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ABSTRACT

An optimization analysis is presented for nozzles with gas-particle
flows. The poblem is formulated to maximize the axial thrust produced-
along the nozzle contour for a general isoperimetric constraint such asconstant nozzle length or constant nozzle surface area. The effects of

the ambient pressure are included in the thrust expression to be maximized.
The characteristic and compatibility equations are developed and numerical
techniques are presented For use in conjunction with the characteristic
and compatibility equations. A solution procedure is presented which
determines whether or not a given nozzle contour is an optimal solution
and a relaxation technique is presented which adjusts the nozzle contour
towaro the optimal solution. Selected parametric studies are presented.
These studies illustrate the effects of changing mesh size, particle
size, varticle mass flow rate, inlet angle, drag coefficients, heat
transfer coefficients, throat radius of curvature, and the scale on te
thrust Performance and the nozzle geometry of the optimal, fixed length
nozzle.
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FOREWORD

The present study is part of the program "An Anaytical Study of
the Exhaust Expansion System (Scramjet Scientific Technology)" being
conducted by the Jet Propulsion Center, Purdue University, Lafayette,
Indiana, under United States Air Force Contract No. F33615-67-C-1068,
Project 3012) Task 301209, 8PSN 7(63-301206 6205214). The Air Force
program monitor was Capt. Garj J. Jungwirth of the Air Force Aero
Propulsion Laboratory (AFAPL/,RJT). This report presents the formula-
tion, numerical solution procedure and the results of selected para-
metric studies of the design of maximum thrust nozzles with gas-
particle flows. Volume Ii is the computer program user's manual.

This report was submitted by the authors on 31 May 1971.

Publication of this report does not constitute Air Force approval
of the report's findings or conclusions. It is published only for the
exchange and stimulation of ideas.

Gary -J. Jnngwirth
Captain, VSAF
Project Engineer
.amjet Technology Branch

Ramjet Engine Division
AF Aero Fropulsion I.aboratory
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SECTION I

I NTRODUCTION

Many propellant cortbinations produce condensed phases ir. the exhaust

products. These condensed phases may be due to the introduction of metal

additives designed to increase energy release. These condensed phases,

however, introduce performance losses due to the non-e.uilibrium effects

of heat transfEr and drag between the gas and the condensed phase

particles.

The first aplication of optimization technioues to One desin of

rocket nozzles was made by Guderey and liantsch (1) far hoxentropic flow

in '955. Rao (2,3) simplified th arialysis emd a pIied the forftatien

of the problem to standard nozzles and to pOug nozzles- Cuderley (4)

then extended the results to isentropic flows which allow entropy to

vary between streamlines.

Figure I revresents the general model used for formulating the optim-

ization of standard axisymmetric nozzles. 10 the above analyses, the

problem was formulated to provide maximm thrust across an exit control

surfdce, BC, and empsoyed a constant length design constraint. Since the

formulation is limited to the exit control surface, no dissipalive effects

in the flow f' eld are allcwed and nozzle design constraints not directly

related to the exit control surface are not available.
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Guderley and Amitage (5,6) formulated the optimization problem over

the entire region ABC in order to use a constant surface area as a designPfj
constraint in lieu of constant length. This approach permits the use of

a wide range of geometric design constraints. The complexity of the

formulation and the numerical solution are greatly increased over the pre-

vious formulations.

The Guderley-Armitage approach can also be extended to dissipative

flows since the entire region ABC is considered in the formulation.

Hoffman and Thompson (7,8) formulated the problem for gas-particle flows

and Hoffman (9,10) formulated the problem for reacting non-equilibrium

flows. Further work was performed at Purdue University to develop the

numerical schemes and to furnish working computer programs for the design

of maximum thrust nozzles having flow fields with dissipative effects.

Scofield and Hoffman (11) treated rotational or non-equilibrium simple

dissociating gas flows, Humphreys, Thompson and Hoffman (12) treated plug

nozzles with fixed inlet geometry, and Johnson, Thompson and Hoffman (13)

treated plug nozzles with variable inlet geometry.

This work presents the formulation and numerical schemes developed

to determine maximi- thrl!st rezzle contours for nozzles with condensed

particles in the flow field, and presents the results of an extensive

parametric study. The optimization problem is formulated over the region

IBC (Fig. 1). and follows that presented in Refs. (7,8). The method pre-

sented herein uses the calculus of variations to develop Lagrange multi-

plier equations, develops a numerical scheme to apply these equations to

a previously calculated flow field in an assumed nozzle contour, deter-

mines an error function along the assumed wall, and calculates a new wall.

This procedure is repeated until the error function goes to zero, and the

3



mv4m,_ns thrust rnntntr is obtained. An existing qas-particle flow field

anatysis program developed by Kliegel and Nickerson (14) was adapted to

provide the evaluation of the flow properties in the nozzle.
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SECTION II

ANALYSIS

i. INTRODUCTION

In formulating thrust optimization problems, two basic approaches

have been used. The first, and by far the easiest to use, maximizes the

thrust written in terms of flow variatles across an exit control surface.

However, the application of this approach is limited since the formula-

tion along the exit surface does not allow for dissipative flows or for

I constraints which cannot be related directly to the exit surface. In the

j )second approach, the thrust is written in terms of forces acting along

the wall contour AC in Figure 1 and the entire region ABC is considered

in the problem. This approach permits the consideration of flows with

dissipative effects such as gas-particle drag or finite rate chemistry.

This second approach will be employed in this work.

2. THE FLOW MODEL

The governing equations for the axisymmetric gas-particle flow

analysis are given in Ref.(15). These equations are a gas continuity

equation, two system momentum equations, a system energy equation, a

particle continuity equation, two particle momentum equations and a

particle energy equation.

(ypu) x + (ypv)y 0 (1)

P(uu + vuy) + Px + Ap(u-U)=0 (2)t p p

5



P(uv x + Vy) + py + App(v - v) =0 (3)

upx + Vpy - a2 (UPx + Vpy) - ABpp 0 (4)

(yppUp)x + (yOVp)y = 0 (5)

pU Cp(u p)X +v p(u p) - A(u -u p)] =0 (6)

pU(Vp) + V(Vp) A(v )=0 (7)

+vp x h py3 p(8ppEup(h N) + Vp(hp~ - UC(T - Tp)] =0 (8)

The parameters A, B and C were defined for convenience apd represent

particle drag ana energy parameters.

A - (9fu)/(2mprp) (9)

B =(y - l)[(u U) 2 + (vV -  C(T - Tp)A (10)p ~pp

C = (gCp)/(f Pr) (11)

where

f = CD (CD)Stokes (12)

g = Nu/(Nu)Stokes (13)

Assu,,ptions are made that the parameters A and C are constant at least

locally in the flow field, and relationships defining T, Tp and a2 are

T = p/pR (14)

T=T + 1 (h ho) (15)

a2 = M2- (16)
P

6



ho and represent the reference enthalpy and temperature respectively,
and C is the specific heat of the condensed phase. Cc depends on the

phase and is equal to C for liquid particles, - during phase changes,
p

and Cv for solid particles.

Using equations (9) through (16), the eignt governing equations,

(1) through (8), can be expressed in terms of two independent and eight

dependent variables. This suggests the use of the Method of Character-

istict, for the solution of the flow field problem. The following

characteristic and compatibility equations are obtained when the Method

of Characteristics is applied to the eight governing equations (1)
through (8).

Along the gas streamline

-y v (17)

pudu + ovdv + dp Ap p[(U - up)dx + (v -vp)dy] (18)

a2u-audp = A3Pdx (19)

Along Mach lines

= tan(o a) (20)dx

a2 -(vdu - udv) a cotadp (udy - vdx) a2V
P y

A B(udy - vdx) + a2[(u up)dy (v -p)d]} (21)

Along Particle Streamlines
V

dx Up (22)

7



u =du, A(u - u,)dx (23)

u dvp A(v -v )dx (24)
p P

updh = AC(T - Tp)dx (25)

p p 3 p

where 0 is the flow angle and ct is tne Mach angle. The upper signs in

equations (20) and (21) refer to right-running Mach lines and the lower

signs refer to left-running Mach lines.

This system of equations provides seven equations along four dis-

tinct characteristic directions, and thus cannot be used alone to solve

for eight variables. The reason for the deficiency has been explained

by Sauerwein and Fendell (16) as being the assumption that particles do

not contribute to the pressure. This results in only one distinct

characteristic direction for the particle equations, the direction of

the particle streamline. However, it can be seen that the particle

density term in the particle continuity equation is also dependent on

the divergence of s eamlines. The absense of a pressure term prevents

expression of the divergence in a characteristic set of equations.

Further examination of the system of equations (17) through (25)

reveals that if the particle density can be determined by other means, the

number of dependent variables is reduced to seven, and the system of

equations is adequate. For this purpose, a stream function is introduced.

Since the total amount of particles passing between the centerline and a

given particle streamline must reiain constant and the distribution of

particles passing the initial-value line can be detensined, an integra-

tion technique can be applied to determine particle density at each

8



point in the flow field. With the particle density determined, the

remaining seven variables can be determined by application of the

characteristic and compatibility equations (17) through (25).

In the above technique, it is necessary to determine the pertile

streamline to find the particle density. However, the particle stream-

line depends on particle velocities, which have not yet been determined.

Thus, it is necessary to iterate the solution at each point until a

sufficient accuracy is achieved.

3. FORMULATION OF THE OPTIMIZATION PROBLEM

In the problem of obtaining a maximum thrust nozzle, only changes in

the nozzle wall between points A and C (Fig. 2) in the supersonic region

are considered. The contour of the nozzle inlet and throat region are

assumed to be fixed. The boundary of the problem consists of three

line segments. The nozzle wall defines the first, AC. Since the nozzle

contour upstream of A is fixed, the flow field upstream of a right-running

characteristic attached at A is independent of the optimization problem,

and the boundary AB is defined along a right-running characteristic.

The third line segment, BC, closer tne region and intersects the line AC

at the end of the nozzle. No othe-' restrictions are made on this line in

the formulation of the problem. However, the line BC is represented as

a left-running characteristic In Figure 2 because the solution of the cal-

culus of variations equations resuits in the characteristic equation for

this line, as shown later in equation (64).

