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ABSTRACT

The vesults of an investigation of time- and space-
truncation errors inherent in the implicit numerical analysis of
the heat conduction equation are presented. Curves showiiig the
percentage of error as a function of Biot and Fourier number for
bogh step-functior snd ramp-function boundary conditions are
given. Acceleration techniques, cver-relazation, and a direct tri-
diagonal matrix solution are presented., Methods arxe developed (1)
for automatic determination and printout of spatial- and ﬁiﬁe~
truncation error, (2) for extending ramp-function responses for
either anslytical or numerical soluticns, and {3) for synthesizing
ramps cf different slopes from a given transient regponse. An
automatic time-step generator that maintains a specified erzor level
is described and coded. Preliminary studies of (1) correlating the
delta first derivative with gpatial-truncation error, and (2) ac-
celerating the solution of a three-dimensional implicit transient
selution through the use of a one—dimensional spproach are given,
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NOMENCLATURE

Capacitance

Acceleration due to gravity

Film coefficient

Thermal conductivity

(1) Distance from surface to center of node, also
{2) thickness of insulated slab

Transform variable
Temperature of bodv under consideration
Temperature of bounding fluid

Distance from surface to point under consideration in
analytical solutions

Thermal diffusivity
Thickness of node
Density

Time

Time at end of ramp
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FOREWORD

This report documents an investigation to £111 an existing
gap between the theory and the application of finite difference
methods to transient thermal analyses. A methodology is developed
that provides a means of predicting and modifying the analytical
error associated with thermal response problems,

The work was performed at the University of Nevada during the
period from September 1966 through September 1968 under two
separate contracts with the Naval Weapons Center, China Lake,
California. Contract N60530-67-C-0051 for the period from
September 1966 to September 1967 was funded by the Bureau of
Naval Weapons WepTask RMM0~42-008/216-1/F009~09-01 under the
cognizance of W.K. Baker. Contract N60530-67-C-1278 for the
period from September 1967 tg September 1968 was funded by WepTask
A32-320-008/216-1/F008-09-01" under the cognizance of W.C. Volz.
The technical administrator of both contracts for the Naval
Weapons Center was L.D. Schultz,

Technical reviewers for this report were Dr., William H.
Thielbahy, of the Propulsion Development Department, and Leo D.
Schultz, of the Weapons Development Department. Appendixes B,

C, and D containing bibliographic information are published as
received under contract; they have not been edited at this Center.
This report is released at the working level for information only.

Released by Under authority of
RAY W. VAN AKEN, Head F. H. KNEMEYER, Head
Aeromechanies Division Weapone Development Department
8 April 1971
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INTRODUCTION

Uncritical application of finite-difference procedures for solving
transient aerodynamic heat-transfer problems has required 10 to 15
hours on the computer for each hour of actual fiight. In addition, the
complexity of problem, e.g., the variety in geometry, materials of
construction, initial conditions, and boundary conditions, is such that
an estimate of the error inherent in the analysis is difficult.
Consequently, the introduction of errors of an intolerable magnitude
into the problem's solution by adjustment of the spatial increment and/
or time increment to minimize the excessive costs caused by long
computer runs is difficult to aveid and even more difficult to evaluate.
0f the many sources of potential significant error, such as inaccurate
flight data, atmospheric conditions, aerodynamic heat transfer
coefficient, and thermal properties, the errcr considered here is the
analytical error due to the nature of the finite-difference approxima~
tion of the partial differential equations of transient thermal
response. Because this error can be as great as 207 of the surface
temperature rise, the necessity of maintaining the analytical error
within acceptable limits is apparent.

The purpose of the investigation is to £111l the existing gap
between theory and practice by developing a methodeclogy that provides
the engineer with a2 means for predicting the analytical error
associated with a specific thermal response problem. This ability
allows the selection of spatial and time increments such that the
minimum computation time is assured for a predetermined allowable
analytical error limit. The benefits are two-fold: First, the
analytical error can be controlled within limits governed by the
problem under consideration; and second, the solution is obtained for

the least cost.

A brief review of the implicit and explicit forms of the finite
difference method for handling complex thermal transients would be in
order at this point., In both methods, a system of equations is
written describing the heat transfer processes taking place in a
geometry which has been divided into discrete nodes., For each node, an
energy balance is written: The sum of all forms of energy crossing
the node boundaries are equated to the time rate of change of the
heat capacity of the node. Thus, for both approaches, explicit and
implicit, a transient thermal problem generates a large number of
equations, specifically, one equation for each node in the system.

SN s,

FEGHAPS 2 1p

pr ey

LTS PR TTE VY

23 nau badeg and vebsuansa

LRI

AN i 00 1 AN S TS B £ O v, il N od v .
A O R Rz DAY S SN 0 AT AN NEL TN LI ae N ey AU SO T A LS et 2

SO e

P S Neme N I 455 2 N b,

.



EERIN Iy

¢

.- i e e o ey e o B Pme & s o AR W % S el e P

NWC TP 5143

The set of thes2 equations is to be solved at every time step for the
temperature of each node in the system.

It is at this point that the difference between implicit and
explicit becomes apparent. In the explicit or forward-difference
method,; the nodal temperature and the time rate of change of the node
capacitance are referenced to the beginning of each time step. Thus,
knowing all of the temperatures at the beginning of a time step for
the entire system of nodes, one can predict the temperature each node
will reach at the end of the time step. In this manner, each equation
has a single unknown, the node temperature at the end of the time step.
Thence comes the nomenclature explicit: each equation can be solved
explicitly for its single unknown temperature.

The implicit apprcach expresses the nodal temperatures and
references the time rate of change of the node capacitance to the end
of each time step. This apprcach also results in a system of equations,
one for each node in the system; but the individual equations in the
system may contain séveral unknowns. Thus, the system is no longer
explicit but is an implicit system in which the entire set of equations
must be solved simultaneously,

In brief, the limitation for the explicit method is in the length
of time step which may be taken before instability sets in. For
stability, the length of the time step is a function of the thinnest
dimension of any of the nodes in the system and, for practical problems,
can be as small as thousandths of a second. This reauirement can lead
to an exceedingly large number of time steps to solve practical
transient problems and can take an excessive amount of computer time.
On the other hand, the implicit method has no limiting time step
and has maximum stability compared to any cf the other methods. A
thorough discussion of the stability characteristies of the implicit
and explicit methods is presented in the paper titled The Stability
of Three Finite Difference Methods of Solving for Transient
Termperatures by G.R. Gaumer. (See Entrxy 41, Appendix C).

In the one-dimensional problem shown by Fig. 1, the surface
undergoes some form of a boundary condition change, and an energy
balance is written for each of the nodes. The resulting system of
equations in which all nodzl temperatures are referenced to the end of
the time step will form the implicit system. The next step is to solve
the resulting matrix for the nodal temperatures either by a direct
method such as the tridiagonal matrix solution or by an iterative
method such as Gauss-Seidel. After determining the nodal temperatures
at the end of a time step, a new set of equations is generated using
the same principlrs and arriving at a second matrix which, in turn,
will determine the temperatures at the end of the second time step.
This process is repeated for eath succeeding time step. In making
comparisons of the effectiveness of several techniques for solving
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the matrix, referred to previously, it was necessary to program the
classical anialytical solution for an infinite plate. This program,
given in Appendix A for the convenience of the user, includes an
eigenivalue generator.

= AX je INSULATED
ser JLLLLLLLLILLLLLLL LI L0110
FUNCTION
TEMP RISE 5 2 3 s 5 6 7 8 %msumﬂrso
FiLM - /
RN JTTTIITTTITT 7777777 77777777777777 //////

INSULATED

FIG. 1. ©Nodal Network for an Insulated Plate.

To improve accuracy and to provide rapid solutions, some form of
compromise is necessary for intelligent use of the finite-difference
method. In general but nor vnder all conditions, the finer the sub~
division of time steps in the time network or the finer the sub-
division of geometrical spaces, i.e., the thickness ¢f each layer, the
closer the numerical analysis will come to approximating the analytical
solution. However, the finer time network and the finer the spatial
network for any given problem, the longer will be the computation time.
In the explicit method round-off errors can beceme significant. 1In the
implicit method, however, round-off errors are fairly well confined
to an individual time step, and any error that is transmitted to the
next time step is diffused among the nodes. If the user knows the
effect a given spatial network will have in terms of spatial-truncation
error and time-~truncation error, a much more effective use of computer
time may be made. Furthermore, acceleration techniques may be used to
shorten the computer time needed. Round-off and truncation errors
as well as acceleration techniaues are discussed in Appendix B.

So that one can gain insight into the nature of the truncation
errors, Fig. 2 shows a true temperature-distance plot for two adjacent
nodes. Tangent to the true temperature curve are twe lines, True
Slope 1-2 and True Slope 2-3. These lines represent the true slope of
the temperature curve at the midpcint betweer node one and node two and
at the midpoint between node two and node three, Compare these true
slopes with the linear approximations that are shown as dashed lines in
Figure 2; one sees that spatial-truncation error consists of the
difference between the true slope and the linear approximation of the
slope. Using this linear approximation of the temperature gradient
results in an error for the rate of change of energy stored in the

a,xv.._,,.p_mu\g‘_ '.“,

7y AL o Wiy

2
4
3
5
%
Xl
%
z
H
3
3
LS

!
3
A
3
b
£
3
%
’
2
:
4
2
E]
o
3
3
§
l
:
b4
|
g
]

s O

e Fhsta

LR R R,

v,

FRTAT T RO AT IR S L S g SO TR Mot MWL NTAT e FVYE R34 1k ES AR L S o Db i At <t R Y

LY PRI e



NWC TP 5143

CE LR e WA ITPT Ao 53 LA Y v LAY a5 €

;é
&
54
i
&
¢

node. This, in turn, causes an error in the prediction of the nodeal
temperature at the end of the time step.
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FIG. 2. Physical Concept of Spatial Truncation Error.
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i1t has been found that by using the Fourier number and the Biot
number, a correlation of “he spatial truncation error may be made
(Entry 7, Appendix C). 1In like manner, time truncation errors may also
be correlated.

ST A

Commonly, the error analysis of transient problems is based on
step-function boundary conditions; i.e., the driving potential undergoes
an instantaneous change at the beginning of the transient. In actual
aerodvnamic heat transfer problems, step changes at the boundary are
’ seldom realized; changes occur over time periods of significant
I duration. For this reason, ramp functions approximate the true
f boundary condition changes of practical aerodvnamic problems more
\ realistically than step functions do. Therefore, after the basic
| analvtical error analvsis is developed for step function changes at the
boundarv, the analysis is extended to determine the effect of duration
and slope of ramp function boundary conditions on the spatial truncation

error.

Dy e T

‘ The summarv of a literature survey, made in the initial months of

this research effort, is included ir this report as Appendix B. This

literature survev compares a number of papers concerned with the

| various techniques for establishing iterative solutions, techniques for

\ determining the truncation errors, both spatial and time, and techniques
for accelerating iterative solutions. Appendix C is a bibliography on

| the general subject of numerical solution for transient heat transfer

§ problems; Appendix D contains the same bibliography organized by

i categories. Aprendix E is a derivation of the Laplace transform

| solution of the one-dimensional Fourier conduction equation for a :

semi-infinite solid (and for an insulated slab) with a ramp-function

boundary condition.
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MATRIX SOLUTION METHODS

Because the transient heat-transfer preblems in this study are
one-dimensicnal, a variety of solutions to the resulting matrix are
available. For example, an iterative methods-~Gauss-Seidel~-and the
various acceleration routines which may be used with it; the Runge-
Kutta method; and a direct method utilizing the tridiagonal form cf a
matrix (TRIDAG) are available. The direct method bypasses the
difficulty of convergence errors found in iterative solutioms,
example J,0, Wilkes of the University of Michigan reports on a
solidification problem involving 11 nodes and 17 time steps for which
the IBM 7096 has an execution time of 1.8 seconds. (See Entry 110,
Appendix C.) Comparable problems using an iterative solution took an

average of 18.0 seconds for execution.

As an

A O S T T e P
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4
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For nonlinear problems, a simple direct sclution such as TRIDAG
is not applicable; therefore, a more general approach such as the
accelerated Gauss-Seidel using a constant acceleration factor (usually
referred to as over-relaxation) may be used. An alternative is tc use
Gauss-Seidel with an acceleration technique such as the Wegstein or

the Steffensen methods.

o 45

1

R R

A study of Steffensen's accelerating technique applied to a simple
algorithm indicated possibilities., However, when this technique was
used to accelerate the solution of a 20-node problem, the results were
either the same as could be expected from the regular Gauss-Seidel or
greater. The system did not seem to settle down even though the
frequency of application of the technique was varied,

e e E o T

T e e Ry

-

The Wegstein method requires more computer storage space and more
. computer operations than does the Steffensen method, but the Wegstein
method effectively reduces the number of iterations needed for
convergence. Appendix A presents Wegstein's basic equations and
incorporates the Wegstein method into the ONE-D program for use with the
Gauss—-Seidel iteration technique. A FORTRAN IV listing of this program

f is given in Appendix A.

A note of caution: some acceleration technigques such as Steffensen
| or Wegstein work very well on the algorithm type of iterative solution,
but when used on a system of equations, these techniques can actually
| slow down the rate of convergence. For comparison purposes, a 20-node
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one~dimensional problem having a step input in the bounding fluid
temperature was devised. Straight Gauss-Seidel using a 1/100-degree
convergence limit took 46 iterations to determine the nodal temperatures
at the end of the first time step. An unrestrained acceleration
technique such as Wegstein's applied every third f{teration caused such
divergence that the automatic program stop of 100 iterations was
reached. This difficulty was corrected by restricting the Wegstein
technicue only to positive values of acceleration. Only 17 iterations
were required for comvergence in a subsequent computer run using a
combination of 10 initial itarations of Gauss-Seidel without over-
relaxation, followed by the Wegsteln acceleration method limited to
positive values only, and then three additional iterations of standard
Gauss~-Seidel. As a further experiment, a run with 10 Gauss-Seidel
over-relaxed iterations, followed by a Wegstein acceleration limited

to positive values only, followed by standard Gauss-Seidel alternating
with the Wegstein method tool 20 iterations to converge the same
problem. Mixing combinaticns of various acceleration techniques should
be approached with cautior because some combinations actually increase
the number of iterations over that required by a single technique.
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SPATIAL., TIME., AND TOTAL-TRUNCATION ERRORS

One of the most confusing problems facing the engineer in attempt-
ing to utilize finite differences to solve transient heat-transfer
problems is the determination of the spatial-network grid and the time
interval to take in establishing a time network for dealing with a
transient. In an effort to quantize this particular problem, the
available background material was gleaned from the literature. (See
Entry 7, 9 and 44 in Appendix B.,) Truncation errors are caused by the
strong second derivatives irherent in the beginning of the transient
and near the surface of the geometrv. The curves that are available
have been found to be quite successful in predicting spatial- and
time-truncation errors in problems consisting of homogeneous materials
having uniform thicknesses of the individual slices. Some of these
curves are given in Fig. 3, 4 and 5 in which the abscissa for the

truncation-error curves are the Fourier number (the thermal diffusivitv
times the time span from the beginning of the transient up to the
particular instant for which an error evaluation is desired, divided by
the square of the distance fror the surface to where the error is being
evaluated). This family of curves is correlated by the Biot number (the
film coefficient at the surface of the geometry, times the distance from
the surface down to the point in question, divided by the thermal
conductivity of the material). The measurement of the error itself is
done in terms of the step~function temperature rise in the bounding
fluid at the beginning of the transient. It is of interest to note in
Fig. 3 that when the thiciness of the slice is reduced, which is
proportional to L for the first node, the Fourier number and the Biot
number are both affected such that the spatial-truncation error is
reduced. However, it may be noted also that it is possible in a

Fourier number range from approximately O to 1.0 to reduce the thickness
of a slice and have the spatial-truncation error increase.

With respect to variations in Biot number, one can easily see
that the worst possible case occurs when the film coefficient at the
surface is infinite, and the errors can range as high as 137 of the
temperature rise in the bounding fluid. However, with decreasing values
of the film coefficient, reflected in decreasing values of Biot number,
the spatial-truncation errors are in turn decreased. As a result it is
possible for certain classes of problems, that the spatial-truncation
error will never get above 1 or 2% regardless of the thickness of the
slice.
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FIG. 3. Spatial-Truncation Error for Nodes Adjacent to e Surface.

In like manner, time~-truncation errors can be evaluated using the
curves shown in Fig., 4., Once again, the Fourier number is used as the
abcissa for the curves, the Biot numbers for the family of curves, and
the errors are erpressed on the ordinate as a percentage of the step-
function temperature change in the bounding fluid at the beginning of
the transient. Once again, we see the effect of the Biot number; i.e.,
as the Biot number becomes smaller, the errors become smaller. In a
final evaluation, one sees in Fig. 5 that the errors are accumulative
and that the total error under the worst possible set of circumstances
could be as high as 20% of the step function. One important difference
between the time-truncation-error curves and the spatial-truncation-
error curves should be realized. The time used in the Fourier number
for the time-~truncation error curves is the time interval between the
beginning of the transient and the first evaluation of temperature in
the problem; i.e., the first time step. The time in the Fourier number
for the spatial-~truncation error curves refers to the total time
interval from the beginning of the transient to the time at which an
error evaluation is made, regardless of how many time steps elapsed,
This means that the time~ and spatial-truncation errors may be super~

imposed onlyv for the first time step. It is also important to realize
that the distance, L, in the dimensionless groups of Fourjer and Biot
numbers would be half the thickness of the node slice when considering
the first node adjacent to the surface and, subsequently, would be
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FIG. 4. Time-Truncation Error Versus Fourier Number for the
First Node in Homogeneous Slab.
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three halves the thickness of one node when considering the errors for
the seccend node from the surface, five halves of the node thickness
when dealing with the third node from the surface, etc.

When dealing with problems in which layers of nonhomegeneous
materials are being considered, or in which a ramp function instead
of a step function occurs on the surface, or when a nonflat plate
geometry is encountered, the truncation errors are no lornger exact.
However, in the practical sense, valuable guidance may be obitained
from these curves.

In considering the effect of successive nodes on spatial-truncation
errors going into depth from the surface in a homogeneous flat plate,
the trend is, in all cases, for the greatest truncation error to occur
in the node adjacent to the surface; and with each succeeding node,
the truncation error is reduced (Fig. 6). Generally, this reduction
in spatial-truncation error is quite drastic; by the time the third
or fourth node is reached, the truncation errors are of the order of
magnitude of 1% or less. One can see that time-truncation errors are
rapidly reduced if two or more time steps are utilized to complete the
first time interval (Fig. 7, 8, and 9). Alsoc the time-truncation error
becomes less for successive nodes in depth (Fig. 10).

It is concluded that if the first time step is sized to keep the
time-truncation error within reasonable limits in a homegeneous
geometry, the time~truncation error for the nodes below the first
node will automatically have lower error levels.
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FIG. 6. Spatial-Truncaticn Error for Second Node From
Surface.
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FIG. 10. Time-Truncation Error for Several Nodes.

NUMERICAL ERRORS IN THIN-THICK GECMETRIES

A recurring type of problem of considerable interest is the
transient thermal analysis of a two-layer geometry. The two layers

consist of a thin, highlv conductive layer, such as aluminum, exposed

on one side to a bounding fluid and on the other side to a =hick layer

of low-conducting material acting as an insulator. The questions to
be resolved are What are the numerical errors inherent in such a

geometrical system? and What procedure might be followed to keep the

errors to an acceptable level?

The truncation-error curves were prepared in much the same way
as those presented by Graybeal (Entry 44, Appendix C). However, a

somewhat different scheme was employed to obtain a reference solution.
This

Whereas an analvtical solution was employed directly by Graybeal as
an errorless reference, such a solution was used indirectly here.
indirect reference solution was taken from a tabulation of an

12

—— vt -~

VL MBaay my

P3N,

st

@,

YRS S L wne

Vb

LU TN

vt e,
2 e



R i LIS LIPS g} - PR e

NUC TP 5143

analytical solution to the one~dimenszional conduction problem involving
a two-layer plate,l The tables were mot used directly because the
results listed for each set of paramezers present a limited coverage

of the time-space field, necessitated by a desire to offer solutions for
a large number of combinations of parameters, yet keep the report from
being excessively bulky. To obtain a usable reference solution, a set
of parameters was chesen corresponding to one section of the table

(o = 0.05); a finite-difference sclutdion was prepared using these
parameters and also using very smll AT and #X. This solution was then
compared to the tabulated solutdion at poimrts of correspondence. A
truncation error of less than 0.1¢ (based on the size of the step
change of temperature in the bounding fluid) was found at zach point
checked, and this finite-difference solution was then used us the
standard for evaluating truncation erxor in other finite~difference
approximations employing larger AT ared X. First, spatial-truncation
error only was introduced by increasing AX and holding AT at the
original small value, then evaluating spatial-~truncation error for a
given AX by comparison with the refexrence solution. Then, with AX held
at the same value used in the refererace solution, AT was varied to
give a solution coataining time-truncation error alone.

The problem considered here is one-dimensional conduction in a two-
layer composite slab heated on one face by convection from a fluid which
undergoes a step change of temperatuxe, The £luid and slab are
initially at the same uniform temperature, and the face of the slab not
in contact with the fluid is perfectly insulated, All physical proper-
ties are assumed constant.

Two cases were studied: 1inone, the thickness of the thin layer
next to the fluid was 5% of the total thickness of the slab; in the
other, the thickness of the thin layer was 207%. The physical
properties of this layer correspond xoughly to those of aluminum, and
the properties of the thick lavyer are similar to those of some common
insulating materials:

Properties Thin layer Thick laver
k, BTU/(hr-.ft—oF)olo e s ¢l e v 100 Ool

Py IB/(EE2).iiriein e o 200 20

C, BTU/(Ib="F) ivvurnenrirnn ous 0.25 0.25

ljaval Ordnance Test Station. Temperature Tables. Part 7, Vol. 1

and 2. Two-Layer Plate, One-Space Variable, Linear, by H. N. Browne, Jr.

and C. J. Thorn. China Lake, Calif. , NOTS, 1 March 1960. (NAVORD
Report 5562, Part 7; NOTS TP 2182, Vol. 1 and 2.)
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RESULTS

The spatial-truncation errors for the first node of the first layer

and the first and second node of the second layer for the thin-thick
geometry are plotted in Fig, 1l.

ERACR IN PERCENT OF STEP A‘s

FOURIER NUMBER, &, T2

0.01 0.05 0.10 0.50 1.00 5.00

“ B

-2 /- \
/ \ FIRST NODE,
SECOND LAYER

) / 4 SECOND nan*;\\ ™ \

SECOND LAYER

0] ——
FIRST NODE,
1 FIRST LAYER
#1
10 50 100 500 1,000 5,000
FOURIER NUMBER, G, T/L?
FIG. 11. Spatial-Truncation Error Vs. Fourier Number for
Selected Nodes in Thin-Thick Configurationms.
These curves contain spatial-truncation errors for the worst case
considered: where the thin layer is represented by a single node, and

all nodes are the same size. The maximum spatial~truncation error in
the thin layer is 0.3%, while the maximum at the first node of the
second layer is ~2.3%. This drops to a maximum of -1.0% at the second

node of the second layer.

It may be noted that the errors plotted in Fig. 11 are much smaller
than the errors encountered in the curves describing truncation errors
in homogeneous slabs: for example, a film coefficient of 1,000 and a

thermal conductivity of 25.

In the thip-thick case, approximations of real problems always
results in very small Biot numbers. For example, a 1/8-inch thick
laver of steel could, in the limit, form a single node and under
extreme circumstances, give rise to a Biot number of 0.2 (h - 1,000,
k = 25, L = 0.0625), The spatial-truncation error associated with
these small values of Biot number is less than 1% (Fig. 3).
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To sum up then, the curve in Fig. 11 labeled first node of the
first layer having only a fraction of a percent error certainly fits the
trend discovered in homogeneous slabs. In a similar fashion the curve
labeled first node second layer, the Biot number has a value of 7.5
based upon again a film coefficient of 50 and the thermal conductivity
of 0.1, which represents the insulation involved. Once again, comparing
this with the recults for homogeneous slabs in Fig. 3, one sees that
the homogeneous slab would have spatial-truncation errors of approxi-
mately 107 for this Biot number; whereas in the thin-thick case, the
maximum ervor was under 2 1/2%. This is a logical extension of the
homogeneous material problem because the aluminum layer on the surface
acts as a buffer and tends to protect the insulating layer from the
extreme spatial-truncation errors that would occur if the insulation
were directly exposed to the bounding fluid. With reference to the
third curve in Fig. 11 (that is, the second node of the second laver
curve), its relationship to the f?rst node of the secend layer is
approximately the same as second nodes normally have in homcgeneous
materials, as shown in Fig. 6. Thus, the data in Fig. 11 follows
the same trends as the data for homogeneocus glabs.

