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PREFACE

This study was undertaken to examine, through the use of historical
data, the validity of breakpoint hypotheses as explanations of the out-
comes of land combat battles. The validity of breakpoint hypotheses is
of interest to the Air Force because such hypotheses are imbedded in
several models being employed to evaluate weapons systems in terms of
the effect of air-delivered munitions on the course of a land combat
engagement.

The work reported here 1s a part of two larger Rand studies, the
Forward Air Strike Evaluation (FAST-VAL) project and a broad study of
close air support. In both of these, it was desirable to have some
way of relating the outcome of a battle to the effects of personnel
casualties inflicted by air. This report presents one aspect of the
exploration of the range of validity of the general breakpoint hypoth-
esis. The scope of this report is limited to exploring a popular form
of assumption regarding the relationship of casualties to the decision
to terminate a battle--the assumption that a military force gives up
the battle when its personnel casualty fraction reaches a certain level,
which may be either a fixed quantity or one determined on a probabil-
istic basis. Assumptions of this type are commonly used to simplify the
problem of deciding when and how to terminate simulated battle engage-
ments in war games, field maneuvers, and computer simulations. The ob-
ject of the present investigation is to determine the extent to which
such a procedure is justified by confronting it with available data on
historical battle engagements.

This report will be of interest to persons concerned with war games
or similar efforts involving the relation of the outcome of a tactical

engagement to the personnel casualties incurred by the contending forces.
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SUMMARY

The purpose of this report is to address the validity of a break-
point-type hypothesis for determining the terminal status of a land
battle. The primary version of the breakpoint hypothesis used is a
moderate simplification of the ones frequently used to determine when
and how to terminate simulated combat for various types of combat mod-
els, such as those used in war games, computer simulations, and the

like. The basic breakpoint hypothesis used is as follows:

1., Each side selects independently a breakpoint from a distribu-
tion of such breakpoints and gives up the battle when its
casualty fraction reaches its breakpoint.

2. These breakpoint distribution curves are generally applicable.

3. The casualty fractions of the forces are deterministically and

monotonically related to each other.

Some of the major theoretical implications of this breakpoint hypothe-
sls are developed, and these are quantitatively compared against casualty-
fraction distribution data from various investigations of land combat.
Some alternative versions of the basic breakpoint hypothesis are out-
lined and tentatively discussed in terms of the same data, to see what
leads they may provide to a more satisfactory theory of the battle ter-
mination process.

The principal finding is that the breakpoint hypothesis yields the-
oretical implications that are at variance with the available battle
termination data in several essential respects. Some tentative observa-
tions and remarks are offered regarding possible directions for future
attempts to resolve the problem of decision in battle. However, the
task of devising a theory that satisfactorily accounts for the avallable
data is not within the scope of this report. Until a better theoretical
explanation of the battle termination procells becomes available, the
soundness of models of combat such as war games and coﬁputer simulations

that make essential use of breakpoint hypotheses is suspect.




T YTy TR T T T v T T -~ v T - ) / \ - 'p"

-vii-

ACKNOWLEDGMENTS

The author is grateful to Louis Wegner, Marvin Schaffer, and Peter
Gluckman of The Rand Corporation for their careful reading and helpful
comments on preliminary drafts of this report. In addition, a special
debt is owed to William A, Schmieman who provided the 1IBM punched card
deck used to obtain most of the empirical casualty-fraction distribu-
tions presented. Dr. Schmieman had used these data in preparing his
Doctoral Thesis at the Georgia Institute of Technology. The card
deck provided by Dr. Schmieman is his version of one originally pre-
pared at the Research Analysis Corporation under the direction of Daniel
Willard and used by Dr. Willard in preparing a paper on Lanchester As

Force in History.




o(x, a)

LIST OF SYMBOLS AND TECHNICAL TERMS

rate of defender force attrition per unit attacker troop
total casualties suffered by side z during the battle

(Cz =2z, - z)

casualties sustained by side z as of time t into the battle;
Cz(t) =z, - z(t)

rate of attacker force attrition per unit defender troop
conditional distribution of Lx’ given Wy

conditional distribution of Ly, given wx

break curve for side z, given the probability that the
side's breakpoint threshold, Lz, will not exceed uj

Pr{Lz < u}

casualty fraction sustained by side z in the battle
casualty fraction for side z as of time t into the battle;
(£,(t) = C, (t)/zy)

preselected (breakpoint) casualty-fraction level which, 1if
met or exceeded, results in side z's losing the battle
duration of the battle

the event that side 2z wins

general symbol for the attacker

general symbol for the defender

general symbol denoting a value of either x or y, depending
on context

surviving troop strength of side z at the end of the battle
initial troop strength of side z at the start of the battle
surviving troop strength of side z as of time t into the
battle

P(fz < UIW;)

Dirac §-function of x with spike at a so that
X

o(x, a) -f §(t, a) dt

-0

0, x <a
é’ xX=a
1, X > a
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® = a strictly increasing monotonic function relating fx(t)
to fy(t) via the formula fx(t) = w[fy(t)]

¥(u) = Min [p(u), 1) = ¢(u)o(l, @(u)) + o(p(u), 1)

dual = the result of applying the usual transposition to a for-
mula, expresgion, etc,

"ugual trana- -1 -1
position” = x-+y, y+x, ¥ >y, ¥y
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I. _INTRODUCTION

Consider two opposing forces engaged in a land battle. As the en-
gagement continues, both sides will suffer casualties. Eventually, the
battle will end. At the termination uf the engagement, the situation
may be one of the following:

o One side has, for all practical purposes, been annihilated,
leaving its opponent in contrel of the battlefield,

o One gide surrenders and submits to the will of 1its opponent,
who tuereby acquires control of the battlefield.

o Neither side has surrendered or been annihilated, but one of
them has disengaged and either has withdrawn or is in the process of
withdrawing from the area, leaving its opponent rather clearly in con-
trol of the battiefield.

o Neither side has surrendered or been annihilated, but both sides
have disengaged their forces, and both sides either have withdrawn or
are in the process of withdrawing their forces from the area. The
withdrawal is mutual, and it is impussible. or at any rate a very dif- 1
ficult and controversial matter, to assert that either side has practi-
cally exclusive control of the battlefield.

This list of possibilities excludes a situation that occasionally
occurs, in which both sides have disengaged their forces, but neither
side appears ready to leave the field. Sporadic skirmishes may be tak-
ing place along the line of demarcation. (Typically, this sort of situ-
~"1ion occurs when a defensive force is reluctant to leave a strong
defensive position in the presence of a relatively stronger enemy who
considers that an immediate assault would not be worth the probable
losses.) These conditions evidently describe a kind of unstable stand-

off that will eventually resolve itself either into a renewal of the

engagement or intc one of the four kinds of termination described ear-
lier, so we will view the standoff case as a temporary pause or lull
in nostilities, rather than as a conclusion of the engagement.

0f the four terminal situations listed, the second and third,
where there is a fairly clear-~cut victor, seem to be the most common.

Possession of the battlefield seems to be a generally accepted criterion
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of victory in the battle, There are cases in which the battle loser
has imposed a serious strategic cost on the tactical battlefield winner.
The "Pyrrhic" victory (Battle of Asculum, 279 B.C.) is a famous example
of a tactical victory obtained at a heavy strategic loss. Annihilation,
except in circumstances where retreat is impossible (as may occur, for
example, in sieges or in island campaigns), is quite rare. Even where
retreat is out of the question, a defender whose position is deteriorat-
ing will normally surrender rather than fight to the last man. Mutual
withdrawal, with its inconclusive outcome, although more frequent than
annihilation, is still a relatively rare occurrence. In general, a
weakening side will prefer to withdraw and abandon the field rathey
than surrender to its opponent, and (if withdrawal is not feasible)

will usually prefer to surrender at some casualty level short of 100
percent total annihilation.

A so-called "break curve' is a device sometimes used to model the
inclination of a weakening force to discontinue the engagement by ac-
knowledging defeat and either withdrawing (if it can) or surrendering.
It is a curve that purports to show the probability that a force will
discontinue the engagement as a function of the casualty fraction that
it has sustained. (Figure 1 shows a hypothetical break curve.) A break

curve is often used in combat models as follows. At or before the be-

ginning of a simulated engage-

! 00 ment, a sample casualty-fraction
E S value for each side is drawn
§
g 075k from the distribution of such
I values defined by an appropriate
é break curve. The values so se-
% 0.50 " lected are called the '"break-
% points" for the two sides. Then,
E 0.5} as the engagement progresses,
% both sides are considered to be
. 00 035 oéo 0;5 00 engaged in a contest for domi-
Casualty fraction nance until ¢ne of them accumu-
lates enough casualties to equal
Fig.1~Hypothetical break curve or exceed its preselec*ed break-

point. At that point, tie side

—




whose preselected breakpoint has been reached is said to 'break,'" mean-
ing that it is presumed to discontinue or "break off" its attempts to
dominate the opposing side. Thus, the side that breaks is considered
by the rules of this particular model to lose the battle.

Break curves of the sort just described are presented in Ref. 1
(paragraph 15, Appendix IV). Reference 2 gives an example of their
application to a particular model. Frequently, application of the
break curves 1s simplified by assuming that breaks occur deterministi-
cally. The break-curve approach described above can be adjusted to
this case by taking the break curve to be a step function with a ver-
tical rise of unity at the deterministic breakpoint, as indicated in
Fig. 2, This special type of break curve will be called a determinis-
tic break curve. Perhaps the most common type of break curve proposed
is of the deterministic type. For example, deterministic break curves
have been used to determine the outcome of simulated battles in the
Rand FAST-VAL model,(B) have been used by the Research Analysis Corpo-
ration in a series of small-unit simulations, and were employed by
the Center for Naval Analyses to determine the subordinate unit out-
comes occurring in some large-scale simulations. Other examples could
be cited.

Objections to the validity of deterministic break curves as de-
scriptors of combat behavior have been voiced from time to time. For
example, according to Clark,(a) "The statement that a unit can be con-

sidered no longer combat effec-

1.0
tive when it has suffered a

specific casualty percentage
is a gross oversimplification

not supported by combat data."

Probability of discontinuing the engogement

0.5 The collection of casualty data
included in Appendix F confirms
this conclusion., Clark showed

| that a deterministic-type break
oO . . Og e curve is not generally applicable

Casualty fraction to the observed behavior of com-

e e e t i t did t 1 th
Fig.2—A deterministic break curve bat units bu not analyze the
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validity of the more general type of break curve illustrated in Fig. 1.
At present, the validity of the more general type of break curve seems
to be a controversial matter. On one hand, some analysts have proposed
their use for war gaming, maneuver control, and similar purposes, as
noted earlier. Other analysts have designed simulations using the
simpler and more specialized deterministic break curves, despite Clark's
objections to their merit, and so by implication have embraced the basic
philosophy that unit behavior is représentable by some type of break
curve,

On the other hand, some analysts have grave misgivings about the
validity of break curves--even while they may, on occasion, use them for
lack of anything better. Some of the objections raised against the use
of break curves are discussed below. Most of them can be characterized
as suggesting that some other factor or factors than simply the current
casualty level of a force influence the break behavior of the force.
Frequently these other factors are proposed as considerations supple-
mentary to, rather than as replacements for, the casualty-level crite-
ria. This suggests that the casualty level is often thought of as a
sort of "core" consideration that may be modified in particular situa-
tions by some of these additional considerations.

For example, it is sometimes suggested that the casualty rate, as
well as the casualty level, influences the behavior of a force. Other
considerations include the level of training and battle experience of
the troops, the influence of inclement weather or other unusual environ-
mental stress, the importance of the mission, troop morale, the quality
of leadership, the degree of knowledge and intelligence of the enemy's
situation and intentions, the perceived vigor of the enemy opposition,
the scale of friendly fire support and troop reinforcement, the logis-
tical supply situation, and the availability of good communications with
other friendly units. Many of the considerations that impinge on the
intuitive plausibility of the break-curve approach are carefully dis=-
cussed in Ref. 4. We do not intend to pursue the extent to which the
brezk-curve model's '"face validity" is affected by these plausibility
arguments, since we will confront our model with empirical data in order

to determine its wvalidity.
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However, there is one further objection that has been raised against
the break-curve approach that needs to be discussed in somewhat more de-
tail, This is the observation that each side in an actual battle surely
considers the progress of the battle and continually assesses its own
situation relative to that of its opponent, rather than being governed
solely by its own condition. In this view, each side conducts itself
according to the results of a dynamic decision process lasting through-
out the battle rather than pfeselecting a specific breakpoint, as is
done in the conventional application of break curves to war games, simu-
lations, and field maneuvers. That the objection is not always relevant
can be shown by the discussion in Appendix C, where it 1s shown how some
types of continuous decision process can be subsumed under the break-
curve paradigm without losing any generality. The key assumption in
such derivations is the supposition that each side, while it may decide
continually whether to continue the engagement or not, bases the deci-
sion solely on its own current casualty fraction., Similar derivations
of break curves from dynamic decision processes have been given in Refs.
5, 6, and 7. In none of these derivations is the possibility that one
side's breakpoint may depend on the casualty level of its foe explicitly
considered, Thus, it seems that in order for the objection raised ear-
lier (that break curves fail to reflect the dynamic decision processes
actually taking place in combat) to retain its validity it must also be
supposed as a minimum that one side's breakpoint distribution depends
on the other side's casualty level,

In addition to the conceptual issues discussed above, there are
several practical préblems in assessing the validity of breakpoint as-
sumptions. These stem from the kind of empirical evidence that is more-
or-less readily available for comparisons with the model. First, the
recoverable data are essentially limited to estimates of the attacker
and defender initial troop strength, of the total losses* on each side,
and (occasionally) of the temporal duration of the battle, together

*

Not necessarily only those inflicted prior to reaching a break-
point. In some cases, the historically reported casualties may have
occurred after the break. For example, routs sometimes degenerate into

massacres, and on occasion troops that have surrendered may have been
slain.
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with a narrative account of the action and an historical judgment either
awarding the victory to one side or the other or declaring the outcome
"indecisive." Second, the criteria for assessing casualties may vary
among battle descriptions from very broad to highly restrictive. Third,
there is often much scope for human error and/or capriciousness in se-
lecting the forces to be included In establishing troop strength or
casualties, as well as in arriving at an accurate inventory of these
quantities, These problems are noted and discussed a bit further in
Ref. 8, but no solution to them (short of a reexamination of the orig-
inal historical records) is in evidence. These problems make enlarging
the sample size a generally tedious, time-consuming, and often expen-
sive task., Such is the nature of the basic data at our disposal.

