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NOMENCLATURE

C Capacitance

g Acceleration due to gravity

h Film coefficient

L (1) Distance from surface to center of node, also

(2) thickness of insulated slab

T Transform variable

r Temperature of body under consideration

t Temperature of bounding fluid
f

X Distance from surface to point under consideration in
analytical solutions

a Thermal diffusivity

AX Thickness of node

p Density

T Time

T Time at end of ramp

v I
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FOREWORD

This report documents an investigation to fill an existing
gap between the theory and the application of finite difference
methods to transient thermal analyses. A methodology is developed
that provides a means of predicting and modifying the analytical
error associated with thermal response problems.
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INTRODUCTION

Uncritical application of finite-difference procedures for solving
transient aerodynamic heat-transfer problems has required 10 to 15
hours on the computer for each hour of actual flight. In addition, the
complexity of problem, e.g., the variety in geometry, materials of
construction, initial conditions, and boundary conditions, is such that

an estimate of the error inherent in the analysis is difficult.
Consequently, the introduction of errors of an intolerable magnitude
into the problem's solution by adjustment of the spatial increment and/
or time increment to minimize the excessive costs caused by long
computer runs is difficult to avoid and even more difficult to evaluate.
Of the many sources of potential significant error, such as inaccurate
flight data, atmospheric conditions, aerodynamic heat transfer
coefficient, and thermal properties, the error considered here is the
analytical error due to the nature of the finite-difference approxima-
tion of the partial differential equations of transient thermal
response. Because this error can be as great as 20% of the surface
temperature rise, the necessity of maintaining the analytical error
within acceptable limits is apparent.

The purpose of the investigation is to fill the existing gap
between theory and practice by developing a methodology that provides
the engineer with a means for predicting the analytical error

associated with a specific thermal response problem. This ability
allows the selection of spatial and time increments such that the
minimum computation time is assured for a predetermined allowable
analytical error limit. The benefits are two-fold: First, the
analytical error can be controlled within limits governed by the
problem under consideration; and second, the solution is obtained for
the least cost.

A brief review of the implicit and explicit forms of the finite
difference method for handling complex thermal transients would be in
order at this point. In both methods, a system of equations is
written describing the heat transfer processes taking place in a
geometty which has been divided into discrete nodes. For each node, an
energy balance is written: The sum of all forms of energy crossing

the node boundaries are equated to the time rate of change of the
heat capacity of the node. Thus, for both approaches, explicit and
implicit, a transient thermal problem generates a large number of
equations, specifically, one equation for each node in the system.
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The set of these equations is to be solved at every time step for the
temperature of each node in the system.

It is at this point that the difference between implicit and
explicit becomes apparent. In the explicit or forward-difference
method, the nodal temperature and the time rate of change of the node
capacitance are referenced to the beginning of each time step. Thus,
knowing all of the temperatures at the beginning of a time step for
the entire system of nodes, one can predict the temperature each node
will reach at the end of the time step. In this manner, each equation
has a single unknown, the node temperature at the end of the time step.
Thence comes the nomenclature explicit: each equation can be solved
explicitly for its single unknown temperature.

The implicit approach expresses the nodal temperatures and
references the time rate of change of the node capacitance to the end
of each time step. This approach also results in a system of equations,
one for each node in the system; but the individual equations in the
system rmay contain several unknowns. Thus, the system is no longer
explicit but is an implicit system in which the entire set of equations
must be solved simultaneously.

In brief, the limitation for the explicit method is in the length

of time step which may be taken before instability sets in. For
stability, the length of the time step is a function of the thinnest
dimension of any of the nodes in the system and, for practical problems,

can be as small as thousandths of a second. This reauirement can lead
to an exceedingly large number of time steps to solve practical
transient problems and can take an excessive amount of computer time.
On the other hand, the implicit method has no limiting time step
and has maximum stability compared to any of the other methods. A
thorough discussion of the stability characteristics of the implicit
and explicit methods is presented in the paper titled The Stability
of Three Finite Difference Methods of Solving for Transient
Temperatures by G.R. Gaumer. (See Entry 41, Appendix C).

In the one-dimensional problem shown by Fig. 1, the surface
undergoes some form of a boundary condition change, and an energy
balance is written for each of the nodes. The resulting system of
equations in which all nodal temperatures are referenced to the end of
the time step will form the implicit system. The next step is to solve
the resulting matrix for the nodal temperatures either by a direct
method such as the tridiagonal matrix solution or by an iterative
method such as Gauss-Seidel. After determining the nodal temperatures
at the end of a time step, a new set of equations is generated using
the same principles and arriving at a second matrix which, in turn,
will determine the temperatures at the end of the second time step.
This process is repeated for each succeeding time step. In making
comparisons of the effectiveness of several techniques for solving

2
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the matrix, referred to previously, it was necessary to program the
classical analytia l solution for an infinite plate. This program,
given in Appendix A for the convenience of the user, includes an
eigenvalue generator.

INSULATED

STETEMP RISE
1 2 3 4 5 6 7 8 INSULATED

FILM

COEFFICIENT h777 / 7777I777I777
INSULATED

FIG. 1. Nodal Network for an Insulated Plate.

To improve accuracy and to provide rapid solutions, some form of
compromise is necessary for intelligent use of the finite-difference
method. In general but not under all conditions, the finer the sub-
division of time steps in the time network or the finer the sub-

division of geometrical spaces, i.e., the thickness of each layer, the

closer the numerical analysis will come to approximating the analytical
solution. However, the finer time network and the finer the spatial
network for any given problem, the longer will be the computation time.
In the explicit method round-off errors can become significant. In the

implicit method, however, round-off errors are fairly well confined
to an individual time step, and any error that is transmitted to the

next time step is diffused among the nodes. If the user knows the
effect a given spatial network will have in terms of spatial-truncation
error and time-truncation error, a much more effective use of computer

time may be made. Furthermore, acceleration techniques may be used to

shorten the computer time needed. Round-off and truncation errors

as well as acceleration techniaues are discussed in Appendix B.

So that one can gain insight into the nature of the truncation
errors, Fig. 2 shows a true temperature-distance plot for two adjacent

nodes. Tangent to the true temperature curve are two lines, True
Slope 1-2 and True Slope 2-3. These lines represent the true slope of

the temperature curve at the midpoint betweer node one and node two and
at the midpoint between node two and node three. Compare these true

slopes with the linear approximations that are shown as dashed lines in
Figure 2; one sees that spatial-truncation error consists of the

difference between the true slope and the linear approximation of the
slope. Using this linear approximation of the temperature gradient
results in an error for the rate of change of energy stored in the

3
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node. This, in turn, causes an error in the prediction of the nodal
temperature at the end of the time step.

TRUE
SLOPE 1-2

TEMPERATURE LINEAR
SCALE APPROXIMATION

A A , TRUE

! SLOPE2-3

FIG. 2. Physical Concept of Spatial Truncation Error.

It has been found that by using the Fourier number and the Biot
number, a correlation of 'he spatial truncation error may be made
(Entry 7, Appendix C). In like manner, time truncation errors may also

be correlated.

Commonly, the error analysis of transient problems is based on
step-function boundary conditions; i.e., the driving potential undergoes
an instantaneous change at the beginning of the transient. In actual
aerodynamic heat transfer problems, step changes at the boundary are
seldom realized; changes occur over time periods of significant
duration. For this reason, ramp functions approximate the true
boundary condition changes of practical aerodynamic problems more
realistically than step functions do. Therefore, after the basic
analytical error analvsis is developed for step function changes at the
boundary, the analysis is extended to determine the effect of duration
and slope of ramp function boundary conditions on the spatial truncation
error.

Tile summary of a literature survey, made in the initial months of
this research effort, is included it this report as Appendix B. This
literature survey compares a number of papers concerned with the

various techniques for establishing iterative solutions, techniques for
determining the truncation errors, both spatial and time, and techniques

for accelerating iterative solutions. Appendix C is a bibliography on
the general subject of numerical solution for transient heat transfer

problems; Appendix D contains the same bibliography organized by
categories. ApTendix E is a derivation of the Laplace transform
solution of the one-dimensional Fourier conduction equation for a

semi-infinite solid (and for an insulated slab) with a ramp-function
boundary condition.
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MATRIX SOLUTION METHODS

Because the transient heat-transfer problems in this study are
one-dimensional, a variety of solutions to the resulting matrix are
available. For example, an iterative methods--Gauss-Seidel--and the
various acceleration routines which may be used with it; the Runge-
Kutta method; and a direct method utilizing the tridiagonal form of a
matrix (TRIDAG) are available. The direct method bypasses the
difficulty of convergence errors found in iterative solutions. As an
example J.O. Wilkes of the University of Michigan reports on a
solidification problem involving 11 nodes and 17 time steps for which
the IBM 7090 has an execution time of 1.8 seconds. (See Entry 110,
Appendix C.) Comparable problems using an iterative solution took an
average of 18.0 seconds for execution.

For nonlinear problems, a simple direct solution such as TRIDAG
is not applicable; therefore, a more general approach such as the
accelerated Gauss-Seidel using a constant acceleration factor (usually
referred to as over-relaxation) may be used. An alternative is to use
Gauss-Seidel with an acceleration technique such as the Wegstein or
the Steffensen methods.

A study of Steffensen's accelerating technique applied to a simple
algorithm indicated possibilities. However, when this technique was
used to accelerate the solution of a 20-node problem, the results were
either the same as could be expected from the regular Gauss-Seidel or
greater. The system did not seem to settle down even though the
frequency of application of the technique was varied.

The Wegstein method requires more computer storage space and more
computer operations than does the Steffensen method, but the Wegstein
method effectively reduces the number of iterations needed for
convergence. Appendix A presents Wegstein's basic equations and
incorporates the Wegstein method into the ONE-D program for use with the
Gauss.-Seidel iteration technique. A FORTRAN IV listing of this program
is given in Appendix A.

A note of caution: some acceleration techniques such as Steffensen
or Wegstein work very well on the algorithm type of iterative solution,
but when used on a system of equations, these techniques can actually
slow down the rate of convergence. For comparison purposes, a 20-node
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one-dimensional problem having a step input in the bounding fluid
temperature was devised. Straight Gauss-Seidel using a 1/100-degree
convergence limit took 46 iterations to determine the nodal temperatures
at the end of the first time step. An unrestrained acceleration
technique such as Wegstein's applied every third iteration caused such
divergence that the automatic program stop of 100 iterations was
reached. This difficulty was corrected by restricting the Wegstein
technique only to positive values of acceleration. Only 17 iterations
were required for convergence in a subsequent computer run using a
combination of 10 initial iterations of Gauss-Seidel without over-
relaxation, followed by the Wegstein acceleration method limited to
positive values only, and then three additional iterations of standard
Causs-Seidel. As a further experiment, a run with 10 Gauss-Seidel
over-relaxed iterations, followed by a Wegstein acceleration limited
to positive values only, followed by standard Gauss-Seidel alternating
with the Wegstein method took 20 iterations to converge the same
problem. Mixing combinations of various acceleration techniques should

be approached with cautior because some combinations actually increase
the number of iterations over that required by a single technique.

6
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SPATIAL., TIMF, AND TOTAL-TRUNCATION ERRORS

One of the most confusing problems facing the engineer in attempt-

ing to utilize finite differences to solve transient heat-transfer

problems is the determination of the spatial-network grid and the time

interval to take in establishing a time network for dealing with a

transient. In an effort to quantize this particular problem, the

available background material was gleaned from the literature. (See

Entry 7, 9 and 44 in Appendix B.) Truncation errors are caused by the

strong second derivatives inherent in the beginning of the transient

and near the surface of the geometry. The curves that are available

have been found to be quite successful in predicting spatial- and
time-truncation errors in problems consisting of homogeneous materials

having uniform thicknesses of the individual slices. Some of these

curves are given in Fig. 3, 4 and 5 in which the abscissa for the

truncation-error curves are the Fourier number (the thermal diffusivitv

times the time span from the beginning of the transient up to the

particular instant for which an error evaluation is desired, divided by
the square of the distance from the surface to where the error is being
evaluated). This family of carves is correlated by the Biot number (the
film coefficient at the surface of the geometry, times the distance from

the surface down to the point in question, divided by the thermal
conductivity of the material). The measurement of the error itself is
done in terms of the step-function temperature rise in the bounding
fluid at the beginning of the transient. It is of interest to note in

Fig. 3 that when the thickness of the slice is reduced, which is
proportional to L for the first node, the Fourier number and the Biot

number are both affected such that the spatial-truncation error is
reduced. However, it may be noted also that it is possible in a
Fourier number range from approximately 0 to 1.0 to reduce the thickness
of a slice and have the spatial-truncation error increase.

With respect to variations in Biot number, one can easily see

that the worst possible case occurs when the film coefficient at the
surface is infinite, and the errors can range as high as 13% of the
temperature rise in the bounding fluid. However, with decreasing values
of the film coefficient, reflected in decreasing values of Biot number,
the spatial-truncation errors are in turn decreased. As a result it is

possible for certain classes of problems, that the spatial-truncation
error will never get above 1 or 2% regardless of the thickness of the
slice.

7
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I FIG. 3. Spatial-Truncation Error for Nodes Adjacent to L:e Surface.

~In like manner, time-truncation errors can be evaluated using the
i curves shown in Fig. 4. Once again, the Fourier number is used as the

i abcissa for the curves, the Biot numbers for the family of curves, and
Sthe errors are e,.pressed on the ordinate as a percentage of the step- I

function temperature change in the bounding fluid at the beginning of
the transient. Once again, we see the effect of the Biot number; i.e.,
as the Biot number becomes smaller, the errors become smaller. In a
final evaluation, one sees in Fig. 5 that the errors are accumulative
and that the total error under the worst possible set of" circumstances
could be as high as 20% of the step function. One important difference
between the time-truncation-error curves and the spatial-truncation-
error curves should be realized. The time used in the Fourier number
for the time-truncation error curves is the time interval between the
beginning of the transient and the first evaluation of temperature in
the problem; i.e., the first time step. The time in the Fourier number
for the spatial-truncation error curves refers to the total time
interval from the beginning of the transient to the time at which an

rerror evaluation is made, regardless of how many time steps elapsed.
This means that the time- and spatial-truncation errors may be super-
imposed only for the first time step. It is also important to realize
that the distance, L, in the dimensionless groups of Fourier and Biot
numbers would be half the thickness of the node slice when considering
the first node adjacent to the surface and, subsequently, would be

8
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Node-First Time Step in Homogeneous Slab.
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three halves the thickness of one node when considering the errors for
the second node from the surface, five halves of the node thickness
when dealing with the third node from the surface, etc.

When dealing with problems in which layers of nonhomogeneous
materials are being considered, or in which a ramp function instead
of a step function occurs on the surface, or when a nonflat plate
geometry is encountered, the truncation errors are no longer exact.
However, in the practical sense, valuable guidance may be obtained
from these curves.

In considering the effect of successive nodes on spatial-truncation
errors going into depth from the surface in a homogeneous flat plate,
the trend is, in all cases, for the greatest truncation error to occur

in the node adjacent to the surface; and with each succeeding node,
the truncation error is reduced (Fig. 6). Generally, this reduction
in spatial-truncation error is quite drastic; by the time the third
or fourth node is reached, the truncation errors are of the order of
magnitude of 1% or less. One can see that time-truncation errors are
rapidly reduced if two or more time steps are utilized to complete the
first time interval (Fig. 7, 8, and 9). Also the time-truncation error
becomes less for successive nodes in depth (Fig. 10).

It is concluded that if the first time step is sized to keep the
time-truncation error within reasonable limits in a homogeneous
geometry, the time-truncation error for the nodes below the first
node will automatically have lower error levels.

-4

K, elow BlOT NUMBER -

LL-2
0

z
BlOT NUMBER 3.0

w

- 0

0 D
w

+21
0 0.50 1.00

FOURIER NUMBER, aTIL2

FIG. 6. Spatial-Truncation Error fot Second Node From

Surface.
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FIG. 7. Time-Truncation Error for Nodes Adjacent to the
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Surface; Four Time-Step Numerical Solution.
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FIG. 9. Time-Truncation Error for Nodes Adjacent to the
Surface; Ten Time-Step Numerical Solution.
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NUMERICAL ERRORS IN THIN-THICK GEOMETRIES

A recurring type of problem of considerable interest is the
transient thermal analysis of a two-layer geometry. The two layers
consist of a thin, highly conductive layer, such as aluminum, exposed
on one side to a bounding fluid and on the other side to a thick layer
of low-conducting material acting as an insulator. The questions to
be resolved are What are the numerical errors inherent in such a
geometrical system? and What procedure might be followed to keep the
errors to an acceptable level?

The truncation-error curves were prepared in much the same way
as those presented by Graybeal (Entry 44, Appendix C). However, a
somewhat different scheme was employed to obtain a reference solution.
Whereas an analytical solution was employed directly by Graybeal as
an errorless reference, such a solution was used indirectly here. This
indirect reference solution was taken from a tabulation of an

12
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analytical solution to the one-dimens~.onal conduction problem involving
a two-layer plate. 1 The tables were not used directly because the
results listed for each set of parameters present a limited coverage
of the time-space field, necessitated by a desire to offer solutions for
a large number of combinations of parameters, yet keep the report from
being excessively bulky. To obtain a usable reference solution, a set
of parameters was chosen corresponding to one section of the table
(a = 0.05); a finite-difference solution was prepared using these
parameters_ and also using very small AT and X. This solution was then
compared to the tabulated solution at points of correspondence. A
truncation error of less than 0.1% (based on the size of the step
change of temperature in the bounding fluid) was found at each point
checked, and this finite-difference so]ution was then used as the
standard for evaluating truncation error in other finite-difference
approximations employing larger AT amd AX. First, spatial-truncation
error only was introduced by increasinmg AX and holding AT at the
original small value, then evaluating spatial-truncation error for a
given AX by comparison with the reference solution. Then, with AX held
at the same value used in the reference solution, AT was varied to
give a solution containing time-trunaation error alone.

The problem considered here is one-dimensional conduction in a two-
layer composite slab heated on one face by convection from a fluid wh4 ch
undergoes a step change of temperature. The fluid and slab are
initially at the same uniform temperature, and the face of the slab not
in contact with the fluid is perfectly insulated. All physical proper-
ties are assumed constant.

Two cases were studied: in one, the thickness of the thin layer
next to the fluid was 5% of the tota:L thickness of the slab; in the

other, the thickness of the thin layer was 20%. The physical
properties of this layer correspond roughly to those of aluminum, and
the properties of the thick layer are similar to those of some common
insulating materials:

Properties Thin layer Thick laver

k, BTU/(hr-ft-°F) .............. 100 0.1

P, lb/(ft ................ 200 20

C, BTU/(lb-OF) ................ 0.25 0.25

1Naval Ordnance Test Station. Temperature Tables. Part 7, Vol. 1
and 2. Two-Layer Plate, One-Space Variable, Linear, by H. N. Browne, Jr.
and C. J. Thorn. China Lake, Calif. , NOTS, 1 March 1960. (NAVORD
Report 5562, Part 7; NOTS TP 2182, Vol. 1 and 2.)

13
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RESULTS

The spatial-truncation errors for the first node of the first layer
and the first and second node of the second layer for the thin-thick
geometry are plotted in Fig. 11.

FOURIER NUMBER, 2 TIL2

0.01 0.06 0.10 0.50 1.00 5.00
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-2toFIRST NOE,!
0 ECOND LAYER

2
-1

o:~~~ECN NODE,_. IRTNOE
m : "CON LAYER LYEcc 00 1

+1
10 5o 100 So

FOURIER NUMBERO T/L2

FIG. 11. Spatial-Truncation Error Vs. Fourier Number for
Selected Nodes in Thin-Thick Configurations.

These curves contain spatial-truncation errors for the worst case
considered: where the thin layer is represented by a single node, and
all nodes are the same size. The maximum spatial-truncation error in
the thin layer is 0.3%, while the maximum at the first node of the
second layer is -2.3%. This drops to a maximum of -1.0% at the sezond
node of the second layer.

It may be noted that the errors plotted in Fig. 11 are much smaller
than the errors encountered in the curves describing truncation errors
in homogeneous slabs: for example, a film coefficient of 1,000 and a
thermal conductivity of 25.

In the thin-thick case, approximations of real problems always
results in very small Biot numbers. For example, a 1/8-inch thick
layer of steel could, in the limit, form a single node and under
extreme circumstances, give rise to a Biot number of 0.2 (h - 1,000,
k = 25, L = 0.0625). The spatial-truncation error associated with
these small values of Biot number is less than 1% (Fig. 3).
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To sum up then, the curve in Fig. 11 labeled first node of the
first layer having only a fraction of a percent error certainly fits the
trend discovered in homogeneous slabs. In a similar fashion the curve
labeled first node second layer, the Biot number has a value of 7.5
based upon again a film coefficient of 50 and the thermal conductivity
of 0.1, which represents the insulation involved. Once again, comparing
this with the results for homogeneous slabs in Fig. 3, one sees that
the homogeneous slab would have spatial-truncation errors of approxi-
mately 10% for this Biot number; whereas in the thin-thick case, the
maximum error was under 2 1/2%. This is a logical extension of the
homogeneous material problem because the aluminum layer on the surface
acts as a buffer and tends to protect the insulating layer from the
extreme spatial-truncation errors that would occur if the insulation
were directly exposed to the bounding fluid. With reference to the
third curve in Fig. 11 (that is, the second node of the second layer
curve), its relationship to the Prst node of the second layer is
approximately the same as second nodes normally have in homogeneous
materials, as shown in Fig. 6. Thus, the data in Fig. 11 follows
the same trends as the data for homogeneous slabs.

The time-truncation errors for the thin-thick class of problem are
plotted in Fig. 12. The ordinate in Fig. 12 is the usual error
measured in percent of the step-function temperature change in the
bounding fluid, but the abscissa is the percent of the boundary

: temperature step-function change that equals the temperature change in

the first node of either the first or second layer that occurs in the
first time step. The time-truncation errors for a similar case
involving a homogeneous slab are also displayed in Fig. 12.

It is surprising to find that the thin-thick layer has somewhat
larger time-truncation errors than the homogeneous slab and at the
present time, no explanation is available. The curves in Fig. 12,
however, provide a very practical guide for those who are concerned
with time-truncation errors because the temperature response of the
first node of either the thin or the thick layer can be expressed as a
percent of the boundary temperature step-function change. A reasonable
criterion for limiting the time-function error at the beginning of a
transient is to ensure that the temperature change of the first node is
not greater than 20% of the step-function boundary temperature change
during the first time step. At the 20% level or below, all of the time-
truncation errors are less than 2%.
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RAMP-FUNCTION SPATIAL-TRUNCATION ERRORS

Thus far, only errors for step-funccion boundary temperature
changes have been considered. Since the ramp function is a closer
approximation to the actual bounding-fluid temperature variations, such
mathematical models of transient heat-transfer situations are more
realistic, and the system response should result in a lower spatial-
truncation error.

t As a starting point, two approaches were used to determine the
true temperature for use as a comparison basis for determining spatial-
truncation errors. The first approach employs successively smaller
and smaller time steps with smaller and smaller geometrical divisions
in numerical solution for a transient one-dimensional homogeneous heat
transfer problem. Thus an asymptotic approach to the true temperature
distribution was obtained. The other approach uses the Laplace
transform method in a classical analytical solution of the one-
dimensional Fourier transient-conduction equation. Both approaches are
successful, and a comparison of the results of the successive approxi-
mation method with the results from the analytical method is given in
Table 1.

TABLE 1. Comparisons of Numerical & Analytical Solutions
for Ramp Functions Boundary Conditions.

These data were generated by a problem having the following
specifications: Semi-infinite solid, 2500*F/sec on bounding
fluid. AX = 0.006 in; AT = 0.0002 sec; h = 106; a = 0.2.