The particles flowing through the nozzle do not follow the wall

contour, and there will be a region near the wall which contains only

9
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gas. The limiting particle streamline is represented in Figure 2 by the

line DE. By definition the nozzle is not optimum if the limiting parti-

cle streamline impinges on the nozzle wall since the nozzle would be

physically damaged, and in the case where the maximum thrust solution

tends to result in impingement, it is necessary to charige the inlet and

throat region geometry sufficiently to provide the necessary separation.

The thrust developed along the nozzle wall is given by

F (p - po)nn'dx (26)

where n is the radial coordinate of the wall and is a function of x.

This quantity is w be maximized. However, there are so:-aral restric-

tions which must be imposed on the solution. The first requires that the

wall be a gas streamline. Thus,

UT%' - v = 0 on AC (27)

Equation (27) is multiplied by np for convenience in subsequent analysis

to give the equivalent expression

no(un' - v) = 0 on AC (28)

The second restriction is a constraint on the nozzle wall such as a

constant length, a constant arc length, etc. For problems of general

interest, this isoperimetrlic constraint can be expressed in terms of ri,

and p

CJ G(n,,p)dx - Constant = 0 on AC (29)

A



Finally, the governing equations (1) '.hrough (8) are restrictions through-

out the region. Using Li to represent the eight governing equations, the

functional which is to be maximized is

I j (p - Po)nn' + C1G + C2np(un' - v)]dx

A

8
+ I J hiL i dy dx (30)

~ABC i=I11

where CI is a constant Lagrange multiplier, C2 is a Lagrange multiplier

which is a function of x, and hi , (i = 1,8), are Lagrange multipliers

which are functions of x and y. The constant in the isoperimetric

constraint does not affect the optimization problem, and therefore has

been dropped from I. For convenience in the algebraic development, the

following definitions are made:

H1 = (p - Po)nn' + CIG + C2np(un' - v) (31)

8
H2 = - niL i  (32)

4. CALCULUS OF VARIATIONS

a. Necessary Conditions. Calculus of variations provides a set

of conditions which must be satisfied if the optimum solution has been

ichieved. Necessary conditions include the Euler equations applicable

to the region of interest, the transversality condition applicable

along the boundaries, the corner condition applicable to corners formed

by the intersection of two boundary line segments, and the Erdnann-4eier-

strass condition applicable to corner lines in region ABC. In a super-

sonic nozzle, physicdl considerations rule out the class of solutions

1^
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not used in this formulation and th. first three ionditions are consid-

ered sufficient.

b. The Euler Equations. The Euler equations, as given by Miele

(17), are

3H-2  L 2 - 3H 2 =0 %k = 1,2...,8) (33)
3k 3x B~Pkj By ka k,

where zk represents the eight dependent variables p, p, u. v. hp, p .Up

and vp, and Pk and qk represent the derivatives of these variables with

respect to x and y respectively. The Euler equations are developed in

Appendix I. The results are

- h2Ux - h - h- aZP) + y(h )x + u(h )x + v(h 2)y

= 2 v Ap - 4(v- (34)
h2  + A  [h2 - h42-l)(u-up - h6

_1 2

eh2Uy h 3Vy h 4 "PY (P _ a2Dy) + y(h1)y +u(h 3 x+ vh 3 y=

: h3  + A [h3  h42(y-l)(v-vp) - h7] (35)

2
h4ux + h4Vy + h4 p +(up vp y) + (h)x + (h3)y + u(h4)x +

+ vh ). = A P CJ [(y-1)h 4 - h8] (36)

2p Px + !pPy + yu(n) + yV(hl) + a2 (h =

A1 (y-l)CT(y-l)h4 - h8J + -4B h2(u-up) - h3 (v-', )il (37)

h6U x + h(V) x + h8(IN~ -Y(h5) x -Up(h6) ph)

Ajh - 42(,-yr-)(u - up) - h6 - 6 R (38)

13



h56(upy + h7 (v P)' + h8 (hp )y - Y(h5)y - up(h7) x - Vp(h 7)y

: A~h3 - h42(y-1 )(v-v) - h h7 VP (39)

u (h8)x + vp(h 8 )y = ,h8 " (y-l )h4 + h8 !- (40)

+ v(h), =Ah 2( - up) + h (vd - h4B} (41)

In eqivations (38) through (41) the particle density furction, pp, has

been factored out. it must be remembered that these equations apply

only in the region where particles are present, region BDE. Since the

dependent variables are determined independently of the optimization prob-

lem, they can be considered as known values durina the evaluation of the

Euler equations. Thus equations (34) through (41) constitute eight

equations with eight unknown variables, h, through h8 . Application of

the Method of Characteristics (See AppendixII) results in a set of seven

compatibility equations applicable along four distinct characteristic

directions.

Along the gas streamline

4x = V (4.)

dx u

- h2du - h3dv - h41-dp - a2dp) + ydh1 + udh2 +

+ vdh3 = {h2 y + A2_[h2 - h4 2(y-l)(u-up) - h6J1dx +

+ {h3 y + A-R{h 3 - h4 2(y-l)(v-vp ) -h]y (43)

14



n 2v- n3 u)av n 2 p p  (y-i)ua-n pdp + udh -

4 4 P -3 R 4 -

+AP.2

+ (y-1)CT[(y-1)h 4  h8 + A [yh4B - h2 (u-Up) - h3 (v-vp))

Adx ) h(v-v x (44)

Along gas Mach lines

x = tan(e ci.) (45)

h2du + h34v + h4  (dp - a 2dp) - ydh1  tana(vdh2  udh3) =
3sv A -P - 3)]d

tana h3 1 dx + [h3  h4 2(y-l)(v-v h 7]dx -

- 12 -dy - A P- [h 2 - h4 2(y-1)(u-up) - h6 1dy +

+ I~ (udy - vdx)A y-1-)[2 CT{(y..1)h 4  + h B]} (46)

where the upper signs in equations (45) and (46) are applicavle along

right-running characteristics and the lower signs are applicable along

left-running characteristics.

Along particle streamlines

F =x !P_ (47)
dx u

Up

yupdh5 = AEh2(u-up) + h3(v-vp) - h4B]dx (48)

updh6 + Vpdh 7 = h6dup + h7dvp + h8dhp - ydh5 -

- Ah - h42(y-l)(u-Up) - h6  x + h6 -dx -

-Afh 3 -h 42(y-l)(vVp)- h7  + h7 # dy (49)

15



Updh8  2 ~ AC [h8  (y--l)h 4]dx + (50)

Equations (42) through (50) are a system of seven compatibility

equations which apply along four distinct characteristic directions.

Since there are eight unknown dependent variables, hI through h8 , a

deficiency exists. Analysis of the equations shows that the system of

equations does not permit evaluation of the variables h6 and h7 since

derivatives of both appear in equation (49) only.

In this analysis, h6 and h7 will both be determined by finite

difference evaluation in the vicinity of the point being considered.

c. The Corner Condition. The corner condition applicable at the

corners A, B and C, as given by liele (i7), is

alll  aH1A[H, - y' 7-.]6x + A[,-y 6 o (51)

where A denotes the difference between the value of the quantity in

brackets evaluated on each side of the corner and Sx and Sy signify

small variations in x and y.

At point A, both x and y are fixed, and 6x and 6y are both zero;

thus the corner condition is satisfied without new conditions. At point

B, the quantity H1 is zero on both sides of the corner, and no new

conditions result At oint C the variations 6x and Sy are arbitrary.

Each must be able to vary independent of the other so the coefficients

must be zeri. Since H1 is zero along BC, the coefficients of Sx and Sy

are zero on that side of the corner, and thus must also be zero at C

when evaluated along AC.

=4 0 at C (52)

16



-= at C (53)

Equations (52) and (53), when applied at point C (see Appendix III).

result in

(PC - Po)ncVcUcGc

(Pc" _po)[l _.v (3G

c(= - U)E Cc C (55)

d. Th.: Transversality Condition. Along the boundaries, the tran;-

versality condition must be satisfied. The transversality equations are

given in Appendix IV, and when applied along BC result in the set of

equations:

h3 - y'h2 + h4 (v - y'u) = 0 (56)

hly(v - y'u) - h4a2 (v - y'u) 0 (57)

h2!.v - y'u) - hlyy' = 0 (58)

h3(v - y'u) + hly = 0 (59)

h5 (y'u. - v ) = 0 (60)

h6 (y'u - v p) + 5yy =0 (61)

h7(y'u - v p) h5Y 0 (62)

h8 (y'up - v p) =0 (63)

17
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Substittiting equations (57) through (59) into (56), we obtain, after

simplification

y= vu±a2 /M' on BC (64)

Thus the transversality conditions specify that the line BC must be

a left-running characteristic.

Since BC is a characteristic neither of the quantities v - y'u or

y'u - Vp are zero. Equations (60) through (63) then reduce toYp

h5 = 0 (65)

h6 = 0 (66)

h7 = 0 (67)

h8 = 0 (68)

and equations (56) through (59), in addition to specifying the charact-3r-

istic direction, become

hly + h2(y'U - v) = 0 (69)

hlyy' - h3(y'u - v) = 0 (70)

hly - a2h4 = 0 (71)

When the :-ansversality conditIon is applied along the contour CA

the following eouations result:

h = C2  (72)

18



uh3 02 + %n + uCIp = 0 (73)

dhl d C 1 d 3 d(
= +L G u (.-) p d - (74)

5. FINITE DIFFERENCE EVALUATION OF h6 AND h7

The failure of the method of characteristics to produce eight com-

patibility equations necessitates the use of another method to solve for

at least one unknown dependent variable. Since equation (49) includes

both h6 and h7 in differential form, at least one of these must be obtained

by another method in order to permit the solution of the other. In this

analysis, both will be obtained in the vicinity of a point by using the

appropriate Euler equations and the definition of a derivative.

