are translated and saved by LCC, and
they may later be recalled and executed under programmer control.
A delayed step is distinguished by the presence of a preceding
decimal step number vwhich indicates its relationship to other
steps. A step number must lie between 0001.0001 and 9999.9999, and
it is separated from the step text by either a colon (:) or a
comma (,). Both its integer portion, from which leading zeros may
be omitted, and its fractional portion, from which trailing zeros
may be omitted, must lie between 0001 and 9999, A step number
serv2as both as the editing desiqnator for a step and as a control
designator for the first statement in the step. In addition to the
step number, any statement in a delayed step may have one or more
labels associated with it as control designators, a label bleinqg an
identifier which immediately precedes the statement and is
separated from it by a colon (:). If a step has multiple step
numbers, all must precede its first statement or label, and only
the rightmost number will be used; if & statement has multiple
labels, each will be significant. Some examples of delayed steps
are:

3.7, GO TO 3.5;
31125.0042: A « B+1; LB06: C « D#F; LBL: F <« G/3
27.85: 27.830, L: M: TYPF Y,Z; RETURN T
Delaved steps will be ordered according to their numbers, and

they may be 1inserted, modified, or deleted freely while
conversing. They may he typed in any order, and a newly typed step

il

\"f“

AT Rar

Introduction

will replace any previously saved step with the same number.
execution purposes, steps are

For
being the orderel set

grouped into parts, with a part
of all steps whose nushers have the sanme
integer portion. When executed, a part will be treated as an ALGOL
block, 1i.e., variables which are declared and labels which are
used in it will have local mecanings which are valid only when it
is active (i.e., it is being executed). All such local meanings

vill he erased when cexecution of the part is completed.

An immediate step, which is distinquished by the absence of a
sten number, is translated and executed when typed and is then
discarded. Immediate steps are used to perform one-time or “desk
calculator” calculations, to control the execution of the delayed

steps of a program, and to perform various editing and debhugging

operations. An explicit transfer o€ control (GOTO) to an immediate
staitement is not allowed,

and consequently immediate statements
cannot be labelled.

Svntactically, any LCC may be used in either an
immediate or a delayed step. When executed, however, each
statesent will be checked for validity in the currently existing
context, and at

*hat time, some statemants will be treated as
no-ops (e.3., an immediate “PAUSR’, a delaved ‘G0’), and some will

leaaz to errors (2.9., a global *G0T0’, a global °‘RETURN’).

An LCC statement may be empty,

non-hlank characters and it performs no action. The various
non-empty LCC statements are listed alphabetically by their
initial keywords or metavariables and described below. Following
the statement descriptions are descriptions of the subsidiary
motavariables (expressi~ns, literal constants, etc.) used in the
language. The abbreviated syntax notation which has been usedl is
described in

Appandix A, and the complete syntax for LCC is
summarized in Appendiix B,

statement

in which case it contains no

1L Iartaibiassinne

R = s

statement

-==- LCC Statements -—---

$3= (one of the following -- pp. 3-29)

ALTER qroup | ¢ | e_1 - e_2 , e 3 = e_U, 0. , e_(2%N-1) > a_(24Y)

The expressions e_I should evaluate to character strings. LCC
will search the text of the group for substrings which match the
given pattern strings e_1, 2_3, ... e €_(2#N-1), =Each substring

which matches an e_(2+J-1) will be replaced by the corresponding
e_(2+3), and the group will be retranslated with its altered text,

LCC will perform the search as in the ftollowing pse ‘do-LCC
code: ’

POR (each step in the group (ordered on step numbers)) DO
{ FOR I FPROM 1 BY 2 TO 2¢N-1 DO
{ START_OF_SEARCH_POINTER -~ 1;
AGAIN: I¥ (search finds substring e_I) THEN
{ (replace substring vy e_(I+1));
START _OF_SEARCH_POINTER « (position of
1st char after replaced substring);
GO TO AGATIN } }
IF (any replacements were made) THEN (retranslate) };

Por the search LCC will treat both text and patiern strings as
sequences of either contiguous letters and/or digits or individual
non-blank, non-alphanumeric characters, with blanks being ignored
except insofar as they separate alphanumeric sequences from one
another. As an example, the step

4.8: X<IF PQR THEN (TENDP+1) ELSE *15.64 FF’;GO TO 4.41;
will be found to contain the substrings (amung others)

‘Xe?, “(TPMP’, ‘*+’, V157, ‘FF’, *30 TO?!,
‘41 ?, and ‘.’ (twice)

but it will not contain the substrings
°87, ‘Q’, “.6’, “GOTO’, or ‘TO4~’
Examples:
ALTER STEP 1.6 : ‘X' < ‘AX’ , %Y’ - ‘BY’

ALTER PARTS, *P ¢ Q’ - R
ALTER 4,77 , “a’ = ‘7

LCC Statements

ARPAY F b ddent 4 .,. [Fe<z:ze><4]3I0} 1 4.,.

LCC will assign to each ident in a list the multidimensional
array structure specified by the bounds list which immediately
follows it. Bach item in a bhounds list gives the limits on one
subscript of an array structure. The nuaber of items is thus the
number of dimensions of the array. An item in a bounds list can bhe
eithear a p2ir of expressions specifying the lover and upper limits
on the subscript for that dimension or a single expression

specifying the upper limit on that subscript (the lower limit will
be implicitly 1),

Storage wvill not be allocated for an array until the avrray is

us»d, and even then it will only be allocated for a given row when
an element from that rov is first accessed.

Examples:
ARRAY LA[1:N, -3:8%K]
ARRAY JIM, JOR[10,15,20), DAVE(O:8)([4][-6:-1]

BEGIN F s 4 .;. BEND

The keywords ‘*REGIN’ and ‘*END’ delimit a “block”, whose list
of architrary 1LCC statements will be treated as if it were in a
pact, i.e., there may be local variables valid only within it. LCC
vill perform a block entry, after wvhich it will execute the
statements from the list in sequence. This “block statement® will
normally be terminated by ®“running off its end”. A RETURN
stitement within it will first terminate the context of the block

statoment and then returu from the context in which the bliock was
erbedded,

Pxamples:
BESIN STEP 4.8; PART 251; S « T END
BEGTN NEW A,B; PART 6; PMRT 8 END

CASE e OF [s_1 ; S_2 3 eee 3 S_N}

The expression e wi'l be evaluated and rounded to an integer
J. If 1 <J €N, LCC will give control to statement s_J, fronm
vhich control will normally pass to the successor of the CASE
stacement, It is an error if J is out of the range 1 to \.

i

il

50t s

e T

LCC Statements 5

Examples:
CASE J+1 OF (X - F(A,B) ¢+ C ;
X « SQRT{(Y) + D ;
GO TO 6.2 ;

X « SIN(Yt2) ;
GO TO 6.2 ;
X« 0}

CAS®” e OFP (s_1; 5.2 ; «ee S_N ; OTHERWISE s_(N+1) 1}

The expression e will be evaluated and rounded to an integer
J. If 1 € J < N, action is as in the simple CASE statement without
an OTHFERWISE. If J is out of the range 1 to N, control will be
given to statement s_{(N+1).

Examples:
CASE I OF { X«5; OTHERWISE X « 45 }

COMBINE < STEP. > pnum_1 TO nun_2 AS e

A single string will be constructed by concatenating, in step
number order, the text portions of all steps with numbers bhetween
num_1 and num_2 inclusive. During this concatenation process, a
semizolon (;) character wvwill be appended to any step which does
not already terminate with one. LCC will then retranslate the new
string as step e. Steps num_1 to num_2 will nct be aeleted and
will be unaffected by the COMBINF statenment (unless num_1 € e <

num_2). As 1in a group, it is an error if num_1 > num_2 (unless
num_2 < 1).

Examples:
COMBINE STEPS 6.7 TO 6.83 AS 6.7

COPY qgroup AS e

If e evaluates to an :integer, the set of steps from the
specified group will be copied and retranslated as a new group,
with the integer portion of each step number being replaced by the
value of e (which must not he zero). If e does not evaluate to an
integer, this statenent is equivalent to the stateaxent 1

COPY qroup AS e BY .01

6 LCC Statements

All steps in the original qroup must bhe in the same part. The
source text for the group will not be modified by the COPY, and
the oriqginal group will not be deleted.

Exanples:
COPY PART 3 AS 43
COPY STEP 5.61 AS 12,074

COPY group AS e_1 RY e_2

LCC will copy, renumber, and retranslate the ordered set of
steps from the specified aroup. The renumbering will start with
e_1 (or, if e_1 iz an integer, with (e_1 + e_2)) and successive
step numbers wvill be incremented by e_2 (vhose value must lie
between .0001 and .9999). The original group of steps will not be
deleted hy a COPY statement (though it may be changed if some of
the new steps fall within the group). The source text for a copied
step will not be modifinrd during the COPY, and it is your
responsibility to make sure that the renumbered steps do not
contain spurious references to steps in the original group. To
insure this, vyou should use labels rather than step numbers to
refer from one statement in the qroup to anothe:.

Exanples:
COPY STEPS 14,371 TO 14.4305 AS 814.001 BY .002

DELETE FILE e

The expression € must evaluate to a string, vhich will be used
as a file name. LCC vwill delete that file from your file catalog,
and it will take back any storage which that file used.

Fxamples:
DELETE FILE ‘AB‘

DELETE ALL

This statement is effectively equivalent to (but slightly
Slower than) the step

“XIT ALL; DPLFTE STEPS; DELETE VALUFS

Your working storage will be completely erased, and LCC will be
re-initialized, just as if you had loggyed off and then logged back

on.

o

yn

AL s

LCC Statements 7

DELETE | PARTS |
| STFPS |

L.CC will erase from working storage both the source and ohiect
codes for all steps (only values will remain).

DELETE VALUES

LcC will erase from vorking storage the current
incarnation-value for each of your jdentifiers, giving every
jdentifier in your program the meaning “undefined”.

DELETE < STEPS > num_1 TO num_2

tcCc will erase from workiny storage all steps whose nunbers
1ie betveen num_1 and num_2 inclusive. As in a group, it is an
error if num_1 > num_2 (unless nun_2 < 1.

Fxamples:
DELRTE 151.4z TO 151.536

DELET® < STEP > num

2quivalent to
PELETS STEPS num TO num

Rxamples:
DELETE STEP 4.231

DELETE PARTS num_1 TO nan_2

Equivalent to

DELETR STEPS (num_1 ¢ .0007) TO (num_2 + .9999)

b skl L ik

DELFETE

LCC Statements

DELETE PART nunm

Equivalent to

DELETE PARTS num TO num

| < STEPS > | + nue_1 < TO num_2 > + ,,.
| PARTS |

A DFLETE statement may include a group list. LCC will then
delete all steps in each of the specified groups.

Frxamples:
DELETE PARTS 4, 7 TO 10, 153, 48
D2LETE 3.71, 3.874, A4 TO (A4 + P - .5)

DRLETFE + varid 4 .,.

1.CC will replace ‘he current incarnation-value for each varid
irn. the 1list by “undefined”, Tf a varid referred to a string or
array (or any other ites for which storage wvas allocated), the
internal links to that storage will be cut, but the storage will
not be taken back until the block within which it was allocated

has been terminated.

NSote that an array element can be deleted. This feature will
be necessary before you can change the meaning of an array element
vhich is a procedure, a reference pointer, ur anmn array name.

Examples:
DELETE A,R
DELETE CIlI,J,4]

DISPLAY PILE < CATALOG >

LCC will type out a 1list of the nases of all of your LCC
files, The names will be the full TSS names of your files, which
are gqualifiea py your user nurher and the internal name LCCFILE.
Thus the file “SAVAL’ of user ¥YZ12Z13 vill have the full name

XYZ12Z13. LCCFILE.SAVAL

T

TIHINAHTH

Lnuliut

LCC Statements 9 J

DISPLAY RETURN < STEPS >

LCC will type out a list of the currently active steps, thus
qiving a map of the present control status. Step desiacnators will -
be typed one per line, and the list will he ordered so that the
innermost (most recent) step will be typed tirst. Por steps inside
parts, LCC will type the step number; for immediate steps LCC will
type the characters ‘##3”; for a procedure call LCC will type the
procelure name, Thus LCC might type the lines

31
17.3
FUNCT
sk

u.3
.0

in response to your “DISPLAY RETUBN’ statenment.

DYSPLAY ALL
Equivalent to

DISPLAY PARTS; DISPLAY VALUES

DISPLAY | PAPTS |
| STTpPS |

Equivalent to

DISPLAY STEPS 1.0C01 TO 9999.9999

DISPLAY VALU®S

L.CC will type, in alphabetical order, the names and current
meanings of all of your defined identifiers (i.e., the meanings
atop each of your variable stacks). Appropriate formats will be
used for values (numeric, 1logic, and string) and references
(lahel, array. - Awre, and pointer). Fach displayed line will
also 1incln»’ levei number which indicates the level cf
the block _.n .un. identifier wvas declared, 1i.e., the
outecrmost olock level 1. "~ current meaning will hold. Ffor
qdlobal variables, the levei num... . 2zero will be suppressed. An
example of the displayed output is:

e e T s = o

~ Saaaaes s & 4 = _

10 LCC Statenments :

2 ARR A ARRAY [1:5,3:10,-2:6) i
3 LAR IN 3.6 P
1 LV (000000FF |
] NAM SABC

NV -1.234567,15

PROC PROC EDURF
2 SV \ST*

aadd

DISPLAY < STEPS > num_1 TO num_2

LI
L. .

LCC will type in order the source images for all steps vhose
numbers are hetween num_i and num_2 inclusive. As in a group, it
js an ertor if nua_1 > num_2 (unless num_2 < . Each step vwill
beqin on a new line and will include both its number aand its text. i J
Except for possible ainor differences in the foraat of the step
number, a Jdisplayed step will look exactly as it did wvhen you
typed it in.

£xanples:
DISPLAY 415.,3 TO 415.7

Hiki bRl

DYSPLAY < STEP > nunm

Fquivalent to

DISPLAY STEPS num TO num

DTSPLAY PARTS num_1 TO num_?

Equivalent to
NISPLAY STEPS (num_1 + .0001) TO (num_2 ¢ «9999)

Examples:

TORTTVTIITIRITINS

DISPLAY PARTS 4 TO 6

NISPLAY PART num

oL s s

Equivalent to

DISPLAY PARTS nuan TO num

R T S A AT

LCC Statements AR

DISPLAY | < STEPS > { F nua_1 < TO nun_2 > + .,.

| PARTS '

A DISPLAY statement may include a group list. LCC will then
display all the specified steps or parts, ordering the groups for
typing from left to right in the list.

Fxamples:
DISPLAY 3.4 TO 3.43, 3.8 TO 4.2, 4.513, 4.902

DISPLAY + varid 4 .,.

LCC will type out the current aeaning for each varid in the
list. Fach lisplayed “meaning” will take up a single line, and it
vill include exactly the same information that would be typed for
that variable by a *DISPLAY VALNES’ stateaent, If no meaning has
heen assigned to a listed varid, the varid will be displayed as
*undefined”,

Txamples:
DISPLAY A, C, P, XI[1,'), XI[4,7,3]

°XIT

An FXIT statement is used to delete the context of the part or
step agaroup vwhich is currently active and give you control in the
context of the part or step groun which called it. A more precise
description of an EXIT is as follovs:

EXIT recognizes only contexts involving explicitly numbhered
steps and those involving the user (it regards you as the numhered
step 0.0). An EXIT statement xill delete all execution contexts
down to and including that for che first non-7ero numbered step on
the context stack. It will then delete all contexts down to but
not including the first numbered step. If that is a step 0.0, it
gives you control; 1if not it adds a nev step 0.0 context, wvhich
also agives you control. Thus an EXIT deletes all execution
contexts down to, but not including, the first nunbered step below
the first non-zero numbered step, and it then gives you control.

