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Abstract 

The methodology of vector an'i matrix algebra has been used to simplify the 
triangulation procedures required to determine the position, motion, and growth of 
luminescent gas clouds injected into the upper atmosphere.   Generated by chemicals 
discharged from rockets programed to effect point or continuous releases at 
preselected times, such clouds have proved to be a powerful experimental tool for 

gathering data relevant to upper atmosphere phenomena such as winds, wind shears, 
and turbulent transport mechanisms, and the production, maintenance, and decay 
of ionization in support of specific Air Force requirements in satellite operations, 
missile detection, and communications. 
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Application of Vector and Matrix Methods 
to Triangulation of Chemical Releases 

in the Upper Atmosphere 

1. INTRODUCTION 

Photographic data taken from ground stations for the purpose of determining 

the position, motion, and growth of luminescent clouds and trails have for a number 

of years been reduced and analyzed by various procedures (Refs. 2,5,6,7,8,12). 

The artificial clouds and trails are generated by discharging chemicals into the 

upper atmosphere from rockets programed to effect point or continuous releases 

at preselected times.   They have proved to be a powerful experimental tool for the 

study of various upper atmosphere phenomena, including winds, wind shears, and 

turbulent transport mechanisms. 

The triangulation techniques applied to the data differ according to the type of 

release whose evolution is recorded on the film being processed.   As might be 

anticipated, the analysis becomes simpler for discrete puffs possessing structural 

features that can be clearly identified from two or more ground stations.   A more 

complex mathematical problem is presented by diffuse clouds and continuous trails 

with few or no distinctive features that can be unambiguously matched on the film 

records corresponding to views of the release from different triangulation sites. 

The present report describes an attempt to simplify reduction and interpreta- 

tion of the photographic data and increase accuracy and reliability of the results 

by (a) devising analytic procedures that consistently discard superfluous coordinate 

(Received for publication 23 April 1971) 



transformations, (b) try to develop formulas that are symmetric with respect to 
the observation sites, (c) establish direct analytic criteria for determining coor- 

dinates of the cloud features under observation, and (d) use redundancy to check 

the consistency of previously determined results.   The reduction in the number of 

coordinate transformations leads to a conceptually simpler computational scheme, 

and as direct consequence of fewer arithmetical operations having to be performed 

on the original data, the accuracy of the results is degraded to a lesser degree. 

Mathematical formulation of the triangulation problem becomes very straight- 

forward by systematic use of vector algebra and analysis.   Recognition of the 

vector character of the positional data allows many of the expressions to be written 

in invariant fashion, and the coordinate transformations becomt simple rotations 

and translations.   The abstract properties of the corresponding operators are 

realized by well-known matrices, and the entire scheme can be cast into a form 

that can be generalized with minimum effort.   The resultant expressions are ex- 

tremely compact and can often be readily grouped into symmetric combinations in 

which data from all sites play equal roles.   Aside from the fact that there is 

generally no a priori reason for assigning a preferential position to a given site, 

an advantage of such a scheme is that special or singular cases and the concomitant 

lengthening and increased complexity of the computer codes needed to implement 

the mathematical formalism are avoided.   As a further advantage, well-known 
vector identities can be used to check the consistency of the results. 

It is hoped that the organization of the material will allow the reader to follow 

development of the thesis without undue effort.   At the outset we recognize that aie 

triangulation problem can be divided into independent units.   Some are repeatedly 

used during analysis of a batch of data.   Others are needed only to fix the orienta- 

tion of the cameras and are not recalled unless the cameras are moved during the 

time it takes to photograph the entire sequence of events associated with the deposi- 

tion, growth, and decay of a chemical release.   Orientation and some optical 

parameters of the camera can be accurately determined by photographing the stellar 

background shortly before the rocket and its chemical payload are launched. Stars 

can be readily identified and their positions on the photographic plate can be 

measured very precisely.   The plane of the photographic plate and the line of sight 

along the camera optic axis serve to define one of the coordinate systems of direct 
interest to us.*   The other systems are the equatorial system, traditionally used 

*In the discussion presented here it is assumed that a perfect camera is used. 
Performance of actual cameras must be corrected for such defects as shift of 
center of frame from trace of optic axis, departure of film plane from perpen- 
dicularity to optic axis, lens distortion, and film shrinkage.   The analysis remains 
unaltered if it is understood that appropriate corrections have been applied to all 
film measurements.   For procedures to evaluate the corrections, see Justus 
(1963). 



by astronomers as a frame of reference for star locations, and a cartesian 

geocentric system with its origin at the center of the earth, its +z axis along the 

line joining the origin and the North Pole, its +x axis coincident with the line 

joining the origin and the point on the equator intersected by the prime meridian 

(Greenwich), and its +y axis completing a righthanded orthogonal triad.   In view 

of the fact that our observations are made from stations riding on the earth, it is 

advantageous to think of this geocentric system as a preferred frame cf reference 

and to regarc' geocentric coordinates as canonical coordinates for all events.   In 

particular, this will simplify the conversion from equatorial coordinates as weil 

as the conversion to two auxiliary systems we shall use on occasion:  an azimuth- 

elevation—slant range system and the geodetic system of longitude, latitude, and 

altitude above surface of a reference ellipsoid. 

Section 2 deals with the basic coordinate systems.   The coordinate trans- 

formations are developed in Sec.  3; in Sec. 4 they are applied to the previously 

defined systems.   At this point we have sufficient information to deal with the 

problem of determining the geocentric coordinates of a point release observed 

from two or more stations.   This constitutes the bulk of Sec. 5. 

Section 6 describes the more elaborate procedure that is needed to triangulate 

on thin, continuous trails of lengths measured in tens of kilometers.    The most 

vexing problem associated with these trails is the difficulty of matching correspond- 

ing points on photographs taken at different times or from different stations.    The 

procedure we follow is to select a point on one view and search for its image on a 

second view after the trail has been replaced by a two-dimensional curve on the 

plate plane, which is itself represented analytically by a parametric cubic spline. 

The introduction of parametric representations is mandatory, to deal with multi- 

valuedness created by selfintersections or pronounced twisting of the trail and its 

replacement cuwe.   Since very little can be found in the literature on parametric 

spline', the general procedure needed to determine the sets of polynomial 

coefficients is described in Appendix A. 

Section 7 deals with coordinate transformations between geodetic and geocentric, 

geocentric and horizon, and camera and horizon, systems. 

Since all geodetic reference ellipsoids have very small eccentricities, it was 

found convenient to make use of the Lagrange expansion.   A statement of the ex- 

pansion in its full generality is given separately in Appendix B.   Appendix C lists 

a short table of useful constants. 

2.  THE COORDINATE SYSTEMS 

Systems of reference for astronomical purposes are constructed by selecting 

a great circle on the celestial sphere and one point on that circle.   Spherical 



coordinates are then introduced to specify the position of points on the sphere: 
one coordinate measured perpendicular to the selected great circle along an 
auxiliary great circle; the second measured from the selected point to the point of 
intersection of the auxiliary circle. 

The fundamental astronomical reference systems are based on the celestial 
equator and the ecliptic.   Angular coordinates in these planes are measured from 
the ascending node of the ecliptic on the celestial equator, cuitomarily referred to 
as the vernal equinox, the first point of Aries, or simply the equinox, and denoted 
by T.   Only the first of these systems is relevant to our discussion. 

A righthanded cartesian coordinate system with its origin at the center of the 
earth can be constructed by directing the +x axis toward the equinox, the +y axis 
to a point v/2 radians to the east in the plane of the celestial equator, the + z axis 
pointing north to the pole.   This is the equatorial system, shewn schematically 

in Figure 1.   To specify the location of very distant points it is sufficient to give 
the angular coordinates that identify a direction—customarily the angles a and 6. 
which denote the right ascension and declination, respectively.   Clearly, a and 
(v/2)-ö are the familiar spherical coordinates corresponding to that direction in 

NORTH   CELESTIAL POLE 

ascension 

8 = Declination 

Figure 1.   Equatorial Coordinate System 



space.   If necessary, the same direction can be identified by the unit vector e, 

having the cartesian representation 

e > z (cosa cos 6) + y (sina cos 6) + z sin 6 . (1) 

Any point along the line OP can tnen be represented by the vector 

r = r e. (2) 

where r denotes the distance from O. 
The declination is measured in degrees, minutes, and seconds along the great 

circle through the observed body and the pole.   Right ascension is measured in 
hours, minutes, and seconds from T along the equator in the west-east direction, 
that is, opposite to the apparent rotation of the celestial sphere.   The conversion 
to the equivalent angular measure offers no difficulty. 

Since observations are made from the surface of the earth, topocentric 
coordinate systems with origin at the observer are of importance.   The reduction 
from earth-centered to topocentric coordinates depends in part on the figure of 
the earth and will be considered in later sections. 