The two Euler equations which contain partial derivatives of h6 and

h. are equations (38) and (39), repeated here for convenience

h6(up)x + h7(vp)x + h8(hp)x - y(h5)x - up(h6)x vD(h6)y =

-Ajh 2 - h42hr-l)(u-u) - h 6 1 h6 t (38)

, ' ) h6(Up)y + h7(Vp)y + h8(hp)y " y(h5)y - Up(h7)x - Vp(h7)y =

3- h4271)(y

These equations can be written in a total differential form along the

particle streamline if all the partial derivatives except the partial deri-

vatives of h6 and h7 are known. To solve for the differential (u p)x, equa-

tion (6) and the total derivative of up are used,

19



Up{Up) x + v (u) =A(u-Up) (6)

dup (Up)xdx + (up)ydy (75)

to obtain

A(u - Up)dy - vpdU(7
(Up x updy -vpdx (76)

Along the particle streamline, (u p) x is indeterminate. However, under

the assumption of continuous derivatives, (u ) can be evaluated along a
P x

gas right- or left-running characteristic and the results employed in

equation (38).

In similar fashion

A(v - v )dy - v dV
(Vx = u p dy - vp dX (77*

2 AC(T - T )dy - v dh
(h)x- p (78)p x u pdy - vdX

A(u - u )dx - u du(up)y = p pX "(79)

A(V Vp1 X -v dx v

(Vpy- p (80)

2 AC(T - T )dx - u dhp
(hp)y Updy v AX (81)

p p

Using equation (41) and the definition of the total derivative of h5 ,

the following express'ons are derived:

-A[h2(U'Up + h 3 (v-V -h 4B dy - yv Ddh 5  (82)
5)x yupdy - yv dx

p p

20



- Arh2(u-uP) + h3(v-v) - h4BJdx -YUpdh 5
- ( h ,, - ..At ., . .. A ,,.- ( 8 3 )

_.1' J-*p-J - YJpY^

In equations (76) through (81), the evaluation of the partial deri-

vatives involves only gas and particle properties. These values are

known at all points in the flow field during evaluation of Lagrange

multipliers, and are constant. However, evaluation of equations (82)

and (83) requires the use of multiplier values not yet determined.
Thus, values must first be assumed for the multipliers and the solution
process iterated with updated values for the multipliers until a suffi-

ciently accurate solution= is obtained.

Treating the partial derivatives evaluated by equations (76) through

(83) as constants, and restricting equations (38) and (39) to particle

streamlines, we obtain the two compatibility-like equations4

up dh6 = [ -h6(up)x - h7(vp)x - h8(hp)x + Y(h5)x +

+ A {h2 - h42(y-1)(u-Up) - h6  - h6-]dx (84)

Up dh7 = [h 6 (up)y - h7(vp)y - h8(hp)y + Y(h5)y +

+ A {h3 - h4 2(Y-l)(v-vp) - 7} - h7--K]dx (85)

6. SUMMARY OF RESULTING EQUATIONS

The set of equations which must be satisfied as necessary conditions

for the calculus of variations includes eight Euler equations or their

equivalent characteristic and compatibility system, three transversal ity

equations along the nozzle contour AC, seven transversality equations

21



along the exit characteristic BC, and two corner condition equations at

the point C. This is an overdetermined system of eqL-ations. One of the

transversality equations along AC is no. used in the compitation of the

Lagrange multipliers, and will thus be available for determination of an

error function. This error function is used to modify the nozzle contour.

The resulting equations, in approximate order of usage for computa-

tion of multipliers, are repeated here. At the corner C
Vc

(P Ph = - 0 " Uc CL )] (86)
1 C 2c CPcUc

Along the exit characteristic BC

hly + h2(y'u - v) = 0 (69)

hlyy' - h3 (y'u - v) = 0 (70)

hy a2 h4 = 0 (T1)

h5 = h6  h7 = h8 = 0 (65-68)

Along the nozzle wall AC

dI11 du (PC - Po)ncVc 1d 3G - uaGjdv (

-Upun -G W' "p  (74)

Along gas Mach lines

F = tan(e T a) (45)
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h2du + h3dv + h4  . (dp - adp) - ydh T tanc(vdh2 - udh3) =

tan{ h XPdx +AL[h3  hn2(y-l)(v-Vp) . h7]dx -

y pv -P [hhan1)u h d  +d +

- h2 14y - A -
p [h2 - h42(y-l)(u-u p) - h6]dY +

0 P

+i(uy-dxA- (-l[ CT I(Y-l)h 4  8j 446

Alona the gas streamline

d v (42)

h2du - h3dv - h4  (dp - a 2dp) + ydh1 + udh2 +

+h A Eh2 - h4 2(y-l)(u-u) -h6 } dx+
vdh3 = {h2  + A 4 [h (

h3 P+ A 3 - h42 (y-l)(v-v) h7]} dy (43)
lI

(h2v - h3u )dv + h2 dp - (Y-1)ua h4 B dp + yudh1 -

2 v - 2 [(y-I - h8 ]

ua2dh4 = _a2h4  a2A 3 4
+A 2

(y-l) CT[(y-1)h4 - h8  + A p [p  h2(uup)

h3(v- Vp)] - (44)

Along particle streamlines

V

X- 147)
p

yupdh5 = A[h2(u-up) + h3(v-Vp) - h4Bjdx (48)
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Updh= [-h 6(Up)x -h 7(vp)x  h8(hD)x + y(hs)x +

V+ A {h2 h 42(Y-!)(u-u) -h }  h-]dx (84)

Updh 7 = [-h6(Up y - h7(Vp y h h8(h p Y + Y(h5) y +

A {h3 - h42(y-l)(v-vp) - h7} - h7 ?---dx (85)

u dh8  AC [hV
pd 8 = c[h8 - (y-l)h 4]dx + h 8-dx (50)

Finally, equation (73), which is not employed in the above set, is avail-

able as a check condition applicable along the nozzle wall to determine

if the nozzle is optimum.

uh3 -vh 2 + vn + UCG p =0 (73)
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SECTION III

NUMERICAL METHODS

1. SOLUTION PROCEDURE

The solution procedure consists of estimating a nozzle contour, per-

forming a flow field analysis, computing Lagrange multipliers, evaluating

the check condition given by equation (73), and modifying the nozzle.

This procedure is repeated using the modified nozzle contour as the

estimated nozzle contour until the error ct-iterion is satisfied. This

section describes the program veveloped for use in the parametric studies.

The initial nozzle contour ray be input in tabular form or calculated

internally in the form of conical, parabolic or circular arc nozzles. The

initial-value line, required to begin the supersonic flow field calcula-

tion, may be input as data or, for standard converging-diverging noz7les,

can be generated internally based on th3 combustion chamber conditions.12. FLOW FIELD ANALYSIS

The flow field analysis utilizes the method of characteristics.

Mesh points are located at intersections of left-running characteristics

(LRCs) and right-running characteristics (RRCs). The reference stream-

line points are obtained by linear interpolation between reference points

along the LRC and the RRC. See Figure 3. The mesh construction proceeds

along LRCs beginning at either an initial-value point or an axis point,

inserting points along RRCs from points on the previous LRC until the LRC

intersects with -he nozzle contour. Additional LRCs are constructed in

this manner until the end of the nozzle contour is reached.
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Axis points are located at the intersection of an RRC from the second

point on the previous LRC and the axis. A limiting particle streamline

point is calculated along each LRC and at least one additional point must

lie between the limiting particle streamline and the nozzle contour.

Point insertion routines are used to insert additional mesh points when-

ever the mesh size exceeds the values specified by input parameters.

Whenever . mesh point is inserted along an RRC, a new LRC is begun at that

point ?nd proceeds to the nozzle contour before continuing on with the

interrupted LRC. The point insertion reutine is also used to locate the

last point at the end of the nozzle contour.

During the flow field analysis, a secondary start line is constructed

which follows an RRC from a point on the nozzle contour near point A

(Fig. 2) to the axis. This secondary start line is used in subsequent

iterations to reduce the calculation time by eliminating the recalculation

of mesh points unaffected by the wall modification.

3. OPTIMIZATION CALCULATIONS

The optimization portion of the program begins with the determination

of properties along an LRC which passes through the end point of the

nozzle contour. This is accomplished by linear interpolation along the

RRCs which connect points on either side of the exit characteristic. The

Lagrange multipliers are then calculated along the exit characteristic

and the method of characteristics is erployed to determine the Lagrange

multipliers throughout the flow field after reassembling the mesh con-

struction in reverse order. A check condition, determined from equa-

tion (73) and expressed in terms of slopes, is calculated at wall

points and an error function is determined.
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I
4. RELAXATION TECHNIQUE

The check condition, used to determine if the nozzle contour is op-

timum, will not in general be satisfied. After rewriting equation (73),

an error parameter is defined:

I h 3+C 
IG

E = tan-(n') - tan- 1 f 1h2"nP3 (87)

By assuming that the remaining variables do not change appreciably with

changes in wall slope,n', the error parameter may be relaxed by calculat-

ing a new slope so that E will be zero. Thus, the new slope is given by

h 3 + C( 8 8 )

h2 - n

This relaxation technique, first proposed by Major A. A. Taylor, USAF,

while he was a graduate student at Purdue University, permits a simple

integration to determine the relaxed nozzle contour.

n(x) =  (xA) + I n'(x)dx (89)

JxA

Since the other variables do change when n' is changed, the solution is

not exact, and the flow and optimization calculations must be iterated.

It was found that the relaxation scheme resulted in an overcorrec-

tion in the majority of cases. For this reason, a weighing factor was

introduced to reduce the number of iterations, and thus the computation

time. Thus, the modified contour slope n' is given by

I= + 0-801i - nj) (90)

where n i represents the slope found by equation (88) and nj represents

the slope of the original estimated nozzle contour. In addition, res-

trictions were placed on the calculation of the new nozzle contour to

28



prevent a chanqe in slope Qreater than 10 deqrees in either direction

and to prevent nega'ive slopes from being used.

The nozzle contour could become discontinuous if point A were fixed.

This is avoided by permitting the point A to move along the throat radius

of curvature until the slope at point A equals the slope calculated by

equation (88). In the event point A moves upstream of the first point

of the secondary start line, the flow field analysis will begin at the

initial-value line for the next iteration and a new secondary start line

beginning upstream of the new point A will be calculated.

Convergence of the nozzle contour is determined by the value of the

error parameter, E, determined by equation (87). When E is less than the

value of the input parameter TOL at each point along the nozzle contour,

the convergence criterion is met and the program is terminated. If this

convergence criterion is not met, the estimated nozzle contour is re-

placed by the modified nozzle contour and the solution is iterated

beginning at the flow field atialysis.

