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ABSTRACT 

Aerodynamics and control characteristics of helicopters 
In level flight and steep descents at low speeds are analyzed. 
Single-rotor, tandem-rotor, and compound helicopters are 
considered and are specifically represented by the S-58, 
AH-^6A, and YHC-1A, for each of which derivatives and transfer 
functions are presented. New analytic methods are used to 
describe the flow about descending rotors. Using these methods, 
predictions are made of the boundaries of the vortex-ring state 
and of tip loss factors. Good agreement with experiment is 
obtained. A new modular stability derivative program,MOSTAB, 
is described and is used to calculate derivatives for the S-58 
and AH-^6A, including lateral-longitudinal cross-coupling 
derivatives. It is shown that, for these helicopters, control 
of flight path by collective pitch becomes difficult for low- 
speed steep descents even with stability augmentation, due to a 
nonminimum phase transfer function and the associated wrong-way 
step response characteristic. The effect is Identified as an 
Important factor in the observed degradation of flying qualities 
in steep approaches. 
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CHAPTER I. INTRODUCTION 

1.1    THE SCOPE OF THIS REPORT 
—■■■     ■■ i . ■—W  ■■■*   i*! I m      ^   •mm 

This Introduction is divided into two parts.    In the first, 
we describe the scope of the report and indicate how it advances 
the state of the art.    The second part of the introduction is a 
summary of the specific contents of the report,  chapter by chapter. 
The reader who does not wish to read the entire report should use 
Section 2   of the introduction as a guide to areas of specific 
interest. 

Approach and landing are generally the most demanding 
portions of a flight, for both fixed-wing aircraft and helicopters. 
Proximity to the ground demands increased precision in controlling 
the flight path,  and the  pilot's task may be extremely difficult, 
particularly in IFR conditions.    Pilot comments on helicopters have 
indicated that the difficulties become more pronounced as the desired 
approach angle increases  (see, e.g., Ref,  1).    This suggests that at 
least part of the difficulty stems from changes in the dynamics and 
aerodynamic characteristics of the helicopter associated with change 
in the trim condition from level flight to descent.    This is the 
area of most interest to the present report.    The main purpose of 
this report is to identify the effects of descent angle on the 
aerodynamics and dynamics of typical helicopters,  and to interpret 
the significance of these effects for human and automatic control. 

To achieve this goal it was necessary to go back to funda- 
mentals.    As will be described, it was difficult to obtain reliable 
stability derivatives for small perturbations from steep descents, 
and these had to be calculated.    Such calculations required a better 
understanding of the effect of descent angle on the flow about the 
rotor in the unperturbed condition.    This required some advances 
in  aerodynamic theory.    These included delineation of the boundaries 
of the vortex-ring state, plus improved analytic models for the 
aerodynamic tip losses of rotors in level flight and descent. 

Having obtained improved flow models for the aerodynamics 
of rotors in steep descents,  it was necessary to calculate stability 
derivatives incorporating these models.    Stability derivatives are 
presented here for    three specific helicopters: the Sikorsky S-58, 
the Boeing-Vertol YHC-1A,  and the Lockheed AH-56A Cheyenne.    These 
are employed to represent the general classes of single-rotor, 
tandem-rotor, and compound helicopters.    Inferences are drawn 
about the behavior of each class from the dynamics of these individual 
configurations. 



The variety of configurations and the novel flow represen- 
tations made it impossible to use handbook methods of computing 
derivatives, or even existing computer programs. The available 
programs were tied to particular classes of helicopter and/or 
certain flow representations. We therefore developed a new computer 
program for calculating derivatives. This program, called MOSTAB 
(modular stability derivative program), calculates trim and stability 
derivatives for any flying vehicle, described as an assemblage of 
rigid and flexible rotors, bodies, and fixed lifting surfaces (wings, 
tails). The MOSTAB program is an important product of this study. 
It was used to calculate trim conditions and stability derivatives for 
speeds of 0, 20, ^0, 60, and 100 knots for the S-58 and AH-56A in level 
flight and descent. For the YHC-IA published derivatives were used. 

Having obtained the derivatives,it was noticed that strong 
cross-coupling oetween lateral and longitudinal perturbations 
occurred, as evidenced by large magnitudes of derivatives such as 
Lq, Mp as compared with Lp, Mg. In many previous analytic studies, 
these cross-coupling derivatives were not available. Such an 
incomplete treatment, with arbitrary decoupling of longitudinal 
and lateral perturbations, did not seem appropriate for a fundamental 
study, and so all the cross-coupling derivatives were retained; 
the transfer functions thus indicated the responses i.i six 
degrees of freedom to each control input. 

To validate the above transfer functions, several sets of 
responses to step control inputs calculated using MOSTAB derivatives 
were compared with flight test time histories, showing good agreement. 

Finally, the implications of the transfer functions for 
control of each helicopter were considered. The philosophy was 
a sort of "reverse optimization" j instead of attempting to produce 
the best system, by modifying the characteristics of the aircraft, 
we searched for these characteristics which would cause difficulties 
for human and automatic control. Special interest centered on 
adverse characteristics which appeared in descent but were absent 
from level flight. It was found that some transfer functions did 
exhibit significant differences between level flight and descent. 
In particular, at low speeds, control of the normal deviation 
from the desired flight path by collective pitch becomes more 
difficult as the desired descent angle increases. This is demonstrated 
by the appearance of a right-half plane zero in the appropriate 
transfer functions. 



The major advances in the state of the art that are presented 
in the report are: 

(i)    a method of predicting the boundaries of the vortex- 
ring state. 

(ii)    improved models for the tip losses of helicopter 
rotors and methods of calculating their effect on 
derivatives, including cyclic variations of tip 
losses. 

(iii)    the MOSTAB program, which calculates trim and 
stability  derivatives  of any helicopter configuration. 

(iv)    presentation of derivatives and transfer functions 
for representative single-rotor, tandem-rotor, and 
compound helicopters, including lateral-longitudinal 
cross-coupling effects. 

(v)    identification of some significant changes in closed- 
loop control characteristics between level flight 
and descents. 

1.2. SUMMARY OF SPECIFIC CONTENTS OF THIS REPORT 
Chapter II presents a brief summary of the kinematics of 

steep approaches, demonstrating the equivalence between descent and 
deceleration capability.    The importance of descent/deceleration 
capability to Arnor missions is explained.    A description is also 
given of some of the problems that have been observed in steep- 
approach flight tests.    This chapter contains nothing new; it 
merely sets the stage for the detailed technical analyses that 
follow, by explaining their relevance to practical problems. 

Chapter III presents a theory for predicting the boundaries 
of the vortex-ring state.    This is believed to be the first published 
theory which predicts the major features of these unsteady flow 
boundaries.    The analysis is very simple,  and employs momentum 
theory and actuator disc concepts.    Despite this simplicity, the 
agreement with experiment is good. 

Chapter IV uses flow models developed in Chapter III to 
calculate the derivatives of an isolated rotor in vertical descent. 
For purposes of calculating derivatives, it is customary to represent 
the tip losses by reducing the rotor radius from R to an effective 
radius BR.    Standard formulas exist for B in hover, but in descent 
these disagree with experiment, yielding inaccurate derivatives. 
It was therefore necessary to produce modified formulas for B; these 



are derived in Chapter IV, and are shown to give good agreement with 
test data on model rotors in vertical descent. Data were not available 
for inclined descent, for which the theory predicts that the tip losses 
should vary cyclically. This cyclic tip loss factor was included in 
subsequent calculations of derivatives. In addition, some cases were 
re-run without tip losses, to illustrate their importance by comparing 
transfer functions (given in Chapter VI) with and without tip losses. 

Chapter V presents a general description of the MOSTAB modular 
stability derivative program. This briefly summarizes MOSTAB, avoiding 
technical detail (which is given in Volume II), Chapter V also 
presents a discussion of the accuracy of the MOSIAB derivatives. Flight 
test data on the S-58 are compared with predictions from MOSTAB. The 
results are generally in good agreement. 

The derivatives and transfer functions for the YHC-IA, AH-56A 
and S-58 at each flight condition are presented in Volumes 
II - IV,  Eigenvectors and residues of partial fraction 
expansions of selected transfer functions are given in the main text 
of the report, where appropriate. These data characterize the transient 
response characteristics of each helicopter for several forward speeds 
and descent angles. 

The main section of the report continues in Chapter VI with the 
discussion of the open-loop and closed-loop dynamics of each class of 
helicopter, as revealed by the above data. Chapter VI discusses the 
tandem-rotor configuration, exemplified by the YHC-IA. Chapter VII 
discusses the dynamics of the S-58, representing single-rotor 
configurations. Chapter VIII discusses some control problems of the 
compound configuration, typified by the AH-56A. The principal con- 
clusions of the report are given in Chapter IX. 

Volume II provides an extensive account of the MOSTAB program. 
It should be noted that the version of MOSTAB used in this report 
(MOSTAB-B) does not include rotor stall or compressibility characteris- 
tics! as these were not significant for the approach flight conditions 
of interest here. Volume II describes the coordinate systems and the 
rationale for finding trim and derivatives, presents the equations used 
in MOSTAB and explains the underlying assumptions, describes the rotor 
analysis method used to represent the first flapping mode, includes a 
listing of the MOSTAB program, and explains computational aspects of 
MOSTAB. 



Volume III presents derivatives and transfer functions for 
the YHC-1A tandem-rotor helicopter at forward speeds of 0, 60, and 
80 knots, and several descent rates.  It also presents derivatives 
for the S-58 at 0, 20, U0, 60, and 100 knots, and four descent rates 
(0, 7,5, 15,0, 22,5 fps) at each speed. Transfer functions are also 
tabulated for all the level flight and maximum descent rate conditions. 

Volume IV presents similar data to Volume III for the AH-56A 
and reviews the literature on turbulence representation for low 
altitudes. 

Reader's Guide 

For a quick overview of the main points of this report, read 
all of Chapter II; the first half of Chapter V, which describes the 
M0STAB program; the summaries at the ends of Chapters III, IV, VI, 
VII, and VIII: and all of Chapter X, 



CHAPTER II* OPERATIOKAL ASPECTS OF STEEP APPROACHES 

II.1   THE IMPOR1AWCE Of STEEP APPROACH CAPABILITY 

In this chapter we review some analytic and experimental 
work on helicopter steep approaches in order to pinpoint the 
vehicle parameters of prime importance. As will be shown, one of 
the most important parameters is maximum obtainable drag/lift 
ratio expressed as a function of airspeed. This determines the 
helicopter's descent and deceleration capability. 

Figure 1 illustrates the balance of forces in a straight- 
line descent in still air with acceleration V. (Note that ^ is negative 
for deceleration and that the flight path angle y  is also negative 
for descent.) The relationship between 7, ^,  and the drag/lift 
ratio D/L is 

o 

tan(-r) = -T- +  —^-7—r 0) v /y    L     g cos(-7) 

The second term is merely the ratio of the acceleration 
along the flight path to the component of gravitational acceleration 
along the flight path.  Since ^ is negative for deceleration, 
increased deceleration at a given V and y requires more D/L, which 
implies increased D with constant L. In most instances the value 
of D/L that can be obtained at a given V is limited; thus descent 
angle may be traded off against deceleration, but the sum of descent 
angle and deceleration is limited. This limit is fundamental for 
helicopter steep approaches. For simplicity, the limit is defined 
by considering a constant-speed descent for which the maximum 
descent angle is 

(-7)    = tan'^D/L) „ (2) 
''max ' 'max 

Assuming that the landing is made at essentially zero forward 
speed, the terminal phase of flight must involve descent and 
deceleration. The way in which these are combined can greatly 
affect the effectiveness of the mission. This is illustrated 
by Figure 2, taken from Reference 2, which compares two alternative 
approach profiles. One is a 10-degree straight-line descent with 
constant deceleration of 0.088 g. The other approach involves two 
straight segments: the first at 14.8 degrees with no deceleration, 
followed by a level segment with O.26J+ g deceleration. In both 
approaches the aircraft is flying at (D/L)   = 0.2&» throughout. 



Figure 1.    Forces Acting on an Aircraft Flying a Straight-Line 
Accelerating Descent. 
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Figure 2. Alternative Approach Flight Profiles. 



From Figure 2, it will be seen that the total approach 
time is reduced from 91 seconds to 6i seconds by the two-segment 
approach. Undoubtedly, further savings are possible by means of 
more complicated approach profiles # Much work has been done on 
the optimization of flight paths within given constraints on maximum 
D/L. Interesting though this is, it is somewhat outside the scope 
of this report. Our objective is to determine the constraints 
limiting (D/L)max for given helicopters. This forms the main topic 
of this and the next chapter. 

To show the operational benefits of increased (D/L)max for 
a given approach profile, consider Figure },  also taken from Reference 2. 
(D/L)max must be at least 0.17 in order to achieve the 10-degree 
descent. However, raising (D/L)max from 0.21 to 0.55 reduces the 
descent time from 3 to 1.5 minutes, measured from the 3-mile 
point to touchdown. 

Further benefits of increased (D/I^J^X include enhanced 
capability to land in confined areas such as valleys and forest 
clearings. In addition, a high (D/lOrnax permits steep downwind 
approaches. This may be important for forward operations or where 
a normal into-the-wind approach may bring the helicopter uncom- 
fortably close to the enemy. The effects of head- and tailwinds 
are illustrated in Figure h. 

Using Figure k  to construct a simple example: for (D/L) =0.2, 
with 60 knots airspeed and a 20-knot headwind, a descent angle of 
17 degrees can be achieved. This reduces to 11.5 degrees in still 
air and to 8,5 degrees for a 20-knot tailwind. The implications for 
wind shears are profound. 

The net conclusion that emerges from this brief review is 
that a high (D/L)max is desirable 

(i) to minimize unproductive approach time. 

(ii) to permit approaches with adverse wind directions and 
to cope with wind shears. 

(iii) to permit approaches to confined areas. 

II.2   TACTORS LIMITING (D/L),^ 

For most helicopters, (D/lOmax is limited by the flow 
conditions about the main rotor(s). This is illustrated in Figure 5, 
which shows the permissible regions of horizontal versus vertical 
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velocity for a single-rotor helicopter.*   The boundaries shown stem 
from two causes: 

(i)    the vortex-ring state 
L) (ii)     autorotation 

The vortex-ring state is a region of unsteady flow which occurs 
on rotors operating at high (D/L)   at low speeds.    It limits the 
maximum achievable steady (D/L).    By contrast, the autorotation 
boundary is not associated with unsteady flow; it occurs because 
the torque on the rotor is zero. Steeper descents would be possible 
if a braking torque could be applied to the rotor.    Current practice 
precludes engine braking, as it is usual to include a freewheel 
or override device to prevent stoppage of the rotor following 
engine failure. 

Autorotation   is not widely used in IFR situations because 
the rates of descent are usually excessive, particularly for the 
higher disc loading helicopters.    The principal operational limitation 
on (D/L)max therefore is due to the vortex-ring state.    This is 
discussed at length in Chapter III. 

11,3        OTHER FACTORS  LIMITING STEEPNESS OF HELICOPTER APPROACHES 

The foregoing discussion has emphasized the importance of 
(D/L)max.    However, this is by no means the only factor limiting 
the achievable steepness of helicopter approaches.    Let us define 
the term "nominal flight profile"   as a combination of airspeeds, 
descent angles, and decelerations which is within the limits 
permitted by (D/L)max.    In practice, a nominal flight profile 
may be unflyable.    The reasons for this include gust response, 
displays,    handling qualities, loss of ground reference, etc. 
In particular,  indications exist that handling qualities deteriorate 
with increased steepness of the nominal flight path.    For example, 
Reference 1, describing tests on a CH-^^C helicopter, notes that, 
when following a 5-degree nominal flight path, the rate of descent 
varied from 100 to TOO ft/min.    At 7  = -^5 degrees it varied 
from ^00 to 5000 ft/min, which was regarded as unacceptable.    In 
addition to the records of longitudinal and lateral deviations 
presented in Reference  1, pilot comments also confirmed the deteri- 
oration in handling qualities with increased-7.   A similar trend 
is noted in flight tests on a HUP-1  tandem-rotor helicopter described 
in References 3 and k. 

In Figure 5 the horizontal and vertical velocities have been       . 
normalized through division by Vh = (l/2p)1/2 x (Disc Loading)1/2. 

Figure    5 is illustrative only and should not be scaled.    More 
precise boundaries are given in Chapter III. 
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To form a complete assessment of the problems involved 
in flying steep approaches, it is necessary to consider both the 
limitations on nominal flight profiles and also the limitations 
associated with small perturbations from nominal flight profiles. 
Hence,  in Chapter III we analyze the limits on (D/L)max.    The 
results are used to determine nominal flight profiles for the 
YHC-1A,  S-58, and AH-56A, and subsequent chapters   study the 
behavior of these helicopters in small perturbations from these 
nominal flight profiles. 

Suxmuay 

In this chapter we have tried to "set the stage" for the 
detailed analyses that follow by demonstrating that: 

(i) High (l)/L)max is required to minimize unproductive 
mission time, to permit steep descents into confined 
areas, and to allow approaches from any direction, 
irrespective of the wind vector. 

(ii) At approach speeds, (D/L)maiX is limited by autorotation 
and by the vortex-ring state. The latter limit is 
more serious since it occurs at smaller rates of 
descent. 

(iii) Within the bounds set by (D/L)max,the helicopter's 
steep descent capability may be limited by some 
handling qualities factors, which appear to deteriorate 
with increased steepness of the approach. 
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CHAPTER ZZZ. OBI VORTBC-RIWQ BTKT* 

III. 1 TSTBIODVGTKM 

In performing steep descents at low speeds, helicopters 
encounter an unsteady flow condition known as the  "vortex-ring state". 
This state Is characterized by severe thrust fluctuations and difficulty of 
control.    This chapter    presents a simple method of predicting the 
combination of rate of descent and angle of descent at which the 
vortex-ring state occurs.    Momentum theory and actuator disc concepts 
are employed; despite the simplicity of this approach, the results are 
in good agreement with experiment. 

The chapter is organized as follows:    Section   2   presents an 
analytical method of calculating the vortex-ring state boundary for 
vertical descent using simple momentum theory modified to include 
certain viscous effects.    Section 5 extends the mptbod to the case 
of nonvertical descent.    In Section k   the experimental data and 
published analyses are reviewed and compared with the theory of this 
report.    Section 5 gives conclusions and recommendations for further 
work. 

III.2 FLOW MODEL AMD EftUATIOWS FOR VERTIGAL DESCENT 

The analysis considers both vertical and inclined descent, but 
the theory is most easily understood by considering the vertical descent 
case first. 

Consider an actuator disc in a uniform stream of air 
rising with velocity V.    This, of course, corresponds to a vertical 
descent at velocity V on an actual helicopter.    The flow model used is 
illustrated in Figure 6.    It consists of a slipstream with uniform flow 
at any cross-section, surrounded by a tube of vorticity.    This tube is 
modeled by a series öf vortex cores.    Thus, near the rotor outside the 
tube the stream velocity is V upward,    and inside the tube the velocity 
is (v - V) downward,   where vis the induced velocity at the actuator 
disc.    The rate of descent of the centers of the vortex cores is the 
mean of these velocities, i.e., (-^ - Vldownward. 

The key assumption of the analysis is that the vortex-ring 
state will occur when the relative velocity of the vortex cores normal 
to the disc falls to zero.    That is, when the rate of descent is 
increased to the point where vortex cores no longer move away from the 
actuator disc, unsteady flow occurs.    The critical rate of descent 
V    ..   at which this occurs is given by 

vcrit "   -T C) 

1U 
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From simple momentum theory (e.g., Reference 5)* 

v-i W© +   V (^ 

where 

v, =  'V Thrust/2 prtR 

o A   Air Density 

R A   Rotor Radius 

Combining (5) and {h)  yields the following formula for the rate of 
vertical descent at which the vortex-ring state commences. 

Vorlt " j=-    - °-101 \ b) 

This formula, although derived by the simplest possible methods, agrees 
well with experiments, as will be shown. 

An alternative formulation of Eq.   (5) can be obtained by 

putting J = v/nD, CLJJ = T/pn D , which gives 

crit 
'# 
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A further alternative is obtained by using C     = T/pnSTR     and X = V/ßR, 

giving the critical rate of vertical descent as 

Xcrit ■   1&~ ;7) 

Tip Loii Iffitcti 

It is necessary to refine the theory slightly to allow for 
nonuniform flow when considering high disc loading rotors and/or 
inclined descents.    This is done by introducing a tip loss factor B. 
Blade elements outside of radius BR are assumed to produce no thrust. 
Thus, near the rotor, instead of a uniform induced velocity v over an 
area nR, we assume a uniform induced velocity v over an area nR2B . 
This leads to a slight increase in V    .    for vertical descents, but the 
effect is small for typical helicoptSF disc loadings.    The tip loss 
effect for vertical descents is easily obtained as a special case of 
the more general formulation of the theory for inclined descents, 
derived below. 

III.J QBHBRAL 1HB0RY FOR CTCTJHED DBSOnTT 

Figure 7 shows the assumed flow model for inclined descent 
along a flight path inclined at an angle a to the horizontal (for 
vertical descent a = 90 degrees).    The velocity of the vortex cores 
normal to the actuator disc is assumed to be the mean of the normal 
velocities inside and outside the slipstream, i.e.,   (v/2) - V sina. 
Marked unsteadiness is predicted to occur when the rate of descent 
becomes sufficiently high to cause the velocity to fall to zero.    This 
condition gives the following general formula: 

Vcrit =    2 sina ^ 

To express Eq. (8) in a more convenient form, it is necessary 
to rewrite it in terms of horizontal velocity (V cosa), rate of descent 
(Vsina), and the tip loss factor B. This is done below by manipulating 
some equations of momentum theory. 

17 



I 
ACTUATOR DISC 
///////////z 

VSINOC 

HORIZONTAL 

\ V, RELATIVE 

I    "(iLVsiNCX) 
WIND 

/ 

(iz-VsiN a) 

Figure 7. Flow Model for Inclined Descent with No Parasite 
Drag, Showing Velocity Components Normal to the 
Disc. 

18 



From momentum theory (e.g., Reference 5) the thrust of an 
actuator disc descending at an angle a to the horizontal can be 
expressed as 

T = 2pnR2B2v|Vr| (9) 

where V      = v2 - 2Vv sina + V (10) r 

Eqs.  (9)  and  (10) differ from familiar equations of 
momentum theory only in that the rotor radius R has been replaced by 
an effective radius BR.    Substituting Eq.   (10)  in Eq.   (9),  squaring, 
and using the definition of v,   from Eq.  (h) gives 

(SitpR2 vh
2)2 = (2npR2 v)2 B^  (v2 - 2V v sina + V2) (11) 

Expanding, 

v^ = BV -  2BV (sina) BV + B^^v2 (12) 

ft)' 

k 2    2 
. ,  .    SgMjS      +    B_V_ (13) 

B    v 

2 B Vsina 
Bv (s) 

(1^) 

This is similar in form to the standard quartic equation of momentum 
theory usually derived for B = 1)  i.e., quoting from Reference 5, 

(i)* 1 (15) 
1 _        2 Vsina 

(;)■ 

Eq. (15) is conveniently graphed with v/v^ as ordinate and Vsina/v^ 
as abscissa, for a fixed a forming a nondimensional graph of induced 
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velocity versus rate of descent for given angle of descent.  (Similar 
graphs are given in References 6 and 7 for 5=1.) The graphs can be 
formed from Eq.(l^)  for a fixed B using Bv/v. as ordinate and 
B Vsina/v as abscissa. Figure 8 illustrates  these graphs for 
several values of a, from 5 to 90 degrees. 

To establish the boundary of the vortex-ring state, for 
a given B and a, simply include in Figure 8 the critical condition of 
Eq. (8). Expressed in terms of the variables of Figure 8, Eq. (8) 
becomes 

Bv =   2 B Vsina /^ 
v v 
h        h 

This describes a straight line of slope 2,  as shown on Figure 8. The 
intersection of this line with the remaining graphs denotes the 
critical value of rate of descent for a given B and a. It is convenient 
to plot the results in terms of nondimensional horizontal velocity, 
Vcosa/v.. and nondimensional rate of descent, Vsina/v^, for a given B as 
shown oK Figures 9, 10, and 11. In these figures, Eq. (16) corresponds to 
the line marked " zero parasite drag " for which case a = - 7, as 
explained below. 

Effect of Parasite Drag 

The parasite drag of the rotor and of other components has 
not been included up to this point. This drag causes the boundary of 
the vortex-ring state to occur at a steeper angle of descent for a 
given airspeed. The effects of parasite drag can be included in the 
analysis as indicated below. 

Figure 12 shows the forces acting on a helicopter in a 
steady descent^ the aerodynamic forces are assumed to consist only of 
drag acting parallel to the flight path and rotor thrust normal to 
the actuator disc. 

From Figure 12, resolving parallel and normal to the flight 
path, noting that 7 is negative for descent. 

T sina + D + W sin 7=0 (l?) 

T cosa - W cos 7=0 08) 
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These equations yield the required relation between 7 and a as: 

tan a = ■■j§4P  - tan 7 cos 7       ' 
(19) 

The drag/weight ratio Is conveniently expressed In terms of a "drag 
area" Af defined as 

Af =   D/^pV' (20) 

2        2 
Thus, using the definition of vj^ (v.  = T/2pjtR ), and assuming thrust 
at hover equal to weight, Eq. (19) becomes 

tan a = - 
W \ V  oos - tan 7 (21) 

To modify Figures 9# 10, and 11 to show the effect of profile 
drag, we require the relationship between 7 and AJknR    for a given V 

and a. This  Is obtained by manipulating Eq. (21) to give 7 In terras of 
a, V, and AJhiiR  , as follows. Multiply (21) by C0S7 and cosa: 

sin a cos 7 = - 
knK' W cos a - sin 7 cos a  (22) 

sin (a + 7) = - 
hnR' (-tj cos a (25) 

7 = - a - sin 
-1 

W ft)' 
cos a (2h) 
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Eq. {2h)  has been used to show the effect of parasite drag in 
Figures 9, 10, and 11. For a fixed value of the drag parameter 

AfAnR = 0.05, the flight path angle at any V changes from a to 7 

as determined from Eq. (22). For zero parasite drag, a = - 7. 
Note that the inclusion of parasite drag yields the characteristic 
shape of the vortex-ring boundary, first rising and then falling, 
as horizontal speed is increased. 

