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FOREWORD
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TDR-62-100 with identical title. Subseguent to this
publication, an error was discovered in the value of
dynamic pressure used in calculating the force and
moment coefficients. This report was prepared by the
University of Minnesota and presents the revised data .
in a format identical to that used in ASDwTDR—Gz—IOO.(Eﬁffzg§5729

This report was submitted by the authors in Dec-
ember 1968.

This technical report has been reviewed and is
approved.
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GEORGE A. SCLT, Jr.
Chief, Recovery and Crew Station Br.
Air Force Flight Dynamics Laboratory
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ABSTRACT

The tangent force, normal force, and mcrkent co-
efficients versus the angle of attack of ten different
types cf parachutes have been determined by means of

4 wind tunnel measurements. Models formed from sheet
metal as well as made out of non-porous and porous

: cloth were used. The nominal porosity of the cloth

= = varied from 10 to 275 ft3/ft2-min under a differen-

= : tial pressure of 1/2 inch of water. This corresponds

= to a range of effective porosity from 0.003 to 0.096.
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= - The aerodynamic coefficients have been related
3 to the effective and nominal porosity characteristics

- expressed as derivatives with respect to the porosity
;; - tem .

L It was found that the static stability of all

: types of parachutes could be significantly improved

2 through higher pcrosity, although this reduces slightly
the air resistance of the parachute.

e Uil g 7,

YPTY




3

i i

[

LTI

AR R

s

L

AFFDL-TR-71-58

TABLE OF CONTENTS

Section

I. Introduction

II. Experiments . . . . .

. . . . L] . . . . - - . .

2.1 Coordinate System and Coefficlients

2.2 Models

2.3 Test Arrangement and Procedure .
IIT. The Concept of Effective Porosity .
Iv, Results and Analysis

References

Appendix A

Appendix B

Appendix C

Appendix D

!

L] - . . 3 . 3 . - - . . . . .

. . .
* . . . * a . - 3 -

. L3 . - . . - . - . . . - .

Tangent Force, Normal Force,
and Moment Coefficlients of
Conventional Parachute Types

Dimensionless Profiles of
Parachute Canopies . . . . .

Effects of Suspension Lines
onn Aerodynamic Coefficients

Development of the Parachute
Balance System . . . . . . .

Page

=

[ W)
\n (&} (o)}

(OV)
(@)

. 54

. 56




SO S Gl DN S U

Figure No

l.
2.

15.

16.

17.

AFFDL-TR-71-58

LIST OF ILLUSTRATIONS

Parachute Coordinate System and Forces .

Models of a 10% Flat Extended Skirt Parachute

in Wind Tunnel . . ¢ ¢« &« o o o

L . L] L] * L] .

Model Suspension ¢« « o o« o o o o o o o o

Model Suspension and Strain Gage Balance
Arrangement . . . . .

Normal Force Sené%ng Element . . . . . .

Tangent Force 'Sensing Element . o . o « o .+
Derivation of the Term "Effective Porosity"
(Ref l) 3 [ ] . ~ - L] * [ ] * ® * * * L] o L] L] *
Effective Porosity versus Density Ratilo

(Re f‘ l) L] * ® . * L ] .

Effective Porosity of Various Cloths . o o

Tangent Force Loerficient versus Angle of l
Attack of Various Parachutes « . « . + « &
Normal Force Coeffilcient versus Angle of
Attack of Various Parachutes . . ¢« ¢« o o o &
Moment Coefflcient versus Angie of Attack
of Various Parachutes . ¢« ¢ ¢« ¢ ¢« ¢ ¢ o « @
Stable Angle of Attack as a Function of
Effective Porosity for Several Parachutes .
Tangent Force Coefficient at Stable Angle of
Attack as a Function of Effectlive Porosity
for Flat Design Canopiles o o ¢ ¢ ¢ o o o o o
Tangent Force Coefficient at Stable Angle of
Attack as a Function of Effective Porosity
for Formed Gore Canopies o o o o o « o o o o
Models of a Ribless Guide Surface Parachute
InWind Tunnel . . ¢ ¢ ¢ ¢« o ¢ ¢ ¢ o o o o &
5lope of Moment Coefficient Curve at Zero
Angle of Attack versus Effective Porosity
foir Several Parachutes . . . .

vi

12

12
13

19

20

21

22

23

23

25

26

At

PR

.
cay e2mBALon

Srhoa

RTIRETAE PN,

o R
A N s orateg! Lt
i

<3

P




S

AFFDL-TR-71-58

Flgure No
18.

A-1.

A-3.

A-Y,

A-8,

A-9.

A"lOo

A-11.

Page

Drag Coefficient at Zero Angle of Attack as
a Function of Effective Porosity for
Several Parachutes . « « « « « « « o o « » » 28

Characteristic Coefficients versus Angle of
Attack for Circular Flat Parachutes of
Various Nominal Porosities o« ¢« o o « « « . . 34

Characteristic Coefficients versus Angle of
Attack for 10% Flat Extended Skirt Parachutes
of Various Nominal Porosities . . . . . « « 35

Characteristic Coefficlents vs Angle of
Attack for 14.3% Full Extended Skirt
Parachutes of Various Nominal Porosities . . 36

Characteristic Coefficients vs Angle of
Attack for Conical Parachutes of Varlous
Nominal Porosities ¢ « o o o ¢ o o o o « o o 37

Characteristic Coefficlents vs Angle of
Attack for Personnel Guide Surface
Parachutes of Various Nominal Porosities . . 38

Characteristic Coefficlients versus Angle

of Attack for Ribless Guide Surface Para-
chutes of Various Nominal Porosities Based
OnDd 0090010000000-0-50039

