

AFAPL-TR-71-37

# NOISE DETECTABILITY PREDICTION METHOD FOR LOW TIP SPEED PROPELLERS

FRANK W. BARRY BERNARD MAGLIOZZI HAMILTON STANDARD

# TECHNICAL REPORT AFAPL-TR- 71-37

# JUNE 1971

THIS DOCUMENT HAS BEEN AFPROVED FOR PUBLIC RELEASE AND SALE: ITS DISTRIBUTION IS UNLIMITED

AIR FORCE AERO PROPULSION LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

Reproduced From Best Available Copy

SEP 15

| Unclassified                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                     | Best Available Copy                                                                                                                                                                                                                        |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Security Classification                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                          |  |  |  |  |
| UL<br>(Security classification of title, body of ab                                                                                                                                                                                                                                            | JCUMENT CONTROL DATA - R&D<br>istract and indexing annitation must be entr                                                                                                                                                                                          | red when the overall report is classified)                                                                                                                                                                                                 |  |  |  |  |
| 1 ORIGINATING ACTIVITY (Corporate author)                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                  | A REPORT SECURITY CLASSIFICATION                                                                                                                                                                                                           |  |  |  |  |
| Hamilton Standard Division                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     | Unclassified                                                                                                                                                                                                                               |  |  |  |  |
| United Aircraft Corporation                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                   | th GROUP                                                                                                                                                                                                                                   |  |  |  |  |
| Windsor Locks, Connecticut                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                            |  |  |  |  |
| NOISE DETECTABLITY PRED                                                                                                                                                                                                                                                                        | ICTION METHOD FOR LOW                                                                                                                                                                                                                                               | TIP SPEED PROPELLERS                                                                                                                                                                                                                       |  |  |  |  |
| 4 DESCRIPTIVE NOTES (Type of report and inc                                                                                                                                                                                                                                                    | lusive dates)                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                            |  |  |  |  |
| Final Report. 1 May 1970 to 1 M                                                                                                                                                                                                                                                                | lav 1971                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            |  |  |  |  |
| 5 AUTHOR(S) (Last name, first name, initial)                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                            |  |  |  |  |
| Barry, Frank W.<br>Magliozzi, Bernard                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                            |  |  |  |  |
| 6 REPORT DATE                                                                                                                                                                                                                                                                                  | 74 TOTAL NO. OF PA                                                                                                                                                                                                                                                  | GES 75 NO OF REFS                                                                                                                                                                                                                          |  |  |  |  |
| 1 May, 1971                                                                                                                                                                                                                                                                                    | 192                                                                                                                                                                                                                                                                 | 39                                                                                                                                                                                                                                         |  |  |  |  |
| 88 CONTRACT OR GRANT NO                                                                                                                                                                                                                                                                        | 98 ORIGINATOR'S REF                                                                                                                                                                                                                                                 | PORT NUMBER(S)                                                                                                                                                                                                                             |  |  |  |  |
| `F33615-70-C-1583                                                                                                                                                                                                                                                                              | USED CODA                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |  |  |  |  |
| A PROJECT NO                                                                                                                                                                                                                                                                                   | HSER 5834                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |  |  |  |  |
| 3066                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                            |  |  |  |  |
| c                                                                                                                                                                                                                                                                                              | 96 OTHER REPORT N<br>this report)                                                                                                                                                                                                                                   | O(S) (Any other numbers that may be assigned                                                                                                                                                                                               |  |  |  |  |
| đ                                                                                                                                                                                                                                                                                              | AFAPL-TR-71-                                                                                                                                                                                                                                                        | .37                                                                                                                                                                                                                                        |  |  |  |  |
| 10 A VAILABILITY/LIMITATION NOTICES                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                            |  |  |  |  |
| 11 SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                         | 12 SPONSORING MILIT<br>Air Force Aero<br>Air Force Syste<br>Wright-Patters                                                                                                                                                                                          | ARY ACTIVITY<br>Propulsion Laboratory<br>ems Command<br>on AFB. Ohio                                                                                                                                                                       |  |  |  |  |
| Experience in the field of quiet<br>Experience in the field of quiet<br>dicated a need for a reliable qui<br>development of a computer prog                                                                                                                                                    | aircraft for reconnaissance/<br>et propeller design procedur<br>gram intended to fulfill this n                                                                                                                                                                     | surveillance applications in-<br>•e. This report describes the<br>eed.                                                                                                                                                                     |  |  |  |  |
| The propeller noise detectability<br>noise using non-steady blade lost<br>compares these predictions with<br>minimum undetectable flight alt<br>ability criteria, a theoretical st<br>static noise tests of several pro-<br>corresponding to measured harm<br>propeller, and a propeller noise | y computer program predicts<br>ads and broad-band noise usi<br>h an appropriate aural detect<br>itude. Supporting tasks inclu-<br>udy of the effect of airfoil se<br>peller configurations, corre-<br>monic noise levels, design an<br>e detectability trend study. | s propeller harmonic rotational<br>ng a new integration method and<br>ability criterion to estimate the<br>ide development of aural detect-<br>ction shape on vortex noise,<br>lation of unsteady blade loads<br>id testing of a new quiet |  |  |  |  |

The major conclusions are (1) static propeller noise levels can be calculated with acceptable accuracy by the computer program only when empirically-derived unsteady blade loads are included. (2) low tip-speed propellers have an unexplained noise source giving rise to narrow-band random noise, and (3) the prediction of the noise from a propeller in flight using this computer program requires further investigation.

The effect of forward flight on propeller noise and the sources of propeller noise observed in this study should be investigated further. If necessary the computer program should be modified to establish correlation with flight data,  $\vec{-}$ .

#### Unclassified

Security Classification

| KEY HUGH                                                                                                                                                                                              | LINK A                                                                  |                                   | A F LINKH                             |                                     | LINK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|---------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                                                                                                                       | ROLL                                                                    | w.t                               | Acres 1                               | w i                                 | HOLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v. 1                           |
| Propeller Noise                                                                                                                                                                                       |                                                                         | 1                                 |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Tone Noise                                                                                                                                                                                            |                                                                         | ·                                 | j                                     |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Vortex Noise                                                                                                                                                                                          |                                                                         |                                   |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Harmonic Noise                                                                                                                                                                                        |                                                                         |                                   |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Aural Detectability                                                                                                                                                                                   |                                                                         |                                   |                                       | 1                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Rotational Noise                                                                                                                                                                                      |                                                                         |                                   |                                       | ļ I                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Harmonic Loading                                                                                                                                                                                      |                                                                         |                                   |                                       | 1                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Loading Noise                                                                                                                                                                                         |                                                                         |                                   |                                       |                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| Thickness Noise                                                                                                                                                                                       |                                                                         |                                   |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Narrow-Band Random Noise                                                                                                                                                                              |                                                                         |                                   |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                       |                                                                         |                                   |                                       | :                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                       |                                                                         |                                   |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | !                              |
|                                                                                                                                                                                                       |                                                                         |                                   |                                       | !                                   | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
|                                                                                                                                                                                                       |                                                                         | L                                 |                                       | 1                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| INSTE                                                                                                                                                                                                 | RUCTIONS                                                                |                                   |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| I. ORIGINATING ACTIVITY: Enter the name and address<br>of the contractor, subcontractor, grantee, Department of De-<br>lense activity or other organization (corporate author) issuing<br>the report. | 10. AVAILABILIT<br>itations on further<br>imposed by securi<br>such as: | Y/LIMIT<br>dissemin<br>ty classif | ATION N<br>lation of t<br>ficution, a | OTICES:<br>the report<br>using stat | Enter and the state of the stat | ny lim-<br>an those<br>tements |

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200, 10 and Armed Forces Industrial Manual. Enterthe group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication,

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

76. NUMBER OF REFERENCES Enter the total number of references cited in the report.

84. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, &, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number. subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

95. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

## **Reproduced From Best Available Copy**

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC (3)users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S). (C). or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

# **REPRODUCTION QUALITY NOTICE**

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

If this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.

Tora historical Policitation

# NOISE DETECTABILITY PREDICTION METHOD FOR LOW TIP SPEED PROPELLERS

2

FRANK W. BARRY BERNARD MAGLIOZZI HAMILTON STANDARD

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED

#### AFAPL-TR-71-37

#### FOREWORD

This report was prepared by the Hamilton Standard Division of United Aircraft Corporation, Windsor Locks, Connecticut, for the Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force Base, Ohio, under Contract F33615-70-C-1683. The contract was initiated under Project 3066, Task 306612. The Hamilton Standard report number is HSER 5834. This report covers work conducted from 1 May 1970 to 1 May 1971.

Capt. Paul A. Shahady, (AFAPL/TBC), was Project Engineer for the Air Force Aero Propulsion Laboratory.

Acknowledgement is due to Mr. Martin R. Fink who conducted the analytical studies of the effects of airfoil section on vortex noise.

This report was submitted by the authors in May 1971.

Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

Director Turbine Engine Division Air Force Aero Propulsia \_\_\_\_aboratory

June 1971

#### ABSTRACT

Experience in the field of quiet aircraft for reconnaissance/surveillance applications indicated a need for a reliable quiet propeller design procedure. This report describes the development of a computerized design technique intended to fulfill this need.

The propeller noise detectability computer program, developed under this contract, predicts propeller harmonic rotational noise using unsteady blade loads and broad-band noise using a new integration method and compares these predictions with an appropriate aural detectability criterion to estimate the minimum undetectable flight altitude. Supporting tasks include development of aural detectability criteria, a theoretical study of the effect of airfoil section shape on vortex noise, static noise tests of several propeller configurations, correlation of unsteady blade loads corresponding to measured harmonic noise levels, design and testing of a new quiet propeller, and a propeller noise detectability trend study.

The major conclusions are: (1) static propeller noise levels can be calculated with acceptable accuracy by the computer program only when empirically-derived unsteady blade loads are included, (2) low tip-speed propellers have an unexplained noise source giving rise to narrow-band random noise, and (3) the prediction of the noise from a propeller in flight using this computer program requires further investigation.

The effect of forward flight on propeller noise and the sources of propeller noise observed in this study should be investigated further. If necessary, the computer program should be modified to establish correlation with flight data.

### TABLE OF CONTENTS

|             |                                                            | Page       |
|-------------|------------------------------------------------------------|------------|
| I           | INTRODUCTION                                               | 1          |
| II          | AURAL DETECTABILITY                                        | 3          |
|             | 1. Introduction                                            | 3          |
|             | 2. Review of Basic Approaches                              | 3          |
|             | 3. Auditory Thresholds                                     | 4          |
|             | 4. Detection of an Auditory Signal in a Masking Noise      | 7          |
|             | 5. Background Noise Sources                                | 10         |
|             | 0. Aural Detection Criteria                                | 12         |
|             | 2. Alternate Method Used by Air Force                      | 10         |
|             | 8. Summary                                                 | 10         |
| ΠΙ          | PROPELLER NOISE THEORY                                     | 17         |
|             | 1. Introduction                                            | 17         |
|             | 2. Assumptions                                             | 18         |
|             | 3. Noise Sources                                           | 18         |
|             | 4. Geometric Acoustics                                     | 19         |
|             | 5. Ground Reflection                                       | 21         |
| П/          | HARMONIC NOISE THEORY                                      | 22         |
| 1 V         | 1 Introduction                                             | 20         |
|             | 2 Harmonia Londing Noise Theory                            | 20         |
|             | 2. Harmonic Loading Noise Theory                           | 24<br>95   |
|             | 4 Fan-Field Approximation                                  | 20         |
|             | 4. Far-Field Approximation                                 | 20         |
|             | 5. Effect of Marmonic Loads on Loading Noise               | 20         |
| v           | BROAD-BAND NOISE THEORY                                    | 31         |
|             | 1. Introduction                                            | 31         |
|             | 2. Prediction Methods in the Literature                    | 31         |
|             | 3. New Hamilton Standard Vortex Noise Theory               | 37         |
|             | 4. Effect of Airfoil Shape on Vortex Noise                 | 41         |
| <b>1</b> 77 |                                                            | A 0        |
| VI          | EXPERIMENTAL PROGRAM                                       | 40         |
|             | 2. Decollog Test Facility                                  | 110<br>A 0 |
|             | 2. Propeller lest racinty                                  | 110<br>E 0 |
|             | A Acoustic Field Calibration and Ambient Noise Measurement | 04<br>EE   |
|             | 4. Acoustic Field Calibration and Data Paduation Sustained | 22         |
|             | o. Acoustic Data Acquisition and Data Reduction Systems    | 57         |

v

ちょうかい だいがい しまたがた

Å

| Hamilton |  | · · Pas 7 8 1 1 | Ũ |     | <br> | * *** |
|----------|--|-----------------|---|-----|------|-------|
| Standard |  |                 | A | (R) |      |       |

# Page

|     | 6. Discussion Of Test Results                       | 61  |
|-----|-----------------------------------------------------|-----|
|     | a. Propeller Test Configurations                    | 61  |
|     | b. Propeller Test Conditions                        | 64  |
|     | c. Rotational Harmonic Noise                        | 64  |
|     | d. Broad-Band Vortex Noise                          | 83  |
|     |                                                     |     |
| VII | CORRELATION OF TEST DATA WITH THEORY                | 100 |
|     | 1. Introduction                                     | 100 |
|     | 2. Harmonic Rotational Noise                        | 101 |
|     | a. Correlation of Test Data with Theory             | 101 |
|     | b. Derived Harmonic Loads                           | 108 |
|     | c. Discussion of Harmonic Noise Sources             | 115 |
|     | 3. Broad-Band Noise                                 | 118 |
|     |                                                     |     |
| VШ  | PROPELLER NOISE DETECTABILITY COMPUTER PROGRAM      | 125 |
|     | 1. Introduction                                     | 125 |
|     | 2. Calculation Options                              | 125 |
|     | 3. Sample Cases                                     | 132 |
|     |                                                     |     |
| IX  | PROPELLER NOISE DETECTABILITY TREND STUDY           | 156 |
|     | 1. Introduction                                     | 156 |
|     | 2. Effect of Tip Speed                              | 159 |
|     | 3. Effect of Propeller Geometry                     | 159 |
|     | 4. Optimum Propeller Design                         | 161 |
|     |                                                     |     |
| х   | CONCLUSIONS                                         | 162 |
|     |                                                     |     |
| XI  | RECOMMENDATIONS                                     | 163 |
|     |                                                     |     |
|     | APPENDIX I DERIVATIONS OF EQUATIONS FOR HARMONIC    |     |
|     | ROTATIONAL NOISE                                    | 165 |
|     |                                                     |     |
|     | APPENDIX II ALTERNATE METHOD FOR CALCULATING UNCOR- |     |
|     | RECTED DETECTION RANGE                              | 167 |
|     |                                                     |     |
|     | REFERENCES                                          | 172 |
|     |                                                     |     |
|     | BIBLIOGRAPHY ON AURAL DETECTABILITY                 | 175 |

# LIST OF FIGURES

# Figure

Salar Salar

| 1          | Comparison of Minimum Audible Field and Minimum Audible               | F        |
|------------|-----------------------------------------------------------------------|----------|
| 'n         | $Companian of Low Encryptor M \land D and M \land D$                  | 0<br>0   |
| 4<br>9     | Average Noise Level in Theiland Jungle                                | 0        |
| 0<br>.1    | Deutime Jungle Noise Meeking Levels                                   | 9<br>10  |
| 4<br>E     | Nighttime Jungle Noise Masking Levels                                 | 10       |
| a<br>c     | Augel Detection Onitonia for Dura Tonon                               | 10       |
| 7          | Aural Detection Criteria for Pure Tones                               | 13       |
| (<br>0     | Broad-Danu Noise Spectra                                              | 33       |
| 0          | Described Test Dig Front View                                         | 44       |
| 9<br>10    | Propeller Test Rig - Front View                                       | 49       |
| 10         | Propenter Test Rig - Side View                                        | 50       |
| 10         | Relation Between Rig Drive Motor Output Power and Shaft Speed         | 51       |
| 12         | Rig Drive Motor Efficiency                                            | 03<br>E4 |
| 1.3        | Schematic Representation of Microphone Locations                      | 94<br>50 |
| 191        | Blade Characteristics                                                 | 00<br>60 |
| 1.)        | Blade Dianforma                                                       | 04       |
| 10         | Blade Planorins                                                       | 00       |
| 10         | Rotational Noise Summary                                              | 60       |
| 10         | Typical Directivity Pattern of Rotational Noise                       | 20<br>20 |
| 19         | Filest of Deceller Configuration on Decel Deck Noise                  | 00       |
| 20         | Sheetrum                                                              | 99       |
| 91         | Effort of Diado Angle of Duscellon Dusced Dand Moise                  | 00       |
| <i>4</i> 1 | Snoothum                                                              | 97       |
|            | Venietion of Fundamental Harmonic SDT with DDM                        | 102      |
| 42<br>0-0  | Companian of Macamed and Dedicted Harmonics of                        | 104      |
| 40<br>4    | Relational Noise                                                      | 104      |
|            | Comparison of Macgured and Dredicted Directivity Detterns             | 104      |
| <u>-</u> 4 | of Pototional Noise                                                   | 1.05     |
| 25         | Devived Harmonia Tarque Londe                                         | 110      |
| -0<br>94   | Derived Harmonic Torque Loads                                         | 119      |
| 20<br>97   | Derived Harmonic Londs                                                | 112      |
|            | Derived Harmonic Loads for Low Tin Speeds                             | 114      |
| 20         | Comparison of a Static Propeller Noise Spectrum with that from        | 111      |
|            | a Propeller in Flight Both Operating at 630 ft/see Tin Speed          |          |
|            | and 1050 SHD                                                          | 117      |
| 30         | Variation of Dronellar Broad-Band Noise with BDM                      | 120      |
|            | Antimuon of a fobelief Droad-Dand Moree with the Meritian Constraints | 140      |

# Figure

| 31 | Effect of RPM on Propeller Broad-Band Spectrum             | 121 |
|----|------------------------------------------------------------|-----|
| 32 | Directivity Pattern of Propeller Broad-Band Noise          | 122 |
| 33 | Probability Distribution of Errors in Predicted 1/3-Octave |     |
|    | Band SPL                                                   | 124 |
| 34 | Summary of Input Data for Propeller Noise Detectability    |     |
|    | Program                                                    | 126 |
| 35 | Listing of Input Data Cards for Four Sample Cases          | 130 |
| 36 | Output of Propeller Design Technique Program for Four      |     |
|    | Sample Cases                                               | 135 |
| 37 | Propeller Noise Detectability Trends                       | 158 |
| 38 | Blade Planforms                                            | 160 |
| 39 | Aural Detection Evaluation (From Ref. 29)                  | 169 |

viii

×

# Page

# LIST OF TABLES

# 

| Table |                                                              | Page |
|-------|--------------------------------------------------------------|------|
| I     | Width of Critical Bands                                      | 8    |
| П     | Equations for Pure Tone Aural Detectability Criteria         | 14   |
| ш     | Aural Detectability Criteria for 1/3-Octave Bands of Noise   | 15   |
| IV    | Fluctuating Lift Coefficients Induced by Boundary Layer      |      |
|       | Displacement                                                 | 46   |
| v     | Ground Reflection Corrections for Broad-Band Propeller Noise | 58   |
| VI    | General Background and Propeller Test Rig Noise              | 59   |
| VII   | Propeller Test Conditions                                    | 66   |
| VIII  | Summary of the Tone Levels for the 47X394 Blades             | 69   |
| IX    | Summary of the Tone Levels for the 47X451 Blades             | 73   |
| Х     | Summary of the Tone Levels for the 47X451 Blades with the    |      |
|       | Propeller in a Pusher Configuration                          | 74   |
| XI    | Summary of the Tone Levels for the 47X464 Blades             | 76   |
| XII   | Summary of the Tone Levels for the 47X464 Blades in a Two-   |      |
|       | Bladed Propeller Configuration                               | 81   |
| XIII  | 1/3-Octave Band Noise Levels for the 47X394 Blades           | 88   |
| XIV   | 1/3-Octave Band Noise Levels for the 47X451 Blades           | 94   |
| XV    | 1/3-Octave Band Noise Levels for the 47X464 Blades           | 97   |
| XVI   | Summary of Harmonic Noise Source Study                       | 106  |
| XVII  | Results of Propeller Noise Detectability Trend Study         | 157  |
|       |                                                              |      |

Та

## SYMBOLS

| AF                        | propeller activity factor                                                              |
|---------------------------|----------------------------------------------------------------------------------------|
| a                         | speed of sound in ambient air                                                          |
| в                         | number of propeller blades                                                             |
| b                         | blade chord                                                                            |
| b. 7                      | blade chord at 0.7 propeller radius                                                    |
| c                         | coefficient                                                                            |
| C <sub>F</sub>            | force coefficient in vortex noise theory                                               |
| $\mathbf{c}_{\mathbf{f}}$ | frequency coefficient in vortex noise theory                                           |
| cL                        | lift coefficient                                                                       |
| C <sub>P</sub>            | power coefficient                                                                      |
| c <sub>T</sub>            | thrust coefficient                                                                     |
| D                         | diameter of propeller or cylinder                                                      |
| d                         | differential operator                                                                  |
| d                         | distance between observer and propeller center                                         |
| dB                        | decibels, for sound pressure level reference is 0.0002 microbars                       |
| e                         | base of natural logarithms, 2.718                                                      |
| F                         | force                                                                                  |
| î                         | cyclic frequency, $\omega/2\pi$ , Hz                                                   |
| нр                        | propeller shaft hor <b>se</b> power                                                    |
| Hz                        | abbreviation for Hertz, cps                                                            |
| h                         | blade thickness                                                                        |
| h. 7                      | blade thickness at 0.7 propeller radius                                                |
| i                         | $\sqrt{-1}$                                                                            |
| , з <sup>в</sup>          | Bessel function of first kind of order n and argument n $\Omega$ Yr/(aS <sub>0</sub> ) |
| К                         | thickness noise doublet strength proportionality factor                                |
| k                         | $m B\Omega/a$                                                                          |
| 6                         | length of cylinder                                                                     |

x

| ln             | natural logarithm to base 2.718                                                                        |
|----------------|--------------------------------------------------------------------------------------------------------|
| log            | common logarithm to base 10                                                                            |
| М              | flight Mach number                                                                                     |
| М.А.F.         | minimum audible field                                                                                  |
| М.А.Р.         | minimum audible pressure                                                                               |
| m              | order of rotational sound, ratio of harmonic frequency to blade-<br>passing frequency Bn/60            |
| n              | propeller rpm                                                                                          |
| р              | sound pressure                                                                                         |
| Q              | propeller torque                                                                                       |
| R              | Reynolds number                                                                                        |
| r              | radius from propeller axis                                                                             |
| S              | $\sqrt{X^2 + (1 - M^2)(Y^2 - 2Yr \cos \phi + r^2)}$                                                    |
| s <sub>b</sub> | propeller blade area, B $\int_{hub}^{tip} bdr$                                                         |
| SPL            | sound pressure level, dB re 0.0002 microbar                                                            |
| s <sub>t</sub> | Strouhal number                                                                                        |
| s <sub>0</sub> | $\sqrt{X^2 + (1-M^2) Y^2}$                                                                             |
| Т              | propeller thrust                                                                                       |
| t              | time                                                                                                   |
| V              | velocity                                                                                               |
| V <sub>t</sub> | tip velocity                                                                                           |
| V. 7           | rotation velocity at 0.7 propeller radius                                                              |
| W              | sound power                                                                                            |
| x              | distance to observer from propeller plane at time sound heard, positive if observer ahead of propeller |
| xp             | distance to observer from propeller plane at time sound produced                                       |
| Y              | distance to observer from propeller axis                                                               |
| α              | blade angle of attack at 0.7 radius                                                                    |

à,

| β              | blade angle                                                                                                                                 |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| θ              | blade angle relative to propeller plane                                                                                                     |
| $\theta_{.75}$ | blade angle at 0.75 propeller radius                                                                                                        |
| λ              | order of harmonic loading forces                                                                                                            |
| π              | pi, 3.14159                                                                                                                                 |
| ρ              | mass density of air                                                                                                                         |
| σ              | $(MX+S)/(1-M^2)$                                                                                                                            |
| σ <sub>0</sub> | $(MX+S_0)/(1-M^2)$                                                                                                                          |
| φ              | circumferential angle about propeller axis, 0 in plane of observer                                                                          |
| Ψ              | azimuth angle between vector from propeller center to field point and propeller axis, 0 in forward axis, 90 <sup>0</sup> in propeller plane |
| Ω              | propeller angular velocity, $n\pi/30$ , radians/sec.                                                                                        |
| ω              | circular frequency, radians/sec.                                                                                                            |
|                |                                                                                                                                             |

#### SECTION I

#### INTRODUCTION

Considerable interest has developed recently in quiet propellers for reconnaissance and surveillance aircraft. These propellers are operated at low tip speeds in order to avoid aural detection at relatively low flight altitudes. Recent USAF experience in the field of quiet aircraft has indicated the need for a computerized propeller design technique to calculate propeller performance and noise and to compare the noise to aural detectability criteria. The objective of the study summarized in this report was the development of such a technique. This propeller design technique is in two parts: a proprietary propeller performance computer program previously made available by Hamilton Standard for AF Aero Propulsion Laboratory use and a new propeller noise detectability program written under this contract.

Over the past several years, Hamilton Standard has developed a propeller noise computer program which has been supplied to the AFAPL. However, this program is directed primarily towards commercial applications that require predictions of propeller noise annoyance rather than aural detectability. Several parts of this computer program served as bases for the development of the new propeller noise detectability program. The new program predicts propeller rotational noise and broadband noise for a specified operating condition and compares these predictions with the appropriate aural detectability criterion to determine the minimum undetectable flight altitude. The rotational noise prediction method is derived from an existing Hamilton Standard method with the calculation of noise due to non-steady blade loads added. A second major objective was to develop a new broad-band noise prediction method in order to be able to evaluate the effects of blade geometry changes on the broad-band noise produced.

In support of the computer program development the following tasks were completed:

- a. Development of aural detectability criteria for tone and broad-band noise for two jungle background noise environments.
- b. A theoretical investigation of the effects of airfoil section shape on vortex noise.
- e. Measurement and analysis of harmonic and broad-band noise data from tests on an outdoor static test rig of four low-tip-speed, 11.25-ft diameter, propeller configurations.

- d. Correlation of measured and predicted harmonic noise levels. The lack of correlation obtained led to the selection of non-steady blade loads for use in the computer program which significantly improved correlation.
- e. Correlation of measured broad-band noise levels with predicted broad-band noise levels by empirical adjustment of the coefficients in the theory.
- f. Design and test of a propeller with new blades which was predicted, and measured, to produce over 3 dB less broad-band noise.
- g. Performance of a detectability trend study using the developed computer program.

The major results of this program were 1) the development of a computer program that links detectability and propeller design parameters and 2) the development of a detailed understanding of the noise signature of low-tip-speed propellers at static conditions. Analysis of data acquired on four different propeller configurations in this program revealed the presence of a source producing narrow-band random noise with peaks at frequencies coinciding with the harmonics of blade passage frequency. This type of noise, which is not predicted by existing propeller noise theories, will be the controlling factor in aural detection if it persists in forward flight.

#### SECTION II

#### AURAL DETECTABILITY

#### 1. INTRODUCTION

The aural detection of an aircraft by an observer depends upon several factors including: a) the amplitude and frequency characteristics of the noise generated by the aircraft, b) the effects of the atmosphere on the noise propagation, c) the distance from the aircraft to the observer, d) the influence on the noise of the terrain in the vicinity of the observer, e) the ambient background noise characteristics in the vicinity of the observer, and f) the physiological and psychological characteristics of the observer.

Items a) through d) deal with the definition of the noise source and the propagation of the noise to the observer. These will be discussed in subsequent sections of this report. In this section, consideration will be given to items e) and f) above with simplifying assumptions to remain within the scope of the program. Thus, factors such as the variable attention span and fatigue of the observer, the increased difficulty in detecting a fluctuating signal in a non-steady noise environment as opposed to a steady signal of known character in the presence of noise of constant level, and the influence in the observer's decision of the consequences he would face in the case of a false alarm or failure to report a detection were not considered. Rather, the detection criteria developed are based on laboratory test data on the threshold of hearing and the critical bandwidth concept to determine the masking effects of a steady ambient noise. This method is considered somewhat conservative since it represents the detection of a signal under ideal conditions.

#### 2. REVIEW OF BASIC APPROACHES

The reports on the detection of acoustic signals, with and without the presence of noise, presented in the Bibliography were reviewed.

Essentially, three procedures for determining the aural detection of a signal were found in the literature. The three procedures were identical at low frequencies, where it was agreed that signal detection is uniquely dependent on the auditory threshold. However, at the mid and high frequencies, where it is assumed that the ambient noise exceeds the hearing threshold, the criterion for detection depends on the ear's ability to identify the signal in a masking noise. The three procedures for determining the detection of an acoustic signal in noise are a) the differential level change method, b) the signal-to-noise ratio criterion and c) the masking noise level concept based on the critical bandwidth of the ear. The first procedure predicts detection when a differential level change of  $0.5 \, dB$  occurs; i.e., when the signalplus-noise exceeds the noise alone by  $0.5 \, dB$  or more. The second procedure determines detection at some probability level depending on the signal-to-noise ratio. The third approach predicts detection when the signal exceeds a certain level which is a function of the level of the noise and the critical bandwidth of the ear.

The third approach is considered the most consistent with the scope of this program. It was, therefore, selected as the procedure to be used for this study. Thus, the aural detection criteria presented herein are essentially those described by Smith and Paxson(1), but with notable exceptions which will be brought out in the discussion which follows.

#### 3. AUDITORY THRESHOLDS

The aural detection of a low-frequency signal depends primarily on the hearing threshold. In the laboratory, the auditory threshold in a free-field environment (i.e., the minimum audible field (M.A.F.)) is determined from the minimum level that can be heard, usually an average of the responses from a group of subjects. At very low frequencies, where it is not feasable to generate high-intensity uniform fields in a chamber, other means are employed such as close coupled ear phones, in which case the minimum audible pressure (M.A.P.) is determined. The results from the two methods are not necessarily the same. Figure 1 shows the results from experiments conducted by Robinson and Dadson<sup>(2)</sup>. It is seen that the M.A.P. threshold over the range 80 to 600 Hz is about 9 dB higher than the M.A.F. Up to 3.6 dB of this difference might be due to monaural versus binaural listening<sup>(3)</sup>. However, there remains approximately 6 dB of unexplained difference.

Figure 2 shows the pure tone threshold of hearing for an average young subject at age 18 to 25 years as presented in ISO Recommendation  $R226^{(4)}$ . Also shown are the M.A.P. from 1.5 to 100 Hz as measured by Yeowart, et. al<sup>(5)</sup> and from 5 to 200 Hz according to  $Corso^{(6)}$ . In the range 25 to 100 Hz there is good agreement between Yeowart, et. al. and Corso with both being approximately 15 dB above the M.A.F. Between 100 and 200 Hz, the difference between the M.A.P. and the M.A.F. is about 8 dB which is in agreement with that reported in Reference 2. Corso's<sup>(6)</sup> threshold at 5 Hz does not appear consistent with those measured by other investigators. In Figure 2 of his paper, he compares his results with those of others and he appears to be more than 20 dB lower than Bekesy at 5 Hz. Adding 20 dB to his results at 5 Hz would then make him consistent with Yeowart and Bekesy.

Inasmuch as it was desired to extend the aural detection criteria to 1.5 Hz, the curves of Figure 2 were reconciled as shown by the dashed line and the M.A.F curve. This was done by lowering Yeowart's curve by 10 dB and then smoothly joining it to the M.A.F. curve in the region of overlap.



Figure 1. Comparison of Minimum Audible Field and Minimum Audible Pressure

5

E.ot





6

y

It has been observed that the hearing threshold for octave bands of noise is slightly lower at low frequencies and slightly higher at the mid- and high-frequencies<sup>(7,8)</sup>. Actually, over the range 4 to 125 Hz, the average difference between the threshold for tones and bands of noise is approximately 2.5 dB with a maximum difference of 5.5 dB at 16 Hz<sup>(7)</sup>. Since the difference between the threshold for tones and bands of noise is small at low frequencies where the hearing threshold is used, and it is expected that the low-frequency detection of propeller noise would be due to rotational components, it was decided to ignore the differences between the thresholds for tones and bands of noise and the criterion adopted is the one shown in Figure 2 as described in the preceding paragraph.

#### 4. DETECTION OF AN AUDITORY SIGNAL IN A MASKING NOISE

It has been shown that the part of the noise that is effective in masking a tone (or narrow band of noise) is the part of the spectrum lying near the tone and containing the same amount of power as the tone, and that the parts of the spectrum that are far from the tone contribute no masking<sup>(9)</sup>. Table I presents a) the ratio between the monaural masked threshold of a pure tone and the level per Hertz of the masking noise, measured at the frequency of the pure tone at the one-third octave band center frequencies of 100 to 10,000 Hz, as obtained from Reference 9, and b) the width of the band of frequencies that actually contributes to the masking of a tone located at the center of the band as defined by the levels in the center column. It is easy to see that for a typical noise environment, the masking level (i.e., the level of a tone or narrow band of noise below which it will not be detected in the noise) is given by:

$$M.L. = SPL - 10 \log BW + 10 \log \Delta f$$
(1)

where

| M.L. |   | Masking Level, dB                     |
|------|---|---------------------------------------|
| SPL  | = | Sound Pressure Level of the Noise, dB |
| BW   | - | Bandwidth of the Noise, Hz            |
| ۱۲   | = | Critical bandwidth, Hz                |

Thus, if the level of a tone or the spectrum level of a band of noise exceeds the masking level, it will be detected.

#### 5. BACKGROUND NOISE SOURCES

The masking noise considered in this study is that which exists in a quiet jungle environment. Figure 3 presents average one-third octave band sound pressure levels (1/3-octave band SPL) from 100 to 1000 Hz measured in a daytime and nighttime Thailand jungle<sup>(10)</sup>. Figures 4 and 5 show these levels converted to masking levels

# TABLE I

## WIDTH OF CRITICAL BANDS

| Frequency | Ratio Between the Monaural<br>Masked Threshold of a Pure<br>Tone and the Level per Hertz<br>of the Masking Noise | Equivalent<br>Band-Width<br>of the<br>Masking Noise |
|-----------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 100 Hz    | 19.0 dB                                                                                                          | 80 Hz                                               |
| 125       | 17.9                                                                                                             | 62                                                  |
| 160       | 17.2                                                                                                             | 53                                                  |
| 200       | 17.0                                                                                                             | 50                                                  |
| 250       | 16.8                                                                                                             | 48                                                  |
| 315       | 16.8                                                                                                             | 48                                                  |
| 400       | 17.0                                                                                                             | 50                                                  |
| 500       | 17.1                                                                                                             | 51                                                  |
| 625       | 17.6                                                                                                             | 57                                                  |
| 800       | 17.9                                                                                                             | 62                                                  |
| 1000      | 18.5                                                                                                             | 70                                                  |
| 1250      | 19.0                                                                                                             | 79                                                  |
| 1600      | 19.5                                                                                                             | 90                                                  |
| 2000      | 20.6                                                                                                             | 115                                                 |
| 2500      | 21.6                                                                                                             | 145                                                 |
| 3150      | 22.6                                                                                                             | 180                                                 |
| 4000      | 23.8                                                                                                             | 240                                                 |
| 5000      | 24.9                                                                                                             | 319                                                 |
| 6250      | 26.3                                                                                                             | 430                                                 |
| 8000      | 27.8                                                                                                             | 600                                                 |
| 10000     | 29.1                                                                                                             | 810                                                 |

8

.



SOUND PRESSURE LEVEL de re .. 0002 Jubar

E.F.

Figure 3. Average Noise Level in Thailand Jungle

SOURCE: REF. 10



WASKING LEVEL, dB

.

