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ABSTRACT

Aerodynamics and control characteristics of helicopters
in level flight and steep descents at low speeds are analyzed.
S8ingle-rotor, tandem-rotor, and compound helicopters are
considered and are specifically represented by the 8-58,
AH-56A, and YHC-1A, for each of which derivatives and transfer
functions are presented., New analytic methods are used to
describe the flow about descending rotors. Using these methods,
predictions are made of the boundaries of the vortex-ring state
and of tip loss factors. Good agreement with experiment is
obtained. A new modular stability derivative program, MOSTAB,
is described and is used to calculate derivatives for the S-58
and AH-56A, including lateral-longitudinal cross-coupling
derivatives. 1t is shown that, for these helicopters, control
of flight path by collective pitch becomes difficult for low=-
speed steep descents even with stability augmentation, due to a
nonminimum phase transfer function and the associated wrong-way
step response characteristic. The effect is identified as an
important factor in the observed degradation of flying qualities
in steep approaches,
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CHAPTER I. INTRODUCTION

I.1 THE SCOPE OF THIS REPORT

This introduction is divided into two parts. 1In the first,
we describe the scope of the report and indicate how it advances
the state of the art., The second part of the introduction is a
summary of the specific contents of the report, chapter by chepter.
The reader who does not wish to read the entire report should use
Section 2 of the introduction as a guide to areas of specific
interest.

Approach and landing are generally the most demanding
portions of a flight, for both fixed-wing aircraft and helicopters.
Proximity to the ground demands increased precision in controlling
the flight path, and the pilot'stask may be extremely difficult,
particularly in IFR conditions. Pilot comments on helicopters have
indicated that the difficulties become more pronounced as the desired
approach angle increases (see, e.g., Ref, 1). This suggests that at
least part of the difficulty stems from changes in the dynamics and
aerodynamic characteristics of the helicopter associated with change
in the trim condition from level flight to descent. This is the
area of most interest to the present report. The main purpose of
this report is to identify the effects of descent angle on the
aerodynamics and dynamics of typical helicopters, and to interpret
the significance of these effects for humen and automatic control.

To achieve this goal it was necessary to go back to funda-
mentals. As will be described, it was difficult to obtain reliable
stability derivatives for small perturbations from steep descents,
and these had to be calculated. Such calculations required a better
understanding of the effect of descent angle on the flow about the
rotor in the unperturbed condition. This required some advances
in aerodynemic theory. Thesc included delineation of the boundaries
of the vortex-ring state, plus improved analytic models for the
aerodynamic tip losses of rotors in level flight and descent.

Having obtained improved flow models for the aerodynamics
of rotors in steep descents, it was necessary to calculate stability
derivatives incorporating these models. Stability derivatives are
presented here for three specific helicopters: the Sikorsky S-58,
the Boeing-Vertol YHC-1A, and the Lockheed AH-56A Cheyenne. These
are employed to represent the general classes of single-rotor,
tandem-rotor, and compound helicopters. Inferences are drawn
about the behavior of each class from the dynamics of these individual
configurations.



The variety of configurations and the novel flow represen-
tations made it impossible to use handbook methods of computing
derivatives, or even existing computer progrems. The available
progrems were tied to particular classes of helicopter and/or
certain flow representations. We therefore developed a new computer
program for calculating derivatives. This program, called MOSTAB
(modular stability derivative program), calculates trim and stability
derivatives for any flying vehicle, described as an assemblage of
rigid and flexible rotors, bodies, and fixed lifting surfaces (wings,
tails). The MOSTAB program is an important product of this study.

It was used to calculate trim conditions and stability derivatives for
speeds of 0, 20, L0, 60, and 100 knots for the S-58 and AH-56A in level

flight and descent. For the YHC-1A published derivatives were used.

Having obtained the derivatives,it was noticed that strong
cross-coupling between lateral and longitudinal perturbations
occurred, as evidenced by large magnitudes of derivatives such as
Lg» Mp as compared with L, Mg+ In many previous analytic studies,
these cross-coupling derivatives were not available. Such an
incomplete treatment, with arbitrary decoupling of longitudinal
and lateral perturbations,did not seem appropriate for a fundamental
study, and so all the cross-coupling derivatives were retained;
the transfer functions thus indicated the responses ia six
degrees of freedom to each control input.

To validate the above transfer functions, several sets of
responses to step control inputs calculated using MOSTAB derivatives
were compared with flight test time histories, showing good agreement.

Finally, the implications of the transfer functions for
control of each helicopter were considered. The philosophy was
a sort of "reverse optimization'; instead of attempting to produce
the best system, by modifying the characteristics of the aircraft,
we searched for these characteristics which would cause difficulties
for human and automatic control. Special interest centered on
adverse characteristics which appeared in descent but were absent
from level flight. It was found that some transfer functions did
exhibit significant differences between level flight and descent.
In particular, at low speeds, control of the normal deviation
from the desired flight path by collective pitch becomes more
difficult as the desired descent angle increases. This is demonstrated
by the appearance of a right-half plane zero in the appropriate
transfer functions.



The major advances in the state of the art that are presented
in the report are:

(i) a method of predicting the boundaries of the vortex-
ring state.

(1i) improved models for the tip losses of helicopter
rotors and methods of calculating their effect on
derivatives, including cyclic variations of tip
losses.

(i1i) the MOSTAB program, which calculates trim and
stability derivatives of any helicopter configuration.

(iv) presentation of derivatives and transfer functions
for representative single-rotor, tandem-rotor, and
compound helicopters, including lateral-longitudinal
cross=-coupling effects.

(v) didentification of some significant changes in closed-
loop control characteristics between level flight
and descents.

I.2. SUMMARY OF SPECIFIC CONTENTS OF THIS REPORT

Chapter II presents a brief summary of the kinematics of
steep approaches, demonstrating the equivalence between descent and
deceleration capability. The importance of descent/deceleration
capability to Army missions is explained. A description is also
given of some of the problems that have been observed in steep-
approach flight tests. This chapter contains nothing new; it
merely sets the stage for the detailed technical analyses that
follow, by explaining their relevance to practical problems.

Chapter III presents a theory for predicting the boundaries
of the vortex-ring state. This is believed to be the first published
theory which predicts the major features of these unsteady flow
boundaries. The analysis is very simple, and employs momentum
theory and actuator disc concepts. Despite this simplicity, the
agreement with experiment is good.

Chapter IV uses flow models developed in Chapter III to
calculate the derivatives of an isolated rotor in vertical descent.
For purposes of calculating derivatives, it is customary to represent
the tip losses by reducing the rotor radius from R to an effective
radius BR. Standard formulas exist for B in hover, but in descent
these disagree with experiment, yielding inaccurate derivatives.

It was therefore necessary to produce modified formulas for B; these



are derived in Chapter IV, and are shown to give good agreement with
test data on model rotors in vertical descent. Data were not available
for inclined descent, for which the theory predicts that the tip losses
should vary cyclically. This cyclic tip loss factor was included in
subsequent calculations of derivatives. In addition, some cases were
re-run without tip losses, to illustrate their importance by comparing
transfer functions (given in Chapter VI) with and without tip losses.

Chapter V presents a general description of the MOSTAB modular
stability derivative program. This briefly summarizes MOSTAB, avoiding
technical detail (which is given in Volume II), Chapter V also
presents a discussion of the accuracy of the MOSTAB derivatives. Flight
test data on the S-58 are compared with predictions from MOSTAB. The
results are generally in good agreement.

The derivatives and transfer functions for the YHC-1A, AH-56A
and S-58 at each flight condition are presented in Volumes
11 - 1V, Eigenvectors and residues of partial fraction
expansions of selected transfer functions are given in the main text
of the report, where appropriate. These data characterize the transient
response characteristics of each helicopter for several forward speeds
and descent angles,

The main section of the report continues in Chapter VI with the
discussion of the open-loop and closed-loop dynamics of each class of
helicopter, as revealed by the above data. Chapter VI discusses the
tandem-rotor configuration, exemplified by the YHC-1A. Chapter VII
discusses the dynamics of the S-58, representing single-rotor
configurations. Chapter VIII discusses some control problems of the
compound configuration, typified by the AH-56A. The principal con-
clusions of the report are given in Chapter IX.

Volume II provides an extensive account of the MOSTAB program,
It should be noted that the version of MOSTAB used in this report
(MOSTAB-B) does not include rotor stall or compressibility characteris-
tics, as these were not significant for the approach flight conditions
of interest here, Volume II describes the coordinate systems and the
rationale for finding trim and derivatives, presents the equations used
in MOSTAB and explains the underlying assumptions, describes the rotor
analysis method used to represent the first flapping mode, includes a
listing of the MOSTAB program, and explains computational aspects of
MOSTAB.



Volume III presents derivatives and transfer functions for
the YHC-1A tandem-rotor helicopter at forward speeds of 0, 60, and
80 knots, and several descent rates, It also presents derivatives
for the S-58 at 0, 20, 40, 60, and 100 knots, and four descent rates
(o, 7.5, 15,0, 22,5 fps) at each speed. Transfer functions are also
tabulated for all the level flight and maximum descent rate conditions,

Volume IV presents similar data to Volume III for the AH-56A
and reviews the literature on turbulence representation for low

altitudes.,

Reader's Guide

For a quick overview of the main points of this report, read
all of Chapter II; the first half of Chapter V, which describes the
MOSTAB program; the summaries at the ends of Chapters III, IV, VI,
VII, and VIII: and all of Chapter X,



CHAPTER II. OPERATIONAL ASPECTS OF STEEP APPROACHES
ITa THE IMPORTANCE OF STEEP APPROACH CAPABILITY

In this chapter we review some analytic and experimental
work on helicopter steep approaches in order to pinpoint the
vehicle parameters of prime importance. As will be shown, one of
the most important parameters is maximum obtainable drag/lift
ratio expressed as a function of airspeed. This determines the
helicopter's descent and deceleration capability.

Figure 1 illustrates the balance of forces in a straight~
line descent in still air with acceleration V. (Note that V is negative
for deceleration and that the flight path angle y is also negative
for descent.) The relationship between y, V¥, and the drag/lift
ratio D/L is

-]

D \

tan(-y) = < * g cos(=7) (1)

The second term is merely the ratio of the acceleration
along the flight path to the component of gravitational acceleration
along the flight path. Since ¥ is negative for deceleration,
increased deceleration at a given V and y requires more D/L, which
implies increased D with constant L. In most instances the value
of D/L that can be obtained at a given V is limited; thus descent
angle may be traded off against deceleration, but the sum of descent
angle and deceleration is limited. This limit is fundamental for
helicopter steep approaches. For simplicity, the limit is defined
by considering a constant-speed descent for which the maximum
descent angle is

(=), = tan™! (/1) (2)

Assuming that the landing is made at essentially zero forward
speed, the terminal phase of flight must involve descent and
deceleration. The way in which these are combined can greatly
affect the effectiveness of the mission. This is illustrated

by Figure 2, taken from Reference 2, which compares two alternative
approach profiles. One is a 10-degree straight-line descent with
constant deceleration of 0.088 g. The other approach involves two
straight segments: the first at 14.8 degrees with no deceleration,
followed by a level segment with 0.264 g deceleration. In both
approaches the aircraft is flying at (D/L)max = 0.264 throughout.



Figure 1. Forces Acting on an Aircraft Flying a Straight-Linec
Accelerating Descent.
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Figure 2. Alternative Approach Flight Profiles.



From Figure 2, it will be seen that the total approach
time is reduced from 91 seconds to 61 seconds by the two-segment
approach. Undoubtedly, further savings are possible by means of
more complicated approach profiles. Much work has been done on
the optimization of flight paths within given constraints on maximum
D/L. Interesting though this is, it is somewhat outside the scope
of this report. Our objective is to determine the constraints
limiting (D/L)pax for given helicopters. This forms the main topic
of this and the next chapter,

To show the operational benefits of increased (D/L)pax for
a given approach profile, consider Figure 5, also taken from Reference 2.
(D/L) pax must be at least 0.17 in order to achieve the 10-degree
descent. However, raising (D/L)pax from 0.21 to 0.35 reduces the
descent time from 3 to 1.5 minutes, measured from the 3-mile
point to touchdown.

Further benefits of increased (D/L)psy include enhanced
capability to land in confined areas such as valleys and forest
clearings. In addition, a high (D/L)pax permits steep downwind
approaches. This may be important for forward operations or where
a normel into-the-wind approach may bring the helicopter uncom-
fortably close to the enemy. The effects of head- and tailwinds
are illustrated in Figure L.

Using Figure 4 to construct a simple example: for (D/L) = 0.2,
with 60 knots airspeed and & 20-knot headwind, a descent angle of

17 degrees can be achieved. This reduces to 11.5 degrees in still
air and to 8.5 degrees for a 20-knot tailwind. The implications for

wind shears are profound.
The net conclusion that emerges from this brief review is
that a high (D/L)pax is desirable
(i) to minimize unproductive approach time.

(ii) to permit approaches with adverse wind directions and
to cope with wind shears.

(iii) to permit approaches to confined areas.

II.2  TACTORS LIMITING (D/L)

For most helicopters, (D/L) gy is limited by the flow
conditions about the main rotor(s). This is illustrated in Figure 5,
which shows the permissible regions of horizontal versus vertical
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velocity for & single-rotor helicopter.* The boundaries shown stem
from two causes:

(1) the vortex-ring state
(ii) autorotation

The vortex-ring state is a region of unsteady flow which occurs

on rotors operating at high (D{L) at low speeds. It limits the
maximum achievable steady (D/L « By contrast, the autorotation
boundary is not associated with unsteady flow; it occurs because

the torque on the rotor is zero. Steeper descents would be possible
if a braking torque could be applied to the rotor. Current practice
precludes engine braking, as it is usual to include a freewheel

or override device to prevent stoppage of the rotor following

engine failure.

Autorotation is not widely used in IFR situations because
the rates of descent are usually excessive, particularly for the
higher disc loading helicopters. The principal operational limitation
on (D/L)pax therefore is due to the vortex-ring state. This is
discussed at length in Chapter III.

I1.3 OTHER FACTORS LIMITING STEEPNESS OF HELICOPTER APPROACHES

The foregoing discussion has emphasized the importance of
(D/L)max' However, this is by no means the only factor limiting
the achieveble steepness of helicopter approaches. Let us define
the term "nominal flight profile' as a combination of airspeeds,
descent angles, and decelerations which is within the limits
permitted by (D/L)pex- In practice, a nominal flight profile
mey be unflyable. The reasons for this include gust response,
displays, handling qualities, loss of ground reference, etc.
In particular, indications exist that handling qualities deteriorate
with increased steepness of the nominel flight path. For example,
Reference l,describing tests on a CH=-34C helicopter, notes that,
when following a 3>=degree nominal flight path, the rate of descent
veried from 100 to 700 ft/min. At y = =35 degrees it varied
from 400 to 3000 ft/min, which was regarded as unacceptable. In
addition to the records of longitudinal and lateral deviations
presented in Reference 1, pilot comments also confirmed the deteri-
oration in handling qualities with increased -y. A similar trend
is noted in flight tests on a HUP-1 tandem-rotor helicopter described
in Reference: 3 and 4.

In Figure 5 the horizontal and vertical velqgcities have been
normalized through division by v, = (1/2p)1/2 x (Disc Loading)1/2.

Figure 5 is illustrative only and should not be scaled. More
precise boundaries are given in Chapter III.
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To form a complete assessment of the problems involved
in flying steep approaches,it is necessary to consider both the
limitations on nominal flight profiles and also the limitations
associated with small perturbations from nominal flight profiles.
Hence, in Chepter III we analyze the limits on (D/L)pmgx. The
results are used to determine nominal flight profiles for the
YHC-1A, S-58, and AH-56A, and subsequent chapters study the
behavior of these helicopters in small perturbations from these
nominal flight profiles.,

Summary
In this chepter we have tried to "set the stage' for the
detailed analyses that follow by demonstrating that:

(1) High (D/L)pex is required to minimize unproductive
mission time, to permit steep descents into confined
areas, and to allow epproaches from any direction,
irrespective of the wind vector.

(ii) At approach speeis, (D/L)pax is limited by autorotation

and by the vortex-ring state. The latter limit is
more serious since it occurs at smaller rates of
descent.

(iii) Within the bounds set by (D/L)pax,the helicopter's
steep descent capability may be limited by some

handling qualities factors, which appear to deteriorate

with increased steepness of the approach.

13



CHAPTER III. THE VORTEX-RING STATE

III.1 INTRODUCTION

In performing steep descents at low speeds, helicopters
encounter an unsteady flow condition known as the ''vortexering state".
This state is characterized by severe thrust fluctuations and difficulty of
control. This chapter presents a simple method of predicting the
combination of rate of descent and angle of descent at which the
vortex-ring state occurs. Momentum theory and actuator disc concepts
are employed; despite the simplicity of this approach, the results are
in good agreement with experiment.

The chapter is organized as follows: Section 2 presents an
analytical method of calculating the vortex-ring state boundary for
vertical descent using simple momentum theory modified to include
certain viscous effects. Section 3 extends the methad to the case
of nonvertical descent. In Section 4 the experimental data and
published analyses are reviewed and compared with the theory of this
report, Section 5 gives conclusions and recommendations for further
work.

III.2 FLOW MODEL AND EQUATTIONS FOR VERTICAL DESCENT

The analysis considers both vertical and inclined descent, but
the theory is most easily understood by considering the vertical descent
case first.

Consider an actuator disc in a uniform stream of air
rising with velocity V. This, of course, corresponds to a vertical
descent at velocity V on an actual helicopter. The flow model used is
illustrated in Figure 6. It consists of a slipstream with uniform flow
at any cross-section, surrounded by a tube of vorticity. This tube is
modeled by a series 6f vortex cores. Thus, near the rotor outside the
tube the stream velocity is V upward, and inside the tube the velocity
is (v = V) downward, where vis the induced velocity at the actuator
disc. The rate of descent of the centers of the vortex cores is the
mean of these velocities, i.e., (% - V)downward.

The key assumption of the analysis is that the vortex-ring
state will occur when the relative velocity of the vortex cores normal
to the disc falls to zero. That is, when the rate of descent is
increased to the point where vortex cores no longer move away from the
actuator disc, unsteady flow occurs. The critical rate of descent
Vcrit at which this occurs is given by

- Y
Vcrit -2 (3)

1L
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From simple momentum theory (e.g., Reference 5 ks

20 +\/(%) — ()

where
V, = JThrust/2an2
QA Air Density
R A Rotor Radius

Combining (3) and (4) yields the following formule for the rate of
vertical descent at which the vortex-ring state commences.

Yh

Vcrit = V;_ = 0.707 Yh (5)

This formula, although derived by the simplest possible methods, agrees
well with experiments, as will be shown,

An alternative formulation of EQ. (5) can be obtained by
putting J c V/nD, Crm < T/on‘?Dh, which gives

crit Tp
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A further alternative is obtained by using C, S T/pnneRh and A Q‘V/QR,

giving the critical rate of vertical descent as

1 /
Merit = EJCT )

Tip loss Effects

It is necessary to refine the theory slightly to allow for
nonuniform flow when considering high disc loading rotors and/or
inclined descents. This is done by introducing a tip loss factor B.
Blade elements outside of radius BR are assumed to produce no thrust.
Thus, nsar the rotor, instead of a uniform induced velocity v over an
area nRS we assume & uniform induced velocity v over an ares TR2B%,
This leads to a slight increase in V 1 for vertical descents, but the
effect is small for typical helicopt&F§isc losdings. The tip loss
effect for vertical descents is easily obtained as a special case of
the more general formulation of the theory for inclined descents,
derived below.

III.3 GENERAL THEORY FOR INCLINED DESCENT

Figure 7 shows the assumed flow model for inclined descent
along a flight path inclined at an angle a to the horizontal (for
vertical descent a = 90 degrees). The velocity of the vortex cores
normal to the actuator disc is assumed to be the mean of the normal
velocities inside and outside the slipstream, i.e., (v/2) - V sina.
Marked unsteadiness is predicted to occur when the rate of descent
becomes sufficiently high to cause the velocity to fall to zero. This
condition gives the following general formula:

= Y
Vcrit - 2 sina (6)

To express Eq. (8) in a more convenient form,it is necessary
to rewrite it in terms of horizontal velocity (V cosa), rate of descent
(Vsina), and the tip loss factor B. This is done below by manipulating
some equations of momentum theory.

17
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From momentum theory (e.g., Reference 5) the thrust of an
actuator disc descending at an angle a to the horizontal can be
expressed as

T = 2p:rR282v|Vr| (9)

where Vr2 = v2 - XNv sina + V2 (10)

Eqs. (9) and (10) differ from familiar equations of
momentum theory only in that the rotor radius R has been replaced by
an effective radius BR. Substituting Eq. (10) in Eq. (9), squaring,
and using the definition of v, from Eq. (4) gives

h
(2:1pR2 vhg)‘2 = (2rrpR2 v)2 Bh (v2 - 2 v sina + V2) (11)
Expanding,
vhh = Bhvl‘L - 2BV (sina) B5 v5 + BZVZBQV2 (12)
In
(Vh)___1_ 2B Vsina | BV (13)
Bv By B2 v2
L
(ﬂ) - ] (14)
Yh 2
1 . =2.BVsina  (BV
Bv Bv

This is similar in form to the standard quartic equation of momentum
theory usually derived for B = 1; i.e., quoting from Reference 5,

v ¥ 1
<) - (15)
( "h) , . 2Vsina (z)2
v v

Eq. (1%) is conveniently graphed with v/vn as ordinate and Vsina/vh
as abscissa, for a fixed o forming a nondimensional graph of induced

19



velocity versus rate of descent for given angle of descent. (Similar
graphs are given in References 6 and 7 for B=1.) The graphs can be
formed from Eq.(14) for a fixed B using Bv/v, as ordinate and

B Vsina/v as abscissa. Figure 8 illustrates = these graphs for
several values of a, from 5 to 90 degrees.

To establish the boundary of the vortex-ring state, for
a given B and o, simply include in Figure 8 the critical condition of
Eq. (8). Expressed in terms of the variables of Figure 8, Eq. (8)
becomes

Bv _ _2B Vsina (16)
v, v
h h

This describes a straight line of slope 2, as shown on Figure 8. The
intersection of this line with the remaining graphs denotes the

critical value of rate of descent for a given B and a. It is convenient
to plot the results in terms of nondimensional horizontal velocity,
Vecosa/v,, and nondimensional rate of descent, Vsina/w,, for a given B as
shown oR’Figures 9, 10, and 11. 1In these figures, Eq. (16) corresponds to
the line marked " zero parasite drag' for which case a = - 7, as
explained below.

Effect of Parasite Drag

The parasite drag of the rotor and of other components has
not been included up to this point. This drag causes the boundary of
the vortex-ring state to occur at a steeper angle of descent for a
given airspeed. The effects of parasite drag can be included in the
analysis as indicated below.

Figure 12 shows the forces acting on a helicopter in a
steady descent; the aerodynamic forces are assumed to consist only of
dreg acting parallel to the flight path and rotor thrust normal to
the actuator disc.

