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I.1 DERODUCTION

Chapter V of Volume I of this report describes the
MOSTAB modular stability derivative program in a general way, avoiding
technical details.

It 1s emphasized that the version of MOSTAB described here
(MOSTAB~B) does not include rotor stall or compressibility as a function
of azimuth. It is adequate for the approach conditions considered in
this report, but is not suitable for higher speeds, for which later
versions of MOSTAB should be employed.



I.2 PROBLEM DEFINITION AND NOTATION

LDefine a coordinate system x, y, z fixed to the mass
of a tlyins vehicles The exact location of x, y, 2 is chosen
tor convenicnce during the calculations of aerodynamic forces.
JOne convenient definition for the location of x, y, z on a single
rotor helicopter is:

(1) Origin at the intersection of the main rotor shaft
and the fuselage waterline,

() x axis lying in the vertical plane of symmetry and
parallel to the fuselage waterline,

Aircraft are essentially a combination of aerodynamic
and inertial elements, These elements may be classified generally
into four groups:

(1) Rotating airfoils (lifting rotors, propellers)
(2) Stationary airfoils (wings, empennage surfaces)
/) Body structures (fuselage, nacelles)
(L Momentum engines (turbojets, rockets)

Generally, each of these aerodynamic elements produces
a force and a moment, which sum (in a vectorial sense) with those
forces and moments produced by all other elements. The final sum
representc the total load that sustains flight and forces maneuvers.

Now consider an aircraft with N aerodynamic elements.
Det'ine a reference point for each element which is convenient for

lertermining loads produced by the element. Locate an axis system
Xgo Yo 7y at each element i, 1 = 1, 2¢<+N, such that the origin of

Kyo Ny Uy ir en-incident with the i'th element's reference point.
Fix Hie Voo ri -14ly to the mass of the element reference point,

and consYrain thls coordinate system to remain parallel to the
verall vehicle frame of reference, x,y,z.

The force and moment vector generated by each element,
i, and applied %o the rest of the aircraft can be represented by
the six-row column vector fi‘ The first three elements of f1 are

the force components (in Xy ¥ys 2 coordinates) applied to the

i
aircrat't by element i, The last three elements in fi represent

the components of the moment applied to the airframe by element i.

B,
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The coordinate system xi, Yir 2y has three transla-

tional and three rotational veloeity components vhich identity

the velocity of Xg9 Yy 74 with respcet to inertial space. Define
Vigr & six-elenent column vector whose first three rows reprecent
translational velocity components and last threce rows represent
rotational velocity components of the motion of Zys Yy Py in

inertial space. In an analogous manner, define Vaq 29 the velocity
of xi, Vyo 24 with respect to the alr in the viecinity of elemeni i.
Note that, in general, Vo4 and Vag nre different becuuse the zir ir

the viecinity of an aireraft is not still with respect to irnertial
space. Detalled discussion of' these air motions in deferred to w
later section.

An alrcraft 1is usually controlled by mechanical recon-
figuration of selected aerodynamic elements. Familiar measures of
the control configuration are alleron angle, elevator angle, throttle
setting, collective pitch setting, etc., To represent these control
variables, identify the M-row column vector c. Each element of c
represents a control setting. For the present consideration, the
order of the elements in ¢ is not relevant. Also, control co=-
ordinates which are not varied during a flight case under study
(e.g., flaps, throttle) may either be included in ¢, or may
be included elsewhere as physical constants of the system and
excluded from c.

The force and moment contributed by each element of an
alreraft are generally functions of the local aerodynamic environ-
ment, the flight control settings which affect the element, and
sometimes the lnertial velocity and acceleration of the element.
In terms of previously defined notation, this statement can be
expressed as a functional mathematical equation:

£y =8y (Vo Vagr Ppg0 © Kpp =1, 2)) (1
i = 1, 2’0001\3

where the dot denotes differentiation with respect to time
(element by element of in) and KJ, j =1, 2,+++« are physieal

constants of the particular element ( wing span, chord, etc.).



Construct the 6NX1 column vectors f, Vi ¥y

by simply stacking the 6X1 columns fi’ Vigr Vag? and in, one on

top of the other, starting at the top with i = 1, All N equations
represented by (1) can then be written as

and \'rI

f=f (v vy, ¥, 0 Ky J =1, 20000) (2)

The force column f represents all the force and moment
components produced by all elements of the flight vehicle in x,y,z
coordinates. Now define p as the 6X! column vector whose elements
are the three force and three moment components of the total aero-
dynamic loading on the aircraft. In conventional NACA notation,
the elements of p are X,Y,2,L,M,N. These elements define the load
on the aircraft at the origin of x,y,z in x,y,z coordinates.

If the x,y, s, coordl.ates of each element's reference
point are defined, a matrix L can be assembled which relates p to
f as follows:

p=Lf (3)

L is a 6X6N array, and is a function of vehicle geometry
only. Thus, p is a function of Vis Vas vI, c and an unspecified

number of physical constants.

Let s represent an aircraft's inertial -relocity
expressed in x,y,z coordinates. s is a 6X1 column vector made up
of three translational and three rotational velocity components.
These components have been represented by NACA airplane notation
as u,v,w,p,q,r. :

If the x,y,z coordinates of the reference point for
each vehicle element are defined, a 6NX6 array, G, can be assembled

such that

VI = Gs (u)

The matrix G 1is a constant array which depends only on
vehicle geometry. Thus,

v. =G 8 (5)

While no proof is given here, it 1s easy to show that

L-GT

el A ot ol A ——
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It has been stated earlier in this work that the
aerodynamic velocity of each vehicle element usually is not the
same as its spatial (inertial) velocity, because the air surrounding
a vehicle in flight is also moving in inertial space. Neglecting
atmospheric wind for the moment, this relative air motion is due
to the presence of the vehicle itself, Momentum considerations
reveal that aerodynamic forces can be produced by a body with
finite dimensions only if that bodyaccelerates the local air mass.
Thus, the forces produced by a vehlicle element cause the surrounding
air to develop velocity components relative to space, and these so-
called '"interference velocities" impinge not only on the element
causing the air motion, but also on other elements of the aircraft.
Of course, this velocity interference changes the airloads produced
by the other elements from the magnitudes and directions that would
be developed if the air mass were still in space. It might be said
that interference velocities couple the elements of a flight

vehicle aerodynamically.

Let w be the 6NX1 column vector defining the spatial .
motion of the local air at all of the element reference points.
Then

A=V W (6)
The vector w will generally be a function of the
airloads produced by all of the vehicle elements, the aerodynamic
velocities at all of the elements,and the control settings. Also,

certain unsteady aerodynamic effects can cause w to be a function
of VI and #I as well. The functional equation for w can be written

as follows:
w=w (f, Var Vs #I, ¢, Ky» E=1,2:") (7)

where K , = 1, 2+++-are physical constants of the aircraft.

Usually, w is the most difficult quantity to estimate
for a flight vehicle. At this point,it must be assumed that some
model is available to define the function 7. Analytic, empirical
or intuitive models (usually a combination of these three) must be
assembled to define w before the dymamics of any flight vehicle
cen be studied.

The equations presented above represent the general
force and moment consideration for the loading of an aircraft in
flight. Some form of pilot (human or automatic) produces the
column c¢. Solution of the dynumic equations of motion for the
vehicle produces the '"velocity state" of the vehicle expressed hv
the columns s and 4, This information, along with the definition

>



ot the vehiele's vhysical configuration,enables one to compute p,
throupgh almultaneous solution of Eqs. (2) « (7). Figure 1 shows
‘hese mathiematienl Interrelationships in schematic form.

The entire zet of Eqs., (2) « (7) can be represented
by she funetional expression.

p-p(s § ) (8)

This equation is invariably a complicated, nonlinear assemblage of
tunctions actually involving p implicitly. Suppose a solution to
(%) {8 known. of the form

pt = pt (St! ét’ ct) (9)

Let Ap, As, AS, and Ac Lle small perturbations of p,s,8,
and ¢ from their "trim" or '"quiescent" values Pys 8¢s ét’ and Cy.

Iv the A cuantities (perturbation quantities) are small, Eq.

/

Crean be written in the linear form

Ap-_-psz\s¢PéA§+PcAc (10)

The matrices P_ and P, are 6X6 arrays, and P, is a

61X array (where M is the number of control variables). In general,
the numerical values of Pi» Py and P, are functions of S ét and

£ Thus, the trim values for s, § and c must be specified before

nurerical values can be assigned to the eclements in the rectangular
arrays,

(o

The elerents of P, P, and Pc are conventionally called

"eslapility lerivatives", For example, in conventional NACA nota-
sion, the first element of Ap is the perturbation longitudinal
torce on the ajirveraft, AX, and the first element of As is the
versurbed loncituiinal spatial veloeity, Au., If all perturbation
element: in A:, AY and Ac are zero except for Au, then

AKX = P_(1,1) Au.

Dividing b A and taking the limit as A =0,

1im AX oX
A =0 ltu " Ps(1’ ) =N

The osher olements of the rectangular arrays can be defined
in an analoyous manner, as partial derivatives.

6




Linear analysic techniques can be uced to stud: the {ymarnic
motions of an alreraf* in fliyht, if the array: in (/) are nuwericadly
defined. (Linear forme of the dynamic equations of notlon ure ena
to derive, and neced not be considered here), The "stability derive-
tive problem" is tr determine Ps’ Pé and Tc, given Pas. (#) = (7,

1.3 TRIM

Before the stability derivative matrices can be determined,
a "trim" condition must be specified (i.e., the quiescent condi‘ion.
of velocity state and control, B ét and oy nuct be known).
Certain interrelationships among the variables s gr &, and e oare
stated in defining a '"stability derlvative case'". These inter-
relationships essentially provide functional equations which can ve
solved simultancously with Eqs. (2) = (7) to €et the unknowm

trim columns s, ét and ¢, . These "interrelationships' that

come with the specification of a particular "stability derivative
case" will be called ''constraints" on the variables in ! - [TV,

To make this concept of constraints clear, consider the
following example of a particular stability derivative problem
statement.

Find the stability derivatives for H-19 helicopter in steady
flight at a constant altitude of 5000 feet with true airspeed
(TAS) = 90 knots. The ship is trimmed with zero sidzslip angle.
Welght = W, cg coordinates = x,y,z with respect to a specific
coordinate system.

The statement constrains the variables in Egs. (2) - (7!
by specifying altitude, rate of climb (zero in this case) and air-
speed, ''Steady" is normally interpreted to mean that ét = 0, and zll

rotational velocities (last three elements of st) gre zero. Zero

sideslip angle concstrains the second row in st'to be zero. Certain
physical constants (weight and center-of-gravity position) which
vary during a flight, and from flight to flight, are also specified,
Enough information must be given in (he problem specification <o
that this information, together with simultaneous solution of
Egs. (2) = (7), will yield all elements of Sy ét and ¢ .

The more detailed presentation concerning trim whieh follow.
considers only the cases where ét = 0. Althourh the basic concept

of trim does not necessarily require this conditionm, éf = 0 in
almost all practical stability derivative problems.



The problem of finding the trim columns Sy and ct is solved

mechanically by a pilot when he trims his aircraft. The pilot's
assignment appears in a form similar to the H-19 example given
above, He adjusts his flight controls and certain other parameters
(e.g., vehicle attitude) available to him wuntil the specification
is met, He 1is essentially solving a set of simultaneous nonlinear
equations by lterating on his command over the vehicle until the

resulting flight condition converges to his assignment specification

(to within certain required accuracy).

The method used by a pilot to trim an alreraft suggests
the approach to be taken here for finding the trim columns 8¢ and

c Define the L-row column vector t, whose elements include all

£
of those parameters available for adjustment to trim an aircraft
(usually t has six rows), and include certain elerents of ¢ and
usually information assoclated with the trimmed altitude of the
vehicle in space. For example, the pilot of a pure helicopter
adjusts the following six items to trim his ship for level flight
with zero sldeslip angle.

(1) Collective pitch.

(2) Lateral cyclic pitch.

(3) Longitudinal cyclic pitch.,

(4) Tail rotor collective pitch.

(5) Pitch altitude (conventional notation 8).

(6) Roll altitude (conventional notation ¢).

In this case, four elements of ¢ and two vehicle attitude
angles are included in t. If the requirement was to trim the

vehicle to zero roll angle, sideslip angle, B, would be included
in t in lieu of ¢.

The trim control column, Cys is generally a function of t:

c, =c (t, known constraints, known constants) (11)

t

The six trim variables listed above indicate a l1=to=1
relationship between certain elements of c¢ and the corresponding
elements of t. This is not necessarily always the case. For
example, longitudinal stick position may be defined as one element
of t. In most helicopters, longitudinal stick position affects
both lateral and longitudinal cyclic pitch angles (i.e., two

8




elements of ¢)., Nonlinear expressions may relate elements of
¢ to elements of t (e.g., an aircraft may include nonlinear
mechanical couplings between pilot inputs and control variables).

The column st can be calculated from the constraints of the
problem and the specification of t:

8, =8, (t, known constraints) (12)

For example, the numerical values of the elements in the last
three rows of s will ususlly be specified by the problem statement.
The second element (sideslip velocity) will either be zero, or it
will be included in t. The usual specification of airspeed and
flight path angle will allow calculation of the first and third
row elements of 8y from the cltitude rate equation. The solution

will normally be a function of the vehicle attitude variables in t.

From the definition of % outlined above, one sees that ct(t)
and st(t) can be directly calculated as soon as a numerical value
for t is available. With the statement that & ~ =0, simultaneous

solution of Eqs. (2) = (7) will eventually lead to the solution
of p. This process is represented by the functional expression,

p =p (t, stability derivative problem constraints,
physical constants) (12)

The unique value of t required to trim an aircraft must be determined
from EQ. (12) and the stability derivative problem statement.

The problem statement must require a specific value for p. This
"prequired" p column can be equated to the p column shown in 13),

to yield an L-row vector equation with t as its only unknown.
Remember that t itself has L-rows. This process produces L
(generally nonlinear ) equations in L unknowns (elements of t).

Let r be the "required" trim value for p; r will generally
come from the six equations of motion for the aircraft, as constrained,
by the stability derivative problem statement. Since t usually
contains elements related to vehicle attitude, and since the equations
of motion for a flying vehicle contain terms dependent on attitude,

r is generally a function of t.

r = r (t, problem constraints, constants) (14)

The trimming problem, in terms of the functional expressions
now available, can be stated very simply: Find t such that

p(t) = r(t).



Buzerical Solution for the Trimmed Condition (Trim Iteration)
In provious sections,certain functional expressions were

presented,  These oxpressions are summarized below for convenience.,

They retain thelr original statement numbers. Indication that

some of the expressions rely on constants known to the trim problem

is dropped. The vector 01 is also dropped, since it will be zero

for all trim cases considered using MOSTAB. The subseript, t,
indicating the trim condition in some of the previous expressions
of these equations, is dropped.

£ sf (VI, Var c) (2)

p =Lf (3)

vI -GS (l')

VA =VI - W (6)

W o=W (?, Vysr Vs ©) (7

c = C(t) (1‘)

S = S(t) (12) ;
r = l‘(t) (1“)

[t is assuned that explicit relationships of the forms shown
above are available to the trim problem (i.e., a numerical value
t'ar the left hand side of each expression can be determined 1if
mumerical values for the variables in the arguments are defined).

2as. (), (%) ant (6) are always linear (constant L and
i'e  The othera are generally nonlinear. Note that, even if t
i Inown, v eannot be explicitly determined because of the non-
linear invelvarsns of f and w in Eqs. (2 - (7).

pstimate e value of t that will trim the aireraft within
the t'ramework of the constraints given to the stability derivative
problem, Alco estimate w, Denote these estimated columns as te ’

i ow . Cleine Shiece ostimates, ealculate the following quantities:

10
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o

o
S, =8 (t.e) (v
Yio * Gs B
Yao V1o T Ve s
1‘0 =f (vIo’ Vao? co) {1
Yo =V (fo’ "r0? V1o* %o’ G
r =r (te) (i1
t, =t (or

Let the difference between the correct value (the courht trim
solution value) of each variable and the subzero value be dencted
by A (variable)., For example, iff t is the true value of f for

the trimmed aircraft, then

Af-ft-fo

and so on for all of the other variables. If the A quantities are
small, the nonlinear Egs. (2), (7), (11), (12), and (1&) micht
be suitably represented in the following linearized forms:

2)L f = fo + FVIAVI + rVA AvA + FC Ac

7)L w=w°+wFAf+HVAAVA+WVIAVI+WCAP
11)L ¢ =e + Cpat

12)L § - 8+ S'l‘ Ot

1h)L ror +R,At

The rectangular arrays, shown above as upper case letterc,
can be assumed constants if the A quantities are small. Thecse
arrays are functions of the original estimates t. and w_, and are

easily calculated from Egs. (2), (7), (11), (1&), and (1.) usin- =n
digital computer.
1"



The procedure for finding a trim solution now becomes that
of solving a set of linear equations for At and Aw.

Combining Eqs. (4), (6) and (‘2)1.’

v

A .G(co+8rAt)-(w°+AI) (23)

Subtracting (18) from (23), using (17) to eliminate Vio» O0€

gets
&v, = GS, At - (vo - 'e) -l (2%)
Eqs. (), (2);, (T)y, (1), (12),, and (24) can be combined
to get Av, as a function of (wo - v‘) and At, (Note that (vo - 'e)

is not the same as Aw. This quantity is known at this point, since
v, vas computed as Eq. 20) The resulting equation for AvA is*

by, = v,r at - v (\vo - v.) (25)
wvhere
-1
Vg = (1 eV Ry ¢ W,) (26)
and

Vy =V, [(1 - Wy Fyp - o) GBy - (WPt W) cT]
(21)

Noting that
&vy = G Sy At (28)
from Eqs. (4) and (12)L, EQs. (2)1;’ (")L’ (25), and
(28) can be combined to yield

f =t +F ot -F (v -v) (29)

*The notation 1 refers to the "unit™ array: elements with equal
subscripts are unity and all others are zero.

12



where

Fp = Fyp GSp + Fy, Vo + Fo Cp (30)
and
Fy=Fa 'y (51)

Combining (29) and (3),

P =Lf +LF, At - LF, (wo - "'e) (22)

Equating (1h)L to (32) = the requirement for trim - and
solving for At,
at = (Ry - TFy) [Lfo - r - LE, (v, - we)] (32)

This value for At can be substituted into (25) to get Av

A
and into(29) to get Af. These results can be substituted into
Eqs. (7)1.’ (ll)L and (28) to get Aw:

At this point, new estimates on t and w can be made:

telnew =t + At (34)

"elnew AR (35)

These new estimates on t and w can be used to repeat the

process again., The cycling can occur as often as time permits,
until the differences between the old and new estimates for te and

w, are within some acceptably small values, The chosen '"'accept-

ability limits' should be based on the physical dimensions of the
elements of w and t. One test procedure could be

> =
(acceptable tolerance on t) 2> EI e new = te old' (36)
all elements of t
> -
(acceptable tolerance on w) ZIwe new - Ve ol dl

all elements of w

15



Discussion of the Trim Search Iteraticn

While considering any numerical iteration process, the
question of convergence arises. This question will not be treated
with any mathematical approach here, The comments to be extended
are quite intuitive,

Whether or not the trim solution method outlined in the
previous section converges to a solution seems to depend on
two factors:

(a) The nature of the specific nonlinear functions used
to represent the aircraft's characteristiecs,

(b) The correctness of the original estimates, te and W

Certainly, the degree of nonlinearity characterized by
the aircraft's aerodynamic functions will affect the rapidity of
convergence, or indeed whether convergence occurs at all, If all
of the aerodynamic expressions are completely linear, convergence
to the exact trim solution will occur with only one cyc.e. On the
other hand, if the problem statement assigns a trim condition
within a flight regime unattainable by the aircraft, no trim solu-
tion can exist. Hopefully, the iteration search will indicate
this by faillng to find a solution.

For those "difticult" regions in which a trim solution does
exist, but may not be found by the iteration process, a more
sophisticated iteration method may be required, One such method
may be simply to add some of the higher order ( nonlinear ) terms
to be the '"first term only" Taylor expansions (2)L, (7)L, (11)L,

and (1L)L.

justified, if the solution can be found by invoking engineering
judgement to produce better initial estimates, The first-order
convergence method proposed here always must converge on a solution
if the initial guess is close enough.

The additional complexity of this approach may not be

The idea that the accuracy of che initial estimates might
affect convergence provokes one to consider a method for ' sneaking
up' on that "difficult" solution. This approach would proceed
as follows:

(a) Begin by finding a solution for trim in a nearby region
to that in which convergence has been found difficult.

(b) Progressively change the problem statement toward that
statement representing the difficult region. For each
step, compute a trim solution and use this solution as

the initial estimate for the solutien of the next step.
14



If the convergence technique becomes too time consuming,
certain simple changes in approach might be attempted to shorten
the computational time required., For example: the rectargular
arrays in the linearized Eqs. (2)L, (7)L, (II)L, (12)L, and (14) are

recomputed during each iteration cycle for the iteration approach
suggested in the previous section. It may not be necessary to do
this every cycle. Computing new arrays every M cycles (M > 1)

may save time but will not affect the ability of the method to
converge on a solution.

To see how this abbreviated method works consider Figure 2.
Let Vg be the required solution-value for y. The problem is to

find Xg Estimate Xy 88 the solution. Compute Yo and the gradiemt

(slope), s. (The slope, s, in this example, is analogous to the
linear arrays in vector expressions (2)L, (7)L, etc.) Using s, and

lthe known error Yg = Yoo determine x, as the next proposed

1
solution. Continue this process, but use the same slope value
each time, As one sees from this figure,the iteration is con-
verging on the solution, even though s is held constant.

Whether or not this abbreviated method shortens convergence
time depends on the complexity of the aerodynamic expressions -
particularly f and w. The linear arrays are computed, numerically,
column by column. Every time a column is generated in Fc, for

example, values for the elements in f must be calculated. If this
calculation is even moderately time=consuming, finding the numerical
values for the arrays will be very time-consuming. In this case,
the iteration process can probably be accelerated using the
abbreviated method.

I STABILITY DERIVATIVE CALCULATION

The linearized expression derived in the trim solution can
be used to generate the stability derivative matrices, The terms
For A&I and Wy, AWI must be added to Egs, (2)L and (7)L, respec-

tively, toaccount for the dependency of f and w on *I' Recollect

that these terms were not required for the trim case, because non-
zero 8 trim cases were not considered.

15



chmmEu.@L(M,%L(avam(ﬂmetMaMﬁ
AS terms, the following expression is derived:

o = L [FVI + By V (1= W B - WVI)] G:As
+ L [F\.,I - By, Vi (W By + va)] G;

+ 1L [FC - By, Yy (4 B + wc)] }Ac

Comparing (38) to (10) shows that the factors in braces are

the required stability derivative arrays.

I.5 ROTORS WITH FLEXIBLE BLADES

In previous sections, it has been assumed that the forces
generated by all N vehicle components can be represented by a
model having the form

£, = £, (in, Vagr V140 © KJ’ J =1, 2,0e00s)

181’ 2, """ N (1)

Given the columns Vi4) vAi’ in, and ¢ (along with the
physical constants), Eq. (1) can be used to calculate £, This

equation is not intended to represent dynamic interfacing between
f, and its functional argument. Eq. (1) is purely a static relation-

ship.

Most vehicle elements have independent dynamic characteristics.
Lifting surfaces and bodies have structural vibration modes. Engines
have lags and high frequency oscillatory characteristics. Usually,
these dynamic effects can either be neglected because they involve
frequency ranges far removed from those of interest for flight
dynamics considerations, or they can be included in some simple
peripheral manner (e.g., a simple lag on throttle command might be
used to represent engine dynamics). In the special case of rotors
with flexible blades, the dynamics of the blades must be considered,
because blade motion has an extremely important influence on
flight dynamics,

To say that blade dynamics have an important influence on
flight dynamics does not imply that a static function (1) cannot be
defined for a rotor with flexible blades. The function (1) is
called a ''quasi-static" representation when applied to a rotor
with flexible blades. In such a quasi-static representation, f1

16
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is still defined as a static function of the argument (i.e., no
dynamic characteristics are included in the transfer function
f, = £, (arg)). However, the dynamic motions of the blades are

included in that they affect the actual static value of fi in

a substantial manner,

In reality, time should be included in the argument of (1)
when applied to the flexible rotor. However, such dynamic effects
usually have little influence on vehicle flight dynamies. If
special rotor structural dynamics are being studied (i.e., flutter,
vibrations and some mechanical stability augmentation schemes),
the quasi-static assunption (1) 1is not appropriate, and rotor
dynamics must be considered.

Blade motion equations, written in a coordinate system
fixed to the rotation hub, generally sppear in the following form:

BJ =g J=ly 2, (39)

where B p is the coordinate of the blade's j'th degree-of-freedom,

(Flexibie blades have an infinite number of degrees-of-freedom,
as expressed by Eq. (3). The driving function CH usually

contains coordinates of all blade degrees-of-freedom, and time
functions known to the blade motion problem. This functional
dependency of g 3 can be expressed in the form

8.1 'SJ (51]:"]'1: 2y 300w, Bn;ﬂ'1) 2y 3,00, y, t, Kﬂy ] '1:(2“.'0‘)'>

where | 1s rotor blade azimuth position and K2 are physical constants

associated with the blade. Note that ¢ is a function of time, as
are the columns Vigr Vago in’ and c,

Each rotor blade applies a force and a moment to the rotating
hub, This phenaena can be represented in the form

frk.frk (Bn"f]'1’2: 3"'“:Bn’ﬂ'1) 2y 3yecemy 4, t, Koyr=1, 2...)
(41)

k = 1, 2...total number of rotor blades.

17



f‘r is a 0OX1 column vector containing three force and three

k
moment components which represent the loads applied by the k'th
blade to the rotating hub. These components are stated in terms
of some convenient frame-of-reference fixed to the rotating hub.

The rotating forces, fr s can be summed over all the rotor
k

blades, transformed to the nonrotating airframe through some
y-dependent transformation matrix, and time averaged. The result

is fiz
T |
f1=-;-/ [R W Y« ]dt (b2)
o all 'k
blades i

Although Vigr Vag? V140 and ¢ are generally functions of {

time, they can be considered constant while deriving the quasi- I
static rotor model (1). In this special case, the t can be removed

from the arguments of Eqs, (40) and (41). Also, since the

rotor 1s being treated as a quasi-static entiry, the degrees-of-

freedom associated with the Hlades can be assumed periodic over

the period 2x/0, where 0 is the constant rotor spin rate.

v =0t (¥3)

Because t has been removed from the arguments in Eqs. (40)
and (41), and because the blade degrees=of=-freedom move periodi=
cally with 2x/0 (which means over the azimuth angle 0 £ y < 2x),
Eq. (42) can be expressed in the azimutheaverage form:

en
o =-é—2./o‘ R (v) £, dy (b )

where b 1s the total number of blades and fr is fr for any
k
blade, Form (44) is possible because the motion is periodie., Thus,
all blades move in exactly the same way over one complete revolution.

Any practical solution of the blade motion problem requires
one to consider only a finite number of blade degrees-of-freedom.
In almost all case:s, only one degree-of -freedom needs to be consid-

ered.
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For the present development, suppose M degrees-of-freedom
are chosen to represent the flexible rotor blade. Define the
blade state column q as MX1 column vector assembled from the
B;] coordinates as follows:

q=} (45)

e -l

The g column is MX1 vector composed of all of the g

forcing functions, assembled analogously to Eq. (45). With
this notation, Egs. (39) and (40) can be written in the compact
form (dropping reference to the physical constants):

3 =g (q, 4, v) (46)

Generally, this equation must be solved numerically
because of the difficulties that arise when one attempts to expand
g. Classically, certain assumptions are made concerning the
blade's aerodynamic characteristics. The g column is expanded, and
the q and § dependent terms are transposed to the left side of (46).
Further assumptions allow a Fourier series approach to be applie
cable to the resulting linear differential equation in time varying
coefficients, until a closed form solution for q (t) is reached.

This approach is not necessary when numerical techniques
can be employed. The classical approach also becomes seriously
restrictive when special nonlinear rotor phenomena are being
studied.

A cguvenient state variable notation can be defined for
the q and q columns, Define the 2MX1 column vector {:

¢ =(g) (47)

To determine the blade motion numerically, first estimate a
value of { at y =0, and denote this state vector as ;e (0). With

this estimate, { (t)can be calculated by numerical solution of (L6).
Denote the value of { at y =2x, using Ce(o),aa §°(2x). 1r £, (0)

was correct, then
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¢, (2x) = ¢_ (0) (48)

because the blade motion is periodic over 0 < v < 2x. Of course,
condition (48) will seldom occur from the initial estimate., To
determine the correct initial condition, an iteration process can
be used that is, very similar to the trim search iteration used for
the entire vehicle.

After { (2x) has been computed, each element of Ce can be

perturbed (one at a time) a small amount, and a new { (2x) column can be
computed for each element perturbation. From these 2M calculatiors
of £ (2x), the matrix Zyq OB be assembled such that

A% (25) = 2y & (0) (49)

Each column, i, of Z,, is the column ;1 (2x) - ;o(ax), vhere
;1 (2x) is the state vector computed with the i'th element of
Ce (0) perturbed.

Now say that the true value of { (2x)is given by

¢ (2x) = §, (2x) + & (2x) (50)
and that the true value of { (0) is given by

¢ (0) = ¢, (0) + & (0) (51)
Since the blade motion is periodie,

¢ (0) =8 (2x) (52)
Thus, combining Eqs. (50), (51) and (52),

C (0) + &% (0) = §, (2¢) + Z, & (0) (33)

Solving for A% (0), the true initial condition is given by
£(0) =8, (0)+25 (0) =8, (0) 4 (1-2;0)™" [e, (2m)- ¢, (0)]  (5)

_ EqQ. (5%) would provide the exact initial conditiomn, if
(47) were linear in q, q. Many times the equation is quite linear,
but at extreme operating conditions (blade stall, compressidility
drag rise, etc.), (46) may be quite nonlinear. Such nonlinearity
vill cause the array Z,, to be a function of Ce (0). Por these

20



cases, the process outlined above for finding { (0O) may have to
be repeated several times, using the computed { (0) from Eq,

(54) for the estimate before the next iteration cycle., Note that
during the trim-search=iteration process, this blade iteration
process ‘akes place automatically.