Temperature, OF

Time, Node 1 Node 2 Node 3
Sec

Analytic Numerical Analytic Numerical Analytic Numerical

0.02 37.919 36.787 20.814 20.178 10.658 10.391
0.04 82.373 81.159 54.649 53.798 35.057 34.523
0.06 128.111 126.861 92.090 91.140 64.752 64.076
0.08 174.516 173.245 131.449 130.439 97.400 96.634
0.10 221.348 220.348 172.049 170.997 131.999 131.169
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The Laplace transform approach is summarized below; the complete
derivation is given in Appendix E.

The partial differential eauation for a one-dimensional transient
problem is

TT 2
t 02t()

t= temperature

T = time

The initial conditions are at T = 0, t = 0. From the Laplace transform
of Eq. 1,

2d2T s
= 0. (2)

dX 2

A general solution of this second order differential equation is

T = A exp(v%-/ X) + B exp(-v7a X) (3)

where A and B are constants. Since a semi-infinite geometry is under I
consideration, A = 0. Constant B may be found from the boundary
condition.

The bounding fluid temperature change is a ramp function (Fig. 13).

uIf

w
'f '

T-
TIME. T

FI(G. 13. Bounding Fluid Temperature Change.
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At the surface, X 0.

-k dtY(O ) h[f(T) - t(O, T)I. (4)
dT

If the Laplace transform of Eq. 4 is taken and if - (O,s) and
dX

T(O,s) are evaluated from Eq. 3 the constant B may be expressed as

htf [I - exp(-T IS) 
(5

T1 [S ( /7a + h/k)]

Thus,

htlep(Vs/aX) 11- x(TS. .. . .... (6)

kTI  2(Vs7- + h/k)

The inverse transform of Eq. 6 is

t f = + X 2 + ( ) r) c

x Xk + T erfc( +

tll[ 1 + 2 a +ah-a hef

- (-) exp X + a( T erfc ( + v h

FT 2k\[x 2 v 12
(+ iexpj7cizj 0 < T~ s 7

+- +- -- erfcI c +
Th 2a hJ va t l 2/a1
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e ex p 1L + -, T2] e f [ ~ 2 . ~ + ~ ( ~ )

kk +X

+ L-T (X t Lk exp( [ X T 2T)1 T > T, (8)

Note that since there is a discontinuity at time TI, there are two
solutions: one for T greater than zero, but equal to or less than Ti:
and another for T greater than TI. It may be further noted that at
time greater than TI, the first portion of the equation is the same as
the enuation for time less than Tl; and that the second portion of the
equation is similar to the first portion except T is replaced by
(T- Th). This, in effect, applies a negative slope at time T1 as is
illustr'ted in Fig. 14.

W/
/

/
/

,,- /

- At

Z/

0 I

I-I

TT

TIME

FIG. 14. Synthesis of Analytical Solution

Figure 14 illustrates the concept of subtracting At, which develops
after TV , from fluid temperature which would have developed after T, if

the ramp had continued.
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The effect is that the first portion of Eq. 8 will produce node
temperatures analogous to an extension of the ramp after TI and the
last half of Eq. 8 will produce a At generated in the nodes after TI.

In similar manner, the analytical solution for the case of a ramp-
function temperature change in the bounding fluid adjacent to the
surface of an insulated slab was derived. The final eauation for the
insulated slab is

00 expsin A co
Ti { 4+2Ln n s~n 2) }LX )

t tf T_ (9)___

n=l n 2n + sin 2 n)

A complete derivation of Eq. 9 is given in Appendix E.

Computer programs were coded in FORTRAN for both of the ramp-
function analytical solutions, the semi-infinite solid and the insulated
slab. FORTRAN IV listings for these two programs are included in
Appendix A of this report. These analytical solutions were used to
calculate the temperatures for comparison with the temperatures for
equivalent ramp-function problems solved by numerical methods. The
differences between results of these two methods in terms of temperature
were the spatial-truncation errors sought. The FORTRAN IV listing for
the numerical method computer program--coded such that either step-
function temperature rise in the bounding fluid or a ramp-function

temperature rise in the he bounding fluid can be specified--is given in
Appendix A. The attempt to make the same type of correlation that was
successful in the step-function-error curve analysis failed, as shown in
Fig. 15. That is, the assumptions that the errors could be correlated
by the overall temperature rise in the fluid and that a further correla-
tion would be available based upon the value of the Biot number is
incorrect; the Biot number does not correlate the spatial-truncation
error for ramp-function boundary conditions. Figure 16 shows that to
correlate various ramp functions for the same Biot number using the
overall temperature rise in the bounding fluid as the basis for percent
error is not successful.

A correlation using the current fluid temperature rise as the basis
for establishing the percent spatial-truncation error causes all the
ramp-function errors to fall on the same curve (Fig. 17). The data
presented in Fig. 17 were obtained from runs using a Zong ramp. A
long ramp is one in which the maximum spatial-truncation error occurs
well before the end of the ramp is reached. Of interest in Fig. 17
is the maximum error of about -9% which occurs at a Fourier number of
about 2.0. These values are to be compared with the -13% error at a
Fourier number of about 0.9 for the step function boundary condition.
Maximum error is reduced because of the reduced rate of change at the
model boundary, and the Fourier number is increased due to the increased
time to reach terminal fluid temperatures.
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Using the current fluid temperature approach, an investigation was
made in which the ramp temperature rise in the bounding fluid was
completed before any spatial-truncation errors could develop in the
first node. This situation is termed an ultra-short ramp. The ultra-
short ramp curve is shown in Fig. 18; the dotted line represents the
equivalent spatial-truncation error curve for a step-function

temperature rise in the bounding fluid. Again, the ramp-function
error curve is slightly delayed compared to the step-function error
curve.

A further study, graphed in Fig. 19, shows the result when the end
of the ramp occurs during the development of the spatial-truncation
error, termed a short ramp. The arrow in Fig. 19 indicates the time of
which the end of the ramp occurs; after the end of the ramp, a typical
step-function curve develops. Thus Fig. 19 is an excellent example of
how the nodal system shifts from a ramp-function error response to a
step-function errot response and how the Fourier number for the maximum
error is increased-due to the ramp-function effect,

In Fig. 20, the arrows again indicate the Fourier number corre-
sponding to the end of the ramp temperature rise in the bounding fluid.
For these curves the end of the ramp occurs shortly after the maximum
spatial truncation error occurs. It may be seen that after the end of
the ramp, the individual runs exhibit small increases in error showing
a residual tendency to respond in a step function fashion.

These combined data on one set of coordinates are shown in Fig. 21,
the dotted line represents the equivalent step-function error curve and
the solid lines represent short-ramp functions and Zong-ramp functions.
Of interest are the bumps or departures (dashed lines) visible in the
short-ramp functions. These departures represent a progression of
error increases that occur when the ramp portion of the rise in the
bounding temperature ceases before the maximum spatial-truncation error
occurs. At the end of the ramp, the error rapidly climbs toward the
levels exhibited by a step-function rise in bounding fluid temperature.
In this figure the long-ramp function (a ramp in which the maximum
spatial-truncation error occurs while the ramp is still in progress)
properly defines the error expressed as percent of current temperature
rise in the bounding fluid. For low Biot numbers, it makes little
practical difference whether or not a ramp function or a step function
occurs in the bounding fluid because spatial-truncation errors for low
Biot numbers are small in either case. As an example, the maximum
possible spatial-truncation error is 2.2% for a Biot number of 0.5.

Whether or not a given problem has a short- or a long-ramp bounding
fluid temperature rise is determined by the Fourier number (CT/L 2).
Since the maximum error for all cases falls between Fourier numbers of
0.9 and 2.0, node thicknesses can be chosen sufficiently small to force
the Fourier number to a value such that the criteria for a long
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FIG. 21. Spatial-Truncation Error Vs. Fourier Number. f
ramp exists. Conversely, by choosing a sufficiently large value for
node thicknesses, the Fourier number will be less than 0.1 and the

conditions of the short-ramp function can be produced.

As previously noted, the analytical solution for the ramp-function

problem shows that the temperatures after the end of the ramp can be
calculated by subtracting a At equal to the temperature rise from time
zero for a time increment equal to the elapsed time after the end of the

ramp from the temperature generated if the ramp were to continue
indefinitely. To determine the temperatures after T1 (the time

representing the end of the ramp temperature rise of the bounding fluid),
successive temperature responses are generated as if the ramp were

continuing indefinitely. However, to correct for the fact that the

ramp did cease at TI, the analytical solution subtracts the values of a

temperature response generated from time zero by using a time increment

equal to the actual time increment after the end of the ramp.

If this approach is valid in the analytical solution, it should be
valid in the equivalent numerical solution. Starting with the numerical

temperature calculation as a function of time for a given ramp-function
problem, extend the generation of nodal temperatures for an indefinitely
long ramp by merely reversing the subtraction procedure outlined in the
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analytical solution. That is, add the temperature rise found for a time
increment after time zero to the temperature for a time equal to the
time at the end of the ramp plus the time increment. Thus an extension
of a ramp is synthesized by calculating the extensions from the single
ramp run. This extended run was checked by an independent numerical
run for the extended ramp and the two results were identical. Thus with
a single computer run, ramps of any length can be synthesized.

A further examination of the analytical solution reveals that the
final fluid temperature divided by the time length of the ramp is the
controlling factor in the calculation of nodal temperatures. In other
words, the crucial variable in determining node temperatures is the
time slope of the temperature rise in the bounding fluid. Thus to
calculate temperature responses for other time slopes, the ratio of
the new slope to the old slope multiplied by the temperature rise of

each node in the system would provide the correct node temperature rises
for the new slope. For example, if an analytical solution for all the
node temperatures caused by a fluid temperature rise of 2500 degrees
per second has been calculated, node temperatures for a slope of 250
degrees per second may be determined by multiplying the node tempera-
ture rises from the 2500-degree-per-second results 0.1. Thus for any
given problem, the node temperatures for the analytical solution may be
found by multiplying each node temperature rise by the ratio of the new
slope to the old slope.

It-seemed reasonable that if temperature responses in the nodes
could be synthesized for the analytical solutions by multiplying
temperature responses by ratios of ramp slopes, then a similar

synthesis method should prove valid for the numerical solution. Thus
a number of runs for the same geometrical problem were made such that
the only variable was the ramp slope. The length of the ramp in each
case was held constant. As was expected the numerical results from this
series of runs were all exactly proportional to the ratio of ramp slopes
of temperature in the bounding fluid.

By combining these two separate syntlesis methods, it is now
possible for a one-dimensional equal-node geometry and given material
properties to synthesize from a single numerical run what the node
numerical temperature responses will 

be for either a longer or shorter

ramp time and for any variation in ramp slope.

It may be noted that regardless of the ramp slope, the basic error
is the same (Fig. 21). Whether or not the ramp is 25 or 2500 degrees
per second, the percent error is a function of Fourier number only. It
should be remembered, however, that the percentage error listed in Fig.
21 is a percentage of the current fluid temperature. Therefore, the
absolute error in the 2500-degree-per-second ramp will be one hundred
times the absolute value of the error in the 25-degrees-per-second
ramp.
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DELTA-FIRST-DERIVATIVE CORRELATION

WITH SPATIAL-TRUNCATION ERROR

The possibility of establishing a correlation between the factors
causing a spatial-truncation error and the error itself is of interest.
The use of such a correlation would allow the computer to make a
numerical calculation of eitner the second derivative or a change in
the first derivative to determine the spatial-truncation error. This
approach might be useful in practical, multilayer, three-dimensional
problems.

It was first believed that an evaluation of the second derivative
would be fruitful. Upon making some calculations of the second
derivative during the early stages of a transient, it was realized that
the second derivative was auite sensitive to the choice of the thickness
of the individual nodes. In other words, as an increasingly thicker
AX is specified, the nodes become increasingly less responsive to the
input of energy, and the second derivative for the same transient has
progressively smaller numerical values as AX is increased.

It was at this point that the decision was made to see if a
difference in the first derivatives might be less sensitive to the
effect of increasing AX. Calculations determining the magnitude of the
first derivatives for the first node and the second node seemed to
support the assumption that the change in first derivatives might be
considerably less sensitive to node thickness than the numerical second
derivative under the same conditions. The calculation of the first
derivative of the surface node is made by (1) taking the temperature of
the surface, (2) subtracting the temperature of the first node, and
(3) dividing this difference by the distance from the surface to the
center of the first node. The first derivative of the second node is
made by (1) taking the temperature of the first node and (2) subtracting
the temperature of the second node, and (3) then dividing the result
by the distance between the first and second node centers. The delta-
first-derivative is the difference between the two first derivatives.
A plot of this delta-first-derivative as a function of Fourier number is
shown in Fig. 22. The delta-first-derivative starts as a large value
for time zero an'd progressively reduces to smaller values as time
increases. Furnt r thought suggested that the spatial-truncation
error-response curve shape, i.e., a maximum error around a Fourier
number of 1, could be developed for the delta-first-derivative data.
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The absolute values of the temperatures during the early portions of
the transient are quite small. Thus, the effect of a large change
in delta-first-derivatives would be relatively small when multiplied by
the small temperature rise. To compensate for the large delta-first-
derivatives and for the small temperature rises in the early portion
of the transient, these two factors were multiplied together to form a
correlation number. Figure 23 shows the result of plotting this
correlation number versus the Fourier number. For comparison purposes
the spatial-truncation error expressed as a percentage of the step
function in the bounding fluid is plotted as a dotted line. The
Fourier number, at which a maximum occurred in the correlation number,
coincides almost exactly with the maximum Fourier number for the
spatial-truncation error curve.

Unfortunately, at the present time, there is not a good correlation
in the values of the correlation number with respect to the percentage
values of the spatial-truncation error curve. Presumably, this short-
coming of the present correlation could be overcome in a practical
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COMiPuter program wherein the correlation numbers could be generated

throughout the transient. After the coputer had finished calculatingI;the entire transiqent, a subtoutine could cause the computer to go back
and match the proporti~onal correlation number curve with a spatial-
truncation error curve, and to print appropriate temperature corrections
at the various time steps. This appeara to be a fruitful area for
further work which could result in a generalized error treatment,
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PROGRAMMED ERROR PRINTOUT AND OPTIMIZATION

ERROR PRINTOUT

The ONE-D program contains a section that will compute the spatial-
and time-truncation errors. Sufficient data have not been collected at
this time to allow a similar error analysis for multilayer slabs. Some
data are presented in Fig. 11 and 12.

Since it would take an infinite number of error curves similar
to those in Fig. 3 and 4 to cover all possible nodal subdivisions
and time increments, the error analysis can only be approximate.

Data from the error curves for Biot numbers of -, 10, 3, 1 and
0.5 were used in a Chebyshev-polynomial curve fitting program that
converted the Chebyshev series to its equivalent power series. The
power series is of the form,

j :aM
im

m =IA j

j = 0

A 10-degree polynomial was used to fit the spatial error curves and a
6-degree polynomial for the time-truncation error curves. The
coefficients for the power series are included with the ONE-D program,
and are listed in Appendix A.

The power series are used to calculate the spatial-truncation error
for a Fourier number between 0.25 and 7.0 except for Biot number of 0.5,
where the Fourier number range is 0.75 through 7.0. For Fourier numbers
less than 0.25 or 0.75, which ever the case may be, a value of 2.5% for
the spatial error is printed. For Fourier numbers greater than 7.0, a
value of -1.3% for the spatial error is printed.

In the case of the time-truncation error, the power series are used
for Fourier numbers between 0.0 and 10.0. For Fourier numbers greater
than 10.0, the Fourier number is printed along with a suggestion that
the time increment (DTAU) be reduced.
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The error program tests the Biot number against the Biot numbers
for the error curves used. Any Biot number falling between the
established numbers is replaced by the next higher number, and the
error is calculated on that basis.

The error printout routine produces an error printout at each
time step and provides an option for the user to apply the error print-
out to ramp functions. The spatial-truncation errors in ramp-function
temperature responses in bounding fluids have been incorporated in the
error printout. The base error curve for the long ramp has been
estabtished in terms of the Chebyshev series as a function of Fourier
number and is stored in the subroutine for error printout. Thus in
ramp-function cases where a long ramp is encountered, the user will
receive a printout of the number of degrees Fahrenheit due to the
spatial-truncation error in the first node. For ramps having lengths
shorter than the long ramp, that is, for all ramps having Fourier
numbers of less than five at the end of the ramp, the program is so
devised that up to the end of the ramp, the program will print errors
from the base curve. After the end of the ramp, the program will
automatically shift over to the spatial-truncation error curve forming
the envelope for the post-ramp deviations, as seen in Fig. 21.

A FORTRAN listing of the computer program for error printout is
included in Appendix A. A

AUTOMATIC TIME-STEP GENERATOR

Quite often the user of a transient heat-transfer computer program
does not have an accurate idea of a time step to use to minimize time-

truncation errors at the beginning of transient. In addition, the user
may not know how many time steps to specify to completely cover the
transient. In some caces, the user can over specify the number of time
steps to be used and waste computer time by calling for printouts of
temperatures after the transient has been completed; or conversely, and

even worse, the user can specify only a fraction of the time steps
necessary to complete the transient and thus be forced to go back and
rerun the problem, with the resulting increased expense and delay before
obtaining the results. Thus, if an automatic time-step generator were
available that would keep the time-truncation errors within pre-
determined limits and would cause the program to cease generating
temperature printouts when the transient had completed a predetermined
level of response, a considerable savings in time and improvement of
accuracy could result. To this end, an automatic time-step generator
has been developed. Briefly, the basis for this routine is that the
machine generates the first time step based upon the level of accuracy
the user desires, as reflected in the Fourier number. Once the first
time step has thus been determined, the program can then proceed at
periodic time intervals to test each of three nodes specified: First,
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a node adjacent to the surface; second, a node at an intermediate level,
and third, a node at the deepest portion of the geometry. The test that
the program runs is to determine the temperature change for each of the
three nodes during the time step. If this number of degrees is less
than 0.5% of the overall temperature -rise in the bounding fluid for the
transient, the program will automatically double the length of time for
the succeeding time step. If the user so desires, the percentage that
is used can be changed. The final control of the program will permitthe user to specify the terminal temperature in any node desired.

4
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ONE-D ACCELERATION OF THREE-DIMENSIONAL
TRANSIENT PROBLEMS

The more complex three-dimensional heat-transfer problems involv-
ing very slow convergence pose the problems of excessive machine time
and possible inaccuracies due to the convergence characteristics of
the iterative processes used. These iterative processes depend upon
some prescribed limit for termination, and the value of this iteration
limit for maximizing accuracy and for minimizing machine time is not
known a priori. To reduce machine time and to have less dependence
upon the sensitivity of the iteration limit, a chain of nodes could be
established in a psuedo ONE-D pattern extending from the surface of the
three-dimensional geometry to the deepest portion of the geometry.
These chains of nodes could be solved directly and could establish a
temperature field as the beginning point for a computer program for
three-dimensional thermal response, THT-B. This iterative process
would then be reduced to essentially lateral heat transfer and, in many
cases, be capable of convergence to the final solution within a few
iterations. Preliminary work on this approach consisted of establishing
a very slowly converging two-dimensional model. Temperatures for all
nodes are evaluated at the beginning of each time step by the separate
application of the one-dimensional TRIDAG technique to two columns of
nodes. The entire temperature field of the model is then solved by
using the Gauss-Seidel method. The results are summarized in Table 2.
These preliminary results indicate that it may be profitable, from the
dual standpoint of accuracy and reduction in machine time, to establish
a subroutine wherein the user may elect in specific three-dimensional
problems to establish one-dimensional chains of nodes for which a
tridiagonal solution would automatically be used at the beginning of
each time step to establish the approximate temperature field before an
iterative technique is utilized.
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TABLE 2. Comparison of Results of the THT-B Computer Program
With Those of the THT-B and the ONE-D Programs Combined.

Inftal e Thermal Nuzbcr
Run tep., . atfon conduct vity. k Teperature, Fiter

ONE-D-I 0 600.0 ... 1.0 ... 938.50 ... 141.86 ... 21.71 .,. 13.60 ...

C:;t-D-2 0 600.0 ... 1.00. 93... . . .. ... 135.22 ... 19.20 ... 12.03 ... ...

600.0 0.1 1.00 937.41 130.18 14.4 7.55

T14-H-l 0 1.05 937.95 131.65 14.85 7.75 225

THT-B-2 0 600.0 0.1 1.00 937.212 128.17 13.817.08 220
1.5 1.O0 .1 3 7. 134.44 17 15.398 .11 .

T1T-8-3 0 6"00.0 0.1 1.05 938.13 9134.4 15.39 8.11 228

1.05 I 938.50 141.60 21.62 13.52T31r-B-4 0 600.0 0.001 1.05 938.50 141.80 21.62 13.52 628

THT-K-S . 0 600.1 0.001 1.00 937.77 137.22 20.33 12.58 614
1.05 938.32 139.81 20.81 12.89

THToB-6 From 1.00 937.72 135.24 19.60 12.04
O17 --6 0.1 0.001 1.05 938.65 141.89 21.71 13.61 3

TU"-8-7 From 600.! 0.001 1.00 937.76 137.24 20.40 12.65 129
ON1c- 0 1.05 938.31 19.88 20.92 12.99

1.00 937.76 137.19 20.32 13.58 61'
THT-8-8 0 600.0 0.001 1.05 1 938.31 139.79 20.81 1 12.88

T.TB-9 From 1.00 937,58 135.29 19.62 12.07
ONE-D 600.0 0.1 1.05 141.80 21.69 13.57
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A

SUMMARY AND CONCLUSIONS

To summarize the work described in this report, all of the
component projects were directed (1) to improve the accuracy of the
transient numberical solutions currently available, and (2) to reduce
the machine time necessary for obtaining accurate transient-temperature
histories.

This study, consisting of various projects devcted to different
aspects of numerical solutions of transient heat-transfer problems, has
arrived at an evaluation of spatial- and time-truncation errors for
homogeneous slabs using uniform node spacing and being exposeu to
bounding fluids that have either a step-function or a ramp-function
change in temperature. The errors involved in thin-thick geometries
of a thin layer of highly conductive material in contact with a thick
layer of insulating miatrial are presented. With the information
provided by the curves, a user can ensure that the accuracy of his
transient temperature analysis and design will fall within any pre-
determined level of accuracy. Whenever possible, the curves reflect
the worst possible case; therefore, in practical problems where
conditions not as severe as the study conditions occur, a conservative
evaluation of the errors will automatically result. With respect to the
speeding-up of the solutions, particularly with regard to computer time
used, several acceleration techniques are presented with some evaluation
as to their effectiveness. In addition, a direct solution applicable
to one-dimensional problems is provided that reduces computer solution
time when compared to the usual iterative solutions. As a fringe
benefit of this study, a number of the small computer programs used in
the error study, acceleration and other portions of the study, have been
combined into one generalized transient heat-transfer one-dimensional
program titled, ONE-D. This generalized program should prove to be of
considerable help to the heat-transfer transient designer, for a
number of options are available.

By examining the error response of ramp functions, the user now has

a mathematical model that is considerably closer to practical problems
than is the step-function model previously used. The error printout
response both to the step function and to the ramp function at the
choice of the user. The principle of utilizing the ONE-D solution for
improving both the accuracy and the machine time aspects of slowly
converging three-dimensional programs will be beneficial to the user.
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In like manner, the automatic time-step generator will also afford the

user convenience, accuracy and reduced machine time. The correlation
of the delta-first-derivative with spatial-truncation error may prove
to be the basis for a generalized error treatment in which the mathe-
matical model will be the problem reduced to numerical terms instead
of modeling real problems with the one-dimensional homogeneous equal
AX geometry.

