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HAT OF HMBOM 

A, The characteristic body area, used in the definition 
of a body's aerodynamic characteristics 

a Two dimensional lift curve slope of a blade section 

a Wing two-dimensional lift curve slope 

b Iß span w ' 

BRL Blade reference line 

CDO,CD1'CD2 Profile drag polar coefficients 

CLjCL IS coefficients to lift and drag (referenced to the local 
relative wind) 

C..C ,C        Nondiraensional moment coefficients.    Divisor is 
1   m   n       1/2 oV A^ 

C, fC ,C        Nondlmensional moment coefficients.    C. and C   are 1   m   n « in 
mxatiplied by l/2pV<^ b   to get the dimensional 

w W ä 

quantities, and C is multiplied by l/2DV S 5 

C ,C    Iß pitching moment coefficients mo' ma     «-    -o 

.2. C ,C  ,C   Nondlmensional force coefficients. Divisor l/2 oV A. x y z D 

C ,C ,C        Nondlmensional force coefficients. Divisor l/2pV A. 
x y z D 

c       Rotor blade section chord (generally a function of s), 

c        IS mean aerodynamic chord 

eg       Abbreviation for center of gravity. When used as a 
subscript, eg refers loads and motions to the 
coordinate system whose origin is located at the eg. 
Overall vehicle axes and eg axes are parallel. 



F First flapping mode generalized force 

f ,f Normal-to-chord and chordwise aerodynamic distributed 
n   0 loading functions, 

g Acceleration of gravity (^2.2 ft/sec ) 

h Altitude 

h ,h ,h Components of angular momentum of aircraft mass 

L.li.N.        Aerodynamic body moments referenced to the body1 s axis 
system 

Iß C     Lifting Surface  (wing or tail) 
P 

L Characteristic body length; used to define the moment 
coefficients 

M First flapping mode generalized mass 

p,<l,r Rotational velocities of vehicle axes in inertial space 

PV»PV/P.       Total BRL distributed loading functions, expressed in rx"y"a rotor coordinates 

p   ,p   ,p     Distributed aerodynamic loading functions, expressed 
**   ya   ** in j.Qfcjy coordinates 

p .,p .,p . Distributed inertial loading functions, expressed in 
^ rotor coordinates 

a Dynamic pressure at the reference point of the body 

a Dynamic pressure at the IS reference point 

R Rotor radius 

8W Characteristic area (IS planform area) 

s Radial line coordinate of the BRL: 0 < s < R 

u,v,w Trajislational velocities of vehicle axes in inertial 
space 

. 



u,v,w, Three translational and three rotational inertial 
p,4,r velocities of the rotor reference point in hub 

axis system coordinates 

uA,vA,w Three translational and three rotational airspeeds 
at the reference point in hüb axis system 

"A* A1 A coordinates 

u ,,v ,w Translational and rotational airspeeds expressed in 
axes associated with an aerodynamic body (generally 

•VT)' b different from overall vehicle coordinates by 
Euler angles §,0,$) 

u ,u ,u Spanwise, normal-to-chord, and chordvrise airspeeds at 
s    n a blade section 

u ,v ,w Translational and rotational airspeed components 
w   w   w expressed in IS coordinates.    These airspeed components 

pw,(1v,rw apply at the IS reference point.    In general, they 
are different from overall vehicle airspeed 
components 

d*h 

cr 

■i 

Inertial speed of the aircraft 

V. A  ■ Vector representing the airspeed at a rotor blade 
section, in rotor coordinates 

W Vehicle gross weight 

X. ,Y ,Z. Dimensional forces and manents generated by the body 

X ,Y ,Z Throe force and three moment components generated by 
T
r *  .,r tlie 1*3 and referenced to the IS axis system 
r' r7 r 

x,y,s Coordinates of the BRL referred to rotor axes 

eg' c: 
Coordinates of the aircraft's center-of-gravity 
vdth  rccpect to overall vehicle reference axes 

-  (s) BRL initial shape 

(s) BRL first flapping mode shape 

xli 



Body angle of attack a «= tan " I —- ],  radians 

i 

' R> 
Angle of attack a = tan ' I —= \,  radians •m 

CL.—.. Angle of attack for zero lift minus angle of attack 
' 'u for minimum profile drag of the twc^dimensional 

airfoil, radians 

p Body sideslip angle ß = tan-' i    J, radians 

ß Sideslip angle ß - tan'  ( „" ), radians 

ß(t) Flapping angle, radians 

r Wing dihedral angle (angle between IS  xy plane and 
a vdng lA chord line), radians 

S0,B1,52      Coefficients of the profile drag polar for a rotor 
blade section 

9 Angle between a blade section chordline and the 
shaft normal plane, radians 

0 ^A. .B.      Collective pitch, lateral and longitudinal cyclic 
pitch angles (angles between the control plane and 
the shaft normal plane), radians 

\ Planfom teper: IS gg^ 

p Air density, slug/ft , assumed equal to sea level 
standard density unless otherwise stated 

^,0,* Euler angles required to rotate vehicle axes from 
any eprth-fixed coordinate system whose z axis 
coincides with the local gravity vector 

i|i Azimuth angle of blade number 1 

f , 0 ,cp       Buler angles required to resolve components of 
vectors expressed in overall vehicle axes to 
components referred to the local aerodynamic body 
axes 

xiii 



ty ,0 ,$ Euler angles required to resolve components of Tw' w'rw vectors expressed In overall vehicle axes to 
components referred to the local Iß  axes. 

¥ Rotor speed 

Special Mathematical Symbols 

% Approximately equals 

Defined equal to 

|x| Absolute magnitude of x 

x Unperturbed value of x 

x,x Derivative of x with respect to time 
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I.    MfiBULA» BTiaiLTTY DERIVATIVE »QORAM -  QEWERAL APPROACH 

LI •i/f.Ar'iVi'fVj 
Chapter V of Volume I of this report describes the 

M08IAB modular stability derivative program in a general way, avol<llng 
technical details. 

It is emphasized that the version of MOSTAB described here 
(MOßüÄB-B) does not Include rotor stall or compressibility as a function 
of azimuth.    It is adequate for the approach conditions considered In 
this report, but is not suitable for higher speeds, for which later 
versions of MOSTAB should be employed. 



1.2   PMBLEM DEFINITION AND NOIAIIOW 
Define a coordinate system x, y, z fixed to the nass 

of a flying vehicle. The exact Location of x; y, z is chosen 
for convenit-nce during': the calculations of aerodynamic forces. 
One convenient definition for the location of x, y, z on a single 
rotor helicopter is: 

(1) Origin at the intersection of the main rotor shaft 
and the fuselage waterline. 

(2) x axis lying in the vertical plane of symmetry and 
parallel to the fuselage waterline. 

Aircraft are essentially a combination of aerodynamic 
and inortial olemonts. These elements may be classified generally 
into four ^roupn: 

(1) Rotating airfoils (lifting rotors, propellers) 

(j) Stationary airfoils (wings, empennage surfaces) 

(:'>) Body structures (fuselage, nacelles) 

(h, Momentum engines (turbojets, rockets) 

Generally, each of these aerodynamic elements produces 
a force and a moment, which sura (in a vectorial sense) with those 
forces an^l moments produced by all other elements. The final sum 
r^pres^ntc the '^otal load that sustains flight and forces maneuvers. 

Now consider an aircraft with N aerodynamic elements. 
Define a reference point for each element which is convenient for 
J^terminin,-- loa-is produced by the element. Locate an axis system 
x., y., :•. at each element i, i = 1, 2,,*N, such that the origin of 

x., ;,.. :■.. ir eo-incident with the i'th element's reference point. 

fly. x,,  y.... ri i lly to the mass of the element reference point, 

and constrain this coordinate system to remain parallel to the 
overall vehicle frame of reference, x,,y,z. 

The force and moment vector generated by each element, 
i, and applied bo the rest of the aircraft can be represented by 
the .;ix-row column vector f. . The first three elements of f. are 

the force components (in x., y., z. coordinates) applied to the 

aircraft by el^m^nt i. The last three elements in f. represent 

the components of the moment applied to the airframe by element i. 



The   coordinate system x , y., z has three transla- 

tional and three rotutlonal velocity componontc vflileh identify 
the velocity or x., y., z. with renpect to inertial space. Define 

v.., a six-eloiiiont column vector whose first three rows ropror^nt 

translational velocity components and last throe rove represent 
rotational velocity components of the motion of x., y., z. in 

Inertial space. In an analogous manner, define v . as the velocity 

of x , y., z. with respect to the air in the vicinity of element i. 

Note that, in general, v-, and v.. are different because the air In 

the vicinity of an aircraft is not still with respect to inertial 
space. Detailed discussion of these air motions is deferred to a 
later section. 

An aircraft is usually controlled by mechanical recon- 
figuration of selected aerodynamic elements. Familiar measures of 
the control configuration are aileron angle, elevator angle, throttle 
setting, collective pitch setting, etc. To represent these control 
variables, identify the M-row column vector c. Each element of c 
represents a control setting. For the present consideration, the 
order of the elements in c is not relevant. Also, control co- 
ordinates which are not varied during a flight case under study 
(e.g., flaps, throttle) may either be Included in c, or may 
be Included elsewhere as physical constants of the system and 
excluded from c. 

The force and moment contributed by each element of an 
aircraft are generally functions of the local aerodynamic environ- 
ment, the flight control settings which affect the element, and 
sometimes the inertial velocity and acceleration of the element. 
In terns of previously defined notation, this statement can be 
expressed as a functional mathematical equation; 

fi "fi (VIi' VAi' V c' V - 1' 2>) (\ 

i ■ 1, 2,...N 

where the dot denotes differentiation with respect to time 
(element by element of Vj,) and K.., j ■ 1, 2,•••• are physical 

constants of the particular element (wing span, chord, etc.). 



Construct the 6NX1 column vectors f. v_, v. and '*■_ I  A     I 
by simply stacking the 6X1 columns f., v ., v ., and f.-, one on 

top of the other, starting at the top with 1=1. All N equations 
represented by (1) can then be written as 

f = f (Vj, vA, ^j, c, Kj, j = 1, 2---- ) (2) 

The force column f represents all the force and moment 
components produced by all elements of the flight vehicle in x,y,z 
coordinates. Now define p as the 6X1 column vector whose elements 
are the three force and three moment components of the total aero- 
dynamic loading on the aircraft. In conventional NACA notation, 
the elements of p are X,Y,Z,L,M,N. These elements define the load 
on the aircraft at the origin of x,y,z in x,y,z coordinates. 

If the x, y, ij coordiuate? of each element's reference 
point are defined, a matrix L can be assembled which relates p to 
f as follows: 

P - If (3) 

L is a 6x6N array, and is a function of vehicle geometry 
only. Thus, p is a function of v., v , ^_, c and an unspecified 

number of physical constants. 

Let s represent an aircraft's inertial velocity 
expressed in x,y,z coordinates,  s is a 6X1 column vector made up 
of three translational and three rotational velocity components. 
These components have been represented by NACA airplane notation 
as u,v,w,p,q,r. 

If the x,y,z coordinates of the reference point for 
each vehicle element are defined, a 6NX6 array, G, can be assembled 
such that 

V. - Gs (k) 

The matrix G is a constant array which depends only on 
vehirle geometry. Thus, 

Vj -0 a (5) 

While no proof is given here, it is easy to show that 

T L - G 



It has been stated earlier in this work that the 
aerodynamic velocity of each vehicle element usually is not the 
same as its spatial (inertial) velocity, because the air surrounding 
a vehicle in flight is also moving in inertial space. Neglecting 
atmospheric wind for the moment, this relative air motion is due 
to the presence of the vehicle itself. Momentum considerations 
reveal that aerodynamic forces can be produced by a body with 
finite dimensions only if that body accelerates the local air mass. 
Thus, the forces produced by a vehicle element cause the surrounding 
air to develop velocity components relative to space, and these so- 
called "interference velocities" impinge not only on the element 
causing the air motion, but also on other elements of the aircraft. 
Of course, this velocity interference changes the airloads produced 
by the other elements from the magnitudes and directions that would 
be developed if the air mass were still in space. It might be said 
that Interference velocities couple the elements of a flight 
vehicle aerodynamically. 

Let w be the 6NX1 column vector defining the spatial 
motion of the local air at all of the element reference points. 
Ihen 

VA " V" w (6) 

The vector w will generally be a function of the 
airloads produced by all of the vehicle elements, the aerodynamic 
velocities at all of the elements,and the control settings. Also, 
certain unsteady aerodynamic effects can cause w to be a function 
of v_ and ^_ as well. The functional equation for w can be written 

as follows: 

w - w (f, vA, Vj, ^j, c, Kf, £ = 1, 2--.)       (7) 

where K ,  »1, 2«•••are physical constants of the aircraft. 

Usually, w is the most difficult quantity to estimate 
for a flight vehicle. At this point,it must be assumed that some 
model is available to define the function 7. Analytic, empirical 
or intuitive models (usually a combination of these three) must be 
assembled to define w before the dynamics of any flight vehicle 
can be studied. 

The equations presented above represent the general 
force and moment consideration for the loading of an aircraft in 
flight. Some form of pilot (human or automatic) produces the 
column c. Solution of the dynamic equations of motion for the 
vehicle produces the "velocity state" of the vehicle expressed bv 
the columns s and &.   This information, along with the definition 



i :' MI«* •/t'!ilrlf,r uhyaloal coni'lcurationjonables one to compute p, 
through slmultaneoui solution of Eqa.  (2) - (7).    Figure 1 show« 
♦!:<'.-o •TÄt'.'-'fr.nnlrnl Lntcrrtlatlonfbipt In schematic form. 

Th«'  entire   i?et  of    bqf. (2) . (7) can be represented 
by  Ui*» ftm^tiounl oxpronaion. 

p t  p (s, &, c) (8) 

Thl: oquvlon in invariably a complicated, nonlinear assemblage of 
'.'utictions actually involving p implicitly. Suppose a solution to 
i1-)  is known, of the form 

pt " pt (3t' &f  ct) (9) 

Let .^p,   As,   AS,   and   Ac   le small     perturbations of p,s,ä, 
ancl e from their "t.rin."  or  "quiescent" values p.,  s., &., and c.. 

ir the A quantities (perturbation quantities) are small,  Eq. 
[c'< can be written in the linear form 

^p = Pe As ♦  P. Aä +  ?„ Ac (10) 
S o C 

The matrices P and P. are 6X6 arrays, and P  is a 
s     s c 

6XM array (where H is the number of control variables). In general, 
the numerical valxies of P , P, and P,. are functions of s., &.   and 

S    o       C Lb 

c. . Thus, the trlir. values for s, § and c must be specified before 

nur.^rical values fan be assigned to the elements in the rectangular 
arrays. 

The elements of P , P,. and P are conventionally called 
So C 

"stability derivatives'•.    For example, in conventional HACA nota- 
"ion,  the first element of Ap is the perturbation longitudinal 
fore*5  -)n the nirc-aft, AX,  and the first element of As is the 
perturbed longitudinal spatial velocity, Au.    If all perturbation 
olemontj In As, Al ond Ac are zero except for Au, then 

AX - P   (1, 1) Au. 
s 

Dividing by Au and taking the limit as A -*0, 

Tim   AX      „   /,    ,*      dX 
A 

'.J.m      /\A n      f,        ,y UA 

The other elements of t,he rectangular arrays can be defined 
in an analorou:: manner,  an partial derivatives. 



1 

Linear analysis bdetmlquea can be used to study the lynar;ic 
motionr of an nirrrni'*. in  flight, If the arrays in ( '•  are nu'nerlcall; 
defined. (Linear t'onnr of the dynamic equationc of !:.otion are ea.v, 
to derive, and need not bo considered here), The "stability deriva- 
tive problem" is t^ determine P , P« and P , given Eqs. (2j - 'V . s      s c 

1.3       TRIM 

Before the stability derivative matrices can be determined, 
a "trim" condition must be specified (i.e., the quiescent, conditions 
of velocity state and control,  s ,  S     and   c  , must be known). 

I* t Vi 

Certain   interrelationships   nmon^: the variable: s  ,  ä    and c    are 

stated in defininr a  "stability derivative case".    The.:-? inter- 
relationships essentially provide functional equationR which  can be 
solved simultaneously with  Eqs.   (2)  -  {'() to get the unknown 
trim columns s.,  S.   and c  .    Ihese  "interrelationships"     that 

come with the specification of a particular "stability derivative 
case"   will be called  "constraints"  on the variable? in   ' ..    -  (T1. 

To make this concept of constraints cle^r, consider the 
following example of a particular stability derivativ«,- problem 
statement. 

Find the stability derivatives for H-19 helicopter in steady 
flight at a constant altitude of 5000 feet with true airspeed 
(TAS) = 90 knots.    The ship is trimmed with zero   sideslip   angle. 
Weight = W,  eg   coordinates   = x,y,z with respect to a specific 
coordinate system. 

The statement constrains the variables in Eqs.   (2)  -  (7) 
by specifying altitude, rate of climb (zero in this case) and air- 
speed.     "Steady" is normally interpreted to mean that s,   = 0,  and  alJ 

rotational velocities  (last three elements of s,)  are zero.    Zero 

sideslip angle constrains the second row in s, to be zero.    Certain 

physical constant? (weight    and center-of-gravity position) which 
vary during a flight,  and from flight to flight,  are also specified. 
Enough information must be given in  Lhe problem specification    so 
that this information, together with simultaneous solution of 
Eqs.   (2)  -   (7).  vail yield all elements of s  ,   s    and c   . 

The more detailed presentation concerning trim which follows 
considers  only the cases where 5=0.    Although the basic concept 

of trim does not necessarily require this condition,  s    = 0 in 

almost all practical stability derivative    problems. 



The problem of finding the trim columns s. and c. Is solved 

mechanically by a pilot when he trims his aircraft. The pilot's 
assignment appears In a form similar to the H-19 example given 
above. He adjusts his flight controls and certain other parameters 
(e.g., vehicle attitude) available to him until the specification 
Is met. He is essentially solving a set of simultaneous nonlinear 
equations by iterating on his command over the vehicle until the 
resulting flight condition converges to his assignment specification 
(to within certain required accuracy). 

The method used by a pilot to trim an aircraft suggests 
the approach to be taken here for finding the trim columns s. and 

c . Define the L-row column vector t, whose elements include all 

of those parameters available for adjustment to trim an aircraft 
(usually t has six rows), and include certain elements of c and 
usually information associated with the trimmed altitude of the 
vehicle in space. For example, the pilot of a pure helicopter 
adjusts the following six items to trim his ship for level flight 
with zero sideslip angle. 

(1) Collective pitch. 

(2) Lateral cyclic pitch. 

(3) Longitudinal cyclic pitch. 

(1|) Tail rotor collective pitch. 

(5) Pitch altitude (conventional notation 0). 

(6) Roll altitude (conventional notation 4). 

In this case, four elements of c and two vehicle attitude 
angles are included in t. If the requirement was to trim the 
vehicle to zero roll angle, sideslip angle, ß, would be Included 
in t in lieu of *. 

The trim control column, c., is generally a function of t: 

c = c (t, known constraints, known constants)      (11 ) 

The six trim variables listed above indicate a 1-to-1 
relationship between certain elements of c and the corresponding 
elements of t. This is not necessarily always the case. For 
example, longitudinal stick position may be defined as one element 
of t. In most helicopters, longitudinal stick position affects 
both lateral and longitudinal cyclic pitch angles (i.e., two 
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elements of c). Nonlinear expressions may relate elements of 
e to elements of t (e.g., an aircraft may include nonlinear 
mechanical couplings between pilot inputs and control variables). 

The column s. can be calculated from the constraints of the 

problem and the specification of t : 

s, ■ s (t, known constraints) (12) 

For example, the numerical values of the elements in the last 
three rows of s will usually be specified by the problem statement. 
The second element (sideslip velocity) will either be zero, or it 
will be included in t. The usual specification of airspeed and 
flight path angle will allow calculation of the first and third 
row elements of s. from the altitude rate equation. The solution 

will normally be a function of the vehicle attitude variables in t. 

From the definition of t outlined above, one sees that c.(t) 

and s. (t) can be directly calculated as soon as a numerical value 

for t is available. With the statement that S. =0, simultaneous 

solution of Eqs. (2) - (7) will eventually lead to the solution 
of p. This process is represented by the functional expression, 

P = P (t, stability derivative problem constraints, 
physical constants) (ij) 

The unique value of t required to trim an aircraft must be determined 
from Eq. (12) and the stability derivative problem statement. 
The problem statement must require a specific value for p. This 
"required" p column can be equated to the p column shown in 15), 
to yield an L-row vector equation with t as its only unknown. 
Remember that t itself has L-rows. This process produces L 
(generally nonlinear ) equations in L unknowns (elements of t). 

Let r be the "required" trim value for pj r will generally 
come from the six equations of motion for the aircraft, as constrained, 
by the stability derivative problem statement. Since t usually 
contains elements related to vehicle attitude, and since the equations 
of motion for a flying vehicle contain terms dependent on attitude, 
r Is generally a function of t. 

r ■ r (t, problem constraints, constants)      (l ^) 

The trimming problem, in terms of the functional expressions 
now available, can be stated very simply: Find t such that 
p(t) -r(t). 

. 



»uctrlcal Solution for th« Trlamtd Cocditlop (Trim flttrch Itimtioo) 
In p,,-,vir.nr: .-.octions,certain t\inct,ionai expressions were 

prosontoi.     rh".:e o>fpres3ions are i'ummarir.ed below for convenience, 
Thoy retain their oririnal statement numbers.    Indication that 
some of tr:«' orpressions rely on constants known to the trim problem 
is iroppel.     The vector ^T  is also dropped,  since it will be zero 1 
for all  trim cases considered usin^ MOSTAB.    The subscript,  t, 
indicat:-.nr the trim condition in some of the previous expressions 
of these equations,   is dropped. 

r   - f (vT, vA, c) (?) 

P    - Lf (?) 

Vj  - Gfl (h ) 

vA - Vj - w (6) 

*»   = w (r, vA, Vj, c) (7) 

c    =c(t) (11) 

a    -«(t) (12) 

r    - r(t) (14) 

It is nssuvied that explicit relationships of the forms shown 
abovp are available to the trim problem (i.e., a numerical value 
for the left hand side of each expression can be determined if 
numerical v-ilue^ I'or the variables in the arguments are defined). 

Eqs. ' ), CO onl (6) are always linear (constant L and 
;!. fhe others ire f',enerally nonlinear.  Note that, even if t 
i. known, p cannot be explicitly determined because of the non- 
linear involvement of f and w in Eqs. (2 - (7N • 

Estimate the value of t that will trim the aircraft within 
the framework of the constraints ^iven to the stability derivative 
problem. Also estimate w. Denote these estimated columns as t r e 
on: w ,  '.•inr thejo eatiraates, ^alciilate the following quantities: 
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c   -- C (t ) (I o      e' 

sn    *  s(t ) (V 

vAo'VIo-We (18) 

f0 ^ f (vIo' vAo' Co) ^ 

W   « W (f , VA , V. , c ) '. - o      o* Ao' lo* o 

r - r(t ) f.'l o    e 

t . t (?r; o   e 

Let the difference between the correct value (the sought trla 
solution value) of each variable and the subzero value be denote i 
by A (variable). For example, iff* i» the true valu^ of f for 

the trimmed aircraft, then 

^ - ft ' fo 

and so on for all of the other variables.    If the A quantities are 
small, the nonlinear Eqs.  (2), (7)i (11), (12), and (U) night 
be suitably represented in the following linearized forms: 

?)L       f = fo^FVIAvi + rVAAVA+FCAc 

7)t   w = Wo + Wp Af + WVA ärk  ♦ WVI AVj 4  Wc ^tf- 

11 )L   c=co + CTAt 

|2)L   . . •o 4 ST At 

l4)L   r  ro + RT 
At 

The rectangular arrays, shown above as upper case letters, 
can be assumed constants if the A quantities are small. Thesp 
arrays are functions of ttie original estimates t and w , »ind ?r" 

easily calculated from Eqs. (2), (7), (11), (12', and il ) usin ■ a 
digital conqputer, 
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The procedure for finding a trim solution now becomes that 
of solving a set of linear equations for At and l»r. 

Combining Bqs. (M, (6) and 02)L, 

vA - C (so ♦ Sy At) - (wo ♦ Ar) (25) 

Subtracting (16) from (2}), using (17) to eliminate v , one 
gets 

MrA - GSj At - (wo - we) - Ar {&) 

Eqs. (I*), (2)L, (7)^ (11)L, (12)L, «nd (2U) can be combined 
to get Av. as a function of (w - v ) and At. (Note that (v - • ) 

A o   e o  e 
is not the same as £at.   This quantity is known at this point, since 
v was computed as Eq. 2a) The resulting equation for Av. is* 

ArA - VT At - Vw (wo - w^) (25) 

where 

and 

VW -^«p'fA^V1 (a6) 

vT .vw [O-Hrfn-V^-^C^V^ 
(27) 

Noting that 

AiTj - G ST At (26) 

from Eqs. (U) and (12)L, Eqs. (2)L, (11)L, (25), and 

(26) can be combined to yield 

f . fo + FT At - Pw (wo - we) (29) 

»The notation 1 refers to the "unit1* array: elements with equal 
subscripts are unity and all others are zero. 
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where 

and 

FT = FVI GST ♦ PVA VT ♦ Fc CT (^0) 

FW-FVAVW (51) 

Combining (29) and (3), 

p - Lf0 + LFT At - LFW (wo - we) (5?) 

Equating (1^)T to (32) - the requirement for trim - and 

solving for At, 

At - (i^ - TP^-1 [Lf0 - ro - LFW (wo - we)j    (55) 

This value for At can be substituted into (2cj to get Av. 

and into(29) to get Af. These results can be substituted into 
Eqs. (7)L, (ll)L and (28) to get tot: 

At this point, new estimates on t and w can be made: 

t I   - t + At (5*0 
e|new  o 

w I   ■ w + £w (5*5) e|new   o v  ' 

These new estimates on t and w can be used to repeat the 
process again. The cycling can occur as often as time permits, 
until the differences between the old and new estimates for t and e 
w are within some acceptably small values. The chosen "accept- 

ability limits" should be based on the physical dimensions of the 
elements of w and t. One test procedure could be 

(acceptable tolerance on t) >  T^lt    - t  ..I  (56) 
* '    ^| e new   e old|     ' 

all elements of t 

(acceptable tolerance on w) ^ T^lw    - w  .1 

all elements of w 
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Diicutilon of tht Trim Starch Ittratlon 
While considering any numerical iteration process, the 

question of convergence arises.    This question will not be treated 
with any mathematical approach here.    The comments to be extended 
are quite intuitive. 

Whether or not the trim solution method outlined in the 
previous section converges to a solution seems to depend on 
two factors: 

(a) The nature of the specific   nonlinear  functions used 
to represent the aircraft's characteristics. 

(b) The correctness of the original estimates, t   and w . 

Certainly, the degree of   nonlinearity characterized by 
the aircraft's aerodynamic functions will affect the rapidity of 
convergence, or indeed whether convergence occurs at all.    If all 
of the aerodynamic expressions are completely linear, convergence 
to the exact trim solution will occur with only one cycle.    On the 
other hand, if the problem statement assigns a trim condition 
within a flight regime unattainable by the aircraft, no trim solu- 
tion can exist.    Hopefully, the iteration search will indicate 
this by failing to find a solution. 

For those "difficult" regions in which a trim solution does 
exist, but may not be found by the iteration process,   a more 
sophisticated iteration method may be required.    One such method 
may be simply to add some of the higher order ( nonlinear ) terms 
to be the  "first term only"  Taylor expansions  (2)T,   (7)T,   (ll)T, 

L L L 
and (1^)T. The additional complexity of this approach may not be 

L 
Justified, if the solution can be found by invoking engineerinn 
.iudgeraent to produce better initial estimates. The first-order 
convergence method proposed here always must converge on a solution 
if the initial guess is close enough. 

The idea that the accuracy of ehe initial estimates might 
affect convergence provokes one to consider a method for "sneaking 
up" on that "difficult" solution. This approach would proceed 
as follows; 

(a) Begin by finding a solution for trim in a nearby region 
to that in which convergence has been found difficult. 

(b) Progressively change the problem statement toward that 
statement representing the difficult region. For each 
step, compute a trim solution and use this solution as 
the initial estimate for the solution of the next step. 
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If the convergence technique becomes too time consuming, 
certain simple changes in approach might be attempted to shorten 
the computational time required. For example: the rectargular 
arrays in the linearized Eqs. (2) , (7) , (11)L> ^2) , and (U) are 

recomputed during each iteration cycle for the iteration approach 
suggested in the previous section. It may not be necessary to do 
this every cycle. Computing new arrays every M cycles (M > 1) 
may save time but will not affect the ability of the method to 
converge on a solution. 

To see how this abbreviated method works consider Figure 2, 
Let y be the required solutioi:-value for y. The problem is to s 
find x . Estimate x as the solution. Compute y and the gradient 

S 6 O 
(slope), s. (The slope, s, in this example, is analogous to the 
linear arrays in vector expressions (2) , (7),, etc) Using s, and 

L    L 
the known error y - y , determine x, as the next proposed 

so i 
solution. Continue this process, but use the same slope value 
each time. As one sees from this figure,the iteration is con- 
verging on the solution, even though s is held constant. 

Whether or not this abbreviated method shortens convergence 
time depends on the complexity of the aerodynamic expressions - 
particularly f and w. The linear arrays are computed, numerically, 
column by column. Every time a column is generated in F , for 

example, values for the elements in f must be calculated. If this 
calculation is even moderately time-consuming, finding the numerical 
values for the arrays will be very time-consuming. In this case, 
the iteration process can probably be accelerated using the 
abbreviated method. 

1.4   STABILITY PERTVAIIVl! CALOULAIIOW 

The linearized expression derived in the trim solution can 
be used to generate the stability derivative matrices. The terms 
F^T AO-j and VL^. A0-_ must be added to Eqs. (2) and (7)T, respec- 

tively, to account for the dependency of f and w on Vj. Recollect 

that these terms were not required for the trim case, because non- 
zero § trim cases were not considered. 
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Combining Eqs. (5), (M, (6), (2)L, and (T)L with the added 

Aä terms, the following expression is derived: 

AP = {L[FVI + FVAVW(I .WFFVI.WVI)]   G|AS 

+ lL[^I-FVAVw(WF^I+WVl)] ÖH 

Comparing (38) to (10) shows that the factors in hraces are 
the required stability derivative arrays. 

1.9  ROTORS WITH FMOCIBIJ! BLAPES 

In previous sections, it has been assumed that the forces 
generated by all N vehicle components can be represented by a 
model having the form 

fi =fi (VIi' VAi' V C' V J a1' 2' ) 

i » 1, 2, N   (1) 

Given the columns v..., v ., ■fr_., and c (along with the 

physical constants), Eq. (1) can be used to calculate f.. This 

equation is not intended to represent dynamic interfacing between 
f. ant 

ship. 

f. and its functional argument.    Eq.  (1)  is purely a static relation- 

Most vehicle elements have independent dynamic characteristics. 
Lifting surfaces and bodies have structural vibration modes.    Engines 
have lags and high frequency oscillatory characteristics. Usually, 
these dynamic effects can either be neglected because they Involve 
frequency ranges far removed from those of interest for flight 
dynamics considerations, or they can be included in some simple 
peripheral manner (e.g., a simple lag on throttle command might be 
used to represent engine dynamics).    In the special case of rotors 
with flexible blades, the dynamics of the blades must be considered, 
because blade motion has an extremely Important influence on 
flight dynamics. 

To say that blade dynamics have an important Influence on 
flight dynamics does not imply that a static function (1) cannot be 
defined for a rotor with flexible blades.    The function (l)  is 
called a "quasi-static" representation when applied to a rotor 
with flexible blades.    In such a quasi-static representation,  f. 
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Is still defined as a static function of the argument (I.e., no 
dynamic characteristics are Included In the transfer function 
f.  ■ f.   (arg)).    However, the dynamic motions of the blades are 

Included In that they affect the  actual  static value of f.  in 
a substantial manner. 

In reality, time should be included in the argument of (1) 
when applied to the flexible rotor.    However,  such dynamic effects 
usually have little influence on vehicle flight dynamics.    If 
special rotor structural dynamics are being studied (i.e., flutter, 
vibrations and some mechanical stability augmentation schemes), 
the quasi-static assumption (1) is not appropriate, and rotor 
dynamics must be considered. 

Blade motion equations', written in a   coordinate   system 
fixed to the rotation hub, generally appear in the following form: 

ßj - gj    J - 1, 2....», (39) 

where ß. is the coordinate of the blade's J'th degree-of-freedom. 

(Flexible blades have an infinite number of degrees-of-freedom, 
as expressed by Eq. (5). The driving function g. usually 
contains coordinates of all blade degrees-of-freedom, and timo 
functions known to the blade motion problem. This functional 
dependency of g. can be expressed in the form 

gj -6j (ß »T-l, 2, 3,...oo, ß , Ti-1, 2, 3,...oo, \|f, t, K , i  -1,2...) 

(40) 

where y is rotor blade azimuth position and K are physical constants 

associated with the blade. Note that i|f is a function of time, as 
are the columns Vj.,, v.., t-^, and c. 