After { (0) is known, one more integration can be performed
over 0 < y < 2x. This time, Eq. (4k4) will be solved along
with the blade motion equation. The result of this final sweep
vill, of course, represent the desired functional computation, (1).

The function (1) will be required for two different kinds
of calculations:

(a) The values of the variables in the argument of
independent of any other set of values for these
variables.

(b) The values of the variables in the argument of (1) are
removed from those values used for a previous computation
otfibyonly an infinitesimally small amount.

In case (a), the matrix Zyo W11l have to be computed. In case (b),
however, the zzo computed for the initial solution for f1 (using

the unperturbed values of the argument varisbles in (1) can be used
again for the perturbed computation. This procedure will save
considerable computer time and allow the rotor loads to be
computed separately from loads of other vehicle elements without
compromising program efficiency (i.e., { (0)can be found effi-
ciently in the rotor computational routiney otherwise, { (0)
would have to be included with the other elements of the t column
during the trim search phase).

During the trix search phase of computation, the column { (0)

will have to be inspected for convergence to a trim solution, along
with the t and v columns.
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Part I describes the Modular Stability Derivative J
Program (MOSTAB) in general terms. In Part I, an aircraft is
represented by functional relationships (as defined by Eqs.
(affe(?), (11), (12) and (14)) and by geometric relationships
(Bas. (3), (&) and (5)). The purpose of this work is to
define the specific functional and geometric models of an air-
craft presently used in the MOSTAB-B program. These mathematical
models will undoubtedly be revised and expanded as MOSTAB-B is used
to study specific vehicles operating in specific flight regimes.® .
It is believed, however, that the mathematical expressions derived
here are quite general, and are sufficiently flexible to allow
most modifications to be made with ease. In their present form,
the equations will apply accurately to a broad variety of V/STOL
(and conventional aircraft) configurations operating over large
regions of theirindividual flight regimes. Modification of the |
MOBTAB equations will probably occur when boundary regions (in-
volving special aerodynamic effects) are studied, or when vehicle |
configurations with very specialized components are considered.

Part II is divided into sections, most of which relate
directly to the equations of Part 1. Section 2 deals with
aircraft element force generation, and shows the development of
the equations required to represent functional Eqs. (2) of
Part 1. MOSTAB-B uses five basic subroutines to gpenerste the
general force colum, f, These are FORCE, BODY, LIFT, SWEEP and
ROTOR., S8Section 2 is divided into subsections, each addressing one
of these vehicle element subroutines. Because of the complexity
of the aerodynamic rotor analysis, the basic rotor ¢quations are
derived in Part III. The general equations presented in this I
part are simplified and re-presented (as progremmed in MOSTAB-B)
in Section 2D,

Section 3 shows the derivation of equations for the geomstric
matrices L and G, as defined by expressions (3) and (&) of Part I,

Seasticns 4, 5, O and 7 show derivations of the equations
used in MOSTAB to generate the functional relationships defined by
Eqs. (7), (11), (12) and (1) (respectively) of Pert 1.

Section 8 discusses the general matrix operation subroutines
used in MOSTAB-B. The equations used in the Bulerian coordinate
system transformation subroutine (EULER) are presented. The other
operational subroutines are discussed without equations, since such
subroutines are widely used in computer applications and require no
definition specifically constructed for MOSTAB-B.

*The «B code number on the title MOSTAB-B denotes the B version of
the program. Versions including advanced aerodynamics additional
element models (e.c., turbojets), will be given different

version codes.
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Section 9 shows the derivation of the transformations
required to transform stability derivative matrices expressed in
overall vehicle goordinates to center-of-gravity and stability
axis system coordinates. No reference to this section, or to
Section 8, is made in the general MOSTAB-B program description
in Chapter V of the main text or in Part I,
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II.2 AERDYRAMIC EIBMIT YORCE GENERATION
A. Subroutine FORCE

In Part I it was assumed that a force colummn, f, could
be calculated knowing state vector columms, VI’ VA’ v, ad ¢

(EQ. 2 in Reference 1, or Eq. 1 of Appendix I, denoteg here as Eq.1F).

f = f(VI’ VA’ VI’ C, KJ’ J=1,2 ) (1F)
vhere l(.1 are physical constants pertaining to a specific
aircraft.

A subroutine named FORCE performs the functional operation
defined by Eq. (1F). Given the columns shown as arguments in
£q. (17), FORCE returns vehicle element loadings.

Two options are availadle in FORCE. Option 1 tells FORCE to
determine all nev elements for f. Option 2 tells FORCE to compute
only six elemsnts of f. The particular six-element subcolumn to be
generated is specified wvhen FORCE is called, and represents the
load generated by a single ssrcdynamic element.

At the present time, FORCE calls three subroutines for the
purpose of calculating vehicle element ssrodynamic loading. These
are BODY, LIFT and ROTOR. BODY computes the asrodynamic loads
generated by fuselages, nacellespetc. LIFT produces load values
for nomrotating lifting vehicle elements such as wings and
empennage surfaces. ROTOR, in conjunction with a subroutine called
SWEEP, calculates loadings produced by helicopter main and tail
rotors, propellers,etc.

In the future, other forcing elemsent routines can be added
to this library of three to represent such additional components
as turbojet engines and rockets.

FORCE contains no asrodynamic expressions, but is a logical
subroutine which directs the opsration of calculating serodynamic
forces. FORCE determines which asrodynamic elemsnts are to be
exercised, adiresses the proper load-calculating subroutines
(BODY, LIFT or ROTOR), and assigns the proper set of physical
constants to a COMMON region before addressing the load-computing
routine(s). The computed loads are transferred back to the main

program through FORCE.

Figure ! shows the gemsral operation of the subroutines
FORCE, BODY, LIFT, ROTOR and SWEEP as they interlace
to compute serodynamic elemsnt loads. BODY, LIFT and ROTOR use
the Euler resolution subroutine BUIER. This general use of
EULER is not shown on the diagram. The ROTOR-SWEEP interface will
be outlined in the ROTOR section of this report.
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CAL RETURN

FORCE

Determine element
loads to be computed.
Transfer physical
characteristics for
each element addreuedw

Figure 1. General Operation of Subroutines FORCE,
BODY, LIFT, ROTCR, and SWEEP.
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B. Bubroutin
This subroutine receives the following information when it
is called:

(a) The three translational and three rotational airspeed
components at the body reference point. These velocity
components are given in overall vehicle axcs (see Reference ).

(b) Three Euler angles Vo 6y Py which are used to rotate
vectors expressed in ove?all vehicle coordinates to a
reference system conveniently related to the body. The
reverse resolution is also done with these angles,

(¢) The aerodynamic coefficients, characteristic areas,
lengths,etc., representing the characteristics of the
specific aerodynamic body being considered,

At the present time, BODY incorporates equations which derive
from the following six aerodynamic coefficient expressions

¢, =- (6, + ¢ a+c,8) (55)
cys-(cyo»fcy,a) (56)
Cp == (Cgo * ¢y @) (57)
C; =0 (58)
Co = Cpo * Cpy @ (59)
Cn*Cpo * Cm P (60)

The coefficients in the above equations are functions of the
specific configuration of the asrodynamic body, and are input to
the MOSTAB program. At the present time, these coefficients are
assuned to be constants. A more sophisticated set of expressions
would allow these coefficients to vary with local aerodynamic
conditions,

Dimensional forces and moments are computed, using the
eoefficient expressions (55 - 60) and relying on the following
assumptions:

(a) The dynamic pressure at the body is given by
q = /2 puba (61)
26
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b) The longitudinal angle of attack, a, is sufficiently

small so that

a 2 _WL (62)

W,
c) The sideslip angle, g, is sufficiently small so that

v
~ b

B = —— (65)
o

Eqs. (1B -~ 9B) can be combined to yield the following
dimensional force/moment equations in coordinates of the aero-

dynemic body being considered:

R A R S 5 I
v, == 1/2om (9200 v v ¢ (65)
Z, == 1/2 04 :"%2 Coo* % ™ czl] (66)
L =0 (67)
M, = 1/2 o4y ["ba Cao * % ¥n °m1] (68)
N, = V/2 oty [“ba 0 * % Vb cm] (69)

Eqs. (64) - (69) are those presently programmed in
BODY. The Euler angles v, , eb,mbmun with a standard Euler
angle subroutine called !.'BL!R to derive local airspeed
components na, Vo % Py 9 Ty from the given vector
:ﬁ,{ Eqs. (6h) - (69) are executed, and EULER is called again,

s time to rotate force and moment elements Xp» Yoy Zb, Ly Mo Np
back to overall vehicle axes x,y,z. Of course, EULER uses the given
angles in the order -9, , 'eb’ =¥, to perform tfxe force and moment
resolution b»ck to vﬂhclg coorainatel.



If MOSTAB is being used to study an area of the flight
envelope where variable coefficients in Eqs. (61&) - (69) are
important, then suitable veriable coefficient expressions can be
formed such that Eqs. (64) = (69) still hold. The modular
construction of MOSTAB makes it easy to expand these equations to
include nonconstant coefficients without interrupting the overall
program function. Such changes in the aerodynamic expressions occur
locally in the BODY subroutine, and have no influence on other parts
of the program.
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C. Subroutine LIFT

This subroutine calculates loads produced by a nonrotating
1ifting surface (IS). The equations are formulated in a manner
very similar to that used to assemble the equations for BODY. When
LIFT is called, the following information is available:

(a) The three translational and three rotational airspeed
components of the IS at its reference point. These
components refer to overall vehicle coordinate
axes,

(v) Three Euler angles V ®.,which are used to
rotate vectors expre led in Vehicle coordinates
a reference system conveniently related to the IS
(hereinafter called IS coordinates). The reverse
resolution is also done with these angles.

(e) The serodynamic coefficients, characteristic areas,
lengths, etc., representing the characteristics of the
specific 18 being considered.

Two sets of 1ifting surface models are presently incorporated
in the LIFT subroutine: (1) models appropriate for angles-of-attack,
a, bounded between values of + .2 radian (=~12°); and (2) models
for sngles-of-attack greater than .2 radian. These two aerodynamic
models are discussed below under separate headings.



(1) Aerodynamic Lifting Surface Models, -.2<a<.2 Redian

The models presented below are appropriate for most
flight conditions, because lifting surfaces operate
below stall during the normal operation of most flight
vehicles. Some vehicles (e.g., helicopters) do fly
under conditions where lifting surfaces are stalled,
but most of these cases involve such low dynamic
pressures that the surfaces have negligible effect on
the flight characteristics.

The following basic aerodynamic expressions are
incorporated in the MOSTAB-B LIFT subroutine:

Sh

* %o * O (“""wcm) t O (“"“wcm)a] (70)

Y . (11)

Q
n
o

Q
[}
+
®
%)

L w (72)

1+ 2, ] 8, b, [1+3A, |
N LIGER ) Litarvand ke o v

wa 1+ 3 )‘w

* u, 7207 +TW)J Tw (73)

C,=+C +C o (74)
b 1+3 A

T, [em ; {:)] (L - %1) 2y (1)
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Eqs. (70) - (75) are given in most standard texts (e.g., Ref. 1)
and apply particularly to unswept subsonic wings. All of these
expressions are derived in Reference 2. These wing coefficient
expressions are very elementary equations and certainly will be
revised and expanded in the future. Expressions for ailerons,
wing sweep, stall and even compressibility effects car easily be
added to this basic set of equations. Many other special wing
effects will be accounted for by suitable interference velocity
models mechanized in subroutine WASH.**

Note that lift and drag coefficients are used in (70) and
(72), instead of the local IS axis tem coefficients C_ and C
This has been done because (70) .m'i'?a) are the most
familiar force expressions for a wing. C_ and C_ are easily
derived from C; and C) by referring to Fiflure 2.2

-

Figure 2. Basic Lift and Drag Coefficient Relationships.

* The dihedral angle, I', is an "effective" dihedral angle. Its
numerical value depends on the wing geometric dihedral angle,
and its position on the element to which it is attached. See

Reference 9, for example, which shows CL corrections which can
B

be made to account for vertical position of a wing on a fuselage.

** For example, alleron deflection causes yawing moments to be
developed by the vertical fin on a conventional airplane. This

coupling is caused by rotational interference velocity components,

originating because of a wing rolling moment, and eventually
impinging on the vertical empennage surface. This effect is
easily included in MOSTAB by assembling the proper elements for
the characteristic area matrix and the interference velocity
coupling matrix (see the Subroutine WASH section of this part
for a discussion of these matrices).
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Choose V , 3, 9,80 that the IS x axis lies parallel to
the oversll wingl eofzero lift. Then

Cy =Cp 8ina-Cjcosa (76)

cz = - CLcOla.-china.
from inspection of Figure 2,

(T7)

Eqs. (70) - (75) and the derived Egqs. (76) and
(77) require that Vo O, @ be chosen so that

(1) The x and z axes of the IS axis system lie in the
wing's plane of symmetry.

(2) The x axis of the IS system is parallel to the
wing's overall line of gero lift.

For sufficiently small a and g, the following equations
can be written:

w
sin o = tan a = —ul,cosa.=1

(78)

n | (19)

q = 1/2 m 7 (80)
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With these assumptions, Eqs. (70) - (77) can be

cambined and dimensionalized to yield the dimensional wing
force/moment equations:

2 2
X, =-1/2 B2 * D o % (ww - uowuw)

= cna(“w ~ %cID “w)z] S

Yw = 0 (82)
z, == 1/2 ps,, [(aw + CDO) w, W+ Cp W (ww-OWCIDuw)] (83)

(1 + 2
w
Le=- /2@, b, e, Hﬁ'x—w)]vw Y

1+3 A |
+a,b L (pu rw)

wow| (T + A v T w v/ (84)
i 2
M=+ 1/2 S, & [cmo us+C o u ww] (8)
1+3)\¢
Ny = = V/2m8p, (b, [2 1+ ](a'www'cD1 uw)"w{
(86)
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Egs. (81) - (80) are exccuted in LIFY' in much the
samc way loads ure calculated in the BODY subroutine. The air-
speed components in v, applicable to the IS are rotated through
angles y_, 0 ' Q v’ become P
(12L)-(1%L) ¥re executed and m r!;nlﬁng'ioh' ccﬂponenta are
!‘otated back to overall veh:lcle coordinates, through angles

-0y =V_. The Euler rotations are performed by the general
ougroutYne, FuLer.

If flight regions are studied wherein the constant coefficient
approximation is invalid, then Eqs. (81) - (86) can still be
used, but with suitablz expressions for the variable coefficients.
Constant coefficients assumptions on Eqs. (81) - (86) are valid
over a large portion of most V/STOL flight envelopes.

It is important to note that the classical expressions for
wing three-dimensional effects are absent from the equations
(1.e., induced drag is not included exnlicitly in Egs. (81) through
(86).* The influence of wing downwash on wing loads comes into
the equations, because wing interference velocities are included in
the vector v, when LIFT is called. The expressions that deal with
interference velocities at the IS caused by the same IS are in-
cluded in the interference velocity subroutine WASH,

The wing equations may be applied to empennage surfaces
which do not have a plane-of-symmetry (e.g.,a standard vertical
stabilizer). Airfoils with camber, or special offset angles and
positions can be considered also. The reference point and Euler
angles can pe chosen, along with suitable aerodynamic coefficients,
such that Eqs. (81) - (80) are reasonably accurate for such a
surface. The reterence to "wing' equatious and '"1lifting surtace"
equations is intended to be synonymous here.

* The coefficients in Eq. (70) are the factors of the parabolic
profile drag polar. Induced effects do not influence these
coefficients.



L J

Of course, a wing producing 200 pounds of thrust (a
very sizable number for a 200 ft< wing) is a very
unusual wing: The equations have seriously broken
down, having a profound influence on the performance
prediction under the example conditions,

To avoid such serious breakdown, MOSTAB-B bypasses
Eqs. (81) - (86) when 1a is larger than .2 radinn
and calculates lifting surface loads defined by the
models which are pmented below. Only 1ift and drag
are considered, ro &e s M, N, (notation of
BEqs. (81) - (86) set t8 zero. Although this
large angle model is very rough, it suffices for most
cases because, the model is seldom required except
vhen dynamic pressures are low,

Figures 4 and 5, taken from Reference 10, were
used as a basis for modeling the large angle lift and
drag coefficient functions, Figures 6 and 7 depict
the actual models presently mechanized in LIFT for
large angles of attack.

The large angle curve (Figure ©) is a parabola
with a maximum value of 1.5, Note that maximum
values on Figure 4 vary from 1.7 to 2.3, These higher
CDI b values are not realistic for a practical lifting

surface, because they are essentially two-dimensional
results.
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Aerodynamic Lifting Surface Models; .2 > a >-.2,

The IS models presented in paragraph (1) above are
appropriate for most aircraft flight conditions. Even
if the IS is stalled, it usually has little effect on
flight dynamics, because such stalling almost always
occurs at low dynanic pressures.

When |a| gets larger than approximately 12°,
even if the dynamic pressure is low, Eqs. (81) -
(86) break down in such a way to produce large numbers
(which, of course, are in error). For example consider
Figure 3, which shows a wing on a hovering compound
helicopter immersed in a rotor wash of L5 ft/sec. (a
typical hovering rotor dowmmwash velocity at a point
samevhat downstream frcm the rotor. Figure 3 also
shows the wing's x - z,, axes, and the X, 2, forces.,

If Eqs. (81) and (83) are used, values of X,and Z
are calculated as follows (for convenience, use Cp s
wd G =0, p = 0BT, 8, - 6.0): g

Xw=2900~lb
Zw=0.0

Wing Platform
z Area = 200 ft2

Figure 5. Rotor-Wing Interaction,
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Of course, a wing producing 2)002pou.rﬂs of thrust (a
very sizable number for a 200 ft< wing) is a very
unusual wing: The equations have seriously broken
down, having a profound influence on the performance
prediction under the example conditions.

To avoid such serious breakdown, MOSTAB=B
bypasses Bqs. (81)=(86) when 1a is larger than .-
radians, and calculates lifting surface loads defined
by the models which are presented below., Only lift, and
drag are considere~d, so Yw’ Lw, M, and Nw (notaticon of

Bqs. (81) = (86) sare set to zero, Although this large
angle model is very rough, it suffices for most cases
because, as mentioned before, the model is seldam
required except when dynamic pressures are low,

Figures ! and 9, taken from Reference 10, were
used as a basis fur modeling the large angle 1lift and
drag coefficient functions. Figures 6 and 7 depict the
actual models presently mechanized in LIFT for large
angles of attack,

The large angle curve (Figure 6) is a
parabola with a maximum ue of 1.5, Note that maximum
cD values on Figure I vary from 1,7 to 2,35, These

higher chw values are not realistic for a practical

lifting surface, because they are essentially two=-
dimensional results.
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1.6

2
N a
CD-I. 5-.811(1.57—57-.3)

a-DEG
Fi‘uﬂﬁ.-cnﬂlminuﬂ.

CL'LI sin 2a

20

30
a-DEG
Figure 7, - CL vs @ Model in LIFT.
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Figure 8 demonstrates this point by showing the flat
plate drag coefficient for rectangular plates as a
function of aspect ratic (taken from Reference 11),
The cD value of 2,0 for infinite aspect ratio is

0

R & !
e :
N\ | O

L] Ly 3 " e & 7 8 9 o

-
l".
-

Figure 8. Drag Coefficients of Rectangular Plates and

Circular Cylinders as a Function of Their
Height (or Diameter) to Span Ratio.

compatible with the curves of Figure 4. Plates (i.e.,
rectangular wings at a = 90 ) with finite aspect ratios
have cDOl values between 1,18 and 2,0, however, so

max
a representative value of 1.5 was arbitraily chosen for the
LIFT model depicted by Figure 6. Based on Figure 4,
the following logic is incorporated in LIFT to enable
generation of C, for -180° <a <+ 180°, First, define
the three basic equations:
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w>

lal Y
chSTALL 1.5 = .81 (1.57 - 57,3 (87)

Cllajeac® £ G + G o oe)

0 2

0

%j|a|>160° 2 2.1 (CD L ““) (89)

The coefficients C, and C; in Egs. (88) ana
0 2

(89) are the same values as the coefficients in

Eq. (81). The factor 2.75 for a value in the

region 160°<|a|< 180° was obtained from unpublished

data which indicate "reverse flow' profile drag values

approximately equal to 2,75 times the ''forward flow"

values. This factor will vary from airfoil to airfoil,

of course, but 2.75 is a representative value. Using

Eqse (87) through (89), the 180° drag model in LIFT

is defined by Table I:

TABLE I. DRAG CHARACTERISTICS

a Region C])

12°%|a| < 20° C, = larger between CDISTALL and CDl || <20°
20°<| a| <160° % = Osmis

160°5|q|5180° C, = larger between CDISTALL and CDI |a|>1600

The 1ift coefficient function of Figure 7
represents a relatively good fit of the data of
Figure 5 for 0 <a <90 . Table I defines the logic
for determining C; for -180° < a < 180°, where & _ is

the same lift curve slope used in Eq. (72).




TABLE II. LIFT CHARACTERISTICS

a Region C
2 L
12% o < 20° C. = lesser between a = u, and 1.1

= 0 L w /'7')
20°< a. < 160° C, =1.18in 20
160° < o < 180° C. = greater between a C’“K'—1?O and -1.1

o - L w )7-)

(o] M (o] = (04 1
20" <a <=~ 12 CL = greater between + a ( 57-5) and -1.1
-160° < a < -20° ¢, = 1.1 sin
-180° <a< -160° Cr, lesser between a (—%\ and 1.1

Jle /

After the logic of Tables I and II are executed
to calculate C; and Cp, Eqs. (76) and (77) are
used in LIFT to calculate C_ and C_ (with no small angle

assumptions on a), so that

1 ;
Boaw =oe DVZSCx (90)
and
1 i (91)
Zw—-TpV SCZ 91)
where
V=0 e (92)
W W
As mentioned previously, Y =N =M_= 0.0 for large «'s

in the present LIFT subroutine. i ¥




D. Subroutine SWEEP

SWEEP contains the rotor blade equations. These equations
are integrated radially and azimuthally in SWEEP, a orocess which
essentially ''sweeps'" the rotor disc to obtain loads and blade
motions. At the present time, SWEEP is exclusively called by
ROTOR. SWEZP has been designed for speed, because it is this
routine which will absorb the most computer time during any MOSTAB
run. Thus, certain time-consuming operations (subscripted
variable usage, general coordinate transformations when some
elements of the transformation matrix are zero, etc.) have been
avoided whenever possible, particularly in the radial integration
loop of the subroutine.

The subroutine receives the following information when it
is called:

(a) The three translational and three rotational airspeed
components at the rotor reference point, already
resolved (by ROTOR) to hub axes.

(b) The three translational and three rotational inertial
velocity components of the rotor reference point,
resolved to hub axes.

(e) The time derivatives of the quantities given in (b).
(d) An index defining the options to be exercised in SWEEP.

(e) The rotor control settings (collective and cyclic
pitch angles).

(f) The flapping angle and flapping velocity of the blade
at =0, if the rotor under consideration is a flexible
bladed rotor. (Only two state variablcs for the blade
are specified here, because MOSTAB presently uses one
degree-of-freedom for each blade. If additional blade
degrees-of-freedom are added, additional state variable
pairs will be specified here, at V=0).

(g) The physical characteristics of the rotor, including

certain constants computed in ROTOR prior to the
calling of SWEEP.

(h) The number of radial ana azimuthal elements to be used
in the integrations.

Ly



An option index directs SWEEP to adhere to one of the
following computational schedules:

(1) Compute the blade motion of a flexible blade, but
do not compute shaft loads.

(2) Compute blade motion and shaft loads.
(3) Blade motion suppressed. Compute shaft loads only.
The work that follows deals primarily with option 2, which

is the most general option. Options 1 and 3 are simply
suppressed versions of 2,
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1. Blade Analysis

Relatively general equations for rotor blade motion and
loading are derived in Part IIl. The axis systems, reference
lines, etc,are discussed in detail in Part I1I. In this
section, the equations derived are simplified to
the form presently incorporated in MOSTAB. The simplifications
are predicated on the following restrictions and assumptions:”

(a) Rotor speed is constant (o =0)

(b) Centrifugal force is the only inplane inertial
force important to vehicle dynamics. Other inplane
inertial forces are neglected. Of course, aero-
dynamic inplane forces are important, and these
are included in MOSTAB.

(¢) Flexible rotors have one degree-of-freedom: the
first flapping mode.

(d) Elastic torsional deformation is not important.
The blade reference line (BRL) is defined in Part III.

Because of assumption (e¢), the following expressions can be written
for the coordinates of the blade reference line:

x(s,t) = - s (93)
x(8,t) = x (s,t) =0 (94)
y(s,8) = y(s,t) =y (s,8) =0 (95)
z(s,t) =z (s) + 2 (s)B(t) (96)

Tn Bq. (99),2z1(s) corresponds to the eigenfunction &;(x)
(discussed in Part I1I for the first blade flapping mode.

(t) is the generalized coordinate (n,(t, in Part III) for

this mode. 2z (s) is an'initial shape' function, which can be
added to the normal mode analysis with no loss of generality.

z s) is the shape of the blade when it is not vibrating, and when
tHe reneralized forecing function is zero.

. The modular nature of MOSTAB permits these restrictions to be
relaxed, if necessary, by simple changes in the subroutines
without having to revise the entire program.
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The eigenfunction can be normalized (by simply changing the

scaling on its generalized coordinate) in any desired manner, TIf
z1(s) is normalized such that

#(my & 42(e) : : (97)
S=

then B is the slope of the rotor blade at the tip (excluding the
initial slope that may be contributed by z

(R)). Thus, £ becomes
the dynamic flapping angle of the blade uséd in classical helicopter
analyses. Note that, for g positive with "upward flapping'', the
functions zo(s) and z(s) are generally negative.

The blade motion equation, in terms of g, is

.e 5 )
e (98)
g

where w is frequency of the first flapping mode of the blade. M
is the generalized mass of the first flapping mode, and is given
by

R
2
M= fm(S)z1 (s)ds (99)
23
(o]

F , of course, is the generalized forcing function, and is given
b R

Fg =-[ zl(s) L (s,t) ds (100)

The function f(s,t) is the external BRL loading function

less the acceleration terms used in the vibration analysis to get
w and Z,.

fz(s,t) = pz(s,t) + m(s)z (101)

where p_(s,t) is the total distributed loading function on the BRL
due to %nertial ""apparent'" forces and aerodynamic forces.

pz(s,t) = p,;(s,8) + Pza(s’t) (102)

v



The simplified inertial distributed loading functions presently
incorporated in MOSTAB are

B, (s,t) = - m(s)a’s (103)
pyi(s’t) =0 (101‘)

p,;(s,t) = - m(s) %gz +%Z +8 [(p- 209)sin v + (q + 20p)cos \v]{
(105)

These equations derive directly from Egs. (293), (29%) and (295)
in Part 111. The simple forms of (103) and (104) are

attributable to assumption (b) of this section. Eq. (105) has
been simplified to a greater degree than allowed by the assumptions
(2)=(d) or by Eas. (93) - (96), in that quadratic terms in p,q and

r have been neglected.

The airspeed at a blade element is given by Eq. (302).
With present MOSTAB assumptions, this airspeed is (in rotor co-
ordinates) is

* -
7 gk 2
VAQ -i[u

Tt cosy - v, siny + z(pA siny + chosw)]

+ 3 [uA siny + v, cosy + s(Q—rA)-z(pAcosw-quin\ir)]
+ k [w + 2z 4+ s(pA siny + q, cosw)] (106)

A

Eq. (305), Part III is used to resolve this airspeed
expression to '"blade cooruainates", as follows.
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u = TVA (107)

where u_ is the spanwise airflow  u, is the chordwise
airflow, and u_ is the normal-to-chord airflow at a blade section
located at s.

The transformation matrix, T, can be simplified to the
following form:

1 0 -2/
e2
T = -QZ, 1T =0 (1'}‘“
2
/ 0
- S

where ( has been set to -6, and trigonometric approximations

1 2
o 0
have been incorporated. Note that cubic and higher order products
in small angles z' and 0 have also been discarded from the T
matrix approximated by Eqe. (108), and quadratic terms in z' have been
neglected.

Since no elastic torsional motion is included, the biade
angle, 6, is given only linear twist:

sin 6 = ©
1

cos 6 =

8 = 00—A1s cosy -B1s siny + 01 (—%— ) + 85B (109)

where Oo is the collective pitch angle, A1 and Bls are
the .sual lateral and longitudinal cyclic pitch angles (angles
between the rotor control plane and the shaft normal plane),
is the linear twist angle, and 65 is the geometric flap-pitch
coupling coefficient.

k9
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Eqs. (315) and (516) give the simplified aerodynamic
forcing functions presently used in MOSTAB.

oc 2
i : RS 110
£ 5 [(a + oo)'u.nu.c + 8 u ] (110)
oc 2 2
il g BEE 4 111
fc 5 [(82 a) u "~ + 50 u "+ 61 uhuc] ( )

Assuming no aerodynamic loading in the blade span direction,
Eas. (110) and%””can be used with the inverse (i.e., the
transpose for an Eulerian transformation matrix) of the T matrix
to get the distributed aerodynamic loading functions in

rotor coordinates. The results of this operation, in terms of f
and fc,are: "

an. 0
P - pf £, (112’
pza fn

Eqs. (103) - (105) and (112) can be summed directly
to get the simplified BRL loading functions used in MOSTAB:

px(s,t) = pxi(s,t) + pxa(s,t) (11%)
Py(s:t) = Pya(s:t) (11)4‘)
Pz(s,t) = p,,;(s,t) + pza(s,t) (115)

The shaft loading expressions for one blade are given in
Part 111 (Eqs. (337) - (342). It is desirable to separate each
of these load components into the inertial contribution and the
aerodynamic contribution, This process saves computer time by
preventing certain constant inertial integrations (which need to
pe computed only once) from being repeated. The same case is
true for the generalized forcing function given by Eq. (100).