In conclusion, the user is now in a position (1) to define much
more accurately the areas of real transient heat-transfer problems in
which error may be considerable; (2) to change his input data to make
sure that his results are reasonably accurate; and (3) to make
maximum effective use of the transient heat-transfer programs available
utilizing the techniques outlined here such as the ONE-D acceleration
and the automatic time-step generator.
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Section 1

GENERAL HEAT-TRANSFER PROGRAM "ONE-D" AS APPLIED
TO STEP-FUNCTION BOUNDARY CONDITIONS

A number of specialized small computer programs were developed in
the course of this study to investigate various aspects of the step-
function boundary conditions. These small programs, e.g., error
printout, iteration-acceleration method, direct solutions, spatial-
and time-truncation error, and thin-thick geometries, were combined
into a single computer program called "ONE-D", coded in FORTRAN for
the IBM 1620 computer.

This program is capable of handling a one-dimensional problem of
5ifty nodes; however, the number of nodes may be increased merely by
changing the DIMENSION statement. The equations in the program are set
up such that one surface of the slab is exposed to a fluid while the
ocher surface of the slab is insulated.

The program contains a number of options that may be called by
the user. As an example, the program can be used for a composite slab,

made up of three materials, as well as for a homogeneous slab. The
boundary conditions of fluid temperature distribution of the slab can
be included in the input or can be considered constant. The solution
of the eauations in the program can be accomplished in a number of ways
such as Gauss-Seidel, accelerated Gauss-Seidel, or TRIDAG, a direct
solution for tridiagonal matrices.

CONTROL VARIABLES

The following variable names are used for the various options:

KODE The variable name KODE is used to determine if the initial
temperature of the body is constant or variable. If KODE
is 1, the initial temperature is constant. If KODE is not 1,
then the initial temperature must be specified for each node.
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KODEl The variable name KODEl is used to dstermine if the fluid
temperature and film coefficient are constant or variable.
If KODEI is 1, the fluid temperature and film coefficient
are constant. If KODEl is not 1, then the fluid temperature
and film coefficient for 21 values of time must be specified
in the input.

SELl The variable name SELl is used to determine if equations are
solved by an iterative method or by Tridag. If SELl is 1,
the solution is iterative. If SELl is not 1, then Tridag
is used.

SEL2 The variable name SEL2 is used to determine the type if
iterative solution to be used. If SEL2 is 1, then regular
Gauss-Seidel iteration is used. If SEL2 is not 1, then
accelerated Gauss-Seidel is used.

A comparison of NODES1 and NODES determines whether the slab is

homogeneous or multilayer. If NODES1 equals NODES, the slab is homo-

geneous, and the properties only of the first layer are read. Node-

spacing within a layer must be equal, but the node-spacing of the
different layers need not be the same. This allows for small node-
spacing in thin layers and larger node-spacing in thick layers.

Provisions have been made to allow for contact resistance between

layers or between nodes. The variable ZH is used for this purpose.

ZHl is used as the conductance between the nodes of the three layers.

ZH2 is the conductance between layer 1 and layer 2, while ZH3 is the

conductance between layer 2 and layer 3.

The other variable names are defined at the beginning of the

program listing.

Two matrix methods, iterative and tridiagonal are used in this

study to solve the equations formed by the heat balance for each node

in the slab.

The program contains two sections that use the iterative method.

Section 1 uses regular Gauss-Seidel iteration to solve the set of

simultaneous equations. Section 2 uses Gauss-Seidel iteration with
either or both acceleration techniques, Wegstein and constant

acceleration factor. The respective sections in the program listing

are noted with comment cards.

The Wegstein technique causes the programming to be more complex

than either TRIDAG or regular Gauss-Seidel since the temperatures for
all nodes for the latest three iterations must be stored. In the
Wegstein technique the following general equations are used:
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T " =T + Q(T n- _ Tn)

where

T = the accelerated temperature for the nth iteration -of any
node

Tn  = the temperature for the nth iteration

T = the temperature for the previous iteration, and

Tn _ n-i

Tn- 1  T n-2

A
A-i

Values of Q are negative since values of A are restricted to O<A<l to
insure only positive values of acceleration. As A approaches 1, the
value of Q can become quite large. Therefore Q is restricted to a
maximum value of 100.

The Wegstein technique is applied to each node, so individual
values of A and Q must be calculated. The alternative is to apply a
constant acceleration factor to all nodes; this is done by using the
variable FACTOR. The variable FACTOR is used in the same manner as is
Q; therefore, it should be negative. Note that if FACTOR is zero,
there is no acceleration; thus regular Gauss-Seidel results. The
regular Gauss-Seidel section of the ONE-D program could have been
eliminated and the FACTOR routine substituted by setting FACTOR = 0,
but it was more convenient to include it in the program when accelera-
tion study runs were made.

In the program a constant acceleration factor, FACTOR, is applied
to all nodes until ISTOF is reached. NOGS iterations of Gauss-Seidel
are made until 1APPLY is reached; at which iteration, the Wegstein
technique is applied. The Wegstein technique is repeated after the
interval INTER.

If the Wegstein technique is applied too soon or too often, the
solution may be slowed down. Past experience has shown that the
initial application should be made on about the iteration which is
proportionate in number to the depth of the deepest node from the
boundary. For example, in the 20-node problem, the initial application
of the Wegstein technique should be on about the tenth iteration. The
criterion suggested for frequency of application of the technique is
given as about one-half the number of iterations used for the initial
application of acceleration.
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By using proper values of the variables FACTOR, ISTOP, NOGS, and
INTER, it is possible to reduce the number of iterations compared to

Gauss-Seidel by as much as 63%. Obviously there is a large number of
combinations possible, some of-which are undesirable. If a constant
acceleration factor is to be used without Wegstein acceleration, the
literature indicates that FACTOR should be between 0 and -1, possibly
-0.5 or -0.6. When used with Wegstein, FACTOR may be a larger numerical
number but still negative. From a series of twelve computer rnis made
on the sample 20-node problem, it was found that values from -11.4 to
-1.5 for FACTOR gave the minimum number of iterations.

Results of the 20-node problem with constant initial temperature,
constant fluid temperature, and film coefficient subjected to a step-
change in the boundary fluid are as follows:

Gauss-Seidel Iteration Technique

Number of
FACTORa ISTOPb NOGS INTER iterations

0 60 ... ... 46
-1 60 ...... 35
-1 3 0 3 42

-1 5 0 5 24
-1 6 0 3 40
-1 10 3 6 24

-1.3 10 3 6 17
-1.4 10 3 6 17
-1.5 10 3 6 17

-1.5 10 0 6 20

-1.6 10 3 6 33
0 10 0 6 27

-0.5 50 ...... 31

aAcceleration factor for all nodes in system.

bNumber of iterations that FACTOR is to be applied.

cNumber of iterations between application of unaccelerated

Gauss-Seidel iterations and Wegstein accelerations.
dNumber of Gauss-Seidel iterations between applications of

Wegstein accelerations.

The TRIDAG solution needs no special instructions or data cards.
The solution is rapid and contains no convergence errors but is limited
to linear equations.
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ARRANGEMENT OF INPUT

Data Card 1:

FORMAT (514, 5FI0.3), NODESI, NODES2, NODES,,KODE, KODEl,
SELli, SEL2, DTAU, ZNUM, ZLIM. This card must be used for
all options.

Data Card 2:

FORMAT (FlO.O, 315), FACTOR, ISTOP, NOGS, INTER. This card
is read only if accelerated Gauss-Seidel is to be used (SEL2 = 1).

Data Card 3:

FORMAT (4FI0.3, E!O.3), DELX1, ZKI, ZRHO1, ZCl, ZH1. This
card must be used for all opticns.

Data Card 4:

FORMAT (4F10.3, E10.3), DELX2, ZK2, ZRH02, ZC2, ZH2. This
card is read if slab is made up of two or three layers (NODES7,
NODES1).

Data Card 5:

FORMAT (4FI0.3, El0.3), DELX3, ZK3, ZRH03, ZC3, ZH3. This

card is read if slab is made up of three layers (NODES7, NODES2).I
Data Card 6-8:

FORMAT (8F10.3), TS. These cards are used for reading variable
fluid temperature (KODEI = 1). Twenty-one values of TS are
read. These values are temperatures of the fluid for 20 equal
time steps covering the time range for the transient.

Data Card 9-il:

FORMAT (8FI0.3), HFVAR. These cards are used for reading
variable film coefficient (KODEl = 1). Twenty-one values of
HFVAR are read. These values are film coefficients for 20 equal
time steps covering the time range for the transient.

Data Card 12:

FORMAT (2FI0.3) TC, HFC. This card is read if the fluid
temperature and the film coeffiient are constant (KODE1 - 1).
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Data Card 13-19:

FORMAT (8FlO.3), TPR. These cards are used to read the
nodal temperatures if the slab has an initial temperature
distribution(KODE = i). The number of data cards is
dependent on the number of nodes in the system with a
maximum of 50 nodes.

Data Card 20:

FORMAT (FlO.3) TAU. This card is read to indicate time for
variable initial temperature distribution (KODE = 1).

Data Card 21:

FORMAT (FIO.3) TIN. This card is read when slab has a
constant initial temperature (KODE = 1).

Data Card 22:

FORMAT (15), ITERSo This card is read when the problem is
solved by an iterative method (SELl = 1). This puts an
upper limit on the number of iterations allowed to converge.

Data Card 23-47:

These cards are supplied with the program. Their purpose is
to supply the coefficients of the power series that describe
the spatial and time truncation error curves. These cards are
read only if the slab is homogeneous (NODES1 = NODES) and for
the first time step (TAU = DTAU).
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C ONE-DIMENSIONAL HEAT TRANSIFERPROP9GRAM-0 ONt-D. CODED BY VAN TASSEL
C AND STANLEY
C
C ARBRCR.DR xCOEFF-ICIENT'ARRAYS-CONTAINING THE SUB-DIAGONAL, DIA'
C GONAL. SUPER-DIAGONAL, AND R_1GHT HAND ELEMENTS OF -

C THE TRIDIAGONAL SYSTEM
C 91OT a BlOT NUM8ER
C COEFF s COEFF-ICIENTS OF POWER SERIES USED IN ERROR ANALYSIS

C' DELX a SPATIAL INCREMENT. I NCHES
C DTAU - TIME STEP, SECONDS
C FACTOR a CONSTANT OV ER RELAXATION FACTOR(ZERO FOR REGULAR GAUSS-
C SEIDEL)-.
C FO a FOURIER NUMBER
C HFC s CONSTANT FILM COEFFICIENT. BTU/HR-SO FT-FIzC HFILM zFILM COEFFICIENT AT SPECIFIC TIME UNDER CONSIDERATION.
C BTU/HR-Sl F-T-F
c HFVAR aTIME VARIABLE FILM COEFFICIENT. BTU/HR-SO FT-P
C INTER * NUMBER OF REGULAR GAUSS-SEIDEL ITERATIONS BETWEEN SUCCES-
C SIVE.APPLICATIONS OF THE WEGSTEIN ACCELERAITIONo
C ISTOP s NUMBER OF ITERATIONS THAT THE CONSTANT OVER RELAXATION
C FACTOR IS APPLIED.
C ITERS a ALLOWABLE NUMBER OF ITERATIONS
C KSWPS a NUMBER OF ITERATIONS PER TIME STEP
C NODESI NUMBER OF NODES IN FIRST LAYER
C -NODES2 a NUMBER OF NODES IN SECOND LAYER
C NODES 'TOTAL NUMBER OF NODES IN THE SYSTEM
C NOGS aNUMBER OF REGULAR GAUSS-SEIDEL ITERATIONS APPLIED BEFORE
C WEG~TEIN ACCELERATION IS APPLIED.
C TAU a TIME, SECONDS I
C T aTEMPERATURE OF NODE AT BEGINNING OF ITERATION, F
C TC *CONSTANT FLUID TEMPERATURE. F
C TF aFLUID TEMPERATURE AT SPECIFIC TIME UNDER CONSIDERATION, F
C TIN x CONSTANT INITIAL SLAB TEMPERATURE. F
C TNEW s TEMPERATURE OF NODE AT END OF ITERATION OR TIME STEP. F
C TPR a TEMPERATURE OF NODE AT PREVIOUS TIME STEP, F
C TS a TIME VARIABLE FLUID TEMPERATURE. F
C ZC x SPECIFIC HEAT BTU/LBM-r
C ZH a CONDUCTANCE BETWEEN NODESITO ALLOW FOR CONTACT RESISTANCE
C ZK * THERMAL CONDUCTIVITY, BTU/HR-FT-i'
C ZRHO aDENSITY, LBM/CU.FT,
C ZLIM x ITERATION LIMIT
C ZNUM a NUMBER OF TIME STEPS DESIRED
C

DIMENSION TPR(SOI ,T(50) ,TNEW(S0) ,TT(50,3) .FT5SO,3) TOLD(50,3).
I CISO) .0(0) ,AR(50) ,9R(0) ,CR(S0 ,DR(SO) .BETA(501 ,GAMMA(5 I ,ZK(50
2),ZC(S0),ZRHO(S0),DELX(S03,ZH(SO),TS(21),HFVAR(21),COEFF(S5,I

10 FORMAT(514,SFIO.2)
20 FORMAT(IH ,IIX,7HFILM Hx,FIO.297X,IIHBOUND TEMPs,F78.2,2H F)
30 FORMAT (SF10.3)
40 FOr'lAT(2FI0.33
50 FORMAT(IHO,2X.4HNODE,IIXTHDELTA X,14XIHK,16X,7HDENSITY,ISX,IHC,
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I Ilax,2HHC)
so FORIATUIH ,IX.I3,5X,Fl4.3,SX,IF14.3,SX.F14.3,SX,F14.3.S$X.EIO.3)
-76 FORMATIHIM- *.4HT2IH4EF12.8,tOH SECONDS ,/,IIXIIHITERATIONSs,I3l
80 FORMAT (IN i5FII.3.SX.SFII-.3)
S0 FORMAT!H I$ IX.13.20X.010.5)
-100tO FORMAT! 1H0,24HITERATIOtt-LIKI'T EXCEEDED)
110 FORMAT(iH0-,1IX,14HINITIAL TIMESt oF1,00,lOH SECONDS)
I20 ,FORMAT! II1O78HFILMJ tbEFFICIENT.BEGIHNING AT TIME ZERO,WITH TIME IN

I CREMENT-TOTAL, TI.HE SPAN/201
10FORMAT(IHO,73HFLUID TEMP..BEGINNING AT TIME ZEROWITH TIME INCREME
INT*TOTALTINE SPAN/201

140 FORMAT(FIO.O,3I5)
156 FORMAT ( IS)
ISO- PORMATI8E10.3)
170 FORMAT(5E15.8)
180 FORMAT4FIO.i3 E11.3)
ISO FORMATCIHO,4SHMAXIMUM SPATIAL TRUNCATION ERROR IS #2.5 PER CENT)
200 FORMAT! IHO.87HMAXIHUM SPATIAL TRUNCATION ERROR IS -,FG.I.SH PER CE

210 FORMAT! IHO,77HTIME STEP IS TOO BIG, SUGGEST USING SMALLER FOURIER
UMBER. FOURIER NUMI3ER IS.FIO.2)

20FORMAT! IHO.34HMAXIMUM TIME TRUNCATION ERROR IS -,F6.1,SH PER CENT)
230 FORMAT(IHO,4SHMAXIMUM SPATIAL TRUNCATION ERROR IS -1.3 PER CENT)
240 FORMAT! IH olIXoIIHNODE NUMBER,I8X,17HTEI4PERATURE DEG F)
250 FORMAT! IHO,ISHFILM COEFF.-CQNST.a.FIO.3)
260 FORMAT! IHO. ISHFLUID TEIP.aCONST.*.FIO.3)

270 FORMAT(IHOsIIX*4HTIME.F12.3,IOH SECONDS)
280 FORMATtFIO.3)

READ iO.NODESI.NODES2.,NODES,KODE,KODEI,SELISEL2,DTAUZNUM,ZLIM
IF(SEL2-I.)242,243,242

C IF SEL2 IS It SOLUTION BY ORDINARY GAUSS-SEIDEL, IF NOT, SOLUTION
C BY ACCELERATED GAUSS-SEIDEL.FACTOR,ISTOP,NOGS,AND INTER MUST BE

C READ.
242 READ I40,FACTOR. ISTOP,NOGS. INTER

C READ PROPERTIES OF MATERIALS, MAXIMUM OF THREE MATERIALS
READ 180.DE!XI,ZKI,ZRHOI,ZCI.ZHI

C 2 E1EMINE IF HODENEOUS MTERIAL IF NODESIaNODES HOMOGENEOUS.
21READ 1B0.DELX2,ZK2oZRHO2oZC2,ZH2
IF! NODES2-NODES 233, 232. 46

a233 READ IBODELX3,ZK3,ZRH03.ZC3,ZH3
C SET PROPERTIES OF EACH NODE IN EACH LAYER

232 DO 93 N*I,NODES
DELX(N) xDELXI
ZI(!N) 'ZKI
ZRHO(NI zZRHOI
ZC(N) 'ZCI

93 ZH(N)xZHI
IF! NODES I-NODES )234. 286, 46

234 ZH(NODESI)aZH2
IsNODESI ,1
DO 102 NmIoNODES2
DELX(N) 'DELX2

a ZK(NJ aZK2
ZRHOIN) SZRHO2
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102 HNaI

IF CNObES2-NODES)235.236.46

25ZHt NODES2) 'ZH3 I
1 2NODES2. I
D0 103 NaINODES 1
DELX(NJ :DELX3
ZK(Nj 'ZK3
ZRHOINJ aZRHO3
ZC(N) sZC3

103 ZH(N)2ZHI
28$ DO 4 N-I.NODES

C(NI z300. 'ZC(NJ .ZRHO(N)*DELX(NI/DTAU
4 PRINT 60,NDLXkjZKNZRHON,ZC(N)ZHtN)

IF(KODEI -I 237,238.237
C IF KODEI IS Is THE FLUID-TEMPERATURE AND FILM COEFFICIENT ARE CON"
C STANT. IF KODE IS NOT 1. VARIABLE FLUID TEMPERATURES-AND FILM
C COEFFICIENTS ARE READi
C
C READ AND PRINT VARIABLE FLUID TEMPERATURE AND FILM COEFFICIENT

237 READ 30,I.TS(II.IsI.21)
PRINT 130
PRINT B0o(TS(I),#IwIi213
READ 30,lHFVARfIIIsI21")
PRINT 120
PRINT 8C,(HFVAR(IIII2I)
6O TO 241

238 READ 400TCHFC
DO 239 I'I.21
TSI I JTC

238 HFVARII)*HFC
241 NPvNODES-I

D0 5 KNI.NP
5 D(NIxI./IDELXCNJ/I24,eZKIN)).DELX(NolI/24.*ZK(l.I33.I./ZH(N))

IF(KODE-I 31,3.1
C IF KODE IS It ALL NODES ARE SAME TEMPERATURE, IF KODE IS NOT EQUAL
C TO 1 NODAL TEMPERATURES ARE READ IN.

I DO 2 NxINODES
READ 30,TPR(NP
PRINT 80.TPRINI I

2 TINJ'TPRIN)
READ 290oTAU
PRINT II0,TAU
GO V( 33

3 READ 280,TIN
DO 7 Ns101'ODES
TPRIN) a TIN

7 T(N)*TPRIN3

33 IF(SELI-I.)35,35
C IF SELI IS I, THE SOLUTION IS BY EITHER GAUSS-SEIDEL OR BY ACCEL-
C MUST BE READ. IF SELI IS NOT It SOLUTION IS BY TRIDAG.

06 READ 160,ITERS
6 TAUmTAU#DTAU

KSWPSs0
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KOUNT-T O
J's I
SKz i *TAU*2O./(ZNWM&DTAUI

RKAK
1F TAU-ZNUI4'DTAU)254,255, 46

C DETERMINE FILM COEFFICIENT AND FLUID TEMPERATURE FOR TIME UNDER
C_ CONSIDERATION.

254 TFsTStK)teTS(K*I)-TS(K-)fl.SK-RK)
HFILM-HFVARIKI.(HFVARIK*I )-HFYARtK? JeI6K-RKI
GO TO 256

255 TFaTSIKJ
HFILMsI4FVAR(K)

258 AaI./III./HFILM),DELXII/124.ZKIIm
PRINT 20,HFILM-TF
IF(SEL2-..,61

C
C REGULAR GAUSS-SEIDEL ITERATIVE SOLUTION

8 IFIKSWPS-ITERS)9,9,26
9 DO 25 NsI.NODES

IF(N- ) 12,12,1'S
11 IF(N-NODES)I4.13,13
i2 TNEWhlisc(ATFCIITPRU.)DIIJT2)/IA.C(I)UDIHl

GO TO 15
13 TNEW(NODES3*(C(NODESITPRNODES).D(NODES-Is.TINODES-In)/(C(NODE~S.
ID (NODES-Il)
Go TO I

14 TNEW(NI'(CNTPRNDN-U.OTN1*DIN).T(N.I),/1C(N.DN-I.D(NI
IS TEMPaTNEW(NI-T(N)

IF(TEMP)IG, I?o, ?
IS TEMP*I-TEMPI
I? IF(TEMP-ZLIM)19,13,19
I8 KOUNTtKOJNT.I

IF! KOUNT-NODES)26,26,28
19 KOUNTuO
25 T(N)-TNEW(N)

KSWPSsiKSWPS. II, GO TOG8
C END OF GAUSS-SEIDEL SOLUTION
26 T(N~sTNEW(N)
24 PRINT 70, TAU.KSWPS

PRINT 240
PRINT 90, (No T(N).NxINODES)

21 DO 27 NzI.NODES
2? TPR(NJUTINJ

IF(NODESI -NOI)ESJ47, 198o46
28 PRINT 100

4 CALL EXIT
C
C SPATIAL AND TIME TRUNCATION ERROR ANALYSIS

198 IF(TAU-DTAUW227,227,226
C READ COEFFICIENTS OF POKER SERIES FOR SPATIAL TRUNCATION ERROR

227 DO 199 KaI,6
*199 READ 170, (COEFP(K,I),IzI,II)

BlOT 2 HFILM*DELXI/24./ZKI
FO a ZKI.TAU/6S.25.ZCI.ZRHOI.DELXI..2,
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C DETERMINE SPECIAL CONDITIONS
IFIFO-7.)202.202.201

201 PRINT 230
GO TO 225

202 IF(BIOT-.5)203,203,205
203 IFIFO-.75)204,216.216
204 PRINT 190

GO TO 225
205 IF(FO-.25)206,207,20Y
206 PRINT 190

GO TO 225
C DETERMINE WHICH CURVE TO USE, BASED ON BIOT NUMBER

207 IF(BIOT-0.3211,209,208
208 K a 5

GO TO 217
209 K a 4

GO TO 217
211 IFIBIOT-3.1213,212.209
212 K a 3

GO TO 217
213 IF(BIOT-1.)215,214.212
214 K 2

GO TO 217
215 IF(BIOT-.5)216,216,214
216 K a I
217 SUN a COEFF(K.I)

IF(I-11}223.218,218
218 DO 219 Isl.I0
219 SUN a SUM#COEFFtKI*Il*FO*o|

PRINT 200 *SUM
C READ COEFFICIENTS OF POWER SERIES FOR TIME TRUNCATION ERROR

225 DO 221 Kxl,5
221 READ 170, (COEFF(K,II,IaI,7)

FO a ZKI.DTAU/(I.25*ZCI*ZRHOI'DELXI.*2)
IFIFO-10. 207,207,222

222 PRINT 210. FO
GO TO 226

223 DO 224 l.,

224 SUM x SUM.COEFF(KI+1)*FOe'I
PRINT 220, SUM

C END OF ERROR ANALYSIS
226 IF(SELI-1.)49,47,49
47 IF(TAU-ZNUMNDTAU)$,46,4G

C
C ACCELERATED GAUSS-SEIDEL SOLUTION USING A CONSTANT ACCELERATION
C FACTOR AND WEGSTEIN ACCELERATION

SI DO $2 NI,NODES
TT(N,I) a T(N)