Each rotor blade applies a force and a moment to the rotating 
hub. This phenouena can be represented in the form 

fr utr    (ßn'l-1»2» 5"-»,ß. TI-1,2, 3,.--«', ^ t, K . r-1,2...) rk  rk  T) T\ r 

(M) 

k ■ 1, 2...total number of rotor blades. 
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f     is a   uXl    column vector containing three force and three 
rk 

moment components   which represent the loads applied by the k'th 
blade to the rotating hub.    These components are stated in terms 
of some convenient frame-of-reference fixed to the rotating hub. 

The rotating forces,  f    , can be summed over all the rotor 
rk 

blades, transformed to the   nonrotating airframe through some 
^-dependent transformation matrix, and time averaged.    The result 
is f±: 

fi - U    [R M   E  frJ dt ^ Jo    I all      kJ 
blades 

Although v.., v ., ♦_., and c are generally functions of 

time, they can be considered constant while deriving the quasi- 
static rotor model (1).   In this.special case, the t can be removed 
from the arguments of Eqs,  (ho) and (4l).   Also, since the 
rotor is being treated as a quasi-static entlvy, ti^e degrees-of- 
freedom associated with the blades can be assumed periodic over 
the period 2n/P, where n is the constant rotor spin rate. 

t • nt (^5) 

Because t has been removed from the arguments in Eqs.   (ho) 
and  (Ul), and because the blade degrees-of-freedom move periodi- 
cally with 2n/n (which means over the azimuth angle 0 ^ \|f < 2rt), 
Eq.   (^2) can be expressed in the azimuth-average form: 

fi =2^X   RW **** {kk) 

where b is the total nxunber of blades and f is f  for any 
r   rk 

blade. Form (hk) is possible because the motion is periodic. Thus, 
all blades move in exactly the same way over one complete revolution. 

Any practical solution of the blade motion problem requires 
one to consider only a finite number of blade degrees-of-freedom. 
In almost all cases, only one degree-of-freodom needs to be consid- 
ered. 
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For the present development,  suppose M degrees-of-freedom 
are chosen to represent the flexible rotor blade.    Define the 
blade state column q as   MX!     column vector assembled from the 
3-  coordinates as follows: 

0. 

3, 

3 M 

(^) 

The g column is MX1 vector composed of all of the g. 

forcing functions, assembled analogously to Eq. (h^).    With 
this notation, Eqs. (59) and (^0) can be written in the compact 
form (dropping reference to the physical constants); 

q - g (q» q> ♦) (*6) 

Generally, this equation must be solved numerically 
because of the difficulties that arise when one attempts to expand 
g.    Classically, certain assumptions are made concerning the 
blade's aerodynamic characteristics. The g column is expanded, and 
the q and 4 dependent terms are transposed to the left side of (46). 
Further assumptions allow a Fourier series approach to be appli- 
cable to the resulting linear differential equation in time varying 
coefficients,    until a closed form solution for q (t) is reached. 

This approach is not necessary when numerical techniques 
can be employed.    The classical approach also becomes seriously 
restrictive when special nonlinear  rotor phenomena are being 
studied. 

A convenient state variable notation can be defined for 
the q and q columns.    Define the 2NX1 column vector C: 

it) (^7) 

To determine the blade motion numerically, first estimate a 
value of £ at \|r BO, and denote this state vector as £ (0). With 

this estimate, C (t)can be calculated by numerical solution of (46). 
Denote the value of C at * «2«, using IL (0), as t (PK). If r (0) 

was correct, then 
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t   (2«) - t (0) (48) 

because the blade motion is periodic ever 0 < i < 2x. Of course, 
condition (46) will seldom occur from the initial estimate. To 
determine the correct initial condition, an iteration process can 
be used that is, very similar to the trim search iteration used for 
the entire vehicle. 

After C (2x) has been computed, each element of C can be 

perturbed (one at a time) a small amount, and a new £ (2K) column can be 
computed for each element perturbation. From these 2M calculations 
of ' (2K), the matrix Z-Q can be assembled such that 

AS (2«) - ZJO ^ (0) (49) 

Each column, i, of Z^. is the column ^ (2«)- C0(2«)* «here 
^ (2K) is the state vector computed with the i'th element of 
C   (0)  perturbed. 

Now say that the true value of C (2«) is given by 

C (2K) - C0 (2«) ♦ A6 (2it) (50) 

and that the true value of C (0) is given by 

C (0) -C, (0) ♦AC (0) (50 

Since the blade motion is periodic, 

UO) - C (2«) (52) 

Thus, combining Eqs.  (50), (51) and (52), 

Ce (0) ♦ AC (0) - C0 (2«) ♦ Zgo AC (0) (53) 

Solving for A' (0),   the true initial condition is given by 

U0)-?#(0)*AC(0)-Ct(0)4(l-ZZ0r
1  [CO(2K)-^(0)]        (54) 

Eq. (t4) would provide the exact initial condition, if 
f^ ) were linear in q, q. Many time% the equation is quite linear, 
but at extreme operating conditions (blade stall, compressibility 
drag rise, etc.), (J*6) may be quite nonlinear.   Such nonlinear!ty 
will cause the array 2LQ to be a function of Ce (0).   For these 
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cases, the process outlined above for finding £ (O)may have to 
be repeated several times, using the computed £ (0) from Eq. 
(5*0 for the estimate before the next iteration cycle. Note that 
during the trim-search-iteration process, this blade iteration 
process 4akes place automatically. 

After C (0) is known, one more integration can be performed 
ever 0 < * < 2x. This time, Eq. (Uk)  will be solved along 
with the blade notion equation. The result of this final sweep 
will, of coarse, represent the desired functional computation, (1). 

The function (1) will be required for two different kinds 
of calculations: 

(a) The values of the variables in the argument of 
independent of any other set of values for these 
variables. 

(b) The values of the variables in the argument of (1) are 
removed from those values used for a previous computation 
of f. by only an infiniteslmally small amount. 

In case (a), tht matrix 2^. will hate to be computed. In case (b), 

however, the Z.- cosQuted for the initial solution for f. (using 

the unperturbed values of the argument variables in (1) can be used 
again for the perturbed coaputation. This procedure will save 
considerable computer time and allow the rotor loads to be 
computed separately from loads of other vehicle elements without 
compromising program efficiency  (i.e., g (0)caa be found effi- 
ciently in the rotor computational routine} otherwise, C (0) 
would have to be included with the other elements of the t column 
during the trim search phase). 

During the trim search phase of confutation, the column C (0) 
will have to be inspected for convergence to a trim solution, along 
with the t and w columns. 
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xz*i jjmumiTon 
Part I describes th« Hodular Stability Otrivativ« 

Propra» (MOSTAB) in pantral tanw. In Part I, an aircraft is 
represented by functional relationships (as defined by Bqs. 
(2), (7)* dO, (12) and (1U)) and by geoaetric relationships 
(Bqs. (3), (U) and (5)). The purpose of this work is to 
define the specific functional and geometric models of an air- 
craft presently used in the M06TAB-B program. These mathematical 
models will undoubtedly be revised and expanded as MOSTAB-B is used 
to study specific vehicles operating in specific flight regimes.* 
It is believed, however, that the mathematical expressions derived 
here are quite general, end are sufficiently flexible to allow 
most modifications to be made with eaae. In their present form, 
the equations will apply accurately to a broad variety of V/STOL 
(and conventional aircraft) configurations operating over large 
regions of their individual flight regimes. Modification of the 
MOSTAB equations will probably occur «hen boundary regions (in- 
volving special aerodynamic effects) are studied, or when vehicle 
configurations with very specialised components are considered. 

Part II is divided into sections, most of which relate 
directly to the equationa of Part I. Section 2 deals with 
aircraft element force generation, and shows the development of 
the equationa required to represent functional Iqs« (2) of 
Part I. MOSTAB-B uses five basic subroutines to generate the 
general force column, f. Theae are FORCE, BODY, LIFT, SWEEP and 
ROTOR. Section 2 is divided into subsections, each addressing one 
of these vehicle element subroutines. Because of the complexity 
of the aerodynamic rotor analysis, the basic rotor equations are 
derived in Part III. The general equationa presented in this 
part are aimplifiod and re-presented (as propraamed in HOSTAB-B) 
in Section 20. 

Section 3 shows the derivation of equations for the geometric 
matrices L and Gt as defined by expressions (3) and (•») of Part I* 

Scrtions k9  5, 6 and 7 show derivations of the equationa 
used in MOSTAB to generate the functional relationships defined by 
Cqs. (7), (11), (12) and (1*) (respectively) of Pert I. 

Section 8 discusses the general matrix operation subroutines 
used in MC6TAB-B. The equations used in the Eulerian coordinate 
system trwsformation subroutine (EULER) are presented. The other 
operational subroutines are discussed without equations, since such 
subroutines are widely used in computer applications and require no 
definition specifically constructed for MOSTAB-B. 

•The -B code number on the title MOSTAB-B denotes the B version of 
the program. Versions including advanced aerodynamics additional 
elenent models (e.g.| turbojets), will be given different 
version codes. 



Section 9 shows the derivation of the transformations 
required to transform stability derivative matrices expressed in 
overall vehicle coordinates to oenter-of-gravity and stability 
axis system coordinates. Ho reference to this section, or to 
Section 8, is made in the general NOBSAB-B program Jescrlption 
in Chapter V of the main text or in Part I. 
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II.2 

A. Btibrotttia» fOtd 

In Part I it MM ——i that a fere« eeluan, f, could 
be calculated knowing state vector coluant, v-, v ,  v and c 

(Eq. 2 In Reference 1, or Eq, 1 of Appendix I, denoted here as Eq.lF). 

f • fCVj, vA, Vj, c, Ky  J - 1,2 •••)        (IF) 

where K. are physical constants pertaining to a specific 
aircraft.   J 

A subroutine nsaed FQRCl perfoms the functional operation 
defined by Iq. (IP). Given th« eolnens shown as argunents in 
Sq. (IP), PORCI ratlins vahiols elensnt losdings. 

Two options are available in PORCI* Option 1 tells FORCE to 
determine all new elements for f• Option 2 tails FORCE to compute 
only six eleeents of f. UM particular six-elenent subcolumn to be 
generated is specified whan PORCI is called, and represents the 
load generated by a single aarodynanic eleaent. 

At the present tine, PGRCI calls three subroutines for the 
purpose of calculating vehicle eleaent eerodynenic loading. These 
are BODY, LIFT end ROTOR. BODY conputes the aarodynanic loads 
generated by fuselages, neoallea»etc. HPT produces load values 
for nonrotatlag lifting vehicle elements such as wings and 
empennage surfaces. ROTOR, in conjunction with a subroutine called 
SWEEP, calculates loadings produced by helicopter mala and tall 
rotors, propellers»etc. 

In the future, other forcing eleaent routines esn be added 
to this library of three to represent such additional components 
as turbojet engines and rockets. 

FORCE contains no aerodynamic expressions, but is a logical 
subroutine which directs the operation of calculating aerodynamic 
forces. PORCI determines which aerodynamic elements are to be 
exercised, addresses the proper load-calculating subroutines 
(BODY, LIFT or ROTOR), and assign« the proper set of physical 
constants to a OdtlOR region before addreesing the load-computing 
routine(s). The computed loads are transferred back to the main 
program through PORCI. 

Figure 1 shows the general operation of the subroutines 
PORCI, BODY, LIFT, ROTOR and 8HBP as they interlace 
to compute aerodynamic eleaent loads. BODY, LIFT and ROTOR use 
the Euler resolution subroutine KJXIR. Pils general use of 
EUUER is not shown on the diagresi. The ROTOR-SWEEP interface will 
be outlined in the ROTOR section of this report. 
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CALL RETÜBN 

FORCE 

Determine element 
loads to be computed. 
Transfer physical 
characteristics for 
each element addressed 

Figur« 1*   Genaral Operation of Subroutines FORCE, 
BODY, LIFT, ROTOR, mad SHEEP. 



f 
B. Subrotttint BODY 

This subroutine receives the following information when it 
is called: 

(a) The three translational and three rotational airspeed 
components at the body reference point. These velocity 
components are given in overall vehicle axos (tee Reference 1) * 

(b) Three Eider angles \k. 9., qk. which are used to rotate 
vectors expressed in overall vehicle coordinates to a 
reference system conveniently related to the body. The 
reverse resolution is also done with these angles. 

(c) The aerodynamic coefficients, characteristic areas, 
lengths,etc., representing the characteristics of the 
specific aerodynamic body being considered. 

At the present time, BODY Incorporates equations which derive 
from the following six aerodynamic coefficient expressions 

Cx " " (Co.+ ci a+ c2 ß) ^5) 

C. 
y 

" (V * Cy1 ß ) (56) 

Cz"  (Cso+Czla) (57) 

C1'0 (58) 

Cm " C«o + C«1 a ('9) 

Cn * Cno + Cnl ß (6o) 

The coefficients In the above equations are functions of the 
specific configuration of the aerodynamic body, and are Input to 
the M06IAB program. At the present time, these coefficients «* 
assumed to be constants. A more sophisticated set of expressions 
would allow these coefficients to vary with local aerodynamic 
conditions. 

Dimensional forces and moments are computed, using the 
coefficient expressions (95 - 60) and relying on the following 
assinptlons: 

(a)  The dynamic pressure at the body is given by 

qa - 1/2 pi^ (6i) 

26 



b) The longitudinal angle of attack, a, is sufficiently 
small so that 

a £• ^- (62) 

c) The  sideslip angle, ß, is sufficiently small so that 

P ~ 4*- (65) 
T) 

Eqs. (IB - 9B) can be combined to yield the following 
dimensional force/moment equations in   coordinates  of the aero- 
dynamic body being considered: 

^ - - 1/2 OAj, [^2 C0 + Vb Cl + \\ Ci] (Ö', 

Yb •-'/«*„ [\2 «^ ♦ S »» Cyl] (65) 

S - - '/« «»b K8 C.0 ♦ \ \ C,,] (66) 

^ - 0 (67) 

«b - 'Z2 "SS [«b2 c»o * % -«C.J (68) 

"b ■ '/« »S'b K2 Cno + »b vb C»l] (ä9) 

Eqs, (&0 . (69) are those presently programed in 
BODY. The Euler angles *., 9. , qp^ are used with a standard Euler 
angle subroutine called EULER to derive local airspeed 
components u., vb, w., pb, qb, rb from the given vector 
v.. Eqs. (w) - ( 09) are executed, and EUUER is called again, 
tnis tine to rotate force and moment elements Xb, Yt, Zb, L\,  M^ Nb 
back to overall vehicle axes x,y,s. Of course, EUIZR uses the given 
angles in the order -9., -e., -♦%, to perform the force and moment 
resolution b*ck to vehicle coorainates. 
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If M06TAB is being ua«d to study an area of the flight 
envelope where variable coefficients in Bqs. (61^) . (69) are 
important, then suitable variable coefficient expressions can be 
formed such that Eqs, {6k)  - (69) still hold. The modular 
construction of M06TAB makes it easy to expand these equations to 
include nonconstant coefficients without interrupting the overall 
program function. Such changes in the aerodynamic expressions occur 
locally in the BODY subroutine, and have no Influence on other parts 
of the program. 
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C gybrotttin» HIT 

This subroutine calculates loads produced by a nonrotatlog 
lifting surface (IS). The equations are formulated In a manner 
very similar to that used to assemble the equations for BODY. When 
LIFT Is called,the following Information is available: 

(a) The three translatlonal and three rotational airspeed 
components of the IS at its reference point. These 
components refer to overall vehicle coordinate 
sxes. 

(b) Three Euler angles \|r . e . (p ,which are used to 
rotate vectors expressed in vehicle coordinates 
a reference system conveniently related to the IS 
(hereinafter called IS coordinates). The reverse 
resolution is also done with these angles. 

(c) The aerodynamic coefficients, characteristic areas, 
lengths,etc., representing the characteristics of the 
specific IS being considered. 

Two sets of lifting surface models are presently Incorporated 
in the LIFT subroutine: (1) models appropriate for angles-of-attack, 
a, bounded between values of + .2 radian (»12°); and (2) models 
for angles-of-attack greater than .2 radian.  These two aerodynamic 
models are discussed below under separate headings. 

I 
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(1)    Aerodynamic Lifting Surface Models, -.2<a<.2 Radian 

The models presented below are appropriate for most 
flight conditions, because lifting surfaces operate 
below stall during the normal operation of most flight 
vehicles.    Some vehicles (e.g., helicopters) do fly 
under conditions where lifting surfaces are stalled, 
but most of these cases Involve such low dynamic 
pressures that the surfaces have negligible effect on 
the flight characteristics. 

The following basic aerodynamic expressions are 
Incorporated In the MOSTAB-B LIFT subroutine: 

S = -^0 + Si  (^CID) 
+ ^2 (^CID)

2
]       (70) 

C
y=

0 (71) 

CL = + a
w 

a (72) 

f 1 + 2 X.    ] ah     fl + 3X      1 

C    = + C      + C     a (7^) m            mo       ma u   ' 

C_  = - 
b      r1 + 5 X   1 
^ [wrtJ^L-SilPw ^) \ 
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Eq«. (70) - (T^) are given In moat standard texts (e.g., Ref. 1) 
and apply particularly to unswept subsonic wings. All of these 
expressions are derived in Reference 2.* These wing coefficient 
expressions are very elementary equations and certainly will be 
revised and expanded in the future. Expressions for ailerons, 
wing sweep, stall and even compressibility effects car easily be 
added to this basic set of equations. Many other special wing 
effects will be accounted for by suitable interference velocity 
models mechanized in subroutine WASH.** 

Note that lift and drag coefficients are used in (70) and 
(72), instead of the local IS axis system coefficients C and C . 
This has been done because (70) and (72) are the most  x 

familiar force expressions for a wing. C and C are easily 
derived from C. and CL by referring to Figure 2.z 

Figure 2. Basic Lift and Drag Coefficient Relationships. 

* The dihedral angle, F, is an "effective" dihedral angle. Its 
numerical value depends on the wing geometric dihedral angle, 
and its position on the element to which it is attached. See 
Reference 9,  for example, which shows C, corrections which can 

Lß 
be made to account for vertical position of a wing on a fuselage. 

**For example, aileron deflection causes yawing mctnents to be 
developed by the vertical fin on a conventional airplane. This 
coupling is caused by rotational interference velocity components, 
originating because of a wing rolling moment, and eventually 
Impinging on the vertical empennage surface. This effect is 
easily included in M06TAB by assembling the proper elements for 
the characteristic area matrix and the interference velocity 
coupling matrix (see the Subroutine WASH section of this part 
for a discussion of these matrices). 
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Choose « , 9 - ip . so that the IS x axis lies parallel to 
the overs 11 wing line of zero lift. Then 

C « C- sin a - CJJ cos a (76) 

C = - (Leos a - CL sin a (77) 

from inspection of Figure 2« 

Iqs. (70) - (75) and the derived Eqs, (76) and 
(77) require that \|r. 6 , 9 .be chosen so that 

(1} The x and z axes of the IS axis system lie in the 
wing's plane of symmetry, 

(2) The x axis of the IS system is parallel to the 
wing's overall line of zero lift. 

For sufficiently small a and ß, the following equations 
can be written: 

w 
sin a = tan a » -—-  , cos a » 1 (70) 

e: 4*- (79) u 
w 

2 
qa = 1/2 PU/ (80) 
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With these assvmptions, Eqt. (70) - (77)  can be 
combined and dimensionalized to yield the dimensional wing 
force/moment equations: 

Xw =-1/2 P6w [-awvw
2 + ^ + %1  uw (ww - o^u,) 

^^w - VlJ) \f ] 

Y,   -   0 

Zv " * 1/2 ^w [(aw + ^j Uw Wv + Si  Ww (V^CID^)] 

(81) 

(82) 

($5) 

"1 + 2X 
v   u w   w «w •-'/»<•» "wlv1, krrf 

M    »+l/2pS     cfc     u2+C      uw v       T    '     ^w Lmow        raawwJ 

(84) 

(»5) 

N w 
1/2 ^w (bw [wrnfr] (aw ww - CD1 %)pw 

(86) 
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Eis. (Si) - (3o) are executed in UW in much the 
jarie way loads ore calculated in the BODY  subroutine  The air- 
speed components in v. applicable to the IS are rotated through 
angles ,, 9 . © , ant become u. v . w. p . q. r . *l8« 

V12L)-(17L) are executed, and the resulting load component« are 
rotated back to overall vehicle coordinates, through angles 
-ty , - , -'1' . The Buler rotations are performed by the general 
suoroutine. EULER. 

If flight regions are studied wherein the constant coefficient 
approximation is invalid, then Eq«. (8l) - (86) can still be 
used, but with suitabla expressions for the variable coefficients. 
Constant coefficients assumptions on Eqa. (8l) . (86) are valid 
over a large portion of most V/STOL flight envelopes. 

It is important to note that the classical expressions for 
wing three-dimensional effects are absent from the equations 
(i.e., induced drag is not included explicitly in Iqs. (8l) through 
{86),*   The influence of wing downwash on wing loads comes into 
the equations, because wing interference velocities are included in 
the vector v when LIFT is called. The expressions that deal with 
Interference velocities at the IS caused by the same IS are in- 
cluded in the interference velocity subroutine WASH. 

The wing equations may be applied to empennage surfaces 
which do not have a plane-of-symmetry (e.g., a standard vertical 
stabilizer). Airfoils with camber, or special offset angles and 
position-, can be considered also. The reference point and Euler 
angles can be chosen, along with suitable aerodynamic coefficients, 
such that Eqs, (8l) - (86) are reasonably accurate for such a 
surface. The reference to "wing" equatioas and "lifting surface" 
equations is Intended to be synonymous here. 

The coefficients in Eq. (70) are the factors of the parabolic 
profile drag polar. Induced effects do not influence these 
eoerficients. 
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Of course, a wing producing ^00 pounds oi" thrust (a 
very sizable number for a 200 ft wing) is a very 
unusual wing! The equations have seriously broken 
down, having a profound influence on the performance 
prediction under the example conditions. 

To avoid such serious breakdown, MOßTÄB-b bypasses 
Sqs. (31) - (86) when la is larger than «2 radian 
and calculates lifting surface loads defined by the 
models which are presented below. Only lift and dra.- 
are considered, so Y. L , M and N (notation of 
Eqs. (8l) - (86) ahe set to zero. Although this 
large angle model is very rough, it suffices for most 
cases because, the model is seldom required except 
when dynamic pressures are low. 

Figures J* and % taken from Reference 10, were 
used as a basis for modeling the large angle lift and 
drag coefficient functions. Figures 6 and 7 depict 
the actual models presently mechanized in LIFT for 
large angles of attack. 

The large angle CL curve (Figure 6) is a parabola 
with a maximum value of T.^. Note that maximun CL 
values on Figure h  vary from 1,7 to 2.5t. These higher 
^Imax value8 "^ not realistic for a practical lifting 
surface, because they are essentially two-dimensional 
results. 
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(2)  Aerodynamic Lifting Surface Models; .2 > a >-.2. 

The IS models presented in paragraph (1) above are 
appropriate for moat aircraft flight conditions. Even 
if the IS is stalled, it usually has little effect on 
flight dynamics, because such stalling almost always 
occurs at low dynamic pressures. 

When | a | gets larger than approximately 12°, 
even if the dynamic pressure is low, Eqs. (81) ■ 
(86) break down in such a way to produce large nunbers 
(which, of course, are in error). For example consider 
Figure 3, which shows a wing on a hovering compound 
helicopter iamersed in a rotor wash of h^  ft/see. (a 
typical hovering rotor downwash velocity at a point 
somewhat downstream from the rotor. Figure 3 also 
shows the wing's x - z axes, and the X , Z forces. 

If Eqs. (81) and (83) are used, values of X and Z 

are calculated as follows (for convenience, use CL , 

and CL « 0, p » .002377, a » 6,0): 0 

2 

X„ = 2900 ~ lb w 

zv ~ 0.0 

Wing Platform 
Area = 200 ft2 

Figure 5. Rotor^Wing Interaction. 
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I 
Of course, a wing producing ^VOO pounds of thrust (a 
very sizable nunber for a 200 ft2 wing) is a very 
unusual vingl    The equations have seriously broken 
down, having a profound influence on the performance 
prediction under the example conditions. 

To avoid such serious breakdown, MOGIA^P 
bypasses Bqs,  (ftl)-(8^) when  In is larger than ,? 
radians, and calculates lifting surface lo^is defined 
by the models which are presented below,    only lift tnd 
dra^ are conslderM, so Y , L , M   and N   (notation "f w     *r     w w 
Bqs.   (61) - (86) ire set to zero.    Although this large 
angle model is very rough,  it suffices for most cases 
because, as mentioned before, the model is seiden 
required except when dynamic pressures are low. 

Figures 'i and 5, taken fron Reference  10, wer*» 
used as a basis fur modeling the large angle lift and 
drag coefficient functions.    Figures 6 and 7 depict the 
actual models presently mechanized In LIFT for large 
angles of attack. 

The large angle CL curve (Figure 6) is a 
parabola with a maximun value of 1,5,    Note that maximum 
CL values on Figure ^ vary from 1.7 to 2.35.    These 
higher CLi^^ values are not realistic for a practical 

lifting surface, because they are essentially two- 
dimensional results. 
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J •0 

o 

CL«1.5-*8U(1.97-HFV) 

Figure 7. - C. vs a Model In LIFT . 
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Figure 8   demonstrates this point by showing the flat 
plate drag coefficient for rectangular plates as a 
function of aspect ratio (taken from Reference   11). 
The CL   value of 2.0 for infinite aspect ratio Is 

C* 

V- 
»«ATI     »     1.0 

Figure 8. Drag Coefficients of Rectangular Plates and 
Circular Cylinders as a Function of Their 
Height (or Diameter) to Span Ratio. 

compatible with the curves of Figure ^« Plates (i.e., 
rectangular wings at a = 90 ) with finite aspect ratios 
have CL    values between 1.18 and 2.0, however, so 

o|max 
a representative value of 1.5 was arbitraily chosen for the 
LIFT model depicted by Figure 6.  Based on Figure h, 
the following logic is incorporated in LIFT to enable 
generation of Cp for -180° < a < + 
the three basic equations: 

180 . First, define 

h} 



(88) 

(89 ) 

The coefficients ~ and ~ in Eqs. (88) and 
0 2 

( 89) are the same values as the coefficients in 
Eq. (8 1) . The factor 2 .75 for a value in the 
region 160°<lal~ 18o0 was obtained from unpublished 
data which indicate "reverse flow" profile drag values 
approximately equal to 2. 75 times the " forward now" 
values. This factor will vary fran airfoil to airfoil, 
of course, but 2.75 is a representative value. Using 
Eqs. (87) through (89), the 18o 0 drag model in LIFT 
is defined by Table I: 

TABLE I. DRAG CHARACTERISTICS 

a Region CD 

1 2°<lal~ 20° ~ :: larger between ~~STALL and cnll a j<2o0 

20°<j a j <160° ~ :: ~~STALL 

160°~1 1~1 80° ~ = larger between ~jSTALL and ~~jaj>l60° 

The lift coefficient function of Figure 7 
repre sents a r e l a tively 5ood fit of the.dat~ of . 
Figure 5 for 0 < a < 90 • Table I def~nes the log~c 
for determining c

1 
for - 18o0 ~ a ~ 18o0

, where aw is 

the same lift curve slope used in Eq. ('72). 
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TABLE II . LI F''l ' CHARACTERIS'l' I C 

a Region c1 --------~._ ______________________ _ 

c
1 

= lesser between aw ( 57 ~3 ) and 1 • 1 

c
1 

= 1 • 1 sin 2a. 

(
a - 18o) c1 = greater between aw 57•3 J and - 1. 1 

6 0 0 
-1 0 <a< -20 

c
1 

= greater between + aw ( 5~.3 ) and - 1.1 

c
1 

= 1 • 1 sin 2a 

and 

where 

( 
u + 18o\ c

1 
lesser between aw 57 • 3~1 and 1.1 

After the logic of Tables I and I I are executed 
to calculate CL and Cn, Eqs. ( 76) and ( 77 ) are 
used in LIFT to calc& te C and C (with no small angle 
assumptions on u), so that x z 

X 
1 pV~Cx = - 2 w 

(90) 

1 0 

z =-- v-=sc 
w 2 p z ( 91 ) 

v2 = u 2 + w 2 
'Vl w 

(92) 

As mentioned previously, Y = lw = N 
in the present LIFT stibroufine . w 

= M = 0.0 for large u ' s 
w 



D · Subroutine EiWDP 

SWEEP contains the rotor blade equations. These equations 
are integrated radially and azimuthally in SWEEP, a ~recess which 
essentially "sweeps" the rotor disc to obtain loads and blade 
motions. At the present time, SWEEP is exclusively called by 
ROTOR. Swt3P has been designed for speed, because it is this 
routine which will absorb the most computer time during any MOS~B 
run. Thus, certain time-consuming operations (subscripted 
variable usage, general coordinate transformations when some 
elements of the transformation matrix are zero, etc.) have been 
avoided whenever possible, particularly in the radial integration 
loop of the subroutine. 

The subroutine receives the following information when it 
is called: 

(a) The three translational and three rotational airspeed 
components at the rotor reference point, already 
resolved (by ROTOR) to hub axes. 

(b ) The three translati onal and three rotational inertial 
velocity components of the rotor reference point, 
resolved to hub axes. 

(c) The time derivatives of the quantities given in (b). 

(d) An index defining the options to be exercised in SWEiP. 

(e) The rotor control settings (collective and cyclic 
pitch angles). 

(f) The flapping angle and flapping velocity of the blade 
at w=O, if the rotor under consideration is a flexible 
bladed rotor. (Only two state variables for the blade 
are specified here, because MOO~B presently uses one 
degree-of-freedom for each blade. If additional blade 
degrees-of-freedom are added, additional state variable 
pairs will be specified here, at w=O). 

(g) The physical characteristics of the rotor, including 
certain constants computed in ROTOR prior t o the 
calling of SWEEP. 

(h) The number of radial anQ azimuthal elements to be used 
in the integrations. 
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An option index directs SWEEP to adhere to one o f the 
following computational schedules: 

( 1) Compute the blade motion of a flexible blade, but 
do not compute shaft loads. 

( 2) ComP\!te blade motion and shaft loads. 

(3) Blade motion suppressed. Compute shaf t loads only. 

The work that follows deals primarily with option 2, which 
is the most general option. Options 1 and 3 are simply 
suppressed versions of 2. 



1. Blade Analysis 

Relatively general equations for rotor blade motion and 
loading are derived in Part III. The axis systems, reference 
lines,etc,are discussed in detail in Part III. In this 
section, the equations derived are simplified to 
the form presently incorporated in MOSTAB. The simplifications 
are predicated on the following restrictions and assumptions:* 

(a) Rotor speed is constant (n = o). 

(b ) Centrifugal force is the only inplane inertial 
force important to vehicle dynamics. Other inplane 
inertial forces are neglected. Of course, aero
dynamic inplane forces are important, and these 
are included in MOSTAB. 

(c) Flexible rotors have one degree-of-freedom: the 
first flapping mode. 

(d ) Elastic torsional de formation is not important. 

The blade reference line (BRL) is defined in Part III. 
Because of assumption (c), the following expressions can be written 
for the coordinates of the blade reference line: 

x(s,t ) = - s 

• .. 
x ( s, t ) = x (s,t) = 0 

y (s,t) = y(s,t) = y (s,t) = 0 

z(s,t) = z
0

(s ) + z 1 ( s ) ~ (t ) 

I n Eq. (9b) , z1(s ) corresponds t o the eigenfunction ~ 1 (x) 
(discussed in Part III for the first blade flapping mode. 
(t ) is the gener al ized coordinate (~1 ( t ) in Part Ill) for 

t his mode . z ( s ) i s an''initial shape '' function, which can be 
a ded to t he Rormal mode analysis with no loss ~f generality. 

(93) 

(94) 

(95) 

(96) 

z 1 s ) i s the shape of the blade when it is not vibrating, and when 
tRe fener alized for 0. ing function is zero. 

* The modular nature of MOO TAB permits these restrictions to be 
relaxed, i f necessary, by simple changes in the subroutines 
without having t o r evi se the entire program. 
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The eigenfunction can be normalized (by simply changing t he 
scaling on its generalized coordinate ) in any desired manner. If 
z

1
(s) is normalized such that 

= 
' (97) 

S=R 

then f3 is the slope of tm rotor blade at the tip (excluding the 
initial slope that may be contributed by z ' (R)). Thus, f3 becomes 
the dynamic flapping angle of the blade us~ in classical heli copter 
analyses. Note that, for f3 positive with "upward flapping", t he 
fUnctions z (s) and z(s) are generally negative. 

0 

The blade motion equation, in terms of f3 , is 

•• 2 
f3 +wf3= 

F 
g 

M g 

where w is frequency of the first flapping mode of the blade. M 
is the generalized mass of the first flapping mode, and is giveng 
by 

R 

M = 1 rn(s)z1 
2

(s)ds 
g 0 

F , of course, is the generalized forcing function, and is given 
bf 

z1(s) fz (s,t) ds 

The function f (s,t) is the external BRL loading functi on 
less the acceleration terms used in the vibration analysi s to get 
w and z1• 

f (s,t) = p (s,t ) + m( s )~· z z 

(98) 

(99) 

( 100 ) 

( 101 ) 

where p (s,t) is the total distributed loading function on the BRL 
due to Inertial " apparent" forces and aerodynami c forces. 