Characteristic Coefficlents versus Angle

of Attack for Ribless Guide Surface

Parachutes with Spollers for Various Nominal
Porosities Based on Dg « o o « o o + « « . o 40

Characteristic Coefficlents vs Angle of
Attack for Ribbed Guide Surface Parachutes
of Various Nominal Porosities Based on Dg . 41

Characteristic Coefficients vs Angle of
Attack for 50" Prototype Diameter Ribbon
Parachute of 20% Geometric Porosity. . . . . 42

Characteristic Coefficients vs Angle of
Attack for 100" Prototype Diameter Ribbon
Parachute of 20% Geometric Porosity ., . . . 43

Characteristic Coefficients vs Angle of

Attack for 50" Prototype Diameter Ribbon
Parachute of 30% Geometric Porosity . . . . U4

vii




ST TTTOLATE LS . m, I mImT et

=
=

1 AFFDL-TR-71-58 e
3 Figure No Page E
E A-12, 50" Prototype Diameter Ribbon Parachute Model j%
4 of 30% Geometric Porosity in Wind Tunnel . . . 45 |
A-13. Characteristic Coefficients versus Angle of .

Attack for 50" Prototype Diameter Ring Slot 5

Parachute of 20% Geometric Porosity . . . . . 46 2

A-14, Characteristic Coefficients vs Angle of Attack B

for 100" Prototype Diameter Ring Slot Para- 2

chute of 20% Geometric Porosity . « . « « « « 47 &

A-15, Characteristic Coefficients versus Angle of §

Attack for 50" Prototype Diameter Ring Slot 3

Parachute of 30% Geometric Porosity . . . . . U8 z

B-1, Profiles of Guide Surface Parachutes for 4

Formed Metal Models . o « « ¢ = o o« o « &« o « 50 =

c-1. Effect of Suspension Line Diameter on 3

Characteristic Coefficlients of a Clrcular
Flat Parachute Model . . ¢ ¢ ¢« ¢ ¢ ¢« ¢ ¢ ¢ o o« D55

L g

D-1. Test Section Assembly with Sting and Drag
Link * L] L J * L] L] e . . L] L ] Ll L ] L] . L] L ] L] * . L] 5 7

Ty
,l‘
ALK

D-2, Normal Force Coefficient versus Angle of
Attack for Circular Flat Parachute (with
Sting and Drag Link) o o « o « o o o o o o o o 57

D-3. Test Section Assembly with Drag Link, no
Sting L] L] * L ] [ d - * * L d L] L] L] L] L ] L] L] * L d L] L 58

D-4, Normal Force Coefficlent versus Angle of
Attack for Circular Flat Parachute Model
(Drag LINK ON1Y) v & v o « o o o « o« o o o « » 58

D-5. Test Section Assembly with no Sting, no
Drag Link L] . ] L] L] ° L] L] » L] L] * * * L] - L] L] 60

D-6. Normal Force Coefficients versus Angle of
Attack for Circular Flat Parachute Model
(no Sting, no Drag Link) « o « o = o o o o o o 60

D-7. Test Sectlon Assembly with Sting only, no
DragLink..................61

"»;W&’é‘ﬁ.ux&b;mm.» 5 .'M&’%NﬁW&WW%&%ﬁWﬂ'Mﬂ%&% At Tl ‘u’é’ﬁ

D-8, Normal Force Coefficient versus Angle of
Attack for Circular Flat Parachute (Sting .
Only ) (] L] [ ] L] * L] . . L ] L] L] L] » L L ] L] L ] * * L] 01

.

D-9, Normal Force Coefficlent versus Angle of
Attack for Circular Flat Parachute Model
(with final test arrangement) . . . . . . . » 03

viii




i

H

&
£
H

£
z
-
g
Ry
Fd
£
ES

2
3
i
=
=
%
&
3
Tz

AR (LY YOS

LTI

SRIEI IR

AFFDL-TR-71-58

Table No
1.
2,

B-5.

LAl Talaiatat s s And Lo § e A S S SRR S e A S s Rt ek

LTIST OF TABLES

Fila2xible Parachute Models under Consideration

Aerodynamic Coefficients of Parachutes with
Various Nominal Porosities . & o o o o o .

Stability and Drag Parameters at Zero Angle

of Attack . . « + o .

] . . . [ . . L] L] . .

Formed Metal and Fabric Parachute Specifi-

cations ¢« ¢« ¢« + . . .

Dimensionless Profile
Parachute , . . . . .

Dimensionless Profile
Skirt Parachute . . .

Dimensionless Profile
Skirt Parachute . . .

Dimensionless Profile

Dimensionless Profile
Surface Parachute . .

L] 3 [ . . . . 3 . . .

for Circular Flat

L L] L] L] L] . . * . L -

for 10% Flat Extended

for 14.3% Full Extended

L d L] [ ] ® L v * L4 - . -

for Conical Parachute

for Personnel Guide

. L] L ] L] - * L d . L] L] L4

. 32,33




AFFDL-TR-71-58

O
(o]

o
o

2 =2 K/ O o

8

]

LIST OF SYMBOLS

Nominal porosity
Effective porosity

Drag coefficient

Pitching moment coefficient ("moment coefficient")
Normal force coefficlent

Tangent force coeffilclent

Design diameter

Nominal dlameter

Projected or in-flight diameter
Total inflated model length

Inflated canopy depth
Moment arm

Suspension line length

Pitchimg moment ("moment")

Normal forcg

Dynamic pressure = %pVe
Canopy area based on Dg
Canopy area based on Dg
Canopy area based on Dp
Tangent force

