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I. INTRODUCTION 

In this paper a technique for the determination of antenna beam 

distortion and boresight error due to surrounding the antenna by an 

axially symmetric radome will be treated. The paper is divided into 

four sections. Section one describes the general techniques of bore- 

sight error calculations. Section two treats the problem of transmission 

and reflection of a plane electromagnetic wave by a multisheet radome 

wall. Corrections due to wall curvature in and out of the plane of 

incidence are included. Section three treats the ray trace in the three- 

dimensional configuration of antenna and axially symmetric radome 

and the integration of the resultant external aperture to obtain the 

far field Fraunhofer pattern. The last section treats a simplified 

technique which may be used to determine boresight error. Discussion of 

the implementation of this technique into a computer program will be 

the subject of a later publication. 

An Ohio State University publication ^ is partially the basis 

of sections three and four though that publication treats only a two- 

dimensional geometry and does not account for wall curvature. 

_1_ 



11 • BOftESIGHT-ERROR AND PATTERN PREDICTION TECHNIQUES 

In the ray-tracinff technique, the antenna is generally considered to be in the 

transmitting condition. Rays are traced from various points on the antenna 

aperture to points on an equivalent aperture outside the radome. The field in¬ 

tensity associated with each ray is modified in amplitude and phase in accordance 

with the complex transmission coefficient of the radome. The transmission coef¬ 

ficient is considered to be a function of the anffle of incidence, the polarization 

of each ray, and the wall thickness at the point where the ray strikes the radome. 

Use is made of the plane-wave, plane-sheet transmission coefficient. When a modi¬ 

fied field distribution on the equivalent external aperture is determined, an 

integration is performed over this aperture to calculate the far-field patterns 

that determine the boresight error." 

The ray-tracing method has also been employed with the antenna assumed to be in the 

receiving condition with a plane wave incident on the radome from some distant 

source. Rays are traced through the radome to the antenna aperture in a direction 

parallel to the axis of propagation of the incident plane wave. The field inten¬ 

sity associated with each ray is modified in phase and amplitude in accordance with 

the complex transmission coefficient of the radome wall for the appropriate angle 

of incidence and polarization of each ray. Again, the plane-wave, plane-sheet 

transmission coefficients are used. To calculate the voltage received at the 

antenna terminals , an integration is performed over the antenna aperture of the 

modified field intensity of the incoming rays, weighted by the complex aperture 

-2- 



field intensity of the antenna when it transmits. 

Unfortunately, it appears that no comparison has been made of the relative merits 

of the two ray-tracinp methods, i.e., the receiving problem vs. the transmitting 

problem. Whenever the reciprocity theorem is applicable, it is known that any 

exact or highly accurate solutions produce the same boresi^ht-error data for the 

receiving and transmitting problems. However, the ray-tracing solutions cannot 

be considered to be highly accurate when applied to small streamlined radomes, 

and different results are to be expected from the receiving and transmitting form¬ 

ulations. It has not yet been established which formulation yields the more accu¬ 

rate results . 

There appears to be a considerable increase in computation time and expense with 

the receiving formulation in comparison with the transmitting problem. In either 

case, it is necessary to calculate several points on the far-field patterns for two 

or more antenna positions if conical scan is employed to determine the boresight error 

If the antenna is considered to transmit, the ray amplitudes and phases are modified 

by the transmission coefficients only one time to obtain the equivalent external 

aperture distribution that yields a complete far-field pattern. If the antenna is 

considered to receive, the incoming plane wave must be carried through the radome 

(modified by the transmission coefficients) several times (for different angles of 

arrival) to obtain a useful portion of the far-field pattern. No .justification is 

known at the present time for this added computation in terms of improved accuracy." 

Other techniques are available to solve the radome problem, however, Reference (4) 

states that the scattering technique and/or integral-equation technique are not as 

efficient nor as general as the ray tracing technique though at large angles of rav 



incidence to radome the scattering technique does pive better pattern prediction 

than ray tracing. Further,ray tracing is not applicable under certain circum¬ 

stance such as horn antennas partially covered with a half-wave dielectric sheet. 

These cases are not under consideration here and for these reasons only a ray 

tracing technique is considered. 