( 1 02 ) 



The simplif ied inertial distributed loading functions presently 
incorporated in MOSTAB are 

2 
p .(s,t) =- m(s)n s 
X~ 

py1(s,t) = 0 

( 103) 

( 1 o4) 

Pzi(s,t) =- m(s) ~gz + z• + s [(p- 2nq)sin w + (q + 2np) cos wJl 

These equati-ons derive direct ly fran Eqs. (293), (294) and (295) 
in Part Ill. The s~ple foras of (103) and (104) are 
attributable to assumption (b) of thia aectian. Eq. (105) has 

( 105) 

been simplified to a greater degree than allowed by t.he assumptions 
(a)-(d) or by Eqs. (93)- (96), in that quadratic terms in p,q and 
r have been neglected. 

The airspeed at a blade element is given byEq. (302). 
With present MOS~ assumptions, this airspeed is (in rotor co
ordinates) is 

* -d h 
dt 

+ j [uA sinw + vA cosw + s(n-rA)-z(pAcosw-~sinw)J 

+ k [wA + z + s(pA sinw+ qA cosw)J 

Eq. (305), Part Ill is used to resolve this airspeed 
expression t o "blade coo1·u1nates", as follows. 

48 

( 1o6) 



( 107) 

where us is the 
airflow, and u is the 
located at s. n 

spanwise airflow 
normal-to-chord 

Uc is the chordwise 
airflow at a blade sect ioJJ 

The transformation matrix, T, can be simpl ified t o t he 
following form: 

"" 
., 

1 0 -z ; 

T 
2 

-ez' ,_.;.- - 8 

z; 8 
82 

,_ 2 c... 
~ 

where C has been set to - 8 , and trigonometric approximations 

sin e = o 

cos 8 = 

have been incorporated. Note that cUbic and higher order products 
in small angles z' and 8 have also been discarded from the T 
matrix approximated by Eq. ( 108), and quadratic terms i n z·' have been 
neglected. 

Since no elastic torsional motion is included, the blade 
angle, 8, is given only linear twist: 

where 8 is the collective pitch angle, A
1 

and B
1 

ar c 
0 s s 

the ~sual lateral and longitudinal cyclic pi tch angles (~ngles 
between the rotor control plane and the shaf t normal plru1c) , l 1 
is the linear twist angle,and o

3 
is the geometric f l ap- pitch 

coupling coefficient. 
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Eqs . (315 ) c.nd (3 16 ) give the simplified aerodynamic 
.'arcing functions presently used in MOSTAB • 

f pc 
[(a + o )u u + a, un 2] ( 11 0) = - 2 o n c n 

f PC [( o2 - a) u 
2 

+ o u 
2 

+ o1 u u J ( 11 1) =- 2 c n o c n c 

Assumin~ no aerodynamic loading in the blade span direction, 
Eqs. (110) and t111)can be used with the inverse (i.e., the 
transpose for an Eulerian transformation matrix) of the T matrix 
to get the distributed aerodynamic loading functions in 
rotor coordinates. The results of this operatio~ in terms of f 

n and f ,are: c 

Eqs. (103) - (105) and (112) can be summed directly 
to get the simpli f ied BRL loading f unctions used in MOSTAB: 

p (s , t ) = p .(s,t) + p (s,t) x XJ. xa 

p (s,t) 
y 

p (s,t) ya 

p (s,t ) = p .(s,t ) + p (s,t) z ZJ. za 

The shaft loading PXPressions for one blade are given in 
Part III (lqs. (337) - (342). It is desirable to separate each 
of these l oad components into t he inerti al contribution and the 
aerodynamic contribution. Thi s process saves computer t i me by 
pre venting certain constant inertial i ntegr ations (which need to 
he computed onl y once ) fr om being r epeated. The same case is 
true for t he gener alized f orcing function gi ven by Eq. (1 00). 

The gene r alized force i ntegral (from Eq. (1 00)) and 
the shaft loading integrals (from Part lii) are written below. 
They ar e split into inert~al and aerodynamic contributions, and 
several t erms are dropped due to simpli f ications embodied in Eqs. 
( 5 ) - (96 ) and (1 03 ) - (l <n ). 
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F =F +F. g ga g1 

R 

= I 
0 

z 1 p ds -za 

+ (q+2np)cosw] J ds 

R 

f 
0 

z m 
1 J gz +s [ ( P- 2oq) simjl 

R R 

X =X +X = £. p ds -i mn2s ds r ra ri 
0 

xa 

R 

Yr = y + y . ra r1 = [ pya ds 

R R 

z = z + z . J ds -I I .. 
+ s [(:P-cnq)simv = Pza m lgz + z r ra r1 

~ 

0 0 

+ (q+2np)cosw ]Jds 

R 
L = L + 1ri =- [ z p ds r ra ya 

Mr = Mra + Mri = {[z Pxa + s Pza]ds -l z mn2s ds 

R o 

-J: ms :gz + ·z· + s[(~2nq) sin¥ + (q+2np)cos *]: 
R 

N =N +N.=-Jsp ds r ra r1 ya 
0 

The second integral on the right side of Eq. (117) 
can be dropped, since its e f fect will ultimately cancel among all 
of the rotor blades. 
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( 117) 

( 118) 

( 119 : 

( 120) 

( 12 1) 

( 122) 



Stvtral Um* in Iqi.   (Il6) • (122) must be dronped, in order 
to aeke the equationfl conelitent with each other.   Several other 
tens oen be oaltted   by looking forward to Hi. (11*9) - (1^). 
(Expretflon of rotor lotde ii. ncnrotating coordinates). 

First oontider the queetloo of ocneiitenoy.   Inplane 
inertlal forces «ere emitted from the anatyeli« 
This omission caused the contributions ^o X , Y   and N   from accelera- 
tions g » 6L and r to vanish«    The rotor maxes such Inplane load 
contributions simply because it has mass.   These effects can be 
included in the analysis of a flying vehicle by adding suitable terms 
to the ncnrotating air frame mass and inertia tensor.   To do this, 
simply include a circular lamina structure attached to the non- 
rotating alrfrsme: 

(a) The lamina plane is perpendicular to the rotor shaft and 
passes through the rotor reference point. 

(b) The mass of the lamina equals the rotor mass. 

(c) The polar moment of inertia of the lamina equals that of 
the rotor. 

Since the added structure is a circular lamina. Its diametrical 
moment of inertia equals half Its polar Inertia.    The Influence of 
the lamina will take the place of: 

(1) The neglected g , g,   and f effects discussed above 

(2) The -/     mg, ds term InEq. (119). 

/•R      2  . /*R      2 • (3) The -/      ms   p sin \|r ds and   -7     ms    q cos \|/ ds terms in 

Eq. (29). 

Thus, to use the lamina substitution consistently, the terms listed 
In (2) and (3) above must be dropped from the equations. 

The following terms can be dropped due to cancellation among 
the two or more blades in a complete rotor: 
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(a)   The -/    mffs da term in Eq. (117). 
ro 

(b) The terms containing sin \lr and cos ^ in Eq. (119)« 

(c) The -J   ras g   ds term In Eq. (121). 

Although these Inertlal terms are Justifiably dropped from 
the shaft loading equations, note that they are left intact In 
the generalized forcing Eq. (ill).   These terms can be left 
out of the shaft load equations (due to the lamina model 
or interblade cancellation),   but since they do affect blade motion, 
they must be Included in the blade generalized forcing function 
(Eq. 1l6). 
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I 
The acruiyruunic integrals in IV. (iM . (18B) must be 

evaluated numerically, due to the complexity of the aerodynamic 
distributed loading functions.    The inertia! terms can be expressed 
in simple form   by defining the following constant integrals: 

I,  •     Z-   n^ds (123) 

/■ I2 =    y mz^ ds (1210 

JB =     /   m82d8 (12^ 

Note that hlq.   (125) represents the second mass moment 
integral for the blade.    In terms of the constant integrals 
defined by Eqs.(125) -  (125), the inertial coragonents in Eqs. 
(116)  - (12*0 may be written (noting that z = zß from Eq. (96): 

F i  = - I1  gz - I2 [(P-Sfi«!)  sin* +  (q+2np)coB\lrj (126) 

xri --0 (127) 

Y  .   - 0 (128) ri 

zri - - i, ß (129) 

Lri   -- 0 (150) 

^ 



Mrl ' " V"2' * 'l^mJB P2n'^8in1, + 2fy o08'- 1 

Nrl .0 

(151) 

(132) 

An Important obaervation can be made from Bq. (131). 
In moat helicopter applications, 

Q2ß r- (133) 

This Is exactly true If the natural blade frequency Is 0 
(as Is the case for an articulated rotor with no flapping hinge 
offset) pand the blade Is vibrating at Its natural frequency. The 
term (fi ß + ß ) Is seen to be a small difference between two very 
large quantities,' This difference is the source of serious errors 
in many numerical determinations of rotor blade motion. 

To avoid the numerical difficulty discussed above, Eq. 
(98) can be used to eliminate //. This can be done in Eq. (129) 
as well as in Eq. (151). The equations will be written with 
this substitution in the summary. 
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2.   iggfttion Smaary 

The equations used In M06TAB are sxanmarlzed below.    They 
are repeated from expressions given on the preceding psges.   For 
convenience, they are renumbered as IS through 27s. 

z(a,t) » SB0(S) + z^s) ß(t) (IS) 

F 
V  + ü)2 ß =    —r^- (2S) 

Mg 

M   -   I    ■ z-2 ds (5S) 

2 
pxl - "m^n 8 ^s) 

v 0 ■    (5S) 

p .   = - m(s)    g   + *z* + s  I (p-2ßq)sin\|f + (q+2np)cos\|rl 

(6S) 

V    = 1    u   co8\l; -v.  8ln\|r + z  (p.  slni|f + q.  cos\|f) 

+ j IUA sin\|f + vA cos\|f + s  (n-rA) 

-z(pA cost - q.  sin\|f)H- k   wA + z + 8(pA sln\|f 

+ qA cost)J (7S) 

T \ (8S) 
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T   = 

1 

-Gz ; 1 - 

-z 

-0 

1 - 

(9S) 

e^-A^coa^-B^Bint-e^-l-)* 63ß 

z    =   z^ (s) + z^   (s)    ß 

(a + 6 ) u u    + ö,  u 2 

L o'    n c 1   n J 
PC 
2 

_pc _(B2- a) «n
2
+ 6. ^2+ö. o    c 

u u n c 

(10S) 

(US) 

(12S) 

(13S) 

■xa 

rya 

rza' 

= T 
.-T 

P    = P J + P 'x     *xi     ^xa 

P     -   P 

P,     ■    P.4     +     P zi za 

F i I     ^o 'y    za 
z1 pza ds " I1 gz - X|    (P-2n<l)siniir 

(4+2np)  cos\|fJ 

(1^3) 

(IDS) 

(16S) 

(17S) 

(16S) 
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m 

xr I     P»" 

Yr 

R 

• J0   ^' 

Zr = 

R 

^(t" 20 U) ß 

Lr 
" /ZP- 

ds 

M,. 

R 

■    /[ZPxa+' Pza]ds    " ^ 

- ► 2Cip cos\|( 

»,• 
/ 

-   1     s p      ds 

h  • /^m z. ds 

h- /    ra z.s ds 

h^ 
R 

/^  ras ds 

) 

(19s) 

(20S) 

(21S) 

(22S) 

-JP  + (n2-oü2)ß 
L   ■ 

(23s) 

im) 

(25s) 

(26S) 

(27S) 

• 

^8 



3*   Soltitlop of the gguttioM 

The spatial integrals (integration from 0 to R) expressed 
in Bqi. (l8s)-(24s) are evaluated uaing the trapesoidal method. 
This process is straightforward and requires no expansion here, 
except to note that for agy value of i]/,, the integrals can be 
perfonnert when ß(^v) and fKv,.) are known. 

The tine integration of Eq. (28) if performed as 
follows.    Given the values of t , ß^,), ßUk), it is necessary 
to determine ßU,,.,) and pf^./i where f^..   is given by: rk+V 'W fk+1 

Vl  ■ ♦fc + *♦ (1^) 

MA 2n/(Specified number of azlmuthal 
integration elements) 

(135) 

Since ß, ß and ty are known, the generalized force, Fg, and the blade 
hub loads can be computed (if the hub loads are required) in a 
straightforward   manner.   Assuming F   constant over azlmuthal 
interval At, Iq.  (2S) beeomes g 

••2 / ß + co ß = constant = F /M (136) 

This is a total differential equation with constant coefficients, 
and has the solution 

[■ 
'•l 1 "«V1 .(♦k) - s COS  Cut  + 

M di2 

g 

Fg 

M a)2 

sin cut 

(137) 

ß(t) - - ni\) - A. 
M cu 

g 

tu sin cut + K'] cos out    (153) 
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where the initial values of ß and ß (ßUJ and ß(\|r. )) 
have been used to determine the arbitrary constants in the 
homogeneous solution of £q* (13^)«   To determine £(¥..) and 
^W' 8et 

u
k+1 

n 
n (139) 

Substituting   into Eqs,  (96) and (156), 

F 

ß(Vi) - ß(\) - 1' JL 
M    CQ 

g 

K1 + 

ß(V 
(fi 

K, 

F 
+  —L 

g 

(1^0) 

ß(Vi) ■• 
M    oo 

g 

ü) Kg + [ß(v] K,I (IM) 

where 
K. ■ cos 1 m  \     = constant 

K2 = sin , constant 

(1^2) 

(1^3) 

The numerical integration technique outlined above provides 
much more accurate results than the slightly simpler approach 
(called the Euler method) which uses (136) to solve for ß\^), 
ppi then calculates ß(i|(t+1 ) and ßUk+i) based on the assumption that 
ß is constant over the interval A\|r. In fact, the experience with 
this technique has been very positive, both with respect to the 
simplicity of the mechanization (resulting in very rapid computation) 
and with the accuracy. 
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Knowing 8in(\|/. ) and cosU. ), the quantities BinU.+1) and 
co8(ik ,) are easily computed by direct substitution of 

Eq. 154, Making the usual trigonometric expansion, 

sinUk+1) = K5 8in(^k) + Kh coai^) (ihk) 

cos (\+1) = Kj cos(tk) - Kh  sin(tk) (1^5) 

where 
K- ■ cos dft   = constant (1^6) 

KL ■ sin A^ = constant (l^Ti 

The algorithm specified in lq.8. (l^) - (iVf) can be 
executed much more rapidly than standard sine and cosine sub- 
programs operating with Eq. (13^). 

Eqs. (198)-(24s) are expressions for the rotating load 
components applied to the rotor shaft by one blade. These com- 
ponents refer to rotor axes. Part I describes how these 
rotating components can be resolved to a nonrotating axis system 
and time averaged. The time average, multiplied by the number of 
rotor blades, represents the rotor loads on the overall vehicle. 
The resolution and time averaging process is expressed as Bq.. 
(Mt) in Part I.  This equation expresses the averaging in 
integral form. If the rotating loads are computed at discrete 
points around the rotor azimuth (as is the case in SWEEP), Eq. 
(kk) takes the form of a summation. This summation, in the notation 
of Part I, is 

N 

i«1 

where N is the number of azimuth stations used for the time 
integration in SWEEP  f . is the vector made up of components 
Xr' ^ ^r*  ^r' ^ Nr   azimuth angle ^., and R(t) iM  the reeolu^ 
tion function required to resolve rotor axis system components to 
hub axis system components. The vector f. represents rotor shaft 
loads referred to hub axes, for b rotor blades. Bq* (148) is 
easily expressed in component form: 
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Y 
' H 

i»l 

YH   s  "f L (-Xri 8ln*l + Yri COi*i) (150) 

i=l 

N 

ZH + E    Zri <'"> 
i = l 

N 

E 
i=1 

^   •  "f E   ( Lrl cos^ + Mri sin^ ) (152) 

N 

^   =  -T" L ("^ri 8inti + Mri co^i) (153) 

i=1 

N 

1 = 1 

Eqi» (li+9)-(l5^) are calculated during the regular 
azimuthal  summation (integration)  in SWEEP, provided that SWEEP 
is instructed to compute shaft loads. 
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k.   9m*MUmn*m 

CNiptor TV of tht mln tost of thli rei<*f« pr«9c< u i»i« 
d«rlvttlon of « tip lot« «odol «••lo» KM W« IMIO fur« 

1 • 1 J^1 (W) 

«tert k It a oonttant, tnd TL   It M» dittrlbuttd toroiyiMwlo 
lotd on t bXtdt tt tto tip, u lb/ft.   Thit Up loft ftotor It 
utod to rtduot ttot rotor rodlut to tn •••rr»cilvt rodlut**, H   t 

(ro, 

At dltoutttd la Cbtpttr IV# ttot dittribuUl lotllr.f fürotlor. 
ä'  utod in (I99)it otltnltttd tttwrtm ttro rotor-uxiucod 

ittrftrtnot Ttlocltgr. 

BMtd on ttot txprtttloo of I«* (199), ttot foUovlBc 
tip lott aodol it prtttotly iaoorporotta in tto» NQBM-B 

»•"t-^M (r?) 

whtrt B0 it a eootttat (input) tip lott ftotor, tnl k it tn 
input oontttnt*   p    it ttot dittributtd ttrodyntnic lotdlng 
at ttot bltdt tip, plrtllil to ttot rotor ttoaft, wpwtto 
tttvtdng ttro rotor Induotd vtlooltgr. 

(ifthjSR 
lyor to atttobllnc ttot atrodynonio inttgrtlt in lit« 
^ttot anglt of atttok of ttot bltdt tip nting intrtitl 

vtlboltitt it cmputtd.   p     it ttotn 0t1«w1ttti1 battd on this 
"intrtial tpttd" anglt orSttaok.   B it oomottd fTon (197), 
and ttot aerodynanlo inttgrationt ttotn proottd with R  (Iq. 
(196)) at ttot upper inttgral bound in Ueu of R.        * 
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5. CcBMnti on 8WHP Equfctloni 

Eqi. (IS)-(27S) repreient the expression! presently 
included in the SWEEP subroutine. The computational methods 
specified byEqe. (l^OMI1*?) and (1«9}«(W) we also presently 
incorporated. This very basic set of equations can be easily 
expanded to include more aerodynamic and dynamic phenomena, if 
the MOSTAB user requires such additional sophistication for his 
particular problem. The following list outlines some of the 
most basic steps that might be taken to expand the present SWEEP 
routine. 

(a) Reverse flow can be accounted for in a very 
elementary fashion by changing the sign of 
a (i.«.# C^) when «-he sign of UQ changes. This 
approach is taken la the earlier NACA rotor 
analyses (references 7 and 8). 

(b) Stall and eos^resslbility drag rise can be accounted 
for by using Iqs. (12S) and (138) with suitable 
variable «oeffioient models of the form 

a . a (u^, uc) 

6o " bo  (V uc) 

62 - 62 (V uc) 

Itesw (a) and (b) represent relatively simple expansions of the 
.1VSEP equations.   More involved expansions can be made, resulting 
in significant (though not necessarily prohibitive) increases in 
coaputer tint requireaants.   The list below represents the ex- 
pansions that could be aade with scat effort.   Many of the sugges- 
tions require expansion of the equations derived in Pert III. 

(1) Elastic torslonal blade deforaation - requires 
expansion of Appendix III. Blade pitching aoaent 
Inertlal and aerodynamic loading functions aust 
be developed* 

(2) Additional blade dynaaie degrees of freedom requires 
expansion of fart III.       Inplane and torslonal (and, 
of course, additional napping) nodes can be added. 

(3) Terns can be added to the dynamic expressions to 
more suitably account for "load-coupled" rotors 
(e*g.f teetering rotors).   See Fart III. 



(4) Unsteady aerodynamic effects can be added (e.g., 
hysteral stall, feathering damping moments) > 
requires expansion of the appendix. 

(5) Sophisticated "table-look-up" airfoil data can be 
incorporated. (This Is related to (k),  above«) 

(6) Restriction of constant rotor speed can be removed, 
allowing stability derivatives on 0 to be calculated. 

Although the expansion areas outlined above can be incor- 
porated In SWEEP, they add additional complexity to the 
equations* Hems (a) and (b)can be included with little additional 
difficulty. Items ('i)-(6) (and probably many other effects) can 
be added, with additional burden on computational time, input 
data requirements and basic preliminary analysis (Part III). 
The equations that now exist in SWEEP provide a very good basis 
for the flight dynamics analysis, however, and probably should 
be kept relatively intact (possibly with simple expansion like 
(a)-(d)) for simplified studies. Other versions of SWEEP could 
be assembled (e.g. SWEEP1, SWEEP2) involving various 
degrees of additional complexity. It would be possible to choose 
any routine from the "SHEEP" library to use with the rest of 
the basic MOSTAB program. One would choose the version with 
minimum complexity but with the effects needed for the particular 
study. 



E. Siibrotttlnt ROTOR 

Tlic subroutine receives the following information when it 
Is called: 

(a) The three translational and three rotational air- 
speed components at the rotor reference point. These 
velocity components are given in vehicle reference 
axes (see Part 1 and Chapter V). 

(b) The three translational and three rotational inertial 
velocity components of the rotor reference point. 
These components are referred to overall vehicle axes. 

(c) The time derivatives of the inertial velocity components 
described in (b), above, 

(d) Three Euler angles, \|f , ö , cp . which are used to 

rotate vectors expressed In overall vehicle coordinates 
to a reference system (later to be defined as the hub 
axis system) conveniently related to the rotor. This 
local coordinate system is fixed to the nonrotating 
air frame (it does not move with the rotor or swashplate). 
The reverse resolution process is also done with these 
angles. 

(e) The control variables associated with the rotor (cyclic 
pitch and collective pitch, in general). 

(f) The physical characteristics of the rotor. 

When ROTOR is called the first time to analyze a particular 
aerodynamic rotor, certain constant terms are computed. Among 
these constants are I., Ip, M, and J specified by Eqs. (25S) 

(201), and K., Kgi K,, K^ specified by Bqs. (1^5), (1^6), (1^7), and 
(l^S). All of these equations appear in the SWEEP section. Alfo, 
the initial conditions on the blade state variables (ß(0) and ß(0)) 
are set to estimated values read into the MOSTAB-B program as data. 
This initial operation occurs only once per flight condition for 
every aerodynamic rotor on a vehicle. 

As soon as the constant terms are generated, ROTOR calls 
EULER to rotate all of the vectors (e.g., airspeed, inertial 
velocity) required for the rotor equations (contained in SWEEP) 
from overall vehicle coordinates to "hub" coordinates (see 
Part TTi for the definition of hub coordinates). The constant 
angles I , 0 , <p      are used for this rotation. If the particular 
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rotor being analyzed has rigid blades, ROTOR calls SWEEP once to 
determine the necessary hub loads. EULER is then called (by ROTOR) 
to rotate these loads from hub axes to overall vehicle axes. For 
the rotor with rigid blades, the process of load computation is 
complete at this point and ROTOR returns control to FORGE. 

If the rotor being studied has flexible blades, ROTOR 
determines the blade initial conditions for the particular trim 
solution being sought by MDS3AB-B. The process used to determine 
this initial condition is discussed in detail in Part I« In 
the notation of Part I, SWEEP is called with the initial blade 
state variables, C(0)> set to "the estimated values read into 
MOSTAB-B. SWEEP returns to value C0(2TT) (i«e., the angles ( and ( 
at ty = 2rr), The matrix Z„Q is generated by perturbing the elements 
in the estimated initial condition column (one at a time) and 
generating the resulting perturbations in blade final conditions 
using SWEEP. During these blade motion calculations, the shaft 
loading option in SWEEP is suppressed to save computer time.* 
The corrected blari» initial conditions are found by solving Eq» 
('» of Part I, and SWEEP is called again using this corrected 
initial condition. The option to compute shaft loads (in hub co- 
ordinates) is exercised in SWEEP during this last call. These loads 
are then rotated to overall vehicle coordinates by EULER. The 
load computing process thus completed, ROTOR returns control to 
FORCE. 

An option is provided in ROTOR to suppress computation of 
the blade motion gradient matrix Z„Q.    This option is used to save 
influence on the corrected blade initial conditions. When this 
option is exercised, events proceed as discussed above for the 
flexible bladed rotor, except that the last value of Z„n computed 

for the particular aerodynamic rotor under study is used. Instruc- 

ZO 
ZO 

tions to generate a new Z„Q are suppressed« The conditions that 
cause re-computation of Z„n to be unnecessary are discussed in 
Part I. 

The loads applied to the shaft need to be computed only after 
the blade initial conditions are known. When SWEEP is being 
used to determine blade motion, the shaft load calculation is 
incorrect, since the proper initial conditions are not available. 
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no    WBS8i QEOMiroY 

Preceding   sections of this work have been involved with 
the equations which ultimately compute the vehicle force column,  f, 
as represented functionally by Eq.  (2) in Part  I.    This 
section continues the developuent of specific expressions for the 
functional equations in Part I. 

Eqs.  (3) and (h) ir  Part I suffice to define 
the geometric matrices L and G.    L sums the loads of all of the 
vehicle elements to a final six element load column p.   G converts 
overall vehicle motions (as represented by three translational and 
three rotational inertial velocity components), to the inertial 
velocity column vT.    The elements of v   represent the inertial 
velocity components of all the vehicle elements.    It will be shown 
subsequently that L is simply the transpose of G.    This fact saves 
core space when MOSTAB is used, since only one geometric matrix 
(either G or L) can be used for both - with suitable adjustments 
in computer logic of course. 

Consider vehicle element   1.    The reference point of element 
1 can be located with respect to the overall vehicle reference point 
by a vector d^   Expressing d. in component form, 

äL± = lx1+ ^yi + iczi (158) 

The unit vectors 1, 3^ k refer to overall vehicle coordinates. 
In Part i, the symbol s is used to represent the six- 
element inertial velocity column for the flight vehicle as a whole, 
s can be split into two vectors: 

V = iu + jv + lew (159) 

(0 = 'ip + Jq + kr (l6o) 

Since d is the vector which locates the aircraft element 
reference point, i, with respect to vehicle axes, the translational 
velocity of 1 in vector form is 

V^^ = V + a) x di (l^l) 

where the (x) symbol denotes the vector cross product. Since 
d. = 0 (i.e., d. is a constant vector in vehicle coordinates), 

CD.   =  U) (l62) 
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form: 
Eq». (l6l) and (162) can be written in component 

v^ = u + qzi - ry1 

Vj^ = v + rxj^ - ^i 

w1 = w + pyi - qx1 

(163) 

(164) 

(1Ö5) 

Pi - P 

h ' cl 

ri = r 

(166) 

(167) 

(168) 

Clearly, Eqa. (165) - (168) are the component forms of 
Eq. (1+) of Part I, for a single vehicle element. The 
G matrix for element 1, is thnM  given by the expreaaion 

oi(i&*yi*ii) ■ 

Fi zi -yi 1 
1 -Zi xi 

1 yi ■xi 

I  unlab 
1  are z 

eled 
ero 

elemen 
1 

1 

L 1      1 

(169) 

The overall vehicle geometric matrix, G, is assembled by 
stacking all of the submatrices G* into one matrix having dimension 
6NX6,  where N is the number of vehicle elements. The sub- 
matrices, G., are stacked one on top of the other in G, starting 
at the top. (The order of submatrices G in G is defined by the 
definition of the column, Vj, in Part I). 



• 

G 

a N 

(170) 

Jhe array, G, as defined by Eqs. (169) and (170),  is 
the matrix presently mechanized in MOSTAB.    If L is required, 
flT is used.    To show that L = GT, the general expression for L 
is now developed.    Let the force and moment vectors developed 
by element i be denoted F.  and M   respectively.    These vectors 
are applied to the aircraft at element i's reference point.    They 
contribute an effective force and moment at the vehicle reference 
point. 

vi ■    F. (171) 

Mvi-Mi-dixFi (172) 

The sign is negative in (172) because -d. locates the vehicle 
reference point with respect to the element reference point. 
Writing (171) and (172)in component form, 

Vi 

'vi 

= X. 

Zvi --    Z. 
1 

L
vi • \ 

+ ^\ -  ZiYi 

Mvi -    M 
i 

+ ziXi " XiZi 

\l " Ni 
-t XiYi " yiXi 

(173) 

(17%) 

(175) 

(176) 

(177) 

(178) 

Eis, (I75)  - (178) simply represent the component form of 
'■ 1.  (-;) of   Part I for a single vehicle element.   Thus, the 
I   nn'.ri-:  for n  .-.ingle element  is given by 
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Li(xi,yi,zi)   ^ 

1 vm labeled 
elements are 
zero 1 

1 

-zi h 1 

zl -xi 1 

- 

xi 
1 

(179) 

The overfill vehicle matrix, L, is assembled by placing all 
of the submatrices L.  into one matrix having dimensions 6X6N, 
where N is the number of vehicle elements.    The submatrices, L., 
are placed side by side in L, starting from the left.    (The order 
of submatrices L.  in L is defined this way because of the definition 
of column f in Reference 1). 

L   = Ll        L2        •••• S (180) 

Clearly, 

h 

V 

(181) 

from inspection of (180). Also, for an element i» 

Li    "  Gi 
(182) 

from inspection of Eqs. (169) and (179). It follows directly 
that 

LT, (185) 

which is the desired result. 
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II.U INTERFERENCE VELOCITY COMPUTATION (Subroutine WASH) 

Continuing to Eq.  (7) of Part I, the interference 
velocity column, w,  is expressed in a functional form: 

w = w (f, vA,vI,vI,c, K^i = 1,2 •••) (7) 

The purpose of subroutine WASH is to produce the column w, 
given the quantities shown as arguments in Eq. (7). Many 
models for interference velocity have been proposed and used. 
These models are functions of the vehicle type, flight regime, etc. 
Although a rather general (and classical) interference velocity 
model is presently used in MOSTAB, subroutine WASH will undoubtedly 
go through many phases of refinement as MOSTAB is used to study 
various kinds of flight vehicles. 

The interference velocity model presently incorporated 
in MOSTAB will now be discussed. Define the six element column d. 
whose elements are made up of the tnree translations! and three 
rotational interference velocities at element reference point i. 
The velocity d is caused only by element i (i.e., it contains no 
Interference velocity effects from elements near element i). 
Eq.(l8U)gives a general expression for d.: 

The symbol Iv^jJ represents the scalar magnitude of the trans- 
lational airspeed at element i. Three elements of v^ represent 
the components of translational airspeed at the reference point, i. 
The square root of the sum of the squares of these components 
is |VATi|« Tb* symbol A^ represents a 6x6 square array which is 
input to MOSTAB* Its elements have units of l/area, and 
represent the inverses of the characteristic areas of element i • 
The six-element load column produced by element i is F.. 
Both d. and f. are referred to overall vehicle coordinates. 

Eq. (2) is essentially a generalized form of the 
dauert expression for lifting rotors. This classical expression 
for downwash of a lifting rotor takes the scalar form: 

T v= —a 2rT Rc pv' 
where v is rotor downwash, T is thrust, R is the rotor radius and 
v' is the magnitude of translational airspeed at the rotor 
(i.e. ^'«[VATil for the rotor). Clearly,(iSjHs a specific form 
of (l8Mwhen one element of A. isl/rfR*. 

In substantiating the use of (185), the arguments show 
that this equation holds for rotors in axial flight (as derived 
by either momentum or vortex theory) and for elliptical wings 
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in forward flight.     Eq.(l85)has enjoyed rather broad usage 
in the analysis of wings und rotors in forward flight. 

Now form the total 6N element column d   by inserting 
submatrices d^  Into d, one on top of the other, starting at the 
top.    At the present time, a constant coupling matrix, X, is 
input to MOSTAB, to represent the  interelement   Induced velocity 
interference: 

w  -   Xd (186) 

X is a 6NX6N matrix. Eventually, X should be made a function of d 
and vA, to account for wake angles, etc. 
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' 

II.5    CONTROL SYSTEM (Subroutlnt CONTRL) 

The operation of this subroutine is characterized by 
Eq. (11) of Part I. 

c = c(t, known constraints, known constants) 

At the present time, CONTRL is simply a logic routine 
which determines which elements of c. relate to elements of t, 
and which are constrained by the trim problem definition. One-to- 
one relationships are used between c. and t. 

If a control system is used with M06TAB, the equations 
representing the system would be Included in CONTRL. For example, 
if t had such elements as cyclic stick position, collective stick 
position, etc., CONTRL would determine the aircraft element- 
oriented control settings in c. (e.g., cyclic pitch angle, 
collective pitch angle) by using suitable equations for 
the linkages between the control sticks and the rotor(s). 
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ii.6     nrmiAL vmaTr jgjmgjjm mat) 
Cq. (12) of Part X IndieatM th« dtptndMic« of 

the trim Intrtial velocity colum. • . on the trim varieble 
column« t, end the conitreinte of the trie problea. 

a, ■ a. (t, known eonetreinti) (12) 

The element! of t« end the conetralnte input oMQBlAB which define 
the trim problem« are lifted below« Some of -.he iteae in thla 
liet ere not ueed by VELCTY« but ere required by the subroutine 
FCEHQD. The appropriate iteae in the list required by PCEBQD 
will be cons 

(a 

(b 

(c 

(d 

(e 

(f 

(g 

(h 

(i 

(J 
(k 

(1 

dered in the section dealing with that subroutine. 