The generalized force integral (from Eq. (100)) and
the shaft loading integrals (from Part 1I1I) are written below.
They are split into inert.al and aerodynamic cantributions, and
several terms are dropped due to simplifications embodied in Egs.
(95) - (96) and (103) - (105).
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F =PF = - z ' . in
g 'gat Fai f %) Py s f T [(p-epq) PR
) o

+ (c'1+2np)cosw]}ds (116)
R R
Xr =xra+xri = f <9 ds—f mQ s ds (117)
(o (o
R
Yr = Yra. + Yri = [ pya ds (118)

N
]

i -
N9
1]

R R
Z : p._ ds - il &% ( z i
=G T £ |8, * 2 + 8 p-LQq)smw
o o

+ (C.l+2Qp)cosw ]{ds (119}
R

l-'r =Lr:3.Jr Lri 2-_/0. ZPZYB- i (120)

R
Mr =Mra.+Mri =f[z P, +8 Pza]ds - fzmﬁgs ds
R . >

-_[ ms =gz +Z + s[(i)-EQq) siny + (g+20p)cos \1:]: (121)
R

Ny = Bl = n f s p, ds (122)
(o)

The second integral on the right side of Eq. (117)
can be dropped, since its effect will ultimately cancel among all

of the rotor blades.
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Seversl terms in Eqs. (110) - (122) must be dropped, in order
to make the equations consistent with each other., Several other
terms can be omitted by looking forward to Eqs. (149) - (154).
(Expression of rotor loads in nomrotating coordinates ).

First consider the question of consistency. Inplane
inertial forces were cmitted from the uu..yuo.
This omission caused the contridbutions “o X, Y, and N from accelera-
tions and © to vanish, The rotor uﬁu Buch :lnShne load
contri u simply because it has mass. These effects can be
included in the analysis of a flying vehicle by adding suitable tems
to the nonrotating airframe mass and inertia tensor. To do this,
simply include a circular lamina structure attached to the non-
rotating airframe:

(a) The lamina plane is perpendicular to the rotor shaft and
passes through the rotor reference point.

(b) The mass of the lamina equals the rotor mass.

(¢) The polar moment of inertia of the lamina equals that of
the rotor.

Since the added structure is a circular lamina, its diametrical
moment of inertia equals half its polar inertia. The influence of
the lamina will take the place of:

(1) The neglected 8y gy and r effects discussed above
R
(2) The -j; ng, ds term in EQ. (119).

(3) The[ ns° p sin Vv ds and f ms® qcoswdstermsin
Eq. (29).

Thus, to use the lamina substitution consistently, the terms listed
in (2) and (3) above must be dropped from the equations.

The following terms can be dropped due to ca.ncelle.tion among
the two or more blades in a complete rotor:
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R
(a) The -:/ nfPs ds term in Eq. (117).
()
(b) The terms containing sin v and cos v in Eq. (119).
R
(¢) The -j‘ ms g, ds term in Eq. (121).
()

Although these inertial terms are justifiably dropped from
the shaft loading equations, note that they are left intact in
the generalized foreing Eq. (111). These terms cen be left

out of the sheft load equations (due to the lamina model
or interblade cancellation), but since they do affect blade motion,

they mu%t be included in the blade generalized forcing function
(Bq. 116).
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The aerodynamic integrals in Eqs. (110) - (122) must be
evaluated nunerically, due to the complexity of the aerodynamic
distributed loading tunctions. The inertial terms can be expressed
in simple form by defining the following constant integrals:

R
I, = /o' mz,ds (123)
I, = [mz1s ds (124)
R
2
JB = /ms as (125)
[o]

Note that £q. (125) represents the second mass moment
integral for the blade. In terms of the constant integrals
defined by Egs. (125) - (125), the inertial components in Egs.
(116) - (124) may be written (noting that 2 = z8 from Eq. (96):

Fg == 1, 8, I, [(13-29q) siny + (<'1+29p)cosw_| (126)
Xy =-0 (127)
Y, =0 (128)

=L B (129)
L, =0 (130)

=~ .
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Ml‘i . - 12(02{" + ld..)'JB E? asiny + 20p co..;,] (151)

N, =0 (152)

ri

An important observation can be made from Bq., (131).
In most helicopter applications,

pr-p (135)

This is exactly true if the natural blade frequency is
(as is the case for an articulated rotor with no flapping hinge
offlet)aand the blade is vibrating at its natural frequency. The
term (Q°B + B ) is seen to be a small difference between two very
large quantities, This difference is the source of serious errors
in many numerical determinations of rotor blade motion.

To avoid the numerical difficulty discussed above, Eq.
(98) can be used to eliminate §. This can be done in Eq. (129)
as well as in Eq, (131). The equations will be written with
this substitution in the summary.
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2. Mquation Sumary

The equations used in MOSTAB are sumarized below, They
are repeated from expressions given on the preceding pages. For
convenience, they are renumbered as 1S through 27S.

z(s,t) = zo(l) + z1(l) B(t) (18)
.. F i
g +afp - —f - (28)
g
R
M =f mz £ ds (38)
€ b 1
2
Py = -m(s)0"s (48)
By =0 (58)
P,y = - n(s) {gz +%7 +8 [(i—mq)sinw + (¢.1+2np)cow”
(68)
v, = 1 [ua cosy =v, siny + 2 (;pA siny + q, cosw)]
+ 5 [uA siny + v, cosy + 8 (n-rA)
-z(pA cosy - g, sinw}r k [WA + 2z 4+ s(pA siny
+q cosw)] (78)
¥ (8s)
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8
8 = eo - Au cosy = Bls siny - e1 (T)+ 556

/ / /
z = zQ(s)+z1

n

pxa
py.' - T-T
pz&

+ (q+2np) cosw]

(s) B

e
2
.-_&[ - u? uss uu
f 2 (52 ")n+5oc
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f = = [(,,+5°) unvé +¢Slun

1 nec

R .
P = j; 2, P, 48 - I, g - I, (p-20q) siny

]

(98)

(108)

(118)

(128)

(138)

(1k8)

(158)

(168)

(178)

(18s)



Ko - -[ Py, d8 (198)
R
Y, - '[ Py, 98 (208)
r F
2
2, = f P, d8 - I, (ﬁs—-mﬁ) (218)
(o] g
R
L, =- f z pya ds (228)
o
R F
2 2
M, = [[z Peg * 8 pza] ds' - 12[—Mz + (0% )B]

- Jg [-201 siny + 2(p cosw] (238)

By, = = _[ s pya ds (248)

I, = fm z, ds (258)
(o
R

I, = ‘[ m z,5 ds (268)

(278)

o
tos]
»
3
(7
a
7
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5. BSolution of the Equations

The spetial integrals (integration from O to R) expressed
in BEqs, (188)-(248) are evaluated using the trapegoidal method.
This process is straightforward and requires no expansion here,
except to note that for agy value of V., the integrals can be
performed when B(wk) and E(wk are knolin.

The time integration of EQ. (28) i performed as
follows, Given the valueg of V., a(w )» B(\V ), it is necessary

to determine Bwkﬂ) and p( Vs 15 Be L ks given by:
Yo =Vt OV (154)
yd 2r/(Specified number of azimuthal (155)

integration elements)

Since B, B and ¥ are known, the generalized force, Fg, and the blade
hub loads can be computed (if the hub loads are required) in a
streightforward manner. Assuming F_ constant over azimuthal
interval Ay, Eq. (28) becomes g

B+w B constant = Fg/Mg (136)

This is a total differential equation with constant coefficients,
and has the solution

F Blv,)]
p(t) = [B(wk) - ——g—] cos wt + [ wk ]sin wt
M w
g L
F
+ —= (137)
Mgcu2
i F -
p(t) = B(Wk) - @g— w sin wt + l'[?,(\!rk)] cos wt (138)
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where the initisl values of p and B (B(v,) and A(v,))
have been used to determine the arbitrary conltintl in thg

homogeneous solution of Eqe (136)s To determine B(Ykﬂ) and
B(‘i/k..’1 ), set

Substituting into Eqs. (96) and (136),

F By, )
Bligeyy) = [5(“’1:) - M_Sa_] % +[ oK ]Ka
W
g

. F .
B¥pyq) = - [B(wk) - —E ok, + [e(wk)] Ky

M
gw
where
K1 = CO8 (%‘L) = constant
Kassin (—“‘S—‘{) = constant

(139)

(140)

(141)

(142)

(143)

The numerical integration technique outlined above provides

much more accurate results than the slightly simpler app.roa.ch
(called the Euler maphod) which uses (136) to solve for Bl )»

and then calculates ﬁ(\Jﬁle )rv.:f g\f/wk"'i) based on the assumption that

B is constant over the

n fact, the experience with
this technique has been very positive, both with respect to the

simplicity of the mechanization (resulting in very rapid computation)

and with the accuracy.

g, Tl it gk
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Knowing sin(v,) and cos(y, ), the quantities sin(v, . .) and

cou(wkﬂ) are easily computed bykd:l.rect substitution of k”
Eq., 134, Making the usual trigonometric expansion,
sin(wkH) =Ky sin(wk) + K, cos(wk) (144)
cos(Vy ;) =Ky cos(¥y) = Ky sin(yy) (145)
vwhere
Ky = cos &V = constant (146)
K, = 8in &y = constant (147)

The algorithm specified in Eqs, (144) - (147) can be
executed much more rapidly than standard sine and cosine sub-
programs operating with Eq. (134).

Eqs. (198)=(2i8) are expressions for the rotating load
components applied to the rotor shaft by one blade, These com-
ponents refer to rotor axes, Part I describes how these
rotating components can be resolved to s nonrotating axis system
and time aversged, The time average, multiplied by the number of
rotor blades, represents the rotor loads on the overall vehicle,
The resolution and time averaging process is expressed as Eq.
(44) in Part 1. This equation expresses the averaging in
integral form. If the rotating loads are computed at discrete
points around the rotor azimuth (as is the case in SWEEP), Eq.
(44) takes the form of a summation. This summation, in the notation
of Part 1, is

N
b
, * X Z R(¥y)fpy (148)
121

where N is the nunber of azimuth stations used for the time
integra.tion in SWEEP is the vector made up of components
fSi‘ azimuth angle V,, and R(y) is the resolu-
tfon f\mcﬁion reqﬁirei to resolve rotor a.:&s system components to
hub axis system components. The vector f, represents rotor shaft
loads referred to hub axes, for b rotor biadea. Eq. (148) is
easily expressed in component form:
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Yy —E- E (xri cosy, + Y, oim‘.:i) (149
i=sl
N
Y, = +— 2 (-xri siny, + Y, cowi) (150)
i=1
N
b
2y = ¥ 2y Im (151)
i=1
N
L, = % 2 (Lri cosy, + M., liml!i) (152)
i=1
N
b
MH = E (-Lri sinwi + Mri coswi) (153)
i=1
N
Wy = ";; E Npy (154)
i=1

Eas. (149)-(154) are calculated during the regular

azimuthal summation (integration) in SWEEP, provided that SWEEP
is instructed to compute shaft loads.
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V. e 9 lose Pecter

Chapter IV of the main text of thias rejort pregenta e
derivetion of s tip los: wodel whic) has e Fegic fure

Bsle l‘t.' (1)

vhere k is a constant, and 7.’ 1s the distributed serodynasic
load on a blade at the tip, In 1b/ft. This tip loss factor is
used to reduce the rotor redius to an "effective redius®™, u.:

I. = KB (16,

As discussed in Chapter IV, the distridbuted loedire Nurction
' used in (193)1s calculated assuming sero rotor-induced
terference velocity.

Based on the expression of Bq. (197), the following
tip loss model is presently inoorporateda in the MOSTAB-B progras

B-3,- xd|p..| (157)

wvhere B, is a constant (input) tip loss factor, and k is an
input ofnstant. p._ is the distributed serodynamic losding
at the blads tip, flrallel to the rotor shaft, computed
assuming sero rotor induced velocity.

or to assembling the asrodynamic integrals in Is.

(168) - (258} the angle of attack of the blade tip using inertisl

velocities is camputed. P__ is then calculated dased on this
"inertial speed” angle of*“attack. B is cawmuted from (157),
and the serodynmmic integrations then proceed vith R, (Bq.
(156)) as the upper integral bownd in lieu of R.
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S on Zquations

Eqs. (18)=(278) represent the expressions presently

included in the SWEEP subroutine. TBe c?mgu ational methods
specified by Eqs. (140)-(147) and (149)-(154) are also presently

incorporated, This very basic set of equations can be easily
expanded to include more aerodynamic and dynamic phenomena, if
the MOSTAB user requires such additional sophistication for his
particular problem. 7he following list outlines some of the
most basic steps that might be taken to expand the present SWEEP
routine,

(a) Reverse flow can be accounted for in a very
elementary fashion by changing the sign of
s (1.e., Co) vhen the sign of u, changes. This

approach is taken in the oué er NACA rotor
analyses (references 7 and 8).

(b) Stall and compressibility drag rise can be accounted
for by using BEqs. (128) and (138) with suitadle
variable ecefficient models of the form

a = & (un, \lc)
bo - 60 (un, \lc)
52 = 62 (\ln, uc)

Items (a) and (b) represent relatively simple expansions of the
SWEEP equations. More involved expansions can be made, resulting
in significant (though not necessarily prohibitive) increases in
computer time requiremsnts. The list below represents the ex-
pansions that could be made with soms effort. Many of the sugges-
tions require expansion of the equations derived in Part 11,

(1) Elastic torsional blade deformstion - requires
expansion of Appendix III, Blade pitching moment
inertial and asrodynamic loading functions must
be developed.

(2) Additional blade dynamic degrees of freedom requires
expansion of Part 11], Inplane and torsional (and,
of course, additional flapping) modes can be added.

(3) Terms can be added to the dynamic expressions to

more suitadbly account for "load-coupled" rotors
(eege, testering rotors). See Part 111,
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(4) Unsteady aerodynamic effects can be added (e.g.,
hysteral stall, feathering damping moments) -
requires expansion of the appendix.

(5) Sophisticated "table-look-up'" airfoil data can be
incorporated. (This is related to (4), above.)

(6) Restriction of constant rotor speed can be removed,
allowing stability derivatives on 2 to be calculated.

Although the expansion areas outlined above can be incor-
porated in SWEEP, they add additional complexity to the
equations, Items (a; and (b)cean be included with little additional
difficulty. Items (1)=(6) (and probably many other effects) can
be added, with additional burden on computational time, input
data requirements and basic preliminary analysis (Part III).

The equations that now exist in SWEEP provide a very good basis
for the flight dynamics analysis, however, and probably should
be keot relatively intact (possibly with simple expansion like
(a)=(d)) for simplified studies., Other versions of SWEEP could
be assembled (e.g. SWEEP1, SWEEP2) involving various

degrees of additional complexity. It would be possible to choose
any routine from the "SWEEP" library to use with the rest of

the basic MOSTAB program. One would choose the version with
minimum complexity but with the effects needed for the particular

study.



I- fubroytine BOTOR
The subroutine receives the following information when it
is called:

(a) The three translational and three rotational air-
speed components at the rotor reference point. These
velocity components are given in vehicle reference
axes (see Part I and Chapter V).

(b) The three translational and three rotational inertial
velocity components of the rotor reference point.
These components are referred to overall vehicle axes.

(¢) The time derivatives of the inertial velocity components
described in (b), above,

(d) Three Euler angles, Vor 6,5 @, which are used to
rotate vectors expressed fn overall vehicle coordinates
to a reference system (later to be defined as the hud
axis system) conveniently related to the rotor. This
local coordinate system is fixed to the nonrotating
airframe (it does not move with the rotor or swashplate).
The reverse resolution process is also done with these
angles.

(e) The control varisbles associated with the rotor (cyclic
pitch and collective pitch, in general).

(f) The physical characteristics of the rotor.

When ROTOR is called the first time to analyze a particular
aerodynamic rotor, certain constant terms are computed. Among

these constants are I,, I,, M, and J; specified by Eqs. (258)

(288), and K, K, K, K, specified by Eas. (145), (146), (147), and
(148). All of these equations appear in the SWEEP section. Algo,
the initial conditions on the blade state variables (B(0) and A(0))
are set to estimated values read into the MOSTAB-B program as data.
This initial operation occurs onlyonce per flight condition for
every aerodynamic rotor on a vehicle.

As soon as the constant terms are generated, ROTOR calls
EULER to rotate all of the vectors (e.g., airspeed, inertial
velocity ) required for the rotor equations (contained in SWEEP)
from overall vehicle coordinates to '"hub" coordinates (see
Part TIT for the definition of hub coordinates). The constant
angles tpr (e @, are used for this rotation. If the particular
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rotor being analyzed has rigid blades, ROTOR calls SWEEP once to
determine the necessary hub loads. EULER is then called (by ROTOR)
to rotate these loads from hub axes to overall vehicle axes. For
the rotor with rigid blades, the process of load computation is
completc at this point and ROTOR returns control to FORCE.

If the rotor being studied has flexible blades, ROTOR
determines the blade initial conditions for the particular trim
solution being sought by MOSTAB-B. The process used to determine
this initiel condition is discussed in detail in Part [. _n
the notation of Part I, SWEEP is called with the initial blade
state variables, { (0), set to the estimated values read into .
MOSTAB-B. SWEEP réturns to value { (2m) (i.e., the angles [~ and [-
at ¢ = 2m). The matrix Z_ . is genePated by perturbing the elements
TRt AU i) Bl oo (one at & time) and
generating the resulting perturbations in blade final conditions
using SWEEP. During these blade motion calculations, the shaft
loading option in SWEEP is suppressed to save computer time.*

The corrected blade initial conditions are found by solving Eq.

(54) of Part I, and SWNEEP is called again using this corrected
initial condition. The option to compute shaft loeds (in hub co-
ordinates) is exercised in SWEEP during this last call. These loads
are then rotated to overall vehicle coordinates by EULER. The
load computing process thus completed, ROTOR returns control to
FORCE.

An option is provided in ROTOR to suppress computation of
the blade motion gradient matrix ZZ  This option is used to save
influence on the corrected blade initial conditions. When this
option is exercised, events proceed as discussed above for the
flexible bladed rotor, except that the last value of Z computed
for the particular aerodynamic rotor under study is useg Instruc-
tions to generate a new ZZo are suppressed, The conditions that
cause re-computation of ZZO to be unnecessary are discussed in
Part 1.

* The loads applied to the shaft need to be computed only atter
the blade initial conditions are known. When SWEEP is being
used to determine blade motion, the shaft load calculation is
incorrect, since the proper initial conditions are not available.
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II.} VEHICLE GEOMETRY

Preceding sections of this work have been involved with
the equations which ultimately compute the vehicle force column, f,
as represented functionally by Eq. (2) in Part I, This
section continues the developuent of specific expressions for the
functional equationsin Part 1.

Eqs. (3) and (4) in Part I suffice to define

the geometric matrices L and G. L sums the loads of all of the
vehicle elements to a final six element loed column p. G converts
overall vehicle motions (as represented by three translational and
three rotational inertial velocity components), to the inertial
velocity column v.. The elements of vy represent the inertial
velocity components of all the vehicle elements., It will be shown
subsequently that L is simply the transpose of G, This fact saves
core space when MOSTAB is used, since only one geometric matrix
(either G or L) can be used for both - with suitable adjustments

in computer logic of course,

Consider vehicle element 1i. The reference point of element
i can be located with respect to the overall vehicle reference point
by a vector di' Expressing d 4 in component form,

di=’i\.xi+3yi+?{zi (158)

The unit vectors 2 ’ 3 5 % refer to overall vehicle coordinates,

In Part I, the symbol s is used to represent the six-

element inertial velocity column for the flight vehicle as a whole,
s can be split into two vectors:

V=1iu + jv +%kw (159)
W =’ip + jq +‘kr (160)

Since d, is the vector which locates the aircraft element
reference poin%, i, with respect to vehicle axes, the translational
velocity of i in vector form is

= 161
‘A V+oxd (161)
where the (x) symbol denotes the vector cross product., Since
4 =0 (1ieey d, is a constant vector in vehicle coordinates),

(162)
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Eqs. (161) and (162) can be written in component

form:
W o=u+qz - Ty, (163)
v, =V +Ix - pz (164)
Wy =W+ DY, - ax, (165)
Py = P (166)
y = 9 (167)
ry =T (168)

Clearly, Eqs. (163) - (168) are the component forms of
Eq. (4) of Part I, for a single vehicle element. The
G matrix for element 1, is thus given by the expression

. 2y |y
1 -z, Xy
Gi(xi’yi’zi) = 1 v, |-x (169)
unlabeled elements 1
are zero 1
9 1 -

The overall vehicle geometric matrix, G, is assembled by
stacking all of the submatrices G; into one matrix having dimension
6NX6, vwhere N is the number of $ehicle elements. The sub-
matrices, Gi’ are stacked one on top of the other in G, starting
at the top.,” (The order of submatrices G in G is defined by the
definition of the column, Vi in Part I).



G =1 " (170)

The array, G, as defined by Eqs. (169) and (170), is
the matrix presently mechanized in MOSTAB. If L is required,
GT is used, To show that L = GT, the general expression for L
is now developed, Let the force and moment vectors developed
by element i be denoted F, and M, respectively. These vectors
are applied to the aircra}t at eiement i's reference point. They
contribute an effective force and moment at the vehicle reference
point.

Fog = 1y (1)

Mg =My =dy xFy (172)

The sign is negative in (172) because -d, locates the vehicle
reference point with respect to the ele&ent reference point,
Writing (171) and (172) in component form,

Xy = %4 (173)
TR N (174)
Zy = %4 (175)
Lop = Iy v vdy - Yy (176)
Mg = Mo+ 2% - X2 (77)
Nyg = Ny o+ %Y, -y X (178)

s, (179) = (178) simply represent the component form of
©1. (3) of Part 1 for a single vehicle element, Thus, the
I, matric for a single element is given by

T0
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~ unlabeled 7]
elements are
1 zZero
1
Li(xi’yi’zi) = -Zi yi 1 (179)
zi ---xi 1
Yy Xy ]

The over:ll vehicle matrix, L, is assembled by placing all
of the submatrices L, into one maetrix having dimensions 6XON,
where N is the numbe} of vehicle elements., The submatrices, L,
are placed side by side in L, starting from the left. (The order

of submatrices L, in L is defined this way because of the definition
of column £ in Réference 1)

L = | L, L, e Ly (180)
Clearly,
L
by L (181)
LINT_

L~ = G (182)

from inspection of Eqs. (169) and (179). It follows directly
that

G - L, (183)
vwhich is the desired result.
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I1.4 INTERFERENCE VELOCITY COMPUTATION (Subroutine WASH)

Continuing to Eq. (7) of Part I, the interference
velocity column, w, is expressed in a functional form:

Ww=w (f’ VA’VI’bI,c’ Kz,‘ = 1’2 .‘.) (7)

The purpose of subroutine WASH is to produce the column w,

given the quantities shown as arguments in Eq. (7). Many

models for interference velocity have been proposed and used.

These models are functions of the vehicle type, flight regime, etec.
Although a rather general (and classical) interference velocity
model is presently used in MOSTAB, subroutine WASH will undoubtedly
go through many phases of refinement as MOSTAB is used to study
various kinds of flight vehicles.

The interference velocity model presently incorporated
in MOSTAB will now be discussed. Define the six element column d
whose elements are made up of the three translational and three
rotational interference velocities at element reference point i.
The velocity 4, is caused only by element i (i.e., it contains no
interference v&locity effects from elements near element i).

Eq. (184)gives a general expression for di:

-1

4 = i A £ (184)
The symbol |VATii represents the scalar magnitude of the trans-
lational airspeed at element i. Three elements of V) represent
the components of translational airspeed at the reference point, i.
The square root of the sum of the squares of these components

is |vaTi|. The symbol Ay represents a 6X6 square array which is
input to MOSTAB. Its elements have units of 1/area, and

represent the inverses of the characteristic areas of element i.
The six-element load column produced by element i is F,.

Both di and fi are referred to overall vehicle coordin&tes.

Eq. (2) is essentially a generalized form of the
Glauert expression for lifting rotors. This classical expression
for downwash of a lifting rotor takes the scalar form:

T
VvV =
21 RE v’

wbhere Vv is rotor downwash, T is thrust, R is the rotor radius and
vV’ is tbe magnjtude of translational airspeed at the rotor
(i.e.,v'§|VAT11 for the rotor).Clearly,(185)is a specific form
of (184)when one element of A is 1/mRe,

In substantiating the use of (185), the arguments show
that this equation holds for rotors in axial flight (as derived
by either momentum or vortex theory) and for elliptical wings
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in forward flight. Eq.(185)has enjoyed rather broed useage
in the analysis of wings und rotors in forward flight.

Now form the total 6N element column d by inserting
submatrices di into 4, one on top of the other, starting at the
top. At the present time, a constant coupling matrix, X, is
input to MOSTAB, to represent the interelement induced velocity
interference:

v = Xad

X 1s a 6NXEN matrix. Eventually, X should be made a function of 4
and vy, to account for wake angles, etc.

(186)



II.5 CONTROL SYSTEM (Subroutine CONTRL)

The operation of this subroutine is cheracterized by
Eq. (11) of Part I.

c, = c(t, known constraints, known constants)

At the present time, CONTRL is simply a logic routine
which determines which elements of ¢, relate to elements of t,
and which are constrained by the trik problem definition. One-to-
one relationships are used between ¢, and t.

If a control system is used with MOSTAB, the equations
representing the system would be included in CONTRL, For example,
if t had such elements as cyclic stick position, collective stick
position, etc., CONTRL would determine the aircraft element-
oriented control settings in ¢, (e.g., cyclic pitch angle,
collective pitch angle) by using suitable equations for
the linkages between the control sticks and the rotor(s).

Th




II1.6 INBRTIAL VBIOCITY (Subroutine VELCTY)

Eq. (12) of Part I indicates the dependence of
the trim inertial velocity column, s ., on the trim variable
column, t, and the constraints of thé trim problem.

8, =8, (t, Jmown constraints) (12)

L

The elements of t, and the constraints input o MOBTAB which define
the trim problem, are listed below. Some of the items in this

list are not used by VEICTY, but are required by the subroutine
FCERQD. The appropriate items in the 1list required by FCERQD

will be considered in the section dealing with that subroutine.

(9) Vehicle weight, W

(b) Overall vehicle axis system ocordinates of the

aircraft's center of gravity: "cc’ ye‘. :c‘

(c) Speed of the vehicle in space, denoted V in this
analysis

(d) Air density,p

(¢) Turning rate (¥ in classical airplane notation
for the yawing Euler angle)

(f) Pitch rate (either @ or q can be specified, by
option index, to represent pitch rate)

(g) Poll rate (either & or p can be specified, by
option index, to represent roll rate)

(k) Rate of climb (h)

(1) The inertia tensor of the vehicle referred to
overall vehicle axes [ I ]

(3) The sideslip velocity ‘v)
(k) The pitch Fuler angle for vehicle axes (€ )
(1) The roll Fuler angle for vehicle axes (¢)
The reader is referred to Reference 9 for the classical

airplane dynamics analysis. The notation used in Reference 9 will
be used here.
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The problem encountered by VEICTY can be stated in a
mathematical format as follows:

Given: €,0,v,(p or §), (q or é), ¢, hand V

Determine: the inertial velocity ocomponents u, v, v,
P) @ ¢ - referred t0 overall vehicle axes

The component v 1s given and requires no more
consideration. Figure 9 shows some of the basic notation
t0 calculate u and v from the given information.
The total inertial velocity vector of the aircraft reference
axes in space is shomes ¥, v

m. Horizontal

' r' Plane
II' ¥ vector in plane of peper

Figure 9. Velocity Resolution.