For our purposes it 's advantageous to inti oduce as the primary geocentric 
system a righthanded cartesian system fixed in ihe earth, with the +z axis pointing 

north, and the equator lying in the xy plane.   The +x axis is directed toward the 
intercept of the equator and a prime meridian (Greenwich, for example).   Hie 

+y axis completes an orthogonal triad (see Figure 2,.    The context will be sufficient 
to distinguish this system from others that share the same origin.   The angular 
coordinates of this geocentric system will be described by using X and ^I to denote 
the longitude and geocentric latitude, respectively.   A unit vector g, which in the 
geocentric system can be written in component form as 

g = x (cos^ cos^') + y (sin A. cos^') + z sin^1 (3) 

corresponds to the direction specified by the coordinates (X, ^'j.    The position 
vector 

r = rg (4) 

corresponds to a point along this direction, r units away from the origin. 
The basic topocentric system of interest to us is determined by the cameras 

that record the evolution of the chemical releases. 
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Figure 2.   Geocentric Coordinate System 

The +z axis of the coordinate system associated with the camera at a given 

observation site points in the direction of the optic axis of the camera lenses. 

The xy plane is perpendicular to this axis and passes through the image nodal 

point of the optical system.   The selection of x and y directions in this plane is 

arbitrary.   It is convenient to take the x axis parallel to one of the edges of the 

picture frame, or along the direction determined by appropriate fiducial marks 

that appear on each exposure.    The y axis is chosen to complete a righthanded 

orthogonal system. 



As indicated in the footnote in the introduction, it will be assumed that an 
ideal camera system it used at each observation site.   This means, for instance, 

that the film plane is strictly parallel to the xy coordinate plane and is normal to 
the optic axis.   It also presupposes that the optical system is totally free of dis- 
tortion, field curvature, and chromatic aberration.   When these conditions are 
satisfied, distance measurements on the image plane can be readily converted 
into angular measurements relative to the topocentric coordinate system defined 
above.   From Figure 3 it follows that: 

zV" OPTIC AXIS 

IMAGE 
PLANE 

FIDUCIAL   MARKS 

Figure 3.   Camera Coordinate System 



s.    /(x')2 + (y')2 

'j  V r^—• tanq.f^a^-HLZ    . (5) 

sinij »•^- . (6) 

COS r) = |- . 0) s 

The unit vector c. along the line of sight to a point whose image is found at P1. is 

therefore 

c = x (sino COST)) + y (sina sinn) + z cos a  . (8) 

The coordinates o and 17 specify a direction in space with respect to a camera 
system defined by a camera whose effective focal length is f.   A space point r 

units distant from the origin, in the direction of the vector c, is represented by 
the position vector 

t'rc  . (9) 

This completes our discussion of the basic coordinate systems needed to 
describe the positions of points on the clouds and trails used for the study of upper 
atmosphere phenomena.   The auxiliary systems mentioned earlier will be intro- 
duced in Sec. 7.   We will now relate these systems in order to refer all observa- 
tions to a single system before we perform the data manipulation that will enable 
us to extract physically significant information from the raw photographic data. 

3. COORDINATE TRANSFORMATIONS 

The position of a point in space is specified by coordinates referred to a 
system that is to a great extent selected arbitrarily but is often governed by 
tradition or preferred for reasons of convenience or simplicity.   Since photo- 
graphic dat? to evaluate the motion and growth of chemical releases in the upper 
atmosphere are taken from stations that move with the earth, it has been found 
simpler and more convenient to refer the coordinates of points on clouds and 
trails to the geocentric system defined in Sec. 2.   To accomplish this it is 
necessary to relate the geocentric and the camera systems, that is, we must know 
the geocentric orientation of the cameras.   An accurate and reliable way of deter- 
mining this orientation consists in photographing the stellar background shortly 
before a chemical release takes place.   In view of the fact that the star coordinates 



generally listed in star catalogs ire right ascension and declination, it also 
becomes necessary to find the transformation from equatorial to geocentric 
coordinates.   This transformation is a simple two-dimensional rotation because 
the two systems have a common origin and coincident z axes.   The transformation 
from camera to equatorial or geocentric coordinates is more involved and in its 
general form can be decomposed into a three-dimensional rotation followed by a 
translation. 

A simplification occurs in photography of the stellar background. The very 
great distances involved validate the assumption that stars are essentially at 
infinity, and the error introduced by a parallel translation of the camera system 
from the earth's surface until its origin coincides with the center of the earth is 
therefore negligible. The transformation between the camera and equatorial or 
geocentric coordinates consequently becomes a general rotation of axes. 

It is well known that rotations can be regarded as transformations effected by 
operators that can be represented by 3x3 orthogonal matrices.   The general 
matrix can be generated by multiplication, in an appropriate order, of matrices 
representing simple rotations about a coordinate axis.   These rotation matrices, 
denoted by R.(0)—the subscript refers to the axis of rotation, with i = 1, 2, 3 

denoting the x, y, z axes, respectively—have elements a., that satisfy the condi- 
tions (Kaula,  1966): 

j - 1 =  i   (mod 3) ; 

k - 2 =  i   (mod 3) ; 

aii=1'      ajj=akk = co8e' 

aij = aji = aik = aki ' 0'      ajk = -akj = sin e ' (10) 

The signs apply to righthanded systems, for counterclockwise rotations as 
viewed from a point on the positive half of the axis looking toward the origin. For 
example, for rotations about the z axis, we have 

/ cos 6    sin 6    0 

Rz(0) =  I  -sin0    cose    0    |. {Ill 

\     0 0       1 

In the particular case of conversion from equatorial to geocentric coordinates 

we have angle e = GHA T.   The connections between the various angles are shown 
in Figure 4, which depicts the apparent motion of the equatorial frame as viewed 
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Figure 4,   Relation Between Geocentric and Equatorial Systems 

by an observer in the geocentric system.   It is conventional to measure hour angles 

positive westward, from the local meridian to the hour circle of the star.    The 

hour angle of the equinox is, by definition, the sidereal time.   Let h and h_, be the 

local and Greenwich hour angles of a star whose right ascension is a.   Similarly, 

let T and T    be the corresponding sidereal times.   Then, from Figure 4, we have 
Li 

that at the instant a star is observed. 

T = LST = h + a , 

TG = GST = hG + a=T + X, 

(12) 

(13) 
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and 

r + X - a . (14) 

It is clear from the diagram that we must set 6 = T 

The transformation connecting the camera and the equatorial systems will now 
be discussed.   As indicated earlier, for the stellar background we can use a pure 

rotation.   Figure 5 shows (a) the basic geometry in these circumstances, and 
(b) how the general rotation can be decomposed into three simple rotations: 

(1) about the z axis (earth's polar axis), (2) about the y' axis, and (3) about the 
St" axis.   The rotation angles are therefore the well-known Euler angles. 

\ 
\ 

y' 

\ 

\ 

r 

_^X 

FILM 
PLANE            i i  - 

;c) 

Figure 5.   Relation Between Camera and Equatorial Systems 
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Let a   and 6   be the right ascension and declination, respectively, of the point 

on the celestial sphere that marks the direction in space along the camera optic 

axis.   Let o, n'. and A be one side and two angles of the spherical triangle formed 

by the camera axis intercept C, the star S, and the pole P.   On the photographic 

plate the star image appears as in Figure 5(c).   If the star coordinates (right 

ascension and declination) are a and 6. respectively, we have: 

cos rj sin a \ / cos a cos 6 \ 

sin 17 sin a   ) = R
z(6€)Rv(y-6

c)Rz(
a

c)(   sinacosö   j. (15) 

cosa       / \   sin 6 / 

where Rz(6e) and Rz(<0 are given by Eq. (11), with 6 = 6e and 0 = cr , respectively, 
and 

/sin 6      0    -cos 6 

Ry(l"6c) = (   0        '      0       U (16) 

\cos6„   0    sin 6 x c c 

The column vectors will be recognized as alternative representations of the unit 

vector along the direction of the star in the two coordinate systems.   The compo- 

nents were displayed in Eqs.  (8) and (1).   Equation (15) can be simplified for 

6c = 0 or 6e = ,ir/2.   In the former case it can be written in expanded form as 

cos 6 cos or cos a   sin 6   + cos 6 sin a sin or   sin 6    -sin 6 cos 6 c c c c c 

= cos rj sin a , (17a) 

-cos 6 cos a sin«   + cos 6 sin« cos«   = sin rj sin a , (17b) 

cos6cosacos«   cos 6   + cos 6 sin« sin«   cos 6   + sin6 sin6„ - coe a ,   (17c) c c c c c — 

which can be solved explicitly for 6 and a in terms of rj and a. We can easily 

verify the results 

.     ,           ,                        sinn sincr /IQ„\ tan («-«)=  ;—-T1—. T—:—j  (18a) c       cos a cos 6   +sina + sm6   COST? — c                          c 
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and 

sin 6 > sin 6   cos a-cos 6   sin a COST). (18b) cc — 

These expressions, or the more general ones that can be derived from Eq. (15) 

with 6c / 0, allow us to compute the right ascension and declination of an object 

whose image coordinates have been measured and used for evaluating the angles 

a and IJ [Eqs. (5), (6), and (7)].   This is seldom the way Eq. (15) is used, how- 

ever.   The primary reason for establishing Eq. (15) is to have the means of 

determining the orientation of the camera system from photographs of the stellar 

background at the observation site.   Details of the procedure are given in Sec. 4. 