Vehicle weight« W 

Overall vehicle axis system eoerdinates   of the 
aircraft's center of gravity: xÄ . r__i Mmm eg  eg  og 

Speed of the vehicle in space« denoted V in this 
enalysis 

Air density«P 

Turning rate (* in classical «irplane notation 
for the yawing Euler angle) 

Pitch rate (either d or q cen be specified« by 
option Index« to represent pitch rate) 

« 
Roll rate (either • or p cen be specified« by 
option Index« to represent roll rate) 

Rate of dial) (h) 

The inertia tensor of the vehicle referred to 
overall vehicle exee [ I ] 

The sideslip   -eloclty *w) 

The pitch Puler ande for vehicle axes (d ) 

The roll Fuler ani*le for vehicle axes    (* ) 

The reader Is referred to Reference Q for the classical 
airplane dynamics analysis.    The notation used In Reference  » will 
be used here. 



Tb« problt« «noounurtd by VELCTY ean b« »t*t«d In « 
MthMMtlo«! formt M foUovt: 

Jlvtn: M#v,(p or «), (q or 6), i, h «ad v 

OotoralMt   tho tntrtUl volooity eonponobta u, v, w, 
p# q# r   - roftertd to ovtrftll vihloXo MM 

Tbt ooBpontiit v   it gXm   uA rttyürtt no sort 
eonoldorfttion. Flfurt 9 dwm ooao of tho baaio notation 
roqulrod to ooloolato u ood v trem tbo glTtn Inforaotlon. 
Tho total iDtrtUl vtlo^lty vootor of tho alrovftft roforonoo 
UM In tpMO if thown MV, ^ 

V vootor in piano of 

Pifuro 9«        Voloclty Rtsolutioo. 

Tho horisooUl plant ooa ho doflnod M a piano noraal to tho 
action of gravity.   Sinet tho Mcnituto of 7 («bioh it V) 
and B art known quantititi, tho gremd tpood vH can ho cooputod 
dirMtly 

TH .Vv^Tfi2     >o dar) 

Mow Malen a "tpaco" asdt tystoa M thown in Flcuro 9 that 
1% a ooordiaato tjrttta with itt z axit in tho diroction of 
gravity! and itt xz plant nontoinlng tho vootor V. Throo 
Eialor aaglotf r, 6 and « can bt utod to rotato thttt tpaoo 
axtt to aircraft axoi. Tht only unknown of thOM Bulor rotationt 
it i,  tinoo 6 and C art glvtn. Roftrtnct 9 thowt tho tquationt 
rtquirod to «qprttt tho airoraft't vtlocity, 7,  in tpatial 
coordlnato«, in tonu of tht vtlocity otprottod in aivoraft 
axts and tht Eultr anglot i, 6 tnd ♦. Exprtistd In natrix 
form, thtto equatlont art 

• 

eot6coar. tinitinlBeotf-ootitinf [ eot«tia(Beott^tin*tinf|iu \ 

coifciln;; 8lnCilneiinr*cof*coir • ootttiaBtint-tinfteottI v   1  (188) 

tinS «in^coifc coticote JV/ 
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Rq,(l88) hold« for «ny apac« axis .lysttm IP ■• lie» pHfiUel to 
th» •otion of gravity« For tha oyatam of Figure 1, the spatial 
velocity cooponents of the aircraft velocity vector 7 are 

dx'/dt - vH - Vv2 . fi2 (189) 

dy'/dt • 0 (190) 

dz'/dt --fi (1«) 

The Eularian rotational aatrlx of Eq. (188) can be Inverted 
by transposli Ion to solve for u, v and v in terms of dx'/dt, 
dy'/dt and dz'/dt. The solution for v achieved fron this process 

v -Vv2-^ ^siii*sinb)cosf.(cos«)sintj.(sln«co«6)h     (192) 

Since v is given, tha only unknown in Eqj(19g) Is ♦. 

Before proceeding with the solu*' .i of (192), define the 
known quantity, C: 

c ^ v * sin^osqft (l93j 

With this definition, Bq.(19e) Is written slnply as 

(sin*sinB)cost-(cos«)sin¥ - c (19U) 

Figure 10is a graphic display of Eq. (1$*): 

cos* r»" 

Figure 10. Graphic Display of Eq. l^k 
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.wo veotoro (at rieht armies to each other) are jjiven actual 
lengths of cou4 and slrtfaint as shown In Figure 10. Clearly, 
the vtotor C is related to i, d and <• in accordance with Rq. (10). 
The vector H is the resultant of cosC and sin^sini, and is 
defined positive at all times. The expression for R can be 
written immediately: 

..V cos*2 + (sinCsine)2 (195) 

:■ rom inspection of Kicure 10, one sees that a value of Y exists 
that satisfies the diagram only if 

R > |C| (196) 

I f condition 196 is not met, the given values of $, 6, v, V and h 
vwhich make up R and C) are impossible. The action taken by 
VELCTY in this event will be discussed later. For the time 
being, assume that condition 196 is fulfilled. In this case, 
two values of t will work to satisfy Figure 10: 

R cos [♦(! ♦ n/2 - ß)] » C      or 

i - P - it/2 1 cos"1 (C/R) (197) 

Jince cosi and sin* are required, (11) can be used to get 

cost » cos [a - n/2 tcos'Vc/R)] - sin [ß Icos'^C/R)]    (198) 

sini = sin [p - n/2 Icos'^C/R)] = -cos [3 lcos"1(C/R)]    (199) 

Using the trigonometric relationship 

sin [cos_1X ] = 1 ^ - X2 (200) 

expressions (198) and (199) are reduced to the form 

cosi' = ! Vl-(:/R)r cosp + (C/R) sinp (201) 

sini = -(C/R) cosp *yu{cjkr    sinp (202) 
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Eqs. (201) and (202) can be simplified by notinc that 

and 

cos ß -(cos *)/R 

sin ß -(sin 6 sin <J>)/R 

(203) 

(201») 

from inspection of Figure 10. Substituting (203)and (20^)into 
(201) and (202), 

cos * = [i v ■ W co' *+ W8in *sin e](»") 

sin ¥ •[■(f)-•^-(+f sin • sin 6 ](+) 

(205) 

(206) 

2 2 The requirement that R   > C   is easily seen in Eqs. (205) and 
(206). 

The (+) sign on the radicals in Eqs. (205)and (206) 
requires special attention at this point. To clarify the 
meaning of these sign options, solve for u, v, w using Eq.(l88) 
in terms of dx'/dt and dz'/dt. All that is required is the 
transpose of the square matrix in(188)(which is, of course its 
inverse since the matrix is an Eulerian rotational matrix). Noting 
that dy'/dt = 0 from (l90ithe second column of this transpose 
may be omitted. Using Eqs.(l89)and (191) to substitute for 
dx'/dt and dz'/dt, the solution for u, v and w takes the matrix 
form: 

cos 6 cos y i 

sin * sin 6 cos f - cos * sin f 

cos <I> sin 9 cos f + sin • cos t ' 

- sin 9 

sin <I> cos 9 

cos <I> cos 9. 

■2-h? 

-h 

(207) 
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The second equation in (20?) yields the identity v ■ v if 
Eqs.(205) and (206)are substituted for cos ♦ and sin ♦, 
verifying the correctness of Eqs.(205) and (206). To 
grasp the meaning of the ♦ sign on the radical, observe the 
first equation in (207)for u, and imagine a vehicle in level, 
coordinated flight (h=<I>=e = v=0). Under these conditions, 
C is zero (as can be seen from Eq.(l93) and R is unity 
(from Eq.(l95). Solving for u (without altering the 
radical in Eq.(205), 

u = V cos i' (♦/l) (208) 

If the + sign is chosen on the radical,  flight is forward, 
corresponding to a + u.    The (-) sign defines the flight as 
backward, a condition which is not only possible, but important 
for helicopters.    Thus, an option is included in VELCTY (by index) 
to assign either the (+) or (-) sign on the radicals in Eqs. 
(205) and (206). 

(+)—♦ forward flight 
(-)—» backward flight 

If condition (196) is fulfilled, Eqs. (205) and (206) can 
be used to determine cos V and sin if,  for substitution into (20?) 
to yield u and w.    If condition (196) is not met, the given 
quantities are incompatible.    In this case, VELCTY fails to use 
the given sideslip velocity, v, and calculates a new value from 
Eq.(207).    The value of v is relatively arbitrary at this 
point.    VELCTY sets |c|  - R and calculates cos Y and sin T from 
Eqs,(205) and(206) on this basis.    Of course, C can be either 
(+) or (-) R,  so VELCTY uses the forward/backward index to specify 
the sign on C 

Forward flight: C ■ +R 
Backward flight: C = -R 

After cos Y and sin Y are calculated, u, v and w can be computed 
using (207).    In this case, v will be different from the given 
value. 

Table III   is presented to specify the action of VELCTY for 
the contingencies on the sizes of R and C (discussed above), 
and other limiting cases which arise. 

80 



TABLE III. OPTIONS FOR SUBROUTINE VELCTY 

Case No. Condition VELCTY Action 

I 

II 

III 

IV 

V = 0 

1*1 =v 

|C < R 

C >R 

u = v  w  0 

u - - fi sin e, 
v = fi  sin * cos e 
w = li cos * cos 6 

Calculate sin ¥ and cos f 
from aquations (18) and 
(19)* and u, v and w from 
(20). v will be the same 
as the given value in this 
case - providing a check 
on the VELCTY computation. 

Set C = + R if flight - 
forward, C = - R if flight 
backward. Compute sin 'P 
and cos Y from (18) and 
(19)* and solve for u, v 
and w fron (20). 
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Rotational velocities p, q and r are now determined. 

nonttlWM p and q are specified before VELCTY is called. 
I i' 9 and I are sped fled in lieu of either p or q, the following 
!\>rmulas ire used (taken directly from Reference 9); 

p . # • f sin© (209^ 

4 • 0 cos* + i cose sin* (210) 
The yawinii rate, r,  is obtained directly from given 

information by slightly rearranging an equation of Reference 9. 

r = ('i' cos* - q sin*) sec* (211) 
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II.7        REQUIRED TRIM LOADS (Subroutine FCERQD) 

Cq.  (IM) of Part I expresses the functional 
relationship between the required trim ronve-moinent (jolunin, r, and 
the trim variables and constraints: 

r = r(t, problem constraints, constants) (212) 

The elements of r are the three force and three moment 
components of the required trim aerodynamic load.    These load 
components are taken at the overall vehicle reference point, and 
are referred to vehicle axes,    r can be determined from items a-e 
listed in the VELCTY section of this report.    The notation of 
Reference 9 was used in the VELCTY section, and will also be used 
here. 

Before r can be determined, s must be known.    Thus, 
VELCTY must be called before FCEPQD may be called, for a diven 
set of trim requirements. 

Consider a center of gravity fcg) coordinate    system 
which is parallel to the vehicle axes but whose origin lies at 
the vehicle   eg.  A G matrix can be defined (see the Vehicle 
Geometry section) which can be used to determine the inertial 
velocity components of the eg. 

eg       eg 

Eq, (2) can be expanded into component form. The 
resulting component equations are analogous to Eqs. (6) - (31) 
in the Vehicle Geometry section: 

(21U) 

(215) 

(216) 

(217) 

V ■ 1 v2l8) 
^cg = r . (219) 

(Note that the r used in symbolic   Eq.  (1) has no connection with 
the r yawing rate). 

The equations of motion for a rigid-body flight vehicle 
are derived in Reference q.    These equations refer to a body axis 
system located at the aircraft's eg.    Part I describes the 
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^ q zcg - r ycg 

v=g ■ 
v + r xcg - p zcg 

w   = 
eg 

w + P ^cg " ^ Xcg 

Pcg-P 



definition of trin.uMd \n MOSp^B: • - 0. Ihui, for trim« 
^— " v— " w— ■ P— " <!— ■ r— ■ 0. Tht rigid body equation«, eg   eg   eg   Cg  Tig   eg 
constrained by the trim definition used In MOBTAB, can be written 

X^ - W line + eg -T kg'eg "'eg'eg] (220) 

(221) Yeg " " W 00iö «^ + -T [reg ueg " »eg weg ] 

Zeg • " W «^ co-* + -g" [Peg Veg ' «eg ueg]        (222) 

Leg- «eg h«eg " rog hyog (223) 

eg  ^ xeg   eg sog 

"eg " »eg "ye, - "o, ««w, (285> 

■Vsg • '»»eg * ^«eg-'x.'og (a6) 

Vg * *'»x pog + V ««g * ^ r«g (287) 

h.cg •-I«»cg-IV
,^g + I»r^ (ia!8) 

Eqs. (220)-(228) define the required force and moment 
expressions for vehicle trlomd conditions. These required 
trim loads are referred to an axis system fixed to the aircraft, 
with origin at the center of gravity. M06TAB needs the loads 
required for trim to be expressed with respect to vehicle axes 
(recall that "vehicle axes" are fixed to the aircraft "In a 
convenient position" generally not the eg). The loads ex- 
pressed by Eqs. (220)-(225) are easily translated to vehicle 
reference axes. 

Define d as a vector locating the cg with resptect to 
the origin of the vehicle axes. In component form, 

d - 1 x  ♦ iy      ♦ k a      expressed in vehicle 
cg    g     g    axis system coordinates 

(229) 
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Lit F and f be the required force end moment vector« 
et the eg. ooBpoMnti of P ere given by Eqs. (220) - (222), 
end componente of r ere gifla by Eqe. (203) - (22^). now 
let F end r be the Zeede required et the origin or th« vehicle 
exei, which produce the equivalent loeding eye ten F end r • 
Cleerly, CK   ■■ 

'og - * (230) 

rcg " r - d x p (231) 

Solving (230) end (231) for F end r, 

f   - ^ (232) 

r " fcg + dx'cg tm) 

Eqe .(232) end (233) are expended in component form 
belovt 

X   -   XM (23»») 
og 

«   -   ^ (235) 

Z   -   Z^ (236) 

L   "   Lcg + 'eg Zcg - «eg Ycg W 

M   "  Mcg + «eg Xcg - «eg Zcg WJ 

"   ■   Mcg * «eg Ycg - ^cg Xcg (239) 

Eqs, (23^)- (239) express the components of the trim- 
force column (Eq.212). The set of Eqs. (2lU) - (219) - (220) - 
(228)«nd(2310-(239)are those presently mechanized in PCERQD. 
These expressions suffice to define the functional relationship(212). 



XZ.8 

A«   Subrouting 1ÜI1R 

Rei'orenoe  » Juuumentf the standard Bulerian coofllnate 
oystem IrMlflBtMltlOB«    Tlio moihod la praaeniod here withoul 
derivatiuii «Inoc It is a very standard procedure. 

Given a vector V expressed in coordinates   of sane orthoeanal 
•ixia system a, 

*• vxa f Jo vya + k» V» 
(2li0) 

It is necessary to express V in the coordinates of axis system b. 

** ^ ^b vyb * S vsb (21.1) 

TTiree aiti'.lcs.    .  .Ct exist such that the components of V 
in t   ••ooi'>llnaie:i   can be calculated as functloiis or the 'a* 
•ocrllnnte.i.     In -ntrlx i'orm, this relationship is expressed: 

R(tp) R( ) RU) (2»i;!) 

Tlio quantities ' H'  i, \f  ), «nd R(*. )) are > x ; arrays called roU- 
tlonnl matrices. Thccc arrays are de lined as follows: 

R(.' 

R( ) 

R^) 

cos. sinv 

-sin. cos. 

0 
a 

0 

cos 0 

0 i 

Sit! 0 

1 0 

0 co*; 

.    0 -sim 

(2l»3) 

(2UIO 

(2U5) 
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The order or ruttttlui is relevant, «eaitliKr tliet Die orUcr 
of mulUplloetlon in Kq.(2t»2) U relevant* An laporum 
property of en Bulerlan rotetlutel matrix la that iti Inverse Is 
equal to its trarspose.   Another important property is '.tAt its 
transpose Is equal to the untransposed matrix with the sipn o:' 
the engle c^aiwjci.    To show these important properties in matne- 
matlcai form, refer back to the arbitrary vector V,   Denote the 
matrix column made up of the elements of V erpressed in co- 
ordinates a as V .   V expressed as a colmn in I coordinates i.-. 
denoted as V..   with this notation. (2l»2) ean he written V 

Vb    -    R(n.) R(  ) R(J Va (2U6) 

( ...„.- «n consecutively ty ;'",! 

»' (')» .T'f.) and transposing« 
_,       PreHultiplylm*(2lt7)throii8h consecutively by JC (f)| 

The properties of rotational matrioea discussed above 
allow(2U7Ho be written in two other forma: 

V. - RT(;)RT(  )RTfo>)V. and (21*8) a o 

V. - R'-*)R(-ORC-q)^. (2U9) 
a D 

Subroutine EUIZR psrforms operations (2U6) or (2U9), as 
specified by an option Index. An additional option can be 
exercised In EULEF. Computing sine and cosine functions 
digitally as required in Eos. (2U3), (2UU), (21*5) la a 
relatively time-consuninp process. If the Euler angle (e.g.. i) 
used to assemble the rotational matrix is snail, the following 
trigonometric approximations are accurate: 

sin. " . (250) 

cos. " • - l/; ;" (251) 

Py option. Euler uses Ens,(250) and (251)to ijenorate 
sine and cosine functions. Instead of using the computer library 
trigonometric functions. 
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B.   Standard K>trlx ivteroutlmi 
The Hit below »how» the general matrix lubroutines (other 

than EUIiJR) presently Incorporated in MOSTAB.    These subroutines 
are so general in purpose   that no further explanation is required. 
The input/output formats are described, by comment, in the FORTRAN 
listings. 

■ 

Subroutine Name Function 
MATINV Matrix inversion 
MTXADD Matrix addition or subtraction 
MTXMPY Matrix   multiplication 



11.9    gmiHCT PPIVATIVl MMggc BMOLOTICW 

The stability derivative expression is given by   Eq.  (10) 
of Part I. 

Ap = p. äS + P: AS + p Ac (252) 
s     s     c 

The column Ap is the perturbation load column expressed in overall 
vehicle coordinates. As is the .perturbation column in vehicle 
inertial velocity components. As is the time derivative of As. 
Ac is the control perturbation column. Note that Ap represents 
loads applied at the overall vehicle reference point, and As and 
As represent inertial velocity and acceleration of this reference 
point. 

Hie position of the eg fwith respect to the overall vehicle 
coordinate system) is defined by three input dimensions: x 
y , z . Define a eg coordinate system parallel to vehicle 
coordinates but with its origin at the eg. One can say that the 
vehicle asix system origin is located with respect to eg axes by 
coordinates -Xcg, -yCg» -Zcg» 

in c8 coordinates. In the Geometry 
section of this appendix, a matrix, Gj,, was defined 
which can be used to relate motions of the vehicle axes knowing 
eg motions; 

8 -Gcg(-xcg'-ycg'-zcg)8cg (253) 

A matrix L. was also defined in the Geometry section 
which can be used to calculate the effective loading system 
at one point of the vehicle, knowing the loads at another 
point. The matrix L^ is used in the following equation to 
determine eg loads knowing overall vehicle reference point 
loads. 

PC6 " V'V "V "^ (25l|) 

It was shown in the Geometry portion of this appendix that 

eg    eg 

Eqs. (253),(25^) 1 and(255) can be used to eliminate Ap, As, 
and AjS from Eq. (252). The result is 
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Ap  = G T P G   As  + [G T P* G IAS 
"?,     Leg s cgj eg Lee ■ eg" eg (256) 

+ IG T
 P IAC 

L eg  c J 

The equation for G  is taken direetly from the Geometry portion 
of this Part II with the substitutions x. = - x . y. -• - v ,  z, 
. . a i    eg' 'i   'og' i 

eg 

eg 

1 ! 
t_ 

+z 

-z 
eg 

+y, 
-X 

j iT-y x " 
!   ^eg; eg 

•  »  4   L-       l 
1 

unlabelled ele- 
ments are zero 

I 

eg 

"eg 

1 J 

(257) 

Stability axes (sa) are defined as follows: 

a) The origin of the stability axis system lies at the 
aircraft's eg. 

b) The cg's  inertial velocity components along the 
y  and z  axes are zero, 
sa    sa 

These two requirements on the position of the stability axis system 
still do not completely define the positioncf the axes. Once xsa 
points in the direction of the aircraft cg's inertial velocity 
vector, the stability axes can be rotated about xga to an infinite 
number of different orientations on the airplane, without violating 
either of the constraints (a) or (b). The problem seldom arises on 
ilxcd-winp; airplanes that are usually trimmed with zero sideslip 
ancle. In this case, the stability axes are usually removed from 
the usual vehicle reference axes by a Eulerian pitch angle (rotation 
about y  only), 

sa 
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A third constraint is added to the definition of the 
stability axes here, to uniquely define their position. This 
constraint is arbitrary, but seems to be along the lines usually 
taken in stability analyses. 

(c) The z  lies in the eg axis system's x  - z v    ,  sa &      J       ce;   eg plane. 0 

The x  - 1  plane of the eg axis system usually lies 
parallel to ä6plane6of symmetry of the aircraft. In this case, 
Constraint (c) above, requires the z  axis to be parallel to the 
aircraft's plane of symmetry. 

The inertial velocity components of the vehicle, expressed 
in eg coordinates, must be known before the cg-to-stability 
axes transformation matrix can be derived.  (This fact will be 
seen later, whon this transformation process is developed). Since 
the eg is do lined with respect to werall vehicle axes by co- 
ordinates x , y > z

c >  ^e matrix G. (derived in the Geometry 
section cf Enis rfportf can be used directly to define the vehicle's 
inertial velocity components. 

s  = G  (x ,y ,z )8 (258) 
eg   eg  cg'^cg' eg' 

Note that 

G (x ^„»z ) - 8*' (-«^.-jr .-*J     (259) eg eg"'eg eg     eg  eg 'eg' eg 

This fact is substantiated by observing Eqs. (253) and (258). 
Direct multiplication of G  with G"1  also proves this result 
by yielding the unit matrixf 

Since only the translational inertial velocity components 
(in eg coordinates) are required for the subsequent analysis, 
only the first three rows of (258) need to be expanded. 

u   -u+zq-yr (260) 
eg        cg^  'eg 

vcg - v + xcgr - zcgp (26l) 

wcg - w + ycgP - xcgq teW 

Eqs. (260)-(262) are repeat expressions of Eqs .(2lU)-(2l6)in the 
subroutine FCERQD section. 
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Since subroutine VELCTY calculates s (and ultimately 
produces the value of s which fulfills the trim condition), 
u »t 

eg 
and w  can be computed directly, using Eqs. (260)-(262). 

eg 

Eulerlan rotational matrices were discussed in the sub- 
routine EULER section. The transformation matrix required to 
rotate vectors from eg axes to stability axes can be assembled 
using R(\|/) and R(9) rotations. Normally, the 1/ rotation is done 
first, followed by the R(6) rotation. The process is reversed 
here. Reversing the order of rotation insures that the z  axis 
will remain in the x -z  plane of the eg coordinate system . 
The angles \|r end 6 are cfiosen to fulfill the requirement that 
the cg's inertlal velocity components along the y  and z 
axes vanish. 

BN components of cg's inertlal translatlonal velocity 
(in eg coordinates  have been denoted ^oaf^oef^cR'   ^hen rotated 
to stability axes, the y  and z  components of the inertlal 
velocity vanish. The x ""componeftt thus becomes the inertlal 
speed of the vehicle's eg. Mathematically, this situation is 
stated as follows: 

OMf sin\lf 

-sin^ cos\|r 

r     0 0 

0 

0 

1. 

cos 6 

0 

„sinO 

0 

1 

0 

-sine 

0 

cose J 

eg 

vcg i(263) 

eg' 

Inverting and transposing (263) is easily accomplished, 
noting the characteristics of Eulerlan rotational matrices 
outlined in the section on subroutine EULER. 

u 
eg 

r 
eg 

w 
eg 

cose 0 sine ooit 

0 1 0 simi/ 

sine 0 .    COSG 0 

-sin\|/ 0 

COSl^ 0 

0 1 . 

eg . 
0 I (261*) 
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Jv    2.    v   2 

I   c6 £fi_ cost   =       1   ■   v—£o^ (269) 
eg 

Combining Eqs. (265) and (269), 

V 
Eqs. (267) and (269) combine to yield 

u 
cose =        c6  — (270) 

.. 2    2 V  - v 
eg   eg 

w 
sine = -  £S  (271) 

Vv-  - v 
2     2 

- v eg    eg 

95 

Eq. (26^) is easily expanded to solve for uCg, v , and wCg 
in terms of 9, \|/,and V : 

eg 

u  = cose cost V m (265) eg eg 

v  = sin\|/ V (266) 
eg      Y eg 

w  = - sine cost V (267) 
eg eg 

Eqs. (265)-(267) are three expressions In the three 
unknowns ^|9*V . Of course, uCg v , w  are known (they are 
computed using gEqs. (260) - (262). g  Cg 

Eq. (266) gives the simple result 

sint =  -rr52- (268) 
eg 

Simple trigonometric manipu1 ition of (268) results in the 
expression 



If Bq8a{210) and(271) are squared and added, the 
followinc; result is obtained: 

eg 
u 
eg 

+ V 
eg 

+ w 
eg (272) 

This, of course, is the requirement that must be met, by- 
definition of VCg. Eqs.(268) - (272)can be substituted into 
Eq. (12). The product of the ♦ and 6 Eulerian matrices is 
the required  cg-to-stability axes transformation. Denote this 
transformation as R: 

(vector expressed \ 
in stability axis] 
coordinates    / ( 

vector expressed 
in eg coordinates 

) 
(273) 

R is given in terras of u   , v    , and w     by the following operation. 
The array shown was generated Dy multiplying the Eulerian matrices 
RU)R(v'), and substituting expressions  (268) -  (271) for the trigonomet- 
ric elements that result. 

_u 
V 

uv 

'V vi v^ - v 

w 

4 v2-v* 

V 
V 

r~2—1 
f V - v 

V 

0 

w 
V 

7^7 
u 

f V - v 

{27k) 

-I eg 

(the subscript eg has been omitted from symbols within 
the matrix for simplicity in notation) 

V  Is given by(272). Ilote that R becomes indeterminate if V -^O, 
eg eg 

This is to bo expected, since stability axes are undefined when the 
aircraft eg has no incrtial speed. Note also that the division 

i 
when Y 

- v        can never be zero (except in the indeterminate case 
eg 

0). 
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The matrix R is used to rotate three-element columns 
(vectors) from og to stability axes. In order to facilitate 
the resolution of Ape and Ascg (which axe  six-element columns 
made up of three-element subcolumns), define the expanded 
rotational matrix R. 

R = 
R  0 

0  R (275) 

Eq. (256) can be premultiplied by R to yield an 
expression for overall vehicle loading in stability axis system 
coordinates.  Also, since R^R -- RTR = the unit matrix, the 
product RTR can be inserted into (256) Just in front of columns 
As  and Afi . 

eg     eg 

Ap,„ - R rGcg
T Ps G^] RT Assa ♦ R [o_* p.    0     | Ä* ^ sa *- - y-s> eg      s      eg, 

+ R   G    * P     AC L eg     c (276) 

Eq. (276} derives from(256) in this manner because 

^sa    "   R   ^cg 

As.,,.    =   R   As      , and sa eg 

AP. R Ap sa -eg 

To simplify the notation, define the 6x6 matrix X: 

(277) 

(278) 

(279) 

X « K 0 * 
eg 

Noting that XT - G RT, Eq. (276)is written eg 

Ap sa '    [XPSxT]^sa + [XPsxT]^ 
♦   [XPC]AC 

sa 

(280) 

(281) 
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The matrices In bracket! in Eq.(28l) are the stability 
derivative arrays with respect to stability axes. Eqs. (291), (257) 
(260) - (262), (27*0, (275), (280), and (281) are programmed in MOSTAB, 
so that the stability derivative arrays can be expressed with 
respect to aircraft axes, eg axes and stability axes. 

The R transformation (Eq.27U) can be used to convert the 
vehicle inertia tensor, I, expressed in overall vehicle coordinates, 
to the inertia tensor expressed in stability sixes. 

sa - R nr (282) 

where 

-i; 
•X 

xx 
yx 

zx 

-I 
jxsr 
yy 

-i 
zy 

-I. 
-I 

xz 
zz 

zz 

Eq. (282) is derived using arguments Identical to those 
used in deriving (276). 
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IZX. KOTOR ANALYSIS 

III.l  INTKODUCTION 

The rotor analysis Is presented in this part in 
relatively general form. The slmplifltd version of the analysis 
presently used InMOSTAB Is assembled In the main body of this 
work» referring to the general analysis given here for the 
basic equations.  If it becomes necessary to remove some 
of the present M06TAB simplifications, the equations developed 
here can be used to add the desired effects with no substantial 
amount of additional analytic work. 

Rotor types which do not couple loads among the blades 
(except through rotor shaft motion and aerodynamic interference) 
are addressed in this part. Teetering rotors (floating hub 
rotors) and rotors with independently articulated blades with 
coupling links or cables do not generally fall into this category, 
because these rotors couple loads among the blades without first 
applying such loads to the shaft. To account for such coupling, 
certain terms must be added to the blade motion equations. No 
difficulty In extending the present analysis to include direct 
load coupling is anticipated. Usually, load-coupled rotors can 
be approximated with Independently articulated rotor models for 
vehicle handling quality, and stability examinations. The 
coupling among blades influences vibration levels, blade stresses, 
etc., but usually has negligible effect on aircraft handling 
characteristics. 

111,2  AXIS SYSTEM DEFINITION 

The reference point for all rotors lies at the inter- 
section of the shaft centerline and the unflexed blades' quarter chord 
line (see Part I for definition of "reference points". If 
such a point is undefined because of curved blades or some other 
geometric difficulty, the point lies at a convenient point in 
the rotor hub, on the shaft centerline. 

The rotor's local axis system is fixed to the nonrotating 
airfrsme with its z axis coincident with the rotor shaft center- 
line and its origin at the rotor's reference point. The azimuthal 
position of this system is defined (with respect to the nonrotating 
alrframe) in any convenient manner. Constant Euler angles ♦rf8«»f« 
are defined which locate these local rotor hub axes with respect to 
overall vehicle reference axes. This local axis system will hence- 
forth be referred to as the rotor's "hub axes." 

wow define the "rotor axes" as a system that rotates 
with the rotor hub. Then the rotor axes have an angular speed fi 
with respect to the hub axes. The z axis of the rotor axes lies 
coincident with the z hub axis, and the origins of the two 
systems are coincident.  Define ♦ as the azimuthal angle 
between the rotor and hub axes. , When\lf =0, the rotor and hub axes 
are coincident.  Clearly, whenn=0, 

ii/ = nt + \i/0 (283) 
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h innotcs "hub axes" 
r lienotns  "rotor ax?>e" 

Figure 11.        Rotor Axis Systems. 
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For most U. J,-built helicopter.':, the axlmuUial 
angle ^ Implies a negative Euler azljnuthul (c axis) 
rotation. Jare must oe exercised to define the si n or 0 
correctly when ujlng MOHTAB on a given rotor. A sln<:le vehicle 
nay have rotors which have not only varying values oi" 0 , but 
varying signs as well. 

Figure 11 shows a conventional helicopter, with the "hub" 
and "rotor" axes illustrated as they apply to the main rotor. A 
similar pair of sixes apply to the t%il rotor, but these are not 
shown by Figure 11* Note that the equation for \i above includes 
an "initial" constant^ ^o* ^o i3 chosen so that the shaft normal 
plane projection of rotor blade number 1 lies along the -x 
rotor axis. With this definition of ;0, the azimut

1 al anrle v 
used here is the conventional angle used in most c] ^ssical rotor 
analyses (particularly the bulk of the work published by riACA). 

III.3 BLAM KEflRMUE tmi 

Define a blade reference line (BRL) along the span of 
blade number 1. This reference line is attached to the mass 
molecules of the structure. Its exact position on the blade Is 
arbitrary, but the quarter chord line is probably the most 
convenient choice. 

Figure 12 shows the BRL and the "rotor axes." The 
reference line intersects the rotor axis system origin. In the 
analysis that follows, the BRL is assumed to be infinitely stiff 
in tension (it cannot stretch). 

The coordinate« s, defines some point, P, on the BRL. 
Regardless of the shape of the BRL, s defines a particular mass 
element of the blade. Thus, s is a measurement of the length 
of the BRL segment between P and the rotor axis system origin, 
s is constant for a given P because of the assumption that the 
BRL cannot stretch. 

Figure 12,   Blade Reference Line. 

When the BRL is deformed, it generally will have co- 
ordinates x(s), y^s), z(s) which define its shape in rotor co- 
ordinates. With the assumption that the line does not stretch. 
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however, the coordinate   x(s) can be expressed as a function of 
s, y(s)  and z(s). 

Distributed loading functions are applied to the BRL from 
two sources: 

(a) "Apparent" loading due to acceleration of 
the blade mass in inertial space (which can 
include gravity forces if desired) 

(b) Aerodynamic loading. 

This loading picture can be expressed as a distributed 
force vector, * , expressed in rotor coordinates: 

F(8,t)=i[pxi(8,t)+Pxa(fl,t)l+3 rpyi(B,t)+pya(8,t)j+itrpzi(s,t)+pza(B,t)j 

The distributed loading function expressed above can be 
integrated with respect to s from blade root to tip,  resulting 
in a time varying expression for rotor shaft forces due to one 
blade.     Integrating TXF produces the shaft moments.    These 
integrations are considered in detail   in a later section of this 
appendix. 