The korizontal plans can be defined as & plane normal to the
action of gravity. S8ince the magnitude of V (wvhich is V)
and B are quantities, the ground speed vy can be computed

directly
V.8 20 (167)

tiow assign a "space' axis system as shown in Figure 9
is, & coordinate system vith its z axis in the direction
gravity, and its xz plane oontaining the vector V. Three
Euler angles, ¥, € and ¢ can be used to rotate thes
ares to aircraft axes. The only unknown of these BEuler
is 7, since 6 and ¢ are given. Reference 9 shows the
required to express the aircraft's velocity, V, in spatial
coordinates, in terms of the velocity expressed in aivcraft
axes and the Euler angles ¥, 6 and ¢, Expressed in matrix
form, these equations are

Vi

1

dx' /dt\ = [ cosBeos?, sinésinScost-cosdsin? . cosdsinbcost+sindsiny

' ]
dy'/dt | = cosesin?:sin@sineun!ocoucou:eoshin&in!-cin’con v
dz'fdt) o |-sin6 . sinfcosé costcos®

' ’
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Fq.(188) holds for any space axis system if z' lies parsllel to
the action of gravity. For the system of Figure 1, the spatial
velocity components of the aircraft velocity vector V are

dx'/dt = Vg " - I.le (189)
dy'/dt = O (190)
az'/dt = -h (191)

The Eulerian rotational matrix of Eq. (188) can be inverted
by transpositlon to solve for u, v and v in terms of dx'/dt,
dy'/dt and 4z'/dt. The solution for v achieved from this process
v -Wkuimahﬁ)coﬂ-(cow)sinY]-(linOcolS)l; (192)

Sirce v is given, the only unknown in Eq{192) is ¥,

Before proceeding with the solu*’.. of (192), define the
known quantity, C:

c b v + sindc.s6h
'

With this definition, Fq.(192) is written simply as

(193)

(sinésinB)cosY-(cosd)siny = C (194)
Figure 10is a graphic display of Eq. (194):

Figure 10. Graphic Display of Eq. 194



‘'wo vectors (at right angles to each other) are given actual
leniths of cost and sindsint as shown in Figure 10, Clearly,

the vector C is related to ¥, € and ¢ in accordance with Eq, (10).
The vector R is the resultant of cos¢ and sin¢sint, and is
deTined positive at ull times. The expression for R can be
written immediately:

R = 'I;;wz + (sin‘b‘sine)a (195)

From inspection of Figure 10, one sees that a value of ¥ exists
that satisfies the diagram only if

R 2 |c] (196)

If conditionl196is not met, the given values of ¢, &, v, V and h
\which make up R and C) are impossible. The action taken by
VELCTY in this event will be discussed later, For the time
being, assume that condition 196 is fulfilled. In this case,
two values of ¥ will work to satisfy Figure 10:

R cos [:(‘1’ +nf2 - B)] = C or
Y mp -n/2%cos” (C/R) (297)

Since cosY and siny are required, (11) can be used to get
" + -1 +* .1
cosi = COS [B - n/2 tcos (C/R)] = sin [B tcos” (C/R) (198)
" L3 "1 -+ -1
sini = sin [6 - n/2 *cos (C/R)] = -CO8 [B tcos (C/R)] (199)
Using the trigonometric relationship

sin [cos")f ] =¥ JI o X | (200)

expressions (198) and (199) are reduced to the form

* V1-(C/R)" cosp + (C/R) sirg (201)

cosy

sinv (202)

"
]
~~
(@}
~
=
g
Q
[o]
%
'+
<
v !
~—~
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A
n
n
-
B
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Eqs. (201) and (202) can be simplified by noting that

cos B =(cos ¢)/R

and

sin g =(sin © sin ¢)/R

(203)

(20k4)

from inspection of Figure 10, Substituting (203)and (204)into

(201)and (202),

cos VY

:: J-(—g—)a cos © + (—g—) sin ¢ sin @]( '117) (205)

(e ¢ ¥ Y (oot
sin ¥ L- (T) cos ¢ + “\7 sin @ sin © (—R—)(E’O )

The requirement that R2

(206).

> c® 1s easily seen in Egqs. (205) and

The (+) sign on the radicals in Eqs. (205)end (206)
requires special attention at this point. To clarify the
meaning of these sign options, solve for u, v, w using Eq.(188)
in terms of dx'/dt and dz'/dt. All that is required is the
transpose of the square matrix in(188)(which is, of course its
inverse since the matrix is an Eulerian rotational matrix). Noting
that dy'/dt = O from (190)the second column of this transpose
may be omitted. Using Eqs.(189)and (191) to suhstitute for
dx'/dt and dz'/dt, the solution for u, v and w takes the matrix

form:

u cos © cos ¥
v =18in ¢ sin © cos ¥ - cos § sin V¥
w cos & 8in ©® cos ¥ + 8in ¢ cos ¥
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The second equation in(207) ylelds the identity v - v if
Eqs.(205) and (206)are substituted for cos ¥ and sin V¥,
verifying the correctness of Eqs.(205) and (206). To

grasp the meaning of the + sign on the radical, observe the
first equation in (297)for u, and imagine a vehicle in level,
coordinated flight (h =9 =© = v = 0). Under these conditions,

C is zero (as can be seen from Eq,(193) and R is unity
(from Eq.(195). Solving for u (without altering the

radical in Eq.(205),

u=Vcoa\y=v(_t\/"1) (208)

If the + sign is chosen on the radical, flight is forward,
corresponding to a + u. The (=) sign defines the flight as
backward, a condition which is not only possible, but important
for helicopters. Thus, an option is included in VELCTY (by index)
to assign either the (+) or (=) sign on the radicals in Egs.

(205) and (206).

(+) = forward flight
(-) —» backward flight

If condition (196) is fulfilled, Eas.(205) and (206) can
be used to determine cos Y and sin ¥, for substitution into (207)
to yield u and w. If condition (196) is not met, the given
quantities are incompatible. In this case, VELCTY fails to use
the given sideslip velocity, v, and calculates a new value from
Eq.(207). The value of v is relatively arbitrary at this

point. VELC1Y sets |C| = R and calculetes cos ¥ and sin ¥ from
Eqs.(205) and(206) on this basis. Of course, C can be either

(+) or (=) R, so VELCTY uses the forward/backward index to specify
the sign on C.

Forward flight: C = +R
Backward flight: ¢ = =R

After cos ¥ and sin ¥ are calculated, u, v and w can be computed
using (207). In this case, v will be different from the given
value,

Table III {is presented to specify the action of VELCTY for
the contingencies on the sizes of R and C (discussed above),
and other limiting cases which arise,
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TABLE III. OPTIONS FOR SUBROUTINE VELCTY
Case No. Condition VELCTY Action

I V=20 u=v=w -0

II |n| =v u = = h sin @,
v = h 8in ¢ cos ©
w=h cos 9 cos ©

III lc] <R Calculate sin ¥ and cos ¥
from equations (18) and
(19), and u, v and w from
(20). v will be the same
as the given value in this
case - providing a check
on the VELCTY computation.

v le] >R Set C = + R if flight -

forward,C = - R if flight
backward., Compute sin ¥
and cos Y from (18) and
(19), and solve for u, v
end w from (20).
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Rotational velocities p, q and r are now determined.

sometimes p and q are specified before VELCTY is called.
(' and § are specified in lieu of either p or q, the following
formulas are used (taken directly from Reference 9):

p=0-Y sind

q = 0 cos® + ¥ cos® sind
The yawing rate. r, is obtained directly from given
intformation by slightly rearranging an equation of Reference 9.

= (¥ cos® - q sin®) secd
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II.7  REQUIRED TRIM LOADS (Subroutine FCERQD)

Eq. (14) of Part I expresses the functional

relationship between the required trim force-moment column, r. and
the trim variables and constraints:

r = r(t, problem constraints, constants)

The elements of r are the three force and three moment
components of the required trim serodynamic load. These load
components are taken at the overall vehicle reference point, and
are referred to vehicle axes. r can be determined from items a-e
listed in the VELCTY section of this report. The notation of
Reference 9 was used in the VELCTY section, and will also be used
here.

Before r can be determined, s must be known. Thus,
VELCTY must be called before FCERQD may be called, for a given
set of trim requirements.

Consider a center of gravity (cg) coordinate system
which is parallel to the vehicle axes but whose origin lies at
the vehicle cg. A G matrix can be defined (see the Vehicle
Geometry section) which can be used to determine the inertial
velocity components of the cg.

scg = Gcg'

Ea. (2) can be expanded into component form, The

resulting component equations are analogous to Eqs. (6) - (11)
in the Vehicle Geometry section:

u = u+q zc -=ry

cg g cg
Yo * vV+r xcg ot B
wcg = W+ D ycg -q xcg
Pog * P
ch f q

r

cg
(Note that the r used in symbolic Eq. (1) has no connection with
the r yawing rate).

The equations of motion for a rigid-body flirht vehicle

are derived in Reference 9, These equations refer to a body axis
system located at the aircraft's cg. Part I describes the
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definigion of trin,used in MOSTAB: $ =0, Thus, for trim,

“cg -vo‘ = cg -p“ q“ -r = 0, The rigid body equations,
constrained by the trim doﬁn:ltiou used in MOSTAB, can be written

W
- —_— - 220
Xog = W 8108 + — [qc‘w“ r“vo‘] (220)
. - — a
Yog = = W 0080 sind + [uo‘ Pog “] (221)
zcsn-Wcoﬂcou-o-—[pc‘ - ch“cg] (222)
Log = Yog Meog = Fog Pyes (223)
Mog = T, Pecg  Pog Paag (224)
g " Pog yog = Yog Pxog _ o)
l&c‘ 'Ixxcg' q“-I (226)
Byog =~ Iyx Pog * Tyy Yog = Iys Tog (227)
hm el Peg © Izy Uq * I, Tog (228)
Eqs. (220)«(228) define the required force and moment
expressions for vehicle trimmed conditions. These required
trim loads are referred to an axis system fixed to the aircraft,
with origin at the center of gravity. MOSTAB needs the loads
required for trim to be expressed with respect to vehicle axes
(recall that '"vehicle axes" are fixed to the aircraft "in a
convenient position' generally not the cg)., The loads ex-
pressed by Fqs. (220)=(225) are easily translated to vehicle
reference axes,
Define d as a vector locating the cg with recptect to
the origin of the vehicle axes. In component form,
=1 x_+3y. +ks expressed in vehicle
g ce g axis system coordinates
(229)
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Ist F_and T __ be the required force and moment vectors
at the cg. Componentd of ¥ are given by Eqs.(220) - (222),
and ocmponents of T __ are gifln vy Eqs. (273) - (225). tiow
lot P and T be the $8ads required at the origin of the vehicle
axes, vhich produce the equivalent loeding system Fc

Clearly,

r
cg

F

s Tedx?F

Solving(230) and(231) for Fand T,

P =T

Eqs.(232) and (233)are expanded in component form

below:
X

Y

Eqs. (234)= (239) express the component: of the trime
force colum (Eq.212), The set of Eqs. (214) - (219) - (220) -

(228)and (234)=(239)are those presently mechanized in FCERQD.

+
c‘dx

cg ¥ *eg

Tes

Yog = Yeg Xeg

g and P’:zo

(230)
(231)

(232)

(233)

(234)

(235)
(236)
(237)
(238)

(239)

These expressions suffice to define the functional relationship(212).
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11,8 GENERAL MATRIX OPERATION SUBROUTINES

A. Subroutine EULER

Reference 9 documents the standard Eulerian coordinate
system tranztormation, The method {s presented here without
derivation, since it is u very standard procedure,

Given a vector V expressed in coordinates of some orthogonal
uxis system a,

k v (240)

Vi v fJnvy‘+ 5=

a Xa

It is necessary to express \V in the coordinates of axis system b,

Velh Yo" h Yyt Ve (241)

Three angles, ..., exist such that the components of V
in b coordinates can be calculated as functions of the 'a’
coordinates, In matrix form, this relationship is expressecd:

Vb Vxa'
Yoo - R(e) R(") R(v) e (2u2)
Vzb Vea

The quantitics (R(¢), R(7), and R(3)) are 7 x  arrays called rote-
tional matrices, Thesc arrays are defined as follows:

cos: sinv 0
R(,) -gin; cos! 0 (243)
0 0 1
i cog8 9 -'inh
R() o} 1 0 (2kk)
gin o cos '’
1 1 0 4]
R(g) - o) cosy sinp (eus)
| O -siny coay




The onrder of rotetion is relovant, meaning that the order
of mutiplication in kq,(242) is relevant. An important
property of an Eulerian rotatiuvnul matrix is that its inverse iz
equal to its transpose. Another important property is Lnat its
transpose is equal to the untransposed matrix with the sien o
the angle changed. To show these important properties in mathe-
matical: form, refer back to the arbitrary vector V. Denote the
matrix column made up of the clements of V erpressed in co-
ordinates a as V.. V expressed as a column in b coordinate: iz
denoted as V. fith this notation, (242) cen be written

Vo ¢ Rlp) R(0) R(3) Ve

| Premultiplying (247)through consecutively by R”' (%),
R™(#), R=!(+) and transposing,

v, - B R 0R (0)v,

The properties of rotational matrices discussed above
allow(24T)to be written in two other forms:

L U U
LA (¥)R*(U)R (°)"b and
v, - a(-v)n(-u)a(-cp)vb

Subroutine EULER psrforms operations (2u6) or (249), as
specified by an option index. An additional option can be
exercised in EULER, Computing sine and cosine functions
digitally as required in Eqs. (243), (2uk), (245) is e
relatively time-consumning process. If the Euler angle (e.g., :)
used to assemble the rotational matrix is small, the following
trigonometric approximations are accurate:

.intf ‘~ ‘
~

”
4
cosi : 1= If2 "

Ry option. Euler uses Eqs.(250) and (251)to generate
sine and cosine functions. instead of using the computer library
trigonametric functions,

(246)

(2u7)

(2u8)

(249)

(250)

(251)



B. Standard Natrix Subroutines

The list below shows the general matrix subroutines (other
than EULER) presently incorporated in MOSTAB. These subroutines
are so general in purpose that no further explanation is required.
The input/output formats are described, by comment, in the FORTRAN
listings.

Subroutine Name Function
MATINV Matrix inversion
MTXADD Matrix addition or subtraction
MTMPY Matrix mltiplication
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11,9 STABILITY DERIVATIVE MATRIX RESOLUTION

The stability derivative expression is given by Eq. (10)
of Part I,

Op = B, 08 + Py A8 + P Oc (252)

The column Ap is the perturbation load column expressed in overall
vehicle coordinates. As is the perturbation column in vehicle
inertial velocity components. A8 is the time derivative of /s,

Oc is the control perturbation column. Note that Ap represents
loads applied at the overall vehicle reference point, and As and
A8 represent inertial velocity and acceleration of this reference
po:lnt.

The position of the cg (with respect to the overall vehicle
coordinate system) is defined by three input dimensions: x
Yog’ Zeg’ Define a cg coordinate system parallel to vehicle
co%rdingtes but with its origin at the cg. One can say that the
vehicle asix system origin 1s located with respect to cg axes by
coordinates -xeog, =¥Ycgs =Zcgs» in cg coordinates. In the Geometry
section of this appendix, a matrix, Gj, was defined
vhich can be used to relate motions of the vehicle axes knowing
cg motions:

8 = G og=Xoor=Yog1~2eg)Beg (253)
A matrix L, was also defined in the Geometry section

which can used to calculate the effective loading system

at one point of the vehicle, knowing the loads at another

point, The matrix L; is used in the following equation to

determine cg loads knowing overall vehicle reference point

loads,

Pog = Log"%eg? “Yog' ~Zeg)P (254)

It was shown in the Geometry portion of this &appendix that

" .
L i~ % (255)

Eqs. (253),(254),and(255) can be used to eliminate Ap, As,
and A8 from Eq. (252), The result is

&
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PPog, = [Gcg Pe Gcg] L8og [Gcg Pg Gcg]AS (256)

T
+ I_Gcg ]Ac

The equation for G is taken directly from the Geometry portion

t II e £
:f_tgis Par with the substitutions xi xcg, yi ycg, zj
cg’
1 3 i = + b
][] Ve
1 =X
’ i ?';253.8 .1 e
Gog = T Vgl ¥eg (257)
: . 4 T 4 b
unlabelled ele-{_ 1 :-_ .
L'ments are zero i
LI

Stability axes (sa) are defined as follows:

a) The origin of the stability axis system lies at the
alrcraft's cg.

b) The cg's 1inertial velocity components along the
ysa. and zsa axes are 2zero,

Thesc two requirements on the position of the stability axis system
still do not completely define the positiond the axes, Once Xg
points in the direction of the aircraft cg's inertial velocity
vector, the stability axes can be rotated about x,, to an infinite
number of different orientations on the airplane, without violating
either of the constraints (a) or (b). The problem seldom arises on
fixed-wing airplanes that are usually trimmed with zero sideslip
angle. In this case, the stability axes are usually removed from
the usual vehicle relerence axes by a Eulerian pitch angle (rotation

about V50 only).
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A third constraint is added to the definition of the
stabllity axes here, to uniquely define their position., This
constraint is arbitrary, but seems to be along the lines usually
taken in stability analyses.

(e) g?znzf lies in the cg axis system's xcg - zcg

The x__ = z__ plane of the cg axis system usually lies
parallel to ggplanggof symmetry of the aircraft., In this case,
Constraint (c) above, requires the Zga axis to be parallel to the
eircraft's plene of symmetry.

The inertial velocity components of the vehicle, expressed
in cg coordinates, must be known before the cg-to-stability
axes transformation matrix can be derived, (This fact will be
seen later, when this transformation process is developed). Since
the cg is delined with respect to overall vehicle axes by co-
ordinates x_, » 2__, the matrix G, (derived in the Geometry
section of ffiis %5por%§ can be used d}rectly to define the vehicles
inertial velocity components.

N o (xcg,ycg,zcg)s (258)

Note that
(

-1
Gcg Xog'Vog?? ) =G cg('xcg"ycg"zcg) (259)

cg” cg

This fact is substantiated by observing Egqs. (253) and (258).
Direct multiplication of G__ with G""c also proves this result
by ylelding the unit matri$® e

Since only the translational inertial velocity components
(in cg coordinates) are required for the subsequent analysis,

only the first three rows of (258) need to be expanded.

B = W Zogd = Vog© (260)
Vog TVt KXot = 2o P (261)
Wog =¥t VP = Xl (262)

Eqs. (260)=(262) are repeat expressions of Egs.(214)=(216)in the
subroutine FCERQD sectlon.
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Since subroutine VELCTY calculates & (and ultimately
produces the value of s which fulfills the trim condition),

Uog?Vog 804 W, can be computed directly, using Eqs. (260)-(262).

Eulerian rotational matrices were discussed in the sub-
routine EULER section., The transformation metrix required to
rotate vectors from cg axes to stabllity axes can be assembled
using R(y) and R(8) rotations, Normally, the v rotation is done
first, followed by the R(6) rotation, The process is reversed
here, Reversing the order of rotation insures that the z__ axis
will remain in the x_ -z _ _ plane of the cg coordinate ”atem .
The angles V¥ and © af€ cfiBsen to fulfill the requirement that
the cg's 1inertial velocity components along the Yin and Zga
axes vanish,

The components of cg's inertial translational velocity
(in cg coordinates have been denoted Upg,VegsWege When rotated
to stability axes, the y _ and z__ components of thé inertial
velocity vanish, The xa:"compon!ﬁt thus becomes the inertial
speed of the vehicle's "cg. Mathematically, this situation is
stated as follows:

vcz cosV siny 0 coso 0 -8ino cg
0 = | -siny cosy 0 0 1 0 Yo (263)
0 | 0 0 1 sing 0 coso wcg
Inverting and transposing (263) is easily accomplished,
noting the characteristics of Eulerian rotational matrices
outlined in the section on subroutine EULER.
u cg cosd 0 siné cosy =-s8iny O ch
Vo = 0 1 0 siny cosy O o | (a64)
wcg -8inod 0 . coso 0 0 1 0
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Eq. (264) is easily expanded to solve for Uogs Vege 2nd Veg
in terms of 6, Vy,and Vc .

g
Y = cosf cosy ch (265)
= 266
vcg siny ch ( )
g = 8ino cosy ch (267)

Eqs. (265)-(267) are three expressions in the three
unknowns W,B,ch. Of course, Yg Ve’ Vog B¢ known (they are
computed using Eqs, (260) - (2g2).

Eq. (266) gives the simple result

v

siny = TCE_ (268)
cg

Simple trigonometric menipulition of (268) results in the
expression

cosy = :, (269)

Combining Eqs. (265) and (269),

u
cosd = el (270)
2 ]
Jvcs " Vog

Eqs. (267) and (269) combine :o yield

wc
8int = - g (271)
2 >
Jvcg = Veg
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If Eqs.(270) and(271) are squared and added, the
following result is obtained:

n
n
no
n

= u + v + W (2712)

This, of course, is the requirement that must be met, by
definition of Veg. Eqs.(268) = (272)can be substituted into
Eq. (12). The product of the ¥ and 0 Eulerian matrices is
the required cg-to-stability axes transformation. Denote this
transformation as R:

in stability axi

(vector expressed
8
coordinates

vector expressed
R in cg coordinates (273)

R is given in terms of u_, v__, and w__ by the following operation.
The array shown was genefﬁtedcﬁy multisiying the Eulerian matrices
R(¥)R(8), and substituting expressions (268) - {271) for the trigonomet-
ric elements that result.

W

u
v v
uv - -
B " ] 2 2 (274 )
v\’ve e J v vE VJ Ve v
_—
N T > 2
2 d -
L ‘J V2 =l ' \'4

(the subscript cg has been omitted from symbols within
the matrix for simplicity in notation)

<|<

o <

cg

Vc is given by(272)., liote that R becomes indeterminate if vc-‘-o.

g
This is to be expected, since stability axes are undefined when the
aircraft cg has no inertial speed., Note also that the division

‘Jch: = chz can never be zero (except in the indeterminate cese

when V = 0),
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The matrix R is used to rotate three-element columns
(vectors) from cg to stability axes. In order to facilitate
the resolution of Apc and ASce (which are six-element columns
made up of three-element subcolumns), define the expanded

rotational matrix R,
R 0
R= 1o =&

Eq. (256) can be premultiplied by R to yleld an
expression for overall vehicle loading in stability axis system
coordinates. Also, since R™'R = RIR = the unit matrix, the
product RTR can be inserted into (256) just in front of colums

Ascg and Mcg'

T

Eq. (276) derives from(256) in this manner because

Assa = R A’cg
Assa = R Ascs ’ and
Apsa = R Apcg

To simplify the notation, define the 6 x 6 matrix X:

T

X = RG
cg

T T

Noting that X Gch , Eq. (276)1is written

f

L]

T T] .
&P, [X Ps X ]Msa + [X Pé X" |os g,
+ [X Pc]Ac
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The matrices in brackets in Eq.(281) are the stabilitg
derivative arrays with respect to stability axes. Eqs. (251), (257)
(260) - (262), (274), (275), (280), and (281) are programmed in MOSTAB,
so that the statility derivative arrays can be expressed with
respect to aireraft axes, cg axes and stability axes,

The R transformation (Eq.274) cen be used to convert the
vehicle inertia tensor, I, expressed in overall vehicle coordinates,
to the inertia tensor expressed in stability axes.

T
= R IR (282)
where
I =I -1
A xX X2
L ;Yx 1;3 ';zz
“Tox -Izy 2z

Eq. (282) is derived using arguments identical to those
used in deriving (276).
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III. ROTOR ANALYSIS

IIT,1  INTRODUCTION

The rotor analysis is presented in this part in
relatively general form. The simplified version of the analysis
presently used in MOSTAB is assembled in the main body of this
work, referring to the general analysis given here for the
basic equations, If it becomes necessary to remove some
of the present MOSTAB simplifications, the equations developed
here can be used to add the desired effects with no substantial
amount of additional analytic work.

Rotor types which do not couple loads among the blades
(except through rotor shaft motion and aerodynamic interference)
are addressed in this part, Teetering rotors (floating hub
rotors) and rotors with independently articulated blades with
coupling links or cables do not generally fall into this category,
because these rotors couple loads among the blades without first
applying such loads to the shaft. To account for such coupling,
certain terms must be added to the blade motion equations. No
difficulty in extending the present analysis to include direct
load coupling is anticipated. Usually, load-coupled rotors can
be approximated with independently articulated rotor models for
vehicle handling quality, and stability examinations. The
coupling among blades influences vibration levels, blade stresses,
etc., but usually has negligible effect on aircraft handling
characteristics.

III.2 AXIS SYSTEM DEFINITION

The reference point for all rotors lies at the inter-
section of the shaft centerline and the unflexed blades' quarter chord
line (see Part I for definition of "reference points", If
such a point is undefined because of curved blades or some other
geometric difficulty, the point lies at a convenient point in
the rotor hub, on the shaft centerline.

The rotor's local axis system is fixed to the nonrotating
airfreme with its z axis coincident with the rotor shaft center-
1ine and its origin at the rotor's reference point. The azimuthal
position of this system is defined (with respect to the nonrotating
eirfreme) in any convenient manner. Constant Euler angles wr,e »P
are defined which locate these local rotor hub axes with respec€ 8
overall vehicle reference axes. This local axis system will hence-
forth be referred to as the rotor's '"hub axes."

Now define the '"rotor axes' as a system that rotates
with the rotor hub. Then the rotor axes have an angular speed ?
with respect to the hub axes., The z axis of the rotor axes lies
coincident with the 2 hub axis, and the origins of the two
systems are coincident. Define V¥ as the azimuthal angle
between the rotor and hub axes. ,Wheny =0, the rotor and hub axes
are coincident. Clearly, when Q=0,

Vo= at + ¥ (283)
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Figure 11,

_ ——

h denotes '"hub axes"
r denotes '"'rotor axes"

Rotor Axis Systems,
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For most U, S.=built helicopter:, the aximuthal
angle v -mpliea e negative Fuler azimuthal (z axis)
rotation. Care mus exercised to define the siim of 0
correctly when using MOSTAB on a given rotor, A single vehicle
may have rotors which have not only varying values of 2 , but
varying signs as well.

Figure 1l shows a conventional helicopter, with the "hub"
and "rotor" axes illustrated as they apply to the main rotor. A
similar pair of axes apply to the teil rotor, but these are not
shown by Figure ll. Note that the equation for \ above includes
an "initial" constant,Vge Vo is chosen so that the shaft normal
plane projection of rotor blade number 1 lies along the -x
rotor axis, With this definition of Vg, the azimut'!al angle ¥
used here is the conventional angle used in most cl.issical rotor
analyses (particularly the bulk of the work published by NACA).

ITI,3 BIADR LI

Define a blade reference line (BRL) along the span of
blade number 1. This reference line is attached to the mass
molecules of the structure. Its exact position on the blade is
arbitrary, but the quarter chord line is probably the most
convenient choice.

Figure 12 shows the BRL and the "rotor axes." The
reference line intersects the rotor axis system origin. In the
analysis that follows, the BRL is assumed to be infinitely stiff
in tension (it cannot stretch).

The coordinate, s, defines some point, P, on the BRL.
Regardless of the shape of the BRL, s defines a particular mass
element of the blade. Thus, s is a measurement of the length
of the BRL segment between P and the rotor axis system origin.
s is constant for a given P because of the assumption that the
BRL cannot stretch,

a2 &

Figure 12, Blade Reference Line,

When the BRL is deformed, it generally will have co-
ordinates x(s), y(s), z(s) which define its shape in rotor co-
ordinates, With the assumption that the line does not stretch,
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however, the coordinate x(s) can be expressed as a function of
s, y(s) and z(s).

Distributed loading functions are applied to the BRL from
two sources:

(a) "Apparent" loading due to acceleration of
the blade mass in inertial space (which can
inclvde gravity forces if desired)

(v) Aerodynamic loading.

This loading picture can be expressed as a distributed
force vector, F s expressed in rotor coordinates:

F(s,t)=1 [pxi(s,t)+pxa(-,t)] +J [pyi(s,t)wya(s,t)] +i‘t[pzi(s,t)+pu(s,t)]

The distributed loading function expressed above can be
integrated with respect to s from blade root to tip, resulting
in a time varying expression for rotor shaft forces due to one
blade. Integrating PxI produces the shaft moments, These
integrations are considered in detail in a later section of this
appendix.

III.lL  INERTIAL ANAIYSIS

The inertial analysis presented here is required to
generate expressions for the "apparent" inertial loading of a
rotor blade as it accelerates in inertial space. The results
of the analysis will be expressions for the distributed loading
functions denoted Py’ Pyy Py These loading components are
expressed in rotor coorana.tes.

Consider Figure 12 which shows a portion of blade ds long,
at the point s on the BRL. The mass of this piece of blade is
given by the expression

dM = m(s) ds (284)
where m(s) is the blade mass distribution.

Figure 13 shows M with associated vectors to be used for
the subsequent inertial analysis. The rotor axes are shown as
they relate to the "hub" axes. As discussed in the main body of
this report, the hub axis system is defined with its origin co-
incident with Lhe rotor system origin and its zh axis coincident
with the z rotor axis. Generally, the hub axes will be fixed
rigidly to a flight vehicle. As far as the present problem is
concerned, however, the hub axes are defined as above, with the
further stipulation that the motion of X Yy 2y in space is

* The position vector r is defined in rotor coordinates as
F=lx+dy+ke
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Figure 13. Vectors for Inertial Analyses.

given, and that the angle y (in Figure 13) is defined as a
function of time,

The vector, {l, in Figure 13 is the rotor speed, and is
defined

JRTRT S 1 e

where i > 3 s ﬁ are rotor axis system unit vectors and ’i\h,
3h’ i\‘h are hub axis system unit vectors.

Newton's second law expresses the force on dM as
*
= (4%
i 7 dM( at2 )
where the asterisk on the differentliation symbol indicates

differentiation in the inertial axis system. From inspection of
Figure 13, Eq.(286) becomes

(286)

- L - . * 2o
aF, -.-dM(d?‘ + 9—?") (287)
dt dt
& &
The quantity > is assumed a known function to this problenm.
dt

It will be available in components g < gy, g, in hub axis coordinates

(xh’ Yh, and 2y in Figure 13). The 2, rotatio between the hub and

vr or axes is -y. Then the components of g > in rotor axes,

dt

from inspection of Figure 13, are
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at”

=1 (gx cosy = &y sinv) + J (gx siny + Yy cosy) + kg, (288)

The Coriolis <theorem is derived in most works on classical
mechanics (e.g. Reference 4), Written as applicable to
Figure 13, this theorem becomes

d2r

a2

=.r+<lix(wxr)+2a$xi.‘+'&'>x‘r‘ (289)

where the ''dot" denotes differentiation with respect to time
in rotor axes, The variable, w, is the "spin" rate of rotor axes
with respect to inertial axes. In conventional airplane notation
the spin rate of hub axes would have components p, 4, r. Since -'khQ
is the rotor spin rate with respect to the hub axes, the spin rate
of the rotor axes, w, 1s given by the expression

\

» = ?_hp + 3hq + k.h(r-Q) (290)

The vector w can be expressed in rotor system coordinates by
resolution through the angle Y. The result is

w=1 (pcosy - q siny) + 3 (p sinv + q cosy) + k (r - Q) (291)

From Flgurel2, one sees that r can be expressed in rotor
coordinates as

r = ix + jy + kz (292)

q5.(288), (289), (291), and (292) can be processed by

methods of crdinary vector calculus to produce an expanded
expression for 4 h in rotor coordinates. Knowing this

2
dt
vector quantity, the differential force 4 F25 of Eq.(287) can
n

be determined. Note that dF, is the force n blade mass dM, applied
by the blade structure in or&er to produce 4 2h, Taking the

at®

D' Alembert approach of viewing mass accelerations as apparent
torces, the force on the blade structure applied by the accelera-
ting blade mass is -dF,. The components of -dF‘i /ds are the

"inertial' distributed load functions ¥y » P i’ and pzi' Expressed
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in expanded form, these functions are

Pxi(s,t) = = m(s) :gx cosy -g, siny + X=x (r-Q)2

P&i(syt)

pzi(s’t)

+

+

+

+

+

rz (p cosy = q siny)- 2y (r=0) + 2 (f> siny + q cosy)

y (i'-Q)+ (p sinVy + q cosy) [22 +y (p cosy = q siny)

x (p siny + q cosxy)]s

-n(s) :gx siny + gy cosy + y -y (r-Q)2+ rz (p siny
q cosy) + 2x(r=-0) - z (p cosy = q siny) + x(r=0)

(p cosy - q siny) [2z + y (p cosy - q siny)

x(p siny + q cow)'”

- m(s) }gz +7-x [(ﬁ-mq) siny + (c.l + 20p) cosy]
rx (p cosy - q siny) =2x(p sinv + q cosy)

y [(p - 20q) cosy - (4 + 20p) siny]+ ry (p sin v
q cosy) + 2y (p cosy - q siny) - z (p° + @°) |
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III.5 AERODXNAMIC ANALYSIS

This analysis is required to produce expressions for the
distributed aerodynamic blade loading functions p. , p.. , P _.
These distributed loading functions are vector coﬁ%onex%s of%the
aerodynamic loading referenced to rotor axes.