Velocity

Angle of attack

Air density

SUBSCRIPTS
Based on design diameter

Based on nominal dlameter

Based on projected diameter

X

g

e 3 sy b 2t Mooty | . A bt d ) 4 AR et o <Kl i ] i
R N A N R b e S T At PR A T i

ot g 1. A

Y

iy

P
R

c et et ded
RRTRTP RPN v {0k LR e

b

o
h




Sy aS; smgm ﬂmmw

RCREC AL

vey ey

gy

8 g

it g o e AL o LN S e L i ek
T T T A AT 1L I RGO G P AP RN 5 N e TR SRR SR IR PP mn e poers

SECTION I
INTRODUCTION

The performance characteilstics of most conventional
parachutes, and their range and mode of variation, are fairly
well known. One of the most interesting aspects of parachute
performance 1s 1ts dependence on the air permeabllity of the
parachute material under the particular operating conditilons.
The alr permeability of the cloth 1s a function of the Reynolds
and Mach numbers under which the parachute has to function.
These relatlonships have been subject to speclal investigations,
as, for example, reported in Ref 1, Section 4,

The aerodynamic characteristics of any parachute
made out of porous materlial depend strongly on the effective
porosity, and since 1its performance 1is governed by the aero-
dynamic characteristics, one may state that each type of
parachute functions to a large extent in accoirdance with 1its
effectlve porosity. Ther=fere in the following chapters an
attempt 1s made to present the aerodynamic parameters of ten
conventional parachute types as functions of effective por-
osity.

Since the effective poroslity can be calculated for
a wlde range of conditions (Ref 1), the parameters presented
in thls report can be used for the calculation of the rate
of descent and for an approximate determination of static
stabllity features and dynamic stabllity behavior depending
on the altitude and velocity at which the parachute functions.
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SECTION II
EXPERIMENTS

2.1 Coordinate System and Coefficients

———

In this study the physical coordinates of the
parachute are used as the maJjor axes (Fig 1). For this .
case, the following forces and moments are encountered:

a) The tangent force, T, acting along the center-
line of the parachute., This is a drag force
at zero angle of attack.

b) The normal force, N, acting perpendicular to
the parachute centerline.

¢) The moment, M, defined as the aerodynamic moment
about the nominal confluence point of the para-
chute suspension lines. The moment is positive
when in the same direction as the angle of
attack and is stabilizing when the slope ch/aa
is less than O (Ref 2).

The force and moment coefficients were calculated
from test data and employed the conventional zerodynamic
relationships (Ret 2), where

op = gm (1)
cN=§S-, (2)
and
M
My = 3D - _ (3)

Equations 1 and 2 use direct force readings from the wind

tunnel balance system. In the general case, we see from
Fig 1A that

N = Ny + Ny (4)
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M = Ny d . (5)

E However, the measurements indicated that over a wide range
of angle of attack

Nij<< Ny (6)

o i ettt U i e s

and in the following evaluation N; has been neglected. A

similar experience was reported in Ref 3. Then from Fig 1B
we see that

sl
ErEey

N = N, (4a)

and

M

Np - k . (52)

By conventlion, the nominal dlameter 1is used for all calcu-
? lations where more or less conventional flat design parachutes
3 were used, and the area "S" and length "D" above were based
on this diameter Dy (Ref 2). In the cases of the ribbed and
ribless guide surface parachutes where 1t 1s impractical to
define a "nominal" diameter, the construction diameter, Dy,
and its related circular area were used (Ref 2), while the
characteristic leneth, "D", above was adjusted to 1.33 Dj.

Vi améu.iha!lmﬂ:.w.ummm.m.u,»m.m.;‘.ii.m‘u.'lu.g A o

PR

o 2.2 Models

Parachute models were fabrlcated from rigid non-
porous metal, flexible non-porous polyethylene, and from
flexible porous textile materials. Including the formed

metal and polyethylene models, a total of 45 parachute models
were studied.

The ten types of parachute canoples were:
1) Circular flat

2) 10% flat extended skirt
3) 14.3% full extended skirt

Y AT bl Sl bt s
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L) Persomnel guide surface
5) Conical - 28 gores circular flat with
4 gores removed
6) Ribless guide surface
7) Ribless guide surface with spoilers
8) Ribbed guide surface stabilization type
9) Ribbon
10) Ringslot

Gore patterns and des’'gn details for these parachute types
are given in Ref 2.

To obtain in-flight shapes for the formed metal
models, a number of dimensionless profiles were obtained
from Ref 4 and other publications. Details of these profiles
are shown in Appendix B of this report. The flexible poly-
ethylene models were constructed from the same gore patterns
as the textile models,

The nominal diameter Dy of all rigid and flexible
circular flat type parachute models was in the order of 16
inches. The ribbed and ribless guide surface parachutes had
design diameters Dy of 12 inches and 12,6 inches respectively.
All so0lid cloth circular flat type parachutes had 28 gores
and 28 suspension lines. Significant dimensions of all models
are given in Table A-1, Appendix A.

The suspensicn lines used on all flexible models
were nylon core cord, MIL-C-5040B, with a 0.096 inch diameter.
In order to establish the effect of these rather thick sus-
pension lines on the aerodynamic coefficients, a limited
number of wind tunnel studies were made using much thinner
suspension lines. This study is described in Appendix C;
results show that the effect of the suspension line diameter
on the measured forces 1s negligible.

The textile models were made from nylon cloth
varying in porosity from 10 to 275 ft3/ft2~min under a differ-
ential pressure of 1/2 inch of water or over a range of
effective porosity from 0.003 to 0,096,
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All the rigid metal models were fabricated from
i/16 inch aluminum or copper with four 1/8 inch steel wires
used as suspension lines.