62 TOLD(N,I) z TIN)
IAPPLYs ISTOP'NOGS

6 KSPS a KSWPSSI
INDEX KSWPS-KSWPS/33
IF(INDEX)4,64.65

64 J a 3
GO TO G

$S J a INDEX
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$6 IFtKSWPS-IT9RS)S7,S7o28
87 DO so NalNODES

IFIN-I 188,69.68
68 IF(t-NODESJ72,71,71

0O TO 73
71 FT(NODESJ~a(CCNODES)'TPR(NODES).DIHODES-IJ'TT(NODES-I.4fl/(C(NQDE

ISJ.0114006S-Ill
GO TO 73

$73 TEMPsABSlFT(N,J)-TTlN.J))
IFTEMP-ZL 14) 74. 74.75

74 KOUNT s KOUHT.I
IM OUNT-NODES 182, 87 .57

IS KOUNT s 0
82 IF(J-3)76,79,79
76 TTIN.J) a PT(N.J)

TT(N,J#I) a FTIN,JJ
TOLDIN.J#I) a FTiN.,J)
IFIKS1PS-2)93,77,77

77 IFIKSWPS-ISTOPJ78,83,S3
78 TTfti.J*lJ s TT(NJJ.FACTOR.(TOLD(NJJ-TT(N.Jli

TOLD(N*4.I3 a TT(N,J.tI
GO TO 83

75 TTIN.J a F-TtN.J)
TTIN, I a MTUM.J
TOLDI) a FTtN,J)
IF(KSWPS-ISTOP)81,83s83

81 TTIN.I1 * TTINJ~cFACTOR(TOLD(fl,J)-TTIN,J11
TOLDIN.3J a TTINo13

03 CONTINUE
IFIKSWPS-IAPPLY 163 *85 ,85

65 00 56 NsI.NQDES
liPJ-2186,87,88

86 ALPH~A a ITOLO(N,21-TQLD(N,1)Jf1TOLDCNI)-TOLDtN.33J
4 GOTO 89

87 ALPHA * (TOLDIN,G1-TOLD(N,2J1tITOLD(N,23-TOLD(NlI
GO TO 89

88 ALPHA a ITOLOIN,1)-TOLD(Nofl/ITOLDIN.01-TOLDIN,23)
83 MFALPHAM9,M6SI
91 IF(ALPHA-1.J92*96,56
92 a 2 ALPIIA/IALPHA-1.1

IFIQ#I00. 183.301,101
38 a 2 100.
101 IF(J-3194,95,95
94 TT(N,.J.IJ v TT(NoJ;#QslTOLDlN,J)-TTiN,J)i

TOLDIN,J.Uj a TT(N,J)
GO TO 96

95 TTIHI) s TT(N,JJ.0(TOLDIN,J)ITTIN.4Jl
TOLDINo1) a TTINI)

56 CONTINUE
IAPPLY s IAPPLY.,INTER
G0 TO 63

57 TT(N,J) s PT(N,.JJ
00 88 N~I,NODE8
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98 TIN? a TTIN..J)
c END OF ACCELERATED ITERATIVE SOLUTION

GO TO 24

C TRIDAG SOLUTION
35 TAUATAU#DTAJ

SK'I .*TAUo20./ZNU4'DTAJ1
Kb SK
RK sK
IF) TAU-ZNUI4'DTAU)251 .252.46

251 TF'TSIKI.ITSCK'11-TSIKJ))SK-RKI
HFIL)4HFVARK)*(HFVARK1IHFVARK))C$K-RKI
GO TO 253

252 TF*TStK1
HP 1LH HF VAR 1K)

253 PRINT 20.HFILX,TF
A') ./1 I ./HFILN) .DELXC I /C24.eZK~i 1)
ARC I I'.
SRi) IA*D I )#CC Il
CR1I) )-Di))
DRI I )'CC1)&TPRI I lA*TF
N' NODES
ARIN)*-D(N-I)
BRIN1'DtN-li*)CtN)
CRIN) '0.0
DRCN)*CCN)*TPR()
NPsNODES-I
DO 31 N,2,NP
ARIN1-DIN-I1)
8RINI'DlN-i i'DINI'CIN)
CRINi '-DIN)

31 DRiNI'CtNl*TPRtH)
BETA)) I'8RC 11
GAI*IAlI )sDRC 1/BETA)
DO 22 N-2.NODES
BETA(N1x8R)-AR(N).CR(N-I 1/DETACH-I)

22 GAMHAfN1'CDRIN)-ARINI.GANNAIN-))/8ETA(N)
N' NODES
TNEWINI 'GAMMAIN)
LAST'NODES-I
DO 23 La).LAST 2
NoNODES-L

23 TNEWINl'GA)4IAN-CRIN1'TNEWIN.Il/DETA(N)
44 l1'NODES

PRINT 270,TAU
PRINT 240
PRINT9O, IN,TNEW(NINsINODES)
KOUNT'O

32 DO 34 N'l.NODES >
34 TPR(NI'TNEW(N)

IF(NODES) -N0DES149. 138.46
49 IPITAU-ZNUN*DTAU)36.48,46
46 CALL EXIT

END
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LISTING OF THE COEFFICIENTS FOR THE CHEBYSHEV POWER SERIES

C COEFFICIENTS FOR SPATIAL TRUNCATION ERROR CURVE, SIOT NO'sO.5

-.IC0O85503E#02 .313138652.02 -. 40438398E*02 .325767782.02 -. 17195332E#02
.60576895E#01 -.14294331E*OI .222601582.00 -.219061652-01 .12322483E-02
-.30152627E-04

C COEFFICIENTS FOR SPATIAL TRUNCATION ERROR CURVE, BlOT NO.el.0

-.47741800E*0I * 071658$E*02 .39482f302-01 -. 15047922E*02 * 133789852*02
Sa69820E*01 .187487952.01 -. 349031012.00 #3997155SE-0l -. 25676872E-02

. 70752864E-04

C COEFFICIENTS FOR SPATIAL TRUNCATION ERROR CURVE, BlOT NO. .3.0

-. 10142961E#.01 .579530522.02 -. 78137286E#02 .62807352E#02 -. 335330872.02
.12135378E#02 -. 29680640E#01 .481010172'00 -. 493278962-01 .28918309E-02
.73736341E-04

C COEFFICIENTS FOR SPATIAL TRUNCATION ERROR CURVE, BlOT NO.n10.0

-. 47343690E#01 .570691202.02 -.84933970E#02 .72423840E#02 -. 41121905E*02

.15859021E*02 -*41160a94E'01 #70284892E#00 -. 7532050!E-01 .458101709-02

C CEFFCNTS FOR SPATIAL TRUNCATION4 ERROR CURVE, SlOT NO,sINFINITY

-,190512E02.10G5IS62E#03 -. 17496117E03 #15979799E#03 -. 3959020E#02
*353268022.02 -. 89197870E#01 * 14726003E.01 -. 152642822.00 .89665613E-02

- .229539682-03

C COEFFICIENTS FOR TIME TRUNCATION ERROR CURVE, BIOT NO.s0,5

-. 149427002.00 .1306335G2.01 .717035532.00 -. 275231482.00 .397187242-01
-26482984E-02 G675217409-04

C COEFFICIENTS FOR TIME TRUNCATION ERROR CURVE, 810? NO*I.0

-. 62064100E-01 .2I030S15E*01 .945643102.00 -. 41051716E*00 .635683912-01
-. 46599169E-02 * 126698982-03

C COEFFICIENTS FOR TIME TRUNCATION ERROR CURVE, BlOT NO.*3.0

-.674156002-01 .37673700E#01 .146623412.01 -. 87103151E*00 1G0S679E#00
-. 13017283E-01 .395415552-03

C COEFFICIENTS FOR TINE TRUNCATION ERROR CURVE. BlOT NO.@I0.0

.97815400-01 .0510120E#0I .11366794E#01 -. 86081270E*00 .16G45989E*00
-.1387265SE-0I .431486912-03

C COEFFICIENTS FOR TINE TRUNCATION ERROR CURVE. BlOT NO.zINFINITY

-. I66284302.00 .64759210E*0I .494635302.00 -. 7488I5502.00 .156669I0E'00
-. 13388434E-01 .418778312-03

These coefficients are used in storing the spatial- and the time-
truncation error curves in the ONE-D program.
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Section 2

ANALYTICAL SOLUTION FOR AN INFINITE PLATE

C SOLUTION OF TEMPERATURE DISTRIBUTION IN A FINITE SLAB - ONE-DIMENSIONAL
C FLOW - FINITE FILM COEFFICIENT ON ONE FACE. THE OTHER FACE INSULATED
C ALPHA 2 THERMAL DIFFUSIVITY. SO.FT./HR.
C AM a EIGEN VALUES OF X&TANIN),CONSTANT
C BlOT a BlOT NUMBER
C DELS x LENGTH OF PLATE FROM SURFACE TO INSULATED FACE, INCHES.
C DELX * SPATIAL INCREMENT, INCHES
C DTAU s TIME STEP, SECONDS
C HFILM a FILM COEFFICIENT, BTU/1R-SOFT.-F.
C TAU • TIME. SECONDS
C TF 8 FILM TEMPERATURE, F.
C TI 2 INITIAL TEMPERATURE, F.
C THETA a FOURIER HUMBER
C X • DISTANCE FROM INSULATED FACE TO NODE CONSIDERED, INCHES
C ZC a SPECIFIC HEAT, BTU/LBN-F.
C ZK THERMAL CONDUCTIVITY, 8TU/HR.-FT.-F.
C ZRHO a DENSITY. LBR/CU.FT.
C

DIMENSION ANMSOJ,DEXPISOI.SIN:SOh),SIN2ISO)
tO FORMATI7FIO.0.21S1
20 FORMAT(IHO,IOX,43HTRANSIENT SOLUTION FOR INSULATED FLAT PLATE)
30 FORMAT(IHOIOX,2HK,,F7.3,IOX,2HC,.F7.4,SX.8HDENSITY,,FS.3)
40 FORMAT(IH .IOX,ISHFILM COEFFICIENT-,FIO.3)
50 FORMATIIH .IOX,6HALPHA.,F8.4,2X,2HL.,FS.4)
60 FORMATIH IOX,13HINITIAL TEMPaFIO.4,2X.IOHFILM TEMPw.FIO.4)
70 FORMATISFIO.O)
80 FORMATIIHO,12XI2HEIGEN VALUES)
90 FORMATIIH ,IOX,2HM(,I3,3Hlm FIO.5)
100 FORMAT(FIO.0)
110 FORMAT(IHO,12X,4HTIME,8X,3HX/L,4XIOHTEMP RATIO,CX,4HTEMP)
120 FORMATIIH .IOX,FS.2,3X,F7.4.4X,FS.S,SX,FS.)
130 FORMATt2HOIOXSHDELXs.FT.4,GXIOHBIOT NO. 9,FO.4,3XI2HFOURIER NO

READ I0,ZKZCZRHO,HFILKoDELSTF,T|,KODEN

PRINT 20
PRINT 30,ZKZCZRHO
PRINT 40,HFILM
BIOT*HFILMaDELS/112.0*ZK)
ALPHAaZK/(ZC*ZRHO)
PRINT 50,ALPHA,DELS
PRINT 60,TITF
PRINT 80
IF(KODE-1) 2,1,2

I READ 70,(AM(I)oII,N
GO TO 3

2 CALL EIGENIN,AM,BIOT)
3 00 4 IslN
4 PRINT 90,I,AMII)
READ bO0oDELX
IFISENSE SWITCH 1) 15,5

5 READ I00,TAU
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THETAaALPHA.TAU/(3600.DELS.DELS/144. 3
PRINT 130.DELXBIOTTHETA
DO 6 Ixl.N
SINII 11'IMPAMMI
SIN2( I 3SINFl2.0.AHM I1I

B DEXP I-)sEXPF:-AM I iS*2*THETA)
xSo.

7 SUM-0.
DO-S ImI.N

eSUNS (III*EPII1.*NI*I211)CS(Nlo/ES
TRATIO*4C0&SUN
TENPvTF+.ITFj*TRATIO
9RAT IO-XiDELS
PRINT 110
PRINT 120,TAU,XRATIO,TRATIOETEMP
X-X-bELX
IF(X-DELS) .,

15 CALL EXIT 
-

END
C
C

SUBROUTINE EIGEMNN,BIOTi
DOUBLE PRECISION T.Ti .AMZKZC.ZRHOTF,HFILH.X.OELX.DELSATAU.DE.
I B IOT

C HALF INTERVAL SEARCH FOR ROTS OF COTIN)-K/BIOTsO.
DIMENSION Ak(SO)f P103. 1415926.6
EPS. 3.OE-3

IEYR' I-I
EYE' IEYE

A'PI/ 380. EYE*PIK' 8PI/2. .EYE'PI

FAuDCOSIA)/DSIN(A -A/BIOT
2 XaIA#B)/2.
COTsDC0SXUOSINUXJ
X08'X/8IOT
FsCOT-XOB
IFIF) 3.31,4

3 IPIP.EPSI 691,11
4IPIF-EPS) 11.31.5
5IFIFsFA) $,il,?

B BoX

GO TO 2
7 AxX
FA sF
GO TO 2

It A34(I)mXI IF(N-I) 1202,0
32 RETURN

STOP
END
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Section 3

MODIFIED HEAT-TRANSFER PROGRAM "ONE-D" WITH
ERROR ANALYSIS AS APPLIED TO RAMP-FUNCTION

BOUNDARY CONDITIONS

The program used to generate data for the ramp-function boundary
condition is an abbreviated form of ONE-D. Since the TRIDAG method of
solution was the fastest and simplest to use, it was chosen and
revised to handle only homogeneous solids. It was also revised so
that the automatic time step generator subroutine (ATSG) could be
used.

The error routine portion of ONE-D is also incorporated. Revisions
were made in this routine so thaz the spatial error for either time
step functions or ramp functions is given. Time-truncation error is
printed only for step-function boundary conditions.

CONTROL VARIABLES

KODE(1) If KODE(1) is 1, the automatic time-step generator is used.
Values for ANUMBE, PRCNTH, and PRCNTL must be read.
PRCNTH and PRCNTL are given in decimal form.

KODE(2) If KODE(2) is 1, a Fourier number is read and the time
step, DTAU, is calculated. If KODE(2) is not 1, DTAU is
read.

KODE(3) If KODE(3) is 1, the initial temperature of the body is
set at zero and the time, TAU, is set at zero. If KODE(3)
is not 1, values for the temperature at the nodes and TAU
are read.

KODE(4) If KODE(4) is 1, the temperature of the nodes may be found
for a number of specified times. If KODE(4) is not 1, the
temperatures will be printed according to DTAU.

TAUI TAUl may be used as a control variable in addition to
specifying the time at the end of the ramp. If TAUI is
less than 1, a step function will be assumed.

TAU2 TAU2 may also be used as a control variable. TAU2 is
ordinarily used to specify the time at which the run will
stop. However, if TAU2 is 0, then the user can specify
the terminal temperature in any node desired.
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ARRANGEMENT OF INPUT

Data Card 1:

FORMAT (715), KODE(1), KODE(2), KODE(3), KODE(4), NODES,
LTP, NTP. This card must be read for each set of data.

Data Card 2:

FORMAT (3FI0.3), TAU1, TAU2, FT. This card must be read
for each set of data.

Data Card 3:

FORMAT (FIO.3, 15), TSTOP, NSTOP. This card is read if
TAU2 is 0.

Data Card 4:

FORMAT (3F10.3), ANUMBE, PRCNTH, PRCNTL. This card is read
if KODE(1) is 1.

Data Card 5:

FORMAT (4F10.3, EIO.3, 15), DELX1, ZKI, ZRHO1, ZC1, ZH1, M2.
This card must be read for each set of data,

Data Card 6:

FORMAT (EIO.3) HFILM. This card must be read for each set
of data.

Data Card 7:

FORMAT (F1O.3) FO. This card is read if KODE(2) is 1.

Data Card 8:

FORMAT (F1O.3), DTAU. This card is read if KODE(2) is not 1.

Data Card 9:

FORMAT (2F10.3) TAU, TF. This card is read if KODE(3) is not 1.

Data Card 10-22:

FORMAT (8F10.3), TPR. These cards are read if KODE(3) is not 1.
The number of data cards is dependent on the number of nodes in
the system with a maximum of 100 nodes.
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Data Card 23:

FORMAT (12), NO. This card is read if KODE(4) is 1.

Data Card 24-25:

FORMAT (8F10.3). These cards are read if KODE(4) is 1.

Data Cards 26-56:

FOR AT (5E15.8). These cards are used to supply the coefficients
of the power series that describe the spatial- and time-truncation
error curves. If more than one set of data is read (LTP
greater than 1) these cards are read only once.

PROGRAM LISTING

C TRIDAG SOLUT!ON OF ONE-DIMENSIONAL TRANSIENT HEAT TRANSFER
C PROBLEM WITH ERROR ANALYSIS
C
C NOTATION
C ANUMBE a THE NUMBER OF TINE STEPS BETWEEN CHECKS BY ATSG
C AR,BR.CR,DR a COEFFICIENT ARRAYS CONTAINING THE SUB-DIAGONAL,
C DIAGONAL, SUPER-DIAGONAL, AND RIGHT HAND ELEMENTS
C OF THE TRIDIAGONAL SYSTEM
C BlOT A BlOT NUMBER
C DELX a SPATIAL INCREMENT, INCHES
C DTAU a TIME STEP, SECONDS
C FO a FOURIER NUMBER
C FOI x FOURIER NUMBER AT THE END OF THE RAMP
C FT a FINAL FLUID TEMPERATURE, F.
C HFILM a FILM COEFFICIENT. BTU/HR.-SO.FT.-F.
C KODE(NI & CONTROL VARIABLES
C LTP a NUMBER OF SETS OF DATA TO BE READ
C M2z NUMBER OF NODES BETWEEN ZERO THICKNESS NODES
C NO a NUMBER OF TIMES AT WHICH A TEMPERATURE PRINT-OUT IS REQUESTED
C NODES a TOTAL NUMBER OF NODES IN THE SYSTEM
C NTP a NUMBER OF TIME STEPS BETWEEN TEMPERATURE PRINTINGS
C NSTOP • NODE SELECTED TO TERMINATE RUN
C PRCNTH ' LARGEST PERCENT INCREASE IN TEMPERATURE, EXPRESSES AS A. DECIMAL
C PRCNTL a SMALLEST PERCENT INCREASE IN TEMPERATURE, EXPRESSED AS A DECIMAL
C SCOEFF ' COEFFICIENTS OF POWER SERIES FOR SPATIAL ERROR ANALYSIS
C TAU a TIME, SECONDS
C TAUI' TIME AT THE END OF THE RAMP. SECONDS
C TAU2 s TIME AT TERMINATION. SECONDS
C TAUT * TEMPORARY TIME STORAGE
C TCOEFF a COEFFICIENTS OF POWER SERIES FOR TIME ERROR ANALYSIS
C TF * FLUID TEMPERATURE AT SPECIFIC TIME UNDER CONSIDERATION, F.
C TIME(I) x TIMES AT WHICH A TEMPERATURE PRINT-OUT IS REQUESTED, SEC.
C TNEW a TEMPERATURE OF NODE AT END OF ITERATION OR TIME STEP, F.
C TPR • TEMPERATURE OF NODE AT PREVIOUS TIME STEP. F.
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C TPRT aTEMPORARY STORAGE FOR PREVIOUS TEMPERATURES
C TSTOP aTERMINATION TEMPERATU-RE FOR NODE NSTOP. F.
C ZC * SPECIFIC HEAT, 6TU/LBM-F.
C ZHl - CONDUCTANCE BETWEEN NODES. TO ALLOW FOR CONTACT RESISTANCE
C Zk a THERMAL CONDUCTIVITY, BTU/HR.-FT.-F.
C ZONO - DENSITY. LBM/CU.FT.
C

DIMENSION KODECS1,TPRCIOO.,TNEWIOOJ,CdIOO.CRIOOI.O0O)00.AR(00)
I.BRCIOO),RUOOI.*BETAUOO.1GAMAOO0,ZKCIOO.ZCIOO).ZMkOIOO).
2ZHU10 O.DELX00O.TPT0O--.T1NEOISCOEFF(7.11.TCOEFF(5,7,
CON-MON TNEWTPR.,TAU.DTAUNODES,TFFT,TAUI .,NUMB.*TPRT.DTAUT.TAUTa
I PRCNT4,PRCNTLC. ZC.*ZRI4O. ELX

C10 FORKATI7LS1

20 FORMATLSFI10.31

40-FORkATIF10.3)
S0 FORMATIIHI94iNODE.IX,?HDELTA X.14X,lHK.IGX,71lDENSITY.15XlHC~lgX,

60 FORMAT(T2,I3,4(SPI4.3).X.E0.*
70 FORMAT(II4O,81iDELTA T-.F[2.4.SH SEC.)
80 FbRIAT(Tl.5FII1.6,SX,5FII.3)
S0 FORMATlEIOi3)
10o FORMAT( 1HO0,l3HHFlLMaCONST.aFl2.3)
1110 FORMATUlHO.I2HFLUID TEMP.-,-FI0.3)
120 FORMATfi )
130- FORM~ft INO ,I I XHTI HE F12. 4,1 O SECONDS)
140 FORMAT(4FiO.3.EIO.3., 1
150 FORMATl2FIO.31-
IS0 FORMAT11HO. *MAXIMUM4 SPATiAL TRUNCATION ERROR IS LESS THAN -2.0

I PERCENT,)
170 FORMAT15EI5,81
180 FdRkAT(FIO.3, S)
190 FORMAT(ti4O.4SHRAXIMUM SPATIAL TRUNCATION ERROR IS #2.S PERCENT
200 FORMATIIHO,37HMAXIAMH SPATIAL TRUNCATION ERROR IS -.06.1.9H FERCEN

IT )
210 FORMATIIHO,77HTIME STEP IS TOO BIG, SUGGEST USING SMALLER FOURIER

INUMBER. FOURIER NUMBER IS. FIO.2)
220 FORMATIIHO,34HMAXIMUR TIME-TRUNCATION ERROR IS -*F.I.3H PERCENT I
230 FORMAT(1HO,48HMAXIMUM SPATIAL TRUNCATION'ERROR 1-13PERCENT I

~JKT*0
KKK sQ

READ(,0).4 DELXIAU,AKZHO.C.ZIM

DO 42 N't.NODES
DELX(N *DELXI
ZK(N)*ZKI
ZRHOIN) sZRHOI
ZHIN) 'ZH!