The aerodynamic loading at a point on the BRL depends
upon the velocity of air with respect to the blade at that
point, To derive an expression for this velocity, consider
Figure 13. Instead of space axes, envision the axis system
attached to the air mass in the vicinity of the rotor hub. Then
the velocity of the point s on the BRL, with respect to the local
air mass, can be expressed as
* *
d h d R d r
at - dat T at (296)

e

The quantity represents the translational airspeed
of the hub axes (or %%or axes), and is given to this problem.
If the components of velocity of the rotor hub axes with respect
to the local air body are denoted Ugs Vs Wos then

L .
R A A ,
- C Lawmthvatrw (297)

Resolving this velocity into rotor coordinates,

*.—

dR A A L
—=t - { (uA cosy - v, siny) + 3 (u.A siny + v, cosy) + Wy e
The rotational airspeed of the hub axes is also given to this
problem. Denote this airspeed Wpp 't

g, ot p 3k (299)

Eq. (299) resolves to rotor axes in exactly the same
way Eq.(297) did, with pg, Qa, ra, respectively substituted
foru, v., w.. Noting that fhe rotational speed of rotor axes
with ?‘espgct £0 nut axes is - , one writes the rotational airspeed
of the rotor a.es as

\
cISA =1 (pA cosy = q, siny) + ;]\ (pA siny + q, cosy) + k (rA-n)

Classical works on vector mechanics (Reference 4) demonstrate that

g

d »

dat
where again, the dot denotes,diff‘ezentiation with respect to time in
rotor axes, The quertities T and a;, X ¥ are easily calculated.

Combining the result of this calculdtion with Eqs.(296) and (297),

=i"+wAX1_' (300)
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é d ﬁ _ O o . ) . .
= =3 i w, cosy - Vv, siny + x + 2 (pA siny + q, cosy)=y (rA Q)]

-

+ 3 LuA siny + vy cosy + ¥+ X (rA-Q) -7 (pA cosy - QA sinw)]

+ k x?A +z2+Yy (pA cosy qA siny) -x (pA siny + qA cosw)] (302)

Eq. (302) gives the velocity of = point, s, on the BRL
(noting that s specifies x(s), y(s), z(s), z(s), etc) with respect
to the local air body.

Since airloads are generated by an airfoil section at s,

*
the velocity dh must be expressed in coordinates directly
associated with the airfoil section, instead of rotor system
coordinates. To do this, first define the "blade'' axis system
at s as follows:

(a) The origin of the blade axes lies at s (point P
of Figure 12).

(b) The axis is tangent to the BRL at s, and points
generally toward the rotor hub.

(¢) The y, axis lies parallel to the chord of the
blade section at s.

Define three angles, v, T, (, to represent the three Eulerian
coordinate rotations required to rotate the rotor axis system to
e position parallel to the blade system. Then a transformation
matrix T can be assembled, such that

vector expressed vector expressed
in blede =T (v, T, { in rotor (303)
coordinates coordinates
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where

1I_o | ofeosr! o l-sinr][ cosy! stnv! o

1€ |0 cos¢ lstng]l 0 ' 1 | o ||-etay! Enwl 0

O |=sin{ | coslJlstnr | 0 | cosrdJL 0o | o | 1
COBT cosv | __ cosT sinv: | -sinT

= | sinC sinT cosv =-cos{ sinv | sin{ sinT sinv +cos{ cosv Isin( cosT
cos{ sinT cosv +sin{ sinv | cos{ sinT sinv -sin{ cosv |cosC cosT

(30%4)

The angles v and T as applied to a rotor BRL will generally
be small, representing the blade flapping and hunting angles
respectively. The angle C will be somewhat larger, being approxi-
mately equal to the blade feathering angle with respect to the rotor
shaft normal plane. The geometric relationships among the variablec
T, vand { in T, and the blade reference line coordinates x(s,t),

y(s,t) and z(s,t) will be examined in Section I. The remainder of
the aerodynamic analysis requires only the definition of the rotor-
to-blade axis system transformation Eq. (303).

If u., U and u, denote the spanwise, chordwise and normal-
to-chordwise afrspeeds at the airfoil section at s, then the T
transformation matrix defined by (303)can be used as follows:

Ye
u, =T VA (305)
u
n

where V A 1s the airspeed at s in rotor coordinates defined by
Eq. (302).
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In general, the serodynamic forces on a blade element will be
complicated, nonlinear functions of and u_, and functions of the
characteristics of the airfoil section being Sonsidered. Here , 8say
functions fn and fc are available, such that

£, = £, (w, u,,8) (306)
£, = £, (u, u,s) (307)

where fn is the distributed aerodynamic force normal to the blade
section"chordline and f_ is the distributed aerodynamic force parallel
to the blade section chSrdline.

Figure 14 shows fn,fc,uh and u, with the airfoil section at s.

The section can be viewed as the facing end of a blade element of
length ds. Such an element develops the air forces as shown by the
diagram,

CHORDLINE

Figure 14. Aerodynamic Forces on Blade Elenent.

In the diagram, u, and u, depict the velocity components of the air
with respect to tge section,
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The transformation matrix T can be used to determine blade

aerodynamic distributed loading functions Pyg? pya and Poo

in rotor coordinates. Teking advantage ?f th% fact that, since T
is an Eulerian transformation matrix, T"' = (T (inverse) =
T (transpose)),

Riw 0

» o (308)
va e

p! A fﬂ

The equations developed in this section are sufficient to

deﬁne pxa,’ pya. a.nd. pza.’ given W) uA’ VA’ WA) pA’ qA’ rA, X, y’ Z,

v, T, (, 0 and suitable aerodynemic functions (306) and (307).
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I11,6  SIMPLIFIED AMODYNAMICS

A linear 1ift coefficient function and e simple parabolic
drag polar can be used in lieu of complex aero functions for f
and £ . This simplified approach requires small angle-of-attaBk
a.ppro&ima.tions.

dL

,_«ﬁﬁ""

Ue

Figure 15, Blade Element Aerodynamics for Small Angle-of-Attack.

The airfoil section of Figure 15 hes infinitesimal spen ds. It
develops infinitesimal forces 4L and dD.

For small a,
! .
o = q (309)
V = v, (310)
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Assume a linear 1ift curve slope a, and a simple parabolic

drag polar:
u
n
L a (—ﬁ:) (311)

2
, 2 un un
CD 2 60 + 8 + 52 a = o 1 (—-1-1;) + 82 (—Tc) (312)

The distributed 1lift and drag forces are

Q
"
)
Q
0

i
o
+
o

/ au
g—i = L=( un )_Ec_ ueZ =a(£‘2’—> uu, (313)
[¢]
u u2 4
v s a Ype 2 |
& -2 '(5o+51(u )*52 2) 5 Y
(o u
[}
. e 2 -
=L 2 (Souc +81unu‘<:+52u‘n (314) !

Resolving these distributed forces to lie normal and parallel
to the chord line

B -0 = - af-£S - pe - pc 2
f‘n z=1 co8s a=D sina a.( 5 )unv.c 5 (Bounuc) 5 81“:1 i
{
o] 2
3 - (‘2—)[(3 4 60) uu, B, ] (315) 1

! [

) LoD o - affe), 2. [0 !

fc =L s8inc =D vvos a = a(2 ) un ( 2)(6 u o+ 51u u + 52u )

- (%)[(62 = a) un2 + aouc'? + 6]unuc] (316)
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u
where the term ﬁn— has been neglected.

c

Eqs. (315) and(316) provide functions of the form (306)

and (307) assuming simplified models for the aerodynamic 1ift
and dreg coefflicients.

II1.7 TOTAL LOADS ON THE BRL

The total loading on the blade comes from the summation of
inertial and aerodynamic forces. The components of this loading,
in rotor axis coordinates,

Py (s, ®)=p, +p, (317)
Py (s, ¢) =p, +p, (318)

P, (s, t) =p, +0p, (319)
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III.8 BIADE MOTION EQUATIONS - THE NORMAL MODE METHOD

The preceding sections of this part show derivations
of the expressions for distributed loading on aerodynamic rotor
blades. If the blades are rigid (as can usually be assumed
for most propellers) the BRL coordinates in these
expressions are only functions of s. Since the time varying
quality is removed from these coordinates due to the rigid
blade constraint, rotor geometry defines the functions x(s),
y(s), z(s) and ¢ (s), and no further analysis is required to
determine these functions. In this case, the distributed loading
functions can be defined as soon as the aerodynamic and inertial
motions of the rotor hub-axes are known.

If the blades on an aerodynamic rotor are flexible (as in
the case of hinged blades, or so called "rigid" rotors whose
blades deform elastically tuv a significant degree), the BRL co-
ordinates are functions of time, as well as the spatial coordinate
8. Determination of these coordinates as functions of time (and,
of course, s) might be called the blade motion problem.

References (3) and (5) show the application of the normal
method to the problem of thin flexible beams moving under external,
time varying distributed loading functions. Both references
address the one-dimensionel beam motion problem, but the method
is readily extendable to the multidimensional problem. Discussion
of such extension is deferred to a later section of this part.

The salient features of the one=-dimensional thin beam

motion problem are presented now, in the notation of Reference 5.
Figure 16 below shows the coordinates

w pat)

Itn), méx)

Figure 16, Coordimates for Blade Motion Analysis.

to protien (s %o specify wik,t), £l en the structurel and
[neriial properiies of the tewm, wnd the extermal "motiom pix,t).
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If p(x.t)-0, the beam will vibrate if disturbed from rest.
Many methods are nvailable f'or anal zing this free vibration
problem., The results of these analyses show that the heam has an
infinite number of "normal modes" of vibration, each occurrins
at a different frequen~y. These frequency values are usually
called the natural frequencies of vibration, or the elgenvalues
of the flexible beam problem. The eiganvalues =are {unctions of

the beam's stiffness distribution EBI(x), mass distritationm x),
and supports (simply supported, cantilevered, etc,). A function,
04 (x), 1s associated with each natural mode of vibration. Ihisc

function is called the modeshape or eigenfunction of the i 'th
normal mode of vibration, TIf the beam is vibrating in its j'th
normal mode only, then the coordinate w(x,t) is csiven as

w(x,t) =K ¢J(x)sin (wjt +0) (320)

where w, is the eigenvalue associated with the J'th normal mode,
and X aﬂd 6 are arbitrary constants determined by the initial

disturbance which started the motion.

The normal mode method is essentially 2 tunctional

series solution method for the forced beam. The coordinate
w(x,t) is expressed as a series in the modeshapes, and a set of
"generalized" or "normal" coordinates:

n

w(x,t) =22 0, (x)n, (t) (321)

i=1 i
In the case of the continuous beam, n is infinite, The generalized
coordinate nyt) specifies how much or the 1i'th eigenfunction ig
involved in the shape of the beam at time t.*

References 3 and 5 show that the eigenfunctions are
orthogonal with respect to the beam mass distribution, mix).
This very important property is expressed by the equation

L
ﬁ(x) ®; (x)0,(x)dx = 0 when 1 # j (322)
(o]

This condition of orthogonality accounte for
the name normal as applied *n the vibration problem.

o - e— -

- Obeerve that Eq.(m) apnliex only when the beam 12 vibene for
in its j'th wmode with no extermal Afaturban~e~, #9,(32)) 1-
the assuned functional series solution for the beam ag It =oyer
under any sypecified extermal excitation,
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Now consider the case when p(x.t) is nonzero, A partial
ditf'terential equation can be written in independent coordinates x
(space) and t (time) Tuhe functional series expression (320) is applied
to the equation as a chanre of coordinates. Essentially. the
normal coordinates, my(t), are substituted for the distributed
coordinate w(x.t). Using the condition of orthogonality
expressed by Eq.(322), the infinite number of equations in the
infinite number of coordinates ‘ni(t) are decoupled. The form of
the decoupled equations is

o 2 Nr

+(D =
“2‘ g Mr r=1’2 ..... 0

where » M , and N _ are the normal coordinate, "zeneralized

mass" ahd "Generalifed force" (respectively) associated with the r'th
normal mode. The generalized mass is constant, and given by the
expression

(323)*

2
M, = ,[n(x)fbr (x)dx (324)

o
The ceneralized force is given as

[ (325)
N.oo=Jo or(x) p (x,t) dx 325

The normal mode method for calculatinz the motion of
forced beams has been presented above, as it applies to one-dimensional
motion. The method is in no way restricted to one-dimensional
problems, and is easily extended to the n-diasnsional forced
motion problem, Clince MOSTAR considers only blade flappin: motian
at the present time, the mlticoordinate extension of the modal
method 13 not precented here. If necessary. the extension caa dbe
made <o include iaplane and torsional blade mddes. The mumber of
normal coordinate !z increased It this is done, tut no theoe
retlcal or practical difflculty restricts MOTTAER to the simple
oncedimen:zional caze preasently lacorporated. Reference 5
thows hew the norral rode methol can be used to study flutter, In an
ew!lmlent manner, 'O'TAR ‘ould te extended 'with the accompanying
In‘reagse in computer ‘ize requirementz) to even In-Jude tlade
“lutter mavies,

* Ve tampinc cerm wawm In Referea~s § Lo dropped here,
e tetwue L1) be ewmziicrel 1v%ep.
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II1.9 GENERAL COMMENTS ON THE NORMAL MODE METHOD

In any practical solution, a finite number of normal co-
ordinates, mf (t), muat be celected to represent flexible bod,
motion, Usually, the coordinates associated with the lowest
frequencies of the elastic system are chosen. The normal mode
method is very practical for aerodynamic rotor blades, because a
minimal number of degrees-of-freedom (normal coordinate:)
need be chosen to represent the significant characteristics of
the blades. (This is particularly true when overall vehlicle
handling qualities and stability are being considered).

Experience has shown that the influence of blade motion on handling
qualities is represented by the first flapping mode only. For

some stability augmentation schemes, the first inplane (or first
"chord") mode may also influence the stability and handling
qualities of an aircraf't, Higher frequency blade modes are
important with regard to blade stability (flutter), rotor

stability and vibration considerations (including structural
fatigue problems), but these modes seldom affect vehicle dynamics.

Sometimes static torsional deflections of blades influence
vehicle dynamics. This is not due to a torsional vibration mode
(since it is a static effect), so consideration of this
phenomenandoes not require the addition of another blade decree
of freedom. This issue is mentioned here to substantiate the
claim made above that higher order modes /including the blade's
first torsion mode) seldom influence vehicle dynamics.

The normal mode method has many advantages when used to
study vehicle dynamics. The following considerations are applicalle
in this remard:

(2) The structursl charscteristics of the blades, and the
influsnce of ocentrifugal force, are renresented in ithe
wodsshape functions, ¢, (x), and frequencies, vy, Tt
is easy to estimate -o&uh«pu and frequencie:, ir
detailed structural information {= unavailable for the
‘fven tlade. For hinced tlades, the first modez:npe and
frequency (Tor both chord and flappine motion) 'an be
deterunined from blade pgecmetry. Reference o
1ves an ex%enc! e catulativn o mdesiapes and
frequeneies for pinned and cantilever reamz rutat ¢
and nonrotatinc) wi*h llnearl: aryin- zcpurtupal
charasteristics, and vith lIp we! Y3, Theze ctar
cqn @ used ‘0 9t wd estimates of madeshape: und
voquencies, I detajled Sata [2 unamilatle,

() T™e ymwmlics of a .ehiele are uzeally 7ulte Incenc'e
tive te orrers (n estimnted mdes ape functions,
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Very primitive models can be used for these functions,
while still achieving accurate results. It is only
important that the modeshape function be compatible
with the mass distribution estimated. When estimating
a modeshape function, use the mass distribution which
will produce this shape. If Reference 6 is used to
estimate modeshapes, this requirement is automatically

(¢) Usually, very stringent rotor design criteria
restrict the frequencies that a blade must possess.
This is particularly true for the lower blade
frequencies. Xnowledge of these requirements makes
it quite easy to estimate frequencies, even for
undesigned rotors being studied for predesign
evaluation.

Some concern must be given to the function p(x,t) when
the normal mode method is applied to aerodynamic rotors. Eq. (331)
gives an expression for the generalized forcing function in
terms of the distributed force. 1In the case of aerodynamic
rotors, p(xt) will contain all aerodynamic forcing effects, and
most inertial forces. Certain terms in the inertial distributed
loading functions refer to loads caused by BRL acceleration or
position in the rotor axis system. The terms -my, + my(r—ﬂ)e
in Eq. (294), and -m? in Eq. (295) are in this category.
These terms are included in the equations used to perform the
vibration analysis, leading to the determination of the eigen-
values, ay, and eigenfunctions, ¢34, for the "unloaded” BRL.
The influence of blade tension will also be included in the
vibration analysis. Since these terms are included in the modeshapes
and frequencies, they must be excluded from the distributed
functions tnat are intecrated to get the generalized forces.

Considerable flexibility exists as to which inertial (and
possibly aerodynamic) torcinz terms are to be included in the vibration
analysis (and thus excluded from the generalized forces). Reference 5
show: a conztunt coerricient dampins term on the left side of
Fqe (323) (Ea.(323) implies *hat the damping is included in the
seneralized force term,) When the modal analysis is applied to
an aerodynumic rotor, the generalized force terms usually
contaln eftfective spring, damping and mass terms (i.e.,
the {nfluence of »,., ;r and ¥, {8 present in the function N of

1e (323), Treze termz’usually appear with time varying coe
el'lclentz or !'n nonlinear formulations, which makes {t necessary
o ntlude *le= (n the eneralized orce tern instead of on the
les {is o *he equation, Zxperience haz shown that the
fuplir- ‘er=3 can le !acluded in the reneralised forces as

te L3231 - intesratad nueerically, with no ob:ervadle errors,

* 12 fesiraile 0 !nrlude ag many sprin- and mass eras in the
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vibration analysis as practicable, however, excluding these terms
from the generalized forces. (Of course this cannot be done

if the terms are nonlinear or time varying). This is particularly
true if very low levels of damping are available for one or more

of themodes (e.g., the inplane mode on rotors with no inplane
dampers) .
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111,10 CALCULATING THL BLADE REFLRENCL LINE ANGLES AND COORDINATES

The previous sectiome of this part have presented the
basic normal mode method for calculating blade motions., The
solutions of the modal equations, in conjunction with the assumed
modeshapes, eventually yield expressions for the blade ref'erence
line coordinates y(s,t) and z(s,t). As can be seen from inspection
ot' the inertial and aerodynamic loading expressions, the coordinate
x(s,t) is also required.

The transtormation(303) can be used to derive the necessary
expression ftor x(f,t), and to relate the roordinates v and i to y(s,t)
and z(s,t). Consider the differential length of blade
reference line, ds, as devicted by Figure 12, Since the blade
axes have their Xy axis tangent to the BRL
at s, the increment ds can be considered a vector pointed in the
=X p direction., The vector <1 ds will have components 4 dx {j‘ dy
+ R dz in rotor axes, which aPe easily determined from £q. (303).

~da' dx
\ 0 T dy (326)
O dz
or
dx -ds
dy T 0 (327)
dy 0

¢ onverting (327%o threc scalar expressions using (304)

dx e« cos1cos v ds (328)
iy e cos7sin vds (329)
i1z = sinids (330)
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The required expression for x 1s found by integrating
Using n a8 a dunmy variable of integration on s:

x(s,t) = -f cos T cos vV dn (331)
o

Eq.(330) yields the expression for T:

gin T = dz/ds £ 2’ (332)
From the elementary trigonometric identity sin2 + cos2 1,
the cos T function is seen to be

cos T =J1 - 2'2 (333)
Combining (329) anda(332),

sin v = = y/{1 @ (334)
Again, from elementary trigonometry,

e
cos V = 1 - —L'_2 (335)

1 =2

Eqs.(332) -(335) are exact expressions which can be used
in terms of the modal solutions y(s,t)

to find T (Eq.(304)
and z(s,t). The angle ( in (304)is approximately the blade
feathering angle (classically denoted -6), at the point s.

6 is a function of blade twist (which makes ¢ a function of s)

and feathering hinge angle, If torsional deformation of the
blade exists, © will also contain the state variables of the

torsional dynamic modes.
E<z:.(?33) and(335) can be used to eliminate cosT and cosV
from (335)¢

s
x(s,t) = -le L v 2 an (336)
(]

EqQ. (336)allows computation of the blade reference line

coordinate x(s,t) directly in terms of the modal solutions
y(s,t) and s(s,t). 1=3,(236) iz pussible, becrusc the BRL has

been assumed instretchadle /see Section B),

9



Time derivatives of x are required by both the inertial
and the aerodynamic distributed loading expressions. These
derivative functions can be evaluated directly from (336) by
teking the time differentiation inside the integral to operate
on the radical. Eq.(336) cen be simplified considerably,
since z’ and y' are relatively small angles. The time differenti-
ation of the approximated version of(336) is also much cleaner
than if (336)is used in its exact form. The process of simplifying
(336)and than taking the time derivatives of x(s,t) is explained
in Appendix I.
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III.11 SHAFT LOADS

The load components that are applied to the rotor shaft by
& blade can be expressed in integral form. These loads are caused
by the presence of the distributed forcing surmations (317), (318),

(319), Expressed in rotor axis system coordinutes, these force and

moment components are

fn
L = p, ds
T A x

R
Y-/pdl
¥ (-}

<

The integrals in Egs. (337)=(342) must be evaluated
nuperically. The blade motion problem must be solved first to
determine BRL coordinates x,y,z used in Eqs. (337)=-(342).

Of course, these coordinates must also be available before the
distridbuted forcing functions can be expressed in numericeal
form.

21
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V) DI

This part presents a complete listing for the NOSTAB-B
program, written in FORTRAN IV code, The program has been run
extensively on a Univac 1108 computer. Typical runs require
1.2 minutes of central processor time, much of which is used for
the trim search iteration and input/output operations, No
difficulty has been encountered with trim, even for such a
complicated helicopter as the AH-5GA,

MOSTAB-B requires approximately 42,000 flosting point words
of digital core. To minimize program development costs, core
limits were not considered during the programming phase, As a
result, many arrays presently incorporated in the code contain
large blocks of zerocs, The wasted core space used to store such
gero blocks can be eliminated by reprogramming some basic matrix
subroutines to handle special matrix configurations. This
additional programming effort, plus other core saving measures,
can be used to reduce the core required by MOSTAB-B to an
estimated size of 25,000-30,000 floating point words,

In addition to the basic MOBTAB-B program descridbed, the
code shown below includes several special ''convenience" features:

(a) The "repeat run" capability eliminates the need for
subnitting a complete aircraft desoription dock for
each run, MOSTAB-B executions can be perforned
sequentially, such that the first input data deck
is a complete deck, wvhile subsequent data decks
include only the changes in input data required for
each case,

(b) Output options allow the MOSTAB=B user to elect
to print either all aircraft data stored in the
computer, or just the changes and the output for
each case,

(e¢) Input indices specify the peripheral unit numbers
to be used for program input and output.
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The MOSTAB progrem development is oontinuing as descrite!

in the main text; therefore, it is suggested that intendine

users should oontact the authors to receive up-to-date information

on the current status of the program,

125



IV.2, LISTING OF MOSTAB ‘B’ PROGRAM

GROUP § (SPEC) ° GROUP 2 (REDATA)

17Em 1TEM OITEM 1TEM

¥ L) 11, LC e 3, PK 13, WE

r I8 {4 12, NOPTRM o 2, INTS 12, VNOT
3, A {d ] 13, 18 1 e 3, XEL 13, PT

q, {4 14, QINRTA o 4, YEL 14, PV

S Tas e 5, 2EL 15, PVDOT
6, Run ® 6, A 16, PF

7, rPSINOY B 11X 1?7, PTC
8, PTCHRY T JXx i, TACPY
9, RQLLRY ° 9, X 19, WACPY
10, HONTY ¢ 10, TE an, RACPT

21, BDACPT

THE ARRAYS SP AND RFD ARE OCCUPYING THE /SPFC/ AND /REDATA/
CO“MOM REGIOMS, IN MOSTAR, THESE COMMON REGIONS ARE FILLED
AS ShOWN DELOY,

COMMOM/SPEC/WT s XCOhe YCG,7CG, TAS ,RHO,PSTIDOT,PTCHRT sROLLRTHDOT,LC,
1 NOPTRM,IT(6),AINPTA(S,S)
COMMON/ZREDATA/PK(2950,A) o INTS(10,8) ,XELC(B) »YFL(B))2EL(B),AL6,6,8),
1 IX(5C0)sJX(500)sX(S00):sTF(6),WEC48),VNOT(9),PT,PV,PVDOT,PF,PTC,
2 TACPT,VACPT,RACPT,3DACPY

DIMENSION NTEL(25,2)0NNIMS(25,2),RIC7),NSTZE(S,25,2)

COMMON/SPRC/SP(27)/RENATA/RED(3964)
COMCN/FHYSCS/PTRANG(250), TNTG(10) ) NPK(8) sNINTS(8)
COMMCN/DERUG/NNXS

COMMON/ZTO/ZIREN, IRYT,1QYTZ

DATA (NTELC(1:2)01%3,21)/73,2001,20R1,2089,2097,2105,2393,2893,

1 3363,3293,3499,3947,39%56,3957,3958,3959,396003961,3962.3963,3964/
DATA (NDIMNS(L02)0121,14)/1200,102/

DATA (AD]MS(1:2)0181021)/2,20301,3,601,9¢0/

DATA ((NS126C1oJel)0]83+3),U81,14)/3690:600,003+300/

CATA (CST12FC1ode2)0]1%103),0%81921)/725008+003008:008+00008+0+0008:00
1 0060€,8,%00,00N050000000%00000006s000048,00009:000+2700/

DO 210 131,1)

NTEL(T, 1) 3
NTEL(14,3)819
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REAC(S,10N)I1RED, IRYT, IRYT?
FORVAT(7]110)
READCIRED,11r0) I'CASES
WRITEC(IRYTZ,11) NCASES

00 1000 JCaSEs1,NCASES

WRITECIRYTZ,10)
READCIREDI100) NCHNGSsMSTOPTY
WRITE(IRYT2,11) NCHNGS,MSTOPT
IF(NCHNGS.EQ,0)G0 TO 230

D0 225 1CNGSY1,NCHNGS

READC IRED.200) NGROUP,NTITEM,NCHNUM, §,J,K
WRITECJRYT2,14INGROUP s NI TEMsNCHNUM, § ¢ Jo K
FORMAT(1X,7140)

FORMAT(1M1)
CALCULATE THE START POINT,

NDIMBRDIMS(N]TEMNGROUP)
NSTEATEL(NITEM)NGROUP)

158M817¢ (1,MITEM)NGROUPR )
JS8MS12-(2,MNITENMNGROUP)
KSS:,S1Zr(3,MNITENINGROUP)

IF(N0IM Q1) MSTENSTO =g

IFCIDIMER,2) MSETENGTo e (J=g )08 ]
1F(uDIM,EQ,3) NGTSMSTeto(Y=2)0 8¢ (K=1)0180 8=

MAKE THE CHANGESR,
NLINESQ

NENSNSTeNCHM)M=q
DO 300 IsNST,NFDP

INDFXE]=NSTey
IFCINCEXJLE.NVINE®?) GU TO 270
NLINESA JiEey
REANDCIREDI120)(RICUIIJBL,7)
WRITECIRYT2,42)(RICJ)eJeL,?)
FORMAT(7F10.D)
FORMAT(1X,7F34.4)

CONTINLE

NCOLE® INDEXe(NLINE=2)e?
JIF(MNGRCUP,EN,L) SP(T)SRIC(NCOL )
IF(NGRCUP,EQ,2) REDCIISRICNCOL)
CONTINLE

CONTINLE

CONTINUE

CALL MOSTAB(MSTOPT)

CONTINUE
s$TOP
ENOD
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SUBROUTINE nOSTaB( ISUPRS)

1NOFX
N

NTYPE(]: )e

NTwRUC L)
NCtle3)
NC(1e2)
\Ptg)
NMATSLYY

Wats
(€A1

gutecie 3

nosTal

CMODULAR 3TaBILITY DERIVATIVE PROGRAN)

OESCRIPTION
NUMAER OF VEMICLE CLEMENTS, (8 OR FEVER NOV)

TVPE OF 1'7H CLEMENT, WHERE
oL IFTING SURFACE
20"y

JsELEXIOLE ROTOR (P EXIOLE BLANES)
4sRICIN NOTON

wWHaER OF TIYES 1°TH ELEYENT CONPUTATIONS
HAVE OFEN »ADE .

VUNER OF FIRST ELENSNT (N TvE CANTRG,
COLU™I,Co ASSOCIATED ViTe VEWICLE SLENENT §,

'O'Qg WyNrS OF FLEENTS (6 € 4908C1aTRD YT
a19C 0T ELINNT §.