Figure 4. Daytime Jungle Noise Masking Levels

10

ø



Figure 5. Nighttime Jungle Noise Masking Levels

11

のたいが ものまたが日日

i. Na compared to those from two Panama jungles (11). It is seen that there is good agreement between the Thailand and Madden Jungle ambient noise levels. It was, thus, decided to use the Madden Jungle noise levels throughout the frequency spectrum for consistency. Also, the masking levels were extrapolated to 10,000 Hz.

#### 6. AURAL DETECTION CRITERIA

The elements developed in the previous sections were combined into aural detection criteria for tones and bands of noise for a daytime and a nighttime jungle. Figure 6 shows the detection criteria for pure tones. It is seen that at low frequencies, the curve is the threshold of hearing while at the other frequencies it is determined by the jungle noise. A smooth transition was drawn at the junction of the two curves.

In the computer program, the levels of the tones which are calculated are compared to the detection criteria. To facilitate this comparison, the curves of Figure 6 were approximated by several polynomial equations from least – squares curve fits. The resulting series of equations, summarized in Table II, are then used to establish detection of pure tone components by entering the frequency of the pure tone into the appropriate equation and comparing the thus-computed detection level to the predicted level of the tone.

As an example, say a pure tone component has a frequency of 73 Hz. Then, from Table II, the detection criterion for a daytime jungle for a pure tone at 73 Hz is given by:

$$SPL_{D} = 585.3 - 286.929 \ln (73) + 48.6023 \left[ \ln (73) \right]^{2} - 2.75325 \left[ \ln (73) \right]^{3}$$
  
= 31.5 dB

If the level of the tone equals or exceeds 31.5 dB it will be detected.

The criteria presented in Figure 6 and Table II could be used for broad-band noise signals as well, since no distinction is made between the response of the ear to bands of noise or tones. However, inasmuch as the noise estimating method calculates broad-band noise in 1/3-octave band SPL's, it is economical to convert Figure 6 into equivalent 1/3-octave band SPL's. That is to say, the levels of the 1/3-octave bands (of constant energy within bandwidths) which have spectrum levels equal to the detection level at each band-center frequency were computed and are shown in Table III.

To illustrate the derivation of the levels shown in Table III, consider a 1/3octave band SPL of band-center frequency of 800 Hz. The width of this band is 183 Hz. Thus, for it to have a spectrum level of 10 dB (the nighttime jungle detection criterion at 800 Hz from Figure 6), it must have a sound pressure level of:



Figure 6. Aural Detection Criteria for Pure Tones

13

Carbon and shares at

### TABLE II

# EQUATIONS FOR PURE TONE AURAL DETECTABILITY CRITERIA

The detection level,  $SPL_D$ , at a given frequency, f, is given by:

 $SPL_{D} = C_{0} + C_{1} \ln f + C_{2} (\ln f)^{2} + \dots + C_{N} (\ln f)^{N}$ 

where the coefficients  $C_0, C_1, \ldots, C_N$  are defined as follows:

1. Daytime jungle environment

|                | Frequency Range |              |                  |
|----------------|-----------------|--------------|------------------|
| Coefficient    | 1.5 to 67 Hz    | 67 to 900 Hz | 900 to 10,000 Hz |
| с <sub>о</sub> | 125,2           | 585.3        | 169.2            |
| c <sub>1</sub> | 0.698014        | -286.929     | -2,38024         |
| C.2            | -15,1156        | 48.6023      | -1.10338         |
| C <sub>3</sub> | 6.16882         | -2.75325     | -1.47127         |
| C <sub>4</sub> | -1,34790        | 0            | 0.137120         |
| С <sub>5</sub> | 0.299928        | 0            | 0.016260         |
| с <sub>6</sub> | -0,109861       | 0            | -0,001549        |
| C <sub>7</sub> | 0.014986        | 0            | 0                |

2. Nighttime jungle environment

|                | Frequency Range |              |                 |                       |
|----------------|-----------------|--------------|-----------------|-----------------------|
| Coefficient    | 1.5 to 67 Hz    | 67 to 735 Hz | 735 to 6,000 Hz | 6,000 to<br>10,000 Hz |
| c <sub>o</sub> | 125.2           | 261.4        | 480.2           | 36.4                  |
| c <sub>1</sub> | 0.698014        | -56.2722     | -94.0359        | 0                     |
| $c_2$          | ~15.1156        | -2.34364     | -4.44855        | 0                     |
| с <sub>з</sub> | 6.16882         | -0.591769    | 0,181656        | 0                     |
| с <sub>4</sub> | -1.34790        | 0.438657     | 0, 312787       | 0                     |
| с <sub>5</sub> | 0,299928        | -0.027795    | -0.024082       | 0                     |
| с <sub>б</sub> | -0.109861       | -0.00114     | 0               | 0                     |
| С <sub>7</sub> | 0,014986        | 0            | 0               | 0                     |

| ********* | TA | B | LE | III |  |
|-----------|----|---|----|-----|--|
|-----------|----|---|----|-----|--|

| Band Center<br>Frequency | Daytime<br>Jungle | Nighttime<br>Jungle |
|--------------------------|-------------------|---------------------|
| 1.6 Hz                   | 121.5 dB          | 121.5 dB            |
| 2                        | 120               | 120                 |
| 2.5                      | 117               | 117                 |
| 3.2                      | 113.5             | 113.5               |
| 4                        | 109               | 109                 |
| 5                        | 104               | 104                 |
| 6.3                      | 99.5              | 99.5                |
| 8                        | 95                | 95                  |
| 10                       | 91.5              | 91.5                |
| 12.5                     | 87.5              | 87.5                |
| 16                       | 82                | 82                  |
| 20                       | 74.5              | 74.5                |
| 25                       | 65                | 65                  |
| 31.5                     | 56                | 56                  |
| -40                      | 48                | 48                  |
| 50                       | 41.5              | 41.5                |
| 62,5                     | 37                | 35.5                |
| 80                       | 34                | 32                  |
| 100                      | 33.5              | 30                  |
| 125                      | 34.5              | 29                  |
| 160                      | 35.5              | 29.5                |
| 200                      | 36.5              | 29.5                |
| 250                      | 37.5              | 30.5                |
| 315                      | 38.5              | 31.5                |
| 400                      | 39                | 32.5                |
| 500                      | 39,5              | 33                  |
| 625                      | 39.5              | 32.5                |
| 800                      | 39                | 32.5                |
| 1000                     | 38.5              | 33.5                |
| 1250                     | 38                | 37                  |
| 1600                     | 38                | 42                  |
| 2000                     | 39                | 47.5                |
| 2500                     | 41                | 53.5                |
| 3150                     | -4-4              | 59                  |
| 4000                     | 47                | 63                  |
| 5000                     | 50 <b>.</b> 5     | 65                  |
| 6250                     | 53.5              | 66.5                |
| 8000                     | 55                | 68                  |
| 10000                    | 56.5              | 69                  |

# AURAL DETECTABILITY CRITERIA FOR 1/3-OCTAVE BANDS OF NOISE

.

#### $SPL = 10 + 10 \log (183) = 32.5 dB$

The other bands were treated in a similar fashion.

### 7. ALTERNATE METHOD USED BY AIR FORCE

The Air Force developed an alternate method for calculating aural detection range of broad-band propeller noise after the draft of this report was submitted. A description of this alternate method was prepared by the Air Force and is included as Appendix II of this report at their request. Use of this alternate method may increase the minimum undetectable altitude of broad-band noise by about a factor of three relative to the method discussed above.

#### 8. SUMMARY

In summary, aural detection criteria were derived for pure tones of frequency range 1.5 to 10,000 Hz and 1/3-octave bands of noise of center frequencies from 1.6, to 10,000 Hz based on laboratory test data for the auditory thresholds and the masking effects of a quiet daytime and nighttime jungle noise.

The detection criteria for pure tones were converted to equation form expressing the detection level as a function of frequency. Also, the detection criteria for broadband noise was converted to equivalent 1/3-octave band SPL's. In each case, detection is said to occur if any component of the noise signal equals or exceeds the detection criteria.

#### SECTION III

#### PROPELLER NOISE THEORY

#### 1. INTRODUCTION

Theoretical methods of predicting propeller rotational noise have been under continuous development since 1936 when the work of  $Gutin^{(12)}$  was published describing the basic disc theory of noise due to blade loading. Rotational noise is a tone noise which occurs at harmonics of the blade passing frequency Bn/60 Hz. For moderate-to-high tip speeds used in nearly all applications of propellers, calculations based on the theory show generally good agreement with test data.

The first theory of vortex noise was developed in 1944 by  $Yudin^{(13)}$  and was based on a dimensional analysis of flow parameters around rotating rods. The term "vortex noise" has been given to the broad-band noise produced by a propeller or rotor, because it was believed to be caused by an oscillating force associated with a Karman vortex street, such as is observed behind a rod normal to a moving stream. Subsequent work has produced several empirical procedures for predicting vortex noise.

Experimental data for medium- and high-tip speed propellers and published data for helicopters show noise frequency spectra which usually have the following general characteristics: a) there are a series of tone noises, the first at the blade-passing frequency of Bn/60 Hz and the rest at multiples of this frequency: b) the SPL of these rotational tone noises decreases with increasing harmonic number until the tones become lost in broad-band noise; and c) there is a broad-band noise which has a maximum sound level at a frequency of a few hundred Hertz. The harmonic noise levels are a maximum just behind the propeller plane, near  $\psi = 105^{\circ}$ , and decrease near the propeller axis. The broad-band noise levels, on the other hand, are a maximum on the axis and a minimum near the propeller plane. The theory for propeller rotational noise and the empirical procedures for vortex noise result in the same frequency spectrum shape as that described above based on measurements.

The theories for propeller noise contain several assumptions which may not always be stated explicitly. Therefore, it is appropriate to discuss these common assumptions in the following section. The theories of propeller rotational and vortex noise are discussed in Section III.3. Some general considerations of geometrical acoustics which apply to propeller noise are presented in Section III.4. Lastly the effects of reflection of the noise from the ground on the noise at the observer are described.

#### 2. ASSUMPTIONS

The usual noise theories are based on the following assumptions:

- a. The sound waves are weak and propagate at the speed of sound, which is proportional to the square root of the absolute temperature of the ambient air.
- b. The sound waves propagate through air which is at rest (no wind or turbulence) and has a constant speed of sound. Therefore, air velocities induced by the propeller and aircraft are not considered.
- c. The basic wave equations may be linearized, so that independent solutions for each sound source may be added. Therefore nonlinear effects<sup>(14)</sup> are ignored.
- d. Absorption of sound<sup>(15)</sup>, which is proportional to distance and depends on temperature, humidity and sound frequency, is not considered. However, the propeller noise detectability computer program discussed in Section VIII does include a correction for sound absorption.
- e. The propeller is either operating statically or is moving along the propeller axis at constant speed.
- f. The noise from separate propellers has a random phase relation. Therefore, the addition of sound from more than one propeller adds 10 log (number of propellers) to the sound pressure level of one propeller. Thus, two propellers are 3 dB noisier than one and would be detected nearly 1.4 times as far away.
- g. The propeller blades are identically loaded, geometrically identical, equally spaced, and located in a disc normal to the propeller axis and flight path. The effects of non-equal spacing in fans has been investigated and it has been shown that sound energy can be redistributed among the harmonics. However, further development is required if these effects are to be included in propeller noise theory.
- h. The propeller and observer are in a free field; i.e., there is no sound reflecting surface nearby. The consequences of this assumption are discussed in Section III.5.

#### 3. NOISE SOURCES

Historically, propeller noise has been divided into three sources: loading noise, thickness noise and vortex noise. The first two sources, collectively called rotational noise, result in a series of harmonic tones at frequencies which are multiples of the blade passing frequency. Bn/60 Hz. The third source, vortex noise, is often associated with a periodic force on the blades due to a periodic wake, similar to the Karman vortex street from a cylinder normal to the flow.

First consider rotational noise. To an observer rotating in a reference frame fixed to the rotating propeller, the B blades produce a steady disturbance pressure field which has a circumferential period of  $360^{\circ}/B$ . The disturbance pressures are due to the loads (conventionally resolved into thrust and torque components) on the blades and due to the volume (thickness) of the blades. But to an observer who is stationary (not rotating), the disturbance pressure field is rotating with the propeller at n rpm and, therefore, the pressure at the observer not on the axis oscillates with a fundamental frequency of Bn/60 Hz. This oscillating pressure is the harmonic rotational noise and may be Fourier analyzed to determine the pressure amplitude of each harmonic of the blade passing frequency. On the propeller axis the pressure is constant and, therefore, there is no rotational noise. Theoretically, the thickness noise is a maximum in the propeller plane and zero on the propeller axis. Loading noise is a maximum just behind the propeller plane. However, if a circumferential variation in blade loading exists, there is loading noise present on the axis and the variation in loading noise with direction decreases. The variation in blade loading may be due to operation of the aircraft at an angle of attack and to interference from the airframe.

The theory of broad-band propeller noise is much less developed and understood than the theory for harmonic noise. The published theories all rely on at least one empirical factor. unlike the harmonic noise theories. Several possible sources of broad-band noise have been suggested, including a) an alternating vortex shedding at the trailing edge of the blade, b) fluctuating pressures in the turbulent boundary layer flowing over the blade, and c) turbulence in the incoming airflow.

#### 4. GEOMETRIC ACOUSTICS

Several factors which affect the noise characteristics heard by an observer, but which do not depend on the noise source, are discussed in this section.

Near the propeller, the sound pressure level varies with distance from the propeller in a complicated way because of the way that noise from different parts of the propeller combines. However, in the far-field, typically over 3 to 5 diameters away, the variation with distance becomes quite simple: a 6 dB decrease in noise SPL for each doubling of distance.

If the sound is propagated vertically the simple relation of 6 dB/doubling of distance should be modified because of the vertical gradients in atmospheric density and speed of sound. If the sound intensity at the observer is not altered by these gradients, the square of the amplitude of the sound pressure is proportional to the product of density and speed of sound at the observer. Because both these parameters decrease with altitude (below 36089 feet for the standard atmosphere<sup>(16)</sup>) the SPL at an observer below the propeller is larger than at an observer at the same altitude as

the propeller. This effect increases the SPL by 0.142 dB/1000 ft altitude difference for the standard temperature lapse rate of  $6.5^{\circ}$ K/Km. This increment in SPL is included in the calculation of the minimum undetectable altitude by the computer program.

As the distance between the propeller and the observer becomes large, especially for high frequencies, the sound pressure level is further reduced by the effects of molecular absorption in the atmosphere. Published reports on absorption coefficients<sup>(15)</sup> show that the SPL is reduced by an amount which is proportional to the sound propagation distance. The proportionality factor, or coefficient of atmospheric absorption, is a function of the atmospheric temperature and relative humidity and of the sound frequency. The coefficient is small at low frequencies but increases rapidly with frequency above 1000 Hz. The computer program uses the equations for the coefficients of atmospheric absorption from Ref. (15).

Motion of the aircraft through the air has several effects on the propeller noise. Motion changes the sound power level produced and the directivity pattern of the noise produced. The theory for harmonic loading noise with the observer stationary relative to the aircraft (both moving or only air moving) is presented in Ref. (17). For a fixed observer, as assumed in the computer program, the sound pressure level is unaitered relative to the case of a moving observer but the sound frequency is altered by the familiar Doppler effect. For an airplane flying at a Mach number M along a straight path which is Y feet from the observer, the frequency is multiplied by a factor 1  $(1 - Xp M \sqrt{Xp^2 + Y^2})$  where Xp is the distance to the observer forward of the propeller plane when the sound was produced. The result is to increase the frequency while the plane is approaching (Xp > 0) and to decrease the frequency as the plane x = x(Xp < 0).

Because the speed of sound is small relative to the speed of light, the airplane is not seen at the location at which the sound being heard was produced. If the observer is at distance X forward of the propeller plane when a sound is heard, the observer was at a distance Xp forward when the sound was produced, where

$$N_{\rm P} = \frac{X + M\sqrt{X^2 + (1 - M^2) Y^2}}{1 - M^2}$$
(2)

This distance is required because the atmospheric absorption is proportional to  $\sqrt{Xp^2 + Y^2}$ , the distance the sound propagated. The relation between these various distances is illustrated in the following sketch.



#### 5. GROUND REFLECTION

When an acoustic wave impinges on a rigid surface, it is generally reflected. Thus, in an aircraft flyover the noise emanating from the aircraft will propagate to the ground and be reflected. This reflected wave will then interact with the direct wave and give rise to interference patterns in the acoustic field. At some location and frequency, there may be constructive interference (when the incoming and reflected waves are in phase) in which case the acoustic pressure is greater than for free-field conditions (no obstructions in the acoustic field). Conversely, destructive interference will occur elsewhere or at some other frequency in which case the acoustic pressure will be less than for a free-field.

The exact magnitude of this effect, relative to free-field conditions, is difficult to estimate. However, theory indicates that the correction to free-field estimates would vary from a reduction of infinity dB for complete destructive interference to an increase of 6 dB when the reflected and direct waves are of equal amplitude and in phase. The actual effect at some field point depends on several factors, including a) the amplitude and frequency characteristics of the source, b) the altitudes of the source and field point above the ground, c) the distance from the source to the field point, d) the angle of incidence of this wave onto the ground surface, and e) the complex impedance of the ground.

To our knowledge, a comprehensive ground reflection effect calculation procedure is not available at the present time, although several investigations are presently under way. In was thus decided not to include this effect in the computer program developed
for this contract. However, it could be included at some later time when results of current work become available.

However, due consideration is given to the phenomenon of ground reflection in correcting the test data acquired in the course of this program to equivalent freefield conditions. Thus, in Section VI, a description is given of the empiricallyderived effects of ground reflections on the noise measured for the propeller configurations tested.

i.

22

¥

# SECTION IV

#### HARMONIC ROTATIONAL NOISE THEORY

# 1. INTRODUCTION

Development of theoretical methods of predicting propeller rotational noise was started in 1936 when  $Gutin^{(12)}$  published a paper describing the basic disc theory of noise due to the thrust and torque loads on propeller blades. Gutin's theory is limited to a stationary (i.e., not flying, as on a ground test rig) propeller in still air, and approximations are made which limit the theory to the fundamental and first overtones at a distance exceeding several propeller diameters.

Several workers have removed these limitations to produce the currentlyaccepted theories for propeller loading noise (17 to 22) Experience has shown that these theories provide generally good agreement with test data at moderate to high tip speeds.

Development of theoretical methods of predicting propeller thickness noise had a similar history, resulting in Arnoldi's theory (23) Calculations have shown that thickness noise may exceed loading noise in the higher harmonics if the blade is large; i.e., if the chord width and thickness are large.

The theoretical equations for harmonic loading and thickness noise developed from the above works which are used in the propeller noise detectability program are presented in this section. Two significant comments regarding the equations embodied in this program are worth making. First, the effective-radius approximation which concentrates the propeller load and volume noise sources at one radius, usually 80% of the tip radius, is not used. Therefore changes in the radial distribution of propeller blade loads and geometry are accounted for. Second, in order to account for effects of large blade chords, the blade loads are assumed to be distributed uniformly over the blade chord rather than concentrated on a radial line. The effect of blade angle reducing the projection of the chord onto the propeller plane is allowed for. Experience with another program by Hamilton Standard has shown that using a distributed lead has little effect on the level of the fundamental, but does reduce the level of the higher harmonics compared to calculations with a concentrated load. It is believed that the program, which does not use either the effective radius or the concentrated load assumptions, is more accurate and will show the effects of changes in blade geometry.

# 2. HARMONIC LOADING NOISE THEORY

Because the development of the harmonic loading noise theory is readily available in the literature, (e.g., in Refs. 17 and 18) it will not be presented here. The theory is based on an array of non-steady point forces in the propeller disc representing the blade thrust and torque forces. Each of these point forces is zero except when a propeller blade is located in the same part of the disc. Thus, each force acts as a series of pulses with a fundamental frequency equal to the blade-passing frequency and a pulse width proportional to the blade chord. These point forces move along the flight path with the propeller, but do not rotate with the blades. The assumption is made of a constant chordwise blade loading over the projection of the chord onto the propeller plane rather than the common zero-chord assumption. The assumption is made that the blade loads do not vary circumferentially; i.e., the blade loads are constant. The equation for the disturbance pressure at a field point with coordinates (X, Y) relative to the propeller centerline is:

$$p_{m} = e^{-im B\Omega t} \frac{\rho \Omega^{2} D^{4}}{4\pi^{4} m B} \int_{hub}^{tip} \frac{r}{b \cos \theta} \sin \left( \frac{m Bb \cos \theta}{2r} \right) \int_{0}^{\pi} \frac{\cos \left(m B \phi\right)}{S} \left[ -\frac{dC_{T}}{dr} \left\{ \left( \frac{X}{S^{2}} + \frac{ik(M + X/S)}{1 - M^{2}} \right) \cos \left(k\sigma\right) + \left( \frac{k(M + X/S)}{1 - M^{2}} - \frac{iX}{S^{2}} \right) \sin \left(k\sigma\right) \right\} + \frac{m BD}{2\pi r^{2}} \frac{dC_{p}}{dr} \frac{dC_{p}}{dr}$$

$$\left\{ \sin (k\sigma) + i\cos (k\sigma) \right\} d\phi dr \qquad (3)$$

The derivation of the equation is outlined in Appendix I.

This equation is valid in the near field at distances greater than a chord from the tip provided that the wavelength of the sound exceeds the chord. The propeller noise detectability computer program performs the circumferential ( $\phi$ ) integration by Simpson's 1/3 rule using at least 100 intervals and the radial (r) integration using a 10-point Gauss integration. The term r sin (mBb cos  $\theta$ /2r)/b cos  $\theta$  depends on the solidity or activity factor and is a result of assuming a constant chordwise loading. The formulation of the equation for loading noise presented in Ref. (18) is that used by the computer program.

The disturbance pressure is the sum of harmonics, which are multiples of the blade-passing frequency Bn/60 Hz. The amplitude of each harmonic is given by Eq. (3) without the  $e^{-im B\Omega t}$  term and the corresponding sound pressure level is 124.572 + 20 log (amplitude), where the amplitude is expressed in psf. This equation

follows from the definition of sound pressure level, 20 log  $(p/p_0)$  dB, where p is the rms sound pressure (= pressure amplitude  $/\sqrt{2}$ ) and  $p_0$  is the reference pressure  $(0.0002 \text{ microbar} = 4.177 \times 10^{-7} \text{ psf})$ . The constant 124.572 equals -20 log  $(\sqrt{2} (4.177 \times 10^{-7}))$ .

For static operation, torque loading noise is a maximum in the propeller plane, symmetrical about the propeller plane, and zero on the axis. Thrust loading noise, on the other hand, has two lobes at about  $\psi = 45^{\circ}$  and  $135^{\circ}$  and is zero on the axis and in the propeller plane. Addition of these two loading noises results in a maximum noise about  $15^{\circ}$  behind the propeller plane. In flight these directivity patterns are somewhat distorted. These characteristics of the directivity pattern are not readily apparent from an examination of Eq. (3). However, they may be demonstrated by calculation using the propeller noise detectability program. Alternatively, if the far-field approximation is used the equation for harmonic loading noise may be changed to a form which readily shows the directivity pattern discussed. This equation is presented as Eq. (5) in a following section.

A significant result of the assumption of constant blade loading is that the propeller noise field is symmetrical about the propeller axis and, therefore, the location of field point, or observer, may be specified in terms of only two variables (e.g., X and Y).

# 3. HARMONIC THICKNESS NOISE THEORY

The development of the harmonic thickness noise theory used by the propeller noise detectability program is presented in Ref. (23) and will not be repeated here. It assumes that a doublet, or dipole, moving along a helical path is the noise source. The disturbance pressure is proportional to the strength of this doublet which, in turn, is proportional to the product of blade chord and thickness. The proportionality factor is called the thickness noise doublet strength proportionality factor by Arnoldi, who presents a method for computing this factor from a chordwise pressure distribution over the blade airfoil. However, it is usually satisfactory to use an approximate area formula for thin airfoils which states that this factor equals the ratio of the blade section cross-sectional area to the product of blade chord and thickness. Typical values of the factor are near 0.7.

Arnoldi's $^{(23)}$  equation for thickness noise, after modifications described in Appendix I, is

$$p_{\rm m} = e^{-imB\Omega t} \frac{\rho m^2 \Omega^2 B^3}{2\pi^2 (1 - M^2)} \int_{\rm hub}^{\rm tip} Khb \int_{0}^{\pi} \frac{\cos (mB\phi)}{s} \left[ \left| \left( \frac{\sigma}{s} \right)^2 + \left( \frac{M}{kS} \right)^2 \left( 1 - 3 \left( \frac{X}{s} \right)^2 \right) \right| \left( 1 - M \right)^2 (\cos (k\sigma) - i \sin (k\sigma)) + \frac{M}{kS} \left| M \left( 1 - 3 \left( \frac{X}{s} \right)^2 \right) - 2 \frac{X}{s} \right| (\sin (k\sigma) + i \cos (k\sigma)) \right] d\phi dr \quad (4)$$

The propeller noise detectability computer program uses the same method to integrate this equation as it uses for the loading noise Eq. (3).

It can be seen from Eq. (4) that thickness noise increases as the blade cross sectional area is increased, by increasing chord for example. Calculations by Hamilton Standard show that thickness harmonic noise is likely to predominate over loading harmonic noise if the propeller is lightly loaded or if the blade is large. For static operation, thickness noise is a maximum in the propeller plane, is symmetrical about the propeller plane, and is zero on the axis. In flight this directivity pattern is somewhat distorted. The phase of the pressure changes induced by the two harmonic noise sources is such that they tend to add behind the propeller plane and to subtract in front of the propeller plane. These characteristics are not readily apparent from an examination of Eq. (4) but have been demonstrated by calculations performed by the propeller noise aural detectability program.

# 4. FAR-FIELD APPROXIMATION

If the field point is far from the propeller, the equations for loading and thickness harmonic noise may be simplified. The dividing line between the near-field, in which only equations (3) and (4) are valid and the far field, in which equations (5) and (6) are also valid, is generally set at 3 to 5 diameters. The computer program uses 5 diameters as a criterion. In the far-field, terms with higher orders of the reciprocal of the distance became insignificant and therefore it is possible to perform the circumforential integration analytically, resulting in Bessel functions of the first kind appearing in the equation. Often the radial integration is replaced by an effective-radius approximation, but this approximation has not been used in the propeller noise detectability program.

Because of the saving in machine time, and because the near-field calculations may encounter numerical problems with circumferential integration at low noise levels, it is recommended that the far-field approximation be used whenever possible. Sample computer runs have shown agreement in SPL levels computed by the near-field and far-field methods. However, the oscillatory pressure components of the ground pressures do not agree. This disagreement is acceptable because a phase term which is left out of both the following far-field noise equations does not change the relative phase between the loading and thickness noise pressures.

The equation for far-field loading noise is:

$$p_{m} = e^{-imB\Omega t} \frac{\rho \Omega^{2} D^{4}}{4\pi^{3} s_{0}} \int_{hub}^{tip} \frac{r}{b \cos \theta} \sin \left(\frac{mBb \cos \theta}{2r}\right)$$

$$\left[ -\frac{(M + X/S_{0})\Omega}{a(1 - M^{2})^{4}} \frac{dC_{T}}{dr} + \frac{D}{2\pi r^{2}} \frac{dC_{p}}{dr} \right]$$

$$\left[ J_{mB} - \frac{(1 - M^{2})Yr}{2s_{0}^{2}} (J_{mB-1} - J_{mB+1}) \right] dr \qquad (5)$$

Appendix I includes the derivation of Eq. (5). The argument of the Bessel functions is  $mB\Omega Yr/aS_0$ . The characteristics of the Bessel functions in this equation are such that they are zero if the argument is zero. Therefore Eq. (5) shows that for field points on the propeller axis, where Y = 0, there is no loading noise, as was discussed earlier in connection with the near-field Eq. (3). The torque loading noise is a maximum for field points in the propeller plane where the argument of the Bessel function, and therefore the function itself, is a maximum. The thrust loading noise, on the other hand, for static operation (i.e., M = 0) is shown by Eq. (5) to be zero in the propeller plane where X = 0. In addition, behind the propeller plane (X < 0) the thrust and power terms add and ahead of the propeller plane (X > 0) they partially cancel. Calculations have shown that the combined effect is that the harmonic loading noise is a maximum about  $15^0$  behind the propeller plane for static conditions.

The equation for far-field thickness noise derived in Appendix I is:

$$p_{\rm m} = e^{-imB\Omega t} \frac{\rho m^2 \Omega^2 B^3}{2\pi (1 - M^2)^2} \frac{\left(\frac{S_0 + Mx}{S_0^3}\right)^2}{S_0^3} \int_{\rm hub}^{\rm tip} Khb \\ \left[ J_{\rm mB} - \frac{(1 - M^2)Yr}{2S_0^2} \left(J_{\rm mB-1} - J_{\rm mB+1}\right) \right] dr$$
(6)

As discussed above, the Bessel functions in Eq. (6) cause the calculated thickness noise to be a maximum in the propeller plane for static operation and zero on the propeller axis, thus substantiating the statements made about the directivity pattern of thickness noise in the preceding section.

The two Bessel functions  $J_{mB-1}$  and  $J_{mB+1}$  appear because a more-exact farfield approximation than is usually presented in the literature is employed. This approximation as used here is:

$$\int_{0}^{2\pi} \frac{e^{-imB\phi - ik\sigma}}{s} d\phi \approx 2\pi i^{mB} \frac{e^{-ik\sigma}}{s_{0}} \left[ J_{mB}^{-i} \frac{(1 - M^{2})Yr}{2s_{0}^{2}} (J_{mB-1}^{-j} - J_{mB+1}^{-j}) \right]$$
(7)

This equation differs from that originally published by Arnoldi because a typographical error has been corrected.

# 5. EFFECT OF HARMONIC LOADS ON LOADING NOISE

The theory for harmonic loading noise which resulted in Eq. (3) contains the assumption that the blade loading does not vary as the blade rotates. This assumption permits some analytical simplification and is expected to be valid if the propeller axis is not inclined to the flight direction and there is no interference from non-symmetrical objects. For a helicopter in forward flight, for example, this assumption cannot be expected to be valid and therefore far-field equations for rotor harmonic loading noise with unsteady harmonic loads were developed (e.g., Refs. (19) to (22)). The Fourier components of the thrust and torque loads are used. The zero-order loads are the average steady-state loads. The equation for the mth harmonic or loading noise pressure in the far-field derived in Appendix I is:

ø

$$p_{m} = \sum_{\lambda=0}^{\infty} \frac{i^{-(mB-\lambda)}}{4 \pi d} \left[ \frac{mB\Omega X}{ad} \left\{ ia_{\lambda T} \left( J_{mB-\lambda}^{+(-1)^{\lambda}} J_{mB+\lambda} \right) - \frac{b_{\lambda T} \left( J_{mB-\lambda}^{-(-1)^{\lambda}} J_{mB+\lambda} \right) \right\} - \frac{1}{r^{2}} \left\{ ia_{\lambda Q} \left( (mB-\lambda) J_{mB-\lambda} + (-1)^{\lambda} (mB+\lambda) J_{mB+\lambda} \right) - b_{\lambda Q} \left( (mB-\lambda) J_{mB-\lambda}^{-(-1)^{\lambda}} \right]$$

$$(mB+\lambda) J_{mB+\lambda}$$
(8)

where  $a_{\lambda T}$  and  $b_{\lambda T}$  are the real and imaginary components of the thrust harmonic  $T_{\lambda}$ , and  $a_{\lambda Q}$  and  $b_{\lambda Q}$  are the real and imaginary components of the torque harmonic  $Q_{\lambda}$ . Note that the  $b_{0T} = b_{0Q} = 0$ . Furthermore, with the assumption that the blade loads are concentrated at an effective radius of 0.4D, one has  $a_{0T} = T$  and  $a_{0Q} = Q =$ 5252.1 HP/n. Except for an unusual combination of harmonic load components, the presence of the harmonic loads will increase the harmonic loading noise sound pressure level. This increase is largest near the propeller axis and in the higher harmonic orders.

In general, it is possible to predict the lower-order harmonic loads required in Eq. (8) due to angle of attack of the propeller axis or interference from the wings and fuselage. Hamilton Standard has a computer program that can predict up to four loading harmonics due to interference. A separate program which can use many more load harmonics predicts the resulting loading noise. Unfortunately, the present limit of four loading harmonics means that not even the first noise harmonic can be predicted accurately. It appears from the test data measured during the experimental phase of this contract that harmonic loads are present even with an apparently "clean" installation. In this case neither the phase nor the radial distribution of the harmonic loads on propeller loading noise will be restricted to the far-field effective-radius static case with a random phasing of the harmonic loads assumed.

Lowson and Ollerhead<sup>(20)</sup> to <sup>(22)</sup> have shown that only loading harmonics or orders in the range mB  $(1 \pm V_t/a)$  contribute significantly to the harmonic noise of order m. Therefore a noise pressure with an amplitude squared of

$$p_{m}^{2} = \sum_{\lambda = mB(1-V_{t}/a)}^{mB(1+V_{t}/a)} \left[ \frac{\ln B\Omega}{4 \ln S_{0}a} J_{mB-\lambda} \right]^{2} \left[ \left( \frac{X_{p} T_{\lambda}}{S_{0}} \right)^{2} + (mB-\lambda)^{2} \left( \frac{aQ_{\lambda}}{mB\Omega r^{2}} \right)^{2} \right] (9)$$

must be added to that computed from Eq. (5). Equation (9) is derived in Appendix I.

Depending on the magnitude of the harmonic loads, they will add significantly to the levels of harmonic loading noise for uniform loads computed from Eq. (5). The harmonic loads are most likely to increase the higher harmonics. Also, with harmonic thrust loads present loading noise is predicted to occur on the axis whereas for uniform loading the previous discussion has shown that there is no harmonic noise on the axis.

Levels for the loading harmonics of helicopter rotors were presented by Ollerhead and  $Lowson^{(21)}$ . They suggest that the level of a load harmonic equals the steady-state load divided by the load order to the 2.5 power. For a compressor the exponent appears to be 1.0 rather than the 2.5 for helicopters. Estimates of the loading harmonics were derived from the harmonic noise data measured in the experimental program and are discussed in a later Section VII.2b, where an exponent of 1.43 is recommended.

# SECTION V

# BROAD-BAND NOISE THEORY

# 1. INTRODUCTION

The first theory of vortex noise was developed by  $Yudin^{(13)}$  in 1944 and was based on a dimensional analysis of flow parameters around rotating rods. The theory is based on the observation that a Karman vortex street is observed behind the rod over a significant range of Reynolds numbers and produces an oscillating force on the rod. Because of difficulties with a rigorous mathematical analysis, later studies have concentrated on determining empirical coefficients which apply to propellers or helicopter rotors. These will be discussed in the next section.

Most empirical broad-band noise prediction methods are incomplete because they do not predict directivity effects, noise levels and spectrum shape. All three are required for a detectability study. Also, they involve gross parameters such as total thrust and blade area without including the radial distribution of these parameters. Two methods, developed previously by Hamilton Standard, are complete and are incorporated into the propeller noise detectability program as options. A third method was developed in the present program and is incorporated into the propeller noise detectability program. This new method predicts the broad-band noise level in each 1/3-octave band and, unlike most other methods, uses a detailed description of the propeller blade geometry. Thus, it is the most complete method for predicting propeller broad-band noise available. The selection of the 3 empirical coefficients required by the method is based on noise data measured during the test phase of this program and is discussed in a later section. Development of this new broad-band noise method is one of the major tasks of this contract and is presented in Section V.3.

A study of the effect of airfoil shape (or chordwise thickness distribution) on vortex noise follows in Section V.4. Although this study showed only small improvements due to airfoil shape the possibility of noticeable improvement was considered sufficient to incorporate NACA series 66A section in the blades of a new low-noise propeller designed, fabricated and tended in this contractual program.