To the above difficulties yet another must be added--namely that
the attrition dynamics intervene between the break curve and the ob-
gserved battle outcome and force ratio., That ig, after breakpoints are
established, parallel casualty assessments for each side must be made
in order to determine the final outcome and casualty fractions. Con-
sequently, 1t is clearly incorrect to establish a break curve by sim- 1
ply plotting the cumulative fraction of battles that terminated before 1
various casualty-fraction levels were sustained. A correct analysis
of the relation of observed casualty-fraction distributions and break
curves is given in the next section. Later sections present some em-

pirical battle data and discuss their relation to the model.




II, BREAKPOINT MODEL

The breakpoint model considered here is founded on the following
postulates, The ensuing development requires each of the assumptions
made, as well as some additional ones that will be introduced as we go

along.

BREAKPOINT HYPOTHESIS

Hypothesis A. Termination of a battle can be considered as gov-

erned by the following mechanism, or one that gives the same results:
Prior to the battle, each side independently and at random selects a
casualty-fraction value (breakpoint) from some distribution of casualty
fractions. When either side experiences a casualty fraction equal to
the preselected breakpoint, the battle terminates with a loss to the
side that "broke.”*

Hypothesis B. The breakpoint distributions (break curves) men-

tioned above are generally applicable. That is, they are the same for
all battles, irrespective of the size of forces involved or when, where,
by whom, or with what the battle was fought.

Hypotheses A and B are introduced because that is the way break
curves are used in many war games and combat simulations. Hypothesis B

can be tested by various groupings of empirical battle data, and also

In employing the casualty-fraction value as the key parameter {
value, there is a tacit assumption that the battle is fought to its
conclusion with the forces on hand at the start, since this provides
a well-defined base for establishing the casualty fraction. If rein-
forcements occur during the battle, then it is necessarv to have some
further rules about how to determine the casualty fraction. For ex-
ample, Clark( computes distinct casualty-fraction values two ways:
(1) cumulative casualties from start of engagement per troop at the
start, and (2) cumulative casualties less cumulative replacements per
troop at the start. In other contexts, reinforcements are often mod-
eled in one of two extremes, i.e., either thev are assumed to have a
negligible impact on the situation and ignored (perhaps with some ra-
tionalization to the effect that they arrived too late to affect the
outcome), or they are lumped with the initial forces and so are counted
as being fully effective throughout the battle. In this report, we
shall take the initial forces given in the references consulted as the
base for determining casualty fractions.

A Ep—
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makes explicit an assumption that 1is often overlooked. Hypothesis B
is, to a large extent, provisional, in that we may modify it if the em-
plrical data warrant it. It 1is certainly a rather strong and perhaps
controversial assumption, once it is clearly stated. However, it is
hoped that 1t may be testable, whereas the opposite tack of assuming
that every battle fought has its own special break curves vhich depend
on the unique circumstances surrounding the particular ba.cle is not
likely to lead to a theory that can be compared with such data as are
available,

While data from which accurate curves may be drawn are hard to
come by, there is no other reason for restricting the method to a single
break curve. In principle, the appropriate break curve could be made
to depend on any condition that could be known at the time the break
curve is sampled, such as whether the force is initially attacking or
defending, its state of training, experience, morale, physical weari-
ness, etc, We will not pursue this possibility here. The approach
adopted 1s in keeping with the spirit of Richardson's Principle to the
effect that "formulae are not to be complicated without evidence."

(See Ref. 9, p. x1liv.)

Some notation needs to be introduced at this point (see also the
List of Symbols and Technical Terms). Let fx(t) and fy(t) be the frac-
tion of casualties for side x (attacker) and side y (defender) as of
time t after the start of the battle. Let Lx and Ly be the breakpoints
or casualty-fraction threshold values for the attacker (side x) and de~
fender (side y), respectively. Let fx and fy be the fraction of casu-
alties sustained by the attacker and the defender during the whole course
of the engagement.

By virtue of the breakpoint hypothesis, Lx and Ly are random vari-
ables with appropriate distributions, Either fx or fy is8 equal to its
corresponding breakpoint, while the other is less. Thus, we have either
£,o< L, and fy = Ly (in which case the attacker wins) or fx =L and
fy < Ly (in which case the defender wins), In either case, both
fx(t) <L, and fy(t) < Ly hold for all times t from onset of the battle
to its conclusion, i.e., for 0 < t < T.

At this point, we introduce Hypothesis C.

- . T et - —




Hypothesis (. The losses, and hence equivalently the casualty
fractions, of the forces are deterministically and monotonically re-
lated to each other. That is, there is a monotonically increasing
function, ¢(-), such that

£.(t) = m[fy(t)]. 0O<ts<T.

It would be of interest to consider the effect of assuming non-
deterministic and/ox nonmonotonic relationships between the two casu-
alty fractions, although such an investigation is not within the scope
of this analysis., The assumption made here is a generalization of that
made by Weiss, who assumes that the casualty fractions are proportional
to each other (see Ref. 7, p. 776), i.e., that there is an "exchange
ratio," R, such that*

fx(t) = Rfy(t).

This is equivalent (provided, of course, that R > 0) to the special
case of ¢(u) = Ru. At a later point in the argument, we will find it
useful to introduce particular forms of the function e, The real rea-
son for assuming ¢ to be strictly monotonic is to assure that it will

have a uniquely definable inverse, ¢rl, whose role is made clear by

ensuing developments,

DERIVATION OF FORMULAE FROM THE BREAKPOINT HYPOTHESIS

If the attacker is to win, then we must have

fx(t) < Lx, 0<tgT

*The details of Weiss's subsequent development diverge from ours
in that he introduces a model of break behavior in terms of a continual,
but mutually independent evaluation of current status by each side. How-
ever, as was noted earlier, the approach presented here applies to this
case also, once the break curves for each side have been derived from
the dyramic model of each side's decision behavior (see Appendix C).
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and

f =£ (T) =L_.
y y( ) y

In particular, if the attacker wins, we must have
Lx > fx - cp(fy) = cp(Ly).
Conversely, if
m(Ly) <L,
then, since
fy(t) < Ly‘ 0<tx<T,
it follows, by the monotonicity of e, that
1
cp(fy(t)) < rp(Ly) <L, 0sts<T,
and then using f_(t) = m(fy(t)).
£.(t) < cp(Ly) <L, 0<txT,
and the attacker wins. Thus, the attacker wins 1f, and only 1if,
(L) < L . e
*
Since we intend that battle outcomes be "almost alwavs' well-
defined by our model, we could assign victory to the defender when

m(Ly) - Lx’ or we could see to it that this equality has zero probabil-

ity of occurrence. For some purposes, it may be convenient to adopt

the convention that the battle is a toss~-up when m(Lv) =L, and to

X
That 1s, except (possibly) for an event with zero probability of
occurrence,




-11-

award victory with equal probability to both sides. In any case, we

arrange things so that
P(Wx) =1 -~ P(wy),

where P(Wz) is the probability of a win for side z, z = x or vy.
Let

F (u) = P{L, < u}

be the break curve for side z. Now, FZ(O) # 0 would imply that there
is some positive probability that side z would break while 1its casualty
fraction was zero, which may physically be interpreted as a refusal to
engage in battle on the part of side z. Since we wish to consider only

cases where the battle has been joilned, we take
Fz(O) = 0,
Also, Fz(l) ¥ 1 would imply that side z might not break even when 1its
casualty fraction was unity. This seems to be intuitively unreasonable,
*
and so we assume that
Fz(l) =1,
We now wish to express P(wy) in terms of the Fz's. To do this we

begin by noting that the preceding discussion of the conditions under
which the defender wins yields the following relationship

P(wy) = P{Lx < w(Ly), 0< Ly < 1},

*Strictly speaking, since we adopt the convention that distribu-
tion functions are defined by their limits from the right, this should
read Fz(1 + 0) = 1, and similarly the previous assumption 1s more ex-
actly expressed by F,(0 + 0) = O, In some cases these technicalities
are important; in others, they are not.

it



-12-
eince L > m(Ly) if, and
only if, the attacker wins.
To calculate P(W&), we con-
Wy sider the schematic diagram
shown as Fig. 3. The set
x
—t
> ‘~Lx=¢ay) of points (Ly’ Lx) = (u, v)
for which the attacker wins
Wy is marked by wx, and simi-
- larly for defender wins by
0 ! Wy. The joint density of
U'LY (Ly, Lx) is, by Hypothesis
Fig.3-—Relationship between Lx and Ly A, given by
de(v) dFy(u),
and so,
1 y(u)
iy = [ [ ar e (W)
u=0 v=0
1
N RXCIONEROR
0
*
where we have truncated g(u) by setting
¥(u) = Min [ep(u), 1].
Similarly,
1 v igw)
ey = [ f e arw,
v=0 u=0

®
¢p(u) 1is assumed to be monotonically increasing and defined for all
0Oguxgl+ 0,
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which becomes
1
-1
PG = f B 0w o, . @
0
If (1) < 1, as illustrated
in Fig. 4, then we define
] W_l(v) = 1 for (1) <vsg 1.
Wy This manner of defining the
L o= (L) *) inverse function preserves
" =
; X 4 the correctness of the for-
mulae just given.
w
Y By integrating in the
0 o reverse order with respect
0 ! to the variables u and v, we
u'Ly obtain formulae equivalent
to those that would result
Fig.4—Another possible relation from an integration by parts,
betweenl andl
X thus,
1 1 1
-1
P(H,) = ff dF () dF, (v) =f[1 - By (¥ (v))] dF_(v)  (3)
and
1 1 1
P(H) = f f aF () dF, (v) = f [ -r )] ar . (4)
u=0 ¥ (u) 0

From Figs. 3 and 4, we see that the conditional joint density of (Ly, Lx)’

e e —a aa A

«

e - —— -

- PR RS




-14-

given Wx, is

dj,(U) dF_(v)
P(Wx) , for (u, v) € wx.

So the conditional density of Ly’ given wx, is

1
o Wy - f W EO
v=¥ (u) P(wx)

[1 - F_(¥(u))] dF_(u)
"Pcw) v (5)
X

Integration of this expression with respect to u fromu = 0 touw=1

and comparing the result with Eq. (4) shows that it represents a proper
probability density.

We now find the conditional distributions of casualty fractions
on each side when the attacker wins. We begin by recalling that when

x wins, Ly = fy' But we have just found the density of Lv when x wins.
Hence, .
q

P(fy < qlwx) -/d Dy(ulwx)
0

Since fx - W(fy), the conditional distribution of the attacker's casu-
alty fraction when the attacker wins is

P(E < slwx) - P(w(fy) < slwx)

-1
- Dy(v (s)lww). )




~ N r— —
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In similar fashion we find the conditional density of Lx given Wy as

1

df_(u) dF_(v)
- v X
d Dx("lwy) - ./ P(W)

u=‘l’-1 (v)

-1
- r 67 N] ar ) &
P(wyjf

Since Lx = fx whenever y wins, the czonditional distribution of the at~-

tacker's casualty fraction when the defender wins is just

Y =
(£ < slwy,. Dx(slwy). (9)

Since fx = W(fy), the conditional distribution of the defender's casu-
alty fraction when he wins is

P(f, < qW) = P(f, < v<q>lwy>

= nx<w<q>|wy>. (10)

These are the basic relations with which we shall work throughout
the rest of the report. A collection of formulae for convenient ref-
erence 1s given in Appendix D, and some particular cases are worked
out in Appendix E. It may be helpful to point out a '"duality' property
possessed by these relations. For example, Eq. (10) can be obtained
from Eq. (7) by substituting x for y and y for x throughout, and sub-
stituting ¥ for W_l. This series of substitutions (x +y, y + x, ¥ = W—l

W_l + ¥) will be called the '"usual transposition." Formulae obtainable

from each other by invoking the usual transposition will be called duals
of each other. Thus, we have just shown that Eq. (10) is dual to Eq. (7),
and vice versa. Equations (1) and (3) are duals; Eqs. (2) and (4) are
duals; and Eqs. (5), (6), and (7) are dual to Egs. (8), (9), and (10),

respectively, Clearly, any relation correctly derived from these equations
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has a dual relation obtainable from it by the usual transposition. The
derivation of this dual relation is obtainable by performing the usual
transpositioa on each step of the original derivation. This property
of duality will be exploited in the following material to reduce the
amount of algebraic manipulation required. The usual transposition
can be applied to diagrams, expressions, etc., as well as to equations;

we will make use of duality in such cases as well.