Let us, for the moment, assume that a   and 6   are known.   It follows, then, that 
A in the equatorial system a unit vector n in the direction of the camera axis has 

the form 

A A A A 
(n)E = xE (cos 6ccos«c) + yE(cos &c sinac) + zEsin6c . (19) 

The same vector can be referred to the geocentric system by direct application of 

Eqs. (12) and (14).   We then have 

(n)G « 5G [cos 6c cos (TG - a^)] + yG [cos 6C sin (TG - «.)] + SG sin6c (20) 

The z axis of the camera system coincides with the optic axis.   The unit vector 

z   is therefore identical with the unit vector n, and its geocentric representation 

is also given by Eq. (20). 

When points at finite distances from the camera are observed, the general 

transformations must be used but knowledge of the orientation of the z axis of the 

camera system with respect to the geocentric system is prerequisite to the trans- 

formation.   Consider the situation depicted in Figure 6.   The geocentric coordinates 

are represented by nonsubscripted variables.   Unit vectors associated with the 

camera system are identified by the subscript c.   Their components are to be 

referred to the geocentric system.   Let c be a unit vector along the line of sight 
"*" A A to the point P.   If the distance SP = a. then the vector SP = ac.   The vector c. 

referred to the camera system, can be written in the form 

A        A A ,    , 
c=pzc + qi/c, (21) 

where 

vc'Zc'0. (22) 



14 

*-x 

Figure 6.   Relation Between Camera and Geocentric Systems 

Clearly, the vector v   is contained in the plane determined by the line of sight and 

the camera optic axis and, because of Eq. (22), is in the camera system xy plane. 

Figure 7 represents a photograph of P.   The fiducial mt:rks determine plate 

axes from which the distances x1 and y' are measured.   For a rotation angle 

be = 0, the plate axes coincide with the x y   axes, which define the E-W and N-S 
A 

directions on the plate.   Clearly, the unit vector x , which points toward the east, 

is proportional to the vector product of z and z , that is. 

A 
X     = 

A      A zXz 
_ = "TÄ    AT c      Izxz   I 

(23) 

If for simplicity we write Eq.  (20) in the form 

TV A A A A 
(n)G = zc = xnj + yn2 + zn3 . (24) 



^ye-STfr^e^^j^p 

  
▼  1 
"ScJ 

"V 

—,'.-'--->P 
/                           y/j 

/                    yS          , 
-A                    jT 

r°j/\     I"' 
lA \ \ 

S ' 
/ 

/ 
/ 

/ '                        i 

/ 
/ 
/ 

/ 
/ 

 1 

.FIDUCIAL MARKS 

Figure 7.   Coordinate Systems on the Film Pläne 

where 

n, = cos 6„ cos (T-, - a* ) , l c (j       c 

n„ - cos 6,, sin (T_, - <*„) , 
i C Lr C 

n3 = sin6c' 

Eq.  (23) becomes 

15 

A 
xc" 

Vnf^i 
t=  (-Sn2 + ^j) (25) 

The unit vector along the third axis of the cartesian camera system, y , is simply 
the vector product 

A A A        : 

yc = zcxxc' (26) 
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or, in component form. 

A 

y'r 

Vni + n 

i      r A
,      .   •

A
,      .   A

  2     2.1 
==[-x(nin3} ■ y'v^+ Z

'
M
I * ^i (27) 

From Figure 7 it follows that 

A A , A , . 
v    = x   cos (n + 6€) + y   sm (rj + 6e) 

The vector c, along the line of sight to the point P, is therefore 

A     A i Sln 
c = x < n, cos a —   n2 cos (rj + 6e) + n.n, sin {r}+ öe) | |   + 'II 

+ y Jn„ COSCT + —4— |n1 cos (r)+ 6e) - n„n3 sin(r)+ 6e) I {   + 

I n„ cos a + ^sin a sin Oi + 6e)     , 
A + z 

where 

Z-yj^Tn: 

(28) 

(29) 

An alternative way of deriving this expression will now be given.   Equations (24), 

(25), and (27) can be recognized as the columns of the matrix representing the 

purely rotational part of the coordinate transformation that takes us from a 

simplified camera system, for which the angle 6c = 0, to the geocentric system. 

Written in full, this matrix is 

/-n2/a   "VaM   n^ 

njä       r^/A    n2 

\   0 A V 
R = 

(30) 

Since det R = 1 and the matrix is real, the inverse transformation is effected by 

the transposed matrix 
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/-I^/A      lya        o \ 

ir = 

\nl n2 n3 

(31) 

/ 

The matrix (30) can be obtained directly from Eq.  (15) with 6c = 0, and from 

Eq. (11) with fl = T       EvidenUy. 

= Rz(TG-ac)R-1(f-6c)   . (32) 

The vector c, as given by Eq. (29), is obtained by performing, in addition to the 

rotation R, a rotation about the z   axis through the angle -ie.   In other words. 

"y 

W 

/COST) sin<j\ 

=Rz<TG-cc>R;1(f-6c)Rz{-6e) sinrj sin a 

v 
(33) 

cos a        i 

The vectorial derivation previously given serves to identify x   and y   as 

vectors that point east and north, respectively, but for routine computations with 

high-speed digital equipment, Eq.  (33) is to be preferred.   This is because it can 

be implemented by means of subrout^nts of general applicability in the triangulation 

procedure. 

Having referred the unit vector along the line of sight to the geocentric system 

we are now able to write down the expression for the position vector OP = p . 

Clearly, 

p = r + ac , (34) 

where, we recall, r is toe vector that fixes the position of the origin of the camera 

system at site S.   It can be recognized that the addition of r to the vector ac cor- 

responds to the translational part of the transformation that relates position 

measurements in the camera system to position measurements in the geocentric 

system.    Later on we shall see how r is determined from geodetic data appropriate 

to the observation site.   For the moment it suffices to assume that the vector r is 
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specified by its cartesian components 

-» A A A A 
r = rr=xx + yy + zz 

,A A A . 
= r (x cos 7. + y cos To + z cos ^3' ' 

The direction cosines cos y. can be expressed as functions of the geocentric 

latitude 9' and the longitude A..    The following can easily be verified: 

/COST.X /0\      /cos^ cos ^'X 

(35) 

COST, 

\oosy3J 

-K'^K1 'I-*') 

\V 

sin A cos< (36) 

L     sin*'        / 

Equation (36) is consistent with the convention that western longitudes and southern 

latitudes are negative. 

Equations (20), (29), and (34) solve the problem of expressing in terms of 

geocentric coordinates the position of a point at a finite distance from a triangula- 

tion site whose position and orientation are known.   In Sec. 4 we discuss the means 

to determine that orientation. 

X. ORIENTATION OFTHE CAMERA SYSTEM 

Equation (15) relates the right ascension and declination of a star to the 

angular coordinates a and r, that correspond to the orientation, in the camera 

system, of the line of sight to the star.    The transformation (15) depends on 

three parameters, of which a   and 6   are identified as the right ascension and 

declination of the point on the celestial sphere toward which the camera optic 

axis is directed, and 6e corresponds to a rotation of the film plane about the optic 

axis. 

We will now set up a procedure to determine a , 6 , and 6e from photographic 

records of stars.    Properly identified by comparison with charts from a star 

atlas, they will supply the data from which the column vectors on the righthand 

side of Eq. (15) can be constructed.   Measurements of the corresponding star 

images on the film will provide the data that, coupled with Eqs. (5), (6), and (7), 

will allow evaluation of the components of the column vectors on the lefthand side 

of Eq. (6).   Since the position of each star can be described by only two independent 

equations involving its right ascension and declination, identification of a single 
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star is not sufficient to solve for the three unknowns a , 6 , and 6c.   From photo- 

graphs of a single star we can find the values of only two unknowns.   For example, 

if we take öc = 0, we are led to Eqs.  (17 a,b, c).   We can readily verify the validity 

of the following expressions for a  and 6 : 

.  -1 /sinr) sina\ ,..,,. 
ffc=*-Sln     (     cos 6     )• (J7) 

6   =sin"1f—       sm6      — W tan"1 (cos n tana) . (38) 

Wl-sui   a sin   n   / 

For the general case we have to consider the full set of equations arising from 

Eq.  (15) together with data from at least two stars.   We have: 

cos6e I sin6   cos6 cos (« -«) - cos 6   sin6 I - sin6c cos 6 sin (a   -a) 

= cos »7 sin a , (39a) 

sin 6e I sin 6   cos 6 cos (<*_-«) - cos 6   sin 6 I + cos 6c cos 6 sin (a -a) 

= -sinr) sino . (39b) 

cos 6   cos 6 cos (a -a) + sin 6Ä sin 6 = cos a . (39c) c c c — 

Equations (39) can be written in the equivalent form 

cos 6 sin (a -a) + sin a sin (f) + 5e) = 0 , (40a) 

sin 6   cos 6 cos {a -a) - cos 5   sin 6 = sin a cos (r) + 6e) , (40b) 

cos 6   cos 6 cos (a -a) + sin 6    sin 6 = cos o . (40c) 

The added rotation of the film plane about the optic axis appears as a correction in 

the angle rj, which measures the azimuth of the star image from the reference 
direction determined by the fiducial marks. 