The drag parameter kJhnR   was deliberately chosen to be 

rather high, so that most helicopters display vortex-ring boundaries 
falling between the "zero drag" and "with drag" curves of Figures 
9, 10, and 11. To appreciate the physical significance of the parameter 
AJknR,  note that a value of 0.05 corresponds to a parasite drag area 

of 20 percent of the disc area. This is much larger than would be 
expected in level flight for most helicopters. However, in descent, 
the fuselage may be operating at a large angle of attack, causing a 
corresponding increase in drag area. When comparing Figures 9, 10 
and 11 with exp rimental results on wind tunnel models, note that the 
parasite drag of the fuselage, tail, and other components will be 
disproportionately large at low Reynolds numbers. 

To predict vortex-ring boundaries of specific configurations 
using Figures 9, 10 and 11 requires the value of the tip loss factor, B. 
Well-known formulas exist for B in hover j e.g., Payne (References) 
quotes a formula due to Sissingh, 

1 

< 

B=1 -   b *  2CT (25) 

Payne notes that Sissingh's formula is in reasonable agreement with 
tests on untwisted, untapered blades but yields values of B which are 
too small for uniformly loaded blades.    For the latter, Payne suggests 
an alternative formula, which at hover reduces to 

B - 1 -r ^  Cm (26) b J^T" 
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For hlgh-disc-loadlng VTOL rotors, both the above formulas 
appear to give values of B which are too small. An alternative serai- 
empirical expression is derived in Chapter IV for rotors of Ideal 
twist and is given below. This is more complicated than Eqs. (25) or 
(2^but gives good accuracy for vertical descent as well as hover. 

B = 1 -^ ^f (et+v/BniA       (27) 

This gives a cubic equation for B, for a given rotor geometry, pitch 
setting, and rate of descent. Empirically it is suggested that Eq. (27) 
can be used for inclined as well as vertical descent, replacing V by 
Vsina. 

III.4     COMEftRISOW WITH ECHDRlMmfT 

Although investigations of the behavior of rotors in the 
vortex-ring state have been made since the 1920's, only the more recent 
references contain data useful for comparison with the theory of this 
report. Most of the earlier references (e.g.. Reference 9) are confined 
to measurement and empirical prediction of the mean thrust and through- 
flow velocity. Reference 10 summarizes various presentations of parameters 
such as l/f and l/F. These parameters are derived from measurements of 
averaged quantities, so these data are unsuitable for determining the 
velocity and angle of descent at which noticeable unsteadiness occurs. 
References 11, 12, 13, ]k,  and 15 do not include any unsteady force 
measurements, but they do present some flow visualizations, which quali- 
tatively indicate a "region of roughness," These data are discussed 
later. For purposes of comparison with theory, it Is unfortunate that the 
available test data are for blades with non-ideal twist; e.g.. References 
11, 12, 1^, ]h,  and 15 employ an untwisted rotor. The resulting induced 
velocity distribution is at variance with the ■uniform distribution 
assumed in the present theory. However, even full-scale helicopters 
do not have ideal twist, so this compromise must be accepted in 
order to compare theory and experiment. 

Vertical Peicent 
Azuma (Reference 16) presents data on thrust and Inflow 

fluctuations for a 3-bladed rotor, with a diameter of 1100 ram, a solidity 
of 0.0!?73, an NAGA 0012 section and -8° twist from root to tit), free to 
flap and lag. The rate-of-descent parameter was expressed as VQ./vQ, 
because the nominal rotational speed of 1,000 rpra was not maintainea 
precisely. 
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Lacking data on v/fiR, we cannot make allowance for the tip 
loss factor. However, Eq. (5),  V .. = 0.70? VL, gives good agreement 

with the observed onset of significant unsteady thrust and inflow. 
This is demonstrated in_Figure 13. Eq. (5) corresponds to r.m.s. 
thrust fluctuations AT/T ranging from kfo  to "ikfi  depending on the blade 
pitch setting. (The thrust fluctuation, AT, is defined as T - T, 
where T is the mean thrustj thus the r.m.s. peak to peak fluctuation 
is 8^ to 2dfo  of the mean thrust.) Note that the graph marked 6 =8 
degrees corresponds to zero blade angle at the tip. As predicted by 
Eq. (3)and Figures 9,  10, and 11, the critical rate of descent normali- 
zed with respect to v. and Q,   increases as the tip blade angle is 
increased (by increasing 0 ). The experimental data of Reference 16 
indicate that the mean thrust in descent variesj for 6 =10 degrees at 
V = 0.7 v^fi/fi,, the mean thrust falls to 80/0 of the holering thrust. 
To convert: the data to the constant mean thrust assumed by the theory 
(and appropriate to steady descents), the value of V .. must be 
increased above that observed experimentally. Without data on C^, 
this cannot be done precisely, but the trend will certainly be to move 
the peaks of the thrust fluctuation curves to the right, thus increas- 
ing agreement with the predicted boundary for the onset of unsteady 
flow. 

Washizu (Reference 7) describes tests on a similar rotor 
in vertical and inclined descent. Figure 14 shows envelopes of CL 
versus the rate of descent parameter X, for vertical descent. For 
two of the tests, the blade pitch setting is very low and the tips are 
actually lifting downward in hover. This invalidates comparisons with 
our theory, which assumes uniform inflow except at the tips, 
corresponding to the rather high pitch setting appropriate to maximum 
static thrust/power. For this reason, the data taken at 8,75 = ^+.5 
degrees are also unsuitable for comparison. However, using Eq. (7) 
and B = 0.95^ the case with 6 . =8.0 degrees gives X .. = 0.055. 

This corresponds to a mean-to-peak thrust fluctuation of 12$ of the 
mean thrust. 

Inolined Dtiogjt 

Washizu et al presents experimental data on thrust and 
induced velocity fluctuations in the vortex-ring state for single- 
rotor configurations (Reference 7) and tandem confifiurations (Reference 
17). Contours of percentage thrust fluctuation are shown on the hori- 
zontal velocity/rate-of-descent planej however, the data points are not 
indicated. Hence results for low pitch angles cannot be removed to 
enable the remaining data to be compared with the theory, Washizu 
fit fii gives more complete data on induced velocity fluctuations, 
averaged over the disc based on measurements of thrust and torque 
fluctuations, and these can be compared with theory. Figures 15 and 16 
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illustrate the data of Reference 7 for rotor with 9 _ = 7.5 degrees 
• f P 

and a = 50 and 70 degrees. Note that the lower boundary of the induced 
velocity is close to the momentum theory solutions and that the onset 
of marked unsteadiness corresponds to the critical condition predicted 
by Figure 8. This critical condition corresponds to the shaded lines 
on Figures 15 and 16, 

Yaggy and Mort (Reference 18) describe tests on a 
flapping propeller with the shaft axis inclined at l8o, 165, 150, 135, 
and 120 degrees to the freestream. This corresponds to descent angles 
of 90, 75, 60, 45, and 30 degrees.* Contours of the thrust fluctua- 
tion AT_(measured from the mean thrust to the peak)_divided by the mean 
thrust T are shown for various mean disc loadings T/JTR , in Figure 7 
of Reference IB. Figure 17 illustrates the results for T/JTR2 = 16 
lb/ft . The vortex-ring_boundary has also been calculated assuming 
B = 0.86 and a mean v., v. A (T/2pjTR2) V2, The boundary corresponds 

to a AT/T of between 15^ and 25^. A more accurate boundary can be 
calculated if v is based on the lower value of thrust T - AT. This is 
in accord with Figures 15 and 16, which indicate that the minimum 
induced velocity during the vortex-ring state is approximately equal 
to the velocity predicted by momentum theory. To follow this sugges- 
tion, substitute the critical condition v = 2Vsina in Eqs. (9) and 
(10). This gives 

T - AT = ^itR^V sin a)2 /sin a (28) 

The critical rate of descent can be calculated itera- 
tively by first putting AT = 0.    This gives the solid-line_boundary 
on Figure 17.    Since in this case we have knowledge of AT/T, we can 
refine the solution by reducing the critical rate of descent in the 
ratio (I - AT/T)

1
/

2
.    The resulting boundary is also shown on 

Figure 17 as a broken line.    Without prior knowledge of AT/T (or an 
estimate), it would be possible to calculate only the solid-line 
boundary. 

Flight TMti 
Published data on flight characteristics of helicopters 

in steep descents are insufficiently complete to permit mapping the 
boundaries of the vortex-ring region.    However, some related data 
points can be obtained as listed below. 

The descent angles of 75* 60,  ^5,  and 50 degrees are necessarily 
approximate, because Ref,  18 does not give the inclination of the 
thrust from the shaft axis. 
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H«fer«i.oe \j notes thAt for • HtttUnd WMrlwtAd litllooptor« 
the vuruu-fliws fuu WM wU ttUbUtliid ft* 1500 (VBIA v«riloal 
«*e«eentt oerfMpondliig to V/vh • O.A.   füti an M oftfly l»Uooptor9 
tht lUorticy m^B, dooerlbod hi mtaroMt aa tboMd omot of rougtawM 
Ui vorUoal dooooot oi t/OO f«p.«. and "flwddorlAf Bfnnotoj tt 
900 ftp.«« oorftfponatiMi to O.TOTv^.   U tht dUoutaton of Mftrooo« 9\9 

•WMU iUloo W»t to Urn Ml« tht orltloal rott of dotooot dooroMM 
«■ farvtr* opood U InorooMd« alaeot roaohlm lovtl flight «t Oo %.!».»». 

HW obovo rooulta tft In «eoord vita tho thoory« but it 
«a*i bt mwbiriil ttat fbetori ottoor UMB the bthorlor of Urn ro^or 
iUtlf in tht vortt»-rlac ttato My influooe« holloopUr fljrUui iualitl«t 
in dtaomtf.   UM unotoady flow aay laduoo larfa pitohlaft aoaaBta on tha 
AiaaUc«.   ■•faranoa 29 dlaeuaaaa thlt phatwanon« notlac that tha aiia 
and oroaa-aaotlon of tha ftiaalafa tall oona hava an taportant tfract. 
for «xaapla, tha MB had particularly bad oharaotarlatloa In tha vorUx- 
rlms itata baoauaa of Ita thlok alab»tl4aa raw fuaala«a.   Quit« apnTt 
fro« conildaratlooa of unsteady flou« ohanfaa in darlvatlvaa «ay affbot 
flying quailtlsa.   Rafaranoa W notaa that tha «agnltuda of tha plunga 
daaplng derivative, Z , daeraaaaa markadly batwaan hover and tha vortax- 
rlng atata.   Ihla troKd It oonflmad by tha data of Reference 1&.    If 

Z  | baoona^ aufflelantly «mall, tha helicopter'• flying quailtlaa will 
lagradad. 

tta lowar Boupdanr of tha Vorta«-Bln« fltata 
After entering the vortex-ring atata, if the rate of descent 

is increased, eventually steady flow is re-established.    The horizontal 
speed and rate of descent at which this occurs define the lower boundary 
of the vortex-ring state.    The practical importance of the vortex-ring 
state depends, in part, on the distance between the lower and upper 
boundaries on the V cos 7, V sin 7 hodograph plane.    If large areas of 
the plane are associated with unsteady flow, the operational   utility 
of the helicopter will be correspondingly reduced. 

A critical condition for the lower boundary will now  be 
derived.   As before, we postulate that the unsteady flow is associated 
with a breakdown in the protective sheath of vorticity surrounding the 
slipstream.    However,  for the lower boundary the  "pileup"of vorticity 
occurs some distance above the rotor, as shown in the flow model of 
Figure 18. 

See Ref. 3h for an explanation of the influence of Z    on handling 
qualities. w 
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Figure 18,    Flow Model for Lower Boundary of Vortex-Ring 
State in Vertical Descent. 
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mine mamntm thtory md tbt flow motol of ftcurt "*, tht 
orlii04l eondltion U terlvtd u folloM. ZMld« tht tllpttrtMi Um 
lAdwitd ¥tlootty it »v, «tert ttt valut of k vtrlM frai 1.0 at tl» 
rotor dito to 9.0 at Infinity. QM rot« of ttotot of ttm vortlott it 
VtiA^diV?)«  In dotoraiBiBg tbt upptr boundtry, ttwIUlcnt tt tht 
dito tft ftUvtrn, tod to t vtlut of k • 1.0 tot uttd| tWlnt tht 
oriUtti ttnditiCB tt Iq. {)), or oort ttntrtlly, lq. (16). for tht 
ioHtr boutdtry tht cholot of k U oot to oiotr-tut. At iafiaity k • 2, 
but thit vtlut it lotpproprltu btotott to ttowttlttttw of vortlol ty 
tt Infinity wmld not ttutt uotttody flow to bo rtflttttd htek to tht 
rotor. ThtrtfOrtttbt vtlat of k Mtt bt Ittt ttata 2.0. «MttUvtly, 
1.4 < k < 1.6 it mvpMtod. Crott-plottiac llntt of rlopt 2/k OB 
rifoio '• vitb k • iTtl tad k • l.^k givot t lottr boundary tt indlotttd 
on ricort 19« 

It it intortttiag to nou tbtt tht "rtglon of roagtiottt" 
rtporttd by Orttt in Rt foronot n on tbt bttit of flow vitutlitttion 
tcrott »pproxlanUly with tht predicted bOMndtritt tt low tpttdt. 

The lowtr boundary it not tt sharply defined tt tht upper 
boundary, in that tbt development of unsteady flow is less sudden 
(see,e.g., Figure 13)* One would expect this, because the aoeuaulation 
of vorticity end consequent breakdown of tht slipstream are occurring 
farther away fron tht rotor. One would also expect menentm theory to 
become leas accurate for predicting the lower boundary at higher forward 
speed, because distortion of the slipstream, rolling up of vorticea, 
and other viscous phenomena not included in the theory become more 
Important aa the critical region moves away from the rotor with increaae 
of k. 

Ttadtm Botort 

Reference 17 describes experiments on tandem rotors In 
vertical and inclined descent. Data on fluctuating Inflow (similar 
to Figures 15 and 16) are presented, normalized with respect to 

alternative parameters v.  and v, where v, • T/2pjtR , v.  = T/2oS , 
e e 

where T = thrust per rotor, and S is one-half the projected area of 
the tandem rotors. The overlap bltween the rotors is small, so for 
the configuration of Reference 17>S should be defined in this 

way for momentum theory calculations; Reference 6, p. 312, suggests a 
larger area. This is the area formed by two semicircles of radius 
equal to the rotor radius, with centers spaced a distance equal to the 
hub separation of the actual configuration, plus the area enclosed by 
straight lines Joining the semicircles. 
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tl»B tint for Urn slafla-rotor oonrifiirtUan.   Nowtw, Urn ptrludleit<y 
netad in NfftnaotT ii hardly obMrvtblt.   Btotufa of ttm mtaal 
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nx.5   wmm m nemmmm 
•i 

1 • 9m boundArlM of tto vorttJ-rlnf statt et- bt prt- 
dlettd by mmmtm thtory u dMerlbtA U this oteptor. V* prtdioMd 
upptr boundary oorrtepondi to iful MM-to-pttk thrutt fliMtuAtlonf 
of «pproxiMttly 1^ of tht Man thmt. 

9. In wtiwl dMOMt» tht upptr bouodary it tpproKimttly 
0.707 tlatt tto MtD lodufltd vtloelty at bovtr. for incllntd dMOtnt^ 
tto upptr boundary la vary ttntltlvt to paraaitt drtf, and for tolioopttrt 
with largt paratltt drtfctto vorttx-rlnf ttata My vaniab for daaotot 
anritt tballoMtr tton ao dtpaat. 

1. Inprovad htliooptar ttttp dttotat oaptbillty 
rKuirtt a nort oonplata undarttaadlag of tto vorttx-rlng 
ttatt. ft»  "upptr** (k ■ 1) boundary it of priaoipal intarttt for 
tolioopttrt; but for 8T0L aircraft with ravartt-pltob proptllart dttotat 
tnglt It llJüttd by tto "louar" (k - M) boundary, at shown la Plgurt 
20* Furttor knowltdgt of tto vorttx-rlng ttata It tbut of laportanot 
In Obtaining tttt^ tlov flight of propelitr-driven STOL aircraft at wall 
at tolioopttrt. 

2. The present theory It llmlttd by tto attmptlont of 
monentun theory, e.g., tht rather arbitrary Olauert-Kuttntr faypothttlt 
regarding tto "area of capture" and the astumptloo of uniform Induced 
velocity across tht dltc. Greater accuracy could be obtained by using 
more refined theories. A further area for exploration by such theories 
Is the nature of the flow within the vortex-ring state. For example, it 
appears that the accumulation of vortidty either at or above the disc 
increases the induced velocity at the disc, thus removing the accumulated 
vorticity and returning the flow to that predicted by momentum theory. 
In turn, this causes the vorticity to re-accumulate, causing a cyclic 
oscillation characteristic of the vortex-ring state. Mathematical 
formulation of this physical model probably lies beyond the grasp of 
momentum theory. 

5.  Although the upper boundary is fairly sharply defined, 
slight unsteadiness does occur at smaller rates of descent, and even 
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•t howr MoordiAii to tto data of toftrwiot S9«   A «or» fophlatlottod 
theory it rtqutrtd to «Mlyt« thi« ptonaMiion. 

*•     More «xptriAtntal <Uu on th*» vorux-riit« ttett art 
required.   QM prtftnt «Mlytlf couW aorvt M a guldt to tbt taat 
ooadltioBf of prlaavy iBttrtet. 

*>•     n» laplloationa of tht vorux-rini; etata on taandlliic 
quailtlas and optratlonal aeMuvere require InveeUgatlon.   SulUble 
•utoMtle control of oolleotive pitch aay nootb the thruat fluotuatlona 
■ufflolaotly to pemlt COM for table, controlled flicht at all descent 
•paeda and angias. 
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CHAFTC» IV.    TMWjT OT AM ItOUTCD KSCCNDING ROTOH 

n.i. 
SUndAfd atthodi for oalouUtlnt bollooptor tUblllty 

dtrivttivtt art bMtd on mmmfim and blado«oloomt tiitorloi (••#•♦ 
Noftrtoott 8k9 8))• Ao will bo thown, thoto prootduros do not 
iivt food agrMMBt vtth txptrlaintol d«u OB rotors in dotooivtinc 
fUfM«   Udo ohoptor thortfbro prtosott an nnnlyii« of roi r* in 
vtrtlonl dotoont ualnc oonvontlonnl MMntuo and Dlodo-oloaont 
•MunpttoM» plua MM addltlonol rtflMMnta.   fbMO Uoludo: 

(i)      Mmnifäm  dowiMOh MMeUtM with rot«« tip 
vortioM 

(ii)     the   lost of Itftinc offtotivoMM of tht Upt 
dm to tbm-dlMntiMol flow (i.t.f "fpiI!•«•") 

With thtM fkotori include, the tboory «crMt «oil with experiment. 

n» beelc flow model is shown in Figure 6.   The tip 
vortioee ore ■odolod by vortex eoree with boundary conditions 
matched inside end outside the slipstrosa.   This, of course, is s 
highly simplified model of the actual flow, neglecting swirl, non- 
uniform downwash due to non-ideal blade twist, unsteady effects, etc. 
However, this model gives results which are sufficiently accurate 
for stability and control calculations, predicting derivatives to 
within + 203t accuracy* 

The chapter is organized as follows.   In Section 2, mass 
flow, momentum, and energy relationships are derived for the assumed 
flow model, with the ratio of the parallel sides of the trapezoidal 
distribution left variable.   These basic relationships relate 
conditions at the rotor disc to those in the ultimate wake.    Because 
of the nonuniform    flow at the outer edge of the slipstream, the rela- 
tionships are more complicated than for the standard model where 
the flow is assumed to be uniform across the slipstream.    Section  ^ 
expresses rotor thrust in terms of blade-element angles of attack, 
taking into consideration the trapezoidal induced velocity profile. 
In Section   h  the vortex core model boundary conditions are established 
in order to fix the geometry of the trapezoidal distribution both at 
the disc and In the ultimate wake. 
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Stetlon 'J dlfOUIMS tht lot! of 14 ftlng tffWotivtMit of 
bUte tlMttiti MAT tht tlpt dut to thru dliniloaal flow.   SUi 
li uiuAlly «ooounUd for by • "tic loft ftu?torw. 1.«., dtflnlng an 
•ffbetlvt rotor ridiua Bit whtrt |i • 1 - ysCTb.   thU fiotor civtt 
rtMOMblo aecuraoy at bovt^but it Is not ftjpartat bov B tbould bt 
■odiMid for nonbovorloi oenditloM.   Bootioo ^ tbortfort prattnU 
•n alttiMtlvt d«rl¥tttton of B bMtd on ooMldtratloof of tht lotdinf 
•t tht rotor tlpt rtthtr than tht tvtrtct loadlag ptr bltdt.   thit 
ptroltt D to bt otloultttd in • logiotX fbthioo for nonhovtrlne 
ooBdltlontt   It doti, hotwor, Itod to • oyollo vtrUtlon of B 
«hieh otuttt MM tdditioMl otiapUettloo in Mlonlttlng dtrivttivtt. 
tbt prootdurt tdoptod for laoorporttlBg t oyollo B In tht rotor 
blado UM hlttory otlouUtloM it too dttoilod for ditouttioo 
in tto Mia ttxt of tht rtport tad it ttortfbrt ditoutttd in 
Apptndix ZI» ia oonjunetlon with tht dttcription of tht tubroutiat 
SWEEP which iattfrttM tto bltdftlMtnt lotdt rodiaUy tad with 
rttMOt to tlM« 

SootloD 6 thoM how tht tip lots fbotor B ctn bt ocMintd 
with tht prtotdlac   tmlytlt to ootputt thrutt vtrtuf rttt of 
dMotat for a tivtn rotor*   Btotioo 7 cooptrto thtorttloal 
prtdlotloM with wtad-tunaol data oa a dttotndlng rotor*   Btctute 
no tatio factory data wort availablt for laollntd dttorat, It WM 
not potoiblt to valldatt tht MB—i oyollo ooapootnt of tip 
lotMt# but good igroMtnt It obtained with data for vtrtical 
dtioont for Whloh only  nonoyclic tip lotttt art prtdlottd* 
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IV.2. BASIC RELATIONSHIPS FOR MASS FLOW, MOMENTUM, AND POWER 

Axial Velocity Distribution 

A trapezoidal velocity distribution such as that shown in 
Figure 6 can be described as follows: 

( v - V 0^x^1-6 
v(x)  =     I v (1 - x)-V 1-8 * x  i 1 (29) 

This distribution can be nondimensionalized by dividing 
through by fiR. The result is 

(\ - A        0 s x ^ 1-5 /,nx 

The above equations apply near the rotor disc.    Similar expressions 
hold in the wake, except that a   is used in lieu of a.    Of course, 
X   and 6   must be used in the aW expression corresponding to Eq.  (50) •    In 
general, X   =* X   and 6^6, but A is the same everywhere    and requires 
no special subscript. 

Mm Flw 
The mass flow through the rotor disc can be obtained by 

integrating the trapezoidal velocity distribution over the entire 
disc.    The result is 

m   = I2TTS  p v,'!) ds (31) 

.2, 21   xa(x)dx m    =    pTTirnR    2/   xa(x)dx (32) 

Mf =   2 A xa(x)dx (33) 
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p 
In the distant wake, Eq. (52) is applicable with B^ 

substituted for R2 in the area factor (note: the R in the nR 
factor remains nonsubscripted because this terra was used to trans- 
form v and V to their nondiraensional forms \   and A ). 

m = pTTR OR I 21 xa (x)dx I (5M 

Dividing {^)  by (52) and rearranging. 

?  .4 A .  i^'** (}5) 
R v/\ (x)d X 

The momentum flux of the air that is eventually encountered 
by the rotor while it moves in the distant atmosphere is 

F = - mV 
(36) 

where positive F is downward. 

In the distant wake, the momentum flux is calculated by 
integrating the trapezoidal distribution: 

F = / Srrspv (-~ I ds (57) 
/w   2/ s 

2n.p^Hr 
o      \ w' 

Nondiraensionalizing   the integral, 

[2jfW(x)dx] Fw = pTTRw
2(nR)2 I 2/    xa^(x)dx | ,. (^ 

f 
w 

F;     TTR2p(nR)2e2l2y xaw
2(x)dx I (59) 
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Clearly, the change in momentum flux must equal the rotor thrust. 

[y*%2(*)** J T =   + mV + TrR2p(nR)2e2 j^l xa t(x)dx I (ko) 

Nondimensianalizing with the help of Eq.  03), 

CT    = Mf A + e2^2/xaw
2(x)dxj (In) 

An alternative form to (4l) is 

CT    =    2Jx[ba(x) + e2aw
2(x)]dx (1+2) 

Energy (Power) Considerationa 
The energy flux (power) in the air before it reaches the 

rotor (i.e., when this air is in the distant atmosphere) is given 
by 

Po    =    1/2 mV2 (45) 

The power added to the air by the rotor is 

PR   =   /*v(x)di =/IwdS-jax 
•'o •'o 

Eq.  (hk)  can be verified from either force and 
momentum considerations    or blade element considerations. 

(W) 
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The assumed blade element has span ds and produces lift dL. 
The shaft torque produced by this element is 

dQ = sdL sina. 

v(x) For small a., a. s sina.  ä tana. %     * '    • 

Then the torque is 

do    -    s    v(x)dL      -    vMdL ati   '   s      AS       ~     n 

Multiplying through by ü and integrating, 

Qn^pR   -f v(x)dt -fvix) g- dx 

Eq.  (hh) can be easily nondimensionalized. Putting 
L • Ti 

PR = TTR2p(fiR)5y    a(x)(_T_jdx (^5) 

The power in the distant wake is assumed to be completely embodied 
in kinetic energy fluxj i.e., the ambient pressure in the distant 
wake has returned to atmospheric pressure. 

In the distant wake, currents flow in radial, tangential, 
and axial directions. The power could be broken into three corre- 
sponding portions denoted by the subscripts r,t, and a. 

P  = P + p. + P (^6) 
w    rw  tw  aw 

The radial flows occur because of vortices (and vortex 
cores) in the wake. Tangential flows occur due to "swirl", which 
is caused by momentum imported to the slipstream by rotor shaft 
torque. The axial power is associated with the assumed trapezoidal 
velocity distribution. 

Assume for the present that P + P. « P . The axial power 
comes from integration of the trapezoidal distribution: 
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or 

Pw   =_/ (l/2)p2rTevw
3(-^-)as (1*7) 

In the usual manner, the right-hand side of (^7) is non- 
dlmenslonallzed. 