WeaE oF FLOATING POINT PARSNGTERS VO 02 SN0
FOR 410CRFTY BLENYY .

wWewrl oF FINED POINT Pt TEN8 70 08 |
P00 410¢a08T ELL7EVT .

vagle ¢F N FAEERYY TINSTI0N CVELE.
10e? “TeCEe o8¢ 04108 COLON YD

Posass
soviertee] ceterces oB agres gaonsNe set

QTN 1TV GEOIVATIVE ®TOLS

QIVEI BI™ »9eiTe)
S1%1 81% ‘!0‘."o.l“hﬂg'l.ﬂ.hﬂ.h'ﬂ“h'lC“’o' 160)

PLANSE 826

81 912N v¢

0‘.‘\.0"‘ 'o’.“.”’."‘" ...OW"’

Q)ea?10,00,07000:0007u000,00000¢08,80), 00, 08)
u.n.mm.at.sv-u..n.:m.m.cu

g'o”
VIOrT00,00 7, WWIPETE 00,001
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g 20PVHY,17(6),01°07483,9)
CV-W—‘I&Q.'IIN‘M."og:"“...hﬂ(l'."g“’0”%0‘(.0.0"0
$ I1R695000,J2¢500),5(500), 000 WP (400 o VNOT (9D PT PV, VePS PYCe
2 T4CPY,aCrY A aCPY, 900CPT
WM’“‘“’Om“om"o'l.‘“’om‘“'“.’“hw“’0

3 PLe),07(0),08(60)

wummuu.u’.uuu.umcul.u)
COm"W,CW‘.O"o\""‘“o\'o.ﬂ.hl.”‘“o WOINCT LN, NI TSR
COP1 NI T AnPu/PSi6,0) PRNATEE,0)0PCLA3D)

COM=0% NG HuC /AMS

CONMONIILOMRT/ (DNIET o RETA(9300).007007(58.0)

pats m'oc.o.ouo.0“0.o..o.tpo.o.'o.ouﬁ.o‘o.ono.wuo.g....
. 'Pa% 'aY, ‘np*/

CaLL RENAYILS.I0PRS)
i T8¢0,18)

P00 T(18,2990)

P I8,0039,8)

INETI8L 807,
*egy 800!

\aaseg
oC 9239 f\0g,
tenyty dos
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Y
s
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COMPUTATION.
IF(LSTPSE.NE.1) GO TO 283

WRITE(I®YY,10)
CORMAT(ING)

CALL RENRYT(2, ISUPRY)
CONTINVE

JF(LSTPSS.£0.,1) GC YO 9?7
SRITE TRI*-SEARCH RESULTS 1M ABAREVIATED FORMAT FOR GENERAL INFO,

WRITE(2,90) wPasS

FORAT(20),°GFrFRAL TO[neSEARCH DATA- PASS NO, ', 12)
FOR‘AT(1X00307003%,1€69,3))

FOCAT( /701, 'FLEXIALE=BLANE ROTAR, ELEMENT NO,°,12)
WRITECZ2,91) NOGrcL).(CcOtT),001,LC)

WRITEC2.91) DOPLCRIoCTREII, 100,6)

URITE(2,93) ROPECI),(80C1),181,64)

WRITEC2,91) OOFF(A), (RD(LY,101,4A)

URITEC2:,93) NWPFIS)e(P(1).108,6)

URITEC2:,91) DOPELO)otOT(]),081,0)

URITEC(T,91) COPECT)oCNUIT) 108 ,0REL)

WRITE(2,91) DEPECRI (VB L) ,508,CL)

WRITE(2,91) DOPELO) CUPigd, 208 WKRL )

WRITE(2:.91) ONPEC20)0CVI0C)o100EL)

WRITEC2.93) DOPS €230,CvaOC)ot0so00EL )

WRITR(Z2,91) DOPELLDPY (PO ) 108 0EL )

00 99  neg,v

IPExTYRE (ndNED) €0 T0 O

WRITEL2,97) N

NPeInT$(2,J0)

wR3tE(¢2,98) ”l”hiﬂ'“;o‘h 03 oM AP)
URIVEC2,92) DOPE (243, (0FTaDT 8,400,008 0 P)

CONYIMmA
CoNTImE
INITISLI3E GRADIBNT RaTRICES

S

""'Oc‘“o.
“" ..m.



BHITE TRI“-SEARCH RESULTS IN ABAREVIATED FORMAT FOR GENERAL INFO,

WRITE(2,90) wass

FOR1AT(100, *GFPFRAL TRIM-REARCH DaTa~ PASS NO,?,12)
FO-AT(1X0a3,07,02%,1459.3))
‘03*‘Ytlollo"LEK!!LE'BLAHE ROTAR, ELEMENT NO.%.12)
WRITE(Z2:91) NOPreL),(COtT),188,LC)

SRITEC7,91) DOPLC2)0CTEC]), 189,6)

WRITF(/,9%) cOP‘(J)o(Sﬂ(l)o'lloG)

sRITE(2,91) DNFFCA),(RD(1),188,A)

WRITE(2,91) POPFES)o(PCT), [ 88,6)

WRITE(2,91) POPFLO).tITC]),181,6)

WRITF(2,91) COPECT)o YD), 189 ,NKEL)

WRITE(Z2,91) OCFECA) S (wB CD), 188 0 KEL )

rITR(2,91) DOPLL9)o(WDC]), 081 ,MKEL)

wheTE(Z2,91) DAPECLG) o CVIDET ool oNKEL)

WHITEC2,91) DEPEEL1)0Cva0C] Yot NKEL)

WHRITEC(2,92) DOPECI2))(FENCY ), 188 NKEL)

DO 95 ol 83,V

IFCRTYRE(UNY o %ES) B0 TO 95

WRITE(2,92) yn

NRESINTS(2,00) )

WRITEC2,91) NOPF(L3),(BETACT0JD) 081 INRP)
WRITE(2,91) DOP£(14’0(037007‘10J0).IOS.NRP)
CONTYINLE

CoOTi e

181705, 12€ GRADIENT MATRICES

NDXR8S

00 440 jeg,ricEL
DN 439 yag,rgEl
'\1"0.””.0
¥vi€lesdel,r
OPvatleyten,9
ovalle 03,9
0v23°C%1e4d000,0
oV CV(1e4g009,0
obljeuded,.0

100 e5%7,,C) 60 70 €30
CClRe.c00%,0

(34 3 X8 1 -3
(440 % BN

Cee? Wt

C2L2VLATE Twg SuaNIPNY wgTRICPS, FINgT, FIND CT, ST aAND RY,
IFL TR 8,6 408) GO 70 3AS
150



00 310 §s,¢

TE(3)STi (L) op?

CALL CC-.TRLCTF,VNOT,C)

CALL VELCTY(TEVYNOT ,SoNNIRCT:SPHE sCPHI»STHICTNH)
CALL FCERID(SSPHICPH]I STH,CTH,R)
00 308 ysi,LC
CTtuel)slC(II=COCY)I/PY

CO 307 Jysi,A
ST(Ue1)3(S(JUY=80(Y))/PY
RT(Je1)8(R(II=RO(J))/PY
TE(1)eTF (Y )=PT

CONTINUE

FIND Fvl aND WV1

DO 320 xsi,N

DO 319 181,46

1R0568(K=1)e]

VIOCIRC)ISVINCIRN)*PY

CALL FCRCF(Ko2:VAD,VIO,VINOT,COsF +PKs INTS)
CALL WaASKH(VAD,VIO VIDOTFO,WoXo1XoJXeAsMEX)
DO 318 (.81,6

LROs6e(K=1)e

FVICLRCs 1RO)IS(FCLROI=FO(LRO))/PY

D9 317 Ls3,MNEL

WVILLJROYS(W(L)=WOLL))/PY
VIOCIRC)SV]O(IRN) =PV

CONTINUE

CALCULATE FVva AND Wva

00 330 «s=i,nN

DN 329 181,46

JROs6e(K=1)+1]

V50(1R0’3V50(§R0)¢PV

CALL FCICE(K,2,VAD,VIN,VINOT,CO,F,PK, INTS)
CALL WASHIVAD,VIOVIDOT,FO,WeXsI1XeJXeAsNEX)
00 32R (31,6

LRCsSe(r=1)eL
FVAILRC1R0IS(F(LROY=FO(LRO) )/PV

D0 327 L33,NcFL

WVACLL IR0 IS IW(L)=NO(L))/PY
VAO(IRC)ISVAOC IRD) =PV

CONTINUE

COMPUTE FC aMD WC. COVPUTF ELEMENTS OF F OMLY FOR THOSE VFHICIF
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TeCQiIstity )=pY
CONTIAUE

FIND Fvl D wV1 y

00 320 xsy,N

c0 319 81,6

]ROI‘O(I'!)O[

VIO(IRC)IsVIN( IRN) oPY

CaLl FCHCF(Xo2:VADO,VIO0VINOTICOFPe INTS)
CALL WASHIVAS,VIOVIODOTFB,WeX, I1XeJIXeAsNEX)
DO 318 (81,6

LROsée(x=1)e
FVICLRCo10)8(F(LROI=FOCLRO)I/PY

DO 317 Ls3,MgeL

WVICLIIROIS(W(LI=WOC(L))/PY
VIOCIRC)ISVIO(IRN) =PV

CINTINUE

CALCULATE Fva AND WVa

DO 330 ksi,N

00 329 1s3,6

[ROs6e(K=1)+]

VAG(IRC)ISVAO(LRO)*PV

CALL FORCE(K,2,VAD,VIQ,VINOT,CO0,F,PK,INTS)
CALL WASHIVADIVIOIVIDOTIFO,WoXoIXeJXeAsNEX)
DO 328 31,6

LRCs6e(K=1)eL
FVALLKRCIROIS(FC(LRO)=FO(LRO))/PV

D0 327 L=%,MNKFL

WVACL 1908t (L )=wO(L))/PY
VAQ(IRC)BVAR(IR)Y) =PV

CONT I HUE

COMPUTE FC AND WCe COMPUTE ELEMENTS OF F ONLY FOR THOSE VEWICLE
COMPONERNTS AFFECTED BY C(J).

DO 340 usy,LC

CO(UISCO(J)*PTC

DO 338 k34,M

IF(NG(KIZ2))332,338,332°
1IFCUeLTINC(KIL) ORI GE-ENCIKs1)*NC(Ks2))) 6O TO 338
CALL FCRCHE(Ks2:VAD, VIO, VINOTICO)F/FKo INTS)
CO 334 .314,6

LRCzOHe(x=1) e

FCOLRU» JIS(F(LROI=FO(LRN)I/PTC

CoOMTINLE .

CALL “ASHIVAR VIO VIDOT kN WaXyIXoJXsAsNEX)
0N 339 Ls1,MKEL
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WClL 00008 4 VoL ) 9 4OPC
COE 2I0CN J)=0TC .

Fiwe oF

00 398 (os,.°ufy

(LA ISRL 24880 A

CoLL YoSutual.VI0:.VIDOTF0. ¥ oo fBoJNe 0o 0N)D
00 362 04, 'wr,

W eLeldeolutedoutiL )00

(L ISR Z4{82L 4

CONPUTE PVILOT AND ¥VIDOY,

1IFCLETPES . V7. 1060 7O 363

CO 360 xsg,v

00 399 83,0

jROsbe (K] )0}

vIDNTL 180 ) sPYNOT

CalL FCRCE(RXI2VAD,VIU,VINOTCOeF P INTS)
CALL YASKIVAO,VI0:VIDAT PN, doXe IXeJXo o NEXN)
00 358 Let,A

LROsbo(r=g)ey

FVILCTILRO, IROISIEILROI=FACLRAO) )/PVDOT

00 397 Lesti,.NeFL

WVINOTCL, IROISIWIL)=NOLL ) )/PVDOY
viOoT(1RO)IsVIDOT(IRI ) =PVDOTY

CONT INUE

CONTINUE

THE GRADIENT MATRICES ARE AVAILABLE. NOVW SOLVE <OR OT AND OV,

JFCLSTISS.6. 1) GO TO 450

KSNKE!,

CAL. MTXMPY (NG, CToVT o ,LC 604R,12,48)
CALL NTXMPY(GoSTINCoKobo6,4NR,6,408)

CALL MTXMPY(CAV]snhCoVAooKob o48,40,48)
CALL MYYACDCVW VT oWV eKo6os8R,48,48,1)
CALL MTXMPYC(WFFVAEWIK KoK o 40,48,4R)
CALL MTXADNCPWIwVA VKoK 48,40,48,1)

DO 3680 ts=i,x

VWCtegdaV(],s]03.0 o s
CALL MATINVIVW,48,K+sDET. JRAMNK) >

IFCIRANK,EQ.K) GO TO 381
WRITE(2,830) NET,IRANK

123



¢3¢tk C(L)-PF
COMPUTE FVIDOT aND #VIDOT,

IFLLSTPSS\F,1)60 7O 361
00 3C0 xs81,n
jROsGO(K=])e]
vVIDnT(1s0)YsPYNOT

CALL FCCE(XKe20VAD,VIC,VINOTCOsF P INTS)
Coal.l. waLHn(vANVIOVIDNTsFO,WeXeI1XeyXoasNEX)
D0 3SR | 8t,6

LROsGe(re=q)¢

EVILCTILKEY, IROIS(FCLROI=FN(LRO) )/PVDOT

0o 397 (84, 1KFL
wWVWINOTILe1e))s(4CL)=ROC(L ) IZPVYNOY

VIdNTL IR0 )IsVINOTL IR ) =PVDOT

CAVTIrLS

COVY!‘I&J

ThE GRANIENT MATRICES ARE AVAILABLE. NOW SOLVE FOR DT AND DV,

JFCLSTISS.£N, 1) GO YO 490

KsNKEL

CALL MTXMOY (WG, CToVTon,LCe6:48,312,48)
CALL NTAMPY(GoSToWCIXo606,40,6,408)
CALL MTXNPY(WV]enCoVasKoXo® 24R,40,48)
CALL MYYACHIVR oVT oWV oo 0odR408,40,1)
CoLl MTXMPYCOF o VACHIKoKoKo 4R, 48,4R)
CALL MTRADD(FPWosVAIVAIKIK s Q080 4R,1)
0C 380 183,«

Vrlgeldave(lyl)el.0

CALLL HATIrVIVW,, 8Bk osDF T JRAMK)

IFCIRAC F3.K) €O TNA 383
WwHRITEC(Z2,830) NETo IRANY
a0 TC 11700

(s 00 @ R V] 3

CALL NTYMPY(FV]oWCoPWeKoKo6,4R,40,48) o
CALL NMTXMPYLFRCICToFVIokoLLo6043,012,48)

CALL NIXATNIPVI bW oFCokobodNydR 4R,1)

CLLL 1Y (aFob CoFVI KoK o640, 48,4R)

CALL MYXANNACIFVI VT iKoCo@A 4N, 40,2)

CALL “YXADVT. VIeFPV]oKo6,40,4R,48,2) .

CrLt CINMOYIVaArb VI oVTeqoKo6043,48,4P)

Copt ’-Yl*"V“\'ﬂp\'tgrvy.(.'.6.‘3.‘”.“’

Cal 1ol ButobCofTokobh ol igdn,8R,1)

Crpe 2Ty Folbviov obsoloogo8h,4R,4R) ’
{0 309 Chst,s :
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00 38¢ kCP3y,6

TFrPED, D .
D0 303 CPsi,»

TEMPBTE“PeR(LCP JCPIOETILCP XCP)
RT(JCP,KCP)ISRT(JCP, ¥CP)=TEMNP
CONT INGF -

CALL MATINVIRTA8,%T, 1RANK)

IFCIRANKEQ.6) GO TO Y87

VRITEC2,5830) PEToIRANY

GO TC 1353

FORMAT(//7,1%, * INVERS 1 AN FLAG® +5Xo 'DETERMINANTS ' yE11,.4,5X,
. "RANKS,12,/77)

CONT NS,

C‘LL "‘x‘nn‘Q‘.nOKEOHOKO’.‘a.‘..‘a.”
CALL PTXMPY(FLoWoVIoKoKo104R)48,4A)
C/LLL MTXATON(FDIVIIFIKe108R,48,8R,2)
oo 395 Jcp.jgﬁ

RV1(JCP)s0,n

PO 393 (Chsq,K
RVICJCRISRYLCICPISGILEP . JCPIOR(LLP)
RV2(JCP sy ( UCP Y=nN( jcr)

CALL MTXMPY(AT,AV2,7T7:6:6,1:6,6,6)

OT 1S AVAILABLE. NO4 FIND NJ,

CALL MIYMPYCVR ot oF ook, 1,84,4R,4R)

CALL NIV IPY(WwVAFoVIoe,K,9,4R,844,48)
CALL MTNPY(RwooF oo 1,40 ,4H,88)

CALL MYILAPY(ST oF oVa ek oKo 04 98ido8R)
CALL MTYANDIVEIoVAIE Ko 1s8P,4R,4R,1)
CALL MTYAPY(WV]oDToVIoKebo1,8R,6,8R)
CALL "ITYMPY(VTToVA v,h,2,40,6,4A)
CALL MTXMPYLAVAIVAIVIN,<91,48,4R,48)
CALL Nf!l"ﬂ(konOVloﬂolo‘ﬂ.Q“.‘ﬂgl’
CALL NTYHPY(FToNTovVIon,6,1,48,68,4R)
CALL MTXVPY(WFoV]isasKoKolo8Rydn,4A)
CALL MTXADD(WoVAIV]iKs1:6R,48,88,1)
CALL MYXADDCIVIoFoNLoKe1068,40,4R,2)

FIND MCNULI OF CONVERGENCE.
WCL06%0,0
TCL08=0,0
ACLOSs0,0
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GO0 70 1100

FORMAT( /7.1, * INVERSION FLAG'o,xo'DE'E.HINlNT"otlloQosxo
1 *RaNKS®124/7) .
CONTINUE . .
CALL MIXADDCE YO WEoWoKo3048,408,48,2)
CALL MIXMPYCFL o WoVE oK oo L08R 48,48)
CiLL MIXAPNCFOIVIoFoKe1s8R,48,44,2)
00 39% (CPsi1,6

RV1(JCP)ISD,.D

Ny 393 (.Cisg,K

RVI(JLP ISRV LLICPISGLLEP JCPIOF(LLP)
RV2(JCP ISV (JCPI=ROL UCP)

caLL MIXMPY(RT,V2,9706:6,2106006,6)

OT 1S AVAILABLE. NO4 FIND DV,

CALL "YK‘FY(VUOHOFO‘O(oio“o‘lglli
CalL MIYHPY(WVAIF VT oK Ko1,88,40,48)
CALL MIXMPYLEW oW oF ook 198R 48,40)
caLL MIAMPY(WF sFoVa oo o479 48,40)
CALL MTYADDIV]oVAsE skl sdR,4B,4R,1)
CaLL MTXAPYCWV]oDToVIoKo00108R,6,48A)
CALL MTYMPYCVT NToVAIK,601,48,6,48)
CALL MIXMPYCaVAIVAIVINKo1,48,4R,48)
CaLL MIXANDCW . VEoVAIKeg s8R, 4H,43,1)
CALL NYYWPVCFTo"ToVIol.b.t.ddolodu)
CaLL MYXUPYCaF oV onoKoKol o889 dn,4R)
CAaLL MIXADD W oVAIV]oKo1048,48,88,1)
caLL MTIXADDCVIoF o NAoKo1040,40,4R,2)

FIND MCNULD CF CONVERGENCE.

wWCL0880,9)

'CLO"Q.O

B8CLOS20,0

B0CLCSsN 0

CO 405 1CLs1,NKEL

TE“PSARSINW(ICL) )

¢CLOSSHCLOSOTENP

0D 406 1CLe1,6

TELPBARSINTCICL))

. TCLOSSTCLOSeTRIP
l"J 40 'CL.],.'*.
1FCLTYP C1CL ) NLo3)GO TO 40R
TE PHEARS (I (34, 1CLI=NSAVE(ICL))
TH O=NsARG(NC( 37, 1CL)=ANSAVFC ICL))
RCLOSS CLO%eT: ¥
WOICLOGE (. 1Se YT P
RNAVEC17L)e( ¥, ICL)
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BOSAVE(ICL )sPK(37,10L)
COMTINUFE o

DETERMINE 1€ The PROXIMITY TO 4 TRIM SOLUTION 1S ACCEPTABLE. OR IF
ANOTHER ITERATION CYCLE IS ALLOWABLE, AND TAKE THE PROPER ACTION,

IF(eCLCS=VaACPT)412,432,420
IF(TCLCE=TACPT)413,4123,420

IF(RCLCS=RACPT 414,416,420
JF(&DCLOS=uNACPT)435,43%,420

IF(r PASS=NITER)275,427,427

WRITEC(IPYT,1])

WRITE(IRYT,42R) .

FORMAT(//741X, AN ACCEPTABLE TRIM SOLUTION MAS NOT REEN FOUNND, *)
DO hua "t.“

Pe1)80,0

DO AQ6 | s3,\xFL

PULISP(L)eG(Ls1)OFO(L)

CONTINLE

CALL REDRYT(2. ISUPRS)

60 Y0 100

CONTINUE

& TRIM SOLUTION 1
STARILITY DERIVATY

LSTPS§Ssy

MDXSSY

GO 10 27%
CONTINLE

WRITE INTERESTING [TEMS,
CALL REDAYT(3, ISUPRS)
MANTIPULATE GRADIENT MaTRICES TO GET STaBILITY DERIVATIVE MaTRICES,

KSNKEL

CALL MTXMPY(WF,FVIoVWoKoKoKo 48, 68,48)

CALL MTXADDCWVE oYW P oK 48068,48,1)

00 71C 1sg,x

FuClol)eFv(l,1)=1,0 , .
CALL MYIXMPY(MF,FVA, RV KoK0KK048,48,408) .
CALL "7XCDD(UVIOBVlovwo‘olo“o‘.o4.ol’

DO 739 18g,x

Vilteti8VuNET,T1)e8,0

S AVAILARLE AS TE AND WE.PROCEED TO FIND THE
IVE MATRICES,

137



IF O PASSNITER)ITT75,427,427

VRITEC19VT,10) 1
SRITE(IRYT,420) |
FOR"AT(//,1%,°4% ACCLPTABLE TRI™ SOLUTION HaS NOT BEEN FOUND,*) !
uo WL teg,A . |
Ft1)s0,n :

DC ~Un 83,%«FL
PClISPCT)eCILs1VOFOLL)
cosritg

CALL REIRYT(2. ISUPRS)
¢d & 1120

CONTRNLE

A 1YY SOLUTION IS AVAJLAALE AS TE AND WE.PROCEED YO0 FPIND TuE
STALILITY DERIVATIVE “TRICES,

LSTSSsey
pONGSY

co T0 2728
CONLTINGE

WRITE INTERFSTING ITEMS,
CALL REDARAYT( 3. ISUPRS)
MANIPULATE GRADIENT MATRICES TO GET STABILITY DERIVATIVE “ATRICES,

KSNKEL

CALL MTXMPY(WFFVIoVWeKoKoKo48,408,48)
CALL MTXANDENVE oVWoP WKk 48048,48,1)
DO 716 fsg,x

Fullold)sFv(l,old=1.0

CALL MYXVPY(WF FVALNVEKoioKo48,48,408)
CALL MTXANDINVA WV VW,C,K,48,4A,40,1)
CO 7315 181,«

velloldsvitleldel.0

CALL HATIAVIVY 94b oK sDET IRAMK)

CALL “TYVPY(VL oFWovV]oKoKoKo48940,40)
CALL MTXMPY(EVA uV]oFW o oKod8,4R,48)
CALL PTYANCIPV] sFPwondV] Ko, 48,40,408,2)
CALL MTXNPY(UV]GoFWok, X, 0,48,4R,48)
C” 715 183,44

) 717 _s1,6

‘J(‘.."';.:

O 16 83,4
Fal1od)sPOl1,J)eG L )OFWLL 0 J)

Co .Y WF

(.'.S'\Y! ‘.t

8.5 AT(/77)
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cnL VX PV(E SYICAT Voo gt 0 80,80,49)
CALL 2V CaTNPe o WINPT oWVl oo 80,080,00,))
CALL VY Pvivi i V] oPuelooge88,00,00)
Call ~TXVPY(FVA:P U UV (8% 0080,00,40)
CALL PTXANOISVINOT 0V PV o %000040,80,2)
CALL *TY*PV(IFL oGV e% X008, 80,48,40)

0o 728 03,4

CN 727 yog,h

00 726 (8}1,¢

PSUOTC ], JIsPETOTI o Jdeg L. 0MVIL )
COrTINLE

CONTIALL

CALL NTYYPYLUE FCoPNet ool ColR 00, 00)
CALL MYUANNIPNe 7CodV] oo LCo 08,480,488, )
CALL NYIRPY(VR O V] oFdoite o Co80,8R,48)
CALL NYYIPYIPVA PV, UV] ko2, LC, 00, 00,48)
CaLL NTYANDIBC SV oPusKeLCo90,40,40,2)
00 730 (83,4

00 737 ysi,.C

PC(loJIeD.0

DO 736 (8g,.x

PCL1oJISPCIToJI®GLL S VOPWLL oY)
CONTINUS

CONTILF

VRITECIRYT,20)

BORATCA4Y Y, *'STARILITY NERIVATIVES UITH RESPECT TO OVERgL *,
1 VERICLE CH=0RN]%ATES, )

CALL KETRYT (4, [SUPRS)

CONVERT STaugi TV nrRIVaTIVES T0 STABILITY aXIS SYSTER COORDINATES

UCEsS0C1)e2CCo80(S)=VYCROSN(A)
VCGeSN(2)exrCoRN(A)=2CCe30(4)

VERSS0( Y)evrGeS  (4)=NCCOSN(S)

SHELNES KT (LIGRe0evEGo02eWCGo02)
RUCLES.AT(yCGoooeuCS00Q)

JFLSPEEN)T4R, 740,750

JFCUDCLIT740,7640,7%) . ;
CONT It )
WRITECIRYT,749)

FORMAT(//+3X%: *STARILITY ANES ARE UNDEFINED BECAUSE °»
1 Tk INERTIAL SPEEN 18 ZFRNY)
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00 200 (%),

P8I0V E 5 0 S )PINOVE o J0080L o S 20OVIEL )
CONTR ¢

CeATiN L

CoLL MTIYOUE P (FCoPueC ¢l C088000,008)
CoLL ™V EPv 0o Vool Ce 00,080,808, )
CoLL "YINPULWN oo ¥ oP G0 e8 e Co 800 88,00)
CoLL MV PUIOV AP WV (€@, L L 8P 80,48)
C‘L% APeoNCEBC ooV oFe ool Co88,80,80,0)
oF 738 geg,e

ge 237 yegan g

PClteJddog.3

g2 736 L83,¢
PCLL0JI08CI oMol 08000 0 J)
(42N § LE W

CONTIN 6

vl TEL aVY, P0)

SOR14T( 101,88, °87201L 1TV OERIVATIVES VITH AEOPECT TO OVERaALL *,
3 °visgCLl CH-0NDINATES, )

CoLL S4TRVI(G, IRUPRS)

CONVERT §Tang 1TV orAgvaTIveS TO STABILITY 4X1S SYETEN COORDINATES

VCEe8ltidercgesrisi-vegegale)
vCCeg0(P)entCeon0(0)-2CC080( ¢)
vCReS0( Y Ieveges” (4)-UCEEN(S)
S D8y M (UCRe0ToyCEoedevCGoeR)
RCL 8828 TLuCCeoPouCs00R)

1P CaPg NI 2ah, 740, PP

160« 2CLITC0,T00,79Y

CCoTIwA

odJTECIUYTY,769)

PO ATC/70300°STARELITY AVES ARE UNDEFINED OECAUSE o
1 '€ 1"EATLAL SPEEN 1S TPANY)
co te gnoe

T30 4 EXW 4

(AL LA <8

$TneouCGIPNEYL

CCvaRag 2SKEEN

VeV G/ISPPFD

8r(3s1)sCTueCCY
bY(1e2)85CY
CAAERR RE R4 L3 (T
k10203 )8=5CYOCTH
R1(2e2)8LCY
RT(2e30885CvegTe
AATIRIIAL

wo



RV(3:2200,0

."’0”"'“ o

ASSCTALE TuF ST QILITY DERIVATIVE TRANGFER RpATREX,

00 799 g03,3 s
00 7% Jei,3 )

$V(3eJ)00T¢0,J)

$1¢10ge3089,0

V103,030 d)
$V(303,3)8vCEORTI1,3)-2CConT(1,2)
$7(103,2)02C8oRT( 1.9 )=%CCORT(T1,3)
8T(193,3)e%CCONT 2 0=vCCoNRT(],8)
CONTINL&

ROTATE THE VEMICLE INEATIA TENSOR TO STABILITY AXES.

CALL NTXMPYIRT,QINRTAIUE:3:30306:3,48)
CO 760 t03,3

00 739 Je4,3

AOFIL A (F})

CONTINLE

CALL MTXMPYLdF oFToFPV03,3,3,40,4R,48)

WARITE THE ROTATED INERTIA TENSOR

WNITECIPYT,79)

VRITE(IPYT ,13)((FPW(2oJ)0Jus1e3),188,3)
FORHAT(//7,4%,'THE [INERTIA TENSOR EXPRESSED WiTw RESPECT TO °,
1 'STARILITY AXES="0/03(/,10X03F15,4)07)

ROTATE STAMILITY DERIVATIVE MATRICES TO STABILITY AXES,

CALL MTIXMPY(ST PESsFV]e60:6:06:0,6,40)

CALL MTYMPY(ST PSDOTFVIDOT 10:6:0606:6,408)
CALL MTXNMPY(STPCoFCo0,6,LCe6,6,48)

0O 76% js3,6

CO ’.4 s"!.‘

RT(10J)88ST(U01)

CONTIMLE

CALL MTXMPY(FVI RT:P8:0:06,6,48,6,6)

CaLL Hf!‘PYCfVlDOTv.fo'SDOfo‘o‘o‘ol.o.a6)
00 767 (s3,68

00 766 Jsi,LC

PC(LoJISFC(ToJ)

CONTINUE

b1



$t8105,3)ovLgouTiloN)=2CCoNTL1,2)
$YL103,2)820G027( 1,1 )=uCCORT(],3)
gvig1e3,3)excconrii 2)evegonrig )
CC\Tirq & ' .