THE USE OF OBSERVED CASUALTY-FRACTION DISTRIBUTIONS TO TEST THE
BREAKPOINT HYPOTHESIS

in the preceding paragraphs we have set down in explicit terms
the breakpoint hypothesis (Hypotheses A, B, and C) and have shown how
to derive from these hypotheses formulae that purport to describe em-
pirical casualty-fraction distributions. In carrying out this deriva-
tion, we have been careful to maintain the essential distinction between
a break curve (which is a distribution of L, breakpoint values) ani a
casualty-fraction distribution (which 1s a distribut’on of fz values).
In this paragraph we show how observed casualty-fraction distributions
can be used to test the breakpoint hypothesis.

We begin by recalling relations (6) and (7), which are

P(£, < qlW) =D (qlu) =8 (@) 6)

and
P(E, < 8iH) = DI = 0 (o), ()

where the Ayx and Axx notation is introduced as an abbreviation. Com-
bining relations (6) and (7) yields

Axx(s) = P(f < s!wx) - p(fy < w'l(a)lwx) = Avx(W_l(s)). (11)

with a dual result obtainable by the usual transposition x + v, y =+ x,
v oy, vyl

Now suppose that v had u graphical plot of the observed casualty
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fractions for a collection
I/Pm<ﬂwQ=A“m)

of battles that were won by
the attacker. A hypothetical

8

3 P(5<ﬂwﬂ=6wh) plot is shown in Fig. 5--

E e e o and there will be dual plot
1 ! Y=a_ (¥ @q )

é ; | 8 78,6, whose labels are obtainable

5 i I

g E E from Fig. 5 by the usual

v
! E trangposition, although the

0 l L

curves may, of course, be
! differently shaped on the
dual, We have indicated by

Fig.5 — Hypothetical casualty=fraction the dashed 1lines how, using

distribution in battles won 3
by the attacker Eq. (11), the value of ¥ (ql)

can be graphically read off
this plot. An exactly analogous procedure applied to the dual plot will
yield the value of W(ql). By repeating the process for several values
of 9 and interpolatiug, 1t is thus possible to determine suitable ap-
proximations to the functions Y and W-l.
Now, ¥ is the functional relation between fx and fy’ since from

the definition of ¥, we may write without loss of generality

£.(t) = W[fy(t)].

Having determined Y and g1

by the graphical procedure just described,
we may plot these functions on a graph and see whether or not they obey
the necessary mathematical relationship between inverse functions, that
is, whether or not ¥ is a reflection of W_l in the 45-deg line through
the origin, as illustrated in Fig. 6., If ¥ and W-l obey the inverse
functional relationship, then this would tend to support the breakpoint
hypothesie If ¥ and W_l do not obey the necessary mathematical re-
lationship between inverse functions, then the breakpoint hypothesis
would be definitely disproven. We shall carry out just such a test in

a subsequent section,
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IMPORTANT LEMMAS
_ At this point we pause to
,,/' present two lemmas that will
{3 /,/<:Lw"@) play a prominent role in the
%’ 7 sequel.
_- ’,/’ Lemma 1l: If
2 s
yd ¥ )
/ by (u) = Ayy(u)
/
//
/ and

v

Fig.6—Inverse functional relationship AYX(U) ) Axy(u),

then ¥ = W—l = T, where I is the identity function.
Proof. 1If Ayx(u) = Axy(u). then by Eq. (11) and its dual we have

-1
b, (¥ () = Ayx(u) = Axy(u) = Ayy(W (u)),

which may be written as

-2
Axx(s) - Ayy(w (s)).

But since by assumption Axx(s) - Ayy(s), this last implies
A (W_z(s)) = A (s).
Yy yy

By dualizing the above argument, we may also conclude that

2
B (¥2(8)) = b (8.

Since the A's are cumulative probability distribution functions, they

have definable inverses. As long as s does not lie within an interval
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of constancy for both A and A, we conclude that
XX yy

But then we must have

If s does lie within an interval of constancy for both Axx and A
we may define ¥ to be I within that interval without affecting the A

functions, and we shall adopt this convention to dispose of the ambi-

guity for such a case. This completes the demonstration.

Lemma 2: If ¥(s) = s for some s, then
by () 2 6, (8),
and
Axx(s) < Ayx(s).
Conversely, if ¥(s) < s for some s, then
Ayy(S) < Axy(s).
and
Axx(s) = Ayx(s).

Proof: Recall that the A's are distribution functions so

v > u implies

Azz.(V) > Azz'(u)’

Yy

that

PP G
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Then if ¥(s) > s,

Apy(e) = A, (¥(8)) = A, (s),

where the equality follows from the dual of Eq. (11). When the usual
transposition is applied, the inequality must, of course, be reversed,
since ¥(s) > s implies that W‘l(s) < s. This completes the first part

of the lemma. The second part is demonstrated by a similar procedure.

g e
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111, COMPARISON OF MODEL WITH DATA

PRELIMINARY COMPARISON

We first turn our attention to some of the available casualfy-
fraction distribution data, Later we shall use some of these data to
obtain a test of the breakpoint hypothesis.

Some empirical data on casualty-fraction distributions are given
in Table 1* and graphically displayed in Fig. 7. The values for Y(q)
and W_l(q) read graphically from these figures are listed in Table 2
and plotted in Fig. 8. There is clearly a practical equality of the
estimated ¥ and W_l functions for 0 < q < 0.18, but a divergence for
higher values of q. Part of this divergence may be due to the pres-
ence of 13 battles with unusually high defender casualty fractions.
These battles are individually identified below:

Defender
Casualty
Fraction

ggercentz

Alamo (.eviiveeccnnns 97
AttU svsvsevenonsecs 100
Bienheim ...evevenne 67
Bronkhurst-Spruit .. 60
Eniwetok .veevecoses 100

Indus soevevreensesee 63 1
Iwo Jima sccovnvenns 100 :
Kwajalein North .... 98 1
Kwajalein South .... 86

LeSNO eovervcssrnsns 67
Monongahela ........ 63
Ravenna ceeeeeeceses 75
Saipan LI BN 2 R B B I BN BN B BN 92

Part of the divergence is also due simply to the difficulty of
accurately determining the abscissa value corresponding to a given
ordinate value when the slope of the curve is small, as occurs at

higher values of q.

*Some of the points with high casualty-fraction values plotted in
Fig. 7 are not listed in detail in Table 1, but were . tained from
Refs. 8 and 10. The detailed values on which the points referred to
are based are given in the battle listing above.

PREPTCY BN R UL J5 SN0 (O I R
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According to the theory developed up to this point, ¥ and W-l were
supposed to be inverse functions. This is obviously not the case de-
picted in Fig, 8. Rather than being inverse functions, 'they are nearly
eqral over a significant range of argument. Even when they diverge,
they most certainly do not exhibit any inverse functichal relation. Ac-

cordingly, there is a serious defect in the theory so far developed.

SOME ADDITIONAL DATA AND FURTHER TESTS

The material of the preceding discussion is very damaging to the
breakpoint hypothesis. 1In the following, we confirm and extend the
results of that discussion by a second and much larger sample of data,
For this purpose, it was possible to use a large samplerf data ex-
tracted from Bodart's Kriegs-Lexicon(ll) by Willard,(lz) as modified
(13 This sample of battle data (which we shall call the
Bodart data) contains 1080 battles, with casualty~fraction data for

by Schmieman.

both sides in the battle, and can be used to generate casualty-fraction
distributions useful for testing the breakpoint hypothesis.*

We shall actually make three distinct tests with these data, by
successively selecting three distinguishable groupings of the Bodart
data, The firat such grouping will be the entire set of 1080 battles
and so will be the same as the Bodart data sample itself. The second
such grouping will be the subset of the Bodart data consisting of what
Willard(lz) calis the Category I battles, and includes battles described
in the Kriegs-Lexicon as treffen, gefecht, or schlact. These denote
"open" battles in the sense that both sides could, with about equal
facility, disengage and conduct an orderly withdrawal. The third group-
ing consists of what Willard calls the Category II battles, and includes
battles described in the Kriegs-Lexicon as belagerung, einnahme, ersturmung,
kapitulation, and uberfall. These mainly denote "closed" battles in the

*Data from Bodart's Kriegs-Lexicon were also used by Smith and
Donovan(14) to find the casualty-fraction distributions for the winner

and loser curves shown in 8-W and 8-L in Fig. F-1 in Appendix F of this
report.
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sense that one of the parties in the battle is encircled or otherwise
in a position from which an orderly withdrawal cannot readily be made,
and whose options for maneuver are correspondingly markedly more re-
stricted than those of his opponent. The Category I and Category II
battles are nonoverlapping exhaustive subsets of the Bodart data sample
and thus form a partition of it.

Casualty-fraction distributions for the entire set of Bodart data
are shown in Fig. 9. Inspection of parts fa) and (b) of Fig. 9 suggests
that the distribution of attacker's casualties when the attacker wins
is about equal to the distribution of defender's casvalties when the
defender wins; and that the distribution of defender's casualties when
the attacker wins is about equal to the distribution of attacker's ca-
sualties when the defender wins. These two observations may be expressed

in symbols more concisely as

B (W) = & () (12)
Ayx(u) = Axy(u). (13)

Temporarily accepting the validity of these relations, we conclude from

Lemma 1 developed earlier that

But this conclusion 18 contradicted by the evidence. This may easily
be seen by checking a few points on the ¥ and W-l curves based on the
distributions of Fig. 9, which show that ¥(u) = V-l(u) = 2u, approxi-
mately., Thus, we can show the breakpoint hypothesis to be untenable
by validating relations (12) and (13) for the Bodart data. To do this,
we employ the Kolmogorov-Smirnov test for the equality of two distribu-
tion functions as described in Ref. 15.

The procedure for applying the Kolmogorov-Smirnov test is to find
the maximum sbsolute difference D between the empirical distribution
functions, and to multiply this by the factor ﬁﬁ;fﬁ?fr:;-, where m and
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£

n are the sample sizes for the two empirical distributions. If we set

P

w = D/mn/(m + n),

- ?

2 2
1-K(w =1- Z (—1)"le-2jj v 1

j.—no

then

is the probability, under appropriate asymptotic conditions, that the 1
deviation between two empirical distribution functions will be more
than w, given that the empirical distribution functions actually are
obtained from independent random samples from a common continuous dis-

tribution function.

Applying this procedure to the data represented in Fig. 9 yields |
a w of about 1.22 and, referring to a table of K(w) values given in 1
Ref. 15, we find that a deviation greater than 1.22 would occur by
chance about 10 percent of the time, given that the empirical distribu-
tions corresponding to Axy(u) and Ayx(u) are actually from a common N
distribution. Comparable results are obtained for the empirical distri-
butions corresponding to Axx(u) and Ayy(u). These results are taken to
indicate that we may reasonably proceed on the assumption that Eqs. (12)
and (13) hold for the Bodart data. Even if a strict equality does not
hold between the distribution functions involved in Eqs. (12) and (13),
a comparison of (a) and (b) of Fig. 9 shows that it would be unreason-
able to believe that the difference could be very great.
Next, we proceed to analyze the Category I (open) battles, as a
group separate from the Category II (closed) battles. Figure 10 gives
the empirical distribution of casualty fractions for these battles.
Applying the Kolmogorov-Smirnov test to the empirical distributions
corresponding to Axx and Ayy yields a w of about 1,35, A larger de-
viation than this would occur by chance about 5 percent of the time
1f the two empirical distributions were actually from a common distribu-

tion. For the empirical distributions corresponding to Axy and A x &
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,ﬂ{ — value of w = 1,44 1s obtained.
e A larger value than this would
0.8 L v / occur by chance about 3 percent
3 jL-w of the time if the two empirical
5T J distributione were actually from
E ol '[ a common distribution. We do
> ’ not consider these probabilities
0.2k 8o small as to cause us to dis-
card Eqs. (12) and (13) for the
YR E— Category I battle data in the
u present context. Independently
Fig.ll-—‘Pand\l-'-] functions for of this opinion, the ¥ and vt

Category | battle data functions for the Category I

data are certainly not much dif
ferent, as 1is evidenced by the curves of Fig., 11, and the breakpoint
hypothesis would come to grief in any case.

The empirical distribution curves for the Category II data are
shown in Fig. 12. For the empirical distributions corresponding to
Axx and Ayy’ w is about 0.38 and would be exceeded by chance about
99.9 percent of the time. For the empirical distributions correspond-
ing to Axy and Ayx’ w 18 about 0.47 and would be exceeded by chance
about 98 percent of the time. Clearly there is no reason in these re-
sults for rejecting Eqs. (12) and (13). Consequently, the breakpoint
hypothesis does not hold for the Category II data set either.

Although we shall not present the details, an application of the
Kolmogorov-Smirnov test to the empirical casualty-fraction distribu-
tions of Fig. 7 shows that their deviation from Eqs., (12) and (13) is
acceptable (a larger deviation would occur by chance abcut 30 percent
of the time). Thus, while Eqs. (12) and (13) hold to a reasonable
degree of approximation for all of the data analyzed, nevertheless

y=vyvlgrg,

and this is in direct contradiction to Lemma 1. As a result, the break-

point hypothesis is untenable. The same conclusion (that the breakpoint
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1.0 - hypothesis is untenable) can, of
I v - Z course, be demonstrated without
o8 C::‘¢ the use of Lemma 1 and without
LE 0.6 L . 4 using Eqs. (12) and (13). The
ﬁ fJ procedure is simply to construct
E 2 S~ Figs. 11 and 13 by the graphical
" procedure explained earlier, and
0.2 to observe that the resulting VY
. ) 1 1 ) and ¥™1 functions clearly are
0 02 04 06 08 1.0 not mathematicallv inverse func-

Y tions. However, the method used

Fi9'13"'w°nd‘y-]f”n°ﬁ°nsf°r above, which invokes Eqs. (12)
Category I battle data and (13) may shed light on the
manner in which the breakpoint
hvpothesis fails.
We may sum up the results of this section by saying that for ail
of the data sets analyzed, ¥ and W-l are evidently not mutually in-
verse mathematical functions as 1s required by the breakpoint hypothesis,
Consequently, the breakpoint hypothesis is untenable. In fact, rather
than being inverse functions, it appears that

w-w"l-fx.