From Figure 12, resolving parallel and normal to the flight
path, noting that y is negative for descent,

T sina +D +Wsin y = 0 (17)

T cosa - Wcos ¥y =0 (18)

20
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These equations yield the required relation between y and o as:
ta.na.=:gm-ta.n7 (19)

The drag/weight ratio is conveniently expressed in terms of a 'drag
area' Af defined as

1 2

Thus, using the definition of vy, (v s T/Qanz), and assuming thrust
at hover equal to weight, Eq. (19) b&comes

A 2
f \'i 1
tan a = - - tan y (21)

,_mRz ( vh) cos ¥

To modify Figures 9, 10, and 11 to show tge effect of profile
drag we require the relationship between y and Af/hnR for a given V

and a. This is gbtained by manipulating Eq. (21) to give 7 in temms of
a, V, and Af/hnR , a8 follows. Multiply (21) by cosy and cosa:

Af v 2
sin a cos ¥y = - 5 (v ) cos a - sin y cos a  (22)
4nR h
A 2
sin (a + ) = - f2( z) cos a (23)
LR h
A 2
y =-a- 8in” g (X) cos a (2h)
LnR h
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Eq. (24) has been used to show the effect of parasite drag in
Figures 9, 10, and 11. For a fixed value of the drag parameter

Af/hnR2 = 0.05, the flight path angleat any V changes from a to ¥

as determined from Eq. (22), For zero parasite drag, a = - 7.
Note that the inclusion of parasite drag yields the characteristic
shape of the vortex-ring boundary, first rising and then falling,

as horizontal speed is increased.

The drag parameter Af/hnR2 was deliberately chosen to be

rather high, so that most helicopters display vortex-ring boundaries
falling between the ' zero drag' and "with drag'" curves of Figures

9, 10, and 11. To appreciate the physical significance of the parameter
Af/hnRe, note that a value of 0,05 corresponds to a parasite drag area

of 20 percent of the disc area. This is much larger than would be
expected in level flight for most helicopters. However, in descent,
the fuselage may be operating at a large angle of attack, causing a
corresponding increase in drag area. When comparing Figures 9, 10
and 11 with exr rimental results on wind tunnel models, note that the
parasite drag of the fuselage, tail, and other components will be
disproportionately large at low Reynolds numbers.

To predict vortex-ring boundaries of specific configurations
using Figures 9, 10 and 11 requires the value of the tip loss factor, B.
Well-known formulas exist for B in hover}s e.g., Payne (Reference 8)
quotes a formula due to Sissingh,

2c (25)

1
B=1a 5

T

Payne notes that Sissingh's formula is in reasonable agreement with
tests on untwisted, untapered blades but yields values of B which are
too small for uniformly loaded blades. For the latter, Payne suggests
an alternative formula, which at hover reduces to

B=1-%\/-ET— (26)
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For high-disc-loading VTOL rotors, both the above formulas
appear to give values of B which are too small. An alternative semi-
empiricel expression is derived in Chapter IV for rotors of ideal
twist and is given below. This is more complicated than Egs. (2)) or

but gives good accuracy for vertical descent as well as hover.

B =1 -% J%@ (et +V/BQR) (1)

This gives a cubic equation for B, for a given rotor geometry, pitch
setting, and rate of descent. Empirically it is suggested that Eq. (<7)
can be used for inclined as well as vertical descent, replacing V by
Vsina.

III.4 COMPARISON WITH EXPERIMENT

Although investigations of the behavior of rotors in the
vortex-ring state have been made since the 1920's, only the more recent
references contain deta useful for comparison with the theory of this
report. Most of the earlier references (e.g., Reference 9) are confined
to measurement and empirical prediction of the mean thrust and through-
flow velocity. Referencel0 summarizes various presentations of parameters
such as 1/f and 1/F. These parameters are derived from measurements of
aversaged quantities, so these data are unsuitable for determining the
velocity and angle of descent at which noticeable unsteadiness occurs.
References 11, 12, 13, 14, and 15 do not include any unsteady force
measurements, but they do present some flow visualizations, which quali-
tatively indicate a "region of roughness.' These data are discussed
later, For purposes of comparison with theory, it is unfortunate that the
available test data are for blades with non-ideal twist; e.g., References
11, 12, 1%, 14, and 1° employ an untwisted rotor. The resulting induced
velocity distribution is at variance with the uniform distribution
assumed in the present theory. However, even full-scale helicopters
do not have ideal twist, so this compromise must be accepted in
order to compare theory and experiment.

Vertical Descent

Azuma (Reference 16 ) presents data on thrust and inflow
fluctuations for a 3-bladed rotor, with a diameter of 1100 mm, a solidity
of 0.0573, an NACA 0012 section and -8° twist from root to tivo, free to
flap and lag. The rate-of=descent parameter was expressed as Vﬂh/v @,
because the nominal rotational speed of 1,000 rpm was not maintalneg
precisely.
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Lacking date on V/QR, we cannot make allowance for the tip
loss factor, However, Ea. (5), Vcrit = 0,707 LX) gives good agreement

with the observed onset of significant unsteady thrust and inflow,

This is demonstrated in Figure 13. Eq. (5) corresponds to r.m,s.
thrust fluctuations AT/T ranging from 4% to 14% depending on the blede
pitch setting. (The thrust fluctuation, AT, is defined as T - T,

where T is the mean thrust; thus the r.m.s. peak to peak fluctuation

is 8 to 28 of the mean thrust.) Note that the graph marked 6_ = 8
degrees corresponds to zero blede angle at the tip. As predictgd by
Eq. (3)and Figures 9, 10, and 11, the critical rate of descent normali-
zed with respect to v, and Q. increases as the tip blade angle is
increased (by increasing 6 ). The experimental data of Reference 16
indicate that the mean thrust in descent variesy for 6_ = 10 degrees at
V=07TWV Q/Qh, the mean thrust falls to 80% of the hoGering thrust.

To conver% the data to the constant mean thrust assumed by the theory
(and appropriate to steady descents), the value of V__., must be
increased above that observed experimentally. Withoﬁ%laata on C.,

this cannot be done precisely, but the trend will certainly be t0 move
the peaks of the thrust fluctuation curves to the right, thus increas-
ing agreement with the predicted boundary for the onset of unsteady

flow,

Washizu (Reference 7) describes tests on a similar rotor
in vertical and inclined descent., Figure 14 shows envelopes of C
versus the rate of descent parameter A, for vertical descent. Fo
two of the tests, the blade pitch setting is very low and the tips are
actually lifting downward in hover. This invalidates comparisons with
our theory, which assumes uniform inflow except at the tips,
corresponding to the rather high pitch setting appropriate to maximum
static thrust/power. For this reason, the data taken at 6,75 = 4.5
degrees are also unsuitable for comparison, However, using Eq. (7)

and B = 0.95, the case with etip = 8,0 degrees gives Xcrit = 0.033.

This corresponds to a mean~to=peak thrust fluctuation of 12% of the
mean thrust,

Inclined Descent

Washizu et al presents experimental data on thrust and
induced velocity fluctuations in the vortex-ring state for single-
rotor configurations (Reference 7) and tandem confipurations (Reference
17). Contours of percentage thrust fluctuation are shown on the hori-
zontal velocity/rate-ofhdescent planes however, the data points are not
indicated. Hence results for low pitch angles cannot be removed to
enable the remaining data to be compared with the theory. Washizu
et al gives more complete data on induced velocity fluctuations,
averaged over the disc based on measurements of thrust and torque
fluctuations, and these can be compared with theory. Figures 19 and 16
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illustrate the data of Reference 7 for rotor with 6 o = T.5 degrees

and o« = 50 and 70 degrees. Note that the lower boundary of the induced
velocity is close to the momentum theory solutions and that the onset
of marked unsteadiness corresponds to the critical condition predicted
by Figure 8. This critical condition corresponds to the shaded lines
on Figures 15 and 16.

Yaggy and Mort (Reference 18) describe tests on a
flapping propeller with the shaft axis inclined at 180, 165, 150, 135,
and 120 degrees to the freestream. This corresponds to descent angles
of 90, 75, 60, 45, and 30 degrees.” Contours of the thrust fluctua-
tion AT (measured from the mean thrust to the peak) diVéded by the mean
thrust T are shown for various mean disc loadings T/nR in Figure 7
of Reference 18. Figure 17 illustrates the results for T/nR2 =16
lb/ftg. The vortex-ring boundary has al7o been calculated assuming
B = 0.86 and a mean Vo Yy 2 (T/2pnR2) ! The boundary corresponds

to a AT/T of between 156 and 25%. A more accurate boundary can be
calculated if v is based on the lower value of thrust T - AT. This is
in accord with Figures 15 and 16, which indicate that the minimum
induced velocity during the vortex-ring state is approximately equal
to the velocity predicted by momentum theory. To follow this sugges-
tion, substitute the critical condition v = 2Vsina in Egs. (9) and
(10). This gives

T« AT = hmzaz(v sin a)2 /sin a (28)

The critical rate of descent can be calculated itera-
tively by first putting AT = 0. This gives the solid-line boundary
on Figure 17, Since in this case we have knowledge of AT/T, we can
refine the soluti?n by reducing the critical rate of descent in the
ratio (1 - AT/T)! The resulting boundary is also shown on
Figure 17 as a broken line, Without prior knowledge of AT/T (or an
estimate), it would be possible to calculate only the solid=line
boundary.

Flight Tests

Published data on flight characteristics of halicopters
in steep descents are insufficiently complete to permit mapping the
boundaries of the vortex-ring region. However, some related data
points can be obtained as listed below.

The descent angles of 75, 60, 45, and 30 degrees are necessarily
approximate, because Ref, 18 does not give the inclination of the
thrust from the shaft axis.
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Reference 19 nutes that for a Westland Whirlwind helicopter,
the vortex=ring state vas wll established at 1500 ft/min verticsl
descent, corresponding to V/v_ = 0.8k, Tests on an early helicopter,
the Sikorsky M-kD, described In Reference ZQ showed onset of roughness
in verticel descent at 500 f.p.a. and "shuddering” commencing at
900 f.p.m, corresponding to o.mvh. In the discussion of Reference <),

Bennett states that fur the ReAB, the critical rete of descent decresscs
as forwvard speed is increased, alwost reaching level flight at GO m,p.h,

The above results are in accord vith the theory, but it
nust be remembered that factors other than the behavior of the rotar
itself in the vortex=ring state may influence helicopter flying qualities
in desocents. The unsteady flov may induce large pitching moments on the
fuselage. Neference 22 discusses this phenomenon, noting that the size
and cross-section of the fuselage tail cone have an ixportant effect.
For example, the R-4B had particularly bad charscteristics in tho vortex-
ring state because of its thick slab=sided rear fuselage, Quite apart
from considerations of unsteady flow, changes in derivatives may affect
flying qualitiss. Reference 19 notes that the magnitude of the plunge
danping derivative, Z , decreases markedly between hover and the vortex-
ring state. This is confirmed by the data of Reference 18. 1If
zw becomeg, sufficiently small, the helicopter's flying qualities will

egraded .

4 "
‘OAD Ll~l, .A:‘I‘I. l. .

faand

After entering the vortex=-ring state, if the rate of descent
is increased, eventually steady flow is re-established. The horizontal
speed and rate of descent at which this occurs define the lower boundary
of the vortex-ring state. The practical importance of the vortex-ring
state depends, in part, on the distance between the lower and upper
boundaries on the V cos 7, V sin y hodograph plane. If large areas of
the plane are assoclated with unsteady flow, the operetional utility

of the helicopter will be correspondingly reduced.

A critical condition for the lower boundary willnow be
derived. As before, we postulate that the unsteady flow is associated
with a breakdown in the protective sheath of vorticlty surrounding the
slipstream. However, for the lower boundary the 'pileup' of vorticity
occurs some distance above the rotor, as shown in the flow model of
Figure 18.

* See Ref. 34 for an explanation of the influence of Z on handling
aualities., v
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Using momentum theory and the flow model of Pigure V6, the
oritical condition is derived as follows. Inside the slipstream the
induced velooity is kv, where the value of k varies from 1.0 at the
rotor dise to 2.0 at infinity. The rate of ascent of the vortices 1is
Veina~(kW2), In determining the uppsr boundary, conditions at the
disc are relevant, and 80 ¢ value of k = 1.0 vas used, giving the
oritical condition as Bq. (3), or more generally, Bq. (16). Por the
lower boundary the choloe of k is not o clear-cut. At iafinity k = 2,
but this valus is inappropriate because an acoumulation of vortiocity
at infinity would not cause unsteady flow to be reflected back to the
ro:or. mrzmwmoruuwom%oioug tively,
1.8 <k <1,0 is ted. Cross- lines of rlope on
Nmnt‘vltbk-t.!lnndk-l.sbctnlolanrbo\m.ryuwtam

on Figure 19.

It is interesting to note that the '"region of roughness’
reported by Drees in Reference '1on the dbasis of flov visualisation
agrees approximately with the predicted boundaries at low speeds.

The lower boundary is not as sharply defined as the upper
boundary, in that the development of unsteady flow is less sudden
(see,0.g., Figure 13). One would expect this, because the accumulation
of vorticity and consequent breakdown of the slipstream are occurring
farther awvay from the rotor. One would also expect momentum theory to
become less accurate for predicting the lower boundery at higher forward
speed, because distortion of the slipstream, rolling up of vortices,
und other viscous phenomena not included in the theory become more
important as the critical region moves away from the rotor with increase
of k.

Zendem Rotors

Reference 17 describes experiments on tandem rotors in
vertical and inclined descent. Data on fluctuating inflow (similar
to Figures 15 and 16) are presented, normalized with respect to

Ja 2 JaY

, and Vhe vhere v, ‘= T/2pnR", vhe = T/2ose,
where T = thrust per rotor, and S_ is one~half the projected area of
the tandem rotors. The overlap between the rotors is small, so for
the configuration of Reference 17, Se should be defined in this

way for momentum theory calculations; Reference 6, p. 312, suggests a
larger area. This is the area formed by two semicircles of radius
equal to the rotor radius, with centers spaced a distance equal to the
hub separation of the actual configuration, plus the area enclosed by
straight lines joining the semicircles.

alternative parameters v
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The experimental data of Reference 17 indicate thltvuvon
induced flow fluctuations occur at a siightly lower value of —
h

than that for the single-rotor configuretion. However, the pericdicity
noted in Reference 7 is hardly observadble. Because of the mutual
induotion effect of tandem rotors, it is expected that the theory
proposed here vill require modification for such configurations.
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N3 SUNARY MD McOMENMATIONS
Summary

1. The boundaries of the vortei-ring state ocar be pre-
dicted by mcmentum theory as descridbed in this chapter. The predicted
upper boundary corresponds to measured mean-to-peak thrust fluctuations
of approximately 1% of the mean thrust.

2. In vertical desoent, the uppsr doundary is approximately
0.707 times the mean induced velocity at hover. For inclined descents
the upper boundary is very sensitive to paresite dreg, and for helioopters
vith large paresite dreg, the vortex-ring state may vanish for desoent
angles shallower than 20 degrees.

1. Improved helicopter steep descent capability
requires a more complete understanding of the vortex-ring
state. The "upper” (k = 1) boundary is of principal interest for
helicopters ; but for ST0L aircraft with reverse-pitch propellers descent
angle is limited by the "lower" (k = 1.5) boundary, as shown in Pigure
20. Further knowledge of the vortex-ring state is thus of importance
in obtaining steep, slov flight of propeller-driven STOL aircraft as well
as helicopters.

2. The present theory is limited by the assumptions of
momentum theory, e.g., the rather arbitrary Glauert-Kussner hypothesis
regarding the ""area of capture" and the assumption of uniform induced
velocity across the disc. Oreater accuracy could be obtained by using
more refined theories. A further area for exploration by such theories
is the nature of the flow within the vortex-ring state. For example, it
appears that the accumulation of vorticity either at or above the disc
increases the induced velocity at the disc, thus removing the accumulated
vorticity and returning the flow to that predicted by momentum theory.
In turn, this causes the vorticity to re-accumulate, causing a cyclic
oscillation characteristic of the vortex-ring state. Mathematical
formulation of this physical model probably lies beyond the grasp of
momentum theory.

3. Although the upper boundary is fairly sharply defined,
slight unsteadiness does occur at smaller rates of descent, and even

L1
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at hover sccording to the data of Meference #3. A more sophisticated
theory is required to analyse this phenomencn.

&. More experimental data on tha vortex-ring state are
required. The present analysis could serve as a guide to the test
conditions of primary interest.

5 The implications of the vortex-ring state on handling
qualities and opsrational maneuvers require investigation. Suitadle
sutomatic control of collective pitch may smooth the thrust fluctustions
sufficiently to permit comfortable, controlled flight at all desoent

speeds and angles.
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CHAPTIR IV, THRUST OF AN ISOLATED DCSCENDING ROTOR

., IROSRAKITYN HE RRATT

Standard methods for calculating heliocopter stadbility
derivatives are based on momentum and blade-element theories (e.g.,
References 24, 29). As will be shown, these procedures do not
give good agreement with experimental data on rotors in descending
flight. This chapter therefore presents an analysis of rotors in
vertical desosnt using conventional momentum and dlade-¢lement
assumptions, plus some additional refineaents. These include:

(1) sonuniform downwash associated with rotor tip
vortioes

(14) the loss of lifting effectiveness of the tips
dus to three=dimensional flow (i.e., "spillage”)

With these factors included, the theory agrees wll with experiment.

The basic flow model is shown in Figure 6. The tip
vortices are modeled by vortex cores with boundary conditions
matched inside and outside the slipstream. This, of course, is a
highly simplified model of the actual flow, neglecting swirl, non-
uniform downwash due to non=ideal blade twist, unsteady effects, etc,
However, this model gives results which are sufficiently accurate
for stability and control calculations, predicting derivatives to
within + 20f accuracy.

The chapter is organized as follows. In Section 2, mass
flow, momentum, and energy relationships are derived for the assumed
flow model, with the ratio of the parallel sides of the trapezoidal
distribution left variable. These basic relationships relate
conditions at the rotor disc to those in the ultimate wake. Because
of the nonuniform flow at the outer edge of the slipstream, the rela-
tionships are more complicated than for the standard model where
the flow is assumed to be uniform across the slipstream. Section 3
expresses rotor thrust in terms of blade-element angles of attack,
taking into consideration the trapezoidel induced velocity profile.
In Section U4 the vortex core model boundary conditions are established

in order to fix the geometry of the trapezoidal distribution both at
the disc and in the ultimate wake.



Section 9 discusaes the loss of 1lifting effectiveness of
blade elements near the tips dus to three-dimensional flow. This

is usually acoounted for by a '"tip loss r", 1.0., defining an
effective rotor redius BR where R = | « o This factor gives
reascnadble accureacy at hover,but it is nt how B should de

modified for nonhovering oonditions. Section 5 therefore presents
an altemative derivation of B based on oconsiderations of the loading
at the rotor tips reather than the average loading per dlade. This
permits B to be caloculated in a logical fashion for nonhovering
oonditions. 1t does, however, lead to s cyclic variation of B

vhich causes some additional ocmplication in caloulating derivatives,
The procedure adopted for incorporating a cyclic B in the rotor
blade time history calculations is too detailed for discussion

in the main text of the report and is therefore discussed in
Appendix II, in conjunction with the description of the subroutine
SWEEP vhich integrates the blsde-element loads redially and with
respect to time,

Section 6 shows how the tip loss factor B can be combined
with the preceding analysis to compute thrust versus rate of
desoent for a given rotor. Section 7 compares theoretical
predictions with vind-tunnel data on a desosnding rotor. Because
no satisfactory data were availadble for inclined desoent, it was
not possidble to validate the assumed cyclic component of tip
losses, but good agreement is odtained with data for vertical
desoent for which only amncyclic tip losses are predicted.
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I1V.2. BASIC RELATIONSHIPS FOR MASS FLOW, MOMENTUM, AND POWER

Axial Velocity Distribution

A trapezoidal velocity distribution such as that shown in
Figure 6 can be described as follows:

v~V 0<x £ 1=%
v(x) = {1 (1 = x)-v 1-3 sx <1 (29)
8
This distribution can be nondimensionalized by dividing
through by QR. The result is
A=A 0<x s 1=% (
30)
a(x) = {L -8 <x <1
5 (1=%)-A

The above equations apply near the rotor disc. Similar expressions

hold in the wake, except that o _is used in lieu of a. Of course,

)‘w and & must be used in the c,z expression corresponding to Eq. (30). 1In
general,x # A and & # 8, but' A is the same everywhere and requires

no speciaY su.bscript.w

Mass Flow

The mass flow through the rotor disc can be obtained by
integrating the trapezoidal velocity distribution over the entire
disc. The result is

R
no= fzrrs P wig) ds (31)
(o]
1
m = PMROR [af xo.(x)dx] (32)
(o]

1

- 2[ xo.(x)dx (33)

=
u

L6



In the distant wake, Eq. (32) is applicable with Rw2
substituted for R2 in the area factor (note: the R in the QR
factor remains nonsubscripted because this term was used to trans-

form v_and V to their nondimensional forms ) and A Ve

1
m = pnR “OR [%/ xa (x)dx] (34)

w b5 w

Dividing (34) by (32) and rearranging,

. 7
R ./L‘ xa(x)dx

s _W _ (35)

? Vl j: xor.w(x)dx

€

Momentum Conslderaticns

The momentum flux of the air that is eventually encountered
by the rotor while it moves in the distant atmosphere is

° (36)

where positive F is downward.

In the distant wake, the momentum flux is calculated by
integrating the trapezoidal distribution:

Rw 2 s
F, - f 2rrspvw(—R-) ds (37)
o) w
Nondimensionalizing the integral,
i 1
2 2 2
F, = PMR (9R) -2.4' xa. (x)dx] , (38)
or " 1
Fw = 11‘R2;3(§2R)2€‘2 2/ xo,wz(x)dx] (39) .
"0

b7



Clearly, the change in momentum flux must equal the rotor thrust.

1
T= +mv+ 1'!R2p(QR)2t»:2 [’2 xa.we(x)dx] (40)

Nondimensionalizing with the help of Eq. (33),

1
Cp =M 4+ eE[Efxawz(x)dx] (41)

(o]

An alternative form to (41) is

1
CT = 2fx[Aa(x) + eao,wa(x)]dx (42)
o

Energy (Power) Considerations

The energy flux (power) in the air before it reaches the
rotor (i.e., when this air is in the distant atmosphere) is given

by

2
P, = 1/2 mv (43)

The power added to the air by the rotor is

Pp = va(x)dT =f1v(x)(
‘ o

o

)dx (k)

B8

Eq. (44) cen be verified from either force and
momentum considerations or blade element considerations.



The assumed blade element has span ds and produces lift dL.
The shaft torque produced by this element is

dQ = sdL sinai

For small o

i

VSXZ

Then the torque is

S v(x)aL  _ wv(x)dL
Qs Q

aQ

Multiplying through by @ and integrating,

R 1
dL
PR =[ v(x)dt =j;v(x) ix dx

Eq. (44) can be easily nondimensionalized. Putting

up>

QQ

L=T,

1 dC
2 3 T
Pp = TR p(QR) [ a(x)( T )dx (45)

The power in the distant wake is assumed to be completely embodied
in kinetic energy flux; i.e., the ambient pressure in the distant
wake has returned to atmospheric pressure.

In the distant wake, currents flow in radial, tangential,
and axial directions. The power could be broken into three corre-
sponding portions denoted by the subscripts r,t, and a.

INET RS R Sp (L6)

The radial flows occur because of vortices (and vortex
cores) in the wake. Tangential flows occur due to '"swirl", which
is caused by momentum imported to the slipstream by rotor shaft
torque. The axial power is associated with the assumed trapezoidal
velocity distribution.

Assume for the present that Pr + P K Pa' The axial power
comes from integration of the trapezoidal digtribution:
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R,
P =f (1/2) pems vj(—%—) ds (47)

¥ o

In the usual menner, the right-hand side of (47) is non-
dimensionalized.