Figures 4 and 5 illustrate the behavior of this relaxation scheme.

The sample case consists of a design to produce a maximum thrust nozzle

9.6 inches long with a throat radius of 1.2 inches and a throat radius

of curvature of 2.4 inches. The initial estimate of the contour is a

250 conical nozzle. Aluminum oxide particles 4 microns in diameter with

a mass flow rate 0.4 times the gas flow rate are specified. The gas

properties are: y = 1.28, molecular weight - 17.76, chamber pressure

500 psia, chamber temperature = 65000R, and ambient pressure = 3 psia.

The convergence tolerance, TOL, was 0.05 degrees.

Seven iterations are required for convergence. The initial, second,

fourth, and final nozzle contour are shown in Figure 4. The fourth and
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final contours are almost identical. The corresponding error values are

shown in Figure 5. The initial contour estimate of a conical nozzle

resulted in large error values in the first iteration. However, the

changes in nozzle contour were limited to ten degrees. The error values

in the second iteration begin to show the overcorrection, then reverse

where the first iteration correction was limited to ten degrees. The

error values in the fourth iteration show a marked decrease, and by the

seventh iteration are less than 0.05 degrees at all points.
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SECTION IV

PARAMETRIC STUDIES

1. GENERAL

A computer program, written in FORTRAN IV for the CDC 6500, was

developed based on the analysis presented in Section II and the numerical

methods presented in Section III. This computer orogram was designed to

oermit either the analysis of a given nozzle or the desiqn of a maximum

thrust nozzle subject to some geometric design constraint. The program

user may choose to begin at an initial-value line in the supersonic

region or with combustion chamber conditions. Output options permit

selection of the amount of printed output and a punch capability designed

to permit input of the computed nozzle contours and/or start lines into

subsequent :omputations. A program description, description of inout

variables and li:nting of several sample rases are given in Reference (18).

This section presents the results of parametric studies to determine

the effect of varying several of the input parameters. For each parametric

study, one variable was varied holding all others constant.

2. VARIATION OF MESH SIZE

The method of characteristics mesh construction is controlled in two

ways. First, the number of initial-line points (NILP) determines the

size of the mesh near the initial value line and affects the mesh size

throughout the flow field. Second, provisions are incorporated into the

design program to limit the mesh size. In supersonic divergent nozzle

flow, the mesh size tends to increase as the mesh construction proceeds
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by the proqram whenever the dimension along a riqht-running characteris-

tic exceeds the input value DR, the dimension along a left-running

characteristic exceeds the input value DL, or the flow angle change along

the nozzle contour exceeds the input variable DTWI.

For the first part of this parametric study, the values of DL, DR,

and DiWI were set to relatively large values, thus inhibi.:ig the mesh

point insertion routines. A nozzle with a 1.2 inch throat radius,

leagth of 9.6 inches and a 25 degree cone was selected. The ratio of

the mass flow rate of the particles to the mass rate of flow of the gas

was 0.4 ard the size of the particles was 4 microns. Three values of

NILP were used to vary the mesh size. The results are shown in Table I.

The times required for each design were 342.9 sec, 593.8 sec, and 826.1

sec for NILP = 12, NILP = 16, and NILP = 20 respectively. These times

could be reduced significantly if better initial contours were ust- I. In

all t:hree cases, the initial contour is the same. The final nozzle con-

tour was reached in one less iteration for NILP = 20.

Increasing NILP, and thus decreasing mesh size, results in almost

identical final nozzle contours, with the nozzle exit raditis slightly

larger for increased NILP. The values for computed thrusts indicate a

dependence on the mesh size. This can readiiy be seen by comparing the

thrust computed for the first contour- estimate in each case. Since these

contours are identical, the difference can be attributed to the effect

of the mesh size on the numeric scheme. Another effect can be noted in

reviewing the thrust values. The final calculated thrust is typically

slightly less than one or more of the intermediate calculated thrusts.

However, this effect is slight, amounting to approximately 0.03% of the
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total thrust, nAd is withila the acuruu Y a Of v ........... .Thi.

suggests that the tolerance may be increased so that fewer iterafions

are required, since intermediate contours yield essentially the same

thrust as the final.

A seccnd part of this parametric study consisted of reducing the

calculation times. Fir this purpose, four, five and six iterations

(input parameter NITER) were performed with NILP = 12. Then the result-

ing computed nozzle contour was input into a design program with

NILP = 20, and run until the error tolerance equal to 0.05
0 was satisfied.

The results, shown in TableII, indicate a savings in total computational

time can be achieved by first obtaining a better first estimnate of the

nozzle contour using a large mesh size. However, increasing the number

of iterations with NILP = 12 to 5 and 6 does not re?.4ce the number of

iterations required with NILP = 20. A similar savings can be achieved

by selecting an appropriate parabolic nozzle contour for the first

estimate.

TABLE II

COMPiTATION TIMES

NUMBER OF ITERATIONS WITH NILP = 12

NILP 0 4 5 6

12 178.6 217.3 253.6

20 826.1 360.6 361.6 359.7

826.1 539.2 578.9 613.3

-6



3. VARIATIO! OF PARTICLE SIZE

For the particle size stud'es, an eight inch circular arc nozzle

with a 300 attachment angle and a four inch exit radius was used. The

inlet to the throat was 300. Particle sizes of 2, 4, 6, 8 and 10 microns

were used. In all cases, the ratio of the mass rate of flow of the

particles to the mass rate of flcw of the gas was 0.4. The nwnber of

initial line points used was 20.

The final contours are shown in Figure 6. The optimized contours

for the 4, 6, 8 and 10 micron particles are nearly t'e same, and the

2 micron optimized contour is not consistent with the others. Analysis

of the numeric results revealed that the limiting particle streamline for

the 2 micron case was near the nozzle contour, causing many linear inter-

polations in the process of computing limiting particle streamline points

and wall points. This caused a loss of accuracy.

An analysis of off design conditions was made to determine the

effect of particle size mismatch. The contours used in the analysis are

the final contours just mentioned. In addition u the 2, 4, 6, 8 aid 10

mlcrnn sizes, an aitalysis was also .ade using equal parts by mass of 2,

4, 6 and 8 micron particles such that the total ratio of mass flow rates

was the same as for the analysis with one particle size. The results of

these analyses are given in Table Ill. Also given are the nozzle ?adii

at the exit for the optimum contours.

The use of the 2 micron wall resulted in lower thrust than for the

other walls regardless of the size of particle used. This confirms the

conclusion that the 2 micron design did not provide an optimum contour.

The 4, 6, 8 and 10 micron walls provide the same thrust for each particle

size used, within the accuracy of the numeric schem of the program. The
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parametric study required an inlet angle in the neighborhood of 30 ds a

compromise between the 2 micron and 10 micron requirements. Inaller in-

let angles resulted in impingement of the 2 micron particles on the wall

while larger anglbs provided large vertical momentum to the 10 micron

particles, causing the particles to cross the centerline. The numeric

integration of the particle mass could not be performed under these cir-

cumstances. Thus, in nonmal design programs for small particle sizes,

an inlet angle of 45' is recommended to provide a greater separation

between the nozzle contour and the limiting particle streamline.

The use of larger particle sizes results in less thrust, reflecting

greater dissipative effects. The higher thrust computed for the mixture

of four particle sizes is due in part to the use of some smaller particle

sizes, and in part the increase in mesh points caused by insertion of a

mesh point at each limiting particle streamline. The same effect was

noted in the mesh size parametric studies.

4. VARIATION OF PARTICLE MASS FLOW RATE

In this parametric study, the ratio of the mass rate of flow of the

particles to the mass rate of flow of the gas (WPWGT) was set at O.i,

0.4, 0.7, and 1.0. For the larger vdlue of WPWGT, the effects of the

particles near the throat region result in moving the sonic line down-

stream. For this reason, the initial-value line was shifted downstream

by adjusting the input variables THIW and ZAX. The nozzle is an 8 inch

nozzle with the initial contour assumed to be a circular arc attached

at a 30 angle and with an exit radius of 4 inches. The particle size

used was 4 microns. PILP was 12

The results, shown in Figure 7 , indicate that greater amounts of

particles require more expansion to maximize tne thrust. This phenomenon
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is due to a coniblnatio of drag a-d eat nt a e effectsc The transfer

of energy between tihe particles and the gas also results in increased

thrust. This study did not consider changes in the combustion properties

due to change in composition.

5. VARIATION OF INLET ANGLE

When the inlet angle was changed, using the inlet angles of 120,

30' and 480, it was found that the optimum nozzle contour was the same

for all three cases. However, the limiting particle streamline was alter-

ed as shown in Figure 8, and the thrust value was affected by the oppor-

tunity for energy exchange between the particles and the gas. A 9.6

4nch nozzle was specified, again using 4 micron particles and WPWGT = 0.4.

The thrust increased as the particles occupied greater portions of the

nozzles, permitting more effective energy transfer. This indicates that

the nozzle inlet contour should be designed to bring the limiting parti-

cle streamline near the end of the nozzlp contour while avoiding impinge-

ment.

6. VARIATION OF THE DRAG AND HEAT TRANSFER COEFFICIENTS

Parametric studies wera conducted to determine the effect of inac-

curacies in the empirical drag and heat transfer coefficients used in

the program. The parametric stidies w~re performed using a nozzle length

of 9.6 inches, WPWGT = 0.4, 4 micron particle size and NILP = 12. The

inlet angle was 30 degrees.

The drag coefficients and heat transfer coefficients are calculated

from tabular data. The tabular data give empirical ratios of the coef-

ficients for specific values of Reynolds numbers to the coefficients for

Stokes flow regime. The drag coefficient and heat transfer coefficient

tables used in the program are the ones used by Kliegel and Nickerson (14),
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but can be changed easily by the program user if dcsired. Rarefaction

corrections are applied to the drag and heat transfer coefficients

calculated from the tables.

Figure 9 compares the effect of increasing the drag coefficient by

a factor of 3 and decreasing the drag coefficient by a factor of 3 rela-

tive to the standard case. The optimized nozzle contours were the same

for all three cases, but the limiting particle streamline was affected

substantially. The case with the higher drag coefficient results in

greater thrust. Since the particles occupy a greater portion of the

nozle, the heat transfer is 2ore effective.