RCYaVL Vei VEMICLE INPRATIa TEMSOR TO STaBILITY AXES.

CaLl MYYPPYIRY  AINRTASF030303,6,3,48)
CO 760 gs3,N

o 799 81,3

ETCleJdIBRT (Y1)

COLTI.LE

CALL MYXMPY(IFsFToFWe3,3,3,48,40,40)

WhiTE TeE ROTATED INERTIA TFNSOR

bRITECIRYT,?9)

WRITECIRYT, 13)(C(FWlTtoddodsLe3)0188,))

FORAT(//92%,'THE TMERTIA TENSOR EXPRESSED WiTw RESPECT TO °,
1 'STARILEITY aXES='97+3(7,10%03F15:4),7)

ROTATE STAWILITY DLRIVATIVE MATRICES TO STARILITY aAXES,

CALL MIXMPY(STPSsFV]e0:606,6,06,4R)

CALL MTYMPY(STPSDOT,FVINNT1606:6:606,48)
CALL MIXMPYLSTPCoFCo®,6,LCe0,0,48)

£9 765 83,6

CC 764 131,4

RTCIoJIBST(UNT)

COMNTIMLE

CALL HMIXMEY(FVIIRT 198:006,6,408,6,6)

CALL MTYNPYL(FVIDOTIRTPSDOT6,6,6,48,6,6)
ro 267 13,6

o 766 81,1

PFClloJISEN(10J)

conTINLE

vRITE THE STARILITY AX]S ARRAYS,

RRITE(#YT,21) . .
FCRTATC(IMI,'STALILITY NERIVATIVES WITH RESPECT YO '

1 'STLLTLITY AXFS (DIMELSIONALD,.')

CALL RETRYT(4,]5UPKS)

PUNC™ Tig STARILITY CERIVATIVES, INERTIAS AMD MISC, TRIM ITEMS,
FLc.oe 510
BLSorm AN (PR od)eJdBL00),182,8)

BLECH AI0 (RS T o) oJdB8lsA)188,6)
ce 6D 189,

12



PLNCH 810,(PCCTaJ)oJse,LE)

CO R11 1s3%,% =

PUNCH 810,(Fd(]eJ)0oJsy,d)

PUNCH 10, (9003)018196)0(TE(J)sUB106)
FOR“AT(6F12.6)

PIVIOE THROUGH THE MATRICES BY THE MASS AND INERTIAS,

OMaASS3WT/IZ,. 2

DO 775 181,A

e 774 gsy,LC

IF(146GT.3) G YO 772
IF(JeGT,6) GO TD 7271
PSC1ad)EPS(T,J)70MASS

PSNOT (]9 JISPSNAT(],J)/GMASS
PCLEIaJ)ZPC(T,J)/QMASS

G0 TC 774

CONTINUF

1F(JeCTo6) A0 TN 773
PSC1oJ)BPS(T10J)/FY(1=3,1-Y)
PSOOT(1,J)3PSNOT(ToJV)/FW(T1=3)]1=3)
PCU1oJISPClT0JI/FWN(1=3,1=3)
CONTINLER

CONTINUCL

WRITE THE STARILITY AX]S ARRAYS,

WRITECIRYT,22)

FORVATCIML, *STANILITY DERIVATIVES WITH RESPECY TOQ '
1 'STABILITY AXES'o/:1%,'(DIVINED RY THE INERTIAS).!)
CALL RENRYT(4, [SUPRS)

CONTIMUE

RETURM

gEmn

%5



SUBROUTINE REDRYTCIPHASE,IS\))

INTEGER RoW
DIMENSION CNLS(6,2),ELTYP(16),ROWS(6),CLABEL(6),GITLE(20)

CONMNMON/IO/R W W

COrHOM/STABDR/STN(6,6,2),PC(6,12)

COMMON/TITLES/TITLE(20,8)
COMFON/PHYSAS/PTRANS(25N) , INTG(10) JNPK(8) o NINTS(S)
COMMON/COLUMS/C0(12)9S9(6),R0(6),VI0(48),VANC43),FO0(48),W0(48),

1 PL6),LT(S),DW(48) . g
COMMON/GRADMX/ZFVACAB,4R8) ,FV1(48,48),FC(408,12)
CN4ONZINDECS/ZNGCA,2) o NTYPE(H) yNTHRUCB) ,NoNPASS) NDIRCT,NEX,NITER
COMON/SPFC/AT s XCGoYCC o ICG)TAS RHOLPSIDOT ,PTCHRTIROLLRTHDOTLCo

1 MOPTRy IT(6),QINRTA(S, )

COMMUMZNLINST/ZIONIST ) RETA(SNIA) RETADT(S0, ) ¢ .
COMMONZWENATAZPK (29D, A ), IMTSIL0,8) o XELCH) s YFLEB) 1 ZEL(B) 1 A(6,608),
1 IX(D20)0IXCB00) X (S0 TECH) WECAR) »VNOTL(9)yPT,PV,PVDOT,PF,PTC,
2 TACFT  sAZPT,RACPT,ADACPT

DATA CLYYR/Z'LIFTIY, NG SUY,'RFACE?Y '

1 CAERONY, 'yMAMIY,°C ROD, 'Y,

2 'ROTCRY ) (FLE'»"X,s ALY "ANES)>Y,

3 'RATOR', ' (RIG*,*IN ALY, '40ES) Y/
CATA RCWS/ZOX0, 070,020, 0 0,040 INtVY
DATA CLABEL/Z'CC D' 'CCL ', 'CC D','CC d','CC ', 'Ct vy
NDATA CCLS/Z' U ', vV 1,0 4 1,0 p 0,0 @ 1,0 R 9,

1 ‘U DOT*, 'V DOT','4d NDOT?!,'P DOT?,'Q DOT*»*R DOTY/

GO TO(501,5%2,533,504), 1PHASE
CONTINGE

WRITE(w,10)

00 12 TITLs1.6

REANC L, 100)(CITLEC] )0 182,20)
" WRITECW 12)(GITLEC])V182,20)

IF(ISULU,FR,1) GO TO 969

FORIAT(10A4,1043)

FOR™AT(1m1,1004,104%)

CORAT(IX,10A4,10A3)

IFC1S1,FR.2) GO YO AD?

REANIR,110) Y NOPTRMIMDIRCTINEXIN]ITER
REASIR,110)(NTYRECT) o183 ,N)
REATCR,11GICINCCTI22)aNCCT1,2),181,N)
REANCR,110)C1TC(1)0182,6)

coNTINLF

COR1AT(AIL10)

1Lk



e

LCs0
DO 2 131,V
LCsLCeNC(1,2)

WRITE(W,20)N
FORMAT(1H0, 'NUMRER OF VEWICLE ELEMENTS (N)S'y 125X, 0",
1 13X *INFORMATION® 379 39X, %e°)
WRITE (wy21 )NOPTRM y
FORMAT(1X, *TRIM OPTION INDEX (NOPTRM)=',12,10%,'A. NOPTRM SPEC',
1 *IFJES THE PRCCRAM®,/,1X,'(SEE INFORMATION=A)}?,39X,'s VARIAB',
2 'LES REPRESENTED BY THE',/,39X.'®  INPUT OUANTITIES PTCHRT ?,
3 "(PITCH")

' ’
WRITE(W,22)NDIRCT ' ,
FORMAT(1X, 'FLIGHT DIRECTION (NDIRCT)S*,12,10Xs'® RATE) AND *,
1 "ROLLRT (ROLL RATE)=',/,1X,'(NOJRCTS0 FOR FORWARD',17X,'e*,/,
2 2X,'FLIGHT OR 1 FOR BACKWARD FLIGHT) ' SXs'0?919X, *GUANTITIES o/

WRITE(W,40)

00 12 JTITLEY,6
nEAocn.xoO)cctrLctt:.x-a.zo» '
WRITE(ws31)CGITLE(T) o 181,20)' "
IF(ISU,EQ,1) GO TO 999
FORMAT(10A4,1043)
FORMAT(1M1,1004,10A3)
FORMAT(1Xs1044,10A3)

IFC1SU.FR.2) GO TO 602
READCRIL120) NoNOPTRMINDIRCTINEXINITER
REANIR,140)(NTYRE( ) o188 ,N)
REARCR)LI0)IINC(T21)aNCC(1,2)0181,N)
REANC(R,110)(1T(1)0182,6)

CONTINLE

FORIAT(AL10)

LCs0
00 2 1s1,N
LCSLE*AC(1,2)

WRITE(wW,20)N
FORMAT( 1100 "NUMAER OF VEWMICLE ELEMENTS (N)S°,12.5X, 0,
1 13Xe " INFORMATION®»7939%, %)

WRITE(wy21 )NOPTRM

. FORMAT(1Xy *TRIM OPTION INNEX (NOPTRM)S?,12,10%X,'As NOPTRM SPEC®,

1 'IFIES THE PRCGRAM®,/,1X, ' (SEE INFORMATION=A)',39X,%'e VARIAR®,
e :%g?':Fe§ESENTLD BY THE':/,39%Xe%'e  INPUT GUANTITIES PTCHRT *,
W

ws



WRITEC(W,22)NINCY

' FORFATCLX . 'FLIGHT DIRECTION (NDIRCTIS®,12,10X0%® RATE) aND °,

U S WA

|
2

'ROLLRY (ROLL RATEDI=?,/,1%, ' (NNIRCTS0 FOR :ouuaw.nx.'o'./.

2Xo*FLIGMT OR 1 FOR BACKWARD FLIGHT)®oSX,%e? 19X, *aANTITIES? /7,

JUXe 006X, 'VALUE o 8X, *DEFINED BY /9 1X0 'NUMRER OF ELEMENTS °*,

'TO nE READ INTO®s4X,%@0,7%,°0F 910X, 'PTCHRY AND®»/91Xs * THE '0

IS TVERFERENCE VELOCITY COUPLING? 0d8X0 08X, 'NOPTKM® 010X, 'ROLLAT?)
[}

WRITECs 0 23)2EX
FORMATOIXe *MATRINoXe (NEXIS®972020Xs *0%/7930X,°0%,8%0%81°% 7X,

'THRTa DOT, PHY DOT /o3, *AAXIMUN ALLOYABLE NUMKER OF TRIM',
6Xo %0 hX, 02, 7Xs'THETA NOT,P*)

PHITECu, 24) ] TFR

. ﬁOh'A'(!I.'lYlQAYION CYCLFS (NITER)S®,12.148%0 %09,8%,°3°,7%,

r Ve

GeFRT DAY /7, 30X,%00 ,AX,04°,7%,°QsP,/7:1%, A IRCRAFT ELEMENTY ¢,
'S‘lC]F]faflfh"07!0'0'.I.”l"'o/ot!o"Lﬁ"‘V' TYPE®y 7%,
SELEIF VO ARV, 000, /,9%0 INUMHFR CODF's AX,'TYPE®,12%0%°0%,/,3%,

(1) CATYPE(D) ), 20X, %00 ,/,39%,%0°)
®

CO 76 133,N\
Ke\NTYPR(])

[UEGIPsa0(=1)ey
JENNSCe (K= )04

¢ KRITECW 2701 oMTYPEL L) o CELTYRPLYTYP) o JTVYPS IREG N JENVD)

* FORMETIING29AX012:9K0488,4%0%0")
WRITE(n20)

FORNATLZ:10,"'CO"ITROL COLUMN DFFINITION (COLIMY Cl= B, NE(].1)e,

L' BT T

'WLFHER OF THE FIRST ELE="37,3% % nENT ™ C ASROCIATED L ITn,
. Ilﬁ-'ifl?lf'lllﬂlhT (SEE INFOR= (BEE INFCR= o CRYFY 0,
CELTF P ELT 10070 2%, 'NUNDER? 80X, "RATION=8) MATION=C) o0,/,8x,
10N el el ) o AN INCEL 2D 40, %C, nctl.linfowlL NUMBER OF *»
'C BLE="0/:390,% “ENTR FOR AJRCRAFY ELEMENT 1.°)

oc 30 1si,n
i JTECR 320007 CET08000CEE,2)

FCx2TCOX012018X012031%002¢7R0e%0°)
%Ca '8 Ce)
avYse

|
2

3
4

an]TECw,edC)
BRITECo 0 320 UvT 2 Ca N oNL*T,1.C

FOSATCACX,*°N, T HAS *,18,° ELEVWNTR, v;nrn FROM® . /,3%, 'CEFINITY,
1NN CF Tk TRIZ [TEQRY [ON®oAXN,'0°,3X,12,° CANDIDATE ELENENTS,
O 1TCPI /oY 'COLI™MY T (SFE VENRPATION=D)=',0X %0  NUWRERS?,

* Teb SPECIFIC o110 OF THESE'9/,30%,% T0 &g U“D In ¥, '“"
" CACLIDATE 0/ 3N e BLIMENTS COME PRON THE °012,° ROVE®)

W6

— e —



- -Iﬂ

WRITE(r,,33)

FORFATIPXN, *ELEIFTAT 041N, 'V4LUR 014X, %0 OF Co AND THE THREE °,
1 'FLIGKT VaiRe®s/,aX o "IN o1SX,°0F*,38X,%  1ABLES THETA (PlTEH °,
@ ‘BULER® /SN, 'T 15K, *1T70,10%,% AMGLEYs PH] (ROLL CULER °,

3 "0%GLEN 9/7039%,°c  AND V CSIDESLIP VELOCITY),®)

00 39 1s3,6
SRITE(L,3638,17¢))
FORFATION 13039%0 32026, %00)

KKELSC o
aLL CTeLC=3
IFCFLACTIL0:,270,29
o CCNYRor
160381,85,79 62 Y0 4%)
Pl 20yt ®2tve Tl de.'08,%6)° 3°)

' FONNAT( /20800 °CONTROL COLUNN DEFINITION CCOLIMY Che @, NClgeddeo,
‘WURKER OF TiE FIREY BLE=*9/,30N %0 MENT [ € ASR0CIATES o1%°,
* AlRe?,/,2%0 ‘¢ LEMENT (SEE 10FOR- (SEC INSCR=e © QoY o,
'CLEPENT %0720 "NUNRER® (0%, *NaTION=N) NATION=C) ©%,/,%1,
939030%0*MCETo3 0 AN INCET o2 98R,°Co NCEL,RVOTCTAL VWRER OF °,
'C ELL 07,3900 MEMTIR FOR AJOCRAPY ELE™E*Y §,.°)

00 30 j88,x

WheITECLo3208,°CCEot00vCES,2)

FCRrAT(ON3P0388002088%009.7%,0%°)

nCa: Lo CeY

MItTee

WRIT(w,e3C)

o by iy Ay gl g g oyt P PoNgY

' 4C%, *°0D, o838, 0 0 i39°
g 'Joh CF T THIR l'l"'lﬂ'o.lo’"ohol'o' 12478 CLEYC %S, .,
; 10 10%7.3%0°COLIMN T (SFE JPARNATICADYe? 0, %0 ‘Uopstge,
q

Vo uwNe

16t SPFCIPIC *ol%0° A TIQRE0/,30U0% 70 &g (98D IN T, T
* CANGINATE 00/03%80%  BLINENTS CONP FECH Tog 010, ° BCVES)

"t (r,33)
c GONIOTEPR oL FPTTO IRV I U * 348, % oF Co oD N Totpg °,
S PLIGRT Vgue®o/otRe'IN'o10U0 %08 ®34B0%  Jo0LES T gTa (PYTCw °,
@ Rl 90e T 03000 1T0,300,%  A0QLEY. Pu] CAQLY Ci 80 °,

3 '0GLEY 0 e3%%0 oA v CSILBLIP VELOCEITYY, )

SRITE(0,3000,37¢1)
FOR’ATIONG§303900 080808, %°)

"y



KRKEL SO
NELCYsLC-3

1FCELNOT)200,200,209
couvirr

1FL151,:0,2) 6O 70 603
PEATCR,320ICYROTCY) 0 JOL o NELNOT)
cosrinne
WRITRIN,ID)

FOR4AT(ING, 'VALUES FOR THOSF ToCANDIDATE ELEMENTS 0°,/,3X,
3 ACY SPLECTED FOR T (SPE I1MFORMATION ©9,/,3X.'ITEN D), O,
@ *TuESE VALUES #RE CONSTRAINTR 09,/,4%,°0n THE TRIMNING °
3 ‘PROCEES 018X °0%,/,3%,% )

CO 3¢ g6 007
c VRITEC(s,,3€) V(L) o
¢ FONATIINIELD 003N, %00)

- CONTINUE
CO 9% o,

NTVYFioaTYPE (D)
G0 YC(I10:279.23C+2300,vTvpy o

LIFTING S1MFaCE INSPUT/VRITE VERIPY

CO™vims

1FC100L,09.,2) €0 T0 @406
RE4IN,300)¢TITLECK. 1) ,08,20)
ConNTeu.r
SRINECL30NCTITLECCe S ) on0l,20)

wweifledd
L3004 IR

b""'“oﬂl’!
PCO" 4707030, °VEnICLE CLEMONT MPOER °98807)

§6C18..43,0) €0 TC 009

of s (u,2r)¢0w¢

vty Joldedote3M)
82887 (°412.9)



WVRITECY 02120(PKEY0]) 0 B1015)

FORMATIAN, 'PET L oBXo " THETA LoBXo*'PHE L'e30X0 AU ,12%,'8W?, /)
1 5E20,68,//,08%, 'CHORN® 421X, °CDO® 230X, °COL°o10X s 'CO2°+10X, *ANCLD® /0
2 SE14.6,77,6%:°CAP GAMNAY, AX, 'RV ,30X,°'LAMDA W',

3 10Xe°CM0%,48%0'CMA/05E14.4,//)
cO0 TC 250

AERODYNAMIC BODY INPUT/VWRITF VERIPY

CONTIMUE

IFLISU,FQ,2) GO TO 406
REANEK,200CTITLECK, 1) ,%1,20)
CONnTINUE .
VRITECW,20CTITLEC(K,.3),X01,20)

NPK¢ S Y020
NINTSC )0

VRITE(V,220)8
PORMAT(/Z0 X0 *VENICLE ELENENT MUMBER '0"0{’

IFCI8U.L0.2) 60 TO 607
Mgr‘o‘ L (N RIT YR Y

PRt s 20 .
NINTSE ) )00 .

VRITECu,2111 : *
FORNATL/o3K0 'VENICLE ELENINT MUNGER *0120/)

IPCISU.48.2) €0 O
nmcu:ﬁamum:gum
CONTIC

FORYAT(5630.0)

VRIS €0 02820(PREe D) i)
POMOTUas Pa1 LEobr troaTe

NETE LO00No'Pu) L0 20%0 0, 18%, 'SV° ,/,

$ 9030,6,//,01,°CHERN® 1313, °CO0* foma 0
; ’N‘:G:ll:u:'w “.'.‘“!: 3’-&3”{.3?“.‘,’}',}3‘"‘"”"“’""

“l':é'g;:' 0880 °CRA%9/098190,800/)



LERCUYNAMIC BODY INPUT/WRITF VERIFY

CONTIMLE

IFCISULFQ.2) GO YO 408
PEANtK,200)CTYITLE(K,]),X81,20)
CONTIMLE
WRITECW,30)CTITLECK,])oX8Y,20)

wPx(l)e2n
NINTS(])80

VRITE(W,220)1
FORNMAT(Z09X0 *VENICLE ELEMENT NUMBER *,12./)

IFCISUEW.2) RO TO 40?7
REANCR,300)CPC U0 1) 0 Jgo8,16)
conYivng

VRITE(W,2270¢PKCY0 ] Y0J8L,96)

FORCATIARG ST NOo7¥o'THETA 0% 9% *Pu] B030%, AR, 12X.°CO% 0/,
1 51".0.//.1080""oﬁ?lo'cz'olixo'CVO'O!‘X.'CV"O‘ixO'czO'o/f
@ SF18,407/7, 9o 'CRL o 12X LM 03X, 'CHMO® 013X, °CML 028Xs'CNO? /0
3 14,4077, M°CNL%0/0834,4027)

W T0 240

ROTER 1" MUY 2aK]YE VERIPY .

CO'.' ]O.Lt

1001811 3.2) RO TO AQA

Wit (83NN Fle]) 401,200
Gy !'.U



PRITE(W,10)(TITLEI(K, S )oKD2,20)

MPK(])e200
NINTSC(] )8

WRITF(w,233)1
FOHLAT(/Zs3Xs 'VEHJCLE ELEMENT NUMBER',12./)

IFLISU.FQ.2) RO YO 409

PEANIR,1I0ICINTSCYTd0J"s,3)

CONTIMNLF

WRITE(W,232)C1NTSCU0 )0 81,3)

FCRNATCIXN, S UrRER OF PaDtAlL STATIONS' 12027,
1 X MUMBFR OF AZINUTHAL TMTEGRATION ELEMENTS 0120770
€ 1N INUMKRER OF POINT MASSES ',1207)

JFCISU,5Q.2) GO TO ALN

RLAGCR,300)(PK(Je1)eJBLe2N)

coxTYRinys

PRITEOW ,233)(PKCJo] )0 J81,20)
CPORIATEPR TOMEGAY 0 11X o *R0, 120, 'HA o 12X e *RN yIN *'NDELTA N0/,
SR14,48,7/7,5Xs 'PELYA 10, AY,DFLTA 2% 7X0*NELTA I, 72X, *THETA 1Y,
10X R0/ o034, 40/7700%, *SMALL R 7R 'SMALL A'o8X,'PS] R',8X,
CTHETA ROy AX,*PH] R®0/o%F1404,/7/7:2%:'ALANE MATURAL BEYa 0,
8X,'BETA ONT 00X, "RETA® ,AX, "HETA DOT 4/7,%Xe 'FREQ. OAVER®,3X,
‘'(eSTINATEL) (ESTIMATED) PLRTURBATION ¢,
'PERTURHATION' 0 700X o "OMECA (P)%) OYo'(ROEI*y X, '(ADTE) 'y OX¢
UAPR)*,y X, '(PNDI*/7,5FL48,4,/)

NOUVLUN

WRITE(w,239)

FORMATCIXN, *NISTRIAUTED ALANE PROPERTIES=°0/7,4%, 'BLADE" s 42X,

1 *FIRET e/, 3X,'STATION NISTRIAU=,9%, "RADIAL oSN INTITIALY,
2 X, 'FLAPPING o /08X 0 *NUMHER T60 MaSS DISYANCE® o 3X0 'SHAPE Y,
3 5%, *NCIESHAPF ' 09X, 'CHORD Y, /)

UKSsINTN(L,0)

NO 40 «83,'IRR

15TaRTsa ey

jFN\"8190ey

IFCISLU,r3,2) RC TO Ay

REANCR 00 (P (S0 1) e g8 18TART1END20)
CONTINUE o
SRITECR e 237K (PREJO Do JOISTARTY, JENN, 20
FORMATIIN,12,3%e9832,8)

CONTINUE

L))



' CONTINLF
WRITE(W,232)CINTS(Jos])eus1,3)

" FORMAT(1X, *NUMRER OF RaDtalL STATIONS' 12077,

1 1Xe"HLMBER OF AZIMUTHAL TMTEGRATION ELFMENTS 012,77,

€ 1X, "NUMHER OF POINT MASSFES ',124/)

IFCISVU.6G.2) GO TO ALN

REACR,300)(PK(Je1)eJdB1020)
CCONT NS

VRITE (W 0 2330CPKEJe 1) 0B ,20)
RO AT IR Y OMEGA 0 11X P00, 12X, 'BA* 212X 'RB° 99X 'OELTA 0%/,
SE14,4,/7/7,5K0 PELTA 1°,8X, DELTA 27X "DELTA 3, 7X,*THETA 1Y,
10X0 R o/ 5E14.8,/77,0%,°SMalL RYo7Xo'SMALL A 8X,'PS] R',8X,
'THETA RY'AX,'PH] R0/ 05F1404,7/7:2X0 'BLANE MATURAL RETA 0°,
AX, "RETL CAT 098X, "RETAC ,AX, "HETA DOT'9 /708X 'FREQ. QVER',3X,
‘(eSTITATEL) (ESTIMATED) PERTURBATION ¢,
'PERTUSHATION ' ¢ 700X s'OMEGA (P O6Yo'(ROED®y 99X, *(BDOE)*Y 99X,
"APR)', X, (PIDIY/7,5F14,4,/)

WRITECwWe239)
» FORMAT(IX, 'NISTRIAUTED BLANE PROPERTIES="+//,4X, "BLADE" 42X,
1 'FIRST o/, 3%, 'STATION DISTRINU=',3%, 'RADIALeSXs ' INITIALYY
e SNV'FLAPPING 0/ 08X s "NUMHFR TED MaASS DISTANCE® +9X, 'SHAPE?,
3 SN, "MCIESHAPE " 5X o 'CHORD 4 /)

NS LN

kS INTS(L,0)

DO 240 «s81,' RN

1STARTs4Yeg

1F\N"8129evr

IFCISLU,FQ,2) 6O TO 638

REANCR ,300)(PK(Jo1) o J81STARTJEND,20)
({oilt § { XV

SRITECR e 237)Ko(PRCJI 1), JEISTARTY, 1ENN,20)
FORMAT LN, 12,3) 5812, 4)

(Joh @ LT 3

rPeINTS(I,1)

IF(PM) 249,249,244

CONTINLE

RRITEC(W,,242) o
CFOR BTCZ03X0 'POINT MASSES=? /78X, 'BLADE® s 42X *FIRGT' /7, 3X,
1 'STATIONS® 17X "RADIAL 09X *INITIAL oSXo *PLAPPING?® , /794X, "NUMBER® ,
2 AN 1M aLSY X, ‘OISTANCE oSX o "SHAPE? ¢ 9%y "MODESHAPE /)

DC 268 «8%,°P4 .
ISAFLAR RR ) X1

1,183 %o«

IFLISLU.FR.?2) GO VO A2
RiArCR,SU0IPRIJIT) oo ISTART I IEND,20)

(455 A S XM N

1%



unxtscv.237)x.¢pxc4.x).J-tsranr.xeuooao»
COMTINUE
CONTINUE

WRITE(W,249)
FORNAT(//)

CONTIMUE

IF(ISULEG,2) GO TO 613
REANCR)1I0ICXFLET D)o VELCD)o2ELES D0 1310N)
READCR,130)CCCALT e JoK) 5 J81,6),18306)0K81sN)
FORMAT(6FL0,.0)

READC(P,240)CIXCT)oUX( 1) oX(TIo18LNEX)
FORMAT(2(2110,F10.0))

NKELSG6ON

READIR,120)(TECJI) oISl b))
REANCR,120)Cwr (U)o U8 o PIXEL )
PEADIH,3120)UT, XCGoYCGo2CC TAS,RNOIPSIDOTPTCHRT
READCR, 120)ROLLRT s HPOT CCAIMRTACS 0 J) 0181030 0J%203)

READCR,120)PT.PVPYNOT,PF,PTC, TACPT. HACPT.BACPT.00ACPT
FORMATINFL0.0)
CONTINUE

WRITE(W,2%%)

BORHATIINY , *CEOMETRIC LOCATION OF THE ELEMENTS YITH RESPECY TO °,
1 'Tul CVERALL®e/Z01Xs 'VENICLF AX1S SYSTEM='9//04X *ELEMENT,/,
Q ANINUMIPR 52X "N 023X,V )13%0°2%0/)

00 257 181,h

WHRITEC(N, 2980 XELCT Do YELL ), 2EBLLY)D

FORNAT(AX,12,6X03E24.4)

*RITE(W,260)
BORNAT(/7/74X, * INTERFERENCE VELOCITY CHARACTERISTIC aREa *.
1 "MATRICES=*97)

00 265 (83, . :
WRITECW,202)(TITLE(KoT)oK21,20)08

PORMATCZo8%0 884400703 R0244,9%0 *ELEMENT NU"".'ol’ol’
URITECW,200)CCACJoko])o0Y,0),J02,08)
PORHATIIN 07 22.4)

33



REA g L35 XEXFLCTYoYELCT D)o 2FLET Y0182 ,N)
RFANCR,I3INICC(ACT Yo pJBT,6),18L06)0KSLeN)
FUR.ATC(O6F10.0)
REANCR,240)CIXCT) o X (T ) o X (T o188 oNEX)
FNRIAT(2(2110,F10.0)) oot

MKEL BbeN ‘0\

RELANCIR,120)(TE(J) 0 J8L46)
REANCR,120)(wF(Y) o J8L o MKEL )
PLADCH,120)0T7,XC60 YCGsZCGo TAS)RHOIPSIDOTPTCHRT
REANCRILZ20IROLLIY sHNOT o CCATMRTACS 1Y) 0182030 0J%803)

REANCRI120)6T PV PVIOT, PFoPTC, TACPT: ¥ACPT,HACPT,B0ACPT
FORCATINFL1Y),0)
CONTINUE

YRITE(W,259)

BORMAT(ING ' CEOMETRIC LOCATION OF THE ELEMENTS WITH RESPECT TO *»
1 *Tid CVRRAIL'eZ03X0"VEHICLFE AXIS SYSTEM=°9//04X0 *ELEMENT /)
@ X MUSBIRY 434X "X o 1IN, 'Y ,13X0°2%0 /)

NG 297 183,!,

v ITECN  2%8) 1o XELET D)o YELCT)2FLLT)

PORNAT(AX1200X03F14,4)

wi]TF (wy240)
BOR:AT(//71X, 0 INTERFERENCE VELOCITY CHARACTERISTIC AREA *,
1 e TRICLS=,/)

vr 265 (s,

VI TE Clg 262 (TITLECKs 1) 0K81,020)00

BOR ATC208X0a0A40/703R0204,5%0 *ELEMENT NUMKER?0120/)

2ilITECa o 20000 CA0 0o ) o7”8Y,60)0J83,60)

FURk ATLLIXoAI22,4)

b JTE Cas@O0n)C'REYI o JREYI o NE 4o JOSINEN)

R N a4y, 10 'L‘" ‘QC':C‘: WLM"' GM‘“ “w'x.'...,,.‘O'.
3 C1etINe Yt bN e NET0I 0270 UN12,20%08P0E2208)) 3
el ITEC o 27030 Y0 THC(Y) o JB,00)

{ SAR ""0“."‘8"”."” '“'" cu‘m ."’...’,.“'..m m. "".
1 S3€o TE )0 /0087%e]P010U,032,4))

v 178 00e272) >

L ‘a?:;ouo'oﬂwﬂt" INTLSFs 45 NCE VELOCITY COLUNNG (WE)=?ys/,
Ut VETCLT 0 g X o FLEMB AT 00 2Ke PAUMPER 1 OR V1IN I VM, O,
S O%ene ML % WGV, YRS/

N '.0.