Figure 2 shows the rigid, polyethylene and textile
mod2ls of the 10% flat extended skirt parachute mounted in
the wind tunnel.

n

.3 Test Arrangement and Procedure

A horizontal return, atmospheric pressure wind
tunnel with a test section of 38 x 54 inches was used to
conduct these experiments. The models were suspended in
a plate turntable as illustrated in Figs 3 and 4.

Initial tests indicated that upstream disturbances
infiuenced significantly the basic stability parameters of
the parachute canopy, and it became necessary to make the
frontal area of the suspension system as small as possible
and to arrange all of the balance components downstream of
the model. Appendix D describes these disturbance effects
and the modifications made in the test seftup to remove them.

As seen in Fig U4, the normal force sensing element was mounted

near the apex of the parachute between the model and the
sting. The tangent force pick-up was mounted between the
strut In the rear of the test section and the centerline
sting. Both sensing elements incorporate standard strain
gage circuits mounted on elastic cantilever beams. The
strain gage balances are shown in Figs 5 and 6.

The wind tunnel Mach number was M = 0.1 for most
of the tests, yielding a Reynolds number of approximately
6 x 10°. In a few instances, strong model vibraticns re-
quired a speed reduction, thus lowering the Reynolds number
to approximately 4 x 105, Approoriate Reynolds numbers
are given later, together with the graphlical presentation
cf the results.

In conducting the tests, the turntable was set to
the highest positlve angle of attack which would still allow

R15tok, P Wbl

. Y
xosh” Wabibaiion !

et

)

S

i

‘l g

Ry T R S

Ea ™)




C. TEXTILE MODEL

FiIG 2. MODELS OF A 10% FLAT EXTENDED

SKIRT PARACHUTE IN WIND TUNNEL
7




TURN-TABLE
LOWER PLATE

FIG 3 MODEL SUSPENSION

MODEL DRAG

SENSING
FORWARD STING ELEMENT
SUPPORT

[*NC'RMAL FORCE

BRACING WIRES YPARACHUTE

SENSING
ELEMENT

5/1 6’ 14
!

oo REAR STING *
38 SEARING

- > VERTICAL STING
SUSPENSICN LINES SUPPORT

e gd ———————

o 29 34 — -

FiG 4. MODEL SUSPENSION AND STRAIN GAGE
BALANCE ARRANGEMENT,

‘:!‘ ‘,f:‘* g ¥ i hity
okt 2 R

. y y —_y oo i Et Bt
PR AN %”}ﬁmm.%ﬁﬁﬁ%ﬁ:%%mmg B33

g noda e

&
RS

S A A S bt g
o SR A ol R e U

X

OB Ao )
T I

i

;‘1‘)
3,

i)
ol

o A
T )




! ) P
v Ty ﬁwig Lertishu’] HW

w oy,

R T TR

ERe PR ACE A Ta e g

AT

5 415 WY R

FIG 5. NORMAL FORCE SENSING ELEMENT
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FIG 6. TANGENT FORCE SENSING ELEMENT




proper inflation of the textile parachute and a force re-
cording was accomplished by means of a Century amplifier and
recording oscillograph. The angle of attack was then suc-
cessively reduced by five degree Iincrements and the forces
were recorded. To insure adequate accuracy at the smaller
ang.es of attack, force measurements were taken in increments
of 2% degrees. The turntable was rotated in this manner

to the highest negative angle of attack and then returned

In the same stepwise way to the starting point. This process
wae repeated four times in order to assure satisfactory
accuracy of the recordings. The balance systems were stati-
cally calibrated at the beginning and end of the test.

From the oscillograph recordings, the aerodynamic
coefficlents were derived as described above, and all results
are presented in detall in Appendix A of this report. To
ascertain the repeatability of the test system, a number of
the parachute models were again tested at a later date, and
it was found that the coefficients deviated less than two
per cent from the original data.

SECTION III \._

THE CONCEPT OF EFFECTIVE POROSITY*

The porosity, also called air permeabllity, of
parachute cloth 1s conventionally expressed as the volumetric
flow rate of air through a uunit area of cloth at a specified
differential pressure (usually 1/2 inch HQO and at sea level
conditions).

For aerodynamic and dynamic considerations, a dimen-
sionless term, wnich relates a fictitious but physically
conceivable free stream velocity "V" and an assumed average
velocity "U" through the total area of the porous sheet, is

*Abstract from Reference 1
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preferable. Flgure 7 shows schematically the cloth as a
grid in free alr flow and the derivation of thils dimen-
sionless term.

This ratio, U/, 1s called the effective porosity
of the cloth, and has been established for a number of para-
chute materials (Ref 1). Figure 8 shows the effective por-
osity of 40# nylon cloth (nominal porosity = 120 ft3/ft2-m1n)
versus the density ratio o. From this graph 1t can be seen
that effectlve porosity decreases with decreasing density
and with increasing differential pressure ratilo.

The possible consequences of the change of effective
porosity, in particular, its decline with alr density, on
the drag and stability of parachutes 1s quite apparent.
Therefore, the effective porosity has been utilized as a
parameter wherever possible throughout this report. A for-
mula which can be used to convert nominal porosity (ft3/ft2-min
at 1/2 inch H,0 differential pressure) into effective porosity
is given in Appendix A. Filgure 9 presents effective porosity
of cloths used for several models of varying nominal porosity
as a function of differential pressure at sea level.