42 ZC(N)*ZCI
DO 3 Nst.NODESM2
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3 DELXIt~ao.
WRITEI 308,503
DO 4 N'3 dIODES

4 WRITEI308,6o) N,DELXIrN,ZKIN),ZRHOCIIZCINI.ZHfN3
READ(IOS,90) 1FILH
WR1TE%108,Io00 HFILN
lPtKODS12)-3 6,7,9

7 READ3O05*40) FO
DTAUsFOoDELX3 **2*ZRHOI*ZC1.6.2SZKI
GO TO 9

8 READ(10,40) DTAU
9 WR!TE(108.70) OTAU

DTAUT mDTALJ
IF(TAUIl 13,33,36

13 TF*FT
GO TO 17

16 IF(DTAU.GE.TAUI) GO 10 13
TF*FT@DTAU/TAUI

17 WRITEI3O8.101 TF
IF(3(ODE(3)-3) 14,12.14

14 REAO(305.150) TAU,TF
WRITE(308.330) TAU
READ(10S,30) (TPRC341,N'3.?400ES)
WRITE(308,803 (TPft(MNta3,4ODE$)
GO TO039

12 D0 15 Ns3,NODES
15 TPR(NJ'0.

TAU*O.
38 KOUNTv0

NPNODES- I
00 19 N2I.NP

IS D(Ni'3./CDELX(M)/124.'ZK(NI.ELX(N4..3/C24..ZK(N.3)).3./Z4(NJJ
DO 39 NsI.NODES
TPRTtIsTPRID I

39 C(N'*300.*ZCINJ.ZRHO(taDELXN/DTAU
As3i./Wi./HFILM).DELX(I)/(24..ZK13)fl
IF(K0E4331 35.95,35

95 READ(I 30,1203 NO
READ(105,30) (TIMEIN),Ne3.NO)
WTAUT .TAU

35 NUMB'NUMBol
TAUa TAIJ.DTAU
JIKODE(4)-11 63.61,63

61 IF(NN.EQ.NO.1) GO TO 63
IFtTAU-TINEINNfl 63,62,62

62 TAUTII4EINNJ
NNaNN.!
IF(TAU-TAUI 3 64,65,65

64 TF'PT*TAU/TAU3 I

GO TO 63
65 TF-FT
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63 KOUNT-KOUNT.I
ARI I )a.

DRI usd1 )'TPki I)*A*TF
N! NODES

CR (Ni 0.
DRI ,4; (N)o*TPR (N)
00 21 H&2.NP
AR(NI~c-D(N-I I

CRIN)*-D(H)
21 DkIN)-C(N)'TPRIN)

00 22 N*2.NODES
DETA(N~sSR(N-ARIO.CR(N-I).'(ETAIN-I I

22 M"'NJ(RN-RN iAI~N-I ) /BETAIM)
TNEW(CNODES) 'GAMI4A(INODES)
DO 23 LuI.NP
N'UODES-L

23 TNE IN)'GAMM4AIN)-CR(H)'TNEWIN'1 1/BETA(H)
IFIKOUNT.LT.NTPJ GO TO 33

28 WRITEU08.-130) TAU
WRItEIIO880) (TNEWtN)*N'1.NODESI
k0OJNT 0-

C SPATIAL AND TIME TRUNCATION ERROR ANALYSIS
IF(KKK.GE-.1) 0O TO 229

C READ COEFFICIEIITS OF"POWE SERIES FOR SPATIAL TRUNCATION ERROR
DO !99 K*1.7

l9REAbisOS.1701 (SCOEFF(K.I)sI'I.II
228 BIbTZHFILI4'DELXI /24. /ZKl

FbaZKJ .TAU/(6.2SaZCI eZRHOI'DE.LXJ '.2)
C DETERMINE IF RAMP FUNCTION OR STEP FUNCTION

IF(TAWt.LT.I.) GO TO 222
FOI .ZKI .TAUI/(6.25OZCI .ZRHOI .DELXI '.21
IFlFO.LE.FOI) K'6
IF(FO.GE.FOl) Ks?I IFIFO.LE..7S) K-6
lF(FO.GT.10.) K'S
IF(FO.LE.20.) 0O TO 226
WRITEC 108.160
GO TO 225

226 IF(FO.GT..25) GO TO 217
WRITEC 108.190)
GO TO 225

C DETERMINE SPECIAL CONDITIONS
222 tFi'O.LE.7J) GO TO 202

WRITEC 108,23)
GO TO 22S

202 IFIBIOT.GT..5) GO TO 205
IFIFO.GE..75) GO TO 216
WRITEC 108.1801
GO TO 225
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205 IFIFO.GE..25) GO TO 207
WRITEE 208,1901
GO TO 225

C DETERMINE WHICH CURVE TO USE, BASED ON BIOT NUMBER
207 IF(BIOT-10.) 211,209,208
208 KzS

GO TO 217
209 Kc4

GO TO 217
211 IF(BIOT-3.) 213,212,209
212 K-3

GO TO 217
213 IF(GIOT-I.) 21S,214,212
214 K-'2

GO TO 217
215 IF(SIOT.GT..S2 GO TO 214
216 KxI
217 IF(TAU.GT.DTAU) GO TO 218

IFII.LE.II) GO TO 223
218 SLJM=SCrJEFF(K,I,

DO 219 1'l.10
219 SUM-SUM.SCOEFFCK.Iol)*Fpol

IF(SUMLT.0.) SUM'-SUM
WRITEHOS8,200) SUM

225 IF(KKK.GE.1) GO TO 228
KKK=KKK. 2

C READ COEFFICIENTS OF POWER SERIES r:OR TIME TRUNCATION ERROR
DO 221 K-1.5

221 READI 105.1701 (TCOEFF(K.I1.IaI.7)
228 IF(TAUI.GE.I.) GO TO 33

IF(TAU.GT.DTAU) GO TO 33 iFO:ZKI *DTAU/16.25.ZCI .ZRHOI .DELXI v.22
IFIFO.LE.10.) GO TO 207

WRITE(1O8,210) FO

GO TO 33I

224 SUMxSUM#TCOEFF(K. 1.1 ).FOoo
WRITE(IO8,2202 SUM

33 IF(KODEi 1)-Il 38.32,38
32 IF(NUMB-NUMBER, 38,37,37
37 CALL ATSG

GO TO 29
38 DO 24 fl'INODES *
24 TPR(NI:TNEW(NI

IF(TAU-TAUI) 25.29.29
25 TF-FT.(TAU.DTAU,,TAUI

IF(TF.GE.FTr TF*FT
29 IF(KODE(42-I2 67.66,67
66 iF(TAU-TIMEN/n) 31,67,67
67 IF(TAU2.EG.0.) GO TO 68

IF(TAU.GE.TAU2) GO TO 26
31 WRITE(108.110) TF

GO TO 35
68 IF(TNEW(NSTOP).GE.TSTOP) GO TO 26

GO TO 31
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26 JKT&JKT.I
IF(JKT-LTP) lo41.41

41 STOP
j END

AUTOMATIC TIME-STEP GENERATOR SUBROUTINE

C

SUBROUTINE ATSG
DIMENSION TPRH100.TPRT(100)TNEW(100),C(100.ZC(1003.ZRHOI001,
IDELX(100)
COMMON TNEW.TPR,TAU.DTAUNODESTFFT,TAUI .NUMB.TPRT.DTAUT.TAUT.
IPRCNTHPRCNTL,*C *ZC *ZRHO,DELX

10 FORMAT(IHO,SX.SSHDELTA TAU WAS HALVED. TIME SET BACK TO LAST CHECK
lPOINT..IH ,SX,37HTPR,S ARE LISTED BELOW FOR THAT TIME.1

20 FORMAT(IHOIOX,7HTIME ISF12.SSXI6HNEW DELTA TAU IS.FIOS)
30 FORMATI IHO .5X.26HPREVIOUS NODE TEMPERATURES)
40 FORI4AT(IH *SFII.3,SX.SF~t.3)
SO FORMAT(IHOSX,52HOELTA TAU WAS UNCHANGED. PROGRAM PROCEEDS AS BEFO

IRE.)
60 FORMAT(IHOSXs48HDELTA TAU WAS DOUBLED. TEMPERATURES ABOVE ARE OKI

NUMBs'0
MODESxNODES/2-2
DTUPaPRCNTH*TF
DTLOWsPRCNTL.TF
DO I Nz2,NODES.MODES
DIFFmABSTNEWN-TPR(N))
IF(DIFF.GE.DTUP) GO TO 2
IF(DIFF.GE.DTLOW) GO TO 3

I CONTINUE
DTAU*DTAU*2.
WRITEI 108.80)
WRITE(108,20) TAU.DTAU
GO TO 4

3 WRITE(b08,50)
4 DO 5 N2INODES
CIN) :300. ZC(N)'ZRHO(N)'DELX(N)/DTAU
TPRINJ 'TNEWiID

5 TPRT(N)zTNEWtN)
TAUT aTAU
IF(TAU-TAUIJ 6,7.7

6 TF*FT*.TAU*DTAU)/TAUI
IFITF.GE.FT) TFrF'i

7 RETURN
2 DTAUDTAU/2.
T AUsaTAUT
DO 8 NsI.NODES
C(N3 30..ZC(N.OZRHO(N.oDELXCNI/DTAU
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6 TPRtN~aTPRT(N)
WRITEUOB,*201 TAUDJ.TAU
WRITMi i8,1OI
WRITE( IO8,30)

WRITEtIO8,40) ITPRtNoNs3.NOOES)
IiTAU-TAUIJ 3,t11

3TF*FT*(TAU#DTAUJ/TAUI
IFPTF.GT.FT) TFmPT
RETURN

11 TFsFT

RETURN
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Section 4

ANALYTICAL SOLUTION FOR AN INSULATED FLAT PLATE
WITH RAMP-FUNCTION BOUNDARY CONDITIONS

7 XtDELX*X
8 IF(TAU.LE.TAUI) GO TO 13

PRODaALPHAo(TAU-TAUI )/36OO./(DELSo*23/144.)
DO 12 .JINODES

DO It Ivl,N
AS1IzDS1N(AN4iI))
ASIN2*DSINC2.oA1411))
POWER-AM41I J..2*PROD
IF(POWER.GT.174.) POWERsI74.

ISUH-SUH.(AS1NIs(DEXPI-PCJWER)-I)/CAM(i)ee2oIAN(11'2.*ASIN2))*
IDCOS(A1 *X/DELS3)
TI (J~ sA* CTAU-TAUI ) BoSUK)

IFCTIJJ-O.O13 13,13e12
12 X*X*DELX
13 TFRAMPsTF/TAUl eTA(J
15 FtTF*LT*TFRA4PR TFRA14P*TF
1WRITECIOB.IOO3 TAU.TFRAHP
WRITEUOB.IIO3) IT(K),Ksl..J)
TAU-TAU+DELTAU
IF(TAU-TAU2) 5,5,16

16 STOP
K END

SUBROUTINE EIGEN(N.ANBIOTI
DOUBLE PRECISION TTIA14ZK,ZC,ZRHO.TF.HPILM.X.DELX,DELS,TAU.DE,

C AFITERA SEARCH FOR ROOTS OF COT(M)-14/BIOT*O.
C IMHNSL O AHISO)

Plx3.14159265
EPSsI .OE-3

I 1I I
IEYEvt-I
EYE z1EYE
A*PI/180.*EYE*Pl
B-PI/2.#EYE*Pl
PAsOCOSIA)/DSIN(AI -A/BlOT

2 XxIA*B)/2.
COTvDCOS(XI/DSINCX)
XOB AX/B lOT
FCOT-XOB
IF(F) 3,11*4

3 1IF.EPS) 5.11.11
4 IF(F-EPS) 11,11,5
5 IF(F*FA) 6,1197
S BaX

FIB a F
GO TO 2 65
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? AX

GO TO02

IIAII. RAMP2

C TRANSIENT SOLUTION FOR INSULATED FLAT PLATE, RAMP FUNCTION ON
C BOUNDING FLUID.

DOUBLE PRECISION TT1 ,AH.ZKZCZRI4OTP.IFILN,X,OELXDELSTAUDELTA
IU,TAUI ,TAU2.BIOT.ALPHA.XI ,.8ASINI ,ASIN2,POWERSU4.TFRAI4P,PROO
DIMENSION T(200)JT100.AM1S0I

10 FORMATh4Fl0.01
20 FORIATIIHI,IOX,?GHTRANSIENT SOLUTION FOR INSULATED FLAT PLATE. RAN

IP FUNCTION ON BOUNDING FLUID)
30 PORMATcIHITI0,2HK',F8.2,IOX.2HCs.F?.4.I0X8HDfNSITY~.FS.*I
40 FORMATITII.7I4ILM COEFFICIENTa.FIO.2)
50 FOR)4ATITI I .HALPHAsF8.4,SX.CROELS' #F,.3l
60 FORI4AT13FI0.0,31101
70 FORMATS8FIO.01
80 FORUAT(IHO,T12.I2HEIGEN VALUES)
9O FORI4AT(TI0,2HI4l,I3.3H)- ,FtO.61
100 FORMAT(lIH0,41TIME.F12.3.SH SECONDOOX,1214FLUID TEMP***F12.3)
110 FORMAT(T2,SFII.3v5X.5F11.3)
120 FORI4ATIEIO.II

READIIOS,I0) ZKZC,ZRHOTP
WRITEC 108,201
WRITEtIO8,301 ZKZCZRNiO
READ1IOS,1201 HF IL14
WRITEIIO8.40) HFILI4

READtI 105601 X,DELXDELS.KOOEoNODESN
READIIOS,101 TAU,DELTAUTAUI,TAU2
BIOT'I4FILN*DELS/( 12.&ZKJ
ALPHA*ZK/ IZC6ZRi4OI
WRITE(I08*S01 ALPHA.DELS
WRITEC 108.80)
IF(KODE-Il 2,1,2

I READ(1OS,701 1A1411),1s1.Nl

GO TO 3
2 CALL EIGEN(NsA14,BIOTi
3 WRITEtIO8,S0) dI.AMIIliloli)

A*TF/TAJI
8.100 * DELSO.2/ALPHA

5 XlXI
PROD.ALPHA.TAU/3600./IDELSe'2/144.l
DO 7 JsI.NODES
SUMS0.
DO G IzIN
ASINI 'DSINIA~i4i n
ASIN2lDSINI2. 'AMl ))
POWER*AX(I )**2*PROD
IFIPOWER.GT.114.) POWER*174.

B SUMmSUX.IASNI.DEXPIPOWER)-i1/IAX~~oAN( )II2ASIN2IDCOS(AM(
II) eX/DELS)
T(4) aAotTAU*B*SUHI
IF(TkJI-0,011 8,*7
IFIN-I) 12.12.1

12 RETURN
STOP
END
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Appendix B

LITERARY SURVEY OF THE NUMERICAL SOLUTION OF THE
ONE-DIMENSIONAL HEAT CONDUCTION EQUATION

prepared by

University of Nevada

Contract N60530-67-C-0051
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PREFACE

The bibliography for this sUmary comprises a relatively small

part of the complete bibliography assembled under the contract. Only

the articles and papers which appeared to deal directly with the

questions at hand, and which were available, are discussed hors. Many

of the works were not available at this University. The remainder of

the bibliography is intended to offer a somewhat wider range of ref-

erences for information having possible application in the numerical

treatment of heat conduction problems.

The bibliography is arranged alphabetically with a brief abstract

for each title. The bibliography is then categorized under broad

headings. Some titles may appear unaer more than one heading. Even

though the contract requested a literature search covering the area

of the implicit numerical solution of the one-dimensional transient heat

transfer problem some explicit methods were considered.. Many works com-

pared the methods so some titles covering explicit methods are included.
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NOMENCLATURE

a a space index (node number)

n a time index (n - 1,2,3,..

t a time

At a time increment n-i

tn a elapsed time nat (uniform At) z z Atk (arbitrary At)t o  o
kao k

T a temperature

Ax a distance incremnt

a a thermal diffusivity * k
cp

k a thermal conductivity

c w specitic heat

p density

0 • Fourier modulus a catL

N Biot number hL

L - Length
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RESULTS OF LITERATURE SEARCH

PART 1

Errors in Implicit Finite Dfferience Solutions of the One Dimensional

fleat Conduction Equation

Definitions

The following definitions will be used, consistent with Anderson and

Roundoff Error

This error is cawsed by the fact that all numbers used in computation

must be rounded to a manaeable number of digits. The error can become

significant after long computations in which each calculation is dependent

on the results of the previou. calculation.

Converence Error

This is the error caused by not completely satisfying the simultaneous

equations when using an iterative solution. Increasing the number of

iterations decreases this error,

Time Truncation Error

This error can be visualized as arising from the assumption that

temperature is a linear function of time over each time sten; or it can

be seen to result from the fact that certain high order terms arc neglected

in the Taylor series type of develcpmnt of the finite difference approxi-

mation to the time derivative in aT aaa2T. Reducing the size of the time

step reduces this error.

Space Tracation Error

This error can be thought of as arising from the assumption that tamp-

erature is a linear function of distance over each space increment; or it
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can be visualized as a consequence of the fact that some high order terms

are neglected in a Taylor series development of the finite difference
2

approximation to Me space derivative in 3T 3 T

An additional type of error is described by Schneider 16 and Fox9:

Error Caused by Boundar, Discoitinui,:y

The physical interpretation of this error is the same as that for

truncation error, given above, except that near a boundary undergoing a-

step change of temperature, the assumption of linear temperature variation

is poor, and the error increases sharply. It can be decreased by using a

suitable average between the upper and lower step temperatures and by

reducing the length of the time interval. This error decreases as time

increases, in stable finite difference representations. In the Taylor

series development, this error is seen to result from the fact that a

step temperature increase represents a discontinuity in aT. e 2T whereas,Dtat
the Taylor Series method assumes the derivatives to be continuous.

The foregoing definitions apply to both the explicit and implicit

forms of finite difference representation.

SUMKARY

Roundoff

Roundoff error is not inherent in a finite difference approximation,

but is a type of error associated with most numerical computations. It

can become significant in calculations involving repeated use of rounded

numbers. A fact to be considered when computing with finite differences is

that roundoff error is nearly always present, so that even if truncation

error is completely eliminated, the solution cannot be entirely free from

error. The techniques to be described for reducing truncation error,

consequently, have no value if the roundoff error is large enough to over-

shadow te effects of such techniques.
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Tiuncdtion

Truncation error represents-the difference between-the analytical-

solution and the, finite difference solution of a- problem. - Frequently, a

Taylor series expansion -is-used to -develop- finite difference representations

and numerical estimates oftruncation-error, 89,11

The backward difference expression for T- developed from a Taylor

series expansion, is T... - Tfe..l + At& __

The finite difference expression for ;T, derived by use of a Taylor

series-expansion, is

T ,m I n - 2 .T . 2 T4l~ A x OA) / k " ; T . .

In forming thc limple backwara difference implicit approximation to the

heat eqution, the terms above which contain partial derivatives are neg-

lIcted. If the neglected terms are con dered -to-oe the truncation error,

the-time truncation error in the appriximation to the heat equation is:

iAt IaT 0 f (4i at) pl33T

and the space truncation error is

Ax. 4 6T ** Evaluation of these term requires a
"Tr TX* MR .5U _X- m,n

knowledge of the analytical solution, but if they were to be computed for

several cases having known analytical solutions and found to have similar

values in each case, their use might be extended to cases having no known

analytical solutions. KardasIi evaluates error terms for the case of the

infinite plate with uniform initial temperature subjected to equal step

changes of surface temperature at time zero. The error terms are found

using the known analytical solution for the temperature distribution, and

the results, given as "error parameter", are plotted against N~j, with 9

as parameter. The curves presented, illustrate total truncation error only.

An example is worked to illustrate the use of the curves, but no indication

of the accuracy with which the derived correction approximates the true

difference between analytical and numerical solutions is given.
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rreed and Rallis 8 have expanded the method beyond consideration of

the higher order derivative terns alone. Let 62, - the central difference

operator with respect to m a Tm~l,n - 2Tm,n Tm.-,n and let Vn a the back-

ward difference operator with respect to n Tmn - Tm,n.l. Then, replacing

a2T - I 3T by the backward difference implicit representation, including

high order derivative terms:

62Tnn I Vn T U where Tmn represents the exact solution

of the differential equation and Um,n represents the high order derivative

terms of the Taylor series, which are neglected in finite difference cal-

culations.

Also, consider 6 2 m Wm,n - I Vn Wm,n which is the difference equation

actually solved in finite difference calculations. Let Wm n be the exact

solution of the difference equation; then the truncation error Vman is

defined to be the difference between the exact solution of the differential

equation and the exact solution of the difference equation, or Vmn (trun-

cation error) a Tm,n-Wm,n. This can be given by the difference between
the two previous equations as 62m Vm,n - r ti n qm,nu

tion, error estimates can be made at each nodal point. The example used

by rreed and Rallis to illustrate the method is the infinite plate at i

uniform temperature, subjected to identical step temperature changes at

the surfaces. The analytical solution is compared to the backward difference

implicit solution, and the errors predicted by the authors' method are

compared to the errors predicted by computation of U alone. The suthor3'

method yields better error estimates than does consideration of Um,, only,,

except at the node nearest the surface. The lack of improvement at that

point is attributed to boundary error. As in the previous paper, time and

space truncation errors -re not separated, and only total truncation error

is considered.

A different approach to truncation error estimation has been used by

another group. In this method, the analytical solutions for certain cases

are compared directly with numerical solutions, in an effort to ascertain
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truncation error relationships which can be extended to cases for which

analytical solutions are not available. The time and space truncation

errors are considered separately. Anderson and Botje evaluate space

truncation error for the case of the semi infinite slab with step temperature

change at the surface. Time truncation error is reduced to an insignificant

level by employing very small time steps in the numerical solution. The

two nodes closest to the surface are considered, and spatial truncation

error is shown to be significantly lower at the second node than at the

node adjacent to the surface. Curves are presented illustrating truncation

error plotted against Fourier modulus, using the Biot number as a parameter.

Anderson, Slonneger and Graybeal3 study total and time truncation

error for the semi-infinite solid and for the infinite plate with step

temperature change at the surface. Spatial truncation error is determined

by following the method used earlier by Anderson and Botje 1  Then other

numerical solutions are obtained using an arbitrary time increment in each

solution. Subtracting tne previously determined space truncation errors

irrm the total truncation errors of these solutions yields the time truncation

errors.

The conclusions of the study are, in summary:

1. by judicious use of the curves presented, values of space and time

increrents can be chosen in such a way that truncation error ir

minimized.

2. Truncation error curves for the semi-infinite body and the infinite

plate closely approximate each other, indicating that the results

of the paper can be applied directly to other configurations with-

out causing large errors.

3. Time truncation errors of significant magnitude occur at the

second, third, and fourth nodes from the surface, which contrasts

with the limited influence of space truncation errors, mentioned

above.

4. The curv s illustrate the fact that decreasing the time increment

will decrease the total truncation error.
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This paper contains such data, in the form of curves, relating spatial,

time, and total truncation error to time and space increment, to position

of a node, and to elapsed tim.

Space trunction error alone is treated in the paper of Murray and

L adis14 , In their analysis, only the space derivative of the conduction

equation is r*placed by a finite difference representation. h"en the

resuzitng expression is applied to a nodal network, there is obtained a

system of simultaneous first order ordinary differential equations. Solution

of the system by an exact method gives a temperature distribution free from

time truncation error. The method of solution employed by the authors in.

volvos reduction of the differential equations to aliebraic equations by

mans of the Laplace transform, with the final solution obtained through

matrix analysis. The case treated is a slab with equal temperature changes

at the faces, and both step and ramp temperature changes are considered.

The exact solution of the heat conduction equation is compared with the

exact solution of the system at ordinary differential equations to determine

the spatial truncation error. The results are plotted as truncation error

versus Fourier modulus, with the nunber of nodes as parameter. The effect

of the convective film coefficient is not considered in the example pre-

sented.

The methods of the papers mentioned above might be used to provide

estimates of truncation error for a given set of constants used in a back-

ward difference implicit solution of the conduction equation, or they might

be used to select a set of constants which would minimize the truncation

error. Another possible way to decrease truncation error is to use one of

the other implicit difference equations, possessing lower inherent truncation

error than does the simple backward difference equation. Two of these,

the Crank-Nicolson and the Crandall equations, will be discussed briefly.