The time-truncation errors for the thin-thick ciass of problem are
plotted in Fig. 12, The ordinate in Fig. 12 is the usual error
measured in percent of the step~fuanction temperature change in the
bounding fluid, but the abscissa is the percent of the boundary
temperature step-function change that equals the temperature change in
the first node of either the first or second layer that occurs in the
first time step. The time-truncation errors for a similar case
involving 2 homogeneous slab are also displayed in Fig. 12,

It is surprising to find that the thin-thick layer has somewhat
larger time-truncation errors than the homogeneous slab and at the
present time, no explanation is available. The curves in Fig. 12,
however, provide a very practical guide for those who are concerned
with time-truncation errors because the temperature response of the
first node of either the thin or the thick layer cap be expressed as a
percent of the boundary temperature step-function change. A reasonable
criterion for limiting the time-function error at the beginning of a
transient is to ensure that the temperature change of the first node is
not greater than 207 of the step~function boundary temperature change
during the first time step. At the 20% level or below, all of the time-~
truncation errors are less than 2%.
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RAMP-FUNCTION SPATIAL-TRUNCATION ERRORS

Thus far, only errors for step-funccion boundary temperature
I ' changes have been considered. Since the ramp function is a closer
: approximation to the actual bounding-fluid temperature variations, such
mathematical models of transient heat~transfer situations are more

realistic, and the system response should result in a lower spatial-
truncation error.

=
A i T kA rron Ay, A W R AR 0 A R AL O

\ As a starting poini, two approaches were used to determine the
: true temperature for use as a comparison basis for determining spatiali-
truncation errors. The first approach employs successively smaller
and smaller time steps with smaller and smaller geometrical divisions
in numerical soluticn for a transient one-dimensional homogeneous heat
transfer problem. Thus an asymptotic approach to the true temperature
distribution was obtained. The other approach uses the Laplace
transform method in a classical analytical solution of the one~
n dimensional Fourier transient-conduction equation. Both approaches are
' successful, and a comparison of the results of the successive approxi-

mation method with the results from the analytical method is given in
Table 1.

TABLE 1. Comparisons of Numerical & Analvtical Solutions
for Ramp Functions Boundary Conditions.

These data were generated by a problem having the following
specifications: Semi-infinite solid, 2500°F/sec on bounding
fluid. AX = 0,006 in; AT = 0.0002 sec; h = 106; « = 0.2.

Temperature, °F

4
Time, Node 1 Node 2 Node 3 ;
Sec

Analytic | Numerical] Analvtic | Numerical | Analvtic | Numerical

0.02 37.919 36.787 20.814 20.178 10.658 10.391
0.04 82.373 81.159 54.649 53.798 35.057 34.523
0.06 | 128.111 126.861 92.090 91.140 64.752 64.076
0.08 | 174.516 173.245 | 131.449 130.439 97.400 96.634
0.10 | 221.348 220.348 | 172.049 170.997 | 131.999 131.169
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The Laplace transform approach is summarized below; the complete
derivation is given in Appendix E.

The partial differential equation for a one-dimensional transient
problem is

Since a semi-infinite geometry is under

where A and B are constants. n
stant B mav be found from the boundary

consideration, A = 0. Con
condition.

at “zt
_—:QO,, (1) %
oT 2 ‘
axX i
3
where ]
: 3
é t = temperature 2
§ T = time
x
% The initial conditions are at T = 0, t = 0. From the Laplace transform
g of Eq. 1,
2
5 -f-0. )
dx
§
i . A general solution of this second order differential equation is
G
% T = A exp{y5/c X) + B exp(-vs/a X) (3)

PRERFET

The bounding fluid temperature change is a ramp function (Fig. 13).

T ¥ et

TEMPERATURE, t = (1)
&

-3

TIME, T

FIG. 13. Bounding Fluid Temperature Change.
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At the surxface, X = 0.
& 2D = hien) - k0, M. (4)
If the Laplace transform of Eq. 4 is taken and if %% (0,s) and

T(0,s) are evaluated from Eq. 3 the constant B may be expressed as

ht 1~ exp(-Tls)

f
B = (5)
KTy 1?2670 + h/k)
Thus,
ht_ (exp(-/s/a X) [l - exp(-T 5>]
T = ka { ; 1 } (6)
1 s " (Vs57a + h/k)

The inverse transform of Eq. 6 is

2
T 2k X _ X < <
Vo (X * ‘E) e*p[‘(zvfa’f) ]} 0<T<Ty 7
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Note that since there is a discontinuity at time T3, there are two
solutions: one for T greater than zero, but equal to or less than Ty:
and ancther for T greater than Tj. It may be further noted that at
time greater than Ty, the first portion of the equation is the same as
the equation for time less than Tj; and that the second portion of the
equation is similar to the first portion except T is replaced by

(T- T1). This, in effect, applies a negative slope at time Ty as is
illustr-ted in Fig. 14,
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FIG. 14, Synthesis of Analytical Solution

Figure 14 illustrates the concept of subtracting At, which develops
after T., from fluid temperature which would have developed after T; if

the ramp had continued.
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The effect is that the first portion of Eq. 8 will produce node
temperatures analogous to an extension of the ramp after T} and the
last half of Eq. 8 will produce a At generated in the nodes after Tj.

In similar manner, the analvtical solution for the case of a ramp-
function temperature change in the bounding fluid adjacent to the
surface of an insulated slab was derived. The final eauation for the

insulated slab is
2 at . X
tf 4L2 © [exp(-)zn Lz)-l] sin An cos(,\n f)
t = T T + — E -

1 @ x 2{2% 4 sin 21
n=1 n n n

(9

A complete derivation of Eq. 9 is given in Appendix E.

Computer programs were coded in FORTRAN for both of the ramp-
function analytical solutions, the semi~infinite solid and the insulated
slab., FORTRAN IV listings for these two programs are included in
Appendix A of this report. These analytical solutions were used to
calculate the temperatures for comparison with the temperatures for
equivalent ramp-function problems solved by numerical methods. The
differences between results of these two methods in terms of temperature
were the spatial-truncation errors sought. The FORTRAN IV listing for
the numerical method computer program--coded such that either step-
function temperature rise in the bounding f£fluid or a ramp-function
temperature rise in the he bounding fluid can be specified--is given in
Appendix A. The attempt to make the same type of correlation that was
successful in the step~function-error curve analysis failed, as shown in
Fig. 15. That is, the assumptions that the errors could be correlated
by the overall temperature rise in the fluid and that a further correla-
tion would be available based upon the value of the Biot number is
incorrect; the Biot number does not correlate the spatial-truncation
error for ramp~function boundary conditions. Figure 16 shows that to
correlate various ramp functions for the same Biot number using the
overall temperature rise in the bounding fluid as the basis for percent

error is not successful.

A correlation using the current fluid temperature rise as the basis
for establishing the percent spatial-truncation error causes all the
ramp-function errors to fall on the same curve (Fig. 17). The data
presented in Fig. 17 were obtained from runs using a Zong ramp. A
long ramp is one in which the maximum spatial-truncation error occurs
well before the end of the ramp is reached. Of interest in Fig. 17
is the maximum error of about -9% which occurs at a Fourier number of
about 2.0. These values are to be compared with the ~13% error at a
Fourier number of about 0.9 for the step function boundarv condition.
Maximum error is reduced because of the reduced rate of change at the
model boundary, and the Fourier number is increased due to the increased
time to reach terminal fluid temperatures.
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Using the current fluid temperature approach, an investigation was
made in which the ramp temperature rise in the bounding fluid was
completed before any spatial-truncation errors could develop in the
first node. This situation is termed an ultra-short ramp. The ultra-
short ramp curve is shown in Fig. 18; the dotted line represents the
equivalent spatial-truncation error curve for a step-function
temperature rise in the bsunding fluid. Again, the ramp-function
error curve is slightly delayed compared to the step-function error
curve,

A further study, graphed in Fig. 19, shows the result when the end
of the ramp occurs during the development of the spatial-truncation
error, termed a short ramp. The arrow in Fig. 19 indicates the time of
which the end of the ramp occurs; after the end of the ramp, a typical
step-function curve develops. Thus Fig. 19 is an excellent example of
how the nodal system shifts from a ramp-function error response to a
step-function error response and how the Fourier number for the maximum
error is increased.due %o the ramp-function effect,

In Fig. 20, the arrows again indicate the Fourier number corre-
sponding to the end of the ramp temperature rise in the bounding fluid.
For these curves the end of the ramp occurs shortly after the maximum
spatial truncation error occurs. It may be seen that after the end of
the ramp, the individual runs exhibit small increases in error showing
a residual tendency to respond in a step function fashion.

These combined data on one set of coordinates are shown in Fig. 21,
the dotted line represents the equivalent step-function error curve and
the solid lines represent short~ramp functions and long-ramp functionms.
Of interest are the bumps or departures (dashed lines) visible in the
short-ramp functions. These departures represent a progression of
error increases that occur when the ramp portion of the rise in the
bounding temperature ceases before the maximum spatial-truncation error
occurs. At the end of the ramp, the error rapidly climbs toward the
levels exhibited by a step-function rise in bounding fluid temperature.
In this figure the long-ramp function (a ramp in which the maximum
spatial-truncation error occurs while the ramp is still in progress)
properly defines the error expressed as percent of current temperature
rise in the bounding fluid. For low Biot numbers, it makes little
practical difference whether or not a ramp function or a step function
occurs in the bounding fluid because spatial-truncation errors for low
Biot numbers are small in either case. As an example, the maximum
possible spatial-truncation error is 2.2% for a Biot number of 0.5,

Whether or not a given problem has a short- or a lo\g-ramp bounding
fluid temperature rise is determined by the Fourier number (aT/L2).
Since the maximum error for all cases falls between Fourier numbers of
0.9 and 2.0, node thicknesses can be chosen sufficiently small to force
the Fourier number to a value such that the criteria for a long
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FIG. 21, Spatial-Truncation Error Vs. Fourier Number.

ramp exists. Conversely, by choosing a sufficiently large value for
node thicknesses, the Fourier number will be less than 0.1 and the
conditions of the short-ramp function can be produced.

As previously noted, the analytical solution for the ramp-function
problem shows that the temperatures after the end of the ramp can be
calculated by subtracting a At equal to the temperature rise from time
zero for a time increment equal to the elapsed time after the end of the
ramp from the temperature generated if the ramp were to continue
indefinitely. To determine the temperatures after Ty (the time
representing the end of the ramp temperature rise of the bounding fluid),
successive temperature responses are generated as if the ramp were
continuing indefinitely. However, to correct for the fact that the
ramp did cease at T7, the analytical solution subtracts the values of a
temperature response generated from time zero by using a time increment
equal to the actual time increment after the end of the ramp.

if this approach is valid in the analytical solution, it should be
valid in the equivalent numerical solution. Starting with the numerical
temperature calculation as a function of time for a given ramp-function
problem, extend the generation of nodal temperatures for an indefinitely
long ramp by merely .reversing the subtraction procedure outlined in the
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analytical solution. That is, add the temperature rise found for a time
increment after time zero to the temperature for a time equal to the
time at the end of the ramp plus the time increment. Thus an extension
of a ramp is synthesized by calculating the extensions from the single
ramp run. This extended run was checked bv an independent numerical

run for the exztended ramp and the two results were identical. Thus with
a single computer run, ramps of any length can be synthesized.

A further examination of the analytjical solution reveals that the
final fluid temperature divided by the time length of the ramp is the
controlling factor in the calculation of nodal temperatures. In other
words, the crucial variable in determining node temperatures isg the
time slope of the temperature rise in the bounding fluid. Thus to
calculate temperature responses for other time slopes, the ratio of
the new slope to the old slcpe multiplied by the temperature rise of
each node in the system would provide the correct node temperature rises
for the new slope. For example, if an analytical solution for all the
node temperatures caused by a fluid temperature rise of 2500 degrees
per second has been calculated, node temperatures for a slope of 250
degrees per second may be determined by multiplying the node temperaz-
ture rises from the 2500-degree-per-~second results 0.1. Thus for any
given problem, the node temperatures for the analytical solution may be
found by multiplying each node temperature rise bv the ratic of the new
slope to the cld slope,

It- seemed reasonable that if temperature responses in the nodes
could be synthesized for the analytical solutions by multiplying
temperature responses by ratios of ramp slopes, then a similar
synthesis method should prove valid for the numerical solution. Thus
a number of runs for the same geometrical problem were made such that
the only variable was the ramp slope. The length of the ramp in each
case was held constant. As was expected the numerical results from this
series of runs were all exactly proportional to the ratio of ramp slopes
of temperature in the bounding fluid.

By combining these two separate synthesis methods, it is now
possible for a one-dimensional equal-node geometry and given material
properties to synthesize from a single numerical run what the node
numerical temperature responses will be for either a longer or shorter
ramp time and for any variation in ramp slope.

It may be noted that regardless of the ramp slope, the basic error
is the same (Fig. 21). Whether or not the ramp is 25 or 2500 degrees
per second, the percent error is a function of Fourier number only. It
should be remembered, however, that the percentage error listed in Fig.
21 is a percentage of the current fluid temperature. Therefore, the
absolute error in the 2500-degree-per-second ramp will be one hundred
times the absolute value of the error in the 25-degrees-per-second
ramp.
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DELTA-FIRST-DERIVATIVE CORRELATION
WITH SPATIAL-TRUNCATION ERROR

The possibility of establishing a correlation between the factors
causing a spatial-truncation error and the error itself is of interest.
The use of such a correlation would allow the computer to make a
numerical calculation of eitner the second derivative or a change in
the first derivative to determine the spatial-truncation error. This

approach might be useful in practical, multilayer, three-dimensional
problems.

It was first believed that an evaluation of the second derivative
would be fruitful. Upon making some calculations of the second
derivative during the early stages of a transient, it was realized that
the second derivative was quite sensitive to the choice of the thickness
of the individual nodes. In other words, as an increasingly thicker
#X is specified, the nodes become increasingly less responsive to the
input of energy, and the second derivative for the same transient has
progressively smaller numerical values as AX is increased.

It was at this point that the decision was made to see if a
difference in the first derivatives might be less sensitive to the
effect of increasing AX. Calculations determining the magnitude of the
first derivatives for the first node and the second node seemed to
support the assumption that the change in first derivatives might be
considerably less sensitive to node thickness than the numerical second
derivative under the same conditions. The calculation of the first
derivative of the surface node is made by (1) taking the temperature of
the surface, (2) subtracting the temperature of the first node, and
(3) dividing this difference by the distance from the surface to the
center of the first node. The first derivative of the second node is
made by (1) taking the temperature of the first node and (2) subtracting
the temperature of the second node, and (3) then dividing the result
by the distance between the first and second node centers. The delta-
first-derivative is the difference between the two first derivatives.

A plot of this delta-first-derivative as a function of Fourier number is
shown in Fig. 22. The delta-first-derivative starts as a large value
for time zero ars progressivelv reduces to smaller values as time
increases. Furl:ur thought suggested that the spatial-truncation
error-response curve shape, i.e., a maximum error around a Fourier
nunber of 1, could be developed for the delta-first-derivative data.
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The absolute values of the temperatures during the early portions of
the transient are quite small, Thus, the effect of a large change

in delta-first-derivatives would be relatively small when multiplied by
the small temperature rise. To compensate for the large delta~first-
derivatives and for the small temperature rises in the early portion
of the transient, these two factors were multiplied together to form a
correlation number. Figure 23 shows the result of plotting this
correlation number versus the Fourier number. For comparison purposes
the spatial-truncation error expressed as a percentage of the step
function in the bounding fluid is plotted as a dotted line. The
Fourier number, at which a maximum occurred in the correlation number,

coincides almost exactly with the maximum Fourier number for the
spatial-truncation error curve.

Unfortunately, at the present time, there is not a good correlation
in the values of tha correlation number with respect to the percentage
values of the spatial-truncation error curve. Presumably, this short-
coming of the present correlation could be overcome in a practical
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computer program wherein the corzelation numbers could be generated
throughout the transient. After the computer had finished calculating
the entire transient, a subfoutine could cause the computer to go back
and match the proportional correlation number ecurve with a spatial~
truncation error curve, and to print appropriate temperature corrections
at the varicus time steps. This zppears &b be a fruitful area for
further work which could result in a generalized errsr treatment.
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PROGRAMMED ERROR PRINTOUT AND OPTIMIZATION

ERROR PRINTOUT

The ONE-D program contains a section that will compute the spatial-~
and time-truncation errors. Sufficient data have not been collected at
this time to allow a similar error analysis for multilayer slabs. Some
data are presented in Fig. 11 and 12,

Since it would take an infinite number of error curves similar
to those in Fig., 3 and 4 to cover all posaible nodal subdivisions
and time increments, the error analysis can only be approximate.

Data from the error curves for Biot numbers of «, 10, 3, 1 and
0.5 were used in a Chebyshev-polynomial curve fitting program that
converted the Chebyshev series to its equivalent power series. The
power series is of the form,

j=m

Y aEA jxj
j=o0

A 10~degree polynomial was used to fit the spatial error curves and a
6-degree polynomial for the time-~truncation error curves. The
coefficients for the power series are included with the ONE-D program,
and are listed in Appendix A.

The power series are used to calculate the spatial-truncation error
for a Fourier number between 0.25 and 7.0 except for Biot number of 0.5,
where the Fourier number range is 0.75 through 7.0. For Fourier numbers
less than 0.25 or 0.75, which ever the case may be, a value of 2.5% for
r the spatial error is printed. For Fourier numbers greater than 7.0, a
b value of -1.3% for the spatial error is printed.

In the case of the time-truncation error, the power series are used
for Fourier numbers between 0.0 and 10.0, For Fourier numbers greater
than 10.0, the Fourier number is printed along with a suggestion that
the time increment {(DTAU) be reduced.
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The error program tests the Biot number against the Biot numbers
for the error curves used. Any Biot number falling between the
established numbers is replaced by the next higher number, and the
error is calculated on that basis.

The error printout routine produces an error printout at each
time step and provides an option for the user to apply the error print-
cut to ramp functions. The spatial-truncation errors in ramp-function
temperature responses in bounding fluids have been incorporated in the
error printout. The base error curve for the long ramp has been
established in terms of the Chebyshev series as a function of Fourier
number and is stored in the subroutine for error printout. Thus in
ramp~function cases where a long ramp is encountered, the user will
receive a printout of the number of degrees Fahrenheit due to the
spatial=-truncation error in the first node. For ramps having lengths
shorter than the long ramp, that is, for all ramps having Fourier
numbers of less than five at the end of the ramp, the program is so
devised that up to the end cf the ramp, the program will print errors
from the base curve., After the end of the ramp, the program will
automatically shift over to the spatial~-truncation error curve forming
the envelope for the post-ramp deviations, as seen in Fig. 21.

A FORTRAN listing of the computer program for error printout is
included in Appendix A.

AUTOMATIC TIME-STEP GENERATOR

Quite often the user of a transient heat-transfer computer program
does not have an accurate idea of a time step to use to minimize time~
truncation errors at the beginning of transient. In addition, the user
may not know how many time steps to specify to completely cover the
transient. In some cases, the user can over specify the number of time
steps to be used and waste computer time by calling for printouts of
temperatures after the transient has been completed; or conversely, and
even worse, the user can specify only a fraction of the time steps
necessary to ccmplete the transient and thus be forced to go back and
rerun the problem, with the resulting increased expense and delay before
obtaining the results. Thus, if an automatic time-step generator were
available that would keep the time-truncation errors within pre-
determined limits and would cause the program to cease generating
temperature printouts when the transient had completed a predetermined
level of response, a considerable savings in time and improvement of
accuracy could result. To this end, an automatic time-step generator
has heen developed. Briefly, the basis for this routine is that the
machine generates the first time step based upon the level of accuracy
the user desires, as reflected in the Fourier number. Once the first
time step has thus been determined, the program can then proceed at
periodic time intervals to test each of three nodes specified: First,

32

“
- st o
S0P A2 A i L A BT GRS T B R PG S B

R I WOy Y WAL P IR VWP OI VURSRVE NP SR YW SR LSO 2 < N

B SR A9 80 B LN e AR AT VO D nti P AR st @ SR 21 W R 00 WP 02 Ao, s w5 ARAAY AT iz b BN AN PR i e

B AR A 2RI R



L e AT e 3+ N kKA RIS % NN 1o B e e+ o, g g fe e Ty Twntn s % e ae < L e o -

NWC TP 5143

a node adjacent to the surface; second, a node at an intermediate level,
and third, a node at the deepest portion of the geometry. The test that
the program runs is to determine the temperature change for each of the
three nodes during the time step. If this number of degrees is less
than 0.5% of the overall temperature rise in the bounding fluid for the
transient, the program will automatically double the length of time for
the succeeding time step. If the user so desires, the percentage that
is used can be changed. The final contrecl of the program will permit
the user to specify the terminal temperature in any node desired.
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ONE-D ACCELERATION OF THREE-DIMENSIONAL
TRANSIENT PROBLEMS

The more complex three-dimensional heat-transfer problems involv-
ing very slow convergence pose the problems of excessive machire time
and possible inaccuracies due to the convergence characteristics of
the iterative processes used., These iterative processes depend upon
some prescribed limit for termination, and the value of this iteration
limit for maximizing accuracy and for minimizing machine time is not
known a priori. To reduce machine time and to have less dependence
upon the sensitivity of the iteration limit, a chain of nodes could be
established in a psuedo ONE-D pattern extending from the surface of the
three-dimensional geometry to the deepest portion of the geometry.
These chains of nodes could be solved directly and could establish a
temperature field as the beginning point for a computer program for
three-dimensional thermal response, THT-B. This iterative process
would then be reduced to essentially lateral heat transfer and, in many
cases, be capable of convergence to the final solution within a few
iterations. Preliminary work on this approach consisted of establishing
a very slowly converging two-dimensional model. Temperatures for all
nodes are evaluated at the beginning of each time step by the separate
application of the one-dimensional TRIDAG technique to two columns of
nodes. The entire temperature field of the model is then solved by
using the Gauss-Seidel method. The results are summarized in Table 2,
These preliminary results indicate that it may be profitable, from the
dual standpoint of accuracy and reduction in machine time, to establish
a subroutine wherein the user may elect in specific three-dimensional
problems to establish one-dimensional chains of nodes for which a
tridiagonal solution would automatically be used at the beginning of

each time step to establish the approximate temperature fieid before an
iterative technique is utilized.
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TABLE 2. Comparison of Results of the THT~B Computer Program
- With Those of the THT-B and the ONE-D Programs Combined.
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SUMMARY AND CONCLUSIONS

To summarize the work described in this report, all of the
component projects were directed (1) to improve the accuracy of the
transient numberical solutions currently available, and (2) to reduce

the machine time necessary for obtaining accurate transient-temperature
histories.

This study, consisting of various projects devcted to different
aspects of numerical solutions of transient heat-transfer problems, has
arrived at an evaluation of spatial- and time-truncation errors for
homogeneous slabs using uniform node spacing and being exposeu to
bounding fluids that have either a step-function or a ramp~function
change in temperature. The errors involved in thin-thick geometries
of a thin layer of highly conductive material in contact with a thick
layer of insulating matérial are presented. With the information
provided by the curves, a user can ensure that the accuracy of his
transient temperature analysis and design will fall within any pre-
determined level of accuracy. Whenever possible, the curves reflect
the worst possible case; therefore, in practical problems where
conditions not as severe as the study conditions occur, a conservative
evaluation of the errors will automatically result. With respect to the
speeding-up of the solutions, particularly with regard to computer time
used, several acceleration techniques are presented with some evaluation
as to their effectiveness. 1In addition, a direct solution applicable
to one-dimensional problems is provided that reduces computer solution
tim2 when compared to the usual iterative solutions. As a fringe
benefit of this study, a number of the small computer programs used in
the error study, acceleration and other portions of the study, have been
combined into one generalized transient heat-transfer one~dimensional
program titled, ONE-D. This generalized program should prove to be of
considerable help to the heat-transfer transient designer, for a
number of options are available,

By examining the error response of ramp functions, the user now has
a mathematical model that is considerably closer to practical problems
than is the step-function model previously used. The error printout
response both to the step function and to the ramp function at the
choice of the user. The principle of utilizing the ONE-D solution for
improving both the accuracy and the machine time aspects of slowly
converging three-dimensional programs will be beneficial to the user.
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In like manner, the automatic time~step generator will also afford the
user convenience, accuracy and reduced machine time. The correlation
of the delta-first-derivative with spatial-truncation error may prove
to be the basis for a generalized error treatment in which the mathe-
matical model will be the problem reduced to numerical terms instead
of modeling real problems with the one-dimensional homogeneous equal
AX geometry.