IZZ.lf      IMMTIAL AKAiafBIfl 

The inertial analysis presented here is required to 
generate expressions for the "apparent" inertial loading of a 
rotor blade as it accelerates in inertial space.    The results 
of the analysis will be expressions for the distributed loading 
functions denoted p ., p ^   p ..    These loading components are 
expressed in rotor coordinates. 

Consider Figure 12 which shows a portion of blade ds long, 
at the point s on the BRL.    The mass of this piece of blade is 
given by the expression 

dM ■ m(s) ds (281f) 

where m(s) is the blade mass distribution. 

Figure 13 shows ctM with associated vectors to be used for 
the subsequent inertial analysis.    The rotor axes are shown as 
they relate to the "hub" axes.    As discussed in the main body of 
this report, the hub axis system is defined with its origin co- 
incident with the rotor system origin and its z.   axis coincident 
with the 2 rotor axis,     jenerally, the hub axes will be fixed 
rigidly to a flight vehicle.    As far as the present problem is 
concerned, however, the hub axes are defined as above, with the 
further stipulation that the motion of x. » y., z.   in space is 

* The position vector r is defined in rotor coordinates as 
r - i x + Jy + KZ 
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*««»«i*;4#|i 

Figure 13.   Vectors for Inertlal Analyses 

given, and that the angle \|f (in Figure 13 ) is defined as a 
function of time. 

The vector, fl, in Figure 13 is the rotor speed, and is 
defined 

s.-fc -fi--- *h    dt 

where i,  j, K are rotor axis system unit vectors and i, , 
J. , K.   are hub axis system unit vectors. 

Newton's second law expresses the force on dM as 

d dfi ■ «(a8-) 

(285) 

(286) 

where the asterisk on the differentiation symbol indicates 
differentiation in the inertial axis system.    From inspection of 
Figure 13}    Eq. (286) becomes 

d^ = dM ( d^-    ,    d*2r 

dt4 dt' ) 
(287) 

The quantity 
dt' 

is assumed a known function to this problem. 

It will be available In components g , g , g In hub axis coordinates 

(x. , y., and z. in Figure 13). The z. rotation between the hub and 

■' or axes is •*< Then the components of —~2 in rotor axes, 
dt' 

from Inspection of Figure 13, are 
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• 

■i-   ■ 

d "R 
i (g   cos\i - g   simlO + J (g   •!»♦ + y   OOVjr) + kg (288) 2 ^x        '      «»y       Y/      0  vox        T      'y       Y'      "0z dt 

The Coriolis    theorem is derived in most works on classical 
mechanics (e.g. Reference h). Written as applicable to 
Figure 13, this theorem becomes 

 s— = r + ü)X (cüxr) + 2a)xr + cüxr (289) 
dt^ 

where the "dot" denotes differentiation with respect to time 
in rotor axes. The variable, ci), is the "spin" rate of rotor axes 
with respect to inertial axes. In conventional airplane notation^ 
the spin rate of hub axes would have components p, q, r. Since -k, fi 
is the rotor spin rate with respect to the hub axes, the spin rate 
of the rotor axes, co, AS given by the expression 

aj = ^p + 3hq + ^(r-fi) (290) 

The vector co can be expressed in rotor system coordinates by- 
resolution through the angle if.    The result is 

(X> = i (p cost - q •in*) + j1 (p sin\|r + q cos^) + ^ (r - fi)    (291) 

From Figure 12, one sees that r can be expressed in rotor 
coordinates as 

r = ix + Jy + kz (292) 

::qG.(288),   (289),  (291), and (292) can be processed by 
r.ethods of crdinar^vector calculus to produce an expanded 
expression for     d ^h       in rotor coordinates.    Knowing this 

dt2 

vector quantity,  the differential force d F.  of Eq.(287) can 
be determined.    Ilote that dF.  is the force on blade mass dM, applied 
by the blade structure in order to produce d^^h.      Taking the 

dt2 

D' Alembert approach of viewing mass accelerations as apparent 
forces, the force on the blade structure applied by the accelera- 
ting blade mass is -dF..    The components of -df./is are the 

"inertial"   distributed load functione *    , p ., and p ..    Expressed 
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In expanded form, these functions are 

Pxl(s,t) = - m(s) jgx cos* -A   sln\|/ + x-x (r-f2) 

+ rz (p cos* - q sin*)- 2y (r-fl) + z (p sin* + q 0Of\|r) 

- y (r-n)+ (p sin* + q cos*) [2z + y (p cos* - q sin^) 

- x (p sin* + q cos*)]j (293) 

p .(s^)  = -m(s)  }gx sin* + e   coa* + y - y (r-0)   + rz (p sin* 
• * * *      * 

+ q cos*) + 2x(r-n) - z (p cos* - q sin*) + x(r-n) 

- (p cos* - q sin*) [2z + y (p cos* - q sin*) 

- x(p sin* + q cos*)]} (29^) 

vAB,t) = - m(s)   jgz + z - x [(p-2fiq) sin* + (q + 2np) cos*] 

+ rx (p cos* - q sin*) -2>c(p sin* + q cos*) 

+ y [(p - 2nq)  cos* - (q + 2np) sin*l+ ry (p sin * 

* 2 2   i + q cos*) + 2y (p cos* - q sin*) - z (p   + q ) { (295) 

103 



II1.5 

This analysis is required to produce expressions for the 
distributed aerodynamic blade loading functions p , p , p . 
These distributed loading functions are vector coSfoneK%s oPthe 
aerodynamic loading referenced to rotor axes. 

The aerodynamic loading at a point on the BRL depends 
upon the velocity of air with respect to the blade at that 
point. To derive an expression for this velocity, consider 
Figure 13. Instead of space axes, envision the axis system 
attached to the air mass in the vicinity of the rotor hub. Then 
the velocity of the point s on the BRL, with respect to the local 
air mass, can be expressed as 

,* -     ,*-    ,* ^ 
d h     d R . d r 

(296) dt     dt     dt 

The quantity « ' ■ represents the translational airspeed 
of the hub axes (or rotor axes), and is given to this problem. 
If the components of velocity of the rotor hub axes with respect 
to the local air body eure denoted u , v , w , then 

o. cl 9. 

-Ir-  - ^h UA + *h ^ + ^ "A (W) 

Resolving this velocity into rotor coordinates, 

-äjS-   ^   t (u. cos^ - vA sin>lO + J (uA sinilf + vA cos^) + k wA 

(298) 
The rotational airspeed of the hub axes is also given to this 
problem.    Denote this airspeed   OJ^: 

<V   ^hPA + VA
+
VA (299) 

Eq. (299) resolves to rotor axes in exactly the same 
way Eq. (297) did, with pa, q^, ra, respectively substituted 
for u , v , w .    Noting that the rotational speed of rotor axes 
with I'espSct ^o hut axes is -Kfl, one writes the rotational airspeed 
of the rotor a, es as 

uL - 1  (pA OOff> - qA 8in\|f) + $ (pA sin\|f + qA cos*) + k (rA-n) 

Classical works on vector mechanics (Reference h) demonstrate that 
*. 

= f + ü). X r (300) 
lit A 

where again, the dot denotes .differentiation with respect to time in 
rotor axes. The quaRtitiefl r an-? S: X T are easily calculated. 
Combining the result of this calculation with Eq3.(296) and (297), 
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d*fi 
it    = ^ lUA 00B^ ' VA 8ini,f + x + z  ^A 8in^ + qA cos^:)~y ^rA~0M 

+ j   u.  8in\|f + v.  cos\|/ + y+ x (r.-Q) -s (p.  cosil- -  9   sirrlOj 

+ k   w    + z + y (p    eet^tf - q.  lint) •«  ''P.   sini,1'  t  q    cos4')J   (302) 

Eq. (302) gives the velocity of a point, s, on the RHL 
(noting that s specifies x(s), .v(s), z(s), z(s), etc) with respect-, 
to the local air body. 

Since airjoads are generated by an airfoil section at s, 
j Vi 

the velocity  j» must be expressed in ooordinates directly 
associated with the airfoil section, instead of rotor system 
coordinates. To do this, first define the "blade" axis system 
at s as follows: 

(a) The origin of the blade axes lies at s fpoint p 
of Figure 12). 

(b) The x. axis is tangent to the BP.L at s, and points 
generally toward the rotor hub. 

(c) The y, axis lies parallel to the nhord of the 
blade section at s. 

Define three angles, v, T, C,   to represent the three Eulerian 
coordinate rotations required to rotate the rotor axis system to 
a position parallel to the blade system. Then a transformation 
matrix T can be assembled, such that 

(vector expressed 
in blade 

coordinates ) 
- T (V, T, C) 

/vector expressed^ 
in rotor    j 

coordinates  / ( 
(303) 
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where 

COST   C08V COST ainv       | -linr 

slnC slnr cosv   -cos^   sinv I    slnC   sinr    sinv   -t-coiC   cosv    IslnC COST 

cosC sinr cosv   +Bln£   sinv I    cosC   alnr    sinv   -sinC   cosv    IcosC COST. 

(5010 

The angles v and T as applied to a rotor BRL will generally 
be small, representing the blade flapping and hunting angles 
respectively.    The angle Q will be somewhat larger, being approxi- 
mately equal to the blade feathering angle with respect to the rotor 
shaft normal plane.    The geometric relationships among the variabler 
T,  v and C in T, and the blade reference line coordinates x(s,t), 
y(8,t) and z(s,t) will be examined in Section I.    The remainder of 
the aerodynamic analysis requires only the definition of the rotor- 
to-blade axis system transformation Eq.   (303). 

If u , u    and u   denote the spanwise,  chordwise and normal- 
to-chordwise airspeeds at the airfoil section at s, then the T 
transformation matrix defined by   (303)can be used as follows: 

T V. (305) 

where V^ is the airspeed at s in rotor coordinates defined by 

Eq. (302). 
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In general, the aerodynamic forces on a blade element will be 
complicated, nonlinear    functions of u   and u , and functions of the 
characteristics of the airfoil sectionhjeing Sonsidered.    Here, say- 
functions fnand f   are available, such that c 

n n     n     c 

fc    .   fc (un, uc,s) 

(306) 

(307) 

where f   is the distributed aerodynamic force normal to the blade 
sectionnchordline and f    is the distributed aerodynamic force parallel 
to the blade section chSrdline. 

Figure Ik shows f ,f ,u.   and u   with the airfoil section at s. 
The section can be viewed as the facing end of a blade element of 
length ds.   Such an element develops the air forces as shown by the 
diagram. 

•MATT    ms*M. 
LAMS 

CHORDUNi 

Figure lh.      Aerodynamic Forces on Blade Elen.trnt. 

In the diagram, un and uc depict the velocity components of the air 
with respect to the section. 
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The transformation matrix T can be used to determine blade 
aerodynamic distributed loading functions p   , p     and p 

XGL       ys. ZGt 
In rotor coordinates. Taking advantage of the fact that, since T 
Is an Eulerlan transformation matrix, T" = T* (T (inverse) = 
T (transpose)), 

= TT I f 1 (308) 

The equations developed In this section are sufficient to 
define pxa, pya and p^, given ♦, uA, vA, wA, pA, qA, rA, x, y, z, 
v, T,  Q, 0 and suitable aerodynamic functions (306) and   (307)« 
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III. 6 SIMSLZmS AEHOOntAMZCS 

A linear lift coefficient function and a simple parabolic 
drag polar can be used in lieu of complex aero functions for f 
and f .    This simplified approach requires small angle-of-attack 
approximations. 

Figure 15.      Blade Element Aerodynamics for Small Angle-of-Attack. 

The airfoil section of Figure 15 has infinitesimal span ds.    It 
develops infinitesimal forces dL and dS. 

For small a, 

a   ■ u_ (309) 

V   =   u (310) 
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Assume a linear lift curve slope a, and a simple parabolic 
drag polar: 

ft) 
CL = aa - a   (-^ | (311) 

Gp  - &o +  0,0, +  52 a2 ^ bo + b}  [-^ 1   .   8 J-?  1 (312) 
ft) •-ft)' 

The distributed lift and drag forces are 

S   ''(^-' ■ (1-) v. "»> 

«■•■(v.,fr)..^) 
PC 2 

2      Uc 

2 (6ouc2 + 5lVC 
+ 52un2) (31U) 

Resolving these distributed forces to lie normal and parallel 
to the chord line 

fn • - L' COS a -D   tin o - - ^-f )vo "   ^(8oVo) - f W 

' ■ (H[(a + 5°) Vc + 6A2] (315) 

f    - L   sin a -D    uos a - a fe) u 2 . /£C VB u 2 + + 2\ 
\2 I   n       \ 2 J\ o Q Inc       2n/ 

(^ - a) un' + V/ + ^ V=] (316) 
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where the terra 
u 

u has been neglected« 

Eqs.(315) and(3l6) provide functions of the form (306) 
and (307) assuming simplified models for the aerodynamic lift 
and drag coefficients. 

III.7 TOTAL LOADS ON THE BRL 

The total loading on the blade comes from the summation of 
inertial and aerodynamic forces.    The components of this loading, 
in rotor axis coordinates, 

Px (s, t) 

Py    («.    t) rye.     Fyl 

Pz(a, t)«p2ft4psi 

(317) 

(318) 

(319) 
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III.8     BIADE MOnOH EQQATIOHS - THE WOBMAL MODE METHOD 

The    preceding sections of this part show derivations 
of the expressions for distributed loading on aerodynamic rotor 
blades.    If the blades are rigid (as can usually be assumed 
for most propellersi the BRL coordinates    in these 
expressions are only functions of s.    Since the time varying 
quality is removed from these coordinates due   to the rigid 
blade constraint,  rotor geometry defines the functions x(s), 
y(s), z(s) ande(s)» and no further analysis is required to 
determine these functions.    In this case, the distributed loading 
functions can be defined as soon as the aerodynamic and inertial 
motions of the rotor hub-axes are known. 

If the blades on an aerodynamic rotor are flexible (as in 
the case of hinged blades, or so called "rigid" rotors whose 
blades deform elastically to a significant degree), the BRL co- 
ordinates are functions of time, as well as the spatial coordinate 
s.    Determination of these coordinates   as functions of time (and, 
of course,  s) might be called the blade motion problem. 

References (3) and (5) show the application of the normal 
method to the problem of thin flexible beams moving under external, 
time varying distributed loading functions.    Both references 
address the one-dimensional beam motion problem, but the method 
is readily extendable to the multidimensional problem.    Discussion 
of such extension is deferred to a later section of this part. 

The salient features of the one-dimensional thin beam 
motion problem are presented now, in the notation of Reference 5. 
Figure 16 below shows the coordinates 

I<«), *(«) 

ricure 16.      CsordlmtM for Blade Motion Analysis. 

rMU wm* t— * <*• >mm* m4 urn mtmmX fMwtUn tfi.O. 
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If p(x.t)-0,  the beam will vibrate If disturbed  Pirow p«8t. 
Many methods are available for analyzing this   fr^p    iintion 
problem.    The results of these analyses show that the beam has an 
Infinite number o(   "normal modes" of vibration,  ^anti oceurrlog 
at a different frequency.    These frequency values nrf usually 
called the natural   frequencies of vibration, or th«   eigenvalues 
of the flexible b^am problem.    The eigenvalues    ^y^ runctlona of 
the beam's stiffness distribution El(x), mass dlsfcrlbutlon m fx)i 
and supports  (simply supporhed,   r-antllevered, et':.),     •   tuti'-Mon, 
♦i(x),  Is associated with each natural mode of vibraticm,     This 
function Is called the modeshape or   ei^enfunction  of bh«     i 'th 
normal mode of vibration.     It the beam is vibrating in  Its   j'th 
normal mode only, then the coordinate w(x,t)  la riven as 

w(x,t)  =K * (x)slri (a).t »   ") (^0) 

where oo. is the eigenvalue   associated with the  j'th normal mode, 
and K and 9 are arbitrary constants determined by the initial 
disturbance which started the motion. 

The normal mode method   is essentiall,,   a   funetional 
series  solution method for the  forced beam,     [lie  coordinate 
w(x,t) is expressed as a MriM In the modeshapes, and  a set of 
"generalized" or "normal" coordinates: 

n 
w(x,t)  -£     *,(y)v.(t) (321) 

1=1      i       > 
in the case of the continuous beaun,   n is infinite.    The ^enernliTiPd 
coordinate   Ty(t) specifies how much of the i'th eigenfunction   is 
Involved in the shape of the beam at time t.* 

References 3 and 5 show that the eigenfunctions are 
orthogonal with respect to the beam mass distribution, m<x^. 
This very important property Is expressed by the equation 

L 

/ (x) ♦1fx)*1(x)dx - 0 when 1 / .1 (322) 

This condition of orthogonality «ceountp  «or 
the nama   normal     as applied '-n the v1br«itlor rm. if»- 

Observe that  .^,(320) aorHe.-» only when »he hetj« ts rflrn* in. 
in Its J^th   «ode with no external'firturNif)-*.    l (.(V>l     '• 
the asiu—d funetlonel series solution for th» h^ar* a« It -«*•» 
unter any •paetfled est^mal eveltatlnr, 
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Son •■nsider the --ase when p(x.t) is nonzero.  \ partial 
dilTerentiai equation can le written In independent coordinates x 
^spaced and t (tiine^ Thi l'unctlonal series expression (320) is applied 
to the equation aa a change of coordinates.  Kssentlally. the 
normal eoordinatea, Tli(t), are substituted for the distributed 
coordinate w(x.t^. Uainr; the condition of orthogonality 
expressed by Eq.(322), ;.he infinite number of equations in the 
Infinite number of coordinates ^(t) are decoupled. The form of 
the decoupled equations Is 

o      N 

V^^V T-   r  |fl       (323)- 
where -p , M , and N are the normal coordinate, "generalized 
mass" and "generalized force" (respectively) associated with the r'th 
normal mode. The generalized mass is constant, and given by the 
expression L 

f 2 
Jm{x) M    = ym(x)*    (x)dx (32U) 

i      0 r 

The   'enerallzed force is   -iven as 

r       'O       T 
The normal mode method for caleuiatin.1: the motion of 

forced bear.j has been presented above, as it applies to one-dlaensional 
motion.    The method Is In no «my res^rluted t<> one-diffensiooal 
problems, and li easily extended to the D-di^ensional forced 
motion problem,     'In're VOTAB   onaiderr oal;/ »laie flepyln* motiai 
at the present tine,  the   multlcoordinate    ea^enalun of the modal 
method  li not pi*ecented nere.    If iM<*etsary. the extenalon can be 
made * > Include  inplane and «orsional blade -vde«.    Ihm nuafcer of 
nurr.il    coordinate     Is In-reased It' this la done, tut no th«o* 
re*l   .1   »r ppMllwl dl'fleulty restrict« VOTAB tc the staple 
,-t. -•::••.  Icr.- '   -«aje pre.tently incorporated,    Ksference 3 

cv *.,.o 'torral »oJc re-   oi can be ujed tc jtudy "lu*. er,    la «a 
■fit.alert* manner.    a~AI   •imll :e expended   wtth the «seo^aaytiv* 
n-tease 'n   «oe^ni'er 'l-e re^ulrsasnts^ to e%«i 'n lüde tWIe 

•"lu^er -»-l^a. 

lb!« Usw    XU M ««sUe*»! l-Ur. 
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III.9 QEWERAL COMMENTS ON 1HE NORMAL MODE METHOD 

In any praotieal solutlun,  a finite number of normal co- 
ordinates,   nj (t), munt be ßelected to represent  Tlexible tjod;, 
motion.    Usually,  the    coordinates associated vrith the lowest 
frequencies of the elastic  system are chosen.    The normal mode 
method is very practical for aerodynamic rotor blades,  because a 
minimal number of degrees-of-freedom (normal    coordinate.:) 
need be chosen to represent the significant characteristics of 
the blades.     (This  is particularly true when overall vehicle 
handling qualities and stability are beinr; considered). 
Experience has shown that the influence of blade motion on handling 
qualities is represented by the first flapping mode only.    For 
some stability augmentation schemes,  the first  Inplane i'or first 
"chord") mode may also  influence the stability and handlinr; 
qualities of an aircraft.    Higher frequency blade modes are 
important with regard to blade stability (flutter"1,  rotor 
stability and vibration considerations  (includin.: structural 
fatigue problems), but these modes seldom affect vehicle dynamics. 

Sometimes static torsional deflections of blades influence 
vehicle dynamics.    This is not due to a torsional vibration mode 
(since it is a itatic effect), so consideration of this 
phenomenon does not require the addition of another blade decree 
of freedom.    "Iliis issue is mentioned here to substantiate the 
claim made above    that higher order modes 'including the blade's 
first torsion node) seldom influence vehicle dynamics. 

The normal mode method has many advantages when used to 
study vehicle dynamics,    ftw followln,- considerations are appllcai le 
In this regard: 

1«)    The structural characteristics of the blades, and the 
influence of oentriftwal force»   are renrcentcj In ti.e 
modeehape ftnetlona, •1(x), and frequei.cies,    <.    it 
le eeny to Mummte «odliefttipes ar.u 'reomeno'c i if 
dmialled 8tn»**ural Information is  unavailstle  lor the 
*IVM    lei«.    Kor hin>*ed Haies, UN first nodes.-.'-pe «nd 
rrmqumm*} 'fV*r Wth •vjord wi tltppiu- •notion^   an he 
ietermlmei from blade reonetry.    Reference •- 

I e« an amten«! e •itula*' -. of -.-Je=    n»-   and 
WH—IM '«T pinned nnd i^nt!lever   earn.-!    rv*.tl 
and momrotatUw-)   ^r1•,   lint-.-!      %r.. !f.    T." iril 
«hara^t«rSetl<*e« and v!*i. *tp we! '/j*    BNH "   - 
•an   « a**i •*«   ••   -»««d •eM^.n,»s    f -»H«3'Te ■ - ■ i 
ramewtme« If 'Willed data ts uma -aflaxle. 

(h)      The 4..ivmi'$ «•'  a   et.lele ire usanll     jii'e Insenr • 
t|«e to errvra in estl»*e«l »«d*s- ypm runcrtlans« 
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Very primitive models can be used for these functions, 
while still achieving accurate results. It is only 
Important that the modeshape function be compatible 
with the mass distribution estimated. When estimating 
a modeshape function, use the mass distribution which 
will produce this shape. If Reference 6 is used to 
estimate modeshapes, this requirement is automatically 

(c)  Usually, very stringent rotor design criteria 
restrict the frequencies that a blade must possess. 
This is particularly true for the lower blade 
frequencies. Knowledge of these requirements makes 
it quite easy to estimate frequencies, even for 
undesigned rotors being studied for predeslgn 
evaluation. 

Some concern must be given to the function p(x,t) when 
the normal mode method is applied to aerodynamic rotors. Eq. (331) 
gives an expression for the generalized forcing function in 
terms of the distributed force. In the case of aerodynamic 
rotors, p(x,t) will contain all aerodynamic forcing effects, and 
most inertial forces. Certain terms in the inertial distributed 
loading functions refer to loads caused by BRL acceleration or 
position in the rotor axis system. The terms -my, + my(r-n)^ 
in Eq. (291+),and -mz in Eq. (295) are in this category. 
These terms are included in the equations used to perform the 
vibration analysis, leading to the determination of the eigen- 
values, Hi  and eigenfunctions, ♦i, for the "unloaded" BRL. 
The Influence of blade tension will also be Included in the 
vibration analysis. Since these terms are Included in the modeshapes 
and frequencies, they must be excluded from the distributed 
functions tnat are integrated to get the generalized forces. 

Considerable flexibility exists as to which Inertial (and 
possibly aerodynamic> forcing terms are to be Included in the vibration 
nnlysis (and thus excluded from the generalised forces)* Reference 5 

3hov • n con.*l'tn* coefficient damp la: term on the left ilde of 
•:?. (3231 (KT.(323) Irnllcj M:at 'he iamcing is included In the 
gen^nll^el force term,) When the modal analysis is applied to 
•m nerrvlynirl • vc^or, »he generalized force terns usually 
•cn'nla »ffec» lv^ .-Trlru', Ivi Ing and maaa terns (i.e., 
•^•» Influence ^f f,r. * and VP la present In the function Nr of 
U UT^, r-.e.te •«»rr.:rujunlly arnear with t is« varying co- 

•fn<»len*a or  'n ncnllnear formlatlons, which mekes It necessary 
•o n-lule •ec In the -eneraltzed ''.»r'e •er», instead of on the 
!*•••  it* of 'tie eiustlon. "xperlen^e '.-i • Jhoim that the 
tats»!-- ••rrs 7«n im  included in the *eneraltsed forces as 

• i-M ' Inte^retod ni—i t "illy, with no ob.enrable errors. 
• tea r. U v • i le as aan; sprln- and mass terse In the 
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I 
vibration analysis as practicable, however, excluding these terms 
from the generalized forces. (Of course this cannot be done 
if the terms are nonlinear or time varying). This is particularly 
true if very low levels of damping are available for one or more 
of the modes (e.g., the inplane mode on rotors vdth no Inplane 
dampers). 
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Hi.10       CALCULATING THL BLADL  KLFLKENCL LINE ANGLES AND C00KDINATLS 

The previous section; of thl^ part have presented the 
basic normal mode method for calculating blade motions.    The 
solutions of the modal equations,  in conjunction with the assumed 
modeshapes, eventually yield expressions for the blade reference 
line coordinates y(s,t)  and z(s,t).   As can be seen from inspection 
of the  inertial and aerodynamic loading expressions, the coordinate 
x(s,t)   is also required. 

The trans fonuation (303) can be used to derive the necessary 
expression  for x(f.,t),  and to relate the coordinates v and  1  to y(n,t) 
and z(att)t    Consider the differential length of blade 
reference line, ds, as denicted by Figure  12.   Since the blade 
axes   have their x,   axis tangent to the BRL 
at s,  the increment ds can be considered a vector pointed in the 
-x b direction.   The vector -ihds will have components l1 dx * ^ dy 
i it is in rotor axes, which are easily determined from  ßq.. (303). 

(326) 

or 

(:) ' (T) (327) 

'onvertiri:-   (327)to three scalar expressions using (30U) 

dx     - cos i cos  v da (328) 

iy     - cos i sin  \> Is (329) 

i::     - sin I ds (330) 
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The required expression for x is found by integrating 
Using ri as a dummy variable of integration on s: 

,.t,. -/ x(s,t) -^ - / cos T cos v dn (331) 

Eq.(330) yields the expression for T: 

sin T - dz/ds Ä z' (332) 

From the elementary trigonometric identity  sin  + cos'  = 1, 
the cos T function is seen to be 

cos T =^1 - z'2 (333) 

Combining (329) and(332), 

v = .y^l- sin v = - y/Wl - z'2 (331+) 

Again , from elementary trigonometry, 

cos v = t/1 - -1 75 (335) 
f    1 - z 

Eqs.(332) -(335) are exact expressions which can be used 
to find T (Eq.fäO'O in terms of the modal solutions y(s,t) 
and z(8,t). The angle C in (30U)is approximately the blade 
feathering angle (classically denoted -o), at the point s. 
8 is a function of blade twist (which makes 0 a function of s) 
and feathering hinge angle. If torsional deformation of the 
blade exists, o will also contain the state variables of the 
torsional dynamic nodes. 

Eq3.(333) and(339) can be used to eliminate COST and cosv 
fro« (335): 

4M) «.y ^i - s'2-y' 2 dn (336) 
o 

Eq.  (336)allows cosfutation of the blade reference line 
coordinate x(s,t) directly la teras of the aodal solutions 
y(s,t) end «(s,t).    '~i.(*36) is pcsslble, beceus? the BRL Us 
been assiaed instretehable   see Section B , 
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Time derivatives of x are required by both the inertial 
and the aerodynamic distributed loading expressions. These 
derivative functions can be evaluated directly from (336) by 
taking the time differentiation inside the integral to operate 
on the radical. Eq.(336) can be simplified considerably, 
since z' and y' are relatively small angles. The time differenti- 
ation of the approximated version of (336) is also much cleaner 
than If (336)18 used in its exact form. The process of simplifying 
(336)and than taking the time derivatives of x(s,t) is explained 
In Appendix I. 
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111.11   SHAFT LOAM 

The load components that are applied to the rotor shaft by 
a blade can be expressed in integral form.    These loads are caused 
by the presence of the distributed forcing sumnatlons (317)»  (318), 
(319). Expressed in rotor axis system coordinutcu,   these force and 

noment components are 

(r   ■{   "x4* (337) 

fr   •/% ds (338) 

/ K* (339) 

H_ 

4    [yPx - ZPy]d8 

/ [^Px-xPz]d• 

/ [xpy * ^x] d8 

(3'i< 

(3*11) 

(3U2) 

The integrals in Eqs.  (337)-(3^2) must be evaluated 
mnerieally.    The blade motion problem must be solved first to 
determine BRL coordinates   x,y,z used in   Eqs.  (337)-(3^2). 
Of course, these coordinates     must also be available before the 
dletributed forcing functions can be expressed in numerical 
torn. 
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Zf.l 

Thii part present« a co^lete Uttifig far tin NQBAB-B 
program, written In FORXRAH IV code. The program hat been run 
extensively on a Univac 1106 computer, typical ruas require 
1,2 minutes of central processor time, much of «hid) is used far 
the trim search iteration and input/output operations. Ho 
difficulty has been encountered with trim, even for such a 
complicated helicopter as the AH-^dA. 

MOBTAB-B requires approximately 42,000 floating point words 
of digital core, 10 minimise program development costs, core 
limits were not considered during the prograilng phase. As a 
result, many arrays presently incorporated in the code contain 
large blocks of seros. The wasted core space used to store such 
zero blocks can be eliminated by reprograoning seme basic matrix 
subroutines to handle special matrix configurations. This 
additional programming effort, plus other core saving measures, 
can be used to reduce the core required by MQ6TAB-B to an 
estimated sise of 2^,000-30,000 floating point words. 

In addition to the basic NQBIAB-B program described, the 
code shown below includes several special **convenienceN features: 

(a) The "repeat run" capability eliminates the need for 
submitting a complete aircraft description dock for 
each run, MOBT&B-B executions can be psrfoned 
sequentially, such that the first input data deck 
is a complete deck, while subsequent data decks 
include only the changes in input data required for 
each case, 

(b) Output options allow the MOBTA^B user to elect 
to print either all aircraft data stored in the 
computer, or Just the changes and the output for 
each case. 

(c) Input indices specify the peripheral unit numbers 
to be used for program input and output. 
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The NQB1AB jroggi drrtlopwat !• oontliminr %B (iescriici 
In the ■tiB tastf therefore, it la sucsMtod thet inteiain. 
UM» should oonteet the rathora to receive u|H>to-dete inforaatlon 
on the current etetue of the 
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IV.:.    LISTING OF NOBVtB 'B*  PROGRAM 

ITEM 
1. 
2. 
3. 

I« 
6. 
7. 
a, 

10. 

WT 
XC6 
VCf. 
zee 
TAS 

PSinoT 
PTCHRT 
'»OLLRT 
Mrnr 

CSPECI 
ITEM 
11. 
1?« 
13. 
14. 

LC 
NOPTRM 
IT 
QINRTA 

• 
• ITEM 
• 1. 
• 2. 
• 3. 
• 4. 
• ». 
• 6. 
• 7. 
• Ö. 
• 9. 
• 10. 

GROUP 2 

PK 
I NTS 
XEL 
VEL 
ZEL 
A 
IX 
JX 
X 
TE 

(RP.OATA) 
ITEM 
11. 
12. 
13. 
14. 
•15. 
1«. 
17. 
1H. 
19. 
20. 

WE 
VNOT 
PT 
PV 
PVDOT 
PF 
PTC 
TACPT 
WACPT 
RACPT 

21.   BDACPT 

THE ARRAYS SP AND RFO ARE Or.CUPYlNC THE /SPFC/ AND /REOATA/ 
COi^iCK' WECIOWF, IN MOST AB. THESE COMMON REGIONS ARE FILLED 
AS SHOW\ PELO». 