The Crank-Nicolson equation is:

"m-l,n~l + 2 T2 Tm+l,n~l Tm-ln 2(-2)Tmn-Tm.l,n '
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This equation is discussed by Douglas6 , Fox 9 , C3umyr 0 , and Campbell,

Kaplan and Moore 4 . Douglas and Fox show mathematically that the truncation

error of this equation is less than that of the backward difference equation.

Douglas shows the Crank-Nicolson equation to be convergent for any value

of 0. Ie comments that the Crank-Nicolson equation provides considerably

increased accuracy over the backward difference equation with a small

increase in computation; but he cautions that a lack of smoothness in the

solution of the heat equation will retard convergence ot tne Crank-Nicolson

solution to a greater degree than convergence of the backward difference

equation will be retarded.

C.aurer compares the backward difference and Crank-Nicolson equations,

with regard to accuracy and stability, by applying both methods to a prac-

tical problem whose analytical solution is known. The problem considered

is the infinite plate with equal step changes of temperature applied at

each face. The results are presented as curves of temperature vs. time,

with the reciprocal of the Fourier modulus as parameter. The curves illus-

trate several points:

1. Although both numerical solutions converge for 0 a 4 (largest value

of 9 used), convergence is not rapid, and neither of them is an

accurate approximation to the analytical solution at early time for

such a high modulus.

2. Using 0 <1/4, both numerical solutions show rapid convergence.

3. With 0 a 1/4, the Crank-Nicolson equation offers slightly improved

accuracy compared to the backward difference equation, but the

drawings do not permit a precise evaluation to be made.

The Crandall equation is discussed by CrandallS, Douglas 6, and Campbell,

Kaplan and Moore4. It is related to the Crank-Nicolson equation, differing

only in that different constants are used. The Crandall equation can be

expressed as follows:

Tm,nl - Tmn - 1/2 (0 - /6) (Tml. - ZTmnl Tm.lnl)

.1/2 (9 + 1/6) (Tm n  2T n + T
,n nm Tm.ln) 7
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Cabells Kaplan and Moore compare the Crandall and Crank-Nicolson

equations with the analytical solution for the temperature distribution in

an infinite plate subjected to equal step temperature changes at the surfaces.

Results are presented for only one value of Fourier modulus, which is given

in the body of the paper as 1/2, but is reported as 2 in the conclusions

section. The Crandall equation is shown to offer increased accuracy com-

pared to the Crank-Nicolson equation, but no comparison of computation

time is given. Another fact demonstrated by Campbell, Kaplan and Moore is

that, as the time and space increments are decreased (0 maintained constant),

titc error of the Crandall equation is reduced more rapidly than that of

the Crank-Nicolson equation.

As mentioned above, Campbell, et.al., present truncation error for

only one value of Fourier modulus. Cenerally, truncation error is different

for different values of rourier modulus, and it is of interest to note that

Crandall' recommends the use of 9 a 0.2236 in the Crandall difference

equation as the value which should give the smallest truncation error.

Another approach to reducing the truncation error in finite difference

apprr.ximation is an extension of the process known as Richardson's deferred

approach to the limit, discussed by Douglas, Fox and Liebman. Douglas6 ,

and Fox 9 , demonstrate the mathematical validity of the method, and Lieb-

mann 14 , illustrates its application to a practical problem. In the

example given by Liebmann, the Richardson technique is used to reduce

time truncation error in the backward difference equation. The procedure

will be described here: The backward difference solution is carried through

using a given time increment, At. Then the problem is solved again using

the same equations, but with the time increment doubled in length (2At).

Then, for a given space node at a given time, the temperature T(At) obtained

by using at, is corrected by adding to it the difference between T(AtJ

and T(2At), where T(26t) is the temperature obtained using the time in-

crement(24t). Thus T(corrected) w T (At) + (T (At) - T (2At)]. Douglas6

mentions that the technique can be used to reduce spatial truncation
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error rather than time truncation error, by using a linear combination of

two solutions, each of which uses a different value of space increment Ax,

with At being the same in both solutions. He also comments that both

spatial and time truncation error can be reduced by using a linear

corbination of three solutions, and, furthermore, that the basic idea can

be applied to equations other than the backward difference equation.

Boundary Error

Boundary error is introduced at the start of calculations, and it

decreases as the solution is advanced in the time dimension, provided the

finite difference equation being used is stable. Implicit finite difference

equations are stable for all values of the Fourier modulus; however, the

bondry error is often excessive at early time steps unless the Fourier

modulus is small. This requires that the ratio of the time step to the

distance step be relatively small, which mans that a large number of

calculations is required to cover a given ti interval. As time passes,

the requirement for small At is diminished because of the inherent

decrease in boundary error. To reduce the mount of computation, the tim

incrm , can, therefore, be increased as the solution progresses, thus

iscreasing 0 also.

Douing6 a=d Douglas sd Gallie 7 discuss variable tin steps, and

present two schemes for increasing the length of the tin step in a systema-

tic way. The first method results in a linear increase of the time incre-

ment as the solution of the difference equation advances in the time dim-

onsion. To determine the time interval to be used between timet n and

tim thio use Atn * (a * bt n ) (Ax) 2 where a>o and b)o and tn(nsl,2, 3 ,)
n-1
E £ Atk, o<k<-, (to a 0). The second method causes the length of the
k-o

time step to grow exponentially. The time interval for use between tu

ad tn l is given by Atn * (Ax) 2 a atn where o-aj 2 and tn is given by the

sumation above. Douglas and Gallie discuss the use of these relations

as g"tied to the backward difference implicit equation, and show that the

rate of convergence of the solution is not reduced by their use, which

Implies that the accuracy at a given elapsed time is not reduced.
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PART Ii

Some Methods of Solving Implicit Finite Difference Representations

of the Heat Conduction Equation.

Two methods employed for solving the system of equations resulting

from use of the implicit difference equations are iteration aa Gaussian

elimination. Two papers comparing different variations of thuse processes [

and some references containing special techniques for use in solving the

system will be mentioned.

Anderson, botje, and Koffel2 employ the backward difference equation in
a computer program, using Gauss-Seidel iteration to solve the simultaneous

equations, for a two dimensional network of as many as 200 nodes. Two

schemes are used in combination to accelerate convergence of the iteration,

and they will be described later. Gaussian eliminatiou was initially

considered by these authors for solving the simultameous equations, but it

was found that excessive computation time would be required for such a

large number of equations. The authors describe thoroughly the development

and application of this program and give results for severel industrial

problems it has solved.

Several methods are available for accelerating the convergence of

iterative processes, thus reducing computation time. Anderson, Botje and

Koffel 2 discuss their experience with a combination of two such devices in

connection with an implicit heat transfer program, commenting that time

savings of as much ss 75 percent have been obtained. The first of these

schemes Involves extrapolation, the initial value for an iteration process

being obtained by extrapolating fron the results of the two preceeding

iteration steps. The second method is an adaptation of the technique

described by Wegstein'7, which is very similar to the Aitken 42 process.
12,15

In the Wegstein method, the value of the unknown, x at the (kl). iteration

step, is corrected as follows: Xk+l (corrected) Xk* 1  (Xkl "Xke
Xk~l - Xk  7 k.1
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The Wegstein technique accelerates convergence for simple iterative processes

which exhibit either oscillatory or monotonic convergence, and also can be

used to force the convergence of simple iterative processes which show

oscillatory or monotonic divergence, Anderson, otje and Koffel make two

comments about this technique based on their experience with its use in

their heat transfer computer program:

I. If this acceleration scheme is applied as often as every third

iteration sweep, the extra machine time required to compute the

correction may exceed the time saving accomplished by the acceler.

ation.

2. A satisfactory method for determining the nuber of iteration

sweeps between applications of the acceleration correction is to

set the number of sweeps between corrections equal to the number

of nodes from the boundary to the deepest node in the system.

A third acceleration technique is attributed to Steffensen. It is

described briefly by Prager 1 5 , who states that one application of this

method has the same effect as three successive applications of Aitken's 62

process.

A modified form of Gaussian elimination, suitable for solving the

tridiagonal system of equations obtained from application of the backward

difference implicit equation, is described by Douglas
6, and Wilkes18 . It X

is based on the fact that the difference equation at each interior node

contains three unknowns, and those at the boundaries contain two unknowns.

Using this property, a general expression is developed relating the

unknown temperature at each node to the temperatures of adjacent nodes.

An expression is obtained giving the temperature of the final node of the

system explicitly. Then the temperature of each node in turn is calculated,

beginning at the final node and proceeding toward the first node.
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PART III

Truncation Error of Runge-Kutta Methods

If the second order (spatial) derivative alone is replaced by a finite

difference expression, the one dimensional heat conduction equation becomes:

dT • (TmlZn - 2T T. ) When this equation is applied to a

system of heat transfer nodes, a system of simultaneous ordinary differential

equations is obtained. Solution of the simultaneous system by an exact method

would yield temperature values free from time truncation error. If the

*ystem is solved by a numerical scheme, truncation error will be introduced,

because such methods are based on approximate relationships. For example,

the Runge-Kutta method, a widely known device for salving ordinary differential

equations, is developed from a Taylor series expansion, and contains a trun-

cation error because of the fact that high order terms of the series are

ignored. An estimate of the truncation error of one set of Runge-Kutta forsulas

is given by Prager1 S .

To solve dv a f(u,v) with the initial condition v(uo ) - vo, let h a

interval length, p a number of steps, V v approximation to v given by the

Runge-Kutta equation; the most widely used Runge-Kutta equation is

VpI a Vp * 1/6(k 1 + 2k2 * 2k3 * k4 ) where

ki a hf(up,Vp); k2 -hf (up h. Vp k

k3 a hf(up + h, Vp k ); k4 - hf(Up + h, V + k3)

The truncation error is estimated to be 1 (V VP) and the corrected value

of Vp¢l is Vp I * (Vp I - V

Lance 12, describes a modified Runge-Kutta procedure for digital computers

which automatically adjusts the interval length to maintain a predetermined

truncation error.

Vp I • Vp *(k + 4k4 * ks)

alI k2 u Ihf(up I Vp k)
k I hf (up, Vp); k b'

3 a h, 3k9kk .I2hf (up +, T

kS a 1 hf (u + h, V 3k -9 3. 6k,
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The truncation error c Is estimated by

Se a k- U aS If the right hand side of this equation

is greater thnfv ie h llwbeerr h le and t the oeptati n

duction by mentioning that when a fixed interval length is used throughout

the solution, this length is usually deliberately underestimated to insure

accuracy, thus requiring the use of more steps than necessary. The self

adjusting procedure eliminates more than enough of these extra steps to

offset the time required for the extra numerical anipulatious it requires,

thus effecting an overall saving of computation time.
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1. Aitken, A.C., "Studies in Practical Mathematics: II, The Evaluation
of the Latent Roots and Latent Vectors of a Matrix, "Proceedings
of the Royal Society of Edinburgh, v. 57, p. 269, 1937

Aitken's 62 accelerated convergence method is described

2. Aitken, A.C., "Studies in Practical Mathematics: VI, On the
Factorization of Polynomials by Iterative Methods," Proceedings
of the Royal Society of Edinburg, Sect. A. 63, p. 174-91, 1951.

This article presents the theory of an iterative method for the
approximation of an exact factor of a polynomial. The matrix governing
the iterative process is obtained, and its latent roots and vectors are
found. Convergence of the process discussed and processes are developed
for the acceleration of convergence.

3. Albasiny, E.L., "On Numerical Solution of Cylindrical Heat Conduction
Problem," Quarterly Journal of Mechanics and Applied Mathematics,
Vol. 13, part 3, Aug. 1960, p. 374-84

This article treats the use of automatic computers for the numerical

solution of the cylindrical heat conduction problem. It is shown
that accurate solutions can be obtained easily and rapidly using the
Crank-Nicolson implicit method. Attention is given to the adequacy of
the finite-difference representation near a singularity at the boundary.

4. Allen, D.N. deG., and Severn, R.T., "The Application of Relaxation
Methods to the Solution of Non-Elliptic Partial Differential Equations.
I; the Heat Conduction Equation," The Quarterly Journal of Mechanics
and Applied Mathematics, Vol. 4, p. 209-22, 1951

The equation considered is au/at * k32v/ax 2 . The authors make the
transformation v - aw/ at + k a2 W/x 2 , which gives the equation
a2u/at 2 - k2 a3-' /ax1 a 0. The boundary conditions are also transformed
and new cones added.

S. Allione, M.D., "Comparative Study of Runge-Kutta and Lanczos Numerical

Integration Methods", Rept. No. U2421, Contract AF 19 628 562, ESD
TDR63 662, Aeronutronic, Newport Beach, Calif., 9 Jan. 1964, 24 p.
AD-429 958

The two methods are compared in solving the system of ordinary
differential equations associated with the Variation of Paranenters
formulation. Results of ephemeris calculations using each method
are compared with a standard to determine the relative error growth.
Conclusions are drawn regarding the relative merits of the two methods.

6. Anderson, J.T., "Review of Digital Computer Heat Transfer Programs"
ASNIE Paper 65-WA/iiT-48, 7 p.

This paper is a review of the available steady state and transient
programs. Emphasis is given to the capabilities and limitations of
general purpose programs, both explicit and implicit. Indications of
computer time are given and discussion of the error magnitude is
included.

7. Anderson, J. T., and Botje, J.M., "Spatial Truncation Error Analysis,
"ASME paper No. 62-HT-27

A method is presented for evaluating spatial truncation errors in a
finite difference solution of a parabolic partial differential equation.
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A one-dimnsion trasient heat transfer problem is used as an example.
Curves are presented for rapid evaluation of the spatial truncation error.

8. Anderson, J.T., botJe, J.M., Koffel, W.K., "Digital Computer Solution
of Complex Transient Heat Transfer Problems," W.Va. Univ. Bulletin,
Engr. Experiment Station, Technical Bulletin No. 62, 26 p.

The authors describe a comprehensive computer program for heat transfer
transient problems involving convection, conduction, contact resistance,
solid and gaseous radiation, surface flux and internal heat generation.
The Liebman backward time step approximation was used in developing
the program, and the difference equations obtained by the Liebman method
are presented with a discussion of methods used to solve them on a
digital computer.

9. Anderson, J.T., Slonnegar, R.D., Graybeal, G.E., "Truncation Error
Analysis for Transient feat Transfer Calculations." unpublished

"A total and time truncation error analysis of numeric solutions of
parabolic partial differential equations is herein reported. Math.
ematical models include transient heat conduction in an infinite body
and an infinite plate with (I) convective heat transfer and (2) a step
function temperature change on the surfaces. Results are tabulated as
well as shown graphically." author's abstract

10. Barakat, H.Z., and Clark, J.A., "On the Solution of the Diffusion
Equations by Numerical Methods," ASME Journal of Heat Transfer, Vol.88,
p. 421-27, 1966
Author's introduction: "An explicit finite difference approximation
procedure which is unconditionally stable for the solution of the

general multi-dimensional, non-homogeneous diffusion equation is

presented. This method possesses the advantages of the implicit methods,
i.e., no severe limitation on the size of time increment. Also it has
the simplicity of the explicit methods and employs the same "marching"
type technique of solution. Results obtained by this method are
compared with the exact solution and with those obtained by other finite
difference methods. For the examples solved the numerical results
obtained by the present method are in closer agreement with the exact
solution than are those obtained by other methods!'

11. Bellman, R. Kalaba, R., Kotkin, B., "On a New approach to the
Computational Solution of Partial Differential Equations," Proceedings
of the National Academy of Sciences of the USA, Vol. 48, P. 1325-27, 1962

This article discusses a modification of the usual finite difference
approach to the numerical solution of partial differential equations.
The idea is that the computational algorithm should exhibit as closely
as possible the properties of the actual solution; for example, if the
actu&l solution is bounded and non-negative, this should be evident from
the algorithm. The method is illustrated by a problem, and the numerical
results are discussed.

12. Buglia, J.J., and Brinkworth, H., "A Comparison of Two Methods for
Calculating Transient Temperatures for Thick Walls," NACA Technical
Note 4343, 19 p., Aug. 1958

This paper compares lill's method fNACA Tech. Note 4105) with Dusinberre's
method. In Hill's method, finite differences are taken only in the
time variable, the equations used being already integrated with respect
to distance. The authors conclude that Hill's method is, practically,
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an exact method and is faster than Dusinberre's, only the two surface
temperatures are needed. If the temperature distribution is needed,
Hill's method is slower, but very accurate.

13. Butler, R. Kerr, E., "An Introduction to Numerical Methods," Pitman
Publishing Corp., New York, 386 p., 1962

This is an elementary text covering the solution of algebraic equations,
finite differences, interpolation, numerical differentiation and integra-
tion, and the solution of ordinary differential equations.

14. Campbell, B.C, "An Investigation of the Accuracy of Numerical Solution's
in the Diffusion Equation for Transient Heat Transfer," Master's
thesis, AFIT rSF/Phys/64-1, A.F. Inst. of Technology, Wright-Patterson
AFB, Ohio, Aug. 1964, 118 p. AD-605-489

This paper gives the results of a comparison of the accuracy obtained
using two implicit finite difference representations of the transient
heat conduction equation in obtaining solutions for two basic heat
conduction problems. The x.presentations compared are the Crank-Nicolson
form and a theoretically more optimum form called the Optimum Implicit
form. It is demonstrated that the major source of error occurs at the
initial time/space node of the difference mesh. The Optimum Implicit
form decreases this error and is shown to be as accurate as the Crank-
Nicolson form in one problem and considerably more accurate in the other.

15. Carr, J.W., III, "Error Bounds for the Runge-Kutta Single Step Integration
Process," Journal of the Association for Computing achinery,Vol. 5,
p. 39-44, 1958

This article presents a mathematical theorem for determining the error

at each step in a fourth order Runge-Kutta procedure.

16. Collatz, L., "The Numerical Treatment of Differential Equations," third
edition, Springer-Verlag, Berlin, 554 p., 1960

This is a rather comprehensive book with over 200 pages devoted to
partial differential equations, including discussions of error propagation,
node spacing and iterative methods. Emphasis is placed on manual solution
of problems rather than computer solution.

17. Compton, W.R., "An Extension of Present Numerical Solutions for
Transient Heat Conduction," NOTS TP3361 NAVWEPS 8419, NOTS China Lake,
Calif., Feb. 1964, 26 p. AD-431 791

A fourth order technique for the numerical solution of transient heat
transfer equations involving conduction, convection, and radiation is
presented. Approximating parabolas and Taylor series expansions are
used to facilitate the use of fourth order difference equations and
Runge-Kutta techniques.

18. Crandall, S.H., "On a Stability Criterion for Partial Difference
Equations," Journal of Mathematics and Physics, V. 32, p. 80-81,
1953

The author exhibits a partial difference equation which is unstable but
has stable characteristics locally. He points out that a stability
analysis based on the procedure of O'Brien, Hyman, and Kaplan (J. Math.
and Phys. V. 29, p. 223-51, 1951) is not valid for this type of equation.

90



NWC TP 5143

19. Crank, J., and Nicolson, P,, "A Practical Method for Numerical Evaluation
of Solutions of Partial Differential Equations of the Heat Conduction
Type," Proceedings of the Cambridge Philosophical Society, Vol. 43,
p. 50-67, 1947

The article presents a comparison of three methods for the solution
of the non-linear equation of heat flow in a medium where heat is being
generated. The first method consists in a reduction to a system of
ordinary differential equations by approximating the time derivatives
with differences. The second method is the sam except that the space
derivatives are approximated by differences rather than the time deria
vatives. In the third method, all derivatives are approximated by
differences, and the authors conclude this to be much faster and more
satisfactory. The third method gives a system of non-linear algebraic
equations, which is solved by a combination iterative and step by step
method, and several variations of this method are discussed.

20. Cudaihy, C. F,, "Investigation of Accelerating the Convergence of an

Implicit Numerical Solution of Transient Heat Transfer Problems,"
Master's thesis, Rept. No. GA/Pi|/65-4-A, A.F. Institute of Technology,
Wright-Patterson AFB, Ohio, Aug. 1965, 82 p. AD-621 273.

This paper presents the results of an investigation of two methods for
increasing the convergence rate for the two dimensional, five point
implicit finite difference representation of the diffusion equation
of transient heat transfer, the methods being the adapted Wegstein
technique and successive overrelaxation. Various mesh scanning techniques
are investigated. An example problem is used to show that successive
overrelaxation with a technique of repeatedly scanning all boundary
values into the finite difference mesh is the fastest method of solution
for the equations used in this study. Solution of 28 other problems
by this method shows an approximate saving of 1/3 in the number of
iterations over successive overrelaxation with a conventional repetitive
scanning technique. An "a priori" relaxztion factor related to the
maximum temperature gradients is obtained.

21. Descloux, J., "Note on the Round-off Errors in Iterative Processes,"
Mathematics of Computation, Vol. 17, p. 18-37, 1963

Let Xn+ 1 -*Xno+ F (Xn) be a scalar iterative converging process. When
Xn is close to e limit, F (Xn) is small and can perhaps be obtained
with higher absolute precision than Xn. Then the addition Xn + F (Xn)
involves a round off operation. The author shows that, for a fixed-point
computer, an appropriate rounding method can impove the accuracy of
solution. Appendix I gives analogous results for a floating-point
computer. Appendix II deals with Aitken's 62 process.

22. Douglas, Jr., J, "A Note on the Alternating Direction Implicit Method for
the Numerical Solution of Heat Flow Problems," Proceedings of the American
Mathematical Society, Vol. 8, p. 409-12, 1957

As originally presented, the alternating direction method of Peaceman
and Rachford applies to rectangular regions. The author extends it ro
regions with polygonal boundaries where each segment of the boundary is
parallel to one of the coordinate axes.

23. Douglas, Jr., J., "A Survey of Numerical Methods for Parabolic Differential
Equations," Advances in computers, Vol. 2, p 1-54, 1961, Academic Press,
New York.
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Quoted from the author's introduction: "The purpose of this survey is to
introduce a theoretically minded, but not highly mathematically trained,
scientist to finite difference methods for approximating the solutions
of partial differential equations of parabolic type." A partial list of
topics is: Explicit Difference Equations, The Backward Difference
Equation, The Crank-Nicolson Equations, Comparison of Calculation

Requirements, Alternating Direction Methods.,lUigher Order Correct Difference
Equations

24. Douglas, Jr., J., and Gallie, Jr., T.M., "Variable Time Steps in the
Solution of the Heat Flow Equation by a Difference Equation," Proceedings
of the American Mathematical Society, Vol. 6, p. 787-93, 1955.

The authors consider the numerical solution of Ut a U.., using a back-
ward difference equation known to be stable for all Ax and at. Two cases
of variable At are considered.

2S. Douglas, Jr., J., "The Solution of the Diffusion Equation by a High
Order Correct Difference Equation," Journal of Mathematics and Physics,
Vol. 35, p. 145-51, 1956

The author proposes a six-point implicit difference scheme for the
solution of Ut a Uxx with a smaller truncation error than the Crank-
Nicolson form. Because the error is smaller, the new method allows
larger AX and At to be used. (The method is described also in the book
"Advances in Computers, Vol. II, p. 26.)

26. Douglas, Jr., J., "The Effect of Round-Off Error in the Numerical
Solution of the Heat Lquation," Association for Computing Machinery
Journal, Vol. 6, No. 1, Jan. 1955, p. 48-$8

The artical presents an analysis of the approximation to the heat
equation by the backward difference equation when boundary value problems
are approximated by finite difference problems. The dependence on the
method of solving the tri-diagonal equations is shown. It is shown that (
if linear equations are solved by a normalized form of Gaussian eliA-
ination, the procedure is stable against round-off error.

