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ABSTRACT

An optimization analysis is presented for nazzles with gas-particle
flows. The problem is formulated to maximize the axial thrus% produced -
along the nozzie contour for a gereral isoperimetric constraint such as
constant nozzle lengta or constant nozzle surface area. The effects of
the ambient pressure are included in the thrust expression to be maximized.
The characteristic and compatibility equations are developed and numerical
techniques are presented for use in conjunction with the characteristic
and compatibility equations. A solution procedure is presented which
determines whether or not a given nozzla contour is an optimal solution
and a relaxation technique is presented which adjusts the nozzle contour
towara the optimal solution. Selected parametric studies are presented.
These studies illustrate the effects of changing mesh size, particle
size, particle mass flow rate, inlet angle, drag coefficients, heat
transfer coefficients, throat radivus of curvature, and the scale on the

thrust performance and the nozzle geometry of the optimal, fixed length
nozzle.
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FOREWORD

The present study is part of the program "An Anaiytical Study of
the Exhaust Expansion System (Scramjet Scientific Technology}* being
condiucted by the Jet Propuision Center, Purdue University, Lafayette,
Indiana, under United States Air Force Contract No. F33615-67-C-1068,
Project 3012, Task 301209, BPSN 7{63 301206 62G5213). The Air Force
program monitor was Capt. Gary J. Jungwirth of the Aiy Force Aero
Propulsion Laboratory (AFAPL/RJT). This report presents the formula-
tion, sumerical solution procedure and %he results ¢f selected para-
metric studies of the design of maximum thrust nozzles with gas-
particle Tlows. Volume Ii is the computer program user's manual.

This report was submitied by the authors on 31 May 1971.

Publication of this report does not constitute Air Force approval
of the report's findings or conclusions. It is published only for the
exchange and stimulation of ideas.

Gary J. Jungwirth

Captain, USAF

Project Engineer

Ramjet Technology Branch
Ramjet Enoine Divizion

AF Aero Fropulsion Laboratory
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SECTION I
INTRODUCTION

Many propeiiant combinations produce condenced phases in the exhaust
prcducts. These condensed phases mey be due to the introduction of metal
additives designed to increase energy release. These condensed phases,
however, intreduce performance losses due to the non-equilibrium effects
of heat transfer and drag babween the gas and the condensed ghase
particles.

The first application of optimization technigues to the desia: of
rocket nozzles was made by Guderiey and Hantsch {1) for he=entropic flew
in 1955, Rao {2,3) simplified the analysis and appiied the formlaties
of the protlem t5 standard nozzles and to piug nozzises. £uderiay {4}
then extended the results te isentronic flows which aliow eatrepy o
vary between streamlines.

Figure i represents the gensral sodel used for formulating the ogtim-
ization of ctandard axisymmetric nszzles. iIn the above analyses, the
problem was formulated to provide maxicum thrust across anr exit contrcl
surfece, BC, and espicyed a constant lencth desicn constraint. Since the
formulaticn is iimited %o the exit control surface, no dissipative effacts
in the flow field are alicwed and aozzie design constrainis not directly

related to the exitl control surface are not avaiiable.
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Guderley and Armitage (5,6) formulated the optimizaticn problem over

the entire region ABC in urder to use a constant surface area as a design
constraint in lieu of constant length. This approach permits the use of

a wide range of geometric design constraints. The compiexity of the
formulation and the numerical solution are greatly increased over the pre-
vious formulations.

The Guderley-Armitage approach can also be extended to dissipative
flows since the entire region ABC is considerec¢ in the formulation.
Hoffman and Thompson (7,8) formulated the problem for gas-particle flows
and Hoffman (9,1C) formulated the problem for reacting non-equilibrium
flows. Further work was performed at Purdue University te develop the
numerical schemes and to furnish working computer programs for the design
of maximum thrust nozzles having flow fields with dissipative effects.
Scofield and Hoffman {11) treated rotational or non-equilibrium simple
dissociating gas flows, Humphreys, Thompson and Hoffman (12) treated plug
nozzles with fixed inlet geometry, and Johnsen, Thompson and Hoffman (13)
treated plug nozzles with variable inlet geometry.

This work presents the formulation and numerical schemes develcped
to determine maximum thrust nezzle centours for nozzies with condensed
particles in the flow field, and presents the results of an extensive
parametric study. The optimization problem is formulated over the reéion
#3C {Fig. 7). and follows that presented in Refs. (7,8). The methcd pre-
sented herein uses the calculus of variations to develop Lagrange multi-
plier equations, develops a numerical scheme to apply these equations to
a previously calculated flow field in an assumed noczzle contour, deter-
mines an error function along the assumed wall, and calculates a new wall.

This procedure is repeated until the error function goes to zerc, and the
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mawimum thruct contovr is obtained. Am existing gas-particle flow field

anatysis program developed by Kliegel and Nickerson (14) was adapted to

provide the evaluation of the flow properties in the nozzle.
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SECTION II

ANALYSIS

-

INTRODUCTION

In formulating thrust optimization problems, two basic approaches
have been used, The first, and oy far the easiest to use, maximizes the
thrust written in terms of flow variatles across an exit contral surface.
However, the application of this approach is limited since the formula-
tion along the exit surface does not allow for dissipative flows or Tor
constraints which cannot be related directly to the exit surface. In the
second approach, the thrust is written in terms of forces acting along
tha wall contour AC in Figure 1 and the ¢ntire region ABC is considered
in the probiem. This approach permits the consideration of flows with
dissipative effects such as gas-particle drag or finite rate chemistry.

This second approach will be employed in this work.

2. THE FLOW MODEL

The governing equations for the axisymmetric gas-particle filow
analysis are given in Ref.(15). These equations are a gas continuity
equation, two system momentum equations, a system energy equation, a
particle continuity equation, two particle momentum equations and a

particle energy eguation.
(youdy + (yov), =0 (1)

+ } + - = 2
o (uu, vu )+ p, + App(u up) U (2)
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+ +p + - =
o(uvx VVy) py App(v Vp) 0

up, + vpy - az(pr + pr) - ABpp =0
(yppup)x + (ygpvp)y =0

epluglupdy +vplu)y - Alu - u )} =0

ppluplvply + vp(vp)y - Alv - v )] =0

2
3y - - =
°p[up(hp’x + vp(hp)y 3 AC(T Tp)] o

(3)

(4)

(5)

(5)

(7)

(8)

The parameters A, B and C were defined for convenience and represent

particle drag ana erergy parameters.
A = (9Fu)/ (2mr7)
B=(y-u-u)¥+(v-v)-5cr-1)]
P p 3 P

C= (ng)/(f Pr)

where
f = Co/ (Cplstokes

g = Nu/(Nu)g,opos

(9)

(10)

(11)

(12)

(13)

Assumptions are made that the parameters A and C are constant at least

locally in the flow field, and relationships defining T, Tp and a~ are

T = p/oR

(14)

(15)

(16)




hg and Tg represent the reference enthalpy and temperature respectively,

and Cc is the specific heat of the condensed phase. Cc depends on the
phase and is equal to Cp for liquid particles, = during phase changes,
and Cv for solid particles.

Using equations (9) through (16), the eignt governing equations,
(1) through (8), can be expressed in terms of two independent and eight’
dependent variables. This suggests the use of the Method of Character-
isticy for the solution of the flow field problem. The following
characteristic and compatibility equations are cbtained when the Method
of Characteristics is applied to the eight governing equations (1)
through (8).

Along the gas streamiine

5.y o
pudu = pvdv + dp = - App{(u - up)dx + {v - vp)dy] (18)
udp - aludp = ABo dx (19)
Along Mach 1ines
Y - tan(e 3 o) (20)

2
aZ(vdu - udv) = %—-cotadp

"

2
(udy - vdx) Ey!--

-A %P- {B(udy - vdx) + %[ (u uddy - (v - vp)dx]} (21)

Along Particie Streamlines

vy _p
dx - u (22)




=
-
4
=

diiiving

NP AT A

T T e e s A E— O et e s e e ¢ =
o e o e A A Ty o R T TR S S ¥ T TR TP R AT T T € R e et o

udu, = Alu - u )dx (23)
vV Vv [
= - 24
updvp Alv vp)dx (24)
2
= & - 25
updhp 5 AC(T Tp)dx (25)

where 8 is the flow angle and o is the Mach angle. The uprer signs in
equations (20) and (21) refer to right-running Mach 1ines and the lower
signs refer to left-running Mach iines.

This system of equations provides seven equations aleng four dis-
tinct characteristic directions, and thus cannot be used alone to solve
for eight variables. The reason for the deficiency has been explained
by Sauerwein and Fendell (16) as being the assumpticn that particles do
not contribute to the pressure. This results in only one distinct
characteristic direction for the particle equations, the direction of
the particle streamline. However, it can be seen that the particle
density term in the particle continuity equation is also dependent on
the divergence of ¢ eamlines. The absense of a pressure term prevents
expression of the divergence in a characteristic set of equations.

Further examination of the system of equations (17) through (25)
reveals that if the particle density can be determined by other means, the
number of dependent variables is reduced to seven, and the system of
aquations is adequate. for this purposa, a stream function is introduced.
Since the total amount of particles passing between the centerline and a
giver particle streamiine must remain constant and the distribution of
particles passing the initial-value line can be detenmined, an integra-

tion technique car be applied to determine particle density at each

N Y,
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point in the flow field. With the particle density determined, the

remaining seven variables can be determined by application of the
characteristic and compatibility equations (17) through (25).

In the above technique, it is necessary to determine the perticle
streamline to find the particle density. Hewever, the particle stream-
Tine depends on particle velocities, which have not yet been determinzd.
Thus, it is necessary to iterate the solutien at each point until a

sufficient accuracy is achieved.

3. FORMULATION OF THE OPTIMiZATION PROBLEM

In the probiem of obtaining a maximum thrust nozzie, only changes in
the nozzle wall between points A and € (Fig. 2) in the supersonic regiorn
are considered. The contour of the nozzle inlet and throat region are
assumed to be fixed. The boundary of the problem consists of three
1ine segments. The nozzle wall'defines the first, AC. Since the nozzle
contour upstream of A is fixed, the fiow field upstream of a right-running
characteristic attached at A is independent of the optimization probtlem,
and the boundary AB is defineﬁ along a right-running characteristic.
The third line segment, BC, closes the region and intersects the iine AC
at the end of the nozzle. No sthec restrictions are made on this line in
the formulation of the probl'em. However, the line BC is represented as
a left-running characteristic in Figure 2 because the solution of the cal-
culus of variations equations resvits in the characteristic eguation for
this line, as shown iater in equation (64).