COMMOM/SPEC/WT.XCrvYCC.ZCG.TASiRHO.PSIDOT.PTCMRT.ROLLRT.HOOT^Ci 
1 N0PTRK.IT{A),QT\'PTA<3,3) 
COv.NQN/HEnATA/PK(?&n»n)iIMTS(10*8)»XEL(A)*YFL(8)iZEL(9)«A<6i6f8)i 

1 IX(bC0).JX(50n),X(500)iTF(6).WE<4e).VNOT(9)#PT.PViPVOOT,PF.PTC. 
2 TACPT,WACPT,HACPT.30ACPT 

DI^rNSlON NTEL(2d.2)fNr)IMS(29.2).Rl(7),NSlZE(3,2S.2) 

COMM0fJ/FPFC/SP<27)/RE
r)ATA/RE0C3964) 

COi-wON/rHYSr.S/FT«AKc:(250),IMTC<lO).NPK(8).NlNTS(e) 
CÜ'-iMCN/?Enür./MOXS 
COMMON/10/1^FP.!RYT.IRYTZ 

DATA UTEL(Ii/>)*Isl*2l)/l.200]*20M.2089,2097»2105»2393.2893f 
1 3393,i-'S,1^99,3947,3956,3957,3958.3959,39^0#3961»3962.3963»3964/ 
DATA (\PINS(I*1).IM*14)/12«0,1,2/ 
DATA (\;)riS(I.2).I«l*2l)/2*2i3«lf3*6*l*9*0/ 
DATA ((fJSI7F(I.J.l}.I*li3).J*1.14)/36«0.6.0*0i3.3i0/ 
DATA (<,.SIZr(I.J.2).I«l.3),J«1.21)/250.ö.0.10»8.0.8.0»0.8.0»0»8iO» 

1 0. A.fc, «»•»Od »0 »0,500.0.0« 500 »0.0» 6,0.0.48,0.0» 9.0.0.27»0/ 

DO Z1C 1*1,13 
NTELU.!)»! 
NTEL(14,l)ti9 
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REACC5,l0n)iaEr)iI«VT»IRYT7 
F0»VAT(7UP) 
REAPdSPO.iPO)  f'CASPS 
WRITE<IHYT2,11)  NCASES 
00  1000   ICASE*liNCASES 

WRITE(|RVTZ,10) 
READ<IRLD#inO>  NCHNGS.MSTOPT 
WR|TE(1«YT2,H)  NCHNGS.MSTOPT 
IF(NCH\r.S.EQ.O)GO TO 230 
00  225   ICNC«i*NCHNCS 

READ(IRED.IOO)  NGROUP,NITEM,NCHNÜM,I#J,K 
WRITEdRYTZ.lDNGROUP.NITEM.NCMNUM.I.J.K 
FORrUT(lX,7llO> 
F0HMITC1HI) 

CALCULATE  THE START POINT. 

NOir'*"DIrf&(NlTErt'NCROUP) 
NST«KTEl.(N|TEM#N6R0UP) 
IS«MS17M1.MITEM»MGR0UP) 
jSs^tSIZr (2tMITEM*NGR0liP) 
KS«\SUr(3»NlTE'1»NCR0UP) 
lF(MOl^,tr..l)  KST«NST*|-1      • 

lF(f!f)Ih.Efl.3> KST«»STMMj-l»MS*<K-l)MS»J8-l 

NAKJ   TU»   ftaMfH« 
NLirjE«0 
NEn«^ST*NCHMljM-l 
DO 300   I«NST|NFn 

INOFX«|-NST*l 
IF(IKDFX.LE.NLINE»7)  GO TO 270 
NLINfe«M ir.'E*! 
REAn(IKK0.1?0)(«1<J)tJ«l,7> 
WHnE(mVT2.l2>(Rr(J),j«l#7l 
FORMA TC7F10.ID) 
F0RMAT(lkf7Fl4.4) 
CONTINLP 
NCOL«INrEX-(NLlNt-l»«T 
IF(KCRCiiP.FO.l)  SP(t)>RI(NCOL) 
IF(NGRCWP.C0.2) REOCIURKNCOLI 
CONTINLE 
C0UT1NLE 
CONTINUE 
CALL HOSTABCWOPTI 

CONTINUE 
STOP 
ENO 



SUBlOüTlNt  H08TA8CISUHISI 

NOtTa 

CHOOULiR STABILITY Offt|ViT|Vf »fMt«A<ll 

Mm mmßnm 
h mmt* tß vtMicLi titNKNTt« ft o« rm* NOHI 

NTVPKII« TVPR Or  |«TM ilCf^NT» MMtl« 
t«L|rTIVC suttee 
»••»mV 

S«rt»xiHI tATM craxtHt tlfttttl 
4««Uin «OTO« 

HT^Uin *PWI Or  T|f •  I'TM UI-CitT CO^UTlffO« 
MAVf oriK ••iOf. 

KCtt.ii rw^pr« or ritfT fLtwiif l« TK C^iWjt^ 
coui-N.e. AMOCUUO üI»- wiao taw I. 

Kcn.ti TOT44. «v^r* or rcCMitift I* c Atooeuvto otf* 
ÄlHUrT ltr«f«iT i. 

en w*f« or rtOA? 1«* roinf PM«ftiflM ff ü Hm 
rot tiHMT? ui««*T I* 

%Httl|i *iin#o or ri^e rtl^» riOtn»!^ •! ■• *** 
99m At«c^« lUt^t 1. 

V«M» if w rootitt ifiMtin cvca« 

^tf»t% oM^rtf«f <Mf«ta« M ton* c**Mfot 



I |lilW3i;j«lW>.»«W»i.fff4l.i#Uil.W%«»ttl.M.^r.*«WT.W.MC. 

CVMaK^itOw«T/tOH|fV«t9mfd««l*tfV«0TC%t««t 

t   •»••••A*••«•*/ 

re«i*fiiB«aittl 

MHHM« 
Ml 

VHM 

iw «|t IM«! Mt« 
MI*t«*tMi#«|l^.ll •• ff tlf 

ff »H -••••^•i 
ittit •^•#«•1 



to fi^ ••i.* 

Cd >0«3.5l«.l|(.(|l 

CKCU.AH 0i«-ttt0 OUM?|fIt«, 

MVMI 

tr i*#At«.4o.ii co va tfV 
e« «/« it«i.o 
t»iti»*'iifii*evitP 
Mlj^l«.OCgjl«C>«CMt 

c»i.4 cc vstn««^«T*eoi 
CW4   T»wC^CVf»«^«T«t*«««t«ef«iMl|*CfM|«tYNtCVMI 

•-«• -.-w- —- - - M— JWfiJ 

f« «V »M^^ii 
M11**11 »•!• w t l^f tw» 
f.tl'i) 

•»|f|   tl—*•*• «#%^f« |9 fMft |« M rf«M. f«i«f|*0 

I« 



COfUTATIOfc. 

ircLsmt.*e.t) en TO m 

MtncinVfiti 
PtRNAfCtNII 
CALL M|fMlVT(l.|5üeR«) 
CONTINur 

irCtSTfSI.CO.D GC TO 97 

b*tn  T»r-SE*«CM »CSULTt V  ABdMCVIiTCO rO^NAT PO*  GENERAL INTO, 

WRITE(Z.fO)  NRi«S 
FOft'iATaol.'CFtFRAL T»l*(.ftEARCM DATA- RASS MO,SI» 
rO«:'ATflX#AS*/*ClV»l"f.9)) 
rO^ATC/tlV«*riF.X|RLE*9LAnf  nOTOR,     ELENtNT NO, ••12) 
wniTic/.fi) n^rcD.crocp.itt.LC» 
wiuc/.tn ooPcc2).(Tr(|)(|ti.fi 
im|TFI|9ft)  ROPf<3)tC«rC|J,l»1.A) 
MKITEII.91) o?rrc4i#ctocti9i«tt*) 
VN|Tfff««l) n^*rc»l*CR(tl.|«ttA) 
WNtTlClttl)  rorfC*I.IM(|t(|t1,A) 
lfN|TffC|f9l) C^«y)•«•>•<« I M«I.^CL> 
tf«|TtC7(fn nrrrm.cwfiti.tM.'MCL) 
MlUII.fll  OOnifKCtfCCtt.ttt.HCtL) 
IHi|T%C2.fn  0^f<IOI*CVtOCtlttlt»NKtL) 
MtlflClttl)  OAR»C|tl*CVAef|t#|tt«lMfll 
wMiua.fti oo^cifi«crocti9in*tMiLi 

oo t» sgM 
trcitfwtcjni.^c.ji to TO n 
MfTfCltMl jn 
MMlNTflt.JOl 
l«|TfC|«ttl OORrcUt*IMTAIf«jOI*l«t*«»» 

CO«T|Nyi 
CO%T|NWC 

INiftHllf oaAOitMT nmidf 

■PM 

mti««iH.o 



mm  fB|««MN »CSULTt  IK ABMfrVUTEO rOÄHlT rod 8CNf»AL  I^O. 

.-ITkC/.»1)   P0PtC2),(Tr(|).|«l|i) 

• «I TEC?,91)   O^T(4),(C9(2)#|SlfA) 
W»ITkC7.«l)   W» ('.»), (PU), i «1,6) 
WW|TE</.9l)   pnPFC6).l1TCf)#fil,6) 
ÜÜI?!!9!!! ^*fijn»nHtittn»i«iii WKfTK/.»!)  W?i*),(vf.ti)titit*iKn) 
**<tlktit9\)  OOPlC9),(HrCp,!«l,*.K15L) 

WMIT£C/,91) pePlCUIfC«AfC|l*t9|ffwrLl 
WWlTt(/.9J)  00»»Ml?),frOCf),Itl,NKF.L) 

00  9>  wf »LV 
ir(\TvoMjn),».F.i) r.o TO 9> 
W»!TEC/,»?)  jn 

MRITK/.Vi) '>OPr{i3),CB6T«Ct»JO).|tl,NRP) 
W»|TM7,9n OnrtdAJ.CHrTlOTCl.JOJ^I.l.NHPI 

cn-.TI-ci 

INITUtllC  CMAOII^JT  HAT^ICCÜ 

CO ««B   l»t.»OL 

• :    •u.wua.o 
•»t   'Mf.wMj.O 

M'w.v.kn to TO ot 
9€l|9«ilt8«9 
CM W» 

CncwtAH »-€ ^«ntr^T «ATKtert. nm, rtno CT. tT AM) HT, 



I 
00 310 Mt«* 
TMl)«Ti (I)*PT 
CM.L CC- TlLCTr.V^OTtC) 
CALL VpLCTV(T^.WMOT,S.Nnil»CT.SPMl,CI»HI»STM#CTH) 
CALL Kt«*llCS.SPHliCPWI,8TH#CTM.R) 
00 30« J»l.LC 
CTCj#I)«CCCj)-CfJ(J))/PT 
CO 3C7 J«1,A 
ST(j«n*(5t(J)-S0(J))/»T 
RT(JII)>(M(J)-ROCJ))/PT 
TE(l)«Tr(f)-PT 
CONTlMiE 

FIND f*\   äUT)  WVI 

DO 320 •«•l.M 
DO 319 l«l,4 
If?0«6«(K-l)*| 
vioc|Kc)«vin(iRn)*pv 
CALL FC«CF(K,?.VA0#VI0.VIOOT»C0iF.PK.|NTS) 
CALL WA^H(vAO»VlO#VlOOT»rn,y#X,IX#JX»A,MEX) 
DO 31ft L>]*6 
LR0»6«(K-1)*L 
FVKLRC. r^O>«<F(LRO)-F0(LRO))/PV 
DO 317 L»1.M<F.L 
WV|(LiIf»0>«(W(L)-WO(L))/PV 
VIO(IRC>»VIO(IRO)-PV 
CONTPibF. 

CALCULATE FVA AND WVA 

00 330 K«t*N 
00 329 I«1,A 
|Q0«6»(K-1)*I 
VA0(IHC)»VAn(^RO)*PV 
CALL rc^CF(K,2,VAO,V|n,VinOTiC0»F,PK,INTS) 
CALL WAnM(VAO*VlO*VIOnT*FO,WfX«lX*jX»A*NEX} 
00 32ft L"l»6 
L^C'^Mf-D^L 
FVA(LWC.I^C»»<F(LRO)-F0(LR0))/PV 
00 327 L«1»M<FL 
VVA(L»I*0)*(Vi(L)-WO(L>)'PV 
VA0(|RC)*VAO(lRa)-PV 
CONTINUE 

COMPUTF FC A\'n wc.  COyPUTF ELEMENTS OF F OMLV FOR THOSE VFHfCl F 
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UI|IMf l||-#T 
CONTIKUI 

WIHO fi\  AM) «VI \ 

00 320 *•%$* 
00 31t Ml«« 
I40a«»(ifi)«| 
vioci»vc»«vinci«o)*pv 
C*Ll   rC4CF(t((?*VAO*V|0«VtOOT*eO«rtPlC*tllTtl 
CALL   WAr.HCvAO.VlO.VIOOT.rO.W.M.IM.jX.A.Htll 
DO  31« L>1i« 
LR0«6«(K-t)«L 
^V|(L«Cir<0)«CF(L»Ol-rO<L«On/PV 
BO  317 L«l.k,<tL 
WVI(LipOyi(*(L)-WO(L))/PV 
VIC(I«C)»VIOCIRO)-PV 
CONTINUE- 

CALCULATE  FVA   AMD   WVA 

DO 330 K«liN 
00 329  111,6 
|R0i6MK-l)M 
VA0(lHC)»VlO(^RO)*PV 
CALL ror<CE(Ki2iVAO,VIQfV|nOT»C0iF*PlCf INTS) 
CALL   WAnH(VA0.V!0»V!DOT.F0,W,XiIX,jX,A.NEX) 
DO  32« L»l.6 
Lf?C«6«(K-t)*L 
FVA(LNCiI'<0)i<F(LRO)-F0<LP0)>/PV 
DO  327 L»l.NKFL 
WVA(LiI^O)«(W(L)-WO(L))/PV 
VAO(1WC)«VAO(IRO)-PV 
CONTINUE 

COMPUTE  FC  ANH  WC.     COMPUTE ELEMENTS  OF F  ONL^ FOR THOSE  VEHICLE 
COMPONENTS  AFFECTED  BY C{J). 

DO  3A0  J«1,LC 
CO(J)«CO<J)*PTC 
DO  338  i<«l,M 
IF(^(:(Kl2))33^»33«»33?■ 
lF(j.UT,NC(K.l).0R.J.f.E.<NC<Kil)*NC(K*2)))   GO TO 33« 
CALL  FCwCF:(K»?.VAO,VlP»VlhOTiC0iF»FK»INTS) 
DO  334  i.»1,6 
LkCift^tr-D^L 
FC(L^ü» J>«<r(LRO)-F0(LRn))/PTC 
C0^;T|r4Li 
CALL   ^A'-H(VAr#V/!0»VlDnT»Fn»W#X»fX»JX»A.NEX> 
DO  339  L«l^:«EL 
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• 

ft«» •# 

f9ltl«f#itl«9V     • 
CMX M«Mf«a«VI0ttfd9f*M*««l«|l«ii«i«lM» 

MCti«teiti«iv 
COMPUTf rvfoOf 410 rfVIOOf. 

irCliTi'üt.vr.ticO TO Hi 
CO MO «•!•«' 
DO 9** Mt** 
tRO«*Miftl*l 
vionTci»etafnmoT 
CALL  rC4CIU*f*VAO«¥|0«VtnOT«eO«rt*C»|NTt> 
CALL  -IhKlVA'J.VlO.VlO^T.rft.w.Jl.lM.jl.i,!««! 
DO 9ft» LM»A 
LHJQftlf'lHl 
fV|(.CTlLRO*f<»O)«(rCLOO)-rOCLll0n/PV00T 
DO 397 L«t*N«rL 
WVIIiOTCL»IHOI«(W(L)-«f»an/^VOOT 
VIOOTC|»0»»VfOOTCmf))«FVDOT 
CONTINUE 
COMTI*'ür 

TM£  CrtA^ltM MATäICCS A»E  AVAILADLK.    HO« lOLVf ^00 QT AND 0«. 

irasrrss.n.i) co ro ASO 
K«NKC«. 
CA(.'.   .nx^V(wr.,CT»VT»«r,Lr..6.4A,j2.4») 
CALL  MT<MPvCC.ST.WC»K.d.6.4A,6»4e) 
CALL   MTXfiPV(iVIiWC.V^.K»K»6   *4A,4f|t4A) 
CALL   MTVArf)CVW,VT.WV|.K»e.4A,4e»«JI»l) 
CALL   KTX^V(wr*PVA»rw.KtKtlC«4A»A|*4») 
CALL   MTXAPnCFW.WVA»VW»KiK.4Ä#4d«4e»l) 
DO  3«0   |»liK 
VW(I»l)«VW(I,n*1.0 
CALL  HAT|MV(VW*48iKf0FT«|ltANK) » •• 

|F(I«AN<.EO.K)  f.O TO 381 
WRITE(?IA30) nPT.IRANir 
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COMPUTE  FV|i)OT  AKO  rfVIOOT. 

|FClSTFS5.\r.l)r.O TO 341 
CO 360 Mt»* 
PO 3^9 \9lth 
IK0>6*(ir-l)*l 
vin'2Tciüc»«nvnoT 
CALL   FC )CE (<.2.VlO.V!C,V|noT.C0.f .P«C»|*ITI) 
C*t.l.   -AS^(«/AO.VlO.V|D«T.FO,rf#X.|X.jX»A.KCXl 
DO   3bH  |.«t*6 
LNO«Ä*Cr*tlH 
FVIi.CT(LH^.!r<o)«CF(L«0)-Fn(LRO))/PVDOT 
fO  IS/  i «l. IäFL 
kviinKL.iu ))«< ''CL)-wn(Ln/PvnoT 
VI^oKlvoitwinoTCIRD-PVOOT 

COMTP:.r 

INI 6RAMLNT MATRICES A«E AVAItABLK.  NOW SOLVE FOR OT ANO OW, 

|F(LST»SS.En.i) CO TO «50 
KSN<CL 
CALL MTX*««»V(WCiCT,VT,ir,LC.4.4«,l2.48) 
C«LL riT*Mrv(C.ST.WC.«C.6.6.««»6.4d» 
CALL MTxr«PV(4V|«WCttf«*<»Kf6 »A4.4«,4«) 
CALL MTv4ri)(v».VT.wVl.Ä.6.4A,48»4A,l) 
C/Ll KTX^,V(*F*»-VA.cw.K»K«K(4Af46*4F) 
CALL MTKAPP(Fw.»VA.VW.«.K.4a.4h,4A,l) 
PC 3H0 |«t«< 
WC ff l)BVV(If I)<»1.0 
CM.l. » AlI»VCWW.4li»K,0rT«|»A?'K) 

|rCl»'A\<.F3.<)   r.O  TO  3111 
•M|TL'C/*A30)  nFT*IH*Nir 
:o TC noc 
CO'.TI'Xfe 

CALL riTvMPv(FV|,wC*FU«K»K**«4A,4l»4S) • 
CALL tTvr.Pv(FC*CT.FVI*lC»Lr*6*49.12*48) 
CALL 'TVA^fXFVl.l-W.FC.K.f .4A#4A,4A,l) 
C/Ll "1» -''V(«r*» C»FVI.K.K.6.4»'»48.4«) 
CALl vT'a",.!(»r.FVl»VT,<(,«(,44.4l|«4A,2) 
C'Li. Vt/A:M(WT.   VI.FV|.<»A.4ll,4«»48.2) • 
Cai •TxM'YtV-».» V|»VT.<.<.A.4n,4*,4F) 
Ctl * ?*   PV(twA,VT,r»/!,<,ir,»St4rt,4Wt44| 
C..ci "I •."': (CV?.Fr,?T,<,f ,4'i.4n#4«,l ) 
C.^i i Ht*   PfC^VA»¥^*i4«K«tttft»8*«4t»«A| , 
r   3««b  ic»»i.* 

13» 



00 31(4 *CP«1*A 

00 3«*3 LC»,«l.i' 
TE^«Tf'P«r.(LCI'.JCP)*rT(LrPl<C^> 
fcT (JCP, K CP) ««IT C JCP. «CP) -Tf HP 

lF(|*UMr.FS.6) GC TO 1»? 
^ITF«7.<30> rP.T.IR«f,«f 
CO TC |3|| 
F0^iAT(//,l>f#»|NV|;O«:!O»| PLir.«.5X» •06TEHMINANT»».|U.4#»)C, 

. «RANKtSt?*//) 
CO'JTlNL'r 

CALL ^TlUnn(i.'ntkt*U.K.].4A,4«l4S9?) 
CALL ^T>tTV(ri.,W,V|.K.K.l,4A,46#4«) 
C/LL ^rxArn(ro,vi,F.<.i.4A,4»,4A,2) 
DO 3»» JCP«1.ä 
Hvicjc^)«e.n 
DO 3»3 LC»*«!.« 
RVl<JCP>»RvlCjCP)*G<LCn.JCP)«F(LCr) 
KV2(JCP)«f'Vl(JCP)-ttO(jcn) 
CALL MTXMPy(»T,WOT.4,6,l,A,6#il 

OT IS AVAILABLE  MO« TIVH Orf, 

CALL W7v^PvCVV.v..r.«f»«<,1,4i|,««t4|l) 
CALL HTVMPV(WMi,F»V!.*.<.l,44f4H,4») 
CALL KT<.vrv{r»tt.f ,f.ir,i,4l»,4H,4|l) 
CALL Ni44Pvciir»r*v«««*«*t«4^»o«#»i 
CALL KT«A'1DCVlt«'A«r.K*l«4P,44,4R#l) 
CALL *1Ty/PYCkVI.DT.Vl.K.«.l,4A,f,4||) 
CALL »Ui'K»>V(VT.rT.V^,^,»>,l,4A,*#4A) 
CALL KTX.vpv(AVA»VA»W,ir><ti(4S*4A>44) 
CALL ^Ty4nn(k,VI.VA(<.l,4At44>4nv|) 
CALL MT)r-:Py(FT.»^T.Vl.*.^#l,4A,6,44) 
CALL .iTXi*PY(WF,VI.Ä.K.K.1.4*,4H#4A) 
CALL "TyAno(>;«VA*vi«K*i*4ftt4a(4a#i) 
CALL   MTXADOC V| »F.nw.iC. 1*411 t4||f4Pt2) 

FIND HCOULl     OF CONVE'CtNCC* 

wcLOS«o.a 
TCLOSsQ.O 
iCLOS«0.0 
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FWSAT(//?IW.'INVERSION rUAC».»Xi»OgTEWaNT-.EU.*'»«' 

COMTI^jr 

CALL PTXinoU'OtWE»«»«»!»«»^«4*»?) 
CALL  KT»f^rY(rw.W.V|.lC»lCil.4A»4»i4ri) 
C*LL MrxArnCF0.V|fF.K.l.A«,4«,4«.2) 
CO  39b JC»»«1.A 
HVl(JC?)«3.'> 
HO 39J LC»»»l.K .  mmm 
RVl(JCP)«ftvHJCP>*C«LCP.jCP»«FCLCP) 
RV2(JCP)»i<VlCjCP)-«PCJCP) ^   4% 
C4LL  MTXyPY(^T.^V2t?T.*»6.1.•••••) 

OT   IS  474lLABLEt      ^04  riK* fth 

CALL MTXMPVCVW.W.F•«••<• t»4i,4at4il 
CALL MTirMPV<«WA»F»VI»«.»<»l»4ll.4ll|4i) 
CALL KTX«PtCrw.W.r.ir»iC.l#4ll.4ll#4l) 
CALL  MTX1lPVCWr»F»VA»iC.Ki|.4.'»»4«»4») 
CALL  MT<AnpCVl»wA.f•K»li4A.4Ä»4P»l) 
CALL MTX.<PVCWV|.0T.VJ.K.6.1»4*.A|4«) 
CALL  HTXM»»VCVT.nT.V4»<.A»l.4»#6»4i) 
CALL  MTX*PYUVA.VA.M.ir,<.l,4it4A»4*) 
CALL  MTXAnnCK.V|.VA.«C.1.4A,4il.4Ail) 
CALL MTy•U,YCFT.nT•Vl•*•*•l•A*•*•4*, 

C*LL ;-ITXi'PV(#T.V|.*.K.K»li4«»4H»4») 
C*LL MTKAnpCW.V*»V|.K.li44,4ll,4j.l) 
C4LL MTXA00CV!»P»n«!»«»l»4ll»4»»4A,2) 

FI\n MCOULI     CF COWE»CfeNCE. 

wr.LOS*o«a 
TCLOStr^.O 
BCLOStO.O 
bnCLCS»f».o 
CO 405  ICL«liNKEL 
nvptAB^cnw(ict)) 

•  »'CLOS^rLOS^TEKP 
00 404   !CL«l»4 
T^P«»BS(nTC|f.Ln 
TCLf5«KLfS*TM.r» 
r*: «o» iCL«i»f. m m 
IH .TVPi (ICi.).^L«3)C0 TO 40* 
n  »•HtA^S<l'<(3*.ICL>-W4VF(!CL)) 
li  o«r.«A»4';(n«37.lCL)-Pn8AvrC|CL)» 

KXtori« -fi. ^♦▼r-p.n 

1^6 



0DSAVE(!CL)«PK(37.ia» 

OETF.RVIK'E   IF  THK  PHOXIMITV TO A  TR|H SOLUTION  IS ACCEPTABLE.   OR  IF 
ANOTNER  ITE^TION CYCLE   I« ALLOWABLE.  AW Ti« THE PROPER i^T ION I 

IF(vaCS-WACPT)4l2,«i?,420 
IPCTCLCF-TACPT)413.4J3#4?0 
|P(r:CLCS-liACPT)4l«,414,420 
IF(«»0CLOS-MnACPT)43S# 435,420 
ir(KP4SS-N|TER)?7S*427v427 
WRITECPfT.10) 
MltT|ltRV?«4atl 

00Bl.,uJC|ijIX',AN ACCEPTABLE TR|M SOLUTION HAS NOT BEEN FOUND, •) 

PC|)«0.0 
DO «06 L«1#NKFL 
P(I)«P(I)«6CL*|)*F0(L> 
CONTlNtr 
CALL HEDRVT(2«ISUPRS) 
60 TO 1000 
CONTINUE 

LSTPSS«! 
NOXS'l 
CO TO 275 
CONTINLE 

«RITE INTERESTING ITENS. 

CALL RE0RVTC3.I8UPRS) 

HANIPOLATE GRADIENT ^TRICES TO GET STABILITY DERIVATIVE NATRICES. 

K'SKEL 
CALL  MTXMPV|WF,FVI.VW.K,K.K#4Af4S#4t) 

DO 71C   I«l.< 
FWCNI)«Fw(|fi)-i,o 
CALL  HTXMPVH,F.FVA,WV|,K#iC#K#4S.4S,4S) 
CALL  RTXADO(VVAikVIfVWfK#ic.4A.4S.4l.il 
00 7X5  1*1.IC 
VWM^navWf t.t^l.O 
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waiT|C|»VTc421i) 
rca ATc//,!«,.^ ACCL»TA»LC THIN tOLUTltH tat M»T «ffH rOUNO.M 

DC  *••  L>l*N<rL 
M||il>C|HtCi»|Hr8ltl 
tOKftNLC 
CALL Mp')4VT(2.|SU^IlS) 
cn TC loon 

A TM 1 SOLUflOK  IS «VMUftLE At Tl AND «t.MOCCIO TO r|NO TMt 
STABILITY  OF*fVAT|V*  ««ATRICFS. 

LSTi»SS«l 

CO TO 27» 
COMINLE 

WRITfc   r.TERFSTlK.6   |T|H|, 

CALL  RtnaVT<3.|Sü^W) 

KANIPULATC  CRAOIkNT MAT'lCit TO CCT iTABItlTV OCMlVATlVC lATfttCEt. 

K«NKEL 
CALL »-TXMPYCwr.rVI.Vl-.K.KfKiAi^Ai.Ail 
CALL MXAnnCWVI«VWt'tf*K«K*AS»4t«4t9i) 
03 71C I«l.< 
rwdiiMFvd.D-i.o 
CALL MTXVPVCwF,FVA,WVI.lC.lC.IC»Ai,M,«i> 
CALL ►TXAODC^VA.^Vt.VW^.If.AA.AA.Ai.l) 
CO 71> t«l.« 
VKCIi|)«V..(t(I)«l.O 
CALL   • ATIVvCVV.4|.,iC,DCTitRAV<l 
CALL   »tfjri#f|VI »ri»*VV|*K*K*K*4A*4$t4AI 
CALL  PTiC»PVCAWA.WV|.rw,if#iffK»4e.4A,4il 
CALL ^TyAPDCPwI,P«.#rfVl•«••(.Al»4»»4i,2) 
CALL  »'TyvPv(u»/J#CtFrf.<,<»6,4«#A«,A#) 
r^ m |tf#« 

f J(i».)«..- 
DO 'l^ LSI«4 

eo«Ttnuf 
C'ATlVU. 

run AT(///) 
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C«tL »tv-»*!**«* Vt*r«0<#tf A4tOtM94«| 
CAiL   ^Tk^VffVA^«*MV|c«ftf9<a40,««c4t| 
CALL '»T*A.a*3fVVtr.0T9tfVff »9«•«•«•«••«•94«9fI 
CAtt kTe»vcrv9e9i«vi««9<*«9«a9«4i94fti 

»SaiiC|cj}trtrATi|.ji*c(fl»«^lCt«j> 
COMlUf 
CONTIKU 

c*u nTy«»v<iif«rc*r«»<9«9i e*AA«4a9««i 
C*U ^««nrfru9yc*tfV|«<«tC«A«»4Af«t«|l 
CAU "ti.sPvcvv.kVI.r«,«.<,tC#«A,AA,4i| 
CALL  HTVt ^rirVA9fM9|fV|9C9tf9LC«A#9409«ai 
CALL ^TyAr>oirr9kV|9tä9K9i>C*A«*AA9Aff9ti 
00 ?3*  Ml.A 
00  737  JM.LC 
^Cft*JI«0.0 
00  7JA L«1.K 
FCC | • J)«AC( I • JK6(L« I »•r«Ctt Jl 
C0\T|f.U» 
CO*.TpilF 

M|ftit«vf«iai 
Ar»MATClMi#tir,^TAmLlTV 0(ft|¥AT|¥(8 HfTN HMfCT TO OWUu.   '. 

CALL »•krtVTH.lSlilM»«;! 

COtVf.PT  8TiiMlITV orAfVATivrS TO STAOlLltY AKft tnTl» COMOtNATCf 

uc8«so(i)«/rc«»^cM-vrc*8ncAi 
vccssnc ?i«Arc*Ki( A).|C6«80(AI 
wr.r,t8om*vrt«s'CA)-ircc«SO<5) 
Sr(^n«&.KT(iier.««2*vC6««^vC6««8) 
»PCL,S'ATCur.C»#?*WC5«»l> 
ircflwitfiif88if88«fii 
|FCi4rCL>7Aa.74li,7il 
CO^TlNül 
VH|T|(t4VT97«f) 
rOttHATC//«lXt*STAP|L|TV AVfS ARC UNOtriNtO BCCAUtf   •• 

i •Tiif riBTUL 8PF8n it zrnoM 



CH4.  "•••»«t^t•«€•»••<•«•• C««««««*««l 

tau. •^•«»«cv»«»f|*r«««««.tC*«ft«M9«|| 

er »it ^»t.. c 

Kit»^i«*cii«jmtt«t>««i»ct*wi 
covvrM 

•^'«▼ct^t.ii.WMiUTv at«tnTtnt «IVN «tt^icT TO OWUU S 

C*4.i  Hr«VfMcttuP«f| 

cf.¥i«T •▼«•tiirv ortivittvtt TO fTaitiTv iitt OTOTIH eooootNiTit 

i<etf8fiiveo*f9Cfi-vet*ooc*i 
vcctte i y i«aco«Mui*iet«fOf«• 

»♦ i»•*••- .«iTiiieft««i*vet**t«vce*«ti 

IMOPttRINOffiMii 

CC'TPHA 
^lllftMfftfOOl 
rr««ATl//9t«*'ftTAAIttTV A«|t AOC MOCriNfO OCCAUOf  •• 

i »r.« iiftTitt *«m tt iro«M 

ft9\T|fttf 
CU«CCC/^CL 
ITIM^IOO^PML 

»TC|»il«iCv 
OTtftlf CCfOIN 
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AtSC^Hif  Tl# fT.*tllt" Of«|VAT|«C TAANtn» »i»«!«. 

oo m IM«I 
00 »4  jat.l        • 
ifCt^liÖfCffJl 
|fC|f>9läf«i 
tTt|0*J*SlMTC|*JI 
STC|0.t)tvce*«TI|*3l-7CC*ftTCt«2l 
tTCtO«tl«ICt««TCt#l)*MC6*OTC|«3l 
STC tO«3l«KCe*0TC | »t l«VC6*0T< I • » > 
cotriHt* 

OOTAU THC VfMlCU  IKtOTU TIN10Ä TO tTAOILITV AXES. 

C*U MT)rKrvCIIT»4|NIITA*WVtS«3*S*«f9«40l 
CO 7*0  l»I.S 
CO W J«l.3 
PTCt«ji«iir(jft) 
IMftfM 
CAU HTicHf»virfr.rT»rw#3.3#3.4i,4Ä#4i) 

M|Tl  TU »CTiTCO   I^l«T|* TFN80« 

KMlTIClPVT.Tf) 
W»IT£(IovT,l3)(CFWCf#j).jti,3)»|«l,3) 
rofiM4Tc//tiy9*TMf INC«TI* TCNSO» EXPRESSED WITH RESPECT TO •• 

1 'STABILITY AXES-**/*S(/.10X.3Fl5«4)*/) 

ROTATE SUHILITV OE»|VAT|VE HATRICES TO STASILITV AXES, 

CALL MTXMPY($T,P8»FVI.6.6.6t*.4.4«> 
C«LL HTyMPV(ST*PSOOT»PVI0OT««t««S*«**f4S) 
CALL MTXKPy<8T,PC»FC#A»6#LCi*.6»48) 
CO 7A9 I«1.A 
CC 7*4 j«l,« 
Rr(t«J)«ST(j<I) 
OSNftKil 
CALL HTXMPy(FV|.RT.PS.4#6.6.4Ä,«,A) 
CALL KTy.MPV(rV|00T»RT.pSD0T«Sf«*S«48t8^«) 
DO 787 I«lf^ 
DO 74« J«1»LC 
PC(|*J)«FCU«J) 
CONTlNur 



it«l*i.llMtC««TI|at|.|CC*«TI|«2l 
«▼lt*l.?)t#r6«-TCtti).KCC««T(ta3l 

ÜUH   T»4  VfUlCtr   IKfBTU  U^SM TO STAttttTV  AXES. 