# 2. PREDICTION METHODS IN THE LITERATURE

From a dimensional analysis of a cylinder in a stream, Yudin<sup>(13)</sup> showed that the vortex sound power is proportional to  $\rho V^6 D \ell S_t^2/a^3$  where D is the diameter and  $\ell$  the length of the cylinder, and the Strouhal number  $S_t$  is about 0.2. The frequency of the sound is  $S_t V/D$ . Unfortunately this theory cannot predict the absolute level of the vortex noise because the proportionality factor is not known theoretically.

Several investigators have developed equations for sound pressure levels of propellers or rotors based on Yudin's formulation. Usually the product D f is replaced by an area  $S_b$  and suitable reference values for  $S_t$ ,  $\rho$  and a are introduced. As a result, the overall sound pressure level becomes proportional to 10 log  $(S_b V^6/d^2)$ . A directivity pattern of a force dipole aligned with the axis is often assumed. Therefore 10 log  $(\cos \psi)$  should be added to the SPL and the vortex noise is a maximum on the propeller axis and zero in the propeller plane. Some investigators have included a frequency spectrum with a sound level relative to the overall SPL and the frequency referenced to a peak frequency (e.g., see Figure 7).

Experimental data of Stowell and Deming and others led to Hubbard's<sup>(24)</sup> expression for the sound pressure level of propellers at a distance of 300 feet:

$$SPL = 10 \log \frac{3.8 S_b V_{.7}^6}{10^{11}} dB$$
(10)

The formulation is inadequate for detectability studies, however, because no directivity effect or frequency information is provided.

Davidson and  $Hargest^{(25)}$  fitted experimental helicopter noise data at 500 feet distance by an equation of the form:

$$SPL = 10 \log (V_t^6 C_L^2 S_b) + 10 \log (\cos \psi) - 84 dB$$
(11)

Eq. (11) differs from (10) by the inclusion of a  $C_L$  term and by introducing an extreme directivity correction (no vortex noise in rotor plane). However, no data on frequency distribution is presented.

Schlegel, King and Mull<sup>(19)</sup> present an equation of the following form for sea level  $70^{\circ}$  F conditions:

SPL = 10 log (V 
$$_7^2 T^2 / S_b d^2$$
) + 13, 8 dB (12)

The vortex noise in any octave band is computed by using a spectrum shape presented graphically and a peak frequency determined by the equation:

$$f = \frac{0.28 \text{ V.7}}{h_{-7} \cos \alpha + b_{-7} \sin \alpha} \text{ Hz}$$
(13)

This correlation of rotor vortex noise includes a frequency spectrum but is limited to a direction of  $17^{\circ}$  behind the rotor. No directivity effect is presented.





Stuckey and Goddard<sup>(26)</sup> obtained the following formula from tests of a particular rotor:

SPL = 10 log 
$$(V_t^{2.68}T^{1.66}/d^2) + 20 \log (\cos \psi) + 2.8 dB$$
 (14)

and introduce another frequency spectrum.

Ollerhead and Lowson<sup>(21)</sup> discuss previous work on vortex noise and state that what has been considered to be a broad-band vortex noise may really be high-order harmonics of rotational noise which usual data-reduction procedures do not show as occurring at discrete frequencies. With very-narrow-band filters some data presented do show the presence of what appears to be high-order harmonic rotational noise. An equation for directivity is suggested which, unlike other equations, has a total variation of only 10.5 dB in overall noise from on the axis of rotation to in the plane of the rotor. This equation is

$$\Delta SPL = 10 \log \left( \frac{\cos^2 \psi + 0.1}{\cos^2 70^0 + 0.1} \right) dB$$
(15)

Widnall<sup>(27)</sup> correlates measured rotor vortex noise data in the form

$$SPL = 10 \log (V_t^6 S_b/d^2) + f (T/S_b V_t^2) dB$$
(16)

where the function f is plotted as a band encompassing plotted data. For low values of the parameter  $(T/S_b V_t^2)$ , which are typical of a quiet propeller, the function f is constant. This correlation is based on a quasi-two-dimensional model of vortex noise derived from that Yudin<sup>(13)</sup>. However, frequency and directionality data are not presented.

Sharland<sup>(28)</sup> investigated possible mechanisms of broad-band noise generation in axial flow fans. One mechanism is alternating "vortex shedding" at the trailing edge of the blade which produces lift fluctuations. By making some estimates of the frequency and a correlation area he obtained the following formula for sound power:

$$W = \frac{\rho}{120 \pi a^3} \int b V^6 R^{-.4} dr$$
 (17)

If, further, an ideal dipole directivity distribution is assumed, the maximum rms acoustic pressure is:

$$p = \frac{\rho}{4\sqrt{10\pi} \text{ ad }} \sqrt{\int b V^6 R^{-4} dr}$$
(18)

For a direction which is not normal to the airfoil the rms pressure should be multiplied by the cosine of the angle to the normal. Another mechanism investigated by Sharland<sup>(28)</sup> is the turbulent boundary layer pressure fluctuations on the surface. Using a value of the rms surface pressure fluctuation of 0.012  $\rho V^2$ , which experimental data supports, Sharland derives an equation for the sound power

$$W = \frac{10^{-7}\rho}{a^3} \int bV^6 dr$$
(19)

Again assuming a dipole directivity distribution, the maximum rms acoustic pressure is:

$$p = \sqrt{\frac{3}{4\pi 10^7}} \frac{\rho}{ad} \sqrt{\int b V^6 dr}$$
(20)

For a Reynolds number of one million the ratio of the sound pressure level due to vortex shedding (Eq. (18)) to the sound pressure level due to turbulent boundary layer fluctuations (Eq. (20)) is 20 dB. Therefore, noise due to turbulent boundary layer fluctuations is not significant relative to noise due to vortex shedding. A third mechanism considered by Sharland is turbulence in the airflow inducing fluctuations in lift. His equation for the sound power due to this mechanism is:

$$W = \frac{\rho}{48 \pi a^3} \int \phi^2 b V^4 (w)^2 dr$$
 (21)

where  $\phi$  is the average lift curve slope and  $(w)^2$  is the mean turbulent velocity fluctuation. Sharland concludes that "broad-band noise in fans arises from vortex shedding at the blade trailing edges under normal conditions, but that any large scale turbulence can increase the noise significantly".

Hamilton Standard developed two complete empirical vortex noise procedures in 1969. The first used Schlegel, King and Mull's<sup>(19)</sup> formula for noise level and peak frequency and the directivity formula of Ollerhead and Lowson<sup>(21)</sup>. The formulae used are:

SPL = 10 log 
$$\left(\frac{V_t^2 C_L^2 S_b (\cos^2 \psi + 0.1) . 217}{d^2}\right)$$
 - 44.645 dB (22)

peak frequency = 
$$\frac{0.28 \text{ V. 7}}{h_{.7} \cos \alpha + b_{.7} |\sin \alpha|} \text{ Hz}$$
(23)

The frequency spectrum is labelled "HS Correlation of 3/69" in Figure 7.

The second empirical procedure uses the formulation of Widnall<sup>(27)</sup> and is based on static noise data obtained by Hamilton Standard from a 4-bladed propeller designed for a quiet STOL aircraft. This propeller blade is similar to blade design 47X-394tested in the first test period of the present program.

SPL = -71.02 + 57000 
$$\left(\frac{T}{s_b v_t^2}\right)$$
 + 10 log  $\left(\frac{v_t^6 s_b}{d^2}\right)$  -3.3 sin<sup>2</sup> ( $\psi$ +10<sup>0</sup>) dB (24)

peak frequency = 
$$\frac{0.06 \text{ V}_{.7}}{h_{.7} (1-.265 \text{ X}_{\text{stall}})}$$
 Hz (25)

 $X_{stall}$  is the radius ratio where the section angle of attack is 11<sup>0</sup>. The frequency spectrum is labelled "HS Correlation of 7/69" in Figure 7. These two procedures are included as options 2 and 3 in the propeller noise detectability computer program because they are complete, unlike most other prediction methods described in this section, and because they are well understood.

The correlations of broad-band noise described above were derived for propellers and helicopter rotors. Another source of broad-band noise is a gliding aircraft. Two published reports, which present and correlate broad-band data obtained with several aircraft, are discussed in this paragraph. Smith et al<sup>(29)</sup> correlates overall noise level from three sailplanes by the formula

$$SPL = 10 \log (V^6 S_b / d^2) - 42.7 dB$$
(26)

where  $S_b$  is the wing area with turbulent flow. Inspection of the data indicated a better fit would be obtained by the formula

$$SPL = 10 \log (V^{3.1} s_b/d^2) + 19.1 dB$$
(27)

which shows a smaller variation with velocity. Lockheed<sup>(30)</sup> measured data from 5 gliding aircraft with engines off and propellers feathered and correlated the data by a formula which may be converted to the form

$$SPL = 10 \log \left( \frac{V^6 S_b}{d^2} - \frac{chord}{span} \right) - 15.2 dB$$
(28)

A 1/3-octave band spectrum is presented with the peak frequency defined by the relationship

$$f = 1.1 V/h Hz$$
 (29)

This spectrum is labelled as "propeller noise detectability program" in Figure 7.

To summarize, it can be seen that most of these vortex noise prediction methods show that the SPL varies as 10 log  $(V^6S_b/d^2)$ . This selection of variables is probably influenced by Yudin's<sup>(13)</sup> analysis However, a smaller variation with velocity is suggested by Smith's sailplane data (Eq. (27)) and by Sharland's analysis of "vortex shedding" noise (Eq. (17)).

# 3. NEW HAMILTON STANDARD VORTEX NOISE THEORY

A major task of this study program was the development of an integration technique to predict propeller broad-band noise and to incorporate this technique into the propeller noise detectability computer program. The source of the broad-band noise is assumed to be an oscillating force normal to the blade chord. The amplitude and frequency of this force are related to the flow conditions and blade geometry in a way which would correspond to Yudin's (13) theory. Therefore, the predicted broad-band noise might be called vortex noise. However, unlike the various correlations of propeller and rotor broad-band noise previously discussed which involve overall parameters such as tip speed, total thrust and blade area, the theory developed during this contract includes the radial distribution of blade geometry and flow conditions as parameters. The broad-band noise at the observer is obtained by numerical integration in the circumferential and radial coordinates.

The theory does not determine the magnitude of the oscillating force or its frequency. However, these parameters are proportional to a force factor  $C_F$  and a frequency factor  $C_f$  respectively. Values of these two factors were determined by correlating predicted 1/3-octave band noise levels with measured data obtained during the experimental program discussed in Section VI of this report.

The theory is based on Lowson's theory for the sound field of a moving force<sup>(31)</sup>. Cartesian coordinates, with subscripts 1, 2 and 3, are used and the origin of these coordinates is the propeller center. The "1" axis is the propeller axis with a positive ordinate forward of the propeller. The field point lies in the "1" - "2" plane. The point force is translating along the positive "1" axis at a Mach number of M and rotating about the "1" axis at a radius of r and a speed of  $\Omega$  rad/sec. The force is oscillating at a circular frequency  $\omega$  and is normal to the blade chord. It is resolved into three components F<sub>1</sub>, F<sub>2</sub> and F<sub>3</sub>.

The basic result of Lowson's paper is the following equation for the far-field sound pressure radiation from a point force in arbitrary motion

$$p = \left[ \frac{x_j - y_j}{4\pi (1 - M_r)^2 a d^2} \left\{ \frac{\partial F_j}{\partial t} + \frac{F_j}{1 - M_r} \frac{\partial M_r}{\partial t} \right\}$$
(30)

where  $x_j$  and  $y_j$  are the coordinates of the observer and source, respectively, and  $M_r$  is the component of the convection Mach number in the direction of the observer.

The axial component of the force  $F_1$  is proportional to the magnitude of the force F and the cosine of the blade angle  $\theta$ , therefore

$$F_{i} = F \cos \theta e^{-i\omega t}$$
(31)

ß

The other two components vary with circumferential angle  $\phi$ :

$$F_2 = F \sin \theta \sin \phi e^{-i\omega t}$$
 (32)

$$F_3 = -F\sin\theta\cos\phi e^{-i\omega t}$$
(33)

The three components of the convection Mach number are:

$$M_1 = M \tag{34}$$

$$M_2 = -\frac{r\Omega}{a} \sin\phi$$
 (35)

$$M_3 = \frac{r \Omega}{a} \cos \phi$$
 (36)

The coordinates of the observer are:

$$x_1 = X_p$$
  
 $x_2 = Y$   
 $x_3 = 0.$ 
(37)

and of the point force are:

$$y_1 = 0.$$

$$y_2 = r \cos \phi$$

$$y_3 = -r \sin \phi$$
(38)

Therefore

$$d^{2} = x_{p}^{2} + (Y - r \cos \phi)^{2} + r^{2} \sin^{2} \phi$$
(39)

.

The component of the convection Mach number in the direction of the observer is:

$$M_{r} = \frac{(x_{j} - y_{j}) M_{j}}{d}$$
(40)

which becomes, upon substituting Eqs. (33) to (39),

$$M_{r} = \frac{MX_{p}}{d} - \frac{\Omega r}{ad} \sin \phi (Y - 2r \cos \phi)$$
(41)

Upon substituting into Eq. (30), the equations for the pressure field due to the three components of the force become:

$$p_{1} = -\frac{iX_{p}\omega F\cos\theta}{4\pi a(1-M_{r}^{2}) d^{2}} e^{-i\omega t}$$

$$p_{2} = \frac{(Y-r\cos\phi) F\sin^{9}}{4\pi a(1-M_{r}^{2}) d^{2}} \cdot \left[-i\omega\sin\phi + \Omega\cos\phi\right] e^{-i\omega t}$$

$$p_{3} = \frac{rF\sin\theta\sin\phi}{4\pi a(1-M_{r}^{2}) d^{2}} \left[i\omega\cos\phi + \Omega\sin\phi\right] e^{-i\omega t}$$
(42)

These three terms are summed to derive the desired equation for the sound pressure:

$$p = \frac{F}{4\pi a (1 - M_{r}^{2}) d^{2}} \left[ -i\omega \left\{ X_{p} \cos \theta + (Y - 2r \cos \phi) \sin \theta \sin \phi \right\} + \Omega \sin \theta \left\{ r \sin^{2} \phi + (Y - r \cos \phi) \cos \phi \right\} \right] e^{-i\omega t}$$
(43)

Integration over the angle  $\phi$  and radius r determines the total noise at the field point.

The expressions for the magnitude and frequency of the oscillating force were derived from the form of the expressions for broad-band noise presented in the preceding section. The form of these expressions for overall noise is SPL  $\approx 10 \log (V^6S_b)$  and for peak frequency is  $f = S_t V/h$  Hz. Therefore, the frequency is evaluated from the equation

$$f = \omega/2\pi = C_f V/h Hz$$
(44)

where  $C_f$  is an empirical frequency coefficient and V is the sectional velocity determined by the propeller performance program. Experimental data<sup>(32)</sup> on vortex shedding frequency from an NACA0006 airfoil show that  $C_f$  is about 0.042. The equation for the force level finally selected is:

$$F = C_{F\rho} h \sqrt{b\Delta r} V^2 \left(\frac{R}{10^6}\right)^{exp}$$
(45)

The force coefficient  $C_F$ , like the frequency coefficient  $C_f$ , is an empirical factor to be derived from test data. The Reynolds number factor was introduced to obtain a better fit of the trend of broad-band noise level with rpm to experimental data from this program which show a variation like 10 log V<sup>4</sup> rather than 10 log V<sup>6</sup>. Some correlations of vortex noise include a thrust term, suggesting that angle of attack or lift coefficients should be introduced into Eq. (45). Some unpublished data available to Hamilton Standard shows that angle of attack changes do alter the noise from an airfoil in a jet. However, since there is insufficient data to establish a trend at this time, this factor is not included. It is believed to be small for the small range of lift coefficients associated with a quiet propeller.

Because of the expected random phase of the force from one blade to another, the sound power of one blade is multiplied by the number of blades. Therefore, doubling the number of blades increases the broad-band SPL by 3 dB.

The phase of the oscillating force is expected to be correlated only over a small radial distance called the "correlation distance". For a two-dimensional airfoil in a uniform stream it is well known that theory predicts that a reduction of the correlation length from a value equal to the span reduces the radiated sound power. At the beginning of this contract it was planned to introduce a correlation length explicitly into the broad-band calculation program. However, this plan was changed for several reasons. First, no data were available in time to provide a good value for the correlation length of a non-rotating airfoil. Second, with the assumption that the correlation length equals the chord (corresponding to the diameter of a rod, a representative value), only about 5 correlated areas were required for the moderate chords of the first blades tested. With the wider blades tested at the end of the program even fewer correlated areas would be used. It is believed that more than 5 areas are required to provide a valid calculation of vortex noise. Third, the combination of radial changes in airfoil thickness and sectional velocity result in changes in frequency computed from Eq. (44) of over 2 orders of magnitude. This large radial gradient in frequency should reduce the correlation length significantly. No data on correlation lengths for rotating blades was available for use in this program. Lastly, programming is simplified if the ten radial stations used by the Hamilton Standard propeller performance program are used, thereby avoiding interpolation. Therefore, it was decided to sum the squares of the sound pressures calculated for each of the ten radial stations provided by the propeller performance program. These same radial stations are used to compute harmonic rotational noise.

Theory<sup>(33, 34)</sup> shows that a harmonically-oscillating force moving in a circular path produces a series of tones centered about the force frequency. The theory<sup>(33)</sup> also shows that a source of white noise moving in a circular path produces a white noise at the observer. However, it is known from flight data<sup>(29, 30)</sup> and from tests of airfoils in jets that the noise frequency spectrum is neither a discrete tone nor a white noise but a peaked broad-band spectrum like those shown in Figure 7. The theory for this type of noise spectrum has not been developed and at the time this program was started the development of the theory was believed to be beyond the scope of the program. An extension of the theory by Tanna and Morfey<sup>(34)</sup> was not available when the new vortex noise theory was developed. The possibility of further refinement of the theory using their approach warrants further study. For this reason, and because of the other approximations discussed above which are used, it was decided to use the following procedure to integrate Eq. (43):

- a. Integrate radially the squares of the sound pressures in each 1/3-octave band using the 10 radial stations of the propeller performance program.
- b. For each radius, sum the squares of the sound pressures calculated for 36 values of circumferential angle  $\phi$  at  $10^0$  increments.
- c. For each radius r and angle  $\phi$ , compute the pressure amplitude and frequency (with a Doppler correction) from Eqs. (39), (41), (43), (44) and (45).
- d. For each radius and angle this pressure amplitude is converted to an overall vortex noise SPL and the noise frequency is considered to be a peak frequency. The noise SPL in each 1/3-octave band is computed from the overall vortex noise SPL and peak frequency using the broad-band noise spectra in Figure 7.

A numerical procedure based on the theory described in this section is coded in the propeller noise detectability program as vortex noise option 1.

# 4. EFFECT OF AIRFOIL SHAPE ON VORTEX NOISE

The design of low-noise propellers involves a compromise between rotational noise and broad-band vortex noise. It would be useful to find geometric parameters that have little or no effect on rotational noise but which could be adjusted to reduce the vortex noise. One such parameter is the blade airfoil shape, or thickness distribution. A presently-accepted theory for propeller vortex noise<sup>(28)</sup> contains no direct effect of airfoil shape on vortex noise. However, the mechanism by which vortex noise is generated depends strongly on the airfoil boundary layer. This, in turn, can be strongly influenced by changes of airfoil shape. For moderate subsonic flight speeds, the choice of propeller airfoil shape traditionally had been determined by a need for large values of drag-divergence Mach number. It seemed possible that some other airfoil sections might provide reductions in vortex noise at the lower Mach numbers encountered with advanced low-noise propellers. Therefore, a study of the effect of airfoil shape on vortex noise was conducted.

To establish analytically the effect of airfoil shape on broad-band vortex noise, one must start with a clear definition of the mechanism by which such noise is generated. Simplified analyses have tried to relate the broad-band noise of a slender streamlined airfoil to that of a bluff body having the same maximum thickness. The bluff body sheds an unsteady wake and a vortex street; fluctuations of wake flow direction are accompanied by fluctuations of normal force on the body. Thus, the separated flow downstream of the body generates an acoustic dipole oriented normal to the airflow. A large fluctuating wake does not occur downstream of conventional airfoils, so the direct analogy between airfoil and bluff-body flows is not correct. In Ref. 28 a different approach was used. The attached turbulent boundary layer was assumed to fluctuate about its root-mean-square position. This fluctuation was assumed to cause a fluctuation of instantaneous angle of attack, whose magnitude in radians was given by the ratio of trailing-edge boundary layer thickness to airfoil chord. The instantaneous normal force was assumed equal to the product of the normal force coefficient slope and the fluctuation of angle of attack. Thus, the acoustic dipole would be caused by shedding of vortices caused by fluctuations in bound vorticity as the outer potential flow adjustments to the unsteady viscous inner flow.

This description would be reasonable if boundary layers on airfoils grew linearly with chordwise distance. However, different airfoil shapes with different chordwise pressure distributions could have vastly different variations of boundary layer growth along their chords but the same boundary layer thickness at the trailing edge. For the study described in this section, it was assumed that turbulent fluctuations in the boundary layer displacement thickness along the airfoil upper and lower surfaces were not correlated. The chordwise distribution of the difference between these two displacement thicknesses could then be regarded as an instantaneous camber line whose shape and incidence undergoes fluctuation. The normal force coefficient at any instant of time was assumed proportional to that which would be computed from steady-state theory (35) for a thin airfoil with that combination of camber and incidence. (Within that theory, the effects of geometric camber, viscous-induced camber caused by the time-average difference between the upper-surface and lower-surface displacement thickness, and fluctuations in that viscous-induced camber can be linearly added.) The fluctuating normal force coefficient then becomes a sum of three contributions. One comes from a fluctuation of mean-line angle of attack as in Ref. 28. The other two are the design lift coefficient of the instantaneous camber line and the fluctuating difference between the instantaneous angle of attack and the camber-line ideal angle of attack. That is, one must consider both the incidence of a hypothetical straight line joining the effective leading and trailing edge points and the combined camber and incidence of the mean camber line between those points.

To use this approach, a camber line must be defined from the calculated chordwise variation of displacement thickness. At first glance, ordinates of this line might be assumed proportional to the local displacement thickness on one surface. That assumption would not be correct because it would fail to reproduce the relatively large effects expected in a region where a strong local adverse pressure gradient occurs, but the boundary layer is relatively thin. Instead, the camber line was calculated as the difference between upper-surface and lower-surface displacement thicknesses, calculated for an uncambered airfoil at zero incidence, but with a different turbulence level at each surface. The assumed turbulence levels, 0.1 and 1.0 percent, were not large enough to cause significant chordwise movement of the transition region. Their primary effect was on the displacement-thickness growth rate in the transition region and in regions of adverse pressure gradient.

Boundary layer growth was calculated with a computer program originally developed for prediction of heat transfer to turbine blades and vanes. Airfoil pressure and temperature distributions, free-stream flow properties, surface roughness, and turbulence level were supplied as input. The computer program then determined the growth of the laminar boundary layer, transition region, and turbulent boundary layer. All airfoils were assumed to have 10-inch chord, 100-microinch surface roughness, and adiabatic wall temperature. Free-stream static conditions were standard sea level atmospheric, and the velocities were chosen to provide Reynolds numbers of  $2 \times 10^6$  and  $3 \times 10^6$  based on airfoil chord. The calculated differences in displacement thickness were smoothed and used as input to an existing digital computer program that calculates the camber-induced loading distribution and lift coefficient, and the angle of attack at which that loading would occur.

The airfoil sections were taken as uncambered, 9%-thickness-ratio NACA airfoils. Use of the NACA 0009, 65-009, 66-009, and 67-009 airfoils provided minimumpressure locations of approximately 10, 50, 60, and 70% chord. Further comparison with the NACA 16-009 airfoil, which has its minimum pressure near 65% chord, added a brief look at the effect of the variation of adverse pressure gradient with chordwise distance. Thickness distributions and incompressible-flow pressure distributions for the NACA 0009, 66A009, and 16-009 airfoils are shown in Figure 8. The 66A009 airfoil section, which has a practical trailing-edge shape, is shown in preference to the 66-009 which has a cusped trailing edge.

At these conditions, the transition Reynolds numbers as determined by the computer program were in the range of 0.4 to  $0.5 \times 10^6$  for the lower nominal turbulence level. Thus, the boundary layer always was turbulent upstream of the minimumpressure location for all but the NACA 4-digit series airfoil. Increasing the nominal turbulence level moved the transition location forward, reducing the transition Reynolds number to about  $0.25 \times 10^6$ . Thus, the slope of the boundary layer displacement thickness was increased over a forward portion of the airfoil, giving a change in camber similar to that for deflection of a leading-edge flap. This change was larger for the 4-digit airfoil, for which it occurred in a region of adverse pressure gradient, than for the other airfoils. Downstream of this transitional region, the boundary

43

Ð





Figure 8. Typical Airfoil Thickness and Pressure Distributions

caver thackened mere republy and was more responsive to turbulence level in an adverse pressure gradient than in a mild favorable pressure gradient. Thus, the NACA 4-digit airfoil had a rapid growth of effective camber-line ordinate on the forward portion, moderate growth along much of the chord, and more rapid growth near the trailing edge. As the airfoil section was changed to move the minimumpressure location aft the change is ordinate was decreased on the forward portion, reduced to essentially zero along the mid-chord region, and increased near the trailing edge. Thus, the airfoil with a forward location of minimum pressure had an effective camber line that qualitatively resembled a large leading-edge flap deflected downward and a large leading-edge flap deflected upward through a small angle. Aft movement of the minimum-pressure location reduced both the effective size and effective deflection angle of the leading-edge flap and reduced the extent but increased the angle of the trailing-edge flap. Details of the calculated solutions on the aft part of the airful were sensitive to the velocity distribution assumed very near the trailing edge. In all cases the tabulated velocity gradient between 90 and 95%chord was arbitrarily continued to the trailing edge in place of the tabulated trailingedge stagnation point or cusp flow.

Resulting calculated fluctuating lift coefficients are listed in Table IV. The absolute numerical values are unimportant because they are based on a steady-state lift-curve slope and a perioeily correlated flow. These effects cause the numerical values to be roughly 50 times the corresponding estimates from Ref. 28. Two sets of numbers are given for each case. The upper set are for an angle of attack (in radians) equal to the change in trailing-edge displacement thickness divided by the airfoil chord. The lower numbers are the combined effects of camber and incidence, were small at a Reynolds number of  $3 \times 10^6$  but were 1/4 to 1/2 as large as those due to incidence at a Reynolds number of  $2 \times 10^6$ . That lower Reynolds number is representative of the tip region of practical quieted propellers. At that condition, aft movement of the minimum-pressure location had small beneficial effects until, for the 67 series airfoil, the boundary layer was dominated by the strong adverse pressure gradient on the aft region. The NACA 66 series, which has nearly the same minimum-pressure location as the NACA 16 series, has a relatively constant adverse pressure gradient. In contrast, the adverse pressure gradient for the 16 series becomes stronger as the trailing edge is approached. It was expected that a constant gradient, or even one that is initially large and becomes weaker with increasing distance, would cause less overall disturbance than an increasing gradient.

For a Reynolds number of  $2 \times 10^6$ , moving the minimum pressure point downstream (that is, changing from the four-digit airfoil to the 65 series and then the 66 series) caused a small increase and then decrease of calculated lift fluctuation caused by combined camber and incidence. The magnitude of this decrease corresponds to less than a 1.4 distribution of sound pressure level. The 16 series with its increasing adverse pressure gradient on the aft portion, would be about 0.8 dB louder than the 66-series airfoil. Both of these airfoil series have about the same location of minimum pressure and their shapes are nearly identical over the forward half of the chord. The 66-series airfoil is slimmer than the familiar 16-series propeller TABLE IV

Ą

# FLUCTUATING LIFT COEFFICIENTS INDUCED BY BOUNDARY LAYER DISPLACEMENT

| Airfoil | 0009 65-009 66-009 16- |                                            | 0.0348 0.0285 0.0315 0.0 | 0.0436 0.0448 0.0382 0.0 | 0.36 0.59 -0.80 0             |                                            | 0.0231 0.0194 - 0.0 | 0.0177 0.0205 - 0.0   | -0.48 0.81 - 0                |
|---------|------------------------|--------------------------------------------|--------------------------|--------------------------|-------------------------------|--------------------------------------------|---------------------|-----------------------|-------------------------------|
|         |                        | <b>Reynolds</b> number = $2 \times 10^{6}$ | Incidence only           | Incidence plus camber    | SPL above that for 16-009, dB | <b>Reynolds number</b> = $3 \times 10^{6}$ | Incidence only      | Incidence plus camber | SPL above that for 16-009, dB |

uniforminate dispart of the chord (Figure 5). A further aft movement of the minimum pressure location, obtained by use of the 67-series airfoil, caused very large thickening of the boundary layer on the aft quarter of the chord. This airfoil, which would also be expected to have poor aerodynamic performance, is predicted to be 4.6 dB noisier than the 66-series airfoil.

Although calculations were not made for the 66-series airfoil at a Reynolds number of  $3 \times 10^6$ , it is expected that this airfoil would also be best at that condition. The calculated effects of viscous-induced camber were much smaller at this Reynolds number than at the lower Reynolds number. Apparently this difference was caused by the smaller chordwise extent of laminar flow, which reduced the amount of forward effective camber. The indicated reduction of lift fluctuation with an increase of Reynolds number, at constant airfoil shape, is much larger than would be predicted from Ref. 28. Apparently this large numerical effect was caused by use of the same nondimensional turbulence perturbation at both Reynolds numbers. It is not obvious how this quantity should have been scaled or the extent to which this apparent trend should be believed.

In conclusion, the calculated effect of airfoil shape on broad-band vortex noise at a Reynolds number of  $2 \times 10^6$  is relatively small when attention is confined to airfoils known to have good aerodynamic performance. The calculated noise was increased by use of an airfoil with poor aerodynamic performance. The NACA 66A-series of airfoils is recommended as it is about one decibel quieter than the more conventional airfoil shapes. Since the 66A sections have not been defined by NACA the following procedure is used. Up to and including, 45% chord use NACA 66-series section thicknesses. For chordwise distances  $\geq 45\%$  use NACA 65A-series section thicknesses at (5 + 55X)/60% chord where X is the % chord for the 65A-series thickness.

Hamilton Standard has two sets of noise data from tests of two 8.5-foot diameter 0V-10 propellers which show an effect of airfoil section on propeller noise. One propeller had blades made with NACA series 16 and 64 series sections and the other had blades made with NACA series 65 sections. Aside from the difference in sections, the propellers are identical. That is, the same camber, planform, thickness and twist are incorporated into both blade designs. Therefore, any difference in noise, for the same power and rpm, should be due only to the difference in blade section. Noise data were obtained at tip Mach numbers from .6 to .9, which are above that appropriate for a quiet aircraft. Analysis of harmonic noise levels determined from the far-field data shows that, for the higher harmonics, the NACA 65 sections are several dB quieter than the 16/64 sections. The data have not been analyzed for broad-band noise. These data indicate that harmonic noise can be reduced by optimizing blade airfoil section, but any effect on broad-band noise has not been determined yet.

#### SECTRON VE

#### EXPERIMENTAL PROGRAM

# 1. INTRODUCTION

During the course of the contract, five acoustic noise test programs were conducted to provide a data bank on the noise characteristics of very-low-tip-speed propellers for the verification and development of the propeller noise detectability program. Four-bladed and two-bladed 11.25-foot diameter propellers tested as tractors were included in these test programs. In addition, a test of a four-bladed pusher propeller was included to investigate the effect of the test rig on noise. All tests were conducted on an outdoor propeller test rig located at the Hilltop Facility of Hamilton Standard. The tests were conducted during the night, generally between the hours of midnight and six a.m., when the most favorable wind and ambient noise conditions exist.

The noise was measured on a 50-foot radius with two data recording systems. One used a microphone located at ground level to measure the low frequency rotational (tone) noise and the other used a microphone located at approximately 4.5 feet from the ground to measure the mid- and high-frequency vortex noise. The effects of the ground plane on the measured noise were evaluated experimentally and appropriate corrections applied to the measured noise.

The low-frequency noise was analyzed using a narrow, constant-bandwidth frequency filter to determine the levels of the harmonics of rotational noise. The mid- and high-frequency components were analyzed by 1/3-octave bands.

# 2. PROPELLER TEST FACILITY

The propellers tested in this program were run on the propeller test rig shown in Figures 9 and 10. The centerline of the horizontal drive shaft is 17 feet above the ground so that the propeller ground clearance is approximately 12 feet. The shaft is direct-driven by a 100-horsepower, variable-speed electric motor whose output power with shaft rotational speed is shown in Figure 11.

The propeller shaft speed was measured with a magnetic pickup excited by a 30-tooth wheel on the speed-control tachometer drive (rotating at twice shaft speed) and read directly on a frequency counter. The short-term stability and accuracy of measurement was  $\pm 1$  rpm from near zero to 1200 rpm.



Figure 9. Propeller Test Rig - Front View







The meter is a four a subscripting a 2-but pound full scale charial thrust ring moments in the thrust bearing cartridge. The meter is a four arm strain-gage bridge, the output of which was fed through an amplifier and read out in pounds on a digital display. The thrust meter was calibrated as a system using a Bytex JP2000 precision load cell of nominal accuracy of 2 pounds. The readout accuracy, including non-linearity and temperature effects, is about  $\pm 4\%$  of full scale, or  $\pm 80$  pounds.

Propeller torque was measured using a BLH strain gage torque meter having a full scale of 10,000 ft-lb. This meter was calibrated as a system using dead weights and a known moment arm to a full scale of 1000 ft-lb. The accuracy of the torque system is approximately  $\pm 5\%$  of full scale, or  $\pm 50$  ft-lb.

A back-up system was used to monitor motor input power. The armature current and voltage were measured and the propeller input power derived from these measurements and the motor efficiency curve shown in Figure 12. This efficiency curve was derived from motor input power measurements made at several motor speeds at no load (i.e., without a propeller).

It is recognized that the measurements of thrust and torque made with the load cells described above are of limited use due to their large full-scale capacity. These load cells existed in the test rig which was used in the past for testing significantly higher thrust propellers. It is believed, however, that the data from these load cells are useful in interpreting the test data.

# 3. PROPELLER NOISE MEASUREMENT LOCATIONS

Propeller noise was measured at the locations shown schematically in Figure 13. Rotational tone noise was measured using a microphone located at ground level on a 50-foot radius from the center of the propeller at true azimuths of  $45^{\circ}$ ,  $67.5^{\circ}$ ,  $90^{\circ}$ ,  $112.5^{\circ}$ , and  $135^{\circ}$  (0 is on the propeller axis in the forward direction) for the first three tests. During the last two tests (with 47X-464 blades) two microphone locations were added in order to permit estimating the tone noise levels on the axis by extrapolation in azimuth angle. One was at 50 feet and  $20^{\circ}$  azimuth; the other was at 80 feet and  $12^{\circ}$  off the axis.

The broad-band noise was measured using a microphone mounted on a tripod at approximately 4.7 feet above the ground. Propeller noise measurements were made on a 50-foot radius from the center of the propeller. For the first three tests, measurements were made at 22.5°,  $45^{\circ}$ ,  $67.5^{\circ}$ ,  $90^{\circ}$ ,  $112.5^{\circ}$ , and  $135^{\circ}$  true azimuth. Also, one microphone was located at 12 feet above the ground plane to measure the noise at  $6^{\circ}$  azimuth. For the last two tests, the last microphone location described above was changed to 4.7 feet above the ground, resulting in an azimuth of  $14^{\circ}$ .





The 50-foot radius was selected because it represented a good compromise between near and far acoustic fields, ambient background noise, evenness of the ground, and the location of major obstructions in the acoustic field.