The particles flowing through the nozzle do not follow the wall

contour, and there will be a region near the wall which contains only
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gas. The iimiting particle str2am!ine is represented in Figure 2 by the
.8 line DE. By definition the nozzle is not optimum if the limiting parti-
‘_ cle streamline impinges on the nozzle wall since the nozzle wouid be

ohysically damaged, and in the case where the maximum thrust solution

§ tends to result in impingement, it is necessary to change the inlet and

i throat region geometry sufficiently to provide the necessary separation.
The thrust developed along the nozzle wall is given by

i3 F_(

1= p JA (p - pg)nn'dx (26}

where n is the radial coordiate of the wall and is a function of x.

ot KGR
ALYt st b

P This quantity is w be maximized. However, there are sev2ral restric-
tions which must be imposed on the solution. The first requires that the

wail be a gas streamline. Thus,

Tt {2 R ] o TN N G

ur' - v=90 on AC (27)

, Equation (27) is multiplied by np for convenience in subsequent analysis

to give the equivalent expression
nofun® - v) =0 on AC (28)

The second restriction is a2 constraint on the nozzle wall such as a
constant length, a constent arc length, etc. For problems of general
interest, this isoperimetric constraint can be expressed in terms of n,
n' and p

c

J 6(n,n',p)dx - Constant = 0 on AC (29)
A

1
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Finally, the governing equations (1) through (8) are restricticns through-
out the region. Using Li to represent the eight governing equations, the

functional which is to be maximized is

C
I= I [(p - pylmn' + C;& + Conp(un' - v)]dx
A

8
. ” T hiL, dy dx (30)
Agc =i T

where C] is a constant Lagrange multiplier, C2 is a Lagrange multiplier
which is a function of x, and h; , (i = 1,8), are Lagrange multipliers
which are functions of x and y. The constant in the isoperimetric
constraint does not affect the optimization problem, and therefore has
been dropped from I. For convenience in the algebraic developmert, the
following definitions are made:

Hy = (p - py)an’ + €46 + Tynplun® - v) (31)
8
H2 =i§ nsL, (32)

4. CALCULYS OF VARIATIONS

a. Necessary Conditions. Calculus of variztions provides a set

of conditions which must be satisfied if the optimum solution has been
achieved. Necessary conditions include the Culer equations applicable

to the region of interest, the transversality condition applicable

along the boundaries, the corner condition applicable to corners formed
by the intersection of two boundary line segments, and the Erdmann-Heier-
strass condition applicable to corner lines in region ABC. In a super-

sonic nozzle, physical considerations rule out the class of solutions

kY
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not used in this formulation and tha first three conditions are consid-
ered sufficient.
b. The Euler Equations. The Euler equations, as given by Hiele

(17}, are
3“2}

ail roH .
2 2 2y 3 = o=
9z, X 53;} i 55'(55;} =0 tk = 1,2,...,8) (33)

where z, reprasents the eight deperdent variables p, p, u, v, hp, p?, up,

and vp, and Py and q, represent the derivatives of these variables with
respect to x and y respectively. The Euler equations are develeped in

Appendix I. The results are
Vi - a2 (h.) ih.) =
- hy, - hgv, - by = {py - 3%, ) #y(hy), + ulhy), + vihy),
2]
= y P - - -u - hl
hZ ¥ + A 5 [hz h42(y 1 ¥u upl hsj (34)

1 2 .
- hzuy - h3vy - h4 ;-(py - a py) + y(h])y + u(h3)x + v(h3)y

en Yaenl (
=hy Tea .52 [hy - hg2ly-1){v-v,} - b;] {35)

2
e .

¥
P
: =paP2C .. -
+ V{hé)y A o 3R {(Y ])h4 hg] (36)
k h
2 3 . 20 v 4 2y -
ral PRt M yulfi}, + yvihy )y +a"(hy), + 3 (hyy

12 (-1)CTTlr-130g - Byl + vhg8 - hylu-u)) - hylv-r 3} (37)

n
>
0 }gn

hG(up}x + h7(vp)x + ha(hp)x - Y(hs)x - up(hG)x - Vp(hs)y =
A/

- afny - ng2tee)w - ) - gl - ng B (38)

13
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hﬁ(u ), + h7(vp)y + hg(hp)y - y(n.)

= up(hy), < v (ny), =

pYy 2y
v
- afng - hg2le-1)u-v,) - by} -y 2 (39)
, . 2 AC Y
aplhghy + vylhg)y = § £ fhg - i} eng 2 wa0)

:{up(hs)x + vp(hs)y} = A{hz(u - up) + h3(v-vp) - h48} (41)

In eqirations (38) through (41) the particle density furction, ops has
been factored out. It must be remembered that these equations apply

only in the region where particles are present, region BDE. Since the
dependent variables are determined independentiy of the optimization prob-
lem, they can be considered as known vaiues durina the evaluation of the
fuler equations. Thus equations {34) through (41) constitute eight
equations with eight unknown variables, h1 through h8. Application of

the Method of Characteristics (See AppendixII) results in a set of seven
cempatibility equations applicable along four distinct characieristic

directions.

Along the gas streamline

dy . v
dx u (42)
- hydu - hydv - h4%(dp - a%dp) + ydny + udh, +
R A A
+ vdhy = {"z v+ ABih, - hg2(y-1){u-uy) - hsl}dx +
P
v
+ {h3 ; A;E{hB - hy2(y-1 )(v—vp) - h7}}dy (43)
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(hov - gujdv + "2 —dp - (y-1)ua n4 dp + ,udh, -

- uazdh4 { azh4 = - a2A [(Y-l)h4 - h ] +
# A 22 ()OI (-1 g - hgl + A 2 [yh4B - hp(umup) = hy(v-v)]
- A -E (h2 - 3)(v-vp)}dx (34)
Along gas Mach lines
& = tan(o ¥ o) (45)

h,du + hadv + h4 (dp - a dp) - ydh, ¥ tana(vdh - udh3) =
= % tana{h3 = dx + A [_h -k 2(y-1)(v-v ) - h7]dx -

- h dy A [h - h 2(7-])(u -y )- he]dy +

2y
+ Ly (uty - vanon 2 (1)1 CT{{v-h, - gl + 18I} (46)

where the upper signs in equations (45) and (46) are applicauvle along
right-running cnaracteristics and the lower signs are applicable along

left-running characteristics.

Along particle streamlines

v
dy _
& "0 (47)
p
yupdh5 = A[hz(u-up) + h3(v-vp) - héB]dx (48)

udh6+vdh7=h

6dup + h7dv + h8dhp - ydhs -
- A{ - h 2(7-1)(u ~U, ) - hs}dx + hg —Eax -
- - 1) vy ) - )
Ahg - g2(e1) (v, - by kay + hy 2 gy (49)
15
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[hg - (v-1)h,Jdx + hg yP- dx (50)

w0

u dn, =
p 8 c

Equations (42) through (50) are a system of seven compatibility
equations which apply along four distinct characteristic directions.
Since theve are eight unknown dependent variables, h] through h8, a
deficiency exists. Analysis of the equations shows that the system of
equations does not permit evaluation of the variables h6 and h7 since
derivatives of both appear in 2quation (49) only.

In this analysis, hﬁ and h7 will both be cetermined by finite
difference evaluation in the vicinity of the point being considered.

c. The Corner Condition. The corner condition applicable at the

corners A, B ind C, as given by “iele (17), is

3H1 BH]1
A[H} -y ESFJGX + A[gyvjéy =0 (51)

where A denotes the difference between the value of the quantity in
brackets evaluated on each side of the corner and 8x and Sy signify
small variations in x and y.

At point A, both x and y are fixed, and &x and 8y are both zero;
thus the corner condition is satisfied without new conditions. At point
B, the quantity H] is zero on both sides of the corner, and no new
conditions result At point C the variations 6x and 8y are arbitrarv.
Each must be able to vary independent of the other so the coefficients
must be zeru. Since Hl is zero along BC, the coefficients of 5x and iy
ave zero on that side of the corner, and thus must also be zero at C

when evaluated along AC.

3H] (52)
H] -y W =0 at C 52)

i6
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Equations (52} and (53), when 2pplied at point C {see Appendix IiI),

result in

(PC - p.InVv

¢ =- 9 _c¢ (54)
1 chc

v
(b - BN - g (80 ]
C

C, =- cc (55)
2¢ Pele

d. The Transversality Condition. Along the boundaries, the trans-

versality condition must be satisfied. The transversality equations are

given in Appendix IV, and when applied along BC result in the set of

equations:
hy - y'hy + h4(v -y'u) =0 (56)
h]y(v - y'u) - h4az(v -y'u)=0 (87)
hyfv - y'u) - hyyy' =0 (58)
h3(v ~ y'u) ¢ h]y =0 (59)
hg(y'uy - vp) =0 (60)
hg(y*ugy = vy) + hey'y =0 (61)
h7(y'up - vp) -hgy =0 (62)
h8(y'up - vp) =0 (62)

17




Subctituting equations (57) through (59) into (56), we obtain, after

simplification

[ I - a?‘\'Mz -1
y 2. 2

on BC (64)

Thus the transversality conditions specify that the line BC must be
a left-running characteristic.
Since BC is a characteristic neither of the quantities v - y'u or

y'up - vp are zero. Equations (60) through (63) then reduce to

he =0 (65)
hg = 0 (66)
h, =0 (67)
hg = 0 (68

and equations (56) through (59), in addition to specifying the charactar-

istic direction, become

hy + hz(y'u -v)=0 {(69)

hyyy' - hyly'u - v) =0 (70)

hyy - afh, = 0 (71)
i 4

When the ‘ransversality condition is applied along the contour CA

the following ecuations result:

hy = C2 (72)

18
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N. - vha + + ut.a = U (73]
un3 Vn2 AN UL]'J U { }

P
T d 38 3G, dv .
T "ot npu [Gn T ax (W) - Pu(‘é'ﬁ)(‘a;)} (74)

5.  FINITE DIFFERENCE EVALUATION OF h6 AND h7

The failure of the method of characteristics to produce eight com-
patibility equations necessitates the use of another metnod to solve for
at least one unknown dependent variable. Since equation (49) includes
both h6 and h7 in differential form, at least cne of these must be obtained
by another method in crder to permit the solution of the vther. In this
analysis, both will be obtained in the vicinity of a point by usirg the
appropriate Euler equations and the definition of a derivative.

The two Euler equations which contain partial derivatives of h5 and

h, are equations (38) and (39), repeated here for convenience

hﬁ(up)x + h7(vp)x + hs(hp)x - y(hE)x - “p(hs)x - vp(hﬁ)y =

v

] \
= {ny - hy2(y-1)luu) - gl - g 2 (38)

hglup)y + hylvp)y + hglh)y - y(hgdy - uplhy), - vplhg)y =
v
= {h3 - 201 - v) - h7} -h, 5B (39)
These equations can be written in a total differential form along the
particle streamiine if all the partial derivatives except the partial deri-

vatives of h6 and h7 are known. To solve for the differential ("p)x’ equa-

tion (6) and the total derivative of u, are used,

19




fy) + { = -
up\up)x vap)y Alu up) { 6)
= dx + ¢
dup (up)x X \up)ydy (75)
to obtain
A{u - u_)dy - v du
() = P PR (76)
pix updy - vpdx

Along the particle streamline, (up)x is indeterminate. However, under
the assumption of continuous derivatives, (_up)x can be evaluated along a
gas right- or left-running characteristic and the results employed in
equation (38).