111 • TRANSMISSION and reflection ry plane parellel sheets 

Since the ray tracing technique involves the use of the plane-wave, plane-sheet 

transmission coefficient, a review of this subject is included and will be used 

in the following calculations. The derivation used in Born and Wolf1 will be 

followed with the exception that conduction will be allowed and corrections for 

curvature included. Maxwell-equations in Gaussian units are 

V X h -- ñ 
C 

*471 

J, (i) 

V X E + - B 
c (2) 

1**0 
( R) 

V ‘ B * 0 , (I*) 

where E and H are the electric and magnetic field intensities, D the electric dis¬ 

placement, R the magnetic induction, p the charge density, and J the current density, 

Further the constitutive equations are assumed along with the equation of continuity, 

J 

D 

oE 

cE 

-1*. 
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B = uH (T) 

O ♦ V • J = 0 , (R) 

where o, c, and p are the conductivity, dielectric constant, and magnetic per¬ 

meability. From the above equations the boundary conditions at any surface may be 

determined to be 

(9) 

(in) = n 

o (ii) 

(12) 

where n12 is the normal from surface 1 to 2, the (l) and (2) indicate which side 

of the surface you are on (1 or 2), and p and ,1 are the surface charge and surface 

current respectively. Since we are not dealing with perfect conductions nor with 

situations for which surface charges exist (a surface charge may exist in the pre¬ 

sence of a photon impulse or static charge build up due to friction with rain 

or air), the tangential (to surface) components of E and H are 

continuous and the normal component of D and B are continuous. Take the plane of 

incidence to be the yz plane (geometries may change in this paper), z being the 

direction of stratification. Then it may be assumed that e *= e(z), p * p(z), and 

o = o(z) and for a monochromatic wave the time variation is exp(-iwt), where w is 

the circular frequency. Take the two cases transverse electric (TE) (El to the 

plane of incidence) and trasverse magnetic (TM) (Hi to the plane of incidence) 

-5- 
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separately. For the TE wave and are zero and Maxwell's Equations in any 

layer of material reduce to 

3H 3H iewEv Wo _ , - 
+ _Í. - -Ex " 0 ’ 

3v 3z c c 

3H 3H z = 0 , 
3z 3x 

3H 
_X 

3x 

3H 

3y 

^ H = 0 
c X 

3E 
X - i PU) H = 0 , 

3z c y 

3E 
X ♦ imp H = 0 , 

3y c Z 

while for. the ?M wave H and H are zero and Maxwell's equations become 
y * 

lew Wo \E = n , 

3H 
_X + / icui 

3z \ c 
Wo ) E = 0 

3H 
X + f icm 

3y \ c 
Wo \ E = 0 

3E 

3y 

3E 

37 
i pw I! = 0 

(l?a) 

(13b) 

(13c) 

(13d) 

(I3e) 

(I3f) 

( ll*a) 

(1W) 

(IW) 

(lltd) 

1 



3E 
_} 
3z 

3E 
_2 
3x 

( Ike ) 

3E 
—I 
3x 

3E 

3? 
X = 0 • (Ikf) 

For the TE wave this implies that Hx = 0 or that H is in the plane of incidence 

and that H and Ex are not functions of x. Eliminating H and H from (13a) via 
y z. 

(I3e) and (l3f) gives 

W-4 * 4k ♦ -^‘ )e -0,(15) uu \3y2 3z?/ X U Uz J 3z x c * 

or rearranging this equation and defining the index of refraction 

eg + kïïio g/u) 
(16) 

equation (15) becomes 

3y 

+ 32 \ 

3z2/ 

2 2 
+ n k ¿E 

X OX 
d(log g) 

dz 

?E 
_x 

3z 
(17) 

where k = w/c . 

To solve equation (17) assume that Ex is separable 

Ex = Y (y) U (z) (IR) 

Then 

P 
1 di 
Y . ? 

dy 
- ^ ~ - n2k 2 + lÜ°ÉLiLl i dU 

U dz2 o dz U dz (10) 
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This implies that 

and 

then 

and 

¢-1 - _k2y - -K Y , 

dy 
(20) 

O 
cT U 

o 
dz 

d( log u ) dU + n‘ k 2U 
dz dz 

p 
K U (21) 

Let K‘ u 2 2 k a 
o (22) 

Y(y) = C exp(iko ay) , (23) 

F = U(z) exp i (k ay-uit) 
X o 

(2M 

From eauations (lie) find (l3f) 

H * V(z) exp i (k ay-wt) 
y o » 

Hz = W(? ' exp i (koay-a)t) , 

where 

W(z) = - a/u U(z) , 

Further from equation (13a) 

dV _ i k (n2 - a2) U 
dz* " -5- 

u 

From equations (21), (2^), (2?) and (2B) 

(25) 

(26) 

(27) 

(28) 

(2Q) 
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dfu . lLi2£JSÍ âü t k 2 (n5 . ,2) „ = o 
,2 dz dz o 
dz 

dz2 

1 2 2 log n - a dV A 2/ 2 ?w, . n — + k (n -a )V = 0 , 
dz o 

dz 

all + pW = 0 

Similarly for the TM wave 

sâl _ d [loS "!ze] f + k 2(n2.^) ÏÏ = 0, 
, 2 dz dz o ' 1 
dz 

dfv _ d [log pd-ïï2/!!2)] dV + ko2(n2-ïï2) V = 0, 
,2 dz dz 
dz 

nW * - uõ U , 

* i k p(l-Ô2/n2) ÏÏ , 
dz o * 

dÏÏ i k 2 Ü 
dz - 

u 

Ÿ - C exp (i koay), 

where 

Hx = U (z) Y (y)» 

E = -W (z) Ÿ (y), 
Zi 

E = -V (z) Ÿ (y), 
v 

(30) 

(31) 

(3?) 