CO  7*0   |»J,^ 
ro n* j«t.3 
»T(|«JI«ttTCjt|) 
0OMftt3U 
CALL   VT*MPvfwr.PT.rw,3,3.3,4i,4A#48) 

«ft|f|   T^E  HOTAn.0   INt^TU   TFNSO« 

fc»«|T|ClwVT,7f) 
ywiTECl"VT.i3)C(FWCf.j).j«i,3).!tl.3) 
FOW .AT|//,1X,»TME   l%J£«T|A  TtN^O» EXPRESSED W|TM RESPECT  TO  •» 

1   'STAHILITV  AX£S->*/*3C/(10X*3Ft»i4)f/) 

ROTATE r.TAHiLiTv OL'IVATIVF MATRICES TO STABILITY AXES, 

CALL   MTXNIY(ST»rS»FVl.6t6.6.6,6#4A) 
CALL  HTyMrv(ST»PSrOT*FVtnnT*6*6iA»6»6(4«) 
CALL  MTXKPV(STiPC*FC*At6*LC«6tA«4S) 
CO  765   l«l,f. 
TG   7A4   j«l,ft 
Mr(|*J)«ST(jlI) 
COMftKS 
CALL   MTX*'» V(FV|IHT,OS.6I6.6.4«IA,6) 
CALL   KTi'vrv(rviP0T.RTtPS0f>T*6»6i6.4A»*,6) 
ro /67 !•!## 
rO  766   J»1,IC 
FC<|iJ)«Fr.(|#j) 
CO'.TlKur 

WHtn   ?Hi   STiPlLlTV   AXIS   ARRAYS. 

WKlTfeUrVT,?!) • 
FCW  ATClMl.'STAItlLlTY  nFR|VAT|VE8 W|TH  RESPECT  TO  •• 

1   »STAMI ITV   IXTS   (0!,<E^S|ft^AL).,) 
CALL   R|l «VT(4,Ir,LlPW<») 

PlJ\C^  T^t   STABILITY DFRIVATIVFS,   IKFhTlAS ANQ MISC.   TR|H   ITEMS, 

Fi'^.r.« Fi'^.r.« biO 
M »;r.H  *|P»CCPf(| *J)*J*l*A)t|aifA} 
rt%.cw rtiP,((r'f.»')T< I.J),J«I.'S).!«I.6) 
rr /»n I«I»A 

i4 a 



PliViCW MO»(rC(I»J).J»l#LC) 
ro «n i»i.5 
PUNCH t<in»(FJ(I«J)fJ«i(3} 
PUNCM flü»(S0( I).l»l»6).(TE.(J)»J«li6) 
F0«v!AT(6Fl?.4) 

PIVIDE TMKOUCH THE MATRICES BY THE MASS AND INERTIAS, 

0r'ASS«wT/3j.2 

PC 774 j«i,Lc 
lF(iir.T.3) r.n TO 77? 
IF(J,CT,6) r,0 TO 771 
PS(|.J>«PS(I,J)/nMASS 
PSOüT(I,J)«PSOOT CI.J)/QMASS 
PC(I*J)«PC(IiJ}/QMASS 
CO TC 774 
rONTlNijF 
IMJ.CT.«) no TO 773 
PS{I»J)«PS(I,J)/FW(1-3,1-1) 
PSOPT«I,J)»PSnOT(I,J)/FW( !-3i1-3) 
PC(l»J)«PC(I,J)/FW(l-3,I-3) 
COMTIIMA 
CONTINLT 

WHITE THE STAPILITY AVIS ARRAYS. 

W*ITECI«YT,22) 
F0KKAT(lHl,»8TAniLlTY DERIVATIVES WITH RESPECT TQ  •# 

1  'STABILITY AXES**/,iX,*(OIVlOED RY THE  INERTIAS).«) 
CALL REORYTUflSUPRS) 
CONTintE 
RETURN 
Ef'O 

1^ 



SUÜW0UTIN6  «EDRYTdPHASEiiSW) 

INTEGER RiW 
DI^EMSIOM CnLS(6,2),ELTYP(lA)lR0WS<6),CLABEL(«)»CITLE<20) 

COni'.Ofj/io/H.w 
CO^M0^J/STAanR/ST0(6.6,2),Pc(6,12) 
C0M^0fj/TITL^S/TlTLE(20,«) 
COvrPN/PHYSCS/PTRÄ\S{?5n),INTc(lO),NPK(8),NINTS(ll) 
COrMON/r0Lüv!S/C0(l2).SO(«)#R0(6)»VI0(48).VAO(4d),F0(48),WO<48>. 

1   P(ft)#UT(*),pW<4b) • 
COfiri0»J/P.HAD^X/FVA(4«i48).FVl(4fl,48).FC(48.12) 
C^rON/lM5tCb/Nr.(fl,?>.NTYPE(«»)»NTHRU(8),N,NPASS.   NOIRCT.NEX.NITE« 
CO^•;0^i/'■,^»Fc/WT,ycC.YCC.^Cf..TAS,RHO.PSIOOT.PTCHRT#ROLLRT.MOOT•UC• 

1   N0PTW»,IT(6),«INRTA(3,3) 
COMV,GM/'«LnHST/IO^IST»RgTA(5n#fl),PETADT(bO.H) 
C0r';:0N/MtnATA/PK(2b0.i»),|MTS<10,8),XEL<ft).YFL<B)»ZEL<8),A(6,6i8). 

1 IX(bao), JX(Sn0).X(«»0,3).TF(A),WE<48).VNOT(9),PT.PV.PVO0T,PF,PTC. 
2 TACPT,.*ACPT,PAr.PT.MOACPT 

DATA   r.LTYfV'LlFTp.'^C   «?U», «RFACE1»•   S 

1 »AEROrj'i'Y^AxiIS^C ROO»,»v», 
2 •RrTC'^•.•   (FLE'.^X.   RLS^AnERh», 
3 •RrTOR',«   (RICS'n  «LS'AOES)»/ 

CATA  «CAS/'X'.'Y'.'Z'.^LS'M'.'N»/ 
DATA  CLAÖEL/»C(      )».,C(      I»I»C(     )»#,C(      ),»,C(     )»»»C<      )•/ 
DATA CCLS/»   U   •••   v   »,»   y   »#i   P   ».i   o   i.t   R   », 

1   »U OOT»,»V OOT»,«W HOTS'P 0OT»#»O OOT«#»R DOT»/ 

60  T0(501,512.503.504),!OHASE 
CONTlNo* 

WRITE(^,10) 
00  12   ITITL«1.ä 
«EArn.tCaXCITLECp.HliJO) 
*^!TE<-.11)(CITLE(I)»I»1,?0) 
IF(!SlJ.PQ,l)   CO  TO  999 
FOR'-IATdOAA.lPAS) 
FOR*AT(1MI#IOA4I10A3) 
COa5AT(lXilPA4,10A3> 

IP<lSi.'.rr;.2) co Tp AQ? 
P€A'.<M,110)   N..vnPTRM.MO!RCTiNEXiN|TFR 
iunUaioicwwMittf itwi 
RLA^(HfuC)(MC(M).NC(t«2)«|alfN) 
"i:An(n,ilO)(lT(I).I>l»6) 
eoiTiNgr 



LC«n 
00 2  I«1#M 
LC«LC*\C(I.2) 

WRITE(Wi20}M 
FORMATdHO.^UKOER  OF  VEHICLE  ELEMENTS   (N)»*»I2»5X» ••• • 

1   13X#,^^0RMATI0N,#/»39X»,#»> 

WRITt(wi2l)N0PTRM 
FOaMAT(lX#»TRIM OPTION INDEX (NOPTRM)«•.12#iQX,»A. NOPTRM SPECS 

1 MFIES THE PRCCRAH*(/,1X.*(SEE INFORHATION-A)* •J9X» «•  VARfABS 
2 'LES REPRESENTtO BV THF»•/.39Xi••  INPUT QUANTITIES PTCMRT •» 
3 »(PITCH») 

WRITE(W.22)N0IRCT ' 
FORKATdXi «FLICHT DIRECTION (N0IRCT)>* * l2*10Xi ••  RATE) AND *• 

1 »POLLRT (ROLL RATE)-»./»IXi•(NOIRCT'O FOR F0RWARO,»17X.••••/• 
2 2X,»FLICHT OR 1 TOR BACKWARD FLICHT)•»SX«••*tl«X*•QUANTITIFS*•/« 

WRirS(WiSO) 
00 12 IT|TL«1.« 
REA0(R.100)(C1TLE(I)»I«1.20)1      * 
WRITE(-ill)(CITLE(I)#I«l»20) 
IF(ISU.FQ.I) CO TO 999 
F0RMAT(13A4.inA3) 
FORr/AT(lHl,10A4ilOA3) 
FüRMAT(lXfinA4.10A3) 

lF(lSU,rQ.2)   60 TO A02 
PEAn(Rilia)  NI\0PTR1*NDIRCTINEXINITER 
REAr}(R,110HNTYPt(I>#I«l#N) 
REAP(R,llO)(>JC(I#l).NC(I#2).I»l,N) 
RtAn(RiltO)(lT(I)«I«l»6) 
CONTIN^F 
FOR<lAT(PIiO) 

LC«0 
00 2  I«liN 
LC«LC^C(I»2) 

WRITE(Wi20)N 
FORMAT(1H0. »NUMBER OF VEHICLE ELEMENTS (N»** I2*9X» *•*• 

1 l3Xf•lKF0RMATI0N**/f39Xf*««) 

WRITE(wi21)NOPTRM 
FORriATdXf »TRIM OPTION INDEX (NOPTRM)«», I2»10X, »A. NOPTRM SPEC». 

1 »IFIES THE PROGRAM*•/«1X«»(SEE INFORMlT|ON-A)•.39X»••  VARIAR«, 
2 »LES RI-PRESENTtO BV THE»•/.39X.••  INPUT QUANTITIES PTCHRT », 
3 »(PITCH*) 



■ rnSiriTf tXi*rttCMT DIRECTION  CMOlRCTU**|2»iOX«(*      RATE»  AND  •» 
1 »PrtLLHT   CHOU   »iTO-'t/.lXtM^IRCT'O FO» FORWARD ».l?!, •••,/» 
2 2X, •FLIC^T  OR  I  FOR BACKVARO FLl6MT)**SX»'«««l*X*('HJANT|T|E8S/f 
3 3VX«*«**fki*VAlUC*tSXf•O^FlNfr) BV*./«1X»*KUMRER OF ELEMENTS  '• 
4 »TO nF. RFin INTO* .4X, ••• ,7X» •()?• ,10Xi «PTCHOT ANQS/itX* •THF •, 
* M'.UtFtfc^.'CF VELOCITY COUPLING» .4X. •••.5X. »NORThMMCX. «ROLLRT«» 

• 

wR|TL(kt23)vEX 
FrM'<AT(tX«*ruTR|X*X.   fNEXl«*•|2*2nx*   ••**/v3«X**«*t«X**l**   7Xi 

1 •T».|iT4  POT.  PM!   OOT«,/,iy,«4#J(|MlJM  ALLOWABLE  NlJUhER OF  TR|H«, 
2 6X,»«»,h)r#»?«,7X.»TH5TA  noT#PM 

• 
^WITE(»(74)r.lTFK 

• FCH^KIX.MHRATION CVCLFS   CKlTER)«**l2*liX*   •••••X»*3,«7Xt 
1 l%«^l»| nnv./^BX.^SRX.'ASTX.'O.RS/tUt'AlRCRAFT ELEMENT •» 
? 'S^lCIFiraTfrN-'.Tx.•••,/.39X»»»./,2X,»ELEME,«T TYPES M, 
J •fLlVFVT'.irv.••••/.2X»»NU^HF«  COOF«. «X. •TVPES12X, ••••/.3Xi 

4 MT)  (KTVPE(t))**20X«««S/«39X*««M 

CO ?t   t«l.K 

|l«FClf»4«Cx-l)*l 
IfirtMRftM 

. WI«|Tf.Ci«(27)t.NTYrrit)«CELTYP(jTYP)tjTYPa|llEC|N»|ENO) 
' FCR tlT(3X<l7|FX«|2*bX«4A»*lK*(**) 

or 3C I«I»K 
• fc"lMC.,3l)!.»C(I.l».*CCl.2> 
ft*  «T(«X«|2*tlx«|2*ltX«t9«7X«*«9) 
•XA V«tC*3 

Kiiitccii»|ei 
liR!TlC»«32)*uvT«»«C4%-tM ••T.i C 
Fn6^ATC4CX,«n.   T  HA«  •tit»1   EtC^TF,   TAXF*i FRO*«./.!«. •CEFINIT«, 

1 »IPR   C^   tWP ▼Kl/  IURi1^0^••*«.•••.JX.lt.« CANOIDATE ELERENTitt# 

2 *   !T<Il•./.l».•C0L^,*'*• T  CSfE   |^'Fn•►4T^CR•0>•• ••»•••      Nir>MRtS 
3 •   T»-f   rR'CIFIC  '.ll.«   PF   T^RF'./.SfX.»«       TO Rf l'SEO  lü T,  TMfS 
«  • rA*MnAT|»./.3RX.«»      9\j*f\1% t*** FRC« TMt  •.If•• «OVt«! 
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I 

wRIUf'tJ3) 
r(*r*T(?Ka*»tMr*TSilVt«VALUrSX4V#*«       or C«   AM) TMf  TMtrc   •• 

1 •FLlCl-T  VA^*./*4KfMNM»y«*OrSiAXt*«       UBLtS  TMfTA   OfTCM   •• 
2 •HJUS,./.5M.«TM5X.«IT»,!•«.••      AKLil» l»«l  (»OU CULf« S 
3 aAr.Ctf>S/*HS**«      AND V (SIOtSLI» VfLOCITVI.M 

00 35  |>if« 
Mtnc^fiftitttfcit 

ir(.riNCTit&tt>nittn 
• CCNTtur 

IM!» .«^.Jl  ft? »ft *51 

roNfiM|/ttli#«CO'iTROt COtUNN Ot't*|T|0* ICOt«^ Cl*    •• NCC|9|tf. 
i ••*•»*• or TK riot? iLi-s/*3ti.t«    •«•«? I** c At^oeiiU? .r-», 
}  *  Atf>*••/•?!# «IklMf MT        CitC  t*OM    till  ISTM*    •      C*4r»  •• 
3 *fl.rr|KT   |.«./«tli.*%UNftft«tO«t«MATtO*iH|| MATION-C)        •••/•»!• 
«   MStOKtVffClttlSftKttlCClttlSn*^*  MCCUfltTCTAL WM« tß  •• 
> •€ lu«S/*3fkt*«     •%•*« ro» AinVATT Uf-fM !••• 

Oft SO Ml.r. 
iH«incwtMitt»cci.ti*«cft«tt 

•CAtHC«) 
nnfoi 
wit|Tcu*iei 

rf»^TC4ci9«o. T ^L••It»0 tu«««ni fiwii wo»s/.i«.,eftf\r-. 
t •!<* C» ▼•# tMlH |VftAt|(K««ftI«*«Sll«tt«* CMOtf«n iti-fi.  . 
t • ttt|is/«t««'coii»«> t ttrr i%#«M»iT|ft%*oi**ft9C*«     M.^1 ti». 
1 • in terrific ••It»1 ftf T»4«rs/.jn.«»    ?f «• voio i% ?, t*», 
4 • C4»4»I04T# ••/•!•■•••      »t»1*^^ &** **t* Tt4  ••!>•• »fviM 

Wll|T|Crci9| 
f0i«»4TC?fttntfrr»T«.t1l.*«ii^«*«14»<*«       OT £•   4MI  fl#  ^«Ti   *• 

1   •rtlfttT ¥««••• •/•4|c*tll**tM»«01 • «IM«••       tAHft  f«4f4  Iftt'C"  *• 
/   H<4l»**/«»«**V**lH««|VStOB*9«       A»«i|tt  **\   ••fvw C\t4   •« 
1 ^.Cif IS/.SO»***      iV) v lit IKI' «ClOCt^t«*! 

oo n i«t«4 
kiitnik»9*if*tfcii 
roAKATC^I.Il.lM^tf.lOltU«! 

••T 



iri-.ri\OT}20l«20t«2Q» 
CO%T|Mr 
irC|»<>.»0.2l CO TO «09 
»tA'*Cft9|K)CVKQTCj)*Jn«*L*0T) 
cr%Tiur 
ki>tnut37) 
rc^'iTliHP,»V4t«Jlfc »0«  TMOiT  T.CAMOIDATC CtCütNTt ••»/.IXt 

1   NHÜ srucUO ro« T CMC  INTO^ATlOII      •••/•lÄ.MTfH 0>*   •• 
?   •TMCS^   ¥4lUtt #«  CONtTtA|*lTll •••/•iKt«ON TNI TllffM|llO   S 

Cr 3«  t«l«Mt»OT 
lfc|TCI»t3«) WOTItl • 

• rnifATiUtCift.«*!»*'*«) 

IMMI 
c« »«• UM 

Krvrtt»rvp((t) 
or ▼eiito«tn.f9e*f3oi9«T^t • 

CO^tlN.« 
KCIHi.l|9tl 00 TO^O« 
•C«M«ttOOHftfUI««tl«<M«ni 
C0^T|*JI' 
t«nru«ie)tTifu<ti«t»tMitNi 

rctitto 

^rtc*#tttif 
• €• *Tu.tl«*«f»<|Ctt CiflWT IM««  •fff«/! 

t*Ctli«l09fl CO tf •#« 



fOP».#T(ftX.«PfI t*««X.«THCTA LS^X.'PHI  L*«iOX«UWSitX*«SMS/f 
i Hi*«*«//.inc.*CHomsux.«coosm»*coiSioxi*co2*aox»'Aiici.os/* 
2 Hl<.4t//.6X.«C4P «AMMi«»  «X.'BWMOX.'UkNOA WS 
3 10X«*Ctf0MiX**CHAS/.Hl4.4t//) 

CO TC 2»0 

AcnnovkANic sopv iN»»üT/wmTr vmirv 

MVM| 
irC|ftU.rQ.2) 60 TO «0« 
IICAnCliflOOMT|TLt(K«n*«M*20l 
COTiTtNUC 
lrtt|TfCMtiOHTITUtlC«n«K«i«20l 

MIIMi 
NWSCIIaO 

■üHiMWi 
rOMMTC/tlX*«VfN|etl ItffWIlT NUMICII Mt«/I 

iriltU.Mttl 00 TO w 
llfADCII«)00MMCj*tl.J«i*i0l 

NMCtttM 
mietet i to % 

«•tTfUttlllf 
»O^tATC/.tX.iVfMietC CtCWNT «UMMR •9|t9/| 

IMlilMi.tl COT» Off 
•«Aolta9Mf«Hnrfj.tl#jt|9tfl 

PBMfiiPütü 

» »•J»,C2MI»»,C«4S/,HM.«.//I ^^^      * 



I 

4FM0ÜYKAKIC  BCHlV   IMPUT/HRITF  VF«IFY 

COM ULI 
iniMj.ru.?)   GO TO «OA 
»■T4-«N,100MT|TLt(K.I),iCti,20) 
(ONTINI.I 
w'MTP(w,iO)CT|TLLC«,|),Kti,?0) 

NINTSfpaO 

VH|T|fta,??ft)t 
fO«'4T(/.?X. »VEHICLE ELEHFNT NUMKR  Stf»/) 

ircfMi.m.2) r.o TO fQT 
«1 «r (Mt30n)f9ir(j.n(jtifiA) 
CONTlMf 

^lTl(tof277)(PK(j»|)tj«i#]i| 
fo« ATC»Xt«rsi  «STlff'TiCTA •••  fH.'^Ml  •••10X(Uf»*a2V**C0S/» 

i Hi4.«*//.tnv*<ct*.i?x(«r2**iixf«cvosiix»*cTi*tiix**cios/** 
? hfl4.4t//9 f«r.«CllSI2vt*iHMlX««CN0SitX.*CntMiX»*CN0S/i 
3 ^t<.«,//,  f«*«C\l*«/.l]4,4#//| 

uft TC i*iu 

ROT« rivT/aM|Tc vr^irv 

cr.fpv 
IKlSi ,i ft#f| r.r TO *0« 
•T«   Cltir^||T|1|irf<tpf<ai9}0l 

i* 



WPlTe(W«10)(T|TU(K«|)*K«l,20) 

NflCC|l«Ni 
miiftcti«) 

WRITF(w«23i)| 
FC^r iT(/.|X,»VtM»CLE   FLF^NT  NUMBEH* * |2«/) 

ir(isii.ru.?) r.o to AQ? 
PFAn(Mtnn)(|MTr.(J»|}tjr],3) 
COf.'TirtF 
WKITtCw,232)(lMS(J.I)tJ»l,3) 
fVMUAJ{lt,*\{lfW'fi cr »AOIAL STATIONS1 #!»•//• 

1 |l«*M|inM OT  A/IMIITMUL   TMT(6(tAT|Or* FLFHfeNTS   •• !?#//# 
2 at«HMtill (P POINT  fUSSF»   »,12,/) 

IFdSlt.f.Q.2) r.o TO Mft 
RLAr;(R#3nn)CPK<J.I).J«J.?n) 
CO\TI»»i;r 
Vfc|Tt(w,233)(I^CJ.I)tJ«l,20» 

• FOR: A1(7Xi,Oi>r;A*»llX«*«0Sl2X**HA*«17X« •HH« »9x.'OELTA  0»./, 
1 ^^.«•//.••«.•rUt*   l».«y»»0KLT4 a'.TX.'OELTA  3,.7X.»TM£TA   l». 
2 lOXf*K**/(«>fS4.4f//vfX,*KfUU. NSrx.^SHALt  A*«AX«*MI  RStX« 
3 *TflTA  *•,*%,*PHl   U*./*hri4.4#//.2X'**BLAnE  NATURAL ^ETA   0'« 
4 «X.'RETA f50T OS«X«*ReTA«tMXf*META DOT* #/*9X# •FWO«  0V6»#.3Xt 
»  MPSTfrATCL) CE»T|MATFO»    PkRTU*|UT|ON     •• 
4   •PtfcT|i»hATlOH,»/»«X,»oiFCA  CRIS  tXtMROE)**   •A#,»R00E>,#   «Xt 
7   »CrBl».   9)i.MM-«0>,./#5F14.4,/) 

WRITL(w»239) 
FC^ *AT(jÄ,T|STMimiTtO  «LAOF PROPERTIES-« ,//#4j(, »BLAOF» .42X, 

1 •Ft^M*./,3».'STATION       ftfSTRIRU-SSX*   'RAD|AL*f»X* * INITIAL1 • 
2 9X9

tFiAPPIVC*•/• AX. •NbNHFR TED MASS DISTANCE*»»»• ,5«APE«. 
3 »«•*r.c>'ESMArF*»>X>*CMORO*«/l 

•^StlNTMl,!) 
no "40 ««l.MRS 
tr«TART«4V#< 
irv«!?«*»' 
ircisu.ri.?) r.c TO *ii 
IN:AnCR9300MPir(j*|)*J«fSTART*|kM)»70) 
CC%T|f4if 
tiRlTrfwt237)K.CPRCj.I)»J«ISTART*IENn*2D) 
FORMAT C»X9I7#3X«Hl2.«) 
CONTINUE 

n 



I CONTINLF 
WHlTE<w,232)(|NTS(JtI).J«l,3) 
FüMMAT(iX(*^Hpi.R OF  »AOUL  STATIONS*• 12»//* 

1   IX.'Ml/iHF«  OF  AJIMIITMAL   IMTt6«*T|0r» R.FHfeNT8   ••|2«//* 
I   lX,»NOMf*Ea  OF POINT  14SSFS   ,»I2»/) 

|F(ISIMQ.2)   CO TO ^m 
PLA.(Rt3on)(PK(j«i)«j«i.2n) 
Cn*.Tlni.f 
v«lTk.(.,233){PK(J.I).J«1.20> 

• Fn^  tl(7Xi*O>1f:r,A*.liX(*P0,«l2X**BA**l2Xi*BB**9X«*OELTA  OS/. 
1   5kl<.4,//,sx.,rELTA   I».By,»DELTA 2*t7Xt*OELTA  3S7X»»THBTA  V, 
?  lOx.^'./.hFM.^./^.^X.^flALL  R**7X»*SHALL  A*«AX«*P8I  RStXi 
3 «Ti'LTA   R'.WX.'PHI   tt,./,«»ri4.4,//.2X»»BLAr>E  NATURit "ETA   0*, 
4 nx.'PFTi  COT  OSAX.^KTASAX.'META DOT» »/.»Xi »FRFQ.   OVERSSXi 
b   •CrtflWlDl (ESTIMATCI))     PfcRTUMBATlON     •• 
6 •pmTucH*Tl0f.,./»6X.»OMFr.4   (P)*f   ÖXiMHOE)**   9XfMRO0E>**   9Xf 
7 MPB)»,   9K.MK1D)*./«SF14.4I/) 

WPITL(WI239) 
* FC^iATnx^niSTHiRUTEO BLADE PROPERTIES-* «//f^X* •BLADE* •42X« 

1   *FthST**/.3Xf *!«TATtON       OtSTRIMU-**SXf   'PAOIAL'iSX» * INITIAL*» 
Z  •»Xt*FL/rrp;6*f/«4X.*NbMMFR TED MASS DISTANCE**9X. »SHAPE*• 
3 bÄ.'KCESHAPFSJJX,'CHORD*./) 

N»tRtt»f»ftftl 
DO  740  -«l.'jRr. 
|START«4V«I( 
irSM«l?«*ir 
iniSli.rQ,})   60 TO Alt 
PMi(«,300)CPK(j.|).J«iST4RT.lEN0.20) 

• HIT((w.237)K.CPk(J. |).JtlSTART.tENn.20) 
FO^ .41C3X.I7.3X.SE12.4) 
cr-.Tpfof 

r#nRfiiTtC9«ii 
|K(\PM)24Bf74%.244 
CPNTpiLt 
WPITMW,242) • 
FOP'ATC/.SX.«POINT MA8SFS-*.//.4X.*BLA0E*.42X»*FlRtT*./.3X. 

t   *SrAT|rN*.t7X.*RAniAL*i8Xc*|NtT|AL**9X«*FLAPP|Ne,»/«4X.*NlP«BiR*# 

I «x(*H.*us*.*.X*,ri^TANrE*lBX«*SM4PF*.8X.*NO0E8MAPE**/) 

pr ?4i; rt«ia*#M • 
|ST4i4T«l49#ft 
Ü*.  ■l7'*»< 
ircibi .fQ,?)   CO TO  412 
W» r (w. V,ri(p«Mj#|),JMST4RT,|FNn.lO) 
f'-.TlVi.» 



[ 

WW|TE(W,237)K.(PKCj,I),Jt!8T4RT.IEN0»10) 
CONTINUK 
CCMTIhUF. 

WR|TC(M,24«) 
FORMATC//) 

r.ONTlKUF. 

IF(lSU.t0.2)   f.0  TO A13 
REAn(R»l30)(XFt(|)*VEL(I)*2Fl(|)*I«l*N) 
RFAn<H,l3n)(((A(I.J.K),Jil.6».I«1.6>.K«l.N) 
FC)R.UT(«^10.0) 

REAn(P#140)(!X(I).JX(l),XM)i!«l»NEX) 
FORHAT(2(?|10*F10.0n 

NKEL*ft*v 

RLArt(R»l2P)(TE(J)*J«l*«) 
REAf)CM,l20)(wr<J>»J«l.MtfEL) 
REAntP,J20)"T.XCC»YrC.2CC.TA8.RM0.PSI0OT»RTCMRT 
Rt4nCP,120)K0LtRT.Hn0T.(<0IMRT4Cl.j).I«1.3).J»l»3) 

RFÄn(«.l20)PT.PV.PVnOT,PF,PTCiT4CPT»KACRT,BACRT.BOACRT 
FORMATfNFlQ.O) 
CMfMI 
WR|rC(Wi2!*) 
FOfcUTClMj.'CEOMETRiC LOCATION OT  TME ELENCNTS W|TH RESPECT TO  •• 

1   «Twt  CV».RAIL*t/*lX«,VEM|CLF  AXIS IVfTEM-* •//•«X* «ELEMENT* •/• 
2 4x**NU'n«rR*.i4x*>xsi3x#*vsi3x«*z*t/) 

PO 7*1  !»1.N 
WMinuf7*MOt,XCtCl)«VELCt)«2ELC|} 
FORnATCAXfl7tAX*3C14.4) 

VUtTElMf2«0) 
»ORnATC//XX.MNnRFERE»jrE V^LOCfTV CHARACTERISTIC AREA  •• 

1   •nATN|C£S-S/) 

00 ?•> Ml.»i 
WR|TkC»i#2*2HT|TLCCX.II.X«l.20).| 
FORNATC/.IX.1RA4./.1X.244.IX« »ELEMENT MMMR9«l>*/> 
llR|TE(W«2A«)(CA(J*«.|l#Xn*A).J«i««) 
rORMATClXtATtf««) 

m 



RFAn(M>l3n)(((A(I.J(t()*J«t.A)(I«1.6)*K«lfN) 

W^An<P,l<n)(|X(I).JK(!),XCl),!«i#NEX)     •' 
»0^ UT(2(?I1Q.F10.0)) Pv%V^ 

R» AM(bfi2P)(T((J)*JBl.ft) 
Ri A')CM,l2n)Ur(j)*J>l*M*tL) 
PL*r.cwti20)"T.XCC.yr6.2CC.TA5iRH0»rSIOOT.PTCMRT 

RrAn(H.l2n)l'T.PV.PV)0T,PF,PTC»TACRT.KlCRT.H/.CpT»B0ACRT 
m^r AT(NFlu.O) 
ttWHMI 

iMtfiCiitfHl 
frm.uT(lH].*crOM(TRtC LOCATION Of TME CLEM£MT8  «|TM RESPECT TO  •• 

j   «THC  CVfck*, LS/.IX.'VEWICLP AXIS SVSTCH-*.//»AX,«ELEMENT•,/• 
?   4X.*Mll'|irQ**l4X**X**l3Xt*VSl3X«*Z**/) 

rr. ?•»/ |Ri«rj 
. •'inu^hHM.xamtmcf )«ZFL<n 
Fa4:'AT(AK«l7*fX»>ri4,4| 

ifittfCClittttI 
10^   AT(//ly,«|MnRFERrNr.E   VF.LOCITV CHARACTERISTIC  AREA   S 

1 •••iTmCLS-«»/» 

C"'  V**   I«!.*. 
«MiTt(.,2A2MTITtrC<»!l.l(«l«20)iI 
F';K  AT(/(1X*1I«A4*/*SX»>A4>»X9«ECCREMT NUMHCRSl^t/) 
Mlftl <..^^»»M(«CjfiC.Il.«'«l.A),jtl,A) 
F   ^   A^(tX»AI 1?.4) 
^•«tfl t••2^^M•«lJ>•J«f j)9V(j)f J«t«M:Xt 
F^     AM   rMLM^L^^^VCI   VFLOCfTV rOUPtlHC  NATP|X0X-*«//flOX» 

2 *|*«Mk.,jSA«(*Xlt»jl*t//«CfXf|'«lOl«t9*(lt*4l) 

• -I^IC. t27r)Cj*T>.Cj)«Jt1**} 
r   .  ATC/.ii.MSM-tH^ »»fH COt»«^ »TFl-,#//»l4«»,IIOII HURIIR IpS 

. Itfl «••2T?) 
I   -   ATC/.!Ä.«iVrAH^   !SU^>-«^Cf  VftCClT^  CQIIINN !««}•••//• 

!  :«,,^..tf.''«,/fi».,filH>»:T,#/.?«.,hU^if«,»0.»iRiS fl.'WS t«. 



ISTAHTs*4»(I-l)*l 

WK|Tfe(W,^7S)|.(H'E(j)»J«ISTAHT.|FNP: 
F0R;;ATC^X.l?,2X.6ril.4) 

WRinCwf27>) 
FO^fATC   JM1#«T»|^PR0«>LFH nrFlNtTlOM-1 »//»^X» •C»OSS• .51X. 

i •ifU»TuL»./.7x.«wFir.MT»,inx,«xcr.».iix,,vcr.»iiix,«zcc,.iox, 
2   'SPfEPM 

WRITFCk,270 )WT,xcr..YcrM?cr..TAS,f>HO,PSlOOT.PTCMKT,ROLL,'T.MOOT 
r0H•AT(lX.bFl4.^,//,9X,•RM0••   BXt'PSI   noT«•7X»•PTrHRT»»ÄXt 

1   •ROLLRT»,   PX.'H npT*»/.Mi4,4(/) 

VK|UCW,27V)((0|MRTÄCj#K),K«1.3).Jtl.3) 
FORUTC   «X*MXX*»UXf*IXV**llX#*|XZ*.llX»MVX*fltX**|VVS 

1  /.H14,4»//»   fXt,|ViMlX.,|2XSUX.,|lV,»llX,MIZ,»/»<El4,4./) 

WR|TfCfc,2»»0»PT,rV.I»V0OT»Pr,PTC#TACf»T»WlCPT.h#tPT,hO4C»»T 
FOM'ATdX.'MiKCrUA'itrtllS  lTFM«-S//.7Xt«PFHTüR»,»7X#»PE»TUHB«#7X. 