In conclusion, the user is now in a position (1) to define much
more accurately the areas of rezl transient heat-transfer problems in
which error may be considerable; (2) to change his input data to make
sure that- his results are reascnably accurate; and (3) to make
maximum effective use of the transient heat-transfer programs available
utilizing the techniques outlined here such as the ONE-D acceleration
and the automatic time-step generator.
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Section 1

GENERAL HEAT-TRANSFER PROGRAM “ONE-D” AS APPLIED
TO STEP-FUNCTION BOUNDARY CONDITIONS

A number of specialized small computer programs were developed in
the course of this study to investigate various aspects of the step~
function boundary conditions. These small programs, e.g., error
printout, iteration-acceleration method, direct solutions, spatial-
and time-truncation error, and thin-thick geometries, were combined
into a single computer program called "ONE-D", coded in FORTRAN for
the IBM 1620 computer.

This program is capable of handling a one-dimensional problem of
fifty nodes; however, the number of nodes may be increased merely by
changing the DIMENSION statement. The equations in the program are set
up such that one surface of the slab is exposed to a fluid while the
ocher surface of the slab is insulated.

The program contains a number of options that may be called by
the user. As an example, the program can be used for a composite slab,
rnade up of three materials, as well as for a homogeneous slab. The
boundary conditions of fluid temperature distribution of the slab can
be included in the input or can be considered constant. The solution
of the equations in the program can be accomplished in a number of ways
such as Gauss-Seidel, accelerated Gauss-Seidel, or TRIDAG, a direct
solution for tridiagonal matrices.

CONTROL VARIABLES
The following variable names are used for the various options:
KODE The variable name KODE is used to determine if the initial
temperature of the body is constant or variable. If KODE

is 1, the initial temperature is constant. If KODE is not 1,
then the initial temperature must be specified for each node.
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KODEL The variable name KODEl is used to determine if the fluid
temperature and film coefficient are constant or variable.
If KODEl 1is 1, the fluid temperature and film coefficient
are constant. If KODEl is not 1, then the fluid temperature
and film coefficient for 21 values of time must be specified
in the input.

SEL1 The variable name SELl is used to determine if esquations are
solved by an iterative method or by Tridag. If SEL1 is 1,
the solution is iterative. If SELLl is not 1, then Tridag
is used.

SEL2 The variable name SEL2 is used to determine the type if
iterative solution to be used. If SEL2 is 1, then regular
Gauss-Seidel iteration is used. If SEL2 is not 1, then
accelerated Gauss—-Seidel is used.

A comparison of NODES1 and NODES determines whether the slab is
homogeneous or multilayer. If NODES1l equals NODES, the slab is homo-
geneous, and the properties only of the first layer are read. Node-
spacing within a layer must be equal, but the node-spacing of the
different layers need not be the same. This allows for small node-
spacing in thin layers and larger node~spacing in thick layers.

Provisions have been made to allow for contact resistance between
layers or between nodes. The variable ZH is used for this purpose.
ZH1 is used as the conductance between the nodes of the three layers.
ZH2 is the conductance between layer 1 and layer 2, while ZH3 is the
conductance between layer 2 and layer 3.

The other variable names are defined at the beginning of the
program listing.

Two matrix methods, iterative and tridiagonal are used in this
study to solve the equations formed by the heat balance for each node
in the slab.

The program contains two sections that use the iterative method.
Section 1 uses regular Gauss—-Seidel iteration to solve the set of
simultaneous equations. Section 2 uses Gauss-Seidel iteration with
either or both acceleration techniques, Wegstein and constant
acceleration factor. The respective sections in the program listing
are noted with comment cards.

The Wegstein technique causes the programming to be more complex
than either TRIDAG or regular Gauss-Seidel since the temperatures for
all nodes for the latest three iterations must be stored. In the
Wegstein technique the following general equations are used:
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™ =14 (@™ - 1Y)
where
Eﬁ = the accelerated temperature for the nth iteration .of any
node
™ = the temperature for the nth iteration

n-~ . .
T 1. the temperature for the previous iteration, and

™ Tn—l
A = n-1 n-2
T -~ T
- A
Q T A-1

Values of Q are negative since values of A are restricted to O<A<l to
insure only positive values of acceleration. As A approaches 1, the
value of Q can become quite large. Therefore Q is restricted to a

maximum value of 100.

The Wegstein technique is applied to each node, so individual
values of A and Q must be calculated. The alternative is to apply a
constant acceleration factor to all nodes; this is done by using the
variable FACTOR. The variable FACTOR is used in the same manner as is
Q; therefore, it should be negative. Note that if FACTOR is zero,
there is no acceleration; thus regular Gauss-Seidel results. The
regular Gauss—-Seidel section of the ONE-D program could have been
eliminated and the FACTOR routine substituted by setting FACTOR = O,
but it was more convenient to include it in the program when accelera-

tion study runs were made.

In the program a constant acceleration factor, FACTOR, is applied
to all nodes until ISTOF is reached. NOGS iterations of Gauss-Seidel
are made until IAPPLY is reached; at which iteration, the Wegstein
technique is applied. The Wegstein technique is repeated after the

interval INTER.

If the Wegstein technique is applied too soon or too often, the
solution may be slowed down. Past experience has shown that the
initial application should be made on about the iteration which is
proportionate in number to the depth of the deepest node from the
boundary.
of the Wegstein technique should be on about the tenth iteration. The
criterion suggested for frequency of application of the technique is
given as about one-half the number of iterations used for the initial

application of acceleration.

42
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By using proper values of the variables FACTOR, ISTOP, NOGS, and
INTER, it is possible to reduce the number of iterations comparad to
Gauss-Seidel by as much as 63%. Obviously there is a large number of
combinations possible, some of ‘which are undesirable. If a constant
acceleration factor is to be used without Wegstein acceleration, the
literature indicates that FACTOR should be between 0 and -1, possibly
~0.5 or ~0.6. When used with Wegstein, FACTOR may be a larger numerical
number but still negative. From 2 series of ‘twelve computer reas made
on the sample 20-ncde problem, it was found that values from -11.4 to
-1.5 for FACTOR gave the minimum number of iterations.

Results of the 20-node problem with constant initial temperature,
constant fluid temperature, and film coefficient subjected to a step-
change in the boundary fluid are as follows:

Gauss—-Seidel Iteration Technique

a b c d Number of

FACTOR ISTOP NOGS INTER iterations
0 60 oo ce 46
-1 60 oo cos 35
-1 3 0 3 42
-1 5 0 5 24
-1 6 0 3 40
-1 10 3 6 24
~1.3 10 3 6 17
~1.4 10 3 6 17
-1.5 10 3 6 17
-1.5 10 0 6 20
-1.6 10 3 6 33
0 10 0 6 27
-0.5 50 .en cee 31

8scceleration factor for all nodes in system.
bNumber of iterations that FACTOR is to be applied.

c . . . .
Number of iterations between application of unaccelerated
Gauss-Seidel iterations and Wegstein accelerations.

dNumber of Gauss-Seidel iterations between applications of
Wegstein accelerations.

The TRIDAG solution needs no special instructions or data cards.
The solution is rapid and contains no convergence errors but is limited
to linear equationms.
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ARRANGEMENT OF INPUT

Data Card 1:

FORMAT (514, 5F10.3), NODES1, NODES2, NODES, KODE, KODEL,
SEL1, SEL2, DTAU, ZNUM, ZLIM. This card must be used for

all options.,

Data Card 2:

s LRSI
a0, Ay SN . . [ 0
mm@&&amwmmd&mﬁﬁm@~ et

FORMAT (F10.0, 315), FACTOR, ISTOP, NOGS, INTER. This card
is read only if accelerated Gauss-Seidel is to be used (SEL2 = 1),

%
B

Data Card 3:
FORMAT (4F10.3, E10.3), DELX1, ZK1l, ZRHO1l, 2Cl, ZHl1. This
card must be used for all opticns.

Data Card 4:

FORMAT (4F10.3, E10.3), DELX2, ZK2, ZRH02, 2C2, ZH2. This
card is read if slab is made up of twd or three layers (NODES7,

NODES1).
Data Card 5:

FORMAT (4F10.3, E10.3), DELX3, 2ZK3, ZRHO3, ZC3, ZH3, This

card is read if slab is made up of three layers (NODES7, NODES2).
Data Card 6-8:

FORMAT (8F10.3), TS. These cards are used for reading variable

fluid temperature (KODELl = 1). Twenty-one values of TS are
read. These values are temperatures of the fluid for 20 equal

time steps covering the time range for the transient.

Data Card 9-11:

FORMAT (8F10.3), HFVAR. These cards are used for reading
variable film coefficient (KODEl = 1). Twenty-one values of
HFVAR are read. These values are film coefficients for 20 equal
time steps covering the time range for the transient.

Data Card 12:

FORMAT (2F10.3) TC, HFC. This card is read if the fluid
temperature and the film coefficient are comstant (KODEl = 1).
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Data Card 13-19:

FORMAT (8F10.3), TPR. These cards are used to read the
nodal temperaturés if the slab has an- initial temperature
distribution (KODE = 1). The number of data cards is
dependent on the number of nodes in the system with a
maximum of 50 nodes:

Data Card 20:
FORMAT (F10.3) TAU. This card is read to indicate time for
variable initial temperature distribution (KODE = 1).

Data Card 21:

FORMAT (F10.3) TIN. This card is read when slab has a
constant initial temperature (KODE = 1).

Data Card 22:

FORMAT (15), ITERS. This card is read when the problem is
solved by an iterative methed (SEL1 = 1). This puts an
upper limil on the number of iterations allowed to converge.

Data Card 23-47:

These cards are supplied with the program. Their purpose is
to supply the coefficients of the power series that describe
the spatial and time truncation errer curves. These cards are

read only if the slab is homogeneous (NODES1 = NODES) and for
the first time step (TAU = DTAU).
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ii 7 ONE-DIMENSIONAL HEAT TRANSFER -PROGRAN, ONE-D, CODED BY VAN TASSEL
AND STANLEY

AR,BR,CR,DR » COEFFICIENT ARRAYS "CONTAINING THE SUB-DIAGONAL, DIA- ;
GONAL, SUPER-DIAGONAL, AND RIGHT HAND ELEMENTS OF |
) THE TRIDIAGONAL SYSTEM :
BIOT = BIOT HUMBER
COEFF = COEFFICIENTS OF POWER SERIES USED IN ERROR ANALYSIS
DELX = SPATIAL INCREMENT, INCHES
DTAU = TIME STEP, SECONDS . .
FACTOR = CONSTANT GVER RELAXATION FACTOR(ZERO FOR REGULAR GAUSS- !
SEIDELY. i
FO = FOURIER NUMBER f
HFC = CONSTANT FI{LM COEFFICIENT, BTU/HR-SQ FT-F
HFILM = FILM COEFFICIENT AT SPECIFIC TIME UNDER COMSIDERATION, .
BTU/HR-SQ FT-F X
HFVAR = TIME VARIABLE FILM COEFFICIENT, BTU/HR-SQ FT-F
INTER » NUMBER OF REGULAR GAUSS-SEIDEL ITERATIONS BETHEEN SUCCES-
SIVE APPLICATIONS OF THME WEGSTEIN ACCELERATION: ’
ISTOP = NUMBER OF ITERATIONS THAT THE CONSTANT OVER RELAXATION ;
FACTOR IS APPLIED.
ITERS = ALLOWABLE NUMBER OF ITERATIONS i
KSWPS = NUMBER OF ITERATIONS PER TINE STEP i
NODES! = NUMBER OF NGDES IN FIRST LAYER :
'NODES2 = NUMBER OF NODES IN SECOND LAYER
NODES = TOTAL NUMBER OF NODES IN THE SYSTEM
NOSS = NUMBER OF REGULAR GAUSS-SEIDEL ITERATIONS APPLIED BEFORE
WEGSTEIN ACCELERATION IS APPLIED.
TAU = TIME, SECONDS
T = TEMPERATURE OF NODE AT BEGINNING OF ITERATION, F
TC = CONSTANT FLUID TEMPERATURE, F
TF s FLUID TEMPERATURE AT SPECIFIC TIME UNDER CONSIDERATION, F
TIN = CONSTANT INITIAL SLAB TEMPERATURE, F
TNEW * TEMPERATURE OF NODE AT END OF [TERATION OR TIME STEP, F
TPR » TEMPERATURE OF NODE AT PREVIOUS TIME STEP, F
TS = TIME VARIABLE FLUID TEMPERATURE, F
ZC = SPECIFIC HEAT BTU/LBM-F
ZH = CONDUCTANCE BETWEEN NODES,TO ALLOW FOR CONTACT RESISTANCE
ZK = THERMAL CONDUCTIVITY, BTU/HR-FT-T
ZRHO = DENSITY, LBM/CU.FT.,
ZLIN = ITERATION LIMIT
INUM = NUMBER OF TIME STEPS DESIRED

o i ca o
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DIMENSION TPRI(S0),T150),TNEN(50),TT(50,8),FT(S50,3),TOLD(S0,31,
1 €(50),D(50),AR(501,BRI50),CR(50),DR(S0),BETA(S0),GAMMA(50),ZK(50
k 2),2C150) ,2ZRHO1561 ,DELX(501,2ZH(50),TS(21) ,HFVAR(21) ,COEFF (5,11}
k: 10 FORMAT(514,5F10.2)
: 20 FORMAT(IH 11X, THFILM H=,F10.2,7X,1{HBOUND TEMPs=,F8.2,2H F)
30 FORMAT (8Fi0.3)

i 40 FOR'ATI2F10.3) |
~ 50 FORMAT(1H0,2X,4HNODE, | 1X,THDELTA X, 14X, [HK, 16X, THDENSITY, 15X, IKC,

AT
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116X, 2HHC !
$0 FORMAT(IH o 1X,13,5X,F14.3,5%,F14,3,5%,F14,3,5%,F14.3,9%X,E10.3)
79 FORMATUIH , 11X, 4HTIME . F12,3,10H SECONDS ,7,11X, 1 IHITERATIONSs,13)
60 FORMAT (IH BF11.8,8X.,8F1).3)
90 FORMAT(IH ,18X,18,20X,F10,5)
‘100 FORMAT! IHG,24HITERATION. LINIT EXCEEDED) o
116 FORMAT(§HO4 11X, I4HINITIAL TIMEz ,F10.0,10H SECONDS)
120 .-FORMAT( [HO, T8HF ILM COEFFICIENT,BEGINNING AT TIME ZERO,WITH TIME IN
TCREMENT=TOTAL TIME SPAN/20)
130 FORMAT(iHO,73HFLUID TEMP.,BEGINNING AT TIME ZERO,WITH TIME INCREME
INT=TOTAL TIME SPAN/207
140 FORMAT(Fi0, 0,315)
150 FORMATUIS)
160- FORMAT(8E10.8)
170 FORMATISEL5.,8)
180 FORMAT(4F10,3,E10.83)
190 FORMAT(.1HO,4SHMAXIMUK SPAT!AL TRUNCATION ERROR 1S 2.5 PER CENT)
200 FORMAT{1HO,37HMAXINUM SPATIAL TRUNCATION ERROR IS -,F6.1,8H PER CE
T
210 FORMATUIHO,?7HTIME STEP 1S TOO BIG, SUGGEST USING SMALLER FOURIER
UMBER. FOURIER NUMBER [S,F10.,2)
220 FORMAT(1HO,34HMAXINUM TIME TRUNCATION ERROR IS -,F8.1,9H PER CENT)
230 FORMAT(IHO,49HMAXIMUM SPATIAL TRUNCATION ERROR IS -1.8 PER CENT)
240 FORMAT(IH , 11X, 11HNODE NUMBER, 18X, | 7THTEMPERATURE DEG F)
250 FORMATUIHO,19HFILK COEFF.2CONST,.*,F10.3)
260 FORMAT{1HO, ISHFLUID TEMP.sCONST.*,F10.3)
270 FORMAT(IHO, I 1X,4HTIME,F12.8,10H SECONDS)
280 FORMAT(FIi0.3)
READ i0,NODES! ,NODES2,NODES,KODE ,KODE1,SEL | ,SEL2,DTAU,ZNUN,ZLIN
IF(SEL2-1.1242,2483,242
IF SEL2 IS 1, SOLUTION BY ORDINARY GAUSS-SEIDEL, IF NOT, SOLUTION
BY ACCELERATED GAUSS-SEIDEL,FACTOR,!STOP,NOGS,AND INTER MUST BE
READ,
242 READ 140,FACTOR, ISTOP,NOGS, INTER
243 PRINT S0
READ PROPERTIES OF HATERIALS, MAXIMUM OF THREE MATERIALS
READ 180,DELX!,ZK!,ZRHOI,ZC1,ZHI
IF (NODES|-NODES)231,232,46
DETERMINE IF HOMOGEWEOUS MATERIAL, [F NODESIsNODES -- HOMOGENEOUS.
231 READ 180,DELX2,ZK2,ZRHO2,2C2,ZH2
IF (NODES2-NODES)2833,232,46
233 READ 180,DELXS3,2K3,ZRHO3,2C3,ZH3
SET PROPERTIES OF EACH NODE IN EACH LAYER
232 DO 93 N=1I,NODES
DELX{N) =DELX|
ZKIN) s ZK!
ZRHOIN) sZRHO1
ZC(N)sZCI
93 ZH(N)sZHI
IF INODES| -NODES 1234.236,4¢
234 ZHINODES1)22H2
1 *NODES!{ + 1
DO 102 N=1,NODES2
DELX(N)=DELX2
ZK(N)=2ZK2
ZRHO(N) sZRHO2

Z
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3 ; 2C(Ny=2C2
- 102 ZHIN) =ZHI
IF INODES2-NODES) 235,236,458
3 235 ZHINODES2)»ZHA-
) 1 =NODES2+1
E DO 103 N=!,NODES
DELX(N)sDELX3
- ZK(N)=ZK3
- 3 ZRHO(H)-*ZRHO3
y: ZCIN})=Z2C23
103 ZH(N)=ZH|
3 236 DO 4 N=|,NODES
& CIN12300,+ZCIN)«ZRHO(NJ *DELX(N)/DTAU
’ 4 PRINT 60,H.DELX(N),ZK(N) ,ZRHO(N) ,ZC(N},ZH(N)
IF{KODEL~1)237,238,237
[F KODE! IS I, THE FLUID TEMPERATURE AND FILM COEFFICIENT ARE CON-

STANT. IF KODE IS NOT |, VARIABLE FLUID TEMPERATURES -ANR FILM
COEFFICIENTS ARE READ.

,
!
!

QOO

READ AND PRINT VARIABLE FLUID TEMPERATURE AND FILM COEFFICIENT
237 READ 80,(TS(1),1s1,21)
. PRINT 130
k= PRINT 80,(TSt1),1%1;21)
3 READ 30, (HFVAR(1),121,21)
‘ : PRINT 120
PRINT 8¢, (HFVARt(I,1s1,21)
- GO T0 24!
238 READ 40,TC HFC
DO 233 1=},21
E TS(11=2TC
239 HFVAR(!) sHFC
241 NP*NODES-1

1 DO 5 Ns!,NP

. 5 DIN) =1, /IDELXINI /124, ¢ZKINI ) sDELXIN® 1)/ (24, ¢ZK(No 1)1 o1, /ZHIND)

1 IF(KOBE-1)1,3,1

3 ¢ IF KODE 1S i, ALL NODES ARE SAME TEMPERATURE, IF KODE IS NOT EQUAL
¥ ¢ TO i NODAL TEMPERATURES ARE READ IN.

| DO 2 N=I,NODES
k. READ 80,TPRIN)
E PRINT 80,TPRIN)
3 2 TIN)«TPRIN)
READ 280, TAU
PRINT 110,TAU
60 f( 83
3 READ 280,TIN
DO 7 N=1,MNODES
TPRIN! * TIN
7 TINIsTPR(N)
TAU20,0
83 IF(SELI-1,)85,86,85
¢ IF SELI IS 1, THE SOLUTION IS BY EITHER GAUSS-SEIDEL Ok BY ACCEL-
¢ ERATED GAUSS-SEIDEL AND THE MAXiMUM ALLOWABLE NUMBER OF ITERATIONS
¢ MUST BE READ. IF SELI IS NOT 1, SOLUTION 1S BY TRIDAG.
86 READ 150, 1TERS
€ TAUsTAU*DTAU
KSKPS=0
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KOUNT+0
Ja

SK=1:eTAUS20,/(ZNUMsDTAU)

KeSK

RKs=K .

LF (TAU-ZNUNSDTAU) 254,265, 46

DETERMINE FILM-COEFFICIENT AND FLUID TEMPERATURE FOR TIME UNDER
CONS IDERATION.

TFaTS(K) *(TS1Ke 1 1~TSIK} ) o (SK-RK)

HF ILMsHFVAR(K) ¢ (HFVAR(K® | ) <HFVAR(K ) ¢ (SK=RK)

GO 70 256

TFaTS(K)

HF ILM=HF VAR (K)

As 1. 2001 /HFILM) oDELXE11/124, 02K( 1)}

PRINT 20,HFILM,TF

IF(SEL2-1,161,8,61

REGULAR GAUSS-SEIDEL ITERATIVE SOLUTION
IF (KSWPS~ I TERS12,9,28

DO 25 N=1,NODES

IFIN-1112,12411

IF(N-NODES 1 14,13,13

THEW( 1 )= (A*TReCLIIoTPRUIIODEIIOTIZNIZ(ACLIISD(1Y)
GO TO 15§

TNEW(NODES ) * {C (NODES ) » TPRUNODES ) D (NODES~ | } sT{NODES -1 )1/ (C (NODES ) »
iD(NODES- 113

60 TO 1§ \

TNEW(N) = (CIN)STRRIN) ¢D(N-1)¢TC(N=1)oD(NI e TN+ 1117 (CINI*DIN-11+D(N))
TEMP«TNEW(N) =T(N)

IFCTEMP)16,17,17

TEMP+ ( - TEMP

IFUTEMP-ZLINI 18,18,19

KOUNT «KOUNT + |

IF (KOUNT -NODES 125,26, 28

KOUNT =0

TIN) = TNEW(N)

KSKPS*KSWPS + |

GO TO 8

END OF GAUSS-SEIDEL SOLUTION
TIN) = TNEW(N)

PRINT 70, TAU,KSWPS

PRINT 240

PRINT 80, (N, T{N),N=I,NODES)

DO 27 N=1,NODES

TPRINI=T(N)

IF (NODES ! -NODES )47, 198,46

PRINT 100

CALL EXIT

SPATIAL AND TIME TRUNCATION ERROR ANALYSIiS
IF(TAU-DTAU227,227,226

READ COEFFICIENTS OF POWER SERIES FOR SPATIAL TRUNCATION ERROR
DO 199 K=1,5

READ 170, (COEFFIK,l),i=1,11)

BIOT = HFILMeDELXI1/24,/2K!|

FO = ZK1+TAU/(65.,26¢2C1¢ZRHOI *BELX1*92)

49
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c DETERMINE SPECIAL CONDITIONS ‘
lF‘FO'?. ,2020202020‘
201 PRINT 230
GO TO 225
202 IFtBIOT-.5)208,203,205
203 [F{FO-.75)204,216,216
204 PRINT 190
60 TO 225
205 IF(FO~.251206,207,207
206 PRINT 190
GO TO 225 ,
c DETERMINE WHICH CURVE TO USE, BASED ON BI1OT NUMBER
207 IF(BIOT-10.1211,209,208
208 K = S
GO TO 217 p
209 K = 4
GO TO 217
21 IFIBIOT-3.1218,212,209
212 K = 3
60 TO 217
213 IF(BIOT-1.1215,214,212
214 K = 2
GO TO 217
215 IFiBIOT-.5)1216,216,214 '
216 K » | ’
217 SUM = COEFF(K, 1) g
IFt1-111223,218,218 ;
218 DO 219 1=1,10 }
H
{

. " - Yo o Y
e S A M L DTN G

o

219 SUM = SUM+COEFF{K,1¢])sFQee]
PRINT 200 ,SUM )
c READ COEFFICIENTS OF POWER SERIES FOR TIME TRUNCATION ERROR
228 DO 221 K=1,5
221 READ 170, {(COEFF(K,1),[=1,7)
FO = ZK1eDTAU/(6.25+ZC1¢ZRHOI *DELX1+42) j
IFLFO-10.,1207,207,222
222 PRINT 210, FO
60 TO 226
223 DO 224 11,6
224 SUM »  SUMSCOEFF(K,l¢!)sFQes} '
PRINT 220, SUM
c END OF ERROR ANALYSIS
226 IF(SELI-1.,149,47,49
47 [F{TAU-ZNUM*DTAU)6,46,46

e Y W

ACCELERATED GAUSS-SEIDEL SOLUTION USING A CONSTANT ACCELERATION
FACTOR AND WEGSTEIN ACCELERATION

6! DO &2 N=+|,NODES E
TTI(N,1) = TIN)

62 TOLDI(N,I}) = TIN)
JAPPLY= [STOP+NOGS

63 KSHPS * KSWPS+I|
INDEX = KSHPS-KSWPS/3¢3
IF(INDEX)64,64,65

64 J + 3
GO TO 66

65 J * INDEX

OO

S Aan

A
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€6 IF(KSWPS-ITERS1GT7,67,.28
€7 DO 83 N=|,NODES
IF(N-1)69,69,68
€8 IFIN-NODES3IT2,71,7!
69 FTUI,JIstASTF+CLII¢TPRINIDILITTIZ2,J))/71A+CLI) D)
GO T0 73
71 FT(NODES,J)=(C(NODES)*TPR(NODES) +Z{NODES~1)sTT{NODES~1,J})/7{C(NQDE
15)+«DINODES-11)
G0 TO 78
T2 FTANWJIs{CIHI o TPRIKISDIN-TIsTT(N1,J)«DINIoTT (N1 ,J))I/Z(CINI+DiN-t}
F+DINY I
73 TEMPzABS{FTIN,J)-TTtH,J)}
IFITEMP-ZLIM)T4,74,75
74 KOUNT = KOUNT+|
- IF(KQUNT-NODES182,87,97
75 KOUNT = 0
82 {FtJ-3176,79,79
75 TT(N.J’ L FT(N.J’
TTUH,Je 11 = FTIN,J)
TOLD(M,Jel) s FTIN,J)
JF{KSWPS-2183,77.77
7?7 IFi{KSWPS-{STOP)78,83,83
78 TTIN,J*1) = TTIN,JI+FACTOR(TOLDIN,JI=-TTIN,J}
TOLD(N,J* () = TTIN,J+ 1)
GO TO 83
79 TTiN,J) = FTIN,J}
TTIN, 1) s FTUIR,J)
TOLDIN, 1} = FTIN,J)
IFLKSKPS~-ISTOP)S1,83,83
81 TTIN,I) = TT(M,JISFACTORS(TOLDIN,J)-TTIN,J}!
TOLDIN, I} = TTIN, 1)
83 CONTINUE
IF{KSWPS~1APPLY163,85,85
€5 DO 96 N=1,NODES
iFiJ-2186,87,88
86 ALPHA s {(TOLD(N,2)-TOLD(N, 11 }/7{TOLD(N,1)-TOLDIN,3}}
GO TO 89
87 ALPHA s (TOLDIN,3)-TOLD(IN,2})/7(TOLDIN,2)-TOLDIN, 1)}
GO TO 89S
88 ALPHA » (TOLDIN,1)-TOLDIN,31)/7(TOLDIN,3!-TOLDIN,2})
89 [F(ALPHA)S6,96,91
81 IF(ALPHA-1,)92,96,96
82 O = ALPHA/Z(ALPHA-1.)
IFtQ+100,099,101,101
98 Q@ = 100,
101 IF(J-3194,95,85
94 TTINJel) ¢ TTIN(JI*Qs{TOLDIN,JI-TT(N,J)}
TOLD‘NpJ"3 s TT(N’J,
GO TO 98
95 TTIN, 1) = TTIN,JI*Qe(TOLDIN,J?«TTIN,J))
TOLDIN, 1) = TTIN, 1D
98 CONTINUE
TAPPLY = JAPPLYSINTER
80 TO 63
87 TTINJJI s FTINgJI
DO 98 N+ ,NQDES

51
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¢ 88 TtN) = TTIN,J)
g ¢ END OF ACCELERATED ITERATIVE SOLUTION
3 GO TO 24

" c

3 ¢ TRIDAG SOLUTION

35 TAU=TAU+DTAYU

.
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SK=1,¢TAU20,/ 1 ZNUKSDTAU)
K+SK

RKs=K
IF(TAU-ZNUK»DTAUI251,252,48

25! TF+TSIK)I+(TSIKe1)-TS(K)}1¢{SK-RK?