Equations (40b) and (40c) can be used to express sin 6   and oos 6   as functions 

of a   and 6e.   It can readily be seen that 
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sin 6   = sx" rsin26 cos if-0') + 8in2a cos (q+ 6e) I 

>= -jr-  | sin6 co8a+cos6 sina COS(T)+6c) cos (a   -a)|. (41a) 

cos 6   = irz— 1 cos 26 + cos 2a I = -jr— I cos 6 cos a cos (a   - a) - 
c    2&l I J     ^2 L 

- sin6 sina cos (17 + 6e) I , (41b) 

where 

A. = cos a cos 6 cos («„-*) + sin o sin 6 cos (IJ + &*). 

2 2 A, = 1-cos   6 sin   (a   -a) . (41c) 

Consequently, 

sin 26 cos (a -a) + sin2a cos (i? + 6e) 
tan 6   = ^   ■ ~ 

(42) 

c cos 26 + cos 2a 

sin 6 cos a + cos 6 sin a cos (TJ + 6c) cos (a   - a) 
s    S    • 

cos 6 cos a cos (a   -a) - sin 6 sin a cos (n + 6c) 

We now consider Eq. (40a), rewritten in the form 

sin«   cos 6 cos» - coso-   cos6 sina = -sina sln(r) + 6c) . (43) c c 

Then we evaluate Eq. (43) for each of two stars and solve for sina   and cosa . 

With the subscripts 1 and 2 corresponding to the first and second stars, respect- 

ively, we have 

sinu„ sina, - sinu, sina9 
sina   =      ■   , r-*  (44a) c sm(a1 - a2) -' 

sinu   cosa, - sinu, cosa„ 
co8ac ^m^-a,,) " • <44>> 

where 

/ sin a. \ 
sin ui=' [z^T. ) sin (,1i + 6€) • {4AS) 
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2 2 By virtue of toe identity sin a   + cos  a   = 1, we can write c c 

2 2 2 sin   (a   - o2) » sin  Uj + sin  »^ - 2 sinuj sin»^ cos («j-arg) 

But 

2 j /sina   \2 / . 
sin ^ = y ^C086   j   I 1 - cos 2^ cos 26e + sin 2^ sin 26e     . 

and 

sinu, einu, =f (-—^i )( ^^ )|cos (n,-^) - co8 26c cos (HJ + n2) + 
- /sina1 \/sina2\ r lui6inu2 = yls^ Jis^irJHV'1 

+ sin26c sinCrj, + n-)    . 

Consequently, we can write 

Sj cos 266 - S2 sin2fie = So . (45) 

where 

2 
/sino, \ / sinor. \ /sina2 \ 

S1=COS2TJ1   rrrr )   ~2   ^o/ll^ox   ) cos (*?,+n9) cos (a.-a,) ■ 1 lycoso-/ y cosfi - / \cos 6„ / 1      2 12 

/sina   \2 

+Uinr2) 
cos2*2' 

2 /sma. \ /sina \/sina, \ 
s2 = ^^(^) - 2issiT1A^iT2/

sin(r?i+'52) coß<*rö2) + 

/sina   \2 

+ [^T2)   cos2r>2- 

iV      /sin0ri\/sina2\ /Sinff2\2 

o    \cos 6, 

2 sin2 («j - a2) 

From Eq.  (45) it follows that 

so 
cos (26€ + ^) 

V^2 ' 
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with 

-1  S2 0 * tan      -ar- 

From this equation we find the following expressions for 6c: 

tt.i.L.-'_!2_-u.,-1^'\ 

ice."' k*kMW-> 
s2     s2 

o        o 

jtan (46) 

From Eqs. (46) it is apparent that the rotation angle 6c vanishes for S. = S . 

This leads to the condition 

o 
iBina   sinr).      sin a. sinn, \ /s'nal\/sina2 \ F 
\    cos51 cosi2      /    ' 2 ^ESiTj^SSiTj LCOS(oi'^) X 

x sin 2 V2 
sinn, sinrjg I + sin (ffj -»2^ • 

which can be used in conjunction with Eqs. (37) and (38) to check the consistency 

of the data from pairs of stars for known 6e = 0. 

Having determined the angle 6c, which measures the rotation of the xy plane 

of the camera system from the N-S direction, we can use Eqs. (44) and (42) to 

find the angles a   and 6   that identify the orientation of the optic axis (or, equi- 

valently, the orientation of the camera system z axis).   We have 
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smuu Binor, - sinu. 8ina9 
tan a   = -3— k :—* — (47) 

c     sinu, cosa, - sinu. cosffg 

and 

sin 26 cos {» -*) + sin 2a cos (IJ + ie) 
^ 6c cos 26 + cos 2a ' (48) 

where, as before. 

sin 
/sina \ 

Note that Eq. (47) uses data from star pairs whereas Eq. (48) refers to a single 

star.   It is possible to write ex] 

stars.   One such expression is 

star.   It is possible to write expressions for tan 6   that also use data from two 

cos a, cos60 cos (« -a,) - cosa0 cos 6. cos (a -a.) 
tan X      — 1^ C       £ Ct A CA /AO\ 

c ~ coso. sind« - cosa_ sin6. 

It should be remarked that the statements made at the outset concerning the need 

to use data from at least a pair of stars in order to evaluate the angles a , 6 , and 

fie is fully consistent with the system of Eqs. (40).   We have here three equations, 

which in ordinary circumstances should be sufficient to solve for the three un- 

knowns.   Closer examination, however, discloses that they are not independent. 

Unless previous information is available about the value of any one of the unknowns, 

a sufficient number of independent equations can only be obtained by adjoining to the 

set of equations from one star the corresponding set for a second star. 

5.  TRIANGULATION PROCEDURE FOR POINT RELEASES 

Consider now the problem of determining the geocentric coordinates of the 

point in space that marks the position of a chemical puff.   To locate the puff, 

photographs are taken from two or more stations whose geodetic coordinates are 

known.   Let us assume that the geocentric coordinates of the stations have been 

found by an appropriate transformation. *  Construct the position vectors r. that 

fix the location of the stations in the geocentric system.   They have the general 

form specified by Eqs. (3) and (4), that is. 

* This transformation is discussed in Sec. 7. 



24 

-> A 
r. = r.g. , 

where 

g. = x (cos X  cos ^1) + y (sin A-  cos #) + z sin ^! , 

and 9'., X. denote the geocentric latitude and longitude of the ith station.   At each 
observation site a camera is mounted with its axis oriented in a direction specified 
by the unit vector n, whose geocentric components were determined in Sec. 3, 
Eq. (20). such that 

n = x cos 6   cos (T- -or) + y cos 6   sin (r^-a ) + z sinß   . 