12

LCC Statenents

ZXTT ALL

LCC will perform successive EXITs until the global state is
reached (i.e., there are no remaining group contexts) and it will
then give control to you.

Fxamples:
IF ERROR6 THEN EXIT ALL

EXIT < TO > € PART > e

If part e is not currently active, LCC will type an error
messaqe and give control back to you. Otherwise LCC will perforna
an EXIT. Tf the resulting context is that of part e, control will
be given to you. 7¥f not, LCC will perform another EXIT, etc.

Examples:
EXIT TO PART 13
EXIT 703

<| FOR ident <|PROM| e_1 >|> <|RY e_2 < TO e_3 >|
' = i { 1T0 e_3 < BY e_2 >|
| FROM e_1 |

> < WHILE e_4 » DO s

The statement s will be executed repeatedly as long as the
expression e_4 is true and as long as the value of the controlled
ident is wvithin the specified range. #ith each repetition, the
value of the exolicit (ident) or implicit control variable will be
molified as specified by the controlling for-clause. The phrase
‘FROM e_1’ may be omitted if e_1 = 1, ‘BY e_2’ may be omitted if
e_2 =1, *‘T0 e_3' may be omitted if the loop is to be terninated
in sore manner other thanm that of the controlledl variable reaching
a final value (i.e., if e_3 is infinite), and ‘POR ident’ mav be
opritted if ident does not appear in e_4 or in s (in which case an
implicit controlled variable will be used).

Operation of a corplete iteration statement is equivalent to
that of the LCC hlock

RABEGIN NEW RYE = e_2, TOE « e_3; ident « e_1;
L: TP IF BYF > 0 THEN ident € TOE RLSP ident > TOE
THEN IF e_4 THEN [s; ident < ident ¢+ BYE;
GO TO L} END

vhere the identifisrs L, BYE, and TOF do not occur witkin any of
the e_T or in s. Note that, unlike ALGOL 60, the increment and
terminal expressions e_2 and e_3 ate evaluated only once, when

- -

PRI

LCC Sfatements

execution of the iteration statement begins, and subsequent
—changes to any variables used in e_2 and e_3 will not affect the
control of the iteration.

Examples:
FOR I FROM 1 BY G TQ H+1 WHILE N # 3 DO ST
WHILE B < C DO PART 2
TO T DO PART 345
DO PART 6543
= FOR J « X TO P BY -2 DO F(J,K)

GO

LCC will return control ¢to the context from which you werco
called, resuming execution from the point of the call. A GO has
meaning only after you have been called via a statement (PAUSE) or
action (pressing the ATTN or BPREAK key) which expects you to
eventually return control to the caller.

A T T A TS s

] GO KT > | e
| GoTo]

dilini

If e is a label, it must be that of a statement in a currently
active aqaroup. LCC will then EXIT ¢to that group and transfer
executior control to the labelled statement. If e is not a label,
it must evaluate to a step number in a currently active group. If
thn step number 1is in the range of the group currently being
executed, LCC will transfer control to the first statement in the
designated step. If the nusher is not in ranqe, LCC will EXIT froer
the current group context and repeat the abcve process.

Examples:
G0 TO LABL3
GOTO 6.1
GO 1243.0001 + J

IF e THEN s

If the expression e evaluates as true, execution control is
transferred to s (from vhich control will normally pass to the
successor of the IP statement). If e evaluates as false, s is
skipped. If e has a 1logic or arithmetic value, it will be
considered as true if it is non-zero or as false if it is zero;
strings will be converted to their equivalent arithmetic values.

P e i

14

LCC Statements

Examples:
IF X € 4 THEN PAUSE

IF e THEN s_1 EBLSE s_2
If ¢ evaluates as true, execution control will be transferred
to s_1, from which control will norpally pass around s_2 to the
successor of the TP statement. If e evaluates as false, execution
control will pass around s_1 to s_2, €froz which control wvill pass
to the successor of the IF statement.
Examples:
IF ~P v Q THEN Z « S ELSE { T « T + 1; TYPET }
1.INE € & >

LCC will upspace your paper {(at your terminal) by one line or,
if an expression e is supplied, by e lines.

Exampless
LINE
LINE 4-J

LOAD < FILE > e

LCC will open file e and, if the file was created by one or
more SAVE statements, load into working storage whatever was SAVEd
there, This is done hy treating the information in the file as a
set of lines of input text, each of which will be read and

translated just as if it had heen typed in by you.

LCC treats all files alixe, regardless of vhether they were
created by SAVE or «WRITE statements, Thus a file may contain
immeliate statements vhich were vritten (as strings) by a WRITE
statenment, These will be both translated and executed during a
LOAD of that file, Any immediate statement may be written and

LOADed, including another LOAD statement.

Fxamples:
LOAD FILE “0013¢

ki

A GHR BT BRI

AT

YTRTTI A R O

NEW

NEW

LCC Statements 15
ARRAY + + ident 4 .,. (Fe <z e>4 .| 1L} 1 4 .,.
|

This statement acts Jjust like an ARRAY statement except LCC
will construct a new incarnation-value for each ident bu«fore
assigning it its specified array structure.

Examples:
NEW ARRAY A3, A4I10, 20, 5:301}, ASIS)

+~ ident 4 .,.

This declaration statement causes a nevw incarnation-value (1IV)
with the meaning “undefined” to be constructed at the current
nesting level for each ident in the list, In the usual case that
the old IV is on a lover level, this new IV will be linked to the
old one, which it will temporarily supersede. In case the old TV
is on the current level (i.e , the ident is being redeclared in
this block), it will be replaced by the new one.

A declaration holds only within the scope .f the block in
which it is executed, when that block is terminated, all IVs
declared in it will bhe erased, and the meanings which the
corresponding idents had before their declaratiors were executed

will be restored.

Examples:
NEW A,B
NEH + ident « | e] 4 <4
.| pointer |
| procedure |
| structure |

This statement acts much 1like a simple NEW statement, but
instead of giving each newly constructed IV an undefined nmeaning,
LCC will assign it a specified initial “value”. Declaraticas and
assignnents will be made from left to right in the NEW list, but a
“value” will be constructed before the ident to which it is to be
assigned is declared. Thus, for example, in the statement

NEW A « B + A

the o0l1ld value of the variabie A vill be added to 3 to oktain the
initial valuc of the new A,

16 LCC Statements
Fxamples:
NEW S & %SS§’, T « U - V, W « ~X
NEW F « 9(A,B) PART 9 (NEW P <« VQ+RV, S <« 6}v
NEW A < ARRAY(3,0:5), B, C « 26, D « ARRAY{X:Y]

NUMBER AS e_7 < BY e_2 >

LCC will automatically type out for you at the beginning of
each input 1line a step number followed by a colon (:). Before
translation, the supplied number will be appended as a prefix to
vhatever step text you type. The numbering sequence will normally
start at e_1, vith successive step numbers being increamented by
e_2, but if any numbers in the sequence {(including e_1) turn out
to be integers, they will be skipped. Thus it is quite acceptable
for the numbering to cross part boundaries. if e_2 is given, its
value must lie between .0001 and .9999; if the ‘BY’ plrase is
rissing, e_2 will be assumed to be .01.

LCC’s automatic numbering will continue until you turn it off; :
this 1is done by inputting an empty step, i.e., by pressing the 3
RELURN key immediately after the step number.

Lt

Fxamplies:

NUMBER AS 17.3 BY .002

NUMBER group AS e_1 BY e_2

LCC will renumber and retranslate the ordered set of steps
from the specified group. The renumbering will start with e_1 (or,
if e_1 is an integer, with (e_1 + e_2)) and successive step
nuabess will b2 incremented by e_2 ivhose value must lie between
.0001 and .9999}. The original group of steps will be deleted by a
NUMBER statemert (othervise this statement acts exactly the same
as the corresponding COPY statement, whick does not delete the
group). The source text for a step will not be modified ty a
NUMBER statement, and it is your responsibility to make sure that
the renuazbered steps 4o nct contain spurious references to steps
in the original gc-oup. To insure this, you should use labels
rather than step numbers to refer from one statement in the gronup
to another,

Txamples:
NOMBER STEPS 7.7 TO 8.2 AS 25 BY .02

i

T R

st GRat

BRI

T S T R T ey . 47

LCC Statements 17

NUMBER group AS e

If e evaluates to an integer, the set of steps from the
specified group will be renumhered and retranslated as a new
group, with the integer portion of each step nunber being replaced
by the valuc of the expression e (which pust noi be zero). If e
does not evaiuate to an integer, this statement is equivalent to
tte statement

NUMBER qrour AS e BY .01

All steps in the original group must te in the same part. The
source text for the group will not be modified by this NUMBER
statement, but the original group will be deleted (otherwise this
statement is identical to the statement “COPY group AS e’).

Examples:
NUMBER 8.07 AS 14.253
NUMBER STEPS 6.4 TO 6.5 AS 1016

NUMBER group BY e

Equivalent to
NUMBER group AS X RY e

where X is the truncated value of the first step number in the
Jroup. This statement is used mainly to tidy up the fractional
step numbers for a part without changing its name (i.e., its part
number).

Fyxamples:
NUMBER PART 803 Bl (INC # .0001)

NUMBER group

Equivalent to
NOMBER group BY .01

Examples:
NUMRER STEPS 43.001 TO 43.18

LCC Statements

OFF

LCC will perfocm an “EXIT ALL’ and it will then log you off. A
message will be written to indicate the elapsed time and the
processor time used Auring your conversational session. Your
antonmatic reload file will be erased by this OFF statement (see
Appendix G).

Fxamples:
IF DONE THEN OFF

OFF SAVE

This statement acts Jjust like 2 simple OFF statement except
for its trecatment of your automatic reload file, which will not be
erasei and thus may be reloaded wvwhen you begin your next
conversational session (see Appendix G).

PART num

A new block context will be set up for the sequence of steps
from num+.0001 to num+. 9999, Execution will then begin within that
context at the first step vhose number is 2> num+.0001 and it will
norrally continue through successively higher numbered steps.
Coatrol will be returned when the part *runs off its end” or when
it executes a RETURN statement, an EXIT statement, or a GOTO which
transfers out of its range.

A part may be called either as an operand in an expression (in
which case it should return a result) or as a statement. In the
latter case it should not return a result, but if it does, LCC
will type the valne of the result at your terminal.

Examples:
PART 5
TO PART 17 DO PART ABACAD

PART nue [s_1; S_.2 ; ..e t S_N1}

A new block context will be set up for the seguence of steps
in part num. Execution control will then be transferred to
statenent s_1, from which control will normally pass to s_2, s_3,
ees in order up to s_N, from which control will pass to the lowest
numbered step in part num,. Thus the statement list within the

:
%
£
g_
£
=
=
&=
s
£
E
x
=
|5
£
%
:
£
E
£
%
E
E
£
£
£
S
%
E
£
%

1LCC Statements

braces is treatel as if it were a step nunbered num+.00009 in a
part context which is expanded to include that step.

Examples:
PART (J + 2) { NRW A«3BIC]; TYPE D + A; E«16 }
PART 3 { NFEH A < G-H ; NEW D =« ¢ R/ PART 2 ¢ }

Lcc will type a message giving the step number of the PAUSE
statement, after which it will give control to you.

Examples:
I¥P X < 4 THEN PAUSE

PAUSE e

LCC will type out the string supplied by the expression e,
after vhich it will give control to Yyou.

Examples:
PAUSE °“‘HALF DONE’

PRINT < FILE > e

LCC will print (on the line printer in the computer room) the
contents of file e, which must have been generated by an LCC SAVE
or WRITE statement. File e will not be changed by being printed,
but if you PRINT a file during a conversational session, you will
not be allowed to delete it later on in that same session.

Examples:
PRINT FILE ‘PRNTFIL’

RECOVER < e >

Lcc will treat a RECOVER statement as a dummy statement unless
you aqive it from a user state which was entered because of an
error in a delayed sten. In the latter case, Yyour furnished
expression e, which will only bhe acceptable if the operation which
caused the error halt should have produced a result, will be used
as that result, and LCC will resupme execution fcom the point of

LCC Statements

the error as if the operation had been completed. As an example,
i your program halts with the error message

ERROR ORO1 AT 4.1 DIVISION BY ZERO
you may resume execution by typing the statement
RECOVER 3,20

Fxecution will then continue just as if the divide operation had
been completed normally and had yielded the result 3,20.

In some cases it is possible to resume execution after errors
vhere no explicit result is involved. In those cases you may use a
simple RFCOVER statement vhich furnishes no result expression. As
an example, if vyou attempt to call part 3 wvhen part 3 is empty,
LCC will halt execution of your program with an error message such
as

ERROR PCO2 AT 5.2 PART 3 DOES NOT EXIST, YOU CANNOT CALL T
You could then resume execution by typing the lines

3.1: LOAD STUFF
RECOVER

Exanmples:
RECOVER X + Y

RETURN

LCC will delete the current execution context and return
control to its caller, resuming execution from the point of the
call.

RETURN e

This statement acts just like a simple RETURN statement except
the value of e is computed before the RETURN is performed, and
that value is the result of the call.

Examples:
RETURN X - Y ¢ 3

Nilkadti

E
=
£
E

WY

R T I H AN IR R

1

ety

T TP

LCC Statements 21

RETURN pointer

This statement acts just like a simple RETURN statement except
the specificd reference pointer is constructed before the RETURN
is performed and that pointer is the result of the call.

Examples:
RETURN > VBL(I+1])

RETURN procedure

This staterent acts like a simple RETURN statement except a
reference to the given procedure is constructed before the RETURN
is performed and that reference is the result of the call. Thus if
a procedure PR, which is called via the stitement

RED « PR(X,Y,7)
returns with the statement
RETNRN 9 (A,") PART 66 ¢

the effect (except for possible side effects) is to perform the
assignment

RED « v (A,H) PART 66 ¥

Fxamples:
RETURN v STFPS 4.8 TO AZ V¢
PETURN v (B,C) { vART 7; PART 25 } v

SA/E save-obiject

LCC will put the save-ohject (a list of steps ani/or values)
into the currently open file. A step will be SAVEl in the sanme
form that would be used to DISPLAY it, which is, except for
possible wainor differences in the format of the step number, the
same form that you used to type it in. The current meaninqg of a
variable will be SAVEd as an assiqgnment statement which assigns
that meaning to the variable, Thus a SAVEd file cin be reloaded
merely by executing it; this is done by means of a LUAD statement.
Note that no context information will be kept with a SaVvEd
variable, and it will be up to you to recreate the proper context
into which to later loadl the file, Only variables whose meanings
are values (numeric, 1logic, or string), vpointers, or arrays will
be SAVEQd. An array vill be saved as a structure assignment
followed by assignment statements for each of its SAVE-able

Ukttt adadiussiantiic

s

22

LCC Statements

elerents.

A SAVE statement does not save numeric values to their full
precision <(about 17 Jigits) but only to the precision of the
printing routines (10 digits). Thus a SAVEQd and reLOADed program
may not function exactly the same as if it had been run in a
single session. This will not usually be noticeable, hut it will
show up i€ numbers such as PI and EE (vhich are initially accurate
to the last bhit) are saved or if, for exaaple, X = 1/3 is SAVEd.,
In the latter case we would normally get 3 & (1/3) to priat as 1
(due to rounding in the output routines; 3 ¢ (1/3) = 1 is PALSE,
hovever), but after saving and reloading X we would get 2 # X to
yiell .99949999999,

Any number of SAVE statements can be executed to generate a
given file; each will append its lines at the end of those already
in the file.

Fxamples:
SAVE STEPS 15.6 TO 35.8
SAVE X, YI[I1,1), YI1,2), 2

SAVE save-object AS < FILE > e

2quivalent to

USE FILF e; SAVE save-obiject

Fxanmples:
SAVE PARTS 45 TO 493 AS FILE °‘CAT’

STEPS num_1 TO num_2

This ®step call” is an “execute” statement, which may be used
to perform steps from scme other portion of your program as if
they had been copied in-line in its place. As in a group, nrum_1
must be < num_2 (unless num_2 < 1). LCC will set up a new group
context (non-klock) for the sequence of steps from num_1 to num_2.
Execution will then begin at step num_1, and it will continue
throuch successively higher numbered steps. This step call vill
normally hec tersinated either by a RETNRN statement without a
value or by *“running off the end” of the steg qroup. An RXIT
statement will terminate the step call and return control to you
in the context of its calling group.