HF ILMeHFVAR(K) ¢ (HFVAR(K®* 1 1 -HFVAR(K) } e (§K-RK)
GO T0 253

282 TF2TSiK)

HF ILM=HF VAR IK)

253 PRINT 20,HFILM,TF

Arl /UL /HFILMISDELXU1)/7(24, 02K i1}
AR( {1s0,
BRUlIzAeD{L}eCLL])
CRt11s-D1})
DRUII*CLiIeTPRIL)*ASTF
N=NQODES
ARIN}»-DIN-1}
BRINIsDIN-11+CtN)
CRIN)=O,0
DRINI=CINI*TPRIN}
NPsNODES- 1
PO 31 Ns2,NP
ARIN)=-D(K-1)
BRIN)sDIN~1)+DIN)+C(N)
CR(NIs=-DIN}
81 DRiIN)sCiNIeTPR(H)
BETA(1!sBR(1)
GAMMAL1 ) :DRUTI/ZBETALL)
DO 22 N=2,NODES
BETAIN)sBRIN)-ARINY*CRI(N-11/BETAIN-1}
22 GAMMAIN)={DRIN)-ARIN) *GAMMA(N-1))/BETAIN)
NsNODES
THNEWIN) :GAMMA NS
LAST+NODES-!
DO 23 L+1,LAST
NsNODES-L
23 TNEW(N)sGAMKA (NI -CRIN)*TNERIN+1)/BETA(N)
44 N:NODES
PRINT 270,TAU
PRINT 240
PRINTSO, (N,TNEWIN).N=1,NODES?
KOUNT =0
32 DO 34 N=1{,NODES
G4 TPRIN)sTNEWIN)
[F(NODES| -NODES149,198,46
49 IF(TAU-ZNUMeDTAU)35,46,46
46 CALL EXIT
END
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LISTING OF THE COEFFICIENTS FOR THE CHEBYSHEV POWER SERIES
c COEFFICIENTS FOR SPATIAL TRUNCATION ERROR CURVE, BIOT NC.#0.S

. J008S509E+02 .3(313B65E+02 ~.40438398E+02 .32576778E+02 ~.17195332E02

+605768S5E+01 ~.14294331E¢01 .22260158E+00 -,2190616SE-01 .12322488E-02
*.30152627E-94

¢ COEFFICIENTS FOR SPATIAL TRUNCATION ERROR CURVE, B810T NO.°1.0

~o4T741800E*01 ,10716588E+02 ,39482730E«G1 -,15347922E+02 .13378985E+02

-.6U896820E+01 ,1874B735E+Q| -.349C310IE+00 ,3397i559E-01 ~-.25676872E-02
«T0752864E-04

¢ COEFFICIENTS FOR SPATIAL TRUNCATION ERROR CURVE, BIOT NO.*3.9

. 10742661E+02 ,57953052E+02 ~-.78197286E+02 .62807352E+02 -.33533087E+02

+12135378E+02 «.29680640E+01 .48101017E+00 -,49327836E-01 .28919389E-02
= 73736341E-04

¢ COEFFICIENTS FOR SPATIAL TRUNCATION ERRGR CURVE, BIOT NO.s=10.0

“,47TB43630E+01 (57069120E+02 -.84933970E+02 .72423840E+02 ~,41121905E+02

+ 1S859021E+02 <.,41168i84E+0! ,70284882E+00 ~,7532050iE-01 ,45810170E-02
*.12044014E-03

¢ COEFFICIENTS FOR SPATIAL TRUNCATION ERROR CURVE, BIOT NO.s{NFINITY

~.18905S012E+02 .10651562E+083 ~+,17436117E03 .15979799E+03 -,.32659020E+02

+35326802E+02 ~.83197870E¢C]1 ,14726003E0! ~,15254262E400 .89865613E-02
~.22953966E~03

c COEFFICIENTS FOR TIME TRUNCATION ERROR CURVE, BIOT NO.s0,.S

=, 14942700E200 .IB063356E«0! ,7{703553E+00¢ -.27529148E+00 ,0397(8724E-01
~.26482984E-02 ,67521740E-04

¢ COEFFICIENTS FOR TIME TRUNCATION ERROR CURVE, BIOT NO.s!.0

=.52064100E-01 L,21030915E+01 .94564310E+00 -.41051718E+00 .63568381E-0!
-.45599169E-02 ,12669898E-03

c COEFFICIENTS FOR TIME TRUNCATION ERROR CURVE, BIOT NO.=3.0

-.87415600E-01 .37673700E+01 .14662341E+01 -.871031S1E+00 .16056679E+00
-.18017263E-0! .39541555E-03

c COEFFICIENTS FOR TIME TRUNCATION ERROR CURVE, 810T NO.=10.0

-.97815400E-01 .S0510120E+0! .11366794E0! -.86081270E°00 .|5645989E-00
-.13872656E-01 .483148€681E-03

c COEFFICIENTS FOR TIME TRUNCATION ERROR CURVE, BIOT NO.sINFINITY

-.16628430E+00 .84759210E+01 .49463530E+00 -,74881550E+00 .15666910E+00
~.138388434E-01 .41877631E-03

These coefficients are used in storing the spatial- and the time-
truncation error curves in the ONE-D program.
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Section 2

ANALYTICAL SOLUTION FOR AN INFINITE PLATE

SOLUTION OF TEMPERATURE DISTRIBUTION IN A FINITE SLAB ~ ONE DIMENSIONAL
FLOW - FINITE FILM COEFFICIENT ON ONE FACE, THE QTHER FACE INSULATED

ALPHA = THERMAL DIFFUSIVITY, SU.FT./HR.

AM = EIGEN VALUES OF MeTAN(M)sCONSTANT

BIOT = BIOGT NUMBER

DELS = LENGTH OF PLATE FROM SURFACE TO INSULATED FACE. IKCHES.
DELX » SPATIAL INCREMENT, INCHES

DTAU » TIME STEP, SECONDS

HFILM = FILM COEFFICIENT, BTU/HR-8Q.FT,-F.

TAU = TIME, SECONDS

TF = FILM TEMPERATURE, F.

T1 = INITIAL TEMPERATURE, F.

THETA = FOURIER HUUBER

X » DISTANCE FROM INSULATED FACE TO NODE CONSIDERED, INCHES
ZC = SPECIFIC HEAT, BTU/LBH-F.

ZK = THERKAL CONDUCTIVITY, BTU/HR.-FT.-F.

ZRHC = DENSITY, LBM/CU.FT.

DIMENSION AM(59) ,DEXP(50).SINI(50),5IN2(50)
10 FORMATI7Fi10.0,215)
20 FORMAT{1HO, 10X 43HTRANSIENT SOLUTION FOR INSULATED FLAT PLATE)
30 FORMAT(1HO,10X,2HK*,F7.,3,{0X,2HCs ,F7.4,5X,8HDENSITY*,F9.3)
40 FORMAT(IH ,10X,i8HFILM COEFFICIENT*,F{0.3)
50 FORMATUIH ,10X,6HALPHA=,F8.4,2X,2HLs,F8.4)
60 FORMATUIH (10X, 1SHINITIAL TEMP=>,F10.4,2X, I0HFILK TEMP=,Fi0.4)
706 FORMATI8F10.0)
80 FORMAT{1HO,12X,12HEIGEN VALUES)
90 FORMATUIH ,10X,2HM(,[3,3H)s ,F10.5)
100 FORMAT(F10.0)
116 FORMATt1HO, 12X,4HTIME,8X,3HX/L ,4X, 1 OHTEMP RATIO,6X.4HTENP)
126G FORMATUIH (10X,F9.2,3%X,F7.4,4X,F9.6,6X,F9.3)

130 FORMAT12HO,10X,SHDELXs,F7.4,3X,10HBIOT NO, s,F8.4,3X,12HFOURIER NO

1.2,F8.4)
READ 10,.2K,2C,ZRHO HFILK,DELS.TF,T1,KODEJN
PRINT 20
PRINT 30,2K,2C,ZRHO
PRINT 40,HFILM
BIOT*HFILMeDELS/(12,9002K)
ALPHAZK/ (ZC*ZRHO)
PRINT 50,ALPHA.DELS
PRINT 60,T1,TF
PRINT 80
”:(KODE") 2.‘.2
| READ 70,(AM(I) 1-1,N)
GO TO0 38
2 CALL EIGENIN,AM,BIOT)
3 D0 4 I=1,N
4 PRINT 90,1 ,AM(])
READ 100,DELX
IF(SENSE SKITCH 1) 15,8
5 READ 100,TAU
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THETAsALPHACTAU/(3600.0+DELS«DELS/144,)
PRINT 130,DELX,B!OT,THETA

DO & 1=1,N

SINI(L)sSINFIAMLT )
SINZ¢1)=SINF(2.00AH 1))
DEXP(I)sEXPF{~AHU) 0«2+ THETA)

X=0,

SUN=0.

DO 8 1=} ,N

SUM=SUM« (SINI (1) sDEXP(I)/12,00ANL12281R2( 111} «COSF(AR( oX/DELS)
TRATIO=4,0«SUN

TEMP»TF+(TI~-TF)*TRATIO

XRATI0sX/DELS

PRINT 110

PRINT 120,TAU,XRATIOC, TRATIC, TENP
XeX+DELX

IF(X-DELSS 7,7.85

CALL EXIT

END

SUBROUTINE EIGEN(N,AM,BIOT!
DOUBLE PRECISION T,T1,AM.ZK,2C,ZRHO,TF,HFILX,X,DELX,DELS,A, TAU,DE,
18107

C HALF INTERVAL SEARCH FOR ROOTS OF COT(K)-M/BIOTs0.

[ B

1
12

DIMENSION AM(S0)
Pis3.14159265
EPSs!,.CE-3

[=0

[als]

IEYE=1-1

EYEalEYE
AsP1/7180,+EYEsP]
83P1/2,*EYE*P!
FAsDCOStAl/DSINIA)-AZBIOT
Xs(AB)/2,
COT=DCOSLX) /DSINIX)
X0BsX/810T
F=COT-XO0B

IFIF) 3,1t,4
IF(F+EPS) 5,111,111
IF(F-EPS) 11,11,5
[F{FoFA) 8,114,7
B:=X

FBsF

GO TO 2

A=X

FAsF

GO TO 2

AM(])=sX

IFIN-1) §2,12,1
RETURN

STOP

END
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Section 3

MODIFIED HEAT-TRANSFER PROGRAM. “ONE-D" WITH
ERROR ANALYSIS AS APPLIED TO RAMP.FUNCTION
BOUNDARY CONBDITIONS

The program used to generate data for the ramp-function boundary
condition is an abbreviated form of ONE-D. Since the TRIDAG method of
solution was the fastest and simplest to use, it was chosen and
revised to handie only homogeneous solids. It was also revised so
that the automatic time step generator subroutine (ATSG) could be
used.

The error routine portion of OME-D is also incerporated. Revisions
were made in this routine sc that the spatial error for either time
step functions or ramp functions is given. Time-truncation error is
printed only for step-function boundary conditions.

CONTROL VARIABLES

KODE(1) I1f KODE(1l) is 1, the automatic time-step generator is used.
Values for ANUMBE, PRCNTH, and PRCNTIL must be read.
PRCNTH and PRCNTL are given in decimal form,

KODE(2) If KODE(2) is 1, a Fourier number is read and the time
step, DTAU, is calculated. If KODE(2) is not 1, DTAU is
read.

KODE(3) If KODE(3) is 1, the initial remperature of the body is
set at zero and the time, TAU, is set at zeroc. If KODE(3)
is rnot 1, values for the temperature at the nodes and TAU
are read.

KODE(4)  If KODE(4) is 1, the temperature of the nodes may be found
for a number of specified times. If KODE{(4) is not 1, the
temperatures will be printed according to DTAU.

TAUL TAU1 may be used as a control variable in addition to
specifying the time at the end of the ramp. If TAUl is
less than 1, a step function will be assumed.

TAU2 TAU2 may also be used as a control variable. TAU2 is
ordinarily used to specify the time at which the run will
stop. However, if TAU2 is O, then the user can specify
the terminal temperature in any node desired.
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ARRANGEMENT OF INPUT

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Card 1:

FORMAT (7I5), KODE(1), XODE(2), XODE(3), KODE(4), NODES,
LTP, NTP. This card must be read for each set of data.

Card 2:

FORMAT (3F10.3), TAUl, TAU2, FT. This card must be read
for each set of data.

Card 3:

FORMAT (F10.3, 1I5), TSTOP, NSTOP. This card is read if
T&U2 is 0.

Card 4:

FORMAT (3F10.3), ANUMBE, PRCNTH, PRCNTL. This card is read
if KODE(1) is 1.

Card 5:

FORMAT (4F10.3, E10.3, I5), DELX1, ZK1, ZRHQ1, 2Cl, ZH1, M2,
This card must be read for each set of data,

Card 6:

FORMAT (E10.3) HFILM. This card must be read for each set
of data,

Card 7:

FORMAT (F10.3) FO. This card is read if KODE(2) is 1.

Card 8:

FORMAT (F10.3), DTAU. This card is read if KODE(2) is not 1.

Card 9:

FORMAT (2F10.3) TAU, TF. This card is read if KODE(3) is not 1.

Card 10-22:

FORMAT (8F10.3), TPR. These cards are read if KODE(3) is not 1,
The number of data cards is dependent on the number of nodes in

the system with a maximum of 100 nodes.
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Data Card 23:

FORMAT (I2), NO. This card is read if KODE(4) is 1.
Data Card 24-25:
FORMAT (8F10.3). These cards are read if KODE(4) 1s 1.

Data Cards 26-56:

S YT ATE AN T s RV R 7 oF

FORMAT (5E15.8). These cards are used to supply the coefficients
of the power series that describe the spatial~ and time-truncation
error curves. If more than one set of data is read (LTP

greater than 1) these cards are read only once.

PROGRAM LISTING

TRIDAG SOLUTION OF ONE-DIMENSIONAL TRANSIENT HEAT TRANSFER
PROBLEM WITH ERROR ANALYSIS

NOTATION
ANUMBE = THE NUMBER OF TIME STEPS BETWEEN CHECKS B8Y ATSG
AR,BR,CR,DR = COEFFICIENT ARRAYS CONTAINING THE SUB-DIAGONAL,
DIAGONAL, SUPER-DIAGONAL; AND RIGHT HAND ELEMENTS
OF THE TRIDIAGONAL SYSTEM
BIOT « BIOT NUMBER
DELX = SPATIAL INCREMENT, INCHES
DTAU = TIME STEP, SECONDS
FO = FOURIER NUMBER
FO! = FOURIER NUMBER AT THE END OF THE RANP
FT = FINAL FLUID TEMPERATURE, F.
HFILM = FILM COEFFICIENT, BTU/HR.-SQ.FT,.-F,
KODE(N) = CONTROL VARIABLES
LTP s NUMBER OF SETS OF DATA TO BE READ
M2s NUMBER OF NODES BETWEEN ZERO THICKNESS NODES
NO = NUMBER OF TIMES AT WHICH A TEMPERATURE PRINT-OUT IS REQUESTEDR
NODES = TOTAL NUMBER OF NCDES IN THE SYSTEM
NTP = NUMBER OF TIME STEPS BETWEEN TEMPERATURE PRINTINGS
NSTOP = NODE SELECTED TO TERMINATE RUN
PRCNTH » LARGEST PERCENT INCREASE !N TEMPERATURE, EXPRESSES AS A DECIHAL
PRCNTL = SMALLEST PERCENT INCREASE IN TEMPERATURE, EXPRESSED AS A DECIMAL
SCOEFF = COEFFICIENTS OF POWER SERIES FOR SPATIAL ERROR ANALYSIS
TAU = TIME, SECONDS
TAUl= TIME AT THE END OF THE RAMP, SECONDS
TAU2 = TIME AT TERMINATION, SECONDS
TAUT = TEMPORARY TIME STORAGE
TCOEFF = COEFFICIENTS OF POWER SERIES FOR TIME ERROR ANALYSIS
TF = FLUID TEMPERATURE AT SPECIFIC TIME UNDER CONSIDERATION, F.
TIMEC(I) = TIMES AT WHICH A TEMPERATURE PRINT-OUT IS REQUESTED, SEC.
TNEW * TEMPERATURE OF MODE AT END OF ITERATION OR TIME STEP, F.
TPR = TEMPERATURE OF NODE AT PREVIOUS TIME STEP, F.
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TPRT » TEMPORARY STORAGE FOR PREVIOUS TEMPERATURES

TSTOP = TERMINATION TEMPERATURE FOR NODE NSTOP, F.
ZC = SPECIFIC HEAT, BTU/LBM-F.
ZH = CONDUCTANCE BETNWEEN NODES, TO ALLON FOR CONTACT RESISTANCE
2K » THERMAL CONDUCTIVITY, BTU/HR.-FT.-F.
ZRHO = DENSITY, LBM/CU.FT.
DIMENSION KODE(S!,TPR(160),TNENC100),C(100),CRC1001,0(1601,AR(100)
1,8R(100¢ ,0R(100) ,BETAC100!,GAKMAC100), ZK(!OO) £C(1001,ZRHOC100),
22H(100) ,DELX{100) ,TPRTt 1003, TINE( 102 ,SCOEFF (7,111, TCOBFF(S5,7}
COMMON TNEW,TPR,TAU,DTAU,NODES, TF,FT,TAUL ,NUNB, TPRT,DTAUT, TAUT.
IPRCNTH, PRCNTL, €, 2€ . ZRKO, DELX
10 FORMAT(7!5)
20 FORMAT(3F1$,3)
30 FORMAT(8F10.3)
40 FORKAT(F10.8)
50 FORMAT{1H!,4HNODE, | iX, THDELTA X, 14X, 1HK, 16X, 7HDENSITY, 16X, 1HC, 16X,
12HNC}
60 FORMATIT2,13,4(5X,F14.3),9X,E10.3}
70 FORMAT(1HO,8HDELTA T=,F12.4,5H SEC.)
80 FORMAT(T!,SFI1.83,5X,5F11.3)
S0 FORMATI(E!0:8)
100 FORMAT(1HO ,I3HHFILM*CONST. . F12.3}
110 FORMAT{1HO, 12HFLUID TENP.=,Fi0.3)
120 FORMAT(12) )
180 FORHAT(!HO 11X, 4HTINE,F12,4,10H  SECONDS)
14¢ FORMAT(4Fi0.3,E10.3,15)
150 FORMATI2F10.3)
160 FORMAT{1HO, ,MAXIMUM SPATIAL TRUNCATION ERROR 1S LESS THAN -2.0
1 PERCENT,)
170 FORMAT{5E15.87
180 FORMAT(F10.3,15}
190 FORMAT{1HO,49HNAXIMUM SPATIAL TRUNCATION ERROR IS +2.S PERCENT
200 FORMAT(1HO,37HMAXIMUM SPATIAL TRUNCATION ERROR IS -,F6.1,9H PERCEN
iT )
210 FORMATIIHO,TTHTIME STEP 1S TOO BIG, SUGGEST USING SMALLER FOURIER
INUMBER. FOURIER NUMBER IS, F10.2)
220 FORMAT{1H0,34HMAXIMUN TIME TRUNCATION ERROR IS -,F5.1,9H PERCENT 1
230 FORNAT(1HO,4SHMAXIMUM SPATIAL TRUNCATION ERROR 1S 1.3 PERCENT )

JKTs0
KKKs9
! READ(10S8,10} KODE(1),KQDE(2),KODE(3),KODE (4} ,NODES LPT,NTP

READ(S,20) TAUL,TAURFT
IFiTAU2.EQ.0.) READ(10S,180) TSTOP,NSTOP
IFIKODE{11,EQ.1} READ(105,201 ANUMBER,PRCNTH,PRCNTL

NUMBER* ANUMBER

NUNB=0
READ(105,1401 DELX1,AKI,ZRHO!,2C1,ZH1 N2

DO 42 N=1,NODES
DELX(N) *DELX!
ZKUN) 22K
ZRHOIN) =ZRKO}
ZHIN) sZHI

42 2CiN)=2C]
DO 8 N=| ,NODES,H2
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8 DELX(N)20,
WRITE(108,50)
DO 4 N+ ,NODES
4 WRITEL108,607 N,DELXIN},ZK(N),ZRHO(N) s2CINI (ZHIN)
READ(105,90) HFILM
WRITE«108,100) HFILN
IFIKODEL2)~1) 8,7,8
7 READL[05,40) FO
DTAUsFQeDELX )2 ¢242RHO142C ) ¢8.25/72K!
GO TO 8§
8 READ(105,40) DTAU
9 WRITE(108,70) DTAU
DTAUTaDTAU
IFITAUL) 13,18,18
13 TFFT
60 TO 17
16 IF(DTAU.GE,TAUl) GO TG 13
TFsFTeDTAU/TAUI

17 WRITE(108,11¢) TF
{F(KODE(G)-1) 14,12,14

14 READ(10S,150) TAU.TF
WRITE(108,180} TAU
READ(105,30) (TPR(NJ),Ns!,NODES)
WRITEC(108,80) (TPRYM:,N+!,NODES)
GO TO 18

12 DO 1S N={  NODES

18 TPRIN)=0,

TAU=Q,

18 KOUNT=0
NP=*NODES- 1
DO 19 Naf,NP ,

19 DINI=| S Z(DELXI(NI/Z (24, ¢ZKIN1)*DELX(N*1)/7t24,02(N* 11l . /7ZH(N))
DO 39 N=!,NODES
TPRT(NIsTPR(M)

89 C(N)*300,.ZCiN)«ZRHOIN) oDELXINI/DTAY
Asi 701 ZHFILM) oDELX( 1)/ 24, ¢2ZK(1 1)
IF(KODE(4)-1}) 35,95,38

95 READ(105,120) HO
READ(105,30) (TIMEIN) .N21,NO)
TAUT=TAU
NNs1i

3% NUMB=NUMB+}

TAUsTAUDTAU
{F(KODE(4)-1) 63,61,83

6! |F(NN.EQ.NO-!) GO TO &3
IFITAU-TIME{NN)) £3,62,62

62 TAUSTIME!NN)

NNaNMe!
IF(TAU-TAU!) 64,65,65

64 TF=FT+TAU/TAUI
HRITE(108,110) TF
GO TO 63

65 TFsFT

60
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83 KQUNT‘KOU“TO!