There will be one such n vector for each coordinate system associated with a 
camera.   To avoid an overabundance of subscripts this equation shows the general 
form of n.   When it becomes necessary to identify a particular n, we will attach 
the subscript and write n..   The expanded form for n. is computed from the a , 

6 , and T_ appropriate to the camera and observation site under discussion. 
Let us,now consider the situation depicted in Figure 8.   A point release at P is 

photographed from sites S. and S,.   It was shown in Sec. 3 that along the line of 
sight, a unit vector c is expressed in geocentric coordinates by Eq. (29), repeated 
here for convenience: 

c = x j n.cosa - s¥icr jn- cos (rj+ *c) + n-n, 8in(tj+ fie)] | + 

+ y j n2 cosa + ^—2| Uj cos (n + fie) - n2n3 sin (»7+ fie)] | + 

+ z    n« coscr+Asina sin(r7 + 6c)J   , [(29)] 

where 

* =>/nl+n2   * 

Let us introduce the notation: 

OP = p 

^1   =?1 
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Figure 8. Triangulation on Point Releases 

OS2   =r2 

SjP  =ac1 

S2P  = bc2 

SlS2=d 

The triangulation problem consists of finding an expression for the vector p. From 
Figure 8 it is evident that we can write 

p = rj +ac1 , 

p = r2 + bc2 

(50a) 

(50b) 
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By a scalar multiplication of Eqs.  (50a) and (50b) we obtain for the magnitude of 
-> 
p the expression 

'J = (ri-r2+ar2*Cl + brrC2+abcl,C2) ' (51) 

Vector multiplication leads to the relation: 

0 = pxp = r1xr2 + afcjXFg) + b(r1xc2) + abfcjXCg) . (52) 

Take now the scalar product of Eq. (52) and c. or c9.   This procedure leads to the 

following explicit expressions for the scale factors a and b: 

A    ->   ,-*• -»    -»    A 

.      C2,rlXr2 IVr2XC2 „, . 
a   =   ^      A        A       =   -    A       ->       A        ' <5?±> 

r2'ClXC2 cl*r2XC2 

ci*rlXr2 r2*rlXcl b = J A
1   A

2
  = - / J-     *   • (53b) 

-*■       A   ..A A       -*■  -^A — 
rl*clXc2 C2,rlXcl 

The consistency of the scheme can be checked by virtue of the relation 

cUd = d2 = (bc2 - acj)2 = a2 + b2 - 2ab ic^cj . (54) 

2 
in which d   represents the square of the distance separating the two observation 

sites.   This distance is often directly available, having been e.scertained when the 

region where the observation sites are located was surveyed.   Alternative expres- 

sions for the position vector p are obtained when values of a and b are substituted 

in Eqs.  (50a) and (50b).   Since there is no a priori reason to favor one observation 

site over the other, it is advisable to define p as a symmetric combination of 

Eqs. (50a) and (50b), that is, 

?s2-(?I+?2+a2l + bS2)' (5S) 

In combination with Eq.  (51) this expression can be used to define a unit vector p 
in the direction of OP, the position vector of the release.   Knowledge of this unit 

vector allows immediate calculation of the geocentric latitude of the release. 
Clearly, 

A   A p»z = cos (f-^)sin0-    , (56) 
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where $' denotes the geocentric latitude of P.   Slimlarly. the longitude A   of the 

release point can be computed frons the expression 

tan X 
-.   A 

A    A 
(57) 

If only the cartesian geocentric coordinates of the point P are required, 
Eq. (55) is all that is needed.   Equations (51), (56). and (57) allow parametrization 

of these components, thus serving to locate P in the geocentric system by means 

of spherical coordinates.   This is particularly useful because geodeiic coordinates 

can be obtained from thic form very readily. [ The transformation formulas will 

be discussed in Sec. 7. ] 

The position vector f. which locates the point P in the geocentric frame of 

reference, is uniquely determined when independent observations from two or 

more stations are available.   Equations (55) and (53a, b) solve the two-station 

problem.   It can easily be shown that for N stations the position vector p is given 

by the expression: 

^tiV'A) 
J«l 

(58) 

where 

r.j = position vector of jth camera site 

c. = unit vector along the direction of the jth camera optic axis ■ 

a. = scale factors for the jth line of sight, given by the vector relations 

N 
■»•        X   ^   -» A 
rj*2^ riXCi 

aJ 
i«l 
N 

. • >    r. X c. 
3   £~J   i 

(59) 

i«l 

There is some arbitrariness in the construction of a check equation similar 

to Equation (54) for the two-station case.   A symmetric form can be built by taking 

the stations in a close cycle and computing 
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t<«•*£'?-'EviMv5«)- (60) 
i=l i=l i=l 

where the index N+l is to be identified with the index 1, a condition necessary to 

complete an arbitrary closed cycle of stations with no cross links. 

Before concluding this section a reminder is in order about the significance of 

Eqs.  (58) and (5d).   It has been implicit that the analysis that led to Eq.  (59) 

assumes that ail lines of sight intersect at the point P, which coincides with some 

structural feature of the release uniquely identifiable from all observation sites. 

Then. Eq.  (58) represents the position vector obtained by making use of all 

observations symmetrically, with equal weights.   In a sense, it is a mean value 

of equally weighted observations.    The more interesting, but more involved 

problem of deriving expressions for the probable error and standard deviation 

associated with the mean value given by Eq.  (58) will be the subject of a separate 

report.    Thus, the simplicity of our approach is revealed at all stages, unencumbered 

by the complexities of a full statistical analysis. 

6.  TRIANGLLXTION ON CONTINUOUS TRAILS 

For the triangulation scheme that was discussed in Sec. 5 it is assumed that 

the images of a distinct cloud feature can be individually identified on photographs 

from different sites.   This is not possible when the chemical release takes the 

form of a continuous trail.   For example, from a pair of observation sites the two 

trail images have the general appearance shown in Figure 9.    This figure clearly 

indicates that, except possibly for the trail end, it is not usually possible to 

establish a unique correspondence between a given point P. on trail image 1 and 

some point P„ on trail image 2. 

To match point pairs on the two trails it is necessary to use a more general 

computational scheme for the triangulation, one that allows the position of point P» 

along the second trail image to be varied until some criterion for optimum match 
is satisfied.   This requires a procedure for moving along the trail image and 

scanning over short sectiuns of it to locate the optimum pairing.   A very convenient 

way to accomplish this is to replace the actual trail image by a two-dimensional 

curve, which is represented analytically by a parametric cubic spline (Ahlberg, 

Nilson, and Wals;-",  1967).   For computer implementation, the scan can be effected 

by systematically incrementing the spline parameter.    The merit function that 

measures the quality of the match is oomputed after each increment.    In general, 

it will decrease as the scan proceeds, reach a minimum, and then increase 
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Figure 9.    Luminescent Trail as Observed From Two Different 
Triangulation Sites 

(Bekey and McGhee, 1964). If the increments are small enough, or if suitable 

interpolation procedures are used, the minimum value can be determined very 

precisely. 

It is not the purpose of this report to dwell on this aspect of the triangulation 

problem.    Rather, let us try to establish the analytic form of the merit function 

and assume that adequate procedures are available for an effective determination 

of the optimum match. 

Consider, then, the situation depicted in Figure 10.    The vector diagram 

shows the essential geometry involved.   Clearly, 

= r, - r2 = dd (61) 

and 

A 
ac 

-V        , A ,/J 
, - s - bc„ + dd 0 . (62) 
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Figure 10.   Triangulation on Trails 

To determine the scale factors a and b we define s * | s |   as the minimum dis- 

tance between the lines of sight.   We can then write 

s « dd + ac   - be, , 

-♦    A -»A s«c. =s»c2=0. 

(63a) 

(63b) 

whence we obtain the following expressions for a and b 

■ A    A ^     A    ,    .A       A 

a = - d 
d.c1-(d.c2)(c1«c2)1 

l + (£rV2 J' 
(64) 

r     A     A ,A     A A        A 
\    d»c2 - id'Cj^) (c1'c2) 

6   =   0  ,   ^   /A        A     ,2 L 1 + Cc1-c2) ] (65) 
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A vector p can now be constructed from the origin to the midpoint of the line seg- 

ment PiPo' By virtue of conditions (63b). P.P« is Öle shortest distance between 

the lines of sight and. clearly. 

-»    -»    ,    A       1-» 
p = rl+acl"2S' 

■*        •* , A 1-* 
p.r2+bc2 + 2S. 

Consequently. 

$(h*t: 2 + acj + bc2 ) . (66) 

Equation (66) is identical with Eq. (55). which was obtained for point releases.    The 

disappearance of any reference to s in Eq. (66) indicates that the role of s is to 

supply a quantitative measure of the closure error incurred when the lines of sight 

and the base line connecting the observation sites are taken as the sides of a 

triangle with one vertex marking the release point.   For point releases, any dis- 

crepancy between the left- and righthand sides of Eq. (54) serves to characterize 

this closure error.   By modifying the procedure used to evaluate a and b. it can 

easily be verified that Eqs.  (64) and (65) can be obtained for point releases.   In 

fact, these equations emerge instead of Eqs. (53a) and (53b) if the evaluation of 

a and b is based on the triangle S S2P. 

The closure error reduces to zero whenever the lines of sight intersect; how- 

ever, the occurrence of intersecting lines of sight does not mean intersection at 

the point where the release has taken place.    To estimate how far away from the 

actual release point the intersection occurs it is necessary to have data from more 

than two observation sites.    The statistics of the p vectors will be discussed in a 

separate report. 