Examples:
STEPS 3.8 TO 3.93

retssstmes damerstateritotmssonintsl

bt O il L

TR

R B T

PR

LCC Statements 23

STEP nun

TYPE

LSF

Equivalent to the statement

STEPS num TO nunm

+ type-obiject 4 .,.

For a type-ohject consisting of an expression e, LCC will type
the value of e, left-justified on a line. A numeric value will be
rounled to 10 significant decimal digits and typed as an integer
or a decimal number, with an exponent part bheing appendeld if
necessary. A logic value wvwill be typed as TRUF or FALSF or as an
B-digit hexadecimal number (i.e., it «ill have the form of a
logic=-literal). A string value will be typed as is without
surrtounding quote marks.

LCC will ignore an empty type-object in this unformatted TYPE
statement.

A for-clause in a4 type-object mercly specifies control over
another type-object, but the controlled objects will bhe typed just
as 1f the for-clause were outside the TYPFE statement insteal of
inside, As an example, the type-obiject

(for-clause e_2 , e_3)

will, under contrnl of the for-clause, type values for e_2, e_3,
o 2, e_3, ... , one per line.
Exanples:

TYPE A ¢+ B, , C

TYPE P, (FOR I TO 19 DO I, CABITILJ]])

< FILE > e

The expression e must evaluate to a string whose body will be
used as a file nane, 1.CC will open that file and use it in any
subsequent SAVE or WRITE statement which does not mention a file
explicitly. Only one such file can be open at any time, so file e
will be closed either by a 1logoff or by executing ary filing
statement (including another USF) which explicitly mentions a
different file,

A file name must bc an identifier (ident) of length € 8 which

HERIH R

SR e

AT o TR TR

Wt

i

i

ettt

24

LCC Statements

does not contain any lover case 1letters or underline (_)
characters.

Fxamples:
USE FILE “QWIC’

HRITP - tva‘Object | e g e

This statement is Just 1like a TYPE statement except the
tvpe-objects will be written on the currently open file instead of
at yonr terminal, Any number of WRITE statements can be executed
to write a given tile; each will append its lines at the end of
those already written,

Fxamples:
WRITE A, BsC
WRITE (FOR I TO 10 DO (FOR J TO 10 DO FISHII,J)1))

4RITE + type-object 4 .,. AS < PILE > e

Fquivalent to

USE FILE e; WRITE + type-object 4 .,.

? + < string-literal > varid 4 .,.

For each varid in the list, the following process will be
performed: LCC will type either a standard identifying message or,
i€ vou preceded the varid by a string-literal, the string which
you supplied. It will then give control to you. You must type the
text for an exoression and return control to LCC (by pressing the
RETURY key). Your expression will then be evaluated and assiaoned
to varid,

Fxamples:

21,8
2 STYPE RANK’ RNKI[3], RNK[4)

?2 $ F < string-literal > varid 4 .,.

This statement acts 1like the regular ? statement except LCC
will treat each of your typed expressions as the body of a string

Lt e
il

ISR R b

I)

H R

i

bl S iy

T

B

it

T mm-"-wtmqmmmnmnnmmnnmﬁmﬂﬂﬂ'mm“"m""ﬂ?mf“'“'“"‘.Wm"ﬁmﬂwﬂﬂmﬂ’"‘"“"""'mm;"""mm"mm"mm""m"“mmmm

{

LCC Statements 25

(i.e., it will surround each expression by quote marks). Thus the
value assigned to each varic¢ will alvays be a string.

A slight variation is possible here in the use of single-quote
marks, which need not be doubled to appear in your requested
string body. Thus if you type

AB’C*D
in response to the statement

?$ ST

the effect will be cxactly the same as if you had executed the
statement

ST < “AB’’C*‘D’

Examples: '
?2¢ S, ‘T STRING * T

Fs 4., }

This *“compouni statement” will be treated as a single control
unit: whose sub-statements will be executed sequentially from left
to right. A compound statement is not a block and it may not have
its own 1local variables; therefore its main use is within a
controlling 'statem2nt such as an IP, CASE, or iteration.

Examples:
IF ~P v 0 THEN 2 -« S ELSE (T - T 4+ 1; TYPE T }

The expression e must evaluvate ¢to a string, whose contents
will be treated as statement data to the LCC tramslator., When a !
statement 1is executed, the string which it supplies will bde
processed just as if it were a step vwhich was just typed in. If
the string turns out to be an immediate step, it will be executed
as the current statement. If not, it will be stored as usual for a
delayed step and control will pass to the successor of the !

statenment. This statement is useful mainly in programs which
qenerate nevw program text during execution.

Fxamples:

‘A« B +C; s Translate this later’
S oTfT

“STEP B8.4u4%; ¢ Same as the statement STEP 8.44

i

AR Lo

h4cst

Lkl

IR e

fhiklum i

A <

var

var

LCC Statements

+ character 4 ... >

No operation will be performed. The character sequence will be
treated merely as a comment, with all chara.ters following the
first 8 in a step being completely ignorei.

Exanples:

A THIS IS A COMMENT LINE.
- e

The variable designator var is first elaborated (cycling all

the way “own 1its pointer chain if it begins one) to obtain the
*elaborated address®” of a value (non-reference) entry. Then the
expression e is evaluated tc yield a numeric, logic, or string
value, That value is assigned to the elahorated address of var,
vith no conversions of any sort being performed.
Examples:

K+« 4 A (FO

P{3] « A ¢ (B« 8 ¢ 1) + A(N)

I «J K & "
« v<(+ident 4 .,.) > | | v

var is treated as in an expression-assignment. A reference to
the qgiven procedure will be constructed and assigned to (the
elaborated address of) var. The procedure body is either the
expression e or the statement list, and the listed idents are
formal identifiers in that bodv. When the procedure is called,
actual parameters must be supplied to replace the formal
identifiers during execntion of e or the list of statements s. For
a procedure with no parameters, the formal identifier list is
normally omitted. If so, parentheses cannot be used to surround a
procecdure-body expression, because they would be treated as
parameter delimiters. To get around this syntactic ambigquity, LCC
allows an empty formal parameter list to precede a procedure-bhody
expression e (but not a statement list).

Once var has been made a ,rocedure name, any mention of it in
an expression or assignment will cause the procedure to be
evaluated. Thus the meaning of the var cannot be changed unless it
is first redeclared or DELETEA.

SUNOTTG O NI DRV T “
it itabtab e Ml b e

Rt b s

N N

LCC Statements

Examples:

PROC « Vv(F,G) F ¢« G *» HV
G« v PART 81 { NEW 2 « Z ¢+ 1; Q=+« 0Q } ¥
clI,J] « 9(X) PART 371v

P3 « v { PMRT 4; PART 68; I « I + i } ¢
Fe9 () IP X < 48.3 THEN T+1 ELSE T ¢

var <« ARRAY [+Fe <2 e >4 .] 10 Q1. 1

varct

LCC will assign to var the multidimensional array structure
specified by the given bounds list. The bounds list qives the
nunbher of dimensions of the array structure and the liaits on earh
of its subscripts. An item in the bounds list can be either a pair
of expressions specifying the lower and upper 1limits on the
subscript for that dimension or a sinqgle expression specifying the
upper limit on that subscript (the lower limit will be implicitly
.

Storage will not be allocated for an array mntil that array is
used, and even then it will only be allocated for a given row when
an element from that row is first accessed. LCC keeps identifving
information for each element in an array, and therefore arrays
need not be homngeneous. Thys, for example, in a given row an
array could contain elements vhich vere procedures, pointers,
numeric values, string values, and even arrays.

Note that Lif the var above is an identifier, this statemeat
form 1is exactly equivalenc to an ARRAY statement, Thus the two
statements

A - ARRAY[O0:4,6]
ARRAY A{0:4,6)

are equivalent. However, 1if the var is subscripted, we can with
this statement specify that an array element is to be itself an
array, an effect which is not possible with an ARWAY statement.

Examples:
LA « ARRAY[T:N, -3 : 8#K]
P[2,8] < ARRAY(S,10,24)

« pointer

var is treated as in an expression-assignment. The specified
reference pointer will be constructed and assigned to (the
claborated address of) var.

28

var

LCC Statements

LCC cannot allow a variable to point te another which is
declared in an inaner (higher) nesting level; therefore such an
assignment will lead to an errox message and will be rejected. An
assignment which vould create = circular pointer chain, as in

A.-:B;P.~:A
vwill also be redjrcted.

Examples:
ND « >AflI,J]

€ (< F e | 4 eee > 2
| pointer i
|

| procedure

The procedure referenced by var is performed, using the itens
in the list as actual parameters. This is done by setting up a nev
hlock context, declaring as NE¥ all formal idents listed in the
definition of var, assiqning, in order, each actual parameter to
the corresponding €ormal ident, and then transferring control to
the body of vart. control will be returned when the pcocedure
executes a RETURN statement, vhen it “runs off its end” (which
causes an implicit RETURN to be execnuted), when it exeruates an
EYIT statement, or vhen it executes a GOTO which transfers out of
its body. A procedure may be called either as an operand in an
expression (in which case it should return a result) or as a
statement, A procedure statement should not return a result, hut
if it does, the value of the result will be typed out at yourt

terminal.

As an example, suppose Wwe have executed the procedure
assignment

p -9 (A, B, C) PART 3 ¥ ;
and we execute the step
R(X-2,9(G)Gs+H/ 3v,>4%) S5

A new block context will be openea, ucC will perform the
statements

NEW & = X - 2 3
NEW 3« 9 (G) G = U/ 3 v
NEW C = > ¥

and exncution will begin in the new block context at the first
step i1 part 3. After normal iermination of the part, the block
context will bde closed and LcC will proceed with the successor to

¥

i

st A St L SR LD

NI R TR it e st LT e R 11

T THTTE T T T T e

=
£

e

iianubiay ol dedisiuia alisbuiyidaiiatn Sl iies i

LCC Statenments 29

the procedure call, i.e., statement S.

Procedures need not have parameters; thus the actual paraneter
list may be omitted. If more actual parameters than forpals are
supplied, the leftmost actuvals will be used, with the extra ones
being stacked for the duraiion of the procedure incarnation. If in
4 subsequent nested procedure call too few actual parameters are
supplied, the extra actual parameters from outer procedure calls

will be used, with those from the innermost calls beinqg used
first.

Examples:
PTN
FP(A,X-Y)
FN(P+1, 20, YV R ¢+ PART 2 v)

28

var

LCC Statements

LCC cannot allow a varialle to point to another which is
declared in an inner (higher) nesting level; therefore such an
assignment will lead tc an error message and will bhe rejected. An
assiqgnmeat which would create a circular pointer chain, as in

A« >8B; Be 2
will also bhe redjected.

Examples:
ND - >AA1I,J)

(< ke !
| pointer |
| procedure |

40,0 D) D>

The procedure referenced by var is performed, using the items
in the list as actual parameters. This is done by setting up a new
klock context, declaring as NEW all formal idents listed in the
definition of var, assigning, in order, each actual parapeter to
the corresponding formal ident, and then transferring control to
the body of var. Control will b» returned when the procedure
executes a RETURN statement, when it “runs off its end” (which
causes an implicit RETURN to be executed), when it executes an
LYIT staterent, or when it erecutes a GOTO which transfers out of
its body. A procedure may be called either as an operand in an
expression (in which case it should return a result) or as a
statement, A procedure statement should not return a result, but
if it does, the value of the result will be typed out at your
terminal,

As an example, suppose e have executed the procedure
assignment

and ve execute the step
R(X~-2 ,9(G)GsH/ 3V, 3¥W) ;S ;

A new block context will he opened, LCC will perform the
statements

NEW A - X - 2 ;
NEW 3« 9 (G) G ¢« H/ 3 9 ;
NEW C « > ¥ ;

and execution will bPtegin in the new block context at the first
step in part 3. After normal termination of the part, the block
context Will be closed and LCC will proceed with the successor to

Sakidiaip

4

T IR 0

A

IRt

Raiunniiiui Bldeasiiid butivlolsbuisdiigathintiidudiastae o uitngial

LCC Statements 29

the procedure call, i.e., statement S.

Prccedures need not have parameters; tnus the actual parameter
list may be omitted. If more actual parameters than formals are
supplied, the leftmost actuals will be used, with the extra ones
being stacked for the duration of the procedure incarnation. If in
a subsequent nested procedure call too few actual parameters are
supplied, the extra actual parameters from outer procedure calls
will be used, with those fror the innermost calls beinqg used
first.

Examples:
PTN
FP(A,X-Y)
FN(P+1, 20, Y R ¢+ PART 2 ¢)

—— . ——— —— ———— — e . = o

i e i — . = o g A S — -)

---- LCC Metavariables =---

binary-operator ::= [=jtisjzifei+]=I<|SI=|2[>|#]|e"|==[A]Vv]Z|0o]

anary-operator $:= f + 1 -1 41~

p
unary-operator e

e_1 binary-opetrator e
I

|
I
- [
F e THRY e_1 ELSE I

_2
e_2

Ar exprassion (e) in LCC is a combination of value entities
(primaries) with operator symbals vwhich acts as a rule for the
computation of a value. Syntactically, an expression nmay be
degenerate (i.e., a single primary), it may be a prefixed
unary-operator acting on a value, it may be the combination of two
values with an infix binary-operator, or it may be conditional,
vith a Jdistributed operator (IP ... THEN ... BLSE ...) which
selects one from a given pair of values.

The value of an LCC expression will normally be used as a
constituent in a stateament. Hovever, if an expression appears in
place of a statement (or if a syntactically correct LCC statement
turns out to have a value), 1its conmnputed value will be typed back
to you. 7this gives LCC its “desk calculator” feature, whereby you
need merely to type an expression to obtain its immediate
evaluation -- thare 1is no need to write a “program” to do so.
Note, however, that if LCC, when scanning for a statement, finds
as its first item an IFP, 2?2, or !, it will treat what follows as a
statement, not an expression. If that is not what you mean, you
may use parentheses around your expression, and LCC will then
treat it correctly.

A conditional (IF) expression acts much like an IF statement.
Tf the expression e evaluates as true, the value of the
conditional expression is e_1; 1if e evaluates as false, the value
is e_2. Thus, if the variable AVAL = 1, the value of th.
expression

TF AVAL < 5 THEN 825 ELSE 839
is 825.

The unary-operators are ‘“+¢“, ‘-7, *3’, and *~’, A unary *+’ is
rediundant, and +e = e nc matter whether e is a number, a logic
value, or a strinqg. A unary ‘-’ is a negation operator which
changes the siqn of any non-zero value to which it is applied (a
zero is always positive). ‘4’ 1is a truncation operator vhose
result is the integer portion of the value to which it is applied.
Thus 2.8 = 2, #=-3.1 = -3, and 341 = 341, *-f and ‘4’ are
arithmetic operators which can act only on numeric values; if they

LCC Metavariables 31

are applied ¢to logic values or to strings, those values will be
converted to numbers before thke operations are verformed. ‘~’ is a
complenent operator whose result i35 the bit-by-bit 1logical
complement of the 32-bit value to which it is applied (i.e., each
binary 1 becomes a zero and each binary 0 hecomes a one). Thus

~TRUE = FALSE (= £0), ~(FEDO = (PFFPO12F

Note that nmultiple unary-operators may precede a primary; if so
the operations which they represent will be performed from right
to left., Thus

=3.1 = 4(-3.1) 3 = -i43.1

= - -(43.1)
$+4-3.1 = =4=-4-3.1 = 4=---3.1

V=~ +~4PFFFFFFC = -3

Like the unary-operators, the binary-operators can act only on
values with the proper data attributes. If one is used with values
having improper attributes, appropriate conversions (with a bias
from string to logic value to number) will be automatically
performed bhefore the operator is executed.