(33) 

(3M 

(35) 

(36) 

(37) 

(3«) 

(39) 

(>*0) 

(M) 
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ui lko"Vl ■ 

ik (n?-a^) U, 
o-l 

U 

where the ' denotes d/dz. 

These equations imply that 

V 

U 

1 

1 

o 

o 

ikoPv2 , 

ik (n?-a2) Un , 
o- ¿ 

u 

or that 

d_ 
dz (U1 V2 

u2 Vl) 0 

This means that the Wronskian is a constant of position 

det 
ui v:i 

Uo V0 

constant. (UM 

For a particular slab of material one may choose U and V as follows: Let 

U1 = f(z) , U2 = F(z) , 

= r(z) , V2 = G(z) , 

such that f(0) * G(o) = 0 and F(o) = r(o) = 1 where the position o represents the 

left hand fidge of the slab and z is the distance from that left hand edge. The wave 

is generally considered as impinging from the left also. This means that 

U = F Uq + f V0 

V = G U + g V 
0 u 

-11- 



where Uq and Vq are the values of U and V at the left hand edge of the slab. 

Therefore anywhere in the slab U and V are given by (in matrix notation) 

Q = N Q (^5) o 

( ) 

Q o 
( ) 

F(z) 

G(z) 

N 

(l.fl) 

Further 

Q MQ , (1,0) o 

M 

since equation (UU) is valid and the initial values of f. G, F, g „ere chosen 

as given after equation (M). 

There exists an appropriate N and M for each slab of material and to get to any 

position in the stratification all that is required is to multiply the 2x2 matrices 

together until reaching the desired position. 

If the physical properties of a n.irticular slab are constant then equations (30) 

and (31) reduce to 

+ kQ n (cos fill! = 0 
2 2, 2 

-12- 
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..IP.I 

and 

4 * k 2„We|v • o , 
dz5 

(52) 

which have solutions 

U = A cos (k n (cos 6) z) + B sin (k n(cos 6) z) 
O o 

(53) 

V = neos 6 
iu 

(b cos (kQn (cos 0) z) -A sin (kon (cos 0) z) ) (5M 

Particular solutions satisfying the boundary conditions stated above are that 

U0 ■ F(z) = cos (ko n (cos 0)z) , (55) 

^ * g(z) = cos (ko n (cos 0) z) , (56) 

V * G(z) = i n cos 0 sin (k n (cos 0)z) , 
2 ~ 0 

(57) 

U1 - f(z) ip sin (kQ n (cos 0)z). 
’ r O ' 
. 5' W 

n cos 0 

The matrix M(z) relating Qq to Q is then 

M1(z) * /cos (kQ n (cos 0) z) - i/p sin (kQ n (cos 0) z) 

-i p sin (kQ n (cos 0) z) cos (ko n (cos 0) z) , ( 59 ) 

where 

pan cos 0/p (60) 

To obtain Q in terms of Q at the right hand edge of N layers of stratification 
0 

-13- 
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. 

the total M is given by 

* M1 (zl) M2 U2) .^ (zN) ’ 

where each is given by an equation similar to (59) with the appropriate 

indicies of refraction, complex angles 0i, and the thickness of the i'th 

slab. In particular for two layers of material 

where 

Mjj, = Mx (z^ M2 (z2) * 
M11 M12 

M21 M22, , (62) 

M 
11 

cos (kQ n^^ cosG^ z^) cos (kQ n2 cos02 z^) 

n2 cos02p1 

2 1 
-r sin (k n,0050,2.) sin (k nocos0-zo) 
n, cos©, ol 11 o2 22 , 

(63) 

-i n cos© 
M = -±i sin (k n.cosO^z.) cos (k nocos0 z_) 
21 g. olll 0222 

i n2cos02 
cos (kon^cos0^z^) sin (kon2cos02z2) (614) 

i g * Hp 
M s ---sin (k nocos0.zo) cos (kn.cos0.Z-) 
12 n2cose2 o 2 22 ol 11 

iMl 
-— sin (k n,cos0.z.) cos (k n_cos0 z ) 
n^COS0j Ol 11 02 22 

(65) 

n cos© g 
M = --—=■ sin (k n cos© z ) sin (k n cos0 z ) + 
22 n_cos0„go ol 11 o2 22 

¿ ¿ ¿ 

cos (k n,cos0,2,) cos (k nocos0ozo) 
Ol 11 O 2 22 

(66) 
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... 