291. Dusinberre, G.M., "A Note on the 'Implicit' Method for Finite-Difference
Heat-Transfer Calculations," ASME Journal of Heat Transfer, Vol. 83, p. 94
1961

"The apparent advantage of the implicit method lies in the possibility
of using relatively large time intervals. But this may be accompanied by
(1) considerable sacrifice in accuracy and (2) no corresponding saving
in digital time." This is the author's introduction to the article, which
discusses points (1) and (2) above.

28. Dusinberre, G.M., "Numerical Methods for Transient Heat Flow," ASME
Transactions, Vol. 67, p. 703-10, 1945

A modulus is developed by choice of which a solution may be reached most
rapidly or alternatively reached more slowly but with greater precision.
Criteria are developed for choosing the modulus to insure convergence.
A method is developed for handling thermal conductivity and heat capacity
when they vary independently with temperature.

29. Elliot, D., "A Method for the Numerical Integration of the One-Dimensional
Heat Equation Using Chebyshev Series," Proceedings of the Cambridge
Philosophical Society, Vol. 57, p. 823-32, 1961

92



NWC TP 5143

The equation used is a/3t _a2e/ax2 (-l<lXl;t>O with general linear
boundary conditions along x m a1. SQ/at is replaced by a finite difference
approximation and the resulting system of ordinary differential equations
is solved by Clenshaw's method of Q in terms of Chebyshev polynomials.
To examples are worked and the results coipared with exact results.
The author concludes that the present method requires less computation
than the usual finite difference methods, but is less versatile and not
so well suited for complicated equations.

30, Elrod, Jr., H.C., "New Finite-Difference Technique for Solution of the
Heat-Conduction Equation, Especially Near Surfaces with Convective Heat
Transfer," ASME Transactions, Vol. 79, p. 1519-25, 1957

The success of most finite difference methods for transient heat conduction
depends on the existence of a certain degree of uniformity of behavior
of the temperature over the time and space intervals selected for computation.
This often requires the use of inconveniently short time intervals.
This paper represents an effort to develop a finite difference method
not possessing such a defect.

31. Emmons, H. W., "The Numerical Solution of Heat Conduction Problems,"
ASME Transactions, Vol. 65, p. 607-12, 1943

The author discusses the application of the Southwell relaxation method
to two and three dimension steady state heat conduction. A transient
problem is also briefly considered. A short discussion on "Derivation
of Difference Equations from Differential Equations," is included.

32. Emmons, H. W., "The Numerical Solution of Partial Differential Equations"
Quarterly of Applied Mathematics, Vol. 2, p. 173-9S, 1944

The author presents a detailed expository treatment of Southwell's
relaxation process. Examples illustrate the application to the solution
of boundary value problems for the Laplace, Poisson and other equations.

33. Enig, J.W., "A Method for the Rapid Numerical Solution of the
Heat Conduction Equation for Composite Slabs," NAVORD Rept. 6666
Naval Ordnance Lab., White Oak, Md., 20 Aug 59, 22 p. PB 144 193

Two boundary conditions encountered in heating one dimensional double
slabs are: heat flux given at inner surface and (a) heat flux or
(b) temperature given at the outer surface. A method is developed which
permits rapid calculation of (1) any interior point temperature and
(2) the outer surface temperature or flux for (a) or (b) respectively,
without computing other interior point temperatures. The partial diff-
erential equations are integrated in terms of an arbitrary outer surface
temperature or flux by a simple numerical scheme. The method performs
an exact integration over the space dimension, so once the outer surface
temperature is determined the interior temperatures are computed by exact
formulae. The numerical solutions are compared to the exact solution
for accuracy and to other numerical schemes for speed.

34. Forsythe, G.E., and Wasow, W.R., "Finite-Difference Methods for Partial
Differential Equations", John Wiley and Sons, Inc., New York-London
444 p., 1960

The heat equation Ut a U is considered (in part - of book) for -X <
A forward difference equaion is developed and studied from the stand-
points of stability, convergence, and discretization error. Also in part
2, for linear problems on a finite interval, the forward difference,
backward difference, Crank-Nicolson, and Dufort-Frankel schemes are con-
sidered with respect to stability, convergence, and discretization method.
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35. Fowler, C.M., "Analysis of Numerical Solutions of Transient Heat Flow
Problems," Quarterly of Applied Mathematics, Vol. 3, p. 361-76, 1946

Solutions of the difference equation for the temperatures Tx t for
one dimensional conduction are considered. The author uses contour
integrals of particular solutions of the difference equation to give
the temperatures in terms of polynomials and trigonometric functions.
The convergence of his solutions to the well-known solutions of the

corresponding problems in partial differential equations as Ax and At-
0 is investigated.

36. Fox, L. (editor), "Numerical Solution of Ordinary and Partial
Differential Equations, " Addison-Wesley Publ. Co., Inc., Palo Alto,
California, 1962, 509 p.

Various finite difference schemes for partial differential equations
are discussed with regard to convergence, stability and computational
error.

37, Fox, L., "Some Improvements in the Use of Relaxation Methods for the
Solution of Ordinary and Partial Differential Equations," Proceedings
of the Royal Society of London, Series A, Vol. 190, p. 31-59, 1947

Boundary value problems associated with ordinary or partial differential

equations are commonly solved by the use of difference equations which
are solved by successive approximations. Usually a derivative is replaced
by the leading term of a finite difference series for the derivative and
a small interval is used to obtain the desired accuracy. The author pro-

poses to use higher order differences and a larger interval, which gives
a smaller number of unknowns to be found. Two examples are worked, one
being Poisson's equation. Two further examples show the application
of the method to curved boundaries.

38. Frankel, S.P., "Convergence Rates of Iterative Treatments of Partial
Differential Equations, Mathematical Tables and Other Aids to Computation,

Vol. 4, p. 65-75, 1950

Convergence rates are estimated for several iterative methods of sol-
ution for the Laplace and biharmonic equations. The methods used for
the Laplace euqations are (1) Richardson, (2) Liebmanna - 1/4,
(3) Liebmann, optimum a, (4) second order Richardson. Quoted from the
author's conclusions: "It is thus seen that with a fairly fine mesh the
calculating time required with the slower machines is uneomfortably long

for the Laplace equation ... if the normal Richardson method is used."

39. Freed, N.H., and Rallis, C.J., "Truncation Error Estimates for
Numerical and Analog Solutions of the Heat Conduction Equation,"
ASME Journal of Heat Transfer, Vol. 83, p. 382-3, 1961

The authors describe a method for obtaining an estimate of truncation

error for fully finite difference forms of the heat conduction equation.

It may be used with manual and analog methods if the error due to mesh
size is relatively large. Error estimates for a case of one dimensional

flow are derived in an example, using the backward difference equation.

40. Frocht, MJ.., "A New Approach to the Numerical Solution of Laplace's
Equations," Numerical Methods of Analysis in Engineering, p. 75-80
The Macillian Co., N.Y., 1949.
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The author discusses a procedure for obtaining good initial values
for interior grid points which is applicable to iterative and relaxation
methods. The procedure requires known boundary values and is termed the
Linear Rosette Method.

41. Galmer, G.R., "The Stability of Three Finite Difference Methods of
Solving for Transient Terperatures," presented at the Fifth U.S. Navy
Symposium on Aeroballistics on 18 Oct. 1961, 23 p.

The paper contains the results of stability investigations for three
types of finite difference equations; which are the forward, mid and
backward difference types. For each type, the one dimensional heat
balance equations are presented for three combinations of heat transfer
modes, which are (1) conduction, (2) conduction and convection, (3) con-
duction, convection and radiation. A stability criterion is developed
for each type of equation with each combination of modes.

42. Cill, J., "A Process for the Step-by-Step Integration of Differential
Equations in an Automatic Digital Computing Machine," Proceedings of
the Cambridge Philosophical Society, Vol. 47, p. 96-108, 1951

The article presents a modified 4th order Runge-Kutta process for systems
of 1st order ordinary differential equations. The process described
requires a small number of storage spaces for each integration step. The
effect of truncation and round-off error is discussed and illustrated by
a numerical example.

43. Goodwin, E.T., Clenshaw, C.W., Martin, C.W., Miller, G.F., Olver, F.W.J.,
and Wilkinson, J.H., "Modern Computing Methods, ". Philosophical Library,
N.Y., 170 p., 1961

The book includes five chapters on matrices, two each on ordinary
and partial differential equations, and one on finite difference
methods. Comments are made on adaptation to desk and automatic
computation and careful attention is paid to the assessment of comp-
utational error for the methods described.

44. Graybeal, G. E., "Time and Total Truncation Error Analysis in Heat
Transfer Calculations", Master's Thesis, West Virginia University, 1963,
59 p.

A method is presented for evaluating time and total truncation
errors encountered in a finite difference solution of problems defined
by a parabolic partial differential equation. The example problem is
a one-dimensional heat transfer situation with a step function temperature
change on the surface. Curves are presented to aid in the evaluation
of time truncation and total truncation error.

45. Greenwood, J. A., "Implicit Numerical Methods for the Heat Conduction
Equation," British Journal of Applied Physics, Vol. 13, No. 11, p. 571-2

The author shows that the Liebmann finite difference approximation is
to be preferred to the Crank-Nicolson form in certain cases involving
variable diffusivity.

46. Hamming, R. W., "Numerical Methods for Scientists and Engineers,"
McCraw-Hill Book Co.., Inc., San Francisco, 1962, 411 p.

The book includes a discussion of difference calculus and difference
equations. Functions of moie than one variable are not treated.
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47. Hawkins, G.A., and Agnew, J. T., "Solution of Transient Heat Conduction
Problems by Finite Differences," Purdue Univ. Eng. Experiment Station
Research Series, No. 98, 1947, 38p.

The purpose of the authors is to bring the treatment for slabs,
cylinders, and spheres together. Analytical methods are discussed in
detail for unidirectional flow in slabs and radial flow in cylinders.

48. Henrici, P., "Elements of Numerical Analysis," J. Wiloy and Sons,
Inc., N. Y., 328 p., 1964.

This is an introductory book and it presents a small range of subjects
with thorough coverage on each rather than treating a large nuber of
techniques superficially. It contains much material on difference
equations. Difference methods for ordinary differential equations are
developed using Taylor's series. The Runge-Kutta method is treated
only briefly.

49. Herriot, J.G., "Methods of Mathematical Analysis and Computation,"
J. Wiley and Sons, Inc., N.Y., 198 p. 1963

This book is intended for use by engineers, and it deals with only
the best known numerical methods. The emphasis is on methods suitable
for use on high speed computers. The subjects covered include, Num-
erical differentiation and integration, roots of equations, solution
of siuIltaneous linear equations, solution of ordinary differential
equations, solution of partial differential equations.

SO. Hill, P.R., "A Method of Computing the Transient Temperature of Thick
Walls from Arbitrary Variation of Adiabatic Wall Temperature and Heat
Transfer Coefficient," NACA Tech. Note 4105, S1 p., Oct. 1957

Quoted from the author's introduction " ... simple method is developed
for the calculation of the temperature history of the surfaces of a
thick wall or of any plane within the wall. The procedure is to select
from a table a set of coefficients which depend on the physical properties
of the wall. These coefficients and other data are substituted into
explicit algebraic formulas to determine the temperature of the heated
wall surface. If the heat transfer coefficients are known, no guess
or iteration procedure is required. .... For equal time step sizes,
the method is more accuiate than more laborious numerical mthods."
The method uses concepts called 'time series' and ' unit triangle
variation of surface temperature'.

S1. Hyman, M.A., "On the Numerical Solution of Partial Differential Equations,"
Thesis, Technishe Hogeschool te Delft, 108 p., 19S3.

The paper consists of four chapters and an appendix. Stress is placed
on methods suitable for use with computers. Ch. 1 treats convergence
and stability of difference equation solutions; Chp. 2 treats convergence
and extrapolation of difference solutions for parabolic equations,
Ch. 3 discusses elliptic equations; Ch. 4, is on hyperbolic equations.

S2. Juncosa, M.L., and Young, D.M., "On the Convergence of a solution of a
Difference Equation to a Solution of the Equation of Diffusion,"
Proceedings of the American Mathematical Society, Vol. 5, p. 168-74, 19S4.

Several sharp convergence theorems are proved. The equation treated in
the principal theorem is 3u/at ; 2u/axz. The *Vproximation used is:
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U (Xjt+bt) - U. JXt) W Um (X +AXt) - 2Us (Xt) + UN (X-AX.t), with

O<At/Ax 2 <1/2, MX - 1. Us (Xt) is shown to converge uniformly to u(xt)
in the region 00<1 t-t o >D as -

53. Juncosas, H.L., and Young, D.M., "On the Order of Convergence of Solutionsof * Difference Equation to a Solution of the Diffusion Equation," Journal

of the Society for Industrial and Applied Mathematics, Vol. 1, p. 111-3S,
1953
For au/3t -32u/;ax2 is substituted

vlXt * at) - v (xt) - v(x . Azxt) - 2v(x t) + v(x-ax,t).
At (Ax)Z

The difference solution is discussed with regard to attempts to improve
the solution by "extrapolation to zero grid-size."

S4. Kaplan, B. and Clark, N., "Accuracy and Convergence Techniques for
Implicit Numerical Solution of the Diffusion Equation for Transient
Heat Transfer," Transactions of the American Nuclear Society, Vol.
4, No. 1, p. 80-81, June 1961

55. Kardas, A., "Errors in s Finite-Difference Solution of the Heat Flow
Equation, ASME Journal of Heat Transfer, Vol. 86, p. 561-2, 1964

Whis note gives magnitudes of discretization errors incurred in a
finite difference solution of the heat flow equation in a symetric
slab with the boundary conditions of the third kind.' authorts abstract

56. Kunz, K.S., "Numerical Analysis," McGraw-Hill Book Co., Inc., New
York, 381 p., 1957.

The book was written for engineers, It includes numerous, illustrative
examples. Iterative methods receive only cursory attention. The book
includes chapters on ordinary and on partial differential equations,
An appendix on the estimation of errors in numerical computation is
included,

S7. Lance, G.N., "Numerical Methods for High Speed Computers," Iliffe and
Sons, Ltd. London, 166 p., 1960

General text with descriptions of methods, often brief, some widely
used methods are omitted. Discusses Runge-Kutta methods and description
of Aitkens 62 process.

58. LapidusL;'Digital Computation for Chemical Engineers," McGraw-Hill
Book Co., Inc., N.Y. 406 p., 1962.

General text which includes polynomial approximation, ordinary and
partial differential equation, matrix solution of systems of linear
algebraic equation, and etc.. Contains a description of the Tridag
method.

59. Larkin, B.K., "Some Finite Difference Methods for Problems in Transient
Heat Flow," Chemical Engineering Progress Symposium Series, Vol. 61, No. 59
1965, p. 1-11

Four explicit methods for digital solution of transient heat flow are
compared. The superior stability of the newer methods iz noted. The
discussion is relevant to the design of booster vehicles, launch systems,
vehicles for space travel, and re-entry heat shields.
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60. Lax, P.D., and Richtmyer, R.D., "Survey of the Stability of Linear
Finite Difference Equations," Communications on Pure and Applied
Mathematics, Vol. 9, p. 267-93, 1956

The paper treats the numerical solution of initial value problems
by finite difference methods by a 9equence of calculations with
increasingly finer mesh. The question is whether the solution convarges
to the true solution of the initial value problem as the mesh is made

finer. A stability definition is given in terms of the uniform bounded-
ness of a certain set of operators, and it is shown that, with suitable
circumstances, for linear initial value problems, stability is necessary
and sufficient for convergence in a certain uniform sense for arbitrary
initial data. Two different approximations to the heat equation are
considered, one being a general two level formula and the other
the DuFort-Frankel equations.

61. Lea, R.N., "Stability of Multistep Methods in Numerical Integration,"
NASA TN D-2772, Manned Spacecraft Center, Houston, Texas, April, 1965, 16 p.

The paper contains a discussion of the stability of solutions of

differential equations obtained by using difference equations. An
original development leading to a definition of stability shows a
relationship between stability and certain properties of the differential
equation tn be solved. The example worked in the paper is an ordinary

differential equation.

62. Lees, M., "Approximate Solutions of Parabolic Equations," Journal of
the Society for Industrial and Applied Mathematics, Vol. 7, p.167-83,1959

The author discusses the convergence of numerical solutions of partial
differential equations. The analysis is based on energy methods. The
author derives a priori bounds for solutions of linear parabolic difference
equations, then applies them to establish the convergence of a difference

solution to a non-linear parabolic equation. Crank-Nicolson type
difference equations are also treated.

63. Lees, M., "A Priori Estimates for the Solutions of Difference Approximations
to Parabolic Partial Differential Equations," Duke Mathematical Journal, !
Vol. 27, p. 297, 311, 1960.

The author derivcb, using energy methods a priori estimates for the
solutions of several difference analogs of parabolic partial differential
equations. All standard two level difference equations are discussed and
two simple three level formula are also treated. Arguments are presented
in detail for the heat equation, and generalizations are indicated.

64, Leppert, G., "Stable Numerical Solution for Transient Heat Flow," ASME

Paper No. 53-F-4; also published Amer. Soc. Naval Engrs. Journal,
Vol. 6S, No. 4. Nov. 1953, p. 741-52

An implicit finite difference formula for numerical integration of the
conduction equation is described. It is shown to offer a computing
time saving over previously used methods. The method is a simple

algebraic procedure for use on a desk calculator, which removes the
necessity for iteration or substitution at each time step.

65. Leutert, W., "On the Convergence of Approximate Solutions of the Heat
Equation to the Exact Solution, "Proceedings of the Amerizan Mathematical
Society, Vol. 2, p. 433-39, 19S1
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The author discusses O'Brien, Hyran, and Kaplan's criticisms of the
Richardson difference equation (criticisms contained in "A study of the
Numerical Solution of Partial Differential Equations" by above named
authors). He shows that the Richardson difference equation is always
convergent if the initial values of the solution are chosen in a ipecifid
way.

66. Leutert, W., "On the Convergence of Unstable Approximate Solutions of the
Heat Equation to the Exact Solution," Journal of Mathematics and
Physics, Vol. 30, p. 245-51, 1952.

The differential equation considered is du/dt - du2/dx2. The finite
difference equation considered is v(X,t+At) - v(X,t) a r[v(x.ax,t) .
%(X-AX,t) -2v(x,t)], where (AX)2r =a t. It is known that for r;l/2 the
solution of the finite difference equation is unstable. The author
proves that, even so, there exist for every fixed r, solutions of the
difference equation that converge to the solution of the differential
problem as AX-*O.

67. Liebmann, C., "Solution of Transient Heat Flow and Heat Transfer
Problems by Relaxation," British Journal of Applied Physics, Vol. 6,
No. 4, Apr. 1955, p. 129-35

This illustrates that by choosing a suitable finite difference
approximation, parabolic partial differential equations can be converted
into a series of boundary value problems of Poisson type, which can be
solved by the Southwell relaxation technique. A very stable solution
is obtained for all values of the time interval by using a backward
difference approximation.

68. Lotkin, M., "On the Accuracy of Runge-Kutta's Method", Mathematical
Tables, and Other Aids to Computation, Vol. 5, p. 128-33, 1951

The author obtains a bound for the error in Kutta's fourth order
method (generally know as the Runge-Kutta method).

69. Lotkin, M., "The Numerical Integration of Heat Conduction Equations,"
Journal of Mathematics and Physics, Vol. 37, p. 178-87, 1958

The author discusses difference equation approximations to the
equations of unsteady one-dimensional heat conduction in composite
media: 404 au/af =a/ax (kl(m) u/au) where k(m) and 4(m) denote
known functions of u. The convergl-e is established for k(m) a constant
and the convergence rate is estimated. An example is given, and numerical
data compares the approximate and exact solutions.

70. Luke, Y.L., "Numerical Solution of the Heat Conduction Equation,"
Chemical Engineering, Vol. 68, No. 1, Jan. 9, 1961, p. 95, 102

The article discusses the numerical integration of the heat conduction
equation, and the computation of flux and heat transfer. Included are
tables listing numerical solutions for constant thermal coefficients.
Variable diffusivity is also discussed.

71. Lynn, L.L., and Meyer, J.E., "A Numerical Comparison of the Implicit
and Explicit Techniques for the Convective Boundary Condition," ASME
Journal of Heat Transfer, Vol. 85, p. 280, 81, 1963.

The article compares the results of the Crank-Nicolson implicit method
with those of Back's explicit method for 1000OF step change in ambient
temperature. Some comments and conclusions are: (1) The implicit
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calculations for surface tamparature are, in most cases, mor* accurate
thsa the Back method for a given time step size. (2) The implicit
method PrMlts variable mesh spacing with no concern for stability.
(3) The us. of Gauss elimination in the implicit mothod involves more
effort than the explicit method per point per time step, but a decrease
in the number of time steps needed for a given accuracy often offsets this.

72. Ilacon, X., "Numerical Analysis," John Wiley and Sons, In., N.Y., 1963,
161 p.

In this book, the emphasis is on mothods for use with digital computers.
Some of the topics covered are: lterative mthods for solving equations;
matrices and systeas of linear equations; difference equations.

73. Mann, W.R,, Bradshaw, C.L., Cox, J*G., "Improved Approximations to
Differential Equations by DIfference Equations," Journal of Nathe=tics and
Physics, Vol. 3s, p. 408-15, 1957

This article shows that the truncation error in using a difference
equation to approximate a dIffarential oquation can be reduced by
adifying the etmfficients of the differenca equation frce those normally
used. The difference equation is expamed in a Taylor's series and
the expansion compared with the leading terms of the original difference
equation. The comparison provides a correction vhich allows a reduction
in truncation error without Increasing the order of the difference
equation.

74. Martin, D.W., "Runge-Kutta Methods for Integrating Offerential Equations
on High Speed Digital Computers," The Computer Journal, Vol. 1, p. 118-123
1958

The author describes three adaptations of RungeoKutta procedures for
ordinary differential equations, due to Gill, Strachey, and Boulton;
and he proposes an alternate method d*vised to save storage sptce and
based on Kutta's Simpson rule aethod. Comparative errors and computational
experience with the various methods are described.

75. Milne, .E., "Note on the Rupga-Kutt& Method," Journal of Research,
National Bureau of Standards, U44, p. 549-50, 1950

Comparison of the Runge-lutta method with a step-by-step sethod of
numerical quadrature shows the Runge-Kutta technique to be much less
accurate in scme cases.

76, Milne, W.E., "Numerical Solution of Differential Equations," J. Wiley and
Sons, Inc., New York, 275 p., 1953.

The book offers general coverage, including both ordinary and partial
differential equations. Notes on large scale computers occur in an
appendix.

77. Milne, W.E., "Nuerical Methods Associated With Laplace's Equation,"
Proceedings of a Second Symposium on Large Scale Digital Calculating
Machinery, 1949, p. 152-63, Harvard University Press, Cambridge, Mass.,1951

This is a review of some difficulties which occur in solving partial
differential equations b) the method of differences, using large scale
digital machines.

78. Mitchell, A.R., "Round-Off Errors in Solution of Heat Conduction
Equation by Relaxation Methods," Applied Science Research, Sect. A,
Vol. 4 n. 2, 1953, p. 109-19
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A method is developed for assessing the magnitude of round-off errors,
a stable six point finite difference approximation is used, which is
relaxational in distance coordinate and step by step in time coordinate
of the residuals. Formulas are derived for obtaining round-off errors
for several different distributions of residuals.

79. Mitchell, A.R., Fairweather, G., "Improved Forms of the Alternating
Direction Methods of Douglas, Peaceman, and Rachford for solving
Parabolic and Elliptic Equations," Nuerische Matheatik, Vol. 6,
p. 285-92, 1964

For the heat conduction equation Ut = Ux + U.y on a rectangular
domain, the authors derive generalizations of the Peaceman-Rachford
alternating direction difference schemes. A special choice of para-
meters leads to a stable scheme with fourth order accuracy.