The hinary-operators “%’/, ‘&7, /7, Y3/, e’ , *4+’, and *-’ are
numeric operators; each acts on numeric values to produce a
numeric result. ‘¢’ denotes exponentiation, with e_1 as the base
and e_2 as the exponent. The operators “+’, *-’, and ‘#’ have the
conventional meanings of addition, subtraction, and
multiplication. v/’ is the usual numeric (real) division, with a
real result; ‘%’ (integer divide) and ‘e’ (modulus, or remainder
divide) cause a real division operation to bhe performed, but ‘¢’
gives only the integer portion of the real result as its value
(i.e., A+ B = $(A/B)) while ‘e’ gives on'y the remainder (i.e.,
A eB=A-B+* (AtB)). Thus

1.2

2 N
e -3 = 1.7

3. A4
4, .7

‘ar, ‘v, and NG are logic operators; each acts
bit-by-corresponding-bit on logic values to produce a logic value.
They have the conventional meanings of logical AND, OR, and
equivalence.

‘a’ is a string concatenation operator which causes the hody
of string e_2 to be appended to that of e_1.

The operators ‘e’ and ‘-’ will shift a logic value or a
string left or right, e_2, which will be truncated to an integer,
is the length of the shift, while e_1 is the value to be shifted.
Shirts will be by bits for logic values andi by characters for
strinas. A shift of a (fixed iength) logic value will cause any
bits which are shifted out of the value to be lost; vacated
positions at the other end of the value will be filled in with
zeros. A string, however, does not have a fixed length. Characters
shifted “off the end” will be lost, but there will be no “vacated
positions® -- the string merely becomes shorter. Thus we will get

ibaistusiuditlluaug,

ik {Li Lkl il

32 LCC Metavariables

the following results:

‘ABCDEFG’ == § = ‘ABC?
YABCDEFG’ &« 2 = \CDEFG’
‘ABCDEFG' -e 2 e | - \cl

The relational operators ‘<’, ‘57, ¥=7, 27, %>’, and “#’ can
act on any operands with matching attributes., The meanings of the
relations are ohvious for numeric operands. Fach produces as its
result a Boolean value (TRUE or FALSE). For logic values, *=’ and
‘#’ act bit-by-bit to produce 1logic values which will be,
respectively, the 1logical equivalence and exclusive OR of their
operands (i.e., L. = 4 1is the same as L = M, and L # M is the sume
as =~ (L=M)). If the other relations (£, £, 2, >) are applied to
logic values, those values will first be converted to numbers and
then the usuwal rules for relations on numbers will be followed.
Relations on strings will he performed character-by-character from
left to right, with the shorter string being extended, if
necessary, to the right with blanks. The normal 360 collating
sequence will be used in comparing characters. The result of a
string relation will bhe a Boolean value (TRUE or FALSE).

i bty i

The assignment operator ‘<’ in an expression takes as its left
operand a var, i.e,, a reference entity which specifies a variable
name, Its right operand can be any expression. The value of an
expression e_1 « e_2 1is the value of e_2, and as a side effect
that value 1is also assigqned to e_1. Note that a ‘«’ in an
expression takes as its left operand only that entity immediately
to its left, while its right operand is the whole expression to

its right. Thus the statement i{

A[0O} « A[l1] « B + C D ¢ E«PF +G
will be performed as if it had been written
AfO0Y « (A[1) « B ¢+ (C <D * (E <« F + G)))

Note also that a ‘<’ in an assignment statement is treated
differently from one in an expression in that it does not produce
a result and its right-hand side need not be an expression.

If the sequencing of operations in an expression is not
explicitly specified by the use of parentheses, the operations
will be ordered within it from left to right, but with the
following additional rules of precedence:

s

LCC Metavariables 33

)
'
*
+
<

pre

First:
Second:
Third:
Fourth:
Fifth:
Sixth:
Seventh:
Pighth:
Ninth:
Tenth:
Eleventh:
Twelfth:

~ +(unary) -(unary)

[[

A TN

= 2 > #

- >

4

(as exp'-ined above)
F oo« THEN ... ELSE ..

- ¢ Q< D>

Thus the statement
X« A-B ¢t 2/ C+ 4D

will be performed as if it had been written
X« ((A- (B¢t 2) 7O + (4D))

If a conversion of a value to one of different attributes is
necessary, it will automatically be performed by LCC as follows:

number = logic value: LCC will truncate the number and strip
off 1its sign; the binary reoresentation of the resulting
integer is truncated to 32 bits to form the logic value.
Thus

-25.7 becones £19

number - string:

logic value -+ string: LCC will transform the internal
representation of the number or logic value into its
external form (that which would bhe typed by an output
statement), That external form will be the body of the
resulting string. Thus

-25.17 becones v1-25.7°
LFF12 becomes *(0000FF12°

logic value <+ number: LCC will use the logic value as the
low-order 32 bits of the positive integer result. The
other bits of the result will be zeros, and thus its value
will be between 0 and 232 ~ 1. As an cxample

£2F becomes 47

string - number:

string - 1logic wvalue: LCC will translate and evaluate the
expression which is the body of the string. This must
yield another value (possibly again a string) which may
neced another conversion, etc. Thus if A = *8*, B = 3,

4

extractor

1LCC Metavariables

B3 = 42.1, then

‘A o B’ becomes 42.1

If an entity has a logic or string value, it may be followed
by an extractor, which will select a portion of that value for use
as a primary. An extractor must have one of the forms listed
ahove, where e_1 and e_2 are expressions vhich evaluate to
inteqers, and 1 < e_1 < e_2 < N (N is the number of bits or
characters in the original entity value). If e_i is missing, it is
assumed to be 1; if e_2 is missing, its assumed value is N. Note
that an extractor can follow any operand or parenthesized
expression; it is not rest.icted to variables. '

A logic value is a quantity whose 32 constituent bits are
numbered, starting with 1, from left to right. When a subfield is
extracted from a logic value LV, the result is a logic value
consisting of those bits of LV with indices from e_1 to e_2
inclusive, right Jjustified in a field of zeros. Thus 1if
LV = (FFOOFF00, then

LV (5:12) = (000000FO (= ¢F0)

The constituent characters in a string are also numbered,
starting with 1, from left to riqht. W¥hen a substring is extracted
from a strinqg SV, the result is a string consisting of those
characters of SV with indices from e_1 to e_2 inclusive. Thus if
SV = ‘PORCUPINE’, then

SV [6: 1 = ‘PINE"

If an extractor follows a subscript, the character pair ‘1(’
may be replaced by the single character ‘,”’. A value may not he
extracted from an extracted value, and thus it is an error to
follow one extractor with another.

Fxamples:
YELLOW([3:101 o RED
03, NN, I:J] - RI[:18]
(A + B + C)(5:8]
P(X, T+1)[35,14]1(23:]

S BT

i KBRSt

Ittt

bt

ColianaiU G A)

Sl

HERTHTENP R TE A)

LCC Metavariables 35

for-clause ::= <|FOR ident <|PROM|e>|> <|BY e <TO e>|> <WHILE e> DO
i R [|TO e <BY e>|
| FROM e 1

See the iteration (POR) statement description on page 12 for
an explanation of the control exercised by a for-clause.

Exanmples:
FOR I FROM 1 BY G TO H WHILE N # 3 DO S
TYPE P,(FOR I TO 10 DO(FOR J TO 5 DO C(I,Jd1),FI(I])

group 22= { | PART | < num < TO num > > |
| | PARTS | i
| | STEP | |
| | STEPS | i
| num < TO num > i

A group is a specification of a step or a contiguous se’ of
steps. A single step is normally specified by the keyword ‘STEPR’
folloved by a num, but if the group scanner finds a num vwithout a
preceding keyword, it will assume the presence of the word ‘STFP’.
A set of steps is specified as one of

STEP num TO num
STEPS num TO num

or merely as
num TO num

A part or set of parts is similarly specified as
PART num

or as one of

PART num TO num
PARTS num TO nunm

(the keywords °“PART’ and “PARTS’ cannot be omitted).

In scanning for a group, as well as everyvhere else in LCC,
the translator alwvays considers the keyvord “‘STEP’ equivalent to
*STEPS’ and the keyword ‘PART’ equivalent to ‘PARTS’. Thus, for
example, vou can write

DISPLAY PARTS 6

DELETE STFP 4.7 TO 5.3
IF A < B THEN PARTS 6

LCC Metavariables

Whenever the construction ‘*num_1 TO num_2’ is used in LCC, you
mnust have num_1 < num_2, unless num_2 < 1, in which case LCC will
increment it hy the integer portion of num_1. Thus, for example,

DISPLAY STEPS 3.6 TO .9
is equivalent to

DISPLAY STEPS 3.6 TO 3.9

Examples:

ALTFR STEP 1.6 : ‘X’ - ‘AX’ , ‘Y’ + ‘BY’
COPY PART 3 AS 43
“STEPS 4.5 TO 4.73"
NUMBER 7.7 TO 8.2 AS 25 BY .02

digit 3= o)1 v 213]14)1S]16]17]|81} 9]

letter 3:= |ABICIDIE|P|GIH|L|I|K|LIMIN]O|IP|QIR|S|IT|O|VIN|IX}Y|Z]

lalblcldlelflglhli|ilk|lImIn]lolplgic]sitiulv]wix]yiz|

ident t:= letter < k | digit | 4 .0 >
! letter |
ik I

Tdentifiers (idents) are used to name entities in LCC. An
identifier consists of a sequence of one or more letters, digits,
and/or underline(_) characters, the first of which must be a
letter, Some identifiers are keywords in LCC and are reserved for
that purpose; you cannot use them as names. Others, such as the
names of the standard functions (see Appendix H) and the other
built-in LCC functions and procedures (see Appendix 1I) are
privileged 1identifiers in the sense that they are given meanings
vhen LCC is initialized. You may use a privileged identifier as a
variable name by declaring it, but if you do, its original meaning
will be superseded and may be lost.

Even though an identifier can be arbitrarily long, LCC will
retain only its first ({(leftmost) 8 characters, with all other
characters bheing ignored. Thus identifiers must be uniquely
distinguishable within their first eight characters.

ractilatd H ?
T TR oT I AT

Fxamples:
X
RED
ALGOL_60
RUMPELSTILTSKIN

LCC Metavariables 37
hex-digit ::= | digit | A | B | C | D | E | F |
logic~-literal s3= | FALSE

num

!
| TRUF i
I € <1 L | >+ hex-digit 4 ... |
| | R |

A logic-literal in LCC is written either as a hexadecinmal
value or as one of the Boolean values ‘*TRUE’ or ‘PALSE’. The 16
hexadecimal digits are specified by the decimal digits 0 through 9
and the letters A through P, with the ™digits” 10 through 15 ring
represented by the letters A through F respectively. A logic value
is represented in LCC as a 32 bit quantity; therefore a
logic-literal can contain up to 8 hex-digits, which aust be
contiquous, i.e., imbedded blanks are not allowed. The optional
letters *“L’ and ‘R’ in a hexadecimal literal indicate left and
right justification respectively. If neither letter is pres-nt, an
‘R’ will be assumed. Thus

(LFBY = (PB100000

The Boolean values are equivalent to hexadecimal values as
follovws:

FALSE
TRUE

£0 (32 binary zeros)
LFFFFFFFF (32 binary ones)

Note, however, that when tested in an IF clause, any non-zero
value will be considered to have the guality “true”. Thus the
statement

TYPE IP (123 THEN T’ ELSE ‘P’
will print ‘T’, even though (123 # JRUE.
Examples:

PALSE

£L9AB7
LLFF

| int + . 4 int |
| ident |
| (e) |

A nuer is used to specify the number of a step or a part. It
will wuszually be a decimal number, i.e., a number without an
exponent, However, it may also be an ident wvhose value is a step

nunmber, or a parenthesized expression which evaluates to a step
number.

LCC Metaveriables

A part or step cannot have a neqative number; therefore LCC
will take the absolute value of each evaluated num before using
it. :

Fxamples:

STEP 1420.35

PART (J + 2)

DFLETE STEPS A TO B

t2= + digit 4 ...
nurher-literal ::= ! | int <+ . 4 < int > > | < | +# | >int >

|l 1t . 4 int | I =
! o< | # | > int
| | -

A decimal arithmetic constant in LCC 1is vwritten as a
nunber-literal. A number-literal is a sequeace of digits, possibly
including a Jdecimal point, optionally €folloved by an exponent
part, An exponen. part consists of the delimiter character
followed by an optionally signed decimeal exponent. As a special
casc. if the base value of a numbher is to be 1, the number-literal
can oe Written usiz7 only an exponent part. Thus

=15 = 1,-1%

Blank spaces are ndt allowed within a number-literal; thus 3.7 ,-5
and S, 14 are illegal. :

Numeric values will be stored by LCC as long (double word)
floating-point System/3¢0) gquantities, This allows a precision of
about 17 decimal digits, though for output LCC will usually rounl
a number to 19 diqits, The maximum absolute value of a number is
aoproxicately 7.237,75; the minimums non-zero absolute value is
approximately ,-75.

FExamples:
15
7.36
029
6.2.,-"‘
138,

5

operand ::=

LCC Metavariables 39

BEGIN + s A4 .
CASE e OF (F
PART num < {
| STRP | numr < T
| STEPS |
ident
logic-literal
number-literal
string-1literal
var € (< F | e |
| pointer]
| procednre |
< $ > ¢ string-literal > < ident >
e
s 4 .;. }
group ~*

< , OTHERWISE e >)
} >

4 o5) >

B rm w0y

—— D S T —— — ——) —— —— T —— —— — —
—— S — —— — —— — —— —— —— . — —— —— —

Most of the operands are described individuvally below
(starting on page 146). For ident and logic-, number-, and
string-literal, see the descriptions of the individual
2etavariables, For the part call and the var call, see the
descriptions of the corresponding statements.

An LCC operand may be characterized most simply as an entity
vhich returns a result; a statement is an entity wvhich does not
return a result. In many cases, operands and statements look alike
(e.g9., a part or step call, a procedure call, a block) and the
distinction betveen them must be made by context or it may have to
be made dynamically daring execution.

pointer ::= > verid

A pointer is used to indirectly reference an incarnation of a
variable, it 1is thus an object which acts as an alias for the
ohject to which it points. WVhenever a variable containing a
pointer 1is used in an expression or an assignment, the object to
which it eventually points will be accessed or modified, not the
original variable or the pointer, A pointer may point to another
pointer, and thus we may have pointer chains. A pointer chain must
end at a nonrn-pointer {cycles will not be allowed) and i: is that
final element to which any poiiter in the chain refers, As an
example, after vwe execute the statements

A «>B; B e 2C: C <« 17

the value of A + B ¢ % will be 35. If we then execute the
assignment statement

A « ‘FISH’

40

1.CC Metavariables

the value of C will be chanqed to the string ‘FISH'.

Pointers may be asvigned, RPETURNed, or passed as actual
parametars. Their main uses are to construct list structures or to
refer to particular incarnation-values which 2ight otherwise he
unavailable in ianer blocks of a program. Moreover, if a procedure
is to store a result into a variable which is to be passed to it

as a parameter, that parameter epust not be the variable name buyt
rather a pointer to i

Examples:
T{0,6) « 22
NEW PTR « 2Q, Q0 < &
RETURN >AR3{2,I,-4)
PR(S, =X, N)
primary ::= | operand | < [| extractor {1 >
I ¢

e) | | subscript-list < | 1[I | extractor > |

A oprimary begins vwvith either an operand or an expression
enclosed in parentheses, and it may be optionally followed by a
subscript-1ist and/or an extractor. A primary is a value entity
(numeric, 1logic, strinq) as distinguished from 2 reference entity
(label, procedure, array name, pcinter), though this distinction
canuot be checked by LCC until the primary is executed.