FigurelO compares the effect of varying the heat transfer coefficient.

The larger heat transfer coefficient results in larger computed thrust

values and nozzle contours with greater expansion ratios. A ninefold in-

crease in heat transfer coefficient increases the thrust 0.5 percent.

Particle impingement is not of concern since the limiting particle

streamline moves in the same direction and by approximately the same

distance as the nozzle contour moves.

7. VARIATION OF THE THROAT RADIUS OF CURVATURE

The throat radius of curvature (RRT) is expressed in throat radii.

The throat radius of curvature parametric study compares results with

throat radii of curvature of 1.5 throat radii, 2.5 throat radii and 3.5

throat radii. An inlet angle of 30' and nozzle length of 8 inches were

used. The computed thrust values are nearly the same although the nozzle

contours and expansion ratios vary. (See Figure 111. The supersonic

portion of the nozzle contours are very simiiar. however, if they are

translated in the axial direction a sufficient distance to comperasate

for the variation in throat length.
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The limiting particle streamline was also affected by the change in

the throat radius of curvature. With larger values for RRT, the curva-

ture of the wall at the throat region is more gradual, permitting the

particles to accelerate more in the axial direction prior to being sub-

jected to vertical drag forces. The resulting momentum provides a

greater separation between the nozzle wall and the limiting particle

streamline.

This parametric study indicates that it may ba advantageous to use

the larger throat radius of curvature, since thrust is not lost, particle

impingement with the wall is avoided, and there is a possibility that the

nozzle weight could be reduced.

8. NOZZLE SCALING

Since two-phase flow is dissipative, scaling of the results of one

design to provide a nozzle of greater or less thrust is not applicable.

A parametric study was conducted to illustrate the effects of scaling.

An inlet angle of 45' and a throat radius of curvature of 3 throat radii

were used for each case. The nominal case was a 4.8 inch long nozzle with

throat radius of 0.6 inch. Additional zases were two times, four times

arA eight times the size of the nominal case nozzle.

The maximum thrust nozzle contours for the larger nozzles result

in a greater expansion ratio. (See Figure 12). A more marked effect,

however, is seen in the locations of the limiting particle streamlines.

The location of these streamlines may dictate changes in the fixed por-

tion of the nozzle in order to prevent impingement of particles on the

nozzle contour or to increase the region in which energy can be trans-

ferred from the particles to the gas.
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I
The calculated thrust for each of the final contours is 

shown in

Table TV. If scaling of the nozzles and the thrust wcre applicable, the

thrust would increase as the sluare of the increase in size. The re-

sults show that the thrust increase is slightly higher than direct 
scal-

ing would indicate.

TABLE IV

THRUST EVALUATION FOR NOZZLE SCALING

NOZZLE THRUST

SIZE THRUST RATIO

iX 883.4 1.000

2X 3543.1 4.011

4X 14223.1 16.100

8X 57208.4 64.759
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SECTION V

CONCLUSIONS

A formulation of the maximum thrust "tisynmetric gas-particle nozzle

problem was presented. A ccmputer program was developed based on the

optimization analysis. This computer program was used to conduct several

parametric studies designed to determine the effect of various design

parameters on the nozzle shape, limiting particle streamlines, and thrust

of optimum nozzles.

The computer design program can be used either for analysis of nozzle

flow or for design of the maximum thrust nozzle contour. Analysis of

flow fields can be performed with four discrete particle sizes while the

design of maximum thrust nozzles is limited to one particle size.

The results of several parametric studies were presented. The con-

clusions based on these studies include:

1. The change in nozzle contours as mesh size changes is negligible

and the change in value of computed thrust is small. However, the mesh

size does affect computer run time significantly.

2. The effect of particle size on the final nozzie contour was in-

significant except for small particles whose limiting particle streamline

lies near the nozzle contour, thus causing numerical scheme errors.

3. The ratio of the mass rate of flow of particles to the mass

rate of flow of gas has a significant effect on both the final nozzle

contour and the thrust. Higher concentrations of particles require a
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greater expansion ratio to develop the maximumt thrust and develop greater

thrust.

4. Variation of the inlet angle to the nozzle throat does not

app-eciably dffect the final nozzle contour, but does affect the limiting

particle streamline and the thrust. Smaller inlet angles resslt in

particles occupying a greater portion of the nozzle and a greater thrust.

5. Increasing the values of the drag coefficient does not appreci-

ably affect the nozzle contour, but increases the portion of the nozzle

which contains particles and increases t' thrust.

6. Increasing the heat traiisfer coe-,cient increaiPs the expan-

sion ratio of the final nozzle contour, increases the portion of the

nozle which contains particles, and increases thrust.

7. Increasing the throat radius 6f curvature decreases the nozzle

diameter but does not affect th . thrust significantly. The increased

throat radius of curvature results in greater separation betwee.a the

limiting particle streamline and the r,-zzle contour.

52



APPENDIX I

DERIVATION OF THE EULER EQUATIONS

The extreral problem for the gas-particle nozzi' optimization problem.

is given by the equation

1 A -8 (1
FI d x + f hiidydx 91)

where

H (p -Po)nn' + CIG + C2np(un' - v) t, 3N)

H2 = hl[ypux + yr.px + ypvy + yvpy + ov] +

+ h2Lpuux + Pvuy + Px + Aplu -up)] +

+ h3 uv + VVy + py + Aop(v - vp)] +

+ h4[uPx + vPy - a2Uox - a2vpy -ABop] +

+ h5[Yp(up)x + YUp(0p) x + ypp(vp)y + yVp(0p y + ppVp +

+ h[puplUUp)x + pp(Up)y - ppA.u Up)] +

+ hpUp(v ) + pv (v) - A(v -v ] +
71p x pPp py p p

+ h8[ppUp(hp)x + opVp(hp)y - 2AC-p(1" - Tpl1 (92)

The functional, I, reaches a maximum when the maximum thrust nozzle

design has been achieved. Under these conditions, the functional remains

constant as Minute changes are made in each of the dependent variables
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possible then to take variations by setting the functional equal to the

same functional with one of the dependent variables increemented an infin-

itesmal amount. The Euler equation used in the calculus of variations

technique is one method of taking these variations over the region being

considered and results in a set of eight equations.

The general form of the Euler equation is given by Miele (17) as

A 2  a NH2  a H2
- =0 (k = 2 8) (33)

zk  ax p k

where zk denotes the eight dependent variables u, v, , p, up, VP P

andi and Pk and qk are defined as

azkk= - (93)Pk a

'zk
qk Z y (94)

A and C are constants, and

8 (y-l)[(u-up)2 V )2 ( v C(T- T )] (10)

T = -P-  (14)pR

Tp Tp 0 p h 0 ) (15)

a2 = (6)p

h and T represent the reference enthalpy and temperature respectively
p p

and Cc is the specific heat of the condensed phase.
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Te general Euier equation, when applied to equation (92) with

Zk u, yields

(hlY0)x + hlY'x +. 2pux - (hi2 ou)x - (h2Pv)y +
h2a+ h 3+ xh h4 - h4A, (-Y1 )2(u - u) -

h App ( 0 95)

Simplifying and grouping terms results in

Ox YP(h)x + h2 0u,- h2 (Pux * upx + pVy + ,py)
- Pu(h2 )x - pv(h2 )y + h3Pvx + h2Px - a p,) +

+ AppCh2 - h4 (y-1)2(u - up) - h6J = 0 (96)

Using tha gas continuity equation and rearranging gives the result

h2Ux-hx h4 (Px - aPx) + Y(h )x + u(h2 )x + v(h2 ) y
h K + A -R Ch - h(2(y-1)(u-u h6]  (34)

Performing the same operations vith zk v yields

(hYP) + hly + hlp + h2PUy - (h3puk +

+ h3Pvy - (h3Pv)y + h3APp + hy h4 a2 p y

- h4 App(Y-1)(v - vp) - h7App = 0 (97)

yo(hl y + h2 Jy - h3[ +x+uox vpry +

+ h3PVy - pu(h3 )x - pv(h3 )y + h4 (Py - a2p ) +

+ AppCh3  h4(Y- )2(v - Vp - h] = 0 (98)
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1 2=

h2Uy - h3y- h4  (py -a py)+y(h y + u(h 3 ) + vh 3 )y
2y 3~ y Pl7 J3)x 3

h . + A _Pprh h42(y-l(v-V) -17 (35)3 hy P 3-4 7

For z, p, the following result is obtained.

h2Jx" -h Uh3) -h4V)y-hu x  
2

- (h2 x - (h u) - 4  4 x __

- voy e- h A- h8 
2 ACp -- (99)

y ap 4  p ap 8 3 p ;p

The partial derivatives with respect to p can be evaluated as follows.

2 _ 2oo
La_ p = T (100)

ap ap pR R p

=- (-1) C --T- (-1 (102)ap 3 p 3 9R

When equations (100) through (102) are substituted into equation ( 99 ),

the final result is
2

hua + h + h a (upx + Vp) + (h) + (h3) + u(h4) +
4 x 4 v 4y F x x 3y 1

+ C (y-1 )h4 - h8 ] (36)

For zk = , the following resdlt is found.

hlYu x - (hlYu) x + hlYvy - (hlYv)y + h1v +

+ h2uux + h vuy + h3uv x + h3vvy +

2 _2  2 _.2

+ (h4a u) - h4up "a + (h4a v)y- h4 Vpy4 x x a 4 y 4 yap
h4 ap p T - h8 T AC 0  ( 103)

pa . p
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The following relationships are used to eliminate density derivatives.