Within the limitations imposed by triangulation from two sites, we now construct 

the function that allows matching points on pairs of trail images.    Let us define the 

unit vectors v. and v« as follows: 

A       ^x^i 

A        A 

v    =-rTfl     J (67b) 2     sinp0 — 
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where v   is a vector normal to the plane determined by the lines S.S» and S.P., 

v« is normal to the plane determined by lines S.S. and S^P?« and sin3- is the 

magnitude of the vector product d x c ..   It is evident that if the two points P. and 

P2 are images of the same trail point, the two planes coalesce and the vectors 

v. and v, are parallel.   When this occurs, 1 - v.. «v« vanishes.   We can therefore 

make the function 

-\ c, »c, - (d-c ) (d.c0) 
1 - 1     - L==5 (68) fS,. c„ (t)l      . r       

L        J        >/[i-(5.cV2][i-w.S2) 

the merit function that measures how close to coincidence the planes S S2P   and 

S.S P   come.   Ideally, this function vanishes when P, becomes the second-site 

image of P .   In practice, small residuals will almost always be present, and the 

criterion for a second-site match must be the occurrence of a minimum of 

f j c ,c2(t)| as the parameter t is varied.   This parameter determines the position 

of the point Pg along the trail image. 

It is clearly advantageous to have an analytic expression to describe the trail. 

In a perfectly still atmosphere, the trail centerline will coincide with the trajectory 

of the rocket that effects the release.   In principle, it should be possible to write 

analytic expressions for this trajectory and, by suitable protective transformations, 

arrive at an equation for the trail centerline on the film plane.   Besides the algebraic 

complexity that can be expected in all but a few special cases, there are considera- 

tions of winds, windshears, and turbulent transport processes that distort the trail 

and often create sharp twisting and self-intersections, the net result being that 

the analytic approach suggested by the static atmosphere model loses all sig- 
nificance. 

The obvious way out of this difficulty is to employ a piecewise analytic 

representation of the trail centerline image.   Since we have selected a parametric 

cubic spline representation, the ordinary treatment, which requires that the depend- 

ent variable be a single-valued function of the independent variable, has to be modi- 

fied to allow for the multivaluedness introduced by severe twisting and self- 

intersections.   An account of the parametric spline procedure is found in Appendix A. 

Equations (64),  (65), and (66) solve the triangulation problem for trails when 

observations are made from two stations.   As was the case for triangulation on 

point releases, it is possible to extend the analysis and develop generalized 

expressions for the N-station case.   If the position vector p is computed from the 

equation 

N 

J=l 

(?• + a. c.) , (69a) 
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it can be shown that the scale factors a. are given by the relations 

a. = K -   >   -iv-1 bf   . (69b) v('rEV)v 
where 

N 

k=l 

N 
fi = E vv^ ■ voy 

k=l 

The vectors c are the unit vectors along the lines of sight that were introduced in 

Sec. 3.   The vectors dj. are unit vectors along the directed line from the Jth to 

the kth station.   The distance between these stations is d~.   Clearly, 

d.. « d.. . 

but 

A A 
d.. = - d.. . 

To match points on the trail images taken from the different triangulation sites 

it is necessary to construct a set of merit functions of the form (68).   If a point is 

selected on the trail image corresponding to the Jth station, the spline parameter 

values on the other images are determined by minimizing, in succession, the 

functions 

[. T                     c-»c. - (c-«d..) (c.«d..) 
t. Ut])] -1 -  .     1   J     1 Jj^LJJ . (71) 

VMvV JL^^'V J 
where t^ denotes the parameter for the jth trail image when the point to be matched 

lies on the ith trail image.   The set of parameter values that is thus obtained is 

used to determine corresponding points on the N-l trail images that have been 

compared with the _ith image.   It is not difficult to see that by successively 
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applying the same procedure to each trail—taking as the point to be matched the 
point on the trail determined by the parameter value that emerged from the initial 

round—a set of parameter values is obtained for each trail image, from which a 
mean value can be extracted, namely. 

N 

I 
k-1 

These averages can clearly be used to advantage to compute the line-of-sight 
unit vectors c. that appear in Eqs. (69a) and (70).   Higher moments of the distri- 
butions for the parameters t. will be given elsewhere.   The equations developed in 
this section, together with those of Sec. 5, solve the triangulation problems en- 
countered in the course of reducing data from a chemical release. They lead to 
expressions for the geocentric coordinates of the release, from which such things 
as wind speeds are computed.   To facilitate comparisons with existing data it is 
sometimes convenient to express positions as sets of coordinates relative to other 
systems of reference.   Two of these will be discussed in Sec. 7. 

7. TRANSFORMATIONS TO OTHER REFERENCE SYSTEMS 

Although the equations developed in Sees. 5 and 6 solve the problem of 
establishing the position of chemical releases, these equations refer coordinates 
to a geocentric system.   Some limitations that are thus imposed can only be 

resolved if means are provided to convert the coordinates to other reference 
systems.   Two such systems (Kaula, 1966: Mueller,  1969) are discussed in this 
section:   (1) the horizon system, which facilitates visualization of the release 
location with respect to the observer, (2) the geodetic system, which simplifies 
reference to geodetic or geographic charts.   Since the transformations to and 
from these systems can be found without difficulty by applying the appropriate 
definitions or the rotation/translation operators introduced in Sec. 3, the trans- 
formations will be discussed with a minimum of detail concerning their derivation. 

7.1  Geodetic Coordinates 

Geodetic coordinates are defined with respect to a reference ellipsoid, a two- 
parameter surface of revolution very close to the actual surface of the earth. 
Geometrically, it is a quadric surface on which all curves of intersection with 
planes are either circles or ellipses.   The ellipsoid is customarily defined by the 
length of the longest and shortest axes a and b, or, equivalently, by the long 
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axis a and one of the following auxiliary quantities 

a -b Flattening: f- 

First eccentricity:    c » \ 1 - (b/a) 

Second eccentricity: e' » \ (a/b)   - 1 

The ellipses whose generating planes contain the axis of rotation are the 
geodetic meridians.   One of the geodetic meridians is selected as the zero meri- 
dian.   The angle X between the plane of the zero meridian and the plane of the 
geodetic meridian of a point P is the geodetic longitude of P.   Clearly, if the zero 
meridian is contained in the plane of the geocentric prime meridian (Greenwich), 
the geodetic and geocentric longitudes are identical.   The line PP' (sf    Figure 11) 
perpendicular to the tangent plane at the point where PP1 pierces the ellipsoid is a 
geodetic normal.   The angle 4 between this normal and a plane perpendicular to the 
axis of rotation (for example, the geodetic equator) is the geodetic latitude of P. 
Figure 11 also shows the corresponding geocentric latitude ^'. 

Figure 11.   Geodetic System of Coordinates 
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7.3 Geodetic to Geoceatric Coofdiaales 

Tranaformations involving geodetic or horizon coordinates (azimuth and 
elevation) will now be discussed.   From Figure 11 we can determine the geocentric 
coordinates of a point whose geodetic latitude, longitude, and elevation above the 
reference ellipsoid are 4, X, and h, respectively.   Let the geocentric coordinates 
be expressed in terms of the parameters. +', X'f and p.   Then, clearly, 

X« . X . (73) 

From Figure 11 it follows that 

r » r (J cos f + z sin*"). (74) 

h = h (x cos * -l- z sin *) . (75) 

For the reference ellipsoid we can also write 

r * xa cost + zb sint. (76) 

where t is a parameter. 

A unit vector tangent to the ellipsoid at M is given by 

t ■    -(a sint)x+ (bcost)z —^ 

Va2 sin2 t+b2 cos21 fa   sin t+b   cos  t 

But 

h • t * 0       (condition of perpendicularity) 

Hence. 

tant » (b/a) tan^ . (78) 

r ■ Va2sin2 t + b2 cos 2t . (79) 
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Since 

tan*" - (b/a) «ant = (b/a)2 tan* (80) 

and 

9 O 
(b/a)  ■ 1 - e       (e « eccentricity) , 

it follows that 

_    Txcos^ + z (l-e2)sin*' 

L    Vl-C
28in2* J 

(81) 

The geocentric coordinates are found by rotating the vector r about the z axis 
to allow for the general longitudinal dependence of the data.   The results are: 

AT a » x — + h   cos * 
LVl-c2sin2*       . 

LVl.e2sin2*      J 

cosX + 

cos* sinX + 

+ £[    a<^2)    +h1sinö: 
-Vl - C

2sm2 *        - 

-2' 
(82) 

'sin' * 

tan*. (83) tan*' = | l-e2-Kh/a)V7-e2
Sin2* 

1 + (h/a)   Vl -€2sin2* 

7.3 Geocentric to Geodetic Cooröiaates 

The inverse transformation is best carried out by resorting to LÄgrarjge's 
expansion.   Let 

p « p (x cos^sin*' + y cos^sin^' + z sin*') , (84) 

h = p-r»p(r cos *' + z sin*1) , (85) 

where r is given by Eq. (76).   From Eqs. (85), (76). and (77), and the condition of 
perpendicularity of h and t we have 
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tan 
2 2 . a bp gtofj + a c aint 

a p cos 4* 

-  (bAOtan^' + J^rsint (86) 

Since e « 1 and sint * tant/(l + tan t) '   . the Lagrange expansion leads to the 

expression 

tant 

Kt^4
(T^&?^ote, > 

Once we know the value of the parameter t, we can immediately write 

r =a (rcost + zVl - c2 sint) 

and 

h = r (p cos ^, - a cos t) + z (p sin ♦* - a Vl - e sint) . 