Exanples:
X{COLOR, SIZE, WT-2]
GREEN
YELLOW{B3:1Nn)
Q(31IN1{T:J]
(A + B ~-C)[5, :10]
FN(A,B) IC]

procedure 3::= 9 < (+ ideat 4 .,.) > | e j ¢

The procedure bodv 'is the expression e or tuie statement list,
anl the 1listed idents are foreal identitiers in that body. When
the procelure is called, actual paraseters must bhe cupplied to
replace the formal identifiers c<uring execution of e or the
statement list, Por a procedure wvwith no parameters, the formal
identifier 1list may be omitted ({sce the description of the
procedure assignment statement on page 2u).

R S X o ¢ PR N Tt

-

(4]

LCC Metavariables 41

Examples:
PROC « 9(F,G) P + G * HV
G+ 9 PART 81 { NEW 7 « , ¢+ 1; NEW Q } ¥
1= | statement |
| ident : s |

Any statement in a delayed step may be preceded by one or more
label identifiers vwhich name that statement and allow other
statements to branch or ‘G0’ to it. Labels are not usually
necessary, because step numhers can also be used as transfer
points for GOTO’s, but they are useful for naming statements
vithin a step or for naming statements in a part or group which is

to be renumhered.

Labels do not always work corrvectly in LCC, and at present
there are some situations which wust be avoided. The known
incorrect cases (as of October 24, 1969) are listed below.

1. Labels in steps called via step calls (as 1in
STEPS 3.7 TO 3.8) do rot work correctly and if used will

usually lead to errors later on in your conversation.

2. Labels in a (BEGIN-END) block staterment or expression do
not vwork correctly and the errors they lead to will not

normally Pz caught by LCC.

3. If a step containing labelled statements is added to an
active part, the 1labels will not he declared during the
current activation of that part. In future activations,
hovever, they will operate correctly.

4. Labels in the statement list of a procedure or inside the
braces of a part call do not work correctly and will

normally be ignored by LCC.

Examples:
3.7: A:

B
13.452, 1 + 1

3
I ;
F: G: H: K « J ¢+ 1

-
-

L: M2 J =« J ¢+ 1

e et NP
.

42

save-ohject ::=

LCC Metavariables

| ALL

| PARTS

| STEPS

| VALUES

] <{ PART | > + num < TO nue > 4 .,.
| | PARTS |

| | STEP |

| | STEDPS |

] + varid 4 .,.

A save-obiject, wvhich may be either SAVEd, DELETE4d, or
DISPLAYed, can be a set of contiguous steps (as in a group), a
list of sets of steps or parts, a list of the meanings associated
either with selected variahles or with all the variables in your
program (VALUES), or a combination of all of your steps and all of
your values (ALL). As in a group, if the word ‘PART’ or ‘STEP’ is
missing before a num in a save-object, the word ‘STEP’ will be
assumed. Note that if a save-obiject begins with an identifier,
that identifier will be treated as the first such in a varid list
rather than the first num in a step list.

Examples:
DISPLAY VALUES
DISPLAY X, Y, 214,J)
DELETE STEPS 4.6, 7.1 TO 10.6, 15.3, 4.8902
SAVFE PARTS 45 TO 493 AS FILE “CAT’

Statement

See the descriptions of the individual statements, starting on
page 3.

string-character 3::= | any-CMU-character-but-a-guote |
| |
| I |

string-literal ::= Y < + string-character 4 ... > '’

A string-literal in LCC is written as a sequence of zero or
more string-characters onclosed within left and right single-quote
characters. The legal string-characters are the 88 characters on
the “CvU Type-Ball”

LCC Metavariables 43

plus the 26 lover case letters and the space (blank) character. In
order to avoid ambiguity, you must type in two successive left or
right single-quote characters to get ore inside your string. Thus
if you execute the step

S « “AB’7’’CD'‘’; TYPE S
LCC will type back the value

AB’ CON
which is the body of S. An exception to this rule is the treatment
of a string body which is typed in response to a string read (2$)
request. Single-quotes need not be doubled to appear in such a
string.

The lovwer case 1 :tters cannot be typed out at your terminal by

a CMU0 type-ball, although they can be printed by the line printer
in the computer room (via a PRINT statement). A lower case letter
can bhe typed in from your terminal by preceding the corresponding
upper case letter by a vertical bar (]) which acts as an “escape
character”. Thus the string

“]AB|C| D] ERGH’
will be printed on the printer as

aBcdeFsH

Lower case letters vill be typed out on your terminal as their
upper case equivalents. Thus the above string would be typed as

ABCDEFGH
Because of the use of the vertical bar as an escape character,

you must alvays type two successive vertical bars to get one into
your string. Thus if you type in

MRS EESRRARLE Y M
LCC will type back the string body

LCC Metavariables

I+1=1%1~]

Other than for lower case letters, you will not need to use escape
characters with the regular CMU type-ball. Escape characters will,
hovever, be necessary if you use some other type ball or if you
use a teletype for your conversation with LCC, but these uses will
not be described here.)

Examples:
‘BLUE’
‘YABC’ o ‘DEF’ o S
! YA« 8 ¢+ C; v TRANSLATE THIS LATER *

structure ::= ARRAY [F e <:e >4) IJI[}|. 1

A structure specifies the dimension and the subscript bounds
which are to bhe assigned to » given var, thus making that var into
an array. See the var <« AfAY . . . statement on page 27 for a
nore complete description.

Fxamples:
LA - ARRAY[1:N, -3 : 8%K]
NEW A « ARRAYI[3,0:51, B, C « 26, D = ARPAY[X:Y)
A[(B,C] « ARRAY [1:5][0:6)
subscript-list ::= Fe4)1).

Ve |

Any array designator (an array name or a reference to an
array) may be followed by a subscript-list, which will select an
element frow the array. Each expression in the subscript-list will
be evaluated to a number, rounded to an integer, and used as an
index to obtain a constituent from the array, with the validity of
the indexing being determined dynarically. The selected
constituent element may again he an array, and the subscription
process may then be repecated. When nmultiple subscripts are used,
any character pairt ‘][’ may be replaced by the equivalent single
character ‘,’.

Exanmples:
Xx[COLOR, SIZE, WT-2] ¢+ Y[3]
2(a,B¢1) [T11(J) « NI[1,2)[3] 7 K

LCC Metavariables 4s

empty ::= (i.e., the null string of characters)

type-object ::= |

e I
| empty
| (for-clause + type-object 4 .,.) |

See the description of the TYPE statement (page 23).

Examples:
TYPE Cc(3), , DEF + 1, “STR’
WRITE (FOR T TO 100 DO A{I], BII)) AS ‘FILEG’
TYPE (FOR I TO 10 DO (FOR J TO 10 DO AlIX,J1))
var ::= | operand | < [subscript-list 1 >
| (e) |
A var begins with either an operand or an expression enclosed
in parentheses, and it may be optionally folloved by a
subscript-list. A var must be a reference entity which specifies a
variable name, though LCC cannot check whether or not the var is a
reference until it is executed.
Examples:
P{3) « A ¢+ (B+ B + 1) ¢+ H(N)
I « J <« K «
(A + B) [C)(D]) - 3
(2P)(Q) « 5
HIJ1(1,2)[3,4)75) « 6
varid ::= ident < [subscript-list 1 >

A varid is an identifier optionally followed by a
subscript-list, i.e., a varid 1is the designator of a variable.
FExpressions in the subscript-list may be separated from one
another either by a comma or by the character pair ‘1{’ (i.e., a
subscripted varid is also a wvarid, vhich may again be
subscripted).

Examples:
ND <« >AR{T,J]
AlR)icC]
? A1, B2[{3, J+11, C, DIK]1[9]

R T

T Tyermmen

T

iy

jgtitiniiedy

46

---- LCC Operands ----

REGIN + s 4 .;. FEND

The keywords ‘BEGIN’ and ‘*END’ delimit a “block”, whose list
of arbitrary LCC statements will be treated as if it were in a
part, i.e., there may be local variables valid only within it. LCC
will perform a block entry, after which it w.1ll execute the
stataments from the list in sequence. This *block expression” will
normally bhe terminated by a RETURN statement which supplies a
value, Such a RETURN will terminate the block context, and the
returned value will bhe used as that of the operand. A RETURN
statement without a value will first terminate the context of the
Plock expression and then return from the context in which the
block is embedded.

Examples:
X « Y + BEGIi' NEW A; PART 6; RETURN A END -~ 2Z

CASE e OF (2_1, .2 , eee , €_N)

The expression e is evaluated and rounded to an integer K. If
1 £ X < N, the value of this CASE expression is the value of e_X.
It is an error if K is out of the range 1 to N.

CASE e OF (e_1, e.2 , »oo o ©_N , UTHERWISE e_(N+1))

This statement operates 1like the ordinary CASE expression
above except 1if K 1is out of the range 1 < K < N, the value is
e_(N+1),

Fxamples:
i <« CASE I-J OF (A, B+¢1, C-D, OTHERWISE E/K) * 1l

ST®PS num_1 TO num_2

As in a qroup, num_1 must be < num_2 (unless num_2 < 1). LCC
will set up a new group context (non-blnack) for the sequence of
steps from aud_1 ¢o num_2. Execution will then hegin at step num_1
ani it will continue through successively higher numbered steps.
The context for this step gqroup operand will normally be
terminated Ly a RETURN statement, whose result will be the value

LCC Operands 47

of the operand. It is an error for the group to return without a
value. An FXTT statement will terminate the step qroup context and
return control to you in the context of its calling group.

Note that there is a possible syntactic ambiguity when a step
group operand is used inside an iteration clause., An exanmple is
the statement

PROM STEPS 3.5 TO 3.8 BY 2 DO PART 8

In anv such awmbiguous cases, the keyword ‘T0O’ will always be
associated with the step call rather than with the iteration
clause.

Examples:
M - X - STEPS 5.3 TO 5.46

STEP num

Fquivalent to the operand
STEPS nur TO num

Examples:
TEMP « STEP 1420.35 * 2

If LCC encounters a jquestion mark as an operand, it will type
a messa¢® and give control to you. You must then type an
expression and return control (by pressing the RETURN key). The
typed expression will be translated and evaluated, and its result I
will be the value of the operand. Note that the typed expression
may involve your program variables, whose current meanings will be
used in its evaluation.

Fxanples:
Y « 23 4 2 + 2LENGTH” LNG + 2$“READ STRING’

? string-literal

This operani performs like a simple ? operand except LCC will
type out the user-supplied message string instead of the systen
message.

e
e

48

LCC Operands

Fxamples:
T « 2 ‘TINE’

< stringy-literal > varid

This operand is equivalent to one of the expressions

(varid - ?)
(varid « ? string-literal)

vVarid must bhe an opticnally subscripted variable identifier. You
will be asked for a value as for the simple ? operands described
above, That value will be assigned to varid before being used as
the value of the operand.

Fxampies:
X - 2Y - 3 & 2872

< string-literal > < varid >

This operand is the same as an ordinary ? operand except LCC
will treat your typed response as the body of a string (i.e., it
will surround the characters which you typed with guote marks).
Thus the value of a ?$ operand will alwvays be a string. As an
example, if you respond with the character sequence

ALPHA + BETA
to LCC’s request for the operand ?$PC in the statement
T -« S o 28PQ
the effect will be to perfors, in order, the assignments

PQ « “ALPHA + BETA’;
T« S o YALPHA ¢ BETA’;

A slight variation is possible here in the use of single-quote
marks, which need not be doubled to appear in your requested
strinaga body. Thus if you were to type

B\.l7‘

in response to the above request for ?$ PQ, the effect would he to
perform the assignment

po - \B\\‘ll',.,'

LCC Operands : 49

Fxamples:
G « 2% “INPUT N’ EN o EM

The expression e must evaluate to a string, whose contents
vill be treated as expression data to the LCC tranmslator. When a !
operand is executed, the string wvwhich it supplies will be
translated and converted to a value. That value will then be used
as the value of the operand. Thus an operand !ST, where ST has a
string value, has the same effect as the expressicn

(ST + 0)

which forces the value of ST to be converted from a string to a
number before the addition can be performed.

Examples:
XY « FP(1-SIN(Z), !P) * 3

f s 4.;. }

LCC will treat the statement sequence from this “compound
expression” as a single control unit whose sub-statements will be
executed sequentially from left to right. A coapound expression is
not a block and does not have its own local variables. It will
normally be terminated hy a RETURN statement, whose value will be
the value of this operand. A RETURN statement without a value will
first terminate the context of the compound expression and then
return from the context in which that expression is embedded.

Examples:
Y25 « T ¢+ { FOR K TO N DO F(K,L,N); RETURN K } / 2

“ grour ”

The value of this operand is a string consisting of the text
of the specified qgroup. That string will contain only th: source
text for a step -- not its number. If the group includes more than
one sten, the strings for the individual steps will be
concatenated 1in step-number crder to form the operand, with no
semicolons, blanks, or any other characters being inserted between
successive text strings.

50

Examples:

LCC Operands

S « “STEPS 4.5 TO 4.73" o “STEP 6.1”7
! “14.301"

el Lo L R Dt e

Appenuix A 51

---- Explanation of Syntax Notation =----

< D>
Optional presence =-- These delimiters surrcund a construct
which may either be present or absent.
i
Alternatives - These deliniters surround a set of
alternatives, one and only one of which must be present.
The alternatives are usually listed vertically, but for a
fev metavariables, such as “digit® and “*letter”, vhere
there are many alternatives, they wvill be 1listed
horizontally and separated from one another by | |
delinmiters.
oA
Grouping -- These bracketing delimiters are used fo. grouping
only.
e ge
«fe
o 1L |

Repetition -- The immediately preceiling syntax construct,
vhich will be surrounded by F -i brackets, may be
optionally repeated a number of times, with the construct
between the dots (a comma, a semicolon, or either a comnma
or the character pair *‘1[’) being used to separate the
individual constructs. Thus the notation

"'e".'.
could mean any of the following

r € , € , @€

o0

e ©

Repetition -- The inmediately preceding construct may be
optionally repeated a number of times, with no separators
(cr spaces) between the individual constructs.