In addition, Eqs. (12) and (13) hold, at least approximately, for the
data analyzed. This suggests that the reason why Y and W—l fail to
obey the inverse functional relationship may be a consequence of the

equality of the distribution functions expressed in Eqs. (12) and (13).
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IV, SOME SPECULATIONS AND SUGGESTED APPROACHES

We have shown In the foregoing that the breakpoint hypothesis in
the form given earlier predicts that a certain pair of functions are
mathematical inverses of each other, but that the empirical determina-
tions of these functious plainly do not exhibit any inverse functional
relationship. Consequently, the breakpoint hypothesis fails, We now
offer some speculations and tentative suggestions for future work on
the causes of this observed coniradiction between theory and fact. It
will be helpful to review the statement of the breakpoint hypothesis
in its original form before proceeding. It states that

1. Each side selects independently a breakpoint from a distribu-
tion of such breakpoints and gives up the battle when its ca-
sualty fraction reaches its breakpoint (Hypothesis A).

2. These breakpoint distribution curves are generally applicable
(Hypothesis B). |

3. The casualty fractions of the forces are deterministically
and monotonically related to each other via the ¥ function
(Hypothesis C); i.e.,

fx(t) = \P[fy(t)], O0<txg T

In the following sections we shall consider some tentative modifi-
cations of this breakpoint hypothesis and discuss them in terms of the
light they shed on the prospects for developing a theory that will sat-
isfactorily explain the extant data. Since devising a theory that would
account for most of the more important facts regarding the battle ter-
mination process 1s beyond the scope of the present study, the observa-
tions and speculations put forward are incomplete. They are offered in
the hope that subsequent investigations of battle termination phenomena

may find some of these suggestions helpful.

FIRST MODIFICATION OF THE BREAKPOINT HYPOTHESIS

Lemma 2 shows that under the hypotheses set forth above there

are only three possible relations between the casualty-fraction

R I R T e
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distributions. If ¥(s) > s for all s, then
A A
yy(s) > xy(S),
and
b,.,(8) < Ayx(s),
for all s. If ¥(s) < s for all s, then
Ayy(s) < Axy(s),
and
B®) 2 A, (8),
for all s. If ¥(s) is alternately larger and smaller than s, then the
theoretical casualty-fraction distributions alternately loop above and

below each other. It is plain that the empirical casualty-fraction
distributions do not exhibit either of these three behaviors, and this

constitutes yet another conflict of the breakpoint hypothesis and avail-

able data. However, it also suggests a way to evade the difficulty.
It involves using one ¥ function when the attacker wins, and a differ-
ent ¥ function when the defender wins. Thus, Hypothesis C is modified
to the extent of allowing the ¥ function to depend on the particular
battle in a conceptually simple way. Based on the empirical findings
expressed in Figs. 8, 11, and 13, it appears that we should consider
Hypothesais D.

Hypothegis D. There is a monotone nondecreasing function ¥ such
that

fx - W(fy)
when the defender wins, while

£, = ¥ (fy)
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when the attacker wins; moreover, ¥(s) > s for all s. The ¥ function
referred to in Hypothesis D should not be confused with the ¥ function
of Hypothesls C. While they may be numerically similar, they are con-
ceptually quite distinct,

Now, when we retrace the proof of Lemma 2, making appropriate
changes to reflect Hypothesis D ingstead of Hypothesis C, we find that
the conclusions change to read as follows:

When the defender wins,

Ayy(s) > Axy(s) (14)

for all s. When the attacker wins,

B (8) = Ayx(s) (15)
for all s. These relations are certainly encouraging, since they are
qualitatively consistent with the data of Figs. 7, 9, 10, and 12. If
we interpret the results of the Kolmogorov-Smirnov tests made earlier
for the deviation between empirical casualty distributions to mean that
Eqs. (12) and (13) hold, it is statistically proper to increase our
sample size by merging the data for empirical distribution curves Ayy
and Axx’ and also for empirical distribution curves Axy and Ayx' When
we do that, it is convenient to let £ stand for '"loser" and w stand

for "winner'" and to write the relations (14) and (15) in the single form

Aww(s) > AZw(s) (16)

for all s; and Hypothesis D under the same conditions can be rewritten

as
fl - W(fw)o
with ¥(8) » s for all s.

A little thought shows that we may apply the graphical procedure
depicted in Fig. 5 to the empirical distribution fucntions Aww and

o TEARLIEOENLL Y AV N
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Alw to obtain estimates of the ¥ function. To see how well this works
out, we first plot the loser's and the winner's casualty-fraction dis-
tributions for Category I and Category II battles as in Fig. 1l4. The
values obtained for the function Y as determined from the distributions
of loser's and winner's casualty fractions are shown in Fig. 15.

As can be seen from Fig. 15, the empirically determined ¥ functions
for the Category I and the Category II data are about equal, and both
. are roughly linear up to argument values of approximately 0.5. 1In fact,

we have roughly that

2u for 0 c ug 0.5
Y(u) = .
1 for 0.5 <cucg1l

Suppose we ask what break curves, when taken with this value of V¥,

would reproduce the observed winner's and loser's casualty fractions
shown in Fig. 14, Because of the quasi-exponential shape of the
observed casualty-fraction distribution curves, suppose we limit our-
selves to exponential break curves, as discussed in Example 3 of Ap-
pendix E. After some trial-and-error experimentation, we found that

the break curves shown in Fig., 16 would produce the tentative theo-
retical fits shown in Fig, 17. The qualitative agreement between

the theoretical and observed casualty distribution curves is very en-
couraging. However, the quantitative agreement, particularly for

the Category I battles in the range of casualty-fraction values be-
tween 0 and 0.1 or 0.2, is not very good. Application of the Kolmogorov-
Smirnov test procedure indicates that a worse agreement due to chance
alone could be expected for the Category II data about 10 percent of

the time for the loser's casualty fraction, and about 30 percent of the
time for the winner's casualty fraction, For the Category I data, a
poorer agreement due to chance alone would be expected only about 2 per-
cent of the time for the winner's casualty fraction and hardly ever for
the loser's casualty fraction. Under these circumstances, it is reason-
able to take the position that a ¥(u) = 2u function and exponential
break curves may not provide a satisfactory explanation of the observed

data. Presumably the trial-and-error fitting process could be improved

—y
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somewhat by more formal methods for fitting theoretical to empirical
curves., The fit might also be improved by rescaling the exponential
break curves as described in Example 3 of Appendix E (see footnote,
p. 79). To get a curve with the same general behavior as that of the
loser's break curve in part (a) of Fig. 16, it would be permissible to
take AE negative, since the rescaling procedure will ensure that the
resulting function is a proper cumulative probability distribution.
These very interesting possibilities could not be pursued in adequate
depth within the scope of this investigation. Whether the fit would be
improved to a satisfactory level 1s impossible to say with complete
assurance without actually trying it. It may also be possible to fit
the observed data by permitting the break curves to deviate from strict
exponentiality, especially for the lower casualty-fraction values,
However, the number of free parameters then available for fitting the
data may be excessive, reducing the degrees of freedom and interfering
with the power of the statistical procedures to detect genuine depar-
tures from the null hypothesis,

Even if a good fit to the data can be obtained by assuming that Y

has the form

2u, O<ucxg$
Y(u) =
1, ‘%‘SUSI

and carefully adjusting the break curves, it would still make sense to
determine whether or not the casualty-fraction data satisfy the rela-

tion
fz = W(fw).

If they do not satisfy this relation, then the situation may be much
more complicated than the apparent good fit to the loser's and winner's
casualty-fraction distribution might indicate. In order to determine
whether or not there is an approximately linear relationship between the

loser's and the winner's casualty fractions as implied by Hypothesis D
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and Fig. 15, we first consider some data on casualty fractions for var-
ious battles from Ref. 8. These data are plotted in Fig. 18, The
statistics for a linear regression of lnf2 on 1nfw were computed using

these data. They lead to an estimated regression line given by
lnf2 = -0,342 + 0.708 1nf .
W

A more complete list of statistics for this regression computation is
included in Table 3.

It is evident from Fig, 18 that the functional relationship sup-
posed by Hypothesis D cannot be true--or, more precisely stated, the
implied assumption that we have made in the way we have used the ¥ func-
tion (namely, that it is the same for all battles) is not valid. Of
course, our use of Hypothesis C also made egsential use of the tacit
assumption that the function ¥ as defined in that hypothesis was the
same for all battles. Indeed, in changing from Hypothesis C to Hypothe-
sis D, one of the motivations was to permit the ¥ function to vary de-
pending on whether the attacker or the defender won the battle, and
thus to allow at least that degree of variation in the ¥ function from
one battle to another. However, it is clear from Fig. 18 that there
is more than just that amount of interbattle variability. When the
linear-regreasion computations are performed for the Category I and
Category II data, and for log~transformed casualty fractions or untrans-
formed casualty fractions, the results are as given in Tables 4 and 5.
The significant observation is that in none of these cases does the
regression curve approximate very closely the expected ¥(u) = 2u func-
tion, except possibly for small values of the casualty fraction. Thus,
it appears that not only do the casualty fructions vary more widely
from battle to battle than envisioned in Hypothesis D, but they do not
even on the average follow the relation anticipated on the basis of
the empirical determination of the ¥ function presented in Fig. 15.

Consequently, the validity of Hypothesis D is uncertain. One
other approach might be tried here--that is, to assume the ¥ function
to be actually as indicated in the results of the regressions of fg

on fw (or of the corresponding log-transformed quantities), and then
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Table 3

STATISTICS FOR REGRESSION OF lnf, ON lnfwa

Item Value
Regression-line intercept, a ~0.34217
J Regression-line slope, b 0.70753
Standard deviation of slope, @ sub b 0.0805
Correlation coefficient, r 0.6796
Standerd deviation of estimate, sy|y 0,6364
Varistion of estimats, sy |, A*2 0.4050
Mean of X-values, m(X) ~2,4425
Standard deviation of X-values, S.D.(X)| 0.8286
Mean of Y-values, u(Y) ~2,0562
Standard Jeviation of Y-values, S.D.(Y)| 0.8627

.lurnllon model: h‘“l) “as+b In(fw). Num-
ber of data points = 92,

Table 4

RESULTS OF COMPUTATION FOR LINEAR REGRESSION OF lnf2 ON lnfwa

F Battle Catego
Item Topen) T 1T {eiessd)”
Sample eize 933 147
Intercept, & -1,1480 -0.5690
Slope, b 0.3484 0.4077
Standard deviation of slope, 9 0.0271 0.0650
Corralation coefficient, r 0.3883 0.4621
Standard deviation of estimate, o|x 0.7751 0.7762
Maen of x = lof, -2,9358 | -2.4076
Standard deviation of x 0.9370 0.9885
Mean of y » lnf, -2,1708 ~1,5506
Stendard deviation of y 0,8407 0.8723
Var x 0.8779 0.9771
Var y 0.7068 0.7608
¥? 0.1508 0.2135
1-r? 0.8492 0.7865

‘quuion wodel: lnft LIRS lnf'.

Tahle 5

RESULTS OF COMPUTATION FOR LINEAR REGRESSION OF fQ ON fwa

Battle Catego

Ttem T {cpen) ff'?;Ii:.d)
Sample eise 933 147
Intercept, s 0.1163 0.1904
8loga, b 0.5358 0,6851
Standard deviation of slope, Y 0.0634 0.1080
Correlation coefficient, r 0.2668 0.4659
Standard devistion of astimate, S|x 0.1305 0.1769
Mamn of x = f 0.0773 0.1397
Standard deviation of x 0.0674 0.1355
Mean of y = 'l 0.1577 0.2861
$tandard devisgtion of y 0.1353 0.1992
Var x 0.0043 0.0184
Var y 0.0183 0.0397
el 0.0712 0.2171
1 - x? 0.9288 0.7829

‘hgruuou wodel: f e a+ b t'.

[}




-~ - - {\ (/
~45~

gee if some simple and reasonable forms of the break curves approxi-
mately reproduce the observed dat;. The scope of this investigation
did not permit this suggestion to be pursued.

It is worth noting a couple of features of the breakpoint-hypothesis
modification characterized by Hypothesis D. First, Hypothesis D re-
quires that the loser and the winner be identified by some means ex-
traneous to the model, and this precludes use of the modified breakpoint
model for predicting the winner. This is a serious drawback in terms
of the conventional uses of breakpoint-type hypotheses. Once the win-
ner has been determined, however, Hypothesis D could still be used to
find the casualty fractions on both sides. Once the winner has been
identified, perhaps by methods similar to those discussed in Ref, 16,
this can be done simply by entering the break curves (such as those of
Fig. 16, for example) with a random number on the ordinate, and read-
ing off the corresponding casualty~fraction values for the winner and
loser from the abscissa.

The second feature is that 1f we adopt Hypothesis D and also as-
sume that the ¥ functions for the Category I and the Category II battles
are identical, as suggested by Fig. 15, then it can be shown that Hy-
pothesis B is untenable. The argument goes as follows. Suppose Hypoth-
esis D holds, that the ¥ function for Category II is the same as that
for Category 1, and that the break curves for Category II are the same
as those for Category I. Then the empirical casualty-fraction distribu-
tions for Category II would have to be the same as those for Category I.
But a superficial inspection of (a) and (b) of Fig. 14 reveals that the
empirical casualty-fraction distributions for Category 1I are not the
same as those for Category I. Application of the Kolmogorov-Smirnov
test to these data confirms the coiinon-sense observation that devia-
tions from equality at least as large as the ones observed would occur
by chance alone only about once in 107 times. This suggests that Hypoth-
esis B may be untenable at least to the extent of requiring that a dis-
tinction be maintained between Category I and Category II battles.