Hence, 

(87) 

(88a) 

(88b) 

h = [p2-2apcos*,cost + Vl - c2 sin*' sint + a2(l - e2sin2t)l1/2 . 

p sin '' - a V1 - c   sin t 
tan 9 s 

p cos ^' - a cos t 

X = X« . 

(89) 

(90) 

(91) 

7,4 Geocentric to Horizon Coordinates 

The general transformation from geocentric to horizon coordinates involves a 

translation of the origin to the observation site, followed by rotations about the z ■ 
and y axes, respectively. If the position vector in the horizon systeih is Pg, it is 

such that i 
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(-COBE COSAX 

cos E Bin A   ]• ' 

sinE /       - * 

where E is the elevation and A is ttie azimuth of the line of sight to. the point being 

observed.   Then 

/-cosE cosA\ 

PHI     COfä EsinAUs(f-*')Rz(Xs) 

sinE 

/cos i' cos M /cos ^! cos X ' s s 
p| cos^1 sinX   f-r j coe^' sinX 

sin^' sin*' 

or. 
sin^i cos*' cos(>. - \)- cos,*' sin^'^ 8 B S 

cos ♦' sin (X - X ) 

fx*&t* cos^1 cos &> - ^0) + sin^' sin 4!/ 
"S' S jS 

,   (92) 

where *' aifd X   are the geocentric latitude and longitude of the observation site 

and r   is the distance of the site ti 
B 

that Eq. (92) leads to the relation 
and r   is the distance of the site from the geocentric-origin.   It cau be verified 

M-^T » 
cos *' cos *' cos (X - X ) + sin *'i sin 

S SB 
inf    . 

The term in the brackets can be identified with Jhe elevation of the line of 
■ .        • i | 

sight to a target at a very g'reat distance (a star, for example) and it is therefore 

convenient to set 

sinE^ = cos*' cos*' cos (X - X ) + sin*^ sin*' . (93) 

Letting m a r_/p we can thön write s 

-pi   = 1 + m2 - 2m sinE^ (94) 

m + sinE. 
sinE   =■ 

'1 - 2m sinE^H- m 
(95) 
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cos ♦' sin (X - X ) 
tanA =    cos«' sin*' - sin*' cos*' cos(X - X ) • (96> 

S S 8 

7.5 Horiara to Geoceairic Cooirfjaates (special case) 

The transformation inverse to Eq. (92) Is of importance only for very distant 
objects (stars).   The transformation from horizon to geocentric coordinates in 
this special case is accomplished by application of the rotations R    f-r- - *' \ and 
R    (X ) in succession.   The results are ' 

sin* = sin*" sinE + cos*' cosE cosA , (97) s s 

sinE sinX   cos*' + cos£(cosX   sin A - sinX   cos A siu*') 
, B S 8 S 

sinE cosX   cos*' -cosE(sinX   sinA + cosX   cosA sin*') 

7.6 Cam» to Horizoa Coordiaates 

The transformation from camera to horizon coordinates can be performed by 
combining a transformation from a camera to a geocentric system, followed by a 
transformation from a geocentric to a t      zon system.   Symbolically we can write 

(fcosij sinoN 

sinr, eina ). (99a) 

cos a 

p- = ap . (99b) 

where a^ is the distance along the line of sight to the target being observed.   It is 
determined from an expression of the form (59) or (69b). 

If the orientation of the camera axis is referred to the geocentric system, the 
declination 6   and right ascension «„ can be replaced by an effective latitude 

*' = 6c and an effective longitude ^c 
= ^ " TG *   E^t*011 (99a) then take the form 

'-cosE cosA\ /COBT] sinorX 

cosE sinA  1= Ry(| - ^VVV ^(^-^^-M3^ C08ff 1 '   (100) 

sinE       / \   cos a     / 
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For the camera axis, a < 0.   Therefore, it« aximuth and elevation are 
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lanAc * co«^ sin^ - sto^ co«V^ co» ^B-
X

ci ' (101a) 

sinE   =  sin#' sin#' + cos^' cos^' co«(* -X ) 
C S C S C 8     C 

(101b) 

For hand computations it is ctHwenient to write Eq. (100) in the form 

^      ^ sin^« co8(X -X )   sin*' sin(X -> )  -cos*'" 

o .8in(Xg-Xc) co8(X8-Xc> 

cos ♦' cos (X -X ) cos ♦' sin ft -X )    sin ♦' 
8 8     C 8 8     C S 

sin fJ sin 4 

sin n cos $ 

. (102) 

where 

cos 12     ■ cos t' cosa + sin*' sino cos (n + £e). 
8 C 

aß cos4s 8üi*' coso - cos^ 

sin 12 sin * « sin o sin (ij + fie) . 

sinn co84s sin*' coso - cos*' sino cos (17+ fie), 

It can then be readily verified that 

sinE ■ coso sinE   + sinacosE   cos(r, + 6c +^), c c (103) 

sin (n + 6e - tf>) tan (A.   - A) =    -    -  .  
c coso cosE-sino sinE   COB(T) + 6C-*)  ' (104) 

where 

*= tan [sin*' 
-cos 4>l sin (X -X ) 

cos*' - cos*' sin*' cos (X   - X ) 
D c s c s        c  ■ 

(105) 

7.7  Horizon to Camera Coordinates 

The transformation from horizon to camera coordinates is the inverse of the 
'ransformation given by Eq. (100), that is. 
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^cosqsincA /-oosE cosA\ 

sinnoina j=Bi(6c)Ry(|-^]R'1(Xg-Xc)R*V|-^|    cos E sin A 1.        (106) 

coso     / N      sinE      / 

Since ordinarily the angular rotation of the film plane about the optic axis is known, 
it is convenient to premultiply both sides of Eq. (106) by R~   (6c) and write 

sina cosfa + $e)\    /sin^'    0    "COS^'X/cos (*■-*)    ;sin(X -X )   o\ 

0inosin(i) +6^    =j     0        10 I 8in^8"Xc^     eo8^a''
X

c^   0 

coso /   Vcos^   0     sin^/\        0 0 1/ 

sin 4'     0   cos#'\   /-cosE cosA> 

cos£ sin A | • (107) 

-cos^'    0    sin^'/  V      sinE 

The zenith corresponds to a direction in space characterized by the camera co- 

ordinates n   and a  obtained from Eq. (107) by setting E = 90 .   It follows, then. 
that 

cos a   * sin^' sin^' + cos*' cos*' cosO- -X ) » siaE,, . (108) 
Z Co Co sc c 

-cos *' sin (*„-*_) 
tan(nz + *c) =   8inr cosr _ C08r sin^ cos(x    x„) • (109) 

s c s c s    c 

In Eq. (108) we have the analytic verification of the obvious relation a   + E   = 90 . z       c 
For the general case we can write 

cos a = sinE sinE   + cosE cosE   cos (A - A ) (110) 

and 

cos E sin (A   - A) 
tanfr-^e-*)*  sitlE cosEc - cosE sinEc cos ^ . A)  • (HD 

Comparison of Eqs. (105) and (109) shows that Eq. (Ill) can be written in the 

equivalent form 

cosE sin (A   - A) 
tan()iz - n) =  sinE cosE„ - cosE sinE   cos (A   - A^  * (112) 
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Explicit expressions such as Eqs. (110) and (112) are useful when it is 

desired to do hand calculations.   If computerized calculations are contemplated, 
it is more efficient and straightforward to use matrix relations such as Eq. (106). 
This is because we can have computer subroutines for the general rotations R (6) 
and R_(9). and can generate the coordinate transformations by successive calls 
to the subroatmes with appropriate values for the rotation angles. 
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Appendix A 

PoraMtric Cubic SpliiiM 

In the ordinary treatment of cubic splines (Ahlberg, Nilson, and Walsh), we 
consider an interval a ^ x £ b and subdivide it by a mesh of points corresponding 

to the locations of the data points: 

a=Xl<x2<...<xN+1=b. 

The associated set of ordinatea is 

yj. y2, yg, .... yN+1. 

We denote the set of mesh points by A and the tet of ordinatea by Y.   We then seek 
a function S. (Y.x) that is continuous together with its first and second derivatives 
in the interval (a, b) and is represented in each subinterval by a cubic polynomial 

in x.   If we write the jth polynomial in the form 

y - y. = a.(x - x.) + b^x - x^2 + c^x - x.)3 .      i = 1, 2. 3,,... N , (Al) 

the spline function is defined when all the coefficients a., b., c. are known.   Since 

there are N intervals, the total number of unknown coefficients is 3N.   To deter- 

mine these coefficients we have 3(N-1) continuity conditions at N-l internal mesh 

points.   A further condition arises from the Nth polynomial, which, evaluated at 

x = XN+I' must lead to y= %+!• 
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A unique solution requires the introduction of two additional conditions.   One 

of the simplest ways of accomplishing this is to take 

sj>>(a+).sj')(b-).      p = 0.1.2. 