# 4. ACOUSTIC FIELD CALIBRATION AND AMBIENT NOISE MEASUREMENT

The effects of the ground plane on the noise were investigated and appropriate correction factors derived for adjusting the data to free-field conditions. For the low-frequency harmonic noise, measured by a microphone on the ground, it was anticipated that a pressure doubling effect would occur, resulting in a 6-dB increase over the same measurement made in a free-field environment. This was verified as follows. A speaker was mounted on the propeller test rig at the location on the propeller center. A sine-wave oscillator was used to generate tones through the speaker. A microphone, placed on the ground at 50 feet from the speaker, was used to measure the level of the tone. The microphone was then slowly raised above the ground until a minimum level was indicated. This reading was noted. The microphone way then raised further until a maximum reading was again obtained. This was done for the frequency range 60 to 250 Hz. It was not practical to go lower than 60 Hz because: a) the output from the speaker was decreasing, b) the background noise was higher at low frequencies, c) it was not possible to raise the microphone to a sufficient height to obtain a minimum, and d) even had the microphone been raised to the null point, the difference in path length between the direct wave and the reflected wave would result in errors.

The minimum reading occurs when the reflected wave and the direct wave arrive exactly out of phase and thus cancel. If the intensity of the two are the same, then they cancel completely and no sound is heard. On the other hand, at the maximum the two waves reinforce and the level measured is their sum. We thus have two equations in two unknowns as follows:

$$P_{max} = P_{D} + P_{R}$$
$$P_{min} = P_{D} - P_{R}$$

from which:

 $\Delta dB = 20 \log (P_{max}/P_D) = 20 \log \frac{2P_{max}}{(P_{max} + P_{min})}$ 

where  $P_{max}$  is the acoustic pressure measured during reinforcement,  $P_{min}$  is the acoustic pressure measured during cancellation,  $P_D$  is the acoustic pressure of the direct wave,  $P_R$  is the acoustic pressure of the reflected wave, and  $\Delta dB$  is the increase in measured sound pressure level due to one reflection. Figure 14 presents





56

.

the results obtained by applying the above equation to the measurements. Also shown are the estimated actual increments derived from interpolations to the actual P since it was not possible to obtain this value directly due to background noise. The resulting curve approaches 6 dB, i.e., the ground appears to be a near-perfect reflector at low frequencies. It was thus concluded that a 6 dB correction should be applied to all the data from the ground-plane microphone to adjust the measurements to equivalent free-field conditions.

The acoustic field corrections for the microphones mounted on the tripods were determined using random noise output from the speaker located at the center of the propeller. The signal was analyzed by 1/3-octave bands. The microphone was then moved toward the speaker, from 50 feet to 12.5 feet, along a line passing from the microphone to the center of the speaker. Assuming spherical spreading of sound, any reflected wave would be at least 10 dB below the direct wave at the 12.5 foot location (the distance to the ground being 17 feet, the ratio of the path length of one reflection from the ground to the distance from the speaker to the microphone is 3). The 1/3-octave band levels from the microphone at 12.5 feet were decreased by 12 dB for spherical spreading from 12.5 to 50 feet and compared to those measured at 50 feet. The difference was attributed to ground reflections. The corrections thus derived are shown in Table V. These levels are to be added to the measured levels for correction to equivalent free-field conditions.

Note that it is not simpler to use a microphone located at ground level to measure the broad-band noise as well as the low frequency tone noise because at high frequency: a) the ground is not a perfect reflector, b) the reflections would be diffuse and, thus, the correction to be applied would be dependent on the local ground composition, c) the dimensions of the microphone (one-inch diameter) approach the wavelength of the sound, d) the acoustic field would have to be calibrated anyway.

The ambient background noise and noise of the propeller rig were measured at each of the noise measurement locations. The rotational speed of the rig had a negligible effect on the rig noise. Table VI summarizes the average background and rig noise which was found to be typical for a windless night. The azimuths given are those of the broad-band noise measurement locations.

#### 5. ACOUSTIC DATA ACQUISITION AND DATA REDUCTION SYSTEMS

The acoustic data from the first two tests were acquired using a system consisting of:

- a. A Bruel & Kjaer (B&K) one-inch condenser microphone type 4131.
- b. A B&K type 2203 sound level meter.
- c. A Kudelski Nagra III single-track magnetic tape recorder operated at 7.5 inches per sec with CCIR equalization.
### TABLE V

| 1/3-Octave Band<br>Center Frequency | Acoustic Field<br>Corrections for<br>the 4.7-ft Mic. | Acoustic Field<br>Corrections for<br>the 12-ft Mic.* |
|-------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 25 Hz                               | -6 dB                                                | -6 dB                                                |
| 31.5                                | -6                                                   | -6                                                   |
| 40                                  | -5,5                                                 | -5                                                   |
| 50                                  | -5                                                   | -4                                                   |
| 62.5                                | -3.5                                                 | -1                                                   |
| 80                                  | -1.5                                                 | 2                                                    |
| 100                                 | -2                                                   | -2                                                   |
| 125                                 | -2,5                                                 | -2                                                   |
| 160                                 | 9                                                    | -4                                                   |
| 200                                 | 5                                                    | -2                                                   |
| 250                                 | -1                                                   | 0                                                    |
| 315                                 | -5                                                   | -3                                                   |
| 400                                 | -4,5                                                 | -1                                                   |
| 500                                 | -1.5                                                 | -4                                                   |
| 625                                 | -2.5                                                 | -2                                                   |
| 800                                 | -1                                                   | -3                                                   |
| 1000                                | -2                                                   | -2                                                   |
| 1250                                | -2.5                                                 | -2.5                                                 |
| 1600                                | -2                                                   | -2                                                   |
| 2000                                | -3                                                   | -3                                                   |
| 2500                                | -2                                                   | -2                                                   |
| 3150                                | -2                                                   | -2                                                   |
| 4000                                | -3                                                   | -3                                                   |
| 5000                                | -2.5                                                 | -2.5                                                 |
| 6250                                | -1,5                                                 | -1.5                                                 |
| 8000                                | -1                                                   |                                                      |
| 10000                               | -1                                                   | -1                                                   |

# GROUND REFLECTION CORRECTIONS FOR BROAD-BAND PROPELLER NOISE

\*Used during the first two test periods only.

## TABLE VI

•

|                                     | Azimuth Angle       |                   |                 |                   |                 |                    |                  |
|-------------------------------------|---------------------|-------------------|-----------------|-------------------|-----------------|--------------------|------------------|
| 1/3-Octave Band<br>Center Frequency | 6-14.5 <sup>0</sup> | 22.5 <sup>0</sup> | 45 <sup>0</sup> | 67.5 <sup>0</sup> | 90 <sup>0</sup> | 112.5 <sup>0</sup> | 135 <sup>0</sup> |
| 25 Hz                               | 51 dB               | 58 dB             | 50 dB           | 53 dB             | 51 dB           | 50 dB              | 50  dB           |
| 31.5                                | 54                  | 55                | 53              | 54                | 58              | 55                 | 54               |
| 40                                  | 46                  | 50                | 46              | 48                | 46              | 46                 | 47               |
| 50                                  | 49                  | 52                | 50              | 49                | 49              | 50                 | 51               |
| 62.5                                | 48                  | 50                | 51              | 48                | 48              | 48                 | 50               |
| 80                                  | -17                 | 48                | 50              | 48                | 48              | 51                 | 52               |
| 100                                 | -14                 | 47                | 48              | 48                | 49              | 50                 | 53               |
| 125                                 | 46                  | 50                | 50              | 52                | 51              | 51                 | 51               |
| 160                                 | 43                  | 48                | 51              | 52                | 53              | 53                 | 53               |
| 200                                 | - 39                | 46                | 47              | 47                | 46              | 46                 | 47               |
| 250                                 | 40                  | 45                | 44              | 45                | 46              | 47                 | 48               |
| 315                                 | 42                  | 44                | 42              | 45                | 47              | 47                 | 50               |
| -100                                | 42                  | 41                | 43              | 45                | 46              | 48                 | 50               |
| 500                                 | 43                  | 40                | 40              | 41                | 42              | 45                 | 47               |
| 625                                 | 41                  | 36                | 38              | 41                | 41              | 43                 | 45               |
| 800                                 | 40                  | 35                | 36              | 37                | 39              | 42                 | 42               |
| 1000                                | 36                  | 33                | 35              | 35                | 36              | 38                 | 41               |
| 1250                                | 36                  | 32                | 34              | 35                | 35              | 37                 | 38               |
| 1600                                | 45                  | 37                | 39              | 42                | 40              | 45                 | 41               |
| 2000                                | 33                  | 29                | 29              | 30                | 31              | 33                 | 34               |
| 2500                                | 29                  | 26                | 27              | 28                | 29              | 30                 | 32               |
| 3150                                | 27                  | 28                | 29              | 29                | 33              | 31                 | 32               |
| 4000                                | 26                  | 25                | 23              | 29                | 27              | 25                 | 28               |
| 5000                                | 23                  | 24                | 23              | 26                | 24              | 23                 | 24               |
| 6250                                | 22                  | 24                | 23              | 23                | 23              | 22                 | 25               |
| 8000                                | 21                  | 21                | 21              | 23                | 22              | 21                 | 22               |
| 10000                               | 20                  | 24                | 20              | 21                | 20              | 20                 | 21               |

#### GENERAL BACKGROUND AND PROPELLER TEST RIG NOISE

59

÷.

- d. A B&K type 4230 microphone calibrator producing a 94 dB acoustic signal at 1000 Hz.
- e. A B&K one-inch condenser microphone affixed to a B&K type AO-0033 10-foot extension cable (for the microphone located 12 feet above the ground).

The data from the last three tests were acquired using the above equipment except that the recording station was remote from the microphone. Thus, a B&K type 2801 power supply was used in conjunction with a 200-foot extension cable to power a B&K type 2613 one-inch cathode follower.

The tape recordings were played back on an Ampex AG500 tape player. The equalization of this machine was adjusted such that the frequency response of the total data acquisition/playback system was within  $\pm 1$  dB from 20 to 14,000 Hz with a gradual roll-off to -3 dB at 10 Hz.

The data from the ground-plane microphone were analyzed by means of a Spectral Dynamics SD101B Frequency Analyzer. A 5-Hz bandwidth filter was used for all the data except that from  $90^{\circ}$  azimuth microphone where a 1.5 Hz filter was required to extract the levels of the tones from the other noise components. The analysis range was 10 to 210 Hz for the 150 and 200 ft/sec tip speed conditions, and 10 to 410 Hz for the higher tip speed conditions, except for the data from the final test. Since this test was run with a two-bladed propeller rather than a four-bladed propeller, the analysis frequency ranges were halved. These ranges covered approximately 10 harmonics of the blade passage frequency. A -6dB correction for ground reflection was added to all the tone data.

The data from the vortex noise microphone positions were analyzed using a General Radio 1921 Real Time 1/3-Octave Band Analyzer with band center frequencies from 25 to 10,000 Hz. Each band level was corrected for background noise as follows:

Corrected Level 10 log [antilog (SPL/10) - antilog (BKG/10)]

where SPL is the measured 1/3-octave band level and BKG is the background noise level in that band at that measurement location (from Table VI). Since the measured levels were rounded to the nearest decibel, the background correction was applied only when the measured level exceeded the background noise by 1 dB or more. If this was not the case, then no further correction was applied to the data and it wa considered to be background noise rather than signal and, thus, not to be used. The data were then adjusted for ground reflections by applying the corrections from Table V.

In some cases, particularly in the low-frequency bands and for the higher tipspeed operating condition, it was observed that some bands were distinctly higher in level than the bands immediately on either side, indicating the presence of a tone. Thus, a similar analysis to that described for the rotational noise was done on this on this data. Where a tone was noted, its level (or in the case of a band covering the frequency range of several tones the logarithmic sum of the tone levels), was compared to the level of the 1/3-octave band of that frequency range. If the levels agreed within 3 dB, it was assumed that the 1/3-octave band level was due to tones and not to broad-band noise and, thus, not used for comparison with estimated vortex noise.

The width of a 5 Hz filter did not allow the determination of the signal level between tones. Therefore, the data from the fourth test were more extensively analyzed using a narrower filter. For this analysis the vortex noise data were analyzed over the range 10 to 600 Hz using a 1.5 Hz bandwidth filter. The tones were eliminated and the rest integrated between 1/3-octave band frequency limits and the corresponding 1.3 octave band sound pressure levels calculated. These were then corrected for breckground noise and ground plane effects and used for correlation with vortex noise calculations.

#### 6. DISCUSSION OF TEST RESULTS

#### a. Propeller Test Configurations

Four propeller configurations were tested in this program. All were 11.25 feet in diameter. The first three propellers were four-bladed. The last configuration tested was the third propeller with two blades removed. Figure 15 and the following table present the blade characteristics of the propellers tested while Figure 16 shows a comparison of their planforms. All propellers were tested in the tractor mode; i.e., the propeller wake passed through the rig supporting structure.

| Blade designation   | 47X-394 and 47X-451 | 47X-464  |
|---------------------|---------------------|----------|
| Activity factor     | 112.9               | 213.8    |
| Maximum chord       | 11.4 in.            | 19.1 in. |
| Integrated design C | 0.60                | 0,5384   |
| Airfoil section     | NACA 64A            | NACA 66A |

The first blade configuration (47X-394) was an existing configuration designed for a STOL aircraft. The second blade configuration (47X-451) was derived from the first blade configuration by increasing the blade twist near the tip. The purpose of this change was to reduce blade loading and angle of attack near the tip in order to simulate typical conditions in flight rather than static operation. The third blade



Figure 15, Blade Characteristics

62

×





configuration was designed to minimize both harmonic loading noise and broad-band noise within the capabilities of an available propeller hub and blade forging. Theory indicates that increasing blade chord reduces harmonic loading noise for a given rpm and thrust. A design study of vortex noise trends was made using a preliminary version of the new vortex noise method with the coefficients based on broad-band noise data from the first two propellers tested. The study indicated that increasing blade chord also would reduce propeller vortex noise. The use of an existing blade forging resulted in a chord of about 19 inches and the activity factor to 213.8 compared to a chord of 11.4 inches and an activity factor of 112.9 for the first two blade configurations tested. Based on the study of airfoil sections reported in Section V.4, NACA 66A sections were used in order to reduce vortex noise further. The method of determining the thickness distribution for this new section is described at the end of Section V.4. In order to facilitate a comparison with the first two propeller configurations, the diameter of 11.25 feet was retained. The hub permitted tests of both 4-bladed and 2-bladed configurations of the new wide 47X-464 blades,

A brief investigative program was conducted after the second test period in order to determine rig blockage effects on the propeller noise. For this third test program, the second propeller test configuration was reversed and run as a pusher propeller.

b. Propeller Test Conditions

The test conditions for the five test periods are summarized in Table VII. The thrust and power are averages of the rotational noise and broad-band noise data runs for the tip speed and blade angle shown. The powers shown are based on the rpm and measured torque.

Although the wind speed is given as a range, most of the data samples were taken during calm periods since it was possible to see the anemometer and thus record data between gusts. In many cases the anemometer was still; i.e., the wind was less than 1 mph.

c. Rotational Harmonic Noise

The measured harmonic noise levels are presented in Tables VIII through XII. All the levels shown have been adjusted to equivalent free-field conditions.

Figure 17 presents the rotational noise harmonics for the middle blade angle and 200 ft/sec tip speed at three azimuths. It can be seen that the levels of the harmonics do not decrease rapidly as is commonly predicted by theory for low tip speed propellers. One possible explanation for this phenomenon appeared to be interference from the rig. As a consequence, the third test program was conducted





65

Figure 17. Rotational Noise Summary

HARMONIC OF BLADE PASSING FREQUENCY

#### TABLE VII

#### PROPELLER TEST CONDITIONS

| RPM                                                                                      | Tip Speed                                                                 | Blade Angle<br>at 0.75 Radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Thrust                                                               | Horsepower                                                                                        |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 255\\ 339\\ 547\\ 254\\ 340\\ 510\\ 650\\ 255\\ 341\\ 511 \end{array}$ | 150 ft/sec<br>200<br>322<br>150<br>200<br>300<br>383<br>150<br>200<br>300 | $     \begin{array}{r}       19.7^{\circ} \\       19.7^{\circ} \\       19.7^{\circ} \\       13.7^{\circ} \\       13.7^{\circ} \\       13.7^{\circ} \\       13.7^{\circ} \\       8.7^{\circ} \\       8.7^{$ | 134 lbs<br>250<br>729<br>95<br>201<br>490<br>805<br>65<br>156<br>370 | $ \begin{array}{r} 6.7\\ 17.4\\ 72.7\\ 3.9\\ 8.0\\ 34.1\\ 72.9\\ 2.1\\ 6.1\\ 19.8\\ \end{array} $ |
| 750                                                                                      | 442                                                                       | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 751                                                                  | 72.7                                                                                              |

Test Period No. 1. 47 x 394 blades, August 22, 1970

Temperature range:  $45 \text{ to } 54^{\circ}\text{F}$ 

Barometric pressure: 29,95 to 30.02 in. Hg Wind speed: 0 to 2 mph

| Test Period No. 2. 47 x 451 blades. Oc | ctober 17. | 1970 |
|----------------------------------------|------------|------|
|----------------------------------------|------------|------|

| RPM | Tip Speed  | Blade Angle<br>at 0.75 Radius | Thrust  | Horsepower |
|-----|------------|-------------------------------|---------|------------|
| 250 | 147 ft/sec | 16.4 <sup>°</sup>             | 186 lbs | 5.0        |
| 340 | 200        | 16.4 <sup>0</sup>             | 315     | 10.5       |
| 600 | 353        | 16.4 <sup>0</sup>             | 800     | 69.6       |
| 250 | 147        | 12.4                          | 130     | 3.8        |
| 340 | 200        | 12.4                          | 215     | 7.5        |
| 510 | 300        | 12.4                          | 484     | 32.8       |
| 670 | 395        | 12.4                          | 832     | 78.6       |
| 340 | 200        | 8.40                          | 167     | 6.0        |
| 520 | 306        | 8.4                           | 359     | 18.4       |
| 750 | 442        | 8.4 <sup>0</sup>              | 743     | 70.0       |

Temperature range: 34 to 37<sup>°</sup>F Barometric pressure: 30.07 in. Hg Wind speed: 0 to 2 mph

#### TABLE VII (Cont.)

Test Period No. 3. 47 x 451 Blades, Pusher Configuration. January 30, 1971

| RPM | Tip Speed  | Blade Angle<br>at 0.75 Radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Thrust  | Horsepower |
|-----|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|
| 255 | 150 ft/sec | $12.5^{\circ} \\ 12.5^{\circ} $ | 130 lbs | 3.8        |
| 340 | 200        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 215     | 7.5        |
| 510 | 300        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 484     | 32.8       |
| 650 | 383        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 790     | 75.0       |

Meteorological data not taken.

Test Period No. 4. 47 x 464 Blades, 4 Blades. February 17, 1971

| RPM | Tip Speed  | Blade Angle<br>at 0.75 Radius | Thrust  | Horsepower |
|-----|------------|-------------------------------|---------|------------|
| 255 | l50 ft/see | 15.00                         | 321 lbs | 8.7        |
| 340 | 200        | 15.0                          | 475     | 19.2       |
| 510 | 300        | 15.0                          | 896     | 59.7       |
| 255 | 150        | 11.4                          | 199     | 6.7        |
| 340 | 200        | 11.4                          | 301     | 13.8       |
| 510 | 300        | 11.4                          | 640     | 44.4       |
| 600 | 353        | 11.4                          | 881     | 73.2       |
| 255 | 150        | 8.1                           | 187     | 6.7        |
| 340 | 200        | 8.1 <sup>0</sup>              | 292     | 13.6       |
| 510 | 300        | 8.1 <sup>0</sup>              | 551     | 35.7       |
| 680 | 400        | 8.10                          | 916     | 77.1       |

Temperature range: 9 to 18<sup>0</sup>F Barometric pressure: 30.13 in. Hg

Wind speed: 0 to 3 mph

### TABLE VII (Concluded)

| RPM | Tip Speed  | Blade Angle<br>at 0.75 Radius                                                                                                                                                                                       | Thrust | Horsepower |
|-----|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|
| 255 | 150 ft/sec | $     \begin{array}{r}       10.9^{\circ} \\       10.9^{\circ}   \end{array} $ | 40 lbs | 4.4        |
| 340 | 200        |                                                                                                                                                                                                                     | 125    | 8.6        |
| 510 | 300        |                                                                                                                                                                                                                     | 345    | 25.0       |
| 600 | 353        |                                                                                                                                                                                                                     | 485    | 38.0       |
| 680 | 400        |                                                                                                                                                                                                                     | 631    | 53.0       |
| 765 | 451        |                                                                                                                                                                                                                     | 819    | 75.0       |

Test Period No. 5. 47 x 464 Blades, 2 Blades. March 2, 1971

Temperature range: 28 to 30<sup>0</sup>F Barometric pressure: 30.00 in. Hg Wind speed: 0 to 3 mph

## TABLE VIII

## SUMMARY OF THE TONE LEVELS FOR THE 47 X 394 BLADES

19.7<sup>0</sup> Blade Angle

|            |          |                 |                   | Azimuth         | Angle              |                    |
|------------|----------|-----------------|-------------------|-----------------|--------------------|--------------------|
| Tip Speed  | Harmonic | 45 <sup>0</sup> | 67.5 <sup>Q</sup> | 90 <sup>0</sup> | 112.5 <sup>0</sup> | 135 <sup>0</sup> , |
| 150 ft/sec | 1        | 61 dB           | 53 dB             | 52.5 dB         | 53.5 dB            | 60.5 dB            |
|            | 2        | 50.5            | 49.5              | 39              | 47                 | 52                 |
|            | 3        | 54.5            | 47.5              | 47              | 47                 | 53                 |
|            | 4        | 52              | 47.5              | 41              | 46                 | 51                 |
|            | 5        | 48.5            | 44.5              | 43              | 41                 | 48                 |
|            | 6        | 47              | 41                |                 |                    | 47                 |
| 200        | 1        | 64.5            | 60                | 51.5            | 61                 | 58                 |
|            | 2        | 63              | 53.5              | 44              | 58                 | 61                 |
|            | 3        | 60              | 52                | 40.5            | 56                 | 57.5               |
|            | .1       | 58              | 50.5              | 42.5            | 54                 | 57                 |
|            | 5        | 55              | 51                |                 | 53.5               | 58                 |
|            | 6        | 55.5            | 49.5              |                 | 52                 | 57                 |
|            | 7        | 53              | 49.5              |                 | 50.5               | 56                 |
|            | 8        | 51              | 50.5              | 1               | 49.5               | 53                 |
|            | 9        | 49.5            | 47                |                 | 47                 | 52                 |
|            | 10       | 49.5            | 46                |                 | 49                 | 55                 |
|            | 11       | 51              | 47.5              |                 | 50.5               | 52                 |
|            | 12       | 50.5            | 47                |                 | 50                 | 51.5               |
|            | 13       | 48.5            | 47                |                 | 49.5               | 52.5               |
| 322        | 1        | 68.5            | 67.5              | 64              | 66                 | 70.5               |
|            | 2        | 64              | 65                | 54.5            | 68                 | 73                 |
|            | 3        | 64.5            |                   |                 |                    | 73                 |
|            | -4       | 60.5            |                   |                 |                    | 69                 |
|            | 5        | 60              |                   |                 |                    | 69                 |
|            | 6        | 61              |                   |                 |                    | 70.5               |
|            | 7        | 61.5            |                   |                 |                    | 70                 |
|            | 8        | 63              |                   |                 |                    | 70.5               |
|            | 9        | 62              |                   |                 |                    | 68                 |
|            | 10       | 60              |                   |                 |                    | 67                 |

69

ι.

## 13.7<sup>0</sup> Blade Angle

|            |          |                 | Azi               | muth Angle      | ;                  |                  |
|------------|----------|-----------------|-------------------|-----------------|--------------------|------------------|
| Tip Speed  | Harmonic | 45 <sup>0</sup> | 67.5 <sup>0</sup> | 90 <sup>0</sup> | 112.5 <sup>0</sup> | 135 <sup>0</sup> |
| 150 ft/sec | 1        | 50 dB           | 49 dB             | 51.5 dB         | 50 dB              | 46.5 dB          |
|            | 2        | 40              | 36.5 •            | 34.5            | 37.5               | 44               |
|            | 3        | 39              | 42                | 43.5            | 45                 | 47               |
|            | 4        | 40              | 38                | 31.5            | 36                 | 39.5             |
|            | 5        | 42              | 37                | 32              | 38.5               | 44.5             |
| 200        | 1        | 57              | 52                | 49              | 53,5               | 55               |
|            | 2        | 49              | 46                | 39              | 46                 | 51               |
|            | 3        | 49.5            | 42                | 37.5            | 43                 | 51               |
|            | 4        | 52              | 41                | 36              | 42                 | 50.5             |
|            | 5        | 52.5            | 45                | 38.5            | 40                 | 50.5             |
| 1          | 6        | 53              |                   | ł               |                    | 50               |
|            | 7        | 50              |                   |                 | ]                  | 48               |
|            | 8        | 49              |                   | ]               | ļ                  | 46               |
|            | 9        | 46.5            |                   |                 | (                  | 44               |
|            | 10       | 43.5            |                   | 1               | 1                  | 46               |
|            | 11       | 46              |                   |                 |                    | 48               |
| 1          | 12       | 46.5            |                   | [               |                    | 49.5             |
| ]          | 13       | 47              |                   |                 |                    | 47               |
|            | 14       | 47              |                   |                 |                    | 45               |
| 300        | 1        | 62              | 65                | 63              | 58.5               | 64.5             |
|            | 2        | 62              | 59                | 48              | 55                 | 58.5             |
|            | 3        | 58.5            | 54                | 49              | 53.5               | 60,5             |
| ļ          | 4        | 59              | 56.5              | 44.5            | 49.5               | 57.5             |
|            | 5        | 59.5            | 57                | 42              | 50.5               | 55.5             |
| 1          | 6        | 57              | 52                |                 |                    | 57               |
|            | 7        | 57              | 52                |                 | 1                  | 61               |
|            | 8        | 59              | 53                | 1               |                    | 62               |
|            | 9        | 58              | 53                |                 | ]                  | 56               |
|            | 10       | 57              | 52.5              |                 |                    | 55               |
|            | 11       | 56              | 52                |                 |                    | 55.5             |

## TABLE VIII (Cont.)

13.7<sup>0</sup> Blade Angle (Concluded)

|            |          | Azimuth Angle   |                   |                 |                    |                    |
|------------|----------|-----------------|-------------------|-----------------|--------------------|--------------------|
| Tip Speed  | Harmonic | 45 <sup>0</sup> | 67.5 <sup>0</sup> | 90 <sup>0</sup> | 112.5 <sup>0</sup> | 135 <sup>0</sup> _ |
| 383 ft/sec | 1        | 62.5 dB         | 70 dB             | 74 dB           | 72.5 dB            | 70 dB              |
|            | 2        | 63,5            | 61                | 52.5            | 63.5               | 66                 |
|            | 3        | 63              | 60                | 51.5            | 61                 | 63                 |
|            | -4       | 62              | 62                | 50              | 59.5               | 64.5               |
|            | 5        | 62              | 59                |                 | 60                 | 64.5               |
|            | 6        | 66              | 61                |                 | 60.5               | 65                 |
|            | 7        | 66              | 61.5              |                 | 62                 | 67                 |
|            | 8        | 66              | 60.5              |                 | 60                 | 64.5               |
|            | 9        | 63              | 59.5              |                 | 58.5               | 66.5               |

8.7° Blade Angle

Receiver

· days

|            |          |                 |                   | Azimuth A       | ngle   |                  |
|------------|----------|-----------------|-------------------|-----------------|--------|------------------|
| Tip Speed  | Harmonic | 45 <sup>0</sup> | 67.5 <sup>0</sup> | 90 <sup>0</sup> | 112.50 | 135 <sup>0</sup> |
| 150 ft/sec | 1        | 57 dB           | 52 dB             | 54 dB           | 50 dB  | 51.5 dB          |
|            | 2        | 41.5            | 40.5              | 36.5            | 40.5   | 42.5             |
|            | 3        | 39.5            | 43                | 47              | 47     | 51               |
|            | 4        | 37.5            | 38                | 33              | 38     | 43.5             |
|            | 5        | 40.5            | 39                | 38.5            | 40.5   | 44               |
| 200        | 1        | 54.5            | 47.5              | 46.5            | 45.5   | 55               |
|            | 2        | 53              | 42                | 40.5            | 45.5   | 47               |
|            | 3        | 45              | 42.5              | 37.5            | 43.5   | 50.5             |
|            | 4        | 49              | 42.5              | 40.5            | 41.5   | 48.5             |
|            | 5        | 44.5            | 40.5              | 41.5            | 42.5   | 45.5             |

## TABLE VIII (Concluded)

ł

A CONTRACTOR OF

|            |                                                 |                                                                     |                                                                       | Azimuth A                       | Ingle                                                             |                                                                   |
|------------|-------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| Tip Speed  | Harmonic                                        | 45 <sup>0</sup>                                                     | 67.5 <sup>0</sup>                                                     | 90 <sup>0</sup>                 | 112.5 <sup>0</sup>                                                | 135 <sup>0</sup>                                                  |
| 300 ft/sec | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 61 dB<br>59<br>57<br>54.5<br>53<br>49<br>52<br>52<br>52<br>54<br>52 | 55.5 dB<br>52<br>52<br>49<br>50.5<br>43<br>45.5<br>47.5<br>47.5<br>48 | 61 dB<br>47<br>47.5<br>42<br>40 | 56 dB<br>54<br>54<br>47<br>48.5<br>46.5<br>50<br>50<br>48<br>48.5 | 56 dB<br>58<br>56<br>55<br>53<br>52<br>51<br>53<br>53<br>53<br>53 |
| 442        | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8            | 51<br>68<br>69<br>62<br>62<br>61<br>62.5<br>61<br>61.5              | 64<br>62<br>64.5<br>61<br>59.5<br>58<br>58.5<br>55                    | 65<br>53.5<br>54<br>52.5        | 70<br>61<br>62<br>59<br>59.5<br>63<br>61.5<br>62                  | 69<br>64<br>65<br>61<br>62<br>61.5<br>63<br>62                    |

## 8.7<sup>0</sup> Blade Angle (Concluded)

## TABLE IX

## SUMMARY OF THE TONE LEVELS FOR THE 47X451 BLADES

All data for 90° azimuth angle

| Blade Angle       | I       |             | Tip         | Speed, | ft/sec      |       |       |
|-------------------|---------|-------------|-------------|--------|-------------|-------|-------|
| at 0.75 Radius    | Maximum | 147         | 200         | 300    | 353         | 395   | 442   |
| 16.4 <sup>0</sup> | 1 2     | 45 dB<br>40 | 48 dB<br>45 |        | 63 dB<br>57 |       |       |
|                   | 3       | 40          | 45          |        | <b>6</b> 0  |       |       |
|                   | 4       | 35          | 45          |        | 53          |       |       |
|                   | 5       | 42          | 47          |        | 56          |       |       |
|                   | 6       |             | 43          |        | 54          |       |       |
|                   | 7       |             |             |        | 54          |       |       |
|                   | 8       |             |             |        | 51          |       |       |
| 12.4 <sup>0</sup> | 1       | 46          | 49          | 56 dB  |             | 72 dB |       |
|                   | 2       | 36          | 40          | 53     |             | 73    |       |
|                   | 3       | 40          | 36          | 55     |             | 74    |       |
|                   | 4       | 31          | 41          | 47     |             | 71    |       |
|                   | 5       | 40          | 42          | 50     |             | 78    |       |
|                   | 6       | 35          |             | 41     |             | 10    |       |
|                   |         | 39          |             | 47     |             | 71    |       |
|                   | 8       | 28          |             |        |             | 71    |       |
|                   | 9       |             |             |        |             |       |       |
| 8, 4 <sup>0</sup> | 1       |             | 44          | 57     |             |       | 70 dB |
| -                 | 2       |             | 36          | 45     |             |       | 56    |
|                   | 3       |             | 40          | 44     |             |       | 51    |
|                   | -4      |             | 41          | 47     |             |       | 48    |
|                   | 5       |             | 41          | 47     |             |       | 52    |
|                   | 6       |             |             | 39     |             |       | 49    |
|                   | 7       |             |             | 44     |             |       | 46    |
|                   | 8       |             |             | 38     |             |       | -49   |

#### TABLE X

1

#### SUMMARY OF THE TONE LEVELS FOR THE 47X451 BLADES WITH THE PROPELLER IN A PUSHER CONFIGURATION

|            |          |                 |                   | Azimuth         |                    |                  |
|------------|----------|-----------------|-------------------|-----------------|--------------------|------------------|
| Tip Speed  | Harmonic | 45 <sup>0</sup> | 67.5 <sup>0</sup> | 90 <sup>0</sup> | 112.5 <sup>0</sup> | 135 <sup>0</sup> |
|            |          | 40.10           | - 4 3 - 5         |                 |                    |                  |
| 150 ft/sec | 1        | 48 <b>dB</b>    | 54 dB             | 39 dB           | 42 dB              | 50 dB            |
|            | 2        | 48              | 48                | 45              | 48                 | 48               |
|            | 3        | 48              | 44                |                 | 45                 | 49               |
|            | 4        | 48              | 42                |                 | 44                 | 46               |
|            | 5        | 46              | 44                |                 | 43                 | 41               |
|            | 6        | 44              | 42                |                 | 42                 | 40               |
|            | 7        | 44              | 40                |                 | 39                 | 41               |
|            | 8        | 43              | 41                |                 | 39                 | 40               |
|            | 9        | 41              | 38                |                 | 38                 | 40               |
|            | 10       | 41              | 39                |                 | 39                 | 39               |
| 200        | 1        | 56              | 55                | 45              | 58                 | 59               |
|            | 2        | 57              | 54                | 43              | 54                 | 55               |
|            | 3        | 60              | 56                | 43              | 52                 | 51               |
|            | 4        | 54              | 52                |                 | 52                 | 55               |
|            | 5        | 52              | 53                |                 | 47                 | 52               |
|            | 6        | 48              | 47                |                 | 45                 | 47               |
|            | 7        | 48              | 46                |                 | 44                 | 49               |
|            | 8        | 48              | 43                |                 | 43                 | 46               |
|            | 9        | 46              | 40                | ł               | 40                 | 46               |
|            |          |                 |                   |                 |                    |                  |
| 300        | 1        | 65              | 66                | 57              | 64                 | 65               |
|            | 2        | 62              | 60                | 51              | 63                 | 65               |
|            | 3        | 65              | 59                | 46              | 63                 | 65               |
|            | 4        | 60              | 55                | 44              | 59                 | 63               |
|            | 5        | 56              | 54                | 41              | 58                 | 60               |
|            | 6        | 56              | 49                | 40              | 54                 | 58               |
|            | 7        | 56              | 48                | 42              | 52                 | 56               |
|            | 8        | 55              | 47                | 40              | 50                 | 55               |
|            | 9        | 53              | 46                |                 | 48                 | 5 <b>2</b>       |
| 383        | 1        | 72              | 69                | 74              | 72                 | 78               |
|            | 2        | 76              | 68                | 56              | 66                 | 67               |

All data at 12, 5<sup>0</sup> blade angle

All data at 12.5<sup>0</sup> blade angle

|                   |          |                 | Azimuth           |                 |                    |                  |  |  |  |  |  |
|-------------------|----------|-----------------|-------------------|-----------------|--------------------|------------------|--|--|--|--|--|
| Tip <b>Sp</b> eed | Harmonic | 45 <sup>0</sup> | 67.5 <sup>0</sup> | 90 <sup>0</sup> | 112.5 <sup>0</sup> | 135 <sup>0</sup> |  |  |  |  |  |
| 383 ft/sec        | 3        | 73 dB           | 64 dB             | 62 dB           | 64 dB              | 68 dB            |  |  |  |  |  |
|                   | 4        | 74              | 58                | 56              | <b>6</b> 0         | 64               |  |  |  |  |  |
|                   | 5        | 69              | 58                | 54              | 58                 | 60               |  |  |  |  |  |
|                   | 6        | 68              | 58                | 52              | 56                 | 60               |  |  |  |  |  |
|                   | 7        | 66              | 53                | 52              | 51                 | 58               |  |  |  |  |  |
|                   | 8        | 63              | 48                | 52              | 52                 | 58               |  |  |  |  |  |