1STARTshe(]=-1)ed

[ENUBISTART 6 .
WHITE(W 27633, (WECJ) o JeISTART, JEND)
FORMAT(ZX s 12.2X00F11.4)

WRITE(W,272)
FORPATC 3ML, 'TRIM, PROJLEM DFFINTITION=',/7,7X, *GROSS® 151X,

1 CTLERTIAL o/Zo7Xo *UFIRKHT, 10X, *XCG?,13X,'YCR*e12X,*2CG* 10X,
2 'SPrEENY)

WRITECK e 278 )UWT o XCRoYCRo2CB s TAS s RHOLFSIDOTPTCHRT,ROLLARTHNOT
PORLT(LXoOF 14.407/7,9%,*RHOe BXo *PS] NOT 97X 9 'PTCHRT ,AX,
1 'ROLLRT, OX,'H DPOT*,/7.5614,4,7)

YRITE(K 279)CCAINRTAL YK sKBL 9300088, 3)
PORIATE OX,o O IXX o38N PNV 33X INT 02X IYX 18X, °])YY?,
1 705B24,40/770 Mo 1YL 01X 0 "IN 0N 12V 018N 122%0704E14,4,/)

FPRITEC(N 200 IPT PV PVDOT PR PTC o TACPT o WACPT i 2aCPT HDACPT
FORAUATIING *MIRCFLLANENUS TTENS=9/7707%0 'PFRTURR 9 7% 0 *PERTURA Y o 73
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SUBROUTINE VELCTY(T,VNOT,S,NDIRCT/SPH1,CPHI»STHICTH)
THE INDEX MNOPTRM INDICATES WHICH VARIABLES ARE REPRESENTED BY THE

GIVEN GUANTITIES PTCHRY AND ROLIRT :
NORTRM OUANTITIES REPRESENTED BY PTCHRT AND ROLLRT
1 THETAD, PHID
7 THETAD, P
3 Q,PHID O
4 Q. P

NDIRCTsD FOR FORWARD FLIGHT AMD § FOR HBACKWARD FLIGHT,
DIMENSTON T(O),UNOT(O),SEE(D),St8)

CO%HON/SPEC/NT.XCGoYCGoZCG.Tl§oRHOaPS!DOT.PTCHRToROLLRToHDOToLCo
1 MOPTRM,IT(A),QINRTA(S3,3)

DETERMIMNE THETA, PHI AND V,

IF(HUDIRCTER,0) QDIRCTs1,0
IF(NOIRCT.EN.1)ADIRCT==1,0
JNOTSLC=3

00 10 [=1,3

NEL=LC+4-1

CO 5 Jsi,H
[FCIT(7=U),MELNFL) GO TO 8
SEE(1)21(7=-y)

GO TC 10

CONTINLUF

SLE(T)SUNOTIJYNOT)
JMOTSUNOT=1

CONTINUK

VESFE(L)

PHISSFE(2)

THETASSEE(3)

TEST TC SFE 1F THETA 1S WITHIM PLUS OR MINUS 90 DEGREES.
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ATHEARS(THETA)
[F(ATH=1,5700)225+220,220
CTVeSIGH.(1.5700,THFTA)
THETASCTV .
D0 223 Usi,6

T(JIBTHETA

CONTIMUE

WRITE(6,224)
FORMAT(/Z 34X, '"VELCYY HAD TN CHANGE THE VALUE OF THETA BECAUSE ',

1 'IT WAS OUT OF THE PLUS OR MINUS 90 DEGREE LIMIT',/)
CONTINUE

TEST TC SKEF JF PHI IS WITHIN PLUS OR MINUS 90 DEGREES.

LPHEABS(PH])
1F(APH=1.57)235,230.,230
CTVSSIGN(1,57,PH]) 1 :
PHIsCTV .
DO 233 Usi,6
IFCIT(J)NELLC*2) GO TO 233
NELSLC+d4~1
DO 5 Jsi,H
IFCIT(7=U) NE.NFL) GO TO 8
SEE(1)2T(7=) y
60 TC 40 ‘ .
- CONTINUE
SLECT)SVUNOT(JYNOT)
JMOTBUNOT =1
CONT INuF
VESFE (1)
PHISSFE(2)
THETASSEE( D)

TEST TO SEE IF THETA IS WITHIN PLUS OR MIMUS 90 DEGREES.

ATHEAKMS(THETA)

IF(ATH=1,5700)225,220.:220

CTvaSI1G':(1,5700sTHFTA)

THETASCTY

CH 223 usy,6

IFCITCUIWNE.LC*1) 6N TO 223

TCIISTIFTA

CONTINLE

w18 (6,224)

FOR™AT(/93X s *VELCTY WAD TN CHANGE THE VALUE OF THETA BECAUSE °,
1c6£;l:C$ OUT OF THE PLUS AR MINUS 90 DEGREE LIMIT',/)
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TEST TC SKE IF PHI 1S WITHIN PLUS OR MINUS 90 DEGREES.

LPHSABS(PHT)
1F(aPH=1,57)23%,230,230
CTVSSIGN(L1,57,1 1)
PHISCTY
0O 233 Uusy,a
IFCIT(J)MELLC®2) GO TO 233
T(J)SPK]
v CONTINUF
vRITE(6,234)
FORAT(/01X, 'VELCTY HAD TO CHANGE THE VALUE OF PH! BECAUSE 'y
1 'IT WAL OUT OF TWE PLUS OR MINUS 90 DEGREE LIMIT',/)

v CONTINLE
CALCULATE SINES AND COSINES OF THETA AND PHI,

SEHISSIN(PKT)
CPuIsCCH(PHT)
STHSSIN(THETA)
CTHECOS(THETA)

SET U,V AND W T0O ZERO IF TWE SPEED 1S ZERO (CASE 1),

THE TEST FCR EQUALITY BETWEEN NON=-INTEGERS MAY NOT BE MEANINGFUL,
IF(TASNEWOQ.0) GO TO 245
us0,0 .
v=0,0
w:0.0 e
cO 70 450
+ CONTINMUF

CALCULATE U,V AND W DIRECTLY AS FUNCTIONS OF HDOT. PHI AND THETA,
IF THE SPEENSKHDNT (CASE 2),

AHD2ARS(KWNCT)
IFCARD=TAS)2%0,247,280
UzSTHReRNQT
VE=SPH]eCTHaHNOT
wWs=CFH]eCTHOWDOT

GO TO 450

CONTIMLFR

COMRUTE C a~D R=SQUARED.
RDOCLESGRT(TASe02-KNT0e2)
CestveSPulec TuennNQT)I/RNCL
RSGNECP 00D (SPHIOSTH)002

8.



DETERMINE WHETWER THIS 1S CASE 3 OR 4 (NDEPENDING ON THE
RELATIVE S1ZES OF C=SNUARFD AND R=SQUARED).

[F(C®e2,GY,RSAD) GO TN 278
COMPUTE CCY AMD SCY, LEAVING V UNALTERED (CASE 3),

ROCL2B{,JRCTHSQRT(RSUD=Cwe2)
CCYS({RDCL2#CPHI+COSPH]#STH)/RSQD
SCYs(=CoCPNI+RDCL2OSPH]®STKH)/RSAD
GO TO 290

COMPUTE CCY AND SCY WITH TWE REGUIREMENT TO CHANGE THE GIVEN VALUE
OF v (CASE 4),
o '

CONTINUE '

CAPRBSQRT(RSQL)

AR OIAL LT T

-'.01". "_o‘o.",g,o.g'o‘

LA L 4Tl e Linl QLY A8 BLNCYICNS LR e, Pul %) Tkt T,
[t =t b 8uTNY (R4 21,

‘u'}l"'s‘h-f”

[Frlam oTaC) 50,247,250

LEa"men 0T

R LEURIN T ALY T okl ¢

LT SR Yob 4% To1o]0) ¢

G0 T0 450

CONTINUE ' “D““g

COMPUTE C AND R=SQUARED., “g\
RDCLBSQRT(TAS#*#2=HDNTe02)
Cs(V+SPHIeCTHeHNOT)/ROCL
RSQDBCPH]®a2¢(SPHISTH)®e2

DETERMINE WHETWHER THIS 1S CASE 3 CR 4 (DEPENDING ON THWE
RELATIVE S1ZES OF C-SNUARED AND R=SGUARED).

IF(C®82,GT,RSAD) GO TN 27%
coMPUTE CCY AMD SCY, LEAVING V UNALTERED (CASE 3),
ROCL2%3L IRCTeSORT (RSGD=Ce02)
CCYS{RDOL20CPHI+COSPH oS TH ) ZREAD
SCYs{=CoCPHI+RNCL20SPHTeSTH)I/RSAD

6n TO 290

COMPUTE CCY AND SCY WITH THE REGUIREMENT TO CHANGE THE GIVEN VALUE
OF v (CASE ).
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ConTl MUk
CAPRISGRT(RSAN)
CzIN]RCTeCAPR
CeYs(Ces5Pn]aSTHI/RSAD
SCYs=(CeCPH])/RSQD

R St W e & s R

CIPUTE UsVv AMD W FNR CASES 3 OR 4,

CeMTINUC
Uz(CTHOCCY)ORNCL+(STH)eRNOT
V=(SVNI'STh’CCV'CPH!'FCY)'RDCL-(SPH10CTH)OHDOT
hE(SHHIOECYSCPHI®STHOCCY)ORNCL=(CPHI®CTH ) aHNOT
COLTIMUE .

CETERMINE P Q AMD K,

1F(MOP1RM.5G.S.CR.NOPTRM.;o.d)GnPTCHRT
TECHOPTRM BN, 2.0RNOPTRM,FQ,4)PEROLLRT

1F(MOPTRM.EQ.1.0R.NOPTRM.FO.3)PIROLLRT-PSIDOT'STH
!F(‘OPTRM.EQ.l.OR.NOPTRM.EG.Z’G'PTCHRTOCPH!*PSIDOTOCTHOSPHI ;
Qz(PSICOT®CTH=G*SPH])/CPH] {
§(1)3y |
S(2)sy 3
S(3)3w

S(4)sp '
S(5)=0

S(6)2R

RETURN

END
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SUBROUTINE COMTRL(T,VNOT,C)
DIMENSION T(6),VMOT(9),C(12)

COMION/SPEC/WT IXCGsYCGI2ZCG) TAS,RHOPSIDOTPTCHRT»ROLLRTHDOT,LCy
1 NOPTRM, JT(A),»QAINRTA(S,3)

FILL OUT THE COI'TROL COLUMN,

JHOTSY

DO 15 1s4,LC

0O 4 Js1.6 .
IFCITCU)NELT) GO TO 4

cC(1)8T(y)

GO TO 14

CONTINUF

CCI)SVANTLUNOT) ’
JHNOTEJNOT+Y

CONTIMLE

CONTINUF

RETU"\N

END .
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SUBROUTINE WASH(VA VI VIDOT FaWeXo1XoJUX0AsNEX)

DIMENSION VA(4B),VI(48),vIDOT(48),F(48),W(48)
DIMENSTON X(500), IX(500),Ux(¢5003,)A(6,6,8),0(48)

COMMONZ INDECS/NCEB,2) yNTYPE(B) yNTHRU(B) ) NoNPASS)» NDIRCT/NEXsNITER
COMMON/SPEC/WT yXCG,YCG,2C6, TAS)RHO,PSIDOT,PTCHRT )ROLLRT »HOOT)LC,
1 MOPTRM, IT(6),0INRTA(S,))

NELWBAGMN

N0 2 ve i ,NELY ’
wiK)sQ,0

FACTS1,0/(2.09%RHO)

CO 10 [=1,N

[NpLséa(l=1)

ARGEVACIN\[E®L)002+4VA(INDE+2)0026VA(INDE+I)#e2 .

VATSS i~T(ARG)

GO 5 8196

NUBTILE Y

D('\J"G.O ’
THE TEST FOR FAUALITY RETWEFN NON=INTEGERS MAY NOT BE MEANINGFUL,

IF(VAT,£3,0.0) GO T0 8
[O 4 Key,6

NCEINTE+K
DINJUISCINI)=CACJIK) I )OFINK)OFACT)/VAT
CONTINUE

CONTINUE

0O 27 LEXSL,NEX o
1=Ix(LEX)

J3JIX(LEX)
FACTCRaX(LEX)
W(1)BW(1)+FACTOR®D(U)
RETURN

ENC
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Trorwo

R

SUBROUT INE Fcanoocs.spuz.épu:.37H.crn.rnoo>
DIMENSION 8¢6),FROD(6)

cOMMON/SPEc/HT.XCG.YCG,ZCG;TAS.RHO.PS!DOT.PTCHRTOROLLRTIHD°70L60
4 NOPTRNM, 37(6)00“”"1(303’

GM‘SS'WT/’Z 2
UCG:S(l)0(8(5)0266-816)0ch)
vcc-5(2>¢<sto)oxcc-s<4>~zcc:
wcc-s¢3a¢<s<4>0vcc-s<5)~xcc’

PCGaS(4)

QCGsS(Y)

RCG=S(s)

XCORANB4WTeSTH +0MASSO¢accowcc-Rccovcc) '

Ti'*ﬁlhﬂflilli’*PCG'HINHTl!IIE}'ECE'EINRTl{IIJIinﬂﬂ
Ta--GxuuratzaxIiﬂcc+nIN!T::?.zliﬂcn*ﬂlnnritzullilcn
T!:-Hlmnfnt3.1:uPcc-GINHT:{J.EJ-GCG+GIMHT11inriﬂcs
uLan-rJ-nc:-!znﬂce

GNCGR371'°CG-T30PCG

QNCGRaT2epCr=T100CE

FRAON(L)sXeoRAn P
FRGD(Z):YCGNQD '

FRAD(3)22¢6Ra0
FFGDI4IIGLtﬁﬂﬁl?CGGFCERHU-ZEGiTCERED!
Fﬂﬂhf&JlGHCGﬂ*lICG*!CGHHD-KEG*ICGHHDI
FRHHlﬁ}SENEGH*{KCG'*EGRHD*?EG'IEGHHD’
RETURN

END
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SUBROUTINE FORCF(K0N0P70V00V!oV!OOToCoFRoPKaINTS’

IF NOPTS1,RETURN ALL NEW ELEMFNTS OF FR. IF NOPTS2, RETURN ONLY
ELEMENTS FR(6K=5) TO FR(6K), K 1§ THE ELEMENT SEQUENCE NUMBER,

DIMENSTON VA(QO’OV!(‘Q’OV!DOT(‘O’oC(lZ’aFR“‘)
DIMENSION PK(250,8), INTS(10,8) ’

COMMON/PHYSCS/P (2501, INTG(40) /MPK(8) /NINTS(A)

COMMONZ TRBERS/MC(N,2) oNTYPE(8) ) NTHRU(S) 4 NoNPASS) NDIRCT/NEX,NITER
COMACN/ZRLNNGT/TOHIST)BETACSN,A) JBETADT(50,8)

COMMUN/NERUG/HNXS '

IFCCPT, 5,260 TO 550

DO 475 1sg,N i
NEARPSNEK(])

NEARTENIATS(T)

DO 7& [FARSL,MFARP
P(IFAR)SPK(IFARY]) .
!F(HFARI,27029027

CONTILE

PO 28 JFARsSL,NFAR]
INTG(JUFAR)SINTS(JUFARY 1)

CONTINUE ¢
IF(NTYPE(')'2’25.50.75

CALL LIFT(1sVA.CIFR)

GO TO 440

CALL RCNY(1,VAFR)

Gn TO 450

CALL RCTOR(I,MOFT»VAIV]aVIDOTICoFR)
COMNTIMUF

DU 4%6 1FARz1,NFARP
PK(IFAR, 1)sP(IFAR)
IFCFAR])E%7,475,457
CONTINUE

DO 453 UFaR=1,NFAR] \%
INTGEUF AR [ IS INTGUUFAR) \®
CONTINUR 1\
€0 TO 1200 ot )
CONTINUS A\
MEARP2APK(K)

NEARTENINTS (W)

00 #2606 1FARSY,MFARP
P(leaRIZPR(IFARIK)
IF('FAQ1)627.6299627

CONTINLE
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0O 428 FAREY,NEAR]
INTRUUR AR BINTS(UFARIK)
CONTIMUE
IF(NTYPL (K)=2)625,650,675
CALL LIFT(KIVAICIFR)
60 TC 1100
CALL HENY(K)VAIFR)
60 TC 1noo0 .
CALL RCTOR(K,NOPT»VAIV],VIONT,CoFR)
CONT INUF,
0O 756 1FAREYL,NFARP
PK(IFAR,K)sP(IFAR)
JIF(NFAR?)757,4200,7%7
CONTINUE
DO 754 UFARs1,NIAR]
INTSCJUFAR K)® INTGC JFAR)
CONTINUE
CALL MCLY(lsVAIIR)
GO TO 450
CALL RCTOR(1)NOPTIVAIVIVINOT,CoFR)
CONTINUE
DO 4%6 1FARS1,NFARP
PK(IFAR, ] )sP(IFAR)
IF(LFAR])457,47%,4%7
CONTINUE
DO 453 UFARS1,NFAR]
INTSOUFAR ) IS INTG(UFAR)
COMTINUR
¢0 T0 1200
CONT [ MU,
LEARPENPK (K )
MEARTENINTS ()
0O #éo TFaRsy,NFARP
PCIFLR)EPK(],"ARIK)
IF(I.FAR1)627,629,627
COMTINLE
(0 420 JUFARSL/MEAR]
IMTREJFAR)SINTS(UFARIK)
CONTIMUYL
IF(NTYPE(K)=2)625,650,675
CALL LIFTUKIVASICIFR)
GO TC 1700
CALL BONY(KksVAIFR)
GO YO 1nbo )
CALL RCTOR(K NOPTIVANV]WVIDOT,CiFR)
CONT IMUFE
DO 756 1K ARReL,MFARP
PROIFAR)K )P (IFAR)
IFCHFARD) 757,1200, 757
CONTINUE
NO 75¢ JUFAR2L.NFAR]
INTSCUR AR ) SINYG( UFAR)
CONTINUE
RETHRN
EMD
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SUBROUTINE MTXADDCA,BsCoNR.NCoNRDIMAINRDIMB,NRDIMC o NCCODE)

THIS MATRIX APDITION SUBROUTINE ADDS OR SUBTRACTS 8 TO OR FROM &
TO vItL) C, PROCESS [S ADDITION IF NCODF IS 1. SUBRTRACTION a=BsC
OCCUKS FOR nNCODEs2,

DIMFNSION ACNRDIMA,SNC),,8(NRDIMB,NC),C(NRDIMC)NC)
IF(MCODFFR.3)GO TO 10

00 S 1s1,MNR

DO 4 Js1.,\C

- Cllad)sall J)=B(loJ)

CONTINUE

60 Y0 20

coNT INUL

CO 15 [s1,NR

D0 14 Jysgi,NC

Cllod)sal(l,u)*B(1,y) .
CONT INUE

CONTINLE

RL TR

enn

e

B e = = i

bt e =

i




v TRy p—— pe—

SUBROUTINE MTXMPY( 4 4 B , C o NRA , NCA o NCB , NRDIMA , NRDIMB
1 » NRDIMC )

10000000000000000000000000000000000000000000000000000000000000000000
ATRIX MULTIPLICATION

AC NRa » NCA ) ® BC NcA » NCB ) 8 €¢ NRA » NCR )

0800000000000 000000300080000000000000000000000000000000000000000000

THIS MATRIX MULTIPLY SURROUTINE IS A GEMNERAL ROUTINE AND
COMPUTES THE VECTNAR INNER=PRODUCT ACCUMULATIONS [N
DCURLE PRECISION.

000800000000 000800000000000000000000000000000000003000%000800000000000
REAL &( NRPIMA » NCA ) 5 Rt NRDIMR » NCB ) » C{ NRDIMC » NCB )
DOURLE PRFC1S10Y TEMP

0000000080030 00000030000000000000000008BKRRRRRNRANLARRNEIRRRRNRNGRNRY
DO 10 | = 1, MNRA
DO 10 g & 1, NCB
TEMP B8 0,0 ’

D0 5 Kk 3 4, NCA

TEMP 8 TEMP ¢ A(ToK) @ B(K, J)
C(ls J) 8 TFMP

CONTIMNLE

RETURN

END

193



SURROUTINL MATIMVCANA,N,DET, IRANK)

THIS SUBROUTINE THVERTS THF N RY N MATRIX A AND STORES THIS INVERSE
IN THE SaAME STORAGE LOCATION ORIGINALLY OCCUPIED RY THE ORIGINAL
MATRIX a, NA 1S THE NDIMENSION FOR A SPFCIFIED IN THE MAIN
PHQOGRAM, TwE PAKAMETERS N, MAy AND THE MATRIX A MUST BF
SPECIFIEC ROFNQE THE SURRNUTIME 1S CALLED., SUBROUTINE MATINV
RFTURI:S TUE DFETFRIINANT OF THF MATRIX (DET), AND THE RANK OF THE
MATRIX 1RANK,,

DIMENSION a(2500),8(50),C(50) s JROW(S0),1COL(50)
CLT=1,
JRANKZ(

LOCATE PIVOTAL ELFMENT

DO 1500 K=1,N
AMAXSO,

KMizK=)

NMiEN=1]

DO 10%0 JyskMy,NML
]JSJQMAOK

B0 1C5Y J3x,N
ARC=A(TIU)®A(LY)

IF(ARG=AMAX) 1050,1050,4040
AMAXBARR

IROL(K)2]

1COLIK)IZ e+

[Jsldel

IF(AMAX=1,5-20) 1060,1060,1100
DFET=N, e

1RO (kYK

1COL{K) 2K

GO TEC 31%02

I0VE, MAXIMUM FLEMFNT TO PIVOTAL POSITION

JRAT KB IRANMNKSY
IFCIRCY (K)=-K) 1110,1200.2110

DETE=DET

KKJ2 1RO IIK) \2
K.J2K 00\3@\3\'
0O 11%F. Jz1,N ettt
TEEPZA(KK ) )

AlkJdealw )
Al )=ToNMP
Kikgasxw j$Np
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KJSky+t A
1FCICOL Kk )=K) 1210,1300,1210
LET==NET
IKKs(ICLIK)=1)eNA
JK=(K=1)atip

DO 1257 1=31,N

IKKe K+

IKs]1K+]
TEMPBA(IKK)
A{IkK)=A(IK)
Allk)=TCMp

ENUCE PIVOTAL ROW AND COLUMN

KK=(Ke1)eM,eK
TEMP3A(KK )
DETzDETeTF P
DO 1400 JU=1.N
JKE(K=1)erge
KJs(Je=g)enpeK
IF(U=K) 13%0,1310,1350
B(J)®L,/TEMP
c(Jisy,
OVE. MAX]HMUM FLEMFNT TO PIVOTAL POSITION

JRANKS JRANK*1 . '
IFCIROW(K)=K) 1110,1200,1110 +
DETs=DET
KKJ2]RC'!(K)
K.JsK
DO 1L15C. JS1.N
TLMPEA(KEJ)
AlkkY)esA(K )
ALK ))ETEMP
KKJsrK j+NA
KJSKJ*t A
IFCICOL Kk )I=K) 1210,1300,1240
peY==nNgy
1ks(ICL(K)=1)eNA
[KE(K=1 )0 A
DO 1£€9) %1,
[KwglhKked
1K21K+) uel
TEEPEA(TKK) “0‘ REPROD
d(lrk)er(IK)
) ACIK)IBTONMP

BLE

'wHUCY PIVOTAL ROW AND COLUMN
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KKS(Ke] )otipoK

TEMPBA(wK)

DETSDETeTEMP

DO 1400 JsieN

JLs(K=1)ehyge

KJs(Jo3)erpoK

1F(J=K) 1350,1310,1390 .

BlJISL,/TEEP

c(J)sy,

GO YC 1409

B(JIB=A(KJ)/TEMP

clJIsAl UK)

AlJc)sn, o
aAlxydsp,

00 1450 Jsg.N

jJstJ=1)eN,y

00 1450 (81N

1J81J*} .
AtTo)satly)entydIeClt)

CONTINLE

FARRANCE MATKIX IN ORIGINAL FPORM

00 1700 XCYCLESL N
KsVel=nCYCLF

1FCIROn(K)eK) 1510010000&310
[xks(IRNn(K)=1)ONA
jKs(K=g)oNy

00 1550 tsg,N

IK(s KK} o

[KS Koy

TEvRsA( [XK)

LeIxK)sAlIx)

ACIK)STEMP

IFCICOLtx)ox) 1630,1700,2610
xKJsI1CCL.(K)

KJ8«

0N 165C yrgeN

TEVPBA(AKY)

al<g ) inKy)

Al dsTp M |
K sk oNA

K.JEKJONA

CONTINUF

RETLRN

€0

i
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SURRCUY InE FULERIXSTCoXSTR,NVCTSoLOPT . NOOC » MDORPS] o THETA :Pui] o CoR)
THIS SLHNOUTINE HOTaTPS (NVCTS)= 3 ELEMENT COLUW VFCYORS STRUNG
IN SERIES w1TNIN THE COLUN VECTOR C. THROUCH TWREE CON3ECUTIVE
EULER RATATIONS PRI, TugTsa,Pul (OR IK Tg APPOS]TE SENSE A% ORorR
CEPTADLL.C C (LAPTII. TUE ANUBER OF THE FIRST ELEMENTY OF Ywr FIngY
COLUMN VECTOR To Ae RATATFD WITWIN € I8 (xSTC), TwE RQTATED
VECTLRS 4Nt AFTIMMN a8 4 SERIES STRING VITuIN R, (xSTR) {3 DEFf~
%ED SKaLOGAUSLY TN (KRTC), ENCEPTY (KETR) RELATFS TQ N. THE LOPY
OPTION 1angX NEFINES TiE FOLLOWING OBTIONS.

LOPY oPYIoN
ROTATE TuROUGCH LANGE ANGLES PSI.THETA ,Pu]
ROTATE TMROUCH LARGE ANGLES ~Pulo>TigTa.~PS].
ROTATE TURCUSH SMALL ANGLES P81« THETEPN],
. POTATE TuRAURH SMALL ANGLES ~Pul,=TugTa,-PS],
DINGAS ™ CUNPOC) o RINNON) ,5¢3,3)
COmPUTE SINFS 4°'D CAOINES OF TF CULER ANGLES: NOSERVING OPTIONS,

IFELEVT E0,3.00,,007.00,20¢0 TO 30
fevebny

& W N

CCvel,0-0,90p8]000
STuelugry

Clwed C=0.90NgTa00?
AL

CFled C=0,900u)00p
60 70 39

SCYeliniPsy) °
CeveCnetPey
LI TR Y)
ClueConivt g vs)

9 le8i%ePug)

Cs 1oCCEtPuy )

CONYRoLe

0RSETILs T FULER 00TTIONAL MaTR)N,

803,30 CueccY
§¢3.200CTuongy
§¢le300e87
042030088 fontuecCcyocs fosgy
0(2.300CF t0LCYeRTHOSCVORS )
;:;’::.:::.c'.;c't v

33000 etCy o§Tueley
(302)0¢F o Tuopgv-08 g o¢
3pldeCh jec e "



DETSUVITE TwE OIDER-A4D-SENSE OPTION.

!‘(LC"‘.£3.1.03.L0'7o!0.!|co Y0 29
weglles) ‘
B le2087(201) .
Et2.d08u

“sk(3,Y)

Et3.3)87(3,8)

‘(,.""

wegl2,3)

El2,3)81 L3, 2)

“’o”.d

CONTINGE

EULER vateix COPLETE, N0V ROTATE TG oPPROPRILTE VECTORS,

00 120 “83,NVCYS ¢
00 9C 1983,)

{Me3e(seg JofongTRey

l("!'t.o

R YN LR

Cs 10CCStPY)

({08 J LYV

aSSEVELe “wf FULER R0TATIONAL RATRIN,

gt1e300CYeeCCY
§t3ed00CTeoCY
gt2e30008%

L1243 005F JotPuoCCVCP | 08CY
602,38 00C8 10LC VS THORCVONS]
$62:300°8 10C Ve

$¢ 9,100 8esCvecs 0gTueCCY
(3¢d)or 80 Tu0tCVeaElOCCY
$09.300%8 Sor e

ecVia 1} Yof STLCucaMoRINEg orT10>.

'.“C"OL00’0’“0&"'0"0"‘0 ' 3
ot 830q)
l‘!oa’l'l:o?' .
.‘2.‘,.00
“.“’.”
03,3000 19,%)
L13e300
et tded)
(12:300083,2)
Lided o
(AN § £
»°



FLULLl raTRIx COPLETE. OV ROTTE Tig APPROPRILYE vECTCRS,

2 170 sy nyeTS

o0 SC 193,)
!"'5‘!‘03!010’3""
at) ’)le.c

I ) J g!h.: ———
hSesjegi ey o joq L g
ot 8e( 191080 1o J)0Ct 1R0)
Coor 0

C. s

ot Yipm;

€©n
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