1 -

P = (1/2)p11Rw2(QR)5 [2f xa,WB(x)dx
(o

o

or 1

1
P = 1/2 11R2p(sm)5e2 [9_[ xaw3(x)dx (48)

-l

The following balance of power must exist:

P = P_ + P (49)
Substituting (43), (45) and (48) into (L49),

1 dC
(1/2)11’R2p(QR)5t-:2 [2/ xonj(x)dx] = TR p(QR ?/a.(x (——)dx +(1/2) Ve , or

)

1
62./ xa.w5(x)dx =f

(o) o

1 1

a,(x)( dCT) dx + Af/. x a(x)dx

(o]

This equation can be refined further after the blade
element analysis, which follows , rovides an expression for
dCT/ds Looking ahead to Eq. (5

T = —-— X[e (X)]
Hence,
1

1 1
62_/ xo.w5(x)dx = c%-.ol x[et - a(x)])a(x)dx + Az[ xa(x)dx

(o)



N

Up to this point, we have discussed only the mass flow,

momentum, and energy in the slipstream, using the assumed trapezoi-
dal distribution of induced velocity. Eags. (33), (34%), (39), (42)
and (50) swmmarize the principal results.

The next section develops
the blade-element expressions for the rotor.

51



Iv.3. BIADE-ELEMENT CONSIDERATIONS

If x<1-5, the axial velocity is constant and equal to
v=V. In this region the thrust per blade is

ar, = 1/2 p(Qs)2a0[8 - -(ﬂL] ds 0 <s <R(1-8) (51)

Qs

Assume the twist distribution*

R
= T % (52)

Then

6, R
2 t (v - v)]
aT, 1/2 p(08) ac[ T ds

1/2 p(Qs)ac[QRet +V - v] ds (©3)

Comparing this expression to the Kutta-Joukowski expression with
T2 L, one sees that

az,

35 - AT (54)

I' is constant for 0 <x <1-% and is given by the expression

r = 1/2 ac [QR et+V-v] Osx =<1-5 (55)

Since '~ 0 at the tip, the T' strength given by (55) must
shed as training vortices over the region 1-5<x<1.

*This distribution is usually called '"ideal twist'", since it causes
uniform inflow (v constant over the disc), and constant circulation
along the blade bound vortex system, i.e., in Eq. 55 T is constant
for ideal twist.
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From this system, it seems reasonable to assume that the T
strength fed to the vortex core is given by (55). Nondimensionalizing
(27), assuming constant chord c,

e % MR3Q [et + A - x] (56)

Continuing with the blade-element theory, from Eq. (53)
dT, = 1/2 p(0s) ac [QRG,G - v(x)] ds (57)

where v(x) has been substituted for v-V in Eq. (53). Note that
Eq. (57) holds over the entire blade, unlike Eq. (5%).

d']:b = 1/2 pQsac [QRGt - v(x)] ds

1/2 p(QR)aRac x[et - a(x)]dx

o 2 (L)
1/2 p(OR) “MR a = ( o) x[et - or,(x)] dx (58)
For all b blades, the thrust expression becomes

2

aT = 1/2 ™R o(QR)2 a0 x[et - o.(x)] dx

For the case when the blade chord is constant, this thrust
expression can be integrated and nondimensionalized to yield the
equation

1
Cp = 91-? {et- 2fxa(X)dX$ (59)
(o]

Note that the integral in (»9) also appears in (33). Thus,
an alternative form of (£9) is

oa

°c = T (et - Mf) (60)



V.b, VORTEX OORE MODEL

The trapezoidal induced velocity distribution shown in
Figure 6 is composed of a uniform distribution plus two idealized
vortex cores. These cores have a tangential velocity V_ which
increases linearly with distance from the center of the vortex core
until the core radius R6/2 is reached, beyond which point the vortex
is assumed to induce no velocity either inside or outside the slip-
stream. Of course,this is a very simplified representation of the
actual flow, and to obtain accurate results with this model, some
consideration must be given to the characteristics of real viscous
vortices. This forms the main topic of this section.

A viscous vortex model is given in Reference 27 which has
the tangentiel velocity profile

-re/hvet
Vt(r,t) = _555_ (1- e ) (61)

This velocity distribution for some time, t, is shown in
Figure 21.

For r<¢ Ty the model tends toward the simple inviscid
vortex model

For r¢r , the velocity profile tends toward that of a
rigid body spinniﬁg at a rate w, where

o = —rm& (62)
(o]

It was shown in Chapter III that the boundary condition required
to fit the peripheral velocities of a vortex core to the slipstream
velocities of a descending rotor is

v =&V (65)

where Vt is the tangential velocity of the core.
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Figure 21. Vortex Model.
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Assume that V L= v as depicted by Figure 21. Then

Eq. (63) can be used to dete , which will later be
related to the coordinate % on the trapezoida.l velocity distributions.

To determine r o? one must first diff:rentiate Eq. (61) with
respect to r:

2 2
r __r
vt Lv t
(1-e °)
ert <
ar r?.

\'} max OSCurs when this derivative vanishes, leaving the result

2
r 2
__c _.T
rc 13vet Evet
re(‘?\’t )e = 1-e (64)
e
For simplicity, define
P 2
CQ‘ 1wc—t (65)
e
Then (6L) is written
1+2¢ =ef (66)

The approximate numerical solution to this equation is

EIsMhee, | (67)

as can easily be determined by direct substitution.



Combining (65) and (67),

byt = gs (68)

and substituting (68) into (61) to get Vi

2
T Cs
r2
I e I 1
Vmex = Pmr (1-e )=2nr (1-g
c c s
e
(69)
Using (66) to substitute for es ,
) 1
Vmex = Znr (1'1+2C)
c s
¢
I ]
Ymex = Wr (1+2§) (70)
c 5

Using the value 5/4 for ¢, as given by (67), Eq. (70)
becomes

Viax = TET%F_ (11)

Assuming that V. =V___, Eqs. (63) and (71) can be
combined to get v mAx

)
Tnr
C
or
) A "
rc = 7TTV (7‘-)



Eq. {72), wnen applied to the cores near the rotor,
can be manipulated to get (since 5 = 2rc/R )

or

8= =& (73)

The value of I' applies for a single blade and is given
by Eq. (56).

the T strength of the cores is constent. Thus,

ior
8, =~ (T4)
ww

An alternative form for (T4) would be

10T
5, = T, ¢ (75)

At this point, it 1is appropriate to combine Egs.
(56), (73) and (75).

10T 10 oa 2
8= TRy = TTRR(GRIX ( 2o )"R“ (6g+ A = )
8, + A=A
_ [ Doa t
& = ( 5 ) : (76)
0, + A=)\
_ | _5o0a t
8 = (22 =4 ()

w

Having related the core model to the flow inside and outside the
slipstream, the next step in calculating the rotor thrust is to
allow for tip losses due to three-dimensional flow, or ''spillage'.
This is discussed in Section 5.1but before beginning that topic, it
is convenient to summarize the major equations obtained up to this
point and to restate them in convenient nondimensional forms.
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Equation Summary

a(x)

Flow model

a(x) =

Continuity ¢ =

Momeritum

Energy
o

Blade element

Vortex Core model

A = A 0L x £ 1=-8
%‘(1-x)-A 1= x £ 1
)‘w' A O$J|:.<;1-E)w
)\v 1-5w$xs.1
8—'(1-3!)-1\

w

1
f x a(x)dx
()

1
(x)dx
\]o-x:xwx)

1
CT = [m(x)dx + 2e‘21;: a.we(x)dx

1 1
eafxaw5(x) ax = ga[ x(et -a(x)) a(x)dx

1
+ A?/ xa.(x)dx

(o)

1
Cp = gi‘—- (et-af xa.(x)dx)

o)

t
A

5 =(joa.

8, + A=A
)

29

(30)

(35)

(k2)

(50)

(59)

(76)



Vortex Core Model

To simplify the equations, introduce the notation

1
R1 e2/. xa(x)dx = R1(A,X,8)
o

w>

:
2/ xo,e(x)dx= Ra(A,X,S)
°

1
: 2f Xa, w(x)dxz w1(A,xw,5w)

(o]

Ry

udp

W
A : 2
o
Y L
w3 = 2[ Xa, (x)dx = wj(A,xw,sw)
o

The equations become

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(8k)

(85)

(86)

(87)



- () e

The problem we have to solve can now be stated as

Given-  A,p, ,0,a,b; Find: ¢,C ,A,\ ,5,8
T W w

t)
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Iv.>. I1R 1068 FACTOR
The anaslysls presented to this point has not included a

blade tip loss factor. The purpose of the following presentation
is to derive a method for including such a factor.

Eq. (53) expresses blade element thrust for a single
blade as:

dT.b = %c_ ns[nnet + V-v]ds

This can be written in a somewhat more general form as
ar, 5— (AR)“x(e_ + A - \)as (89)
The blade loading is defined by

d
mb' 4 "a%b' = -%— (m\)‘?x(et +A =) (90)

Eq. (89) can be integrated to get the thrust groduced
by one blade.* For b constant-chord blades, the thrust 1is

T = 1/b bpac(nR)ZR(et +A =)

=afl (—z—;— ﬁ’Rep(nR)a(et +A - A)) (91)

The integration assumes uniform inflow, i.e., )\ is not a function
of x. This is equivalent to rejylacing the trapezoidal inflow
distribution by the classical uniform distribution. We do this,
at this point in the derivation to obtain the classical tip loss
factor. Subsequently we return to the trapezoidal distribution
to get an improved tip loss factor.
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The thrust coefficient is therefore given by Eq. (86) as
ga
Cp = -h—(et+A- \)

C, can be expressed in terms of the blade loading at the
tip, by comtBining this equation and Eq. (90) and setting x = 1 in

Eq. (90). The result is 'I
22b tip
Cp= I ( Sac(fR)2 ) (92)

In Reference 27,a tip loss factor for hovering rotors is

presented in terms of cT as follows:

B-—-hieci (93)

The "tip losses™ occur because air flows from the bottom
region to the top region of the blades at the tips. The flow occurs
because of 1ift (pressure gradient between the upper and lower blade
surfaces). Such flow "destroys" the 1ift on the blade elements in the
immediate region of the tips, because it interferes with the two-
dimensional 1lifting mechanism of the airfoil sectiom.

Since tip losses are caused by flows at the tips due to
lift at the tips, it seems that the blade distributed loading at
the tips really controls the quantitative value of B, not the overall
rotor thrust coefficient as suggested by Eq. (93). However,
Eq. (93) is valid at hover (assuning the important factor is
distributed loading at the tip), since is directly related to T’
by Eq. (64). A more general form of (93) can be expressed in
terms of T/, and, as shown below, this leads to a simple expression
for B both at hover and in descent.

/
1 o) % Tolus
B=1-—= -T;,"ﬁ‘?r (9%)

Eq. (94) has been derived for rotor systems with
uniform induced velocity. Because B is expressed in terms of
tip’ however, it seems reasonable that it should be applicable
to ro%ors operating with nonuniform inflow, inasmuch as the tip
loss is a local phenomenon depending primarily on blade tip operating
conditions.
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For the descending rotor, Eq. (57) is applicable.

aT, = 1/2 p(fu;)»,c[QRet - v(x)]ds

n' = 2 (a)%(e, - alx) (95)

At the tip, q:b’ becomes*

L), = 2B (W3, + ) (96)

Substituting Eq. (96) into Eq. (9%) gives the
major result of this section, a general formula for B.

B=1- %‘/?—(et+ls) (97)

Note that )\ disappears from the expression at the tip. This is
because 2(x) == A at x = 1, i.e., at the tip. The disappearance
of A is a consequence of the assumption of a trapezoidal inflow
distribution. It accounts for the difference between the tip loss
factor derived here (Eq. 97) and the classical tip loss factor,

Eq. 95. Bccause the trapezoidal inflow model gives a higher Is'
than the uniform inflow model, at a given C, and A, the tip loss

is larger, i.e., B is smaller. .
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Iv.6. TQCORFORATION OF THE TTP I0SS FACTOR

All the equations required to solve for C_. versus rate of
descent of a given rotor have now been obtained. A% this point, the
problem is to include the effects of B on Eqs. (83) through (883 :
One way to do this is owtlined bvelow.

Solve Eqs. (83) through (88) in a normal way, without
considering tip losses. Results of such a solution process can be
expressed in nondimensional form, using the actual rotor radius R as
the characteristic length.

To include tip losses, say that the effective rotor radius,
Rd is given by

R,énn-n[n%d%-(etm)] (98)

The solutions to (83) through (88) can be considered valid
for a rotor with radius R and no tip losses (the no tip loss
assumption being already &mbodied in Eq. (83) through (88)).

Thus, when the nondimensional data representing the solutions to
Egs. (83) through (88) are dimensionalized, an effective radius R,

must be used to account for tip losses.

Obviously, it is desirable to present data nondimensionalized
by a constant characteristic length (e.g., R) rather than a variable
characteristic length (e.g., R.). To accomplish this, the non-
dimensional data expressed in ferms of R must be restated in terms
of R. As an example of this process, coflsider a graph of Cqvs A,
predicted for a rotor of given geametry by solving Egqs. (83) through
(88). For a given A, the actual thrust T is given by

2 2 L
T = TR, p(mze) Cp = prm%e Cp (99)
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Define C* as the desired thrust coefficient, i.e., the thrust non-
dimensiogalized with respect to R. Then

T4 mezRuC,;: o (100)

Combining (99) and (100) to eliminate T

r R
Cp = ( Re 5 Co (101)

Eas. (101) and (98) can be combined to yield

4
Cp = (1 -5 Y2 (0 * "Q)CT

The characteristic length, Re’ has also been used to
produce A :

v
A= (102)

This process is applicable to the value for A in the original non-
dimensionalized data Cp = CT(A) )

Tne question arises, does the nondimensionalizing process
(102) apply to Eq. (98)? [If R 4s included in the A in Eq. (98),
then Eq. (98) becames wn implicit expression in R ] It is expected
that the difference in results as to whether the X in (98) is
nondimensionalized by R or R, will be extremely small. Assuning
this for the time being, subStitute A* into (98) and (101),

A (103)
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However, the effect of B should be included in determining
the A in the original data. Combining (102) and (103) to eliminate V,

e (3= (e A R)s o

which can be rewritten as

A* (
A 105)
1. /oa *
1 5 (et + A¥)
Summarizing, the major results of this section are the following
equations :
1 oa *
B=1-3‘f—2—(et+1&) (97)
A*
C. k= th (101)
T T

An example hand calculation of CX* versus the rate-of-
descent parameter is done below, to show the ;Bethod. Note that to
obtain the graph of CT* Vs J’Sit is necessary to assume an initial
value of J*, and later to determine what value of J this implies.
Thus the method doesn't predict C.* for a given single value of J, but
instead predicts the entire CT* ersus J* graph.
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The derivations given in this chapter employ standard
notation used in helicopter analysis. A different notation is
traditional in propeller analysis. For exemple, J is used to
denote nondimensional axial propeller veloclty. J is related to
A by

J =TA

The propeller thrust coefficient is denoted here as CT and is

p
related to the '"helicopter" thrust coefficient by

ch = 64 1P Cy

In the comparison of our predicted CT versus measured, given in

the next section, C, the "propeller" notation is used, because

T
the experimental date are presented in this notation.

The results of the calculation are shown in Figure 22
~and are compared with the C_ versus J graph that would be obtalned
assuning zero tip loss factdr. The difference in magnitude of

Cp end slope aCT/aJ at a given Cy is considerable.
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TABIE I.

EXAMPLIE CALCUIATION OF C

*

VERSUS J°

g=.186 Bp=1.0 6t=-2%i§ a =575 b=3

M @ |G (&) 1 (5)

# A* 9t+A* C’—é"‘x(}) da_) (5)/v| B B CTpr g2 Bh CE*L
-.40 | -.127 |.1230] 0658 |.256 |.0858 | .9142 | -.437 |.125 | .838 |.700 | .086
-.30| -.0955 |.1545| .0828 |.289 |.0965 | .9035 | -.332 |.152] .818 | .669 | .102
-.20| -.06366.1863 | .0995 |.315 |.1050| .8950 | -.223 |.182] .800 | .6L0 | .116
~.10| -.03183.2182| .1160 |.341 [.114 | .886 |-.113 |.210]| .785 | .617 | .129
0 0 [.2500( .1330 [.365 |.122 | .878 0 236 | 769 | .590 | 137
05| .0159d.2659| 1420 377 |.126 | .67% | .o571|.289 | 765 | .585 | 146
.10| .03183.2818| .1500 [.387 | .129 | .871 .1145].260 | .760 | .579 | .150
15) 047792978 .1590 |.398 | .133 | .867 A780].271 | (751 | %65 153
20| .063661.3137| .1662 |.410|.137 | .83 | .=310].280 | 746 | .557 ] .155
25| .07958.32096| .1750 [.420 | .140 | .860 .2910|.287 | .T40 | 548 .156
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Figure 22, Results of Example Calculation of C,, Versus J.
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v.7 COMPARISQN WITH EXPERIMENT

Hardly any data on thrust of helicopter rotors in vertical
descent has been published. Reference 19 describes flight tests on a
Westland Whirlwind helicopter in vertica. descent, but unfortunately
the data obtained are not sufficiently complete to permit correlation
with our theory. We therefore have to employ data on VTOL propellers.
Reference 18presents wind-tunnel data on VIOL propellers at shaft angles
of attack representing vertical and inclined descents, and Reference 28
gives data on the same propellers in climb conditions (though not all the
blade settings were duplicated). By combining these references the
experimental data graphed on Figure 25 were obtained (solid lines). The
dash-dot lines on Figure 23show the results obtained by solving Egs.
(78)=(89) for the propeller and then modifying the results (as specified
by Eqs. (97)=(101) to include the tip loss effects.

It will be seen that the theory agrees well with experiment
for climb, hover, and rates of descent outside the unsteady region of
the vortex-ring state.

Figures 2l through 27 are presented to show the comparison bee
tween experiment and theory for the following different theoretical
approaches:

(1) Vortex core wake model with variable tip loss factor

(Ea. (97)).

(2) Variable tip loss factor with no vortex cores (i.e.,
wake represented by uniform downwash over rotor disc
of radius BR).

(3) Conventional analytic model; i.e., constant tip loss
factor (B = 1 in this case) and uniform downwash.

For all three of these cases, the solid lines represent the experimental
data.

Figures 24 through 27 indicate a striking improvement in the
accuracy of theoretical results when the descending rotor models
described in this chapter are applied.

Another important conclusion that can be reached, by inspec-
tion of the figures, is that correlation between experiment and theory
is good if the tip losses are accounted for while retaining the uniform
inflow model. This does not mean that the vortex cores are unimportant,
since this core model was an essential part of the derivation leading
to the tip loss factor (Eq. (97)). However, once the existence of
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Figure 23, Comparison of Analytic and Experimental Results for
Thrust vs Descent Rate of a VIOL Propeller.
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BLADE ANGLE = 6° AT 0.75R

L
.5 IE 11 E J “"I1 -IE

ANALYTIC RESULTS (NONUNIFORM INFLOW AND VARIABLE
TIP LOSS FACTOR)

ANALYTIC RESULTS: CONSTANT TIP IOSS FACTOR, UNIFORM
INFLOW

L ]
cmms—ocome AMALYTIC RESULTS: VARIABLE TIP 10SS FACTOR WITH UNIFORM

INFLOW
VERTOL 76 PROPELLER TEST DATA

Figure 2L, CT vs J for 6=-Degree Blade Angle,
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BIADE, ANGLE = 9° AT 0.75R

e 1 Il 'l 4

.2 .1 J =1 -2 =3
ANALYTIC RESULTS (NONUNIFORM INFLOW AND VARIABLE
TIP LOSS FACTOR)

—— g:gxﬁgxc RESULTS: CONSTANT TIP 10SS FACTOR, UNIFORM

—— fﬁxg‘%mc RESULIS: VARIABLE TIP 10SS FACTOR WITH UNIFORM

———— VERTOL 76 PROPELIER TEST DATA

Figure 25. CTp vs J for 9-Degree Blade Angle.
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BIADE ANGLE = 12° AT 0.75R

| i - L A
] _5 !% L] 1 J =5 1 - it - ri
AALYTIC RESULTS (NONUNIFORM INFLOW AND VARIABLE
TiP LO3S FACTOR)

ANALYTIC RESULTS: CONSTANT TTP LOSS FACTOR, UNIFORM
INFLOW

]
«mmcomw AIALYTIC RESULTS: VARIABLE TIP L0SS FACTOR WITH UNIFORM

INFLOW
VERTOL T6 PROPELIER TEST DATA

Figure 26. Cp Vs J for 12=Degree Blade Angle.
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FIGURE 8
BLADE ANGLE = 15° AT 0.75R

ANALYTIC RESULTS (NONUNIFORM INFLOW AND VARIABLE
TIP 10SS FACTOR)

ANALYTIC RESULTS: COWSTANT TIP LOSS FACTOR, UNIFORM
INFLOW

| =R
lme—sem AMALYTIC RESULTS: VARIABLE TIP LOSS FACTOR WITH UNIFORM

INFLOW
VERTOL 76 PROPELIER TEST DATA

Figure 27. C'I‘ vs J for 15=-Degree Blade Angle.
P

76



the viscous '""boundary layer'" between the slipstream tube and the
surrounding air mass is recognized, the simple tip loss factor can

be derived. This situation is quite analogous to Prandtl's fixed-
wing boundary layer model. The presence of the viscous region must
be acknowleged to assess correctly the physical flow mechanisms which
produce the wing loads. The results for lift and induced drag derived
from inviscid theory (which does not include the boundary layer),
however, are still accurate if the boundary layer has not separated,
causing stall. For the descending rotor, the viscous region is
analogous to the boundary layer. The nonuniform downwash indirectly
causes & thrust loss by inducing higher blade loadings near the tips.
This thrust loss greatly exceeds that due to the momentum loss assoclated
with the nonuniform downwash.

Noeo sum!:!

The performance of a vertically descending rotor can be
calculated using a ''vortex-core'" wake system and a suitable blade tip
loss factor. The results obtained by analyzing this flow model show
good correlation with available experimental date over the region
from fast climb to descent rates outside the vortex-ring buffet
boundaries. Although the vortex core model is required to derive the
descending tip loss factor, the wake inflow distributions can be assumed
uniform (retaining the tip loss factor only and assuming negligible
vortex core radius) without seriously degrading the accuracy of numerical

results.

The application of the tip loss factor to derivative
calculations is discussed in Volume II. The necessity to
consider inclined as well as vertical descent requires a cyclicly
varying B. Experimental date are not sufficiently complete to check
the accuracy of derivatives calculated using this approach; however,
it follows logically from the assumption that conditions at the tip
determine the tip losses.
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V.l.  ZNIRODUCTION

This chapter describes how stability derivatives were
calculated for the 8-58 and AH-56A. (As explained below, published
derivatives were used, for the YHC-1A.) The chapter is organized
as follows:

Firstly, the MOSTAB modular stability derivative program
is described. MOSTAB was specially evolved for this study; it
calculates derivatives for any type of helicopter, with a wide
variety of possible flow models. The description in this chapter
is very general; full details of the equations used in MOSTAB and
a listing are given in Volume 1I,

Secondly, the forms of the input data required for MOSTAB
are summarized, and the specific data for the S-58 and AH-56A are
presented. These data include three-view drawings, estimated aero-
dynamic coefficients for fuselages, rotors, etc., and the appropriate
reference areas.

Thirdly, the flight conditions for which derivatives were
calculated are tabulated. (The actual derivatives for each flight
condition are listed in Volumes III and IV, with the transfer
functions.)