·

### TABLE XI

#### SUMMARY OF THE TONE LEVELS FOR THE 47X464 BLADES

|            |          |                         |                 | Azimu           | th Angle          | <u></u>         |                    |                  |
|------------|----------|-------------------------|-----------------|-----------------|-------------------|-----------------|--------------------|------------------|
| Tip Speed  | Harmonic | 12 <sup>0</sup> (80 ft) | 20 <sup>0</sup> | 45 <sup>0</sup> | 67.5 <sup>0</sup> | 90 <sup>0</sup> | 112.5 <sup>0</sup> | 135 <sup>0</sup> |
| 150 ft/sec | 1        | 59 dB                   | 54 dB           | 57 dB           | 52 dB             | 45 dB           | 63 dB              | 57 dB            |
|            | 2        | 54                      | 55              | 54              | 49                | 39              | 60                 | 54               |
|            | 3        | 56                      | 55              | 48              | 48                | 37              | 58                 | 54               |
|            | 4        | 52                      | 52              | 50              | 49                | 40              | 58                 | 58               |
|            | 5        | 54                      | 53              | 51              | 51                | 41              | 59                 | 55               |
|            | 6        | 54                      | 54              | 54              | 49                | 40              | 56                 | 59               |
|            | 7        | 54                      | <b>5</b> 0      | 49              | 47                | 42              | 58                 | 52               |
|            | 8        | 51                      | 52              | 50              | 47                | 37              | 56                 | 52               |
|            | 9        | 52                      | 50              | 51              | 47                | 36              | 56                 | 51               |
|            | 10       | 50                      | 52              | 50              | 47                | 37              | 58                 | 53               |
| 200        | 1        | 57                      | 61              | 64              | 56                | 53              | 68                 | <b>6</b> 8       |
|            | 2        | 54                      | 56              | <b>6</b> 0      | 53                | 52              | 66                 | 62               |
|            | 3        | 49                      | 61              | 60              | 48                | 49              | 64                 | 62               |
|            | 4        | 50                      | 61              | 61              | 47                | 48              | 67                 | 62               |
|            | 5        | 50                      | 59              | 58              | 51                | 47              | 64                 | 64               |
| !          | 6        | 48                      | 63              | 62              | 48                | 47              | 62                 | 62               |
|            | 7        | 49                      | 60              | 59              | 47                | 53              | 64                 | 59               |
|            | 8        | 49                      | 57              | 48              | 47                | 47              | 63                 | 62               |
| ·          | 9        | 50                      | 59              | 50              | 46                | 42              | 62                 | <b>6</b> 0       |
| 300        | 1        | 74                      | 74              | 66              | 69                | 62              | 66                 | 66               |
|            | 2        | 66                      | 66              | 71              | 66                | 54              | 60                 | 64               |
|            | 3        | 71                      | 69              | 67              | 58                | 56              | 63                 | 70               |
|            | 4        | 68                      | 68              | 66              | 56                | 52              | 62                 | 70               |
|            | 5        | 72                      | 70              | 69              | 57                | 52              | 61                 | 65               |
|            | 6        | 68                      | 71              | 68              | 60                | 51              | 62                 | 66               |
|            | 7        | 70                      | 72              | 66              | 60                | 52              | 62                 | <b>6</b> 8       |
|            | 8        | 67                      | 68              | 64              | 56                | 51              | 57                 | 66               |
|            | 9        | 66                      | 66              | 64              | 56                | 49              | 60                 | 66               |
|            | 10       | 62                      | 68              | 62              | 56                | 48              | 58                 | 60               |

15,0<sup>0</sup> blade angle

76

¥

| TABLI | E XI | (Cont.) | ) |
|-------|------|---------|---|
|-------|------|---------|---|

| 11.4 blade angle | 11.40 | blade | angle |
|------------------|-------|-------|-------|
|------------------|-------|-------|-------|

|            |          | Azimuth Angle           |                 |                 |                   |                 |                    |       |  |  |
|------------|----------|-------------------------|-----------------|-----------------|-------------------|-----------------|--------------------|-------|--|--|
| Tip Speed  | Harmonic | 12 <sup>0</sup> (80 ft) | 20 <sup>0</sup> | 45 <sup>0</sup> | 67.5 <sup>0</sup> | 90 <sup>0</sup> | 112.5 <sup>0</sup> | 1350  |  |  |
| 150 ft/sec | 1        | 61 dB                   | 54 dB           | 56 dB           | 52 dB             | 52 dB           | 53 dB              | 52 dB |  |  |
|            | 2        | 55                      | 49              | 50              | 48                | 43              | 45                 | 47    |  |  |
|            | 3        | 49                      | 45              | 45              | 42                | 42              | 40                 | 44    |  |  |
|            | 4        | 46                      | 44              | 42              | 43                | 40              | 40                 | 45    |  |  |
|            | 5        | 50                      | 47              | 45              | 46                | 44              | 44                 | 44    |  |  |
|            | 6        | 50                      | 50              | 44              | 45                | 42              | 40                 | 47    |  |  |
|            | 7        | 49                      | 44              | 44              | 47                | 50              | 42                 | 48    |  |  |
|            | 8        | 49                      | 45              | 43              | 43                | 41              | 43                 | 46    |  |  |
|            | 9        | 48                      | 46              | 42              | 43                | 43              | 40                 | 46    |  |  |
|            | 10       | 45                      | 45              | 42              | 44                | 43              | 43                 | 45    |  |  |
| 200        | 1        | 66                      | 58              | 61              | 56                | 60              | 54                 | 62    |  |  |
|            | 2        | 66                      | 56              | 61              | 47                | 48              | 48                 | 51    |  |  |
|            | 3        | 56                      | 48              | 58              | 44                | 45              | 45                 | 46    |  |  |
|            | 4        | 58                      | 52              | 50              | 46                | 51              | 48                 | 56    |  |  |
|            | 5        | 60                      | 52              | 53              | 46                | 47              | 46                 | 52    |  |  |
|            | 6        | 59                      | 55              | 53              | 46                | 41              | 49                 | 54    |  |  |
|            | 7        | 56                      | 54              | 52              | 46                | 46              | 49                 | 50    |  |  |
|            | 8        | 57                      | 50              | 54              | 46                | 44              | 48                 | 50    |  |  |
|            | 9        | 57                      | 54              | 52              | 46                | 40              | 46                 | 52    |  |  |
| 300        | 1        | 68                      | 71              | 68              | 66                | 48              | 64                 | 71    |  |  |
|            | 2        | 59                      | 66              | 65              | 60                | 39              | 58                 | 69    |  |  |
|            |          | 64                      | 68              | 60              | 60                | 40              | 58                 | 64    |  |  |
|            | 4        | 63                      | 69              | 64              | 59                | 43              | 60                 | 58    |  |  |
|            | 5        | 65                      | 72              | 66              | 57                | 42              | 58                 | 62    |  |  |
|            | 6        | 64                      | 71              | 67              | 59                | 33              | 61                 | 61    |  |  |
|            | 7        | 64                      | 70              | 61              | 60                | 40              | 57                 | 66    |  |  |
|            | 8        | 62                      | 65              | 62              | 56                | 43              | 56                 | 63    |  |  |
|            | 9        | 60                      | 67              | 64              | 57                | 35              | 56                 | 60    |  |  |
|            | 10       | 60                      | 66              | 62              | 5 <del>9</del>    | 34              | 56                 | 58    |  |  |
| 353        | 1        | 69                      | 66              | 74              | 68                | 66              | 77                 | 70    |  |  |
|            | 2        | 70                      | 61              | 69              | 62                | 45              | 66                 | 69    |  |  |
|            | 3        | 67                      | 70              | 67              | 69                | 44              | 61                 | 71    |  |  |
|            | 4        | 67                      | 72              | 64              | 64                | 37              | 64                 | 67    |  |  |

|            |          |                         | Azimuth Angle   |                 |                   |                 |                    |                  |  |  |  |
|------------|----------|-------------------------|-----------------|-----------------|-------------------|-----------------|--------------------|------------------|--|--|--|
| Tip Speed  | Harmonic | 12 <sup>0</sup> (80 ft) | 20 <sup>0</sup> | 45 <sup>0</sup> | 67.5 <sup>0</sup> | 90 <sup>0</sup> | 112.5 <sup>0</sup> | 135 <sup>0</sup> |  |  |  |
| 353 ft/sec | 5        | 67 dB                   | 74 dB           | 68 dB           | 68 dB             | 33 dB           | 66 dB              | 66 dB            |  |  |  |
|            | 6        | 69                      | 72              | 67              | <b>6</b> 8        | 33              | 61                 | 70               |  |  |  |
|            | 7        | 66                      | 70              | 67              | 67                | 41              | 61                 | 68               |  |  |  |
|            | 8        | 66                      | 69              | 66              | 68                | 36              | 64                 | 67               |  |  |  |
|            | 9        | 64                      | 66              | 64              | 64                | 39              | <b>6</b> 0         | 66               |  |  |  |
|            | 10       | 60                      | 65              | 63              | 62                | 36              | 58                 | 64               |  |  |  |

## $11.4^{\circ}$ blade angle (Concluded)

78

## TABLE XI (Cont.)

.

## 8.1<sup>0</sup> blade angle

.

|            |          |                         |                         | Azim            | uth Angl          | e               |        |                  |
|------------|----------|-------------------------|-------------------------|-----------------|-------------------|-----------------|--------|------------------|
| Tip Speed  | Harmonic | 12 <sup>0</sup> (80 ft) | <b>2</b> 0 <sup>0</sup> | 45 <sup>0</sup> | 67.5 <sup>0</sup> | 90 <sup>0</sup> | 112.50 | 135 <sup>0</sup> |
| 150 ft/sec | 1        | 46 dB                   | 53 dB                   | 56 dB           | 49 dB             | 44 dB           | 50 dB  | 56 dB            |
|            | 2        | 47                      | 45                      | 52              | 50                | 42              | 44     | 48               |
|            | 3        | 48                      | 42                      | 49              | 42                | 31              | 44     | 45               |
|            | 4        | 44                      | 40                      | 48              | 44                | 31              | 45     | 46               |
|            | 5        | 45                      | 43                      | 50              | 44                | 35              | 44     | 50               |
|            | 6        | 49                      | 46                      | 52              | 40                | 33              | 42     | 48               |
|            | 7        | 45                      | 44                      | 51              | 42                | 37              | 44     | 50               |
|            | 8        | 46                      | 45                      | 51              | 38                | 33              | 44     | 48               |
|            | 9        | 46                      | 46                      | 49              | 40                | 34              | 42     | 48               |
|            | 10       | 44                      | 45                      | 50              | 40                | 33              | 44     | 46               |
| 200        | 1        | 63                      | 61                      | 56              | 56                | 52              | 57     | 56               |
|            | 2        | 57                      | 55                      | 48              | 47                | 41              | 49     | 53               |
|            | 3        | 51                      | 56                      | 47              | 54                | 38              | 52     | 50               |
|            | 4        | 53                      | 54                      | 49              | 52                | 41              | 50     | 52               |
|            | 5        | 54                      | 53                      | 50              | 47                | 40              | 51     | 48               |
| i          | 6        | 50                      | 54                      | 50              | 50                | 38              | 48     | 50               |
|            | 7        | 51                      | 56                      | 47              | 50                | 38              | 49     | 52               |
|            | 8        | 54                      | 54                      | 48              | 52                | 38              | 49     | 51               |
|            | 9        | 50                      | 50                      | 47              | 49                | 36              | 48     | 50               |
| 300        | 1        | 63                      | 67                      | 60              | 66                | 68              | 61     | 62               |
|            | 2        | 58                      | 63                      | 66              | 54                | 48              | 64     | 62               |
|            | 3        | 56                      | 64                      | 56              | 55                | 49              | 60     | 61               |
|            | 4        | 56                      | 64                      | 56              | 58                | 48              | 63     | 60               |
|            | 5        | 58                      | 60                      | 60              | 53                | 46              | 59     | 60               |
|            | 6        | 57                      | 63                      | 55              | 54                | 46              | 61     | 61               |
|            | 7        | 54                      | 63                      | 58              | 53                | 45              | 56     | 63               |
|            | 8        | 54                      | 61                      | 56              | 52                | 50              | 57     | 63               |
|            | 9        | 52                      | <b>6</b> 0              | 57              | 50                | 47              | 57     | 61               |
|            | 10       | 55                      | 59                      | 54              | 53                | 40              | 55     | 58               |
| 400        | 1        | 70                      | 74                      | 69              | 76                | 74              | 76     | 7.4              |
| 1          | 2        | 69                      | 71                      | 71              | 62                | 56              | 64     | 72               |
| 1          | 3        | 66                      | 69                      | 67              | 65                | 56              | 66     | 71               |
| ł          | 4        | 62                      | 66                      | 70              | 62                | 54              | 64     | 75               |

|            |          | Azimuth Angle           |                 |                 |                   |                 |                    |       |  |
|------------|----------|-------------------------|-----------------|-----------------|-------------------|-----------------|--------------------|-------|--|
| Tip Speed  | Harmonic | 12 <sup>0</sup> (80 ft) | 20 <sup>0</sup> | 45 <sup>0</sup> | 67.5 <sup>0</sup> | 90 <sup>0</sup> | 112.5 <sup>0</sup> | 1350  |  |
| 400 ft/sec | 5        | 65 dB                   | 71 dB           | 68 d <b>B</b>   | 62 dB             | 48 dB           | 60 dB              | 68 dB |  |
|            | 6        | 62                      | 67              | 67              | 63                | 51              | 61                 | 68    |  |
|            | 7        | 60                      | 66              | 69              | 60                | 53              | 62                 | 65    |  |
|            | 8        | 62                      | 66              | 67              | 60                | 52              | 63                 | 64    |  |
|            | 9        | 54                      | 64              | 70              | 58                | 52              | 62                 | 63    |  |

## $8.1^{0}$ blade angle (Concluded)

¥

### TABLE XII

### SUMMARY OF TONE LEVELS FOR THE 47X464 BLADES IN A TWO-BLADED PROPELLER CONFIGURATION

10, 9<sup>0</sup> blade angle

|            | ]        | Azimuth Angle           |                         |                 |                   |                 |            |                  |  |  |  |  |
|------------|----------|-------------------------|-------------------------|-----------------|-------------------|-----------------|------------|------------------|--|--|--|--|
| Tip Speed  | Harmonic | 12 <sup>0</sup> (80 ft) | <b>2</b> 0 <sup>0</sup> | 45 <sup>0</sup> | 67.5 <sup>0</sup> | 90 <sup>0</sup> | 112.5      | 135 <sup>0</sup> |  |  |  |  |
| 150 ft/sec | 1        | 33 dB                   | 38 dB                   | 42 dB           | 39 dB             | 38 dB           | 37 dB      | 41 dB            |  |  |  |  |
|            | 2        | 46                      | 51                      | 50              | 49                | 42              | 41         | 48               |  |  |  |  |
|            | 3        | 44                      | 48                      | 49              | 44                | 36              | <b>3</b> 8 | 42               |  |  |  |  |
|            | 4        | 42                      | 50                      | 45              | 40                | 37              | 38         | 43               |  |  |  |  |
|            | 5        | 41                      | 47                      | 46              | 40                | 32              | 37         | 39               |  |  |  |  |
|            | 6        | 46                      | 49                      | 47              | 42                | 39              | 31         | 42               |  |  |  |  |
|            | 7        |                         | 44                      | 43              |                   | 33              |            | 41               |  |  |  |  |
|            | 8        |                         | 43                      | 41              |                   | 35              |            |                  |  |  |  |  |
|            | 9        |                         | 45                      | 45              |                   |                 |            |                  |  |  |  |  |
|            | 10       |                         | 44                      | 45              |                   |                 |            |                  |  |  |  |  |
| 200        | 1        | 49                      | 61                      | 62              | 53                | 53              | 50         | 51               |  |  |  |  |
|            | 2        | 51                      | 71                      | 63              | 48                | 46              | 49         | 52               |  |  |  |  |
|            | 3        | 54                      | 69                      | 63              | 47                | 50              | 47         | 52               |  |  |  |  |
|            | 4        | 52                      | 67                      | 62              | 46                | 39              | -46        | 49               |  |  |  |  |
|            | 5        | 50                      | 65                      | 60              | 43                | 40              | 45         | 50               |  |  |  |  |
|            | 6        | 49                      | 62                      | 56              | 43                |                 | 41         | 50               |  |  |  |  |
|            | 7        | 48                      | 59                      | 57              | 42                |                 | 44         | 47               |  |  |  |  |
|            | 8        | 48                      | 57                      | 58              |                   |                 | 42         | 47               |  |  |  |  |
|            | 9        |                         |                         |                 |                   |                 | 42         |                  |  |  |  |  |
| 300        | 1        | 67                      | 74                      | 72              | 72                | 72              | 72         | 65               |  |  |  |  |
|            | 2        | 64                      | 80                      | 76              | <b>6</b> 0        | 57              | 63         | 63               |  |  |  |  |
|            | 3        | 65                      | 79                      | 76              | 61                | 50              | 58         | 62               |  |  |  |  |
|            | 4        | 64                      | 75                      | 71              | 62                | 52              | 58         | 62               |  |  |  |  |
|            | 5        | 63                      | 74                      | 70              | 62                |                 | 60         | 61               |  |  |  |  |
|            | 6        | 59                      | 76                      | 68              | 58                |                 | 56         | 62               |  |  |  |  |
|            | 7        | 61                      | 71                      | 66              | 56                |                 | 59         | 61               |  |  |  |  |
|            | 8        | 59                      | 71                      | 68              | 58                |                 | 56         | 61               |  |  |  |  |
|            | 9        | 58                      | 69                      | 68              | 57                |                 | 58         | 60               |  |  |  |  |
|            | 10       | 57                      | 68                      | 67              | 58                |                 | 56         | 60               |  |  |  |  |

### TABLE XII (Concluded)

1.1

.

in see

· · · · ·

Į

.

10.9<sup>0</sup> blade angle

|            |               |                         |                 | Azimu           | th Angle          | 3               |                    |                  |
|------------|---------------|-------------------------|-----------------|-----------------|-------------------|-----------------|--------------------|------------------|
| Tip Speed  | Harmonic      | 12 <sup>0</sup> (80 ft) | 20 <sup>0</sup> | 45 <sup>0</sup> | 67.5 <sup>0</sup> | 90 <sup>0</sup> | 112.5 <sup>0</sup> | 135 <sup>0</sup> |
| 353 ft/sec | 1             | 68 dB                   | 77 dB           | 76 dB           | 74 dB             | 78 dB           | 78 dB              | $72 \ dB$        |
|            | $\frac{2}{2}$ | 72<br>72                | 81<br>92        | 70              | 61<br>60          | 63<br>50        | 67<br>64           | 66<br>62         |
|            |               | 72                      | 82<br>77        | 68              | 59                | 59<br>59        | 63                 | 65<br>65         |
|            | 5             | 70                      | 77              | 71              | 60                | 56              | 62                 | 64               |
|            | 6             | 67                      | 74              | 70              | 62                | 56              | 61                 | 66               |
|            | 7             | 67                      | 74              | 72              | 62                |                 | 62                 | 64               |
|            | 8             | 70<br>20                | 70              | 66              | 61<br>62          |                 | 61<br>62           | 65<br>05         |
|            | 9<br>10       | 68<br>68                | 72<br>71        | 67<br>64        | 60<br>60          |                 | 60<br>63           | 65<br>64         |
| 451        | 1             | 73                      | 82              | 84              | 84                | 88              | 8 <b>8</b>         | 85               |
|            | 2             | 82                      | 86              | 82              | 71                | 76              | 78                 | 79               |
|            | 3             | 82                      | 86              | 82              | 74                | 69              | 72                 | 81               |
|            | -4            | 83                      | 83              | 78              | 74                | <b>6</b> 8      | 71                 | 82               |
|            | 5             | 80                      | 83              | 79              | 75                | 69<br>50        | 69<br>50           | 81<br>70         |
| 1          | 5             | 78                      | 82              | 7.8             | 72                | 70              | 70                 | 78               |
|            |               | ()                      | 79              | 70              | 170<br>67         | 10              | 69                 | 80               |
|            |               | 12                      | 10              | 12              | 101               |                 | 00                 | 00               |

in which the 47X451 propeller was run in a pusher configuration; i.e., the propeller wake was moving away from the rig rather than through it. The results, shown in Table X, do not appear to be significantly different from those of the other propeller configurations. A more detailed analysis of the data is discussed in Section VII.2.a.

Another area of significance is in the directivity pattern of the harmonic rotational noise. Figure 18 shows the directivity of the first, second, and tenth harmonics of blade passing frequency for the 47X464, 4-bladed propeller at 300 ft/sec tip speed. Whereas from theory one would expect the maximum to occur slightly behind the plane of rotation with little or no tone noise ahead and behind the propeller, the pattern shown in Figure 18 appears to be rotated  $90^{\circ}$ , with the maximum occurring along the propeller axis and very little noise in the plane of rotation.

d. Broad-Band Vortex Noise

The 1/3-octave band vortex noise levels are presented in Tables XIII through XV. The levels shown have been corrected for background noise and are adjusted to equivalent free-field conditions.

The data from the fourth test, on the 47X464 blades in a four-bladed configuration, were derived from narrow-band analyses as described previously. Figure 19 shows a typical plot generated for this analysis. Of significance is the width of the peaks. These are seen to be narrow and approximately equal to the filter-response curve at the low-frequencies but are broader at the higher frequencies indicating the presence of narrow-band random noise. Further discussion of this figure is presented in Section VII.2.c.

A comparison of the broad-band noise spectrum from the three blade configurations tested is presented in Figure 20 for one particular microphone location and operating condition. The 47X-464 blades were designed to reduce both the theoretical loading noise and the broad-band noise predicted by the new method. The predicted decrease in broad-band noise in the 250-1000 Hz frequency range is 3.3 dB relative to the 47X-451 blades and the average measured decrease is 3.4 dB for comparable test conditions and microphone locations. This agreement between prediction and measurement provides confidence in the validity of the new propeller vortex noise method developed in Section V.3 in predicting broad-band noise of static propellers.

Figure 21 illustrates the effects of blade angle on the measured broad-band noise for one operating condition at one microphone position. The effects are seen to be small.





84

¥



Contraction of

n un l'hail state

and the second consider an other

i.



85



SOUND PRESSURE LEVEL da re . 9902 Juba

Figure 21. Effect of Blade Angle on Propeller Broad-Band Spectrum 1230 MIC LOCATION  $\Psi = 112.5^{\circ}$ , d = 50 FT 47 X -464, 340 RPM 1215 2002 2150 CENTER FREQUENCY, HERTZ 2 5 315 12 3.5 8 12.5 400 Ш 50 \$ 60 70

87

SOUND PRESSURE LEVEL 48 10 . 0002 JABI

| 19.7° Hade Angl                     | 0  |       |                  |                       |            |        |      |    |       |     |                     |                    |        |       |  |  |  |
|-------------------------------------|----|-------|------------------|-----------------------|------------|--------|------|----|-------|-----|---------------------|--------------------|--------|-------|--|--|--|
|                                     |    |       | 150 ft/i<br>Azir | sec tip s<br>nuth Ang | peed<br>de |        |      |    |       | 80  | 0 ft/sec<br>Azimuti | tip spe<br>h Angle | ed     |       |  |  |  |
| 1/3 Octave Band<br>Center Frequency | 6° | 22.5° | 45 <sup>a</sup>  | 67.5°                 | 90°        | 112.5° | 135° | 6* | 22.5° | 45° | 67.5 <sup>*</sup>   | 90°                | 112.5° | 135 ° |  |  |  |
| 25 Hz                               | в  | в     | 51               | в                     | в          | B      | в    | 49 | [T]   | F   | Ē                   | ۲T                 | দি     | T     |  |  |  |
| 32                                  | в  | Ē     | Г                | в                     | В          | 44     | ጠ    | 48 | 49    | 52  | 52                  | 50                 | 52     | 52    |  |  |  |
| 40                                  | в  | 39    | 46               | в                     | B          | в      | 42   | 47 | 51    | 51  | 50                  | 50                 | 80     | 54    |  |  |  |
| 50                                  | в  | 48    | Г                | Б                     | в          | в      | (T)  | 49 | নি    | F   | F                   | T                  | F      | F     |  |  |  |
| 63                                  | в  | 47    | т                | в                     | в          | 47     | т    | 49 | т     | T   | т                   | T                  | т      | T     |  |  |  |
| 80                                  | В  | 53    | T                | в                     | в          | 48     | T    | в  | 57    | 52  | 49                  | 52                 | 53     | 58    |  |  |  |
| 100                                 | в  | 51    | 46               | в                     | 42         | 49     | Ŧ    | 48 | F     | Г   | F                   | T                  | Г      | T     |  |  |  |
| 125                                 | 48 | 48    | 45               | 42                    | 48         | 49     | 50   | 56 | Т     | т   | T                   | 48                 | т      | T     |  |  |  |
| 160                                 | 51 | 59    | 59               | в                     | В          | 58     | в    | 56 | 64    | 60  | в                   | в                  | 59     | 86    |  |  |  |
| 200                                 | 59 | 55    | 50               | 47                    | в          | 57     | 50   | 58 | 59    | 57  | 56                  | 53                 | 56     | 61    |  |  |  |
| 250                                 | 54 | 55    | 52               | 51                    | 56         | 54     | 55   | 58 | 58    | 56  | 54                  | 50                 | 52     | 59    |  |  |  |
| 315                                 | 50 | 54    | 51               | 49                    | 47         | 49     | 51   | 56 | 57    | 57  | 52                  | 52                 | 55     | 59    |  |  |  |
| 400                                 | 53 | 55    | 51               | 49                    | 44         | 50     | 58   | 59 | 59    | 57  | 54                  | 54                 | 61     | 61    |  |  |  |
| 500                                 | 50 | 55    | 54               | 49                    | 50         | 53     | 55   | 55 | 60    | 57  | 55                  | 53                 | 62     | 64    |  |  |  |
| 625                                 | 50 | 53    | 53               | 50                    | 47         | 54     | 54   | 55 | 59    | 57  | 53                  | 51                 | 58     | 60    |  |  |  |
| 800                                 | 47 | 50    | 49               | 47                    | 44         | 48     | 47   | 52 | 54    | 53  | 52                  | 51                 | 54     | 56    |  |  |  |
| 1000                                | 48 | 50    | 49               | 48                    | 46         | 51     | 50   | 54 | 57    | 55  | 53                  | 53                 | 58     | 58    |  |  |  |
| 1250                                | 45 | 48    | 47               | 43                    | 44         | 47     | 48   | 53 | 55    | 53  | 51                  | 51                 | 54     | 55    |  |  |  |
| 1600                                | 47 | 47    | 45               | 44                    | 43         | 46     | 42   | 52 | 54    | 52  | 51                  | 51                 | 52     | 54    |  |  |  |
| 2000                                | 43 | 44    | 43               | 39                    | 40         | 43     | 43   | 49 | 51    | 50  | 48                  | 48                 | 51     | 51    |  |  |  |
| 2500                                | 43 | 43    | 42               | 39                    | 39         | 43     | 42   | 50 | 51    | 50  | 49                  | 48                 | 51     | 51    |  |  |  |
| 3150                                | 41 | 41    | 40               | 38                    | 36         | 39     | 40   | 49 | 50    | 49  | 48                  | 48                 | 49     | 50    |  |  |  |
| -1000                               | 38 | 39    | 39               | 37                    | 35         | 39     | 39   | 47 | 48    | 48  | 47                  | 48                 | 49     | 49    |  |  |  |
| 5000                                | 38 | 39    | 39               | 37                    | 37         | 39     | 39   | 47 | 49    | 48  | 49                  | 48                 | 48     | 49    |  |  |  |
| 6250                                | 39 | 39    | 39               | 38                    | 39         | 40     | 39   | 48 | 49    | 49  | 50                  | 48                 | 48     | 48    |  |  |  |
| 8000                                | 38 | 39    | 39               | 38                    | 39         | 39     | 39   | 46 | 48    | 49  | 49                  | 48                 | 47     | 47    |  |  |  |
| 10000                               | 38 | 38    | 38               | 37                    | 38         | 39     | 39   | 46 | 48    | 48  | 48                  | 16                 | 45     | 45    |  |  |  |

 TABLE XIII

 1/3 - OCTAVE BAND LEVELS FOR THE 47x394 BLADES

B indicates no data due to background noise T indicates tones

ø

#### TABLE XIII (Cont)

|                  | 322 ft/sec tip speed<br>Azimuth Angle |       |     |         |      |        |      |  |  |  |  |  |  |
|------------------|---------------------------------------|-------|-----|---------|------|--------|------|--|--|--|--|--|--|
| 1/9 Ostava Band  |                                       |       | Az  | Imuth 7 | ngle |        |      |  |  |  |  |  |  |
| Center Frequency | 6°                                    | 22.5° | 45° | 87.5°   | 90°  | 112.5° | 135° |  |  |  |  |  |  |
| 25 Hz            | 57                                    | 61    | 62  | 63      | 63   | 65     | 64   |  |  |  |  |  |  |
| 82               | 60                                    | 59    | 65  | 65      | 66   | 67     | 68   |  |  |  |  |  |  |
| 40               | T                                     | T     | T   | T       | T    | Ē      | 1 1  |  |  |  |  |  |  |
| 50               | 60                                    | 63    | 65  | 65      | 66   | 66     | 67   |  |  |  |  |  |  |
| 63               | 62                                    | 63    | 64  | 64      | 65   | 64     | 65   |  |  |  |  |  |  |
| 80               | Г                                     | T     | Г   | Т       | Т    | Г      | T    |  |  |  |  |  |  |
| 100              | Т                                     | Т     | Т   | Т       | Т    | Т      | Т    |  |  |  |  |  |  |
| 125              | 86                                    | 66    | 65  | 60      | 59   | 60     | 65   |  |  |  |  |  |  |
| 160              | 70                                    | Т     | T   | Г       | Т    | T      | T I  |  |  |  |  |  |  |
| 200              | 74                                    | Т     | T   | Т       | Т    | T      | T    |  |  |  |  |  |  |
| 250              | 74                                    | 67    | 70  | 65      | 60   | 60     | 67   |  |  |  |  |  |  |
| 315              | 70                                    | 69    | 69  | 65      | 60   | 61     | 68   |  |  |  |  |  |  |
| 400              | 72                                    | 71    | 70  | 65      | 62   | 64     | 73   |  |  |  |  |  |  |
| 500              | 68                                    | 72    | 71  | 66      | 64   | 67     | 75   |  |  |  |  |  |  |
| 625              | 69                                    | 70    | 70  | 66      | 63   | 66     | 71   |  |  |  |  |  |  |
| 800              | 65                                    | 65    | 66  | 63      | 62   | 64     | 65   |  |  |  |  |  |  |
| 1000             | 66                                    | 67    | 67  | 65      | 64   | 65     | 67   |  |  |  |  |  |  |
| 1250             | 65                                    | 65    | 66  | 64      | 61   | 64     | 65   |  |  |  |  |  |  |
| 1600             | 66                                    | 65    | 65  | 64      | 64   | 64     | 65   |  |  |  |  |  |  |
| <b>200</b> 0     | 64                                    | 64    | 63  | 63      | 67   | 61     | 62   |  |  |  |  |  |  |
| 2500             | 63                                    | 64    | 63  | 63      | 63   | 62     | 62   |  |  |  |  |  |  |
| 3150             | 64                                    | 63    | 63  | 63      | 62   | 61     | 61   |  |  |  |  |  |  |
| 4000             | 62                                    | 63    | 63  | 63      | 62   | 61     | 61   |  |  |  |  |  |  |
| 5000             | 63                                    | 64    | 64  | 65      | 63   | 61     | 61   |  |  |  |  |  |  |
| 6250             | 64                                    | 66    | 66  | 67      | 65   | 62     | 62   |  |  |  |  |  |  |
| 8000             | 64                                    | 65    | 66  | 67      | 64   | 62     | 61   |  |  |  |  |  |  |
| 10000            | 63                                    | 65    | 65  | 66      | 63   | 61     | 60   |  |  |  |  |  |  |

19.7<sup>0</sup> Blade Angle (Concluded)

.