Pw    =    (l/2)pTTRw
2(fiR)5|^2y xaw

3(x)dxj 
o 

Pw    =    1/2 TTR2p(ßR)5€2 \?T xaw
5(x)dxj (U8) 

The following balance of power must exist: 

P     =   P_   +   P (kg) w R o y '' 

Substituting {^),  (^5) and (48) into (49), 

(l/2)T7R2p(fiR)5e2 I 21   xaw
5(x)dx      =   vRppim^J a(x)(-~)dx + (l/2)mV2, 

c2/ xaw
5(x)dx =/ a(x)(~d5r) ^ + A2

/ 
X
 »W4* 

•b 'o * ^ 

This equation can be refined further after the blade 
element analysis, which follows, provides an expression for 
dC_/ds.  Looking ahead to Eq. (58), 

iCI   -.    %x[9+.a(x)3 

or 

dx 

Hence, 

1 
2 e 'j   xaw.-?(x)dx = -5—/ x[e. - a(x)]a(x)dx + A / xa(x)dx 

o o 

50 (50) 



Up to this point, we have discussed only the mass flow, 
momentum; and energy in the slipstream, using the assumed trapezoi- 
dal distribution of induced velocity. Eqs. (33), (34), (3^), (^2) 
and (50) summarize the principal results. The next section develops 
the blade-element expressions for the rotor. 
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ZV.2. BIADB-EIgMEWT COW8IDERATI0MS 

If xil-5, the axial velocity is constant and equal to 
v-V.    In this region the thrust per blade is 

d!^    =   1/2 p(ns)2acle -    (^   [da 0^s<R(l-6) (51) 

Assiame the twist distribution* 

Then 

9 = -ret (52) 

dlb   -   ,/2p(ns)2a=[^-%^]ds 

= 1/2 p(fis)acmRet + V - vI ds (53) 

Comparing this expression to the Kutta-Joukowski expression with 
T = L, one sees that 

d!L 
=   pvr (54) ds 

P is constant for O^x £l-&   and is given by the expression 

T    =    1/2 ac (fiR 6.  + V - vl     Oix   <1-5 (55) 

Since T—O at the tip, the T strength given by (55) must 
shed as training vortices over the region l-5<x<1. 

This distribution Is usually called "ideal twist", since It causes 
uniform inflow (v constant over the disc), and constant circulation 
along the blade bound vortex system, i.e.. In Eq. 55 P is constant 
for ideal twist. 

52 



From,  this system, it seems reasonable to assume that the T 
strength fed to the vortex core is given by (55) • Nondimensionalizing 
(27); assuming constant chord c, 

r = ir nR2fi ^et + A - X1 (56) 

Continuing with the blade-element theory,  from Eq.   (55) 

dl^    =    1/2 p(fis) ac I fiRet - v(x) 1 ds (57) 

where v(x) has been substituted for v-V in Eq.  (53).    Note that 
Eq.   (57) holds over the entire blade, unlike Eq.   (53). 

dül   = l/2 pfisac   nRG.  - v(x)    ds 

= 1/2 p(fiR)Ttec xFe    - a(x)|dx 

= 1/2 p(fiR)2TTR2a   ^- (4~)x[et " a(x)] dx ^8) 

For all b blades,  the  thrust expression becomes 

dT = 1/2 TTR2p(fiR)2 aa xFe    - a(x)l dx 

For the case when the blade chord is constant, this thrust 
expression can be integrated and nondimensionalized    to yield the 
equation 

CT    =     T   {et -  2/xa(x)dx| (59) 

Note that the integral in (59) also appears in (33)« Thus, 
an alternative form of (59) is 

;T = T et Cm =  ^(9
t-Mf) (60) 
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zv.it.       Yfflm AM mm 
The trapezoidal induced velocity distribution shown in 

Figure 6 is composed of a uniform distribution plus two idealized 
vortex cores. These cores have a tangential velocity V. which 
increases linearly with distance from the center of the vortex core 
until the core radius R6/2 is reached, beyond which point the vortex 
is assumed to Induce no velocity either inside or outside the slip- 
stream. Of course, this is a very simplified representation of the 
actual flow, and to obtain accurate results with this mode], some 
consideration must be given to the characteristics of real viscous 
vortices. This forms the main topic of this section. 

A viscous vortex model is given in Reference 27 which has 
the tangential velocity profile 

(,. e ■rVV) 

-r Av t 

V1^ =   IFF-   l1"6 / (61) 

This velocity distribution for some time, t, is shown in 
Figure 21 

vortex model 
For r<r , the model tends toward    the simple inviscid 

V t 2rTr 

For r<r , the velocity profile tends toward    that of a 
rigid body spinning at a rate co, where 

V 
max /^„N O)     =    —^  (62) 
c 

It was shown in Chapter III that the boundary condition required 
to fit the peripheral velocities of a vortex core to the slipstream 
velocities of a descending rotor is 

v = 2Vt (65) 

where V. is the tangential velocity of the core. 
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Figure 21.   Vortex Model. 
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Assume that V. = V   as depicted by Figure 21. Then 
Eq. (63) can be used to deteraine rc, which will later be 
related to the coordinate 6 on the trapezoidal velocity distributions 

To determine r , one must first differentiate Eq. (61) with 
respect to r:        c 

i a&n 
21T 

r2 

^v~t 

2 r 

e tzt e -(1-e e) 

V       occurs when this derivative vanishes, leaving the result 

(*£■)' 

2 
rc 

e 

r2 

Wt 
1 - e (610 

For simplicity, define 

A     r 
r 4       C (65) 

Then (6'-) is written 

1 + 2 C = « (66) 

The approximate numerical solution to this equation is 

5-5/^ (;8 (67) 

as can easily be determined by direct substitution. 



Combining (65) and (67), 
2 r c ^et =  -T- (68) 

and substituting (68) into (6l) to get V   , 

V max 

^ 

4 (- rc l-Ai1- 1 

Using (66) to substitute for e ^s , 

V max 

max 

"    Jrc   I
1 -    1 + 2 Cs ) 

11 rc   V1 + 2Cs/ 

Tnr c 
or 

(69) 

Vmwc  =  TT r  I 1 + P r / (70) 

Using the value 5/4 for C   as given by (67), Eq. (70) 
becomes " 

Vmax =  Tlmr ^^ 

Assuming that V = V  , Eqs. (65) and (71) can be 
combined to get       *   max 

v. -^ 

r = —?E— f?^^ 
C     7TTV l r'-; 
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Eq. (72), when applied to the cores near the rotor, 
can be manipulated to get (since 6 = 2r /R ) 

The value of r applies for a single blade and is given 
by Eq. (56). 

the r strength of the cores is constant. Thus, 

5 =  *l0r  (7^) w    7"R v v' ' w w 

An alternative form for (7^0 would be 

6w ■ iss^  (75) 

At this point, it is appropriate to combine Eqs. 
(56),   (75) and (75). 

6= ^-= JSTT ^rWn(esA.X) iTTRv 7TTR(flR)X   ' l a/ nn ; 

6 -m^ + A - 

X 

X 

5 
w ■ (■&■)A 

+ A - X 

(76) 

(77) 

Having related the core model to the flow inside and outside the 
slipstream, the next step in calculating the rotor thrust is to 
allow for tip losses due to three-dimensional flow, or "spillage" 
This is discussed in Section ^.Ibut before beginning that topic, it 
is convenient to summarize the major equations obtained up to this 
point and to restate them in convenient nondimensional forms. 
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Equation Sumnary 

a(x)    = 

Flow model 

a (x) ■ 

\   -   A 

| (1-x) - A 

X   -   A w 

r o-x) - A 

Oi x i 1-6 

1-5 x £ 1 

0 i x < 1-6 

1-6    i x < 1 w 

(30) 

w 

Continuity   e   = 

f1 

J    x a(x)dx 
J2  

I   x a .(x)dx 

(35) 

Momeiitura « a\/ : 0T * 2tiJ   xa(x)dx + 2cjx aw
c(x)dx 2/'1 

ite) 

Energy e2/ x aw
5(x) dx -   -j*-f x(et -a(x)) a(x)(ix 

•■/ xa(x)dx 

Blade element oa 
'T   =     T" (9t- if   x a(x)dx ) 

(50) 

(59) 

Vortex Core model 6 ■HH 
et + A - x 

(76) 
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Vortex Core Model 
^(-^ 

0^ + A - X 

Xwe 
(77) 

To simplify the equations, introduce the notation 

»,^ 2/  xa(x)d 

4 2/1 xa2(x) dx = 

xa„(x)(ix = 

O 

W3 ^ tf   xaw
3(x)dx 

xaw':(x)dx 

R/A,^) 

R2(A,X,6) 

W1(A'VV 

W2(A,VV 

W3(A'VV 

Hie equations become 

e ■ 

CT   =  AR1 + e' w2 

eS  ■   "f    (etR1  " R2) + A2RI 

oa   (e.-RJ nr ^t ■ Ki 

*-m^ 0^ + A -  X 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 
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6 w-W -S7- (88) 

The problem we have to solve can now be stated as 

Given-  A,e.,a,a,b,  Find:  e,C„,,M »M„ 
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iv.5.   ai MBB MM 
The analysis presented to this point has not Included a 

blade tip loss factor. The purpose of the following presentation 
Is to derive a method for including such a factor. 

Eq. (53) expresses blade element thrust for a single 

blade as: 

dO^ = ^S- flsffll^ + V-vlds 

This can be written In a somewhat more general form as 

d^ - -^- (nR)2x(et + A - x)d8 (89) 

The blade loading is defined by 

^ 4 -jJL ä -ffis- (nR)2x(et + A . x)     (90) 

Eq. (69) can be Integrated to get the thrust produced 
by one blade* For b constant-chord blades, the thrust is 

T - lA bpac(flR)2R(et + A - X) 

« 
The integration assumes uniform inflow, i.e., X is not a function 
of x. This is equivalent to replacing the trapezoidal inflow 
distribution by the classical uniform distribution. We do this, 
at this point in the derivation to obtain the classical tip loss 
factor. Subsequently we return to the trapezoidal distribution 
to get an improved tip loss factor. 
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The thrust coefficient if therefore given by Eq. (66) as 

Pj - -rp (et + A - x) 

C-, can be expressed in terns of the blade loading at the 
tip, by comnLning this equation and Eq*  (90) and setting x > 1 in 
Eq.  (90).   The result is 

°T-   T \     pac(flR52      J (92) 

In Reference 27, a tip loss factor for hovering rotors is 
presented in terms of C- as follows: 

B ■ 1 - l/2CT (93) 

The "tip losses'* occur because air flows from the bottom 
region to the top region of the blades at the tips. The flow occurs 
because of lift (pressure gradient between the upper and lower blade 
surfaces). Such flow "destroys" the lift on the blade elements in the 
inmediate region of the tips, because It Interferes with the two- 
dimensional lifting mechanism of the airfoil section. 

Since tip losses are caused by flows at the tips due to 
lift at the tips. It seems that the blade distributed loading at 
the tips really controls the quantitative value of B, not the overall 
rotor thrust coefficient as suggested by Eq. (93)* However, 
Eq« (93) is valid at hover (assuming the important factor is 
distributed loading at the tip), since Cm is directly related to Tf 
by Eq. (6U). A more general form of (93T can be expressed in 
terms of T/, and, as shown below, this leads to a simple expression 
for B valla both at hover and in descent. 

b f ~  pacTJiT2" B-1-TrV n.:^ (9M 

Eq. (9^) has been derived for rotor systems with 
uniform induced velocity. Because B is expressed in terms of 
T. 1., , however, it seems reasonable that it should be applicable 
to rotors operating with nonuniform inflow, Inasmuch as the tip 
loss is a local phenomenon depending primarily on blade tip operating 
conditions. 
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For the descending rotor, Eq. (57) Is applicable. 

dTjj - 1/2 p(fis)acrnR9t - v(x)lds 

2 (OR) x(e.  - a(x)) (95) 

At the tip, T.  becomes 

"bltlp   a    ^ ("R)2(et + A) (96) 

Substituting Eq.  (96) into Eq. {9k) gives the 
major result of this section, a general formula for B. 

BBi-i y^(et + A) (97) 

Note that X disappears from the T. expression at the tip. This is 
because a(x) ■ • A at x ■ 1, i.e., at the tip. The disappearance 
of X is a consequence of the assumption of a trapezoidal inflow 
distribution. It accounts for the difference between the tip loss 
factor derived here (Eq. 97) and the classical tip loss factor, 
Eq. 93* Because the trapezoidal inflow model gives a higher T.' 
than the uniform inflow model, at a given CL and A, the tip loss 
is larger, i.e., B is smaller. 
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iv.6. jxKxmxsATim or gag nap LOBS FACTOR 

All the equations required to solve for C_ versus rate of 
descent of a given rotor have now been obtained. At this point, the 
problem is to include the effects of B on Eqs. (83) through (88). 
One way to do this is outlined below. 

Solve Eqs. (83) through (88) in a normal way, without 
considering tip losses. Results of such a solution process can be 
expressed in nondimensional form, using the actual rotor radius R as 
the characteristic length. 

To include tip losses, say that the effective rotor radius, 
R . is given by 

Re^RB-R[l.i^f.(et+A)] (98) 

The solutions to (83) through (88) can be considered valid 
for a rotor with radius R  and no tip losses (the no tip loss 
assumption being already embodied in Eq. (83) through (88)). 
Thus, when the nondimensional data representing the solutions to 
Eqs. (83) through (88) are dimensionalized, an effective radius R 
must be used to account for tip losses. 

Obviously, it is desirable to present data nondimensionalized 
by a constant characteristic length (e.g., R) rather than a variable 
characteristic length (e.g., R ). To accomplish this, the non- 
dimensional data expressed in verms of R must be restated in terms 
of R. As an example of this process, consider a graph of Cjvs A, 
predicted for a rotor of given geometry by solving Eqs. (83) through 
(88). For a given A, the actual thrust T is given by 

T - TTRe
2p(aRe)

2CT » prtlW (99) 
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II 
Define CL as the desired thrust coefficient, I.e., the thrust non- 
dlmenslonallzed with respect to R. Then 

T^pmhkc* ,' (100) 

Combining (99) and (100) to eliminate T 

*•■(■ 
R /  T 

Eqs. (101) and (98) can be combined to yield 

Re ä cm (101) 

^-^-W-f-K^lA 
übe characteristic length, R , has also been used to 

produce A: e 

A . J5- (102) 
e 

This process is applicable to the value for A in the original non- 
dimensionalized data C- = C-(A) . 

The question arises, does the nondimensionalizlng process 
(102) apply to Eq. (98)? [if R is included in the A in Eq. (98), 
then Eq« (98) becomes tai implicit expression in R .]  It is expected 
that the difference in results as to whether the % in (98) is 
nondimensionalized by R or R will be extremely small« Assuming 
this for the time being, substitute A* into (98) and (101), 

A* 4 JL 003) 
A '   flR 
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However, the effect of B should be included in determining 
the A in the original data. Combining (102) and (105) to eliminate V, 

A* ■*(¥)- 0- -H-f-K+4A 
do*) 

which can be rewritten as 

A        A* 

^ " Wf ^t + A^ 
(105) 

Summarizing, the major results of this section are the following 
equations : 

B   =   i - ^ y f (et + A* )                     (97) 

A* 
A   =   -y- (103) 

CT*=   B^ (101) 

An example hand calculation of C * versus the rate-of- 
descent parameter is done below, to show the method. Note that to 
obtain the graph of Cj* vs J*it is necessary to assume em initial 
value of J*, and later to determine what value of J this implies. 
Thus the method doesn't predict 0 * for a given single value of J, but 
instead predicts the entire C * versus J* graph. 
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The derivations given in this chapter employ standard 
notation used in helicopter analysis. A different notation is 
traditional in propeller analysis. For example, J is used to 
denote nondimensional axial propeller velocity. J is related to 
A by 

J = TTA 

The propeller thrust coefficient is denoted here as CT   and is 
P 

related to the "helicopter"  thrust coefficient by 

CT     =   64 TT
5
 CT 

P 

In the comparison of our predicted C_ versus measured, given in 

the next section, CL the "propeller" notation is used, because 

the experimental data are presented in this notation. 

The results of the calculation are shown in Figure 22 
and are compared with the CL versus J graph that would be obtained 
assuming zero tip loss factor. The difference in magnitude of 
CL and slope öCL/dJ at a given CL is considerable. 

68 



TABLE I.    EXAMPLE CALCULATION OF C * VERSUS J* 

a = . .186 ß - 1.0         et = -25      a = 5.75    b = 5 

(1) (2) (5) CO (5) 

/ A* Bt+A* f x(5) VS (5)/b B J 
\ 

B2 B4 c * 

-.ifO -.127 .1250 .0658 .256 .0858 .9142 -.457 .125 .858 .700 .086 

-.50 -.0955 .1545 .0828 .289 .0965 •9055 -.552 .152 .818 .669 .102 

-.20 -.O6566 .1865 •0995 .515 .1050 .8950 -.225 .182 .800 .640 .116 

-.10 -.05185 .2182 .1160 .5^1 .114 .886 -.115 .210 .785 .617 •129 

0 0 .2500 .1550 .565 .122 .878 0 .256 .769 • 590 .157 

.05 .01592 .2659 .1^20 •577 .126 .874 .0571 .249 .765 .585 .146 

.10 .05185 .2818 .1500 .587 •129 .871 .1145 .260 .760 • 579 .150 

•15 .0^775 .2978 .1590 .598 • 155 .867 .17^0 .271 .751 .565 •153 

.20 .06566 .5157 .1662 .410 •157 .8^5 .2510 .280 .746 •557 .155 

.25 .07958 .5296 .1750 .420 .140 .860 .2910 .287 .740 .548 .156 
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1 ' ' ^m^m 

m 

• 
and C * 

TP 

^ 
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• •.25 

CT vs J 

« 

• -.20 • 

-.15 
iCT    V8 J X: 

- -.10 « 

- -.05 - 

i i                    i • i i 

.5 .2 1                                             ( -.1 

J and J 

-.2 -.5 

Figure 22.    Results of Example Calculation of C-,   Versus J, 
P 
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IV.7 CQMPAMgflW WIT« :t,«Vi;*"v 

Hardly any data on thrust of helicopter rotors In vertical 
descent has been published. Reference 19 describes flight tests on a 
Westland Whirlwind helicopter In vertices descent^ but unfortunately 
the data obtained are not sufficiently complete to permit correlation 
with our theory. We therefore have to employ data on VIOL propellers. 
Reference 16presents wind-tunnel data on VTOL propellers at shaft angles 
of attack representing vertical and Inclined descents, and Reference 28 
gives data on the same propellers In climb conditions (though not all the 
blade settings were duplicated). By combining these references the 
experimental data graphed on Figure 23 were obtained (solid lines). The 
dash-dot lines on Figure 23 show the results obtained by solving Eqs. 
(78)-(89) for the propeller and then modifying the results (as specified 
by Eqs. (97)-(101) to include the tip loss effects. 

It will be seen that the theory agrees well with experiment 
for climb, hover, and rates of descent outside the unsteady region of 
the vortex-ring state. 

Figures 2k  through 27 axe  presented to show the comparison be- 
tween experiment and theory for the following different theoretical 
approaches: 

(1) Vortex core wake model with variable tip loss factor 
(Eq. (97)). 

(2) Variable tip loss factor with no vortex cores (i.e., 
wake represented by uniform downwash over rotor disc 
of radius BR). 

(3) Conventional analytic model; i.e., constant tip loss 
factor (B = 1 in this case) and uniform downwash. 

For all three of these cases, the solid lines represent the experimental 
data. 

Figures 2k  through 27 indicate a striking improvement in the 
accuracy of theoretical results when the descending rotor models 
described in this chapter are applied. 

Another important conclusion that can be reached, by inspec- 
tion of the figures, is that correlation between experiment and theory 
is good if the tip losses are accounted for while retaining the uniform 
inflow model. This does not mean that the vortex cores are unimportant, 
since this core model was an essential part of the derivation leading 
to the tip loss factor (Eq. (97)). However, once the existence of 
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VERTOL 76 
PROPELLER TEST DATA - g - •= 
ANALYTIC RESULTS     
(INCLUDING NONUNIFORM FLOW  < 
AND VARIABLE TIP LOSS FACTOR) 

BLADE 
ANGLE 

Figure 25,    Comparison of Analytic and Experimental Results for 
Thrust vs Descent Rate of a VTOL Propeller. 
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P 

BLADE ANGLE = 6° AT 0.75R 

.10" 

ANALYTIC RESULTS   (NONUNIPORM INFLOW AND VARIABIE 
TEP LOSS FACTOR) 

ANALYTIC RESULTS:  CONSTANT TIP LOSS FACTOR, UNIFORM 
INFLOW 

ANALYTIC RESULTS: VARIABLE TIP LOSS FACTOR WITH UNIFORM 
INFLOW 

VERTOL 76 PROPELLER TEST DATA 

Figure 2k,    C_   vs J for 6-Degree Blade Angle. 

P 
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BLADE ANGLE = 9   AT 0.75R 

.2 .1 0       J     -.1 -.2 -.3 
ANALYTIC RESULTS  (NONUNIFORM INFLOW AND VARIABIE 
TIP LOSS FACTOR) 

ANALYTIC RESULTS:  CONSTANT TIP LOSS FACTOR, UNIFORM 
INFLOW 

ANALYTIC RESULTS: VARIABLE TIP LOSS FACTOR WITH UNIFORI' 
INFLOW 

VERTOL 76 PROPELLER TEST DATA 

Figure 25.    CT   vs J for 9-Degree Blade Angle. 
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AJIALYTIC RESULTS (NOHUNIPORM IKPMW AND VARIABLE 
TJ:P LOSS IACTOR) 

ANALYTIC RESULTS: CONSTAIIT TIP LOSS FACTOR, UNIFORM 
INFLOW 

AI'ALYTIC RESULTS: VARIABLE TIP LOSS FACTOR WITH UNIFORM 
INFLOW 

VERTOL 76 PROPELLER TEST DATA 

Figure 26,    C_   vs J for ia-Degree Blade Angle. 
P 
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FIGURE 8 

BIADE ANGI£ - 15   AT 0.75« 

ANALYTIC RESULTS   (KONUIflPORM lUFVCM AMD VARIABLE 
TIP LOSS FACTOR) 

ANALYTIC RESULTS:  caJSTANT TIP LOSS FACTOR, UNIFORM 
INFLOW 

ANALYTIC RESULTS: VARIABLE TIP LOSS FACTOR WITH UNIFORM 
INFLOW 

    VERTOL 76 PROPELLER TEST DATA 

-* TT TT j   -.1 -.2 -.3 

Figure 27.    C     vs J for 15-Degree Blade Angle. 
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the viscous "boundary layer" between the slipstream tube and the 
surrounding air mass is recognized, the simple tip loss factor can 
be derived. This situation is quite analogous to Prandtl's fixed- 
wing boundary layer model. The presence of the viscous region must 
be acknowleged to assess correctly the physical flow mechanisms which 
produce the wing loads. The results for lift and induced drag derived 
from inviscid theory (which does not include the boundary layer), 
however, are still accurate if the boundary layer has not separated, 
causing stall. For the descending rotor, the viscous region is 
analogous to the boundary layer. The nonuniform downwash indirectly 
causes a thrust loss by inducing higher blade loadings near the tips. 
This thrust loss greatly exceeds that due to the momentum loss associated 
with the nonuniform downwash. 

IV.8.   Summary 

The performance of a vertically descending rotor can be 
calculated using a "vortex-core" wake system and a suitable blade tip 
loss factor.    The results obtained by analyzing this flow model show 
good correlation with available experimental data   over the region 
from fast climb to descent rates outside the vortex-ring buffet 
boundaries.   Although the vortex core model is required to derive the 
descending tip loss factor, the wake inflow distributions can be assumed 
uniform (retaining the tip loss factor only and assuming negligible 
vortex core radius) without seriously degrading the accuracy of numerical 
results. 

The application of the tip loss factor to derivative 
calculations is discussed in   Volume    II.    The necessity to 
consider inclined as well as vertical descent requires a cyclioly 
varying B.    Experimental data are not sufficiently complete to check 
the accuracy of derivatives calculated using this approach; however, 
it follows logically from the assumption that conditions at the tip 
determine the tip losses. 

77 



CHAPTER V. M MOBM MODüIAa BIPiaiLITy DmiVATIVl 

PBOOBAM AMD IM ABPLICATIQW TO Ml B-SS 

AND AH-56A MUOOWnB 

V.l. •\mwLwv. 

This chapter describes how stability derivatives were 
calculated for the S-58 and AH-56A. (As explained below, published 
derivatives were used, for the YHC-1A.) The chapter Is organized 
as follows: 

Firstly, the MOSTAB modular stability derivative program 
Is described. MOSTAB was specially evolved for this study; It 
calculates derivatives for any type of helicopter, with a wide 
variety of possible flow models. The description In this chapter 
Is very general; full details of the equations used In MOSTAB and 
a listing are given In Volume II. 

Secondly, the forms of the Input data required for MOSTAB 
are  summarized, and the specific data for the S-58 and AH-56A are 
presented. These data Include three-view drawings, estimated aero- 
dynamic coefficients for fuselages, rotors, etc., and the appropriate 
reference areas. 

Thirdly, the flight conditions for which derivatives were 
calculated are tabulated. (The actual derivatives for each flight 
condition are listed In Volumes III and IV, with the transfer 
functions.) 

Finally, the chapter concludes with a brief discussion 
of the accuracy of the MOSTAB derivatives. 

V.2.   THE NBED FOR MOSTAB 

During the course of the study described here, It became 
apparent that it was difficult to obtain reliable stability derivatives 
for single-rotor, tandem-rotor, and compound helicopters in descending 
flight. In some cases derivatives were available for level flight, 
but the programs used to calculate these derivatives contained " built 
in" assumptions regarding flow models which were inappropriate for 
descending flight. It was not feasible to modify these programs to 
incorporate alternative flow models, such as those described in 
Chapter IV. Furthermore, only limited experimental data on derivatives 
in descending flight were available. 
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Accordingly, it was decided to start afresh, by writing 
a "universal" program to compute trim and stability derivatives 
for any type of helicopter, with little or no restriction as to 
the flow models that had to be used. Further requirements were 
that the stability derivatives should be pr in ted-out in all axis 
systems of interest, in dimensional form and also divided by the 
appropriate inertias, and that the contribution of each component 
to the complete derivative should be printed-out so that the 
reasons for unexpected values of derivatives could be traced. 
The result of these requirements is the MOSTAB program described 
below. 