In order to determine the effect of cloth porosity
on the drag and stabllity coefficlents of the various para-
chutes, models were fabricated from three different materials
(non-porous rigid metal, non-porous flexible polyethylene,
and porous flexible cloth). From these three types of models,
the dependency of the aerodynamlc coefficients upon the por-
osity was readily apparent. It should be pointed out, however,
that the differences observed between the non-porous metal
models .and the non-porous flexible models also include the
effect of a difference in the basic shape of the canoples.

The variation of the aerodynamlic parameters among
the flexible models of different porosities can be understood
as being primarily the effect of the poroslity variation.

All flexible models which have been measured are
listed in Table 1.
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FIG 7 DERIVATION OF THE TERM “EFFECTIVE

EFFECTIVE POROSITY C :%

WITH AP=2vZ C=—
2aP

[P —

M T AR LK e R

A e lesartrs st St

FIG 8. EFFECTIVE POROSITY VERSUS DENSITY
RATIO (REE 1)

POROSITY"(REF 1)
010
) aP/aP,
O-Og B N 0.10 r
008} + 020
|« 040
oo7f -
006 e 080 —
¢ 1.00 ------- .
005} © 1.20 /.7-‘/
T - 1.4'0 """" /‘/z"‘_;.
004160 ==
gl
003 8 == ==
-7 8
8-
-o/
002
40°NYLON CLOTH
MIL-C-70208,TYPE 1
NOM. POROSITY-=109
00 10.1 p 04 05 06 078 9 1

who o ol b s R DN bt e A SR a2 b Lt s A RS RS LR A




g;
7
g
gf‘»
£
B
E
4
3
i
;
E
g
£
E
:
£
4

\, R ek o N i Lt O T et I- il v“r‘.‘ " ‘:“. ": ‘4( i
Y " e oyt -0 7 ¥, ed by Gl el H it T TERTT RS0 T T T T (AT XUt 3 (e d 1005 LG MR EE DI Ll S HAE ’ flety
T T T F AL] R N s MU i P S L A i At Al ARG o
T T T R N A R L R PP e ny A vy [ s *! A f
* 1]

10

/(NOMINAL POROSITY

(o]
\e)

POROSITIES = (30, 120 & 275)
O @] © O
n 6)] ~ @

O
N

C—EFF’ECT(I;/E POROSITY FOR NOMINAL
w

02

z
3
3
3

—

NOMINAL POROSITY = 10

(RIGHT HAND SCALE)
) T ] 7
NOMINAL POROSITY = 30

——
"]

01

15 20 25 30 35 40 45 50
AP-INCHES OF H,0

FIG 9. EFFECTIVE POROSITY OF VARIOUS CLOTHS
13

y

NOTE ALL NOMINAL
POROSITY AT AP=05'H,0

120 3//

5

[®)
o
~N
EFFECTIVE POROSITY FOR NOMINAL POROSITY =10

-

(S
3
C




i S

Caa

3

PRI et e T N

= e
SERTERE =RE

Bt =0t

NILVE=C

ISNOD

chyt e L NG T Ul e i ot I T ..é;,ﬂ i

YIANN STIAON ILNHOVEVE JaIX3d L 31awt

Y ::x
ixm‘ﬁmf _;, Hh :.

'_...

PATNEF RIS

,:_.: :,

]

.

oz R I T T P adf3030ad , 00T “30Ts Bupy
0f puB 02 I ] I T adf3o30ad ,06 ‘30TS BUTY
0z e g B el adfgogoad ,,00T ‘uUoqqry
0f pue 0z Y B A R R R adf3030ad ,0¢ ‘uoqqry
--——- 2h0® PuB OTO° 02T PuB OF 90BJANS SPTND P2AqTY
- - 2H0® DUB OTO® 02T Pue Of S wmwwwommommwm
R ‘2H0* “0TO" wmwm Peo| Sie pue ‘02T ‘0E ‘OT ‘O e0BJINg 9PTNY S89TATY
L 960° puE 240° GLz puB 02T 20BJANG OPTND TIUUOSISJ
c e 2h0* puE 0T0* 02T Pue Of TEOTUOD
- - - - - ‘2h0* “0TO" mmwo.cmw Glz pue ‘02T ‘O ‘0T ‘O 4ITAS POPUSIXT 3BT %OT
---— - 2r0* pue €00° 02T Pue OT 4aTAS POPULGXI TINA €°HT
- - ‘240 “0TO" mmwo.umw GLz PUB ‘02T ‘O ‘0T ‘O 98Td JETNOITD

o' ALISONOd D 'ALISONOd 3AILD3LST NIN-1d7 19 ‘ALISOYOd TVNIWON SuAL SLNHOVEYS

OH NI 2L iv ALISOMOd

14




i

ORI P

ey

NS 5 Y o 5

4T AL RTINS Ypn

e

B

4 4 ARG AR
Glduias 45 i I HIM A LR A T R R U A N M
' m "
.

A O
,

SECTION IV
RESULTS AND ANALYSIS

The magnitude of the vertical veloclity of a des-
cending parachute at a glven air density depends on the
coefflclient of the tangent force at that rarticular angle
of attack at which the tangent force coincides with the
force vector of the suspended weight (Ref 5). This con-
dition 1s satisfied when the normal force diminishes to zero,
In order to maintain such a position it is necessary that
at this particular point the moment characteristic of the
parachute 1s such that 1t develops a restoring moment agalnst
any deflection of the parachute from this particular angle
of attack. In view of the definitions shown in Fig 1, the
slope of the moment curve must be negative, dCy/da <O, in
order to satisfy thls condition. The angle at which Cy = O
and dCM/aGC<:O is called the stable angle >f attack,Xgtapie-

The derivatlive of the moment curve 1s also a sig-
nificant parameter in the study of the dynamic stabllity
of the parachute, and thz question of whether or not a para-
chute ever attains this position 1s a complicated dynamic
problem. This 1s particularly true for paracnhutes whose
stable angle of attack differs from zeroc. Practice shows
that these parachutes may attaln a gliding motion without
much osclllation or they may oscillate, sometimes violently,
within thelr range of instabllity. Because of dynamlc effects
they also may overshoot this range considerably (Ref 5).