AR111=20,

BRU1)sA«DIL)2CL 1

CRt11s-D( L)

DRUIISCLIICTPRI L) ASTF

N:=NODES

AR(N)x-Dm ]

BR(N)'D(N 1)eCEN?

CR(N'.OO )

DR{NI2CIN)=TPRIN)

DO 21 N:2,NP

AR(NI=-D(N-1) )

BR(N)sDIN-11«D(NI*CIN)

CR(N)*-D(N)

DR{NISCIN)sTPRIN)

BETA(1)=BR(1)

; GA“RA(I)-DR(I)/BETA(!)
DO. 22 Ns=2,NODES
BETA(N)'SR(N)-Aﬁ(N)'CR(N 11 BETAIN-1)

22 GAHHA(RJ*(DR(N)-AR(N)*GA“%A(N 1)1 3/BETAIN)
TNEH(ﬁODES)SGAHKAtNODES)
Do 23 L=],NP
NsNODES-L

23 TNEWIN) sGAMMAIN) ~CRCN) sTNEWIN® | ’/BETA(N)
" IFUKOUNT.LT.NTP) GO TO 33
28 WRITE((08,130) TAU
KRITE(108,80) {TNEMIN) ,N=I ,NODES!
KOUNT=0
¢ SPATIAL AND TIME TRUNCATION ERROR ANALYSIS
IF(KKK.GE. 1) GO TO 229
¢ READ COEFFICIENTS OF POWER SERIES FOR SPATIAL TRUNCATION ERROR
DO 199 Kei,7
199. REAL:: 105, 1702 (SCOEFF(K,1), 121,11
229 BIOT=HFILM*DELX!/24, /K]
FO*ZK1eTAU/(6.2522C1 «ZRHO1 #DELX! #22)
¢ DETERMINE IF RAMP FUNCTION OR STEP FUNCTION
IFLTAUILLT.1.) GO TO 222
FOI=2ZKi+TAUL/(6,2502C1 »ZRHOI sDELX14¢2)
IF(FO.LE.FO1) K6
IF(FO,GE.FOI} Ks7
IF{FO.LE. . 75) K=6
IF(FO.GT.10.) K6
IFtFO.LE.20.) GO TO 226
WRITE(108,160)
G0 7O 225
226 IFIF0.GT..25) 60 TO 217
WRITE(108,190)
G0 TO 225
¢ DETERMINE SPECIAL CONDITIONS
22z 1FiFG.LE.7.) GO TO 202
WRITE(108,230)
GO 10 225
202 IF(BIOT.6T..5) GO TO 205
IF(FO.GE,.75) GO TO 216
WRITE(108,190)
\ GO TO 22§

2
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2086

C DETERMINE WHICH CURVE TO USE, BASED ON BIOT NUMBER

NAFLTREAY AN VRS

IF(FO.GE..25) GO TO 207
WRITE(108,190)
GO TO 225

e ® e Aarekat N e TS

TENVETR

207 IF(BIOT-10.) 211,209,208 ?
208 K:5 :
GO TO 217 ;
209 K=4 :
GO TO 217 §
211 [F(BIOT-8.) 213,212,209 :
212 K28 :
GO TO 217 ;
218 IF(BIOT-1,) 215,214,212 !
214 K=2 :
GO TO 217 3
215 IF(BIOT.GT..5) GO TC 214 %
218 K=l
217 IF(TAU.GT.DTAU) GO TO 218 ¢
IFC1.LE.11) GO TO 223 3
218 SUM=SCGEFF (K, | ) H
DO 219 1=1,10 :
219 SUM=SUM+SCOEFF(K,[+})sFQeel B
IF(SUMLT.0.) SUM=-SUM £
WRITE(108,200) SUM g
225 |F(KKK.GE.1) GO TO 228 .
KKK =KKK | 3
C READ COEFFICIENTS OF POWER SERIES #OR TIME TRUNCATION ERROR g
DO 221 K=t,§ 4
221 READ(10S,170) (TCOEFF(K,1),1=1,7) ~§
228 {F(TAUI.GE.1.) GO TO 83 ';
IF(TAU.GT.DTAU) GO TO 33 f
FO:ZK|+DTAU/(6.25+2C| +ZRHO| »DELXi 2}
IFIFO.LE.16.) GO TO 207
WRITE(108,210) FO
GO TO 33
223 SUM:TCOEFF(K, 1)
DO 224 1:1,6
224 SUMsSUM+TCOEFF(K,1+1)eFQee]
WRITE(108,220) SUM
33 [F(KODE(1)-1) 38,32,58 ;
32 IF(NUMB-NUMBER) 38,87,37 )
37 CALL ATSG \
GO TO 29 %
38 DO 24 N:1i,NODES -
24 TPR(N)sTNEW(N) i
25 TF+FTe(TAU-DTAU)/TAUI ;
IF(TF.GE.FT) TF=+FT ‘
29 IF(KODE(4)-1) 67,66,67
66 IF(TAU-TIMEIN/)) 81,87,67
67 IF(TAU2.EQ.0.) GO TO 68
IF(TAU.GE.TAU2) GO TO 26
381 WRITE(108,110) TF
GO TO 35
68 IF(TNEW(NSTOP).GE.TSTOP) GO TO 25
GO TO 31

62
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26

4!

JKTsJKT |
IFLJKT-LTP) L,41,41
sTOP

END

AUTOMATIC TIME-STEP GENERATOR SUBROUTINE

SUBRQUTINE ATSG
DIMENSION TPR(1003,TPRTL100),TNEW(1001,C(1006),2C(100),ZRHOL10D),

§DELX11¢0)
COMMON TNEW, TPR.TAU,DTAU,NODES,TF,FT,TAU! ,NUMB, TPRT,DTAUT, TAUT,

IPRCNTH,PRCNTL.,C,ZC, ZRHO DELX

10 FORMAT(1H0,5X,SSHDELTA TAU WAS HALVED, TIME SET BACK TO LAST CHECK

{POINT.,1H ,5X,37HTPR,S ARE LISTED BELOW FOR THAT TIME.!

20 FORMAT(IHO,10X,THTIME 1S,F12.5,5X, |6HNEW DELTA TAU IS,F10,5)
30 FORMAT(1HO,5X,26HPREVIOUS NODE TEMPERATURES)

40 FORMAT(IH .SF11.3,5%X,S5F11.8)
S50 FORMAT(IHO,5X,S52HDELTA TAU WAS UNCHANGED. PROGRAM PROCEEDS A5 BEFO

69

IRE.)
FORMAT( 1H0 ,5X,48HDELTA TAU WAS DOUBLED. TEMPERATURES ABOVE ARE OK)
NUMB=0
MODES=*NODES/2-2
DTUP :PRCNTHeTF
DTL.OW=PRCNTL+TF
DO 1 N=2,NODES,MODES
DIFF=ABS{TNEW(NI-TPRIN) )
IF(DIFF.GE.DTUP) GO TO 2
IF(DIFF.GE.DTLOW) GO TO 8
CONTIMUE
DTAU:DTAU-2.
KRITE(L108,601!
WRITEL108,20) TAU,DTAU
GO TC 4

3 WRITE(108,50)
4 DO 5 N=1,NCDES

CINI=300,22CIN)*ZRHOIN) *DELX(N)/DTAY
TPRIN)sTNEWIN)

S TPRT(N)=TNEW(N)

TAUT=TAU

6 TFsFT+(TAU<DTAU)/TAUI

IF(TF.GE.FT) TFrFV

7 RETURN
2 DTAUsDTAU/2,

TAU=TAUT
DO 8 NeI,NODES
CINI2300.+ZCIN)*ZRHO(NI *DELX(K)/DTAV

63
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8 TPRINI=TPRT(N)

WRITE(108,20) TAU,DTAU
WRITEi108.10!
WRITE(108,30}
WRITE(108,40) tTPR(N}I,N=J,NODES)
IF(TAU-TAULS S,11,11
TFeFTe(TAU+DTAUI/TAUL
IF(TF.GT.FT) TFsFT
RETURN

TFsFT

RETURN

END
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Section 4

ANALYTICAL SOLUTION FOR AN INSULATED FLAT PLATE
WITH RAMP-FUNCTION BOUNDARY CONDITIONS

;
20 R SRR RSN D TN N B AN b AT D AL

7 X=DELX+X
B8 IF(TAU.LE.TAUL) GO TO 18
9 X=X1
PROD=ALPHA» { TAU-TAUL)/3600./7(DELSe21/144,)
DO 12 J=1,RCDES
SUM=0,
DO 11 1=3,N %
ASIN!=DSIN(AN(])) ]
ASIN2:DSIN(2,cAMLI )
POWER=AM( 1) e+2+PROD
IF(POWER.,GT.174.} POWER=174.
15 SUM=SUMs (ASINI o (DEXP(-PONER)=1)/7(AH(I)e02e¢{AN(])22,0ASIN2) )¢
{1DCOStAH{ 1 «X/DELS))
TI{J)2As (L TAU-TAUL ) +BeSUN)
T(IsTLNI-Ti )
IFCTIdI-0.01) 13,18.12
12 X:X+DELX
18 TFRAMPsTF/TAUl«TAU
iFITF.LT.TFRAMP! TFRAMP=TF
IS WRITE(108,100) TAU, TFRAMP
WRITE(108,110) (T(K),K=1,d)

MR

SO MR ST At S, O

R T SRR

EPEZy:

e daA T

TAU=TAU+DELTAU
: [FITAU-TAU2) 5§,5,16
i 16 STOP
; END
: ¢
¢

SUBRQUTINE EIGEN(N,ANM,BIOT)
DOUBLE PRECISION T,T1,AM,2K,2C,2RHO,TF HFILM X, OELX,DELS,A.TAU,DE,

18107
¢ HALF INTERVAL SEARCH FOR ROOTS OF COT(M)-N/B10Ts0.
DIMENSION AM(S0)
P123,14159266
EPS+1.0E-3
120
I 1alel
IEYEx1-1
; EYExIEYE
| A*P1/180,+EYESP]
' BxP1/2. +EYE+P]
FAsDCOSIA)/DSIN(A) -A/BIOT
2 Xr(A+BI/2.
COT=DCOSIX) /DSINIX)
X0B=X/B10T
F=COT-XO0B
IF(F) 3,11,4
3 IF(FEPS) 5,11
4 IF(F-EPS) 11,1
5 [F(FeFA} 6,11,
BeX

6
FBeF
GO T0 2 65
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OO0

Il AMtL) X
TRANSIENT SOLUTION FOR INSULATED FLAT PLATE, RAMP FUNCTION ON

T AsX

FAsF
GO 70 2

RAMP2

SOUNDING FLUILD.

DQUBLE PRECISION T,T!.AM,2K,2C,ZRHO,TF,HFILK,X,BELX,DELS, TAU,DELTA
U, TAUI,TAU2,810T,ALPHA,X1,A,B,ASINI ,ASIN2,PONER . SUK, TFRANP,PROD
DIMENSION T1200),T1(200),AMI50)

10 FORMAT(4F10.0) )
20 FORMATUIHI,!10X,76HTRANSIENT SOLUTION FOR iNSULATED FLAT PLATE, RAW

1P FUNCTION ON BOUNDEING FLUID)

30 FORMATC(IHI . T10,2HK® (F8.2,10X,2HC»,F7.4,10X,8HDENSITY»,F98.3)

40 FORMAT(TI1,I17HFILE COEFFICIENT:,FI8.2)

50 FORMATITi1,6HALPHA= ,FB.4,5X,6RDELSs ,F8,23)
60 FORMATI3F10.0,3110}

70 FORMATIBF10.0)

80 FORMAT(1HO,T12,!2HEI1GEN VALUES!

90 FORMAT(TI0,2HM!,13,3H)* ,F10.6)

100 FORMAT(1HO,4HTIME,F12.3,9H SECONDS. 10X, 12HFLUID TEMP.*,F12.3)
110 FORMATIT2,5F11.3,5%.,5F11.3)
120 FORMATI(ELIO. 1)

66

READ(105,10) 2K,2C,ZRHO,TF
WRITE(108,20)
WRITE(108,30!) ZK,2C,ZRHO
READ1105,120) HFILHM
WRITE(108,40) HFILM
READ110S5,60) X,DELX,DELS,KODE.NODES,HN
READ( 108,101 TAU,DELTAU,TAUL,TAU2
BICTsHFILMeDELS/112,2K)
ALPHA*ZK/Z(ZCoZRHO)
NRITE(108,50) ALPHA,DELS
WRITE1108,80}
IF{KODE-11 2,1,2

1 READ{10S,707 cAMITI), I8t NI}
GO T0 23

2 CALL EIGENIN,AM,BIOT)

3 WRITEL108,90) ¢1,AMtl),521,M)
Xi=X
A TF/TAUL
B*100,°DELSe«2/7ALPHA

§ XsX1
PRODsALPHA*TAU/3600./¢DELS*¢2/144,)
DO 7 J=1,NODES
SUM=0,
DO 6 IsI,N
ASINI:DSINLAKIT )
ASIN2:DSIN(2,0AML 1))
POWER*AM( | ) ¢«2+PROD
IF{POWER.GT.174.,) PORER=174,

6 SUMsSUM* (ASINI*(DEXP{-PONER) =157 (AM{ 110020 AM{ ] 102+ASIN2)1eDCOS (AN
11)«X/DELS)
T(4)2Ae{ TAUBeSUM)
JF(T(4)-0,01) 8,8,7
IF(N-1) 12,12,1

12 RETURN
STOP
END
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Appendix B

LITERARY SURVEY OF THE NUMERICAL SOLUTION OF THE
ONE-DIMENSIONAL HEAT CONDUCTION EQUATION

prepared by

University of Nevada
Contract N60530-67-C-0051
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PREFACE

B A R R 7 RO i A T2 S s AV N A A R RS R TSNP %o o

The bibliography for this summary comprises a relatively smail

o

part of the complete bibliography assembled under the contract, Only
the articles and papers which appeared to desl directly with the

questions at hand, and which were svailable, are discussed here. Many

SN Pt

of the works were not availsble st this University., The remainder of
the bibliography is intended to offer a somevhat wider range of ref-
erences for information having possible application in the numerical
treatment of heat conduction preblems,

The bibiiography is arranged alphabetically with a brief abstract
for each title, The bibliogrephy is then categorized under bread
headings, Some tities may appsar under mors than one heading, Even
though the contract requested a literature search covering the area
of the implicit numerical solution of the one~dimensional transient heat
transfer probiem some explicit methods were considered., Many works come

pared the methods so some titles covering explicit methods are included,

69
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NOMENCLATURE

n o space index (node number)
n = time index (n » 1,2,3,°¢0¢
t = tinme

At = time increment

fel
t, » elapsed tine » nit {(uniform at) » I Atk {arbitrary At)t° 20

ka0
T = temperature
5x » distance inczement

a = thermsl diffusivity e X

<p
k » thermal conductivity

c = gpecific heat
p =» density

@ = Fourier modulus = sat

hL
Nsi = Biot number s T

L » Length

rlas
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RESULTS OF LITERATURE SEARCH

PART 1

Errors in Implicit Finite Difference Soluticns of the Cne Dimensional
Hest Conduction Equation
Definitions
SRS

The following definitions wiil be used, consistent with Anderson and
Botj.lc

Roundoff Error

This error is caused by the fact that all aumbers used in computation
pust be rounded to & msnsgeable number of digits, The error ean become
significant after long computations in which each cslculstion is dependent
on the results of the previou. calculation,

Convergsnce Error
This is the srror caused by not completely satisfying the simultaneous

equations when using an iterative solution, Increasing the number of

iterations decreases this error.

Time Tzuncation Error

This error can be visualized as arising from the assumption that
terperature is a linear function of time over each time step; or it can
be seen to result from the fact that certain high order terrs are neglected
in the Taylor series type of develcpment of the finite difference approxi-
mation to the time derivative in 3T 32T, Reducing the size of the time

T TIx?
step reduces this error,

Space Truscstion Error
This error can be thought of as arising from the assumption that temp-

srature is a linear function of Jistance over each space increment; or it

71
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can be visuslized ss a consequence of the fact that soms high order teras
sre neglected in & Taylor sevies development of the finits diffcmcc

2
spproximation to Xhe space derivative in 3L ead Y |
PP pace-¢ T

An additional type of error is deséribed by Schneider 10 snd Foxd:
Error Caused by Boundary Discontinuity

The physical intezpretation of this srroxr is the sane as that for
truncation error, given abovs, except that near a boundary undergoing a.
step change of temperaturs, the assumption of linear temperature variation
is poor, and the error increases sharply, It can be decreasad by using s
suitable sverage hetween the upper and lower step temperatures and by
reducing the length of the time interval. This error decreases ss time
increases, in stsble finite difference representations., In the Taylor
series development, this error is ssen to result froam the fact that a
step temperature increass represents s discontinuity in 3Iw 32T, wheress,
the Taylor Series method assumes the derivatives to be c;rtxtinzous.

The foregoing definitions apply to both the explicit and implicit
forms of finite difference representation,
SUMMARY
Roundoff

Roundoff error is not inherent in a finite difference approximation,
but is a type of error sssociated with most numerical computstions, It
can become significant in crlculations involving repeated use of rounded
nusbers, A fact to be considered when computing with finite differences is
that roundoff error is nearly always present, so that even if truncation
error is completely eliminated, the sclution cannot be entirely free from
error, The techniques to be described for reducing truncation error,
consequently, have no valus if the roundoff error is large enough to over-

shadow the offects of such techniques,
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Tzuncation

Tiﬁméntion error represents-the difference between the analytical
solution and the finite diffexrence solution of 2 problem. - Frequently, 2
Taylor series expansion is-used to-develop finite difference representations
shd nuzerical estimates of truncation error, 8:%,11

" The backward difference ezprissiqn»fqr‘ggg developed from a Tayloer
23 93 Ta,n = TEn- a? - B¥R3T), ...
series expansion, is Tan - TE;n-1 ¢ A%(’FT')““ LZLSE;:?)-"“’

The finite difference éxpression for _3;, derived by use of a2 Taylor
3x

%f(a“r) %):eﬁn feeees

In szning the simplo backwarn difference implicit spproximation to the

series expansion, is

hcatvsduitign, the terms sbovs which contain partial derivatives are neg-
lscted, 1£ the neglected terms ave considered to-ve the truncation error,

the time truncation error in the approximation to the heat equation is:

.At 3 At 33 cwboes e
S

and the space truncetior error is

(8x)? 3“f)0 8x)e5T\  #¢++*¢ Evalustion of these terms requires a
(ﬁ"' m,n "33%'%&" m,n

knowledge of the analyticel solution, but if they were to be cemputed for
several cases having known anslytical solutions and found to have similar
values in each case, their use might be extended to cases having ne known
analytical solutions, Kardas‘l evalustes error terms for the case of the
infinite plate with uniform initial temperature subjected to equsl step
changes of surface temperaturse at time zero. The error terms are found
using the known analyticazl solution for the temperature distribution, and
the results, given as "error parameter', are piotted against NBi’ with 0

as parameter, The curves presented, illustrate total truncation error only.

An example is worked to illustrate the use of the curves, but no indication
of the accurzcy with which the derived correction approximates the true

difference between analytical and numerical solutions is given,
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Freed and Rallis® have expanded the method beyond consideration of

the higher order derivative terms slone, Let ﬁzn = the central difference

operator with respect to m = Tpyy , = 2Tgp + Tae1,n and let v, = the back-

ward difference operator with respect ton = Tm,n = Tp,n-1¢ Then, replacing
PT = 1 3T by the backward difference implicit representation, including

™ 9 3
high order derivative terms:

2 s

me,n - é‘ on Tm'n + Um,n where Tm,n represents the exact solution
of the differential equation and Um,n Tepresents the high order derivative
terms of the Taylor series, which are neglected in finite difference cal-
culations,

Also, consider ¢ Wa,n ® 1 Vg ¥y q which is the difference equation
actually solved in finite difference calculations. Let Wp,n be the exact
solution of the difference equation; then the truncation error Vm,n is
defined to be the difference between the exact solution of the differential

equation and the exact solution of the difference equation, or Vm,n (trun~

cation error) = Tm,n’wm,n' This can be given by the difference between
the two previous cquations as sz Vm,n ® %_Vn Vm,n + Um,n' From this equa-
tion, error estimates can be made at each nodal point. The example used
by Freed and Rallis to illustrate the method is the infinite plate at
uniform temperature, subjected to identical step temperature changes at
the surfaces, The analytical solution is compared to the backward difference
implicit solution, and the erzers predicted by the authors' method are
compared to the errors predicted by computation of Um,n alone, The authors!'
method yields better error estimates than does consideration of Um,n oniy,’
except at the node nearest the surface. The lack of improvement at thit
point is attributed to boundary error, As in the previous paper, time and
space truncation errors =re not separated, and only total truncation error
is considered.

A different approach to truncation error estimation has been used by
another group. In this method, the analytical solutions for certain cases

are compared directly with numerical solutions, in an effort to ascertain
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truncatisn error relationships which can be extended to cases for which
analytical solutions are not available, The time and space truncstion

errors are considered separately. Anderson and Botjel evaiuate space
truncation error for the case of the semi infinite slab with step temperature
change at the surface, Time truncatiocn error is reduced to an iasignificant
level by employing very small time steps in the numerical solution, The

two nodes closest to the surface are considersd, and spstial truncation

error is shown to be significantly lower at the second node than at the

node adjacent to the surface, Curves ave presented illustrating truncatien
error plotted against Fourier modulus, using the Biot numbeér as a parameter,

Anderson, Slonneger and Grnybe:ls study total and time truncation

error for the semi-infinite solid and for the infinite plate with step
temperature change at the surface. Spatial truncation error is dstermined

by following the method used earlier by Anderson and Batjel. Then other
numerical solutions are obtained using an arbitrary time increment in each
solution. Subtracting tne previously determined space truncation errors

from the total truncation errors of these solutions yields the time truncation
errors,

The conclusions of the study are, in summary:

1, Uy judicious use of the curves presented, values of space and time
increrents can be chosen in such a way that truncation error i<
minimized,

2, Truncation error curves for the semi-infinite bodv and the infinite

plate closely approximate each other, indicating that the resuits

of the paper can be applied directly to other configurations with-
out causing large errors.