The following description of MOSTAB is the bare minimum 
required to follow the subsequent discussion. For more details 
of MOSTAB, see Volume II. 

v.3.    naaan maai g Mami 
MOSTAB currently calculates performance, trim, and stability 

derivatives for any type of subsonic aircraft. The program can be 
extended for use in hybrid simulation and may also be used to 
calculate limiting conditions such as 'g' boundaries. The unique 
feature of MOSTAB which gives such versatility is its modular 
construction, explained below. 

Figure 28 shows a helicopter separated into elements. The 
physical characteristics of each element are specified in the input 
data. Separate sections of MOSTAB handle each element type. The 
influence of each element on the aircraft is summed to calculate 
dynamic characteristics of the assembled flight vehicle. 

When an element (e.g., wing, propeller) produces a force (lift, 
drag, thrust), the air in the vicinity of the aircraft is set in 
motion. The Induced velocities (sometimes called downwash and 
sidewash) affect other elements by changing their local airspeed 
and angle of attack. Interference velocities are thus very 
important and must be calculated accurately. 

MOSTAB includes all of these "aerodynamic coupling" 
(interference velocity) effects in a single subroutine. 
Any desired model for interference velocities can be included in 
this subroutine,which performs all of the necessary interference 
velocity calculations. No fundamental program changes are required 
to modify interference velocity models as required to suit particular 
vehicles; only the interference subroutine need be changed. 
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ARSEMBIED AIRCRAFT 
IS SEPARATED INTO 
ITS COMPONENTS  

\ 

HORIZONTAL 
STABILIZER 

FIN 

FUSELAGE INTERFERENCE VELOCITY 
CALCULATION 

• Receives Loads Produced 
By Each Component 

• Generates Interference 
Velocities Between Components 

/ 
TAIL ROTOR 

Figure 28. Modular Representation Used by MOSTAB. 
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Elther rigid rotors (propellers) or flexible tladed rotors 
(helicopter rotors - hinged or hlngeless) can be studied by MOSTAB. 
The modular nature of the program allows one to represent an air- 
craft with as many rotors, aerodynamic bodies (fuselages, nacelles, 
etc.),and lifting surfaces (wings, empennage surfaces, canard 
surfaces, etc.) as desired. 

Because aerodynamic rotors are the most complicated element 
types, a brief description of the rotor analyses incorporated In 
MOSTAB is presented here. " Rotors" are either of the flexible 
bladed type (e.g., helicopter rotors with hinged blades, or the so- 
called " rigid" rotors, whose blades deflect structurally to a 
substantial degree) or of the truly rigid type (propellers). The 
same subroutines compute flexible and rigid rotor characteristics 
in MOGTA.B. Since the rigid rotor (propeller) blades do not deflect, 
they provide no particular analytic difficulty. MOSTAB numerically 
integrates computed inertial and aerodynamic loads radially and 
azirauthally to determine the characteristics of rigid rotors (propellers) 
The blade motion of flexible rotors must be determined before loads 
from such rotors can be determined. The " normal mode" method is 
used in MOSTAB to represent the flexible blades. The normal mode shape 
and frequency for the first flapping mode of the flexible blade are 
Inputted to MOSTAB. (Other modes can be added easily to MOSTAB if 
required, but the first mode adequately represents flexible bladed 
rotors when determining stability derivatives.) Generalized mass 
and force are generated in the program, and the flapping motion of 
the blades is then computed numerically. Blade motion histories 
for all flexible blade rotors are printed out for the trim flight 
condition. 

QthT VeriioM of UOBTkB 

As the MOSTAB program undergoes more development, various 
versions will appear, each useful for analyzing aircraft under 
certain conditions. The first version, MOSTAB-A, is considered 
obsolete and unusable. This report describes the MOSTAB-B version, 
which will always have applicability if its basic assumptions and 
aerodynamic models are appropriate for the vehicle and flight 
regimes being studied. More advanced versions (-0, -D, etc.) will 
subsequently appear, each with more refined aerodynamic models, or 
with special effects added for specific vehicle studies (e.g., 
tilt-wing, ducted-fan, etc., configurations). 
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As of June 1970, MOSTAB-C had been completed, together 
with a user's manual. The principal improvements of MOSTAB-C 
over MOSTAB-B are: 

(1) Airfoil data can be automatically corrected for 
compressibility effects by means of a subroutine 
which reads local Mach number. The subroutine 
applies to both stalled and unstalled flew regimes. 
This compressibility correction is important at 
moderate and high speeds. MOSTAB was originally 
developed for approach conditions; hence, com- 
pressibility is not explicitly included in MOSTAB-B 
although an overall correction can be made by 
modifying the two-dimensional lift-curve slope in 
the wing and rotor input data. 

(2) MOSTAB-C has an option to print out forces and 
moments acting on each element due to overall 
vehicle velocity and the induced velocity of the 
element itself, but excluding induced velocities 
due to other elements. This is important for 
correlating " isolated rotor" tests and calculations 
with data determined for complete aircraft. 

(3) Rotor integration subroutines have been refined by 
removing a number of small-angle assumptions. 

(4) Derivatives can be called in "stability axes" for 
any flight condition including hover (this is done 
by extending the definition of stability axes to 
include hover). 

(5) A number of improvements and extensions to the 
data input and print-out formats have been made. 

V.it    MQSM BB—a VBMCTgy SlffiROTCPINE 

The interference velocities between the various modules 
are calculated by an extension of the classical Glauert expression 
which applies to fixed wings as well as rotors. The Glauert 
expression is 

k-T 
v = ^f (102) 
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where  T » Resultant aerodynamic force on the module (e.g., wing 
or rotor) 

v = The induced velocity at a specified location (e.g., down- 
wash at the rotor). 

p ■ Air density 

A    =    " Characteristic Area"   (  = «R   for a rotor of radius R, 
IT   b 

=-r-   for an elliptic wing of span b) 

Vm = Resultant velocity at the module 

k = A factor which relates the downwash at the desired 
location to the downwash at the module. Thus at some 
distance away from a rotor, when the slipstream has 
fully contracted, k = 2, whereas in the plane of the 
rotor k = 1. 

MOSTAB extends the above Glauert expression to a multidimensional 
form so that all linear and angular components of the " wash" can be 
related to the forces and moments acting on the module. Thus such effects 
as swirl due to rotor torque, and nonuniform downwash can be included. 
The generalized form of Eq. (102) consists of two matrix equations: 

M ■ i±r N w (10J) 
T

i 

h) - HW (**) 
where  v.  = A 6-component vector, the elements of which are 

1    the linear and angular induced flow velocities at 
module i 

VT j ■ Absolute magnitude of the airspeed at module i 
'i 

N- = A 6 x 6 matrix which is input to MOSTAB. Its 
elements have units of (l/area) and represent 
the reciprocals of the characteristic areas of 
module i. 
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I f. I = A 6-coniponent vector, the elements of which are 
'  '    the X, Y, Z forces and L,  M, N moments acting 

on module 1. 

jv. I = A 6-component vector, the elements of which are 
I J '   the linear and angular induced velocities at 

the location of module j induced by the forces 
and moments acting on module i (e.g., i could be 
the main rotor and ,1 the horizontal tail) 

FK I =  A 6 x 6 matrix of interference velocity coupling 
J    constants 

In the complete MOSTAB program, the order of vectors Is 
increased from 6 to 6N where N is the number of modules (e.g., N « y 
for a helicopter with a fuselage, a main rotor, a tail rotor, a 
horizontal tail, and a vertical tail). Thus a wide variety of 
interference effects can be modeled with ease. 

The numerical values of the derivatives calculated by MOSTAB 
for the S-58 and AH-56A are given in Volumes III and IV. To supplement 
these derivatives, this section presents data which permits the 
basic assumptions underlying the derivatives to be checked. That 
is, relevant dimensions and aerodynamic coefficients for each "module" 
(wing, fuselage, etc.) are tabulated, together with the assumptions 
regarding interference velocities between the modules. Because of 
the low speeds of Interest to the present study, compressibility 
corrections are not included. Hence, the aerodynamic coefficients 
for each module are the same for all flight conditions. 

To understand the input data, it is first necessary to 
review the axis systems used in MOSTAB. 

Figure 29 presents a three-view drawing of the Hughes 0H-6A 
helicopter with various coordinate systems attached. These axes 
will now be discussed under individual headings. 

(1) Overall vehicle reference axes - Axes x, y. z of Figure 
29 are the " overall vehicle reference axes" or " overall 
vehicle axes,f. These coordinates are defined in the main 
text and are the most basic axes used in MOSTAB. The 
positions of all vehicle elements are specified in the 
basic MOSTAB input data deck in vehicle coordinates, and 
the first set of stability and control derivatives is 
output in vehicle axes. 
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(2) Individual element axes - basic element axes - All 
coordinate systems shown by Figure 29, with the 
exception of the overall vehicle axes, are " individual 
element axes" or " individual element basic axes" 
These axes all lie parallel to overall vehicle reference 
axes, but with origins located at the " reference points" 
of their respective aircraft components, as shown in the 
figure* The FVA, F  and F matrices printed as part of 

MOSTAB output, and the columns DW, WE, WO, VIO, VAO and FO 
printed as the trim-iteration solution all refer to these 
basic element axes, as discussed in detail in Volume II. 

(3) TmHy^iiMi •i—w». itf*mi mirmm  . These coordinate systems 
are not shown on Figure 29, but they are defined in 
detail in Volme II. The "individual element local 
axes" have their origins at the respective element 
reference points (as do the individual element basic axes 
discussed in (b) above), but they are rotated from the 
basic axes to lie in a convenient position for analysis 
of the particular aircraft component. For example, the 
main rotor local axes are rotated from the basic axes 
(coordinates x , y , z   in Figure 29) so that their z 
axis lies along the rotor shaft center line. Also from 
Figure 29, one sees that the tail rotor basic axes must 
be rotated approximately 90 degrees about the x. axis 
to become the tail rotor local axes (with the z^xis 
along the tail rotor shaft). 

(k)    Hymig ^iBfl •These coordinates are translated and 
rotated from " overall vehicle axes" so that their 
origin lies at the aircraft's center of gravity and 
so that the v and w airspeed components in stability 
axes, at trim, vanish. This is the classical definition 
of stability axes. In MOSTAB, stability axes are defined 
with their z axis in the xz plane of the overall vehicle 
axes. For hover, stability axes are arbitrarily defined 
such that the x and y axes are horizontal with the 
stability x axis parallel to the projection of the over- 
all vehicle x axis on the horizontal plane. 

V.6.   MUHEMCAL DATA FOR S-58. AH-56A, and YHC»1A 

Figures 30, 31i znd 32 show 3-view drawings of the S-58, 
AH-36A and YHC-1A. The input data for the 8-58 and AH-?6A are 
summarized in Table II. All symbols are defined in Volume II. 
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Figure 30. Three-View Drawing of Sikoreky S-58. 
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Figure 51 •    Three-View Drawing of Lockheed A;I-:6A. 
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TABLE II - MOSTA§ INPUT DATA 
AIRCRAFT LOADING CONriftURATION AMD INERTIA (POUNDtFOOT^SLUr,) 

MOSTAB 
SYMBOL 

GROSS WEIGHT 

XCG 

VGG 

7CG 

IXX 
IXY 
IXZ 
IYX 
IYY 
IY7 
IZX 
IZY 
IZ7 

DEFINITION 

CENTER OF GRAVITY 
RELATIVE TO OVERALL 
VEHICLE COORDINATES 

MOMENTS OF INERTIA WITH 
RESPECT TO THE CENTER 
OF GRAVITY WITH THE #X* 
AXIS ALI6NFD WITH O.V.C. 
(O.V.C = OVERALL VEHICLE 

COORDINATES) 

SIKORSKY LOCKHEED 
S-SR AH-56A 

• 1S6(U05 .1187*05 

.3300-00 .0000 

• 0000 .0000 

.B7S0 .0000 

•1150*05 •5895*04 
• 0000 • 0000 
• 0000 • 0000 
.0000 • 0000 
•5000*05 •?750*05 
• 0000 • 0000 
• 0000 • 0000 
• 0000 • 0000 
•5500*05 •2309*05 

CHARACTERISTIC AREA MATRIX ELEMENTS A(l«1)«A(2f?)«A(3«3) 

ALL OTHER ELEMENTS ARE ZERO. 

SIKORSKY 
S-58 

LOCKHEED 
AH-5M 

FUSELAGE .2770-01 •1350-01 

HORIZONTAL TAIL • 4U0-01 •1080-01 

VFRTICAL TAIL •3000-01 •2500-01 

MAIN ROTOR •4100-03 •4800-03 

TAIL ROTOR •1400-01 •1270-01 

WING •1750-02 

PROPELLER •1270-01 
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TARLE II 
EUSELAGE 

- MOSTAB INPUT OATA (CONTIMUEOJ 
CHAPACTEPISTICS   (RAOVANI^ISECOMD) 

MOSTAB 
SYMROL 

DEFINITION SIKORSKY 
S-5fl 

LOCKHEEI 
AH-^A 

PSI 9 

THETA i 

PHI R 

X 

Y 

7 

ANGULAR DISPLACEMENTS 
RELATIVE TO OVERALL 
VEHICLE COORDINATES 

• 0000 

• 0000 

• 0000 

• 0000 

• 0000 

• 0000 

LINEAR DISPLACEMENT 
RELATIVE TO OVERALL 
VEHICLE COORDINATES 

.0000 

• 0000 

• 0000 

• 0000 
ft 

• 0000 • 0000 
AR PEFERENCE AREA •S400*02 •1500*03 
CO DRAG COEFE. ALPHA«0. .4600*00 .1000-00 
Cl DRAG COEFE/ALPHA .0000 •1000-03 
C2 

OPAG COEFE/ALPHAXALPHA • 0000 •^000-03 
CVO SIDEFORCE COFEE.BFTA«0# • 0000 • 0000 
CV1 

-SIDEFORCE COEFE/BFTA • uoo*oi •1000*01 
CZO 

-Z-FORCE COEFE.ALPHA-O. • 0000 •2800-01 
CZ1 -Z-EORCE COEFE/ALPHA •7000-00 •4000-00 
LR PEFERENCE LENGTH .4400*02 •5260*02 
CMO PITCH COEFE.ALPHA.O. • 0000 •2000-02 
CM1 PITCH COEFr/ALPHA •3400-00 •2500-00 
CMO YAW COEEE ALPHA.O. • 0000 • 0000 
CN1 YAW COEFE/BETA -•6600-00  - ••6000-00 
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TABLE II - 
HORIZONTAL 

M0STA8 INPUT DATA (CONTINUED) 
TAIL CHARACTERISTICS  (RAOIAN»FOOTt 

MOSTAR 
SYMBOL 

DEFINITION SIKORSKY 
S-58 

PSI L 

THETA L 

PHI L 

ANGULAR DISPLACEMENTS 
RELATIVE TO OVERALL 
VEHICLE COORDINATES 

.0000 

• 0000 

• 0000 

X 

Y 

7 

LINEAR DISPLACEMENT 
RELATIVE TO OVERALL 
VEHICLE COORDINATES 

-•2B30*02 

• 0000 

-•?000*01 

AW SECTION LIFT CURVE «5LOPF •6000«01 

SW REFERENCE AREA •123B*02 

CHORD REFERENCE CHORD •?220*01 

COO SECTION CO AT ALPHA«0« • 0000 

CD1 SECTION CD/ALPHA • 0000 

CO? SECTION CD/ALPHAXALPHA • 0000 

AWCLO ALPHA AT CD-MINIMUM • 0000 

CAP GAMMA DIHEDRAL ANGLE • 0000 

tw REFERENCE SPAN •3550*01 

LAMOA W TAPER RATIO • 0000 

CMO CM AT ALPHAaO. • 0000 

CMA CM/ALPHA • 0000 

LOCKHEED 
AH-56A 

• 0000 

•5240-01 

• 0000 

-.2770*02 

• 0000 

• 0000 

.6000*01 

.3450*02 

.3180*01 

.0000 

.0000 

• 0000 

.0000 

.0000 

.1083*02 

.5700-00 

.0000 

.0000 
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TABLE   II   - MOSTAB   INPUT  DATA   (CONTINUED) 
VERTICAL  TAIL CHARACTERISTICS     (RADIAN#rOOT«SECONO) 

MOSTAB 
SYMBOL 

DEFINITION SIKORSKY 
S-5B 

LOCKHEED 
AH-56A 

PSI L 

THETA L 

PHI L 

ANGULAR DISPLACEMENTS 
RELATIVE TO OVERALL 
VEHICLE COORDINATES 

• 0000 

• 6600 

• 157f>01 

• 0000 

• 0000 

•1570*01 

X 

Y 

Z 

LINEAR DISPLACEMENT 
RELATIVE TO OVERALL 
VEHICLE COORDINATES 

-•3100»02 

• 0000 

-•3300*01 

-•2666*02 

• 0000 

.2770*01 

AW SECTION LIFT CURVE SLOPE •6000*01 .6000*01 

SW REFERENCE AREA .?400*02 •2460*02 

CHORD REFERENCE CHORD •3B*0*01 .4250*01 

COO SECTION CO AT ALPHA«0. • 0000 • 0000 

CD1 SECTION CO/ALPHA • 0000 • 0000 

CD2 SECTION CO/ALPHA/ALPHA • 0000 • 0000 

AWCLO ALPHA AT CO-MINIMUM • 0000 • 0000 

CAP GAMMA DIHEDRAL ANGLE • 0000 • 0000 

Btf REFERENCE SPAN •6200*01 .5800*01 

LAMDA W TAPER RATIO • 0000 .0000 

CMC CM AT ALPHA«A. • 0000 .0000 

CMA CM/ALPHA • 0000 .0000 
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TABLE 11 - MOSTAB INPUT DATA (COMTIMUED) 
*TN6 CHARACTERISTICS  (RAOIAN«roOT»SECONO) 

MOSTAB 
SYMROL 

DEFINITION 

RSI L 

THETA L 

RHI L 

ANGULAR DISPLACEMENTS 
RELATIVE TO OVERALL 
VEHICLE COORDINATES 

X 

V 

Z 

LINEAR DISPLACEMENT 
RELATIVE TO OVERALL 
VEHICLE COORDINATES 

AW SECTION LIFT CURVE SLOPE 

sv; REFERENCE AREA 

CHORD REFERENCE CHORD 

CDO SECTION CO AT ALPHA«0« 

COl SECTION CO/ALPHA 

CD2 SECTION CD/ALPHA/ALPHA 

AWCLD ALPHA AT CO-MINIMUM 

CAP GAMMA DIHEDRAL ANGLE 

RW REFERENCE SPAN 

LAMDA W TAPER RATIO 

CMO CM AT ALPHA»0. 

CMA CM/ALPHA 

SIKORSKY 
S-5R 

LOCKHEED 
AH-SM 

• 0000 

•1660-00 

• 0000 

-.6500-00 

• 0000 

•3400*01 

.6000*01 

•1950*03 

•7?50*01 

•8000-0? 

-•7000-02 

•1470-00 

•1750-01 

• 0000 

.?700*0? 

•5100-00 

-.6100-01 

• 0000 
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TABLE II - 
MAIN ROTOR 

MOSTAR 
SYMROL 

OMEGA 

BO 

RA 

R8 

OPLTA 0 

OFLTA 1 

OFLTA ? 

DELTA 3 

THETA 1 

R 

SMALL B 

SMALL A 

PSI R 

THETA R 

PHI R 

X 

Y 

Z 

P 

ROE 

ROOE 

PR 

PRO 

CHORD 

MOSTAB INPUT DATA (CONTINUED) 
CHARACTERISTICS   CRAOIANfroOTtSECONO.SLUG» 

DEFINITION SIKORSKY 
S-5R 

.7500-0? 

• 0000 

.3200-00 

• 0000 

-•1395-00 

•PROO^O? 

•4000*01 

ROTATIONAL VELOCITY      .P325»0? 

CONSTANT TIP LOSS FACTOR  ••700-00 

VARIABLE TIP LOSS FACTOR  .16R0-02 

EXTRA TIP LOSS FACTOR    •OOOO 

SECTION CD AT ALPHA«0« 

CD/ALPHA 

CD/ALPHA/ALPHA 

PITCH/FLAP COUPLIN« 

TOTAL RLAOE TWIST 

BLADE RADIUS 

NUMBER OF BLADES 

SECTION LIFT CURVE SLOPE  •«OOO*©! 

• 0000 

-.3300-01 

• 0000 

•2700-00 

• 0000 

-•R200*01 

NAKFLAP^FREOUENCY/OMEGA  •1020*01 

ESTIMATED RETA»PSI»0^     •0000 

ESTIMATED BETADOT*PSI«0^  •OOOO 

BETA PERTURBATION        •S000-02 

RETADOT PERTURBATION      •1000-00 

CONSTANT CHORD BLADES     .1360*01 

ANGULAR DISPLACEMENTS 
RELATIVE TO OVERALL 
VEHICLE COORDINATES. 

LINEAR DISPLACEMENT 
RELATIVE TO OVERALL 
VEHICLE COORDINATES 

LOCKHEED 
AH-5ftA 

•2570*02 

•9700-00 

•1760-02 

• 0000 

•7500-02 

• 0000 

•3200-00 

• 0000 

-•R730-01 

•2570*02 

•4000*01 

.6000*01 

• 0000 

• 0000 

• 0000 

• 0000 

• 0000 

-•4150*01 

.1150*01 

-.5000-02 

.1000-02 

.5000-02 

.1000-00 

.2320*01 

95 



TÄBLC II - MOSTAR INRU1 DATA (CONTINUEOt 
MAIN ROTOR DISTRIBUTED RLADE PROPERTIES- 

RLftOE SIKORSKY S-SR LOCKHEED AH-56A 
STATION RADIAL DISTRIRUTED RADIAL niSTRIRUTE 
NUMMER DISTANCE MASS DISTANCE MASS 

1 • 0000 •1360-00 •0000*01 •1000*01 
2 •1000*01 •1360-00 •7700*02 .3000-00 
3 •8400*01 •1360-00 •1160*02 •3000-00 
4 •I34r«02 •1360-00 •1540*02 •2700-00 
% .169o*0? •1360-00 •1000*02 •2700-00 
6 •1960*0? •1360-00 •2050*02 •2700-00 
7 •2100*02 •1360-00 •2170*02 •2700-00 
8 •2370*02 •1360-00 •2310*02 •2700-00 
9 .2530*02 •1360-00 •2430*02 •2700-00 
10 •2670*02 •1360-00 •2570*02 •2700-00 
11 •2000*02 •1360-00 

INITIAL FIRST INITIAL FIRST 
SHAPE ELAPRINO 

MODESHAPE 
SHAPE FLAPPINO 

MODESHAPE 

1 • 0000 • 0000 • 0000 • 0000 
• 0000 • 0000 -•1000-00 -•3R00*01 
• 0000 -•7400*01 -•1500-00 -.7100*01 
• 0000 -•1240*02 ••1500-00 -•1100*02 
• 0000 ••1590*02 -•1500-00 -•1350*02 
• 0000 -•1960*02 ••1500-00 -•1610*02 
• 0000 ••2000*02 ••1500-00 -•1730*02 
• 0000 -•2270*02 ••1500-00 -•1050*02 
• 0000 ••2430*02 -•1500-00 -•1900*02 

10 • 0000 ••2570*02 -•1500-00 -•2110*02 
11 • 0000 ••2700*02 

POINT MASSES- 

STATION RADIAL MASS RADIAL MASS 
NUMMER DISTANCE DISTANCE 

1 •2000*02 •3477-00 •2570*01 .7700*01 
2 •«950*01 .1000*01 
3 .2570*02 .5000-01 

INITIAL FIRST INITIAL FIRST 
SHAPE ELAPWINS 

MODESHAPE 
SHAPE FLAPPING 

MODESHAPE 

1 • 0000 -.2700*02 -•7500-01 -.7400-00 
2 -•1500-00 -.4A80*01 
3 -•1500-00 -.2110*02 
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TABLP II - 
TAIL ROTOR 

MOSTAR 
SVMIIOL 

OMEGA 

BO 

RA 

RR 

OFLTA 0 

DELTA I 

OFLTA 2 

OFLTA 3 

TMFTA 1 

Q 

SMALL § 

SMALL A 

PSI P 

TMETA R 

PHI R 

X 

r 

7 

P 

ROE 

ROOF 

PR 

PRO 

CHORD 

MOSTAR INPUT DATA (COMTINUEOI 
CHARACTERISTICS   (PADIAN«FOOT»SECOND«SLUO) 

DEFINITION SIKORSKY 
S-SR 

•1000-01 

• 0000 

•1200-00 

-•lOOO^Ol 

• 0000 

•4670«01 

•4000*01 

ROTATIONAL VFLOCITV      .nRO»03 

CONSTANT TIP LOSS FACTOR  «9700-00 

VARIABLE TIP LOSS FACTOR  •0000 

EXTRA TIP LOSS FACTOR    .0000 

SECTION CD AT ALPHA««. 

CD/ALPHA 

CO/ALPHA/ALPHA 

PITCH/FLAP COUPLING 

TOTAL RLAOE TWIST 

SLADE RADIUS 

NUMRER OF BLADES 

SECTION LIFT CUPVF SLOPF  .AOOO^Ol 

• 0000 

• 0000 

•1570*01 

-•1300*02 

-•1750*01 

-•5750*01 

MAT,FLAP^FRE0UENCY/0ME64     •lOOfWOI 

ESTIMATED RETA«PSI«0. 

ESTIMATED RETADOT,PSI«0. 

RETA PERTURRATION 

BETADOT PERTURRATION 

CONSTANT CHORD BLADES 

ANGULAR DISPLACEMENTS 
RELATIVE TO OVERALL 
VEHICLE COORDTNATES 

LINEAR DISPLACEMENT 
RELATIVE TO OVERALL 
VEHICLE COORDINATES 

.0000 

.0000 

.5000-02 

.1000-00 

.M?0-00 

LOCKHEED 
AH-56A 

•1300*03 

•9500-00 

• 0000 

• 0000 

•1000-01 

• 0000 

•3200-00 

• 0000 

• 0000 

•sooruoi 

• V)00«01 

•6000*01 

• 0000 

.0000 

.1570*01 

-.2990*02 

-.6000*01 

.0000 

.1000*01 

.0000 

.0000 

.5000-0? 