1 •PrRTtPb,.7X.,PtPT«lfcV.7X,«PFRTüRH,./.lOX.«TM3X,,V,.UX, 
2 *V tOl**llX,*Ft«l3X»«c>*/Hi4t4#//.|x,«ACCFRT*.llX«,ACCEPTMXt 

3 ,ACCirT».ilX.*ACCtPTS/.10Xt»T».l3X.,WM2X.«ifTA»#7x.«llfTA DOT*» 
4 /•%rt4a4#/) 

CO TO 99« 
CO\T|Ntl 

FOK'.ATCmo.lX.HfTpATfD AMD CO**UTC0  VARIARLC  CXU*««**• /• 2«• 
1 •Rn«S/.7x.*»*r«*.«X»*C0*<   9X#*TC*.  9X»*tOS  9X.«II0S  9X.«P  •, 
2 9X»«n7S/l 

i»(LC.6T.^nrKP«LC 
DO 31»  IMttMiP 
|rft.r.T.#)c'> TO )t3 
">ini««M«4|*CQCtl*T9Ct|tt0C|)««0C|l«N|l«ft?«tl 
FO«-AlC7lt|^«2X.*rit*4| 
00 TO lift 
Minut3t«M*e*ci} 
ülfiiM 

i«tnu«>toi 

t •«*•. 9i««»«*t •••Mrtr*ii«9«MS tB**ro*t/i 



»•*« 'r «»•»««*«••• t A^u« ic*«* ACIi* ••a»MHii»r»n)ui »flCMKi |NCH.LNI »MOO' 
ro«»AT(lXibFl4.4,//,9X,«RM0S   SXt'PSI  DOT«#7X»•PTCM^T1.8X, 

1   »ROLLRT»,   9X.»H  OOT* •/.$1^14,4,/) 

VWITl(K.27V)«(QINRTACj,K).K«li3).J«l»3) 
FCHUTC   VX.MXX'.llX.MXYMlX.MXZ'.llX.MVXMlXtMVV» 

1   /.■»E14.4«//,   9x.*IV/MlX.*IZX*illX.MZV**llX.MZZS/*4Ei4a4f/) 

WRtTH**2f>0H*T,rV.pWDOT*PFaPTC*TACPT*WACPT»ftACPT(RO4CPT 
FnwAT(lK,"nscrLl.A,Jt'>liS   |TrMS-».//.7x.«PFKTURB,f7X.»PERTimB,»7X. 

1 •Pr«TLKb,.7X.,P£PT«»fc^«,7X,»PrRTURh,./.lOX.,TM3X.,V,»llX. 
2 *V tOI MIX, •r**l3X**c*i/^14t4(//f«X«*ACCrPT**lX*«ACCEPT* «tX« 
3 *ACCIPT* «MX» * ACCEPT* ./t IPX* •T**13Xt*WS12X*«HFTAS7X* •BETA DOT*» 
4 /.*F14,4,/) 

CO TO 99« 
CO\Tlruc 

WRlTECVtllO) 
FO«-.ATCIHO,IX.*ESTHAT|0 AND COMPUTED VARlAHK COLUMNS** «/»fX« 

I •RnM*l/(9Xt*N0«
,««X**C0«* 9X«*T|*9 fX»*M

,t 9X.*R0S fX**p *• 
?  9X»«CT*,/I 

itm»t 
|F(LC.6T.A)IENO«LC 
00 31»  |«l.!fcNP 
ir(t*r.r.A)60 TO 313 
wRIU(M|3l4M*C0Ct).T|Ct)fS0C|MI0C1)*PC|}*OTM> 
F0R*-ATCn*t?«2X*ftrii«4) 
60 TO 31» 
wRtnu*3i4ii.cftci) 
MNfftM 

wRinu.su) 
. f9«  ATf/.lK.*VEH|eLf'•/•|X(*iLfi*<lilT**/«fX«*NUMifll**3X»*0lf*«   W, 
t «MES 9x**if0'« »«••vtosix.'vAO*. fx.*ro*»/> 

00 310 Iti.H 
IfTtMCftm 
||f)«t9T«» • 
^i»tCk.3i4M.«nviji»miji.i«oiji»vio«ji.V40cji,roia>»j«iST,iiD> 
re«**ATc9it   if«/«uw9icti.4il 

• «•|T|C.9tttl   • 
9'*  At|/.li.*ftOTOll «tAOf  *OTtO* NlfTOHirt-*./!. 

CO W«   |t|»» 
IM »»»iiK.M.Bier TO if« 
• 4»»T»t«i;,ti 



CUP8I «3*0. O/QMS 
NAP»MS*1 

URin(w«3;3)(T|TlCCKfI).IC>1.20) 
FOPMAT(/.IX.^A4,/.IX.2A4./,21X.»PSI,.IOX. »BETA»f»Xt»BETA OOT»./. 

1  Jliy»MnECRrE8)**4X»*CRA0tANt)S«XfMRA0/SEC)'*/) 

DO 327 jaif^AP 
QJAVSJ 
PSlnEC»rELPS|»(Oj4<-1.0) 
VR|TECh.324)P8I0EC.BETACj.I)tRETA0T<Ji|) 
FORMAT(lCX,Pl5.2.2El5.4) 

IMtMi 
yR|n(ki330)NPARS 
FORMAT(//IX.'KUMRER OF  ITERATION CYCLES  **17«/) 

CO  70 999 
• CONTlNtF 

kRITECW.SH) 
FORMATClHl.'CO^TRIBUTlONi BV THC   INfJlVlOUAL VEHICLE CONPONEKlTt   •• 

1 «TO TK   FVA PATR|X.»./#3X#»CFVA   It THE  AE«0OVWAHIC  VELOCITY  •» 
2 •FORCING PATRIX)*/) 

00 3*2  lilff 
|ST«B«(|M)n 
|rtl«t81«> 
|FCl*r.|.9.A't0.l«^**)  CO TO 397 
VR|TBUa35») 
COST I MT. 

VRlTEU.SSBHTITLEKtDtiCalitR)«! 
F0ftl*ATC/«3x*l7A4*/»SX*3A4»i0X«*(VEHICLE ELSPC^T NUNISR^Ut•)••/• 

1  t2X«'LA*«   •Xt'VAS   fVt*WAS   fX«*PA'*  fX#»OA».   »X.'RAM 

00 3*0  J«IST,INT 
LbLSs^IST#l 

• UR|TE(U(3Al)Rni«K(LBLS)#(FVA(Jit()*K«|ST«lW)> 
F0R»'AT«5X.A1.«E11.4» 

• CONTlNtE 

ttl|TEU«3«>) 
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1 «TO T^F Fwf MATRIX. ••/•SV.MFVI IR TMF INPRTIAI VFI OCtTY •• 
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ÜMNip 

it«/tu!*tc«it«cn*n^i 
C^t|t4J 
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TMtiOrofKfi 
CCfc*)00tC0*0 

COKTlMif 

tlHuC 

iriHOvi.io.ii 00 TO 00 
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i9tct%Vi.tf.a»i a^cotn 
CMWM 

Atfi»«4l9t«a00M 
CUlV»ttt»fCt»#ltHf^l 
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tri*nAuC|i.ftf.tl ta ff it 

C •'» «I *4 CtM?A%T ««ft |\t|t^Ct «t» m fi« at?« tt*f IM. 

PMft 

Mtiti 
t« te ••!•• t 

K« w:t^c^9ti 
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I f^t|#%ti»#t«#f|.f>9ff|#Mr<9f^i#i#«#r.M.#^9 
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Iti*«#f,f«.yi M 1« «ft 

CH>  t«f|»iI •«vt«*vf••**•«•*«•••*I 
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fi^s M i^i«» • ü ••••v im.ti A«O HA« fMt «itULT mit. 
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i*iMt«?Mfyoit/ofn«i ■MM 
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SUBROUTIML VELCTY(T#VNOT,S#NDIHCT»5PHl»CPHl ,8TH»CTH> 

THE INOCX NPPTRM INDICATES WHICH VARIABLES A«F. REPRESENTED BY THE 
CIVF.N CUANTITIFS PTCHRT AND ROLl.RT 

NOPT«M        OUANTITIFS RtPRESENTFD BY PTCHRT AND ROLLRT 

1 TMETADi PMIO 
. V THETADi P 

3 0»PHID 
4 0» P 

NDlRCT«n TO« FO^WARO FLICHT AND 1 FOR BACKWARD FLICHT. 

DI Mf NSI «N T (6 )»VNOT (9)#SJ-F(3)iS{6) 

CO'lfOM/FPrc/^T.XCCYC^, ZCC» TAS»RHOiPSIOOT» PTCHRT,ROLLRT»HOOT#LC» 
1 N0PTRh:,IT(6),0INRTA(3,3) 

DETrRrilN.E   THETAi   PHI   AND  V, 

IF(r.jDIRCT.Ef>,0)  QOIRCT«l,0 
lF(\OlKCT.En.l>nDIRCT«-l,0 
JNOT»LC-3 
DO   10   I«li3 
MFL«LC*4-I 
DO   b   Jil#ft 
IF(!T(7»J).ME.NFLJ   GO TO 5 
SE-F.(I)«T(7-j) 
GO   TC   10 
CONTIM.F 
SLF(I)«VNOT(JNOT) 
JMOT»J\nT-l 
CONTlNul- 
V«SFE(l) 
PHI«SFE(2> 
THtTAtJirpcj) 

TFST   TC  SH   IF   TMETA   IS  W|TMlM PLUS OR  MINUS  «0  DECREES. 

1* 



ATHiAbS(THfcTA) 
IMATN-I,?700)22b.2?0l220 
CTVi5ir,'.(l.!>700#THFTA) 
TMtTAtCTV 
DO 223  J9\,6 
IF(fT<j),NF.LC*l>  CO TO 223 
T(J)"Thr.TA 
CONT1MLK 
WPITl(6«224) 
F0RVAT(/,1X#»VELCTY  HAD  TO CHANCE   THE  VALUE  OF   THETA  BECAUSE   •# 

1   MT  WAS  OUT  OF  THE  PLUS  OR  MINUS  90  DECREE LIMIT»,/) 
COMTlMUfc 

TEST Tf.  SEF   IF PHI   IS WITHIN PLUS  OR MINUS 90 DECREES. 

APMiAiJS(PHI) 
|FUPH-I.57)233I230I230 
CmSlCNId.STtPHI) 
PHI»CTV ' 
DO 233 J«l*6 
IF(!T(J),ME.IC*2) CO TO 233 
NEL«LC*4-I 
00 5  Jilift 
IF(|T(7-J),NE,NFL> CO TO 5 
SEF.(I)«T(7-j) 
GO TO 10 
CONTINUE 
SU:n)«\'NOT(JN0T) 
JM0T«JM)T-1 
CONTINUE 
vsrid) 
PHI«SFD(2) 
THtTA«StE(3) 

TLSr TO SEE IF THETA IS WITHIN PLUS OR MINUS 90 DECREES. 

ATHtAhSCTHETA) 
IM ATM-1, »»700)2251220#220 
CTVt5lG,:(l.b700#THFTA) 
THLTA«CTV 
CO ?23 j»t,6 
IF(lT(j).SF.LC4l) RO TO 223 
T(J)«ThrTA 
CONTlMCf- 
^ITt(6,22«) 
FM AT(/,JX,tVELCTV HAD TO CHANCE THf VALUE OP THETA BECAUSE • 

lca!?r*u 0tT 0r ™E PLÜS ftR M,NU8 90 0"REE :fM;?sJ,BECAUSE   ' 
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UST   TC  SF-.F   IF  PHI   IS  WITHIN  PLUS  OR  MINUS  90 DECREES. 

APHiAfiS(PHI) 
IFUPM-l.57)23ei230i230 

i  CTViSlG'M(l.57»   i^I) 
pHitcn 
DO  ?33  J«l#A 
IF{lT(j),^6.iC*2)  CO TO 233 
T(J)«PM 

i co.Mp.'ur 
^rviTE(6i234> 
F0^^T(/#1X,»VELCTY HAD TO CHANCE THE VALUE OP PHI  BECAUSE   *% 

1   MT WAS  OUT OF THE  PLUS OR MINUS 90 DEGREE LIMITS/) 
•  CO\TI%F 

CALCUUATC   SlMrS  AMP  COSINES  OF  THETA   AND  PHI, 

SPHI^SIMPHI) 
CPMliCCf'(PMl) 
STM«5lN(ThETA) 
CTM«COS(THfT4) 

SET UiV AMD W TO ZERO IF THE SPEED IS ZERO (CASE 1). 

THE TEST FCR EQUALITY BETWEEN NON-INTECERS MAY NOT BE MEANINCFULi 
IFdAS.M.O.O) GO TO ?45 
uso.o 
vso.o 
w = 0.0 • 
CO TC 450 
CONTU'UF 

CALCULATE U»V AND W DIRECTLY AS FUNCTIONS OF HDOT, PHI AND THETA» 
IF THE SPEEOtWOOT (CASE 2), 

AHO«AHS(MncT) 
ir(AMLi-TAS)?50.?47,250 
UsSTM»K";OT 
V«-SPHI»CTH»MPOT 
W«-CFHI»CTH«MDCT 
CO   TO  450 
COMTIMr 

COMPUTE C  4».0 R-SOUAREO. 

»PCc«S3PT(TAS»«2-«r^T««?) 
C* C V*SPMm TM«»^OT ) /«^CL 
BSGr»CP.4|»«?*C$PMl«ST-)»«? 

• 
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OtTpSMIM WMRTM^R THIS IS CASH 3 OR 4 (OEPENDlNf. ON THE 
REUATIVF. SIZES OF C-SQLURFO AND R-SOUAREO). 

IF<C«»2.CT.RS00> 60 TO ?75 

COMPUTE CCY AMD SCYi LFAVTNG V UNALTERED (CASE 3), 

RDCL2"ÜMRCT#SQPT<RRÖ0-C«n»2> 
CCY«CR0CL2«CPHl*C#SPWI«STH)/RSQ0 
SCVi(-C«CPHl*R0CL2»SPHl«STH)/«S0D 
GO TO 290 

COMPUTE CCY AND SCY WITH THE REQUIREMENT TO CHANGE THE GIVEN VALUE 
OF V (CASE 4). 

»• 
CONTINUE ' 
CAPR>SQRT(RSaC) 

ire:-: -TA«^i'br.r^r.psn 

i t-si ..; •CTW«»,^C
,
T 

• «-:
S
-;*C**'«^DCT 

CO TO 450 .« 
CONTINUE r\^ 

COMPUTE C AND R-SQUAREDt ^ * 
* 

»nCL»SQRT(TAS»»2-HD0T«t?) 
C«(V*SPHl«CTH<»HnOT)/ROCL 
RSQDBCPHl»«2*(SPHI«STM)»t2 

OLTCRMINE WHETHER THIS IS CASE 3 OR 4 (DEPENDING ON THE 
RELATIVE SIZES OF C-SOUARED AND R-SOUAREO>. 

IF(C«»2.6T,RS00> GO TO 27* 

COMPUTE CCY AMD SCY. LEAVING V UNALTERED (CASE 3), 
• ■ 

R0CL2*(MIRCT«S0PT(RSQ0-C«<»2> 
CCY««<P0CL2»CPH|*C«SPH|#STH)/R890 
SCV»4-C«CPH|4RnCL2«SPHt«STH)/HSQD 
GO TO 290 

COMPUTE CCY AND fCY WITH THE REQUIREMENT TO CHANGE  THE GIVEN VALUE 
OF  V  (CASE  41. 
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CAPwisr^TCRsar?) 
CriWCTtCAPR 
CrVr(c«SPhI«STM)/RSQD 
Sr.Yt-(C«CPHM/»f»OD 

COMPUTF U.v ^^0 W FOR CASES 3 OR 4, 

CCMTINUE 
U«(CTH»CCY)«RnCL*(STH)«wnOT 
V»(rPHl»STh»CCV-CPMl»!5CV)»RnCL-(SPHl»CTH)*HD0T 
K=(c;^HltKcv*CPHI»STH»rcV)»RnCL-{CPHI«CTH>«HDOT 
CO'.TlriUF. 

PfcTtRKIK't  p  Q   A^;D  K, 

IFtfiOkT^M.tfj.S.CR.N'OPTRM.PQ^lQtPTCHRT 
lM')ÜWM.L^,?.0«.NnPTRM,FQl4)PtRriLLRT •     ' 

ir(N0PTRM.Fn.l,0R.vnPTRM,F0,3>p.R0LLRT-PS!D0T«STH 

^M;r;rToT':rTiiG.osPHNn;cR^o,2,o,PTcHRT,cPH,*ps'o3T*c™-s,'H> 

S(2)«V 
S(3)»W 
5(4)»? • 
S(b)*f; 

PFTURN 
END 
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SUBROUTINE CCWTRLd,VNOT,C) 

DIMENSION T(ft)#VN0T(9),C(12) 

COMf;OK/SPtC/WTiXCC»YCO#ZCC#TASiRHOiPSlDOTiPTCMRT#R0LL«T,HOOT#LCi 
I  N0PTRMIIT{A)I«INRTA(3,3> 

FILL  CUT  THF  COI'TROL  COLUMN, 

JNOm 
DO  lb   I>liLC 
DO  *   J«l»6 
|F(r1(y)«Nfi«|)  CO TO  < 
C<I)»T(J) 
CO  TO  14 
CCNTINUF 
C<I)«Vf.Ol(jN0T) • 
JNOT'JNOT+l 
CONTlMLt 
CONTINUF 
RbTl^.J 
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SUBROUTINt WASH(VA,VI,viOOTiF,W.X,|X,JX,l,NEX) 

DIMENSION  VA(4ft)iVI(4«),VIOOT<40),F(48),W(4R) 
OlSrNSlON  X(500)»IX(500)»JX(500)»A(<Si6,8)»DC48) 

C0K.M0N/IM)FrS/NC(fl»2)»NTVPE(»)iNTHRU<8>,N»NPASS#   NOIRCT»NEX,NITER 
CO«MO^■/SPEC/wT,XCClrCG|7CC#TAS|RHOlPSlOOT»PTCHRT»ROLLRT»HOOT,LC# 

1 N0PT»y,IT(6),0INRTA(3,3) 

NILW•4•^ 
DO 2 ««liNEL'J • 
WUMO.O 
PACT«1,0/(2.0»RHO) 
CO  10   I*liN 

A^r.«VA<l\f)E*l>»»2*VA(lN0E*2)«»2*VI(INOE*3)»«2 
VATtS'^T(ARr,> 
DO  b  j«lih 

o<Nj)»n,o 
TMfe   TfST   Po«  FQUALITV BFTWEFN  NON-INTEGERS  MAV  NOT  BE  MEANINGFULt 

IF"(VAT,E.3.0.0)   GO  TO  5 
00  4   K«l,6 

D(^J)«C{NJ)-(A(J»KII>»F(NK)»FACT)/VAT 
CONTINUE 
C0\TI\LE 
DO ?0  LEXtl.MEX # 
IMXdtX) 
JSJX(LEX) 
FACTGPt«X(LEX) 
N(|)t»*( I >*FACTOR«D{J) 
RFTURM 
END 
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»üet.0UTINEFeEMO(S.8PHI,epHI(JTH,CTH,FRaD) 
DIMENSION $(»),FROoi*) 

»"Ä/^f./?:i?Slfr?S;,,f,'Ta',,M6'M,MT'"«'*T."«.WT.Hoor.te. 
0M4S8iWT/32.2 
i;"-SJl)*;s(5)#ZCG-M6).VCG> 
VCCiS(2)f(S(6)#XCC-S<4  •zrc) 
wcc.s(3).<s(4).ycc-s(5).x2cCcC) 
OCG«S(») 
RCG>S(«} 

SÄ 

0MCf;RMltPcf;-T3«PCG 
QNCGf'«T2»Pcr.-Tl«aCC 
FR0D(i),xf(r,!?3n 
Möo(2)tfC(:M«n 

RETURN 
END 
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8UBR0UTINF FORCMK»NOPT.VA»V|#VIOOT»CiFR»PK#INT») 

IF NOPT.l.RF.TUPN ALL MEW ELEMFNT8 OF ?«• i^.IJ0^'2,' Jf^JSLV 

ELEMENTS FR(6K-5) TO FR<fK). K IS TwE ELEMENT SEQUENCE NUMBERi 

DIMENSION VA(4ö>,Vl(4«),VlDOT<4«),C(12)iFR(4e) 
DIMENSION PK(25ni8),lMTS(lO#»> 

COMMOfi/PHVSCS/P(250)»lNTG(lO)iMPK(e>;NINTSj«) 
COMMON/!NnEr.S/NC(H,?),NTVPE(»)iNTHRU(8)»NiNPASS»   NOlRCT.NEXiNlTER 
CüM'.CN/MLnM'»T/IOHlST,BRTA(50#f«)iBETAOT(50»8) 

COl^OfJ/nEMUi'./NHXS 

lF<,.CPT.t3,'/i)f.ü TO 5b0 
DO  47»»   MliN 
MFAUf'iM MI) 
NMi<l»MNTS(I) 

DO  V*   I^AflilirFAPP 
p(|rAR)«PK(lFAR«|) 
IPC'FA«! )27i29,?7 
CONTHUJt 
DO ?8 jFARtliNFAkl 
lNTcCJFA«>«INTS(JFARil) 
CONTINUE        • 
lF(rTYPMI)-2)25,50,75 
CALL LIFT(I.VAiC»FR) 
GO TO 4^0 
CALL  MCOYd.VAiFR) 
CO   TO   4rjO 
CALL  WCTOWC l.M0F5T.VA»VI#VIOOT»CiFR) 
CON-TIMiF 
DO   '•'-»*    IFARal.N'FAPP 
PK( IFAR.I JsPdFAR) 
ICOiFAfJl )4b7,47^1457 
CONTlNUf 
DO   4^fl   jFAn«l.KFARl «v^ 
ISTS( JF A« • I ) ■ INITC( JPAP) •A«^ 
COMINUK 
CO  TO  l?Cn 
COVTlNL'fr 
NFAWP»\PK(K) 
^;FAr-'l»^I^Ts(•') 
CO  ^26   |88R«1»KF8PP 
P(1PAW)«PK(1FAS.K) 
IFCF4«I)f?7,f29,«27 
COSTlNtF 

^ 
^ 

f%Q ̂  
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lMTr;(JFAfi()iINTS(JFAPiK> 

IF{''JTYPK(K)-2)6?5,6!50»675 
CALL   LIFT(K.VAiC#F«) 
60 TC moo 
CALL  l«CnY(K#VA»FH) 
CÜ TC  IO0P 
CALL KCTOCCKtNOPTiVliVliVTOOTfCiFR) 
COMTINUF 
PO 7*6   IFAR«l.K'FARP 
PK(lFAH,K>tP(IFAR> 
IF{»iFAM:)757,1200#757 
CONTINUE 
DO 75Ä JFAR»l»MrA«I 
INTS<JFAR,K)t|NTG<JFAR> 
COMIUUF. 
CALL MC» vn#vA#m   • 
60 TO  4b0 
CALL RCT0tt(liW0PT,VA»VI,Vin0T,CiFR) 
CONTINUE 
HO 4^6   IFARil.N'FAPP 
PK(!FARiI)iP(IFAR> 
IP(I(FARI)467,47«>,457 
CONTlNUf 
no on JF-AF.«I,KFARI 
riT;i(JFAR,I)«INTC(JFAR) 
COMTlNUfc 
CO TO  1200 
CONTINUE 
NFARP«MPK(K) 
f;FAr^»M\Tö(K) 
CO (».26  IFAR»I»KFAPP 
P(IFAH)«PK(11AR»K> 
IF(|.FaRI)6?7,629,627 
CONTINUF 
fO  A?'J   JFAHil.MFARl 
IMTf;(JF/.rOtINTS(JFAR»K) 
COivTlNU'. 
IK \!rYPK(K)-2)6?5,650,679 
CALL   Llf-'T(K»VA#f.:#FM) 
GO  TC  mCHJ 
CALL   liCnY(K.VA,FH) 
GO TO moo 
CALL.  HCT0R(K#N0PT»V4»V|iVtDnTiC#FR> 
Cr'>iTIMUF: 
P'l   7&6   If-AWil.MFARP 
PK(tFAM«lO«f»(tFAl|} 
IF(NFAMI)7b7,l?nfl»757 
CONflNtt 
HO   7är   jFAR«l*K'Am 
INT5(JFA«,K)«UJTC<JFAR> 
C0\TlNUt 
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SUBROUTINE MTXAOOCA.B.C.NR.NC»NROlM*.NRO|MB.NROIMC.NCOOE) 

THIS MATRIX AOPlTlON SUBROUTINE ADOS OR SUBTRACTS B TO OR FROM A 
TO vILLO C. PROCESS IS ADDITION IF NCOOF IS 1« SUBTRACTION A-BaC 
OCCURS FOR NiCOOM?. 

OIMFKSION   A(NROIMA,NC)*8(NROIMB*NC)«C(NR0lMCiNC) 
IFtMCOUr.FQ.DCO TO 10 
00 5 in.*« 
00  4  JB1I\C 
C(I«J)sA(l*J)-B(I*J) 
CONTUJCt 
CO  TO 20 
CONTIMlC 
CO  l!»   I»liNR 
00  14  J«1»NC 
C<IiJ)»A(I,J)*B<ItJ) • 
CONTINUr. 
CONTIM;F. 
RLTUMN 
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SUBROUTINE MTXMPVC   A  •  4  •  C  •  MR*  •   NCA  •  NCB  •   NROIMA   •   N'ROIMB 
1   i   MHOI^C   ) 
»•••••••••••••••••••••••••♦•••••••♦••••••••••••••••••••••••••#•••#4 

UTRIX KULTIPLICATION 

A( MRA * MCA ) • B( MCA • NCB ) «  C( NRA « NCR > 

THIS MATRIX MULTIPLV SUBROUTIME IS A GENERAL RQl'TlME  AND 
COKPUTRS THE VtCTHR INNER-PRODUCT ACCUMULATIQMS IN 
OCUntt PRECISION. 

REAL  A( NHPIHA * NCA ) » p( MRDIHR » NCB ) » C( NROIMC * NCB ) 
DOUHIE PRFCISIO^ TEMP 

DO 10 I « 1» KRA 
DO 10 J « 1I NCR 
TLMP ■ 0,0 . 
DO b K " 1« NCA 
TtMP ■ TE^P ♦ A<I»K) • B(Ki J) 
Cdi J) « TFMP 
eewiNu 
RETURN 
END 
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SUBROUTINL K.AT riV ( A. MA, N, OETi IRANK) 

THIS suwRnuTi^E INVERTS THF N BV N MATRIX A AND STORES THIS INVERSE 
IN THE SAME STORAGE LOCATION ORIGINALLY OCCUPIED OY THE ORIGINAL 
MATRIX A.  \A IS THE DIMENSION FOR A SPF.CIFIEü IN THE MAIN 

PROGRAM.   THE PARAMETERS N» NA# 4NO THE MATRIX A MUST ÜF 
STECIFICC PPrnUE THE SUSROlJTr'E IS CALLED.  SUBROUTINE MATINV 
RFTUNiiS 7,«E QPTFP«'ip4ANT QF THF MATRIX (PET). AND TMC RANK OF THE 
MATRIX IRAN«.. 

DIMfNSlON 
DLT«i. 
IHANK«C 

A(25ü0)»U(S0)iC<!>U)ilROW(5n)»ICOL<5ü} 

LOCATE PIVOTAL ELFMENT 

DO 1500 K»1,N 
IMAX'O, 
KMliK-1 
NM1«N-X 
DO 1050 J«KM1,NM1 
|Js.J»MA*K 
DO iCbl   MKIM 
/HCsA(IJ)«A(IJ) 

IF(ARC-AMAX) 1050I1050I1040 
AMAVSART, 
lR0w(K)t| 
ICCL (K)«J*3, 
IJ»IJ*1 
1F(AMAX-I.F-20) 
DFTsn, 
IR0W<K)»K 
IC0L(K )XK 
CO TO 3^02 

i06n,ioAOiiioo 
« 

I0VE   MAXIMUM   FLFMFNT   TO PIVOTAL   POSITION 

IRAti 
ir(! 
DF.Ti 
KKJs 

KJSK 
CO    I 
Tt rv 
A(KK 

A<<J 
KKJ 

|<«IKA^<*1 
RC,*(K>-K)   1110,12P0.Ilia 
-DET 
mcco 
ibr.J«I#N 
SA(KKJ) 
J)«A(KJJ 
>«TrMP 
«"j^NA 

^ 
^ 
^ 

ACV %\S 
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Kjsk j*r./\ 
ir(!COL(K >-K)  i?io tl300»12in 
DtT«-r;LT 
1KKS{IC'>L(K'>-1)«NA 
IKSCK-D.'JA 
DO  l2bG   I«l,N 
IKKslKKfl 
IKSIK*]. 
TF.MP«A( IKK) 
A(IKK)SA(IK) 
A( iK)«Tr.Mn 

tnucr PIVOTAL «ow AND COLUMN 

KK=(K-l)«Ma*K 
TEVPS»A{KK) 
DET«Dt;T*TF,"iP 
DU   14PC   JsllN 

JKS(K-l)•^A*J 
KJ«{J-1)*MA«K 
IF(J-K)   I3b0»l3l0»l35n 
B(J)«1./TEMP 
C(J)"1. 

•OV1   MAXpUJN  FLE^NT TO PIVOTAL POSITION 

IHANK«IMANK*1 
IF(lROW(K)-K) lllD,l2P0illin 
DETt-DET 
KKJ*IHC'.'(K) 
KJSK 

DO U»C. J«1.N 
Tt^PBA<Kr.J) 
A(KKj)tA(Kj) 
A(Kj)«TrMP 
KKjsuKj^r.'A 

ir(icoi..<K)-K) i?in.i3no»i?in 
(>tT«-ni.T 
KKs(IC'X(K)-l)«NA 
IKS(K-1)«»JA 
no iü^a I«J »M 
|KKtlKK»i 
IKif   ' 
TF^*     , 
A(lKK)tA(IK) 
4<lK)«TrKP 

• «A(IKK) H01   RtPHU 

!tmJCI    PIVOTAL   ROW   AND  COLUMN 
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OET«OtT«TFf«P 
Oü i«nc J«l.N 

IKj-K) 13iO,l3lO»l3»fl 
b(J)»l./TFt-P 
CCJ)«1. 
CO TC 14C3 
H(J)«-A(KJ)/TEHP 
C(J)BA(JK) 
A(j<)«n. 

00 1450 J«1.N 

DO 1*^0 I«l.N 
!J«IJ*1 
ACij)tA(lj)*n<J)«C(|> 

rami^Cf "Uiiix IN O^ICINAL rotw 

DO  1700  KCVCL€«l#W 
K«V*1-KCYCLF 
lF(fP0*{K)-K)  I9l0*l«00«i9l0 

DO   l>bC   t«l«N 
!K<«|KK*l • 
|K«!<*1 
Trvn««(|«C«0 
ACIRICIMIIKI 

ir(iCOLCic)-ic) i*10«t700«UiO 
iCKJ«ICCl.CK) 
RJM 
PO  1«^C  ^«l.N 

icyja<Kw«KA 

CCMTISUF 
RFTi.QN 
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*««OUTlilf rüLl«CMTe.iCfT».llVCnftO^T,P«OC.»««l,^t|,TM|Ti,Pyi.C,«l 

IlIl«r5V!,ü0üIi^,,?T*Tfi C,|V«T•,• ! CtWIlT COLUMN VTC^OW %r*)HC 

COPT OPTION 

1 WiTI TMftOuCM tAftSC  il«Ut m«TN|fA*9M| 

t ROTATI TMMlutM LMtC A^SUS •PMtftMCU.^tf. 

1 fcOTATI  TMACutM tf^tt AUSUt RtltTNCTA.PMt, 

PltfMl-% CtirOC)*«CN>lO«|c|Cl9ll 

CO-Wf %M% ** c^lMt or TNT riMO MUt« nOftntKt Orttont. 

irctCPf.ift.t.oK.torT.va.twi ?o it 

CCVM.9*0.»*#f|**f 
ITKsf^fTA 
CT***l.f«0.f«ri4TA««f 
ori»^.| 
cri«i9r*o«t«Mit«*t 
•o TO t% 

MMMPtll 

CT»t«C00IT^TAI 
0r|«tiMPN|i 
»KCOC^Mtl 

AMA^i*   TM »IM« «OTATfOMt llAWli, 

jtiitttc^imf 
|C|9fUfT»MCv 
WAffli^i 

11 t.l i«cr i«ecv*«?MHT««o i 
ICf.JItV !•€▼«• 

•«ipi 

m 



ftia3l«M3.tl 
id*!)«« 

puff »Att!« rc^wiu. ^CM «OTA»! TI< iPMHtun mwt. 

00 »C l»l.J 

ofli«i«e.o 
c»i«cefi^«ii 

■ctaNcfMccv 

llt«>l**f?» 

111,1 If • !»^CW» *• !•!»«^cev 
|» J.4 J« • •••▼-••€♦•••l«fC* 
• i ••*•••» J«^- 

:%»•• i ♦ fH r«^««*4ij MM O^IP^« 

iMit» t.i ..f ,.••.».•»^•'a.no« vo •• 

Mttllti IS.tl 

f ti#llt«ll*?l 
l»l,llt- 
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