-- = (I )-a. - - ( )104
2 P

a T (os)
-o R P

B 2 (_--I)CT) _T (y-I) (106)
33 3 P

Using the two system momentum equations and equations (104) to (1; ),

and grouping terms yields

- yu(hl) x - yv(hl)y - h 2  - h3  p +
P P

+ a2Ch4u + u(h4)x + h4V + v(h4)y +

2 2  2  2

u + hu - ,a2  2h4 a h4 P 4v ay h4V 0-

k A 2 (U-Up) + h(v-v + CT[h(l) - h8]1 (107)

Substituting in the Euler equation for zk = p and using

2 a 2 p 2 a

Ray=2-- ) = p 8

2 22 ap a-p
=a ai -i ( 1

O. a 0 P P

reduces the equation to

- Yu(hl)x - yv(hl)y - h2 X- - h3 - +

2h4 j{uPx + vpy- a2 (UPx+ vo -
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-a2(h2)x - a2(h3)y = A P {h2 (u-up) + h3 (v-vp)}o

" A ( - CT[h4(y-l) - h]} 1( 0)

v.i,;,.1y, using the system energy equation, equation (110) becomes

h h3 2 1h1-p + p + VUIl)I + yV(hl )y + a2(h2), + =
-X py tiy 3)

p (2 h
- A L (y-I)CT[(y-l)h4 - h8] -- V (37)

For zk = Up,

- h.Aop - h4App(B)u - (h5ypp)x + h5y(pp) x +

+ h6op(Up)x - (h6opUp) x - (h6opvp)y + h6P p +

6 p Px 8Pp px 6D+ hTp (v p)x - h8Pp (h p)x =0( )

where

(B)u =- (y-1)2(u- uP) (,12)

Rearranging and s; plifying, equation (ill) becomes

- O 5)x - pDup(h6)x - ppVp(h6)y + p x

h6[Pp(up)x + Up(pp )x + pp(vp)y + V ppp)y +
p x p py-)( -p 11y

+h 7Pp(vp) x + h8Pp (hp x =) AP[h2 - h42(Y-1)(u-up) - h6] (I13)

Using the particle continuity equation, the final result becomes
h6(up)x + h7(Vp)x + h8(hp)x - y(h5 ), - u ( - v(h ~ =

6(u x (v (h )Xp Ox - vI~

h h !P-.2h2  h42(y-l)(u-up) - h6 6 (38)
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Fo" Zk Vp,

- h3Ap - h4AP(B)V - (h5ypp)y + h5y(p )y +

hpp
+ h Ou) (hu) (hp + +h (v) + hAp +

6u py 7pp Px 7pppy lpp p y 7 P

- (h p )y 0 (114)

where

(B) = - (y-1)2(v-vp) (115)
vP pp

Simplifying, rearranging, and substituting the particle continuity equa-

tion in the same manner as for zk =up yields

h6(u. y +h(vp) y. '- -Y5)y up )x  =7, P ,8( p~ - p( - Vp h =

Iv =A h3  h42(y'-")(V-Vp- h7 - h7 J (39)

For k = h,

- h4APP(B)h _ (h8P ) - (8pVp)y 8 ACpp(P)h =0 (16)

p p

where

h
(T = ) 1117)
ph P 1 c c

p PC C

(B)h C = y-) 118)
P a p 3 P

Substituting in equations (117) and (118) and expanding terms yields

Pu (h) + 0p VP(u ) ]P
pp 8)x + ppp(h8)y + h8 Pp(U) x + P + pp + Vp(ppy

+ h4 App(y-l) 1 1 (119)
C C
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Substituting the particle continuity equation and simplifying results in

if ,) v(h,)~ L~ )h (40)
p P 3 Cc  h8 - (Y'h4 + h8 y (40)

For zk = P

h2A(u-up) + h3A(v-v) - h4AB + hy(u p)x -

- (h5 Yup) x + h5Y(Vp)y - (h5yvp)y + h5vp =0 (120)

which reduces to

y {up(h 5 )x + Vp(h5)y} =A {h2(uup) + h3 (v-vp)- h4B} (41)
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APPENDJX 11

CHARACTERISTIC AND COMPATIBILITY EQUATIONS

1. GENERAL

The method of characteristics is frequently used to simplify the

numeric calculations in supersonic )low fields, where the govern4 ng

differential equations are hyperbolic. in this study, the governing

differential equations are a system of hyperbolic, ouasi-linear, non-homo-

geneous, partial differential equations of the first order as functions

of two variables. A quasi-linear partial differential equation of the

first order is defined as one which is non-linear in the dependent vari-

ables but linear in -he first partial derivatives of the dependent vari-

ables.

The method of characteristics develops compatibility equations

which express the dependent variables in terms of total derivatives

rather than partial derivatives and the characteristic directions along

which the compatibility equations apply. This system of equations is

equivalent to the original set of equations and is convenient to use in

a finite difference form. The characteristic and compatibility equations

can be developed by use of determinants. however, the solution of the

determinants is generally complex and an alternate method of obtaininc the

characteristic and compatibility eouations is emloyed here.

The sixteen equations which are treated by the method of character-

istics consist of the eight basic flow equations and the eight Euler

equations. These equations are rewritten here for convenience.
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= PU + pv + uP + vp + oQ_ 0 (121)

L1 p x +py up y

L2 = pUUx + pvuy + px + - Up) = 0 (122)

L =Puvx + pvvy + + Ap v ) = 0 (123)

L4 =upx + Vpy a2UPx - a2vpy A B.pp= 0 (124)

S+ pp(Vp)y + Up(Pp~x + v (pp) + = 0 (125)(u ppU)x + v)+u( ,px p Y

( + p V ( Ap(u - U)= (126)

L p u (u

L pU(V)-,PV(V) - A (v -V) (127)

7 pp x p pP PY P p

pu(hp x + Ppvp(h) 2 AC(T - T) 0 (128)

2
L9 = -h2u h3 v 1 4 px + Y(hx +

+ u(h2)x + v(h2)y - K1 = 0 
(129)

. a2

-h2y h3Vy - h4 Ippy + h4 p- py + Y(hl)y
Lo0 =4lz - h3v -

h

+ u(h3) + v(h 3 ) K 2 = 0 
(130)

1.1 =y + h4V 4 #I Py + (h 2 )x +

+ (h3)y + u(h4)x + v(h4 )y - K3 = 0 (131)
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%M

= 1 1 y~l)
Ll2 h2  p + h3 -py + yu(hl)x + yv(hl)Y +

+ a2 (h 2 )x + a2(h3)y - K4 = 0 (13?)

13= h6(Up x + h7(vp)x + h8(hp)x - y(h5)x -

-U p(h 6 )x - vp(h6)y - K5 = 0 (133)

L = h6(up)y + h7 (vp)y + h8(hp) - Yhc5 ) -

-u p(h7) x - vp(h7)y - K6 = 0 (134)

LI 5  up(h)x + Vp(h 8 )y - K7 = 0 (135)

L16 = Up(h5) x + vp(h 5 )y - K8 = 0 (136)

where A, B and C are as previously defined in equations (9), (10) and

(11), and

h A- L 2 h 2 (y-.)(u-t. -h6  (1.37)
1 2 y P h PI 6

K3 = A p + A -rh - h) (139)
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K 4 { (y-1) CT [h4 (Y-1) h ] - 4B

h(U-up) - h(V-V (140

v

K5= A 1h2 - h42 (y..l)(u-h) - - (141)

p } v

K= A jh - h42 (v-l)(V-Vp) - h !P (142)

Kh 8  
h4 (Y-l) + h8  (143)

7 3 C y

K8  A 1h2 (u-Up, + n3 (V-Vp) - h4B} (144)

It would be desireable to separate the development of method of char-

acteristic equations into the flow field analysis portion involving LI

through L8 and the optimization portion involving L9 through L116 since the

flow field analysis does not depend on whether optimization is performed.

However, the presence of partial derivatives of the flow properties in L9

through 16 dictate against this approach. In reviewing the equations, it

is noted, however, that L through 14 and 19 t!-rough L12 do not contain

partial derivatives of particle properties or multipliers h5 through h 8.

Also, 15 through 18 and L13 through L16 do not contain partial derivatives

of gas properties or multipliers hI through h4* Thus the method of

characteristics application may be simplified by dividing the problem into

two segments, the gas property and associated nultiplier equations and the

particle property and associated rultiolier enuations.
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:1. GAS PROPERTY AND ASSOCIATEDMULTTPITD EQUATIONS

A differential operator is defined using arbitrary functions

designated by a's as multipliers as follows:

L = aL, + 2L2 + 131L3 + 4a4L4 + 09 +

+ (IoLi0 + aliL11 + G12L12 :: 0 (145)

By grouping partial differential terms, this equation can be rewritten

L A fu + U + C vx +- v .E Px + .

- A yu C yt py

+G ++ (h (h)y +

+ +K (h + fh (h()h +
2Ax K 2)yJ+M f3x + M (3y

+ P {(b) + _ (h4)y} + R 0 (146)

where the coefficients are

A= pal + Pua 2 -h2 o9 + h4 al1  (147)

-- 7U2 - h2 O10  (148)

C= mua 3 - h3A9  (149)

D = 001 + ,v, 3  h3 O10 + h4 ' 11  (150

2 +uc4 -n4  9 + h2  512

F = 3 + v 4  - 1 (152)

G = uuj - a2uo + V, 2- G + h 2 % l (153)

H v - 2  2 + a2vH = Va1 - a va 4 + h4 - 10 4 -p--a6 (154)
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I y + yu,:!? (155)

J V =Yl + yvo 2  (156)

K = 109 + -11 + a2o12 (157)

L vo9  (158)

M = U010 (159)

N = vlO0 + olI + a2C.1 (1I0)

P = Ull (161)

Q= Vall (162)

SP = Qv r + Ap (u-u o2 + Ap V-V 03  ABp 4Y 1 p p 2 % 3 p4

. K1c9 - K2olO- K I- K4 1 2  (163)

if Each of the ratios multiplying the partial derivatives with respect

to y are equal to a value X, = dy/dx, the differential operator reduces to

L = Au + Cdv + Edp + GdP + 1dh1 +

+ Kdh 2 + Mdh3 + Pdh4 + Rdx = 0 (164)

which is the desired form and is called the general compatibility equation.

Making the ratios each equal to ), results in the series of equations

A- B =o (165)

CX - D = 0 (166)

EX - F = 0 (167)

GX - H = 0 (168)

IN - J = 0 (169)
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MX - N = 0 (171)

PX - Q 0 (172)

These equations are rearranged to group the arbitrary multiplier terms

as the unknowns.