The results of the measurements on all parachutes
under investigation are shen in Appendix A. An inspection
of the graphs shows that for moderate porosities, only the
gulde surface, ribbon, and ringslot parachutes are statically
stable at zero angle of attack «I'stable = 0). For these
parachutes then, the aerodynamic coefficients at zero angle
of attack are significant for performance calculations, and
excluding other effects such as structural fallure, partial

15
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Inflation, etc., one may expect a motion free of oscillations
wlth a well defined rate of descent.

Many graphs indicate a variation of the stable angle
of attack with porosity. Thils is true for all parachutes,
including ribbon and ringslot parachutes. However, ribbon
and ringslot parachutes are built with geometric or inherent
porosity, while the solid cloth parachutes are made of pcrous
textile sheets which change their air permeability depending
on Mach and Reynolds numbers as shown in the investigation
concerning effective porosity. Ribbon grids will also change
thelr effective porosity; however, it appears that those
changes will be much smaller than the changes for cloth, at
least in the region of incompressible rlow.

In view of the relationship between effective por-
osity and the aerodynamic characteristics, the results of
the experiments shall be discussed on the basis of the ef-
fective porosity applicable to the particular tes. conditions.
In this respect, Table 2 shows a summary of data which is
considered to be most significant for practical applications.

An inspection of Table 2 indicates that the effective
drag coefficients, CTa:stable’ (Ref 5) are generally in agree-
ment with those determined by full size drop tests and slightly
lower than the data of Ref 6, which was obtained from drop
tests of models in a large hangar. Any discrepancies in
all of the above data may partially arise from the fact that
in one group of experiments all conditions are well known
and the parachute models may also be at least partially
restrained, whereas in free drop tests uncontrolled conditions
may exist. For practical applications, it 1s suggested to
base calculations of the rate of descent on data provided
in Ref 2, but to adopt the information contained in this
report for considerations related to the stability character-
istics (Cgtables 4Cq/dec) and to predict the changes of the
effective drag and stabllity induced through the variation of
the effective porosity.
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Turning now to the results obtained with the solid
cloth parachutes, Figs 10 through 12 show the characteristics
of the circular flat, 10% flat extended skirt, and personnel
guide surface parachute models expressed in the form of the
tangent force, normal force, and moment coefficlents versus
angle of attack with cloth porosity as parameter. It can be
seen that by increasing the cloth porosity, the angie of
attack at which the parachute 1is statically stable will be
reduced. For these three parachutes, there seems to exist
an almost linear relationship between the effective porosity
and the stable angle of attack, as shown in Fig 13;

Assoclated with the Iincrease in effective porosity
is a general decrease of the tangent force coefficient at
the stable angle of attack, CT _stap1e» @s 1llustrated in
Fig 14. It is interesting to note that for an effective
porosity which 1is high enough to cause for all three para-
chutes static stabillty at oCc = O, the drag coefficient of
the three quite different parachutes appear to be converging
to approximately the same value,

Since an Increase in effective porosity denotes,
in principle, an increased alr flew through the parachute
cloth, one would intuitively expect in all cases a decrease
in tangent force. However, the ribless and ribbed guide
surface parachutes show an Increase in tangent force with
increasing cloth porosity through a considerable porosity
range (Fig 15). Although this phenomenon has not been thor-
oughly studlied, it appears that the increase 1in drag coef-
ficlient with porosity 1s caused by a change of shape of the
canopy. The airflow through a low porosity parachute is
small, and the Internal pressure in the canopy is nearly
equal to the stagnation pressure while the pressure on the
outside of the guide surface 1s somewhat lower. This causes
the guide surfaces of the canopy to bulge out into the flow.
When the porosity 1s increased, the internal pressure de-
creases slightly but the pressure acting upon the guide
surfaces remalins essentlally unchanged, which leads ultimately
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to a certaln zollapse of the gulde surfaces. A gulde surface
parachute with collapsed gulde surfaces differs in shape con-
siderably from a fully inflated one as Fig 16 indicates.
It may be noted that the rigid and polyethylene

gulde surface parachutes deviate from the pattern set by
the preceding cloth parachutes, However, since the poly-
ethylene canopy 1s not stable about zero angle of attack
(Fig A-6, Appendix A), and since the rigid models differ
conslderably from the Inflated shapes of the fabric models,
these two -data points are somewhat insignificant. The
resulfs indicate, however, that a ribless gulde surface
parachutaitalso needs a certelin porosity in order to be stat-
icall&:shhble.

, The preceding analysils was primarily concerned
with the stable angle of attack and the related drag coef-

ficlerit: As mentioned earlier, the slope of the moment curve .

is another important characteristic. For example, an in-
spection of the graphs in Appendix A indicates that the cir-
cular flat parachute, generally known to be unstable at zero
angle of attack, has no side force (CN = 0) and no deflecting
moment (Cy = O) at zero angle of attack. However, the slope
dCM/BCr is positive, and therefcre this parachute will not

descend wlth zero angle of attack without violent oscillations.