T indicates tones

#### TABLE XIB (Cont)

| 13.7" Blade Angle                   |              |               |                  |                     |              |        |         | ····· |       |                  |                       |            | 135°<br>T<br>44<br>56<br>T<br>T<br>63 |      |  |  |  |  |  |
|-------------------------------------|--------------|---------------|------------------|---------------------|--------------|--------|---------|-------|-------|------------------|-----------------------|------------|---------------------------------------|------|--|--|--|--|--|
|                                     |              |               | 150 ft/i<br>Aziı | sectipa<br>Muth Ang | ipeed<br>zie |        |         |       | :     | 200 ft//<br>Azin | sec tip s<br>nuth Ang | psed<br>le |                                       |      |  |  |  |  |  |
| 1/3 Octave Band<br>Contor Frequency | 64           | 23. <b>5°</b> | 45°              | 67.5°               | 90°          | 112.5° | 135°    | 6°    | 23.5° | 45 <sup>°</sup>  | 67.5°                 | 90°        | 112.5°                                | 195° |  |  |  |  |  |
| 25 Hz                               | н            | в             | в                | в                   | в            | в      | В       | Ĩ     | Ŧ     | T                | Ŧ                     | T          | Ŧ                                     | Ŧ    |  |  |  |  |  |
| 32                                  | T            | T             | Ē                | 1                   | Ē            | в      | в       | 44    | В     | в                | 44                    | 48         | В                                     | 44   |  |  |  |  |  |
| 40                                  | 39           | 45            | 39               | В                   | в            | B      | 39      | 45    | 48    | В                | 46                    | 46         | 48                                    | 56   |  |  |  |  |  |
| 50                                  | 45           | (T)           | в                | в                   | в            | в      | <b></b> | 49    | TT    | 50               | 50                    | В          | 1                                     | T    |  |  |  |  |  |
| 63                                  | в            |               | В                | В                   | 11           | в      | в       | В     | LT    | 54               | 50                    | В          | 47                                    | Т    |  |  |  |  |  |
| 80                                  | в            | 55            | 45               | 49                  | в            | 45     | 51      | B     | 54    | 52               | 53                    | 51         | 52                                    | 63   |  |  |  |  |  |
| 100                                 | 50           | 54            | 46               | 50                  | <u>  -</u>   | 42     | 50      | 51    | 57    | 53               | 57                    | 50         | 51                                    | T    |  |  |  |  |  |
| 125                                 | 55           | 54            | 45               | 42                  | 45           | 42     | 51      | 59    | 52    | 55               | 55                    | 48         | 51                                    | 65   |  |  |  |  |  |
| 160                                 | 56           | 61            | 59               | 63                  | 61           | 58     | 63      | 59    |       | 1                | E                     | T          | 48                                    | T    |  |  |  |  |  |
| 200                                 | 55           | 57            | 52               | 53                  | в            | В      | 56      | 58    | 59    | 61               | 58                    | 48         | 53                                    | 63   |  |  |  |  |  |
| 250                                 | 56           | 55            | 50               | 55                  | 57           | 53     | 54      | 60    | 56    | 58               | 56                    | 49         | 51                                    | 59   |  |  |  |  |  |
| 315                                 | 52           | 53            | 49               | 46                  | 46           | 48     | 49      | 57    | 56    | 57               | 53                    | 48         | 51                                    | 60   |  |  |  |  |  |
| 400                                 | 55           | 52            | 48               | 46                  | 44           | 45     | 48      | 59    | 59    | 57               | 55                    | 50         | 53                                    | 60   |  |  |  |  |  |
| 500                                 | 51           | 56            | 52               | 50                  | 49           | 50     | 51      | 55    | 61    | 59               | 57                    | 52         | 55                                    | 63   |  |  |  |  |  |
| 625                                 | 51           | 52            | 49               | 48                  | 47           | 52     | 52      | 55    | 56    | 57               | 52                    | 50         | 55                                    | 59   |  |  |  |  |  |
| 500                                 | 46           | 46            | 46               | 46                  | 45           | 43     | 46      | 51    | 51    | 52               | 52                    | 50         | 50                                    | 54   |  |  |  |  |  |
| 1000                                | 45           | 47            | 46               | 44                  | 46           | 48     | 46      | 50    | 52    | 53               | 51                    | 51         | 56                                    | 54   |  |  |  |  |  |
| 1250                                | 43           | 44            | 43               | 40                  | 41           | 42     | 43      | 48    | 49    | 49               | 48                    | 47         | 50                                    | 52   |  |  |  |  |  |
| 1600                                | - <b>.</b> + | 48            | 42               | 37                  | 35           | 37     | 46      | 50    | 49    | 48               | 46                    | 46         | 50                                    | 50   |  |  |  |  |  |
| 2000                                | 39           | 39            | 38               | 35                  | 33           | 36     | 37      | 47    | 47    | 46               | 45                    | 42         | 45                                    | 48   |  |  |  |  |  |
| 2500                                | 40           | 40            | 37               | 36                  | 33           | 35     | 38      | 47    | 47    | 46               | 44                    | 43         | 45                                    | 47   |  |  |  |  |  |
| 3150                                | 39           | 39            | 36               | 35                  | 30           | 25     | 37      | 46    | 46    | 44               | 43                    | 41         | 44                                    | 46   |  |  |  |  |  |
| 4000                                | 39           | - 38          | 37               | 36                  | 32           | 35     | 37      | 45    | 45    | 44               | 42                    | 41         | 43                                    | 45   |  |  |  |  |  |
| 5000                                | 37           | 37            | 36               | 35                  | 33           | 36     | 37      | 45    | 46    | 44               | 44                    | 41         | 44                                    | 46   |  |  |  |  |  |
| 6250                                | 37           | 37            | 36               | 36                  | 33           | 37     | 39      | 46    | 47    | 45               | 45                    | 44         | 46                                    | 47   |  |  |  |  |  |
| 8000                                | 37           | 37            | 36               | 36                  | 33           | 37     | 38      | 45    | 46    | 45               | 44                    | 42         | 45                                    | 46   |  |  |  |  |  |
| 10000                               | 35           | 36            | 35               | 34                  | 34           | 37     | 38      | 43    | 44    | 43               | 43                    | 41         | 44                                    | 45   |  |  |  |  |  |

B indicates no data due to background noise F indicates tones

| TABLE > | (Cont) |
|---------|--------|
|---------|--------|

| 13.7° | Blade | Angle | (Concluded) |
|-------|-------|-------|-------------|
|-------|-------|-------|-------------|

|                                     |           | ······ | 300 ft/<br>Azt | sec tip s<br>muth An | peed<br>de |        |          |    |       | 383 ft/<br>Azi | sec tip s<br>muth Ar. | peed<br>gle |        | 135°<br>64<br>66<br>T<br>67<br>T<br>70 |  |  |  |  |  |  |
|-------------------------------------|-----------|--------|----------------|----------------------|------------|--------|----------|----|-------|----------------|-----------------------|-------------|--------|----------------------------------------|--|--|--|--|--|--|
| 1/3 Octave Band<br>Center Frequency | 6°        | 22.5°  | 45°            | 67.5°                | 90°        | 112.5° | 135°     | 6° | 22.5° | 45°            | 67.5°                 | 90°         | 112.5° | 135°                                   |  |  |  |  |  |  |
| 25 Hz                               | 53        | 54     | 58             | 60                   | 61         | 61     | 59       | 57 | 59    | 62             | 62                    | 65          | 64     | 64                                     |  |  |  |  |  |  |
| 32                                  | $\square$ | 1      | T              | T                    | 63         | Ī      | ſŢ       | 56 | 61    | 63             | C5                    | 67          | 67     | 66                                     |  |  |  |  |  |  |
| 40                                  | 60        | 62     | 63             | 60                   | 62         | 62     | 64       | Ŧ  | Ē     | T              | Ŧ                     | Ē           | T      | Ī                                      |  |  |  |  |  |  |
| 50                                  | 53        | 56     | 56             | 57                   | 59         | 60     | T        | 65 | 69    | 71             | 71                    | 70          | 70     | 67                                     |  |  |  |  |  |  |
| 63                                  | T         | Ē      | T              | 63                   | 59         | 61     | T        | 61 | 63    | 64             | 65                    | 67          | 67     | T                                      |  |  |  |  |  |  |
| 80                                  | 57        | 64     | 64             | 59                   | 59         | 59     | 70       | 70 | 74    | 76             | 73                    | 66          | 66     | 70                                     |  |  |  |  |  |  |
| 100                                 | 65        |        |                | 64                   | 58         | 59     | T        | 63 | 69    | 70             | 67                    | 63          | 64     | 65                                     |  |  |  |  |  |  |
| 125                                 | 67        | 69     | 66             | 58                   | 54         | 55     | 72       | 77 | 72    | 71             | 63                    | 59          | 62     | 65                                     |  |  |  |  |  |  |
| 160                                 | 69        | T      | T              | T                    | 63         | 62     | <b>?</b> | 75 | 79    | 75             | 73                    | ſ           | Ŧ      | T                                      |  |  |  |  |  |  |
| 200                                 | 70        | 73     | 68             | 67                   | 59         | 57     | 73       | 77 | 75    | 73             | 70                    | 63          | 64     | 70                                     |  |  |  |  |  |  |
| 250                                 | 72        | 67     | 67             | 61                   | 56         | 57     | 70       | 78 | 71    | 70             | 67                    | 60          | 62     | 66                                     |  |  |  |  |  |  |
| 315                                 | 68        | 68     | 68             | 63                   | 54         | 58     | 70       | 73 | 72    | 73             | 68                    | 59          | 62     | 69                                     |  |  |  |  |  |  |
| 400                                 | 71        | 71     | 71             | 65                   | 56         | 61     | 72       | 77 | 75    | 75             | 70                    | 61          | 67     | 71                                     |  |  |  |  |  |  |
| 500                                 | 67        | 74     | 72             | 67                   | 61         | 61     | 75       | 73 | 79    | 76             | 71                    | 63          | 71     | 74                                     |  |  |  |  |  |  |
| 625                                 | 68        | 69     | 66             | 63                   | 58         | 61     | 70       | 74 | 73    | 72             | 68                    | 61          | £8     | 71                                     |  |  |  |  |  |  |
| 800                                 | 65        | 64     | 65             | 61                   | 56         | 59     | 65       | 71 | 69    | 71             | 66                    | 61          | 63     | 67                                     |  |  |  |  |  |  |
| 1000                                | 69        | 66     | 65             | 62                   | 57         | 62     | 67       | 70 | 72    | 70             | 67                    | 61          | 65     | 70                                     |  |  |  |  |  |  |
| 1250                                | 62        | 63     | 63             | 61                   | 58         | 59     | 65       | 68 | 68    | 69             | 66                    | 51          | 63     | 67                                     |  |  |  |  |  |  |
| 1600                                | 62        | 61     | 61             | 59                   | 56         | 57     | 64       | 68 | 67    | 67             | 65                    | 60          | 63     | 67                                     |  |  |  |  |  |  |
| 2000                                | 59        | 58     | 58             | 57                   | 52         | 54     | 60       | 65 | €5    | 64             | 61                    | 57          | 59     | 64                                     |  |  |  |  |  |  |
| 2500                                | 59        | 58     | 57             | 56                   | 54         | 55     | 60       | 64 | 65    | 63             | 62                    | 58          | 60     | 63                                     |  |  |  |  |  |  |
| 3150                                | 58        | 57     | 56             | 55                   | 53         | 54     | 57       | 64 | 63    | 62             | 60                    | 58          | 60     | 62                                     |  |  |  |  |  |  |
| 4000                                | 56        | 56     | 55             | 53                   | 53         | 54     | 57       | 62 | 63    | 62             | 60                    | 58          | 60     | 62                                     |  |  |  |  |  |  |
| 5000                                | 57        | 57     | 55             | 54                   | 53         | 54     | 57       | 63 | 63    | 62             | 61                    | 60          | 61     | 63                                     |  |  |  |  |  |  |
| 6250                                | 58        | 58     | 56             | 55                   | 54         | 55     | 58       | 64 | 64    | 63             | 62                    | 62          | 62     | 64                                     |  |  |  |  |  |  |
| 8000                                | 57        | 57     | 55             | 55                   | 54         | 55     | 57       | 63 | 63    | 62             | 61                    | 60          | 62     | 63                                     |  |  |  |  |  |  |
| 10000                               | 55        | 55     | 54             | 54                   | 53         | 54     | 56       | 62 | 62    | 61             | 61                    | 59          | 60     | 62                                     |  |  |  |  |  |  |

T indicates tones

#### TABLE XIII (Cont)

| 8.7° Blade Angle |    |      |               |          |              |       |     |    |      |      |                         |     |       |     |
|------------------|----|------|---------------|----------|--------------|-------|-----|----|------|------|-------------------------|-----|-------|-----|
|                  |    |      | 150 ft<br>Azi | /sec tip | beeqs<br>nie |       |     |    | 20   | Asim | ec tip spo<br>uth Augin | bed | -     |     |
| 1/3 Octave Band  |    |      |               |          |              |       |     |    |      |      |                         |     |       |     |
| Center Frequency | 6" | 22.5 | 45            | 67.5     | 90*          | 112.5 | 135 | 6* | 22.5 | 45   | 67.5                    | 80  | 112.5 | 135 |
| 25 Hz            | 42 | в    | в             | в        | в            | В     | в   | T  | T    | T    | T                       | T   | Ŧ     | T   |
| 32               | в  | 44   | 48            | В        | в            | в     | в   | В  | 50   | 55   | 44                      | 48  | в     | 48  |
| 40               | 4? | 48   | 46            | 45       | 42           | 42    | 42  | 45 | 54   | 55   | 49                      | 46  | 45    | 48  |
| 50               | 49 | 48   | в             | в        | в            | В     | в   | 49 | Ē    | T    | Ē                       | в   | []    | Г   |
| 63               | 52 | 57   | 53            | 54       | 47           | 50    | 44  | 54 | 54   | 57   | 51                      | 47  | Т     | T   |
| 80               | 57 | 60   | 59            | 59       | 52           | 51    | 48  | 54 | 55   | T    | 52                      | T   | T     | 58  |
| 100              | 46 | 54   | 51            | 53       | в            | 46    | 46  | 46 | 55   | 59   | 54                      | 48  | 53    | 59  |
| 125              | 48 | 51   | 48            | 49       | 45           | 49    | 48  | 53 | 51   | 55   | 51                      | 45  | 51    | 55  |
| 160              | 48 | 61   | 59            | 55       | в            | в     | в   | 55 | 59   | 65   | 55                      | в   | В     | 59  |
| 200              | 48 | 54   | 50            | 47       | 48           | 49    | 50  | 58 | 55   | 61   | 55                      | 48  | 49    | 58  |
| 250              | 48 | 54   | 50            | 47       | 48           | 49    | 50  | 58 | 55   | 61   | 55                      | 48  | 49    | 58  |
| 315              | 50 | 50   | 48            | 46       | 44           | 42    | 48  | 54 | 54   | 57   | 52                      | 47  | 50    | 56  |
| 400              | 52 | 50   | 48            | 47       | 44           | 45    | 48  | 58 | 56   | 57   | 55                      | 49  | 54    | 56  |
| 500              | 48 | 52   | 52            | 51       | 49           | 50    | 51  | 55 | 60   | 60   | 55                      | 62  | 54    | 58  |
| 825              | 49 | 51   | 49            | 48       | 46           | 52    | 54  | 56 | 57   | 58   | 52                      | 50  | 54    | 58  |
| 800              | 46 | 46   | 46            | 47       | 48           | 45    | 44  | 53 | 53   | 54   | 51                      | 51  | 50    | 53  |
| 1000             | 45 | -47  | 46            | 44       | 45           | 50    | 46  | 52 | 54   | 54   | 51                      | 51  | 55    | 54  |
| 1250             | 42 | 43   | 43            | 42       | 42           | 44    | 43  | 48 | 51   | 58   | 48                      | 47  | 49    | 51  |
| 1600             | 40 | 40   | 40            | 39       | 39           | 51    | в   | 49 | 49   | 50   | 45                      | 43  | 46    | 48  |
| 2000             | 38 | 38   | 38            | 35       | 33           | 36    | 33  | 46 | 45   | 47   | 43                      | 41  | 48    | 44  |
| 2500             | 37 | 37   | 36            | 34       | 31           | 35    | 36  | 44 | 44   | 45   | 43                      | 39  | 42    | 43  |
| 3150             | 36 | 36   | 34            | 32       | в            | 31    | 32  | 43 | 43   | 43   | 40                      | 35  | 40    | 40  |
| 4000             | 32 | 33   | 32            | 30       | 27           | 31    | 29  | 39 | 41   | 41   | 37                      | 35  | 39    | 37  |
| 5000             | 38 | 31   | 29            | 27       | 27           | 30    | 29  | 38 | 39   | 38   | 35                      | 35  | 37    | 36  |
| 6250             | 21 | 27   | 21            | 24       | 21           | 25    | 26  | 36 | 38   | 37   | 34                      | 34  | 36    | 36  |
| 8000             | в  | 20   | в             | B        | в            | В     | в   | 32 | 35   | 35   | 29                      | 28  | 35    | 32  |
| 10000            | В  | 16   | В             | B        | B            | В     | В   | 24 | 29   | 29   | 25                      | 18  | 29    | 27  |

B indicates no data due to background noise T indicates tones

#### TABLE XIII (Concluded)

|                                     |    |                | 300 f<br>Az | t/sec tip<br>imuth Ar | speed |        |      |    | 4     | 42 It/s<br>Azin | ec tip sp<br>nuth Ang | beed<br>le |        |            |
|-------------------------------------|----|----------------|-------------|-----------------------|-------|--------|------|----|-------|-----------------|-----------------------|------------|--------|------------|
| 1/3 Octave Band<br>Center Frequency | 6° | 22.5°          | <b>4</b> 5° | 67.5°                 | 90°   | 112.5° | 135° | 6° | 22.5° | 45°             | 67.5°                 | 90°        | 112.5° | 135°       |
| 25 Hz                               | 50 | 53             | 54          | 57                    | 58    | 57     | 54   | 57 | 59    | 62              | 63                    | 63         | 66     | 63         |
| 32                                  | Ŧ  | Ē              | T           | T                     | Ē     | T      | Ŧ    | 57 | 61    | 64              | 64                    | 66         | 67     | 66         |
| 40                                  | 58 | 63             | 65          | 60                    | 57    | 59     | 57   | 61 | 64    | 68              | 67                    | 69         | 69     | 68         |
| 50                                  | 51 | 57             | 53          | 56                    | 55    | 60     | 55   | Ē  | T     | T               | Ē                     | T          | T      | T          |
| 63                                  | T  | Ē              | Т           | T                     | T     | Ŧ      | Ī    | 64 | 65    | 69              | 67                    | 68         | 68     | 69         |
| 80                                  | 63 | 69             | 65          | 64                    | 60    | 63     | 61   | 66 | 68    | 68              | 66                    | 68         | 70     | 71         |
| 100                                 | 65 | Π              | T           | T                     | 59    | T      | Ŧ    | Ī  | Ē     | T               | Ē                     | 66         | T      | Ti         |
| 125                                 | 70 | 67             | 63          | 61                    | 54    | 60     | 60   | 70 | 66    | 65              | 61                    | 60         | 66     | 69         |
| 160                                 | 70 | 73             | 70          | 68                    | 63    | 69     | 71   | T  | Ŧ     | Ŧ               | T                     | Ŧ          | Т      | Г          |
| 200                                 | 70 | 68             | 68          | 67                    | 59    | 61     | 66   | 75 | 75    | 76              | 70                    | 70         | 69     | 78         |
| 250                                 | 69 | 67             | 67          | 67                    | 56    | 59     | 62   | 78 | 71    | 73              | 66                    | 83         | 67     | 72         |
| 315                                 | 69 | 67             | 67          | 67                    | 53    | 60     | 66   | 75 | 72    | 73              | 68                    | 62         | 69     | 75         |
| 400                                 | 70 | 68             | 67          | 64                    | 55    | 61     | 68   | 79 | 74    | 76              | 69                    | 64         | 70     | <b>1</b> 7 |
| 500                                 | 66 | 6 <del>9</del> | 69          | 65                    | 62    | 63     | 71   | 74 | 76    | 77              | 71                    | 66         | 72     | 84         |
| 6 <b>25</b>                         | 68 | 67             | 66          | 64                    | 57    | 61     | 67   | 74 | 74    | 75              | 69                    | 63         | 70     | 80         |
| 800                                 | 64 | 64             | 64          | 61                    | 55    | 59     | 61   | 72 | 70    | 71              | 67                    | 63         | 67     | 72         |
| 1000                                | 63 | 64             | 65          | 62                    | 56    | 61     | 63   | 71 | 73    | 73              | 68                    | 64         | 69     | 75         |
| 1250                                | 61 | 62             | · 63        | 60                    | 56    | 58     | 61   | 69 | 70    | 72              | 68                    | 63         | 67     | 72         |
| 1600                                | 60 | 60             | 61          | 59                    | 59    | 56     | 59   | 69 | 69    | 71              | 67                    | 62         | 67     | 72         |
| 2000                                | 57 | 56             | 56          | 55                    | 50    | 53     | 55   | 67 | 66    | 67              | 65                    | 60         | 63     | 69         |
| 2500                                | 55 | 55             | 55          | 54                    | 49    | 52     | 54   | 66 | 67    | 66              | 64                    | 60         | 63     | 67         |
| 3150                                | 54 | 53             | 52          | 51                    | 46    | 49     | 51   | 65 | 64    | 64              | 61                    | 58         | 61     | 65         |
| 4000                                | 50 | 51             | 50          | 19                    | 45    | 48     | 49   | 60 | 62    | 61              | 58                    | 55         | 59     | 62         |
| 5000                                | 49 | 49             | 49          | 48                    | 49    | 47     | 48   | 58 | 60    | 59              | 58                    | 54         | 57     | 60         |
| 6250                                | 47 | 48             | 48          | 47                    | 44    | 47     | 47   | 57 | 58    | 58              | 56                    | 54         | 58     | 58         |
| H000                                | 43 | 44             | 44          | 44                    | 40    | 44     | 45   | 53 | 54    | 54              | 51                    | 51         | 52     | 54         |
| 10000                               | 37 | 38             | 38          | 39                    | 36    | 39     | 43   | 46 | 48    | 47              | 45                    | 45         | 47     | 47         |

T indicates tones

and a second second

.

.
TABLE XIV

 1/3 OCTAVE BAND LEVELS FOR THE 47 X 451 BLADES

| 1       |             | 1350                | 2 % % 7 % % 8 8 8 8 3 7 4 <u>4 4 4 4 7 4 4 4 8 4 8</u> 8 8 8 8 8 8 8 8 8 8 8 8 8                                |
|---------|-------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
| ed      |             | 112.50              | 8 2 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9                                                                         |
| ip Spe  | Angle       | 906                 | 82444888888888888888888888888888888888                                                                          |
| i Sec 1 | zimuth .    | 67.5 <sup>0</sup>   | 288555 <b>666666666666666666666666666666666</b>                                                                 |
| 353 1   | A           | 45°                 | 32H25H5 <u>HHHHH</u> 288538855558                                                                               |
|         |             | 22.5 <sup>0</sup>   | 22E82E9EFFFFFF26222222222222                                                                                    |
|         |             | 9 <sup>9</sup>      |                                                                                                                 |
|         |             | 135 <sup>0</sup>    | <u> </u>                                                                                                        |
| ed      |             | 112.5 <sup>0:</sup> | EREFERSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS                                                                         |
| ip Spe  | Angle       | 90 <sub>0</sub>     | Hassessessessessesse4444444444                                                                                  |
| t Sec T | z im ut h A | 67.5 <sup>0</sup>   | EZ 3 E 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                    |
| 200 I   | Ā           | 45 <sup>1</sup>     | E336E2863338883888888644444444                                                                                  |
|         |             | 22.5 <sup>0</sup>   | E3%E3FFFF8888822882222444444                                                                                    |
|         |             | 60                  | E12822222222222222222222222222222222222                                                                         |
|         |             | 135 <sup>0</sup>    | 888 <del>6666</del> 868888888888888 <b>8</b> 88888888888888888                                                  |
|         |             | 112.5 <sup>0</sup>  | <u> </u>                                                                                                        |
|         |             | 90 <sub>0</sub>     | \$ # \$ <b>4 FH</b> S \$ 5 <b>5 5 5 5 5 5 5 5 5 </b>                                                            |
| Speed   | le          | 37.5°               |                                                                                                                 |
| Tip     | Ang         | 45°                 | 4EEH388888888888888888888888888888888888                                                                        |
| F Sec   | Azimuth     | 22.5 <sup>0</sup>   | <u> </u>                                                                                                        |
| 147     |             | 60                  | 2 E E 8 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 8 8 9 8 5 5 2 3 5 2 5 4 4 4 4 4 8 8 9 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |
|         | Octave Band | iter Frequency      | 25Hz<br>25Hz<br>50<br>63<br>63<br>80<br>100<br>100<br>100<br>500<br>500<br>500<br>1000<br>1000<br>10            |

94

¥

TABLE XIV (Cont'd)

10 millionista addres Bottlerent.

| 200 F 35       200 F 35       200 F 35       200 F 35         200 F 35       2112.5       2112.5       200 F 35       200 F 35         200 F 35       25       25       200 F 35       200 F 35       200 F 35         200 F 35       25       25       25       25       200 F 35       200 F 35         200 F 35       25       25       25       25       200 F 35       200 F 35         200 F 35       25       25       25       25       25       20       27         200 F 35       25       25       25       25       25       25       26       27       27         200 F 35       25       25       25       25       25       25       25       25       26       27       27       27       26       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27       27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300 F.Sec       75.5       90 II2.5       135.6       90 II2.5       135.6         71, 50 B.S.       90 II2.5       90 II2.5 </th <th>200 P %c T9 Seed       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50</th> <th>State         State         <th< th=""><th>200 7/3c: Tub Spect       200 7/3c: Tub Spect&lt;</th></th<></th> | 200 P %c T9 Seed       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50       201 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | State         State <th< th=""><th>200 7/3c: Tub Spect       200 7/3c: Tub Spect&lt;</th></th<> | 200 7/3c: Tub Spect       200 7/3c: Tub Spect< |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20     7     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50     50 <t< td=""><td>200 P. Sc. Ty Speed       300 P. Sc. Ty Speed         200 P. Sc. Ty Speed       50 P. Sc. Ty Speed         21muth Angle       50 P. Sc. Ty Speed         22:50       50 P. Sc. Ty Speed         23:50       50 P. Sc. Ty Speed         24:50       50 P. Sc. Ty Speed         25:50       50 P. Sc. Ty Speed         50 P. Sc. Ty Speed       50 P. Sc. Ty Speed</td></t<> <td>200 T %       7       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<!--</td--><td>200 T%c Tµ Speed       300 T/%c Tµ Speed       350 T/%c Tµ Speed         Azimuth Angle       50 51 50 50 51 50 50 51 50 50 51 50 50 51 50 50 50 51 50 50 50 50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50</td><td>200 7.5c       135 7.5c       135 7.5c       135 7.5c       135 7.5c         Azimuth Angle       60 112.5c       135 0.5c       135 0.5c       135 0.5c       135 0.5c         Azimuth Angle       7.2muth Angle       7.2muth Angle       7.2muth Angle       7.2muth Angle       7.2muth Angle         Azimuth Angle       60 112.5c       135 0.5c       135 0.5c</td></td> | 200 P. Sc. Ty Speed       300 P. Sc. Ty Speed         200 P. Sc. Ty Speed       50 P. Sc. Ty Speed         21muth Angle       50 P. Sc. Ty Speed         22:50       50 P. Sc. Ty Speed         23:50       50 P. Sc. Ty Speed         24:50       50 P. Sc. Ty Speed         25:50       50 P. Sc. Ty Speed         50 P. Sc. Ty Speed       50 P. Sc. Ty Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200 T %       7       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td>200 T%c Tµ Speed       300 T/%c Tµ Speed       350 T/%c Tµ Speed         Azimuth Angle       50 51 50 50 51 50 50 51 50 50 51 50 50 51 50 50 50 51 50 50 50 50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50</td> <td>200 7.5c       135 7.5c       135 7.5c       135 7.5c       135 7.5c         Azimuth Angle       60 112.5c       135 0.5c       135 0.5c       135 0.5c       135 0.5c         Azimuth Angle       7.2muth Angle       7.2muth Angle       7.2muth Angle       7.2muth Angle       7.2muth Angle         Azimuth Angle       60 112.5c       135 0.5c       135 0.5c</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200 T%c Tµ Speed       300 T/%c Tµ Speed       350 T/%c Tµ Speed         Azimuth Angle       50 51 50 50 51 50 50 51 50 50 51 50 50 51 50 50 50 51 50 50 50 50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 7.5c       135 7.5c       135 7.5c       135 7.5c       135 7.5c         Azimuth Angle       60 112.5c       135 0.5c       135 0.5c       135 0.5c       135 0.5c         Azimuth Angle       7.2muth Angle       7.2muth Angle       7.2muth Angle       7.2muth Angle       7.2muth Angle         Azimuth Angle       60 112.5c       135 0.5c                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30     72     12     50     12     50     13     50     12     50     13     50     12     50     13     50     12     50     12     50     12     50     12     50     13     50     12     50     13     50     13     50     13     50     12     50     12     50     12     50     13     50     12     50     13     50     12     50     13     50     13     50     13     50     12     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     50     13     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300       71, 55       300       71, 55       300       71, 55       300       71, 55       300       71, 55       300       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55       71, 55 <td>30       PA/SE       PA</td> <td>30       7.5       19       35       7.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.</td> | 30       PA/SE       PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30       7.5       19       35       7.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Muth Angle       Muth Angle         Muth Angle       90         17.50       90         17.50       90         17.50       90         17.50       90         17.50       90         11.1       11.2         11.2       11.2         11.2       11.2         11.2       11.2         11.2       11.2         11.2       11.2         11.2       11.2         11.2       11.2         11.2       11.2         11.2       11.2         11.2       11.2         11.2       11.2         11.2       11.2         11.2       11.2         11.2       11.2         11.2       11.3         11.2       11.3         11.3       11.3         11.3       11.3         11.3       11.3         12.3       11.3         12.3       11.3         12.3       11.3         12.3       11.3         12.3       11.3         12.3       11.3         12.3       11.3 <t< td=""><td>Muth Angle       Muth Angle         Muth Angle       90         17.50       90         17.50       90         17.50       90         17.50       90         17.50       90         17.50       90         17.50       90         17.50       90         17.50       135         17.50       135         17.50       135         17.50       135         17.50       135         17.50       135         17.50       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         1</td><td>10       11       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       <td< td=""><td>Azimuth Ange         muth Ange         muth Ange         muth Ange         muth Ange         first         first</td></td<></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Muth Angle       Muth Angle         Muth Angle       90         17.50       90         17.50       90         17.50       90         17.50       90         17.50       90         17.50       90         17.50       90         17.50       90         17.50       135         17.50       135         17.50       135         17.50       135         17.50       135         17.50       135         17.50       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         17.51       135         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10       11       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12 <td< td=""><td>Azimuth Ange         muth Ange         muth Ange         muth Ange         muth Ange         first         first</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Azimuth Ange         muth Ange         muth Ange         muth Ange         muth Ange         first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 23       23       23       23       23       23       23       23       23       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24 <td< td=""><td>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td><td></td><td>0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td><td>35     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3     7/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 300 Ft/Sec Tip Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2         3         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <th2< th=""> <th2< th=""> <th2< th=""> <th2< th=""></th2<></th2<></th2<></th2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32 <td< td=""><td>355     7/3c     11     12     50       355     7/3c     11     12     12     50       355     7/3c     12     23     12       355     8     8     12     12       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 355     7/3c     11     12     50       355     7/3c     11     12     12     50       355     7/3c     12     23     12       355     8     8     12     12       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8     8     8       355     8     8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

TABLE XIV (Concluded)

|               |             | 1             | · · ·              |        | ¢<br>م      | 689            | E        | ۍ<br>ا | នៃ[        | E         | ធ          | 3          | 99           | 36          | F    | 2    | 67   | 65        | 67     | 68       | 68       | ς.<br>Θ  | 55       | 63         | 61       | 61       | 52             | 61         | 60    |
|---------------|-------------|---------------|--------------------|--------|-------------|----------------|----------|--------|------------|-----------|------------|------------|--------------|-------------|------|------|------|-----------|--------|----------|----------|----------|----------|------------|----------|----------|----------------|------------|-------|
| 17            | ļ           | -             | 12. 5 <sup>0</sup> | ŗ      |             |                |          | 8      | 50         | y :       | 20         | <br>       | 8 12         |             | L    | 57   | 35   | 33        | 90     | <b>*</b> | <b>1</b> | 32       | 33       | 31         | 00       | <u> </u> | 5              | <u>8</u>   | 00    |
| ľ             | Speed       | ıgle          | 00                 |        |             |                |          | 5      | 5          | 2         |            | 200        | 2.6          | :E          | 1    | 51   |      | <u>52</u> | 22     | 52       |          | <u> </u> |          | 28         | 53       | 53 0     | 65             | 88         | 58    |
| l.            |             | uth Ar        |                    |        |             |                |          |        |            |           |            |            |              |             |      | _    |      | -         |        |          | -        |          | -        |            |          |          |                |            |       |
|               | 2<br>2<br>2 | Azim          | 5 <sup>0</sup> 67  | 20     | 5 66        | 6 67           |          | 1 68   | 88[<br>∞[  |           |            |            |              |             | E    | 1 64 | 7 63 | 63        | 1 64   | 62<br>62 |          | 6 63     | 64       | 4 62       | 2 60     | 1 60     | 1 60           | 9 28       | 8 58  |
| CVV           | 442         |               | 50 4               |        | • •         | - 9            | <u> </u> | 0      | ωL         | ·         |            |            | - «          |             |      |      | ۍ    | <u>د</u>  | ••<br> | 9<br>    | 9<br>    | <u> </u> | <u>د</u> | 9          | 9<br>    | <u>و</u> | 9              |            | 2     |
|               | -           |               | 0 22.              | 63     | 62          |                | E        | 67     | 8[         | Ð         | 30         | 36         | 3 8          | ßE          | F    | 73   | 68   | 65        | 89 8   | 89       | 88       | 8        | 67       | 8          | 63       | 62       | 63             | 61         | 60    |
|               |             |               | ۳<br>              | ŭ      | 5 6         |                | <u></u>  | 99     | <u>ଞା</u>  |           | 20         | <u>- E</u> | <u>→ </u> [- | <u>• f-</u> | E    | 11   | 74   | 2         | 22     |          |          |          | 89       | 8<br>      | 63       | 62       | 62             | 8          | 26    |
|               |             |               | 135                | ŭ      | SE          | ]2             | 55       | 56     | 57         | 26        | 22         | 202        | 5.0          | 3.6         | 55   | 61   | 62   | 58        | 60     | 61       | 59       | 56       | 55       | 51         | 50       | 53       | 56             | 56         | 53    |
|               | Eeo .       |               | 112.5 <sup>0</sup> | 0<br>u | ۶E          | 28             | 56       | 20     | 57         | 57        | 200        | 25         | - 4<br>- 4   | 9 <u>9</u>  | 55   | 58   | 62   | 28        | 60     | 58       | 57       | 54       | 23       | 51         | 20       | 23       | 26             | 57         | 55    |
| 0             | de di       | Angle         | °0°                | 4      | ߌ           | 38             | 55       | 55     | 56         | 56        | 20         |            | 5 2          | 3 64        | 53   | 59   | 59   | 55        | 56     | 8        | 54       | 20       | 49       | 47         | 4        | 48       | 52             | 51         | 49    |
| L COO T       | - Sec       | zimuth        | 67.5 <sup>0</sup>  | a<br>L | ßE          | 38             | 54       | E      | 56         | 57        | 51         | 6 Y        |              | 52          | 53   | 61   | 58   | 57        | 58     | 58       | 57       | 54       | 53       | 51         | <b>6</b> | 51       | 5              | 54         | 51    |
| 1000          | 1 002       | A             | 450                | y      | ßE          | 35             | 55       | 57     | 26         | 28        | 22         | 29         | 2 5          | 3 2         | 28   | 61   | 99   | 29        | 61     | 61       | 20       | 56       | 55       | 52         | 51       | 53       | 55             | 54         | 51    |
|               |             |               | 22. 5 <sup>0</sup> |        | ₽E          | 35             | 56       | E      | <u>چ</u> [ | H         | 55         | 203        | 101          | , e         | 60   | 63   | 62   | 59        | 62     | 61       | 60       | 57       | 56       | 53         | 52       | 54       | 58             | 55         | 51    |
|               |             |               | و <sup>0</sup>     | 5      | RE          | ] <u>ਲ</u>     | 23       | 54     | 2[         | H         | E          | 85         |              | 5           | . 19 | 58   | 3    | 59        | 8      | 59       | 29       | 57       | 55       | 54         | 51       | 53       | 56             | 53         | 49    |
| +             |             |               | 135 <sup>0</sup>   | G      | 35          | ; <del>G</del> | E        | ۲      | F          | E         | 22         | 29         |              | 3 2         | 8    | 58   | 58   | 54        | 56     | 3        | 52       | 48       | 47       | <b>4</b> 8 | <b>6</b> | 9        | <del>1</del> 5 | <b>4</b> 3 | 41    |
|               |             |               | 112.5 <sup>0</sup> | 6      | 32          | 45             | E        | +      | E          | 53        | 20         | 9          | 4" c         |             | 23   | 55   | 56   | 54        | 57     | 52       | 48       | 46       | 46       | 48         | 51       | 50       | 47             | 44         | 42    |
|               |             |               | 90 <sup>0</sup>    | [      | 32          | ; <del>4</del> | 47       | 49     | 54         | 20        | <b>4</b> 6 | <u>م</u>   | 2) O         | <b>6</b>    | 20   | 52   | 53   | 52        | 53     | 20       | 5        | 42       | 42       | 43         | 43       | 41       | 41             | 40         | 8     |
|               | Speed       | le            | 67. 5 <sup>0</sup> | α      | 34          | 43             | E        | F      | E          | <u>F1</u> | F          | Ð          | <b>.</b>     | 15          | 21   | 57   | 53   | 53        | 53     | 51       | 49       | 46       | 45       | 47         | 49       | 47       | 44             | 42         | ŝ     |
| i             | c Tip       | h Ang         | 450                | Ľ      | -)5         | ; <b>8</b>     | F        | H      | H          | H         | 6          | 8          | 5 2          |             | 2    | 28   | 26   | 54        | 54     | 53       | 51       | 47       | 47       | 49         | 50       | 47       | 45             | 42         | 39    |
|               | 8           | zimut         | 22.5 <sup>0</sup>  | 0      | 33          | 2 <b>4</b>     | E        | ]2     | E          | Ē         | F          | Ð          | 8 5          | 6 K         | 57   | 28   | 58   | 54        | 56     | 53       | 51       | 47       | 48       | 49         | 50       | 46       | 45             | 42         | 38    |
| 000           | 200         | A             | و <sup>0</sup>     | 0      | <u>-</u> ]4 | 5              | E        | 32     | 55         | 52        | H          | Ð          | ຮິ           | 9 ¥         | 56   | 55   | 57   | 54        | 54     | 52       | 20       | 47       | 48       | 50         | 50       | 46       | 44             | 42         | 38    |
| 4 Blade Angle |             | A Octave Band | enter Frequency    |        | ZHCZ        | 39             | 20       | 63     | 80         | 100       | 125        | 160        | 200          | 515         | 400  | 200  | 630  | 800       | 1000   | 1250     | 1600     | 2000     | 2500     | 3150       | 4000     | 5000     | 6300           | 0008       | 10000 |