3., Time truncation errors of significant magnitude occur at the
second, third, and fourth nodes from the surface, which contrasts
with the limited influence of space truncation errors, mentioned
above,

4, The curves illustrate the fact that decreasing the time increment
will decrease the total truncation error.
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This paper comnteins much dazs, in the form of curves, relating spatial,
time, and total truncation error to time and space increment, to position
of & nods, and to elapsed tinme,

Space trunction exror alone is treatad in the paper of Murray ead
L;udisl‘. In their snslysis, only the spsce derivative of the conduction
equation 13 peplaced by s finite difference representstion. hhen the
resuizing expression is applisd to 2 nodal netwerk, there is obtained a
system of simsitaneous €irst order ordinary differentisl equations, Solutioen
of ths system by an exact msthod gives a tempsrature distribution frse from
tise truncation errar. The methed of sclution employed by the suthors in-
volves reduction of the differeatisl equations to algebraic squations by
mans of the Laplace transform, with ths final solution cbtained through
nstrix anzlysis, The cass treated iz a sish with equal temparaturs changes
at the faces, and both step and rasp tomperature changes are considered,

The exact solution of the heat conmduction equation is compared with the
exact solution of the system ot ovdinary differentisl equatiens to determine
the spatial truncation error. The results are plotted as truncation error
versus Fourier modulus, with the number of nodes as parameter, The effect
of the comvective film coefficient 1s not considered in the example pre.
sented,

The methods of the papers mentioned above might be used to provide
estimates of truncation error for a given set of constants used in a back-
ward difference implicit solution of the conduction equation, or they might
be used to select a set of constants which would minimize the truncation
error. Another possible way to decrease truncation error is to use one of
the other implicit difference equaticns, possessing lower inherent truncation
error than does the simple backward difference equation, Two of these,
the Crank-Nicolson and the Crandall equations, will be discussed briefly,

The Crank-Nicolson equation is:

“Th-1,ne1 ’(% ¢ 2)Tm,nol = Tpel,nel * Tmel,n *(%.-Z)Tm,nonol,n'
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Thisz equation is discussed by Doug1a35, Fox?, caunorxo, and Campbell,

Kaplan and Moors!, Douglas and Fox show mathemstically that the truncation
ersor of this equation is less than that of the bazckward difference equation,
Douglas shows the Crank-Nicolson squation to be cenvergent for any valus

of ¢, e comments that the Crank-Nicolson equation provides considersbly
increased accuracy over the backward difference equation with & amall
increase in computation; but he cautions that s lack of smoothness in the
solution of the heat squation will retard convergence or tnhe Crank-Nicolson
solution to a greater degree than convergence of the backward difference
equation will be retarded,

Gaurer compsres the backward difference and Crank-Nicolson equations,
with regard to accuracy and stability, by applying both methods to a prace
tical problem whose analytlcal sclution is known, The problem considered
is the infinite plate with equal step changes of temperature appliied at
each face, The results are presented as curves of temperature vs, time,
with the reciprocal of the Fourier modulus as parameter, The curves illus-
trate several points:

1. Although both numerical solutions converge for ¢ = 4 (largest value
of 0 used), cenvergence is not rapid, and neither of them is an
accurate approximation to the analytical solution st early time for
such a high modulus,

2. Using @ <1/4, both numericsal solutions show rapid convergence.

3. With 0 = 1/4, the Crank-Nicolson equation offers slightly improved
accuracy compared to the backward difference equation, but the
drawings do not permit a precise evaluation to be made,

The Crandall equation is discusssd by Crand:lls, Douglas6. and Campbell,
Kaplan and Moore4, It is related to the Crank-Nicolson equetion, differing
only in that different constants are used, The Zrandall equation can be
expressed as follows:

Ti,ne1 = Tmyn = 1/2 (0 = 1/6) (Tpop ey = 2Tponet * Tood,ned)

* 1/2 (0 + 1/6) (Tgy 5 = 2Tn,n ¢ Tyoy,n)
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Carpbell, Kaplan and Moore compare ths Crendsll and CrankeNicolson
equations with the analytical solution for the temperaturs distribution in
an infinite plate subjected to equsl step temperature changes at the surfaces,
Results are presentsd for only one value of Fourier modulus, which {s given
in the body of the paper as 1/2, but is repcrted as 2 in the conclusions
section, The Crandall equation is shown to offer increased accuracy cob-
pared to the Crank-Nicolson equaticn, but mo comparison of computation
time is given, Another fact demonstrated by Campbeil, Kaplan and Moors is
that, as the time and space increments are decreased (0 maintained constant),
tne error of the Crandall equation is reduced more rapidly than thst of
the Crank-Nicolson equation.

As mentioned above, Campbell, et.al,, present truncation error for
only one value of Fourier modulus, Generally, truncation error is different
for different values of lourier modulus, and it is of interest to note that
Crandall® recommends the use of 9 = 0,2236 in the Crandall difference
equation as the value which should give the smallest truncation error,

Another approach to reducing the truncation error in finite difference
appreximation is an extension of the process known as Richardson's deferred
approach to the limit, discussed by Douglas, Fox and Liebmana. Douglas®,
and Fox9, demonstrate the mathematical validity of the method, and Liebe
mennl4, illustrates its application to a practical problem, In the
cxample given by Liebmann, the Richardson technique is used to reduce
time truncation error in the backward difference equation, The procedure
will be described here: The backward difference solutiocn is carried through
using a given time increment, At., Then the problem is sclved again using
the same equations, but with the time increment doubled in length (24t),
Then, for a given space node at a given time, the temperature T(4At) obtained
by using at, is corrected by adding to it the difference between T(At}
and T(2at), where T(24t) is the temperature obtained using the time in-
crement(24at), Thus T(corrected) = T (At) + [T (at) - T (2at)]. Douglas®

mentions that the technique can be used to reduce spatial truncation
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error rather than time truncation error, by using a linear combination of i
two solutions, each of which uses s different value of space increment Ax, %
with 4t being the same in both solutions. He also comments that both :
spatial and time truncation error can be reduced by using & linear é

cembination of three solutions, and, furthermore, that the basic idea can

be applied to equations other than the backward difference eguation,
Boundary Error

Boundary error is introduced at the start of calculations, and it

decreases as the solution is advanced in the time dimension, provided the

finite difference equation being used is stable, Implicit finite difference

equations sre steble for all values of the Fourier modulus; however, the /

-, .
e SR SO TARAAY o e T

boundary error is often excessive at early tims steps unless the Fourier

mcdulus is small, This requires that the ratic of the time step to the

distance step be relatively small, which msans that a large number of

calculations is required to cover a given time interval. As tims passes,

the requirement for smali ﬁ_t_ is diminished because of the inhersant

X
decrease in boundary error, To reduce the amount of computation, the time

increms % can, therefore, be incressed as the solution progresses, thus
increasing 9 also.

Douglas® and Douglas snd Galliie” discuss varisble time steps, and
presant two schemes for increasing the length of the tims step in s systema-
tic way. The first method results iu s linear increase of the time incre-
ment as the solution of the difference equstion advances in the time dime
ension, To determine the time iuterval to be used betwoen time.t, and
time t ), use 4ty @ (a + bty) (8x)2 where a>o and b3o and t;(nel,2,3,)

s n;l Atk, o<k<=, (t, » 0), The second method causes the length of the
t1:°stop to grow sxponentielly. The time interval for use between t,

and ty,; is given by ar, = (8x)2 ¢ 20 yhere o<u¥2 and ¢, is given by the
summation sbove, Douglss snd Gellie discuss the use of these relations
as ilied to the backward difference implicit equation, and show that the

rate of convergence of the solution is not reduced by their use, which

implies that the accuracy at s given elspsed time is not reduced.
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PART 11

Some Methods of Solving Implicit Finise Differsnce Representations

of the lleat Conduction Equation.

Two methods employed for solving the systams of squations resulting

from use of the impliciv difference equations are iteration and Gaussian
elimination, Two papsrs comparing differeat variations cf thess processes

and some references contsining special tachniques for use in solving the
systoms will be msutioned,

Anderson, Botjs, zad Koffe1? employ ths backward diffezence equation in
& computer program, using Gauss-Seidel iterstion to selve the simultaneous
equations, for a two dimsnsional nstwork of as many as 200 nodes, Two
schemes are used in combination to accelerate comvergence of the iteration,
snd they will be described later., Gaussian eliminztion was initially
considered by these authors for solving the simultameous equations, but it
was found that excessive computation time weculd be required for such a
large rumber of equations. The authors describe thoroughly the development
and application of this program and give reszults for severel industrial
problems it has solved.

Seversl msthods are available for accelersting the convergencs of
iterative processes, thus reducing computation time, Anderson, Botje and
Koffel? discuss their experience with a combination of two such devices in
connection with an implicit hest transfer program, commenting that time
savings of as much as 75 percent have been obtained, The first of these
schemes involves extrspolation, the initial value for an iteration process
heing obtsined by extrapolating fron the results of the two preceeding
iteration steps, The second method is an adaptation of the technique
described by Wegstcin”, which is very similar to the Aitken 42 proceu.urls

In the Wegstein method, the value of the unknown, x at the (k+1) iteration

step, is corrected ss follows: X,,, (corrected) = X, - (Xxe1 = Xk
kel = “%% ¢ Axa
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The Wegstein technique accelerates convergence for simple iterative processes
which exhibiz either oscillatory or monotonic convergence, and alsc can be

used to force the convergence of simpie iterative processes which show

osciilatory or monctonic divergence, Anderson, Botje and Koffel make two

commnts about this technique based on their experience with its use in

their heat transfer computer program:

1, If this scceleration schems is applied as often as every third
iteration sweep, the extra machine time required to compute the
cozrection may sxcesd the time saving accomplishsd by the accaler-
ation,

2,

A satisfactory method for determining ths number of itsration
sweeps between applications of the acceleration correctiom is o
sot the nuwber of sweeps between corrections equal to the number

¢f nodes from the boundary to the deepest node in the system.

A third acceleration technique is attributed to Steffensen, It is

described briefly by Pragerls, who states that one application of this
method has the same effect as three successive spplications of Aitken's &2
process,

A modified form of Gaussian elimination, suitsble for solving the
tridiagonal system of squations obtained from spplication of the backward
difference implicit equation, is described by Douglas6. and Wilkesl®, 1t
is based on the fact that the differsnce equation at each interior node
contains three unknowns, and thcse at the boundaries contain two unknowns,
Using this property, a general expression is developed relating the
unknown terperature st e¢ach node to the temperatures of adjacent nodes.

An expression is obtained giving the temperature of the final node of the

systerm explicitly, Then the temparature of each node in turn is calculated,

beginning at the final node and proceeding toward the first node.
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PART 111
Truncation Error of Runge-Kutts Methods
I£ the second order (spatial) derivative alone is replaced by a finite

difference expression, the one dimensionsl heat conduction equation beccmes:

%} . TK%TZKTM‘I.“ - ZTu,n * Tm—l,n)' When this equation is spplied to a
system of heat transfer nodes, s system of sisultaneous ordinary differential
equations is obtained. Solution of the simultanecus system by an exact mothod
would yieid temperature values fres from time truncation error. If the

system is solved by a numerical scheme, truncation error will be introduced,
because such methods are based on approximata relationships, For exampls,

the Rungs-Kutta method, a widely known device for selving ordinary differential
equations, is developad from = Taylor series expansion, and contains a trun-
cation error because of the fact that high order terms of the series ars
ignored. An estimate of the truncation error of onie set of Runge-Xutts forwulas
is given by Prtgeris.

To solve .g.z_ « £(u,v) with the initial condition v(u,) = vy, let h =
interval length, p = number of steps, V & approximation to v given by the
Runge-Kutta equation; the most widely used Runge-Kutta equation is

Vp»l - Vp . 1/6(kl . Zk2 * 2y ¢+ k‘) where

ky ® BE(u,V) 5 kg = hE (up ¢ !:r' Vp ¢ }%)

ky = heuy o B, v o k2); k, = hEU + b, Vp + ky)
The truncation error is estimated to be T% (vp,l_vy) and the corrected value
Of Voy) is Voo o .1.;. (Vpay = Vgl

Lance 12. describes a modified Runge-Kutta procedure for digital computers
which automatically adjusts the interval length to maintain s predetermined

truncation error.
Voel * vp N %(kl * Ak, ¢ kg)
ky = ';Thf (Up, Vp)i kg = %hﬂup * "173' Vpe k)
SR LN A
h o 3k 9k3

-1
k4 3hf(t.\po.'::,,\'p = T
1 3k, _ 9
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The truncatiom error ¢ is estimsted by

S = k; f;_g. o a, - ﬁ; I£ the right hand side of this equation
‘{s greater than five times the allowable error, h is halved and the computation
for the step is repsated; but if the right side is less than 5/32 of the
allowgble error, the interval may be doubled and the computatior repeated.
Although this process would seam tc require considerable extra time, Lancs
reports that it usually reduces the computation time required to attsin a
given accuracy of sojutiom by about 20 psr csnt. He accounts for the re-
duction by mentioning thst when s fixed interval length is used throughout
the solution, this length is usually deliberately underestimated to insure
sccuracy, thus requiring the use of more steps than necessary, The self
adjusting procedure eliminates more than enough of these extrs steps to
offset the time required for the extra numerical manipulations it requires,

thus effecting an oversll saving of compututien time,
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Aitken, A.C., "Studies in Practical Mathemstics: I, The Evaluation
of the Latent Roots and Latent Vectors of a Matrix, "Proceedings
of the Royal Society of Edinburgh, v. 57, p. 269, 1937

Aitken's &2 sccelerated convargence method is described

Aitken, A,C., "Studies in Practical Mathematics: VI, On the
Factorization of Polynomials by Iterative Methods," Proceedings
of the Royal Society of Edinburg, Sect. A. 63, p. 174-91, 1951,

This article presents the theory of an iterative method for the
approximation of an exact factor of a polynomial, The matrix governing
the iterative process is obtained, and its latent roots and vectors are
found. Convergence of the process discussed and processes are develcped
for the acceleration of convergence,

Albasiny, E.,L., "On Numerical Solution of Cylindrizal Heat Conduction
Problem,” Quarterly Journal of Mechanics and Applied Mathematics,
Vol, 13, part 3, Aug. 1960, p. 374-84

This article treats the use of automatic computers for the numerical
solution of the cylindrical heat conduction problem. It is shown

that accurate solutions can be chtained easily and rapidly using the
Crank-Nicolson implicit method, Attention is given to the adegquacy of
the finite-difference represontation near a singularity at the boundary,

Allen, D.,N. deG,, and Severn, R.T., "The Application of Relaxation
Methods to the Selution of Non«Elliptic Partial Differential Equations,
I3 the ileat Conduction Equaticen," The Quarteriy Journal of Mechanics
and Applied Mathematics, Yol, 4, p. 209-22, 1951

The equation considered is 2u/3t = k32v/2x2, The authors make the
transforration v = 3w/3t + k aZw/ax?, which gives the equation

3%w/3t2 « k23"w /3x" » 0, The boundary conditions are also transformed
and new cnas added.

Allione, M,D,, "Comparative Study of Runge-Kutta and Lanczos Numerical
Integration Methods', Rept. No. U2421, Contract AF 19 628 562, ESD
TOR63 662, Aeronutronic, Newport Beach, Calif., 9 Jan. 1964, 24 p.
AD-429 958

The two methods are compared in solving the system of ordinary
differential equations associated with the Variation of Paramenters
formulation. Results of ephemeris calculations using each method

are compared with a standard to determine the relative error growth.
Conclusions are drawn regarding the relative merits of the twe methods,

Anderson, J,T., "Review of Digita! Computer Heat Transfer Programs"
ASME Paper 65-WA/HT-48, 7 p.

This paper is a review of the available steady stute and transient
programs, Emphasis is given to the capabilities and limitations of
general purpose programs, both explicit and implicit, Indications of
computer time are given snd discussion of the error mspnitude is
included,

Andsrson, J. T., and Botje, J.M,, "Spatial Truncation Error Analysis,
“ASME paper No. 62-HT-27

A method is pressnted for evaluating spatial truncation errors in z
finite difference soluticn of a parabolic partial differentisl equation.
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A one-dimension trensiént heat trans{er problsm is used as an example,
Cuzves are presanted for rapid svaluation of the spatial tzuncetion error,

Anderson, J.T., Botje, J.M., Koffel, W.X,, "Digital Computer Solution
of Complax Transient Heat Transfer Problems," W.Va, Univ. Bulletin,
Engr., Experiment Station, Technical Bulletin No. 62, 26 p.

The authors describs a compreheasive computer program for heat transfer
transient problems involving convection, conduction, contact resistance,
$51id snd gasecus radiation, surface flux snd internal heat generation.
The Liebman backward time step approximation was used in developing

the program, and the difference equations obtained by the Liebman mathod
are presentad with a discussion of wothods used to solve them on 8
digital computer,

Anderson, J.T., Slonnsegar, R,D,, Graybeal, G.E., "Truncation Error
Anslysis for Tranaient lieat Transfar Calculations.,” unpubliished

A total and time truncation error analysis of numeric solutions of
parabolic partial differential equations is herein reported. Math-
ematical models include transient heat conduction in an infinite body
and sn infinits plate with (1) convective heat transfer and (2) a step
function tesperaturs change on the surfaces, Results are tabulated as
well as shown graphically,” author's abstract

Baraket, H,2., and Clark, J.A., ""On the Solution of the Diffusion
Eguations by Numerical Methods,! ASME Journal of lieat Transfer, Vol,88,
p. 421-27, 1966

Author's introduction: "An explicit finite difference approximation
procedure which is unconditionally stable for the solution of the
genezal multi-dimensional, non-homogeneous diffusion equation is
presented. This method possesses the advantages of the implicit methods,
i.e., no severe limitation on the size of time increment, Also it has
the simplicity of the sxplicit methods and employs the same '"marching”
type technique of solution. Results obtained by this method are
compared with the exact solution and with those obtained by other finite
difference methods, For the examples solved the numerical results
obtained by the present method are in closer agreement with the exact
solution than are those obtained by other methods!

Bellman, R, Kalaba, R., Kotkin, B., "On a New approach to the
Computational Sclution of Partial Differential Equations," Proceedings
of the National Academy of Sciences of the USA, Vol, 48, P, 1325-27, 1962

This article discusses a modification of the usuai finite difference
approach to the numerical solution of partial differential equations,

The ides is that the computational algorithm should exhibit as ciosely

as possible the properties of the actual solution; for example, if the
actuul solution is bounded gnd ron-negative, this should be evident from
the algorithm, The method is illustratad by a problem, and the numerical
results are discussed.

Buglia, J.J., and Brinkworth, H., "A Comparison of Two Methods for
Calculating Transient Temperatures for Thick Walls,"” NACA Technical
Note 4343, 19 p., Aug., 1958

This paper compares Hill's method {NACA Tech., Note 4105) with Dusinberre's
method, In Hill's method, finite differences are taken only in the

time variable, the equations used being already inteprated with respect

to distance. The authors conclude that Hill's method is, practically,
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90

13.

14,

15.

16,

17.

18,

an exact method arnd is faster than Dusinberre's, only the two surface
temperatures are nceded, If the temperature distributicn is needed,
Hill's method is slower, but very accurate.

Butler, R, Kerr, E., "An Introduction to Numerical Methods," Pitman
Publishing Corp., New York, 386 p., 1962

This is an elementary text covering the solution of zlgebraic equations,
finite differences, interpolation, numerical differentistion and integra=
tion, and the solution of ordinary differential equations,

Campbell, B.C, "An Investigation of the Accuracy of Numerical Solution's
in the Diffusion Equation for Transient Heat Transfer," Master's
thesis, AFIT GSF/Phys/64-1, A.F, Inst, of Technology, Wright-Patterson
AFB, Ohio, Aug. 1964, 118 p, AD~605-489

This paper gives the results of a comparison of the accurscy obtained
using two implicit finite difference representations of the tramsient
heat conduction equation in obtaining solutions for two basic heat
conduction problems, The :3presentations compared are the Crank-Nicolson
form and a theoretically more optimum form called the Optimum Implicit
form, It is demonstrated that the major source of error occurs at the
initial time/space node of the difference mesh., The Optimum Implicit
form decreases this error and is shown to be as accurate as the Crank-
Nicolson form in one problem and considerably more accurate in the other.

Carr, J.W., III, "Error Bounds for the Rungc-Kutta Single Step Integration
Process,”" Journsl of the Association for Computing Machinery,Vol, 5,
p. 39-44, 1958

This article presents a matheématical theorem for determining the error
at each step in a fourth order Runge-Kutta procedure.

Collatz, L., "The Numerical Treatment of Differential Equations," third
edition, Springer-Verlag, Berlin, 554 p., 1960

This is a rather comprehensive book with over 200 pages devoted teo

partial differential equations, including discussions of error propagation,
node spacing and iterative methods, Emphasis is placed on manual solution
of problems rather than computer solution,

Compton, W,R., "An Extension of Present Numerical Solutions for
Transient Heat Conduction,' NOTS TP 3361 NAVWEPS 8419, NOTS China Lake,
Calif., Feb. 1964, 26 p. AD-431 791

A fourth order technique for the numerical solution of transient heat
transfer equations inveolving conduction, convection, and radiation is
presented, Approximating parabolas and Taylor series expansions are
used to facilitate the use of fourth order difference equations and
Runge-Kutta techniques.

Crandall, S.,H., "On a Stability Criterion for Partial Difference
Equations," Journal of Mathematics and Physics, V., 32, p, 80-81,
1953

The author exhibits a partial difference equation which is unstabie but
has stable characteristics locally. le points out that a stability
analysis based on the procedure of O*Brien, Hyman, and Kaplan (J, Math.
and Phys, V. 29, p, 223-51, 1951) is not valid for this type of equation,
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19. Crak, J., and Nicolson, P., "A Practical Method for Numerical Evaluation
of Solutions of Partial Differential Equations of the Heat Conduction
Type," Procesdings of the Cambridge Philosophical Society, Vol, 43,

p. 50-67, 1247

The article presents a comparison of three methods for the solutien

of the non-linear equation of heat flow in a wedium where heat is being
generated, The first method consists in a reduction to a system of
ordinary differentisl equaticns by approximating the time derivatives
with differences. The second mathod is the same except that the space
dexivatives are approximated by differences rather than the time deri«
vatives, In the third method, all derivatives are approximated by
differences, and the authers conclude this to be much faster and more
satisfactory, The third method gives a system of non-linear slgebraic
equations, which is solved by a combination iterative and step by step
method, and several variations of this method are discussed.

A

1}

h 20, Cudszhy, G, F., “investigation of Accelerating the Convergence of an
Implicit Numerical Solution of Transient Heat Transfer Problems,"
Master's thesis, Rept. No. GA/Pil/65-4-A, A.F, Institute of Technology,
WrightePatterson AFB, Ohio, Aug. 1965, 82 p., AD-621 273,

This paper presents the results of an investigation of two methods for
increasing the convergence rate for the two dimensional, five point
implicit finite difference representation of the diffusion equation

{ of transient heat transfer, the methods being the adapted Wegstein
technique and successive overrelaxation, Various mesh scanning techniques
are investigated, An example problem is used to show that successive
overrelaxation with a technique of repeatedly scanning all boundary
values into the finite difference mesh is the fastest method of solution
for the equations used in this study, Solution of 28 other problems

by this method shows an approximate saving of 1/3 in the number of
iterations over successive overrelaxation with a conventional repstitive
: scanning technique. An "a priori" relaxction factor related to the

! maximum temperature gradients is obtained.

21, Descloux, J., "Note on the Round-off Errors in Iterative Processes,'
Mathematics of Computation, Vol. 17, p, 18«37, 1963

Let X = + F (X,) be a scalar iterative converging process, When

i X, is close to the limit, F (X;) is small and can perhaps be obtained

| with higher absolute precision than X;, Then the addition X, + F (Xp)

! involves a round off operation. The author shows that, for a fixed-point
computer, an appropriate rounding method can impove the accuracy of

: solution, Appendix I gives analogous resuits for a floating-point
computer, Appendix II deals with Aitken's §2 process,

Douglas, Jr., J, "A Note on the Alternating Direction Implicit Method for
the Numerical Solution of lleat Flow Problems," Proceedings of the American

Mathematical Society, Voi. 8, p. 409-12, 1957

22

and Rachford applies to rectangular regions, The author extends it to
regions with polygonal boundaries where each segment of the boundary is
parallel to one of the cocrdinate axes,

’f As originally presented, the alternating direction method of Peaceman
H

23, Douglas, Jr., J., "A Survey of Numerical Methods for Parabolic Differential
Equations,” Advances in computers, Vol, 2, p 1-54, 1961, Academic Press,
New York,
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Quoted from the author's introduction: *The pugpose of this survey is to
introduce a theoretically minded, but not highly mathematicaily trzined,
scientist tc finite difference methods for approximating the solutions
of partial differential squations of parsbolic type." A partial list of
topics is: Explicit Difference Equations, The Backward Difference
Equation, The Cranke-Nicolson Equations, Comparison of Calculation
Requirements, Altemating Direction Methods,lligher Ordsr Correct Difference
Equations

24, Douglas, Jr., J., and Gallie, Jr., T.M., "Varigble Time Steps in the
Solution of the Heat Flow Equation by a Difference Equation,” Proceedings
of the American Mathematical Society, Vol. 6, p. 787-93, 1955,

The authors consider the numerical solution of Uy = Uxx’ using a back-
ward difference equation known to be stable for all Ax and at. Two cases
of variable 4t are considered,

25, Douglas, Jr., J., "The Solution of the Diffusion Equation by & High
Order Correct Difference Equation," Journal of Mathematics and Physics,
Vol. 35, p. 145.51, 1956

The author proposes a six-point implicit difference scheme for the
solution of Uy = U,, with a smaller truncatiocn error than the Crank-
Nicolson form, Because the error is smaller, the new method allows
larger 8X and ot to be used, (The method is described also in the book
"Advances in Computers, Vol, 1I, p. 26,)

E 26, Dbougias, Jr., J., "The Effect of Round-Off Error in the Numerical
i Solution of the Heat iLquation,” Association for Computing Machinery
: Journal, Vol, ¢, No, 1, Jan, 1955, p, 4858

SN

The artical presents an analysis of the approximation to the heat
equation by the backward difference equation when boundary value problems i
are approximated by finite difference problems, The dependence on the

method of solving the tri-diagonal equations is shown, It is shown that

if linear equations are solved by a normalized form of Gaussian elim-

ination, the procedure is stable 2gainst round-off error,

o T ARG A 4 % e BAT A R

27, Dusinberre, G.M., "A Note on the 'lImplicit® Method for Finite-Difference
Heat-Transfer Calculations,"” ASME Journal of Heat Transfer, Vol, 83, p., 94
1961

“The spparent advantsge of the implicit method lies in the possibility
of using relatively large time intervals, But this may be accompanied by
(1) considerable sacrifice im accuracy and (2) no corresponding saving
in digital time." This is the author's introduction to the article, which !
discusses points (1) and (2) above, :

28, Dusinberre, G,M., "Numerical Methods for Transient Heat Flow," ASME
Transactions, Vol. 67, p. 703-10, 1945

A modulus is developed by choice of which a solution may be reached most
rapidly or alternatively reached more slowly but with greater precision.
Criteria are developed for choosing the modulus to insure convergence.