In Table 5 the average of fQ is almost exactly twice the average of
fw' This is of some interest, 'since by (b) of Fig. 14 ¥(u)/u is also very

nearly equal to 2 for O £ u < 3. However, since the connection between
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these two facts is not clear, the numerical agreement between these two
quantities may be purely coincidental. A further exploration of the
potential relation between these values was not within the scope of
this etudy.

Another fact, of more interest, since it is apparently more closely
related to th%:B?odification of the breakpoint hypothesis, is a finding h

of Schmieman. To describe this finding it is necessary to under-

stand that past investigators of combat data,(s’lo)

as well as Schmieman,
have devised "advantage' parameters that, on the basis of certain theo-
retical considerations, ought to be related to the winning or losing of
an engagement. All the advantage parameters that have been introduced
to date are functions of the casualty-fraction values only but depend
on which side's casualty fraction is chosen as the first variable. One
of the criteria of whether an advantage parameter adequately reflects
the relative advantage of the opposing forces in a battle is whether or
not its value agrees with the side that is observed to win the battle.
References 8 and 10, basing the selection of casualty-fraction values
on which side was the attacker and which the defender, found agreements
of 74 percent and 78 percent between the resulting advantage-parameter
values and the observed winning side., Schmieman has confirmed this,
finding an agreement of 79 percent between advantage-parameter values
and observed winners for this case. However, Schmieman went on to con-
sider two other cases, viz., when the casualty fractions are taken as
those of the larger and smaller force, respectively; and when the ca-
sualty fractions are taken as those of the winning and the losing side,
respectively. When casualty-fraction values were taken as those of the
larger and the smal)~r force, respectively, Schmieman again found an
agreement of 79 percent between the advantage-parameter values and the
observed winner. However, when he took casualty-fraction values as
those of the winner and the loser, respectively, the agreement between
the advantage-parameter value and the observed winner jumped to 97 per-
cent, or nearly perfect agreement. The modification of the breakpoint
hypothesis discussed in this section qualitatively accounts for this
phenomenon. An exploration of the quantitative agreement between Hy-

pothesis D and Schmieman's discovery was not within the scope of this
study.
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SECOND MODIFICATION OF THE BREAKPOINT HYPOTHESIS

Following the discussion of Lanchester's square~law equations as

given in Ref. 8, we write

dx/dt = -Dy

dy/dt = -Ax,

where x and y are the attacker's and defender's remaining troop strength,

respectively. By division, it follows that

1-4d
where
w2 = /M) (ya/x) s
a=1- fx’
and

d=1-f.
y

Consequently, we may solve for fx in terms of fy and u as

2
y)'

2
fx 1 +y1 -1 (2fy - f
*
Here u 18 a positive constant as long as A and D are positive, It is
an index of the defencer's advantage in the sense that if u » 1, fx

reaches unity before fy does, while 1if y < 1, fy reaches unity be¥ore

*
That 1s, u is independent of the battle-~time variable, t. But it
may take on different values in different battles.
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fx does. When A and D are both positive, obviously fx must be an in-
creasing function of fy, and this fact dictates the choice of the neg-

ative sign in the Lanchester relation connecting fx and fy. i.e., we

have

2 2
f =1 - \/1 - 2f - £7),.
X po( v y)

Accordingly, the corresponding functional relationship, ¢, is defined
by the equation

ep(u) = 1 - \/i - u2(2u - uz),

and

o lv) =1 - /1=y - VD),
Expanding the expression for e(u) in a Maclaurin series yields
plu) = %uz(Zu - u2) + %uauz + HOT,
where HOT stands for higher-ordzr terms. Simplifying, we can write
gpu) = w2y + HOT.
If we linearize by neglecting the HOT, then we have approximately
ep(u) = yu
with vy = uz.

The point to this simplification is that we know something about

the diatribution of uz from previous work(s’lo) and hence about the

distribution of y. Specifically, lnu is a stochastic function of the
force ratio xo/yo. approximately defined by(a)

lny = 0.115 - 0,367 ln(xo/yo) +n,




49~

where n is a normally distributed random variable independent of (xolyo),
having mean and standard deviation approximately equal to 0.297. The
force ratio itself is log-normally disgtributed, the mean of ln(xo/yo)
being about 0.156, with a standard deviation of about 0.15h. Using
these data with the rules for obtaining the distribution of sums of in-
dependent normally distributed random variables, we find that 1lnu is
normally distributed, with mean value about 0.057 and standard deviation
about 0.350. These values are based on a sample size of 92, so the

standard deviation of the mean is about equal to

0.350/ V92 = 0.04,

and we see that the mean is not significantly different from zero. In
what follows, we will, for simplicity, take lnpy as being normally dis-
tributed, with zero mean and a standard deviation of about 0.35. Then,
of course, lny = 21np will be normally distributed with zero mean and
a standard deviation of about 0.7,

Thus, we expect, on the basis of the Lanchesterian model just in-

troduced, to have
lnfx = lny +»lnfy,

with lny distributed as just discussed. A calculation using data from
Ref. 8 shows that ln(fx/fy) has a mean value of about 0.116 and a
standard deviation of 0.762., Again, the mean value is not significantly
different from zero. These values are close to twice those cited above

for lnu, which is what we expect, since
X - =
ln(fx,_y) Iny = 21ny.

Accordingly, our linearization of ¢ by neglecting higher-order terms in
its series expansion appears to be an acceptable approximation. We as-
sume in what follows that lny is normally distributed with mean zero
and a standard deviation of about 0.76.

This amounts to introducing another version of Hypothesis C, which

we write out explicitly as Hypothesis E.
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Hypothesis E. The casualty fractions of the forces engaged in a

given battle are related to each other according to the following rela-

tion:
fx = ny,

where y 1s a constant for any particular battle but is a random vari-
able that varies from battle to battle in a log-normal distribution
with parameters (0, 0.76).

With this interpretation of y as a log-normally distributed random
variable, Eqs. (E-1) through (E-4) of Appendix E must be considered as
giving formulae for conditional probabilities, given a particular value
of y. To emphasize this conditional dependence on vy, we shall write
the right-hand side of Eq. (F-2) as Ayx(q; xx, Ay’ v), so that

P(E, < qlW) = 8 (a5 Ay A ¥,
where the left-hand side must be thought of as the defender's conditional
casualty-fraction distribution, given an attacker win and a particular

value of y. The usual transposition gives the dual formula. From Eq.

(E-4), we find

-1
P(E, < 8W) =8 (v T3 Ay, Ags MOy, 8) + ols, 1)

= (say) Axx(s; A Xy. Y)
which 1s to be interpreted as a conditional casualty-fraction distribu-
tion, given y and wx. The usual transposition gives the dual relation.
To find the corresponding unconditional casualty-fraction distribu-
tions requires an integration with respect to the probability element
of y. Thus, for example, we shall write

1 0

—_— . _ 2,. 2. =1

I’(fy < q|Wx) - cr—z,wf Ayx(q. A >\y. ¥) exp [-(lny)"/20%]y ~ dy
0

= (say) Ayx(q; Ax' Ay).




where 0 = 0.76. Performing the usual transposition and then making
the change u = 7“1 in the variable of integration yields

P(f, < qlwy) o CHE S IR
Analogously, we have

P(F, < W) =8 (85 A, Ay)
and

P(fy< slwy) = A y(s; Ayr A

y X

where

. L1 , 2, 2. -1
Axx(s, A Ay) a/i??-O/A""(s’ >‘x’ Ay’ v) exp [-(lny)“/2¢%)y = dy,

with o = 0,76,

Tables 6 through 11 present casualty-fraction distributions, com-
puted on the basis of exponential break curves and Hypothesis E, for
selected values of Ax and Ay. The numerical integration procedure em-
ployed is such that the second significant digit may occasionally be
in error., Tables 7 and 9 are duals of each other, as expected.
Cagualty~fraction diatributions for Ax =1, Ay = 3 are obtainable by
forming the dual of Table 10,

One noticeable feature of these theoretical results is that the
casualty-fraction distribution of the winner would plot on a graph (one
like part (a) of Fig. 14, for example) either below and to the right
of the loser's casualty-fraction distribution or, at any rate, only
very slightly above and to tha left of it. Although the full range of
parameter values could not be explored within the scope of this inves~
tigation, the results available to date suggest that this property is

characteristic of the theoretical casualty-fraction distribution curves
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Table 6

SOME THEORETICAL CASUALTY-FRACTION
DISTRIBUTIONS FOR HYPOTHESIS E

A, =1 A, = 2

X X

A, =1 A, = 2

y y
"R I CEE W Wbl E SR CEL N WOy
.000 .000 .000
.025 .059 111
.050 .115 .208
.075 .167 .293
.100 216 .368
.125 .261 .435
.150 .304 493
.175 .344 .546
.200 .382 .592
.225 418 634
.250 451 671
.275 481 . 704
.300 .511 734
.325 .538 .761
+350 .564 .785
.375 .588 .807
. 400 .610 . 826
425 .631 . 844
.450 .651 .860
475 .670 .874
.500 .688 .887
.600 . 748 .928
.700 .796 .956
.800 .834 975
.900 .865 .988

1.000 1.000 1.000
P(W,)b 0.5 0.5

®For Ay x(q.xx.xy) = Ayy(Q3y,dy) =
(qp)‘xg ) - Ayx’z y)'
bFor Ax = Ags P(H,) = P(Hy).
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Table 7

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONS

FOR HYPOTHESIS E, A = 1, Ay = 28

@ [ By (DA Ag) [ A (@ALAL) [ AL (@A) |8y (d5h,5A0)
.000 .000 .000 .000 .000
.025 .088 .090 .078 .090
.050 .169 .169 .149 .170
.075 .242 .240 .215 .241
.100 .309 . 304 .275 .304
.125 .370 .362 .329 .361
.150 426 414 .380 412
175 476 461 <426 458
. 200 .522 .505 .468 .499
«225 .564 <544 .506 536
.250 .603 .580 .542 .570
.275 .637 .612 .574 .601
<300 .669 .643 .604 .629
.325 .698 .670 .631 .654
+350 <724 .695 .656 677
.375 748 .719 .679 .698
. 400 .770 . 740 .700 .718
425 .789 .760 .720 <735
. 450 .808 .778 . 737 751
475 .824 . 795 <754 .766
.500 .839 .811 .769 .780
.600 .886 .863 .817 .823
.700 919 .901 .852 .855
. 800 <942 .930 .877 .878
.900 .958 .952 .894 .895

1.000 1.000 1.000 1.000 1.000

aP(wx) = 0.63; p(wy) = 0.37.
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Table 8

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONS
FOR HYPOTHESIS E, Ax = 1.5, Ay = 3

q Ayx(q;kx,ky) Axx(q;kx,ky) Ayy(q;kx.ky) .Axy(q;kx,ky)

.000 .000 .000 .000 .000

.025 123 .128 .116 .129

.050 .230 .235 .218 .236

.075 .323 327 . 307 .327

.100 . 405 .405 . 385 . 405

125 477 473 454 472

.150 .539 .532 514 .530

.175 .595 .583 .568 .580

.200 643 .629 .615 624

.225 .686 .668 .656 .663

. 250 723 .704 .693 .697

.275 757 .735 .725 727

. 300 .786 .763 754 .753

. 325 .812 .788 .780 777

. 350 834 .810 .802 .798

.375 .854 .830 .822 .817

. 400 .872 .848 . 840 .833

425 .888 .864 .856 .848 ]

450 .902 .878 .870 .862 4

475 914 .891 .882 874 J

.500 .925 .903 .893 .885 r

.600 .958 .940 .927 .918

.700 .978 .965 948 .941

.800 .991 .983 .961 .956

.900 .999 .995 .969 .967 .
1.000 1.000 1.000 1.000 1.000
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Table 9

THEORETICAL CASUALTY~FRACTION DISTRIBUTIONS
FOR HYPOTHESIS E, A = 2, A = 12

q Ayx(q’xx»xy) Axx(q;kx:xy) Ayy(q;Kx,Ky) Axy<q’xx’Ky)
.000 .000 .000 .000 .000
.025 .090 .078 .090 .088
.050 .170 <149 .169 .169
.075 .241 .215 .240 .242
.100 .304 «275 .304 .309
.125 «361 +329 .362 .370
.150 412 .380 414 426
.175 458 .426 .461 476
.200 .499 . 468 .505 .522
.225 .536 .506 .544 .564
+250 .570 .542 .580 .603
.275 .601 .574 .612 .637
+300 .629 .604 .643 .669
.325 .654 .631 .670 .698
.350 .677 .656 .695 .724
.375 .698 679 .719 .748
.400 .718 .700 740 .770
425 <735 .720 . 760 .789
.450 .751 .737 .778 .808
475 . 766 .754 .795 .824
+500 .780 . 769 .811 . 839
.600 .823 .817 .863 . 886
+700 . 855 .852 .901 .919
. 800 .878 .877 .930 .942
.900 .895 .894 .952 .958