Finally, the chapter concludes with a brief discussion
of the accuracy of the MOSTAB derivatives.

v.2. THE NEED FOR MOSTAB

During the course of the study described here, it became
apparent that it was difficult to obtain reliable stability derivatives
for single-rotor, tandem-rotor, and compound helicopters in descending
flight. In some cases derivatives were avallable for level flight,
but the programs used to calculate these derivatives contained ' built
in'" assumptions regarding flow models which were inappropriate for
descending flight. It was not feasible to modify these programs to
incorporate alternative flow models, such as those described in
Chapter IV. Furthermore, only limited experimental data on derivetives
in descending flight were available,
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Accordingly, it was decided to start afresh, by writing
a "universal' program to compute trim and stability derivatives
for any type of helicopter, with little or no restriction as to
the flow models that had to be used. Further requirements were
that the stability derivatives should be printed-out in all axis
systems of interest, in dimensional form and also divided by the
appropriate inertias, and that the contribution of each component
to the complete derivative should be printed-out so thav the
reasons for unexpected values of derivatives could be traced.
The result of these requirements is the MOSTAB program described
below.

The following description of MOSTAB is the bare minimum
required to follow the subsequent discussion., For more details
of MOSTAB, see Volume 1I,

V.5.  PRINCIPAL FRATURES OF MOOTAR

MOSTAB currently calculates performance, trim,and stability
derivatives for any type of subsonic aircraft. The program can be
extended for use in hybrid simulation and may also be used to
calculate limiting conditions such as 'g' boundaries. The unique
feature of MOSTAB which gives such versatility is its modular
construction, explained below.

Figure 28 shows a helicopter separated into elements. The
physical characteristics of each element are specified in the input
deta. Separate sections of MOSTAB handle each element type. The
influence of each element on the aircraft is summed to calculate
dynamic characteristics of the assembled flight vehicle.

When an element (e.g., wing, propeller) produces a force (1lift,
drag, thrust), the air in the vicinity of the aircraft is set in
motion. The induced velocities (sometimes called downwash and
sidewash) affect other elements by changing their local airspeed
and angle of attack. Interference velocities are thus very
important and must be calculated accurately.

MOSTAB includes all of these ''aerodynamic coupling"
(interference velocity) effects in a single subroutine,
Any desired model for interference velocities cen be included in
this subroutine,which performs all of the necessary interference
velocity calculations. No fundamental program changes are required
to modify interference velocity models as required to suit particular
vehicles; only the interference subroutine need be changed.
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ASSEMBLED AIRCRAFT
IS SEPARATED INTO

HORIZONTAL
\ STABILIZER

FIN
MAIN ROTOR

INTERFERENCE VELOCITY
CALCUIATION

® Receives Loads Produced
By Each Component

FUSELAGE

® Generates Interference
Velocities Between Comgonengs

/’AlL ROTOR

Figure 28. Modular Representation Used by MOSTAB.
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Either rigid rotors (propellers) or flexible tladed rotors
(helicopter rotors - hinged or hingeless) can be studied by MOSTAB.
The modular nature of the program allows one to represent an eir-
craft with as many rotors, aerodynamic bodies (fuselages, nacelles,
etc.),and lifting surfaces (wings, empennage surfaces, canard
surfaces, etc.) as desired.

Because aerodynamic rotors are the most complicated element
types, a brief description of the rotor analyses incorporated in
MOSTAB is presented here. ' Rotors' are either of the flexible
bladed type (e.g., helicopter rotors with hinged blades, or the so-
called " rigid" rotors, whose blades deflect structurally to a
substantial degree) or of the truly rigid type (propellers). The
same subroutines compute flexible and rigid rotor characteristics
in MOSTAB. Since the rigid rotor (propeller) blades do not deflect,
they provide no particular analytic difficulty. MOSTAB numerically
integrates computed inertial and aerodynamic loads radially and
azimuthally to determine the characteristics of rigid rotors (propellers).
The blade motion of flexible rotors must be determined before loads
from such rotors can be determined. The ' normal mode'' method is
used in MOSTAB to represent the flexible blades. The normalmode shape
and frequency for the first flapping mode of the flexible blade are
inputted to MOSTAB. (Other modes can be added easily to MOSTAB if
required, but the first mode adequately represents flexible bladed
rotors when determining stability derivatives.) Generalized mass
and force are generated in the program, and the flapping motion of
the blades is then computed numerically. Blade motion histories
for all flexible blade rotors are printed out for the trim flight
condition.

s of

As the MOSTAB program undergoes more development, various
versions will appear, each useful for analyzing aircraft under
certain conditions. The first version, MOSTAB-A, 1s considered
obsolete and unusable. This report describes the MOSTAB-B version,
which will always have applicability if its basic assumptions and
aerodynamic models are appropriate for the vehicle and flight
regimes being studied. More advanced versions (-C, -D, etc.) will
subsequently appear, each with more refined aerodynamic models, or
with special effects added for specific vehicle studies (e.g.,
tilt-wing, ducted-fan, etc., configurations).
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As of June 1970, MOSTAB-C had been completed, together
with a user's manual. The principal improvements of MOSTAB-C
over MOSTAB-B are:

(1) Airfoil data can be automatically corrected for
compressibility effects by means of a subroutine
which reads local Mach number. The subroutine
applies to both stalled and unstalled flow regimes.
This compressibility correction is important at
moderate and high speeds. MOSTAB was originally
developed for approach conditions; hence, com-
pressibility is not explicitly included in MOSTAB-B
although an overall correction can be made by
modifying the two-dimensional lift-curve slope in
the wing and rotor input data.

(2) MOSTAB-C has an option to print out forces and
moments acting on each element due to overall
vehicle velocity and the induced velocity of the
element itself, but excluding induced velocities
due to other elements. This is important for
correlating '" isolated rotor' tests and calculations
with data determined for complete aircraft.

(3) Rotor integration subroutines have been refined by
removing a number of small-angle assumptions.

(4) Derivatives can be called in "stability axes" for
any flight condition including hover (this is done
by extending the definition of stability axes to
include hover).

(5) A number of improvements and extensions to the
data input and print-out formats have been made.

v‘u 5 THTERFERENCT AF S LA LN

The interference velocities betwz2en the various modules
are calculated by an extension of the classical Glauert expression
which applies to fixed wings as well as rotors. The Glauert
expression is

v = 20‘;3 (102)

T
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where

T =
v =
P =
A =
VT =
k =

Resultant aerodynamic force on the module (e.g., wing
or rotor)

The induced veloc}ty at a specified location (e.g., down=-
wash at the rotor).

Air density

" Characteristic Area" ( = uR2 for a rotor of radius R,

2
g—f-b for an elliptic wing of span b)

Resultgnt velocity at the module

A factor which relates the downwash at the desired
location to the downwash at the module. Thus at some
distance away from a rotor, when the slipstream has
fully contracted, k = 2, whereas in the plane of the
rotor k = 1.

MOSTAB extends the above Glauert expression to a multidimensional
form so that all linear and angular components of the '" wash' can be
related to the forces and moments acting on the module. Thus such effects
as swirl due to rotor torque, and nonuniform downwash can be included.

The generalized form of Eq. (102) consists of two matrix equations:

?pl-“,—'— [Ai] A (103)

Ty

K] {vs) (104)

A 6-component vector, the elements of which are
the linear and angular induced flow velocities at
module i

"
!

= Absolute magnitvde of the airspeed at module i

= A 6 x 6 matrix which is input to MOSTAB. 1Its
elements have units of (1/area) and represent
the reciprocals of the characteristic areas of
module 1.
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{fi = A 6-component vector, the elements of which are
the X, Y, Z forces and L, M, N moments acting
on module i.

{v it = A 6-component vector, the elements of which are

the linear and angular induced velocities at
the location of module j induced by the forces
and moments acting on module i (e.g., i could be
the main rotor and j the horizontal tail)

[K] = A 6 x 6 matrix of interference velocity coupling
constants

In the complete MOSTAB program, the order of vectors is
increased from 6 to 6N where N is the number of modules (e.g., N = 5
for a helicopter with a fuselage, a main rotor, a tail rotor, a
horizontal tail, and a vertical tail). Thus a wide variety of
interference effects can be modeled with ease.

V.5.  MOOSTAB INRUT DABA

The numerical values of the derivatives calculated by MOSTAB
for the S-58 and AH~-56A are given in Volumes III and IV. To supplement
these derivatives, this section presents data which permits the
basic assumptions underlying the derivatives to be checked. Tha‘
is, relevant dimensicns and aerodynamic coefficients for each ' module"
(wing, fuselage, etc.) are tabulated, together with the assumptions
regarding interference velocities between the modules. Because of
the low speeds of interest to the present study, compressibility
corrections are not included. Hence, the aerodynamic coefficients
for each module are the same for all flight conditions.

To understand the input data,it is first necessary to
review the axis systems used in MOSTAB.

Figure 29 presents a three-view drawing of the Hughes OH-6A
helicopter with various coordinate systems attached. These axes
will now be discussed under individual headings.

(1) Overall vehicle reference axes - Axes x, y, z of Figure
29 are the ' overall vehicle reference axes" or " overall
vehicle axes' . These coordinates are defined in the main
text and are the most basic axes used in MOSTAB. The
positions of all vehicle elements are specified in the
basic MOSTAB input data deck in vehicle coordinates, and
the first set of stability and control derivatives is
output in vehicle axes.
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(2) Individual element axes - basic element axes - All
coordinate systems shown by Figure 29, with the
exception of the overall vehicle axes, are " individual
element axes" or " individual element basic axes"

These axes all lie parallel to overall vehicle reference
axes, but with origins located at the " reference points"
of their respective aircraft components, as shown in the

figure. The ’VA’ ’vx and rc matrices printed as part of

MOSTAB output, and the columns DW, WE, WO, VIO, VAO and FO
printed as the trim-iteration solution all refer to these
basic element axes, as discussed in detail in Volume II,

(3) Individual element local axes - These coordinate systems
are not showm on Figure 29, but they are defined in
detail in Volume II. The "individual element iocal
axes' have their origins at the respective element
reference points (as do the individual element basic axes
discussed in (b) above), but they are rotated from the
basic axes to lie in a convenient position for analysis
of the particular aircraft component. For example, the
main rotor local axes are rotated from the basic axes
(coordinates x_, ¥ , z_ in Figure 29) so that their z
axis lies alaxni thl rotor shaft centerline. Also from
Figure 29, one sees that the tail rotor basic axes must
be rotated approximately 90 degrees about the x _ axis
to became the tail rotor local axes (with the 2 s
along the tail rotor shaft).

(4) Stability axes - These coordinates are translated and
rotated from " overall vehicle axes" so that their
origin lies at the aircraft's center of gravity and
so that the v and v airspeed components in stability
axes, at trim, vanish. This is the classical definition
of stability axes. In MOSTAB, stability axes are defined
with .their z axis in the xz plane of the overall vehicle
axes. For hover, stability axes are arbitrarily defined
such that the x and y axes are horizontal with the
stability x axis parallel to the projrction of the over-
all vehicle x axis on the horizontal plane.

v.6. NUMERICAL DATA FOR §-58, AH-56A, and YHC-1A

Figures 30, 31, and 32 show 3-view drawings of the 8-58,
AH-56A and YHC-1A. The input data for the S-58 and AH-56A are
summarized in Table II. All symbols are defined in Volume II.



Figure 50. Three-View Drawing of S8ikorsky S-58.
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Figure 31. Three-View Drawing of Lockheed Al-56A.
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TABLE 11 = MOSTAS INPUT DATA

AIRCRAFT LOADING CONFIGURATION AND

MOSTAR
SYMROL

GROSS WEIGHT

XC6
YGG6
7C6

IXx
Xy
1894
IYX
1YY
1vY2
1ZX
12Y
127

DEFINITION

CENTER OF GRAVITY
RELATIVE TO OVERALL
VEHICLE COORNDINATES

INERTIA (POUND+FONTWSLUG)

SIKORSKY
S-SR

1560405

«3300-00
0000

«ATSO

1150405
«0000

MOMENTS OF INFRTIA WITH  ,0000
RESPECT TO THF CENTER
OF GRAVITY WITH THE #X# 5000405
AXIS ALIGNED WITH O.,VeCe oN000
(0.V.C. = OVERALL VEHICLE
COORDINATES )

0000

<0000
0000
¢5500405

LOCKHEED

AH=56A

«1187+05

«0000
«0000

«0000

«5895+04
«0000
0000
«N000
«?2750+08%
0000
00000
20000
e2309+0S

CHARACTERISTIC AREA MATRIX ELEMENTS A(1¢1)34(2+2)=A(307)

ALL OTHER ELEMENTS ARE ZERO,

FUSFLAGE

HORTZONTAL TAIL
VFRTICAL TAIL
MAIN ROTOR

TAIL ROTOR

WING

PROPFLLER

SIKORSKY
S-58

e2770-01
046160-01
«3000-01
¢%100-03
«1600-01

LOCKHFED
AH=SKA

e1350-01
«1080-01
e2500-01
«4800-03
e1270-01
e 1750-02

e1270-01



TARLE I1 = MOSTAB INPUT
FUSELAGE CHARACTERISTICS

MOSTAB
SYMBOL

PSI B
THETA B
PHT B
X

Y

4

AR

co

C1

ce
Ccvo
Cvl
c20
Cc21
LB
oL )
oL )}
CNO
CN]

(RADIANSFOOT«SECOND)
DEFINITION STKORSKY
S-58

«0000
ANGULAR DISPLACEMENTS
RELATIVE TO OVERALL «0000
VEHICLE COORDINATES

«0000

«0000
LINEAR DISPLACEMENT
RELATIVE TO OVERALL 0000
VEHICLE COORNINATES

0000
REFERENCE ARFA 05600402
DRAG COEFF, ALPHA=(, 0«4600+00
DRAG COEFF/ALPHA eN000
DRAG COEFF/ALPHAXALPHA 0000
SIDEFORCE COFFF .BETA=0, «0000
~SIDEFORCE COEFF/RETA 01400401
=Z=FORCE COEFF ,ALPHA=0, «N000
~Z=FORCE COEFF/ALPHA «7000-00
REFERENCE LENGTH 066400402
PITCH COEFF.ALPHA=O, «0000
PITCH COEFF/ALPHA *3600-00
YAW COEFF ALPHA=O, «0000
YAW COEFF/BETA «e6600=00

91

DATA (CONTINUED)

LOCKHEED
AH=56A

«0000
«0000
«0000
«0000
«0000
0000
e15004+03
«1000=-00
«3000-019
«h000=-03
«0000
01000401
«2800=-01
04000-00
5260402
02000-02
¢2500=-00
«0000

~¢6000=-00



TABLE II1 = MOSTAB INPUT DATA (CONTINUED)

HORTZONTAL TAIL CHARACTERISTICS (RADIANsFOOT9SECOND)

MOSTASR DEFINITION SIKORSKY LOCKHEFD

SYMBOL S-58 AH=S6A

PST L «0000 «0000
ANGULAR DISPLACEMENTS

THETA L RELATIVE TO OVERALL 00000 e5240-01
VEHICLE COORDINATES

PHT L «0000 00000

X =-+2830+02 =e2770+02
LINEAR DISPLACEMENT

Y RELATIVE TO OVERALL «0000 «0000
VEHICLE COORDINATES

4 ~¢2000401 00000

AW SECTION LIFT CURVE SLOPF ,6000401 6000401

Sw REFERENCE AREA 01238402 03450402

CHORD REFERENCE CHORD 02220401 3180401

cDo SECTION CD AT ALPHA=0, «0000 «0000

cnl SECTION CD/ALPHA «0000 «0000

coe SECTION CD/ALPHAXALPHA 20000 «0000

AWCLO ALPHA AT CD=MINIMUM 00000 «0000

CAP GAMMA DIHEDRAL ANGLE «0000 20000

AW REFERENCE SPAN 5550401 «1083+02

LAMDA W TAPER RATIO «0000 «5700-00

CMO CM AT ALPHAs0, «0000 «0000

CMA CM/ALPHA «0000 «0000



TARBLE 11 - MOSTAB INPUT NDATA (CONTINUED)

VERTICAL TAIL CHARACTERISTICS

MOSTAB
SYMROL

PSI L
THETA L
PHI L

X

Y

4

AW

Sw
CHORD
cno

CD1

cbDe
AWCLD
CAP GAMMA
BwW
LAMDA W
CcMO

CMA

(RADTAN+FOOT ¢ SECOND)
NEFINITION STKORSKY LOCKHEED
S=58 AH=56A
<0000 +0000
ANGULAR DISPLACEMENTS
RELATIVE TO OVERALL «6600 +0000
VEHICLE COORDINATES
<1570 01 .1570+01
03100002 =¢2666402
LINEAR DISPLACEMENT
RELATIVE TO OVERALL «0000 «0000
VEHICLE COORNINATES
«e3300401 «2770+01
SECTION LIFT CURVE SLOPE 6000401 «60004+01
REFERENCE AREA 02400402 02460402
REFERENCE CHORD +I8R0401 04250401
SECTION CD AT ALPHA=0. 00000 <0000
SECTION CD/ALPHA <0000 <0000
SECTION CO/ALPHA/ZALPHA <0000 «0000
ALPHA AT CD=MINIMUM <0000 +0000
DIHEDRAL ANGLE <0000 <0000
REFERENCE SPAN 06200401 «5800+01
TAPER RATIO <0000 +0000
CM AT ALPHA=0, <0000 +0000
CM/ALPHA <0000 +0000
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TABLE I1 = MOSTAR INPUT DATA (CONTINUED)

WING CHARACTERISTICS

MOSTAB
SYMROL

PSI L
THETA L
PHT L

X

Y

2

AW

S¥
CHORD
cDO

col

cbe
AWCLD
CAP GAMMA
AW
LAMNDA W
CM0

CMA

(RADIANCFOOT ¢ SECOND)
DEFINITION S IKORSKY
S=58

ANGULAR DISPLACEMENTS
RELATIVE TO OVERALL
VEHICLE COORNINATES

LINEAR DISPLACEMENT

"RELATIVE TO OVERALL

VEHICLE COORDINATES

SECTION LIFT CURVE SLOPF
REFERENCE ARFA
REFERENCE CHORD
SECTION CD AT ALPHA=0,
SECTION CD/ALPHA
SECTION COD/ALPHA/ALPHA
ALPHA AT CD=MINTIMUM
DIHENRAL ANGLE
REFERENCE SPAN

TAPER RATIO

CM AT ALPHA=0,

CM/ALPHA

LOCKHEED
AH=56A

«0000
01660-00
00000
=e6500-00
«0000
03400401
«6000+01
e1950+03
07250401
«8000-02
~¢7000-02
01470-00
«1750-01
«0000
02700402
+5100=00
-«6100=-01

«0000



TABLE I1 =« MOSTAB INPUT DATA (CONTINUEN)

MAIN ROTOR CHARACTERISTICS

MOSTAR
SYMROL

OMEGA
80
BA
RB
NELTA
OFLTA
DELTA
DELTA
THETA

SMALL
SMALL
PSI R
THETA
PHI R

ROE
RDOE
PR
PBD
CHORD

DEFINITION

ROTATIONAL VELOCITY
CONSTANT TIP LNSS FACTOR
VARIABLE TIP LOSS FACTOR
EXTRA TIP LOSS FACTOR
SECTION CD AT ALPHA=0,
CN/7ALPHA

CD/ALPHA/ZALPHA
PITCH/FLAP COUPL ING
TOTAL RLADE TWIST

BLADE RADIUS

NUMBER OF BLANES

SECTION LIFT CURVF SLOPF
ANGULAR DISPLACEMENTS

RELATIVE TO OVERALL
VEHICLE COORDINATES,

LINEAR DISPLACEMENT
RELATIVE T0 OVERALL
VEHICLE COORNINATES
NAT.FLAPFRFQUENCY/OMEGA
ESTIMATED RETA.PSTI=0,
ESTIMATED BETADOT.PSI=0,
BETA PERTURBATION
BETADOT PERTURBATION

CONSTANYT CHORD BLADES

95

SIXKOQSKY
S-SR

2325002
«9700-00
«1680-02
20000
¢ 7500-02
00000
«3200-00
«0000

=+.1395-00

2800402
«4000401
06000401
«0000

‘.3300.01

«0000
«2700-00
«0000

=eR200+01

«1020401
«0000
«0000
«5000-02
«1000-00
1360401

(RADIANGFONT«SECOND «SLUG)

LOCKNHEED
AH-S6A

2570002
«9700-00
«1760-02
00000
«71500-02
«0000
¢3200-00
«0000

=+.A730-01

02570002
«46000+01
¢6000401
0000
«0000
«0000
«0000
20000

=e4150+01

e1150+01

=+5000-02

e1000=-02
«5000-02
«1000=-00
0232040}



TABLE 1] = MOSTAB INPUT DATA (CONTINUEN)
MAIN ROTOR DISTRIBUTED BLADE PROPERTIES-

SIKORSKY S-S54
PISTRIKUTEN RANTAL

ALANE
STYATION
NUMBRER

- OBAPASWDN -

- O

=0t G D VPN S WA =

0
|

RADIAL
DISTANCE

«0000

«1000401
«8400401
e13604+02
0169002
«1960002
«2180002
02370002
«2530+02
02670002
«2800002

INITIAL
SHAPE

«0000
«0000
«0000
«0000
«0000
«0000
«0000
«0000
0000
«0000
«0000

POINT MASSES-

STATION
NUMRER

1
2
3

W N =

RADIAL
DISTANCE

2800402

INITIAL
SHAPE

«0000

MASS

¢1360-00
¢1360-00
«1360-00
«1360-00
e1360-00
¢1360-00
¢1360-00
0‘360-00
¢1360-00
¢1360-00
¢1360-00

FIRSY
FLAPPING
MODESHAPE

«0000

«0000
«e7400001
*e1240002
«o1590+02
=,1860¢02
=02080002
«,2270002
«e2430002
«e2570002
«,2700002

MASS

e3477-00

FIRSY
FLAPPING
MODESHAPE

=¢2700+02

96

LOCKHEED AH=S6A

OISTANCE

« 0000001}
«7700002
«1160002
015404002
« 1800002
«2050002
« 2170402
e?310002
02630402
«?570002

INITVIAL
SHAPE

«0000
«+1000-00
=e1500-00
=.1500-00
*.1500-00
=¢1500-00
=¢1500-00
=+1500-00
=¢1500-00
=+.1500-00

RADTAL
DISTANCE

02570401
oR9S50401
2570402

INITIAL
SHAPE

~e7500-01
«¢1500-00
'o‘5°°°00

NISTRIAUTEN
MASS

«1000+01
«3800-00
«3800-00
2700-00
02700’00
«2700-00
«2700-00
«2700-00
«2700-00
270000

FIRSY
FLAPP ING
MODESHAPE

«0000
=.JA0N01]
7180001
=e1100¢02
«,1350¢02
“e1610002
=e1730¢02
=.,1850¢02
*.1980¢02
=e2110002

MASS

e 770001
¢1000+01
¢5000-01

FIRST
FLAPPING
MODESHAPE

=, 7400-~00
=,4R80+01
=e2110402



TABLE Il = MOSTAB INPUT DATA (CONTINUED)

TAIL ROTOR CHARACTERISTICS

MOSTAR
SYMBOL

OMEGA
80

fA

AR
OFLTA.
DELTA
DELTA
NELTA
THETA

SMALL
SMALL
PSI R
THETA

PH] R

ROE
BNOF
PR
PRD

CHORD

DEFINITION

ROTATIONAL VFLOCITY
CONSTANTY TIP LOSS FACTOR
VARIABLE TIP LOSS FACTOR
EXTRA TIP LOSS FACTOR
SECTION CD AT ALPHA=0O,
CO/ALPHA

CN/7ALPHA/ZALPHA
PITCH/FLAP COUPLING
TOTAL BLADE TWIST

BLADE RANIUS

NUMRER OF BRLANES
SECTION LIFT CURVE SLOPF
ANGULAR DISPLACFMENTS

RELATIVE TO OVFRALL
VEHICLE COORNINATES

LINEAR DISPLACFMENT
RELATIVE TO AVERALL
VEHICLE COORDINATES
NAT.FLAP,FREQUENCY/OMEGA
ESTIMATED RETAJPSI=0,
ESTIMATED RETADOT.PSI=0,
RETA PERTURBATION
BETADOT PERTURBATION