This separator uay be read ‘is defined to be’. It is used in
the same sense as in Algol 60 syntax notation (BNF) for
defining LCC metavariables,

)

S

gttt sttt 1 sty sty g s

it

Bt e

52

In

The

Appendix A

the syntax descriptions, 1lower-case words or phrases are
used to name metavariables. As used here, a metavariable
is a description-language variable which is wused- to
simplify the description of LCT. A metavariable is not
itself an LCC construct, but it is defined (often
recursively) in terms of LCC elements, Whenever a
metavariable is used in the syntax description of LCC, it
must be replaced by a set of LCC characters satisfying its
definition in order to obtain a valid LCC construct. As an
exanple, the metavariable “digit” can be any of the atomic
characters 0 or 1 or 2 or 3 or 4 or S or 6 or 7 or 8 or 9.

upper case vwords used in the syntax are primitive LCC
elements which must be used (and spelled) exactly as
written (except for the eguivalent LCC words ‘PART’ and
‘PARTS’, which may be used interchangeably, and ‘STEP’ and
‘STEPS?’, which may also be interchanged). These primitive
*keywords” are reserved :dentifiers in LCC, and they may
not be used to name variables. The current LCC keywords
are the following:

ALL NEW
ALTER NUMBER
ARRAY OF

AS OFF
BEGSIN OTHERWISE
BY PART
CASF PARTS
COMBINE PAUSE
copry PRINT
DELETE PUNCH
DISPLAY READ
DO RECOVER
ELSE RETURN
END SAVE
EXIT SHARE
FALSE STEP
FILE STEPS
FOR THEN
FORM TO
FROM TRUE
GO TYPR
GOTO USE

IF VALUES
N HHILE
LINFE WITH
LOAD 4RITE

bl i Wbt st hdsasesess

sl s
it

gimi

Rl

T

Appendix B 53
---- LCC Syntax ----

binary-operaior ::= I=1tis1/71#)o+i-I<|SI=2|>|#]es|==|AlVv|S]a]
digit 2= | O]V} 2} 314})S5)6)17]181]09]

e 15 | primary |
| unary-operator e |
! e binary-operator e |
| IP e THEN e GLLSE e |

empty ::= (i.e., the null string of characters)

<e > |
e |

extractor 3:= | e

for-clause ::= <|FOR ident <|FROH| e >|> <|BY e < TO e >|> <WHILE e> DO

| [| |TO e < BY e >
| FROM e
group $2= | PART | < num < TO num > >
| PARTS |
|

| STEPS |
nua < TO nuem >

|
I
STRP | :
I

hex-digit 12= | digit | A | B} C | D| E | F |
ident $2= letter < + | digit | 4 ... D>
| letter |
lF_4 |
irnt $:= + digit 4 ...
letter ::= |A|B|C|D|E|P|GIA|T|I|KILIM|N|jUI®(QIBISIT|U|VIN|X|Y|2Z]
lajbjcidjelfigfhiijiikidliminjolplqirisitiujvivix|y|z]

-

54 Appendix D

logic-literal $:= | FALSE
{ TRUF
| ¢« <] L
| | =1
num ::= | int + . 4 1int |
{ ident]
| (e) |
number-literal ::= | | int <
11+ 4 int
| o € +] > int
' -

operand L BEGIN + s 4 .
CASE e OFP (<
PART num < { F+ s
| STE® | num < TO
| STRPS |
ident
logic-literal
nember-literal
string-literal
var - < (<€ F+ | e

| pointer

| procedure

<

um >

F s 4 2. }
group *

$ roy s o)

pointer ::= > varid

primary ::= | operand | < [| extractor

| (e) | | subscript-list
|
procedyre $:= ? < (F ident 4 .,.) >
s t:= | statement |

{ ident : s |

[4

}

!
|
!

€< $ > € string-literal > < ident >
c

|
|
| > + hex-digit 4 ... |
|

Fod €i0t > > | € o< | ¢+ | > int >

! P =1

OTHERWISE e >)
>

4.0 >) >

|
< | 1l | extractor > |
e | |

| e | ¢
"‘S"-‘.'

]

>

ma”ﬂ‘"{m,ﬂ;ﬁﬂmgﬂ”m"m"mﬂmﬁmmmMMM“}

iyt bl b dbusihde P i it Sttt bl

save-object ::=

statement 3=

string-character

string-literal

structure

subscript-list

type-obhiject RS

Appendix B

| ALL

| PARTS

| STEPS

| VALUEBS

| < | PART > +F nus < TO num > 4 .,.
!

| | STEP

| | STEPS |

| + varid 4 .,.

]
| PARTS |
|

(see list of statements starting on

$:= | any-CMU-character-but-a-quote |
. s

!
I I

3= ‘' < F string-character 4 ... > *

ARRAY [Fe <z 2> 4 .11].)

| e |
| empty
| (for-clause \ type-object 4 .,.) |

unary-operator 3= ¢ 1 -1 8] =~
var se= | operand | < [subscript-list] >
| (e) |

varid se= ident < { subscript-list] >

55

next page)

i T

i

56 Appendix R

statement 2= one of the following syntactic forms

ALTER group | : | b+ e = e 4 .,.,

< NEW > ARRAY + b ident 4 .4 [Fe < 2 @>4 of I |) 4 oy
P o |

BEGIN + s 4 .;. END

CASE e OF { + S 4 3. < ; OTHERWISE s > }
COMBINE < STEPS > num TO num AS e

COPY group AS e < BY e >

DELETE | PILE e |
| s "e-object |

DISPLAY | FILE < CATALOG > |
| "ETORN < STEPS > |
| save-ohject }

EXIT < | ALL | >
| < TC > < PART > e |

for-clause s

] GOKSTO > | < e>
| GOTO |

IF e THEN s <€ BELSE s >
LINE C e >

LOAD < FILE > e

Appendix B 57

NEW + ident < « | e I >4 <5
| pointer]
| procedure |
| structure |

NUMBER | AS e] < BY e >

| gqroup < AS e > |
OFF < SAVE >
PART num < { Fs 4 .;. }>
PAUSE < e >
PRINT < PILE > e
RECOVER < e >

RETORN < | e >

|
| pointer |
| procedure |

SAVFE save-object < AS < FILE > e >

| STEP | num < TO num >
| STEPS |

TYPE + type-object 4 .,.) v
USFE < PILE > e

WRITF I type-object 4 .,. < AS € PILE D e >

? < ¢ >F < string-literal > varid 4 .,.

{ Fs4.;. }

58

A < + character 4 ... >

var «

| e
| p
| p
| s

ointer
rocedure
+ructure

!

var < (< + | e

| pointer
| procedure

Appendix B

| 4eee >) D
!
!

S L

i

I

Appendix C 59

T A

Procedure for Logging On to the LCC Systema =-~--
S0 at a 2741 Terminal ———

gﬁmﬂﬁmﬁw 'nh PJ'.M‘

i

Set the power switch (&t right of keyboard) to ON.

2. Make sure the terminal mode switch (on left side of 2741) is
set to COM., It will be set to COM if and only if the ke yboard

is locked, which you can easily test by trying to press the
RETURN key.

3. Push the TALK button on your Data-Phone.

4, Lift the phone receiver and dial the computer, which will
ansver and then emit a continuous tone. When you hear the
tone (a beep), press the DATA button and replace the
receiver. You are nov connected with the TSS monitor systen,

which will, after a short delay, type back to you a message
similar to

R001 TSS AT CLU TASKID=C331 09/23/69 17:31 8345 SDA=0053

Type your B8-character user number and press the RETURN key. TSS
will respond with a one or two line greeting message and, on 3
a nev line, an initial underline character {_) followed by a E

backspace, leaving the typing element positioned at the first
position ¢ . the line.

6. If this is to be your first session with LCC, type the
characters

SHARE USER,LCC,USER

and press RETURN, TSS will respond vith another
underline-backspace. This SHARE commard needs to be typed
only once, and on subsequent runs you should omit it.

7. Type the characters
DDEF LCC, VP,USER,LCC,OPTIOR=JOBLIB

and press RETURN. TSS will again respond with

an
nnderline-backspace.

r----------------------—-—-—-—-— —

"

A0 Appendix C

el Vot ibaka b Ll it Dbt i

8. Type the characters

LCC

and press RETURN. After a short delay, LCC will respond with 1
a polite greetine =such as :

LCC: GOON AFTERNOON

It will then indent four spaces and give you control. You are
now comaunicating directly with the LCC processor, which vill

analyze all succecding lines which you type.

The complate logon reccrd for your first LCC run will thus be
similar to the following:

BOO1 TSS AT CNMU TASKID=0031 09/23/69 17331 8345 SDA=0053
XY2172213

15222 23SEP 69-TSS UP TILi 24%:00

SHARE USER,LCC,USER

DDEP LCC,VP,USER.1CC,OPTION=JOSLIB

LCC
LCCs GOOD AFTERNOON

Por subsequent runs, everything will look the same except for
the oaission of the “SHAREB’ line.

(T S ey R T TR AT R

Appendix D 61

---=- Typing LCC Text at a 2741 ----

The characters, including blanks, which you type will be sent
to LCC line-by-line i. the order you type then. Hovever, 1if you
discover before you finish typing a line that you have made an
error on that 1line, you may backspace past the incorrect
characters, thus deleting them from the line being sent to LCC
(though not, obviously, from your typed page). You may then
complete the 1line by typing the correct characters or, if no
correction is needed, merely press the RETURN key. Each time you
press BACKSPACFE, yoa will delete one character from the line; thus
five BACKSPACEs would erase the last five characters (including
blanks) which you typed. After backspacing, you should manually
upspace the paper in your 2741 to avoid any confusion which would
be caused by strikeovers.

If your whole line is wrong, you may cancel it all by pressing
RETURR imzmediately after typing either the character ‘o’ or the
character ‘/’. LCC will completely ignore the line, and it will
merely unlock the keyboard for the next line -- it will not indent
the typing element after such a line cancellation. Note that a ‘o’
and a “/’ will act to cancel a line only vhen they are followed
inmediately by a RETURN. In all other cases they are sent along as
legitimate LCC characters.

When you complete a line, you must terminate it by pressing
the RETURN key. This will cause the sequen—~e of characters which
you ¢typed to be sent to the LCC processor for syntactic analysis
and possible action. LCC will scan your line from left to right in
order to translate it into an internal interpretable code. If your
line 1is syntactically incorrect, an errer message v¥ill be typed
back to you, indicating (by a *]’) the position in the line of the
iter wvhich had just been scanned vhen the error vas encountered
and (hy a number) the kind of error which was found (see Appendix
B). Tf your line is correct, LCC will determine whether it is a
complete step or whether you plan to supply an additional line to
continue it. You must indicate such continuation by typing a
hyphen or minus character (*-’) just before pressing RETURN. The
next line wvwill then be concatenated vith the current line such
that its first character will follow directly after the last
character before the hypghen, and the hyphen will be deleted.

Bach 1line will be analyzed as above until a step is found to
be complete. LCC will then determine whether the step is immediate
or delayed by checking its step number. If it has a number, the
step is delayed, and it will be saved internally so that it may be
called into execution at some later time. If it has no number, the
actions specified by the step will be performed immediately. When
all such actions have been cumpleted, LCC will indent one or more
spaces, unlock the keyboard, and return control to you.

Appendix FE

--~- Trror Messages =----

Translator (syntax) errors =-- A vertical bar character (])
¥ill be typed under the position in your step text which
had just been scanned by the translator when it discovered
the error, and a message of the form

ERROR SXnn text

will be written. *nn” is a two digit nurber which
specifies the tr.aslator error which has been encountered,
and “text” is an abtbreviated description of the error (see
Appendix P for some expanded descriptions of the errors).
The error message will be 1left-justified on the line
containing the ‘|’ marker unless the marker occurs within
the first 10 characters on the line, in which case the
message will be typed to the right of the marker.

Execution errors -- Execution error messages are of the fora
ERROR nmma text

vhere *ammm”? is a four character internal error designator
and “text” is a string which describes the error which has
been encountered. Examples are

FRROR UNO1 V[45,1]) Is UNDEFINED

ERROR GOO3 STEP 2,15 NOT IN AR ACTIVE CONTEXT
ERROR VEO3 SUBSCRIPT OUT OF RANGE

ERROR OROY AT 61.4 DIVISION BY ZERO

A complete 1listing of all the errors caught by LCC, with
explanations of their causes and Jescriptions of any
possible recovery options, may be found in the reference
document “*LCC Error Messaqges”.

S L it

Appendix F 63

-=-== LCC Syntax (SX) Error Descriptions -—---

This should have been a statement, but it isn’t one.
This literal constant is malformed.

This must he an operand. It isn’t one.

This must be an operator or a delimiter. 1t isn’t one.
No ‘[’ to match this ‘]”’,

An extracted value may not be subscripted.

In the current language context, this is meaningless.
This should be a statement terminator (BND, }, ;, ELSE, 9).
No *(’ to match this Y)’,

No ‘BEGIN’ to match this “END’.

No ‘*IF’ to match this ‘THEN’.

No “THEN’ to match this ‘ELSFR’.

Your * must meet its match here.

You need a step or part number here.

A controlled variable must be an ident’ r.

Your CASE statement needs a “*{’ here.

Your CASE exprrssicn needs a ‘*{’ here.

The ‘OTHERWISE’ must be last in a CASE list.

You can’t stora into an extracted value.

You can’t have more than an expression here.

You need “AS’ here,

A parameter may only be delimited by *,¢ or Y)’.

This step is missing an ‘FND’.

This step is missing a ‘}’.

No “{’ to match this ‘}°’,

You need to specify some subscript bounds here.

You can only request input to a variable, not an expression.
You need ‘FROM’ or ‘IN’ or a statement terminator here.
No ‘v’ to match this one.

You need a ‘)’ to end this formal parameter list.

You need a save-object or a group designator here.

You need a gqroup designator here.

38: This must be an identifier.

39: This must be a ‘«’,
40: You need a ‘*:” or a *,’ to delinit this ALTER list.
43: This can’t follow an iterated output element.
44: This should be a step number, but it isn’t one.

c\mgwomqg\mcr\,_‘cwmgmmguwdou o0 00 00 o0 60 e o0 oo

WWWWRRWNWNNNNNNNNN @b @DwwodedaDdadadd DONNNEWDN

9%,: Whoops =-- the first phase of the translator has just had a
stack indexing error, which should be impossible. Please shovw
your listing to an LCC implementor.

97: The translator has Jjust run into some sort of a semantic
error. It could be due to something simple, like an unmatched
‘END?, but if you can’t find a mistake, please ask an LCC
implementor for some help.

99: Congratulations: you have Jjust found an error ir the LCC
syntax tables, Please tell an LCC implementor about it.

J_, o e e —— s e

6U

Appendix G

-=-=-=- Automatic Reload File «=-=--

There 1is a possibility that during a conversational session a
hardware or software failure will kill LCC and/or TSS and break
off your conversation. In that case LCC will lose all of its
temporary records of your interactions, which vould normally
include all of your delayed steps and all “values” vhich had been
assigned to your variables as well as all the stacked information
on the status of your program’s execution at the instant of the
system failure. The values and the execution information will be
irretrievably 1lost, but 1LCC includes a special feature to save
vour delayed steps, thus lessening the catastrophic effects of the
system crash.,

This feature is the ‘automatic reload file’, a file on which
your delayed steps are automati-<ally saved vhile your conversation
progresses. If there are no system failures during your session,
this file will be deleted when you log off (unless you explicitly
retain it with an “OFF SAVE’ statement), bhut if the syster fails,
the file will not be deleted and thus will be available for
reloading wvhen you next call LCC. Rach time you call LCC, a check
will be made to determine vhether your automatic reload file
exists. If it does not, nothing is done, but if it does, you will
be given control after the message

AUTOMATIC RELOAD? Y OR N

You then have the option either to restore vour delayed steps by
loading the file (by typing ‘Y’ and pressing the RETURN key or by
merely pressing RETURN) or to ignore the file and delete it (by
typing ‘N’ and pressing RETURN). Steps will be added to the reload
file in sets of S in the order you type them; thus you may lose
your last five typed steps after a crash, but no more. Remenmber
that no values or context information will be automatically kept,
so j,ou may have to perform a lot of initialization to resune
execution from the point of the crash.,

T

Appendix H 65

---= Standard Punctions ----

The standard functions which are included in LCC as predefined
procedures are listed below. Each requires as an argument (ARG)
one actual parameter which must evaluate to a number. The
arguuents of the trigonometric functions (and the results of the
inverse trigonometric functions) must be in radians.

el g

Nane

ABS
ARCLOS
ARCSIN
APRCTAN
co0s
COTAN
ENTIER
EXP
LN
LOG

g SGN
SIGN
SIN
SORT
TAN

Function

Absolute value
Arccosine
Arcsine
Arctangent
Cosine
Cotangent

Exponential
Natural logaritha
Common logaritham
Sign

Sign (same as SGN)
Sine

Square root
Tangent

Definition

| ARG |

arccos (ARG)

arcsin (ARG)

arctan (ARG)

cos (ARG)

cotan(ARG)

largest integer < ARG

e ? ARG

1n(ARG) 1

1oq, (ARG) 3

IF ARG > O THEN 1 ELSE IF ARG < 0 i
THEN -1 BELSE 0

sin (ARG)

ARG ¢ (1/2)

tan (ARG)

66

Appendix I

-~~~ Built-in LCC Functions and Procedures =—----

The special functions and procedures which are included in the
LCC system are described below, To use the name of a standard or
built-in function as a variable, you must declare it as “NEW’. The
function’s original meaning will then he lost for as long as your
declaration is in effect. 1If you declare one of these identifiers
on level zero, 1its original meaning will be lost for the duraticn
of your conversational session unless you reinitialize your LCC
environment by executing a ‘DELETE ALL’ statement.