P.cI + p (u - v) 02 - h2XGo9 + h2 O10 + h4XCll = 0 (173)

-'%0+ p(ux - v) 03 - h3Xo9 + h3 O " h43ll = 1 (174)

11

'2 - 3 + (u,-v)a4 -h 4  a 9 + 4p -10 +

A+ (h 2 -= h0 (175)2 - 3) 12
2 -

(uX - v) OI - a2(u - v) 04 + h 2-- ?9 -

2  a2

a-4 -o 1 0 + h4  - (uX - v) Ol =0 (176)

yo 9 - Yo10 + y(u), -v) O12 = 0 (177)

(uX -v) C9 + 0 4 a 2 = 0 (178)

(UX -v) o1 0 - 11 - a2a 12 =0 (179)

(uX -v) oi 1 = 0 (180)

If this systen of equatio,,s is to have a solution other than the trivial

solution with the arbitrary multipliers equal to zero, the determinant
cf the coefficients must equal zero. The deterinant is shown in Figure

13. Expanding the determinant results in
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I -.. %4 fl..2 2x,2 ,. , 2 _ 22 2 =lnyJ * --~ i ..... ,. - 'ei
(J

This equation is now solved for X to give the characteristic equations

along which the compatibility equations will be valid.

.. -=U v(42)

d'-uv ±a 2 M2 _ (182)
u2 _a 

2

Equation (42) is repeated four times in the solution of the determinant,

indicating that four compatibility equations will apply along this char-

acteristic direction. Each of the equations represented by equation (182)

is repeated twice, indicating we cah expect two compatibility equations

for each of these characteristic directions. For convenience, equation

(182) is expressed in terms of the flow angle, 8, and the mach angl; k.

XY = d= ta, 1.:c) (45)

Now that the characteristic equations are known, the compatibility

equations are determined from the general compatibility equation, equa-

tion (164). First, the arbitrary multipliers in the coefficients must be

determtined or otherwise eliminated. This is accomlished by substituting

each of the characteristic equations into equations %165) through (172).

*When X v/u is used, the following series of eqiations result:

v V 081

PuGl - h2 V-*9 + h2 lO + h4 I i (183)

- h3 9 + h3l0 - h4l= 0 (1841

lv 1 1 v (185)
52 -3 4 o u N 1o+ - 10+--(h2 41 7-" )o
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-2 - 2

h4  2- 09 h4 S !0 0 (186)

v9 -1 0 (187)

U9

j + a -0 (189)

a1i + a 2 012 =0 (189)

0 = 0 (190)

Only four independent equations result from this set.

h4 a 2  (191)

1G+I( (192)
03 2 + - (h2. - h3 ) 012

'10  A G9  (193)

-a2 '12 (194)

Four a's must be taken as arbitrary. Since 04 does not appear in the

four independent equations, it is selected as one of the arbitrary a's.

The others selected are a2' 09 and 12.

Now the general compatibility is rewritten, grouping terms contain-

ing each of the four arbitrary a's together to yield

f

pudu + ovdv + dp + Ap (u-u )dx + Ap (V-V )dy a +
I. p p p J2

+ {udp - a2udp- ABppdx} 04 +

{ a2

+ -h.du - h3dv -h dp + h dp + ydh +
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+ udh 2 + vdh 3 - KIdx - K2dy} a9 +

+ 1(h u 3 d a2

+ t(vh2 - uh3)dv + h 2  .dp - uh4 T (y-l) dp +

v + a2K3 -K 4 )dx+
yudh1  a~ud 4 h a 2 y

+ A p. (v-vp) (h2dY - h3dx)} a12 = (195)

Since the a's are arbitrary, their coefficients must each equal zero,

resulting in four compatibility equations which apply along the charac,-

teristic direction X = v/u.

pudu + pvdv + dp = -App {(u-u )dx + (V-Vp )dy} (18)

udp - a2udp = ABpp dx (19)
p

h2du - h3dv -- h4 1 dp + h dp + ydh +

+ udh2 + vdh3 - KldX - K2dY = 0 (196)

1 d u 2

(vh2 - uh3)dv + h2  dp - 2- (y-l)dp +

+ yudh1 - a"udh4 + (h4a
2 - + a2K3 - K4 )dx+

+ A PP (v-vp) (h2dY - h3dx) = 0 (197)

Along the characteristic directions gi-ten by X = tan (Ocz), the fol-

lowing equation is valid,

A (u2 -a2  - 2uv ,+ (v - a2) = 0 (198)

The quantity uX - v cannot be zero, therefore al must be according to
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equation (1uj) Then f9 dTIU can we fouvid a#%11'1tinnc 117RI ad

(179), a9 and a0 are eliminated from the remaining equations and 1

determined from equation (176). This is used to eliminate a, from

equations (173) and (174). Finally, using equation (198) to reduce the

results, the eight equations are reduced to

Xa 2  4 j-fh Xa 2  }
02 = - TuX) 4 - 4 h2 

+ ~ h) 012 (l 9)

2 1 , 2 1

3 (UV (u2-4 + I _7 + k- hh)1

- 2 ++ 0 (uX-v) h4 + h 2 - h31 '12 (201)

01 =a 2 a4 + 1 h a2 a (202)

1 4 p 4 12

S12 {0 } = 0 (203)

a2

S a2 a2 (204)9 (tA-v) 1

a10= a 12 (205)

°i ! 0 (206)

Equation (201) may be obtained by multiplying equation (199) by -X and

adding to equation (200). Thus, two of the above equations, (201) and

(203) are not independent. Therefore, two of the a's must be arbitrary.

04 and 012 are selected. Substituting the six independent equations in-

to the general compatibility equation and setting the coefficients of

a4 and 012 to zero results in the following two equations.
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+ pa 2 v Adu a2  -Up )+ +A a2

-px (uu)+ pA (vv-py ux-v p (V-V p

- ABpp} dx = 0 (207)

h a 2 _ uxa 2 h + 2X h du
h4 a- u12 ux-v u -v 2

(~~~~u..-hX (-- 2 h dp+
+tjn 4 uh~? + 3JX dv + - U(uh 4 a

[u- 4 "u3 + ux--- 1" ux - h4} p

* {y h a 2  + p - (h + a212 + 2
p-U ux-v 2 U-Uph

ha2  P + xa2
* ( -A R (h 2 +?-- h4) (uu +

pP -v-v + a 2-
P UX h4  h 3 , 1 ux-v

- A2 _ K4 dx =0 (208)

After some manipulation including the use of equation (198) and the

relationships

2 a2)
uv - -± a cot a (209)

a

a 22  = + tan c, (210)

u X- uv - a x

the compatibility equations become

ra2 a2
a2 [vdu - udv] _ a -cot-dp = a-

v (udy - vdx) -

p y

- A pp B(udy - vdx) + 2 [(u-up)dy - (v-vp)dx] (21)
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h du + h3dv + h4 (dp - a2dp) - ydh, ; tana (vdh2 - udh3)

±tan {h3  dx + A P [h3  2(-)(v-vx

pp
h2 1 dy - A f [h2 - h42(y-l) (u-up) -h6] dy +

+ -(udy - vdx) A p  (y-l) [.CT {(y-l) h4 - hs} + h4B]}P%

(46)

These equatiors represent the four equations which apply along the Mach

lines.

3. PARTICLE PROPERTY AND ASSOCIATED MULTIPLIER EQUATIONS

The differential operator in the case of particle properties and

associated multipliers is

L = a5L5 + 6 L6 + 7L7 + 8L8 + o1 3L1 3 + '14L14 + a 5 L1 5 + a16L16

(211)
or, regrouping by partial differential terms,

L A {(Up)x + 1- (u )~, + C {(v )~ +- ( (,)} +

"+ h)+ E h)y G J(p + 1! (p +
+ x Eh,) + G ijP y +

" I {(hs) +' (h5)3I + K {(h 6)X + .(h )d, +

" M {(h) + ~ (h + P {(h,,)x + ~ (h,) + R 0 (212)
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where the coefficients are

A = pp 5 
4 ppU P 6 + h6o13  (213)

B = + h6G14  (214)

C = pp up 7 + h7a13  
(215)

D = pp05 +pVa 7 + h7 o1 (216)

E = Opup 8 + h8 l3  (217)

F = pVO 8 + h8 l14  (218)

G Upa 5  
(219)

(220)

I = Y 3 + Upal 6  
(221)

= " 4+ V 1
6  (222)

K = -up013 (223)

L = -vpO13  
(224)

M = -Upal4  (225)

N.= -VpOl 4  
(226)

P Uo (227)

Q = vpo,- (228)

R 5 App(U-U) 6 Ap (V-V) 7 - AC (T-T ) 8 -

y pp p p7 3  p
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I
- K5013 - K6'14 - K7 15 -V8016 (229)

The general compatibility equation is

L = Adup + Cdvp + Edhp + Ghpp + Idh5 + Kdh 6 + I.dh 7 +

PdI,8 + Rdx = 0 (230/

Setting the ratios which multiply the partial derivatives with respect

to y equal to X, and grou.ing terms by the a's results in

PpXO5 + Pp(Up -Vp) 06 + h6Xa13 - 6014 = 0 k231)

-po,-V 07 + h7 ,ol3- hla14 : 0 (232)

pp (u X-vp) a8 + h8?o13 - 14= 0 (233)

(U pA-v p) a5 = 0 (234)

-yxa13 + ya14  u (UP -vp) a16 = 0 (235)

- (u X-v ) 13 0 (236)

(u PX-vp a14 0 (237)

(u p -V P) a 5 = 0 (238)

The determinant of the coefficients is presented in Figure 14. Expansion

of the determinant results in

(u pX-v p)8 = 0 (239)
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dy = -R(22)dx u

and eight compatibility equations should apply along that direction.

Substituting the characteristic equation into equations (231) through

(238) results in the following equations,

P iP. ' + h !R0 (240)
P Up 5 Up 13 -h6o14  0

p

P + h7 vp 13 - 7 14 = 0 (241)

V

h8 ! 13 - h8o14  0 (242)

05 (0) = 0 (243)

! 1 3 014 0

a13 (0) = 0 (245)

014 (0) = 0 (246)

015 (0) = 0 (247)

which reduce to only Itwo independent equations.