In similar fashion

A(v - Yp)dy - vpdv

(v,), = - £ (77}
p'x updy vpdx
2 -
h) = §-AC(1 - Tp)dy - vpdﬁp (78)
px udy - v dx
p p
W), = - Alu - up)dx - updup (79
py u dly - v dx ‘
P p
(v, = - A(v - vplax - udvy (50)
p'y u dy - v _dx
P P
2
(h) = - 3 AC(T - Tp)dx updﬁE (s1)
py updy - vpdi’

Using equation (41) and the definition of the total derivative of hS’
the following expressions are derived:

_ A[hz(utgg) + h3(v-vp) - h48]dy - yvndh5

(hs)x - yupdy - yvpdx (82)
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Alh,(u-u_) + h,{v-v
(h5 )}l = - 2 p t40 8 ’3'10

} - h,BJdx - yu dh
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In equations {76) through (81), the evaluation of the partial deri-
vatives involves only gas and particle properties. These values are
known at all points in the flow field during evaluation of Lagrange
multipliers, and are constant. However, evaluation of equations (8%]
and (83) requires the use of multiplier values not yet determined.

Thus, values must first be assumed for the multipliers and the solutien
process iterated with updated values for the multipliers until a suffi-
ciently accurate solution is obtaired.

Treating the partial derivatives evaluated by equations (76) through
(83) as constants, and restricting equations (38) and (39) to particle

streamlines, we obtain the two compatibility-like equations:
- 7

v
+ A {hy - ny2(y-1)(u-up) - hg} - h5--§;’-]dx (84)

v
p
+ A {h3 - h42(Y~])(V-Vp) - ﬁ7} - h7—y]dx (85)

6.  SUMMARY OF RESULTING EQUATIONS

The set of equations which must be satisfied as necessary conditions
for the calculus of variations includes eight Euler equations or their
equivalent characteristic and compatibility system, three transversality

equations along the nozzle contour AC, seven transversality equations
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along the exit characteristic BC, and two corner condition equations at
the point C. This is an overdeterminad system of equations. One of the
transversality equations along AC is no: used in the computation of the
Lagrange multipliers, and will thus be available for determination of an
error function. This error function is used to modify the rozzle contour.
The resulting equations, in approximate order of usage for computa-

tion of multipliers, are repeated here. At the corner C
v

) ¢ —£ a5
P po)[1 - u B (50) ] (86)
e 2 Pele
Along the exit characteristic BC
hyy + hyly'u - v) = 0 (69)
hyyy' - h3(y'u -v) =0 (70)
hyy - ath, = 1)
1‘y -a h4 - 0 (lu
h5 = h6 = h7 = h8 =0 {65-68}
Along the nozzlie wall AC
dis {p. - p,)n.v
1 _du c o'''c’c ac dv
& Td T ug, pun 34 uEpad (78
Aleng gas Mach lines
g¥-= tan(s ¥ a) (45)
X
22




hydu + hydv + hy % (dp - a®dp) = ydn, ¥ tana(vdh, - udh) =

P
= # tana{h3 -;-'; dx + A —% [h3 - h42(y-1)(v-vp) - h7]dx -

e
- h, Yoy - A «g— [hy - h2(y=1){u-u ) - hgldy +

2y
1 Pp 2 v f ]
Ly (uty - van 2 o0 o1 {(u-1hng - hg) 83} (46)
Along the gas streamline

-y (42)

u
- hadu - hadv - h, L (dp - a2dp) + ydh, + udh, +
2 3 4 5 ‘P yany 2

p
+ vdhy = {hz S‘;~+ A5 [hy - hp2(y-1)(u-up) -hel} dx +

{ p
v irg e AR thy - g2 (Do) - ) dy (83)

(hyv - hau ddv + by %dp - (y-1ua’hy & do + yudh, -

24 - 2, v_.2. "

wiro
F s

P P
# AR 2 (1) CTy-1y - g + A2 [yny8 - hylu-u) -

e
“nglv = v - AR (ny S - n)v - v )} ex (48)

Along particie streamlines

- v [ 4 i LS e LAty gt T ol et iars o v s e Rttt i 2 g o R D b A PRI ot - N . -
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v
dy _ P f
a% = = {47)
P
yupdh5 = A[hz(u-up) + h3(v-vp) - h48]dx (48)
3
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updh6 = ['hﬁ(up)x - h7(vp)X - h8(hp)x + y(hs)x +

+ A {h,y - h42(¥-1)(u-up) - hs) - hg ;Eﬂdx (84)
updhy = [-hglup)y - hylvp)y = hglhod, + y(hg), +

+ A {hy - h42(7-3)(v-vp) - by} - by ;Ede (85)
u;dh = %—%ﬁ- [hg - (y-1)kyJdx + hg ;de (50)

Finally, equation {73}, which is not employed in the above set, is avail-
able as a check condition applicable along the nozzle wall to determine
if the nozzle is optimum.
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SECTION 11l

NUMERICAL METHODS

1. SOLUTION PROCEDURE

The solution procedure consists of estimating a nozzle contour, per-
forming a flow field aralysis, computing Lagrange multipliers, evaiuating
the check condition given by eguation (73), and modifying the nozzle.
This procedure is repeated using the modified nozzle contour as the
estimzted nozzle contour until the error criterion is satisfied. This
section describes the program developed for use in the parametric studies.

The initial nozzle contour may be input in tabular form or caiculated
internally in the form of conical, parabolic or circular arc nozzies. The
initial-value 1ine, required to begin the supersonic {low field calcula-
tion, may be input as data or, for standard ccnverging-diverging nozzles,
can be generated internally based orn thz combustion chamber conditions.
Z. FLOW FIELD ANALYSIS

The flow fiald analysis utilizes the method of characteristics.
Mesh points are located at intersections of left-running characteristics
(LRTs) and right-running characteristics (RRCs). The reference stream-
line points are obtained by linear interpslation between reference points
along the LRC and the RRC. CSee Figure 3. The mesh construction procesds
along LRCs beginning at 2ither an initial-vaiue point or an axis point,
inserting points alorg RRCs from points cn the previous LRC until the LRC
intersects with the nozzle contour. Additicnal LRTs are constructed in

thi1s manner until the end of the nozzle contour is reacned.
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Axis points are located at the intersection of an RRC from the second
point on the previous LRC and the axis. A limiting particle streamline
point is calculated along each LRC and at least one additional point must
lie between the 1imiting particle streamlire and the nozzle contour.

Point insertion routines are used to insert additional mesh points when-
ever the mesh size exceeds the values specified by input parameters.
Whenever . mesh point is inserted along an RRC, a new LRC is begun at that
point end proceeds to the noczzle contour before continuing on with the
interrupted LRC. The point insertion rcutine is also used to locate the
last point at the end of the nozzle contour.

During the flow field analysis, a secondary start line is constructed
which follows an RRC from a point on the nozzle contour near point A
(Fig. 2) to the axis. This secondary start 1ine is used in subsequent
iterations to reduce the calculation time by eliminating the recalculation
of mesh points unaffected by the wali modification.

3. OPTIMIZATION CALCULATIONS

The optimization portion of the program begins with the determination
of properties along an iRC which passes through the end point of the
nozzle contour. This is accomplished by linear interpoiation aleng the
RRCs which connect points on either side of the exit characteristic. The
Lagrange multipliers are then calculated along the exit characteristic
and the method of characteristics is employed to determnine the Lagrange
multipliers throughout the flow field after reassembling the mesh con-
struction in reverse order. A check condition, determined from equa-
tion (73) and expressed in terms of slopes, is calculated at wall

points and an error function is determined.
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4. RELAXATION TECHNIQUE

The check condition, used to determine if the nozzle contour is op-
timum, will not in general be satisfied. After rewriting equation (73),
an error parameter is defined:

. h,+C,G
£ =tan (n') - tan”' [53__1_2] (87)
- n
S
By assuming that the remaining variables do not change appreciably with
changes in wall slope,n’', the errcr parameter may be relaxed by calculat-
ing a new slope so that E will be zero, Thus, the new slope is given by
} h3+C]G
hz'n

n (88)

This relaxation technigue, first proposed by Major A. A. Taylor, USAF;
while he was a graduate student at Purdue University, permits a simple

integration to determine the relaxed nozzle contour.

X
n(x) = n(x,) ¢ ( n' (x)dx (89)

l

Xp
Since the other variables do change when n' is changed, the solution is
not exact, and the Flow and optimization calculations must be iterated.
It was found that the relaxation scheme resulted in an overcorrec-
tion in the majority of cases. For this reason, a weighing factor was
introduced to reduce the number of iterations, and thus the computation

tima. Thus, the modified cortour slope n' is aiven by

n' = nf +0.8(ny - n) (90)

vihere né represents the slope found by equation (88) and ni represents
the slope of the original estimated nozzle contour. In addition, res-

trictions were placed on the calculation of the new nozzle contour £o
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prevent a change in slope greater than 10 degrees in either direction
and to prevent nega ive slopes from being used.

The nozzle contour could become discontinuous if point A were fixed.
This is avoided by permitting the point A to move along the throat radius
of curvature until the slope at point A equals the slope calculated by
equation (88). In the event point A moves upstream of the first point
of the secondary start line, the flow field anaiysis will begin at the
initial-value line for the next jteration and a new secondary start line
beginning upstream of the new point A will be calculated.

Convergence of the nozzie contour is determined by the value of the
error parameter, E, determined by eguation (87). When E is less than the
value of the input parameter TOL at each point along the nozzle contour,
the convergence criterion is met and the pregram is terminated. If this
convergence criterion is not met, the estimated nozzle contour is re-
placed by the modified nozzle contour and the solution is iterated
beginning at the flow field analysis.

Figures 4 and 5 illustrate the behavior of this relaxation scheme.
The sample case consists of a design to nroduce a maximum thrust nozzle
9.6 inches long with a threoat radius of 1.2 inches and a throat radius
of curvature of 2.4 inches. The initial! estimate of the contour is a
25° conical nozzle. Aluminum oxide particles 4 microns in diameter with
a mass flow rate 0.4 times the gas flow rate are specified. The gas
properties are: vy = 1.28, molecular weight = 17.76, chamber pressure =
500 psia, chamber temperaturz = 6500°R, and ambient pressure = 3 psia.
The convergence tolerance, TOL., was 0.05 degrees.