The moment derivative 1ls also a significant factor 1in the
calcuiation of dynamic stabllity. Therefore, the values of
dCy/doC at zero angle of attack of the cloth parachutes under
discussion are shown in Fig 17 as a function of effective
porosity. Here a high negative value indicates a strong
stability at zero angle of attack, while a positive derivative
indicates instability. The same results are numerically
presented in Table 3,
In a similar manner, Fig 18 shows the change of
the drag coefficient, Cch: o= Cp, with effective porosity.
For perfurmance analysis, one could go one step
(dCM/dCr)m =0
ac

further and establish the derivatlves

and
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T P TSRS F Bt RSO U
e L SELEOLIST O T AR TH = St ST RS
i M et 1 5.2 I

L
E
E Parachute || Effective® | Nominal¥*#* (acpw/alx )<I=O p
& Type Porosity Porosity de g"l o =0C
-: _# et
£ 0.1020 275 +,0004 0.6:0
B
i Circular
fag;
? Flat 0,0140 30 +,0052 0,670
¢ (G Op) 0,0062 10 +,0068 0.730
i
; 0 0 (Rigid) | +.0076 0.680
¢
, 0 0 +,0120 C.780 '
0,1020 275 0 0,614
g
%
i 10% 0,0550 120 +,0044 0.626
Extended 0.0140 30 +.,0100 0.614
Skirt
(Cpg D) 0,0062 10 +,0092 0.594
: 0 0(Rigid) +.,0128 0.585
0 0 +,0100 0.684
: Personnel 0.1020 275 -.0032 0.700
| Guide
| Surface 0.0550 120 +,0008 0.787
§ (CMo’QDo) 0 0 (Rigid) +,0040 0,837
; 0.1020 275 -,0040 0.754
it
% Ribless 000550 120 - 0120 00861
| Gulde 0.0140 30 -,0120 0,788
i Surface p o
; O 'Y e L 4
| (ChgsOpg) 0062 10 0080 0.7
| 0 0 (Rigid) -.0400 0.779
;! 0 0 +,0120 0.908
: * at AP = 3" Ho0 (test condition) ** at AP = 1" Hp0

TABLE 3, STABILITY AND DRAG PARAMETERS AT ZERO ANGLE OF ATTACK
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POROSITY FOR SEVERAL FARACHUTES
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é‘ "_—TRT"_;' and one would have the changes of the aerodynamic
;~§ parameters with effective porosity. The detalled investi-
T:E gation of the effective porosity (Ref 1) showed the rela-

E % tionship
f g C = Coo"
?%

LR Ui

in which Co 1s the effective porosity under sea level density,
0, the density ratio, and n an experimental factor. Com-
bining then this relationship, or values extracted from Fig 8,
with the pertinent data presented in this report, one can
predict the performance characteristics of solid cloth para-

: £ chutes under various environmental and functional conditicns.
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APPENDIX A

TANGENT FORCE, NORMAL FORCE, AND MOMENT COEFFICIENTS
OF CONVENTIONAL PARACHUTE TYPES

This section contalns the complete data from w?* .d
tunnel tests on ten conventional type parachutes fabricatced
from different materials. For thz most part, these tests
were made at a Reynolds number of 6 x 105 and a Maci. number
of 0.1. The exceptions are noted individually.

Included in this section is Table A-1 which gives
the complete nomenclature of all models used in the study
and a nunber of constants used in data reduction.

Llthough Table A-i shows that both a metal and
a cloth model of the ribbon parachute with 30% geometric
porosity and 50" prototype diameter were tested, results are
presented for only the rigid metal model. The cloth model
did not inflate at any angle of attack, as seen in Fig A-12.

The nominal porosity "b" (ft3/ft2-min) obtained
under a differential pressure of 1/2 inch of water can be

converted to the effactive porosity for the same differential
pressure by the eguation

¢ = (3.57Tx 10‘4)b . (A.1)
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APPENDIX B

DIMENSIONLESS PROFILES OF PARACHUTE CANOPIES

The fabrication of rigid parachute models made
from sheet metal required a knowledge of the "in-flight"

profile of the various types of parachute cunopies, These
profiles were obtained from existing data as follows:

1)

¥)

To

Phetographic gore centerlines of the circular
flat, conlcal, personnel guide surface, and
10% flat extended skirt canopiles are found

in Ref 4, Reference & contains the data for
extensions on the perscnnel guide surface
model.

Gulde surface profiles were nbtained from

Ref 7, and are presented in Fig B-1 of this
appendix.

The 14.3% full extended skirt profile was
obtained from Ref 2.

The ribbon and ring slot canoples used the
same proflile as thes cilrcular flat canopy:
increase the accuracy in reproducing the metal

models frcm photographlic profiles, and to eliminate the
rized for scaling models }rom these profiles, dimensionless
profile tables were derived for the circular flat, conical,
personnel gulde surface, 10% flat extended skirt, and the

14.3% full extended skirt canopies.

These dimensionless

profile tables relate the maximum, or planform radius, Xxp,
to the x and y components of pcints on the profile as

f'ollows:

1)
2)

3)

The maximum radius, Xps Was measured

The vertical, or y axis was divided into
equi-distant points

From these points the horizontal distance
to the photographic gore centerline was
measured and designated as "x"
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4) Using the bass of the parachute skirt as the
zero reference line, a distance "y" up to the
y axis and the corresponding "x" were divided
by Xy to glve the dimensionless ratilos y/xp
and x/xp, respectively,

Tables B-1 through B-5 present these dimerisionless
profile ratios for the canopies listed above. Accompanying
each table 1s a sketch showling the profile of the canopy.
These ratios can be used to obtain the photographic gore

centerline profile for any desired maximum inflated diameter.
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APPENDIX C

EFFECTS OF SUSPENSION LINES ON
AERODYNAMIC COEFFICIENTS

As a supplement to the work described in the maln
body of thils report, wind tunnel tests were conducted on a
high porosity circular flat parachute model (nominal porosity =
275 ft3/ft2-min) to determine the effect of suspension line
dlameter on the aerodynamic characteristics.