The spline is then said to be periodic, of period (b-a).   For nonperiodic splines the 
two conditions may consist in specifying the end slopes or requiring that the 
curvature at the ends be zero.   It can be shown that the periodic cubic spline with 
prescribed ordinates at mesh points always exists and is unique.   The same is true 
of nonperiodic splines having the end slopes prescribed, of splines having prescribed 
second derivatives at the ends, or those satisfying the conditions S" (a) =Xs" (x„h 
S" (xN+j) = ß S" CJCJ.). when both X and M are numbers between 0 and 1. 

Spline functions composed of polynomials of type (A.1) are adequate for approxi- 
mating single-valued functions of x.   Multivalued functions can be handled if a 
parametric representation is introduced.   The most suitable parameter is the 
cumulative chordal distance that at point P.(x.,y.) is 

J 
Sj = S  [(xi'Xi-l)2 + (yi"yi-l)2]l/2 '      J = 2.3.4..... N+l. (A2) 

i=2 

The problem is to spline-fit x and y as functions of the parameter s.   Note that the 
inclusion of multivalued functions requires us to compute two sets of 3N polynomial 
coefficients. 

Let us denote the spline functions for x and y by S. (X, s) and S. (Y. s), 
respectively.    The mesh A corresponds to the set of s values 

0 = s1<s2<s3<... <sN+1. 

The cubic polynomials for the ith subinterval are then 

x - xi = af^s-s.) + bfVs.)2 + cj^s-s.)3 , (A3) 

y - yj = ajy^s-s^ + bJ^Cs-s/ + cj^fe-s.)3 . (A4) 

Because of the relations 

a 
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t-f- 
.2       • -     - •• 

Ac2 ti)3 

where the dot represents differentiation with respect to s. the conditions for 
matching slopes and second derivatives for the function y = y(x) at the interval mesh 

points P.(x.*y.) are translated into corresponding matches of the slopes and second 

derivatives for each of the spline functions S. (X, s) and S . (Y. s). 
If the curvature at the ends its to vanish, the following conditions have to be 

satisfied: 

At s.,      x = y = 0.   Consequently, 

b^.b^O. 

At s„j.,     x = y = C.   Hence, 

bN)+3cS)(sN+l-
8N) = 0' 

bN>+3cN)(8N+l-
SN) = 0' 

The coefficients for the x and y splines are determined by repeated application of 

the following basic procedure. 

Let dj = si+1 - si and let li be either (xi+1 - xi)/di or (y.+1 - y1)/di .   At 

internal points we have: 

f. = a. + d.b. + c.d.2 ,      1=1.2 N. (A5) 

ai+1 = a. + 2bidi + 3 c.d.2 ,      i = 1,2 N-l , (A6) 

bi+l = bi + 3cidi '      i=1'2 N-1 • (A7) 

From these equations it follows that 

d.b. = 31, - a.+1 - 2a. . 
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"A2 ■3 («.« ^ -«.) - ^ '.«- V.^ ■1)*2-.- 

and therefore 

(vt^)a'+2•'«+(Äi),'« 

•fe)^3^) 
fl+1,      i-l.2,3 N-l. 

Furthermore, the zero curvatore conditions Isad to the relatiomt 

2a1 +»2 = 35i • 

aN + 2aN+l=35N 

Let 

^   =  i  ,      ji. « 1 - X. 
i   i^d-Zd.^)       i 

Then the equations to determine the a coefficients can be written in the form 

2a1+a2 =35^ 

X1a1 + 2a2+V3 = S^ + ^ . 

X2a2+  2a3+V4 = 3(X2f2 + ^Cg) . 

X.a.+2ai+1+Vi+2 
=3<Vi+''i5i+l

)' 

XN-laN-l + 2aN + "N-^N+l   = 3(XN.1?N.1+^N.1fN) , 

aN +        2aN+l   = 3§„ . N 
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Ulis tridiagonal system has been discussed in detail in the literature (Smirnov. 
1961).   The recurrence relations that are obtained are well adapted to digital 

computer implementation. 
Figure Al shows the results of a parametric fit to the synthetic data listed in 

the upper right corner of the figure. 

15- 

:: 

10 

Point No. Abscissa Ordinate 

|        1 12.0 15.0      I 
2 8.5 14.0 
3 6.2 12.5       ! 

i        4 7.5 9.2       \ 
1        5 9.0 7.0 

6 12.0 7.2      [ 
i        7 14.0 9.2      1 
1        9 11.5 10.0      I 
1        9 9.0 9.2 

1C 9.0 5.0 
11 10.5 4.0 
12 12.5 3.5 
13 15.0 4.0 

I I I I 
6 8 10 12 14 16 

Figure Al.   Example of Curve-fitting by Means of Parametric Cubic Splines 
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Appendix B 

Logrange's Expansion 

l,et ffz) and g(z) be functions of 2, analytic on and inside a contour C that sur- 

rounds the point z = a.   Let e be such that the following Inequality is satisfied for 

all points on the perimeter of C: 

|€g(z)|<|z-a| . 

Then 

n - a + €g(u) 

has precisely one root* in the interior of C. u = u(or); and f(u). which is analytic 
on and inside C, can be written in the form 

.00     nti 

fCuHf^+j^jW^V1      |f('a)[g(*))nJ . (Bl) 
,     1 

This is the Lagrange expansion (Bellman,  1964). 

* This 'S a consequence of the following lemma:   Let f(z) and ^(z) be analytic 
in the interior of a closed curve C, continuous on the curve itself and such that on 
the entire curve l^(z)i< jf(z)| .    Then the two equations f(z) = 0 and f(z) + Q'z) = 0 
have the same number of roots in the interior of C. 



54 

Let us apply this result to £q. (86) 

taat-(£)*„♦'+1 ^ sint. 

with e changed to c   to avoid confusion with the e that appears in Eq.  (Bl). 
We introduce the following identification: 

u " tant 

«•(|)tan*' 

-iL.t-/M8int    . / a \ tant  _/a\ u 

COS( 

c"€o 

(♦'Vl + ta^t cos^'Vl + u2 

2 

f(u)«u, fWu) « 1 . 

According to Eq. (Bl) we can then write: 

1 x    '       Xpcosi'yis a* / 

•"+■(^w^)t^^)2(^-hte4,• 
that is. 

Vil-c^sin2*') 

+ 1 c4 /a\2 /b\ sing^' +0(€6 

Substitution of ^ ^1 - c2 leads to Eq.  (87) . 
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Appendix C 

Utcfol Crnislonts 

Tiae Coasiaats 

Period of rotation of earth:  23 56m04.18 mean solar time 

One uniform sidereal day: 23 56ni04.0918 mean solar time 

One mean solar day:   24 03in56.555s uniform sidereal time 

Tropical Year:     366.2422 mean sidereal days 
365.2424 mean solar days 

Sidereal Year:      366.2564 mean sidereal days 
365.2504 mean solar days 

Xslrodynamic Constants 

Rotational rate (w) « 0.729211514 (6) X ID'4 rad/sec 

Mass of earth   (M) « 5.975(1±0.0007) x 1027 gm 

i 
i 
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Coostents fur Ceographic Ellipsoids 

Author. Date ae(m) 1/f Countries using ellipsoid 

Clarke.  1866 6.378.206 2«H.98 United States. Canada. 
Mexico 

Clarke.  1880 6.378.249 293.47 France, South Africa 

Everest, 1830 6.377.253 300.80 India 

Plessis 6.376.523 308.64 France (mapping) 

Bessel.  1841 6.377.397 299. 15 Germany, Austria. Dutch 
East Indies 

Kraijenhoff 6.376.950 309. 65 Holland 

Danish survey 6.377.019 300 Denmark 

Constants for Intema'ional Ellipsoid 

Semlmajor axis (equatorial radius) s 6.378.388 m 

Flattening = 1/297 = 0. 003 367 003 4 

Polar radius = 6.356.911.946 m 

Square of eccentricity = 0.006 722 670 

Length of quadrant of the equator = 10.019.148.4 m 

Length of quadrant of the meridian = 10.002.288. 3 m 

Area of the ellipsoid = 510.100.934 sq km 

Volume of the ellipsoid = 1,083.319.780.000 cu km 

Radius of sphere having same area as ellipsoid = 6.371.227.7 m 

Radius of sphere having same volume as ellipsoid = 6. 371.221. 3 m 
21 Mass of the ellipsoid = 5. 998 X 10     metric tons 

Mean density = 5.527 