Seven iterations are reguired for convergence. The initial, second,

fourth, and final nozzle contour are shown in Figure 4. The fourth and

29




YOIAVHIg ¥NOINOD 3MZZON v 3UNSId

S3IHONI - 3JONVLSIA WIXY

oL 8 9 b 2 0
a 1 I} 1 [ o
g
WW b
[ §
A
= o
2 & "
]
5
A
2 ¥3Ll @
7 v ¥aLl
- ¢
\\F ¥3aLl




TR

LR iR

DEGREES

ERROR

+ﬁ-]

+2 1

- R R ATTT = T T TR TR R e P Bt ey o EEEEREEERET

ITER 1

-10 1

-12

0 2 4 6
AXIAL DISTANCE - iNCHES

FIGURE 5. ERROR FUNCTION BEHAVIOR

31

00 «
o—d
o




3
-

NEAASIOL AR T Rk & § 4t FOUCH S A sk

final contours are almost identical. The correspcnding error values are
shown in Figure 5. The initial contour estimate of a conical nozzle
resulted in large error values in the first iteration. However, the
changes in nozzle contour were limited to ten degrees. The error values
in the second iteration begin to show the overcorrection, then reverse
where the first ijteration correction was limited to ten degrees. The
errgr values in the fourth iteration show a marked decrease, and by the

seventh iteration are less than 0.05 degrees at all points.
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SECTION IV

PARAMETRIC STUDIES

1.  GENERAL

A computer program, written in FORTRAN IV for the COC 6500, was
developed based on the analysis presented in Section II and the numerical
methods presented in Section III. This computer program was designed to
vermit either the analysis of a given nozzle or the design of a maximum
thrust nozzle subject to some geometric design constraint. The program
user may choose to begin at an initial-value line in the supersonic
region or with combustion chamber conditions. Output options permit
selection of the amount of printed output and a punch capability designed
to permit input of the computed nozzle contours and/or start lines into
subsequent ~omputations. A program description, description of input
variables, and Titing of several sample rases are given in Reference (18).

Tnis section presents the results of parametric studies to determine
the effect of varying several of the input parameters. For each parametric
study, one variable was varied holding all others constant.
2. VARIATION OF MESH SIZE

The method of characteristics mesh construction is controlled in two
ways. First, the number of initial-line points (NILP) determines the
size of the mesh near the initial value line and affects the mesh size
throughout the flow field. Second, provisions are incorporated into the
design program to limit the mesh size. In supersonic divergent nozzle

flow, the mesh size tends to increase as the mesh construction proceeds
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by the program whenever the dimension along a right-running characteris-
tic exceeds the input value DR, the dimension along a left-running
characteristic exceeds the input value DL, or the flow angle change along
the nozzle contour exceeds the input variable DTWI.

For the first part of this parametric study, the values of DL, DK,
and DTWI were set to relatively large values, thus inhibit+.g the mesh
point insertion routines. A nozzle with a 1.2 inch throat radius,
leagth of 9.6 inches and a 25 degree cone was selected. The ratio of
the mass flow rate of the particles to the mass rate of flow of the gas
was 0.4 and the size of the particles was 4 microns. Three vaiuves of
NILP were used to vary the mesh size. The results are shown in Table I.
The times reguired for each design were 342.9 sec, 593.8 cec, and 826.1
sec for NILP = 12, NILP = 16, and NILP = 20 respectively. These times
could be reduced significantly if better initial contours were used. In
a1l three cases, the initial contour is the same. The final nozzle con-
tour was reached in one less iteration for NILP = 20.

Increasing NILP, and thus decreasing mesh size, results in almost
jdentical final rozzle contours, with the rozzle exit radius slightly
larger for increased NILP. The valves for computed thrusts inaicate a
dependence on the mesh size. This can readily be seen by comparing the
thrust computed for the first contour estimate in each case. Since these
contours are identical, the difference can be attributed to the effect
of the mesh size on the numeric scheme. Another effect can be noted in
reviewing the thrust values. The final calculated thrust is typically
slightly less than one or more of the intermediate calculated thrusts.

However, this effect is slight, amounting to approximately 0.03% of the
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total thrust, and iS within ih€ acluialy © .
suggests that the tolerance may be increased so that fewer iteraticns
are required, since intermediate contours yield essentialiy the same
thrust as the final.

A seccnd part of this parametric study consisted of reducing the
calculation times. For this purpose, four, five and six iterations
(input parameter NITER) were performed with NILP = 12. Then the result-
ing computed nczzle contour was input into a design progrom with
NILP = 29, and run until the error toierance equal to 8.05° was satisfied.
The results, shown in Tabiell, indicate a savings in total computaticnal
time can be achieved by first obtaining a better first estimate of the
nozzie contour using a large mesh size. However, increasing the number
of iterations with NILP = 12 to 5 and 6 does not recuce the number of
jterations recuired with NILP = 20. A similar savings can be achieved

by selecting an appropriate parabolic nozzle contour for the first

estimate.
TABLE 11
COMPUTATION TIMES
NUMBER OF ITERATIONS WITH NILP = 12
NILP 0 4 5 6
12 178.6 217.3 253.6
20 826.1 360.6 361.6 359.7

826.1 533.2 578.9 613.3
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3.  VARIATION OF PARTICLE SIZE

For the particle size studes, an eight inch circular arc nozzie
with a 30° zctachment angle and a four inch exit radius was used. The
iniet to the throat was 30°. Particle sizes of 2, 4, 6, 8 and 10 microns
were used. In all cases, the ratio of the mass rate of flow of the
particles to the mass rate of flcw of the gas was 0.4. The number of
initial line poiats used was 20.

The final contours are shown in Figure €. The optimi.ed contcurs
for the 4, 6, 8 and 10 micron particles are nearly tihe same, and the
2 nicron optimized contour is not censistent with the others. Anmalysis
of the numeric results revealed that the limiting particle streamlire for
the 2 micron case was near the nozzle contour, causing many linear inter-
pelations in the process of computing Iimiting particle streamline points
and wall points. This caused a 1oss of accuracy.

An analysis of off design conditions was made to determine the
effect of particle size mismatch. The contours used in the analysis are
the final centours just mentioned. In addition w thne 2, 4, 6, 8 2d 10
micran sizes, an atalysis was also made using equal parts by mass of 2,
4, 6 and 8 micron particles such that the total ratio of mass fluw rates
was the same as for the analysis with one particle size. The results of
these anaiyses are giver in Table i1l Alse given are the nozzie radii
at the exit for the optimum contours.

The use of the 2 micron wall resulted in Tower thrust than for the
other walls regardless of the size of particle used. This confirms the
conclusion that the 2 micron design did not provide an optimus contour.
The 4, 6, 8 and 10 micron walls provice the same thrust for each particie

size used, within the accuracy of the numeric scheme of the program. The
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parametric study required an iniet angle in the neighborhood of 397 as &
compromise between the 2 micron and 10 micron reguirements. Swaller in-
let angles resuited in impingement of the 2 micron particles on the wall
while lavger angl2s provided large vertical momentum to the 10 micron
particles, causing the particles to cross the centerline. The numeric
integration of the particle mass could not be performed under these cir-
cumstances. Thus, in normal design programs for small particle sizes,
an inlet angle of 45° is recommended to provide a greater separation
between the nozzle contour and the limiting particle streamline.

The use of larger particle sizes results in less thrust, reflecting
greater dissipative effects. The higher thrust computed for the mixture
of four particlie sizes is due in part to the use of some smaller particle
sizes, and in part the increase in mesh points caused by insertion of a
mesh point at each Timiting particie streamline. The same effect was
noted in the mesh size parametric studies.

4.  VARIATION OF PARTICLE MASS FLOW RATE

In this parametric study, the ratio of the mass rate of fiow of the
particles to the mass rate of flow of the gas (WPWGT) was set at 0.1,
0.4, 0.7, and 1.0. For the larger value of WPHGT, the effects of the
particies near the throat region result in moving the sonic line down-
stream. For this reason, the initial-value line was shifted downstream
by adjusting the input variables THIW and ZAX. The nozzle is an 8 inch
nozzle with the initial contour assumed to be a circutar arc attached
at a 3C° angie and with an exit radius of 4 inches. The particle size

used was 4 microns. NILP was 1z

Tne results, shown in Figure 7, indicate that greater amounts of

Eideang

3 particles require more expansion to maximize tne thrust. This shenomenon
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is due to & combi t trancfer effecte. The transfer
of energy between the particles and the gas aiso results in increased
thrust. This study did not consider changes in the combustion properties
due to change in composition.
5.  VARIATION OF INLET ANGLE
When the inlet angle was changed, using the inlet angles of 12°,
30° and 48°, it was found that the optimum nozzle contour was the same
for all three cases. However, the limiting particle streamline was alter-
ed as shown in Figure 8, and the thrust value was affected by the oppor-
tunity for energy exchange between the particles and the gas. A 9.6
‘nch nozzle was specified, again using 4 micron particles and WPWGT = 0.4.
The thrust increased as the particles occupied greater portions of the
nozzles, permitting more effective energy transfer. This indicates that
the rozzle inlet coatour should be designed to bring the limiting parti-
cle streamline near the end of the nozzle contour while avoiding impinge-
ment.
6.  VARIATION OF THE DRAG AND HEAT TRANSFER COEFFICIENTS
Parametric studies were conducted to determine the effect cof inac-
curacies in the empirical drag and heat transfer coefficients used in
the program. The parameiric stirdiec were performed using a nozzle length
of 9.6 inches, WPHWGT = 0.4, 4 micron particle size and NILP = 12. The
inlet angle was 30 degrees.
The drag coefficients and heat transfer coefficients are calculated
from tabular data. The tabular data give empirical ratios of the coef-
ficients for specific values of Reynolds numbers to the coefficients for

Stokes flow regime. The drag coefficient and heat transfer coefficient

tables used in the program are the ones used by Kliegel and Nickerson {14),
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but can be changed easily by the program user if desired. Rarefaction
carrectinng are applied to the drag and heat transfer coefficients
calculated from the tables.
Figure 9 compares the effect of increasing the drag coefficient by
a factor of 3 and decreasing the drag coefficient by a factor of 3 rela-
tive to the standard case. The optimized nozzle centours were the same
for all three cases, but the limiting particle streemline was affected
substantially. The case with the higher drag coefficient results in
greater thrust. Since the particles occupy a greater portion of the
no.xle, the heat transfer is more effective.
Figurc 10 compares the affect of varying the heat transfer coefficient.
The larger heat transfer coefficient results in larger computed thrust
values and nozzie contours with greater expansion ratios. A ninefold in-
crease in heat transfer coefficient increases the thruyst 3.5 percent.
Particle impingement is not of concern since the limiting particle
streamiine moves in the same direction and by approximately the same
distance as the nozzle ¢ontour moves.
7.  VARIATION OF THE THROAT RADIUS OF CURVATURE
The throat radius of curvature (RRT) is expressed in throat radii.
The throat radius of curvature parametric study compares results with
throat radii of curvature of 1.5 throat radii, 2.5 throat radii and 2.5
threat radii. An inlet angle of 30° and nozzle lenath of 8 inches were
used. The computed thrust values are nearly the same although the nozzle
contours and expansion ratios vary. (See Figure 11;, The supersonic
portion of the nozzle contours are very similar, however, if they are
translated in the axial direction a sufficient distance to compensate

for the variation in throat length.
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The limiting particle streamline was also affected by the change in
the throat radius of curvature. With larger values for RRT, the curva-
ture of the wall at the throat region is more graduai, permitiing the
particles to accelerate more in the axial direction prior to being sub-
jected to vertical drag forces. The resulting momentum provides a
grecter separation between the nozzle wali end the limiting particle
streaml ine.