The cloth parachute models, as recelved from the
manufacturer, were filtted with 0,096 inch diameter suspension
lines, as compared to a true scale diameter of 0.006 inch.
Since this 1s a rather large departure from scale size, it
was consldered necessary to determine the errors introduced
in the data due to the increased drag area and wake turbulence
of the thicker susnension lines,

To determine the effects of the larger suspension
lines, two consecutive test serles were conducted on the
circular flat canopy, first with 0,096 inch diameter sus-
pension lines, and then with these lines replaced by 0,020
inch diameter lines. The results of these tests are shown
in Fig C~1, We see that the tangent force coefficlents are
reduced by less than 2% when the thinner lines are used.
Similarly, the error introduced in values of the normal force
and moment coefficients 1s less than 1%.

The small errors caused by the larger suspension
lines were deemed negligible, and all further tests were
conducted with the models as received from the manufacturer
(1.e., with 0,096 inch diameter suspension lines),.
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APPENDIX D

DEVELOPMENT OF THE PARACHUTE BALANCE SYSTEM

For several reasons it was decided to develop a
balance system which could be used for all types of parachutes
and in which the forces would be measured by strain gage
elements in connection with & recording oscillograph., Figure
D-1 i1llustrates the general arrangement; 1t 1s seen that the
parachute 1s supported by a sting which 1s held in a hori-
zontal posltion by means of suspension wires and a strut
mounted to two turntables, The tangential force of the para-
chute activates the drag link mounted ahead of the parachute
canopy which served at the same time as the confluence point
of all suspension lines. The normal force can be picked up
at a straln gage sensing element fastened to the apex of the
parachute canopy. The drag link 1s rigidly fastened to the
front suspension point while the strain gage link which mea-
sures the normal force rides on the canopy with a minimum of
friction on the center sting. The normal force sensing ele-
ment 1s shown in the main body of this report in Fig 5.

With an arrangement of this nature, a number of
these component measurements were carried out, and Fig D-2
illustrates a resultant normal force curve versus angle of
attack, We see that the normal force 1s somewhat affected
by the upstream disturbance of the drag link as well as by
the center sting. In order to investigate the effect of
this suspension system, the entire arrangement was changed
to a configuration as shown in Fig D-3, It can be seen that
in this arrangement the center sting 1s removed and the canopy
is held in position by a rear sting. Measurements with this
arrangement show a noticeable difference as a comparison
between the Figs D-2 and D-4 indicates.

The upstream tangential force sensing element was
of considerable size and to investigate whether the size of
this center obstruction would Influence the measurement
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FIG D-1. TEST SECTION ASSEMELY
WITH STING AND DRAG LINK
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. FIG D-3 TEST SECTION ASSEMBLY WITH DRAG
LINK, NO STING
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significantly, the arrangement was further modified to a

configuration as shown in Fig D-5, In this suspension system

the center obstruction is reduced to a somewhat streamlined

body of minimum slze and the long center sting 1s completely

removed. Measurements with this arrangement provided a char-

acteristic normal force curve as shown in D-6, Since in

this configuration the suspension of the model includes a
minimum of obstructlions, one may concider that this suspension
would be the most 1deal to obtain the aerodynamic character-

istics of a parachute canopy with suspension lines running

together in one confluence point. However, such an arrange-

ment 1s somewhat impractical since it is very difficult to
arrange the center of the parachute canopy perfectly in line
with a zonfluence point and the direction of alr flow,
Furthermore, this arrange:ient would not provide the possi-
billity of measuring any tangential force, Therefore, the

arrangement of a thin center sting would be highly desirable,
and Fig D-7 indicates thils modified suspension system.

Measurements with this more practical arrangement

were carrled out and a characteristic curve of normal forces

versus angle of attack is shown in D-8. A comparison between

Figs D-6 and D-8 indicates a certain deviation in the normal
force, obviously caused by the Introduction of the center
sting. However, this arrangement would offer the possibility
of measuring tangential as well as normal forces and would

also assure a proper alignment of the parachute model with
the direction of flow,

After these preliminary examinatlons, 2 new suspen-
sion system was designed which 1s 111ustgated in Figs 3 and 4

of the main body of this report. In this conrlguration the

parachute model 1s centered by a very thin sting which can

slide with the minimum of friction in the front suspension

supporting point., The apex of the canopy rests on the center

sting by means of the normal force. pickup which 1s gecured

against rotation by means of a keyway and slot. The sting

rests at 1ts rearward end on the tangent force measuring
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be expected particularly from unstable parachutes, the rear
vertical strut is provided with a bearing support which
assures a minimum of friction if contact between strut and
center sting occurs. It can be seen that in thils arrange-
ment all supporting elements were made as small as possible.
Measurements with this arrangement were carrled out and the
normal force curve 1is shown in Fig D-9. A comparison of
Filg D-9 and Fig D-6 indicates that this new normal force
curve deviates very slightly from the curve which had been
established as the 1deal.curve for force measurements.

In view of the results of this investigation, the
balance system as illustrated in Figs 3 and 4 was made the
standard system and has been used rfor the establishment of
all aerodynamic data shown in this report.

It is worthwhile to mention that the difference
in the method of measurement and model suspension was most
strongly noticeable 1in the normal force curves, The effects
of the upstream disturbances and the center sting were hardly
noticeable in the tangential force measurements and were
practically so small that reliable measurements of the d4if-
ferences were impossible.
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