COLLATE (arg)

Arg must be an expression which evaluates to a string. The
value of the function COLLATE is an integer associated with the
le€tmost character of ¢tne value of arq. A unique integer is
returned for each valid LCC character, and the integers will be
ordered according to the System/360 EBCDIC collating sequence for
the associated characters. The space or blank character conmes
first in the collating sequence and thus has the snallest
assoclated integer. The other valid LCC characters are listed
below in order of ascending collating sequence (left to right ani
top to bottonm),

2AvIitsee3I) . . <(+] () <2FAe3V¥!
P*) ; ~~=-/ € g, 2,8 _ D227V 30V =\
abcdefahijklmnopgrstuvuwewxy?2
ABCDFFGHIJKLHMENOPORSTUVWXY?Z

01234854K78239

Examples: The following steps define a function ALPHA which
returns the value TRUE if the first character in its arqument
string is alphabetic (lower or upper case); otherwvise it
returns FALSE,

S: ALTER 1.6, ‘LL’~COLLATE(“*}A’), ‘UL’<COLLATE(*Z");
62 ALPHA « v (X) ((X = COLLATE(X)) 2 LL) A (X < OL) v;

| bbshaint ok . ot s

(AT TIST RO

TR

Appendix I 67

CE

ThiS parameterless function has as a constant value the base
of the natural logarithms, i.e., 2.713281828 ... Its value is as
accurate as is possible in a System,/360 double-word.

EXTERNAL (arqg)

This procedure allows you to temporarily add to your LCC
environment a non-LCC procedure or function which is to be called
from your LCC program. Tts arqument aust be a pointer to the name
of the procedure or functior to be added (e.g., > NAM). The effect
of PRXTFRNAL is temporary and 1lasts only until you log off or
reinitialize with a “DELETE ALL’ statement.

The external procedure or function to be added must satisfy
the standard TSS (FORTRAN) linkage conventions and its name must
appear as an entry point in one of your effective TSS jobh-library
stack @meabers, The value which it returns (if any) must be a
double-word number placed in floating-point register zero. All
FORTRAN double-precision 1library functions which do not involve
arrays satisfy these conditions and are acceptable EXTERNAL
functions. Any other experimentation is at your own risk.

Examples: The following statements indicate to LCC that you wish
to use the FORTRAN prccedures ‘DSIN’ and *DCOS”’.

EXTERNAL(2DSIN);
EXTEBRNAL(>DCOS);

INTERNAL (arq_1 , arg_2)

This procedure should not be called by a normal user. Its nane
is included here merely to forestall possihle naming conflictes.

LENGTH (arq)

Arg must he an expression vhich evaluates to a string. The
function LFNGTH will have as its value the length (ir number of
characters) of that string.

p—

A8

Appendix I

Exanples:
The value of LENGTH(“XYZ’) is 3.
The value of LENGTH(S o 1234), where S = ‘CMI’, is 7.

PI

This parameterless function has as a constant value the
nathematical constant pi, i.,e., 3.141592653 ... Its value is as
accurate as is possible in a System/360 double-word.

SCANN (arg_1 , arg_2 , arg_3)

SCANN is a procedure which scans a string to obtain its first
atomic element, Its first arqument (arg_1) must be an expression
which evaluates to a string, and arg_2 and arg_3 must be pointers
(i.e., >V and >¥, where Y and W are arbitrary variables). SCANN
will search the string supplied by arg_1 for its first (leftmost)
atonm, Tt will store that atom into the variable pointed to by
arg_2 (i.e., V), and it will store into W a string consisting of
everything from arg_1 which is to the right of its first aton.

For scanning purposes, an atom is one of the fullowing:

1. A contiquous string of alphabetic and/or numeric
characters (e.q., “ABCD’, “345°, -P42G‘’, “64AB2’).

2. A single non-alphanumeric character (e.g., ‘#’, ‘.7, ‘-7,
\(' \.')
(4 ’ L

Blanks which precede an atom will be ignored, and an atom will be
terminated by a blank, another atom, or the end of the string
vhich contains it.
Examples: The step

SCANN(* AE +ARC#DE’, oL, >R); SCANN(R, oLL, 2RR)

will set L o “ABY, R to “ +ABC¢DE’, LL to *+’, and RR to
‘ABC*DE’.

SPLYITT (arg_1, arg_2 , arg_3 , arg_4)

SPLITT 1is a function which searches a string (of atoms) for a

o

Appendix I 69

specified substring. Its value will be TRUE if the substring can
be found or FALSE if it cannot. Its first tvwo arguments gsust be
expressions which evaluate to strings, and its last two arguments
must be pointers (i.e., oSV and oW, vhere V and W are arbitrary
variables), SPLITT will treat both strings as sequences of atoms
(see the SCANN procedure above) and, searching from left to right,
it will attempt to fird a sequence of atoms in arg_2 which matches
the atomic sequence 1rg_1. If such a sequence is found, SPLITT
will return the value TRUE and, as side effects, it will store all
of arg_2 to the left of the match into the variable pointed to hy
arg_3 (i.e., V), and it will store everything to the right of the
match into W. If no matching subsequence is found, V and W vwill be
left unchanged.

Note that the matching done by SPLITT is atom-by-atom rather
than character-by-character. This means that the character string
arg_1 need not be contained exactly in arg_2 to obtain a match,
though it nmust be except for blanks which may surround atoms
(i.e., the strings “A+B’, * A +B’, ‘A ¢+ B’ are all equivalent
in this atomic sense). Effectively then, all extraneous blanks in
arg_1 are deleted before the match is performed, and arg_2 cannot
be searched for sequences of blanks.

Exauples: The operand
SPLITT(“AB’, “ABC:AB«AB+1’, oL, 2r)

has the value TRUE and it sets L to “ABC:’ and R to
‘«-AR+1’, The operand

SPLITT(*3 . 4 *, “3.4 :A + B’, oLL, -RR)

has the value TRUE and it sets LL to ‘’ (the null string)
and RR to * :A + B’,

o i i it e i s L

70

Appeniix J

Example LCC Conversation

4 THIS TS THE RECORD OF AN ACTUAL CONVERSATION BETWEEN A USER
a (AT A RFMOTE 2741 TYPEWRITER) AND THE LCC SYSTEM.

4 THE POLLOWINMG ARE NUMBERS (LITERAL NUMERIC CONSTANTS) IN LCC:
15

7.36
7.36
00065
. 00065
1234567890,
1234567890

A WE CAN APPEND AN EXPONENT TO GET LARGER (OR SMALLER) NUMBFRS:

6.2,12
ch2,+11

3.721,-5
.00003721

6.35,-42
«h35,-41

12345, 2,465
«123452,+70

4 AN EXPONENT ALONE IS ALSO A NUMBER.
w— U
.0001
ol1®
« 10t 16
A NUMBERS ARE OPERANDS WHICH CAN BE COMBINED INTO EXPRESSIONS,
A USING THE UUNARY PRPFIX OPEBRATORS (WHICH ARE WRITTEN TO THE
A LEFT OF AN OPFRAND):
A - NEGATE
A + (HAS NO EFFECT)
A) TRUNCATE (STRIP OFF THE PRACTIONAL PART)
a AND THE BINARY INPIX OPERATORS (WRYTTEN BETWEEN TWO OPERANDS):
A + ADD
A - SUBTRACT
A * MULTIPLY
A / DIVIDFE
A L] RAISE TO A POWFR
A I?” W% TYPE IN AN EXPRESSION, LCC WILL EVALUATE IT AND TYPE BACK
4 THE RESULT. THUS WE CANWN USE LCC TO PERFORM ‘DESK CALCULATOR’
4 OPEPATIONS.
A LET’S TRY A FEW EXPRESSTONS TO SFEE WHAT WILL HAPPEN.,

Appendix J 71

242
4
3+8
24
-5
-5
2345-876
1469
172
«3333333333
271
.2857142857
2¢5
32
2¢32
4294967296

2345.67894 & T GOOFED. TO CANCEL THIS LINE I’LL TYPE o AND RETURN
ERROR SX03 |
A T GOOFFD AGAIN -~ I HIT THE RETURN KEY PIRST INSTEAD OF THE ‘o’
a KEY, SO LCC TRIED TO TRANSLATE THE LINE. ITS TRANSLATOR FOUND
a THAT I AAD A MISSING OPERAND, WHICH I ALREADY KNEW.
a I°LL TRY IT AGAIN ON THIS LINE -- o
a LCC IGNORED THAT LINE AND MERELY UNLOCK®ED THE KEYBOARD TO LET NE
A TYPE ANOTHER ONE. LCC WILL NEVER INDENT AFTER A CANCELLED
LINE, ETTHER A ‘o” OR A “/’ WILL CANCEL A LINE, BUT TO DO
SO IT MUST BE TYPED IMMEDIATELY BEFORE A CARRIER RETURN.
AN EMBEDDED ‘o’ OR “/’ HAS NO SUCH CANCELLATION PRCPERTIES.
LCC WILL ALSO TIGNORE BLAWK LINES AND ANY LINES (SUCH AS THESE)
WHICH BEGIN WITH A DELTA (a). THUS CONMENT LINES MAY BE
TYPED WITHOUT ANY ANALYSIS FROM THE LCC SYSTEM.
NOTE THAT IF I FORGET THF ‘a’ ON A COMMENT LINE, LCC WILL OBIECT.
ERROR SXO0U | ‘
A IT SAYS “THAT” ISN’T AN OPERATOR, WHICH IS CERTAINLY TRUE. AN
s ENGLYSH SENTENCE DOESN’T USUALLY TURN OUT TO BE A VALID
A LCC STATEMENT.

- - - - - - 4

A IF YOU MAKE AN ERROR AND NOTICE IT BEFORE YOU SEND THE LINE TO
A Lcc (1.%., BEPORE YOU HIT THE RETURN KEY), YOU CAN CORRECT
A THE ERROR BY BACKSPACING TO THE LEFTMOST BAD CHARACTER AND
a RETYPING IT AND ALL THE CHARACTERS WHICH FOLLOWED IT. ANY
A CHARACTERS BACKSPACED OVER (NOT JUST THE LEFTMOST ONE) WILL

A BE DELETED PROM THE LINE. TI’LL SAOW YOU AN EXAMPLE:

12.34,56 TH® *,’ SHOULD BE A “+’, I’LL BACKSPACE. AND RETYPY IT.

+56 a I UPSPACED MANUALLY TO AVOID STRIKEOVERS.

68.34

A STRIKEOVERS WOR’T BOTHER LCC, BUT I WOULDN’T BE ABLE TO READ

a WHAT I TYPED.

A NOW LBT’S TRY SOME MORE EXPRESSIONS.

$2345.876
2345

+345
345

S EE——————————————————————————— e

12 Appendix J

236 + 12.5 & 50,2 / 6.3 - 2
212.1129167

a4 TNARY OPEFATIONS ARE NORMALLY DONF BEFORE t‘S, WHICH ARE DONE

a BEFORE ¢ AND /, WHICH TN THRN ARE DONE BEPORE + AND -,

A HOWEVER, WE CAN CHANGE THIS IMPLICIT HIERARCHY OF OPERATIONS
a RY USING PARENTHESES,

12,75 & (92.5 7 341 - ,00058) ¢ (3 s« ,789%)
722863h. 11

& THIS WAS DONE AS IP IT HAD BFFN WRITTEN

12.78 »« (((92.5 /7 .341) - .00058) ¢ (3 + ,788))
7228636, 11

a RESIDFES THF UNARY AND BINARY OPERATORS WE CAN USE SOME OF THE
& STANDARD MATHEMATIC:L FUNCTIONS SUCH AS

A SQRT SQUARE ROOT

a SIN SINE (ARGUMENT IN RADIANS)

A Ccos COSINE (ARGUNENT TN RADIANS)

A N LOGARITHM (BASE E)

a EXP EXPONENTIAL (EtARGUMENT)

A ARCTAN ARCTANGENT (ANGLE IN RADTANS)

A LET’S TRY A PEW OF THEN,

SQORT(3)
1.732050809
SQRT (234)
15.29705854
SIN(S)
-« 9589242747
LN(2)
6931471806
1) Sl 8)
2.718281828

A THNS FAR IN THIS CONVERSATION, NO VALUES HAVE BEEN RETATNED BY
LCC, BUT IF WE WISH T¢; KEFP A COMPOTED NUMERIC VALUE, WE CAN
STORE IT INTO R VARTABLE. VARTIABLES ARE DESIGNATED BY
TVENTIFIERS, WHICH YOU CAN CHOOSF FREELY (EXCEPT POR LCC
KRYWORNS LIXE “TYPE’ AND “IP’, WHICH HAVE SPECIAL MEANINGS).

AN IDENTIFIER MUST BEGIN WITH A LETTER AND IT CAN CONTINUE
WITH LETTERS, DIGITS, OR OUNDERLINE (_) CHARACTERS. IDENTIFIERS
CAN BRE AS LONG AS YOU LIKF, BOT LCC WILL IGRORE ANY CHARACTERS
AFTFER THE FIRST 8.

I’LL PICK SOME IDENTIFIERS AND STORF VALUES INTO THEM. NOTE THAT,
UNLTIKE ALGOL, LCC DOES NOT REQUIRE ME TO DECLARE AN IDENTIFIER
BEFORE I USF IT.

> > >0 D> P> O>D

A+« 5; Be U ; LCC - 111868 ; FISH « 0 ; NOVEMBER -~ 18 ; A_B_C « 35
A WE CAN CHECK THE VALUES WHICH WERE STORED BY TYPING THEM OUT.

TYPE A,B,LCC,PISH,NOVEMBER,A_B_C

Appendix J 73

4

111868

0

18

35
4 NOW WE CAN USE THESE VARIABLES AS OPERANDS IN FURTHER CALCULATIONS
A+B

9
SQRT(R+FISH)

2
LCC / NOVEMBER - (LCC & A_B_C)

-3909165.111
4 WE CAN CHANGE THE VALUE OF A VARIABLE WHENEVER WE WISH:
A« -742.8 ; B « B-1; FISHe34-B; TYPE A, B,FISH

-742.8

3

31
& THE CONSTRUCTION A«5 IS A STATEMENT, IN PARTICULAR, AN
a ASSIGNMENT STATEMENT. THE “TYPE’ STATEMENT IS ANOTHER KIND OF
A STATEMENT WHICH CAUSES EACH OF A LIST OF EXPRESSION VALUES TO
a BE TYPED BACK TO US (ONE VALUZ PER LINE). WF CAN PUT MORE THAN
A ONP STATEMENT ON A LINE BY SEPABATING THE SUCCESSIVE STATEMENTS
A BY SEMICOLONS (AS ABOVE). A SEMICOLON AFTER THE LAST STATEMENT
A ON A LINE IS OP 'IONAL.
4 WE CAN MAKE AN ASS1GNMENT INSIDE AN EXPRESSTON, OR ®E CAN BOTH
A TYPE AND ASSIGN IF WE WISH.
Te-A/ (C+-8B8B-1) + 100; TYPE T,C

-271.“

2

TYPE P « LCC + 1
111869
TYPE CAT « DOG - 3;
ERROR UNO1 DOG IS UNDEPINED
A THAT DIDN’T WORK BECAUSE I FORGOT TO GIVE A VLAUE TO THE VARIABLE
& DOG. I’LL DO SO AND TRY AGAIN. NOTE THE ERROR MESSAGE FROM
a LCC’S EXECUTOR, WHICH WAS UNABLE TO CONTINUE AFTER FINDING AN
a UNDEFINED VARIABLE.
DOG + 5
TYPE CAT - DOG - 3
99997
TeJeReLeN=Ne0; A WE CAN ASSTGN A VALUE TO A VHOLE SET OF VARIABLES.
TYPE T+J+K+LeMeN; & THEY WILL ALL BE ZERO.