96

Þ

T indicates Tones B indicates Background Noise TABLE XV

407 - A

• • • \* •

1/3 - OCTAVE BAND LEVELS FOR THE 47 x 464 BLADES

| 15 <sup>0</sup> Blade Angle         |                   |                    |            |        |          |                      | 1             |       |        |             |               |                                         |                 |                    |      |                   |                           |       |                   |        |        |      |
|-------------------------------------|-------------------|--------------------|------------|--------|----------|----------------------|---------------|-------|--------|-------------|---------------|-----------------------------------------|-----------------|--------------------|------|-------------------|---------------------------|-------|-------------------|--------|--------|------|
|                                     | 15                | 0 Ft Se            | ec Ti      | p Spee | p        |                      |               |       |        | 2(          | 20 FT         | Sec T                                   | ip Sp           | eed                |      |                   | ñ                         | 24 OO | Sec T             | ip Spe | p      |      |
|                                     |                   | Azimut             | th An      | ıgle   |          |                      |               | <br>  |        |             | Azin          | outh A                                  | ngle            | ,                  |      |                   |                           | Azin  | nuth A            | ngle   |        |      |
| 1 3 Octave Band<br>Center Frequency | 14.5 <sup>0</sup> | 22. 5 <sup>0</sup> | 450        | 67.5   | ,06<br>0 | 0 112.5 <sup>0</sup> | 135           | 0 14. | 5° 22. | 20 <b>*</b> | 50 6.         | 7.50                                    | 90 <sub>0</sub> | 112.5 <sup>0</sup> | 1352 | 14.5 <sup>0</sup> | <b>22</b> .5 <sup>0</sup> | 45°   | 67.5 <sup>0</sup> | 06     | 112.50 | 1350 |
| 25Hz                                | 52                | B                  | В          | m      | a        | B                    | 8             | 53    | B      | ŝ           | 4             | -                                       | 52              | 11                 | 15   | 5''               | 58                        | 59    | 63                | 63     | 63     | 61   |
| 32                                  | <b>4</b> 2        | B                  | B          | 8      | Ø        | 8                    | 8             | 48    | 8      | 4           | 7 4:          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | æ               | 49                 | 49   | 58                | 60                        | 80    | 63                | 63     | 64     | 62   |
| 40                                  | 44                | æ                  | r.         | 8      | 34       | 37                   | 35            | 20    | 44     |             |               |                                         | 52              | 50                 | 64   | 58                | 61                        | 60    | 62                | 62     | 64     | 62   |
| 20                                  | ß                 | В                  | æ          | æ      | 8        | <u>د</u>             | 8             | 51    | 41     | *           | 14            | <u> </u>                                | 41              | 42                 | 6    | 58                | 61                        | 61    | 62                | 62     | 62     | 62   |
| 63                                  | 44                | B                  | B          | 41     | 8        | 41                   | £             | 54    | 48     | 4           | 8             | -                                       | 20              | 46                 | 53   | 60                | 62                        | 61    | 61                | 62     | 51     | 61   |
| 80                                  | 51                | <b>†</b> 3         | <u>a</u>   | 43     | 43       | 46                   | B             | 56    | 51     | Ċ.          | 0             |                                         | 53              | 47                 | 53   | 61                | 64                        | 62    | 61                | 61     | 62     | 60   |
| 100                                 | 53                | <b>4</b> 6         | B          | 43     | ø        | 45                   | <u>m</u>      | 58    | 52     | <u>0</u>    | 2             | 6                                       | 20              | 49                 | 52   | 62                | 65                        | 61    | 60                | 58     | 60     | 57   |
| 125                                 | 52                | в                  | B          | B      | 8        | 8                    | 8             | 58    | 48     | *           | 8<br>         |                                         | æ               | 49                 | 53   | 60                | 62                        | 58    | 56                | 54     | 57     | 53   |
| 160                                 | 62                | B                  | <u>a</u>   | æ      | 2        | æ                    | <u>m</u>      | 68    | 61     | 2           | 3             |                                         | B               | 63                 | 63   | 11                | 11                        | 67    | 62                | 62     | 99     | 62   |
| 200                                 | 58                | ß                  | 45         | 53     | <b>m</b> | 21                   | 22            | 65    | 29     | 9           | 8<br>0        |                                         | 52              | 62                 | 29   | 68                | 68                        | 68    | 62                | 59     | 64     | 64   |
| 250                                 | 57                | 39                 | 52         | 55     | 45       | 50                   | 24            | 65    | 29     | œ           | 0 45          |                                         | 50              | 59                 | 57   | 66                | 99                        | 67    | 58                | 58     | 62     | 63   |
| 315                                 | 55                | 41                 | 51         | 52     | 43       | 49                   | 54            | 63    | 61     | 9           | 0 5(          | 0                                       | 52              | 55                 | 59   | 65                | 67                        | 99    | 59                | 57     | 62     | 63   |
| 400                                 | 54                | 46                 | <b>6</b>   | 47     | 42       | 49                   | 54            | 61    | 19     | ŝ           | 9 5           |                                         | 52              | 55                 | 28   | 67                | 67                        | 67    | 59                | 58     | 62     | 63   |
| 200                                 | 55                | 20                 | 51         | 52     | 45       | 49                   | 52            | 64    | 29     | 5           | 6<br>2:       | <u>~</u>                                | 53              | 55                 | 60   | 69                | 67                        | 69    | 62                | 60     | 63     | 64   |
| 630                                 | 55                | 20                 | 54         | 53     | 51       | 51                   | 53            | 64    | 19     | 9           | <u>2</u>      | <u>.</u>                                | 54              | 29                 | 61   | 72                | 70                        | 73    | 62                | 64     | 66     | 69   |
| 800                                 | 20                | 47                 | 2]         | 20     | 48       | 49                   | 6             | 58    | 58     | 0           | 8             |                                         | 53              | 57                 | 56   | 68                | 67                        | 68    | 60                | 62     | 64     | 65   |
| 1000                                | 51                | 48                 | <b>4</b> 0 | 47     | 48       | 51                   | 20            | 60    | 59     | 2           | 8             | <u></u>                                 | 55              | 58                 | 57   | 70                | 69                        | 68    | 60                | 62     | 65     | 67   |
| 1250                                | 17                | 45                 | 9          | 45     | 4        | <b>4</b> 0           | <b>\$</b>     | 57    | 56     | 5           | ۍ<br>کړ       | <u> </u>                                | 22              | 53                 | 55   | 67                | 99                        | 99    | 60                | 61     | 63     | 3    |
| 1600                                | Ŧ                 | 42                 | 43         | 40     | 42       | 37                   | 43            | 55    | 54     | 2           | 4 4           |                                         | 20              | 51                 | 53   | 66                | 99                        | 66    | 61                | 62     | 63     | 5    |
| 2000                                | 4                 | 39                 | Ŷ          | 39     | Ŕ        | 36                   | <del>\$</del> | 51    | 51     | S           | 1             | ~                                       | 48              | <b>1</b> 8         | 64   | 64                | 64                        | 64    | 61                | 61     | 61     | 62   |
| 2500                                | \$0               | 37                 | 8          | 37     | 37       | 36                   | 38            | 20    | 20     | 4           | 9 4           | -                                       | 46              | 46                 | 64   | 63                | 64                        | 64    | 61                | 61     | 61     | 62   |
| 3150                                | 38                | 36                 | 38         | 35     | 35       | 33                   | 35            | 47    | 47     | 4           | 8 4(          |                                         | 44              | 44                 | 46   | 61                | 62                        | 62    | 60                | 59     | 59     | 60   |
| 4000                                | 38                | 36                 | 38         | 35     | 35       | 32                   | *             | 44    | 44     | 4           | 5 4           |                                         | 42              | 42                 | 43   | 58                | 59                        | 60    | 57                | 56     | 56     | 57   |
| 2000                                | <b>\$</b> 0       | 39                 | \$         | 38     | 37       | 36                   | 38            | 44    | 44     | 4           | 5             | <u>.</u>                                | 41              | 41                 | 42   | 56                | 56                        | 57    | 55                | 54     | 2      | 5    |
| 6300                                | <b>Q</b>          | 39                 | 42         | 40     | 38       | 38                   | 39            | 48    | 48     | 4           | 8<br><u>+</u> |                                         | <b>*</b>        | 44                 | 45   | 24                | 55                        | 56    | 55                | 53     | 53     | 5    |
| 8000                                | 35                | 33                 | 31         | 36     | 8        | 36                   | 39            | 50    | 20     | 5           | <u>₹</u><br>0 |                                         | 46              | 48                 | 48   | 56                | 57                        | 57    | 55                | 52     | 52     | 54   |
| 10000                               | 34                | 31                 | 35         | 34     | 3        | 36                   | 38            | 43    | 42     |             | 9<br>4        | <br>*                                   | 45              | 46                 | 43   | 59                | 60                        | 99    | 57                | 54     | 2      | 55   |

97

**B** = No Data Due to Background Noise

| (Cont 'd) |  |
|-----------|--|
| X         |  |
| TABLE     |  |

| r                | Y       |          |                                     |          |           |         |            |                  |     |     |          |     |            |            |          | _          |          |              |           | -            | _    |            |         | _      | _          | _          |            |          |
|------------------|---------|----------|-------------------------------------|----------|-----------|---------|------------|------------------|-----|-----|----------|-----|------------|------------|----------|------------|----------|--------------|-----------|--------------|------|------------|---------|--------|------------|------------|------------|----------|
|                  | ł       |          | 135                                 | 65       | 88        | 5       | 20         | 32               | 62  | \$  | 68       | 99  | <b>8</b> 5 | 63         | ទ        | 5          | ទួ       | 99           | 89        | 8 4          | 3 2  | 32         | 62      | 09     | 50         | <b>5</b> 3 | 58         | 5        |
|                  | P       | ĺ        | 112.50                              | 62       | 53        | 49      | 29         | 88               | 55  | 2   | 8        | 61  | 61         | 8          | 8        | 63         | 69       | 67           | 52        | 3 4          | 36   | 5          | 62      | 59     | 58         | 58         | 57         | 93       |
|                  | Spee    | gle      | °<br>B                              | 67       | 67        |         | <u>6</u>   | 3 3              | 62  | 22  | 89       | 63  | 8          | 20         | 5        | 63         | 52       | 63           | 63        | 2            | 2 6  | 3 0        | 23      | -<br>2 | 6.         | 30         | <u>ې</u>   |          |
|                  | ec Tip  | uth An   | 7.50                                | 65       | 64        |         | 505        | 83               | 61  | 56  | 67       | 62  | 8          | 62         | 62       | 64         | 67       | 5            |           | 2            | 4 4  | 52         | 5       | 55     | 23         | 59         | 57         | 8        |
|                  | S. H S  | Azim     | 45°6                                | 2        | 33        |         | 25         | 63               | 63  | 99  | 5        | 68  | 8          | 88         | 88       | F          | 24       | 5            | FI        | 20           |      | 3 %        | 2       | 62     | 8          | 8          | 5          | 57       |
|                  | 32      | Ì        | 2.50                                | 53       | 50        | 22      | 2 2        | 3 5              | 62  | 61  | 2        | 68  | 69         | 87         | 73       | 72         | 72       | 69           | 21        |              |      | 53         | 22      | 15     | 00         | 59         | 88         | 57       |
|                  |         | ł        | f. 5°2                              | 28       | 88        |         | 2 4        | 3 53             | 65  | 63  | 76       | 5   | 2          | 5          | 12       | 13         | 22<br>22 | 67           |           | -<br>20 6    | - 4  | 38         | . 3     | 82     | 61         | 20         | 20         | 58       |
| ł                |         | -        | 2°                                  |          |           |         |            |                  | -   | 80  |          |     | <br>6      |            |          |            |          | ~            |           |              |      |            |         |        |            |            |            | 2        |
|                  |         | ļ        | 50 13                               | ŵ.       |           |         |            |                  | -2  | -   | -        |     |            | ~~<br>     | 9<br>    | •<br>      | ••<br>   | ••           | • •       | -            |      | э к<br>    |         |        |            | <u>م</u>   |            | 5        |
|                  | beed    | ~        | 112.                                | 61       | 5         |         | 50         | S 33             | 28  | 53  | 8        | 62  | 5          | 8          | 28       | 8          | 65       | 5            |           | 56           | 35   |            |         | 2      |            | 53         | 23         | 53       |
|                  | rip Sr  | Angl     | 8                                   | 61       | 5         | 8       | 22         | 89               | 53  | \$  | <b>A</b> | 6   | <b>\$</b>  | 8          | 3        | 8          | 62       | 5            | 8°        | 80           |      | 5 5        | 55      | 2      | 53         | 52         | 52         | 51       |
|                  | /Sec    | huth     | 67.5                                | 59       | 8         | 5       | 8<br>5     | 28               | 53  | 23  | 99       | 8   | 99         | <b>28</b>  | 28       | 63         | 65       | 63           | 8         | 88           |      | -<br>-     | 5       | 22     | 2          | 5          | 54         | 55       |
|                  | ₩<br>00 | Az       | 45°                                 | 58       | 65        | 28      | 28         | 22               | 26  | 53  | 63       | 8   | 8          | 8          | 62       | 62         | 65       | 63           | 63        | 55           | 38   | R 9        | 3       | 5      | 55         | 54         | 55         | 55       |
|                  | ŝ       |          | 22. 5 <sup>0</sup>                  | 55       | 51        | 8       | 8          | 2<br>2<br>2<br>2 | 61  | 20  | 11       | 68  | 67         | 2          | 67       | 69         | 67       | 63           | 65        | 5            | 88   |            | 2       | 5      | 3          | 3          | 2          | 3        |
|                  |         |          | 14.50                               | 52       | 53        | 5       | 55         | 2 2              | 8   | 28  | 67       | 2   | 65         | 88         | 68       | 72         | 69       | 65           | 99        | 8 8 8        | 33   | 5          | 3 2     | 5      | 3          | 3          | 3          | 55       |
| ľ                |         |          | 135 <sup>0</sup>                    | 47       | 43        | 5       | <b>Q</b> ( | 2 5              | Ē   | æ   | 8        | 53  | 52         | 52         | 5        | 57         | 58       | 54           | 55        | 53           | 20   | 2 q        | 2       | 5      | 4          | 4          | Ş          | ţ;       |
|                  |         |          | 12.5 <sup>0</sup>                   | 47       | ß         | 43      | <u>а</u> ; | <b>;</b> ¢       | a a | A   | 8        | ß   | -          | 43         | Ę        | <b>4</b> 3 | 52       | <b>4</b> 3   | 55        | <b>9</b> 9   |      | <b>2</b> 4 | 23      | . 4    |            | 42         | \$         | 43       |
|                  | Speed   | gle      | 900                                 | 46       | 8         | 5       | <u>а</u>   | <br>8 9          | 8   | æ   | -<br>-   | A   | 5          | <b>1</b> 3 | <b>9</b> | <b>8</b>   | 52       | 20           | 5         | 8            |      |            | 15      | 1      | 13         | 3          | 12         | Ţ        |
|                  | ec Tip  | uth An   | 7.5°                                | 45       | A         |         | 88         | 33               |     |     | B        | æ   | -<br>6     | 20         |          | 25         | 55       | 53           | 23        |              |      | <b>0</b> 4 | 2 4     |        |            |            | 12         |          |
|                  | Ft/S    | Azim     | 45° 6                               | 61       | 3         | 5       |            | 3 3              | 22  |     | 23       | 2   | 51         | 3          | 22       | 20         | 3        | 3            | 5         | 8            |      | 29         | 2 5     |        | 2 19       | 9          | 9          | 5        |
|                  | 20      |          | 2.50                                | -<br>A   | Ē         | -<br>88 | ,<br>m     | m 5              | 4   | . m | 51       | 21  | 20         | 52         | 5        | 26         | 5        | 22           | 53        | 15           | 2    |            |         |        | 24         | -          |            | ŝ        |
|                  | 1       |          | 4. 5 <sup>0</sup> 2                 | 46       | B         | 1       | 48         | 22               |     | 57  | 67       | 2   | 63         | 63         | 62       | 3          | 59       | 55           | 57        | 24           | 2    |            | 2 4     |        | 2 4        | 5          |            | Ŧ        |
|                  |         |          | 35 <sup>0</sup> 1                   |          | 8         |         | <b>6</b>   |                  |     |     |          |     |            | 2          | 5        | 6          |          | E            | 80        | 5            | 2    | = 9        | 2 5     | . 9    | 2 2        |            |            | . 22     |
|                  |         |          | .50 1                               | -        |           | _       |            |                  |     |     |          |     |            | -          | -        | -          |          | -            | -         |              |      |            | • •     |        |            |            |            |          |
|                  | peed    |          | 0 112                               |          |           |         |            |                  |     |     |          |     |            |            | *        | •          | ~<br>~   | *            | ••<br>    |              |      | •••        | * ¢<br> |        |            |            | • 63<br>   | <u> </u> |
|                  | Tip S   | Angl     | 5 <sup>0</sup> 90                   | -        | <u>2</u>  | 8       | <b>a</b>   | <u>, a</u>       |     |     |          |     |            |            | Ä        | 4          | 4        | 4            | Ş.        | <del>.</del> | R a  | 5          | 57      | 5 2    | 5 #        | 5 2        | 8          | 8        |
|                  | l Sec   | tim with | 0 67.                               | <u>a</u> | 80        | £       | -          | <b>₽</b> ₹       | 6   |     |          |     | \$         | 4          | \$       | 8          | 49       | #            | <b>\$</b> | 3            | 5    | R 8        | 5 8     | ; ¥    | 3 9        |            | ; <b>7</b> | 5        |
|                  | 150 F   | Ž        | 0 45                                | •        | <u>60</u> | -       | ~          | <u>a</u> a       |     |     |          | ) @ |            | Ŧ          | 1        | ¥          | #        | <del>4</del> | 4         | <u> </u>     |      | \$ \$      | 28      |        | 5 9        |            | 18         | 8        |
|                  |         |          | 22.5                                | ra       | 89        | ß       | 60         | a a              | 2   | 1   | 5        | 3   | 5          | 8          | 8        | 52         | 3        | \$           | \$        | <b>Ş</b>     | ę.   | <b>;</b> ; | -       | 3 2    | 9 <b>9</b> | 3 5        | ; R        | 8        |
|                  |         |          | 14. S <sup>C</sup>                  | 8        | 60        | Ŧ       | Ŧ          | 59               | ; 2 | 15  | 28       | 5   | 95         | 8          | 2        | 2          | 51       | 4            | 8         | <b>:</b>     | 36   | 49         | 2       | 8 F    | 58         | 8          | 3          | 8        |
| 1.4° Blade Angle |         |          | 1/3 Octave Band<br>Center Frequency | 25 Bz    | 8         | 9       | 8          | 28               | 8 5 | 125 | 160      | 200 | 250        | 315        | 00       | 500        | 630      | 008          | 1000      | 1250         | 1600 | 2002       | 0067    |        |            |            | 0008       | 10000    |
|                  |         |          |                                     | <b>.</b> |           | ***     |            |                  |     |     |          |     |            | 6          | 8        |            |          |              |           | -            |      | • ••••     |         | • • •  |            |            |            |          |

B = No Data Due to Background Noise

TABLE XV (Concluded)

F

| 11.1 Octave Bund         Azimuth Argie         Azimu |                                    |            | = ¦                | 202         | /Sec TI     | ip Spee    | Ţ                  |            |                    | ~          | ¥7<br>80   | Sec Tip    | Speer      | -                   |            |                      | 300          | N'A        | sc Tip   | Speed              |                                        |                   |        | 404      | S/2 (    | ec lin   | Speed    |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------|--------------------|-------------|-------------|------------|--------------------|------------|--------------------|------------|------------|------------|------------|---------------------|------------|----------------------|--------------|------------|----------|--------------------|----------------------------------------|-------------------|--------|----------|----------|----------|----------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |            |                    | Azi         | muth A      | alge       |                    |            |                    |            | Azin       | outh An    | alg        |                     |            |                      |              | Azim       | uth An   | zle                |                                        |                   |        |          | Azim     | uth An   | gle      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lo Octave Band<br>Center Frequency | 14.50      | 22. 5 <sup>0</sup> | 45°         | 67.50       | 90°        | 112.5 <sup>0</sup> | 1350       | 14. 5 <sup>0</sup> | 22.50      | 450        | 17.5°      | 900        | 12.5 <sup>0</sup> 1 | 350        | 14.5 <sup>0</sup> 22 | 5.0          | 15° 67     | 509      | 0 <sup>0</sup> 112 | . 5 <sup>0</sup> 13                    | 5 <sup>0</sup> 14 | .50 22 | 50       | 45° 67   | 0.5.7    | 900      | 2.50 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 SS                              | 8          | æ                  | ß           | æ           | æ          | £                  | æ          | B                  | æ          | ß          | æ          | 5          | 55                  | ព          | 52                   |              | 2 5        | 2        | 55                 | 1 Å                                    |                   | 6      | 2        | 53       | 7        | 5        | 5    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                 | 2          | <b>A</b>           | A           | Ē           | £          | æ                  | A          | рД,                | B          | m          | <u>д</u>   | ß          | 20                  | <b>A</b>   | 52                   |              | 1          |          | - C                |                                        |                   |        | 1 12     |          |          | 3 5      | 32   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                  | ß          | <b>B</b>           | ß           | 8           | 8          | ę                  | m          | 4                  | 8          | \$         |            | ţ0         | 53                  | 36         | 54 5                 | 2            | 14 5       | 9        | 55                 | - 10<br>                               |                   |        |          |          |          | 52       | 63   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>9</b> 3                         | <b>Ø</b>   | <u>æ</u>           | m           | <b>m</b>    | 80         | 8                  | m          | 41                 | ß          | Ø          | B          | ß          | 25                  | នា         | 55                   | <u>.</u>     | 52 5       | 2<br>    | 1 55               | ۍ<br>م                                 | -<br>-<br>-       | 2      | -        | 1        |          | 4        | 63   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 63                               | <b>m</b> . | 8                  | 8           | <b>6</b> 9  | £          | ŝ                  | m          | 47                 | 8          | ß          | 38         | <b>1</b> 2 | 55                  | B          | 54 - 5               | -            | 50         | 5        | 36                 | *                                      |                   |        | -        | 8        |          |          | 62   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | <b>m</b>   | <b>6</b>           | <u>م</u>    | Ş           | •          | æ                  | m          | 50                 | <b>4</b> 3 | ß          | \$         | 47         | 57                  | 8          | 56 5                 |              | 2 5        | 6        | 9 _ 26             | 2                                      | بو<br>ج           | 5      |          | 55<br>6  | 2        | 3        | 61   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                  | 3          | <b>m</b>           | <b>m</b>    | m           | æ          | 4                  | m          | 22                 | 42         | 9          | ę          | 1          | 55                  | 80         | 55 55                | <u></u>      | 53 5       | 6 4      | 7 56               | ين<br>                                 | ت<br>             |        |          | 53       | 6        | 19       | 22   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125                                | а<br>      | <b>m</b>           | <b>A</b>    | <b>д</b>    | -          | -                  | <b>m</b>   | <b>6</b>           | <b>m</b>   | 8          | <b>A</b>   | 8          | 55                  | 8          | 52 5                 | 53           | 5          | -        | 3 2T               | 4                                      | ب<br>د            | ୁ<br>ଅ | 0        | 51       | 5        | 23       | 53   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160                                | 23         | <b>a</b>           | 4           | 20          | æ          | ß                  | m          | 23                 | 4          | m          | -          | 8          | 20                  | <u> </u>   | 55 55                | 5            | 52 5       | ی<br>4   | 8 - 56             |                                        | يت<br>            | 5      | -        | 53 5     |          | 51       | 8    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 002                                | <b>¥</b>   | 8                  | ¥.          | <b>6</b> 3  | <u>م</u>   | 53                 | <u>m</u>   | 53                 | m          | <b>4</b> 6 |            |            | 29                  | m          | 58                   | 5            | 55 5       | * 9      | 5                  | ۍ<br>م                                 | ت<br>م            |        |          | 33 5     | 6        |          | 58   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250                                | 42         | æ                  | 3           | <b>\$</b>   | æ          | 51                 | Ŧ          | 55                 | 46         | 20         | 4          | 45         | 59                  | 47         | 56 5                 |              | 53 5       | •<br>9   | 5 58               | <u>د</u>                               | ب<br>ج            | 9      |          | 52 5     | - 69     | 29       | 58   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 315                                | \$         | 8                  | <b>8</b>    | Ŧ           | æ          | <b>4</b> 9         | m          | 24                 | 20         | 20         | <b>4</b> 3 | <b>5</b> 2 | 28                  | 46         | 55                   | 5            | 53 5       | * 9      | 9                  | <u>م</u> ا                             | ب<br>             | 5      | 0        | 52 5     |          | 00       | 59   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                | \$         | \$                 | 80<br>4     | <b>\$</b> : | <i>т</i>   | #                  | m          | 53                 | 22         | 51         | <b>1</b> 3 |            | 28                  | 45         | 56 5                 | <u></u><br>6 | 55 5       | *        | 9                  | -<br>                                  | تو<br>دم          |        | ~        | 55       |          | 2        | 58   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                  | ę.         | <b>.</b>           | 2           | 4           | 3          | 51                 | ĝ          | 53                 | 22         | 53         | 64         | 2          | 29                  | 9          | 58 5                 |              | 57 5       | 8        | 2 56               | ي<br>م<br>ا                            | ~                 | 9      |          | 8        |          | 53       | 59   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                  |            | \$                 | 5           | \$          | <b>\$</b>  | 28                 | <b>4</b> 6 | 3                  | 52         | 2          | 15         | 63         | 53                  | 52         | 5                    | -            | 31 6       | 0<br>0   | 99 - 80            | 9<br>0                                 | ۔۔۔<br>۔۔۔        | 2      | 9        | 20       | 5        | 51       | 5    |
| 10000       11       1000       11       1000       11       1000       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11                                                                                                                                                                                                                                                                                                                                                                                                                                             | 800                                | 7          | \$                 | <b>Ş</b>    | 4           | 41         | 22                 | 5          | 21                 | 20         | 52         | 52         | 61         | 20                  | <b>4</b> 8 | 56 5                 | <u>.</u>     | 6 <u>6</u> | 8        | 5                  | <u>م</u> ا                             |                   |        | 5        | 98       |          | 81       | 62   |
| 1230       41       50       48       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       <                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000                               | <b>S</b>   | <b>Ş</b>           | <b>\$</b> 2 | ÷.          | <b>†</b> 3 | 64                 | <b>F</b> 3 | 22                 | 51         | 51         | 20         | 6          | 3                   | 20         | 59 6                 | <u> </u>     | 8          | 8        |                    | <u>ي</u><br>1                          | -                 | 10     |          | 58 6     | <u>.</u> | 51       | 64   |
| 1000       8       41       57       50       59       57       51       50       50         1000       8       41       57       50       50       55       57       55       57       55       57       55       57       55       55       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       55       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57       57                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1250                               | Ţ          | Ţ                  | <b>1</b>    | 5           | Ŧ          | <b>\$</b> 2        | Ŧ          | 200                | 48         | ç,         | 41         | <b>1</b> 6 | 49                  | <b>4</b> 8 | 57 5                 | -<br>6       | З<br>-     | 7 5      | 3                  | ی<br>د                                 |                   | 9      |          | 56 6     | <u></u>  | 65       | 62   |
| 25000       38       37       45       44       41       45       43       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1600                               |            | <b>;</b>           | 9           | 5           | 8          | 37                 | 2          | 45                 | 4          | 8          |            | - 13       | 45                  | \$         | 57 6                 | <u> </u>     | 62         | 5        | 3<br>2<br>2        | ي<br>م                                 |                   | 9      | ę        | <br>%    | <u></u>  | <b>6</b> | 62   |
| 2500       38       36       45       44       41       44       42       54       56       55       53       51       54       66       60       60         3150       38       38       38       38       36       45       55       55       53       51       54       66       60       60         3150       38       38       38       38       46       45       44       42       55       53       51       64       66       60       60         3150       38       38       38       38       41       43       56       55       53       51       64       66       60       60       60       60       60       60       60       60       55       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53       53 <th>2000</th> <td>R :</td> <td>R</td> <td><b>Ş</b></td> <td>8</td> <td>ង</td> <td>Ş</td> <td>ŝ</td> <td>÷</td> <td>ţ.</td> <td>\$</td> <td>4</td> <td>1</td> <td>ş</td> <td>43</td> <td>55 5</td> <td>21</td> <td>5 5</td> <td>4</td> <td>1 54</td> <td><u>بن</u></td> <td>ب<br/>د</td> <td>5</td> <td></td> <td>2</td> <td>=</td> <td>65</td> <td>99</td>                                                                                                        | 2000                               | R :        | R                  | <b>Ş</b>    | 8           | ង          | Ş                  | ŝ          | ÷                  | ţ.         | \$         | 4          | 1          | ş                   | 43         | 55 5                 | 21           | 5 5        | 4        | 1 54               | <u>بن</u>                              | ب<br>د            | 5      |          | 2        | =        | 65       | 99   |
| 3130       38       34       45       44       45       44       45       44       45       44       45       44       45       45       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       <                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2500                               | 8          | R :                | Ş           | 5           | 7          | g                  | 5          | <b>\$</b>          | <b>4</b> 5 | <b>9</b>   | 4          | 1          | #                   | 42         | 5                    | <u>.</u>     | 5          | с.<br>   | 1 54               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | -                 | 4      | <u>.</u> | <u>5</u> |          | 60       | 8    |
| 4000         38         38         31         36         31         36         31         44         43         39         42         40         52         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         5                                                                                                                                                                                                                                                                                                                                     | 3150                               | 8          | 8                  | 8           | 8<br>       | 8          | 38                 | 3          | \$                 | \$         | Ş          | *          | 3          | <b>f</b> 3          | 41         | -<br>-<br>-          | 5            | 5 5        | 01<br>01 | 0 52               | 2                                      | -<br>-            |        | -<br>    | 83 6     | <u></u>  | 28       | 29   |
| 5000       35       37       36       32       35       34       45       44       44       40       43       41       52       53       52       52       59       51       50       61       60       61       59       57       57       57         5000       33       32       35       33       36       34       45       44       42       54       54       54       54       55       55       56       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       59       59                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4000                               | <b>8</b>   | 2                  | 8           | 8           | 31         | g                  | 2          | \$                 | \$         | \$         | <b>43</b>  | 8          | 2                   | <b>\$</b>  | 52 5                 | <u>.</u>     | 53 5       | 3 +      | 9 51               | *                                      | -<br>-            |        |          | 52       | 6        | 12       | 57   |
| 6250       33       32       35       33       36       34       45       44       42       54       54       54       51       61       61       61       62       59       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       58       <                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000                               | 8<br>      | ŝ                  | 5           | 8           | 8          | 35                 | ž          | <b>4</b> 2         | #          | \$         | 4          | <u>9</u>   | <b>\$</b> 3         | 41         | 52 5                 | <u>.</u>     | 2          | 2        | 9 51               | 5                                      | ۳<br>م            |        |          | 81 5     | 6        | 57       | 57   |
| 8000 33 32 36 39 39 42 33 44 40 45 45 43 44 40 42 5 5 55 54 51 54 53 61 61 61 60 59 59 59 59 59 10000 32 29 33 34 36 37 37 39 38 40 42 42 43 42 53 53 54 55 51 54 53 60 60 60 60 58 59 58 58 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6250                               | 2          | 2                  | 8           | 3           | ខ្ល        | 36                 | z          | <b>Ş</b>           | 43         | \$         | 44         | -          | \$                  | 42         | 54 5                 | 7            | 12         | 3 2      | 0 51               | 2                                      | •                 | 1 6    |          | 52 5     | 6        | 28       | 58   |
| 1 10000 1 32 29 33 34 36 37 37 39 38 40 42 42 43 42 53 53 54 55 51 54 53 60 60 60 60 58 58 58 58 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8000                               | 2          | 32                 | 8           | 8           | 8          | 42                 | 8          | \$                 | Ş          | <b>Ş</b>   | 45         | <b>1</b> 3 | 46                  | 44         | 56 5                 | <u>5</u>     | 55 5       | 4 5      | 1 54               | <u>مَن</u>                             | 3 - 6             | 1 6    | -        | 31 6     | <u>.</u> | 65       | 20   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000                              | 8          | 8                  | 8           | 7           | ş          | 31                 | 5          | R                  | ñ          | \$         | 42         | 5          | 64                  | 42         | 53 5                 | 3            | 2          | 5        | 1 54               | ة،<br>س                                | و<br>             | 0      | 9        | 80       | 2        | 28       | 28   |

B . No Data Due to Background Noise

#### SECTION VII

## CORRELATION OF TEST DATA WITH THEORY

### 1. INTRODUCTION

The test program described in the previous section had three major objectives: a) to provide harmonic rotational noise data to validate the propeller noise detectability computer program calculation procedure for rotational noise, b) to provide the 1/3-octave-band noise data bank needed to determine values of the 3 empirical coefficients in the new vortex noise prediction procedure developed under this contract, and c) to demonstrate the reduction in noise obtained from a propeller with new blades designed for reduced detectability.

Earlier evaluations by Hamilton Standard of the rotational noise calculation procedure for moderate- and high-tip-speed propellers had shown fair agreement between predicted and measured harmonic noise levels. The evaluations were done for field points both near and far from the propeller and for both static and flight operation. However, the predicted rotational noise differed greatly from the lowtip-speed data obtained during the test programs described above. Not only were the measured higher harmonics much larger than predicted, but even the fundamental (first) harmonic was significantly larger than predicted. An extensive investigation of possible causes of the lack of agreement and of ways to improve agreement was undertaken and is reported in the following section.

The 1/3-octave band data bank obtained from the test program was used to select the force coefficient  $C_F$ , the frequency coefficient  $C_f$ , and the Reynolds number exponent which provide best agreement between the vortex noise predicted by the method developed under this contract and data. This method is discussed in Section V.3. The values of the three parameters selected are 8.0, 0.06, and -1.0, respectively.

The theories for harmonic and vortex noise were used to design new blades for reduced detectability. The theory for harmonic loading noise indicates that increasing blade chord reduces rotational noise. Therefore, the propeller with the new wider 47X-464 blades should produce less rotational loading noise than the first two propellers tested at the beginning of the program. However, the increased chord increases thickness noise sufficiently that it is predicted to exceed loading noise. The measured data show no significant change in the harmonic noise levels. The new vortex noise method predicts a reduction of 3.3 dB in vortex noise with the wider blades. A comparison of the measured noise in the bands from 250 to 1000 Hz shows a decrease of 3.4 dB.

#### 2. HARMONIC ROTATIONAL NOISE

At the start of the contract it was planned to use the harmonic noise data to verify the accuracy of the rotational noise levels predicted by the computer program and to permit small changes to improve correlation. However the first test period showed significant differences between the test data and predictions. These differences also were present in the data from the other four test periods.

The predicted harmonic noise levels had the following general characteristics: a) the SPL of the fundamental (at blade passing frequency) harmonic noise increases by about 37 dB per doubling of rpm, b) the harmonic fall-off is rapid, the first overtone is about 60 dB lower than the fundamental, and c) the noise is loudest slightly behind the propeller plane and drops to zero on the axis. In contrast, the test data show: a) the SPL of the fundamental increases about 19 dB per doubling of rpm, b) the harmonic SPL's, up to the 10th harmonic, are within 30 dB of the fundamental, and c) the harmonic noise data shows a sharp dip near the propeller plane and does not decrease near the axis.

A thorough study of possible noise sources which would explain the lack of correlation with theory was undertaken. The results are presented in the next two sections.

#### a. Correlation of Test Data with Theory

The significant differences between the harmonic noise test data and the predictions are outlined in the preceding paragraphs. Some specific examples are presented here. Also, several possible sources of the harmonic noise which were investigated are discussed.