In order to obtain the amplitude (both magnitude and phase) of transmitted wave, 

equation (1*9) is used where 

U = A + R , o ’ 

Vo = Pl(A-R), 

(67) 

(68) 

and 

= T , 
T ’ 

\ = P-pT * 

(69) 

(70) 

where A and R are the amplitude of the incident and reflected TE wave and T is 

the amplitude of the transmitted wave at the right hand edge. The symbol p is 

given by equation (60) and p = p if the materia?.^*»* ¿he left and right of the 

area of interest have the same electromagnetic properties. Solving for T and R 

one obtains 

T = 

|M11 * M12 V P1 ~ (M?1 ^ M22 V 

(M11 + Ml? Pt5 P1 + (M21 + M22 PT) 

_?P1 __ 

(M11 + M12 P1 + (M21 + M22 PT) 

A, (71) 

(72) 

The reflection and transmittion coefficient are then 

.? 
T 

(73) 

(7M 
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For the TO vaves tho aquation» (59) through W) are the sama axcapt that p is 

replaced by 

u n cose -rwq »r itnrt R now represent the transmitted (75) 
q = g * 

and reflected magnetic vector and not the electric vector. 

Tha above solutions for U and V assume that the electromagnetic properties of the 

particular »1* are constant. If these properties vary through the slab in a 

continuous fashion as in a plasm, or a radome heated on on. side, there are tvo 

techniques available. The first snd easier to apply would he to divide the si* 

into a large number of sub-slabs snd assume that each sub-slab had constant 

properties. This technique is accurate if the division is small enough This 

method is easy to apply though seme calculation.! error is introduced in a 

computer due to round-off. The other technique is to solve equations 

(30) and (31) for the slab either analytically or numerically. These equations 

can be solved analytically only when n2 snd u have particularly nice functional 

forms. Numerically there are two techniques, the first being numerical 

methods of solving differential equations and the second technique is to convert 

equations (30) end (31) to integral equations end use stsndsrd numerical techniques 

to solve. Consider a second order differential equation of the form 

¿I + A(a)^- - B(z)P = H(z) 
2 ' 'dz 

dz 

This equation may be converted to the integral equation 

P(z) * K(z,0 P(0 dC + J(z) 

-16- 



mm 

where 

K(M) - «-*) [B(í) - A'«)]- A(Ç) ( 

J(z) = /* (z-O ' A(ft)P + p' (z-a) + P , 
ja o o o ' 

where P0 and are the boundaiy values at a. In the problem considered here 

H(z) = 0, and from equation (31) P = U, A = -d log// , B « [n2(z) - a2] 
dz ° 

and a = 0. For the problems under consideration // is constant implying that A = 0. 

In the work that follows, radomes with curvature are treated. This means that in 

a siabed material the normal to surface changes from one ray interface to the next 

and the theory developed above must be modified to account for this. Since the 

tangential components of E and H are continuous across a boundaiy U, V, Ü, V must 

be converted into the normal and tangential components of E and H, these E and H 

values rotated to take account of the change in the surface normal and the new 

normal and tangential components of E and H converted back into new values for U, 

V, U, V. This is accomplished as follows: 

Let the vector quantities VPE VPAo, and Bq represent the direction normal to the o 

plane of incidence, the direction in the plane of incidence and tangent to the 

interface, and the direction normal to the interface at the lower surface of the 

slab under consideration in some arbitrary coordinate system, i.e., the x, y, z 

directions at the lower interface for a particular ray-interface. The quantities 

VPEn, VPAn, and ßn represent the same quantities but for the upper interface of 

the slab. Therefore, in the slab of interest the E* and ïf fields are given by: 

E « (U o VPE - V o o VPA + o 
Of 
u Uo ' V exp iko,y (76) 

if = (U VPE + V - VPA o o o (77) 

-17- 



from equations 2U, 25, 26, 39, **0, and 41 where y is the y distance the ray 

moves in the slab from the lower intersection point. At the upper surface, after 

rotation into the new plane of incidence, the quantities U, V, U V, are given by 

U * VPEq • e7 exp - ik5y, (78) 

V * vp£n • H> exp - ikõêy, (79) 

U » VPEn * H/ exp - ik^ty, (00) 

7 * - VPAn • E/ exp - ikãy, (8l) 

where01 is the new value of n sin 6 at the upper surface due to the change in 

surface normal direction. In matrix notation 

where the direction cosines ß*, are given by 

01 

ß2 

* VPE • VPÈ , 
n 0 

- VPÈ • VPA , 
n 0’ 

» VPE * B , 
n o’ 

« VPÎ ' VPE , n o’ 

* VPÄ • VPA , n 0 

» —VPA • B . 
n 0 

(82.a) 
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The matrix equation (6l) is now modified to account for surface curvature as 

follows 

Hj, - M1 (z1) MP1 M2 (z2) MP2 . . . . Mjj (zn)MPn, (83) 

where MP is the inverse of the matrix in equation (82), calculated numerically, 

and where and the are four dimensional. 