.1000-00 

.1170*01 
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TMLt II - MOSTAS INPUT DATA ICONTINUCO) 
TAIL ROTOR OISTRIBUTEO BLADE RRORFRTIES- 

RLAOF SIKORSKY S-SS LOCKHCCO AH-S6A 
STATION    RADIAL     DISTRIRUTCD RADIAL     DISTRIBUTED 
MUMBER     DISTANCE   NASS       DISTANCE   NASS 

1 

3 

5 

7 
8 
9 
10 

• 0000 .2560*01 • 0000 •1000-00 
•uoo< •2560-01 •1000*01 •1000-00 
•2?30< •2560-01 •1500*01 •1000-00 
•2S304 •2560-01 •2000*01 •1000-00 
•3?704 •2560-01 •2500*01 •1000-00 
•3640« •2560-01 •10004 •1000-00 
•3950« •2560-01 •1000« •1000-00 
•4?204 •2560-01 •4000« •1000-00 
•4460« •2560-01 •4500« •1000-00 
•4670« •2560-01 •5000« •1000-00 

INITIAL FIRST INITIAL FIRST 
SHARE FLAPRINA 

MODFSHAPE 
SHAPE FLAPPING 

MOOESHAPE 

• 0000 • 0000 • 0000 • 0000 
• 0000 •1400«01 • 0000 •1000*01 
• 0000 •2230*01 • 0000 •1500*01 
• 0000 •2B20*01 • 0000 •2000*01 
• 0000 •3270*01 • 0000 •2500*01 
• 0000 •3640*01 • 0000 •1000*01 
• 0000 •3950*01 •oooo •3500*01 
• 0000 •4220*01 • 0000 •4000*01 
• 0000 •4460*01 • 0000 •4500*01 
• 0000 •4670*01 • 0000 •5000*01 
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TABLE II 
PROPELLCR 

MOSTAB 
SYMBOL 

OMffU 

BA 

i MOSTAB INPUT DATA (COMTINUCOI 
CHARACTERISTICS   {RAOIAMtfOOTtSFCONO.SLüB» 

OFLTA 0 

DELTA I 

OCLTA i 

DELTA 3 

TMETA I 

R 

SMALL B 

SMALL A 

RSI R 

TMETA R 

PHI R 

X 

Y 

z 

p 

80E 

eoor 

PR 

PRO 

CHOPf) 

DEFINITIOH 

ROTATIONAL VELOCITY 

CONSTANT TIP LOSS FACTOR 

VARIABLE TIP LOSS FACTOR 

EXTRA TIP LOSS FACTOR 

SECTION CD AT ALPHA«0. 

CO/ALPHA 

CD/ALPHA/ALPHA 

PITCH/FLAP COUPLINB 

TOTAL BLADE TWIST 

BLADE RADIUS 

NUMBER OF BLADES 

SECTION LIFT CURVE SLOPE 

ANGULAR DISPLACEMENTS 
RELATIVE TO OVERALL 
VEHICLE COORDINATES 

LINEAR DISPLACEMENT 
RELATIVE TO OVERALL 
VEHICLE COORDINATES 

NAT.FLAP#FRE0UENCr/0ME5A 

ESTIMATED BETAfPST»0. 

ESTIMATED BETAOOT»PSI«0. 

BETA PEPTUPB4TI0M 

BETAOOT PERTURBATION 

CONSTANT CHOPO BLADES 

SIKORSKY 
S-5B 

LOCKHEED 
AH-S*A 

•1B00«03 

•9500-00 

• 0000 

• 0000 

.8000-0? 

• 0000 

•3200-00 

• 0000 

•?600-00 

.5000*01 

•3000«01 

.6000*01 

.0000 

•1570*01 

.0000 

-.3129*0? 

.0000 

.0000 

.0000 

.0000 

.0000 

• 0000 

• 0000 

.1000*01 
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TABLE   II   -  M05TAR   INPUT  DATA   (CONCLUOCO) 
PPOPELLEP  DISTQIBUTPO PLAOE PROPERTTES- 

OISTRIPUTEO BLADE PROPERTIES- 

BLAOE SIKORSKY  S-SB LOCKHEFO  AM-S6A 
STATION RADIAL DISTRIBUTED RADIAL DISTRIBUTFr 
NUMBER DISTANCE MASS DISTANCE MASS 

1 
? 
3 
4 
S 
6 
7 
B 
9 
10 

• 0000 .1000-00 
.1000*01 .1000*00 
•1300*01 .1000-00 
.?000*01 •1000-00 
.?500*01 •1000-00 
•1000*01 •1000-00 
•1000*01 •1000-00 
•40004 »01 •1000-00 
.4500< d •1000-00 
.50004 01 •1000-00 

INITIAL FIRST INITIAL FIRST 
SHAPE FLAPPIN« 

MDDESHAPE 
SHAPE 

.0000 
• 0000 
• 0000 
• 0000 
• 0000 
• 0000 
• 0000 
• 0000 
.0000 
.0000 

FLAPPING 
MOOESHAPF 

.0000 

.1000*01 
•1500*01 
.?000*01 
.?500*01 
.1000*01 
.1500*01 
.4000*01 
.4500*01 
.5000*01 
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TABLE II - KOSTAB INPUT DATA «COMTINUCO» 
INDUCED VELOCITY INTER^rPfNCE fACTORS- 
VELOCITIES A9E IN OVERALL VEHICLE COORDTNATrS 
ALL ELEMENTS NOT SHOWN ARE ASSUMED 7ER0 

INDUCED VELOCITY COMPONENT INDUCED VELOCITY 
ORIGINATING FROM VELOCITY MULTIPLYING FACTORS 
LOADS ON THE AfEECTED PY 
FOLLOWING THE INDUCED SIKORSKY LOCKHEED 
COMPONENTS VELOCITY s*s* AM-SM 

FUSELAGE (U) FUSELAGE (in • A000 .1000*01 
(V) (V) • 0000 •1000*01 
(W) (Wl • 0000 •1000*01 
(U) HORIZONTAL (U) •1000«0I •oooo 
(U) VERTICAL cu» •1000*01 • 0000 
(U) PROPELLER (U) •1000*01 
(Ul TAIL ROTOR (U) •I000*01 
<W) (W) .1500*01 

HORIZONTAL (U) HORIZONTAL (U) • 0000 •1000*01 
TAIL (V) TAIL m • 0000 •1000*01 

(W» (W) •1000*01 •1000*01 

WING (Ul WING (U) •1000*01 
(V) (V) •1000*01 
(W) (W) •1000*01 
(W) MAIN ROTOR (W) •1000*01 

VERTICAL (U) VERTICAL cm • 0000 •1000*01 
TAIL (V) TAIL (V) .1000*01 •1000*01 

(W) (W) • 0000 •1000*01 

MAIN ROTOR (U) MAIN ROTOR (U) •1000*01 •1000*01 
(V) (V) •1000*01 •1000*01 
(W) (W) •1000*01 •1000*01 
(W) WING (W) •1600*01 
(W) HORIZONTAL (W) •1600*01 • 0000 

TAIL ROTOR CU) TAIL ROTOR (U) • 0000 .1000*01 
(V) (V) •1000*01 •1000*01 
(W) (W) .0000 •1000*01 

PROPELLER (U) PROPELLER (U) •1000*01 
(V) CV) •1000*01 
(W) (W) .1000*01 
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For the YHC-1A it was decided not to employ MOSTAB to 
calculate the derivatives. This was because published derivatives 
were available from Ref. 29* These derivatives were calculated by 
the manufacturer and use simple downwash models, not including 
the cyclic variation of tip loss factor, B. Some accuracy is lost 
because of this. On the other hand, the manufacturer undoubtedly 
possesses good information on the important interference effects 
between front and rear rotors. This would have to be estimated 
if the YHC-1A derivatives were calculated by MOSTAB. It was felt 
that the errors incurred in such estimates would exceed those 
caused by oversimplified tip loss models. Thus, the manufacturer's 
derivatives are used. 

The resulting derivatives are presented in Volumes m and 
IV (together with the transfer functions) for the flight conditions 
tabulated in Table III below. For the 8-38 and AH-56A, the maximum 
rate of descent corresponds approximately to the upper boundary 
of the vortex-ring state. 

MLB III.     FLIGHT OONDITIGKS 

HELICOPTER TOftL SPEED 
(knots) 

RATE OF DESCENT 
(fp«) 

AH-56A 20, kO, 60,  100 0, 9.2, 19.2, 
26.8, at each speed 

Vertical Descent 0. 9.2, 19.2, 
28,8 

S-58 20, kO, 60, 100 0, 7.5, 15 
22.5 at each speed 

Vertical Descent 0.9, 9.2,  19.2, 
28.8 

YHC-1A 
60.1 

80.I 

0, 25 

0, 25 

Vertical Descent 0, 25 
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V.7    OORRgATIOB OF MPOYATIVBS WITH fUGHI 1BST PATH 

Before presenting transfer functions based on the published 
YHC-1A derivatives and the AH-56A and 3-5Ö derivatives calculated 
by MOSTAB, it is highly desirable to check the accuracy of these 
derivatives. The only really satisfactory check is to compare cal- 
culated derivatives with those deduced from flight tests, unfortunately» 
many derivatives are hard to obtain from flight tests, and only 
incomplete flight test data were available for the helicopters of 
interest. However, an incomplete check is better than none at all, 
so this section suntnarizes the comparisons that were made between 
calculated derivatives and the available flight test data. 

In brief: 

(i) For the YHC-1A, the results of steady sideslip flight 
tests were available. These substantiate the published 
derivatives Y^, L^, H^, Yv, Iv, ny,  and Y6R, L^, N6R. 

(ii) For the S-5Ö flight test data showing time histories of 
responses to B , longitudinal control inputs were compared 

to time histories predicted from the calculated derivatives. 
The agreement is good for the longitudinal degrees of 
freedom, but less so on the lateral motions induced by 
longitudinal-lateral cross-coupling. Unfortunately, it 
is not known whether any lateral control inputs were 
Lpplied, so the accuracy of the cross-coupling derivatives 
remains uncertain. However,the longitudinal derivatives 
appear to be substantially correct. 

(iii) No flight test data were available for the AH-$6A; 
wherever possible, manufacturer's wind-tunnel data were 
used as inputs to MOSTAB, and derivatives appear to be 
reasonable. 

In general, there is little value in making comparisons 
between the MOSTAB derivatives and other calculated derivatives. 
This is because the other derivatives eure generally calculated by 
less sophisticated programs which do not include all the interference 
velocities between components. For example, Ref. 2k  presents S-58 
derivatives and flight test data; however, the derivatives yield 
responses which do not agree with the test data. This is principally 
due to the neglect of main rotor downwash on the tail and tail rotor, 
giving inaccurate M . Adequate flight test data are  difficult to 
obtain, but they constitute the only valid criteria against which 
calculated derivatives may be checked. 
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YHC-1A ni£fat Twti 

Ref. ^0 describes steady sideslip tests performed on a 
YHC-1A in level flight at forward speeds of 45, 60, and 80 knots. 
Derivatives for the latter two speeds are presented in VOIUM 
III; and as shown in Ref. 30, the steady-state variation of lateral 
stick position (6 ) and rudder pedal position (6 ) with sideslip 
angle (B) can be predicted from the following equation, using 
stability axis derivatives. 

\ 

g 

0 

N 

V V 
0 -- 

\ 

r'R s. 

bk 

(105) 

\ 
Ulis solution applies even to a basically unstable aircraft such 
as the YHC-1A, provided it is stabilised by feedbacks from yaw 
and roll rates, these feedbacks being supplied either by the pilot 
or the stability augmenter system.    Figures 33 and }h (taken fron 
Ref. 31) indicate that the calculated v, b Bl and tA derivatives are in reasonable agreement with flight test. Furthermore, the helicopter's 
behavior is fairly linear with sideslip angle for moderate per- 
turbations. 

fell  IliAt Tiita 

Seckel (Ref. 23) presents geometric and inertial data on 
the S-38, wind-tunnel data on components, and manufacturer's 
estimates of derivatives for the helicopter flying at 5,000 feet 
with a gross weight of 11,600 pounds. Plight test data are also 
shown, i.e., time histories of a response to a longitudinal stick 
input in pitch rate, ant le of attack, normal acceleration, and 
airspeed. These time histories are reproduced from the original 
flight test report (Ref. 32), but for some variables the reproduction 
is not sufficiently precise for purposes of checking derivatives. 
Ref. 32 should, therefore, be used in preference to Ref. 25«  In 
addition, Ref. 32 includes the time histories of the lateral degrees 
of freedom (although the lateral control time histories are not 
recorded). 
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The time history response following a step B. input 

from trim (-0.013 red.) at 7^ knots C.A.S., 5000 ft.f level 
flight, was selected from the available flight test histories 
of Ref. 22. The appropriate six-degree-of-freedom stability 
derivatives generated from MOSTAB are shown In Table IV. Hie 
derivatives were Input Into program ZEPL1N, which solves the 
8lx«degree*of-freedom, small-perturbation, linear equations of 
motion and obtains eigenvalues (R + JI) and the modulus and 
angle of corresponding residue vectors (L,AV for responne to 
a unit B. step. The eigenvalues and residue matrix are shown 

on Table V. The aircraft response was then obtained using the 
following relationship: 

r ■ n 

Response - B1 2.J    eRrt     (Lr CosAr) 
Cos Ir

t " (Lr
sln A) Sin Ipt j 

r = 1 

(106) 

The comparison of the MOSTAB-generated and experimental 
time histories for the selected flight condition is shown on 
Figure 35« For longitudinal motions, there is excellent agreement 
with airspeed, pitch angle, and angle of attack, but poor agreement 
with pitch rate. This discrepancy is attributed to malfunctioning 
pitch rate instrumentation, because the measured pitch rate does 
not agree with the differentiated pitch attitude. 

For lateral - directional motion (Figure 56),the flight test 
results show an initial roll and yaw to the right; however, MOSTAB 
derivatives show a roll and yaw to the left. There is a possibility 
that the pilot applied some roll control as he pulled back the stick, 
but the disagreement may be due to too large a MOSTAB-generated value 
for L  (-10,9^0 ft - lb -sec ), causing a strong left rolling moment 
as the vehicle pitches up. Further studies and flight test comparisons 
will be required to produce a suitable explanation for this disagree- 
ment between time histories. 

Suamary 

The MOSTAB program has been described in general, avoiding 
technical detail which is given in Volume II. Flight test data are 
limited, but they generally support the values of derivatives used 
for the YH0-1A and 8-58. 
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TAtLC IV S-S8 OmVATIVeS FOR FLIAHT TEST CONDITION 

SIKORSKY S-58 73 KNOTS 9000 FT. LCVCL FLIOMT FWO« CO« 
see Qcrs. ?« AND 32 

VEHICLE 
WEIOHT 
•11«7«05 

XCO 
.9400-00 

TOO 
•0000 

Z66 
•0000 

STANILITV 
U 

X -•13«1*02 
Y .1098*01 
Z ••7200*01 
L **137*02 
M #I106*03 
N -.7655*02 

DERIVATIVE 
V 

-.2267-00 
••3349«0? 
••3777*0! 
-.2062*03 

•1790*02 
•3494*03 

Ü DOT 
X     .3690-02 
Y -.7242-02 
7. .1053-03 
L -.1981-00 
M -.1607-00 
N     .8099-02 

C(   1) 
X  -.3872*04 
Y -.6522*03 
Z -.9315*05 
L .6394*03 
M .9605*05 
N     .7851*05 

V DOT 
••8526-03 
.6685-01 

••1471-02 
.5054-00 
•5245-01 

•.2248*01 

C( 2) 
•.6976*03 
.1258*05 
•.3025*02 
•1882*06 
.5190*04 
•4805*03 

MATRICES 
M 

••1597*01 
••2662*01 
••2183*03 
•1326*02 
•5892*02 

••2985*03 

W DOT 
-•4382-01 
.8638-01 

-•8709-03 
•2353*01 
•1959*01 

-•1042*00 

C( 3) 
•1218*05 
•1009*04 
•2802*05 
•3210*04 

-.1940*06 
.3463*05 

P 
••7005*03 
••1360*04 
••7174*03 
•2033*05 
•1070*05 
•4758*03 

* DOT 
••2570*02 
•9947*01 

••8389-00 
•2673*04 
•4154*03 
•4841*02 

C( 4) 
•1047*03 
•4204*04 
•1032*03 
•3163*05 
•3360*04 
•1414*06 

• 
•1244*04 

••6969*03 
••3487*02 
••1094*05 
••2400*05 
•1070*05 

• DOT 
••9115*01 
••2444*02 
•8005-00 
•3945*03 
•2672*04 
•5217*02 

ft 
••1142*03 
•4766*03 
•9191*03 
•2179*04 
•1189*04 

••1969*05 

ft DOT 
••2130*01 
••1500*01 
••2350-01 
•2080*01 
•3676*0? 
•7643*0? 

THE   INERTIA  TENSOR     .5940*04     •OOOO -•8800*03 
•0000 •2750*05     •OOOO 

-•8800*03     »0000 •?304*05 

TRIMMED  VELOCITIES WITH RESftECT  TO OVERALL  VEHICLE  REFERENCE  AXES- 
U V W ft 0 R 

•1230*03 -•OOOO -.6314*01   -•OOOO •OOOO -.0000 
TRIMMED   ITERATION COLUMN  VECTOR»  TE- 
.2507-00  -•ITSS-Ol     .2118-01     •8137-01  -^5127-01   -•1546-01 

STABILITY AXIS SYSTEM EULER   AN6LES- THETA«  ^1220-04 PHI  -.1544-01 
AIRCRAFT   INERTIAL  SPEED«   .1232*03 
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^ 

• ^«»1 wr. T a~9n i "taiuuc» AI «n CIOENVAI LUES FOR Ft LiOMT resT CONDITION 

EIOENVALUFS 
R ••1I71U00 
1 «0000 

-•6281*01 
• 0000 

••65*9-00 
•0000 

•*182-01 
•3289-00 

•M82-01 
••3289-00 

-•33^7-00 
•1316*01 

L  .UTS^OO 
A .isoo^oa 

VECTORS 

•6281*01 
•1800*03 

•65*9-00 
•1800*03 

•3316-00 
•8275*02 

•3316-00 
-•8275*02 

•1358*01 
•10*3*03 

U 1. 
A 

•*269*01 
#0000 

•8381-01 
• 0000 

•7156*02 
• 0000 

•8357*03 
•175**03 

•8357*03 
-•175**03 

•277**01 
-•9867*02 

V L 
A 

•1**3*02 
• 0000 

•6195-00 
• 0000 

•1719*0* 
• 0000 

•3806*03 
•1592*03 

•3806*03 
••1592*03 

•1377*03 
-•1795*03 

w L 
A 

•8962-00 
• 0000 

•*391-00 
• 0000 

•1775*0* 
• 0000 

•*901*03 
•1308*03 

.4901*01 
-•1308*03 

•2077*02 
-.1*27*03 

R L 
A 

•11*0*00 
.1800*03 

•2586-00 
• 0000 

•1626*02 
•1800*03 

•4366*01 
-•291«*0? 

•4366*01 
•2918*02 

.1251*01 
-.3267*01 

0 L 
A 

.5689-0? 
•1800*03 

•1626-01 
•1800*03 

•1*07*01 
•1800*03 

•29*1*01 
•1572*03 

.2941*01 
-.1572*03 

•2551-00 
-.625**02 

R L  .2623-00 
A .0000 

EIGENVALUES 

•1257-01 
• 0000 

•1492*02 
• 0000 

•2*67*01 
-•10*6*03 

,2467*01 
.1046*03 

•1322*0] 
.1077*03 

R 
1 
-•3357-00 
-•1316*01 

-•1267*01 
• 0000 

• 0000 
• 0000 

• 0000 
• 0000 

• 0000 
• 0000 

.0000 
• 0000 

L  .1358*01 
A -.1043*03 

VECTORS 

•1267*01 
•1800*03 

• 0000 
• 0000 

• 0000 
• 0000 

• 0000 
• 0000 

• 0000 
• oooo 

U L 
A 

•277**01 
•9867*02 

•1*87*03 
•1800*03 

•1502*03 
•1600*03 

• 0000 
• 0000 

• 0000 
• 0000 

.0000 

.0000 

V L 
A 

•1377*03 
.1795*03 

•9137*03 
•1800*03 

• 0000 
.0000 

•108**05 
• 0000 

.0000 

.0000 
.0000 
.0000 

W L 
A 

.2077*02 

.1*27*03 
•1158*0* 
•1800*03 

• 0000 
.0000 

• 0000 
• 0000 

•1160*03 
.0000 

.0000 

.0000 

P L 
A 

.1251*01 

.3267*01 
.5993*01 
.0000 

•oono 
.0000 

• 0000 
.0000 

.0000 

.0000 
.37*5-03 
.0000 

0 L 
A 

.2553-00 

.6?5**02 
.6573*01 
• 0000 

.0000 

.0000 
• 0000 
• 0000 

.0000 
• 0000 

.47*1-00 

.0000 

R L 
A - 

.1322*01 

.1077*03 
.1028*02 
•1800*03 

.0000 

.0000 
.0000 
• 0000 

• 0000 
.0000 

.3070*02 

.1800*03 
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Slkoriky S-58 Helicopter 
Trim Speed 71*   Knote C.A.S., $000 Feet 

W ■ U,9W»   Lb,   Forward CO. 130.5 In. 

4» m   • 

IS 
4»  -H 

I 
/ 
Forward 

Figure 35.    A Comparison of Longitudinal Flight Test Response 
Following a Step Pitch Control Input to a 
Response Based on Stability Derivatives Obtained 
From MOSTAB. 
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Figure 36.    A Comparison of Lateral Flight Test Response 
Following a Step Pitch Control Input to a Response 
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CHAPTER VI. TANDEM»ROTOR HELICOPTER 
OPEN-LOOP PVWAHIC5  

VZ.I .tHJ*}'lK*rf 

In this section we consider the transfer functions of the YHC-LA, 
which is taken to represent a typical tandem-rotor helicopter.    The 
transfer functions are presented in Volume III*     Unlike the single- 
rotor and compound configurations, for the tandem configuration lateral- 
longitudinal cross-coupling effects were neglectedj thus, separate 
lateral and longitudinal transfer functions were calculated.       The 
format of the transfer function print-out is explained below. 

The format is basically similar to that of Reference  55, but a 
number of detailed refinements have been added.    These include addi- 
tional sets of numerators referred to a station distant from the e.g. 
The coordinates of this station are conveniently chosen as the location 
of the pilot, to relate pilot cues to the motion of the e.g. of the 
aircraft. 

vi.2 MMBMM BMBfli 
As noted in Volume III, the derivatives are inputted in body 

(I.e., waterllne) axes. The input format of the program used contains 
a number of redundancies, e.g.. Mach number, which are arbitrarily put 
to zero. 

The print-out, in Volume III, gives: 

(1)  Derivatives in stability axes 

(ii) Eigenvalues, and associated information, such as 
the coefficients of the denominator quartic 

(ill) Numerators for the pitch attitude control, which is 
here designated "CYCLIC" . 

Actually, the YHC-1A control is predominantly differential col- 
lective, though some cyclic variation is included as shown by the non- 
zero Xs at hover. For each numerator the roots, D.C. gain (i.e.. Bode 
gain), and root locus gain are presented. In addition, various 
secondary items of information such as the coefficients of the numera- 
tor polynomial are printed out. The numerators correspond to 6, u, w, 
a (as measured by an accelerometer, a„ ■ w - ILq + g sin Y /q dt), and z z oo 

The equations of motion cure the standard longitudinal and lateral 
sets. These can be obtained from the coupled equations given in 
Chapter VII by neglecting all cross-coupling terms. 
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horizontal velocity perturbations x (■ u for y0  - 0).o In addition, the 
print-out Includes rate-of-climb perturbations ( tf - h0) and perturba- 
tions In velocities parallel and normal to the undisturbed flight path. 
Note that only for v0 « 0 Is the normal velocity perturbation equal to 
the rate-of-climb perturbation. 

For steep approaches, the "normal velocity" perturbation indicates 
the rate of deviation from the desired flight path. The "parallel 
velocity" perturbation Indicates the rate of deviation from the desired 
position along the desired flight path. Hence, this quantity is impor- 
tant for stationkeeplng, e.g., In formation flight or scheduling of 
multiple operations. 

Longitudinal Eigtavaluts 

For ease of reference in the subsequent discussion, the eigen- 
values are summarized in Table VI below. 

TABLE VI.  TANDEM-ROTOR LONGITUDINAL DENOMINATORS 

Rate of 
Descent 
(fpm) 

Horiz.* 
Speed 
(knots) 

Case 
No. 

Eigenvalues 
(rad/sec) 

0 

1500 

0 

0 

L5 

L6 

-.97^, -.35, .099 + M j 

-.824, -.25, .109 + .70 J 

0 

1500 

60 

60 

L3 

L4 

-2.54, -.214 + .545j; .475 

-2.35, -.35 + .29j, .4o6 

0 

1060 

1500 

80 

80 

80 

LI 

L2 

-2.50, -.212+ .53J, .^3 

-2.57, -.31 + .32j, .400 

-2.56, -.55 1 .29j, .406 

-             ... 

Before discussing the changes that occur between level flight and 
steep descent, the nature of the modes for level flight will be reviewed, 

This column shows horizontal speed, not total speed, and is therefore 
zero for vertical descent. 
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For level flight, the eigenvalues are distributed similarly to 
those of the HUP-1 given In Reference }b  (p* 25S),   The principal 
difference Is about a 50^ reduction In the magnitude (I.e., fre- 
quency). This would be expected from the Increased mass and size 
of the YHC-1A (see Reference ^)* It appears, therefore, that the 
general conclusions of Reference ^ regarding the physical nature of 
the modes should still be valid. That Is, away from hover, the motion 
consists of three modes, one of which Is aperiodic and appreciably 
larger than the others. This mode Is a degenerate short-period mode 
with time constant T_ approximated by the Ständern! formula sp1 

(107) 

This mode contains little u and Is dominated by w and G motions. 

The remaining modes involve u, w, and 6 and can be traced to the 
effect of the negative Ma on the short-period roots. The root-locus 
presentation of page 119 of Reference }h-  can be used to predict the 
eigenvalues, with the condition that -Zw + (Zu M^/My) < 0. In summary, 
the open-loop longitudinal modes in level flight are the conventional modes 
for a tandera^rotor helicopter, as predicted in Reference 5h, 

In this report, our principal concern is to detect and study changes 
in dynamic characteristics from the level flight condition, so we shall 
now consider the descent cases; a more complete discussion of level flight 
dynamics of tandem-rotor helicopters is given in Reference 5k, 

At 60 and 80 knots, descent angle has little effect on the denomina- 
tor roots, as shown by Table VI.  The only significant change is an in- 
crease in phugold damping. This would be expected, since the phugoid 
damping increases with -Xu. Xu depends on the trimmed drag/lift ratio, 
which of course must increase to balance out the X-force gravity com- 
ponent in descent. 