A method is developed for handling thermal conductivity and heat capacity
when they vary independently with temperature.

29, Elliot, D,, "A Method for the Numerical Integration of the One-Dimensional

Heat Equation Using Chebyshev Series," Proceedings of the Cambridge
Philosophical Society, Vol. 57, p. 823-32, 1961

92
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30,

al,

32,

33.

34,

The equation used is a9/5t ~3220/3x2 (-1<X<1;t>0 with general linear
boundary conditions along x =» 1, 30/3t is replacad by a finite differance
spproximation and the resulting system of ordinary differential equations
is solved by Clenshaw's method of 9 in terms of Chebyshev polynomials.

Two examples are worked and the results compared with exact resuilts,

The suthor concludes that the present method requires less computation

than the ususl finite diffsrence methods, but is less versatile and not

so well suited for complicated equations.

Elrod, Jr., H.G., "New Finite-Difference Technique for Soiution of the
Heat-Conduction Equation, Especially Near Surfaces with Convective Heat
Transfer,” ASME Transactions, Vol. 72, p., 1519-25, 1957

The success of most finite difference methods for transient heat conduction
depends on the existancs of a certain degree of uniformity of behavior

of the temperature over the time znd space intervals selected for computatioen,
This often requires the use of inconveniently short time intarvals,

This paper reprssents an effort to develop a finite difference method

not possessing such & dafect.

Emmong, H, ¥W,, "The Numerical Solution of Heat Conduction Problems,"
ASME Transactions, Vol, 65, p. 60712, 1943

The author discusses the application of the Southwell relaxation msthod
to two and three dimension steady state heat conduction, A transient
problem is also briefly considered, A short discussion on "Derivation
of Difference Equations from Differential Equations," is included,

Emmong, H. W., '"The Numerical Sclution of Psrtisl Differential Equations”
Quarterly of Applied Mathematics, Vol. 2, p. 173-95, 1944

The author presents a detailed sxpository treatment of Southwell's
relsxation process, Exaeples illustrate the application to the solution
of boundary value problems for the Laplace, Poisson and other equations,

Enig, J.W., "A Method for the Rapid Numerical Solution of the
Heat Conduction Equation for Composite Slabs,'" NAVORD Rept, 6666
Naval Ordnance Lab., White Oak, Md.,, 20 Aug 59, 22 p. PB 144 193

Two boundary conditions encountered in heating one dimensional double
slabs are: heat flux giver at inner surface and (a) heat flux or

(b) temperature given at the outer surface. A method is developed which
permits rapid calculation of (1) any interior point temperature and

(2) the outer surface temperature or flux for (a) or (b) respectively,
without computing other interior point temperatures. The partial diff.
erential equations are integrated in terms of an arbitrary outer surface
temperature or flux by a simple numerical scheme, The method performs
an exact integration over the space dimension, so once the outer surface
temperature is determined the interior temperatures are computed by exact
formulae, The numerical solutions are compared to the exact solution
for accuracy and to other numerical schemes for speed,

Forsythe, G.E., and Wasow, W,R,, "Finite-Difference Methods for Partial
Differentizl Equations', John Wiley and Sons, Inc,, New York-London
444 p., 1960

The heat equation U, = Ux is considered (in part U of book) for ew<y < =
A forward difference equafion is developed and studied from the stand-
points of stsbility, convergence, and discretization error. Also in part
2, for linear problems on a finite interval, the forward difference,
backward difference, Crank-Nicolson, and Dufort-Frankel schemes are con-

sidered with respect to stability, convergence, and discretization method.
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35,

36,

37,

38,

39,

40,

Fowler, C.M., "Anslysis of Numerical 5Solutions of Transisnt lleat Flow
Problems,” Quarterly of Applied Mathematics, Vol. 3, p. 361~76, 1946

Solutions of the difference equation for the temperatures Ty, t for

cne dimensional conduction are considered, The author uses contour
integrals of particular solutions of the difference equation to give
the temperatures in terms of polynomials and trigonometric functions,
The convergencs of his solutions to the well-known solutions of the
corresponding problems in partial differsntial equations as Ax and At+
0 is investigated,

Fox, L. (sditor), "Numsrical Soluticn of Ordinary and Partisl
Differentisl Equations, " Addison<Wesley Publ, Co,, Inc,, Palo Alto,
California, 1962, S09 p,

Various finite difference schemes for partisl differential equations
ars discussed with regard to convergence, stability and computaticnal
error,

fox, L., "Some Improvements in the Use of Relaxation Methods for the
Solution of Ordirary and Partial Diffsrential Equations," Proceedings
of the Royal Society of London, Series A, Vol. 150, p. 31-59, 1947

Boundary value problems associated with erdinary or partial differential
equations are commonly solved by the use of difference equations which

are solved by successive approximations., Usually a derivative is replaced
by the leading term of a finite difference series for the derivative and

a small interval is used to cbtain the desired accuracy. The author pro-
poses to use hipgher order differences and a larger interval, which gives

s smaller number of unknowns to be found. Two examples are worked, one
being Poisson's equation., Twoe further examples show the application

of the method to curved bourdaries.

Frankel, S.P., "Convergence Rates of Iterative Treatments of Partial
Differential Equations, Mathematical Tabies and Other Aids to Computation,
Vol. 4, p. 65-75, 1950

Convargence rates are estimated for several itsrative msthods of sol-
ution for the Laplace and Hiharmonic squations, The methods used for
the Laplace euqations ave (1) Richardson, (2) Liebmann,a = 1/4,

(3) Liebmann, optimum a, (4) second order Richardson. Quoted from the
suthor's conclusions: "it is thus seen that with a fairiy fine mesh the
calculating time vequired with the slower machines is uncomfortably long
for the Laplace equation ... if the normal Richardson method is used."

Freed, N.H,, and Rallis, C.J., "Truncation Error Estimates for
Numerical and Analog Solutions of the Heat Conduction Equation,”
ASME Journal of Heat Transfer, Vol, 83, p. 382-3, 1961

The authors describe a method for obtaining an estimate of truncation
errcr for fully finite difference forms of the heat conduction equation,
It may be used with manual and analog methods if the error due to mesh
size is relatively large., Error estimates for a case of one dimensional
flow are derived in an example, using the backward difference equation.

Frocht, M.M,, "A New Approach to the Numerical Solution of Laplace's
Equations,” Numerical Methods of Analysis in Engineering, p. 75-80
The MacMillian Co., N.Y., 1949,
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41.

42,

43,

44,

45,

46,

The author discusszes & procedurs for obtaining good initial values

for interior grid peints which is applicable to iterative and relaxation
nethods, The procedurs requires known boundary values and iz termes the
Linear Rosett® Method.

Gaumey, G.R., "The Stubility of Three Finite Difference Methods of
Solving for Transient Temperatures,” prasented at the Fifth U.S, Navy
Symposium on Aeroballistics on 18 Oct, 1961, 23 p,

The paper contains the results of stadility investigations for three
types of finite difference equations; which are the forward, mid and
backwerd difference types, For each type, the one dimensional heat
balance equations sre presented for three combinations of heat transfer
podes, which are (1) conduction, (2) conduction and convection, (3) con-
duction, convection and radiation, A stability criterion is developed
for sach type of equation with each combination of modes,

Gill, J., “A Process for the Step-by-Step Integration of Differential
Equations in an Automatic Digitsl Computing Machine,” Proceedings of
the Cambridge Philosophical Society, Vol, 47, p, 96-108, 1951

The articla prosents a modified 4th order Runge-Kutta process for systems
of ist order ordinary differential equations, The process described
requires a smsll number of storsge spaces for each integration step, The
offect of truncation and round-off error is discussed and illustrated by
s numerical example.

Goodwin, E,T,, Clenshaw, C.W,, Martin, C.%W,, Miller, G,F., Olver, F.W.J,,
and Wilkinson, J.H., "Modern Computing Methods, ", Philosophical Library,
N.Y., 170 p., 1961

The book includes five chapters on matrices, two each on ordinary
and partial differential equations, and one on finite difference
methods, Comments are made on adaptation to desk and automatic
computation and careful attention is paid to the assessment of comp-
utational error for the methods described,

Graybeal, G. E,, "Time and Total Truncation Error Analysis in Heat
Transfer Calculations”, Master's Thesis, West Virginia University, 1963,
59 p.

A method is presented for cvaluating time and total tyuncation

errors encountered in a finite difference solutien of problems defined

by a parabolic partial differential equation, The example problem is

a one-dimensional heat transfer situation with a step function temperature
change on the surface, Curves are presented to aid in the evaluation

of time truncation and total truncation error,

Greenuvod, J, A., "Implicit Numerical Methods for the lieat Conduction
Equation,"” British Journal of Applied Physics, Vol, 13, No, 11, p. 571-2

The author shows that the Liebmann finite difference approximation is
to be preferred to the Crank-Nicolson form in certain cases involving
variable diffusivity,

Hamming, R, W,, "Numerical Methods for Scientists and Engineers,"
McGraw-Hill Book Co.., Inc., Ssn Francisco, 1962, 411 p,

The book includes a discussion of difference calculus and difference
equations. Functiens of mo:e than one variable are not treated,
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47, Hawkins, G.A,, and Agnew, J, T,, "Solution of Transient ileat Conduction
Problems by Finite Differsnces,” Purdue Univ, Eng, Experimont Station
Research Series,; No. 98, 1947, 38p.

The purpose of the authors is to bring the treatment for slabs,
cylinders, and spheres together, Analytical methods are discussed in
detail for unidirectional flow in slsbs and radial fiow in cylinders,

2358

48, Henrici, P., "Elements of Numericzl Analysis," J. ¥iluy and Sons,
Inc,, N, Y,, 328 p,, 1964,

faadi

This is an introductory book and it presents a small range of subjects
with thorough coverage on each rather than treating a large number of
techniques superficially, It contains much msterial on differencs 9
equations. Difference methods for ordinary differential equations are 3
developed using Taylor's series, The Runge-Kuttz method is treated
only briefly,

49, tierriot, J,G., "Methods of Mathematical Analysis and Cowmputation,"
J, Wiley and Sons, Inc., N,Y., 198 p, 1963

ey

This book is intended for use by engineers, and it dezls with only

the best known numerical methods, The emphasis is on methods suitable
for use on high speed computers, The subjects covered include: Nume -
erical differentiation and integration, rcots cf equations, selution B
of simultaneous linear equstions, sclution of crdinary differential ;.
equations, solution of partizl differential equations.

EATCY €54

50, Hill, P.R,, "A Method of Computing the Transient Tempsraturs of Thick
Walls from Arbitrary Variation of Adisbatic Wall Temperature and Hest
Transfer Coefficient," NACA Tech. Note 4105, 5% p., Oct, 1957

-
SN

Quoted from the author's introduction " ,,, simple method is developed
for the calculation of the temperature history of the surfaces of a _
thick wall or of any plane within the wall, The procedure is to select 2
from a teble a set of coefficients which depend on the physical properties ¢
of the wall, These coefficients and other data are substituted into B>
explicit algebraic formulas to determine the temperaturc of the heated 3
wall surface, If the heat transfer coefficients are known, no guess E
or iteration procedure is required. .... For squal time step sizes,
ths method is more accurate than more laborious numericsl methods,”
The method uses concepts called *time series' and ' unit triangle

variation of surface temperature!,

51, Hyman, M.A., “On the Numerical Solution of Partisl Differentia) Equations,”
Thesis, Technishe Hogeschool te Delft, 108 p,., 1953, o

The paper consists of four chapters and an appendix, Stress is placed

on nethods suitable for use with computers, Ch, 1 treats convergence

and stability of differsnce equaticn soiutions; Chp., 2 treats convergsnce
and extrapolation of difference solutions for parabolic equations,

Ch. 3 discusses elliptic equations; Ch, 4, is on hyperbolic equations.

S2, Juncosa, M.L,, 2nd Young, D.M., "On the Convergence of & solution of a -
Difference Equation to a Sclution of the Equation of Diffusion," e
Proceedings of the American Mathematical Society, Vol. 5, p. 168-74, 1954, 3

Several sharp convergence theorems are proved. The equation treated in 3
the principal theorem is 3u/3t s 32u/3x?, The approximation used is: g

S e &
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53.

54,

55.

56,

57,

58,

59,

Uy (Xtedt) - Up (X;t) = Uy (X +8X,t) - 2Ug Ex,eg + Up (X-AX,t), with
X

13
Ocht/ox? <1/2, MaX = 1, Uy {X,t) is shown to converge uniformly to u(x,t)
in the region 0<¥<l t2t5>0 as mew,

Juncess, M.L., and Young, D.M., "On the Order of Convergence of Sclutions
of s Difference Equation to a Seiution of the Diffusion Equation," Jourmal
of the Society for Industxial and Applisd Mathematics, Vol. 1, p. 111-35,
1953

For su/3t » 3%u/3x? is substituted

v{X,t ¢+ &at) - v (x,£) = v (x ¢ Ax,t) - 2v(x,t) + v(x-Ax,t).
At (ax}2
The difference sciution is discussed with regard to attempts to improve
the solution by "extrapolation to zerc gridesize.”

Kaplan, B, and Clark, N,, "Accuracy and Convargence Techniques fer
Implicit Numerical Solution of the Diffusion Equation for Transient
ileat Transfer,* Transactions of the Asmerican Nuclear Society, Vol,
4, No, 1, p. 80+81, June 19561

Kardas, A., "Errors in s Finite~-Difference Solution of the Heat Flow
Equation, ASME Journal of Heat Transfer, Vol. 86, p, 561-2, 1964

Whis note gives magnitudes of discretization errors incurred in a
finite difference solution of the heat flow equation in a symmetric
slat with the boundary conditions of the third kind." author's abstract

Kunz, K.S., "Numerical Anszlysis 't McGraw-Hill Book Co., Inc., New
York, 381 p., 1957.

The book was written for enginesrs. It includss numercus, illustrative
examples, Iterative methods receive only cursory attention, The book
includes chapters on ordinary and cn partial differsntial equatioms,

An appendix on the estimation of errors in numerical computation is
included,

Lance, G.N., "Numesrical Methods for High Speed Computers,” Iliffe and
Song, Ltd, London, 166 p., 1960

General text with descriptions of methods, often brief, sowe widely
used methods are omitted, Discusses Rungs-Kutta methods and description
of Aitkers 62 process.

Lapidus,L,'Digital Computation for Chemical Engineers,” McGraw-Hill
Book Co., Inc,, N.Y, 406 p., 1962,

General text which includes polynomial approximation, ordinary and

partial differential equation, matrix sclution of systems of linear
algebraic squation, and etc., Contains a description of the Tridag
methodo

Larkin, B.K,, "Some Finite Difference Methods for Problems in Transient
Heat Flow," Chemical Engineering Progress Symposium Series, Vol, 61, No. 59
1865, p. 1-11

Four explicit methods for digital solution of transient heat flow are
compared, The superior stability of the newer methods is noted, The
discussion is relevant to the design of booster vehicles, launch systems,
vehicles for space travel, and re-entry heat shields,
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98

60,

61,

62,

43,

64,

65.

Lax, P.D,, and Richtmyer, R,D,, "Survey of the Stability of Linear
Finite Differsnce Equations,” Communicaticns on Pure and Applied
Mathematics, Vol. 9, p, 267-93, 1956

The paper txeats the numerical solution of initial value problems

by finite difference methods by a dequence of calculations with
increasingiy finer mesh, The question is whether the scolution converges
to the true solution of the initial value problem 235 the mesh is made
finer, A stability definition is given in terms of the uniform bounded-
ness of a certain set of operators, snd it is shown that, with suitable
circumstances, for linear initial value problems, stability is necessary
and sufficient for convergence in a certain uniform sense for arbitrary
initial data, Two different approximations to the heat equation are
considered, one being a general two level formulaz and the other

the DuFort-Frankel equations,

Lea, R.N,, "5tability of Multistep Methods in Numericzl Integration,"
NASA TN D-2772, Manned Spacecraft Center, Houston, Texas, April, 196%, 16 p,

The paper contains a discussion of the stability of solutions of
differential equations obtained by using difference equations, An
original development leading to a definition of stability shows a
relationship between stability and certain properties of the differential
equation tn be solved, The example worked in the paper is an ordinary

differential equation,

Lees, M,, "Approximate Solutions of Parabolic Equations," Journal of
the Society for Industrial and Applied Mathematics, Vol. 7, p.167-83,1859

The author discusses the convergence of numeric&l solutions of partial
differential equations, The analysis is based on energy methods. The
author derives a priori bounds for sclutions of linear parabolic difference
equations, then applies them to establish the convergence of a difference
solution to a non-linear parabolic equation, Crank-Nicolson type
difference equations are also treated.

Lees, M., "A Priori Estimates for the Solutions of Difference Approximations

to Parabolic Partial Differential Equations,” Duke Mathematical Journal,
Vol, 27, p. 297, 311, 1360,

The author derives, using energy methods a priori estimates for the
solutions of several difference analogs of parabolic partial differential
equations, All standard two ievel difference equations are discussed and
two simple three level formula are also treated. Arguments are presented
in derail for the heat equation, and generalizaticns are indicated.

Leppert, G,, "Stable Numerical Solution for Transient Heat Flow," ASME
Paper No, 53-F-4; also published Amer. Soc. Naval Engrs. Journal,
Vol, 65, No, 4, Nov. 1953, p, 741-52

An implicit finite difference formula for numerical integration of the
conduction equation is described, It is shown to offer a computing
time saving over previously used methods. The method is a simple
algebraic procedure for use on a desk calculator, which removes the
necessity for iteration or substitution at each time step.

Leutert, W,, "On the Convergence of Approximate Solutions of the Heat
Equation to the Exact Solution, "Proceedings of the American Mathematical

Society, Vol, 2, p. 433-39, 1951
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66,

67,

68,

69,

70,

71,

The author discusses O'Brien, Hywman, and Xapian's criticisms of the
Richardson difference equation (criticisms contained in "A study of the
Numerical Sclution of Partial Differential Equations" by szbove named
sguthors), He shows that the Richardson difference equation is slways
convergent if the initial values of the solution are chosen in a ipecifig
way.

Leutert, W,, "On the Convergence of Unstable Approximate Solutions of the
fleat Equation to the Exact Solution,” Journal of Mathematics and
Physics, Vol., 30, p. 245-51, 1952,

The differential equation considered is du/dt = du?/dx2, The finite
difference equation considered is v(X,tedt) - v(X,t) = r{v(xesx,t) +
X=8X,t) -2v(x,t}], where {(8X)2r =4 t. It is known thst for r>1/2 the
solution of the finite difference equation is unstable, The auther
proves that, even so, there exist for every fixed r, solutions of the
difference equation that converge to the solution of the differential
problem as AX~+0,

Liebmann, G., "Solution of Transient Heat Flow and Heat Transfer
Problems by Relaxation,"” British Journal of Applied Physics, Vol. 6,
No. 4, Apr, 1955, p. 129-35

This illustrates that by choosing a suitable finite difference
approximation, parabolic partial differential equations can be converted
into & series of boundary value problems of Poisson type, which can be
solved by the Southwell relaxation technique, A very stable solution

is obtained for all values of the time interval by using a backward
difference approximation,

Lotkin, M., "On the Accuracy of Runge-Kutts's Method", Mathsmatical
Tables, and Other Aids to Computation, Vel. S, p, 128-33, 1951

The author obtains a bound for the error in Kutta's fourth order
method (generally know as the Runge-Kutta method).

Lotkin, M,, “"The Numerical Integration of Heat Conduction Equations,”
Journal of Mathematics and Physics, Vol, 37, p. 178-87, 1958

The author discusses difference equation approximations to the

equations of unsteady one-dimensional heat condu?tion in composite

media: ¢(M du/af =373x (k1(®) u/34) where k(™ and ¢(® depote

known functions of u, The convergéice is esteblished for k(®) = constant
and the convergence rate is estimated, An example is given, and numerical
data compares the approximate and exact solutions,

Luke, Y.L,, ""Numerical Solution of the Heat Conduction Equation,"
Chemical Engineering, Vol, 68, No. 1, Jan., 9, 1961, p. 95, 102

The article discusses the numerical integration of the heat conduction
equation, and the computation of flux and heat transfer, Included are
tables listing numerical solutions for constant thermal coefficients,
Variable diffusivity is also discussed.

Lynn, L,L,, and Meyer, J,E,, "A Numerical Comparison of the Implicit
and Explicit Techniques for the Convective Boundary Condition," ASME
Journal of Heat Transfer, Vol, 85, p. 280, 81, 1963,

The article compares the results of the Crank-Nicolson implicit method

with those of Back's explicit method for 1000°F step change in ambient
temperature, Some comments and conclusions are: (1) The implicit
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calculations for surface tempsraturs ars, in sost cases, more accurete
than the Back method for a given time step size, (2) The tmplicit
ssthod pormits veriable assh spscing with no concern for stsbility,
(3) The use of Gauss siimination in the imsliciz method involves more

effors than the explicii maethod per point per time step, but x dscrease
in the nusber of time steps ngedsd for a given accuracy often offsats thia,

72. Hacen, N., "Sumerical Analysis,” John Wiley and Sons, Ine., N.Y., 1983,
161 p.

In this book, the emphasis is on mathods for use with digital cosputers,
Sous of the topics coverad sre: Iterative sethods for solving equations;
matrices and systems of linear equations; difference equations,

Menn, W.R., Sradshaw, C.L., Con, J.G., "isproved Approxixstions to
Difforentixi Equations by Differsnce Equations,” Journal of Mathematics and

Fhysies, Vol. 35, p. 408-15, 1957

This article shows that the truncstion error in using 2 diffszence
egustion to upproximate s dffferventisl squstion can ba rasduced by
modifying the coefficients of the differenco equation from those normally
used, The difference equation {3 expanded in a Taylor's saries and

the oxpansion compared with the leading teras of the origins) difference
squstion. The comparison provides & correction whiich sllows a reduction
in truncation ervor without increasing the order of the difference

squation,
74, Martin, O,¥., “Runge-Rutts Hethods for Integrating Differential Equations
on High Speed Digital Computers,” The Computer Journal, Vol, I, p. 118-123
1958
j The author describes three adaptations of Runge-Kutta procedures for
ordinary differential squstions, dus to Glil, Strachsy, and Boulton;

and he propeses an altemnate method davised to save storsge space snd
based on Kutta's Simpson rule sethod. Comparative errors and cosputationsl

experience with the varicus methods sre described,

75, Milnez, W,E., "Note on the Runge-Kutta Method," Journal of Recearch,
Nationul Bureau of Standards, 44, p, 54950, 1950

73.

|
W
|
|

Cowparison of the Runge-XKutta method with a step-by~-step zethod of
nuserical quadrature shews the Runge-Kutta technique to be much less

accurate in scme cases,
Milne, W,E., "Numerical Solution of Differentisl] Equstions,” J, Wiley and
Sons, Inc., New York, 275 p,, 1953,

The book offers general coverage, inciuding both ordinxry and partial
differential equations. Notes on large scale computers occur in an

appendix,

Milne, W.E., "Numerical Msthods Associated With Laplace's Equation,"
Proceedings of & Sacond Syaposium on Lsrge Scale Digitel Calculating
Machinery, 1949, p. 152-63, Harvard University Press, Casbridge, Mass., 1981

76,

77.