'M 
Mi « 

ie 
(81*) 

M 
im 

where and are the old two dimensional matrices for the transverse electric 

and magnetic eases. Using the same technique which lead to equation (72), the 

amplitudes of the TE(ïf vector) (Ti) and TM(H* vector) waves (T|¡) are 

t 
T . 2- ( V1K33 * 

1|A>[<mt13 * » (^23^^21,5,,3)/90. (85.a) 

where 

2. » ( P,^ [(¾ . . Wl)] 
■»I*. [<^11 * Wt)P1* (\21 * Wt’J) m' 

(85.b) 

QQ .(i*ril + ^12^^1 + (MT21 + ^22^5 

^33 + ^3^^1 + ^1*3 + 

'(^T31 + ^T32PT^ql + (\l4l + \i*2PT) 

(MT13 + ^1^^1 + (MT23 + \2>*qT) (85.c) 

-19- 



where P^, P^, and are defined after equation (TO) and in equation (75) 

and related discussion. Note that Ai is the amplitude of the E vector of the 

TE wave while is the amplitude of the H vector of the TM wave. Further 

note that equations (85.a) and (85.8) must be multiplied by a phase factor to 

account for the rays lateral displacement in curved stratified media. This 

quantity 

exp (iko [a^ +a2y2 c^yj, 

where o^, y^ represent the n sin 0 and lateral displacement in each slab,is not 

necessary for plane sheets as each ray is affected equally. 

(85.d) 
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IV. A RAY TRACING PROCEDURE 
/ 

In this section, a ray tracing procedure applicable to any three dimensional 

case is presented, however, the technique is only applied to the axially synmetiy 

og've and the axially symmetric cone or cylinder case to preserve some ease 

of handling. The reason for this is the difficulty of solving for the ray 

intersection points on the radome interfaces for the most general case. 

In the antenna-radome system (shown in Figure 1), the antenna aperture plane ia 

displaced some distance "DISP" from the gimballing axes of the antenna. When 

the antenna is rotated to some particular look angle *L, the description of the 

aperture plane and ray trace becomes difficult using a fixed coordinate system. 

For this reason, two coordinate systems are used to describe the antenna-radome 

geometry, as shown in Figure 2. The radome is described in the fixed (x, y, z) 

frame centered at the antenna gimbal axis. The antenna aperture and ray trace 

is described in the (x' , z' ) fr(Une rotated about the x axis through the 

gimbal point by the look angle Points in one system are related to the 

other by the transformation 

0 

cos <(i 
L 

sin ¢. 

(86) 

The radome is assumed to be constructed of'ÏISUR"geometry sections which are 

rotationally symmetric about the z axis and are described by either the equation 

of an ogive 

[(x2 + y2) -A]2 + (z - B)2 * r2 , 
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»h«« (A, B) represent the center of (he ogive 
ogive when x ■ o and R is ito 

or the equation of . cone Uyliaitr) 

X2 ♦ y2 TAN2 
, sin c 

+ BR _ z\ 2 
(88) 

where t is the half-angle of the cone R -in 
cf . S„n the rehius of the cylinder if t * 0 or 
cr a sphere centered ■+ e , E 0 or 

g mbnl nils tangent to the cone, and BB is 
'quai to tero for a cylinder or 1„ th. 00n*t“t 

* t In the CñSC of m 

— to th. t «1. intercept vain, vhen i, y « ^ ^ 

Msuned to consist of"NSLABS"dlffe~„r , 

thickness and complex dielectri ^ ',Ch Wth * i*™» 
—‘»t. Thicknesses „d dielectric constats 

in the corresponding layers of e*^ onstants 
«yers of each geometric section are identical .. 

* rv is traced from the „tenn. eperturc through the redo, to sn lnttl 

equivalent Pl„. outside the redone, ,1s equivalent plan. 1. p^ ^ 7 
“ — Trom a point (i* , , P‘ra11'1 t0 th' 

the f an. until It strike, the 1 , ‘ Pl“' 

y- s, , h r SUrf,°' 0f “>« «horn, .t the point (., 
^ a* 2 * ' where z1 in ^ 'x a* 
I a e “ the root of equation (8r) or (88) bv 
<*. /. t) In terns of , ' by «pressing 
for (i- M X • ^ 1 «h substituting in the vnues of (i- , », , 