CONSTANT CHORD RLANFS

97

SIKNRSKY
S-S8

1390003
«9700-00
«0000
«0000
«1000-01]
«0000
«3200-00
«¢1000401
«0000
06670001
«4000401
6000401
«0000
«0000
«1570401
=¢3300+02
=e1750401
=,5750+01
«10000)
«N000
«0000
«5000-02
«1000-00
«6120-00

(PADTIANSFOOT o SFCOND»SLUG)

LOCKMEFD
AH=56A

¢1300403
«9500-00
«0000
0000
«1000-01
«0000
¢3200-00
<0000
<0000
¢5009+01
¢4000401
6000401
0000
0000
1570401
=02990+02
=e6000+01
«0000
«1000+0)
«0000
+0000
«5000-02
«1000=00
1170401



TABLE 1 = MOSTAB INPUT NATA (CONTINUED)
TAIL ROTOR DISTRIBUTED BLADE PROPERTIES-

ALADFE. SIKORSKY S=S8 LOCKHEED AH-S6A

STATION RADIAL NISTRIBUTED RANTAL DISTRIBUTED

NUMRER DISTANCE MASS CISTANCE MASS
| «0000 «2%60-01 «0000 «1000-00
r 4 1400001 e 2560-01 e1000+0) «1000-00
k) 02230001} e2%560-01] 01500401} «1000-00
6 02820001 «2560-01 2000401 «1000-00
S 3270401 0256001 2500001 ¢1000-00
6 3640401 «2%560-01 03000401 «1000-00
7 3950401 0256001 300001 «1000-00
8 04220001 02560-01 4000001} «1000-00
9 e54660001 0 2560-01 «45004¢01 1000-00
10 06670001 256001 500001 «1000-00

INITIAL FIRSY INITIAL FIRST
SHAPE FLAPPING SHAPE FLAPPING
MODFESHAPE MOOESHAPE

| 0000 «0000 0000 «0000
e «0000 «14600401 0000 1000401
3 0000 02230401 0000 1500401
b «0000 «2820401 «0000 «2000¢01
S «0000 03270401 «0000 2500401
6 0000 03640401 «0000 3000401
7 «0000 ¢3950401 0000 3500401
8 00000 o5220401 «0000 e6000+01
9 «0000 006660401 0000 e65004+01
10 0000 085670001 00000 e5000+01



TABLE 11 = NMOSTAB INPUT DATA (CONYINUED)

PROPELLER CHARACTERISTICS

noSTAB
SYMROL

OMERA
a0
BA
L L
DELTA
DELYA
DELTA
DELTA
THETA

SMALL
SMALL
PS1 R
THETA
PHI R

BOE
BDOF
PR
PRD

CHORD

(RADIANCFOOT ¢ SECOND» SLUS)
DEFINITION S IKORSKY LOCKNMHEED
S-S54 AH=S64A
ROTATIONAL VELOCITY «1800+03
CONSTANT TIP LOSS FACTOR «9500-00
VARJABLE TIP LOSS FACTOR «0000
EXTRA TIP LOSS FACTOR «0000
SECTION CD AT ALPHA=0, «8000-02
CO/ALPHA «0000
CO/ALPHA/ZALPHA «3200-00
PITCH/FLAP COUPLING «0000
TOTAL BLADE TWISY «2600-00
SBLADE RADIUS 5000401
NUMRER OF BLADES ¢3000+01
SECTION LIFY CURVE SLOPF 6000401
«0000
ANGULAR OISPLACFMENTS
RELATIVE TO OVERALL 1570401
VEHICLE COORDINATES
«0000
=¢3129+02
LINEAR DISPLACEMENT
RELATIVE TO OVERALL «0000
VEHICLE COORDINATES
«0000
NATFLAPFREQUENCY/OMEGA «0000
ESTIMATED BETAPST=0, «0000
ESTIMATED BETADOT+PSI=0, «0000
BETA PERTURBATION «0000
BETADOT PERTURBATION <0000
CONSTANT CHORD RLADFS «1000+01
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TABLE I] = MOSTAB INPUT DATA (CONCLUDEN)
PROPELLER DISTRIRUTED RLADE PROPERTTIES-

NISTRIRUTED BLADE PROPERTIES-
SIKORSKY S-58

RADIAL DISTRIRUTED RADTAL
DISTANCE MASS DISTANCE

BLANDE
STATION
NUMRER

«0000
e10004+01]
01500401
2000401}
e?500401
«3000+01
«%000+01
«%000401]
06500401
0 «%000+01

= ODNIPAE DN

FIRSY
FLAPPING
MODE SHAPE

INITVIAL
SHAPE

INITIAL
SHAPE

«N000
0000
«0000
0000
«N000
«0000
0000
0000
0000
0 «0000

= O D®NVPNEWN e

100

LOCKHFFD AX=SHA
DISTRIRUTER
MASS

«1000-00
«1000-00
«1000-00
«1000=-00
«1000-00
0‘000-00
«1000-00
«1000-00
«1000-00
«1000-00

FIRSY
FLAPPING
MODESHAPF

«0000

1000401
e1500+01
2000401
«?500401
¢3000+01
¢3500+01
06000401
«0500401
«5000+01



TABLE I1 = MOSTAB INPUT DATA (CONTINUED)
INDUCED VELOCITY INTERFERENCE FACTORS-
VELOCITIES ARE IN OVERALL VEMHICLE COORDINATFS
ALL ELEMENTS NOT SHOWN ARE ASSUMED 7ER0O

INODUCED VELOCITY
ORIGINATING FROM
LOANS ON THE

FOLLOWING
COMPONENTS

FUSFLAGE

HORJZONTAL
TAlL

WING

VERTICAL
TAIL

MAIN ROTOR

TAIL ROTOR

PROPELLER

(V)
(V)
(W)
(v)
{7
)
w
(W)

(V)
(v)
(W)

v
v)
(W)
(W)

(1)
v)
(W)

(V)
(v)
(W)
(W)
(W)

(V)
(V)
(W)

(V)
(V)
(W)

COVPONFNT
VELOCTITY
AFFECTEN RY
THE INDUCED
VELOCITY
FUSELAGE
HORIZONTAL

VERTICAL

PROPELLER
TAIL ROTOR

HORIZONTAL
TAIL

WING

MAIN ROTOR
VERTICAL
TAIL

MAIN ROTOR
WING

HORTIZONTAL
TAIL ROTOR

PROPELLFR
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({1}
V)
(W)
1))
w)
{1}
(V)
(w)

{1}
(V)
(W)

1)
(v)
(W)
(W)

)
(v)
(W)

()
(v)
(W)
(W)
(W)

(1))
(v)
(W)

v
(v)
(W)

INDUCFD VELOCITY
MULTIPLYING FACTORS

SIKORSKY
S-SR

0000
«0000
«0000
¢1000¢01
«1000401

«1000+01

«N000
0000
«1000001

«0000
«1000401
«0000

e1000¢01
1000401
«1000+01

01600401
00000

«1000401
<0000

LOCKHFED
AH=56A

«1000+0)
¢1000+0)
«1000¢01
«0000
«0000
1000401

e 150001

21000401
«1000+01
«1000+0])

1000401
01000401
«100040)
1000401

01000401}
«10004+01
e1000+01

e1000+0]
¢1000401]
¢1000+01
e1600+01
«0000

1000401
«1000+01
«1000+01

«1000401
01000+01
1000401



For the YHC-1A it was decided not to employ MOSTAB to
calculate the derivatives. This was because published derivatives
were available from Ref. 29. These derivatives were calculated by
the manufacturer and use simple downwash models, not including
the cyclic variation of tip loss factor, B. Some accuracy is lost
because of this. On the other hand, the manufacturer undoubtedly
possesses good information on the important interference effects
between front and rear rotors. This would have to be estimated
if the YHC-1A derivatives were calculated by MOSTAB. It was felt
that the errors incurred in such estimates would exceed those
caused by oversimplified tip loss models. Thus, the manufacturer's
derivatives are used.

The resulting derivatives are presented in Volumes IIT and
IV (together with the transfer funotions) for the flight conditions
tabulated in Table III below. For the S-58 and AH-56A, the maximum
rate of descent corresponds approximately to the upper boundary
of the vortex-ring state.

TABLE III. FLIGHT CONDITIONS

HELICOPTER TOTAL SPEED RATE OF DESCENT
(xnots) (fps)
AH-56A 20, 40, 60, 100 | 0, 9.2, 19.2,

9.
.8, at each speed

Vertical Descent gé %.2, 19.2,

8-58 20, 1#0, 60, 100 o’ 705’ 15
22.5 at each speed

Vertical Descent | 0.9, 9.2, 19.2,

28,
60.] 0) 25
YHC-1A
80.1 0, 25

Vertical Descent]| O, 25
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V.7  CORREIATION OF DEKIVATIVES WITH FLIGHT TEST DATA

Before presenting transfer functions based on the published
YHC-1A derivatives and the AH-56A and S-58 derivatives calculated
by MOSTAB,it is highly desirable to check the accuracy of these
derivatives. The only really satisfactory check is to compare cal-
culated derivatives with those deduced from flight tests. Unfortunately,
many derivatives are hard to obtain from flight tests, and only
incomplete flight test data were available for the helicupters of
interest. However, an incomplete check is bette:r than none at all,
80 this section sumarizes the comparisons that were made between
calculated derivatives and the available flight test dzta.

In brief:

(1) Por the YHC-1A, the results of steady sideslip flight
tests vere available. These substantiate the published

derivatives Y“, I‘M’ N&, Yv, I‘v’ “v’ and YBR’ I"bR’ NbR'

(11) For the S-58 flight test data showing time histories of
responses to Bl &’ longitudinal control inputs were compared

to time histories predicted from the calculated derivatives.
The agreement is good for the longitudinal degrees of
freedom, but less so on the lateral motions induced by
longitudinal-lateral cross-coupling. Unfortunately, it

is not known wvhether any lateral control inputs were
tpplied, so the accuracy of the cross-coupling derivatives
remains uncertain. However,the longitudinal derivatives
appear to be substantially correct.

(111) No flight test data were available for the AH-56A;
wherever possible, manufacturer's wind-tunnel data were
used as inputs to MOSTAB, and derivatives appear to be
reasonable.

In general, there is little value in making camparisons
between the MOSTAB derivatives and other calculated derivatives.
This is because the other derivatives are generally calculated by
less sophisticated programs which do not include all the interference
velocities between components. For example, Ref. 24 presents S-58
derivatives and flight test data; however, the derivatives yield
responses which do not agree with the test data. This is principally
due to the neglect of main rotor downwash on the tail and tail rotor,
giving inaccurate Mw Adequate flight test data are difficult to
obtain, but they constitute the only valid criteria against which
calculated derivatives may be checked.
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YHC=-1A t Tests

Ref. 30 describes steady sideslip tests performed on a
YHC-1A in level flight at forward speeds of 45, 60, and 80 knots.
Derivatives for the latter two speeds are presented in Volume
I11; and as shown in Ref. 30, the steady-state variation of lateral
stick position (6,) and rudder pedal position (5 ) with sideslip
angle (B) can be Predicted from the following eq&ation, using
stability axis derivatives.

Yv g YaR v YsA 8A

o I.° ¢ = - L (105)
Ly B 5,
N 0o N o} N

This solution applies even to a basically unstable aircraft such

as the YHC-1A, provided it is stabilized by feedbacks from yaw

and roll ratec, these feedbacks being supplied either by the pilot

or the stability augmenter system. Figures 33 and 3% (taken from

Ref. 31) indicate that the calculated v, bR’ and &, derivatives are

ir reasonable agreement with flight test. Furthermore, the helicopter's
behavior is fairly linear with sideslip angle for moderate per-
turbations.

=30 Flight Tests

Seckel (Ref. 25) presents geometric and inertial data on
the S-58, wind-tunnel data on components, and manufacturer's
estimates of derivatives for the helicopter flying at 5,000 feet
with a gross weight of 11,600 pounds. Flight test data are also
shown, i.e., time histories of a response to a longitudinal stick
input in pitch rate, angle of attack, normal acceleration, and
alrspeed. These time histories are reproduced from the original
flight test report (Ref. 32), but for some variables the reproduction
is not sufficiently precise for purposes of checking derivatives.
Ref. 32 should, therefore, be used in preference to Ref. 25. 1In
addition, Ref. 32 includes the time histories of the lateral degrees
of freedom (although the lateral control time histories are not
recorded ).
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PEDAL POSITION, PERCENT OF TOTAL TRAVEL

FULL RIGHT

40
20

o -~ V o

= TN Ny —

20| — FLIGHT TEST LEVEL FLIGHT
40| —— CALCULATED 485 KNOTS
FULL LEFT
FULL RIGHT
40
20

0 W.L
20

LEVEL FLIGHT

~ 60 KNOTS
FULL LEFT
FULL RIGHT
40
20

o M
- M?:q'

LEVEL FLIGHT

- 80 KNOTS

-28-24 -20 -i6 12 -8 -4 O 4 8 |2 16 20 24 28

[]
FULL LEFY SIDESLIP ANGLE,DEGREES
o RIGHT

Figure 35. YHC-1A Pedal Position Versus Sideslip Angle.
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Figure 34. YHC=-1A Stick Position Versus Sideslip Angle.
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The time history response following a step B1 input

from trim (-0.015 rad.) at 74 knots C.A.8., 5000 ft., level
flight, was selected from the available flight test histories
of Ref. 32. The appropriate six-degree-of-freedom stability
derivatives generated from MOSTAB are shown in Table IV. The
derivatives were input into program ZEPLIN,which solves the
six-degree-of=freedom, small-perturbation, linear equations of
motion and obtains eigenvalues (R + JjI) and the modulus and
angle of corresponding residue vectors (L,A) for response to
e unit Bi step. The eigenvalues and residue matrix are shown

on Table V. The aircraft response was then obtained using the
following relationship:

'sn

Rpt .
Response = By Z e (Lr CosAr) Cos It (LrS:ln A) Sin It
r =1

(106)

The comparison of the MOSTAB-generated and experimental
time histories for the selected flight condition is shown on
Figure 35. For longitudinal motions, there is excellent agreement
with airspeed, pitch angle, and angle of attack, but poor agreement
with pitch rate. This discrepancy is attributed to malfunctioning
pitch rate instrumentation, because the measured pitech rate does
not agree with the differentiated pitch attitude.

For lateral - directional motion (Figure 36),the flight test
results show an initlial roll and yaw to the right; however, MOSTAB
derivatives show a roll and yaw to the left. There is a possibility
that the pilot applied some roll control as he pulled back the stick,
but the disagreement may be due to too large a MOSTAB-generated value
for L (-10,940 ft - 1b -sec ), causing a strong left rolling moment
as thé vehicle pitches up. Further studies and flight test comparisons
will be required to produce a sultable explanation for this disagree-
ment between time histories.

Summary

The MOSTAB program has been described in general, avoiding
technical detail which is given in Voiume II. Flight test data are
limited, but they generslly support the values of derivatives used
for the YHC-1A and S=-58.
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TABLE 1V S<58 DERIVATIVES FOR FLIGHTY TESTY CONDITION

SIKORSKY S=38 73 KNOTS 5000 FV. LEVEL FLIOHY FWD, C.0C,
SEE REFS, 25 AND 32

VEHICLE

WEIGHT

XCo

vCé

2066

01107008 ,9400-00 ,0000 ,0000
STARILITY DERIVATIVE MATRICES

X
Y
z
L
M
N

ZEFN<X

X
Y
4
L
M
N

v
=e1361¢02
01098001
-.720000‘
02137402
01106003
o, 765%¢02

U 0OT
03690-02
-, 7262-02
¢1053-03
=e1981-00
=e1607-00
«8099<02

c(nl
-.3872.°~
=,6522+03
=e9315405
063964403
¢9605+0S
e 785105

v
©,2267=00
©03349002
= 377701
©,2062403

e1790002
03494403

vV DoY
=,8526-03

06685=0]
*,1671=02

¢50864-00
©,5245-0]
2268401

ct 2)
=e6976403
1258405
03025402
0e1882+06
¢5190+04
4805403

W
*,1557+01
=o2662+01
©e2183¢0)

01326002
5892002
©072988¢03

W oOT
=e6382-01
«8638-01]
=oeA709-03
02353401
01959401
=e1042400

ol S ) )
«1218408
e1009+04
02802405
¢3210+04

91960006
03463408

[
*e7005+03
ve1360¢04
o 7174¢03
02033008

01070008
v, 4758403

® DOY
=,2570¢02
.99‘7001
=,8389-00
02673¢06
086154403
e, 4841402

Ct &)
©e1067403

05204404
=e1032+403

03163408
©e3360+06
1414406

e
012040046
©6969¢0)
-, 3487402
©o1094¢08
2600005
¢1070008

@ DOY
«e9115+01
e,2644402
«,800%5-00
«3945403

026724064
=o5217402

R
®,114240)
04766403
09191403
02179404
e1189406
*e1969+08

R DOV
=,2130+01
=41500001
=,2350-01

0208003
03676402
e 7643+02

=¢8800+03
«0000
02304+05

THE INERTIA TENSOR 5940404
«0000

=,8800+03

«0000
02750405
«0000

TRIMMED VELOCITIES WITH RESPECT TO OVERALL VEMICLE REFERENCE AXES~-
v v W (4 Q R
01230403 =,0000 “=¢6314401 ~-,0000 00000 =+0000
TRIMMED ITERATION COLUMN VECTOR, TE=-
e2507200 =,1755-01 ,2118-01 ,8137=0]1 =,5127=01 =,1546-01
STABILITY AXIS SYSTEM EULER ANGLES= THETA= ,1220-04 PHI ~,1544-01
AIRCRAFT INERTIAL SPEED= ,1232+03
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TABLE vV S<58 RESIDUES AND EIGENVALUES FOR FLIGHT TEST

EIGENVALUFS
R =0117800
I 0000

L «1178¢00
A 1800403
ECTORS
04269401
0000

v
v

<

L

A

L «1643402
A L0000

L +8962=-00
A L0000

1140400
0180003

¢5689=02
«1800+03

L)
»r

R 0262300
00000
EIGENVALUES

R =,3357-00

1 =41316+01

L ¢1358+01
A =,1043+03
VECTORS
Ut 02774401
A 986702

» » -~

VL 1377403
A +1795403

02077402
01427403

01251401
03267401

02553=00
06254402

v
>r >»r >»rr

01322401
=e1077+03

P o
>

«0000

06281401
01800003

«6195<00
00000

0639100
00000

02586'00
00000

¢1626-01
e1800+03

01257-01
«0000

=,1267+01

«0000

e12674+01
«1800+03

e1487¢03
01800003

e9137403
1800403

e11584+04
«1800+03

05993401
«0000

e6573¢01
«0000

01028402
«1800+03

=e628100]1 «,6549=00

«0000

06549<00
¢1800403

0 1356002
«0000

01719406
00000

o 17754064
«0000

01626402
0180003

01407+0]
1800403

01492402
<0000

«0000
«0000

«0000
«0000

01502403
«1800+03

«0000
«0000

«0000
20000

«0000
« 0000

«0000
«0000

«0000
«0000
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0%182-01
e J2R9-00

¢3316-00
08278402

e8357403
01754403

e JR06+0
01592403

04901403
¢1308+03

0636601

=,291R¢0?

e294140)
e1572403

02467001

=e1044+03

«0000
«0000

0000
«0000

00000
«0000

01084405
«0000

«0000
«0000

«0000
«0000

«0000
«0000

«0000
«0000

4182-01
=, 328990

«3316=00
=oR275¢02

¢8357+03
«e1754003

03806403
«,1592+03

04901409
=01308+03

04366+0])
2918402

02941401
=o1572+03

2246T+01
01046403

<0000
«0000

« 0000
00000

«0000
«0000

«0000
«0000

01160403
«0000

«0000
«0000

«0000
00000

«0000
«0000

CONDITION
*e3357-00
01316001

0e13%5R001
01043403

02774401
9867402

01377403
1795403

«2077+02
®e1427¢03

01251401
=e3267+01}

e25S3=-00
=,6254+02

01322401
«1077403

0000
«0000

«0000
«0000

«0000
«0000

«0000
«N000

«0000
« 0000

03765-0)
«0000

04741'00
«0000

03070+02
01800403
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CHAPTER VI. TANDEM=ROTOR HELICOPTER
OPEN-LOOF DYNAWICE

VI.l ZNERODUCELC

In this section we consider the transfer functions of the YHC-1A,
which is taken to represent a typical tandem-rotor helicopter, The
transfer functions are presented in Volume III. Unlike the single-
rotor and compound configurations, for the tandem configuration lateral-
longitudinal cross-coupling effects were neglecteds thus, lerrate
lateral and longitudinal transfer functions were calculated. The
format of the transfer functicn printe-out is explained below.

The format is basically similar to that of Reference 33, but a
number of detailed refinements have been added. These include addi-
tional sets of numerators referred to a station distant from the c.g.
The coordinates of this station are conveniently chosen as the location
of the pilot, to relate pilot cues to the motion of the c.g. of the
aircraft,

vi.2 1 D c8

As noted in Volume III, the derivatives are inputted in body
(i.e., waterline) axes. The input format of the program used contains
a number of redundancies, e.g., Mach number, which are arbitrarily put
to zero.

The print-out, in Volume III, gives:
(1) Derivatives in stability axes

(11) Eigenvalues, and associated information, such as
the coefficients of the denominator quartic

(1i1) Numerators for the pitch attitude control, which is
here designated ' CYCLIC'" .

Actually, the YHC-1A control is predominantly differential col-
lective, though some cyclic variation is included as shown by the non-
zero Xs_ at hover. For each numerator the roots, D.C. gain (i.e., Bode
gain), and root locus gain are presented. In addition, various
secondary items of information such as the coefficients of the numera-
tor polynomial  are printed out. The numerators correspond to 6, u, w,
a, (as measured by an accelerometer, 8, = w - U,a+e sin v Ja dts, and

* The equations of motion are the standard longitudinal and lateral
sets. These can be obtained from the coupled equations given in
Chapter VII by neglecting all cross-coupling terms.
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horizontal velocity perturbations X (= u for Yo = 0)., In addition, the
print-out includes rate-of-climb perturbations ( B - ho) and perturba-
tions in velocities parallel and normal to the undisturbed flight path.
Note that only for Y, = O is the normal velocity perturbation equal to
the rate-of-climb perturbation.

For steep approaches, the '"normal velocity' perturbation indicates
the rate of deviation from the desired flight path. The ' parallel
velocity' perturbation indicates the rate of deviation from the desired
position along the desired flight path. Hence, this quantity is impor-
tant for stationkeeping, e.g., in formation flight or scheduling of
multiple operations.

Longitudinal Eigenvalues

For ease of reference in the subsequent discussion, the eigen-
values are summarized in Table VI below.

TABLE VI, TANDEM-ROTOR LONGITUDINAL DENOMINATORS

Rate of Horiz,* Case

Descent Speed No. E%g:g;:i2§s

(fpm ) (knots)
0 0 L5 =97k, -.35, .099 + .45 ]
1500 0 L6 -.824, -,25, .109 + .70 J
0 60 L3 -2,34, -.214% + 3453, W73
1500 60 Lk -2.35, -.35 + .293, .ko6
0 80 Ll -2.50, -.212 + .333, .43
1060 80 -- -2.37, -.31 + .32j, .koo
1500 80 L2 -2.36, -.35 + .293, .hob

Before discussing the changes that occur between level flight and
steep descent, the nature of the modes for level flight will be reviewed.