This is a review of some difficulties which occur in solving partial
differential equations by the method of differences, using large scale

digital machines.
Mitchell, A.R,, "Round-Off Errors in Solution of Heat Conduction
Equation by Relaxation Methods," Applied Science Research, Sect, A,
Vol, 4 n, 2, 1953, p, 109-19

78.
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79,

81,

82,

83,

84,

A mothod is developed for assessing the magnitude of round-off errors,
2 stable six point finite difference approximation is used, which is
relaxational in distance coordinate and step by step in time coordinate
of the residuals., Formulas are derived for obtaining round-off errors
for several different distributions of residuals,

Mitchell, A,R,, Fairweather, G., "Improved Forms of the Alternating
Direction Methods of Douglas, Peacemun, and Rachford for solving
Parsbolic and Elliptic Equations,”" Numerische Mathematik, Vol, 6,
p. 28592, 1964

For the heat conduction equation Uy = Uyy + Uyy on a rectangular
domain, the authors derive generzlizaticns ofythe Peaceman~Rachford
slternating direction difference schemes, A special choice of para-
neters leads to a stable scheme with fourth order accuracy,

Mitchell, D.B., "An Error Analysis of Numerical Solutions of the
Transient Hest Conduction Equation," Master's Thesis, Rept, No,
GA/Pi/65-10, AF Inst, of Tech., Wright-Patterson AFB, Ohio, Aug, 1965,
111 p. AD-621 274

The paper presents a comparison of the Crank-Nicolson and Crandsll
methods in finding transient temperatures in a semi-infinite slad

with convection. The results are compared with an exact analysis, The
Crandsli method gives more sccurate results than the CrankeNicolson
under close nede spacing conditions, Accurscy improvement factors

ars determined for the two methods,

Muchnik, G, F., "Sclution of Heat Conduction Problems by the Grid
Msthod," NASA TTF-151, April 1964, 15 p. (translated from Russian).

An approxixate msthod is suggested for solving heat conduction problems
using the grid method, The temperature of sny point is related to the
tomperatures of other points by coefficients of relationship or
"weights", which do not depend or the boundary conditiens. The weights
are found by a. finite difference method. The author claims this method
to be simpler and mors éxact than the ususl finite difference method.

Murray, W.D., and Landis, Fred, 'The Effect of Spacewise Lumping on
the Solution Accuracy of the One-Dimensionz! Diffusion Equation," ASME
Journal of Applied Mechanics, Vol, 29, p. 629-36, 1962,

The authors svaluate the truncation errcrs inherent in a spacewise
difference formulation of the one-dimensional heat diffusion equation
under general boundary conditions, The exror bstween the seai-
discrete and exact soiutions is evolved by matrix algebra and the
Laplace transform, An illustration shows the errors for the cass of
a symastrically heated slab,

Nioisen, K,L,, "Methods in Numerical Analysis," The MacMillan Co.,
New York, 382 p,, 1956.

The suthor emphasizes methods suitable for desk calculating.

One chapter treats ordinary and partisl differential equations, but it
presents only an outline of the topic, The methods of Eulsr, Milne,

and Runge-Kutta sre given for ordinary differsntial squations, Lisbmann's
method, relaxation, and step by step methods are given for partial differsn-
tial equations,

0'Brien, G.G., Hyman, M,A,, and Kaplan, S,, "A Study of the Numerical

Solution of Fartial Differential Equations,” Journal of Mathematics
and Physics, Vol., 29, p. 223-51, 1951
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102

85,

86.

87.

88,

89'

90.

This article is a discussion of methods for the analysis and improvement
of the szability of finite difference equations used in the numerical
solution of partial differential equations, A discussion of convergence
is included. The heat conduction equation of the formds/st w324/ 2x

is used as an illustration, The equivalent differencs forms of Richardson,
von Neumann and Hartree are discussed,

Peaceman, D.W,, and Rachford, H,H., "The Numerical Solution of Parsbolic
and Elliptic Differential Equations," Journal of the Scciety for
Industrial and Applied Mathematics, Vol, 3, p. 28-41, 1955,

The authors treat Uy sUxy ¢ Uy, by implicit difference mothods, They
develop a process which 1s stavle for all mesh ratios ((Ax)2/t). They
discuss the solution over a square, showing the work saving for their
method compared to ususl ones, For elliptic equstions their method is
a form of line relaxation rather than the usual point relaxation schemes.

Plunkett, R,, "On the Rate of Convergence of Relaxation Methods,"
Quarterly of Applied Mathematics, V. 19, p. 263-66, 1552,

This article compares the convergence rate for the relaxation method

of solving partial differential equations to the results obtained by
Frankel (Math, Tables and Other Aids tc Comp, v. 4, p, 65-75, 1950) for
an iteration method. It is concluded that the relaxation method gives
no saving for the Poisson and biharmonic equations and is more difficult
to program then the iterative method,

Poppe, R.T., "An Investigation of Convergence Techniques for Implicit
Numerical Solution of the Diffusion Equation for Trensient Heat Transfer,"
Master's thesis, AFIT/GA/phys/63-8, AF Inst, of Technology, Wright-Patterson
AF Base, Ohio, Aug, 1963, 163 p., AD-419 310,

This paper contains the results of an investigation of two techniques

for increasing the rate of convergence of the Causs-Siedel methud of
implicit numerical solution of the diffusion equaticn of transient heat
flow, A sample problem is solved to provide the necessary comparison,

The results provide a theoretical basis for the adapted Wepstein technique.
This theorstical basis brings to light the fact that successive over-
relaxation and the adapted Wegstein technique are based on same theoretical
background, A procedure based on estimating the maximum eicenvalue of

the method of successive displacements is used to make an approximation

of the relaxation factor for successive over-relaxation.

Prager, W., "Introduction to Basic FORTRAN Progrsmming and Numerical
Methods" Blaisdell Publishing Company, New York, 202 p., 1965

This book contains information on Aitken's é2method and Steffensen's
method for accelerating the convergence of iterative processes,

Price, P,H,, Slack, M.R,, "Stability and Accuracy of Numerical Solutions
of Heat Flow Equation,"” British Journal of Applied Physics, Vol. 3, No, 12
Dec, 1952, p. 379-84

The authors describe a new method of deriving stability conditioms.
Its application to heat conduction with variable thermal diffusivity
and heat transfer by convection at surface is treated. A new finite
di fference representation of surface heat flux equation is given,

Price, P.M,, and Slack, M.R,, "Effect of Latent Heat on Numerical
Solutions of leat Flow Equation," UBritish Journal of Applied Physics,
Vol. 5, No. 8, Aug. 1954, p, 285-7
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1.

92.

923,

94,

95,

96,

97,

The article treats the stability and accuracy of firite difference
solutions of the heat flow equation with latent heat cvolution, A
dimensionless group is develcped which soverns the -appeavance of in-
accuracies peculiar to numerical solutions invelving latent heat,

Ralston, A., Kilf, H.S., "Mathematical Methods of Digital Computer,”
John Wiley & Sons, Inc., New York, 1960

A section on the solutiorn of linear equations includes discussions of
fauss-Seidel iteration, the conjugate gradient method, Matrix Inversion

by Rank Annihilation, Matyix Inversion by Monte Carlo Methods - flow

chart and formula for estimating running time arc included for each method,

Round, G.F., Newton, R., snd Redberger, P.J., "Variable Mesh Size in
Iteration Methods of Solvimg Partiai Differential Equations and
Application to lleat Transfer," Chemical Engineering Progress
Syamposium Series, Vol. 58, No, 37, 1962, p. 29~42

The aiticle contains descriptions of some variablec mesh systems,
Computations are carried out for steady state heat transfer from a

buried cylindrical heat source. The same accuracy is achieved in a sherter
time than with a square mesh,

Saul'ev, V.K,, "Integration of Parabolic Equations by the Method of
Nets," translated from Russian; MacMillan, N.Y,, 1964, Russian publication
date 1960,

Thers ars two sections, the first dealing primarily with stability and
convergence snd the second dealing with implicit wmethods snd techaiques
for solving the algebraic equations. In the first section, a number of
mesh schemes are considered and compared, The second section gives a
fairly complete compendium of methods for solving linear algebraic systess.

Scarborough,J!'Numerical Mathematical Anslysis,”" S5th Edition, The Johns
Hopkins Press, Baltimore, 594, p., 1962

There is a chepter on partial differential equations which trests
difference quotients, difference equations, the solution of differential
equations by iteration, the inhersnt error in the solution of difference
equations, and relaxation methods,

Schenck #i,Jr,, "Fortran Methods in Heat Flow,” The Ronald Press €o.,,
N.Y., 289 p., 1963

As indicated by the title, the emphasis is on Fortran methods, with
l1ittle discussion of theory. Ths chapter on onesdimensional transient
flow follows the method of Dusinberre, but includes a brief discussion
of the relative merit of the Liebmann implicit method. Sample Fortran
programs are presented (using the Dusinberre method only.) The last
chapter of the book is & short discussion of accuracy and of solution
speed,

Schneider, P.J., "Conduction Heat Transfer," Addison-Wesley Publishing

Chapter 12 of this book treats the transient numerical solution of
conduction problems using the method of Dusinberre. A discussion of
stability and convergence is included,

Schuh,liyFinite Difference Method for Calculating Transient Temperature
Distributions Due to One-Dimensional Heat Flow in Simple and Composite
Bodies, "RAE-Lib/Trans-750, translated from VDI - Forschungshoft,

No, 452, 43. p.
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104

98,

99.

100,

101,

102,

103.

The finite difference method is modified for finding transient temperatures
due to heat flow normal or parallel to the surface of thick plates and
thin walled bodies of high conductance, Details of the method are
discussed extensively, The use of high speed computers for solving

finite difference equations is discussed,

Southwell, R.,V,, "The Quest for Accuracy in Computations Using Finite
Differences," Numerical Methods of Analysis in Engineering, p.65-74,
The MacMillan Company, New York, 1949,

The author cencludes that the best accuracy is obtained by reducing
the interval size rather than using higher order differsnce equations
and illustrates 2 labor saving device which facilitates "advance to &
finer net",

Southworth, R,W., DeLeeuw, S,L,, "Digital Computation and Numericsl
Methods," McGraw-Hill Book Co., N.Y., 508 p., 1965,

This book is intended for use as a textbook in 2 course combining
FORTRAN programming, numerical methods, and engineering applications,
Chapters 2, 3, and 4 deal with programming, and the remainder of book
is concerned with numerical methods., Prcblems are given at the end of
each chapter, and engineering applications appear throughout the text,

Stanton,R 'Numerical Metheds for Science and Engineering,"” Prentice-Hall,
Inc., Englewood Cliffs, N.J., 266 p., 1961

This book is intended as an undergraduate introduction to numerical ;

analysis, and is short on precise theory. It stresses desk calculator

methods. Included are discussions of ordinary finite differences, !

divided differences, and central diffevences. Thers is one chapter |

on the sclution of differential equations by differencs equation methods, !
]

Strang, W,G., "On the Order of Convergence of the Crank-Nicolson
Procedure," Journal of Mathematics and Physics, Vol, 38 p. 1l4l-44,
195960

The author discusses the Crank-Nicolson difference equaticn for Ups
Uyx * d(x,t). If the solution of the first boundary problem is
sufficiently smooth, the sclution of the difference equation converges
point-wise vwith error 0( (ax)2), if ot = 0 (AX). The proof makes use
of explicitly known eigenfunctions of the process,

Thomas, L.H,, "Numerical Solution of Partial Differential Equations
of Parabolic Type," Proceedings, Semiaar on Scientific Computation,
Nov,, 1949, p. 7178, International Business Machines Corp., New York,
N.Y, 1950

The article contains an expository trcatment of some problems in

the numerical soluticn of parabolic partial differential equations by
finite differences, There are three major topics: (A) stability of

the finite difference representation, (b) truncation errors, (c) round-
off errors, Methods for improving the stability and reducting truncation
errors are illustrated,

Thomas, L. H., "Stability of Solution of Partial Differential Equations,"
Rept., No, NOLR-1132, Naval Ord, Lzboratovry, White Oak, Md,, 1950, p.83-94
title of report is “Symposium on Theoretical Compressible Flow, 28 June 1949"
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104,

105,

106,

107,

108,

109,

The rsport is a survey of the present status of the art of stability
asalysis for finite difference squivaleats of differential equations

(both ordinsry and partial}, The euthor definss two types of instability,
short range and long range.

Travb, J.F., "Iterative Methods for the Solution of Equations,”
Prentice-Hall, Inc,, Englewocod Cliffs, N.J., 310 p., 1664,

A large number of iteration functions ars described and classified
accerding to the efficiency of the algorithm and the amount of computa-
tional lsbor involved, Stress is placed cn methods for constructing
iteration functions and on determining their chief properties. Much
attention is focused on the computational aspects of the topic.

Turner, L.R., "Improvement in the Convergence of Methods of Successive
Approximation,” Proceedings, Coeputation Seminar, Dec, 1949, p, 135-57
International Business Machines, Corp., New York, R.Y., 1951

An exposition on the weil known procedure for improving the convergence
of an iteration procedure when the steps form a geometric progression,

Turton, F.J., "The Errors in the Numerical Solution of Differential
Equations," The Philosophical Magazine, Vol. 28, p. 359-63, 1939

The article contains a detailed analysis of the errors caused by

(1) uncertainty of initial values, (2) intrinsic errors in formulae
used in the step by step method, (3) round-off errors in (2), (4)
random errors, The author's conclusion is that '"to insure no errors
to the desired number of significant figures,... requires that at
least two formulae be used, in which the intrinsic errors are sub.
stantially different, to check cach other."

Varga, R.S., "A Comparison of the Successive Overrelaxation Method and
Semi-Iterative Metho:ds Using Chebyshecv Polynomials," Journal of the
Society for Industrial and Applied Mathematics, Vol. 5, p. 39-46, 1957

The author shows that the successive overrelaxation method converges

at least as fast as any semisiterative method associated with the

Jacobi method, Gauss-Siedel method, or with the successive overrelaxation
method itself, Successive overrslaxation requires only the latest

iterate at any stage, whereas semi-iterative methods requirc the simultuneous
storage of several iterates; therefore, the author sees some advantage

in using successive overrelaxation, instcad of semi-iterative methods,

with high speed computers.

Wasow, ¥., "On the Accuwracy of Implicit Difference Approximations to
the Equation of ileat Flow," Tech. Summary Rept. No. MRC-TSR-2,
Contract DAll 022 ORD 2059, Math, Research Center, Univ, of Wisconsin,
Madison, Wisc,, 15 Apr, 1957, 22p. PB-167 605

The author discusses the convergence, stability and truncation error of

implicit difference approximations to the initial value problem defined by
theheat flow equation.

Wegstein, J.i,, "Accelerating Convergence of Iterative Methods:"
Communications of Computing Machinery, Vol. 1, No. 6, p. 9, 1958,

The article describes a method very similar to Aitken's §2 method.

It is emphasized that the method can cause convergence in normally
divergent cases. Several numerical examples are included.
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110,

111,

Wilkes, J.0,, "Chemical Engineering Workshop: Part I1l, Numerical
Methods for Partial Differential Equations,” paper presented at
ASEE annual meeting, Pullman, Wash,, June 1966

The author describes 3 types of finite difference approximations for
partisl differential equations, calied the forward, backward and central
difference types, The main part of the paper is a discussion of the
solution of a heat transfer problem using finite difrerences. The
FORTRAN II program ewmployed is included in full, as is a special
subroutine (Tridng) for solving the system of linear equations resulting
from application of the finite difference approximation,

Zonneveld, J.A., "Automatic Numerical Integration," Mathematical
Centre Tracts, No, 8, Mathematisch Centrum, Amsterdam, 1964, 110 p.

The author constructs a set of Runge-Kutta formulas suitable for automatic
adjustment of step size, The function being integrated is evaluated for
step size one or two additional times, and the size of the step is
adjusted according to this evaluation, during the integration process,
Alse included are six ALGOL 60 programs for the integration of first and
second order differential equations, and five numerical examples,
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Appendix D
BIBLIOGRAPHY BY CATEGORY
prepared by

University of Nevada
Contract N60530-67-C-0051
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Aitken, A.C,, 'Studiez in Practical Mathematics: VI, On the Factore
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Implicit Numerical Solution of Transient Heat Transfer Problems,*
Master's thesis, Rept, No, GA/PH/65-r-A, A,F. Institute of Technology,
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Appendix £

DERIVATION OF THE LAPLACE TRANSFORM SOLUTION
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DERIVATION OF THE LAPLACE TRANSFORM SOLUTION

This appendix is an application of the Laplace transform method

to the solution of the one-dimensional Fourier conduction equation for

a semi~infinite solid and for am insulated slab, each with a ramp-

function boundary condition.
SEMLINFINITE SOLID
The one~dimensional Fourier conduction equation is

et a-é—E at T=0,t=0

Q>

QL
|38

and for the conditions of Eq. 1, it becomes

d2

dX

]

I
a

N

and has the general solution,

T(X, s) = A exp(Vs/a X + B exp(~- ys/o X

Since the body is a semi-infinite solid, t + 0 as X + «
implying that

A=0
and the solution reduces to

T(X, s) = B exp(- /s/a X)

The coefrficient B must be determined from the surface conditions.

At X =0, tg = £(T) as shown in the following figure.
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TEMPERATURE, t = D
&
&3

) b ane—

-

TIME, T

The temperature of the bounding fluid expressed in terms of time, T, is

t
£(1) = T—f-{’l‘u('l‘) - (-—Tl) u(’I‘-—'I‘])] (5)
1

A heat balance at the surface yields

ks 280D ey - £0,m)] (6)

which can be expressed as

ht ‘ )
= 4 L e, @, ru(D)- (17, Ju{T-1 ) %)) %
Transforming Eq. 7 gives :
dT(0,s) . h Bte 11 exp(-Tys) :
- —— — 2 —— em— - i
ax T TO.8 T BP R S (8) ;
but :

QE%%L&l = ~ Bys/a, T(0,s) =B

Thus,
ht exp(-T.s)
h o T F 1 1
B Vs/ao + m B = KT 5T Ty
1 [ s

. htf 1 exp(~Tls) © 2
kT :

1| $2(VETa + /) s2(V3Ta + h/k)
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ht ¥ o
£ lexp(— Vs/o X) exp(- Vs/o_X) exp(-Tls) (10)

T = —
L fola + ik s (ysTa + h/k)

kll
The inverse Laplace transform of

exp(~- s/a X)
s( s/~ + hik)

2
k X 3k hy (b X ,h
- erfc(2 a) A exp{k X a(k) 'I‘] erfc(z\/o_l,lr+ X \/’&'—I‘)

The inverse Laplace transform of

exp(-vs/a X) 1
s(ys/o + h/k) s

is

is

T
. ex
h p
A=0

2
h h X h .
a LY ZJod ) dx 2
[k Xa(k) A] erfC(m TR ) . (12)
The inverse Laplace transform of

[exp(\/s/a PR b ]

s(Vs7a + h/k) s

is

k l erfc A dx
h 2¢/a( A-'I‘l)
A=0

~

2
k by 1 o BY 1o erte iy + BT
- Kj::() exp[k X + O‘(k) (x T)] erfu[z a()\'Tl)+ X (A 'I‘)] dx}

. [u(T—Tl)] (13)



T

RS Ty

¥y

Rz

e vn e AL - A s O A 4L

NWC TP 5143

Let

and the first term of Eq. 12 becones

2

X J4aT x25-2
/ erfc(vB) (- =548
Bzco

wvhich equals

2
X?. X~ /aT

-2
Ta -8 “{1-erfVvE)dg

RB=w

Integrating the preceeding integral by parts yields

2
T efrc(——}i—)— XVT/an exp(- X )

2vaT GaT
+ -)S-z— 2_ ) 8-1/2 exp(~R)d8
ba VT Joux? j4er

which, by letting = a2, becomes

X ST “\x* 2 ° 2
T erfc(———,—-)— XVT/2n exp(— —-—)-—- -——f exp(~a“)da
2val 4aT | 2a v a=X/ 2VaF

and the first term of Eq. 12 becomes

x> X x*
(T + -2-(;) erfc(m) =XVT/an exp(— m) (14)

The second term of Eaq. 12 becomes

T 2
. X h
Lo exp{x +a(%) A] erfc(m-i- -‘z\/oﬁ) dA
T 2
= exp(% X)j);o exp [a(%) A]{l - erf(z X +

g
x|z

p
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; Integrating by parts yields

1 1 (x> (h A% X . h

= (B-) exp(-‘; X) gexp[a(«i) T} erf.’c(z\/&T 1y \/a—'!‘)
; LR L 2 expl- « )dA

3 kvi P TNk P\7 T

: A=0

. T 2
o X b2 -3/2 X
;; W exp( m X) ﬁj;—_-o A exp (— lm)\)d'\} (15)
=’ Integrate the first integral in Egq. 15 by parts and

. )

3 -1/2 x2 _ bl

-/;=0 X exp(- lm).) d = /T exp( lmT)

Substituting in Eq. 15 gives

A2 2 y 2
% (—%) {exp{% X+ a(%) T] erfc(%ﬁ + % \/FF)-!- éﬁ -;-1: exp [-(me\/o?"')J

L X j: . 3?2 exp{-(‘z——"\/ﬁ—.f)z]dl ({-‘l + 1)} (16)
Let

Lo X

e

and Eq. 16 becomes

2 2
é (-:%) {exp[% X + a({-}) 'I‘] erfc(i—\,g——,f: + T}z M)

2
2h . X Xh X
+ i VoT exp [— T ] - (—~k + 1) e:rfc:(2 aT)} (17)

4 Summing Eg. 14 and 17 and multiplying by htg/ky determines the
temperature distribution for 0 < T < T3, which is

e rig g i

v
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v g o 8 s e vr o a e

Vil 1) ool el ]

Similarly, the temperature distribution for T > Ty 1s

t 2 2
- £ PSP U —=
E=7 {{T Tt (h) } erfc(ZdaT)

2 2
1 (k) h o . (bY" X . h
- = (h exp[i X+ a(k) T} erfc(zVET + 3 vET)

: 2 2
-t - X L%k 1k X
{[ T Tl) T2 T en g (h) | erfc_vETT:TIY]

AR (PN 1.\ AN IR N S =
n} oexply {3 ( Ty - er C_ZvETT:TE) o 1

INSULATED SLAB

Again starting with the one-dimensional Fourier conduction equation,
one sees that

Q
[ad
Qv
T

(20)

l
4
o]
o)
or
ct
]
N
-3
"
o

3

-3
Y]
£

and the Laplace transform is
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2 9’
41Ee) 8 pix,s) = 0
dx

A general solution is:
T(X,s) = A cosh ys/c X + B sinh vs/a X

(21)

(22)

The temperature of the bounding fluid expressed in terms of time, T,

is

t.
£(7) = ?E[m(r) - (T-Tl)u(T-T,)]
1 &)

A heat balance at the surface of the slab yields

ht
ac(0, 1) , hef0,T) _ _f{, S P -
- =3 + = le {u('r) ('r 'rl)u('r T]_}}

The Laplace transform of Eq. 24 is
ht {l exp(*Tlﬁ}

m

_dT{@,s) . h I
ax g T0.s) =

ot

but

Thus Eq. 25 becomes

h
BYsla t A=l s

htf [l exp(-Tls)}
lis s

(23)

(24)

(25)

(26)

dTil,s) _ 0, and from Eq. 22,

Since the slab is insulated at X = L, 9%

Vs/a (A sinh y/s/a L + B cosh {/s/a L) =0

Solving Eq. 26 and 27 simultaneously yields

A..

B kT, \Vs/a sinh V87u L + h/kyeosh vs/a L
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B = - Ef_ﬁ — sinhvs/ L 1 exp(-'[‘ls
le vs/a sinh vs/a L + h/k cesh ys7a L 52 ““‘“““‘Sz

Therefore,

T(X, 8) = htf coshys/a L coshVs/a X - sinhys/a L sinh vs/a X
4 = le vs/a sinhy/s/a L + h/k coshs/o L

. [}—2— ) expg—'l‘ls)} (28)
s s

which can be put in the following form:

£ cosh Vs/a (L ~ X) }

t
T(X, s) = T, |k/h 6/« sinh s/ L + cosh Vs/a L

1
. [L - 3%(23-?)} (29)
5 S

The inverse transform must be taken. A second-order pole exists
at s = 0, and an infinite number of gimple poles exist at the roots of

-E- s/a sinh vs/fa L = - cosh vs/a L (30)

or coth = -‘—;—Ex where A = i\/s/a L.

One can see from Eg. 29 that the inverse transform will consist
of two parts, one the inverse transform of

1 cosh ys/a (L - X) ) (31)
s | s(k/h ys7a sinhys/a L + coshysia L)§ °

the other part will have a similar inverse transform except that it
will be translated along the time axis bv Tl units.

First, the inverse transform of

cosh \/s/a' (L ~ X) (32)
s(k/hy/sfo sinh/s/a L + coshys/a L)
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will be located and then integrated from 0 < T < T.

The inverse transform may be calculated by the method of residues. The
residues of the simple poles mav be derived from

‘. ?(s) .
Ay T Ts exp s“T (33)
n=1
(%)
where gv is a ratio of polynomials.

q' = s 41k vVs/a sinh Vs/ac L + cosh v/s/a L
ds th

i
£

+[% Vs/o sinh s/a L + cosh Vs/a 1} (34)

The second term is zero since the two parts of the second term are
equated to determine the roots.

R PR

Performing the differentiation indicated in