1.000 1.000 1,000 1.000 1.000

ap(ww) = 0.37; P(Wy) = 0.63,

S

i

—
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Table 10

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONS

FOR HYPOTHESIS E, A = 3, A = 12

q Byx (LA A AL (GNGA) | AL (A A ) [ A, (a5h A ))
.000 .000 .000 .000 .000
.025 .116 .099 .118 .110
.050 .214 .188 .217 .208
.075 .298 .267 .303 .295
.100 .370 .338 .377 .373
.125 432 .402 W441 442
.150 .486 459 .498 .504
.175 .534 .510 .548 .559
.200 .575 .555 .592 .608
. 225 .612 .596 .632 +652
.250 .645 .633 .667 .691
.275 674 .665 .699 .726
.300 .701 .695 727 .757
.325 724 721 .753 .784
.350 . 745 Th4 .776 .809
.375 .764 .765 .797 .831
. 400 .781 .784 .817 .850
425 .796 .801 .834 .868
.450 .810 .816 .850 .883
475 .823 .830 .864 .897
.500 .834 .842 .877 .909
.600 .870 .879 .920 .946
.700 .895 .903 .950 .970
.800 .913 919 972 .985
.900 1926 .929 .989 .994

1.000 1.000 1.000 1.000 1.000

ap(wx) = 0,29; p(wy) = 0.71.
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Table 11

THEORETICAL CASUALTY-FRACTION DISTRIBUTIONS

FOR HYPOTHESIS E, A, =6, A = 0.752

i T A

q Ayx(q;kx.xy) Axx(q;kx,xy) Ayy(q;xx,ky) Axy(q;kx,ky)
.000 .000 .000 .000 .000
.025 .187 .156 .189 .166
.050 .326 .287 .329 .306
.075 432 .397 437 422
.100 .516 .490 .524 .520
.125 .584 .567 .593 .602
.150 .638 .632 .651 671
.175 .684 .687 .699 .728
.200 .721 .733 .739 .776
.225 .753 771 773 .816
.250 .780 .803 .802 . 849
.275 .803 .830 .827 .877
.300 .823 .853 .849 .901
.325 .840 .872 .868 .920
.350 .855 .887 .885 .93%
.375 .868 .901 .899 .950
.400 .879 .912 912 .961
425 .889 .921 .923 .970
450 .898 .929 .934 .978
475 .905 .935 .943 .985
.500 912 .941 .951 .990
.600 .933 .955 .975 1.004
.700 .947 .961 .992 1.011
.800 .956 .965 1.003 1.014
.900 .963 .966 1.011 1.016
1,000 1.000 1.000 1.000 1.000

a . =
P(W) = 0.14; P(wy) 0.86.

PO N,
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obtainable from Hypothesis E. However, the empirical data (see Fig. 14)
indicate that the loser's casualty-fraction curve is distinctly to the
right and below that of the winner, and so 1s in conflict with the con-
sequences of Hypotheais E so far explored. This is not a very auspi-
cious prospect for the second modification of the breakpoint hypothesis,

and so it will not be further explored here,

THIRD MODIFICATION OF THE BREAKPOINT HYPOTHESIS

A third possible modification of the breakpoint hypothesis would
be to give up Hypothesis B and permit the break curves themselves to
vary depending on the class or type of battle that is under study.

This modification will not be fully worked out here because it is be-
yond the scope of the study. However, some preliminary observations
are offered,

The immediate question for this modification of the breakpoint hy-
pothesis is whether or not the vavrious break curves for the several
types of battles can be combined to produce an aggregate or composite
break curve valid for the whole universe of battles. For example, sup-
puse that Fi(x) is the break curve for battles of type i, and that bat-
tles of type i occur with relative frequency ni/N, where N is the total
nunber of battles in some data sample. Suppose we construct a new prob-

ability distribution function by a weighted-average break curve using
the formula

1=K

PO = (1) D agF (),
i=1

where K is the number of distinct types of battles., 1Is it true that
the observed casualty-fraction distributions can be determined by F(x)
without reference to the individual Fi? If so, then the original clas-
sification of battles into several types, each with its peculiar break
curve would merely be introducing a distinction without a difference.
However, a scan of the basic formulae in Appendix D shows no evident

reason for believing that a simple average would produce a composite
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break curve capable of generating casualty-fraction distributions ap-
plicable to the entire set of battles. Whether or not some other method
of arriving at such a composite break curve -vould succeed is perhaps
doubtful, but not completely resolved.

A second feature of a modified breakpoint hypothesis such as this
is that (unless some composite break curve 1s appropriate--in which
case the modification is no different from the original) confronting
the hypothesis with empirical data requires subdividing the data into
smaller groupings corresponding to the several battle types. This op-
eration often reduces the ability of statistical tests to discriminate
against the hypothesis when it 1is fallacious, For instance, consider
the extreme case where each battle of the sample is supposed to belong
to its own separate battle type--possibly on the romantic assumption
that every battle is unique. Then there is no way in which the hypoth-
esls can be disconfirmed by the data, and this is the case whether or
not the hypothesis is valid. Less extreme cases than this tend to
diminish, to a greater or lesser extent, the ability of statistical
methods to detect an invalid hypothesis. As a result, anyone seri-
ously proposing such a hypothesis should take care either to advance
a hypothesis without too many distinct battle types, or to expand the
size of the data sample in order to restore the sensitivity of the
statistical procedure to a reasonable level.

There is an interestingly different and suggestive way of looking
at breakpoint hypotheses of the sort represented by this modification.
It can be introduced by considering that the process of classifying
battles by type and hypothesizing distinct break curves for the various
types will ipgo facto gererate a certain amount of stochastic depend-
ence over the universe of all battles between the break level selected
for one side and that selected for the opponent. Viewing the third
modification of the breakpoint hypothesis as a special case of depend-
ence between the casualty fractions on both sides (as distinct from
the assumptions of Hypothesis A) may or may not be helpful in a prac-
tical sense, but it sheds light on the nature of the assumption being

made.

B S TS WS TSN ST SR L
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MINIMAL REQUIREMENTS FOR A BATTLE TERMINATION THEORY

The properties that a gatisfactory theory of battle termination ‘
should possess seem to include at least the following: ' J
1, The theory should have a simplicity and "naturalness" of form 4
in consonance with the principle of Ockham's Razor (William of Ockham, |
1280~1349 A.D.) that "multiplicity ought not to be posited without 1
necessity."
2. It must reproduce the observed quasi-exponential shape of em- '
pirical casualty distribution curves,
3. The winner's casualty-fraction distribution curve must lie
above and to the left of the loser's casualty-fraction distribution
curve, l.e,,

PCE,|W,) =8, > A, =P [W),

z
where z = x or y, and 2' = y or x, respectively.

4, The theory must address the separate casualty distribution
curves observed for the Category I and the Category II battles.

5. The theory must not produce an estimate of the Y function re-

lating casualty fractions via the relations
£ " W(fy/

or
fl = W(fw)

that is at variance with the actual relations between these quantities.
6. The theory ought to explain why the loser's and the winner's
casualty-fraction distributions are very nearly the same, independent
of the attack/defense status of forces, i.e., it should explain why
Eqs. (12) and (13) are approximately satisfied.
7. 1t would be helpful if the theory were useful for determining
the winners of simulated battles, as well as for determining the casu-

alty levels on both sides at the conclusion of simulated engagements.



In the foregoing, we have considered a primary breakpoint hypothe-

sls and sketched three modified versioms of it., Of these different
versions of the breakpoint hypothesis, the one that most nearly satis-
fies the desiderata listed above seems to be the first modification
presented. However, this modification fails to satisfy desiderata 5
and 7. Versions of the breakpoint hypothesis proposed in the forego-
ing that were closer to the kind normally used in war games, simula-
tions, and maneuver control were even less satisfactory in explaining
observed battle termination phenomena., Consequently, it seems that

the soundness of models of combat that make essential use of breakpoint
hypotheses must be considered suspect until a better theoretical under~

standing of the battle termination process is obtained.
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Appendix A

SALTUS-FUNCIION MANTPULATIONS

The saltus-function (o-function) and the delta-function (§-function)
enable a consistent formalism to be employed in formulae which would
otherwise have to be treated by an exhaustive tabulation of cases. We
present here a brief cocllection of some of *he elementary preperties of
the o-function, which is definod by

0, if x < a
o(x, a) = (%, if x = a , (A-1)
1, if » > a

The properties of this function are intimately related to those of the
Dirac é-functien, which may be nonrigorously defined by the relation

X

{
o(x, a) = fs(t, a) dt. (A-2)

-0 1

The following relations are obvious:

|

g(x, a) = o(x - a, 0) (A-3.1)
= 1 - o(a, x) (A~3,2) 1

=g(x+y, a+y) (A-3.3)
= g(-a, -x) (A-3.4) |

o(cx, ca) = o(x, a)o(c, Q) + o(a, x)o(0, c). (A-4)
If ¢ ¥ 0, then *
-1 -1 !

og(cx, a) = o(x, ac Yo(ec, 0) + o(ac ~, x)o(0, c) (A-5)
4
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and
o(x, ¢) = alxe™ Y, Dale, 0) + a(l, xc N (0, o). (A~6)
Definition. If a function m satisfies the relation
m(x) = f(x)o(a, x) + f(a)o(x, a),

then m is said to be a mixture on f at a.

If g 1s any function, and m is a mixture on f at a, then
g(m(x)) = g(f(x))o(a, x) + g(f(a))o(x, a), (A-7)

i.e., g om is a mixture on g o f at a, where "o" denotes functional
composition.

By virtue of our convention that distribution functions are de-
fined by the limit from the right, all upper limits in integrals must
be taken as 1limits from the right, so that, e.g.,

b b+0
f(u)é(u, ¢) du = f(u)Sd(u, c) du
J /
= £f(c)[o(b + 0, ¢) - o(a, c)]. (A-8)

The most common application we shall make of relation (A-8) is for
the case in which a = 0, ¢ > 0, and f(u) = o(du, e). For this case

(A-8) reduces to

b+0
U/. o(du, e)8(u, ¢) du = o(dc, e)o(b + 0, c). (A-9)
0
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Another integral formula of some value, valid when b > a, 1is
b+0
./r f(u)o(u, c) du = F(b + 0)o(b + 0, ¢) - F(a)o(a, c)
a
- F(c)[o(b + 0, ¢) - o(a, )]
= [F(b + 0) - F(c)]Jo(b + 0, c)
+ [F(c) - F(a)]o(a, ¢) (A-10)
where F is any indefinite integral of f. 1In particular,
b+0

J/. f(u)o(u, c) du = 0, for b £ ¢ and F continu-
0 ougs from the right at b, (A-11)

’ AARIE A o AN BT VL
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Appendix B

A JOSS PROGRAM FOR THE COMPUTATION OF CASUALTY-FRACTION

DISTRIBUTIONS FOR EXPONENTIAL BREAK CURVES

The JOSS program for the computation of casualty-fraction distribu-

tions for exponential break curves i1s presented in this appendix. It

is based on the discussion of casualty-fraction distributions for Ex-

ample 3 (exponential breakpoints) in Appendix E. Because of JOSS pro-

gram conventions, the following equivalents were established for use

only in this computer routine:

Notation in
Text

X

A
y

y
alu, v)
Y'IW(U)

¥ (u)

v )
P(W ) dy (ulW )
P(fy < u]wx)

Notation in
Computer Routine

X
y p

g
s(u,v)
t{g,w)
P(g,u)
p(g,u) 4
m{x,y,g,u)

alx,y,8,u)
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THE JOSS PROGRAM

Type all,

1.001 Do part 10.

1.01 Demand x as ''Lambda sub x".

1.02 Demand y as ''Lambda sub y".

1.03 Demand g as 'Gamma'.

1.04 Do part 2 for u = 0¢0.02)0.5(0.10)1.
1.05 To part 3.

2.01 Set A(100-u)
2.02 Set B(100-u)
2.03 Set C(100-u)
2.04 Set D(100.u)

a(x,y,8,u) .
a(x,y,8,p(8,u)).
a(Y:xtg*('l)»u)'
a(y’x,8*<'1))P(gsu))'

[ ]

3.01 Page.

3.02 Type x,y,g in form 1.

3.03 Line.

3.04 Type form 2.

3.05 Do step 3.08 for u = 0(0.02)0.5(0.10) 1.

3.051 Type m(x,y,g,1) in form 4.

3.06 Page.

3.07 To step 1.01.

3.08 Type u, B(100.u), A(100‘u), C(100:u), D(100°u) in form 3.

10.1 Let s(u,v) = [u<v:Oju=v:0.5;u>v:l].

10.2 Let t(g,u) = luggk(-1):u;gk(-1)].

10.3 Let P(g,u) = g t(g,u).

10.4 Let p(g,u) = g*(-1) -t(g*(-1),u).

10.5 Let r(x,y,g,u) = y'[l-exp(-(y+g'x)+t(g,u))]/(y+g: ).
10.6 Let n(x,y,g,u) = exp[-(y+g-x)]-s(1l,g) [u<l:0; 17.
10.7 Let m(x,y,g,u) = r(x,y,g,u) + n(x,y,g,u).