=5 0 (248)

ofl 4 u R Ol(249)

p
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'15 and '16' in ecuation (?30), the general compatibility -ouat or I,

particle properties and associated multipliers, equal to zero results

in the following comnatibility equations along the particle streamline:

updup = A (u-u p) dx (23)

u pdvp = A (v-vp) dx (24;

Udh = 2 AC (T - Tp) dx (25)
p p 3 p

updh 5 = A[h2 (u-up ) + h, (v-vp) - 4B] dx (48)

h6dup + h7dvD + h8dhD - ydh5 - updh 6 - vpdh7

-A h- h 2(Y-I) (u-u h x - h6  x +

4- A h - 2(Y-1) (v-v ) 71!P dy (49)

udh =2 AC [h (y-l) h4] dx + " yp dx (50)

p8 h3 Cc  - 48 0

A deficiency of two compatibility equations exists. None of the equations

have derivatives of the particle density function, pp. Thi,, deficiency

is corrected by the use of a numerical integration scheme to determne

the pp. The other deficiency prevents the calculation of the multipliers

h6 and h7 since derivatives of these variables appear only in eouation

(49). This deficiency is corrected by using a numerical evaluaton

scheme to evaluate two of the Euler equations, (38) and (39), which per-

mit" writing them in a compatibility like form for the evaluation of h6

and h7 along particle streamlines. Equation (49) is noi used, being

replaced by the two compatibility like equations.
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APPENDIX III

THE CORNER CONDITION

When the end points of an extre.uto are allowed to vary, the varia-

tion must result in no change in the function, I, if the functional is

at either a maximum or a minimum. In the calculus of variation.s, this

restriction is expressed by the corner condition as given by Miele (17).

N 1  -y r)x +A iL, y= 0  (51)

where A denotes the aifference between the quantity in braces evaluated

on each side of the coraer point and x and 6y signify small variations

in x and y. Kl is the integrand of the line integral portion of the

functional. !.

HI = (p - po)n' + CIG + C2no(un' - v) (31)

At corner A, the corner ooint is fixed and the variables are fixed

because the nozzle contour is fixed uostream of ooint A. Thus, all

elements of the corner condition are zero and the corner condition is

satisfied.

H1 is not apnlicable at ooint B since Hl has values along the

nozzle contour only. Therefore, the value of H is identically zero on

both sides of corner B and the corner condition is satisfied identically.

At point C, the corner point is not fixed, so x and 6y must remain

arbitrary. Therefore the coefficients of 6x and 5y must each be zero.
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E A - y' -A= 0  (250)

;y

{~~ 0 (251)

Since H1 is exactly zero alonq the boundary BC, the cquantities in

braces are identically zero on that side of the corner. Therefore, the

quantity in braces imst also be zero at ooint C when evaluated alona the

line AC.

( ponn CIG + C2rP(un' - -

- y { - %oj + , + C9 out 0 (252)

(p PO )n + CG n , + C2 -u = 0 (253)

Equation (252) is reduced by aonlying enuation (253) and the eouation of

the streamline at the nozzle contour, to obtain

(p - po)nn' + CG = 0 (254)

or, rearranging to determine the value of C1 , -nd using T," = v/u,

(p -poIncvc
- u-cG (541

c c

Subttituting the value of C1 into eouation (253) and rearranqinq to

determine the value of C2 yields

(Pc-P°)nc 
rc ( -PucG( c-c (255)

2C c  "cPcUc
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or vc (d
(p -po) . -

C9Co p - T (55)
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APPENDIX PV

THE TRANSVERSALITY CONDITION

1. GENERAL

For an optimum nozzle contour, the thrust must be at a maximum, and

therefore cannot change with slight variations of the variables along

the boundary lines. Calculus of variations expresses this condition in

the transversality equation. written here for m dependent variables,

m
6x + n 6y + L ,k5Zk (256)

k=,

where x and y are the independent variables, zk (k 1 ... , m) repre-

sents the dependent variables, and

m
=k= (K2)qk [K2 kl p (K2 )k] - Y'E (KlY) -

m
- zj E (KIzk) (257)
k=l

m m
n = [K2 -k qk (K2 )qk] - y' kqk(K2)Pk + E (KlY) (258)

Ck = -(K2)qk + y (K2)Pk + E (Kl,zk) (k = i,...,m) (259)

d(K.l=, (260)E(1,y) =(K~ L~ ~j(K 1)y6  (60

E (KlZk) = (Kl)z - - (K (21

k) dx 1)2
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y = (262)
dx

z x P v' (263)

=Zk 

(264)Pk = 3x

Dzk (265)

This transversality equation is based on K1 dpfined as the integrand of

the line integral of the functional 1, with the line integral taken in

the positive sense around the region ABC. K2 is the integrand of the

area integral of the functional i. Therefore, in the present case

K, = - (p-po)nn' - C G - C2nP(Un'-v) along CA (266)

KI = 0 along AB & BC (267)

8
K2 = H2 = Yh.Li (32)

i=l" "

The integrand K2 is equal to zero and K1 does not contain any part-

ial derivatives of the dependent variables with respect to x or y.

Therefore equation (256) may be rewritten as

8 )Zk8
k PkWk -y' E (K1,y)- 7 z' (K1  6x +

kkl Pkl k!

+ qkWkW+E (Kl y)} 6Y+

+ AW+ (Kl)z(68

k=l ' . Wk + (kI 6 zk = 0 (268)

where

Wk = (K y (K2) (269)k 2 *q V y 2)P k
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2. THE TRANSVERSALITY CONDITION ALONG AB

Along the boundary line AB, all dependent and independent variables

are fixed since AB is a right-running characteristic from point A and

the nozzle contour upstream of point A is fixed. Therefore, the varia-

tions Sx, 6y and 6zk are all zero and the transversality condition is

satisfied.

3. THE TRANSVERSALITY CONDITION ALONG BC

Along the boundary line BC, K1 is identically zero so equation (268)

reduces to

8 8 8
Pk~k6 + S k1 k'Y + r Wk6 Zk = 0 (270)

RI k=l k=l

The coefficients of each of the variations must equal zero if the nozzle

contour is opti:uri since the variations are drbitrary along BC. There-

fore, each of the Wk must be equal to zero to make the last term zero.

-(K y'( K 0 (k=' ,... ,8) (271)Wk (2) qk K2)Pk

Setting the coefficients of the variations of gas properties to zero re-

sults in the following equations applicable along the boundary line BC.

n3" - y'h2 + h4 (v-yu) = 0 (56)

hly (v-y'u) - h4a2 (v-y'u) = 0 (57)

h2 (v-y'u) - hlyy' = 0 (58)

h3 (v-y'u) + hly = 0 (59)

Variations in particle properties are applicable only in the region
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.h... ...ti.les are ,resent. T c,,fstnn t ha crnffirients nf the vari-

ations of particle properties to zero r-esults in the following equations

which apply along the portion of the boundary between points B and E.

-h6Fpv p + h5YY'p + h6Yp Up = 0 (272)

- h7PpVp + h7y pU = 0 (273)

-h5Yvp + h5yy'up = 0 (274)

-hsPPVp + h8y'ppp  = 0 (275)

which reduce to

h5(Y'up - vp) = 0 (60)

h6(Y - vp) + h5yy' = 0 (61)

h7(Y'Up - v p) - h5 y = 0 (62)

h8(Y'up - vp) =0 (63)

The variations of x and y do not provide any additional conditions.

Both the coefficients of 6x and 6y go to zero when Wk is set to zero.

Thus, the entire transversality equation is satisfied along BC when equa-

tions (56) through (63) are satisfied.

4. THE TRANSVERSALITY CGNDITION ALONG CA

Along the nozzle contour CA, no particles are present, and thus var-

iations ot partic. properties are not applicable. Using equation (268)

and setting the coefticients of gas property variations equal to zero

results in the following equations.
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h2 (un'-v) + hn n - n'= 0 (276)

hIn - h3(un'-v) - C2n-- 0 (277)

2hin(un'-v) - h4a (un'-v) + C2n(un'-v) = 0 (278)

h3 - n'h2 - h4 (un-v) + nn' + CIG p = 0 (279)

t'ong CA, the gas streamline equation un'-v = 0 applies and equations

(2,6) through (279) reduce to

h= C2  (72)

uh3 - vh2 +Vn + uCiG p  0 (73)

Setting the coefficient of the variation 6x in equation (268) to

zero yields

ux [h2PV - hfl.Pn' - n2pun' ] + vx [hlPn + h3 Pv - h3Dun'] +

+ x [h3  h + h4v - h4un'] x [hlnv - hlnun -

- h4a2v + h4a
2un'] + (p-po)rn' + C1Gr' + C2P(un'-v)n' -

- ni dx [(P-Po )
I + CIG + C -

lri0 12nu dx --2Pn

"dxv [c d [nrI' + CIG p] -G, [C2n(un'-v)] 0 (280)

Using the definition of a total derivative,
dF aF + a (281)
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and equations (276) through (279) and the equation of a streamline,

un'-v = 0, equation (280) is reduced to

dC2  dGr
-npu x + CIGI - Cl _--+ C1PnGp - Pxn

-C2 {d(npu) nionpu + npv= 0 (282)

Using the continuity equation

)PVr 
= - npux - nupx - TVPTl - Pv

- pUx - nluex - flUPn -r(2)

and

d(nu) npU + nupx + nnpu + n'onup + n'pu (284)
dx x xnT

the term in the brackets { } goes to zero. Further, with no particles

present, the momentum equations can be written as

Px = " pUU - pVU = dpU !-u (285)
x dv

p "= - PUV pVV- = PUd0 (286)

which together with the relationship C2 = h reduce equation (282) to

dhl _du + Cl G L d ,;G,_ pu aG dxI
dhx dux C1 -- G - \ - (F) (74)

Setting the coefficient of the variation 6y in equation (268) to

zero yields
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un [h2PV - hlnPi' - h2 pun] + vn[hlnP + h3ov - h3pun'] +

+ pn[h - h 2nl + h4v - h4un'] +o,[hlnv - hruln' -

h4a2v + h4a
2un'] - (p-po),n' - C1Gn - C2p(un'-v) +

+ d [(p-po)n + CiGn + C2iou] = 0 (287)

Using the streamline equation and equations (276) through (279) reduces

equation (287) to

dC2  dG,_-npu 2-x- + CIGn Cl + ClPnG p xn -

- {d(nou) * -0 (282)-C2 -- n npU n + npv nT 2 2

2t dx - nilU~fP~

which is the same result as obtained for the variation in x. The trans-

versality equation (74) therefore accounts for variations in both x and

y.
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