0
IJKLMNOPQRSTUVWXYZ « 5; TYPE IJKLMNOP; a4 LCC IGNORES THE REST.
5
A WE CAN TEST THE VALUES OF VARIABLES BY MEANS OF AN ‘IP’ STATEMENT.
a SXAMPLES ARE:
IF A < B THEN TYPE 3 ELSE TYPE O
3

IF B+P # LCC THEN TYPE 9999

T,

74

9999

(75 JLUS JEUN S gL]

NE WN =

8 o8 gp S0 08

Appendix J

4 IF WE WANT TO PERFORM MORE THAN ONE ACTINN DEPENDING ON A

A CONDITION, WE CAN COMBIME A SFT OF STATEMENTS INTO A SINGLE
A COMPOUND STATEMENT VIA THE STATEMENT BRACKETS { AND }.

A THUS WE CAN TYPE:

IF A/B < P THEN | T <« 3 ; W « U ; TYPE T+W };
IF T =P THEN IP A # B TYEN TYPE 3 ELSE TYPE 4 ELSE TYPE §

A NOTE THAT ANY STATEMENT (EVEN AN IF STATEMENT) CAN FOLLOW A
A ‘*THEN’ (OR AN “ELSE’).

a SO MUCH FOR THY BASIC ‘DESK CALCULATOR’ FEATURES OF LCC. SUPPOSE
WF WISH TO WRITE A PROGRAM AND STORE IT INSIDE LCC. THUS FAR
IN THIS CONVERSATION, NONE OF OUR STATEMENTS HAVE BEEN KEPT
AFTER BEING EXECHTED, THOUGH LCC HAS SAVED THE VALUES WHICH WE
ASSIGNED TO OUR VARIABLES. WE CAN SAVE STATEMENTS WHICH ARE
TO BE CALLED OUT LATER FOR EXRCUTION BY GIVING THEM “STEP
NUMBERS’ WHICH BOTH IDENTIFY THEM FOR OUR FUTORE OUSE AND ALLOW
LCC TO ORDER THEM PROPERLY. AS AN EXAMPLE, LET’S WRITE A
STMPLE PROGRAM TO COMPUTE FACTORIALS.

o>>p 0> >

J.1: PFACT + 1;

THE STFP NUMBRR, 3.1, CAN BE SEPARATED INTO TWO PORTIONS, THE
INTEGER PORTION, WHICH IS THE “PART NUMBER’, ARD THE FRACTIONAL
PORTION. SINCE THE INTEGER PORTION IS 3, THIS STFEP IS STORED
IN PART 3, AND THE PRACTION INDICATES ITS POSITION RELATIVE TO
OTHER STEPS IN PART 3. PART NUMBERS MUST BE BETWEEN 1 AND 9999,
AND THE STE® FRACTION MUST BE BETWEEN .0001 AND .9999. LFADING
7ZEROS IN THE PART NUMBER AND TRAILING ZEROS IN THE FRACTION MNAY
BE OMITTED.

LET’S GO ON WITH ODR PROGRAM.

o> b bo>>b

20 FACT « PACT & N; A WE’LL COMPUTE N! AND PUT IT INTO FACT.
3: P N =1 THEN RETURN ;
.QO: NN~ 1 H

S: GO TO 3.3; A WE CAN TRANSFPR CONTROL 1. A NUMBERED STEP,

A NOW LFT’S SEE WHAT PART 3 LOOKS LIKE.
DTSPLAY PART 3 ; A THIS WILL TYPE OOT THE STEPS IN PART 3.

FACT - 1;
FACT « PACT ¢« N; A WRE’LL COMPUTE N! AND PUT IT INTO FACT.
IF N = 1 THEN RETURN ;

NeN-1;
GO TO 3.3; 4 WE CAN TRANSFER CONTROL TO A NUMBERED STEP.

a NO¥ T’LL GIVFE A VALUE TO N AND CALL PART 3. FEXECUTION WILL BEGIN
A WITH STEP 3.1 AND PROCEED TO SUCCRSSIVELY HIGHER NUMBERED STEPS
A UNLESS WE EXPLICITLY TRANSFER CONTROL WITH A ‘GO TO’ STATEMENT.

Appendix J 75

N « 5; PART 3

TYPE FACT
q
A HMMM... THAT’S NOT 5! --- 1 GUESS I HAVE A BUG.
A OH, YES; STEP 3.5 SHOULD GO TO 3.2. I’LL CHANGE IT BY RETYPING
A STEP 3.5. THAT WILL PRASE THE OLD STE. AND REPLACE IT BY MY
A NEW ONE,
3.5: GO TO 3.2 ;
A NOW TRY AGAIN,
NS ; PART 3
TYPE PACT
120
a4 THAT’S BETTER. LET’S FIXY STEP 3.3 SO IT WILL RETURN THE VALUE
a OF FACT.
ALTER STEP 3.3 : “*RETURN’ - ‘RETURN PFACT’
A THAT CHANGED THE TEXT OF STEP 3.3 BY SUBSTITHUTING ONE STRING FOR
A ANOTHER., THE KEYWORD ‘STEP’ WAS OPTTIONAL IN THYS ALTER
a STATEMENT, AND I CONLD HAVE USED A *,’ IN PLACE OF THFE *‘:°.
DISPLAY STEPS 3.3 TO 3.5; A LET’S CHECK THE TAIL END OF OUR PART.
3.3: IF N = 1 THEN RETUPN FPACT ;
3.4: NN -1 ;
3.5: GO TO 3.2 :
A LOOKS O.X. A FURTHER WORD ABOUT THAT DISPLAY STATEMENT -- 1IN
A SPECIFPYING A GROUP OF ONE OR MORE STEPS OR PARTS, THE KFYWORDS
A ‘STEP’ AND °‘*STEPS’ ARE EQUIVALENT EVERYWHERE IN LCC, AS ARE
A SPART’ AND ‘PARTS’. MOREOVER, IN MOST CASES, SUCH AS THIS
A ONE, THE KEYWORD “‘STEP’ MAY BE OMITT&D. THUS I COULD JUST
A AS WELL HAVE SAID
A DISPLAY STEP 3.3 TO 3.5
A oR DISPLAY 3.3 TO 3.5
a NOR I’LL TRY PART 3 AGAIN.
Ne63; PART 3
720
N+ 10:;PART 3
3628800
N+Q; PART 3;
1
ATTN AT 3.2
A THAT WENT INTO A LOOP, AND I HAL TO HIT THE “ATTN’ KEY TO GET
A ouUT OF 1T. I GUESS THE PROGRAM IS STILL RUGGY.
A I’LL THINK ABRQUT IT. * * * * *
TYPE FACT,N 3§ 8 I WONDER WHAT ™Y VARIABLES ARE NOW?
0
-15

A 04, I SEE -- PART 3 WON’T WORK FOR ANY VALUES LESS THAN 1.
a I‘LL PIX IT RY ADDING ANOTHER STATEMENT.

3.15:¢ TT N < 0 THEN RETURN PACT ;

N « 0; PART 3 & TRY AGAIN.

i

716

Appendix J

A THAT’S MOCH BRETTER. NOTE, HOWEVER, THAT T STILL HAVEN’T GOTTEN
A OUT OF MY ORIGINAL LOOP (YOO CAN TRLL BY THE INDENTATION - 7
A SPACES INSTEAD OF 4). T CAN SAY ‘GO‘’, WHICH WILL GO ON FROM
a THR POINT WHERE I HIT “ATTN’, BUT THAT WON’T DO MUCH GOOD.

a I’LL TRY IT ANYWAY TO SHOW YOU.
60
'
ATTN AT 3.2
A YOU SEE, I’M BACK IN THE LOOP AGAIN. TO GET OUT, I’LL FORCE AN
a END TO PART 3 BY GOING TO STEP 3.15.
GO TO 3.15
0
8 FACT STILL HAS THR VALUE OF ZERO BECAUSE IT WAS ERRONEOUSLY
A MULTIPLIED BY THE ZERO VALUE OF N, NOTE ALSO THAT N HAS BEEN
a COUNTED DOWN AGAIN BY THE LOOP.
TYPE N
-5
8 WE CAN HAVE PART 3 ASK US POR A VALUR OF N BY USING A REQUEST
A STATEMENT.
3.05: 2N
PART 3
AT 3.05 N «5; A I°LL SE™ N TO S.
120 .
A WE CAN INCLUDE OUR OWN MESSAGE IN THE REQUEST BY PUTTING A STRING
a RETWEEN THE QURSTION MARK AND THE VARIABLE NANE (N).
3.05: ? ‘TYPP N FOR N!’ N
PART 3
TYPE N POR N! 4
2u

A WE CAN USE ANOTHAER PART TO CALL PART 3 REPEATEDLY. WE’LL USE
A PART 25. ULRT’S OSFE A “NUMBER’ STATEMENT TO GENERATE THE STEP
A NUMRERS AUTOMATICALLY.

NUMBER AS 25 RBY .1

25.1: PART 3

25.2: 2?2 ° TYPE 1 TO 50 ON, O TO STOP * FLAG;

29.3:IF PLAG = 1 THEN GO TO 25.1;

25.4: .
4 THE AUTOMATIC NUMBRRING IS TURNED OFF BY PRESSIRG THE RETURN KEY
A IMMEDIATELY AFTER THE STEP NUMBER IS TYPED TO US.
PARPT 25; A NOW CALL OUR PRCGRAM.

TYPE N FOR N! 1

1

TYPF 1 TO GO ON, 0 TO STOP 1
TYPE N FOR N! 6
720

TYPE 1 TO GO ON, 0 TO STOP 1
TYPE N ?OR N! O
1

TYPT 1 TO GO ON, O TO STOP 1
TYPE N FNR Nt 8
40320

T

Appendix J 77

TYPE 1 70 GO ON, 0 TO STOP 1

TYPE N POR N! 2.4

'

ATTN AT 3.4

A OB, OH -- I’M IN A LOOP AGAIN. ILL PLANT A ‘PAUSE’ STATEMENT
A INSIDE IT TO SEE WHAT IS HAPPENING.,
3.21: PAUSE ; A THIS WILL GIVE ME CONTROL AFTER STEP 3.2 IS DONE.
GO; A NOW I’LL GO ON WITH THE LOOP.
PAUSE AT 3.21
TYPE PACT,N; A I’LL TAKE A LOOK AT THE VARIABLES.
15604, 49567
~7.6
GO ; A IF I SAY GO, THE PROGRAM WILL GO THROUGH THE LOOP AGAIN.
PAUSE AT 3.21
TYPE FACT,N
-134198. 6628
-B8.6
A AS YOU CAN SEE, _JR PRCGRAM DOESN’T WORK POR NON-INTEGERS.
A LET’S FIX IT BY TRUNCATING N WHEN WE ENTER PART 3.
3.06, N « iN;
& NOW TO GET RID OP THE PAUSE STATEMENT. 1I’LL USE A ‘DELETE’
A STATEMENT, WHICH WILL ERASE 1T.
DELETE STEP 1.21
GO; A LET’S GO ON.
ERROR GO10 STEP 3.21 CRANGED; GO CANNOT BE USED
A OH,OH -~ I FORGOT THAT I CAN’T CONTINU® NORMALLY AFTER I DELETE
AN ACTIVE STEP. THERE ARE A NOUMBER OP WAYS TO RECOVER FROM
THIS SITUATION, BUT THE SIMPLEST IS TO START OVER. TO DO
THAT WE HAVE TO SET OUT OP THE CURRENT PART CALLS, AND THE
EASIEST WAY IS TO EXECUTE AN “FXIT ALL’ STATEMENT, WHICH
WILL TAKE US BACK TO THE ORIGINAL USER STATE. REMEMNBER THAT
CURRENTLY W< ARE IN PART 3, WHICH WAS CALLED PROM PART 25,
WHICH WAS CALLED BY ME, SO OUR CONTROL NESTING DEPTH IS 2
{I COULD THUS USE TWO SIEPLE ‘EXIT” STATEMENTS INSTEAD OF
THE “EXIT ALL’).

IP WE AREN’T SURE WHAT OUR CURRENT CONTROL STATE IS, WE CAN
PIND OUT BY MEANS OF A ‘DISPLAY RETURN STEPS’ STATEMENT,
WHICH WILL LIST THE STEPS CURRENTLY BEING EXECUTED. LET’S
SEE WHAT OUR STATUS TS ROW.

PP O>DPDPDPDPDPD

DISPLAY RETUORN STEPS

L 2 23

.21

25.1

[2 X
A THE “s%s’ INDICATES AN IMMEDIATE STEP, WHICH IMPLIES THAT WE,
A RATHER THAN A SAVED PROGRAM STEP, ARE IN THE CONTROL CHAIN.
A NO7TF THAT WE »®™° "4g LIST TWICE; WF ARE IN CONTROL NOW
A (TOP ENTRY) ™ PART 25, WHICH WOULD NORMALLY
A RETURN CONT.uL Tu u. * ENPRY)., THF “EXIT ALLY,
A HOWEVER, ISN’T NORMAL; .. < THE CONTROL CHAIN SO THAT
A CONTROL REVERTS TO THE ORIGln... ‘T STATE WHERE ONLY A
A SINGLE “#*¢’ WOULD BE DISPLAYED.
A THE AMOUNT OF INDENTATION WHICH IS DONF BEFORFE LCC GIVES UP

Appendix J

A CONTROL TO LET US TYPE A STATEMENT DEPENDS ON THE NUMBER OF
A TIMES WE ARE THEN IN THE CONTROL CHAIN, WHICH IS THE NUMBER
A OF ‘#++’ ENTRIES IN THE “DISPLAY RETURN’ LIST. INITTALLY WE
A ARE ON USER LEVEL 1 (IN THE CHAIN ONCE) AND LCC WILL INDENT
A U SPACFS. FOR USER LEVEL 2, INDENTATION WILL BE 7, FOR LEVEL
A 3 IT WILL BE® 10, FOR LEVEL 4 IT WRAPS AROUND TO 1, THERE-

A APTER, FOR HIGHER NESTING LEVELS THE INDENTATION WILL FOLLOW
a THE SEQNENCE

a 4, 7, 10, 1, 4, 7, 10, 1, <.

4 LET’S GO ON.

EXIT ALL
DISPLAY PART 3; a LET’S SEF WHAT PART 3 100KS LIKE.

3.05: 2?2 “PYPE N FOR N!* N

3.06: N « §N;

3.1z FACT « 1;

3.15: IP N < 0 THEN RETURN P®ACT ;

3.2: FACT « FACT * N; a4 WE’LL COMPUTE N! AND POT IT INTO FACT.
3.3: IF N = 1 THEN RETURN FACT ;

J.80: N+ ¥ -1 ;

3.5¢ GO TO 3.2 :

PART 25 ; a LOOKS PINE, NOW IT SHOULD WORK FOR ALL REAL VALUES OF N.
TYPE N FOR N! 2.4 i
2
TYPE 1 TO GO ON, O TO STOP 1
TYPE N FOR N! -34.8
1
TYPE 1 TO GO ON, O TO STOP 0
A THAT’S ENOUGH OF THAT. WE CAN NOV SAVE PART 3 ON A FILE FOR USE
A DURING SOME FUTURF INTERACTION SESSION. I’LL PUT IT ON THE
A FILE ‘FACT?3’,
SAVE PART 3 AS FILE ‘FACT3’
A THAT CREATED A NEW FILE NAMED ‘FPACT3’ AND STORED THE TEXT FROYN
A PART 3 ON IT. THE TFEXT OF PART 3 WILL BE RESTORED IF WE LOAD
a SPACT3’ (USING A “LOAD’ STATEMENT) DURING A FUTURE CONVERSATION
A WITH ICC.
OFF; A LET’S LOG OFF AND END THIS SFESSION.
ON LCC PROM 16:35:48 TO 17:17:12
CPy TIME USED: 00:00:06:86

SERssmia