For vertical descent, the changes are also rather small. Hence, 
if any marked changes in tandem-rotor control characteristics occur, 
when going from level flight to descent at the same horizontal speed, 
the changes must be associated with the transfer function numerators. 
These will now be discussed. 
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faTlift^lP*1 WuPT*tors 

At a given horizontal speed, the 0/5e numerator shows little 
change with rate of descent. For ease of reference, the 6/&e 
numerators are summarized below. We employ the convention that a 
positive time constant is "stable"; i.e., the zero Is in the left- 
half complex plane. 

TABLE VXI. TANDEM-ROTOR ü/&e NUMERATORS 

Rate of 
Descent 
(fpra) 

Horiz. 
Speed 
(knots) 

Case 
No. 

Root-Locus 
Gain 

(rad/sec) 
I/TGS 

(rad/aec) 

0 0 15 .355 +.019 +.3789 

1500 0 L6  |   .^36 +.0156 +.267 

0 60 L3       M +.035 +.817 

1500 60 1Ä                M +.0312 +.912 

0 80 LI   !   .48 
! 

+.043 +.935 

1500 80 L2   \          .50 + .038 +.99     j 
1 
1 

The effect of descent on l/T9^, l/TG^ is slight. As noted above, 
the changes in the denominator roots are also small. Hence, any effect 
of descent on pitch control must be associated with feedbacks other 
than 6. One of the most common feedbacks for tandem-rotor configura- 
tions is u-*5e.  This is employed to correct the negative % charac- 
teristic of tandem-rotor helicopters at forward speed. Accordingly, 
the u/6e transfer functions are examined below. 

Volume III presents u numerators In stability axes, and also In 
axes parallel to the stability axes, but located 17 feet farther forward, 
at the cockpit. The latter axis system is appropriate when considering 
feedbacks from air data, since such data are measured well forward on the 
fuselage to minimize rotor downwash effects. For inertial systems using 
stable platforms or frequently updated corrections obtained from ground 
tracking equipment applied to strapdowncomponents, "fitability axes" with 
origin at the e.g. appear to be more appropriate. Thus, for S.A.S. design 
and such pilot tasks as stationkeeping, the "cockpit" axes are appro- 
priate, whereas for inertial guidance the usual "stability"  axes are 
relevant. As shown below, the two sef s of numerators show marked dif- 
ferences. 
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First, consider the u -•&e stability axis numerators tabulated 
below. Root locations are presented here, not inverse time con- 
stants; i.e., a negative real part of the root location indicates a 
"stable" root. 

TABLE VIII. TA NDEM-R0T0I t u/6ft NUMERATORS IN STABILITY AXES 

Rate of 
Descent 

Horiz. 
Speed 
(knots) 

Case 
No. 

Root-Locus 
Gain Root Locations 

(rad/sec) 

0 80 LI .185 -9.99, -1.1^, 6.84 

1500 80 L2 .312 -10.35, -.656, 7.45 

0 60 L3 .189 -10.2, -.87, 7.07 

1500 60 I* .37 -9.08, -.567, 6.83 

0 0 15 .178 -9.05, -.37, 7.118 

1500 0 US .1^ -1.045, 6.68, 14.59 

1 

At 60 and 80 knots, there is little change in the numerator with 
descent angle. The vertical descent case shows a marked change; however, 
u/&e referred to stability axes is unimportant for control in vertical 
descent, since u is then vertical, and is more logically controlled by 
collective, rather than by 5 , which is the pitch attitude control. 

Thus we conclude that, for inertial feedbacks referred to the e.g. 
and to the aircraft's desired flight path, there is little effect of 
descent on the vehicle open-loop or closed-loop dynamics. By contrast, 
for feedbacks using air data, or other data referred to the pilot's 
location, ahead of the e.g., the effect of descent angle is considerable, 
as indicated overleaf, in Table IX. 
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TABLE IX.  lAWDPt-ROTOR u/E., HUMERATOR8 g COCKPIT AXES 

%ate of 
)escent 

Horiz. 
Speed 
(knots) 

Case 
No. 

Root-Locus 
Gain Root Locations 

(rad/sec) 

0 

1500 

0 

1500 

0 

1500 

60 

80 

f) 

60 

0 

0 

LI 

L2 

L5 

L5 

L6 

.16k 

.lk6 

.lk2 

.126 

.177 

.166 

-1.71, 5.22, 16.1 

-.796 + .639J,   105.9 

-2.55, -l.^i 24.8 

-.789 + .53J,   122.1 

-9.05, -0.57, 7.11 

-I.52, -0.285, 50.56 

Some significant changes occur in going from level flight to descent. 
At 80 knots, the right-half plane zero at 5.22 rad/sec Joins with the left- 
half plane zero at 1*71 and forms a complex pair in the left-half plane. 
The third zero moves into the distant right half-plane, becoming too far 
out to be significant. Similar changes occur at 60 knots. These changes 
are potentially significant, because there are no near-cancellations 
between numerator and denominator in the transfer functions, listed below 
for ease of reference. 

a/be Transfer Functions at 80 Knots Horizontal Speed 

Level Flight: 

u  , .164 (s ♦ 1.71)(s-3.22)(s - 16.1) 
^  cockpit ' {3+  2-50)(? + .212 ± .55J) (^ - *!) 

l',00 fpra Descent: 
u .I46(s ♦ .796 1 .639 J)(s - 105.9) 
X I cockpit '    (3+ 2.56)(s ♦ .551 .29 J)(s -  .I06) 
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The rather small l/T01 (see Table VII) limits the degree to 
which the unstable eigenvalue can be stabilized by 6 and q feedback. 
Hence it is quite possible that the u — 6e feedback will be required to 
achieve stability, even if 9 and q fetdbacks are also employed. In 
these circumstances, the changes in the u/6e transfer function should 
be considered carefully when designing stability augmentation systems 
using air data recorded away from the e.g. 

Let us now consider the effects of descent on collective pitch 
control. The primary function of collective pitch is to control the 
deviation of the aircraft e.g. normal to the desired flight path. The 
appropriate transfer function numerators are summarized below. 

TABUB X.  TANDEM-ROTOR COLLECTIVE PITCH NIWERATOKS FOR VELOCITY 
PERTURBATIONS OF C. G. NORMAL TO DESIRED FLIGHT PATH 

Rate of 
Descent 
(fjn) 

Speed 
(knots) 

Case 
No. 

Root-Locus 
Gain Root Locations 

(rad/sec) 

0 do U -9.51 -1.87, -.209, .^95 

1500 80 L2 -8.99 -1.15, -.778, .21^8 

0 60 W -8.56 -1.84, -.217, .5^8 

1500 60 Li» -7.Q5 -.952+ .5755J, .267 

0 0 IS -7.^ -.953, .105 ♦ .^5d 

0 1500 L6 -1>66 -.652, .05^ ♦ 1.26J 

At hover, the usual cancellation of the denominator roots occurs, 
leaving the transfer function as Ä/&e ■ Z&c/s . :w). For vertical 
descent, the above transfer function becomes x/ic and is not important 
for practical flight control. Chapter VII shows that for single-rotor 
helicopters, control of velocity normal to the unperturbed flight by 
collective pitch becomes difficult at very low speeds (i20 knots) in 
steep descents. Unfortunately, derivatives were not available for the 
YHC-1A in such conditions, so it is not known whether this effect (due 
to an uncancelled right-half plane zero) also occurs on tandem-rotor 
helicopters. 
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Ihe importance of the changes in the above numerators for 
descending flight is hard to assess in general, because the " normal 
velocity" collective control is affected by feedbacks to cyclic from 
u, q, and 9. Such feedbacks will probably be employed for inner-loop 
stabilization. 

It is not feasible to discuss all the tandem-rotor longitudinal 
transfer functions that are tabulated in Volums III. However, from those 
that have been examined here, it would appear that descent angle does 
not cause radical changes in the transfer functions. The most important 
exception to this generalisation is u/6 / cockpit« Ihe mmerator of this 
transfer function exhibits sons significant changes, which should be 
considered when designing stability augmenter systems that employ M 
augmentation based on air data sensors located away from the e.g. 

VZ.3 TAUM —M 
The lateral transfer function denominators for the YHC-LA are 

presented in Tsble XI.  The tsble has been arranged to fit the followinc 
discussion which first considers the variation of the level fli^üt 
denominators with forward speed, and then analyzes the effects of 
descent. 

TkBI£  XI. TANDEM-ROTOR IATERAL EIGENVALUES 

Rate of 
Descent 
(ft») 

Horiz. 
Speed 
(knots) 

Case 
No. 

Eigenvalues 
(rad/sec) 

0 0 L5 .059U 1 .511J -.057 -.975 

0 60 L3 .225  1 .60Uj -.058 -1.29 

0 80 U .281  + .6U2j -.0768 -I.36 

1500 0 L6 .052  ♦ .707J -.052 -.925 

1500 6o LU .13U .5^2 -.0U8 -1.77 

1500 80 L2 -.1U0 .772 .0023 -I.832 
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The hover behavior is standard   and closely analogous to the 
longitudinal case illustrated in Table VI.      Note the close proximity 
of the frequencies of the longitudinal hovering phugoid    (a)   s 0.U5 
rad/sec) and the lateral hovering dutch roll (">.   =0.51 rafi/sec). 
As   stated     in Chapter V, for the tandem configufation, longitudinal- 
lateral cross-coupling was arbitrarily neglected.   Undoubtedly, some 
coupling exists, and the near-coincidence   of to     and a)   may make this 
coupling important for the YHOIA.    The questioJrwill oSly be settled 
by more extensive measurements of derivatives and flight test responses 
to control inputs. 

The principal effect of descent at the higher speeds, is to 
change the unstable dutch roll oscillatory roots into an aperiodic 
pair.    At 60 knots, both these roots are unstable; but as speed is 
increased one becomes stable   vhile the other root moves   farther 
out into the right-half plane.    For the YHOIA,  this degeneration of 
the dutch roll roots into an aperiodic pair is a consequence of the 
low (actually negative) N . 

N   renains negative for all the level and descending forward 
flight c^ndiüions considered here, when measured in stability axes 
(which is the appropriate axis system for defining directional sta- 
bility) •    It is difficult to design a tandem-rotor configuration with 
the e.g. far removed from the mid-point of the rotor axes; hence, 
negative N   is characteristic of these configurations.    It is 
usually "fixed" by feeding back p   to ö_ to achieve static stability, 
plus additional feedbacks of p to 6 , and possibly   r to 5R c0mmiVi> 
to move all the roots into the righ*-half plane and to achieve good 
turn coordination. 

Feedback of sideslip alone is usually insufficient to ensure 
stability. This is illustrated in Figure 57 for the 80-knot level- 
flight case. Note the awkwardly-placed zero of the sideslip 
numerator. Because of the fundamental importance of directional 
stability for good handling qualities, particular interest attaches 
to the variation of the v/a transfer functions with descent angle. 
Numerators of these transfer functions are tabulated below. 
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0.92 

Figure 37. Root Locus for v —• 6 Feedback on 
Tandem-Rotor Helicopter. 
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TABLE XII.    TANDIM-ROTOR v/8R   NUMERATORS                                      j 

Rate of 
Descent 
(fpn) 

Horiz. 
Speed 
(knots) 

 __ 

Case '     Root 
No.        -Locus 

1    Gain 
i 

Root Locations 

(rad/sec) 

0 

1500 

0 

1500 

0 

1500 

80 

80 

60 

60 

0 

o 

LI 

L2 

L3 

LU 

L5 

L6 

.099 

.07 

.106 

.073 

.11+6 

.11+3 

- .92, -.0011+5,   256.9 

- .1+1, -.020,        1+22.9 

- .86, -.0025,      163.5 

- .151,-.0239,     521+.9 

- .0226,.79 + 6.01+j 

-1.33, -.055,         77.96 

In these numerators, v is referred to stability axes. For 
analyzing stability augmenter systems, it is perhaps more meaningful 
to refer v to a location near the cockpit, where the sideslip 
sensing ports are located. However, as shown in Volume III , 
there is relatively little difference between the v/ö_ transfer 
functions referred to either location at 60 and 80 knots. The v/ö 
transfer function is not particularly Important at zero forward 
speed, since v is then controlled directly through lateral cyclic 
pitch. 

From Table XII, the effect of the descent on the v/6 numerators 
is seen to be relatively minor at 60 and 80 knots. The low-frequency 
zero limits the possible Improvement of the unstable spiral root at 
80 knots, suggesting that additional feedbacks (e.g., jB -• 5A) are 
required to stabilize this root. The degenerate clutch roil modes 
may also require excessive gain for stabilization throughv-*6p 
feedback alone. (The low accuracy to which v can be measured constrains 
practical v -► Ö feedbacks to rather low gains. ) The net effect of 
descent upon v JM feedback control seems to be adverse, and it 
appears that a systlm designed for level flight would not necessarily 
be suitable for steep approaches. 
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From the above discussion, v -*■ *« feedback appears to be manda- 
tory for tandem-rotor helicopters. Sucn feedback represents an "inner 
loop" which will affect the other loop closures such as #-• * . In 
level flight, the #/* numerator exhibits some undesirable non- 
minimum phase characteristics*as noted iu Reference }k.    These become 
appreciably worsened in descent, as shown in Table XIII. 

TABLR XTII . TANDEM ROTOR 0/öA NUMERATORS 
1                                            -I 

Rate of 
Descent 
(fptt) 

Horiz. 
Speed 
(knots) 

Case 
No. 

Root 
-Locus 
Gain 

Root Locations 

(rad/sec) 

0 80 LI .U95 - .70,    .5^3 

1500 80 L2 .ue -1.09,    .911        | 

0 60 L3 .51 - .U96,   .368        j 

1500 60 LU M - .856,   .70 

0 0 L5 .55 - .2U9,  -.057 

1500 0 L6 .52 - .055 *  .02j 
1 1 

The poor handling qualities associated with the unaugmented 
0/tf closure in level flight noted in Reference }h  are likely to 
becohie even more degraded in descent. For example, at 80 knots, 
the */&. transfer fraction has one right-half plane zero and two 
right-haxf plane real poles, thus presenting a situation which is 
quite difficult to stabilize. 

An important feedback for human-pilot control is y-» 0., 
where y is the lateral displacement of the helicopter measure! 
either at the e.g. or at the cockpit. 

A nonminimum phase transfer function is one with one or more 
right-half plane zeros. 
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The print-out In VOIUM II includes both alternatives, however 
at the higher speeds the differences between the transfer functions 
for //••/cockpit ÄDd y/' /c « are peJ-atively ■inor. For vertical 
descent the differences become more pronounced, as shown by the 
following comparison. 

TABLE XIV .    KPFSCT OF VERTICAL DESCBIT GH TANDöf-ROTOR 
y/ö    NUMERATORS M8ASURED AT THE CENTER OF 
GRAfcw AND AT THE COCKPIT 

1                                                                                                                                                    1 
Flight 
Condition 

Case 
No. 

Location 
of Origin 

Root 
-Locus 
Gain 

Root Location 
(rad/sec) 

Hover L5 e.g. .998 -.082 ♦ U.22J, -.037, -.0177 

fover L5 cockpit 3.26 -.108 ♦ 2.33J, -.053, -.0123 

Vertical 
Descent L6 e.g. .98 -.083 ♦ U.05J, -.051, 0 

Vertical 
Descent L5 cockpit -.0116 -26.7, -.083, 0, 52.8 

A complete assessment of the significance of this difference in 
y/dA is beyond the scope of this report. It would involve loop 
closured using assumed models for the pilot; e.g. the Series closure" 
model used in Reference 36 and in the PAPER PILOT program described in 
Reference 37* The validity of these closures for conditions other 
than hover is subject to question. However, if the series closure is 
employed, the y/öA/eoekBlt «nd ^/d. transfer functions would be relevant 
for the inner anvootlr loops. As shown in Tables XIII and XIV, marked 
changes in these transfer functions occur between hover and vertical 
descent. It is therefore to be expected that correspondingly large 
changes in handling qualities will appear when going from hover to 
vertical descent. 

In this chapter, we have reviewed the major effects of descent 
on the transfer functions of a typical tandem-rotor helicopter. It 
was assumed that longitudinal and lateral motions were uncoupled. 
Longitudinally, the effects of descent (at normal approach speeds of 
60 to ft) knots) are generally minor. Some increase in phugoid damping 
occurs, but the important e^ e pitch attitude control numerator 
hardly changes. Similarly, little change was observed in the uAe 
numerator referred to stability axes. 
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However, marked changes occur In the u/i^ numerator referred to 
body axes with origin at the cockpit. These changes are potentially 
significant for stability augmenter systems which employ air data sensors 
to augment H^ 

Laterally, the effects of descent are more noticeable« At 
forward speed the unstable dutch roll degenerates into an aperiodic 
pair, having at least one unstable root. This unstable root is usually 
stabilized by v 63 feedbackj however, this feedback has little 
effect on the spiral mode (which may be unstable) because of a 
"close-in" zero in the v/bg transfer function. This awkwardly 
placed zero is retained in descending flight. Thus, additional feed- 
backs (e.g., 4   &A' r ^R* are 8ti11 required to achieve good handling 
qualities. The ■—tot— phase characteristics ot  the 0/6« 
numerator worsen in descent, thus increasing the need for still 
further feedbacks, such as r Sp. Because of the large number 
of feedbacks required» it is hard to form an assessment of the 
effects of descent on closed-loop characteristics without per- 
forming detailed calculations on " -ious alternative loop closures. 
However, the changes in the transfer functions are sufficiently 
large and numerous to indicate the necessity of performing these 
calculations for descent in addition to level flight. 
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VU. SINGLE-ROTOR HELICOPTER DYNAMICS 

VU.I. INTRODUCTION 

This chapter discusses the open-loop and closed-loop 
dynamics of a typical single-rotor helicopter, the Sikorsky S-58. 
The basic data are presented in Voluae III, which tabulates deriva- 
tives and eigenvalues • 

The flight conditions presented in Voluae III include 
level flight and rates of descent of 7«3 fp** 15 fps* and 22.5 fps. 
At low speeds the latter condition is virtually at the boundary 
of the vortex-ring state. For each rate of descent, true airspeeds 
of 0, 20, k09 60 and 100 knots are considered. 

AU lateral-longitudinal cross-coupling derivatives were 
included, as shown hy the equations of notion presented in Figure 3d. 
16 illustrate the iaportance of cross-coupling, one case was re-run 
with all cross-coupling derivatives set to zero. This was done 
for level flight at 100 knots. 

The cyclically varying tip loss factor was included in all 
cases. lb demonstrate the effect of tip losses on open-loop 
dynamics, two eases were re-run with tip losses removed. These 
eases were 22,5 tys rate of descent with ho knots airspeed, and 
vertical descent at 22.5 fp«. 

Eigenvectors for u, v, w, p, q, r, in stability axes, 
residues for unit impulse inputs in A1g, B1a, 0o, QQTR,  and 

transfer Ametions relating u, v, w, p, q, r, to A} ,  B, , 

0 , O^jmf were also calculated for all the above cases. TO 
save sptce, these data are not presented in full in Volume III, 
but selected values are given in this chapter where appropriate. 

The main points discussed here are: 

(I) The effects of forward speed, rate of descent, and 
tip losses on the eigenvalues 

(II) Cross-coupling effects cu open-loop dynamics as 
demonstrated by the eigenvectors 

(ill) Cross-coupling effects on elcsed-loop dynamics and 
human pilot control as demonstrated by the transfer 
functions and residues 
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The volume of data generated for the S-58 is large, and it is 
not easy to condense it to its essentials. Only the "highlights" 
can be indicated here. The reader will gain worthwhile insight into 
helicopter dynamics by examining Volume III in detail. 
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Figure 38. Aircraft Equations of Motion in Stability Axes 
for Small Perturbations from Straight-Line 
Flight with Zero Bank Angle. 
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VII.2. WfflrMlM« 

The eigenvalues are summarized in Table XV and are discussed 
below. 

The effects of cross-coupling on most eigenvalues are not 
large. For example, at 100 knots in level flight, only two modes 
are significantly changed when the cross-coupling derivatives are 
suppressed. This is illustrated by the excerpt from Table XI 
reproduced below. 

S-^8, 100 Knots Level Flight 

Cross-Coupling Eigenvalues 
1 

Yes 

No 

-.1+6 + 1.63J, 

-.kB ± 1.73d, 

-»+.96, 

-5.23, 

-.12, 

-.11, 

-.^7, 

-.32, 

-1.82, 

-1.79, 

.12 + .33J 

.22 + .3Uj 

As will be shown later, the fact that most eigenvalues are 
essentially unchanged by the cross-coupling derivatives does not mean 
that cross-coupling effects are unimportant. 

For level flight, the eigenvalues change only slightly as 
forward speed is increased. The unstable phugoid mode 
and the degenerate short-period modes characteristic of hover remain 
remarkably unchanged with forward speed. This is contrary to the 
usual trend noted in Reference 5k,  where the phugoid becomes stable 
and the 1/T ,. I/T n modes merge to form the conventional short- . ,  ' spr ' sp2 
period.    *     ' 

The roll subsidence root remains roughly equal to Lp over the 
speed range 0 to 100 knots. The dutch roll mode is stable even at 
hover due to the N of the tail rotor as explained in Reference 
58, page 15). The frequency increases from ou = 0.73 to CD = 1.163 
rad/sec,and the damping ratio rises slightly from O.098 to 0.131. 

In descent, at the higher speeds there is not much change 
in the eigenvalues. By analogy to fixed-wing aircraft, in which the 
phugoid damping ratio is roughly proportional to(D/L),one would 
expect that cup would increase in descent. This does occur, but the 
effect is not large. Thus at 100 knots in level flight^ = -.172, 
whereas at the same horizontal speed and 22.5 fps rate ofpdescent, 
t; = -.lU. At lower speeds a similar effect occurs. For 20 knots 
fo?ward speed in level flight,!;  = -.111; with the same horizontal 
speed and 22.5 fps rate of descent, £ = -.057« 

The largest effect of descent on the eigenvalues occurs at very low 
forward speeds. In addition to the increased phugoid damping noted 
above, the degenerate short-period roots coalesce to form a heavily 
damped oscillatory pair. 
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In summary,  it appears that the variation of the eigenvalues 
both with horizontal speed and rate of descent is less than one might 
have expected.    In part, this is due to the small and rather low- 
aspect ratio tail surfaces of the S-5»8.   These   are extremely ineffective, 
in that M^ remains positive throughout the speed range 0-100 knots.    A 
more effective tail would tend to produce "airplane" type modes,  i.e., 
oscillatory short-period and stable phugoid,  as speed is increased. 

VII.3.  CROSS-COUPLING EFFECTS 

As noted above, only minor changes in the eigenvalues occurred 
when the cross-coupling derivatives were set to zero.    This trend is 
shown on Table XV for 100 knots level flight, but has also been verified 
by some calculations  (not published here) for desc3nding flight and 
lower speeds with and without the coupling terms.    From this,  it might 
be inferred that cross-coupling effects are minor.    Nothing could be 
further from the truth!    Examination of the print-outs   (Volume III) 
reveals strong cross-coupling at all flight conditions. 

In this section we demonstrate lateral-longitudinal cross- 
coupling by three complementary approaches : 

1. Calculation of transfer functions with and without the 
cross-coupling derivatives 

2. Calculation of the residues of the partial fraction 
expansion   of    the Laplace  transform of the time response 
to a given input,  such as a step or impulse in B.   , or ö   . 

3. Study of the eigenvectors  (the ratios of which equal the 
ratios of the residues in each degree of freedom for a 
given eigenvalue). 

We show that the cross-coupling between longitudinal and 
lateral motions    is strong for many of the modes.    Furthermore,  the 
cross-coupling occurs at all forward speeds and rates of descent 
examined here.    In this respect the S-58 is believed to be repre- 
sentative of single-rotor helicopters in general.    Little change 
occurs in the lateral-longitudinal cross-coupling for each mode as 
descent angle is increased at a given forward speed.    Hence, the 
explanation of the difficulties encountered in flight path control in 
steep descent must be elsewhere.    In the final section of this 
chapter, the culprit is identified as a nonminimura phase    Y/ü0 

transfer function.    This transfer function is crucial in flight path 
control at low speeds,  and it is shown that in descent a  nonminimum 
phase   ^ero appears which causes a marked deterioration in the achievable 
level  of accuracy with which the desired approach path can be followed. 

A nonminiraum phase transfer function has one or more right-half 
plane zeros. The terms 'nonminiraum phase zero' and 'right-half 
plane zero'  are synonymous. 
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Effact of Cron-Coupllng Derlv>tlvet on thg Trmifer Funotlom 

* = n    f     ,      \ 

For brevity, transfer functions will not be written in the 
usual form; e.g., 

Output(s) _  (Root locus gain)   r = 1 
Input(s)  ' 1 = m /  ,  s 

n     (s + p.) 
i = 1 

Instead, we adopt the equivalent notation 
_ r = n / v 

Output _ (Root locus gain) r = 1 ^"zr^ 
Input „ i = m /  N 

ni=l (-pi) 

For example, the transfer function 

■jpi v  = 15k.h  (s + 0.802) (s - 0.32)  
* oKS) (s + 0.312)(s - 0.035^ + 0.3^)(s - 0.035^ - 0.3kj) 

is written as 

w       15h.k  (-0.802) (+ 0.32) 
eo '"     (-0.312)(+ 0.035^ + 0.34J) 

In this abbreviated style, right-half-plane poles and zeros 
are indicated by numbers with positi -e real parts. 

As noted in Table XV, the 100-knot, level-flight case was run 
twice. Firstly, all the derivatives calculated from MOSTAB were 
included. Secondly, all derivatives coupling longitudinal forces 
or moments with lateral perturbations and vice versa were dropped. 
In addition, all lateral forces and moments produced by 0  and IL 
were put equal to zero, as were all longitudinal forces ana moments 
produced by 0oTR andAls. 