This parametric study indicates that it may be advantageous to use
the iarger throat radius of curvature, since thrust is not lost, particie
impingement with the wall is avoided, and there is a possibility that the
nozzle weight could be reduced.

8. NOZZLE SCALING

Since two-phase flow is dissipative, scaling of the results of one
design to provide a nozzle of greater or Tess thrust is not applicable.
A parametric study was conducted to illustrate the effects of scaling.
An inlet angle of 45° and a throat radius of curvature of 3 throat radii
were used for each case. The nominal case was a 4.8 inch long nozzle with
thtgat radius of 0.6 inch. Additional cases were two times, four times
and eight times the size of the nominal case nczzle.

The maximum thrust nozzle contours for the larger nozzles result
in a greater expansion ratio. (See Figure 12). A more marked effect,
however, 15 seen in the leccations of the 1imiting particle stresamlines.

The location of these streamlines may dictate changes in the fixed nor-

tion of the nozzle in order to prevent impingement of particles on the

nozzle contour or to increase the region in which energy can be trans-

ferred from the particies to the gas.

3
R
3
35
E
b
-3
2

RviMcerne s

§ Tt LAt S

HE AN

BN AL &




ONITVIS 40 133443 2L 3UN9id

110VY LVOUHL = 3DNVISIQ WVIXY

R PP e e
TN,y

..........

L 9 § 14 € c L 0

I A A s 4 Il 1 c
SINIWWYIYLS FNDILMYd ONILIWIT
\I\‘Illnllll-‘.l
> L1
XL
L 2
Xe y
. xs\ N
e

SHRULNOD 31ZZON ¢

110VY 1VO4HL - 3ONVISIC WIGW

49




<
-
s

The calculated thrust for each of the final contours is shown in

Table IV. If scaling of the nozzles and the thrust wcre appiicable, the

thrust would increase as the square of the increase in size. The re-

sults show that the thrust increase is slightly higher than direct scal-

ing wouid incicate.

TABLE IV
THRUST EVALUATION FOR NOZZLE SCALING

NOZZLE THRUST
SIZE THRUST RATIO
X 833.4 1.000
2X 2543.1 4.011
4X 14223.1 16.100
8x 57208.4 64.759
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SECTION V
CONCLUSIONS

R formulation of the maximum thrust -visymmetiric gas-particle nozzie
problem was presented. A ccmputer program was developed based on the
optimization analysis. This computer program was used to conduct several
parametric studies designed to determine the effect of various design
parameters on the nozzie shape, limiting particle streamlines, ard thrust
of optimum nozzles.

The computer design program ¢an be used either for amalysis of nozzle
fiow or for design of the maximum thrust nozzle contour. Analysis of
flow fields can be performed with four discrete particle sizes while the
design of maximum thrust nozzles is limited to one particle size.

The results of several parametric studies were presentec. The con-
clusions based on these studies include:

1. The zhange in nozzie contours as mesh size changes is negiicible
and the change in value of computed thrust is small. However, the mesh
size does affect computer run time significantly.

2. The effect of particle size on the final nozzie contour was in-
significant except for small particles whose limiting particle streamline
lies near tne nozzle contour, thus causing numerical scheme errors.

3. The ratio of the mass rate of flow of particles to the mass
rate of flow of gas has a significant effect on beth the final nozzle

contour and the thrust. Higher concentrations of particles require 2




greater expansion ratio to develop the maximumi thrust and deveiop greater
thrust.

4. Variation of the inlet angle to the nozzle throat does not
appreciably affect the final nozzle fontour, but does affect the limiting
particle streamline and the thrust. Smaller inlet angles result in
particles occupying a greater portion of the nozzle ard a greater thrust.

5. Increasing the values of the drag coefficient does not appreci-
ably affect the nozzle contour, but increases the portion of the nezzle
which contains particles 2nd increases the thrust.

6. Increasing the heat transfer cse:.:cient increases the expan-
sion ratio of the final nozzle contour, increases the portiion of the
nozzle which contains particles, and increases thrust.

7. Increasing the throat radius of curvature decreases the nozzle
diameter but dosc not affect th~ thrust significantiy. The increased
throat radius of curvature results in greater separation between the

limiting particle streamline and the rozzle contour.
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APPENDIX 1
DERIVATIOR OF THE EULER EQUATIONS

The extremal problem for the gas-particle nozzie optimization problem

is given by the equation

[R { 8
1= -max+ ,j Y h,i.dydx { 91)
!C 1 4 i;] 1
ABC
where
K = (o - Polan’ + (6 + Czno(un' - v) v 3%)

Hy = hilyeu, + yup ¢ yovy + yvs, + ov] +

+ hylouu + pvu, + 9, + App(u - up)} +

+ h3{.~.uvx + VY, + By + Acp(v - vp)] +

2 Z
+ hq[upx + vp, - auo, - a'vp, - ABpp] +

+ h,. + + + + 0 ¥ +
hglye, (up), + yuglop)y + yo (vp), + yvpleg)y + o v ]

+ nglou fu) +o v (u) -o

Aly - I+
p'pp/x T Pp'p'\Yp’y u - up)l

Y

] - - A Y +
+ h,[ppup(vp)x + op‘lp(\p)y ppA(v vp,]

2 .
4 ‘ ~ 2 - \1 ‘
ha[ppup(hp)x + gpvp_(hp,y T AC: p(1 Tp,- (92}

The functional, I, reaches a maximum whern the maximum thrust nozzle
design has beea achieved. Under these conditions, the functicnal remains

constant as minute changes are made in each of the dependent variables
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same functional with one of the dependent variables incremented an infin-
itesmal amount. The Euler equaticn used in the calculus of variations
technique is one method of taking these variaticns cver the region being
considered and resuits in a set of eight equations.

The general form of the Euler equation is given by Miele (17) as

"2
azk pk

oH
y- L 8y =0 (k=1,2,""",8) (33)

3
"o @) oy ag,

where z, denoctes the eight dependent variables u, v, o, p, up, vp, ®p

and hp, and Py and q, are defined as

azk .
Py 3% {93)
3-
qk = ‘—5 (94)
A and C are constants, and
= (e RY- - 2 _2 -
B = (vy-1){{u uyi” + (v vp) 3 T Tp)] (10)
= B
T SR (14)
1 0
T =17%+ = (n_-h 15
p™ ' " Ce (hp =y ) (1)
al = ® (36)

hp° and Tpo represent the reference enthalpy and temperature respectively

and Cc is the specific hext of the condensed phase.
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The generai Euler eguation, wnen applied to equation { 92) with

zk =y, yields

- (h}yp)x + h}Yﬁx + thux - (hzou)x - (thv)y +
2
+ thpp + h3pvx + h4{3x - h4a Py = h41'{pp(x-’ 2(u - up) -

Simplifying and grouping terms results in
- Yol ), + hyeu, - hy(ou, + up + Py + Voy) -
- Pu(hz)x = Dv(hz)y + h3DVx + hd(px - asz) +
* Rogliny - hylv-1)2(u - u) - hel = 0 (96)

Using the gas continuity equation and rearranging gives the result

1 2 . -
- hou, - by, - hy E'(px matp) 4 yihy), + uthy), + V(hZ)y -

= hy L+ AR [n - n2(y-1) (0w ) - bl (34
2y p 2 T MgelyTliiu-u,) - he \

Performing the same cperations with z, = v yields

- (h]yp)y + h".VDy + h!p + hzﬁuy = (h3DU)x +

*

2
h3pyy - (h3pv)y + h3App + h4py - hya Py -

hd_App(y-'!)(v - vp) - h7App =0 (97)

Y » - 1
YO(h}ly + th{y h3[oux *up, + pY, + Voyl +

+ h3pVy - pu(ha)x = Qv(h3)y + hd(py - azpy) +
+ App[h3 - h4(y-1 y2(v - vp) - h7] =0 (98)
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H 2 sy . -
P
= ! ...P - vy~ - {
h, 7t A : Thy - by 2(y-1}(v-v ) h ] {35)

For z, = ps the following resuit is obtained.

- {h,j. - (hy), - (hu) - L{h,v) - hu 223—-
2lx - 3ly - \Rguly = SRgv)y - hgto, o5
. ozt B, 2 3T .
-n4v.oy Bp - hgho, 35 - hg 5 Ao 5= 0 { 99)

The partial derivatives with respect to p can be evaluated as follows.

2 2
@ _ 2 (yPy_ Y-8
3p ap (D ) e P (100)
?J.:L_P_ =L=I 1l
ap 9p (oR) pR p (1)
3B _ 2 ¢l _2¢
3 (‘(‘1) 3 P 3 oR (Y'}) (102)

When equations ( 100) through {102 ) are substituted into equation { 99,
the final result is

2
a_ { \
hyu, + hdvy + hy : (upx + vpy) + ‘h2)x + (h3)y + u(hg} +
Py 2
=5 B2C o e
+ V(ha)y A o 3R [(Y ]]h4 hg] (36)

For Z, = 0> the following result is found.

hyyu, (h]yu) + hyy (h1yv) +hyv +
+ hzuux + nzvuy + h3uvx + h3vyy +
{ 332
+ ‘h4a u) 4 X 3 + (h4a V) h4pr Y
38 2 3T .
hc’ap - hg T AC “pSE‘G (103;
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The following relationships are used to eliminate density derivatives.