* This column shows horizontal speed, not total speed, and is therefore
zero for vertical descent.
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For level flight,the eigenvalues are distributed similarly to
those of the HUP-1 given in Reference 34 (p. 258). The principal
difference is about a 50% reduction in the magnitude (i.e., fre-
quency). This would be expected from the increased mass and size
of the YHC-1A (see Reference 35). It appears, therefore, that the
general conclusions of Reference 34 regarding the physical nature of
the modes should still be valid. That is, away from hover, the motion
consists of three modes, one of which 1s aperiodic and appreciadbly
larger than the others. This mode is a degenerate short-period mode
with time constant '.l.'B approximated by the standard formula

Py
> :
X (M + 2+ U M) (Mg + 2y + U M)
= + +U M - M, Z
T, o W Mqlw
(107)

This mode contains little u and is dominated by w and 6 motions.

The remaining modes involve u, w, and 6 and can be traced to the
effect of the negative M, on the short-period roots. The root-locus
presentation of page 119 of Reference 34 can be used to predict the
eigenvalues, with the condition that -Zw + (Zu I‘Q,/Mu) <0. In summary,
the open-loop longitudinal modes in level flight are the conventional modes
for a tandemerotor helicopter, as predicted in Reference 34.

In this report, our principal concern is to detect and study changes
in dynamic characteristics from the level flight condition, so we shall
now consider the descent cases; a more complete discussion of level flight
dynamics of tandem-rotor helicopters is given in Reference 3k,

At 60 and 80 knots, descent angle has little effect on the denomina-
tor roots, as shown by Table VI. The only significant change is an in-
crease in phugoid damping. This would be expected, since the phugoid
damping increases with -X;. Xy depends on the trimmed drag/lift ratio,
which of course must increase to balance out the X-force gravity com-
ponent in descent.

For vertical descent, the changes are also rather small. Hence,
if any marked changes in tandem-rotor control characteristics occur,
when going from level flight to descent at the same horizontal speed,
the changes must be associated with the transfer function numerators.
These will now be discussed, '
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Longitudingl Numerators

At a given horizontel speed, the 6/3e numerator shows little
change with rate of descent. For ease of reference, the e/be
numerators are summarized below, We employ the convention that a
positive time constant is "stable'"; i.e., the zero is in the left-
half complex plane.

TABLE VII. TANDEM-ROTOR 6/, NUMERATORS

Rate of Horiz, Case Root-Locus

lzet‘::n‘;nt (il:x:ﬁ) = s (];ﬁ sec) (r];.{i‘]}(:ic)
0 0 L5 .355 +.019 +.3789
1500 0 L6 3436 | +.0156 +.267
0 60 1 | s w0 no7 |
1500 60 L4 l A7 +.0312 +.912 |
0 80 Ll : 48 C +,043 +.935 |
1500 | 80 L2 .50 i +.038 +.99 '

| } i i j‘

- R - wane

The effect of descent on 1/Tg), 1/Tg, is slight. As noted above,
the changes in the denominator roots are also small, Hence,any effect
of descent on pitch control must be associated with feedbacks other
than 6, One of the most common feedbacks for tandem-rotor configura-
tions is u—bde. This is employed to correct the negative M; charac-
teristic of tandem-rotor helicopters at forward speed. Accordingly,
the u /Se transfer functions are examined below,

Volume III presents u numerators in stablility axes, and also in
axes parallel to the stability axes, but located 17 feet farther forward,
at the cockpit., The latter axis system is appropriate when considering
feedbacks from air data, since such data are measured well forward on the
fuselage to minimize rotor downwash effects. For inertial systems using
stable platforms or frequently updated corrections obtained from ground
tracking equipment applied to strapdown components, " stability axes' with
origin at the c.g. appear to be more appropriate, Thus, for S.A.S. design
and such pilot tasks as stationkeeping, the "cockpit' axes are appro-
priate, whereas for inertial guidance the usual "stability" axes are
relevant. As shown below, the two sets of numerators show marked dif-

ferences,
115



First, consider the u —&, stability axis numerators tabulated
below., Root locations are presented here, not inverse time con-
stants; i,e., a negative real part of the root location indicates a
""stable" root.

““““““ TABLE VIII, TANDEM-ROTOR u/bb NUMERATORS IN STABILITY AXES
Rate of Horiz, Case Root-Locus
Descent Speed No. Gain Root Locations
(frm) (knots) (rad/sec)
0 80 Ll 185 -9.99, -1.14, 6.84
1500 80 L2 .312 -10.35, -.656, 7.45
0 60 L3 .189 -10.2, -.87, 7.07
1500 60 L4 OT -9.08, -.567, 6.83
0 0 L5 178 -9.05, -.37, 7.118
1500 0 L6 134 -1.045, 6.68, 14,39

At 60 and 80 knots, there is little change in the numerator with
descent angle. The vertical descent case shows a marked change; however,
u/de referred to stabllity axes is unimportant for control in vertical
descent, since u is then vertical, and is more logically controlled by
collective, rather than by Se, which is the pitch attitude control.

Thus we conclude that, for inertial feedbacks referred to the c.g.
and to the aircraft's desired flight path, there is little effect of
descent on the vehicle open-loop or closed-loop dynamics. By contrast,
for feedbacks using air data, or other data referred to the pilot's
location, ahead of the c.g., the effect of descent angle is considerable,
as indicated overleaf, in Table IX.
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 TABLE IX.  TANDBN-ROTOR u/S. NUMERATORS IN COCKPIT AXES
te of Horiz, Case Root-locus
scent Speed No. Gain Root Locations

(fpm) (knots) (rad/sec)
0 30 n 164 -1.71, 3.22, 16.1
1500 80 L2 146 -.796 + .639J, 105.9
0 €) L3 BLY -2.53, -1.34, 24,8
1500 60 4 .126 -.789 + .53§, 122.1
0 0 L5 ATT -9.05, -0.37, 7.11
1500 0 L6 .166 -1.32, -0.285, 50.36

Some significant changes occur in going from level flight to descent.
At 80 knots, the right-half plane zero at 3.22 rad/sec joins with the left-
half plane zero at 1.71 and forms a complex peir in the left=half plane.
The third zero moves into the distant right half-plane, becoming too far
out to be significant. Similar changes occur at 60 knots. These changes
are potentially significant, because there are no near-cancellations
between numerator and denominator in the transfer functions, listed below
for ease of reference.

u/be Transfer Functions at 80 kpotg Horizontal Speed

Level Flight:

u . 164 (8 + 1,71)(s-3,22)(s - 16.1
Be cockpit (s + 2.50)(= + .22 + .333) (s - .b3)
1500 fpm Descent:

u - 1‘46 S + ., + .6 s = 10H6.
E / cockpit zs+ 2.%5!3 +.3%+.29 Jj(s' .%.
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The rather small l/Tgl (see Table VII) limits the degree to
which the unstable eigenvalue can be stabilized by 6 and q feedback.
Hence it is quite possible that the u —5, feedback will be required to
achieve stability, even if 0 and q fecdbacks are also employed. In
these circumstances, the changes in the u/de transfer function should
be considered carefully when designing stability augmentation systems
using air dats recorded awvay from the c.g.

Let us now consider the effects of descent on collective pitch
control. The primary function of collective pitch is to control the
deviation of the air~raft c.g. normal to the desired flight path. The
appropriate transfer function numerators are summarized below.

TABLE X. TANDEM-ROTOR COLLECTIVE PITCH NUMERATORS FOR VBIDCIH

PERTURBATIONS OF C. G. NORMAL TO DESIRED FLIGHT PATH
Rate of Case Root-Locus
Descent Speed No. Gain Root. Locations
(fm) | (knots) (rad/sec)
0 8o n -9.51 -1.87, -.209, .49
1500 80 L2 -8.99 -1.13, -.T78, .2148
0 60 L3 -8.56 -1.84, -.217, .58
1500 60 77 -7.8% -2 + 31354, .267
0 0 L5 ~7.43 -.953, .105 & .bb5§
0 1500 L6 -1.466 -.652, .054 + 1.26§

At hover, the usual cancellation of the denominator roots occurs,
leaving the transfer function as R/6, = Z5,/s - 2,). For vertical
descent, the above transfer function becomés %/6, and is not important
for practical flight control. Chapter VII shows that for single-rotor
helicopters, control of velocity normal to the unperturbed flight by
collective pitch becomes difficult at very low speeds (=20 knots) in
steep descents. Unfortunately, derivatives were not available for the
YHC-1A in such conditions, so it is not known whether this effect (due
to an uncancelled right-half plane zero) also occurs on tandem-rotor
helicopters.
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The importance of the changes in the above numerators for
descending flight is hard to assess in general, because the " normal
velocity" collective control is affected by feedbacks to cyclic from
u, q, and 8. Such feedbacks will probably be employed for inner-loop
stabilization.

It is not feasible to discuss all the tandem-rotor longitudinal
transfer functions that are tabulated in Volume III, However, from those
that have been examined here, it would appear that descent angle does
not cause radical changes in the transfer functions. The most important
exception to this generalization is u/5_/ cockpit. The numerator of this
transfer function exhibits some ngnmiant changes, which should be
considered when designing stability augmenter systems that employ M
augmentation based on air data sensors located away from the c.g.

VI.3 JAIEMAL DYRACICS

The lateral transfer function denominators for the YHC-1A are
presented in Table XI. The table has been arranged to fit the following
discussion which first considers the variation of the level flig:t

denominators with forward speed, and then analyzes the effects of
descent.

g TABLE XI. TANDEM-ROTOR IATERAL EIGENVALUES

poscent | Bpeed | Chae o

| (fpm) | (knots)

0 0 LS 0594 + 5113 | -.057 | -.975
0 60 L3 225 + 6043 | -.058 |-1.29
0 80 Al 281 + .642j | -.0768]-1.36
1500 0 L6 052 + .7073 | -.052 | -.925
1500 60 L 134 .5k2 -.0u8 | -1.77
1500 80 L2 -.1k0 .T72 .0023 | -1.832
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The hover behavior is standard and closely analogous to the
longitudinal case illustrated in Table VI. Note the close proximity
of the frequencies of the longitudinal hovering phugoid (w = 0,45
rad/sec) and the lateral hovering dutch roll (w, = 0.51 rall/sec).

As stated in Chapter V, for the tandem configuration, longitudinal-
lateral cross-coupling was arbitrarily neglected. Undoubtedly, some
coupling exists, and the near-coincidence of ®. and ® may make this
coupling important for the YHU-1A. The questiofiwill oRly be settled
by more extensive measurements of derivatives and flight test responses
to control inputs.

The principal effect of descent at the higher speeds, is to
change the unstable dutch roll oscillatory roots into an aperiodic
pair. At 60 knots,both these roots are unsteble; but as speed is
increased one becomes stable while the other root moves farther
out into the right-half plane. For the YHC=1A, this degeneration of
the dutch roll roots into an aperiodic pair is a consequence of the

low (actually negative) N,

N_remains negative for all the level and descending forward
flight cbndivions considered here, when measured in stability axes
(which is the appropriate axis system for defining directional sta-
bility). It is difficult to design a tandemerotor configuration with
the c.g. far removed from the mid-point of the rotor axes; hence,
negative N is characteristic of these configurations. It is
usually "sYxeq" by feeding back p to 6, to achieve static stability,
plus additional feedbacks of ¢ to §,, ald possibly r to 8y command’
to move all the roots into the right-half plane and to achieve good
turn coordination.

Feedback of sideslip alone is usually insufficient to ensure
stability. This is illustrated in Figure 37 for the 80-knot level-
flight case. Note the awkwardly-placed zero of the sideslip
numerator. Because of the fundamental importance of directional
stability for good handling qualities, particular interest attaches
to the variation of the v/a transfer functions with descent angle.
Numerators of these transfeg functions are tabulated below.
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Figure 57. Root Locus for v — §_ Feedback on
Tandem=Rotor Helicoptgr.
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TABLE XII. TANDEM=ROTOR v/aR NUMERATORS

e e —— S e s Sy

Rate of Horiz. 1 Case ! Root Root ILocations
Descent Speed No. -Locus
(fpm) (knots) | | Gain (rad/sec)
0 80 | n | .099 - .92, -.00145, 256.9
1500 80 L2 .07 - b1, -.020, L22.9
0 60 L3 .106 - .86, -.0025, 163.5
1500 60 L ,073 - .151,-,0239, 524.9
0 0 L5 | .46 - .0226,.79 + 6.,04j
1500 ; 0 L6 i J1h3 -1.33, -.055, T7.96

In these numerators, v is referred to stability axes. For
analyzing stability augmenter systems, it is perhaps more meaningful
to refer v to a location near the cockpit, where the sideslip
sensing ports are located. However, as shown in Volume III,
there is relatively little difference between the v/§_ transfer
functions referred to either location at 60 and 80 knBts. The v/6
transfer function is not particularly important at zero forward
speed, since v is then controlled directly through lateral cyclic
pitch.,

R

From Table XII,the effect of the descent on the v/6_ numerators
is seen to be relatively minor at 60 and 80 knots. The lgw-frequency
zero limits the possible improvement of the unstable spiral root at
80 knots, suggesting that additional feedbacks (e.g., § — &) are
required to stabilize this root. The degenerate dutch roll modes
may also require excessive gain for stabilization throughv—_&p
feedback alone. (The low accuracy to which v can be measured constrains
practical v —= §_ feedbacks to rather low gains.) The net effect of
descent upon v R 6_ feedback control seems to be adverse, and it
appears that a systgm designed for level flight would not necessarily

be suitable for steep approaches.
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From the above discussion,v -» 8_ feedback appears to be manda-
tory for tandem-rotor helicopters. Such feedback represents an "inner
loop" which will affect the other loop closures such as $#- 8 . In
level flight, the O/5 numerator exhibits some undesirable nen-
minimum phase charactefistics® as noted 1. Reference 34. These become
appreciably worsened in descent, as shown in Table XIII.

B TABLE XIII. TANDEM ROTOR $/5, NUMERATORS

ate of | Horiz.| Case | Root Root Locations

| | < e | e
o | 8 | wm 495 - .70, .543 |

1500 go [ 12 | w8 1 109, o1 '
0 60 L3 .51 - U496, .368 .

500 | 60 | m | s . .85, .70 :
0 o | 15 .55 - 249, -.057

1500 ; 0 | 16 .52 - .055 + .02j

The poor handling qualities associated with the unaugmented
®/8, closure in level flight noted in Reference 34 are likely to
bec&ne even more degraded in descent. For example, at 80 knots,
the 9/8, transfer fraction has one right-half plane zero and two
right-haif plane real poles, thus presenting a situation which is
quite difficult to stabilize.

An important feedback for human-pilot control is y . §,,
where y is the lateral displacement of the helicopter measure
either at the c.g. or at the cockpit.

* A norminimum phase transfer function is one with one or more
right=half plane zeros.
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The print-out in Volume II includes both alternatives, however
at the higher speeds the differences between the transfer functions
for ylaglcockpit and y/8 /c.g. 2F¢ relstively minor. For vertical

descent the differences become more pronounced, as shown by the
following comparison.

TABLE XIV. EFFECT OF VERTICAL DESCENT ON TANDEM=ROTOR
y/5, NUMERATORS MBEASURED AT THE CENTER OF
GRA AND AT THE COCKPIT
light Case| Location | Root Root Location
ondition | No. | of Origin| -Locus (rad/sec)
Gain
P‘bve!' Ls c.so 0”8 -.082 : !‘022.1. -0037’ -00177
Flover LS cockpit |[3.26 -.108 + 2,333, -.053, -.0123
tertic&l
escent 16 c.8. .98 -.083 ¢+ 4,054, -.051, O
&:rtictl
scent L5 cockpit |-.0116 -26.7, -.083, 0, 52.8

A complete assessment of the significance of this difference in
y/8, is beyond the scope of this report. It would involve loop
clognres using assumed models for the pilot; e.g. the "series closure”
model used in Reference 356 and in the PAPER PILOT program described in
Reference 37. The validity of these closures for conditions other
than hover is subject to question. However, if the series closure is
employed, the y/é 4q W $/8, transfer functions would be relevant
for the inner and/S8E¥Ritoops. Af shown in Tebles XIII and XIV, marked
changes in these transfer functions occur betwevn hover and vertical
descent. It ic therefore to be expected that correspondingly large
changes in handling qualities will appear when going from hover to
vertical descent.

Summary

In this chapter, we have reviewed the major effects of descent
on the transfer functions of a typical tandem-rotor helicopter. It
was assumed that longitudinal and lateral motions were uncoupled.
Longitudinally, the effects of descent (at normal approach speeds of
GO to 60 knots) are generally minor. Some increase in phugoid damping
occurs, but the important 0/be pitch attitude control numerator
hardly changes. Similarly, little change wvas observed in the u/ft,
numerator referred to stability axes.
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However, marked changes occur in the u/@ numerator referred to
body axes with origin at the cockpit. These changes are potentially
significant for stability augmenter systems which employ air data sensors

to augment M,

Laterally, the effects of descent are more noticeable. At
forward speed the unstable dutch roll degenerates into an aperiodic
pair, having at least cne unstable root. This unstable root is usually
stabilized by v Op feedback; however, this feedback has little
effect on the spiral mode (which may be unstable) because of a
"close-in'" zero in the v/6, transfer function. This awkwardly
placed zero is retained in descending flight. Thus, additional feed-
backs (e.g., § 3, r bp) are still required to achieve good handling
qualities. The nonminimum phase characteristics of the ¢/b
mmerator worsen in descent, thus increasing the need for léill
further feedbacks, such as r 5p. Because of the large number
of feedbacks required, it is hard to form an assessment of the
effects of descent on closed-loop characteristics without per-
forming detailed calculations on '/~ ‘ious alternative loop closures.
However, the changes in the transfer functions are sufficiently
large and numerous to indicate the necessity of performing these
calculations for descent in addition L level flight.
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CEAPIER VII. SINGLE-ROTOR HELICOPTER DYNAMICS

VII.1. INTRODUCTION

This chapter discusses the open-loop and closed-loop
dynamics of a typical single-rotor helicopter, the Sikorsky S-58.
The basic data are presented in Volume II1, which tabulates deriva-
tives and eigenvalues.

The flight conditions presented in Volume III include
level flight and rates of descent of 7.5 fps, 15 fps, and 22.5 fps.
At low speeds the latter condition is virtually at the boundary
of the vortex-ring state. For each rate of descent, true airspeeds
of 0, 20, 4O, 60 and 100 knots are considered.

All lateral-longitudinal cross-coupling derivatives were
included, as shown by the equations of motion presented in Figure 38,
To illustrate the importance of cross-coupling, one case was re-run
with all cross-coupling derivatives set to zero., This was done
for level flight at 100 knots.

The cyclically varying tip loss factor was included in all
cases. To demonstrate the effect of tip losses on open-loop
dynamics, two cases were re-run with tip losses removed. These
cases were 22.5 fps rate of descent with 40 knots airspeed, and
vertical descent at 22,5 fys.

Bigenvectors for u, v, v, p, qQ, r, in stability axes,
residuss for unit impulse inputs in Au, Bu’ eo, eo,m, and

transfer functions relating u, v, v, p, q, r, to A‘., By’

0., 6 o, Yere also calculated for all the above cases. To
sfve #lce, these data are not presented in full in Volume III,
but selected valuss are given in this chapter where appropriate.

The main points discussed here are:

(1) The effects of forward speed, rate of descent, and
tip losses on the eigenvalues

(11) Cross-coupling effects c. open-loop dynamics as
demonstrated by the eigenvectors

(111) Cross-coupling effects on clcsed-loop dynamics and
husan pilot control as demonstrated by the transfer
functions and residues



The volume of data generated for the S-58 is large, and it is
not easy to condense it to its essentials. Only the '"highlights"
can be indicated here. The reader will gain worthwhile insight into
helicopter dynamics by exemining Volume III in detail.
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VII.2. EIGENVALUES

The eigenvalues are summarized in Table XV and are discussed
below.

The effects of cross-coupling on most eigenvalues are not
large. For example, at 100 knots in level flight, only two modes
are significantly changed when the cross-coupling derivatives are
suppressed. This is illustrated by the excerpt from Table XI
reproduced below.

§-58, 100 Knots Level Flight

Cross=-Coupling Eigenvalues

Yes | -.46 + 1.63],| -4.96,] -.12,[ -.b7, | -1.82, [ .12 + .33

No -.48 + 1.733, | -5.23,| -.11,] -.32, | -1.79, | .22 + .34

As will be shown later, the fact that most eigenvalues are
essentially unchanged by the cross-coupling derivatives does not mean
that cross-coupling effects are unimportant.

For level flight, the eigenvalues change only slightly as
forward speed is increased. The unstable phugoid mode
and the degenerate short-period modes characteristic of hover remain
remarkebly unchanged with forward speed. This is contrary to the
usual trend noted in Reference 34, where the phugoid becomes stable

and the 1/T 1/Tsp2 modes merge to form the conventional short-

)
period. 5P

The roll subsidence root remains roughly equal to L, over the
speed range O to 100 knots. The dutch roll mode is stable even at
hover due to the N__ of the tail rotor as explained in Reference
38, page 15). The %requency increases from w = 0.73 to w = 1.163
rad/sec,and the damping ratio rises slightly from 0.098 to 0.131.

In descent, at the higher speeds there i1s not much change
in the eigenvalues. By analogy to fixed-wing aircraft, in which the

phugoid damping ratio is roughly proportional to(D/L),one would
expect that would increase in descent. This does occur, but the
effect is not ‘large. Thus at 100 knots in level flight,{_ = -.172,
whereas at the same horizontal speed and 22.5 fps rate of~descent,

t_ = -.14. At lower speeds a similar effect occurs. For 20 knots
foPward speed in level flight,t = -.111; with the same horizontal
speed and 22.5 fps rate of desc nt,gp = -.057.

The largest effect of descent on the eigenvalues occurs at very low
forward speeds. In addition to the increased phugoid damping noted
above, the degenerate short-period roots coalesce to form a heavily
damped oscillatory pair.
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In summary, it appears that the variation of the eigenvalues
both with horizontal speed and rate of descent is less than one might
have expected. In part, this is due to the small and rather low
aspect ratio tail surfaces of the S-58. These are extremely ineffective,
in that M _remains positive throughout the speed range 0-100 knots. A
more effective tail would tend to produce "airplane" type modes, i.e.,
oscillatory short-period and stable phugoid, as speed is increased.

VII.3. CROSS-COUPLING EFFECTS

As noted above, only minor changes in the eigenvalues occurred
when the cross-coupling derivatives were set to zero. This trend is
shown on Table XV for 100 knots level flight, but has also been verified
by some calculations (not published here) for descznding flight and
lower speeds with and without the coupling terms. From this, it might
be inferred that cross-coupling effects are minor. Nothing could be
further from the truth! Examination of the print-outs (Volume III)

reveals strong cross-coupling at all flight conditions.

In this section we demonstrate lateral-longitudinal cross-
coupling by three complementary approaches:

1. Calculation of transfer functions with and without the
cross=-coupling derivatives

2. Calculation of the residues of the partial fraction
expansion of the Laplace transform of the time response
to a given input, such as a step or impulse in Bls’ or 00.

3. Study of the eigenvectors (the ratios of which equal the
ratios of the residues in each degree of freedom for a
given eigenvalue).