The results are compared in Table XVI. 
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TABLE XVI.    EFFECT OF CROSS-COUPLING DERIVATIVES; 
 SIKORSKY S-58,   100 KNOTS,  LEVEL FLIGHT 

Cross Pitch Rate/B.    Transfer Function 
Coupling 

No 

Yes 

8.U3(-0.6^7)(-0.029)(0)  
(-0.33)(-1.79)(0.219 + 0.336J) 

.U8(0.017)(-O.O61)(-0.109)(-^.2^)(-O.I16 - 1.69j)(-0.66) 
0.117)(-4.96)(-0.466)(0.12 +   0.33J)(-0.46 + 1.63J)(-1.Ö2) 

With approximate pole-zero cancellations removed, this becomes: 

Yes 8.1|8(0.017) (-O.O61) (-0.66) 
(-0.466)(-1.02)(0.12 + 0.33 33d) 

Cross 
Coupling 

No 

Yes 

Roll Rate/A-   Transfer Function 

-^9.0(0.0000017) (-0.60 + l,6ki) 
(-0.11)(-5.23)(-0.476 + 1.73d) 

-58.9(0.0000^3)(-0.^8 + 1.69J)(0.234 ± 0.328.1)(-1.86)(-0.31) 
(-0.117)(-4.96) (-0.466)(0.12 + O.33J)(-0.46 + l.63j)(-1.82) 

With approximate pole-zero cancellations removed, this becomes: 

-58.9(0)(-0.577 + 1.69d)(-0.31l) 
Yes 

(-0.117)(-4.96)(-0.46 + 1.63d) (-0.466) 
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Table XVI shows that the q/B.    transfer function and the 
P/A,    transfer function are hardly changed by the presence or omission 
of cross-coupling terms.    Of course, if the cross-coupling terms are 
omitted,then the p/B-    and   q/A.    transfer functions will be zero. 
This would be a serious error,    TO see just how seriou.", consider 
the p/B,    and q/A,    transfer functions.    These are listed in Table XVII. 

TABLE XVII.     CROSS-COUPLED TRMSFriR FUNCTIONS; 
  SIKORSKY S-58,   100 KNOTS,  S.  L.,  LEVEL FLIGHT 

-0.906(-30.27)(-0.56 + 1.67J)(0.077)(-0.67)(-O.086 + 0.95J) 
_!.    =    Z Z  
A

1s (-0.117)(-U.96)(-0.466)(0.12 i 0.33J)(-0.46 + 1.63J     -1.824) 

0.0U8(0.093)(597.2) (-0.11 + 1.83j)(0.000012) (1.9^) (-1.37) 
P     =    I   

B, (-0.117) (-4.96) (-0.466) (0.12 + 0.33j')(-0.46 + 1.63d )(-1.82U) 

Expanded in partial fractions 

p       =    0.06l -    6.99 +     4.91 + 1.82 Z. 2k.k0 

B s  + 0.117 s+ 4.96 s+ 0.466       s   - 0.12 - 0.33J 
Is 

+1.82 iL-2U.U0     + 1.63 z. 96.9° + 1.63 z. 96.9° - 0.96 
s -0.12 + 0.33J s   + O.kb - 1.63J        s+ 0.46 + 1.63J    a + 1.02k 

It is not easy to assess the relative magnitude of the pitch 
versus the roll motions produced by B,    by comparing the transfer 
functions as listed in Tables XVI    ana XVII.    A more direct comparison is 
obtained by expanding the q/B,     and p/B.,     transfer functions into 
partial fractions and comparing the magnitude of each coefficient in 
the expansion» i.e., each residue, as shown in the lower half of 
Table XVII.    Table XVIII shows  such a comparison.    For compactness,   some 
numbers have been rounded off in Table XVIII,  and only the residue 
corresponding to the upper-half plane root of each complex pair is 
shown. 
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TABLE XVIII.   CROSS-COUPLING EFFECTS ON B      IMRJIßE INPUT; 
SIKORSKY 8-58 AT  100 KNOTS, SEA LEVEL 

Level Flight 7.65 Deg. Descent                         j 

Root                     Residues Root Residues             f 

p, rad/sec          p Cl s, rad/sec P q 

-  .117 .061 .0033 -  .0926 -  .0062 - .797 

-M6 -6.99 .721+5 -5.25 -5.59 .1+69 

- .1+66 I+.91 -   .622 -  .1+21 6.16 - .797 

.121 
+ .33J 

I.82 
/2l+0 

1.2 
4-152° 

.091 
+ .31J 

2.39 
AI96 

1.18 
L-lkT0 

- .1+6 
+ I.63J 

I.63 
^.97° 

.261+ 
il2l+0 

-  .5U1 
+ I.5I+J 

3.1U 
^ 107° 

.511 
^.29° 

-I.82I+ - .955     -6.9^2 -I.865 -2.37 -6.851 

Table  XVII shows p and q residues for B,    inputs at two flight 
conditions.    To form a complete picture of cross-coupling,u, v, w, and 
r must also be considered.    However, Table XVII suffices to demonstrate 
that, in level flight at 100 knots, B,    induces considerable roll 
(compared to pitch) and that this cross-coupling is not much changed 
by descent. 

To understand Table  XVIII,  first compare the relative   magnitudes of 
the residues for each mode.    The relative importance of p to q in each 
mode depends upon the ratio of the residues.    For example. Table  XVIII 
shows that the rapidly decaying s = I+.96 mode is predominantly roll. 
On the otner hand, the unstable oscillatory mode displays almost as 
much pitch as roll, and the s = -I.82I+ mode has about seven times as 
much pitch rate as  roll rate. 

The above remarks indicate the relative magnitude of pitch and 
roll in each mode, but this information, by itself,  is insufficient 
to predict the cross-coupling induced by the pitch control, B,   .    To 
determine that, we must scrutinize the absolute magnitude of each of 
the q residues.    If the residues of the "pitch" modes  (s = 0.12 + 
0.33j>  s = -l.??l+) are very much larger than the residues of the other 
"coupled" or "roll" modes, then the response will be dominated by pitch, 
and B,    will induce little cross-coupling.    Examining Table  XVIII leads 
to the conclusion that although the residues of the "pitch" modes are 
somewhat larger than those of the other modes, the difference in 
magnitude is not so overwhelming that we can say that the roll induced 
by Bis is small.    We    therefore    conclude that B,     induces appreciable 
roll in level flight at 100 knots. 

135 



The descent situation Is summarized by the right-hand side of 
Table XVIII.    Overall, there is very little change in the residues between 
level flight and descent at 100 knots.    If this result is representative, 
it implies that the difficulties in control in steep approaches due to 
cross-coupling are no worse than those encountered in level flight. 
Hence, we cannot ascribe the difficulties experienced in following 
steep glide slopes to changes in cross-coupling between leve."1. flight 
and descent. 

To verify that the above result is representative, we have 
calculated the residues for u, v, w, p, q, r,  to A,  , B,  ,  6 , 

IS        IS        o 
9 _    for a wide range of flight conditions. 

Table XIX illustrates a typical comparison between level flight 
and two descending cases, all at 40 knots airspeed.     This confirms  the 
conclusions of Table XVIIIthat descent anglr» has only a minor influence 
on cross-coupling.    From examination of the residues for the entire 
range of flight conditions presented here (0 to 100 knots airspeed, 
and zero to 22.5 fps rate of descent), the effect of descent angle is 
quite small.    We therefore   conclude that variations in cross- 
coupling between level flight and descent are not a major source of 
difficulty in controlling steep approach paths on single-rotor 
helicopters. 

Before leaving the subject of cross-coupling, it should be noted 
that, although the effect of descent rate is small, cross-coupling varies 
significantly with airspeed.      This can be seen by examining the transfer 
functions presented in   Volume III .    It is usual to reduce the 
effects of cross-coupling by suitable phasing of A.    and B1    to B1  , 
through offset of the servos.    This correction   can %e exact 
only at a single flight condition. 
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Vll.if. 

The effect of descent angle on the transfer function relating 
flight path angle, 7, to collective pitch is most significant.    The 
difference between level flight and steep descent cases for this 
transfer function is such that control at low speeds is seriously 
degraded in descent.   As explained below, the effect is caused by a 
right-half plane zero.    It appears that this zero is the primary cause 
of the control difficulties experienced in steep descent. 

It is first necessary to define the quantities of importance in 
precise flight path control for slov* steep approaches. 

The key quantity determining how accurately a given approach 
flight path is followed is, in general, not height, nor flight path 
angle, but the displacement of the helicopter from the desired approach 
path.    This quantity is illustrated in Figure 39.    For brevity   we 
shall call it "height error", denoted by the symbol h. 

This section: 
(1) defines   h in terms of w and q (for which transfer functions 

have been calculated) 

(2) presents transfer functions relating h to collective 
pitch 

(5) demonstrates that, at low speeds, control of h by collec- 
tive pitch is relatively easy in level flight but 
difficult in steep descents 

(h) traces the reason for the difficulty to a nonrainimum 
phase zero in the h/9    transfer function 

(5) investigates methods for alleviating the difficulty 
through typical stability augmenter systems 

Definition of Height Error, h 

8 
Consider Figure 59« This indicates the distance of the helicopter 

,g. from the desired flight path. Call this distance the "height error" 

Using stability axis quantities, 

dfc i • "0/»"-" 
Note that this expression neglects products of small-perturbation 
quantities, and also products of small-perturbation quantities with 
the small trim bank angle 0 which is typically of the order of 1 degree. 
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HORIZONTAL 
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Figure 39«    Definition of Height Error, h. 
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The flight path angle perturbation, with the same assumptions, 
becomes 

A 
h 

7 '    ^"   - n)dt fvprzj 

For vertical and almost-vertical descents the above expressions are 
not appropriate. Vertical descents are usually made close to the 
ground and the key parameter is the height above the ground. Using 
stability axes, in vertical descent this parameter is given by 

h =    f(U   + u)dt *    o 

A 
Tranafer FunctionB for h to Collective Pitch 

Volume III   does not give the h numerators directly, but 
these can be constructed from the q/s and w transfer functions.    The 
results are displayed in Table XX. 

As will be shown,  the significant feature to note in Table XX is 
the right-half plane zero.    At 20 knots    (Cases 6,  11, and 20), this 
zero increases with descent angle.    This trend is reversed at the higher 
speeds, but this reversal is not relevant to height-control because 
above about ^0 knots B,    becomes more effective than 9    in controlling 

A      /• 0 

height.    However at low speeds h = J (V qdt - wdt)  is dominated by the o. The w term and cannot effectively be controlled by cyclic pitch. 
h/o    transfer function is thus of prime importance,at low speeds. 

Htight Error Beapome to Collective Input 

Figure h-0 shows the time histories of the responses to a unit 
collective pitch input for the S-58 at 20 knots   (1)  in level flight 
and   (2)   in a steep descent (7 = - 41.8 deg).    Note that, in the 
descending case,the height error goes the "wrong way" after about 
8 seconds, never returning to the  "right" direction.    By contrast, 
for level flight during the first 30 seconds the height error moves 
only a little way in the wrong direction, between  1? and 22 seconds after 
the step input. 

Both responses are oscillatory.    This is due to the unstable 
phugoid mode.    As shown later, this oscillatory mode can be stabilized 
by standard feedback of pitch rate to longitudinal cyclic.    Considering 
the remaining modes in Figure ho, there is a fundamental 
similarity between the    responses, in that both ultimately go in the 
wrong direction.    This is  characteristic of the step response of a 
system with one nonrainimura phase zero.    It can be proved  (from the Laplace 
transform Initial and final value theorems)  that for such a system. 

* 
This is shown by the partial fractions listed   on page  1V3. 
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the sign of the initial slope of the step response is different from 
the sign of the final value of the response. 

The difference between the responses of Figure 40 lies in the 
rapidity with which they move in the wrong direction, and it is this 
factor which causes difficulty of control. To demonstrate this, form 
the unit step response time history by expanding the Laplace transform 
of l/s times the transfer function, and taking the Inverse transform 
of each partial fraction. This yields, per radian of Increased collective, 

Level Flight: 

JU - 670 + 577.2t -13.6t2 + 869e-
0-585t ^e"0'197* 

-675e0*06t (cos O.^t -0.28 sin 0.53t) 

+0.033e~4'76t +21.7e"1,l6t -28e"0,lif6t(cos 0.73t -2.4 sin 0.73t) 

Steep Descent 

h = - 1,298 +7.It -9.9^t2 +568e"0^85t +l,496e"0'l8t 

-8l2e,055t (cos Oö^t -1.5 sin O.^t) 

-O.Ctfl e'k'98t -6.9e"1,07t +53e'0,196t(cos 0.65t +1.72 sin0.65t) 

Figures k\  and 42 show how the above components sum to form the complete 
response. The h/0o transfer function has two poles at the origin (see 
Figure 43, or Tables XX,and XV); hence, the step input yields partial 
fractions involving l/s , l/s , and l/s, corresponding to parabolic, ramp, 
and constant components of the step response time history. These 
components are primarily responsible for the differences between the 
responses for level flight and descent. The components depend on the 
vector distances from the poles at the origin to other uncancelled poles 
and zeros, and are markedly affected by the change in the right half plane 
zero from s = 0.07^ for level flight to s = 0.268 for steep descent. 

Oloitd-LoQp Oontrol of Htight Irior 
The adverse effect of the shift in the nonrainimum phase zero from 

0.078 rad/sec for level flight to 0.268 rad/sec for 70= - ^ «0 degrees 
can be demonstrated by constructing a root locus. The simplest feed- 
back to consider is a "pure gain" feedback of & to collective. This is 
illustrated on Figure 43^ which shows the 7 = - 4l.8-degree case. 
Note that even at low gains, a root moves close to the zero at s = 0.268. 
For example, for a feedback gain, 9 /h, of O.08 radian per 100-foot 
height error, the system is unstable with a root at 8 ■ 0.13, i.e., 
doubling amplitude every 5*3 seconds. This divergence is too rapid 
to be acceptable. 

For level flight« the zero is still present but is reduced in 
magnitude from s ■ 0.266 sec' to 8 =0.078 sec" .  For the same gain 
as used in descent (0 /h ^ O.08/10O radian per foot); the closed-loop 
time constant is apprSximately 0.057; hence the time to double 
amplitude is increased to 12 seconds. 
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Of course, the "pure gain" closure discussed above is the 
simplest form of control, and the instability can be cured by more 
complicated compensation, plus "wrong-way" gain (i.e., increasing 
collective to compensate for being above the desired flight path). 
However, little can be done to alter the position of the nonminimura 
phase zero, which (as shown below) is the basic cause of the unsatis- 
factory tracking capability. 

The reason why the zero is so tenacious is that, at low speeds, 
collective pitch is the only effective way of controlling height error. 
This can be seen by going to the limit, i.e., hover, when cyclic pitch 
produces essentially no Z-force. Thus there is no real possibility 
for multiloop control of height error, (in passing, note that this 
possibility does exist on the AH-56A discussed in the next chapter 
because the propeller pitch can effectively control the flight path.) 
Whatever feedbacks are employed, the overall transfer function relating 
height error to collective retains the nonminimum phase zero. 

Summarizing the above discussions: the h/e right-half plane 
zero is objectionable because: 

(1) It causes the initial step response to be in the 
opposite direction to the final response. 

(2) It m^kes it difficult to obtain a stable closure of 
the h-»e loop. 

(5)   It cannot be moved appreciably by closing other loops 
(e.g., h-»B. ) unless excessively high gains are used. 

Granted all the above points, seme further explanation is still 
required. This is because right-half plane zeros are quite common in 
aircraft transfer functions but do not normally cause a major deteriora- 
tion in handling qualities. For example, the height-to-elevator 
transfer function of a conventional aircraft flying above its minimum 
drag speed contains a "far-out" right-half plane zero. However, neither 
"far-out" or "very close-in" zeros cause a significant deterioration 
in the step response. What, then, is so bad about the S-58 h/© 

transfer function at 20 knots, y  =41.8 degrees, and the associated 
step response shown on Figure kOl 

The answer can be found rigorously by considering the effects of 
the relative magnitude of the nonminimum phase zero and the gust break 
frequency on the performance of an optimal regulator. This is done in 
Reference 59, but the essential point can be grasped by the following 
reasoning. 

lU? 



Consider the task of a pilot flying a helicopter in a gusty- 
environment, approximated by a series of randomly spaced square wave 
w-gusts of randoir amplitude. Let the average time between successive 
gusts be Tg seconds. Suppose, the helicopter has a stable step response 
to collective which is "up" for T. sec and "down" thereafter (i.e., a 
nonrainimum phase characteristic). If T is very much less than T , the 
optimal control requires negative feedback, i.e., reduced collective 
pitch, to counter an up-gust. On the other hand, if the gusts are 
very widely spread, the integrated absolute value of the perturbation 
from the desired flight path is minimized by positive feedback. Between 
these two cases a condition exists where the optimal policy is zero 
feedback. At this condition, there is nothing that the pilot (or S.A.S.) 
can do to improve the accuracy with which the helicopter is following the 
desired flight path. In such circumstances the pilot will regard the 
helicopter's handling qualities as unsatisfactory. 

It can be shown (Reference 39) that with a single nonminimum 
phase zero located at s = n rad/sec, and standard gust power spectrum 
of the form *  = K/(s + av )> the above condition occurs when 

WW D 
n = cu. , i.e., when the zero is of equal magnitude to the input break 

frequency. For hover and low-speed flight, ox   is normally assumed to 

be = 0.3 rad/sec (see Appendix VIII). Hence, the zero located at 
s = + 0.268, as predicted for the 70=-  M .8-degree case, will adversely 
affect handling qualities. 

Strictly, the above discussion applies only to single-loop 
control. However, at low speeds, control of h is virtually limited 
to collective pitch, so this restriction is realistic. A zero cannot 
be moved provided only one control is used. Hence,no cure is possible 
through stability augmentation in the collective loop. 

Effect of Stability Avgnantatlon 

For simplicity, the foregoing analysis has considered only the 
unaugmented helicopter. The effect of stability augmentation on the 
nonrainimum phase zero is not large, as explained above; however, some 
benefit i^ obtained, since there is a limited effect of cyclic 
pitch on h. This is illustrated by Table XXI, which shows the effect 
cf a typical S.A.S. feedback on the poles and zeros. With a feedback 
gain Just adequate to stabilize the phugoid, the h/e,- zero remains about 
the same magnituie as In the unaugmented case. The time histories 
(see Figure hh)  show similar objectionable "wrong-way" characteristics 
to the unaugmented case (Figure 40); the stability augmentation merely 
damps the phugoid. 
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At higher speeds, e.g., ho knots, cyclic pitch has more 
effect on the flight path, so q-» B. feedback is effective in 

reducing the wrong-way characteristic. 

Bmnary 
For single-rotor helicopters, as typified by the S-58, the 

effects of longitudinal-lateral cross-coupling on the eigenvalues 
are relatively small. However the cross-coupling is large, as 
shown by the eigenvectors and such transfer functions as p/B1 and 

q/A1 . Except at very low speeds, the variation of the eigenvalues 

with rate of descent is small. The cross-coupling also changes 
little between level flight and the upper boundary of the vortex- 
ring state. 

The major reason why control is degraded in steep descents 
is shown by the transfer function relating collective pitch to 
the distance of the helicopter from the unperturbed flight path. 
This transfer function contains a right-half plane zero which 
cannot easily be removed by multiloop feedbacks. The effect of 
the zero is to cause the step response to collective pitch to 
be largely in the wrong direction when performing steep descents 
at low speeds. 

Because of the large number of derivatives involved in 
the coupled longitudinal-plus-lateral equations of motion, it has 
not yet been possible to identify the significant derivatives 
causing the nonminimum phase zero. The question arises as to 
whether this is some special peculiarity of the S-58 or whether 
it is indeed representative of single-rotor helicopters in general. 
Conclusive proof will require a more general analysis; however, 
in the next chapter it is shown that the same nonminimum phase 
effect occurs on the AH-56A, It is therefore probable that the 
effect is typical of single-rotor helicopters. 
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OÄPTBR VIII.     COMPOUND HELICOPTER DYNAMICS 

viii.i nrmopüCTiaf 

This section discusses the open-loop and closed-loop dynamics of 
a typical compound helicopter. The principal features which differen- 
tiate such vehicles from  "single-rotor" helicopters are the wing and 
the auxiliary thrusting device, which nay be a jet engine or a propeller. 
Both these features are Intended to unload the rotor at high speeds. 
One might expect, therefore, that at low speeds, there would be few 
significant differences between the dynamics of the "single-rotor" and 
"compound" configurations. This proves to be the case; the eigen- 
values and eigenvectors display similar variations with forward speed 
and descent angle for both types of helicopters. For this reason 
frequent reference will be made to the preceding discussion of single- 
rotor helicopter dynamics, and Chapter VII should be read bef re this 
chapter. 

The example vehicle chosen to represent compound helicopters 
is the Lockheed AH-56A. As originally flown, this helicopter incor- 
porated an all-mechanical stability augmenter system (the "gyro"). 
Difficulties were experienced in flight as a result of coupling 
between the gyro and blade modes other than the first flapping mode. 
At the time of writing, alternative S.A.S. schemes are under con- 
sideration, and for our purposes, it appears logical to consider 
the basic AH-56A with gyro removed. The resulting configuration 
should be more representative of the dynamics of compound helicopters 
in general than the AH-56A with gyro, and the data presented here 
are thus suitable for preliminary design of S.A.S. systems and for 
prediction of handling qualities. 

The detailed AH-56A data presented in Volume IV Is similar 
to that previously discussed for the S-58. That is, It Includes 
derivatives and transfer functions relating u, v, w, p, q, r to A^ s, 

B1 , 9 , 9 TR, 6  (collective pitch of the pusher propeller). Residues 

and eigenvectors were also calculated and are quoted in this chapter 
where appropriate, but they are not listed in Appendix VII. 

Hie above information is presented for the AH-56A at sea level, 
wHh true airspeeds of 0, 20,  ^0, 60, and 100 knots. For each speed, 
descent rates of 0, 9.6, 19.2, 2ß.8 fps are considered. At low speeds, 
the highest descent rate is almost at the boundary of the vortex-ring 
state. 
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Two cases were re-run with the cyclically varying tip loss 
factor set to zero. This caused noticeable shifts in the eigenvalues 
but no radical change in the general nature of the vehicle response. 
That is, modes which were stable with tip losses included remained 
stable with B=1, and the residues were of the same order of magnitude 
with and without tip losses. For example, at ho knots and 26.8 fps 
descent rate (7 = -25.1 deg), the eigenvalues changed as indicated 
below. 

AH-56A ho Knot»,  Statp Dtictnt, ? ■ -23*1 Otf 

EIGENVALUES, rad/gec rip LOSS 

INCLUDED 

DMITTED 

.255 ♦ .758j, 
•^W .76j. 

■9.9, .063, 

.06ift 

.526, 1.09, -.0^1 ♦ .26j, 

..036 1 .251 

The above changes are rather less than might be »xpected 
by considering the effect of tip losses on the derivatives. The 
explanation is that the magnitudes of some derivatives (e.g., Zy) 
are decreased by the tip loss, whereas others (e.g., Mn, Lp) are 
increased in magnitude because tip loss gives increased flapping. 
In all the cases discussed below, tip losses were included. 

VIII.2 EIGENVALUES 

Table XXII sutomarizes the AK-^6A eigenvalues. In le/el 
flight, the eigenvalues are generally similar to those calculated 
for the S-58, at the corresponding speeds. The major differences 
are 

(1) The AH-56A roll subsidence root is about twice as large 
as that of the S-58, due to the increase in "effective 
hinge offset" of the hinge less rotor. 

(2) The AH-56A develops longitudinal static stability at 
lower speeds than the S-58. This is due to the negative 
My contributions of the tail and the pusher propeller. 
The result is that the phugold is stable at speeds 
above 50 knots, approximately. In addition, the short« 
period degenerate modes combine to form an oscillatory 
node at 100 knots. 

In descent, the eigenvalues generally do not change signif- 
icantly from their values in level flight at the same airspeed. The 
exceptions to this statement are noted below. 

At the higher speeds, descent increases the phugoid damping 
and causes some reduction in frequency. This would be expected from 
the increase in |Xul> At 100 knots and the most rapid descent rate 
(which corresponds to 7 = - 9.8 deg) this trend progresses so far 
that the phugoid degenerates into a pair of aperiodic roots. One 
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of these roots is sliehtly unstable at s = 0.073* This "luck" 
■ode instability is caused by the change in My that occurs between 
60 and 100 knots at 28.8 fps descent rate. (At 60 knots,^=+0.336 x 10^ 
rad/sec2; at 100 knots^.-l?^ x 10"^ rad/sec2.) 

Apart from this phujoid change, the only other significant 
effect of descent on the eigenvalues occurs at vertical and near- 
vertical descents. For such conditions, two modes,which at hover 
are aperiodic, coalesce to form a well-damped low-frequency oscil- 
lation. The eigenvectors (discussed later) indicate that this 
behavior Is due to Hy. This derivative, referred to body axes, 
increases by a factor of approximately 30 going from hover to the 
■Hd— vertical descent rate at the boundary of the vortex-ring 
state. This marked change occurs because the tail rotor thrust 
becomes more sensitive to perturbations in vertical velocity as the 
rate of descent Is increased. A similar effect was noted on the 
S-58. 

VIII.3 CH0SS-C0UPLIII6 EfTECTS 

As with the single-rotor helicopter, lateral-longitudinal 
cross-coupling is severe. This is illustrated by Table XXIII which 
presents AH-56A eigenvectors at hover. Note that u, v, w, p, q, r, 
are referred to stability axes which, in hover,are arbitrarily defined 
such that the x-axis is horirontal and the y-axis it normal to the 
pi. ne of the syne try of the fuselage, which is almost but not 
exactly vertical. (The print-out gives the stability axis Buler 
angles in radians for each flight condition*) In Table XXIII the 
choice of the unit eigenvector varies arbitrarily from mode to mode. 
As in Table XVII, only the upper-half plane root of each complex pair 
is shown. 

Examination of Table XXIII reveals the dominant degrees 
of freedom of each mode, and the names of each mode are chosen 
accordingly. However, with the exception of the roll subsidence, 
each mode displays strong lateral-longitudinal coupling, so the 
names should not be taken too literally. The resemblance of each 
mode to the corresponding uncoupled mode is not necessarily close. 
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■ - -                         

WWr BUUü; JJLLll.     AH-jOA KIÜHiVECTORS AT h 

in, Vj v, p, it r. In stability axes] 

s u V V 100p lOOq lOOr Node Name 

-.255 .59 .01^ 1.0 .00067 -.039 .569 " Plunge" 

-.205 .107 .829 1.0 .0058 -.102 1.85 ..  Yaw .. 