.2 2

4a =____ YP =-_i;_ {

22 { ) 92 = {168)

_al-._g. E_.. T - "—l

- 30 R “LzR == {108}
D

%;,E:EA(' Z (+-13¢T) :.é..lty. ) (106)

Using the two system momentum equations and equations { 104) to ( i€5),

and grouping terms yields

+

2d
+ S——
h4" ax

. 2 B
A —% {hz(u—ap) + h3(v-vp} +3 CT[h4w-U - hsl} {107)

yu(h])x

o

P,

- - 2L ..\L
yv(h,) h2 > h +

az[h&ux + "'(h4)x + havy + v(h4)y} +

2 2 2
a 3a . 2 _
+ héupx o + h4v —_— 4+ h4ipy o

Substituting in the Euler equation for Z,=p and using

2
2 ap as
sa_ _3 (yby.__'X_ L3 y
% -k G T o ( 138)
2 2
nal ap ap
@_ 3 by Y. __Y 191
3y oY c) P o (109

reduces the equation to

Py P
- - X . X
- yu(hy ) yv(h])y hy = - hy L+
2 N
a . - 2 2 -
+ hy S5 {upy, * oy - @ (up,, - Voy)}
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[s]
- az(hz)X - ae(h?))‘y = A ~§ {hz(u-up) + h3(v-vp)} -

f ¢ ’
e 2
5 -~ A —f-(v-l) i§'CT[h4(Y“]) - hgl} (110)
3 rivally, using the system energy equation, equation (110) becomes
. h h
E 2 3 o .2 2 -
el valhy), + yv(h])y +a"(hy), +a (h3)y

= A i) ’Z.( DCT[(y-1)n, - hol + vh,6 - h{u-u) - ho{v- \} (37)
=3 {3 YRRy = fgd YRS = Mgtusty) = Bgly=vy,.

For z = u

"

;é - hoho, - h4Aap(B)up - {hgyep)y * hgylog), +

E + h6°p(”p)x - (hsppup)x - (hsopvp)y * hghop *

_é +hyo (vp)y + hgop(hi), = 0 (1)
f where

3 (®), == (20 - u) ( 112)

Rearranging and s:wplifying, equation (111 ) becomes

- y°p(h5)x - Dpup(hs)x - vap(hs)y + hspp(up)x

- 1
hﬁﬁop(up)x + up(py)x + pp(Vp)y + Vp(pp)yJ +

TY S DRI TN o
W BEA R TRy r | TR

+ h7p (V ) + hspp (hp)X = Ap)[hz - h42(7~1)(u-up) - hs] ( 1]3)

prpx
'i Using the particle continuity equation, the final result bacomes
:% hﬁ(up)x + h7(Vp)x + hs(hp)x - Y(hs)y - up(hs)x - Vp(hs)y =

‘<}°<

: = A {hz - h42(y-3)(u-up) - hs} - hg (38)
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ro7 Zk = Vp’

- hahoy, - h4App(B)vp - (hsyop)y + h5Y(op)y +hgo +
+hglup)y = (hgopudy = Khyogvp)y + hyo (vp)y + hgho, +
oy )p(hp)y =0 (114

where

(B)vp = - (y-1)2(v-vp) (115)

Simplifying, rearranging, and substituting the particle continuity equa-

tion in the same manner as for z, = up yields
hglug)y + hzvply + figlho) = ylng), - u(hy)y = vplhg), =
v

For = hp,

- Byho, (B, - (ngoou), = (hgpv ) +hg 5 AC (1) =0 (136)

o PPy p
where
(T = 5 (= ¢ (117)
p'hp Eﬁ;' ¢’ ~C.
-.._a_. - g" HE - g_c_
(B)hp " (137,30 = (v-1)5 T, ( 118)

Substituting in equations (117 ) and ( 118) and expanding terms yields

;
ppus(hgly * opvy(ig)y + hglop(uody +ug(ey), +opvy)y + vyley)y]

2 AC _ 0

2 C 2 AC _
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Substituting the particle continuity equation and simplifying results in

{
up‘ha)x

Ol>
(@)

. 2hC p
tuglng)y = 08 {ng - (rnng} b g (40)

c
For zZ, = Pp >
hZA(u-up) + h3A(v-vp) - h,yAB + h5y(up)x -
- ( - { ; +hv =0 120
(hgyup), + higy(vp)y = (hgyvp)y + hgvy (120)

which reduces to

y fuythg), + vplhg) b = & {nglumu) + mae-vy) - bgs) (41)
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APPENDIX 11

CHARACTERISTIC AND COMPATIBILITY EQUATIONS
GENERAL

pues s,

s SRR AR
PR NN A TCERSETR
—

The method of characteristics is frequently used to simplify the
numeric calculations in supersonic 7low fields, where the governing

differential equations are hypertolic. In this study, the governing

differential equations are a system of hyperboiic, auasi-linear, non-homo-

v il Ok
£ e e P SR T X

geneous, partial differential equations of the first order as functions

E ‘ of two variables. A quasi-linear partial differential equation of the

f; first order is defined as one which is non-iinear in the depencent veri-

‘ ables but linear in he first partial derivatives of the dependent vari-

ables.

2 The metinod of characteristics develops compatibility eguations

5 ) which express the dependent variables in terms of total derivatives

; \ rather than partial derivatives and the characteristic directions along

] which the compatibiiity equations apply. This system of equations is
equivalent to the original set of equations and is convenient to use in

;,: a finite difference form. The characteristic and compatibility equations

; can be developed by use of determinants. however, tne solution of the

yiwiEs oGOty

determinants is generally complex and an alternaic method of obtaining the

EXRX

¢l AR 1
TR AT Y FE/TWTR Pttt @or o,

characteristic and compatibiiity ecuations is employad here.
The sixteen equations which are treated by the method of character-

istics consist of tne eight basic flow equatiors and the eight Euler

™

equations. These equations are rewritten here four convenience.




- » .g!.
L.! pux+ pvy+UQX+jpy+ v

=0

= f - =
Ly = puu, + ovu, +p, ¥ App\u up) 0

Ly = puv, + pw, * Py + App (v - vp) =0
2 2
Ly = up, + Py - 3up, - @ pr

z + +uf + 1 j
Lg op(up)x pp(vp)y up‘op)X Jp(pp)y

Lg = -hyu, - havy

1
- hyopy t hy

0

- Aop

- Aop

p

¥

+ u(h3)x * v(h3)v - %

~ ha

1
oty

2

+ hy %-

= 0

{u - up)

v - vp)

Py

- By = O

% _ g
Ty
0
0

2 -
y - FAUT-T) =0

Py + Y(h1)x +

+ .Y(h])v +

2
- auy _ .p 3Y
Lyy = hgyy havy + hy 5 Py hy 5 Py + (hz)x +
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(121)

(122)

(124)

(125)

{126)

(127)

(128}

(129)

{(130)

(131)
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—
t

. 1
12 % g g Py ¥ My o By *yulhgdy +yvihg)

n

+ az(hz)x + ez(h3)y Ky =0 (132)

Y {
hG(Up)x * h7(Vp’x * h8‘hp)x - Y(“s)x -

- up(h6)x - vp(hﬁ)y - K =0 (133)

Lig = hﬁ(up)y + h7(vp)y + h8(hp)y - Y(hs)

y -
- up(h7)x - vp(h7)y - KG =0 (134)
L]ﬁ = up(hs}x + vp(hs)y -Kg =0 (136)

where A, B and C are as previously defined in equations (5}, (i10) and

(11), and
ko= ho ¥ A2 [h - b2 (yo1)(ut) <h,) (137)
17y o 27 Mgt YT p! 76! "
Ko=h L 2 AR fh - 2 fy=1)(vev ) - ho) (138)
2 My o 1737 Mgt ly p 77 !
K=Af’_2§£fh(-1)-hl (139)
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g = 82 45 (1) T Dngly-1 - hg) - yngd -
]
- hz(u-up) - h3(v-vp)} (140

/ \ ZE
g = A {ny - g2 () umu) - et = hg (141)

¢ , Y
Ko = A {bg = h2 (y-)lv-v) - h7} “hy g (142)
Kk, =2p% {h - (-1)}+HXR (143)
7738, s ly 3 ¥ \
K8 = A {hz(u-up) + n3(v-vp) - h48} (144)

It would be desireable to separate the development of method of char-
acteristic equations into the flow field analysis portion involving L
through L8 and the optimization portion involving L9 through L]G since the
flow field analysis does not depend on whether cptimization is performed.
However, the presence of partial derivatives of the flow properties in L9
through LIG dictate against this approach. In reviewinyg the equations, it
is noted, however, that L] through L4 and Lq trrough le do nct contain
partial derivatives of particie properties or multipliers h5 through h8.
Also, L5 through !.8 and L]3 through Lig de not contain partial derivatives
of gas properties or multipliers h, through h,. Thus the method of
characteristics application may be simpiified by dividing the problem into
two segments, the gas property and associated multiplier equations and the

particie oroperty and associated multinlier ecuations.

64




Tn o pom s thelod -] GES

h

= . FTY Naid ot e | HY O iin) LA 2 s AT . s xe 2t
Ly et UGV H ISR WIS G0 drie 4 AR RS A % ZaCRMA o v
TP e e LU e P g tan o R \

L%
.

GAS PROPERTY AND ASSOCIATED MULTIPLIER EQUATIONS

A differential operator is defined using arbitrary functions

designated by c's as multipliers as foilows:

L= o]L] + 02L2 + 03L3 + 04L4 + g

* 010bi0 * oty F o2ty 7 0

L9+

(145)

By grouping partial differential terms, this ejuation can be rewritten

. 8 3 { Jd
= A {ux tx uy? +C 1Vx T

+6 {px * g' py} 1 {(hl)x

hy)

+ M
2y

|
af e

{
K Xh,)
+ {(

+ L
*K
+P 1(ha) g

where the coefficients are

A

144

QU] + NUZ - h2 Gg + h40’1'!

1 1
Gp +UCy = Iy 5 0 + hy 5079

1 1
C3 + Vo4 - My 3G9 ¥ M3 5%

2 2
2 a ay
ugy - aucy + hy o Gg + By 50y
2 2
2 a a‘v
Voy - @O thy 5%ty 5 %
65

1 & il *
vy} E Py * T Py

3
+:I’. ("1)5«} +

{(h) + & (n

~
P

(147)

(148)

{143)

(150

(151)

{152)

(153)

(153)
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Making the ratios

«

¥oq * Y¥yp

Yeig * ¥¥ey,

[a%]

Uog * o4y * 3 0yy

oA - [y - -
v oy + Agp (u up) 0y + Aop (y vp) 04 ﬂBppo4

- KyGq - Koo - Ky - Koy

L = Adu + Cdv + Edp + Gdp + Idh] +

+ thz + ﬁdh3 + Pdh4 + Rdx = 0

AL-8=20
Ch-D=20
Ex-F=20
GA -H=20
Ix-d=20
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(155)

(157)

(158)
(159)
(160)
(161)

(162)

(163)

if each of the ratios muitiplying the partial derivatives with respect

to y arz equal to a value X = dy/dx, the differential operator reduces to

(164)

which is the desired form and is called the general compatibility equation.

each equal to 2 results in the series of eguations

{165)
(166)
(167)
(1€8)
(169}




X -L =0 170}
M-N=9 (171)
PA-Q=¢G (172)

These equations are rearranged to group the arbitrary multiplier terms

as the unknowns.