We show that the cross-coupling between longitudinal and
lateral motions is strong for many of the modes. Furthermore, the
cross-coupling occurs at all forward speeds and rates of descent
examined here. In this respect the S-58 is believed to be repre-
sentative of single-rotor helicopters in general. Little change
occurs in the lateral-longitudinal cross-coupling for each mode as
descent angle is increased at a given forward speed. Hence, the
explanation of the difficulties encountered in flight path control in
steep descent must be elsewhere. In the final section o£ this
chapter, the culprit is identified as a nonminimum phase y/U
transfer function. This transfer function is crucial in flight path
control at low speeds, and it is shown that in descent a nonminimum
phase zero appears which causes a marked deterioration in the achievable
level of accuracy with which the desired approach path can be followed.,

*A nonminimum phase transfer function has one or more right-half
plane zeros. The terms 'nonminimum phase zero' and 'right-half

plane zero' are synonymous.
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Effect of Cross-Coupling Derivatives on the Transfer Functions

For brevity, transfer functions will not be written in the
usual form; e.g.,

r=n

n (S + 2z )
Output(s) _ _(Root locus gain) r=1 F
Input(s - i=m
& 1 (s + )
i=1
Instead, we adopt the equivalent notation
o n =2 (-z)
utput  _ (Root locus gain) "r =1 r

Input i
For example, the transfer function

v;: o) = ikl (s +0.802) (s

- 0.32)
(s + 0.312)(s - 0.0354 + 0.3L43)(s - 0.0354 - 0.343)

is written as

w___ _1s5h.4 (-0.802) (+ 0.32)
0, - (-0.312)(+ 0.035L + 0.34j)

In this abbreviated style,right-half-plane poles and zeros
are indicated by numbers with positi—-e real parts.

As noted in Table XV, the 100-knot, level-flight case was run
twice. Firstly, all the derivatives calculated from MOSTAB were
included. Secondly, all derivatives coupling longitudinal forces
or moments with lateral perturbations and vice versa were dropped.
In addition, all lateral forces and moments produced by 6 _ and Bl
were put equal to zero, as were all longitudinal forces and moments®
produced by eoTR and Als

The results are compared in Table XVI.
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TABLE XVI. EFFECT OF CROSS-COUPLING DERIVATIVES;
SIKORSKY $-58, 100 KNOTS, LEVEL FLIGHT

Cross Pitch Raxe/ﬁls Transfer Function

Coupling

No 8.43(-0.657)(-0.029)(0)
(=0.33)(-1.79)(0.219 + 0.336])

Yes

With approximate pole-zero cancellations removed, this becomes:

Yes 8.48(0.017)(-0.061)(-0.66)
(0.466) (-1.82)(0.12 + 0.33])

Cross Roll Ruto/Al. Transfer Function
Coupling
No -59.0(0.,0000017) (~0.60 + 1.643)

(-0.11)(=5.23)(~0.476 + 1.73J)

Yes ~-58.9(0.000053) (-0.58 + 1.693)(0.234 + 0.3283)(-1.86)(-0.31)
(=0.117) (-4.96) (-0.466)(0.12 + 0.333)(-0.46 + 1.63j)(-1.82)

With approximate pole-zero cancellations removed, this becomes:
-58.9(0)(-0.577 + 1.693)(=0.311)
(-0.117) (-4.96) (-0.46 + 1.633) (-0.466)
e —

Yes
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Table XVI shows that the q/B1s transfer function and the
p/A transfer function are hardly changed by the presence or omission
of Cross-coupling terms. Of course, if the cross-coupling terms are
omitted,then the p/Bls and <1/A transfer functions will be zero.
This would be a seridus error. l@o see just how serious, consider
the p/Bls andq/Als transfer functions. These are listed in Table XVII.

TABLE XVII. CROSS-COUPLED TRANSFER FUNCTIONS;
SIKORSKY S-58, 100 KNOTS, S. L., LEVEL FLIGHT

-0.906(-30.27)(-0.56 + 1.673)(0.077)(-0.67)(-0.086 + 0.957)

Als (-0.117)(~4.96)(-0.466)(0.12 + 0.333)(-0.46 + 1,635 -1.82L)

» - 0.048(0.093)(597.2) (-0.11 + 1.83j)(0.000012) (1.94) (-1.37)
B..  (-0.117)(-1.96)(-0.466)(0.12 + 0.333)(-0.46 + 1.633)(-1.82k)

1s

Expanded in partial fractions

= 0,061 - 6. + L.91 +1.82 2 24,14°
‘1‘3‘L s + 0.117 s+ E.§’o S+t 0.6 5 - 0.12 - 0.337

1s

£1.82 £-24.0°  + 1.63¢ 96.9°  +1.63¢ 96.9° - 0.9
5-0.12+0.33]) s +0.h6-1.633 s+ 0.6 + 1.63] s + 1.82L

E—

It is not easy to assess the relative magnitude of the pitch
versus the roll motions produced by B, by comparing the transfer
functions as listed in Tables XVI and XVII. A more direct comparison is
obtained by expanding the q/B,_ and p/B. transfer functions into
partial fractions and comparlﬁ% the magnitude of each coefficient in
the expansiomy i,e., each residue, as shown in the lower half of
Table XVII. Table XVIII shows such a comparison. For compactness, some
numbers have been rounded off in Table XVIII, and only the residue
corresponding to the upperehalf plane root of each complex pair is
shown.
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TABLE XVIII. CROSS-COUPLING EFFECTS ON B, IMPULSE INPUT;
SIKORSKY S=58 AT 100 KNOTS, SEA LEVEL
Level Flight 7.65 Deg. Descent 1
Root Residues Root Residues
, rad/sec P q s, rad/sec b9 q
- 117 .061 .0033 - .0926 - 0062 | - .797
-4.96 -6.99 .7245 -5.25 -5.59 169
- 466 4.91 - 622 - b2l 6.16 - 797
121 1.82 1.2 .091 2.39 1.18
+ 4335 ¢ 24° |ez-1520 + .31j L 19 l-1470
- 46 1.63 264 - 541 3.14 511
+1.635 | «97° | 2 24° + 1.5h43 < 107° £29°
-1.824 - .955 | -6.942 -1.865 -2.37 -6.851
w

Table XVII shows p and q residues for B1 inputs at two flight
conditions. To form a complete picture of cross-coupling,u, v, w, and
r must also be considered. However, Table XVII suffices to demonstrate
that, in level flight at 100 knots, B, _ induces considerable roll
(compared to pitch) and that this croSg-coupling is not much changed
by descent.

To understand Table XVIII, first compare the relative magnitudes of
the residues for each mode. The relative importance of p to q in each
mode depends upon the ratio of the residues. For example, Table XVIII
shows that the rapidly decaying s = 4.96 mode is predominantly roll.
On the otner hand, the unstable oscillatory mode displeys almost as
much pitch as roll, and the s = -1.82L4 mode has about seven times as
much pitch rate as roll rate.

The above remarks indicate the relative magnitude of pitch and
roll in each mode, but this information, by itself, is insufficient
to predict the cross-coupling induced by the pitch control, B, . To
determine that, we must scrutinize the absolute magnitude of €ach of
the q residres. If the residues of the "pitch" modes (s = 0.12 #*
0.33j, s = =1.224) are very much larger than the residues of the other
"coupled" or '"roll" modes,then the response will be dominated by pitch,
and B,  will induce little cross-coupling. Examining Table XVIII leads
to theé"conclusion that although the residues of the "pitch" modes are
somewhat larger than those of the other modes, the difference in
magnitude is not so overwhelming that we can say that the roll induced
by By is small. We therefore conclude that Bls induces appreciable
roll in level flight at 100 knots.
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The descent situation is summarized by the right-hand side of
Table XVIII. Overall, there is very little change in the residues between
level flight and descent at 100 knots. If this result is representative,
it implies that the difficulties in control in steep approaches due to
cross-coupling are no worse than those encountered in level flight.
Hence, we cannot ascribe the difficulties experienced in following

steep glide slopes tochanges in cross-coupling between leve) flight
and descent.

To verify that the above result is representative, we have
calculated the residues for w, v, w, P, q, r, to AIs’ B1s, &)

eoTR for a wide range of flight conditions,

o,

Table XIX illustrates a typical comparison between level flight
and two descending cases, all at 40 knots alrspeed. This confirms the

conclusions of Table XVIIIthat descent angl~ has only a minor influence
on cross-coupling. From examination of the residues for the entire
range of flight conditions present¢d here (O to 100 knots airspeed,

and zero to 22.5 fps rate of descent), the effect of descent angle is
quite small. We therefore conclude that variations in cross-

coupling between level flight and descent are not a major source of
difficulty in controlling steep approach paths on single-rotor
helicopters.

Before leaving the subject of cross-coupling, it should be noted
that, although the effect of descent rate is small, cross-coupling varies
significantly with airspeed. This can be seen by examining the transfer
functions presented in Volume III ., It is usual to reduce the
effects of cross-coupling by suitable phasing of .A.1 and B, to B
through offset of the servos. This correction can %e exac

only at a single flight condition.

18’

136



r

T T
68°n n9°e sn°e T L- oT"L- GHhO*9- goT T~ ge°1- ge T~
—
67067 ol 7 Free"+ £L6°+ f66°+
9e* S1°0 ge"- gse - wee -
BU-7 | SET-7 fg6e°+ fote-+ CLE" +
66° 21 Tto° Geo* Sg0°
ne* 92e° - 919°0- 685°0- 6.4°0-
meT- Te°E- L= L60° gse” T5E° 95°6- fe° G- 8LO° G-
et Sho° = :-od&.o- 8500° - L900° - ¢-0TXg°0- fot°- let - ni--
MN6-=4 | n°9-=4 0=4 QJ n61-= o'9-= 4 0= A QN6T-=4 | 7°9°= 4 0=4
J—am Ol sanarsay d *lg o1 sanarsz b SI0o¥
*TIAIT VIS °S°V°I SIONM Of IV Q&=-S XMSYOMIS
ONI'TANO0=SS0¥0 NO INEDSEA J0 IOFAIF °*XIX TIIVL

137



ViI.k. HEIGHT CONTROL

The effect of descent angle on the transfer function relating
flight path angle, y, to collective pitch is most significant. The
difference between level flight and steep descent cases for this
transfer function is such that control at low speeds is seriously
degraded in descent. As explained below, the effect is caused by a
right-half plane zero. It appears that this zero is the primary cause
of the control difficulties experienced in steep descent.

It is first necessary to define the quantities of importance in
precise flight path control for slow, steep approaches.

The key quantity determining how accurately a given approach
flight path is followed is, in general, not height, nor flight path
angle, but the displacement of the helicopter from the desired approach
path. This quantity is illustrated in Figure 39. For brevity we
shall call it '"height error", denoted by the symbol h.

This section:
(1) defines ) in terms of w and q (for which transfer functions
have been calculated)
(2) presents transfer functions relating ﬁ to collective
pitch
A
(3) demonstrates that, at low speeds, control of h by collec-

tive pitch is relatively easy in level flight but
difficult in steep descents

(4) traces the reason for the difficulty to a nonminimum
phase zero in the h/eo transfer function
(5) investigates methods for alleviating the difficulty

through typical stability augmenter systems

Definition of Height Error, %

Consider Figure 39. This indicates the distance of the helicopter
§.g. from the desired flight path. Call this distance the '"height error"

Using stability axis quantities,

A
dh
it - Uof qdt-w

Note that this expression neglects products of small-perturbation
quantities, and also products of small-perturbation quantities with
the small trim bank angle ¢o which is typically of the order of 1 degree.
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DESIRED FLIGHT
PATH

HORIZONTAL

A
Figure 59. Definition of Height Error, h.
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The flight path angle perturbation, with the same assumptions,
becames

A
h

7=fm

For vertical and almost-vertical descents the above expressions are
not appropriate. Vertical descents are usually made close to the
ground and the key parameter is the height above the ground. Using
stability axes, in vertical descent this parameter is given by

h = f(Uo + u)dt

N
Transfer Functions for h to Collective Pitch

Volume III does not give the h numerators directly, but
these can be constructed from the q/s and w transfer functions. The
results are displayed in Table XX.

As will be shown, the significant feature to note in Table XX is
the right-half plane zero. At 20 knots (Cases 6, 11, and 20), this
zero increases with descent angle. This trend is reversed at the higher
speeds, but this reversal is not relevant to height-control because

above about 40 knots B1s becomes more effective than eo in controlling

height. However at low speeds ﬁ =.f(qudt - wdt) is dominated by the
term and cannot effectively be controlled by cyclic pitch. The
g/eo transfer function is thus of prime importance,at low speeds.

Height Error Rsaponse to Collective Input

Figure 40 shows the time histories of the responses to a unit
collective pitch input for the S-58 at 20 knots (1) in level flight
and (2) in a steep descent (z): - 41,8 deg). Note that,in the
descending case, the height error goes the ''wrong way'" after about
8 seconds, never returning to the '"'right" direction. By contrast,
for level flight during the first 30 seconds the height error moves
only a little way in the wrong direction,between 17 and 22 seconds after

the step input.

Both responses are oscillatory. This is due to the unstable
phugoid mode. As shown later, this oscillatory mode can be stabilized
by standard feedback of pitch rate to longitudinal cyclic. Considering
the remaining modes in Figure 40, there is a fundamental
similarity betwgen the responses,in that both ultimately go in the
wrong direction. This is characteristic of the step response of a
system with one nonminimum phase zero. It can be proved (from the Laplace
transform initial and final value theorems) that for such a system,

This is shown by the partial fractions listed on page 145.
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the sign of the initial slope of the step response is different from
the sign of the final value of the response.

The difference between the responses of Figure 40 lies in the
rapidity with which they move in the wrong direction, and it is this
factor which causes difficulty of control. To demonstrate this, form
the step response time history by expanding the Laplace transform
of 1/s times the transfer function, and taking the inverse transform
of each partial fraction. This yields, per radian of increased collective,

Ievel Flight:

D o= 670 + 377,26 ~13.662 + 8696 0+I80t 4ug5e=0+ 19Tt
-675e0'06t (cos 0.33t -0.28 sin 0.33t)

40,0334+ 6% =1.16t _,g,=0. 1468

Steep Descent
h == 1,298 +7.16 =9.946° +568e~0+3%5% 1 Lo6e

-812e *P2% (cos 0.34t -1.5 sin 0.34t)
-u.98t -6.9e-1007t

+21,.7e cos 0.73t =2.4 sin 0.73t)

-Oo 18t

-0.031 e +55e'0'196t(cos 0.65t +1.72 sin0,65t)

Figures 41 and 42 show how the above components sum to form the complete
response. The /6o transfer function has two poles at the origin (see
Figure 43, or Tables )O(iand XV); hence, the step input yields partial
fractions involving 1/s”, 1/s< and 1/s, corresponding to parabolic, ramp,
and constant components of the step response time history. These
components are primarily responsible for the differences between the
responses for level flight and descent. The components depend on the
vector distances from the poles at the origin to other uncancelled poles
and zeros, and are markedly affected by the change in the right half plane

zero from 8 = 0,074 for level flight to s = 0.268 for steep descent.

Closed~-Ioop Control of Height Error

The adverse effect of the shift in the nonminimum phase zero from
0.078 rad/sec for level flight to 0.28 rad/sec for yo= - 41.8 degrees
can be demonstraled by constructing a root locus. The simplest feed-
back to consider is a ''pure gain" feedback of h to collective. This is
illustrated on Figure 43, which shows the y = - 41.8-degree case.
Note that even at low gains,a root moyes close to the zero at s = 0.268.
For example, for a feedback gain, 6 /h, of 0.08 radian per 100-foot
height error, the system is unstabl® with a root at s = 0.13, i.e.,
doubling amplitude every 5.3 seconds. This divergence is too rapid
to be acceptable.

For level flight, the zgro is still prese?t but is reduced in
magnitude from s = 0.268 sec to 8 =0.078 sec™'. For the same gain
as used indescent (6 _/h = 0.08/100 radian per foot); the closed-locp
time constant is apprSximately 0.057; hence the time to double
amplitude is increased to 12 seconds.
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Of course, the ' pure gain'" closure discussed above is the
simplest form of control, and the instability can be cured by more
complicated compensation, plus ''wrong-way" gain (i.e., increasing
collective to compensate for being above the desired flight path).
However, little can be done to alter the position of the nonminimum
phase zero, which (s shown below) is the basic cause of the unsatis-
factory tracking capability.

The reason why the zero is so tenacious is that, at low speeds,
collective pitch is the only effective way of controlling height error.
This can be seen by going to the limit, i.e., hover, when cyclic pitch
produces essentially no Z-force. Thus there is no real possibility
for multiloop control of height error. (In passing, note that this
possibility does exist on the AH-56A discussed in the next chapter
because the propeller pitch can effectively control the flight path.)
Whatever feedbacks are employed, the overall transfer function relating
height error to collective retains the nonminimum phase zero.

A
Summarizing the above discussions: the h/eo right-half plane
zero is objectionable because:

(1) It causes the initial step response to be in the
opposite direction to the final response.

(2) It makes it difficult to obtain a stable closure of
the n-aeo loop.

(3) It cannﬁt be moved appreciably by closing other loops
(e.g., -*318) unless excessively high gains are used.

Granted all the asbove points, some further explanation is still
required. This is because right-half plane zeros are quite common in
aircraft transfer functions but do not normally cause a major deteriora-
tion in handling qualities. For example, the height-to-elevator
transfer function of a conventional aircraft flying above its minimum
drag speed contains a ' far-out'" right-half plane zero. However, neither
"far-out" or ''very close-in" zeros cause a significant deterioration
in the step response. What,then, is so bad about the S-58 /eo

transfer function at 20 knots, y = 41.8 degrees, and the associated
step response shown on Figure 40?

The answer can be found rigorously by considering the effects of
the relative magnitude of the nonminimum phase zero and the gust break
frequency on the performance of an optimal regulator. This is done in
Reference 39, but the essential point can be grasped by the following
reasoning.
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Consider the task of a pilot flying a helicopter in a gusty
environment, approximated by a series of randomly spaced square wave
w-gusts of random amplitude. ILet the average time between successive
gusts be Tg seconds. Suppose, the helicopter has a stable step response
to collective which is "up" for 7. sec and "down" thereafter (i.e., a
norminimum phase characteristic). If T_ is very much less than T, the
optimal control requires negative feedbgck, i.e., reduced collective
pitch, to counter an up=-gust. On the other hand, if the gusts are
very widely spread, the integrated absolute value of the perturbation
from the desired flight peth is minimized by positive feedback. Between
these two cases a condition exists where the optimal policy is zero
feedback. At this condition, there is nothing that the pilot (or S.A.S.)
can do to improve the accuracy with which the helicopter is following the
desired flight path. 1In such circumstances the pilot will regard the
helicopter's handling qualities as unsatisfactory.

It can be shown (Reference 39) that with a singlé nonminimum
phase zero located at 82= n r%d/sec, and standard gust power spectrum
of the form ¢ww = K/(s + ®y , the above condition occurs when

n o=, l.e., when the zero is of equal magnitude to the input break
frequency. For hover and low-speed flight,a£ is normally assumed to

be = 0.3 rad/sec (see Appendix VII1). Hence, the zero located at
s =+ 0.268, as predicted for the y_=- 41.8-degree case, will adversely
affect handling qualities.

Strictly, the above discussion applies only to single-loop
control. However, at low speeds, control of h 1s virtually limited
to collective pitch, so this restriction is realistic. A zero cannot
be moved provided only one control is used. Hence,no cure is possible
through stability augmentation in the collective loop.

Effect of Stability Augmentation

For simplicity, the foregoing analysis has considered only the
unaugmented helicopter. The effect of stability augmentation on the
nonminimum phase zero is not large, as explained above; however, some
benefit ig obtained, since there is a limited effect of cyclic
pitch on h. This is illustrated by Table XXI, which shows the effect
of a typical S.A.S. feedback on the poles and zeros. With a feedback
gain just adequate to stabilize the phugoid, the h/6, zero remains about
the same mugnitude as in the unaugmented case. The %ime histories
(see Figure L4&4) show similar objectionable ''wrong-way" characteristics
to the unaugmented case (Figure 40); the stability augmentation merely
damps the phugoid.
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At higher speeds, e.g., 40 knots, cyclic pitch has more
effect on the flight path, so q-— B1s feedback is effective in

reducing the wrong-way characteristic,

Sumary

For single-rotor helicopters, as typified by the S-58, the
effects of longitudinal-lateral cross-coupling on the eigenvalues
are relatively small, However the cross-coupling is large, as
shown by the eigenvectors and such transfer functions as p/B1s and

q/A1s. Except at very low speeds, the variation of the eigenvalues

with rate of descent is small. The cross-coupling also changes
little between level flight and the upper boundary of the vortex-
ring state.

The major reason why control is degraded in steep descents

is shown by the transfer function relating collective pitch to

the distance of the helicopter from the unperturbed flight path.
This transfer function contains a right-half plane zero which
cannot easily be removed by multiloop feedbacks. The effect of
the zero is to cause the step response to collective pitch to

be largely in the wrong direction when performing steep descents
at low speeds.

Because of the large number of derivatives involved in
the coupled longitudinal-plus-lateral equations of motion,it has
not yet been possible to identify the significant derivatives
causing the nonminimum phase zero, The question arises as to
whether this is some special peculiarity of the S-58 or whether
it is indeed representative of single-rotor helicopters in general,
Conclusive proof will require a more generasl analysis; however,
in the next chapter it is shown that the same nonminimum phase
effect occurs on the AH-56A, It is therefore probable that the
effect is typical of single-rotor helicopters.
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CHAPTER VIII. COMPOUND HELICOPTER DYNAMICS

VIII.1 INTRODUCTION

This section discusses the open-loop and closed-loop dynamics of
a typical compound helicopter. The principal features which differen-
tiate such vehicles from '"single-rotor" helicopters are the wing and
the auxiliary thrusting device, which may be a jet engine or a propeller.
Both these features are intended to unload the rotor at high speeds.
One might expect, therefore, that at low speeds, there would be few
significant differences between the dyneamics of the "single-rotor'" and
"compound" configurations. This proves to be the case; the eigen-
values and eigenvectors display similar variations with forward speed
and descent angle for both types of helicopters. For this reason
frequent reference will be made to the preceding discussion of single-
rotor helicopter dynamics, and Chapter VII should be read bef:'re this
chapter.

The example vehicle chosen to represent compound helicopters
is the Lockheed AH-56A. As originally flown, this helicopter incor-
porated an all-mechanical stability augmenter system (the "gyro').
Difficulties were experienced in flight as a result of coupling
between the zyro and blade modes other than the first flapping mode.
At the time of writing, alternative S.A.S. schemes are under con-
sideration, and for our purposes, it appears logical to consider
the basic AH-56A witii gyro removed. The resulting configuration
should be more representative of the dynamics of compound helicopters
in general than the AH-56A with gyro, and the data presented here
are thus suitable for preliminary design of S.A.S. systems and for
prediction of handling qualities.

The detailed AH-56A data presented in Volume 1V is similar
to that previously discussed for the $-58. That is, it includes
derivatives and transfer functions relating u, v, v, p, q, r to Als’

Bygr 857 OorR’ eop (collective pitech of the pusher propeller). Residues

and eigenvectors were also calculated and are quoted in this chapter
where appropriate, but they are not listed in Appendix VII.

The above information is presented for the AH-56A at sea level,
with true airspeeds of 0, 20, 40, 60, and 100 knots. For each speed,
descent rates of 0, 9.6, 19.2, 20.8 fps are considered. At low speeds,
the highest descent rate is almost at the boundary of the vortex-ring
state.
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Two cases were re-run with the cyclically varying tip loss
factor set to zero. This caused noticeable shifts in the eigenvalues
but nc radical change in the general nature of the vehicle response.
That is, modes which were stable with tip losses included remained
stable with B=1, and the residues were of the same order of magnitude
with and without tip losses. For example,at 4O knots and 28.8 fps
descent rate (y = -25.1 deg), the eigenvalues changed as indicated
below.