. y ). Bote that equation (67) leads to a n, * a 

four toots exist ,. ’ ' l0" for 
-i»t. Th. correct root must be detentin.d. Also not. that , 

equation (87) or (88) with < ’ ^ th 1 in 
(88) with given constats (A. B. B, bb, c ), It 1. Mllmea 

that the ray win atrii,« asaumed 
a ptarticulw geometric section of the radane Bv 

f. -yt back to the unprimed system, the vain. of. Wb 
the «sumption of which aeom t • " to ch"* 

h esometric section .« actually intersected A d,r, 
geometric section i3 tried if th. ' ^fferent 

rieQ lf the “sumption is false. 
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If the correct intersection point is found the phase change of the ray in going 

from the antenna to the inner surface of the radome is stored as 

PHASA = exp ( (z¿ - DISP)) (89) 

At any ray-interface intersection four vector qualities are required. These are: 

(l) the vector A, which represents the normal to the plane of constant phase, 

is given in the (x', y', z') bases. This vector is A * (0,0,1) from the antenna 

to first radome interface; (2) the vector i* (i^ by referring to equation (76) - 

(3l))is the outward directed surface normal at the intersection point. In the 

(x, y, z) bases the normal is determined as 

B * (90) 
f 

where BR is the B in equation (87), for the ogive. 

+ BP B = x i + y j + TAN‘ £(-—- 
a a° 'sine z ) k 

a 

Sini ( *_ + DR 
* \ sTfT? cos 

(91) 

for the cone (cylinder) where for equations (90) and (91) (ï, 7, k*) represent the 

bases vectors in the unprimed system. To obtain B* in the primed system the 

transformation in equation (86) is used; (3) the vector VPE (VPEn in equations 

(78) - (81)) is calculated as 

VPE 
A x P 

|Ã x 3*1 
(92) 
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Since A, B define the plane of incidence at the ray intercept with a radome 

surface, VPE represents a normalized vector perpendicular to the plane of 

incidence and also perpendicular to A, B. This vector represents the transverse 

electric direction for transmission through a radome interface; (1*) The vector 

in the plane of incidence and tangent to the interface is 

VPA 
B X VPE 

|b X vp£| 

where VPA is the VPAn of equations (78) - (8l). 

(93) 

Note that these vectors are all represented in the (x\ y\ z') system and that 

if AIIB then VPE is defined in any direction perpendicular to Ã*. 

Three angles and the second rotation matrix is defined in order to continue the 

ray trace in the radome material. The first angle TRAP (6p) is given as the real 

angle made between the normal to the surface B and the ray vector A and is given 

by (see Figure 3a) 

ep = arcos (A • B) (9M 

The other two angles required are THATP (6*), the angle the ray would make to 

the interface normal on the other side of the interface (interface 1-2 in Figure 

3a) of the radome if the other side were air, and the angle CHII (*) the angle 

the ray does make to the interface normal on the other side of the interface in 

the dielectric material. These angles can both be expressed in terms of 

- __ sin 6' _ ^ 

\/[Real (n2 - sin2 0')i ]2 + sin2 qi 

where n is the complex index of refraction of the radome material below the 

interface ^ in Figure 3a) if 0' is desired or tie material above (n2 in Figure 3a) 

the interface if ¿is wanted. Note that equation (95) can also be expressed as 
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TAN <i> sin 0’ 
(96) 

Real (n2 - sin2 6’)’ 

which is solved for 0' by numerical methods. The angle 0' is first obtained 

from equation 96 by setting 'i' “ 0p and then solving for the next layer of 

radome material by using the Just found 0' and the new value of n for the next 

layer. If the ray is in air and hits the underside of the radome 0' = 0p. 

If the ray is in the radome material, the normal to the interface may be 

different than at the previous ray-interface intersection. If this is the 

case, modifications discussed above due to curvature, are made to the transmission 

matrix. The quantities y* are calculated via equations (82a) from the values 

of B, VPE, VPA Just calculated (Equations 91, 92, and 93) and these same quantities 

calculated at the previous interface. From these B, y values the matrix in equation 

(82) is found and its inverse,used in equation (83), calculated numerically. 

The a value is 

a = sin 0* (97) 
ll 
! 

and a is the same quantity found at the previous interface. 

The rotation matrix required to rotate the coordinate system so that B* and X lie 

in the plane of incidence (Figure 3a) for the current intersection is given by 

RTRANS = (-VPE, - VPA, A) (98) 

where each vector is considered as a column vector in the rotation matrix. 
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The ray then proceeds into the next layer of the radome (layer 3 in Figure 3b) 

bent at an angle CHII, given in equation (95). from the surface normal and at 

an angle CHIP from the previous ray direction as given by 

CHIP “ ®p ■ ^ • (99) 

By referring to figure 3b it is seen that the ray in the new layer may be 

expressed as the equation 

jj" s - —— —■= 

tan (Ü7) 

x" « o. 
(100) 

where the double prime represents the rotated x* axis being in the negative 

VPÊ direction (for interface 2-3), the rotated y' axis in the negative VPA direction 