10.8 Let a(x,y,g,u) = m(xoy’gtu)/m(x’Y)831)°

Form 1: |
Lambda sub x = ___°*_; Lambda suby = __ ¢ ; Gamma = ___ °*

Form 2:
u P(fx<ulWx) P(fy<ulWx) P(fx<ulWy) P(fy<ulWy) r

Form 3:

. .
——— a—— ——— — — et g S w—— m—— —

Form 4:

R R A R Ry Rt T
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Arpendix C

DERIVATION OF BREAK CURVES FROM A CONTINUOUS
MODEL OF DECISION BEHAVIOR

We suppose that there is a function, X(h, f), that gives the prob-
ability that a side with a casualty fraction equal to f will continue
to fight tc a casualty fraction of £ + h., Clearly, X must satisfy

X(0, f) = 1, for 0 < f < 1. (c-1)

If F(f) 1s the probability that the side breaks at a casualty-fraction
value legs than f, then we have the relation

1~ F(f+ h) =X(h, £)[1 - F(£)]. (c-2)

Subtracting 1 - F(f) from both gides of Eq. (C-2), dividing by h and

taking the limit as h approaches zero, we find by invoking Eq. (C-1)
that

dF/df = -A(f) [F(f) - 1], (c-3)

where we have made the notational change

S s EL O (c-4)

h=20

Integration of Eq. (C-3), subject to the initial condition that

F(0) = 0,
yields
£
F(F) = 1 - exp [- fx(c) dt] (c-5)

0
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for the side's bregk curve. IF A(t) has a finite number of simple jump
discontinuities, we should take f + 0 as the upper limit of integration
in Eq. (C-5). BRBecause of the convention that F(1 + 0) = 1, we must
either have

140

exp [- f ACt) dt]l = 0 (C-6)
0

or introduce an ad hoe term to give F(1 + 0) = 1,

R A A U o JESTR I TR
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Appendix D

COLLECTION OF BASIC FORMULAE RESULTS

1
PQ) = fpx(w(u)) dF, (W)

0
1
- - eton) anm
0
1

o) = [ 07w ar o)
0]

1
- [ - r ) o
0

dDy(ulwx) - F?%;T [1 - F (¥(u)] dFy(u) - P(Ly - ulwx)
P(E, < q[w) = Dy(qlwx) = by (@)

P(f, < slwx) - Dy(w’l(s)lwx) = P(f, < w'l(s)lwx) =4, (8)
an, (v[w) = ﬁ;-)- [1 - B (4 TH WD) R (v) = PCL, = v]W)
P(£f, < 3|Wy) - Dx(slwy) “ b,y (8)

P, < qlwy) - Dx(W(q)IWy) - P(f, < w(q)lwy) = by (@)

(p-1)

(p-2)

(p-3)

(D-4)

(D-5)

(D-6)

(D-7)

(D-8)

(p-9)

(D-10)

RS
-

e Kt ol o =




-71~

Appendix E

ILLUSTRATIVE EXAMPLES

The breakpoint model (Hypotheses A, B, and C) is illustrated below
by working out some simplified examples. The purpose here is to make
sure that the model gives results in these simpler cases that agree

with the intuitive implications of the assumptions made.

EXAMPLE 1: FIXED BREAKPOINTS

dppose that side z 1s sure to break off the attack at a casualty-
fraction value of kz’ but not before. Then we can write the break

curves as
Fz(u) = O(U, kz)v

where ¢ is the step, or saltus, function defined by

0, for x < a
o(x, a) =(3%, for x = a
1, for x > a

and 0 < kz < 1. Appendix A develops some of the calculus of such func-
tions. However, for Example 1 it 1s perhaps as convenient to proceed
on the basis of informal considerations.

We proceed to find

1
P(H,) = f F (4(W) dF ()
0
1+0
= f ag(¥(u), kx)é(u, ky) du
0

= 0 (¥(ky), k),

e
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where the last line follows from formula (A-8) of Appendix A, since
0<k < 1.
y

Also

1

P(Y) = f Fy(‘i’_l(v)) dF_(v)
0

1+0

- f sy ), k) 8(v, k) dv
0

- o), k)
- U(kx, \y(ky)),

which by Eq. (A-3.2) is equivalent to 1 - P(wy}, as it should be.
We proceed to form

q
D (alw P = f 11 - P (v()) aF

0

q+0
'[ [1 - o(¥(u), kx)]d(u, ky) du
- [1- O(V(ky), kx)]c(q + 0, ky).

Now, in order that P(wx) > 0, we must have kx > W(ky), in which case the
first factor on the right-hand side will be unity. Hence we may write

» 1 4 -
Dy(QIWx) Fzgzy o{q + 0, ky) g(q + 0, ky).




Accordingly, we have

P(fy < qlwx) - Dy(qux) = G(q + 0, ky)
and
~1
P(f, < slwx) = D (¥ (s)lwx)
-1
= ag(¥Y “(8) + 0, k)
Yy
y
That 1s, fy - ky and f = W(ky), with probabilitv one. But that

is exactly what we expect in this example wvhen x wins.

Similarly,
]
-1
P B (slu) = f 1= B ()] aF )
0

s+0
../f [2 - o m), k) 160v, k)av
= (1 - oMk, k) loCs + 0, k).

For y to win, we must have kx < V(ky). in which case the firat factor

on the right-hand side will be non-zero, and we may write
- + .
Dx(ley) a(s + 0, k)
Accordingly, we have

{CAR siwy\ - Dx(alwy) =o(s + 0, k)




P(f, < q[W)) = D (¥(a)]W)

= o(¥(q) + 0, k) = ol + 0, ¥ (k).

That 1is, fx - kx and fy - W-l(kx), with probability one. But this is

exactly what we expect in this example when y wins.

EXAMPLE 2: UNIFORM BREAKPOINTS

Suppose that each side is equally likely to break off the engage-

ment at any point, i.e., we suppose that

Fz(u) -u, for 0 cucgl.

We will also suppose that g{u) = yu, so that ¥(u) = Yuo(y_l, u) + a(u, y-l)

and ?-l(u) = y—luc(y, u) + o(u, v) for 0 < u< 1. Here, y is some posi-
tive constant of proportionality.

We proceed to find

1

P(H) - g/'rx<w<u>> 4 ()

= 2yo0{l, y) + (év-l +1 - y'l)o(Y, 1)
- 3ya(l, v) + (1 - & Doly, 1).

Also

1
-1
P(”x) -fry(w v)) de(v)
0
1

-/‘i‘-l(v) dv

0

- %y-lo(l, vh+a- oty 1.

Pt e S~ ———
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We form
q
PG D (alu) = [ 11 - F ()] aF ()
0
q
-f [1 - 1(u)] du
0
q
- f [1- YUU(Y-I. u) - o(u, Y'l)] du
0

- @ - #ra)et @+ pyhota, vH.

The right-hand side reduces to the previous expression for P(wx) when q = 1,
*
as it should.

Similarly, we form

8
-1
PG DGl = f 11 - BTN aF )
0

s
-f [1 - \P-l(v)] dv
0

- (8 - éy-lsz)o(v. e) + 3vyo(s, v),

which reduces to the previous expression for P(Wy) when q = 1, as 1t

should, When vy = 1, ¥(u) = g(u) = u for 0 g u < 1, and P(Wx) = P(Wy) - 3,

*In this example, as in the preceding one, it is not necessary to
use the formal manipulations of the saltus functions presented in Ap-
pendix A. It is easier to use instead the definition of the saltus
function directly, keeping the various cases in mind as one proceeds.

©war A TR LA A
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A

and we have P(fy < qlwx) = P(fx

) qlwx) = P(fy < q|wy) = P(fx < qlwy) =
2q - q .

Example 2.1 (y > 1)

When v > 1, we have

PO = 1 - Hle1 - @7t
P(W) = s ™t
P(f, < a[W) = D (qlW)

v(2q - YQZ)O(Y—lo q) + o(q, Y—l)

[2¢qy) - (@ 2lo(y™, @ + alq, v7H)

p(t, < sliy = D (Ve[ = ¥2( i) - vy i tot iy )
+o(tvle), v Th,
and by Eq. (A-4) in Appendix A this reduces to

= v(2sy"t - 65y hoq, 8)

+ o(s; 1)
= (28 - 8%)0(1, 8) + o(s, 1)
= 28 - 32.
It 1s interesting to note that when y > 1, the conditional dis-

tribution of attacker casualty fraction given an attacker win is in-

dependent of the proportionality factor, y.
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In similar fashion, we find

P(E, < s!wy) = Dx(slwy)

-1
L - &y
2
2ys - s
2y - 1°
And also
P(f <« W = D (Y(q)|W
(£, ql g = D (q) | g

2y - D72y - v3()}
- (2y - l)_1{[2qu - (YQ>2]0(Y-1, q)
+ 12y - 1)olq, v 1)

2
= 2Y(l%i : §YQ) OCY-I; q) + U(q, Y_l)o

Note that all of these formulae will reduce to those for the case

in which vy = 1 upon setting y = 1.

Example 2.2 (y g 1)

When vy < 1,
P(W,) = By
P(Wx) =1 - 3y
- 2
P(fy < q'wx) - Dy(qlwx) - i%-%_l
2
- 29 - 19
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B(f, < s[w) = Dy(w“l(s)lwx)

L2 - y(he))?

2 -y
nyls -y -ls 2
= 7=y oly, 8) + o(s, v).
Likewise,

P(f < slwy) = Dx(slwy)

G %Y-lgzjo(}r. 8) + 2vals, v)

Y

- [2(Y-13) - (Y-ls)Z]O(Y, 8) + ol(s, v)

P(E, < qlW)) = D, (¥(a) W)

G @) - G @) ely, ¥@) + o(¥ (@), v)

[2(7'1yq) - (Y-qu)Z]U(Y’ vq) + olvq, v)

[2q - q2Jo(, @) + o(q, 1)

2
-Zq-qo

And, symmetrically related to a previous resuli, the conditional
distribution of defender casualty fractions when the defender wins is
independent of the proportionality factor, y. As is true for the case
in which y > 1, these results will reduce to those for the case in which
y = 1 simply by taking y = 1,

EXAMPLE 3: EXPONENTIAL BREAKPOINTS

Suppose that each side's break curve is given by an exponential




function
-Azu -Az
Fz(u) =1 -e +e “olu, 1), 0O<ucxgl,

-A_u -A

sz(u) = [Aze Z t+e zG(u, 1)] du,

where the last term is inserted to make Fz(l + 0) = 1, and so to cure
the defect of the distribution

-Azu
l-e
*
at u =1,
We shall also suppose that
p(u) = yu

as we did for Example 2.
We proceed to find

1+0
P(H) -f F, (Y() dF, ()
0
1+0 A ¥ -A
-f [1-e * + e xc(\l’(u),l)]
0

A u -\
[Aye Y du+ e Y§(u, 1) du].

*It also, somewhat regrettably, has the effect of attaching a fi-
nite probability to the event "force z fights to complete annihilation,"
by way of the &-function term in dF_. One way to avoid this would have
been to simply rescale F, by a factor, e¢.g., set ¥z = (1 - e'Azu)/

a - e'kz). This apparently simpler and more natural technique will
not be developed here,

s ARt BN AT
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*
We proceed by first taking vy < 1, and finding the value of

q+0
P(W,) D o(q]W) = J/' [1 - F(¥(u))] dF (u)

0
PO g .
'f [e - e “o(yu, 1)]
0

[Aye Y + e yA(u, 1)] du

A

-1
—(1 +yA
) y L. ( g LY ¥(a)
Ay + ka

=(gtyr)
+e 7V a(l, y)o(qg+ 0, 1).

The value of P(Wx) can be found by taking q = 1 in the above, since
Dy(llwx) must equal unity. Hence P(fy < qlwx) = Dy(qlwx) is given by
dividing the right-hand side of the last equality by the value obtained

by setting q = 1 in the same expression. Then we can find
PCE. < a|W ) = D_(¥ " (s) W)
X X y X’

where W-l(s) = y~lso(y, 8) + o(s, y), because W—l is a mixture on y-ls
at y. By fact (A-7) in Appendix A, and since D (1|w ) = 1, we obtain
P(f, < slw) - P(f <y e]w Yaly, 8) + o(s, 'Y)

When side y wina, ve find similarly

-1
YA -(A_+yA_ )Y “(8)
PMW) D (8|W) w——HE—f]_ g Y X
y' x y Ay + yxx
-(x +Y A )
+ e Va1, v )o(s+ 0, 1),

*
Throughout this example, frequent use is made of the results in
Appendix A, Particularly heavy use i3 made of formula (A-9), The detalls

are straightforward, though somewhat tedious.
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and
P(f_ < slwy) - Dx(slwy)

can be found by the same method used above to obtain P(fx < slwx).

Likewise, we obtain
P(f < W = D (¥ q W),
( y q, y) x( ( )l y)

We work out the results for vy = 1 in analogous fashion, Whether

ornot y <1, y =1, or vy » 1, we have in any event

(,. e-(xymxn‘l\v(q))

- — e
P<wx) Dy(qlwx) Ay + ka

-(A_+yA )
+e Y Xod, y)olq + 0, 1) (E~1)

and a similar formula for P(W ) D (qlw ) obtainable from the one for

P(w ) D (qlw ) by the mapping Xy, y + x, Y+ v 1, ¥ oy 1, and

W_l + W Here ¥(q) = Yqo(y , a) + olq, v ), so by relation (D-6) of

Appendix D,

P(fy < qlwx) = Dy(qlwx)

-1 .
A =(A +va )y ‘l’(q)) ~(A +yA_)
X——:9L-— (1 e YV ¥ +e T % a(l, y)o(q + 0, 1)
YA
- Y X
-1
A ~(A_+YA)y m)) ~(A+yAL)
Ay + YA, (l -e 7 X +e 7 Ta1,y)

(E-2)

tfhis interchange of symbols in any expression, formula, etc., will
be called the "usual transposition.'" The object to which the usual trans-
position is applied will be called the "primal object." The result of
applying the usual trunsposition to the primal will be called the 'dual."
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with a similar formula for P(fx < qlwy) dual to (E-2) obtainable by the
usual transposition. From relation (D-7) of Appendix D we obtain

P(£, < s|W) = ny(w‘lcs)lwx) - P(£ < vl W), (E-3)

where W_l(s) = Y-lsc(y, s) + o(s, y), and so is a mixture on y_ls.
Then by Eq. (A-7) we may write

P(f, < s|wx) = P(fy < y'lslwx)o(y. 8) + a(s, Y), (E-4)

with an analogous dual formula obtainable from this one by the usual
transposition. A JOSS program for the computation of theoretical
casualty-fraction distributions for this example is included as Appen-
dix B, This program was used to generate the following tables of values
(Tables E-1 through F-5). Some of these distributions are illustrated
in Fig. E-1.