AB-S6A L0 Xnots, Steep Descent, y = -25.1 Deg

TIP LOSS E1GENVALUES, rad/sec

INCLUDED | -.233 + .1583,| -9.9, | -.063,]-.526,|-1.89,] -.041 + .26J,
OMITTED -.234 + 765, | -8.36,] -.06k,]-.603,]-1.51,]-.036 *+ .57

The above changes are rather less than might be :2xpected
by considering the effect of tip losses on the derivatives. The
explanation is that the magnitudes of some derivatives (e.g., Zy)
are decreased by the tip loss, whereas others (e.g., ’ Lp) are
increased in magnitude because tip loss gives increased flapping.
In all the cases discussed below, tip losses were included.

VIII.2 EIGENVALUES

Table XXII swmmarizes the AH-50A eigenvalues. In level
flight, the eigenvalues are generally similar to those calculated
for the S-58, at the corresponding speeds. The major differences
are

(1) The AH-56A roll subsidence root is about twice as large
as that of the S-58, due to the increase in "effective
ringe offset" of the hingeless rotor.

(2) The AH-56A develops longitudinal static stability at
lower speeds than the S-58. This is due to the negative
M,, contributions of the tail and the pusher propeller.
The result is that the phugoid is stable at speeds
above 50 knots, approximately. In addition, the short-
period degenerate modes combine to form an oscillatory
mode at 100 knots.

In descent, the eigenvalues generally do not change signif-
icantly from their values in level flight at the same airspeed. The
exceptions to this statement are noted below.

At the higher speeds, descent increases the phugoid damping
and causes some reduction in frequency. This would be expected from
the increase 1n|qu At 100 knots and the most rapid descent rate
(which corresponds to y = = 9,8 deg) this trend progresses so far
that the phugoid degenerates into a pair of aperiodic roots. One
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of these roots is slightly unstable at 8 = 0.075. This "tuck"

mode instability is caused by the change in M, that occurs between

60 and 100 knots at 28.8 fps descent rate. (At 60 knots,M,=+0.336 x 10-%
rld/seca; at 100 knots,M,=-17.6 x 10 rad/sec? .)

Apart from this phugoid change, the only other significant
effect of descent on the eigenvalues occurs at vertical and near-
vertical descents. For such conditions, two modes,which at hover
are aperiodic, coalesce to form a well-damped lowefrequency oscile
lation. The eigenvectors (discussed later) indicate that this
behavior is due to N,. This derivative, referred to body axes,
increases by a factor of approximately 30 going from hover to the
maximum vertical descent rate at the boundary of the vortex-ring
state. This marked change occurs because the tail rotor thrust
becomes more sensitive to perturbations in vertical velocity as the
ratg of descent is increased. A similar effect was noted on the
S-58.

VIII.3 CROSS-COUPLING EFTECTS

As with the single-rotor helicopter, lateral-longitudinal
cross-coupling is severe. This is illustrated by Table XXIII which
presents AH-56A eigenvectors at hover. Note that u, v, v, p, q, T,
are referred to stability axes which,in hover,are arbitrarily defined
such that the x-axis is horizontal and the y-axis is normal to the
plcne of the symmetry of the fuselage, which is almost but not
exactly vertical. (The print-out gives the stability axis Euler
angles in radians for each flight condition.) In Table XXIII the
choice of the unit eigenvector varies arbitrarily from mode to mode.
As in Table XVII, only the upper-half plane root of each complex pair
is shown.

Examination of Table XXIII reveals the dominant degrees
of freedom of each mode, and the names of each mode are chosen
accordingly. However, with the exception of the roll subsidence,
each mode displays strong lateral-longitudinal coupling, so the
names should not be taken too literally. The resemblance of each
mode to the corresponding uncoupled mode is not necessarily close.
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o AH=* G :
(u, v, v, p, 9, r, in stadbility a:u.-:j.)h

s u v v 100p 100q 100r Mode Name
-.235 .39 .014 1.0 . 00067 -.039 .569 " Plunge"
-.205 .107 .829 | 1.0 .0058 -.102 1.85 " Yaw "
.035 1.0 -.106 |=.00001 | .015 .518 .231 " "
+.5153 +.322 | +.0243 | -.1758 | -.na73 ey Phugold
-.018 |-.T13 0135 |-.48 -.59% 681 "
vo3ohs | -.omy| 1O |+.0h3s |+.0095 | -.09675 | -1.215 | " perie
-10.0 022 | .6327 | -.0185 ]100.0 6.3 -1.93 "Roll

Subsi

-dence”
-2.01 1.0 |-.245 .053 -2.02 <10.56 | -a4.2 "Speed

-Piteh"

TABLE XXIV. AH-"6A EIGENVECTORS IN 26.8 fps VERTICAL DESCENT. |

—E% % v v |100p |100q |[100r #bdc Name
4

-.181 <391 -.099 1.0 .0213 | .00135 1.32 T'COupled

+.091] -85 | +.1473 +.04723 | +.00763 | -4.38) | Plunge-
-YlV"

-.09 |-1.0 .057 |-.0225 |--008L | _.57 | .257 |} Phugotd’

+.439) -.1873 |-.02483 | +.1075 | -.1193 | +.1664

-.08 -ou9 100 -ow -o"h6 -.20'0 '0717 #'Dutch

*0362.1 omd ‘owaj *oOlg,J -O@J *10‘.8.’ Mll"

-9.8 -.079 1.0 .012 4.4 -2.85 -.824 L'Roll
Subsi-
dence"

-1.91 -1.0 JA71 | L0045 | 4.5 -21.8 |+.77 P'Speed-
Pitch™ _

Stability]

Axis -w v u 100r 100q -100p

Rates
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The cross-coupling hardly changes with descent rate, provided
that u, v, v, p, q, r are referred to body axes rather than stability
axes. This point is important for very steep descents. For example,
in vertical descent the body x-axis and the stadbility x-axis differ
by 90 degrees. This must be considered when comparing Table XXIII with
Table XXIV, its counterpart for 26.8 fps vertical descent.

At the foot of Table XXIVare listed the stability axis quantities
corresponding to the body axis quantities at the head of the table.
Thus, for exmmple, to trace the effect of vertical descent on the
"dutch roll" mode, note that,at hover, the ratio of |u|: |v|: |w| is
approximately 0.72: 1.0:0.045. For vertical descent the corresponding
ratio in body axes is 0.5: 1.0: 0.10. By comparing the eigenvectors
in this fashion, it 18 seen that there is not much difference between
the hover and descent modes with the exception of the plunge and yaw
modes which couple together in vertical descent. This is caused by
the increased sensitivity of the tail rotor to perturbations in
vertical descent velocity. The tail rotor is not immersed in the
main rotor wash at hover and in vertical desceat. At hover, by
symmetry, the tail rotor thrust is equally sensitive to "up' and
"down'" v perturbations; hence, its contribution to the cross-coupling
derivative N is negligible. However, as the descent rate increases,

the unperturbed flow conditions at the tail rotor become asymmetric,
and the derivative ll' increases markedly, causing the "yaw'" and the

"plunge"” modes to couple.

Cross-coupling is pronounced at forward speed. For example,
the short-period oscillatory mode, s= -1.58 t 0.556j, which emerges
at 100 knots involves about one-third as much roll as pitch. This
is illustrated by Table XXV, which presents some typical residues for
pitch and roll response toB)g. Table XXV shows that the cross-coupling
does not change much with shallow angles of descent.

The pitch uu/Bu transfer function also changes rather
little from level flight to steep descent, as shown by Figure 4S5,
Numerous near-cancellations occur, leaving essentially a second-order
numerator and a third-order denominator.
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TABLE XXV. EFFECT OF DESCENT ON CROSS-COUPLING; LOCKHEED AH-“06A
AT 100 KNOTS, SEA LEVEL, MO S.A.S.
Roots =q Residues to B‘ ™ -p Residues to ".13

y=0 vy=-9.8] v=0 y=-9.8 Y= -9.8
-okol -okal 0035 ° oO}" ° 036 .
+1.51} +1.493 < -152.8 <-128.9 < -173.0
'1006 '9.% 10% 1.5% 52.95
-0037 '0025 .10'* °-w79 owbl’,
-10” -1050 1507 ° n.? ° 5.61.
+.5563 +.583 < -130.6 < -135.8 < -110.8
-od‘l 'om o% ° '0517 0%5
+.1883 < -89.6

=
\ .0733 -.287 -.322

As noted previously, the AH-56A has a large roll subsidence

root, (typically about 10 rad/sec), due to the hingeless rotor.

This

is well separated from the other roots, which should lead to little

coupling with other modes in the p/:h
confirmed by Figure 46, which shows
at 100 knots in level flight and 22.8 fps descent.

the roll subsidence pdle is not cancelled by a nearby zero.

The above trends are typical.

For ease of reference,

transfer function. This is
tranzfer functions for p/Aj,
Note that only

Table XXVI has been extracted from the data of Appendix VII to show
the effect of descent angle on the §/A;, and 6/B,4 numerators at

From this table and Table XXV, it
is evident that the effect of descent angle on pitch and roll control

various forward speeds,

is small.

collective (see Table XXVII).

Similar comments apply to yaw control by tail rotor
Table XXVII shows that the yaw/e

numerators change little with descent angle, provided that the
yaw is referred to body axes (i.e., overall vehicle axes) rather

than stability axes.
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Figure 45. Compound Heliccpter Pitch Rate/Longidutinal Cyclic

Transfer Function for level Flight and for a 9.8-Degree
Descent Angle at Sea level.
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VIII.&% HEIGHT CONTROL

As with the S-58 (discussed in the previous chapter), it is
anticipated that the AH-56A will experience difficulty in flight path
control in slow, steep descents. This can be inferred from Teble XXVIII,
vhich presents numerators for the transfer function relating height
error to collectiye pitch. (See Figure 39 for the definition of
"height error", h.) Table XXVIII shows that,at the lower speeds and
steeper descent angles a nonminimum phase zero appears at 0.1 < 8 < 0.6
ra.d/sec. As shown in Chapter VII, such a zero degrades the handling
qualities. Typical effects of this zero are shown In the step responses
of Figure 47, which display awkward "wrong-way" characteristics for
the descending flight conditions.

The difficulties of removing this right-half plane zero by
feedbacks to cyclic pitch, explained in Chapter VII for the S-58, apply
equally {o the AH-56A. However, the AH-56A does have the extra possibility
of flight path control through the pusher propeller, as described below.

Comtrol Bffectiveness of the Pusher Propeller

Assuming that the aircraft is trimmed so that the pusher propeller
is not operating in the vortex-ring state (a condition which is satisfied
for the flight conditions presented in thig report), the principal
effects of 0 _ relate to control of u and h. The appropriate numerators
for level flgght and steep descent are summarized in Table XXIX.
Completing the transfer functions with the denominators given in Table
XXII permits some preliminary assessment of the effectiveness of the
pusher propeller as a control device.

At 100 knots in level flight,many approximate cancellations
occur between numerator and denominator, leaving the following approximate
transfer function for speed control:

. _ =3k
eop (s - 0.073)

This indicates that the pusher propeller controls speed by
exciting the unstable ' tuck" e of the degenerate phugoid pair. This
would be unsatisfactory for x(=Judt) control (e.g., stationkeeping)
since the x—0 _ locus lies entirely in the right half-plane. The
situation wouldPoe improved by stability augmentation involving feed-
backs of 0 to B 8,which would stabilize both phugoid roots. Descent
improves the u/& transfer function: at 100 knots and y = - 9.8 degrees,

it becomes approgfmately
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u -34.1 (8 + 0.

e .* L ] + .l
= 0.0% + 0.188)

This provides stable x-oeop closures provided that excessive lags are

avolided.

At lower speeds, fewer approximate cancellations occur. For
example,at 40 knot: in level flight,

u 2 -18.2 (! + 00162 x O.w
) (s - 0.072) (8 + 2.07) (8 + 0.052 + 0.583)

op

whereas at 40 knots in descent at y = - 25.1 degrees,

The appearance of a nonminimum phase zero in descent is not
important here because of the proximity of the phugoid mode, which
will yield only a small residue and will largely cancel out the
wrong-w.y characteristics of the step response.

Simultaneously with u-perturbations, 3 _ also intuces h
perturbations; hence it is necessary to consid8r these also in
assessing the control effectiveness of the pusher propeller. The
appropriate transfer functions are given in Table XXIX; some rather
gross cancellations have been made in the approximate transfer functions
presented below in order tosmplify the discussion.

y =0:
A 1.62 (8
1

s(s + 58

0.475) (8 - 0.349) (s - 43.52)
T

eop 0.5563) (s + 0.041 + 0.188])

= - 9,8 degrees

A

h

8
op

. 3,15 (8 + 5.97) (s = 2.12)
s(s -~ 0.073) (s + 1.5 + 0.553)
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The change in the sign of the root-locus gain is not significant,
because of the change in the number of right-half plane zeroce. The
zero at 8 = + 0.349 is likely to induce a poor step response in level
flight, but this should be less troublesome in descent. Howeyer, the
presence of these zeros will cause difficulty in closing the h—o0
loop, so at 100 knots the pusher ller is rot a desirabdble
alternative to the usual fx-OBI s and h— Oc loop closures.

op

At low speeds the pusher propeller shows better promise for
control of height error. For example, at 40 knots and y = = 29,1
degrees, the ﬁ/()O transfer function is, approximately,

P
a .3 -806
an 8(s + 0.520)

ghu avoids the avivard nomminimum phase characteristics of the
/collective transfer functions listed on Table XXVIII. Hence the
pusher propeller may provide a useful method of flight path control

at low speeds.
Sumary

The control characteristics of compound helicopters have “een
studied by examining the AH-56A with the all-mechanical stability
augmenter system (the "gyro") removed. From calculations of derivatives,
transfer functions, and residues, the AH-5GA open-loop behavior is seen
to be generally that of a typical single-rotor helicopter. Strong
coupling occurs between longitudinal and lateral motions, and there is
not much effect of descent angle on the eigenvalues except at very low
speed. In slow,steep descents, control of flight path with collective
is difficult because of the appearance of nonminimum phase zeros in the
appropriate transfer functions. This effect is similar to that
described for the single-rotor helicopter. However the compound has a
possible alternative method of flight path control, through variations
of collective pitch of the pusher propeller. This circumvents the non-
minimum phase effects and &ppears to provide a satisfactory method of
controlling the flight path.
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CHAPIER IX. CONCLUSIONS AND RECOMMENDATIONS

The principal results of this report are contained in the tables
of derivatives and transfer functions given in the Appendixes. A large
part of the value of the report lies in these detailed numerical
results and in the presentation of the analytic and computational
methods used to obtain them, e.g., the MOSTAB prograa. However, certain
general conclusions have been reached, and these are presented below,
together vith recommendations for further work.

1.

2

3.

A new method for predicting the bounderies of the vortex-ring
state is presented, using only simple concepts bdut giving
good agreement with experiment.

The tip losses on a rotor in vertical descent can be predicted
by momentun and blnde-clement theory, using a flow model which
incorporates a sheath of vorticity surrounding the slipstream.
The method gives good agreement with experiment in vertical
descenty no suitable experimental data are available for inc
inclined descent to check the theory for that condition, for
which it predicts a cyclically varying tip loss factor.

In calculating helicopter derivatives, the perturbations in
interference velocities induced by each element on each other
element must be included. All lateral-longitudinal cross-
coupling derivatives should be included on single=rotor and
campound configurations.

Derivatives calculated for steep descents are generally
appreciably different from derivatives calculated for the
sanme airspeed and level flizht. The use of level=flight
derivatives for simulations of moderate and steep descents
can give seriously misleading results.

For tandem-rotor configurations, the principal effects of
descent are to cause the dutch roll to degenerate into an
aperiodic pair of roots and to worsen the nonminimum phase
characteristics of the roll-to-lateral-cyclic numerator.

The net effect is to worsen the open-loop dynamics,
increasing the need for multiloop feedbacks. Longitudinally
the effects of descent angle are generally minor, except for
changes in the speed/longitudinal cyclic numerator referred
to cockpit axes. This could be important for stability
augmenter systems using air data sensors.
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6. For single-rotor helicopters, lateral-longitudinal cross-
coupling effects are important in the transfer function
numerators but have little effect on the denominators. The
most significant effect of descent angle occurs at low
speeds, where control of the flight path by collective pitch
becomes seriously degraded due to nominimum phase effects,
causing "wrong-way" responses. This is believed to be the
principal cause of the difficulties encountered by helicopters
attempting to follow steep approach paths at low speeds.
Remedies involving multiloop feedback or elaborate compensa-
tion of single-loop feedbacks do not appear feasible.

T. The behavior of compound helicopters is similar to single-
rotor helicopters at low speeds, where the wing has little
influence. The propeller provides an alternative method of
flight path control which shows promise of alleviating the
above-mentionad difficulties.

Despite the widespread use of helicupters, and the vast
production runs of certain types, research on helicopter dynamics
consumes only a tiny percentage of the total aerospace budget.
It is wise to recognize this situation in presenting a list of
topics deserving further research, For example, from a purely
technical viewpoint, a good case could be made for a method of
calculating derivatives based on a '"free-wake" analysis,
making the minimum number of assumptions regarding slipstream
geanetry and interference effects. However, the computer time
required to use such a program renders it less desirable than a
simpler alternative uring ''assumed wake" representations. The
technical areas listed below have been selccted because of their
practical importance, and the recommended approaches to solving
the problems have been chosen with a realization of the probable
financial constraints,

The scope of the items listed below is confined to the area
of helicopter steep approaches, but some of the recommendations
are suftficiently general to apply to other phases of helicopter
cperation or even other types of aircraft, such as tilt-rotor
configurations,
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The Vortex- 8

The vortex-ring state is important as a limiting ¢condition
on lowespeed descent/deceleration capabilities and as the possible
cause of accidents. A better understanding of this state is
required to define it more precisely and to indicate methods of
alleviating the unsteady flow, In addition, some unsteadiness is
known to occur even at shallow angles of descent, and a knowledge
of this self-induced turbulence is required to fully define the
helicopter turbulence environment.

Full-gcale flight tests are recommended, plus more refined
theoretical investigations using more sophisticated analytic
techniques than those employed in Chapter II, The result would
be a reliable data base (available data is very incomplete), plus

a nonempirical explanation of the causes of unsteady flow in
steep descents,

darcdvnamios of Rotor in Steep Desosnta Outsaids the
Yortax-Ring ftate

Virtually no published experimental data exist on the forces
and moments experienced by helicupter rotors in vertical and in-
clined descent. Model-scale experiments are needed on isolated
rotors, measuring steady and unsteady loads and the induced
velocities at moderate rates of descent. The flow moiel presented
in Chapter III contains empirical assumptions, but there
seers little point in producing a more complicated theory
without experimental data which are suitable for correlation.

Such experiments should be instrumented to measure the tip losses,
including possible cyclic variations. The number of independent
variables and the desirability of minimizing interference

effects virtually dictate that the testas be conducted at model
scale in a large wind tunnel on an isolated rotor. Tests on a
camplete configuration would be disadvantageous because inter-
ference effects from other components would complicate the results,
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S8ab411ty Derivatives

As shown in this report, marked differences exist between
stability derivatives in level flight and descent, causing
important changes in the dynamics of the helicopter. It is there-
fore misleading to use stability derivatives calculated for level
flight to analyze descent problems, Given adequate flow models
for descending rotors, derivatives can be calculated with ease by
MOSTAB or simi ar programs. The prime question is: how accurate
are these calc: lations? Since derivatives describe only the
low-frequency behavior of helicopters in small perturbations
from a fixed trim condition, accuracy of + 208 should suffice.
However, it is not known whether even this accuracy is being
obtained, Published flight test measurements are few, and
s,ctematic correlations of estimated and measured derivatives
in descending flight are conspicuous by their absence.

To remedy this situation, a research program involving
correlation of estimated derivatives with existing flight test
data should be undertaken. The scope should be broad, including
single-rotor, campound,and tandem configurations in level flight
and descent. The results should be used to refine the derivative
calculation process, particularly the estimation of interference
velocities, which at present is more of an art than a science,
Particular attention should be paid to low-speed descending flight
because the requirements for flight path control on the approach
are particularly stringent, requiring the most accurate derivatives
ror analysis.

Tranafer Funoticns

Transfer functions provide an accurate description of
helicopter dynamics over a limited frequency and amplitude range.
The upper {requency limit is set by considerations of blade
modes other than first flapping. Such modes are essentially
"nuisance" modes, i.,e., they have no value for flight control.
Thus they can be ignored in flight control system preliminary
design, but must be included in detail design of system hardware
to avoid unwanted coupling effects. The lower frequency limit
is set by time-variations of the nominal operating condition
around which the perturbations are performed. This limit is less
restrictive for descent than for level flight, since the available
deceleration is less, because the helicopter is closer to (D/L) .
Thus there is a broad range of frequencies for which transfer max
functions are useful. The following recammendations apply
for this frequency range.
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Transfer functions including lateral-longituiinal

crogs-coupling should be used as the basis for km siudies
of manual and automatic control. Because of computational
difficulties, cross=coupling has been ignored in many
previous studies; however as shown here cross-coupling effects
are quite large and significantly influence closed-loop behavior,
Currently the effects of cross-coupling are countered on an
ad hoc basis by offsetting the A,_, B, servos. The cross-coupling

nomenon must be more clearly aetin«! to permit a systematic
study of its importance to handling qualities and to determine the
best method of counteracting it. The present report used
manufacturer's derivatives for the tandem-rotor helicopter, which
neglect cross-coupling., Although this appears to be more justi-
fiable for the tandem configuration than for single-rotor heli-
copters, cross-coupling may still be significant., Flight test
data should be examined to verify this,

The significant features of certain transfer functions
(1.e., the heighterror to collective numerator discussed in
Cnapter VII) should be related to the helicopter geometry. The
usual way of dcing this is through the use of literal approxi-

mate transfer func (e.g., approximating dutch roll natural
frequency as wy = lﬁ )e Similar expressions should be developed

for the critical right=-half plane zoro of the height error to
collective transfer function and other important parameters. The
task is complicated because it is necessary to include lateral-
longitudinal cross-couplings however, it is cssential to be able
to trace the cause of significant dynamic characteristics to
design the helicopter and its stability augmenter together for
good flying qualities.

A cs tati

The need for a good method of representing the dynamic
interaction of the control system with modes other than first
flapping is generally recognized, No special emphasis on steep
descents seems necessary here, since development of a method
suitable for level flight should meet the requirements for descent.
Of more special relevance to approach is the question of the
validity of small-perturbation equations about a time-invariant
trim condition.

For steep descents the deceleration capability is smaller
than in level flight since the helicopter is operating closer to
(p/1) o Accordingly, the effect of time variations in the trim
condi%%ns should be less important. The net recommendation is
that this area is less pressing for steep descerts than for level
flight.
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Most published research on helicopter {lying qualities has
concentrated either on hover or on level flight. Significant
differences have been shown to exist between open-loop dynamics in
level flight and descent, and correspondingly large differences will
occur in flying qualities. This area requires investigation by
simlation in conjunction with analytic studies of the man-in-the-
loop. For example, flight tests indicate that handling qualities
are significantly degraded in slow, steep descents (see Chapter II);
the cause has been identified in Chapters VII and VIII as the "wrong
way" height caontrol characteristics. More work involving detailed
loop closures, backed up by simulation, is required to verify this
hypothesis.

To obtain specific results, it was necessary to cansider only
three helicopters, in this report. Thesec are believed to be represen-
tative to their general types, but no information has been generated
on the effects of helicopter size per se. One would like to know
hov descent angle affects the flying qualities of the Heavy Lift
Helicopter. It is possible that for very large helicopters, body-
bending modes may be of sufficiently low frequency tc interact with
handling qualities. Derivatives should be calculated and assessments
nade of handling qualities problems in steep descents for such
vehicles.
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