(for interface 2-3) and the rotated z' laying in the B direction, i.e., the 

surface normal lies in the z" axis direction and the rotation point of this 

new system is the ray-interface intersection Just considered. By using equations 

(87) for an ogive or (88) for a cone and the transfo mat ions (86) and (98) 

to obtain x, y, z expressed in terns n- x", y", z" and the axis rotation point 

as well as equation(lOO)relating z" to y" and setting x" * 0, the ray intersection 

point with the upper interface in the x", y", z" coordinate system can be 

determined. The length of the ray in the current layer (DISPP) is detemined 

and the thickness of a planar plate giving the same ray length is given as 

zk = DISPP • cos (1J1). (101) 

Ulis plus the quantities 

N =Jn2 - sin 6' 

P = N 
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and 

Q * N/n2 / 2 (l0l*) Q * N/n2 

where n i. the index of refraction of the current layer end e- the enCle 

associated with the lower interface (2-3) of the current layer are used to 

determine the transmission matrices of the current slab (equation 81.) and these 

quantities are incorporated into the owerall transmission matrix (equation 83). 

The intersection point of the ray with the upper surface of the current layer 

of the radorne i. then exprea.ed in terms of the x\ y' , s' coordinate aystem 

and a new ray vector A for the current alah found in the usual way when given 

the end point, of the vector. The phase change due to the lateral di.plac.ment 

of the ray in the current slab is 

„ (105) 
exp ikj^ <v 

where o ■ sin 6' and y" is the y" value of the ray intercept at the upper surface 

of the current slab. The calculation is then branched back to equation 90 for 

a repeat to account for the next layer, «hen the last layer of the radome material 

has been considered the same procedure is used to trace the ray to the external 

plane, however, the equations for an ogive or cone Me not used. Instead 

Z = EXPD 

is used where EXPD is the external plane distance. The transmission matrix 

is not calculated from the dome to this plane. Instead the phase given in 

equation (69) is multiplied by an exponential factor representing the phase 

change from the dome to the external plane as 

(106) 

PHASA = PHASA * exp DISPF) (107) 
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external plane. The trans- where DISPF is the ray length from the dome to the 

mission formulas for the transverse electric and magnetic waves (TAP) are 

calculated via equations (85) and multiplied by equation 107 to obtain the 

total change in the amplitude of the wave transmitted from the antenna to the 

external plane. The amplitudes in the x\ y\ and z* directions (Ax, Ay, Az) are 

calculated using the transverse electric and magnetic directions (VPE, VPP) 

for the upper surface of the radome as 

Ax » TAP « VPD (i') + TP • VPE (i'). 

Ay = TAP * VPD (J * ) + TP * VÉU (J') 

Az ■ TAP * VPD (k') + TP » VPE (k*). 
(108) 

where the indices i', J', k' represent the components of the vectors VPE and VPD 

in the i', J', k' directions in the primed system and 

vpB A X VPE 

IA X VPEI (109) 

Far Field Pattern Determination 

Figure U shows a sketch of the geometiy used in detemining the far field pattern 

at the point P as the integration of the amplitude distribution over the external 

equivalent aperture modified by the phase factor accounting for the distance between 

a point on the equivalent plane to the pattern point P, i.e. 

Up = (e' * ?') exp (£~p) p'd p' d?', 

Aperture 

Where A (p , ) is Ax, Ay, Az at a given point on the external aperture 

modified by an angular constant 

Cx = (1 + cos ip (cos ß-l) ) 

Cy = (1 + sin ¢/ (cos ß-l) ) 

Cz = sin ß. 

(111) 

¢112) 

(113) 



which relates a point in the far field pattern to the normal at the equivalent 

exit plane. The angle ß is the angle between the antenna look axis and a line 

drawn from the center of the antenna to the far field point while the angle ij* 

is the angle relating the far field patterns x' axis to the pattern point in 

that plane. In order to perform this integration the coordinate system is related 

back to the actual antenna since a unit area on the antenna is not calculated 

in going through the radome to the external plane and the equivalent aperture 

is not well defined. 