.035 1.0 -.106 
♦ .522.1 

-.00001 
♦.02UJ 

.015 
-.175J 

.518 
-.117J 

.231 
♦ .U7J 

"Phugoid" 

-.018 
♦.39^ 

-.713 
-.077J 

1.0 .0135 
♦ .o^J 

-.48 
♦.009J 

-.39*» 
-.0967J 

.681 
-1.27J 

•• Dutch 
Roll" 

-10.0 .022 .6527 -.0185 100.0 6.3 -1.9^ -Roll 
Subsi 
-dence** 

-2.01 1.0 -.2«»5 .053 -2.02 -10.56 -2U.2 -Speed 
-Pitch- 

1 i 

|          TABLE XXIV.    AH-.oA EIGENVECTORS U* 36.8 fDS VERTIGAL DESCDJT. 
1                                                                                                                                                   1 

8      U V w 100p lOOq lOOr 4ode Naor 

-.181 
♦ .09U 

-.059 
♦.'♦39J 

•591 
-.548J 

-1.0 

-.099 
♦.147J 

.057 
-.187J 

1.0 

-.0225 
-.02U8J 

.0215 
♦ .0I*72J 

-.0081 

♦.107J 

.00135 
♦ .0076J 

-.57 
-.U9J 

1.52 
-4.58J 

.257 
♦.166J 

* Coupled 
Plunge- 
-Yaw" 

••Phugolcf 

-.08 
♦ .562.1 

-.W»9 
.229J 

1.0 -.06 
-.092J 

-M6 
♦.0197J 

-.201* 
-.089J 

-.717 
♦1.48J 

"Dutch 
Roll- 

-9.8 

-1.91 

-.079 

-1.0 

1.0 

.171 

.012 

.00'*5 

-k.k 

4.5 

-2.85 

-21.8 

-.82^ 

♦ .77 

1 Roll 
Subsi- 
dence " 

•Speed- 
Pitch- 

Stability 
Axis 
Rstes 

-w V u lOOr lOOq -100p 

1* 



The cross •coupling hardly changes with descent rate, provided 
that u, v, v, p, q, r are referred to body axes rather than stability 
axes. This point is important for very steep descents. For ex»«pie, 
in vertical descent the body x-axis and the stability x-axls differ 
by 90 degrees. This must be considered when coaparing Table XXIII with 
Table XXIV, its counterpart for 26.8 fps vertical descent. 

At the foot of Table XXIV are listed the stability axis quantities 
corresponding to the body axis quantities at the head of the table. 
Thus, for exaaple, to trace the effect of vertical descent on the 
"dutch roll** mode, note that,at hover, the ratio of |u|: |v|: |wj is 
approximately 0.72:  1.0:0.0^5. For vertical descent the corresponding 
ratio in body axes is 0.3: 1*0: 0.10. 3y  comparing the eigenvectors 
in this fashion, it is seen that there is not much difference between 
the hover and descent modes with the exception of the plunge and yaw 
modes which couple together in vertical descent. This is caused by 
the increased sensitivity of the tail rotor to perturbations in 
vertical descent velocity. The tail rotor is not immersed in the 
main rotor wash at hover and in vertical descent. At hover, by 
symmetry, the tail rotor thrust is equally sensitive to "up" and 
"down" w perturbations; hence, its contribution to the cross-coupling 
derivative H is negligible. However, as the descent rate increases, 

the unperturbed flow conditions at the tail rotor becore asymmetric, 
and the derivative Nw increases markedly, causing the 

Hyaw" and the 

"plunge" modes to couple. 

Cross-coupling is pronounced at forward speed. For example, 
the short-period oscillatory mode. Um -I.58 * 0.556J» which emerges 
at 100 knots involves about one-third as much roll as pitch. This 
is illustrated by Table XXV, which presents some typical residues for 
pitch and roll response to Bxa. Table XXV shows that the cross-coupling 
does not change much with shallow angles of descent. 

The pitch rate/B. transfer function also changes rather 
little from level flight   to steep descent, as shown by Figure kj. 
Numerous near-cancellations occur, leaving essentially a second-order 
numerator and a third-order denominator. 
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ABLE XXV.    EFFECT OF DESOWT OK CROSS-COUPLUWi LOCKHEED AO-'JJA 
AT 100 KflOTB.  SEA I£VEL. NO S.A.S. 

|                Roots 1   -q Residues to B -p Residues to ".              1 

V- 0 y- -9.8 y • o y- -9.8' y - 0 y - -9.8° 

-.^01 
♦1.5U 

-.431 
♦1.49J 

.035   . 
< -152.8 

.034 . 
<-128.9 

.429 . 
<-137.5 

•36 . 
< -173.0 

-10.6 -9.56 1.90 1.526 ^6> 32.95 

-.0^7 -.025 .104 -.0079 .0777 .00317 

-1.58 
♦ .556J 

-1.50 
♦ .58J 

13.7   . 
< -130.6 

11.7 .1     552 . 
< -135.8   k -105.0 

3.61. 
< -110.8 

-.O^l 
♦ .188J 

-.129 56. 
< -89.6 

-.517 •537   . 
< ^98.6 

.265 

'x. 
.OTW ^\ -.287 -.322 

1                                                                                          1 

As noted previously, the AH-^6A has a large roll subsidence 
root, (typically about 10 rad/sec), due to the hinge less rotor. This 
is veil separated fron the other roots, which should lead to little 
coupling with other aodes in the p/A, transfer function. This is 
confirmed by Figure 46, which shows tne transfer functions for p/Ajg 
at 100 knots in level flight and 22.8 fps descent. Mote that only 
the roll subsidence ptle is not cancelled by a nearby zero. 

The above trends are typical. For ease of reference. 
Table XXVI has been extracted fron the data of Appendix VII to show 
the effect of descent angle on the f/A^ and o/Blt nunerators at 
various forward speeds. From this table and Table XXV, it 
is evident that the effect of descent angle on pitch and roll control 
is snail. Similar comments apply to yaw control by tail rotor 
collective (see Tsble XXVII). Table XXVII shows that the y«w/«oTR 
numerators change little with descent angle, provided that the 
yaw is referred to body axes (i.e., overall vehicle axes) rather 
than stability axes. 
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VIII.U HEIGHT CONTROL 

As with the S-58 (discussed in the previous chapter), it is 
anticipated that the AH-56A will experience difficulty in flight path 
control in slov^ steep descents. This can be inferred from Table XXVIII, 
which presents numerators for the transfer function relating height 
error to collective pitch. (See Figure 39 for the definition of 
"height error", h.) Table XXVIII shows that,at the lower speeds and 
steeper descent angles a nonminimura phase zero appears at 0.1 < s < 0.6 
rad/sec. As shown in Chapter VII, such a zero degrades the handling 
qualities. Typical effects of this zero are shown 1B the step responses 
of Figure U?, which display awkward "wrong-way" characteristics for 
the descending flight conditions. 

The difficulties of removing this right-half plane zero by 
feedbacks to cyclic pitch, explained in Chapter VII for the S-58, apply 
equal]y to the AH-56A. However, the AH-56A does have the extra possibility 
of flight path control through the pusher propeller, as described below. 

Control IfflMtlfBMi of tht Puihtr Pypptlltr 
Assuming that the aircraft is trimmed so that the pusher propeller 

is not operating in the vortex-ring state (a condition which is satisfied 
for the flight conditions presented in thij^ report), the principal 
effects of 0  relate to control of u and h. The appropriate numerators 
for level flight and steep descent are summarized in Table XXIX. 
Completing the transfer functions with the denominators given in Table 
XXII permits some preliminary assessment of the effectiveness of the 
pusher propeller as a control device. 

At 100 knots in level flight, many approximate cancellations 
occur between numerator and denominator, leaving the following approximate 
transfer function for speed control: 

u   .  -}k,0 
0op " (s - 0.073) 

This indicates that the pusher propeller controls speed by 
exciting the unstable "tuck" mode of the degenerate phugoid pair. This 
would be unsatisfactory for x(=/udt) control (e.g., stationkeeping) 
since the x-»0  locus lies entirely in the right half-plane. The 
situation woula^be improved by stability augmentation involving feed- 
backs of 0 to B. ^which would stabilize both phugoid roots. Descent 
improves the u/A  transfer function; at 100 knots and 7 = - 9.8 degrees» 
it becomes approximately 

163 



• 

«TV 

•fN • 

00    CO 

•       • 8 • 

4^ 
(\J 
-a • 

(\)     Oj     QO       «"N 
t—     -*       H"N       •- 
W   O   o    o •         •         •          • 

1 • 

ON      «I 
UN     ^■ 
CVJ      -Oj 
•        • 

NO      — 
^-      CNJ 
o   o •       • • •       * 8 * O • 

■ 

*l +1 +1 +1 

O 

+1 +1 +1 — 

.-      f-    CNJ 

f: 0 ^   0 
o   —   o    • •     •    •   o 

1     1     1 

•   +1 -+1  H 

-^    -r 
kN    OJ 
o  o 

♦ 1 

O 

1 1      — 
• 

.4-1 

8 2 ^ o o 

1 i 

1 1    1 i 

• 
1 

1 •    i 1     1 1 •   i o 

• 
7 

1 

• 
(\J 

• 4. i 

o • 
v.M 

1 

^   <&   S •       •       • 
.-     ^     Ol 

1    1    1 

5 • 
CVJ 

• 

VN    ON    "O    ••-> 
ON    -^     -- •       •«-%•- 

1      1      •    CM 

-  .... i l     i l 

-4- 
ON • 

1 

NO      00 
ON   VO •      • 
i   7 

i ^ 
TN        • 

- * k     * 1 • 

ON • 
1 

t- - 
ON   r*- •     • 
7  7 

3 
4. 

• 
1 

• 
1 

C\J    CO 

•       • 
1    1 

CO 

• 
1 

00   —   o.   * 
■i\   \D    O     i-AJ 
O     XN       •        • 
•          •       w—         r~ 

1           '       J.       J, 

^1 

• 
1 

3 o •  * 
6 NO 

•   • 
• 8 5 •       • 

1        1 

a. • 
1 

• 

< XN 

• •       • 

IfN 

CM 
o • 

o 
M    h>   h>    tf> 
«-\     u \    CVi     ^ 
^   o   o   o 
■         •         •          • 

O 
OJ    VX) 

CO     OJ 

•        • 
»TN    0J 
o   o •       • 

o 2«? 
•        •        • o • 

B a 

i i o • 
o 

ON • 
ON 

1 

•       • 
as o 
i   7 

o 
1 

-3 
ON 
i 

0s 

1 

00 
ir\    C\J     *>»     r- 
co      •     •      • 

.  o  o   o 
i   7  7   T 

00 
CO • 
ON 

1 

•    O 
ON     — 

1         i 

ON   CU 
•       t 

ON   ON 
1      1 

OJ 
00 • 
ON 

1 

•      • 
00 

• 
i 

c\J 

• 
ON 

1 

P. g 

1 
f 

ON 

• s 
m •        • u \ • 

••■9 

Ol 
GO 
N"N • 

•O     t-j     fj 

t"-    •-     O     iTN 
ifN   «O       •        • 

p 
• 

ON   O 
►fN   CU 
iTN    t^ •        • 

l-J      TJ 
XN    CO 
O   ^t •         • 

OJ 

• 

ND*   O? 

•     • 
• 

ON 

• 

+ 1 + 1 +i +i + 1 + 1 +1    +1    +1    +1 +1 +i +r +1 +1 + ^i +i + 1 + 1 

O 

-3 

t 
t-   ON   f-    „. 
-*     •-     ON     CNJ 
r-      CVJ       Kl      -rf 

OJ 

E » 8 £ i iTN     •- 

2^ R 8 
TN -4 

B 
o 

1 I 1     1 ' 1 •     i     I      I 1 •   • 1        1 i 1    1 1 1 

• 
M 

M 

B 

§i§ 
ON • 

OJ 

•       • 
CO    h^ 

• 
o 
fVJ 

^f   vo   NO    CM 
•      •      •      • 

O)      K>»     ^       O 

8 ^i ^ Ä OJ 

•                   • 
o   t~- 
<-      CNJ 

•        • 
OJ    -^ 

OJ     hN 
m 
OJ 

o 
ON 

1 

• • 
OJ     OJ 
— OJ 
— OJ 

«"N     '- • • 
oo    JA 
ON     OJ 

1         1 

• • 

• 
qv s o o o   o O 

o 
ON 

1 

^ & 7  ^ 
NO        •         •         • 
•—    CU      >. \    fO\ 

1    1    1    1 

o 
ON 

1 

JN    ITV 

r^N    NO 

I 

CJ 
ON    lA •        • 
O    NO 

1     1 

iTN • 

1 

rj 
CO cu    u' ^ NC CO    CO     UA CNJ 00    CO iTN CO CO     CO - i 

o t-   — 
vD    O 

ON 
NO 

ON ►r,    t~-    ^     ON 
►r\   NO     O    VO 

ON 
NA     NO 5 § CO 

C\J o V0 

li N vü r- OJ ON 
o ^     (^      f<N    ^f IfN NO      t- CO      ON 

OJ a ^ '~1 
0J 
OJ 

164 



i/ -8 

f • 

i 
I 

\ 

-s 
• 

8   , 
■ y 

^ 

8     5     8      0      f      f     f 
id'Hivd iHend oaeuniuadNn oi IVWMON HOUW IHOOH 

165 



e       (s ♦ 0.0^ ♦ 0.1BBJ) 
op 

This provides stable x-»0  closures provided that excessive lags are 

avoided. 

At lower speeds, fewer approximate cancellations occur. For 
example, at 1*0 knot; In level flight, 

u  .     >ie.2 (s ♦ 0.162 ± 0.06gJ)  
G '        (s - 0.072) (s ♦ 2.0Y) (s + O.Q52 ♦ 0.38J) 
op 

whereas at bO knots in descent at 7 = - 2^.1 degrees. 

u 
e op 

-18.14 (s + O.ITM  (s - 0.0^7 ± 0O12J) 
(s + 0.^26)  (s ♦  I.Ö9)  (s ♦ 0.CA1 t 0.aß2J) 

The appearance of a nonminioan phase zero in descent is not 
important here   because of the proximity of the phugoid mode, which 
will yield only a small residue    and will largely cancel out the 
wrong-wLy characteristics of the step response. 

Simultaneously with it-perturbations, 0     also induces h 
perturbations; hence it is necessary to consider these also in 
assessing the control effectiveness of the pusher propeller.    The 
appropriate transfer functions are given in Table XXDC; some rather 
gross cancellations have been made in the approximate transfer functions 
presented below in order to simplify the discussion. 

y =0; 
~ £        •        |.62 (s » 0.47^)   (s - 0.j49)   (s - ^302) 

s(s +  1.58 + O.556J)   (s + 0.041 + O.lööj) op 

y = - 9.6 degrees 
A 
h      . -5.1^ (s * 5.97)  (s - 2.12) 
9 s(s - 0.073)  (s +  1.5 + OOSj) op 
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Ihe change in the sign of the root-locus gain is not significant, 
because of the change in the number of right-half plane zeros. Ihe 
zero at s >> + 0.^9 is likely to induce a poor step response in level 
flight, but this should be less troublesome in descent. However, the 
presence of these zeros will cause difficulty In closing the n-*0 
loop, so at 100 knots the pusher propeller is not a desirable   p 

alternative to the usual n~,B  and n-* e loop closures. 

At low speeds the pusher propeller shows better promise for 
control or height error. For example, at ho knots and > « - 2^.1 
degrees, the n/       transfer function is, approximately. 

-6.6 
s^s ♦ 0.^26) 

This avoids the awkward nonminimum phase characteristics of the 
h/collective transfer functions listed on Table XXVIII. Hence the 
pusher propeller may provide a useful method of flight path control 
at low speeds. 

The control characteristics of compound helicopters have "^ecn 
studied by examining the AH-'^6A with the all-mechanical stability 
au^nenter system (the "gyro**) removed. From calculations of derivatives, 
transfer functions, and residues, the AH-l/A open-loop behavior is seen 
to be generally that of a typical single-rotor helicopter. Strong 
coupling occurs between longitudinal and lateral motions, and there is 
not much effect of descent angle on the eigenvalues except at very low 
speed. In slow,steep descents, control of flight path with collective 
is difficult because of the appearance of nonminimum phase zeros in the 
appropriate transfer functions. This effect is similar to that 
described for the single-rotor helicopter. However the compound has a 
possible alternative method of flight path control, through variations 
of collective pitch of the pusher propeller. This circumvents the non- 
minimum phase effects and appears to provide a satisfactory method of 
controlling the flight path. 

168 



ZZ.  COMCLUSIOIIS AMD RECOWHCIIOATIOIIS 

The principal results of this report ere contained in the tables 
of derivatives and transfer functions given in the Appendixes. A large 
part of the value of the report lies in these detailed mmerical 
results and in the presentation of the analytic and computational 
nethods used to obtain them, e.g., the NQ61AB program. However, certain 
general conclusions have been reached, and these are presented below, 
together vith recommendations for further work. 

1. A new method for predicting the boundaries of the vortex-ring 
state is presented, using only simple concepts but giving 
good agreement with experiment. 

2. The tip losses on a rotor in vertical descent can be predicted 
by nonentun and 11 • ic-element theory, using a flow xodel which 
Incorporates a sheath of vorticity surrounding the slipstream. 
The method ^ives good agreement with experiment in vertical 
lescentf no suitable experimental iata are available for inc 
inclined descent to check the theory for that condition, for 
which it predicts a cyclically varying tip loss factor. 

3* In calculating helicopter derivatives, the perturbations in 
interference velocities induced by each element on each other 
element must be included. All lateral-longitudinal cross- 
coupling derivatives should be included on single«rotor and 
compound configurations. 

•'•. Derivatives calculated for steep descents are generally 
appreciably different from derivatives calculated for the 
same airspeed and level flight. The use of level-flight 
derivatives for simulations of moderate and steep descents 
can give seriously misleading results. 

^. For tandem-rotor configurations, the principal efffects of 
descent are to cause the dutch roll to degenerate into an 
aperiodic pair of roots and  to worsen the nonmlnimum phase 
characteristics of the roll-to-lateral-cyclic numerator. 
The net effect is to worsen the open-loop dynamics. 
Increasing the need for multiloop feedbacks. Longitudinally 
the effects of descent angle are generally minor, except for 
changes in the speed/longitudinal cyclic numerator referred 
to cockpit axes. This could be important for stability 
au^uenter systems using air data sensors. 
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6.    For single-rotor helicopters, lateral-longitudinal cross- 
coupling effects are important in the transfer function 
mnerators but have little effect on the denomij.itors.    The 
most significant effect of descent angle occurs at low 
speeds, where control of the flight path by collective pitch 
becomes seriously degraded   due to nonminimum phase effects, 
causing "wrong-way"  responses.    This is believed to be the 
principal cause of the difficulties encountered by helicopters 
attempting to follow steep approach paths at low speeds. 
Remedies involving multiloop feedback or elaborate compensa- 
tion of single-loop feedbacks do not appear feasible. 

7*    The behavior of compound helicopters is similar to single- 
rotor helicopters at low speeds, where the wing has little 
influence.    Ibe propeller provides an alternative method of 
flight path control which shows promise of alleviating the 
above-mentioned difficulties. 

Despite the widespread use of helicopters, and the vast 
production runs of certain types, research on helicopter dynamics 
consumes only a tiny percentage of the total aerospace budget. 
It is wise to recognise this situation in presenting a list of 
topics deserving further research.   For example, from a purely 
technical viewpoint, a good case could be made for a method of 
calculating derivatives based on a "free-wake" analysis, 
making the minimum number of assumptions regarding slipstream 
geometry and interference effects.    However, the computer time 
required to use such a program renders it less desirable than a 
simpler alternative uring "assumed wake" representations.    The 
technical areas listed below have been selected because of their 
practical importance, and the recommended approaches to solving 
the problems have been chosen with a realization of the probable 
financial constraints. 

The scope of the items listed below is confined to the area 
of helicopter steep approaches, but some of the recommendations 
are sufficiently general to apply to other phases of helicopter 
operation or even other types of aircraft, such as tilt-rotor 
configurations. 
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ttm ▼ortt»-F<wi *^tt 

The vortex-ring state it important as a limiting condition 
on low-speed descent/deceleration capabilities and as the possible 
cause of accidents, A better understanding of this state is 
required to define it more precisely and to Indicate methods of 
alleviating the unsteady flow. In addition, some unsteadiness is 
known to occur even at shallow angles of descent, and a Knowledge 
of this self-induced turbulence is required to fully define the 
helicopter turbulence envlronmeat» 

Full-scale flight tests are reconnended, plus more refined 
theoretical investigations using more sophisticated analytic 
techniques than those employed In Chapter II. The result would 
be a reliable data base (available data Is very incomplete), plus 
a nonempirlcal explanation of the causes of unsteady flow in 
steep descents. 

Virtually no published experimental data exist on the forces 
and moments experienced by helicopter rotors In vertical and in- 
clined descent« Model-scale experiments are needed on Isolated 
rotors, measuring steady and unsteady loads and the Induced 
velocities at moderate rates of descent. The flow moiel presented 
in Chapter III contains empirical assumptions, but there 
.ieeirx little point in producing a more complicated theory 
without experimental data which are suitable for correlation. 
Such experiments should be Instrumented to measure the tip losses, 
including possible cyclic variations. The nunber of Independent 
variables pnd the desirability of minimizing Interference 
effects virtually dictate that the test« be conducted at taodol 
scale in a large wind tunnel on an Isolated rotor. Tests on a 
complete configuration would be disadvantageous because inter- 
ference effects from other components would complicate the results. 
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As shown in this report, narked differencet exist between 
stability derivatives in level flight and descent, causing 
important changes in the dynamics of the helicopter.    It is there- 
fore misleading to use stability derivatives calculated for level 
flight to analyze descent problems.    Given adequate flow models 
for descending rotors, derivatives can be calculated with ease by 
MOßTÄB or simi ar programs.    The prime question is: how accurate 
are these calciLations?   Since derivatives describe only the 
low-frequency behavior of helicopters in small perturbations 
from a fixed trim condition, accuracy of j_ 20)( should suffice. 
However, it is not known whether even this accuracy is being 
obtained.    Published flight test measurements are few, and 
bj.'tcnatlc correlations of estimated and measured derivatives 
in descending flight are conspicuous by their absence. 

To remedy this situation, a research program involvin.- 
correlation of estimated derivatives with existing flight test 
data should be undertaken.   The scope should be broad, including 
single-rotor, canpound, and tandem configurations in level flight 
and descent.    The results should be used to refine the derivative- 
calculation process, particularly the estimation of interference 
velocities, which at present is «ore of an art than a science. 
Particular attention should be paid to low-speed descending fll£)t 
because the requirements for flight path control en the approach 
are particularly stringent, requiring the most accurate derivatives 
x'or analysis. 

ttiMftr nmrtlmi 
Transfer ftnetions provide an accurate description of 

helicopter dynamics over a limited frequency and amplitude raiu-c. 
The upper irequency limit is set by considerations of blade 
modes other than first flapping. Such modes are essentially 
"nuisance" modes, i.e., they have no value for flight control. 
Thus they can be ignored in flight control system preliminary 
design, but must be included in detail design of system hardware 
to avoid unwanted coupling effects. The  lower frequency limit 
is set by time-variationt> of the nominal operating condition 
around which the perturbations are performed. This limit is less 
restrictive for descent than for level flight, since the available 
deceleration is less, because the helicopter is closer to (D/D 
Thus there is a broad range of frequencies for which transfer max 

runctions are useful. The  following reccramendations apply 
for this frequency range. 
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Transfer functions including lateral-loogltudlnal 
cross-coupling should be used as the basis for Tuture scudies 
of manual and automatic control.    Because of computational 
difficulties, cross-coupling has been ignored in many 
previous studies| however as shown here cross-coupling effects 
are quite large and significantly influence closed-loop behavior. 
Currently the effects of cross-coupling are countered on an 
ad hoc basis by offsetting the A.  . B.    servos.    The cross-coupling 
phenonenon must be more clearly definea to permit a systematic 
stuly of its importance to handling qualities and to determine the 
best method of counteracting it.    The present report usei 
manufacturer's derivatives for the tandem-rotor helicopter, which 
neglect cross-coupling.    Although this appears to be more Justi- 
fiable for the tandem configuration than for single-rotor heli- 
copters, cross-coupling may still be significant.    Flight test 
data should be examined to verify this. 

The si^iificant features of certain transfer ftmctions 
(i.e., the height error to collective mnerator discussed in 
Chapter VII) should be related to the helicopter geometry.    The 
usual way of doing this is through the use of literal approxi- 
mate transfer "unctlflUÄ    (e*6«» approximating dutch roll natural 
frequency as u. -^N '  ).    Similar expressions should be developed 

for the critical right-half plane rero of the height error to 
collective transfer function and other important parameters.    The 
task is complicated because it is necessary to include lateral- 
longitudinal cross-couplingf however, it is essential to be able 
to trace the cause of significant dypamic characteristics to 
lesi.j. the helicopter and its stability au^aenter together for 
good flying qualities. 

Tl—-YMnriM Danwlo« RwrsimtatloM 

The need for a good method of representing the dynamic 
interaction of the control system with modes other than first 
flapping is (generally recognized.    No special emphasis on steep 
descents seems necessary here, since development of a method 
suitable for level flight should meet the requirements for descent. 
Of more special relevance to approach is the question of the 
vnliiity of small-perturbation equations about a time-invariant 
trim condition. 

For steep descents the deceleration capability is smaller 
than in level flight since the helicopter is operating closer to 
(D/D      .    Accordingly, the effect of time variations in the trim 
conditions should be less important.    The net reconnendation is 
that this area is less pressing for steep descents than for level 
flight. 
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flying Qu^lltio 

Most published research on helicopter ; lying qualities has 
concentrated either on hover or on level flight.   Significant 
differences have been shown to exist between open*loop dynamics in 
level flight and descent, and correspondingly large iifferences will 
occur in flying qualities.    This area requires investigation by 
simulation in conjunction with analytic studies of the man-in-the- 
loop.    For example, flight tests indicate that handling qualities 
are significantly degraded in slow, steep descents (see Chapter II)| 
the cause has been identified in Chapters VII end VIII as the "wront 
way"  height control characteristics.    More work involving detailed 
loop closures, backed up by simulation, is required to verify this 
hypothesis. 

To obtain specific results, it was necessary to consider only 
three helicopters, in this report.    These are believed to be represen- 
tative to their general types, but no infomation has been generated 
en the effects of helicopter size per se.     One would like to know 
how descent angle affects the flying qualities of the Heavy Lift 
Helicopter.    It is possible that for very large helicopters, body- 
bending modes may be of sufficiently low frequency tc interact with 
handling qualities.    Derivatives should be calculated and assessments 
made of handling qualities problems in steep descents for such 
vehicles. 
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