PO
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Table E-1
THEORETICAL CASUALTY-FRACTION DTSTRIBUTION?

(y =1, A" Ay = )

P(fz<u|wz)

u A=10 A=5 A=3 Am2
.000 . 0000 .0000 . 0000 .0000
.020 .3297 .1813 .1131 .0769
.040 .5507 .3297 .2134 .1479
. 060 . 6988 4512 .3023 .2134
. 080 .7981 .5507 .3812 .2739
.100 8647 .6321 4512 .3297
.120 .9093 .6988 .5132 .3812
.140 .9392 .7534 .5683 4288
.160 .9592 .7981 .6171 4727
.180 9727 8347 . 6604 .5132
. 200 . 8647 .6988 . 5507
220 .8892 .7329 .5852
. 240 .9093 . 7631 6171
.260 .9257 .7899 .6465
.280 .9392 . 8136 6737
. 300 .9502 « 8347 .6988
.320 .9592 .8534 7220
<340 . 8700 .7433
.360 . 8847 .7631
.380 .8977 .7813
.400 .9093 .7981
420 .9195 .8136
. 440 .9286 .8280
. 460 .9367 . 8412
.480 .9439 .8534
.500 .9502 . 8647
. 600 .9727 .9093
.700 .9850 .9392
.800 .9592
.900 .9727

1.000 1.0000

2P (Fy<ulW,) = P(£ <u|w ) = P(f <ulw ) = P(f <ulw )y
P(W,) = P(W )= 1/21.7
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Table E-2
THEORETICAL CASUALTY-FRACTION DISTRIBUTION?
(0, = 2.000; A = 2.000; y = 1.500)

u P(fx<ulwx) P(fy<ulwx) P(fx<u[wy) P(fy<u|wy)
.000 .0000 .0000 .0000 ~.0000
.020 . 0669 .0987 .0630 . 0930
. 040 .1294 .1880 .1219 L1771
.060 . 1880 .2688 1771 .2532
.080 L2427 3419 .2286 .3220
.100 . 2940 .4080 .2769 .3843
.120 .3419 4679 .3220 L4407
.140 .3867 .5220 3642 L4917
.160 . 4286 .5710 .4038 .5379
.180 L4679 6154 L4407 .5796
.200 .5046 .6555 4753 6174
.220 .5389 6918 .5076 . 6516
. 240 .5710 7247 .5379 . 6826
. 260 .6011 7544 ,5662 .7106
.280 .6292 .7813 5927 .7359
. 300 .6555 .8056 6174 .7588
.320 .6801 .8276 6406 7796
.340 .7031 8476 .6623 . 7983
. 360 7247 .8656 6826 .8153
.380 L7448 .8819 .7015 .8307
. 400 .7636 .8967 .7193 . 8446
.420 .7813 .9100 .7359 .8572
. 440 7978 .9221 7514 . 8685
. 460 . 8132 .9330 7660 8788
. 480 .8276 .9429 .7796 .8882
.500 .8411 9519 .7923 .8966
. 600 .8967 .9854 .8446 9281
.700 .9364 1.0000 .8821 1.0000
. 800 9649 1.0000 .9089 1.0000
.900 .9854 1.0000 .9281 1.0000

1.000 " 2000 1.0000 1.0000 1.0000

ap(wx) = 0.385730402.
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Table E-3

THEORETICAL CASUALTY-FRACTION DISTRIBUTION?

(Ax = 2,500; Ay = 2.500; y = 1.500)

u P(fx<ulwx) P(fy<ulwx) P(fx<u|WJ\ P(fy<u|Wy)
. 000 . 0000 .0000 . 0000 . 0000
.020 .0812 .1194 0791 .1163
.040 . 1559 2247 «1519 .2189
. 060 2247 3176 .2189 3095
. 080 . 2879 .3997 - 2806 .3894
.100 .3461 4721 + 3373 4600
.120 . 3997 . 5359 .3894 5222
. 140 4489 .5923 4374 5772
. 160 L4942 6421 4816 6257
.180 . 5359 . 6860 5222 .6684
.200 . 5743 7247 .5596 .7062
.220 . 6096 .7589 .5940 7395
. 240 6421 .7891 +6257 .7689
. 260 . 6720 . 8157 . 6548 . 7949
.280 .6994 . 8392 . 6816 .8178
.300 7247 .8600 .7062 .8380
.320 . 7480 .8783 7289 .8558
« 340 . 7694 .8944 7497 .8716
.360 .7891 .9087 .7689 .8854
.380 .8072 .9213 .7866 .8977
« 400 .8239 9324 .8028 .9085
420 .8392 .9422 .8178 .9181
+ 440 .8534 .9508 .8315 9265
460 .8663 .9584 8442 .9339
480 .8783 .9652 .8558 +9405
. 500 .3893 9711 . 8665 .9463
. 600 .9324 .9919 .9085 .9665
.700 .9608 1.0000 .9362 1.0000
.800 .9795 1.0000 .9545 1.0000
. 900 . 9919 1.0000 .9665 1.0000

1.000 1.0000 1.0000 1.0000 1.0000

aP(Wx) = 0,393798459,



-87~

Table E-4
THEORETICAL CASUALTY-FRACTION DISTRIBUTIONa

(Ax = 2.000; Ay = 2,000; v = 0.667)

u P(fx<u|wx) P(fy<u|wx) P(fx<u|wy) P(fy<ulwy)
.000 .0000 .0000 .0000 . 0000
.020 .0930 .0630 .0987 . 0669
.040 1771 .1219 .1880 1294
. 060 .2532 1771 .2688 .1880
.080 .3220 .2286 . 3419 L2427
. 100 .3843 .2769 . 4080 . 2940
.120 4407 .3220 4679 .3419
. 140 L4917 .3642 .5220 .3867
. 160 .5379 .4038 .5710 .4286
.180 .5796 4407 .6154 L4679
. 200 L6174 4753 .6555 .5046
. 220 .6516 .5076 .6918 . 5389
. 240 .6826 .5379 7247 .5710 )
. 260 .7106 . 5662 7544 L6011
. 280 .7359 .5927 .7813 .6292
.300 .7588 6174 .8056 .6555
.320 .7796 .6406 .8276 . 6801
L340 .7983 .6623 .8476 .7031
.360 .8153 . 6826 .8656 7247
.380 .8307 .7015 .8819 7448
.400 . 8446 .7193 .8967 .7636 1
.420 .8572 .7359 .9100 .7813
440 .8685 7514 .9221 .7978 |
. 460 .8788 . 7660 .9330 .8132
. 480 .5882 .7796 .9429 .8276 ;
. 500 .8966 .7923 .9519 .8411 ]
.600 .9281 . 8446 .9854 .8967 {
.700 1.0000 .8821 1.0000 .9364
.800 1.0000 .9089 1.0000 .9649 1
.900 1.0000 .9281 1.0000 .9854
1.000 1.,0000 1.0000 1.0000 1.0000

ap(wx) = 0.614269595.
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Table E-5
THEORETICAL CASUALTY-FRACTION DISTRIBUTIONa

(Ax = 2.500; Ay = 2,500; y = 0.667)

u P(f <u|W) P(fy<u|wx) P(fx<ulwy) P(fy<u|wy)
.000 .0000 0000 .0000 .0000
.020 1163 .0791 1194 0812
.040 .2189 1519 \2247 1559
.060 .3095 .2189 3176 2247
.080 .3894 .2806 .3997 2879
.100 . 4600 .3373 4721 3461
.120 5222 .3894 .5359 .3997
140 5772 L4374 .5923 L4489
.160 .6257 4816 6421 L4942
.180 6684 5222 .6860 .5359
.200 .7062 .5596 L7247 5743
.220 .7395 .5940 .7589 6096
. 240 .7689 6257 .7891 6421
.260 . 7949 6548 .8157 .6720
.280 .8178 .6816 .8392 6994
.300 . 8380 .7062 .8600 L7247
.320 .8558 7289 .8783 . 7480
L340 .8716 7497 .8944 . 7694
.360 .8854 .7689 .9087 .7891
.380 .8977 . 7866 .9213 .8072
. 400 .9085 .8028 .9324 .8239
.420 .9181 .8178 9422 .8392
440 .9265 .8315 .9508 .8534
. 460 9339 L8442 9584 .8663
. 480 .9405 .8558 9652 .8783
.500 .9463 .8665 L9711 .8893 ;
.600 .9665 .9085 .9919 L9324
.700 1.0000 .9362 1.0000 .9608
. 800 1.0000 .9545 1.0000 .9795
.900 1.0000 .9665 1.0000 9919

1.000 1.0000 1.0000 1.0000 1.0000 !
aP(wx) = 0.60620154, |
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Appendix F

A REVIEW OF SOME CASUALTY~FRACTION DATA

Some of the avallable casualty-fraction distribution data are
exhibited in Fig. F-1. Such backup data for this figure as have not
been previously presented are given in Tables F-1 through F-3. Several
additional casualty-fraction distributions can be found in Refs., 17
and 18, but these distributions give the casualty-fraction distribu-
tions for one side only, and so do not suffice for the quantitative
test of breakpoint hypotheses. It is Interesting to note, though,
that the casualty-fraction distributions given in those references
illustrate the same general form as those in Fig., F-1, a shape that
Robert J. Best of the Research Analysis Corporation has called "quasi-
exponential." Best found the same qualitative shape in distributions
of daily casualty incidence for units from rifle companies to Army
groups, although the quantitative characteristics of these distribu-~
tions are different for units of markedly different sizes.

Some additional data from Ref. 4 are shown in Fig. F-2. The three
types of breaks displayed in this figure are defined as follows:

Type I = a sequence of attack, to reorganization, to renewal of
the attack.
Type 11 = a change from attack to defense.
Type III

L]

a change from defense to withdrawal.

Clark's Type I and Type Il breaks perhaps should be combined and treated
as a single category, as we have done in (a) of Fig. 9. There seems to
be no way to foresee whether an attempted reorganization would permit a
renewal of the agsault. Even if a renewed assault 1s planned by the
comuander, the break may en~ up beirg of Type II because, for example,
an enemy counterattack spoils the anticipated renewal of the offensive,
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Table F-1

EMPIRICAL DISTRIBUTION OF CASUALTY-FRACTION VALUES
(Extracted from Willard(12> for Category I battles®)

Fraction of Battles witb
Casualty | Upper Casualty Fraction
Fraction, f Less Than ¢
0.05 0.13
0.075 0.25
0.10 0.41
0.125 0.50
0.20 0.73
0.25 0.82
0.33 0.90
0.50 0.98

'Category I battles are those char-
acterized by G. Bodart's Knriega-Lextiocon
as treffen, gefecht, and schlact.

bUpper casualty fraction ~ max (fx. fy).

Table F-2

EMPIRICAL DISTRIBUTION OF CASUALTY-FRACTION VALUESa
(Composite from Refs. 8 and 10)

Range of | Attacker Wins (W) | Defender Wins (W) Either Side Wins
Casualty- Cum, Cum, Cum,
Fraction No. No. Cum, No. No. Cum, No. No. Cun.
Values |Battles|Battles| % | Battles|Battles| X | Battles|Battles| %
0.00-0.05} 28 28 15 33 33 21 61 61 18
0.05-0.10( 49 77 41 40 73 46 89 150 43
0.10~-0.15| 31 108 57 29 102 65 60 210 61
0.15-0.20} 30 138 73 15 117 74 45 255 74
0.20~0,25| 17 155 82 22 139 88 39 294 85
0.25-0.30 8 163 87 7 146 92 15 309 89
0.30-0.35 5 168 89 4 150 95 9 318 92
0.35~0.40 1 169 90 4 154 97 5 323 93
0.40-0.45 5 174 93 1 155 98 6 329 95
0.45-0.50 1 175 93 3 158 {100 4 333 96
0.50-0,55 0 175 93 0 158 {100 0 333 96
0.55-0.60 0 175 93 .o o . 0 333 96
0.60~0.65 3 178 95 .. . . 3 336 97
0.65-0.70 2 180 96 .o .o . 2 338 98
0.70-0.75 0 180 96 . . .. 0 338 98
0.75-0.80 1 181 96 . . . 1 339 98
0.80-0.85 0 181 96 . .o . 0 339 98
0.85-0.90 1 182 97 .o .. . 1 340 98
0.90-0,95 1 183 97 . ‘e .. 1 341 99
0.95-1.00 5 188 1100 . .o .. 5 346 100

SNumber of battles = number of battles in which
experienced a casualty frnction in the appropriate

one side or another

range,
AP

...

Total number
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Table F-3

EMPIRICAL DISTRIBUTION OF CASUALTY-FRACTION VALUES

(Composite of Type I and Type II breaks,? EM cumulative
casualties for day of break plus the two preceding days(4))

Casualty Fraction Cumulative PercentP
0.030 3
0.045 6
0.048 10
0.053 13
0.064 16
0.064 19
0.086 23
0.091 26
0.097 29
0.097 32
0.116 35
0.128 39
0.130 42
0.132 45
0.137 48
0.141 52
0.147 55
0.156 58
0.159 61
0.162 65
0.164 68
0.181 71
0.194 74
0.211 78
0.229 81
0.262 84
0.311 87
0.313 90
0.314 94
0.326 97

aType I break is defined as a change
from attack to reorganization and then
return to attack., Type II break is de-
fined as a change from attack to defense.

bThere were 30 battles in the data
sample, The cumulative percentage value
assoclated with the ith battle was taken
as 100 - 1/31.
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