Further one makes the assumption, common to physical optics that 

par- Xq P' cosf - yo P' *ln (UM 

r r 

Using polar coordinates in the far field 

x = P" cos 4> , (115 a) 
o 

= P" sin \p > (115 b) 

where 
(115 c) 

P" a r sin ß 

This gives that 

P 'S. T - P' sinocos (V - 0) 
(116) 
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and the far field amplitude in the x, y, or z direction is 

IL exp 2 

27T ANTR i 

exp/-2771 p' l^p,<pjsin ß x 

cos (r(p,v) -mp' (p,<p) j (P-, v*P,v>) dpdf, aiT) 

where ANTR is the antenna radius and J(^', P»V) is the Jacobian representing 

the transformation of coordinates from the external aperture back to the antenna 

(a known aperture). The integral expressed in equation (117)is calculated numer¬ 

ically as an iterated integral using a marching Romberg technique. This technique 

will require a large number of function evaluations (ray traces) to accurately 

determine the far field amplitude at a given point and thus require considerable 

computer time. Also, using the Romberg technique where values of Ax, etc. are 

not stored makes it very difficult,, if not impossible, to accurately calculate 

the Jacobian defined above, therefore, an approximate Jacobian is used in the 

integral. The final desired quantity, the far field intensity at point P is 

then given by 

'P = UP UP 
(118) 

The boresight error is determined by setting 0* 90° in the integral equation(117) 

and determining the value of ß for the center minimum in intensity when one 

half the antenna (0< ^ <’l8o) is given a positive constant amplitude and the 

other half is set negative. 

V. A SIMPLIFIED METHOD OF DETERMINING BORESIGHT ERROR 

If one desires faster methods of determining boresight error two procedures 

are possible. The first notes that boresight error occurs only in the 

azmuthal direction, i.e., in the y', z' plane of the antenna since the radome 

is symmetric about its z axis, therefore, the two dimensional integration 
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may be approximated by a one dimensional integration in y' for 0 ■ 90°. 

The second technique would be to assume given functional dependencies of 

the transmitted amplitudes and ray impingements on the imaginary externad 

píeme and performing an analytic integration. For example, for the one 

dimensional integration case, one assumes that 

^ = Ao (! - I y - q |a) exp i <5o (1 +y| y - q| ) , (119) 

where q represents the y position for the ray traveling normally through 

the dome and Aq and 0Q the magnitude and phase of this normal ray at the 

external equivalent plane. The quantities a, y represent linear deviations 

from the amplitude and phase. Figure 5 shows a sketch of this physical 

arrangement. 

From this figure the distance p may be approximated by 

par - y sinß , (120) 

and the amplitude at y by 
a 

u (yj = / A (1 - a|y - q I ) e«p H (1 + Hy - q I ) exp 27Ti (t - _P ) dy 
-a T X 

(121) 

where "a" is the antenna radius and T the period of the radar wave. This 

integral may be solved exactly using equation (121) as 
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where 

u (yo) “ Ao exp 27ri /i - £ +<J 
It a 0 

?7T> 

e*p - i <J0 y q 

(«P id, a - exp id, q) (1 +Oq _a ) exp i , a 

ió, 

+ exp id y q 
0 

iáo 

(exp 1 d?q - exp ii?a) /1 -a /1 -Cfq - _J_\ 

( ÍÔ2) 

+ a(q exp id2 a + a exp - i d? a) 

¿1 = /sin/? + <^0 A 

l 2rr A 

q exp i d(q) 

(12^ 

(123a) 

/sin ß - àQ y K 

2 7T 
2 7T 

A 

The intensity in the Fraunhofer pattern at yo is «iven by 

Iy0 = UU*. 

(123b) 

( I2U) 

TO obtain the b„resight error fr» this equation directly is difficult and the 

3teChnl^e -«i„g half the antenna positive and the other 

half negative is used to find the central minimum. 

to find the values of Ao, a, ¿0, q. 
the ray trace is required 

Conclusion 

In this paper, a technique for finding pattem distortion and boresight error 

of « antenna pattern due to a dielectric redone has been discussed. Several 

npproximatlons to these techniques are also considered. At present the technique 

and the first approximation discussed above have been coded for computer cal¬ 

culations and computer programing including test bases will be reported separately. 

-32- 



When results are available they will be reported and compared to the results 

of other computer programs and with experiments if possible. 

Note that the technique used here is only an approximation to the true case as 

equations used acre only for plane dielectric sheets (though modified slightly 

for curvature in this paper). Perhaps a more accurate technique would be to 

ray trace using the reflection and transmission coefficients at every interface 

keeping track of the new rays generated on each reflection. Of course this 

technique also requires approximations in that one considers only primary 

rays, or primary rays plus once reflected reys, etc. ïhe technique used here 

must, of course, be verified by experiment to completely Justify the new 

modifications attempted (3 dimensional ray trace and accounting for curvature 

in the transmission matrix). 

The author would appreciate receiving comments on the techniques proposed herein 
especially the technique accounting for wall curvature. 
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THE ANTENNA IS DISPLACED A DISTANCE "DISP" 
FROM THE GIMBAL AXIS 

Figure 2. Coordinate System Used to Define the Antenna 
Radome Geometry 
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BEING THE ANGLE THE RAY WOULD MAKE IN AIR. 
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Z" DIRECTION. THE RAY VECTOR IS SHOWN AS "A" 

Figure 3a. Plane of Incidence for Ray-Interface Intersection (1-2) 
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