- { - - ; - =
09 + oluA v) o3 h3dag + hgoy hyoqy = 7 (174)

I's3 } < l
koz - o5+ {ux - v) Gy - h4 B-Acg 4 h4 5 %10 +

1 . _
+ 5-(h21 - h3) oy, =0 - (175)
2 2
{ur - v) 9y -2 (un - v) ug + by %— Aag -
N 32 a2 \
- b4 B- 510 + h4 5"‘ (ul - v) U-I] = 0 (170’
yAGq - yoiq + y(ux -v) Oyp = 8 (177}
2
{ur -v) Cg * Aoyy + @ xclz =0 (178)
Y 2 =
{ux -v) Oaq = 0 {180)

If this system of equationrs is to have a solution other than the trivial
solution with the arbitrary multipliers equal tc zera, the determinant

cf the coefficients must equal zerc. The determinant is shown in Figure

13. Expanding the determinant results in
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0 (A-¥n) 0 0 0 0 0 0
Nm( L- (A-xn) 0 6 0 0 0
<Nm X 0 (r-Yn) v 0 0 0 »
(A-Yn)Ak 0 A- YA 0 0 0 0 8
0 =
o J o
, 0 (A-XN) —5 by % by- -3 v: ?..«3%.. 0 0 (A~Yn)
3“,_ A A 2
A,M J 3 J
_ Am:a,«mcv.m 0 1 by 1 vc.. (A-Yn) - (4 0
6 Py- &y w8y 0 (A=Yn)0 0 -
0 Py &y Gy~ 0 0 (A-¥n)d ¢
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2 2)\2 = Zun <+ (\‘12 - 32)}2 =0 (]8]}

This equation is now solved for X tc give the characteristic equations

along which the compatibility equations will be vaiid.

2dy v

r=gh=o (42)
2 /.2

_dy _uv xa" vy N -1 {

A= 3%" W2 az (182)

Equation (42) is repeated four times in the solution o7 the determinant,
indicating that four compatibiiity equations will apply along this char-
acteristic direction. Each of the equations represented by eguation (182)
is repeated twice, indicating we can expect two compatibility equations
for each of these characteristic directions. For convenience, equation

(182) is expressed in terms of the flow angle, 6, and the mach angle. a.
X = g% = tar{g+q) (85}

Now that the characteristic equations are known, the compatibility
equations are determined from the general commatibility ecguation, equa-
tion {164). First, the arbitrary multipliers in the coefficients must be
deternined or otherwise eliminated. This is accomplished by substituting
each of the characteristic equations into equations {165) through {372).

when A = v/u is used, the following series of eguations resuit:

v v v 11023
1~ P2y * Mgt Ry yon < © (183}
(184)

v -
=06y = By oo * 8303y - Pyoyy = 0

. 1 1 v =

C:A-':

v 1
i T W
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h 23_1_0 h é-2--0 =0
4 pu 9 4 p 10
v )
0% %= 0
2 _
Ippta o, =0

Only four independent equations wresult from this set.
2
= a_
01 = hy 509

1
‘33 = :\02 + 6‘ (hz/\. - h3) 0-}2
%10 = M

2
91 T 7@ Oy

(186)

(187)

(188)

(189)

(190)

(191)

(192)

(193)

{(194)

Four o's must be taken as arbitrary. Since 0 does not appear in the

four independent equations, it is selected as one of the arbitrary ¢'s.

The others selected are Tps Og and Oyp

Now the general compatibility is rewritten, grouping terms contain-

ing each of the four arbitrary o's together to yield

f
{pudu + ovdv + dp + App (u-up)dx + Aoy (V-Vp)dY} Oy *
+ {udp - azudp - ABp dx} G, +

p 4

2
1 a
+ {ohgdu - h3dv - h4 E-dﬁ + h4 5—-dp + ydh] +
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+ udh, + vdhy - Kdx - szy} ag +

( 2
+ {(vhy - uhg)dv + by %-dp -uhg & (v-1) dp +

+ yudny - ofudn + (nga® ¥+ a%ky - Kddx +

p )
2oy - =
+ A 5 (v vp) (h2dy h3dx)} 010 = 0 (195)

Since the O's are arbitrary, their coefficients must each equal zero,
resulting in four compatibility equations which apply along the charac~

teristic direction A = v/u.

pudu + pvdv + dp -ApD {(u-up)dx + (v-vp)dy} (18)

udp - aludp = ABp dx (19)

2
1 a_

+ udh2 + vdhy - K]dx - Kody = 0 (196)
1 a2
(vh2 - uh3)dv + hy E-dp - uh, e (y-1)dp +
2. 2y 2
+ yudh1 -a udh4 + (h4a v +a%Ky - K4)dx +
bp (. - =
+h3 (v vp) (hzdy h3dx) 0 (197)

Aleng the characteristic directions given by A = tan (8=a), the fol-

lowing equation is vaiid.

222 - a®) -2+ (V2 - D) =0 (198)

The quantity uX - v cannot be zero, therefore Gy must be according to
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equation (i80). Then vg and 9y can be found from equations (178) arnd
(179). 0g and o, are eiiminated from the remaining equations and o
determined from equation (176). This is used te eliminate 95 from
equations (173) and (174). Finally, using equation (798) to reduce the

results, the eight equations are reduced to

0, = - XaZ G, - 1 h, + Aaz h.y o
2 {ux=v) "4 " p 2 7 Tua=v) "4f "12 (129)
al 1 [ a° 1
BTNy % Yy ey Mg hB} €12 (200)
-0,A + 03 = 0, (ur-v) + %- {(ux-v) hy + ho) - h3} 97 (201)
_ .2 1 2
o =20y + o hya” oy, (202)
0]2 { 0 } = (203)
2
- a A
% = - ) %12 (204)
a2
%0 ° T@=v] %12 (208)
0.y =0 (206}

Equation (201) may be obtaired by multiplying eguation (199) by -A and
adding to eguation (200). Thus, two of the above equations, (201) and
(203) are not independent. Therefore, two of the o's must be arbitrary.
T4 and g are selected. Substituting the six independent equations in-
to the general compatibility equation and settiag the coefficients of

Ty and oyp to zero results in the following two equations.
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2 pur ua [ a
{pa " Dy } du + {ux-v dv + A" TV + u} dp +
2 2 2
v Al (. 2 (. -
+ { v T (u up) + App e (v vp)
; ABpp} dx = 0 (207)
Z 2
[, .2 u)a a
{h4a - uhz v hy + v h2 du +
2 2 2 2
ua . aa . a a“a
+ {'"""ux-v hy - uhy + =55 h3} dv +{-5- (uhy - o7 h4} dp +

2 N 2 2
al . fuaty .2 ua
{-y B-v uy} dhy { TE. } dhy + {ux-v} dhy +

2
v 2 p A2

o 2 2
+ A EE-( nov M hs) (v vp) + Ky UXéV
2
a -
-sz-K4}dX-0 (208)

After some manipulatior. including the use of equation (198) and the

relationships
2 2)
uv_- A(g ~ 2 =, cotq (209)
a
2
— 5~ =¥ tang (210)

uty - uv - a%)
the compatibility equations become

2 a2 azv
a” Tvdu - ucv] + 5—-cotgdp = -37—(udy - vdx) -

-A

ot

{B(udy - vdx) + al [(u~up)dy - (v«vp)dx]} {(21)

’“i;f.&\\\;cmt*w Yy
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1 2 -
h3dv + Y h, (dp - a“dp) - ydh,s + tana (vdh2 - udh3) =

p
stanq {h3 ¥ ax+ AR [hy - h2(y-1)(v-v)) - hy] dx -

-h, Y4 -Afp—[h - h,2(y-1) (u-u_) -h.1 ay +
2y Y ) 2 qerys u-up -hel dy

+
th_,

(udy - vdx) A EP- (yv-1) 5T { (y1) hy - hs} + nda]}
(46)
These equations represent the four equations which apply along the ¥ach
lines.
3.  PARTICLE PROPERTY AND ASSOCIATED MULTIPLIER EQUATIONS
The differential operator in the case of particle properties and

associated multipliers is

L = oglg *+ oglg + o5ly + oglg + 0y3Lq5 + Oulqs + Gy5bys + gLy

(211)
or, regrouping by partial differential terms,

L=A {(“p)x * % (up)y} ve {(vp)x * % (VP)Y} '
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where the coefficients are

A=

PpT5 *PpUnT6 * P13
pp¥poe * Pe%14
PpHpo7 + My9y3
Ppos5 +OprU7 + h7014
opindg * Pgoy3
Pp¥p0g * goyg

upcs

75

(213)

(214)

(215)

(21€)

(217)

(218)

(219)

(2z0)

(221)

(222)

(223)

(224)

(225)

(226)

(227}

(228)

p. U
pPpo__ . - oy _2 - -
5 App(u up) cg App (v vp) oy = 3 AC (T Tp) og




(229)

- K913 - Kgoqg - K595 - Kgoie
The general compatibility equation is

L= Adup + Cdvp + Edhp + thp + Idh5 + th6 + Mdh7 +

Pdiig + Rdx = 0 (2307

Setting the ratios which multiply the partial derivatives with respect

to y equal to A, and grouning terms by the o's results in

ppkcs + pp(upl-vp) og + hgroy3 - heoyy = 0 \231)
INE . pp(upk-vp) oy + h7kc]3- hy094 = 0 (232)
pp(upk-vp) Og + hghdy3 = hggy, = 0 (233)
(upk~vp) o5 = 0 1234)
“YAG 3 + yoy. * (upk»vp) 015 = 0 (235)
- (upk-vp) 013=0 (236)
- (upA-vp) %14 = 0 (237)
(upk-vp) 05 = 0 (238)

The determinant of the coefficients is presented in Figure 14. Expansion

of the determinant results in

- 8 = Q A Y
(upx vp) ] (239)
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0 ﬂa>-<a=v c 0 0 0 0 0
0 0 An>-<a=v- 0 0 0 0 0
0 o 0 Aa>-<azv- 0 0 0 0
i .d
("A-Y"n) 0 £ YA~ 0 e 0 0 '~
OH
0 0 0 0 0 0 0 (9r-y9n)
0 0 8y- 8y (4a-y%ny% 0 0 0
0 0 by- vhy 0 (%r-y%ny % 0 dy.
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and eight compatibility equations should apply along that direction.

(22)

Substituting the characteristic equation into equations (231} through

(238) results in the following equations,

v \'
p p ) N
Ppa. 95t Mg g 013 - Ngoyy = 0
P p
'p
P05 * Iy a, 713 hyo4 = 0
'p
hg i, 913 ° hgdyg = O
Vv
'p .
i 913° %40
p

which reduce to only two independent equations.