80. Mitchell, D.B., "An Error Analysis of Numerical Solutions of the
Transient Heat Conduction Equation," Master's Thesis, Rept. No.
GA/Pli/65-10, AF Inst. of Tech., Wriht-Patterson AFB, Ohio, Aug. 1965,
111 p. AD-621 274

The paper presents a comparison of the Crank-Nicolson and Crandall
methods in finding transient temperatures in a semi-infinite slab
with convection. The results are compared with an exact analysis. The
Crandall method gives more accurate results than the Crank-Nicolson
under close node spacing conditions. Accuracy improvement factors
are determined for the two methods.

81. Muchnik, G. F., "Solution of Heat Conduction Problems by the Grid
Method," NASA TTF-l5l, April 1964, 15 p. (translated from Russian).

An approximate method is suggested for solving heat conduction problems
using the grid method. The temperature of any point is related to the
temperatures of other points by coefficients of relationship or
"weights", which do not depend on the boundary conditions. The weights
are found by a finite difference method. The author claims this method
to be simpler and more exact than the usual finite difference method.

82. Murray, WD., and Landis, Fred, "The Effect of Spacewise Lumping on
the Solution Accuracy of the One-Dimensional Diffusion Equation," ASE
Journal of Applied Mechanics, Vol. 29, p. 629-36, 1962.

The authors evaluate the truncation errors inherent in a spacewise
difference formulation of the one-dimensional heat diffusion equation
under general boundary conditions. The error between the semi-
discrete and exact solutions is evolved by matrix algebra and the
Laplace transform. An illustration shows the errors for the case of
a symetrically heated slab.

83. Nielsen, K.L., "Methods in Numerical Analysis," The MacMillan Co.,
New York, 382 p., 1956.

The author emphasizes methods suitable for desk calculating.
One chapter treats ordinary and partial differential equations, but it
presents only an outline of the topic. The methods of Euler, Milne,
and Runge-Kutta are given for ordinary differential equations, Liebmann's
method, relaxation, and stop by step methods are given for partial differen-
tial equations.

84. O'Brien, G.G., Hyman, M.A., and Kaplan, S., "A Study of the Numerical
Solution of Fartial Differential Equations," Journal of Mathematics
and Physics, Vol. 29, p. 223-51, 1951
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This article is a discussion of methods for the analysis and improvement
of the stability of finite difference equations used in the numerical
solution of partial differential equations. A discussion of conver ence
is included. The heat conduction equation of the formxa/3t 32#/ax
is used as an illustration. The equivalent difference forms of Richardson,
von Neumann and Hartree are discussed.

85. Peaceman, D.W., and Rachford, H.H., "The Numerical Solution of Parabolic
and Elliptic Differential Equations," Journal of the Society for
Industrial and Applied Mathematics, Vol. 3, p. 28-41, 1955.

The authors treat Ut Ulkx + Uyy by implicit difference methods, They
develop a process which is stable for all mesh ratios ((A) 2/t). They
discuss the solution over a square, showing the work saving for their
method compared to usual ones. Por elliptic equations their method is
a form of line relaxation rather than the usual point relaxation schemes.

86. Plunkett R., "On the Rate of Convergence of Relaxation Methods,"
Quarterly of Applied Mathematics, V. 10, p. 263-66, 1952.

This article compares the convergence rate for the relaxation method
of solving partial differential equations to the results obtained by
Frankel (Math. Tables and Other Aids to Comp. v. 4, p. 65-75, 1950) for
an iteration method. It is concluded that the relaxation method gives
no saving for the Poisson and biharmonic equations and is more difficult
to program then the iterative method.

87. Poppe, R.T., "An Investigation of Convergence Techniques for Implicit
Numerical Solution of the Diffusion Equation for Transient Heat Transfer,"
Master's thesis, AFIT/rA/phys/63-8, AF Inst. of Technology, Wright-Patterson
AF Base, Ohio, Aug. 1963, 163 p., AD-419 310.

This paper contains the results of an investigation of two techniques
for increasing the rate of convergence of the f.auss-Siedel method of
implicit numerical solution of the diffusion equation of transient heat
flow. A sample problem is solved to provide the necessary comparison.
The results provide a theoretical basis for the adapted Wegstein technique.
This theoretical basis brings to lipht the fact that successive over-
relaxation and the adapted Wegstein technique are based on same theoretical
background. A procedure based on estimating the maximum eigenvalue of
the method of successive displacements is used to make an approximation
of the relaxation factor for successive over-relaxation.

88. Prager, W., "Introduction to Basic FORTRAN Programming and Numerical
Methods" Blaisdell Publishing Company, New York, 202 p., 1965

This book contains information on Aitken's 62method and Steffensents
method for accelerating the convergence of iterative processes.

89. Price, P.H., Slack, M.R., "Stability and Accuracy of Numerical Solutions
of Ileat Flow Equation," British Journal of Applied Physics, Vol. 3, No. 12
Dec. 19S2, p. 379-84

The authors describe a new method of deriving stability conditions.
Its application to heat conduction with variable thermal diffusivity
and heat transfer by convection at surface is treated. A new finite
difference representation of surface heat flux equation is given.

90. Price, P.11., and Slack, N.R., "Effect of Latent heat on Numerical
Solutions of hleat Flow Equation," British Journal of Applied Physics,
Vol. 5, No. 8, Aug. 1954, p. 285-7
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The article treats the stability and accuracy of finite difference

solutions of the heat flow equation with latent heat evo!ution. A
dimensionless group is developed which ,overns the -appearance of in-
accuracies peculiar to numerical solutions involvinF latent heat.

91. Ralston, A., ilf, H.S., "Mathematical Methods of Di.ital Computer,"
John Wiley & Sons, Inc., New York, 1960

A section on the solution of linear equations includes discussions of
Causs-Seidel iteration, the conjugate gradient method, Matrix Inversion
by Rank Annihilation, Matrix Inversion by Monte Carlo Methods - flow
chart and formula for estimating running time are included for each method.

92. Round, G.F., Newton, R., and Redberger, P.J., "Variable Mesh Si2e in
Iteration Methods of Solving Partial Differential Equations and
Application to Heat Transfer," Chemical Engineering Progress
Symposium Series, Vol. 58, No. 37, 1962, p. 29-42

The atticle contains descriptions of some variable mesh systems.
Computations are carried out for steady state heat transfer from a
buried cylindrical heat source. The same accuracy is achieved in a shorter
time than with a square mesh.

93. Saul'ev, V.K., "Integration of Parabolic Equations by the Method of
Nets," translated from Russian; Macillan, N.Y., 1964, Russian publication
date 1960.

There are two sections, the first dealing primarily with stability and
convergence and the second dealing with implicit methods and techniques
for solving the algebraic equations. In the first section, a number of
mesh schemes are considered and compared. The second section gives a
fairly complete compendium of methods for solving linear algebraic systems.

94. Scarborough, J'Numerical Mathematical Analysis," Sth Edition, The Johns
Hopkins Press, Baltimore, 594, p., 1962

There is a chapter on partial differential equations which treats
difference quotients, difference equations, the solution of differential
equations by iteration, the inherent error in the solution of difference
equations, and relaxation methods.

95. Schenck ;1,Jr.,"Fortran Methods in Heat Flow," The Ronald Press Co.,
N.Y., 289 p., 1963

As indicated by the title, the emphasis is on Fortran methods, with
little discussion of theory. The chapter on oneadimensional transient
flow follows the method of Dusinberre, but includes a brief discussion
of the relative merit of the Liebmann implicit method. Sample Fortran
programs are presented (using the Dusinberre method only.) The last
chapter of the book is a short discussion of accuracy and of solution
speed.

96. Schneider, P.J., "Conduction Heat Transfer," Addison-Wesley Publishing
Co., 394, p. 1955

Chapter 12 of this book treats the transient numerical solution of
conduction problems using the method of Dusinberre. A discussion of
stability and convergence is included.

97. Schuh,1i 'Finite Difference Method for Calculating Transient Temperature
Distributions Due to One-Dimensional Heat Flow in Simple and Composite
Bodies, "RAE-Lib/Trans-750, translated from VDI - Forschungshoft,
No. 459, 43. p.
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The finite difference method is modified for finding transient temperatures
due to heat flow normal or parallel to the surface of thick plates and
thin walled bodies of high conductance. Details of the method are
discussed extensively. The use of high speed computers for solving
finite difference equations is discussed.

98. Southwell, R.V., "The Quest for Accuracy in Computations Using Finite
Differences," Numerical Methods of Analysis in Engineering. p.66-74,
The MacMillan Company, New York, 1949.

The author concludes that the best accuracy is obtained by reducing
the interval size rather than using higher order difference equations
and illustrates a labor saving device which facilitates "adv.nce to a
finer net".

99. Southworth, R.W., DeLeeuw, S.L., "Digital Computation and Numerical
Methods," McGraw-Hill Book Co., N.Y., 508 p., 196S.

This book is intended for use as a textbook in a course combining
FORTRAN programming, numerical methods, and engineering applications.
Chapters 2, 3, and 4 deal with progranming, and the remainder of book
's concerned with numerical methods. Problems are given at the end of
each chapter, and engineering applications appear throughout the text.

100. Stanton,nR'Numerical Methods for Science and Engineering," Prentice-Hall,
Inc., Englewood Cliffs, N.J., 266 p., 1961

This book is intended as an undergraduate introduction to numerical
analysis, and is short on precise theory, It stresses desk calculator
methods. Included are discussions of ordinary finite differences,
divided differences, and central differences. There is one chapter
on the solution of differential equations by difference equation methods.

101. Strang, W.G., "On the Order of Convergence of the Crank-Nicolson
Procedure," Journal of Mathematics and Physics, Vol. 38 p. 141-44,
1959-60

The author discusses the Crank-Nicolson difference equation for Ut=
Ux + d(xt). If the solution of the first boundary problem is
sufficiently smooth, the solution of the difference equation converges
point-wise with error 0( (Ax)2), if At a 0 (AX). The proof makes use
of explicitly known eigenfunctions of the process.

102. Thomas, L.H., "Numerical Solution of Partial Differential Equations
of Parabolic Type," Proceedings, Semi.aar on Scientific Computation,
Nov., 1949, p. 71-78, International Business Machines Corp., Now York,
N.Y. 1950

The article contains an expository tr6atment of some problems in
the numerical solution of parabolic partial differential equations by
finite differences. Thor are three major topics: (A) stability of
the finite difference representation, (b) truncation errors, (c) round-
off errors. Methods for improving the stability and reducting truncation
errors are illustrated.

103. Thomas, L. H., "Stability of Solution of Partial Differential Equations,"
Rept. No. NOLR-1132, Naval Ord. Laboratory, White Oak, Md., 1950, p.83-94
title of report is "Symposium on Theoretical Compressible Flow, 28 June 1949"
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The report is a survey of the present status of the art of stability
analysis for finite difference equivalents of differential equations
(both ordinary and partial). The author defines two types of instability,
short range and long range.

104. Traub, J.F., "Iterative Methods for the Solution of Equations,"
Prentice-iHall, Inc., Englewood Cliffs, N.J., 310 p., 1964.

A large number of iteration functions are described and classified
according to the efficiency of the algorithm and the amount of computa-
tional labor involved. Stress is placed on methods for constructing
iteration functions and on determining their chief properties. Much
attention is focused on the computational aspects of the topic.

105. Turner, L.R., "!mprovement in the Convergence of Methods of Successive
Approximation," Proceedings, Computation Seminar, Dec. 1949, p. 135-57
International Business Machines, Corp., Now York, N.Y., 1951

An exposition on the well known procedure for improving the convergence
of an iteration procedure when the steps form a geometric progression.

106. Turton, F.J., "The Errors in the Numerical Solution of Differential
Equations," The Philosophical Magazine, Vol. 28, p. 359-63, 1939

The article contains a detailed analysis of the errors caused by
(1) uncertainty of initial values, (2) intrinsic errors in formulae
used in the step by step method, (3) round-off errors in (2), (4)
random errors. The author's conclusion is that "to insure no errors
to the desired number of significant figures.... requires that at
least two formulae be used, in which the intrinsic errors are sub-
stantially different, to check each other."

107. Varga, R.S., "A Comparison of the Successive Overrelaxation Method and

Semi-Iterative Methods Using Chebyshev Polynomials," Journal of the
Society for Industrial and Applied Mathematics, Vol. 5, p. 39-46, 1957

The author shows that the successive overrelaxation method converges
at least as fast as any somi-iterative method associated with the
Jacobi method, Causs-Siedel method, or with the successive overrelaxation
method itself. Successive overrelaxation requires only the latest
iterate at any stage, whereas semi-iterative methods require the simultaneous
storage of several iterates; therefore, the author sees some advantage
in using successive overrelaxation, instead of semi-iterative methods,
with high speed computers.

108. Wasow, WY., "On the Accuracy of Implicit Difference Approximations to
the Equation of Heat Flow," Tech. Summary Rept. No. MRC-TSR-2,
Contract DAll 022 ORD 2059, Hath, Research Center, Univ. of Wisconsin,
Madison, Wisc., 15 Apr. 1957, 22p. PO-167 605

The author discusses the convergence, stability and truncation error of
implicit difference approximations to the initial value problem defined by
the heat flow equation.

109. Wegstein, J.11., "Accelerating Convergence of Iterative Methods:"
Communications of Computing Machinery, Vol. 1, No. 6, p. 9, 1958.

The article describes a method very similar to Aitken's 62 method.
It is emphasized that the method can cause convergence in normally
divergent cases. Several numerical examples are included.
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110. Wilkes, J.O., "Chemical Engineering Workshop: Part II, Numerical
Methods for Partial Differential Equations." paper presented at
ASEE annual meeting, Pullman, Wash., June 1966

The author describes 3 types of finite difference approximations for
partial differential equations, called the forward, backward and central
difference types. The main part of the paper is a discussion of the
solution of a heat transfer problem using finite differences. The
FORTRAN II program euployed is included in full, as is a special
subroutine (Tridng) for solving the system of linear equations resulting
from application of the finite difference approximation.

111. Zonneveld, J.A., "Automatic Numerical Integration," Mathematical
Centre Tracts, No. 8, Mathematisch Centrum. Amsterdam, 1964, 110 p.

The author constructs a set of Runge-Kutta formulas suitable for automatic
adjustment of step size. The function being integrated is evaluated for
step size one or two additional times, and the size of the step is
adjusted according to this evaluation, during the integration process.
Also included are six ALGOL 60 programs for the integration of first and
second order differential equations, and five numerical examples.
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DERIVATION OF THE LAPLACE TRANSFORM SOLUTION

This appendix is an application of the Laplace transform method
to the solution of the one-dimensional Fourier conduction equation for
a semi-infinite solid and for an insulated slab, each with a ramp-
function boundary condition.

SEMI-INFINITE SOLID

The one-dimensional Fourier conduction equation is

DT - a 2 at T = 0, t 0 (i)

The Laplace transform is

2
a T = sT - t(0)
dX

and for the conditions of Eq. 1, it becomes

d2T sT

=0 (2)
X2  a

and has the general solution,

T(X, s) = A exp(vs-7W X + B exp(- Vs X (3)

Since the body is a semi-infinite solid, t 0 as X -

implying that

A=0

and the solution reduces to

T(X, s) = B exp(- Vs7a X) (4)

The coefficient B must be determined from the surface conditions.
At X = 0, tf = f(T) as shown in the following figure.
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TIME, T

The temperature of the bounding fluid expressed in terms of time, T, is

f(T) t fTu(T) - (rlm) u (T-T] (5)

A heat balance at the surface yields

-kA t(O,T) = hA[f(T) - t(O,T)l (6)
aX L

which can be expressed as

at(O2,T) +2thtf
X k t(O,T) = [1 u(T)- Tl)uk-Tl)j (7)

Transforming Eq. 7 gives

_ dT(Os) + h T(O,s) f i exp(-Tls) (8)dX k kTI [s

but

dT(O's) - B/ , T(0,s) = B
dX

Thus,

B Vfs~ W+ LIB= k 1tf exp(-T 1 S)B +7Bk kT-- 2

h tf 1__ _ _ _ _ _ e x p (- T l s )

B =d [2f + (9)kT1 s2(Vs-/_+ h/k) s (s + h/k) .
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T ht rr- 7C X) ep(- V S' 1a X) e p - S)(10)
If Is s/ + h/k s /7 + h/k Q X(Ti

The inverse Laplace transform of

~exp(- s/a-X)
s(s/'i + h/k)

is

- e X(erfcj
h fc12 -~ expy X erf( 2 ,!

The inverse Laplace transform of

s (V-7- +h/k)(=S/ X) 1I
is

I erfckTe7x) xj + a\~~ krf + j

and becomes

k-f erfc i
A2=V

f T exp 1! xa(II)2 e rfc ( + h+ kX) dX (12)

The inverse Laplace transform of

h/)exp(-T S)]

is

A=O

- k/I exp h- x + a ((X-T) erfc[2 Vn X 1 + fa( X-T)] d X}

[ u(T-Tij (13)
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Let
X~2

4a

and the first term of Eq. 12 becomes

2

f X4AuT eI %a)d
! I4 ef (- -- d

which equals

X2 JX 2 /aTxf- -2 (-erf ) dO
4 B=00

Integrating the preceeding integral by parts yields

T efrc X(X - /a2 xp 2

2vaT

X2 2 f -/2
+ A B exp(-B)dB

"~B=X2 I4cT

2
which, by letting B= a2 , becomes

I (X 2) x2 2 f 2
T erfc - XT,/27T e xp -XT 2a nI exp(-a )da

Tc 2 Ja=X/2VdT

and the first term of Eq. 12 becomes

T+)e - ) (14)

The second term of Eq. 12 becomes

exp(hx)f0 exp[eO(11) 2 ]{i - erf( +h D.
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Integrating by parts yields

1 (1)2 exp(h X) jexp j erfc X +

( v
+-h- exp A exp 4A

X h 2 fT X 2

- ~exp X, ~~ A-' expk /- .,dA1 (15)

Integrate the first integral in Eq. 15 by parts and

A- 1 / 2 exp X2 dX = 2i T exp(_ L_)

X2  T A-3/ 2 exp. dA2a =0 a

Substituting in Eq. 15 gives

~expF! X + 4 )'T er c L 2 exp[

2 X A~ 3 1 2 exp [ ) 2 dX ( h + 1)1 (16)
T5 4,r Xoa

Let

z = xg

and Eq. 16 becomes

I (k 2 2T  L()2 { exp x + a()2T] erfch(a+

a~ k 1 k r ~

+ -- r exp _ - + 1) erfc x (17)

Summing Eq. 14 and 17 and multiplying by htf/kl determines the
temperature distribution for 0 < T < TI, which is
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It
t -- i T +2- + -+- e  erfc

Similarly, the temperature distribution for T > TI is

2a h e rfc(

(k-- expp! X + ( erfc X + h /

2

2k\ k+x

t ~ ~ ~ 12 ercV(T + I h+112ef

+ \ k 2  [hj x+c (19)2(T)] Xrc 2 ~~., +cz(-T

L 2k ( _2 )

+ + T exp~ _W c(TT) $(9

INSULATED SLAB

L Again starting with the one-dimensional Fourier conduction equation,
one sees that

= 2 at t = 0,T=0 (20)

and the Laplace transform is
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d 2T(X,s)_s
dX s ST(X,s) = 0 (21)

u2I dX 2

A general solution is:

T(X,s) = A cosh v'7l X + B sinh N X (22)

The temperature of the bounding fluid expressed in terms of time, T,
is

f(T) = T) - - T (23)

A heat balance at the surface of the slab yields

Dt(O,T) + ht(0,T) ht Lu(T) - uX k =(24)
M k kT1 [u)

The Laplace transform of Eq. 24 is

dT(O,s) + h T htf I exp ((2s)
dX k T(0,s) - [- 2 - 2 (25)k Il s s

but

dT(O,s) = B7T(O,s) = A
dX

Thus Eq. 25 becomes

+,-= htf exp Tls

2L] (26)
-B a + A s 2 kTs 2 (6

Since the slab is insulated at X = L, L 0, and from Eq. 22,
dX

r (A sinh17- L+ B coshsTa L)= 0 (27)

Solving Eq. 26 and 27 simultaneously yields

htf cosh Ns L [ exp("T_ ) ]

A T = sinh V-977 L + h/kV /E " -7WL) [L
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ht sinhI L +[ h(_ T_1_
Ulf ____xih\(s-( h/k cosh V/7Th L/[s2

Therefore,

T(X, hTf (c os h 1f7s L c o sh yr -/ X - sin h V -/ L s in h \/sT

expx)

2 2 e s) (28)

which can be put in the following form:

Tt, f [cosh -,s-7a (L- X)

T(X, s) k/h v sinh s L + cosh ]s m

[12 --2 ] (29)

The inverse transform must be taken. A second-order pole exists
at s 0, and an infinite number of sim'ple poles exist at the roots of

k sinh s7Wa L -cosh v7 L (30)
h

k
or cotX =tX where x = i-7a L.

One can see from Eq. 29 that the inverse transform will consist
of two parts, one the inverse transform of

i1 cosh V1-/ (L - X)31

s s(k/h Vs- sinh Vs7W L + cosh V ) T: L)]

the other part will have a similar inverse transform except that it

will be translated along the time axis by T1 units.

First, the inverse transform of

cosh vr -/ (L - X)
s(k/h V- sinh Vs7a L + cosh Vs L) (32)

127



NWC TP 5143

will be located and then integrated from 0 < T < T.

The inverse transform may be calculated by the method of residues. The
residues of the simple poles mav be derived from

EP = q exp sT  (33)

n=1

P.
where L- is a ratio of polynomials.

q' = S [ %F-7 sinh Vsl L + cosh vs L

+[L / sinhV/7W L+ cosh Ls (34)

The second term is zero since the two parts of the second term are
equated to determine the roots.

Performing the differentiation indicated in the first term of Eq. 34
yields

_ + (L + sinh sla L

and changing to trignometric functions gives

-i 7 c /s + (-+ 1]sin i~ a L.

Substitution of

into the preceeding expression yields

[2 A- )2 + k-+ I sin A

The numerator of Eq. 33, P, may be changed to trignometric functions

P cosh V-x - cos i vSa x cos
L

128



NWC TP 5143

Substitution of the above expressions into Eq. 33 yields

E = cos A n X/L exp(-A 2  T/L) (35)
= IIAn [(L) 2+( )]A- +n h- + i sin An

which may be simplified to

CO cos ) n X/L sin A exp(-n 2 aT/L 2 )i 4 -42A + sin 2 A (36)
n=1 nn

The right side of Eq. 36 must be integrated between the limits
of zero and T. Assume the order of integration and summation may be
interchanged.

sin A cos A X/L
Ep= -4 ) sin f exp A dO/L 2 dO

n=l n n

4L2

A 2 sn2X exp (A ncT/L - (37)

n= s11n )~l

The residue of the second-order pole at s = 0 must be determined.

lim 2]P=s- O s I(s - 0) T (X,s) exp (sT)l

a [cosh V (L-X) exp(sT)
" S /ak sinh /s/ L + cosh /s/a

sinh / (L-X) exp(sT) + T exp(sT)

cosh.JSTh (L-X)] CoshfsTa (L-X)exp(sT)

129



NWC TP 5143

(2a hhosh h2as2 G

9 sinh /s/a L)

all diiedb(S a sinh f-aL + cosh Vf/ L) (38)

The limit of Eq. 28 as s -O gives p = T

The summation of all rtesidues yields the inverse transform:

tf 1: 2x c [( 2 cT/L 2 _d sinh X n cosh X n X/L

t - [e ( 4L2(39)a x 2 (2X + sin 2 X,n=l n n,
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