78

(240)

(281)

(242)

(243)

(244)

(245)

(246)

(247)

(248)

(249)
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Setifng the coefficients of the arhitrarv multinlierg, & 7w

i3®

715 NG e, D eauation (230), the general compatibilitv eguatior ‘o-
particle oroperties and associated multipliers, equal to zero results

in the following compatibility equations along the particle streamline:

updup = A (u-up) dx {23)
updvp = A (v~vp) dx (24;
ugdh = % AC (T - T) dx (25)
updh5 = A[h2 (u-up) + hy (v-vp) - h4B] dx (48)
hﬁdup + h7dvp + h8dhD - ydh5 - u?th - vpdh7 =

=8 by - h2(r1) () - hs} dx - he ;.P- dx +

v

+ A ih3 - h42(?-?) (v-vp) - h7} dy - h7 ;E dy (49)

ugdhy = 5 T& [hg - (v=1) kg dx + g ;—‘3 dx (50)

c
A deficiency of two compatibility equations exists. None of the equations
have derivatives of the particle density function, Pp- Thae deficiency
is corrected by the use of a numerical integration scheme to determ:ne
the Pp* The other deficiency prevents the calculation of the multipliers
h6 and h7 since derivatives of these variabies appear only in equation
(49). This deficiency is corrected by usirg a numerical evaluatron
scheme to evaluate two of the Euler equations, (38) and (39), which per-
mit- writing them in a compatibility like form for the evaluation of h6

and h7 along particle streamlines. Equation (49) is nox used, being

replaced by the two compatibility lixke equations.
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APPENDIX IIT
THE CORNER COMDITIGN

tihen the end points of an extremun are allowed to vary, the varia-
tion must result in no change in the function, I, if the functional is
at either a maximum or a minimum. In the calculus of variations, this

restriction is expressed by the corner condition as given by Miele (17).

A XH] -y -g:‘;-r )GX + A Yé—v'r}éy =0 (51)

where A denotes the aifference between the quantitv in braces evaluated
on each side of the coruer point and 3x and Sy signify smail variations

in x and y. H] is the integrand of the line integral portion of the

functional. I.

Hy = (p - Pl + C,6 + Conolun’ - v) {31)

At corner A, the corner point is fixed and the variables are fixed
because the nozzle contour is fixed upstream of voint A. Thus, ail
elements of the corner condition are zero and the corner condition is
satisfied.

"y

nozzie contour oniy. Therefore, the value of H] is identically zero on

is not apnlicable at point B since H, has values along the

both sides of corner B and the corner condition is satisfied identically.
At point C, the corner point is not fixed, so &x and dy must remain

arbitrary. Therefore the coefficients of &x and 3y must each be zero,
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x

A {n -y i‘# -0 (250)

A :—%} =0 (251)

Since H] is exactly zero along the boundary BC, the cuantities in
braces are identicaily zero on %that side of the corner. Therefore, the

quantity in braces must also be zerc at point C when evaluated alona the

line AC.

(p - pimn' + €6 + Conolun® - +) -

* \ 1 .
-y {(p = Dyin * C}Gn‘ + Cencu; =0 (252)
(p > pyin + .6, + Cynou = 0 {es52)

Equation {252) is reduced by aoplying eauation {253) and the eouation of

the streamline at the noxzle coniour, to obtain
{p-pm +C6=0 (254)

or, vearranging to determine the value of CT’ ind using n° = v/u,

o 4
(p.-Poineve

1° " 7w

ccC

(54}

()

Subsctituting the value of C1 into =auation (253) and rearrancing to
determine the value of C2 yieids

{p.-p,)n_v
¢ Yo't c
u S, Gn' - (?c'po)"c (255)
c = .
2, TePe¥e
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APPENDIX IV
THE TRANSVERSALITY CONDITION

1. GENERAL

For an opiimum nozzle contour, the thrust must be at a maximum, and
therefora cannot change with slight variations of the variables along
the boundary lines. Calculus of variations expresses this condition in

the transversality equation. written here for m dependent variables,

13

£ & +ndy+ ] 0z, (256

where x and y are the independent variables, z, (k=1 ..., m) repre-

sents the dependent variables, and

-

m
E = Z?R(KZ) + ,Y' [Kz - E}I)k (Kz)pk} - .'f'E (K]’.V) -

k
E (Kq52,) (257)

m
n=[k~q(K)]-y' q, (K,)  +E (Ki,¥) (258)
2 kglk 2 Q. k£1k 2 Py 1

oy = ~(Kp)g + y'(xz)pk +E(Knz) (k=1,....m) (259)
E (ko) = (K), - 55 {(K])y.} (260)
£ (Kyz) = (Ky), - & e, 2 (261}
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yt = 4 (262)

(263)

Pe = 3x (266)
4 = 5o (265)

This transversality equation is based on K] defined as the integrand of
the line integral of the functional !, with the line integral taken in
the positive sense around the region ABC. K2 is the integrand of the

-

area integral of the functional 1. Therefore, in the present case

Ky = = (p=pyJnn* - €46 - Conplun’-v) aleng CA (266)

K] =0 aleng AB & BC (267)
8

KZ = H2 = ig?iLi (32)

The integrand K2 is equal to zero and K] does not contain any part-
ial derivatives of the dependent variables with respect to x or y.
Therefore equation (256) may be rewritten as

f% p i, -y E (K Ly) -

0~
N

[ 8
+ ;Z} qkwk +E (K] a.Y)} Sy +

K
8 )
+ ) <« =W, + {K 8z, = D 268
LR ), o (268)
where
= fy o 4! y
wk \Kzlqk ¥ (Kz)pk (269)
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2.  THE TRANSVERSALITV CONDITI

Along the boundary line AB, all dependent and independenrt variables
are fixed since AB is a right-running characteristic from point A and
the nozzle contour upstream of point A is fixed. Therefore, the varia-
tions 6x, 8y and sz are all zero and the transversality condition is
satisfied.

3.  THE TRAHSVERSALITY CONDITION ALONG BC
Along the boundary line BC, K, is jdentically zero so equation (268)

reduces to

=
1l b~ G0
—d
He~100

8
zl P sa + T qW sy + ] Kéz =0 (270)
o=

k=1 "
The coefficients of each of the variations must equal zero if the nozzle
contour is opti:uni since the variations are arbitrary along BC. There-

fore, each of the wk must be equal to zero to make the last term zero.

e = (gl = ¥'(Kp)y =0 (kethe.8) (271)

Setting the coefficierts of the variations of gas properties to zero re-

sults in the following equations applicable along the boundary 1ine BC.

hy - y'hy + b, (v-y'u) = G (56)
hyy (v-y'u) - ga? (v=y'u) = 0 (57)
h, {v-y'u) - h]yy' =0 (58)
ks (v-y'u) + hy =0 (52)

Variations in particle properties are applicable only in the region
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ations cf particle properties to zero results in the following equations

which apply along the portion of the boundary between points B and E.

-hsppvp + hsyy'ap + hﬁy‘epup =9 (272)
-hsypp - h7ppvp + h7y‘ppup =0 (273)
-hsyvp + hSyy'up =0 (274)
-happvp + hsy'ppup =0 (275)
which reduce to
hs(y'up - vp) =0 (60)
hs(y’up - vp) + hzyy' =0 (61)
h7(y’up - vp) - hsy =0 (62)
ha(y'up - vp) =0 (63)

The variations of x and y do not provide any additiomal conditions.
Both the coefficients of éx and 8y go to zero when “k is set to zero.
Thus, the entire transversality equation is satisfied along BC when equa-
tions {56) through {63} are satisfied.
4. THE TRAWSVERSALITY CCNDITION ALONG CA

Along the nozzle contour CA. no particles are present, and thus var-
iations ot partic.: properties are not appiicable. Using equation (288)
and setting the coefticients of gas property variations equal to zero

results in the following equations.
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hz(un'~v) + h}nn‘ - Cznn' =0 (276)

h]n - h3(un,'v) - Czn = 0 (277)
hyn(un’-v) - hya®(un’~v) + Con(un’-v) = 0 (279)
hy - n'hz - hy(unt=v) + nn’ + C]Gp =0 (279)

I*ong CA, the gas streamiine equation un’-v = 0 applies and equations

{Z,0) through (279) reduce to

uhgy - vhy + vn + uC]Gp =0 (73)

Setting the coefficient of the variation 6x in equation (268) to

zero yields
u, [hoev - h]npn' - nzoun‘} + v, [hyon + hypov - hooun'] +
+p, [h3 - hzn’ + hyv - h4un'] 0, {h]nv - h]nun' -

2v + h4a2un'] + (p-po)n'n' + C]Gnn' + Czp(un‘-v)n' -

- h4a
-0t & [{p-p.n + G464 + Conou] - &% [-C,mon'] -

dx LIP P/ F LqBpe * L dx tTenen s
B Lol Bl 6i6,) - B Lol =0 (a0

Using the definition of a total derivative,

Q.

FLoF, 4 oF
TR (281)

&
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and equations {(276) through (279) and the equation of a streamline,
un'~-v = 0, equation (280) is reduced to
dC dG.. .

_2 n
“npu =+ CIGn 61 5t C]pnGp - P -
- {d(nDU) - ninpu_ + npv 1. 0 (282)
2 dx n nf
Using the continuity equation
np\‘q = - ﬁDUx - npr - UVDn - =
T - - - ? - L ~
npu, ~ nup, - nn'up, - n'up (2€3)
and
d(npu) . npu, + nup, + n'nou_ + n'nup_ + n'pu (284)
dx pu, Py pu, + n'nup, *+ '

. { . .
the term in the brackets i } goes to zero. Further, with no particles

present, the momentum eguations can be written as

- _ o, du
Py = - pUUL - pVU = DU g (285)
P =~ puv. - pwv_ = -pu ¥ (286)
n X n dx

which together with the relationship C, = h, reduce equation (28Z) to

o
-—

h
X

(o]

|

212?

[=¥

1 f d BG
* Tod 1 " % gh-r) - ( ) (74)

Setting the coefficient of the variation 8y in equation (268) to

zero yields

s
3
o523
ks
3
g
E:
4
5
3

it

ey T TRy
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up [thv - h]npn' - thun'] + vn{hlnp + h3,)v - h3pu¥‘,'] +
+ pn[h3 - hzn' + hyv - h4un‘] +on[h]nv - hynun' -
- hyav + h azu 1 - (p-p.)n' - C,6_ - Cop(un'-v) +
4 42 un P=Po!M = pPp T L2PIHR
d
* ax Lp-pdn + €46 1 + Cpnou] = 0 (287)

Using the streamline equation and equations (276) through (279) reduces

equation (287) to
¢éC dG

2 n!
ol =+ GG - G 5t c1pnGp - PN

{d{nou)

- CZi_—d—x—— - n'neuy + mpv_t = 0 (282)

i
nf
which is the same result as obtained for the variation in x. The trans-

versality equation (74} therefore accounis for variations in both x and

Y-
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