The variation of the fundamental measured harmonic noise level with rpm (and tip speed) is shown in Figure 22 for a representative case at  $12.5^{\circ}$  behind the propeller plane. At the two highest tip speeds the theory for harmonic rotational noise with uniform loading (see Sections IV.2 to 4) agrees fairly well with the measured data. But at the two lower speeds the agreement becomes poor. Unfortunately, the propeller noise detectability program is expected to be applied to low-tip-speed propellers where Figure 22 shows the harmonic noise prediction with uniform loads is inaccurate. The curve for the predicted variation with loading harmonics included in order to improve the accuracy of the prediction is discussed in the following Section VII.2.b.



Figure 22. Variation of Fundamental Harmonic SPL with RPM

Figure 17 presents the measured rotational noise harmonics of four 4-bladed propeller configurations at three azimuth angles. It can be seen that the harmonic levels do not decrease rapidly with harmonic number (and frequency). Although there are individual differences shown in the limited sample represented by Figure 17, a study of all the harmonic noise data in Tables VIII to XII does not indicate any significant difference between the various configurations tested. Figure 23 presents the harmonic noise data for one configuration in Figure 17. The predicted noise levels for the theory with uniform loading are also presented by square symbols. The fundamental harmonic is much less than the measured value, as discussed above in connection with Figure 22. Even more significant in terms of detectability is the fact that all predicted overtones are very much quieter than measured, by about 60 dB for the second harmonic, for example, and even more for higher harmonics.

Figure 24 shows the measured directivity pattern of the fundamental and fifth harmonics of blade passing frequency. The directivity pattern of the fundamental harmonic predicted by the standard theory with uniform loading is shown by square symbols and is dominated by thickness noise rather than by loading noise because the chord of the 47X464 blades is large. Therefore, the directivity pattern predicted for the fundamental harmonic has a maximum in the propeller plane,  $\psi = 90^\circ$ , rather than the measured minimum shown.

The lack of correlation between test data and prediction in level, harmonic content and directivity pattern described above shows that the standard calculation of propeller harmonic noise is inadequate for predictions of harmonic noise for the test conditions. This does not mean that the theory is inadequate for all conditions. Indeed, it has proved to be generally adequate at higher tip speeds, both in flight and statically. Because of the observed lack of correlation, other sources of harmonic noise on the rig at low propeller speeds were investigated. The results are summarized in Table XVI. The first two sources are expressed by the standard calculation, as in Equations (3) and (4), and, as the preceding discussion shows, do not predict the measured data. With the exception of the last 3 items in the table the sources of harmonic loads described were dismissed from further consideration during the investigation for the reasons given in the table. The velocity field at the strut due to the trailing tip vortex (item 13) was calculated by a Hamilton Standard computer program. At 4 feet from the propeller axis the predicted velocity normal to the strut varies from 10 fps to 132 fps as the propeller turns. High velocities near 132 fps occur only over a small fraction of the distance between blades and therefore the force on the strut would be rich in harmonics. The first 3 harmonics of the noise due to the resulting oscillating force on the struts were calculated and compared favorably with the data. Therefore, test program 3 was conducted to verify that the rig support struts were the source of the harmonic noise. The 47X-451 propeller blades were rotated 180<sup>0</sup> in the bub and the direction of propeller rotation was reversed. Thereby the propeller was operated as a pusher with the trailing vortex moving away from the rig rather than towards it. As Figure 17 shows, the harmonic noise did not decrease significantly. Also, an observer could recognize that the noise source was the propeller rather than the rig even in the normal tractor mode. Therefore, this noise source was discarded as a cause of the observed harmonic noise.



Figure 23. Comparison of Measured and Predicted Harmonics of Rotational Noise





## TABLE XVI

|    | Harmonic Noise Source                                                                                  | Comments                                                                                                                                                                                                    |
|----|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Axially-symmetric thrust and<br>torque loadings                                                        | Theory (Eq. (3)) predicts a large varia-<br>tion with rpm, rapid harmonic fall-off,<br>and noise maximum near $\psi = 105^{\circ}$ . As<br>discussed in text, these 3 trends differ<br>from those observed. |
| 2. | Blade thickness                                                                                        | Theory (Eq. (4)) generally predicts lower<br>harmonic noise than does theory of load-<br>ing noise (Eq. (3)) and noise maximum in<br>propeller plane.                                                       |
| 3. | Radial blade loads                                                                                     | The theory $(22)$ predicts maximum noise<br>in propeller plane. Should be small be-<br>cause of small blade deflections, unlike<br>a helicopter rotor.                                                      |
| 4. | Blade vibration                                                                                        | Not source because vibration frequencies<br>are not always multiples of blade passing<br>frequency.                                                                                                         |
| 5. | Quadrupole sources studied by<br>Ffowes Williams and Hawkings <sup>(33)</sup>                          | Studies at United Aircraft Corporation<br>Research Laboratories show these sources<br>would produce less noise than that from<br>uniform loading (Item 1).                                                  |
| 6. | Second-order sources studied by<br>Morfey(14)                                                          | Believed insignificant because of low<br>axial Mach numbers and large spacing<br>between the propeller and stand support<br>struts, see Figure 10.                                                          |
| 7. | Atmospheric turbulence causing<br>varying blade loading                                                | Turbulence believed to be small. Data<br>obtained during a wind gust, with pre-<br>sumably more turbulence, shows only<br>moderate increases in noise level.                                                |
| 8, | Asymmetric blade loading due to<br>ground blockage inducing asym-<br>metric flow through the propeller | Believed insignificant because the<br>propeller axis is over 3 propeller<br>radii above the ground.                                                                                                         |

1

## SUMMARY OF HARMONIC NOISE SOURCE STUDY

|     | Harmonic Noise Source                                                                              | Comments                                                                                                                                                                                                       |
|-----|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.  | Wind producing asymmetric blade<br>loading                                                         | Most of data obtained with winds less than<br>1 knot (see Sect. VI 6b). Data obtained<br>during a gust show low-order harmonics<br>may increase by 10 dB and the higher-<br>order harmonics by less than 2 dB. |
| 10. | Asymmetric blade loading due to<br>non-uniform flow induced by<br>blockage of stand support struts | Velocity through propeller disc is reduced<br>.14% ahead of each strut. The resulting<br>asymmetric loading is insufficient to<br>produce the measured fundamental har-<br>monic noise level.                  |
| 11. | Boundary layer velocity wake<br>from blades causing an oscil-<br>lating force on struts            | Calculated noise level is 15 dB below measured data.                                                                                                                                                           |
| 12. | Bound vortex on blades causing<br>an oscillating force on struts                                   | Calculated velocity change at struts of .1 fps is too small to cause significant noise.                                                                                                                        |
| 13. | Trailing tip vortex from blades<br>causing an oscillating force on<br>struts                       | Calculated velocity change produces<br>harmonic noise similar to data but<br>observer hears noise coming from<br>propeller, not rig.                                                                           |
| 14. | Asymmetric blade loading                                                                           | Source unknown, see Sect. VII 2b.                                                                                                                                                                              |
| 15. | Narrow-band random                                                                                 | See Sect. VII 2c.                                                                                                                                                                                              |

# TABLE XVI (Concluded)

.

The last 2 noise sources are discussed in the following 2 sections, respectively. Harmonic loading (item 14) has been correlated and does provide improved agreement with the test data. The last source, item 15, is shown to be present by the 1.5 Hz bandwidth spectra obtained from test period 4 and illustrated in Figure 19. None of the existing propeller noise theories predict the observed narrow-band random noise. This noise is discussed further in Section VII.2.c.

#### b. Derived Harmonic Loads

The effects of harmonic loads on harmonic loading noise are discussed in Section IV. 5, where Equation (9) for the loading noise due to harmonic loads is presented. The problem considered here is the inverse one, that of deriving the harmonic loads which correspond to the measured harmonic sound pressure levels. In order to make this problem tractable it is necessary to use the far-field approximation, to assume that the loads are concentrated at 80% of the tip radius (effective-radius approximation), and to assume random phasing between each loading harmonic. Also operation at zero forward speed, (static) is assumed because the noise data obtained in the program is from a static test stand.

With these assumptions, the equation for the sound pressure level of order m is:

$$dB_{m} = 124.572 + 10 \log \left[ \frac{1}{16\pi^{2}} \sum_{\lambda=0}^{\infty} \left| \left( \frac{mBQX}{ad^{2}} T_{\lambda} \right)^{2} + \left( \frac{(mB-\lambda)}{.2dD^{2}} Q_{\lambda} \right)^{2} \right| J_{mB-\lambda}^{2} + \left( \frac{mB}{.8\pi dD^{2}} Q_{0} J_{mB-\lambda} \right)^{2} \right]$$

$$(46)$$

This equation involves Bessel functions with an argument of  $(\pi DBnY/75da)m$ and order mB- $\lambda$ . On the propeller axis the argument is zero, because Y = 0, and the only non-zero Bessel frunction is  $J_0(0) = 1.0$ . Therefore, only harmonic thrust loads of order  $\lambda = mB$  contribute to the harmonic loading noise on the axis. Equation (46) can be solved for these harmonic thrust loads in terms of the measured harmonic noise levels  $dB_n$ :

$$T_{mB} = T_{\lambda} = \frac{120 \text{ ad}}{mBn} e^{(dB_m - 124.572)/8.68589}$$
 (47)

In the propeller plane ( $\psi = 90^{\circ}$ ) only harmonic torque loads Q contribute in Equation (46), which can be put in the form

$$(mBQ_0 J_{mB})^2 + \sum_{\lambda = 1}^{\infty} \left\{ (mB - \lambda) Q_{\lambda} J_{mB - \lambda} (\pi DmBn/75a) \right\}^2$$

$$(48)$$

$$(48)$$

$$(48)$$

Experience with helicopters (21) suggests that the torque harmonics vary inversely with the harmonic order to some exponent. Therefore, the following trend is assumed, with the factor C to be determined

 $\mathbf{Q}_{\boldsymbol{\lambda}} = \mathbf{C}/\boldsymbol{\lambda} \ \mathbf{2.5}$ (49)

Substituting Equation (49) into Equation (48) results in the equation

$$(mB)^{5} \left[ \sum_{j=1}^{mB-1} j^{2} \left\{ \left( \frac{1}{mB-j} \right)^{5} + \left( \frac{1}{mB+j} \right)^{5} \right\} J_{j} \left( \frac{\pi DmBn}{75a} \right)^{2} \right] Q_{mB}^{2} + \left( mBQ_{0}J_{mB} \right)^{2} \left[ 0.8\pi d D^{2} e^{\left( dB_{m}^{-124.572} / 8.68589 \right)} \right]^{2}$$
(50)

Harmonic torque loads were derived from Equation (50) using harmonic sound pressure levels measured in the propeller plane ( $\psi = 90^{\circ}$ ). These harmonic torque loads, expressed as a percentage of the steady (zero-order) torque are shown in Figure 25. A least-squares fit to the data of  $17\%/\lambda^{1.34}$  is shown by the solid line. The discrepancy between this slope of -1.34 and the local slope of -2.5 assumed in Equation (49) is not believed to make a significant change in the results shown. With the exception of the derived torque harmonics at the higher harmonics from tests of the pusher propeller (diamond symbols) the rest of the solid symbols fall together. It is noticeable that use of a pusher, rather than a tractor, test configuration reduced the higher torque harmonics but did not change the lowest three torque harmonics. For the same test conditions the correlation is  $6.8\%/\lambda \cdot \frac{86}{1.95}$  for tractor operation and  $38\%/\lambda$  $\lambda^{1.95}$  for pusher operation. Loading harmonics over the 5th are lower for a pusher rather than a tractor operation with these correlations.

Calculation of harmonic thrust loads from Equation (47) requires that harmonic noise data be measured on the propeller axis. Obtaining meaningful harmonic noise data on the axis is difficult because some of the noise recorded does not come directly from the propeller as assumed but is reflected from the ground in front of the test stand. For the test stand, shown in Figures 9 and 10, with the axis 17 feet off the



HARMONIC LOAD ORDER ,  $\lambda$ 

Figure 25. Derived Harmonic Torque Loads

ground a microphone 50 feet ahead on the axis picks up reflected sound that is emitted at 34° from the axis and, therefore, includes significant noise due to the torque forces. The increased path length of the reflected noise reduces it by only 1.6 dB so that it is significant. The first three test periods had been completed before the need to derive harmonic thrust loads became apparent. Because the range of azimuth angles for measured harmonic noise in these tests was only 45° to 135°, it was not possible to extrapolate to  $0^{\circ}$  (on the axis) with any confidence. Therefore, no derived harmonic thrust loads were calculated from the data from the first three periods. Several approaches to the problem of obtaining valid on-axis noise data during tests of the third blade configuration (47X-464) were investigated. It was decided to use the approach of adding two microphones, at 50 feet and 20<sup>0</sup> and at 80 feet and 12<sup>0</sup>, and to use these two additional locations to extrapolate to 4 = 0. For conditions where this extrapolation of the harmonic noise data to  $\psi = 0$  appeared reasonable the results are presented in Figure 26. The harmonic thrust loads derived from Eq. (47) are expressed as a percentage of the measured thrust and plotted against harmonic load order  $\lambda$  mB. A least-squares fit to the data of 8.4%/ $\lambda$ <sup>1.38</sup> is shown by the solid line.

The derived harmonic torque and thrust loads are combined in Figure 27. The slope of -1.36 corresponds to a reduction in harmonic noise level of 2.2 dB per doubling of noise order, or frequency. The combined curve is weighted towards the torque curve because of the larger number of data points represented by the torque curve. If only data points for which both torque and thrust harmonics are available are included, the two curves are closer together and are fitted by the equation  $12.4\%/\lambda^{1.46}$ . This line is between the thrust and torque lines in Figure 27.

A comparison of harmonic loads derived from the 2-bladed configuration noise data with loads derived from the 4-bladed configuration with nearly the same blade angle shows that the harmonic loads for the 2-bladed configuration are over two times larger. Most of this difference can be explained by assuming that the harmonic load on each blade does not depend on the number of blades. Therefore, the percentage harmonic loads of a 2-bladed propeller should be double the percentage loads of a 4-bladed propeller.

Analysis of the harmonic loads derived from noise data obtained with the 47 N-464 blades shows a considerable variation of the percentage harmonic loads with rpm. The purpose of this study of derived harmonic loads is to develop a correlation of harmonic loads which might be used to predict the harmonic loading noise of the propeller of a quiet aircraft. These propellers are expected to operate at low tip speeds of 300 fps or less. Therefore, only data from a 4-bladed tractor configurations with tip speeds less than or equal to 300 fps were included in the data bank used to establish the trend equation 21,  $4\%^{-1}\lambda^{-1}$ , shown in Figure 28. Using the effect of number of blades discussed in the preceding paragraph, the correlation of the harmonic loads derived from the harmonic noise measured during tests conducted during this program



Figure 26. Derived Harmonic Thrust Loads







Figure 28. Derived Harmonic Loads for Low Tip Speeds

This correlation of harmonic loads was used to calculate the harmonic rotational noise levels shown by triangles in Figures 22 to 24. In Figure 22 the correlation with data at the two lower speeds is markedly improved. The improvement for the occruous shown in Figure 22 is even more significant, since the higher overtones rather than the fundamental would be detected first. The improved correlation of directivity pattern is demonstrated in Figure 24. As discussed previously, for the fundamental harmonic (shown on right of figure) in the propeller plane the thickness noise predominates and is not changed by adding harmonic loading.

The discussion of Figure 19 in the next section points out that the higherorder harmonic noise is not a true tone noise but appears to be a narrow-band random noise. However, no distinction was made between these sources of harmonic noise in deriving the harmonic load correlations presented in this section. If, in fact, these higher-order noise harmonics are not caused by harmonic loading, the derived harmonic loads for orders of about 20 and above are not valid. The high-order harmonic loads would be less than those derived and, therefore, the correlations shown in Figures 25 to 28 would be steeper, perhaps with a slope of -2, rather than near -1.4. Because the propeller noise theories which are represented in the computer program do not predict this narrow-band random harmonic noise, and because the aural detectability criteria approach selected does not differentiate between tones and narrow-band random harmonic noise, use of the harmonic load correlation presented in Figure 28 is believed to be proper for detectability studies.

### c. Discussion of Harmonic Noise Sources

An intensive investigation of the observed harmonic noise characteristics was undertaken in an effort to explain, and thereby be able to predict, the harmonic noise of a propeller operating at low tip speeds. Three approaches were pursued: a) listening to the propeller on the test stand, b) a very narrow band analysis of some of the data, and c) a literature search for theories which predict noise characteristics like those measured.

It was observed at the beginning of the test program that the propeller is heard to be much quieter close to the propeller plane and about equally loud elsewhere. If one stands under the shaft, but slightly ahead or behind the propeller, one hears a series of bursts of hissing noise. The noise appears to come from about the  $70^{\circ}$ radius station of the blade approaching the observer. By moving to one side the source appears to move around the axis so as to always approach the observer. The frequency of repetition of the bursts of noise is the blade passing frequency. Thus, to the observer, it appears that the harmonic noise is due to a high-frequency sound source on each blade which has a particular directivity variance relative to the blade. It requires that little noise is produced directly forward or in the rear half circle. Theoretically, a dipole oscillating in a direction of rulal to its motion produces a similar noise pattern. However, theoretically so up Mach number is too low to produce the distortion required.

Recent high-speed movies of a tip vortex from a helicopter rotor on a test stand have shown that both the blade and the vortex oscillate axially with a period of one revolution. The relative motion between the flapping blade and the tip vortex also has a period of one revolution and induces large changes in angle of attack at about 80% radius. These angle of attack changes result in a harmonic load change and, therefore, in harmonic noise. It is not known if the same angle of attack changes would occur if the blades were stiff, as in a propeller, so that they did not flap as in a rotor. That is, it is not known whether blade flapping or vortex oscillation initiates the observed effects. However, numerical studies by UAC have shown that the trailing tip vortex is unstable, so that its position has a random variation. Consequently, it is expected that oscillation of the tip vortex will occur even with stiff blades. In forward flight, or with fewer blades, the effects of the oscillation of the tip vortex are expected to be reduced.

A frequency spectrum obtained with a 1.5-Hz bandwidth filter is shown in Figure 19. It illustrates several significant points. First, the width of the first four spikes is very narrow and is known to correspond to the filter-response curve. Therefore, these spikes represent a tone noise. Second, the level of these tones deereases with increasing frequency. Third, the widths of the spikes at higher frequencies are considerably broader than the filter response curve. Therefore, these spikes are not due to harmonic tones, but suggest, instead, a narrow-band random noise. Fourth, the higher-frequency spikes have an envelope which is a maximum at about the 9th harmonic. Lastly, the level of the broad-band noise between the spikes follows the envelope of the spikes closely.

Hamilton Standard obtained some noise data from a DHC-5 aircraft with one propeller replaced by a propeller designed for a quiet STOL aircraft. Data were obtained during both static (on the ground) and 80-knots flyover operation with a tip speed of 630 fps. The noise spectrum shown in Figure 29 for static operation exhibits many harmonics of rotational noise. The spectrum from flight operation exhibits fewer harmonics of rotational noise. For static operation, the fundamental and the 4th through the 7th harmonics would be detected whereas for flyover operation only the 2nd harmonic would be detected. Although these data were not obtained at the very low tip speeds typical of a quiet aircraft, they are cited because they demonstrate an effect of flight speed on the harmonic noise content which may invalidate use of harmonic loadings derived from static data for flight noise predictions.





An investigation of the propeller noise data from the 47X-464 blades using various low and high-pass filters and an oscilloscope re, ealed that the noise level is not steady, but has an apparently random variation, suggesting that turbulence might be the source. Mr. Ramani Mani, of the Department of Mechanicar and Aerospace Engineering of the University of Massachusetts, has studied the problem of sound generation due to free-stream turbulence incident on a rotor. He presents, in an unpublished paper, predicted noise spectra which resemble those shown in Figure 19 at the higher frequencies, that is, that have broad rounded spikes which peak at harmonics of the blade passing frequency. The ratio of the length scale of turbulence to the spacing between the blades is a significant parameter in his analysis. As this ratio increases above roughly unity, the shape of the spectrum is changed little but the level decreases. As this ratio decreases below roughly unity the spectrum becomes smooth and the peaks at harmonics of the blade passing frequency disappear. Extensive data on atmospheric turbulence, in the form of power spectral density plots, show that turbulence power varies as the 5/3 or large power of wavelength in the range of wavelengths of significance here. Also, the wavelength for maximum energy decreases as the ground is approached. Therefore, turbulence may be present with the length scale required to produce the peak in the spectrum predicted by Mr. Mani. Reducing the number of blades in order to increase the ratio of turbulence scale length to distance between blades may not reduce the noise levels as much as predicted because the turbulent energy at large scale lengths is greater. This was, in part, confirmed during the last test at Hamilton Standard which showed that the shape of the noise spectrum from a propeller with two blades removed is not significantly different from that of the basic four-bladed configuration even though the spacing between blades is more than doubled.

Griffiths <sup>(36)</sup> studied the spectrum of compressor noise due to small random fluctuations in the amplitude and phase of the acoustic disturbances. The noise, which he calls "narrow-band random noise" has a frequency spectrum similar to that between 200 Hz and 500 Hz shown in Figure 19.

Studies of propulsion noise in the last decade have concentrated on compressor and jet noise. The test data obtained in this program show that the conventional sources of propeller noise do not explain the observed sound patterns. The theoretical concepts which have been developed recently for compressors appear to be able to explain the observed characteristics of propeller noise. Therefore, these theories should be applied to propellers and developed into a useable form. It is anticipated that a unified theory can be developed to predict both the harmonic noise and the broad-band noise.

#### 3. BROAD-BAND NOISE

The 1/3-octave band noise data were obtained in this program primarily to determine empirically the best values of the coefficients in the new method for predicting broad-band vortex noise developed in this program. The three coefficients are a The contract of  $C_{\rm P}$ , a tropiency coefficient  $C_{\rm f}$  and a Reynolds number exponent. Recommended values of these three coefficients are 8.0, 0.06 and (1.0, respectively.

Figure 30 to a plot of vortex noise SPL versus rpm, or up speed. The first attempt at a correlation between theory and data did not include any Reynolds number term in the theory. Predicted levels for a zero exponent, thereby excluding any Reynolds number factor, are shown by square symbols. The relative levels of these symbols is not significant because the other 2 coefficients used were selected to correlate with the data using an exponent of -1.0. However, it is apparent that the predicted variation in noise with rpm shown by the squares does not match the data. The measured variation is more like V<sup>4</sup> than V<sup>6</sup> predicted by Yudin (13) or V<sup>5, 6</sup> predicted by Sharland (28) for vortex noise. Therefore, a Reynolds number term was included in Eq. (45) for the force and an exponent of -1 selected. Correlation with data shown by the triangles in Figure 30 demonstrates the value of this choice. Data from the 47X-451 blades, which are about half as wide as the 47X-464 blades and, therefore, have half the Reynolds number, confirm this selection of the exponent.

The overall noise level in the seven 1/3-cetave bands from 250 Hz to 1000 Hz was selected as the noise parameter in Figure 30 because studies showed that the broad-band noise is most likely to be detected in this range of frequencies. The level of broad-band noise generally decreases outside this range and the aural detectability eriteria (see Table III) are generally less critical outside this range.

A change in the frequency coefficient shifts the predicted frequency spectrum along the frequency axis. The recommended coefficient of .06 is near that obtained by Chuan and Magnus (32). A change in either the force or frequency coefficient changes the sound pressure level, since the sound pressure is proportional to both coefficients.

Figure 31 presents a comparison between measured and theoretical 1/3-octave band spectra at tip speeds of 150 and 353 fps. The effects of increased tip speed are to increase both the measured and predicted noise levels and to displace the predicted spectra towards higher frequencies. The measured noise data shows considerable uncveness in contrast to the smooth curves of the two predictions. The 3rd option prediction is somewhtat more peaky and does not fall off as rapidly at the highest frequencies. The spectra predicted by option 1, the new method, appear to correlate more closely with the data shown at the more significant middle frequencies than the spectra predicted by option 3. The third vortex noise option method is based on data tree a propeller with blades like the 47X-394 blades tested in the first test period.



Figure 30. Variation of Propeller Broad-Band Noise with RPM



Figure 31. Effect of RPM on Propeller Broad-Band Spectrum



Figure 32. Directivity Pattern & Propeller Broad-Band Noise

Figure 32 presents a comparison between measured and theoretical directivity patterns of broad-band noise for two propeller configurations operating at a tip speed of 200 fps. The noise level shown is the overall SPL in the bands from 250 to 1000 Hz. Although there is some apparent scatter, the agreement between the predicted and measured noise levels is good for both propellers.

Figures 30 to 32 are a small sample illustrating the ability of vortex noise option 1 of the propeller noise detectability program to predict the measured noise data. In order to better evaluate the accuracy of the predicted noise levels, 654 individual 1/3-octave band levels were compared. The probability distribution of the errors in the predicted levels is shown in Figure 33. The average error is nearly zero, demonstrating that the coefficients recommended are satisfactory. The standard deviation of 5.2 dB is largely due to an apparently random unevenness in the measured 1/3-octave band data, as shown in Figure 31. A detailed study of the errors might reveal some trends with blade angle, rpm, microphone location, propeller configuration, and band-center frequency which would permit a reduction in the errors.



Figure 33. Probability Distribution of Errors in Predicted 1/3-Octave Band SPL

^

#### SECTION VIII

#### PROPELLER NOISE DETECTABILITY COMPUTER PROGRAM

#### 1. INTRODUCTION

The prime objective of the contract was to develop a computerized propeller design technique which would predict propeller performance as well as predict propeller harmonic and broad-band noise levels and compare these levels with a selected aural detectability criterion to determine minimum undetectable flight altitude. This technique consists of two parts: a propeller performance program and a propeller noise detectability program which is called by the propeller performance program. The propeller performance program was developed by Hamilton Standard and made available to the Air Force Aero Propulsion Laboratory.

The propeller noise detectability program was written as ten subroutines and debugged as part of this contract. A detailed discussion of the program and how to use it are provided in the user's manual  $(^{37})$ . This report includes a general discussion of the major options available to the user and a demonstration of the program capabilities by four sample cases in the following two sections.

#### 2. CALCULATION OPTIONS

In order to enhance the value of propeller noise detectability computer program to the user, a number of input and calculation options have been provided. These options are described in detail in the user's manual <sup>(37)</sup>. The 6 most important options are also described here. The input to the program is summarized in Figure 34, which presents a capsuled outline of all the options and their significance. This figure should be consulted in connection with the following discussion. Several of the options and input parameters were used for developing the program and their use for production runs is not recommended.

The input format was selected so that options most likely to be desired and recommended values of parameters will be used by punching a "0." in the appropriate field of the input data card or by leaving this field blank. The consequences of this possible simplification in input card punching are demonstrated by the fourth sample case. In Figure 34 a "--" means any nonzero negative number (e.g., "-1.") is punched and a "=+" means any nonzero positive number (e.g., "1.") is punched in the columns indicated.

The first major option described here is the calculation type option controlled by columns 25 to 30 of input card 14. This option also controls the significance of the

SAMPLE INFORCEARDS . ALL NUMBERS TO REGHT OF COLUMN & HAVE DECEMAL POINT JEANK EULIVALENT TO O. NOLS CARE 14 , REQUIRED FOR FIRST CASE AND WHENEVER CHANGED , COLS, 13-72 MAY BE BLANK IF NOISE NOT CALCULATED 2-3 14 13-18 LARGEST HARMUNIC NUMBER REQUIRED . 0. OR BLANK EQUIVALENT TO 1. . PROGRAM LIMITS TO MAX OF SU. . PROGRAM WILL CONTINUE UNTIL HARMONIC FREQUENCY EXCELDS A LIMIT FRE PROVIDED BY TONE AURAL DETECTABILITY SUBROUTINE TUDE IN CH CUMPUTED HARMONIC NUMPER IN COLS. 19-24 OF THIS CARD 17-24 CARGEST HARMONIC NUMBER PERMITTED . NUMBER LESS THAN IN COLS. 13-18 OF THIS CARD EQUIVALENT TO NUMBER IN COLS. 13-18 . PROGRAM LIMITS TO MAXIMUM OF 50. 25-30 CALCULATION TYPE OPTION - CALCULATE NOISE AND DETECTABILITY WITH X-Y INPUT = - CALCULATE NOISE AND DETECTABLEITY WITH X-Y INPUT . VARY X UNTIL FOUND MINIMUM UNDETECTABLE Y = + CALCULATE NOISE AND DETECTABILITY WITH ANGLE-DISTANCE INPUT 31-36 PRINTING OPTION = - MAX., PRINT CONDITION, HARMONIC NOISE AND PRESSURE COMPONENTS, VORTEX NOISE, MINIMUM UNDETECTABLE VALUES OF Y = U PRINT CONDITION, HARMONIC AND VORTEX NOISE, MINIMUM UNDETECTABLE ME = + MIN., PRINT CONDITION, MINIMUM UNDETECTABLE VALUE OF Y 37-42 INITIAL VALUE OF X (DISTANCE FORWARD FROM PROPELLER PLANE, FT) TO FIELD PUINT IF COLS. 25-30 OF THIS CARD = - OR O. . OTHERWISE INITIAL ANGLE (FROM FORWARD AXIS. DEG) TO FIELD POINT IF COLS. 25-30 = + 43-48 INCREMENT IN X OR ANGLE . IF COLS. 25-30 OF THIS CARD =0. PROGRAM WILL REPLACE O, BY SUITABLE VALUE 49-54 NUMBER OF VALUES OF X OR ANGLE TO CALCULATE NOISE FOR . IF COLS. 25-30 OF THIS CARU = 0. PROGRAM REPLACES BY 20. IF UNDER 20. . 0. OR BLANK EQUIVALENT TO 1. 53-60 INITIAL VALUE OF Y (DISTANCE FROM PROPELLER AXIS, FT) TO FIELD POINT IF LULS. 25-30 OF THIS CARD = - OR O. . OTHERWISE INITIAL DISTANCE (FT) CENTER OF PROPELLER TO FIELD POINT IF COLS+25+30 = + 61-66 INCREMENT IN Y OR DISTANCE 57-72 NUMBER OF VALUES OF Y OR DISTANCE TO CALCULATE NOISE FOR . BLANK OF 0. EQUIVALENT TO 1. COLS CARD 15 . REGUIRED FOR FIRST CASE AND WHENEVER CHANGED 2-3 15 13-72 10 VALUES OF THICKNESS NOISE DOUBLET STRENGTH PROPORTIONALITY FACTOR K CORRESPONDING TO 10 GAUSS STATIONS OF CARD 4 . IF = 0. PROGRAM USES AREA FORMULA TO CALCULATE FACTOR FOR AIRFOIL NUMBERS 1., 2., 3., 7. 8., AND 14. (CARD 9) COLS CARD 26 FOLLOWING CARD 24 IF NOISE CALCULATION REQUIRED 2-3 26 13-18 NUMBER OF PROPELLERS . PROGRAM REPLACES 0. OR BLANK BY 1. 19-24 VORTEX NOISE CALCULATION OPTION = BLANK. 0. OR 1. . USE VORTEX NOISE CALCULATION DEVELOPED UNDER THIS CONTRACT = 2. USE HSD VORTEX NOISE CALCULATION DATED 3/69 = 3. USE HSD VORTEX NOISE CALCULATION DATED 7/69 25-30 AURAL DETECTABILITY OPTION = BLANK + 0. OR 1. FOR NIGHTTIME JUNGLE = 2. FOR DAYTIME JUNGLE 31-36 PROPELLER LOADING OPTION = BLANK OR 0. , USE MAIN PERFORMANCE PROGRAM VALUES = + . USE ALPHA.BETA.THETA.CL3.DCP/DX.DCT/DX.CTA AND CPA READ FROM 7 CARDS

Figure 34. Summary of Input Data for Propeller Noise Detectability Program

37-42 NEAR- MS FAR-FILLD CALCULATION OF HARMONIC NOISE OPTION

= - MUST USE FAR-FILLU CALCULATION (AZI PRINTS AS 0.)

= + MUST USE NEAR-FILLD CALCULATION + 1F OVER 50. CONTROLS NUMBER OF

CIRCUMPERENTIAL STEPS (A21)

43- 48 ATMOSPHERIC SOUND ABSORPTION OPTION

= - READ 39 VALUES OF ABSORPTION ON CARDS 28, 29 AND 30 FOR EACH OPERATING CONDITION

- O USE STOREL VALUES FOR TOPCT HUMIDITY . TT DEG F

+ PERCENT RELATIVE HUMIDITY . USE WITH COLS. 49-54 OF THIS CARD TO COMPUTE ABSORPTION FROM EQUATIONS IN PROPOSED REVISION TO ARP 566

49-54 USED 1F COLS. 43-48 OF THIS CARD = + . TEMPERATURE = V USE TEMPERATURE FROM COLS. 31-36 OF CONDITION CARD BETWEEN CARDS 23 AND 24

NUT = - AVERAGE TEMPERATURE (DEG F) FOR CALCULATION OF ABSORPTION 55-60 USED IF COLD. 19-24 OF THIS CARD = 0. OR 1. OR BLANK = FURCE FACTOR FOR VORTEX NOISE . 0. OR BLANK REPLACED BY 8.

61-60 USED IF COLS. 19-24 OF THIS CARD = 0. OR 1. OR BLANK

= FREQUENCY FACTOR FOR VORTEX NOISE . 0. OR BLANK REPLACED BY .CO 67 72 USED IF CULS. 19 24 OF THIS CARD = 0. OR 1. OR BLANK

= REYNOLDS NUMPER EXPONENT FOR VORTEX NOISE . 0. REPLACED BY -1.

- COLS CARD 27 FOLLOWING CARD 26
- 2-3 27

13-18 EMPIRICAL INCREMENT TO ADD TO THEORETICAL HARMONIC SPL . DB

- 19-24 U. . CALCULATE OVERTONES IN SAME WAY AS FUNDAMENTAL TONE SPL
- NUT U. . DO NOT USE THEORY FOR OVERTUNES . EQUALS INCREMENT IN SPL BETWEEN SUCCESSIVE TONES . DB.
- 25-30 EMPIRICAL ADJUSTMENT TO VORTEX NOISE IN PROPELLER PLANE . USED IF COLS. 19-24 OF CARD 25 = 0. OR 1. , DB , RECOMMEND 0. 31-36 RATIO OF FIRST-ORDER HARMONIC LOADS TO STEADY (ZERO-ORDER) LOADS .
- EMPIRICAL FACTOR TO ADJUST HARMONIC NOISE LEVELS . RECOMMEND .86 / NUMBER OF BLADES
- 47-42 EXPONENT OF LOAD ORDER USED WITH PRECEDING RATIO TO CALCULATE HARMUNIC LOADE . PROGRAM SETS TO 1.43 IF 0. LOADED
- COLS CARD 28 . REQUIRE ONE FOR EACH CONDITION CARD ONLY IF COLS. 43-48 OF CARD 26 = - . FIRST CARD 28 FOLLOWS CARD 27
- 2-3 28
- 6-70 13 VALUES OF ATMOSPHERIC SOUND ABSORPTION (DEVICEORT) IN 1/3-OCTAVE BANDS STARTING WITH 1.6-HZ DAND AND ENDING WITH 25-HZ BAND . FORMAT F5.2
- COLS CARD 29 . FOLLOWS EACH CARD 28
- 2-3 24
- 6-7. 13 VALUES OF ATMOSPHERIC JOUND ABSORPTION (DEVIDEOFT) IN 1/3-OCTAVE BANDS STARTING WITH 31.5-HZ BAND AND ENDING WITH 500-HZ BAND
- COLS CARD 30 . FOLLOWS FACH CARD 29
- 2-3 30
- 6-70 13 VALUES OF ATMOSPHERIC SOUND ABSORPTION (DEVIDEOFT) IN 173-OCTAVE BANDS STARTING WITH 630-HZ BAND AND ENDING WITH 10000-H2 BAND
- CUL: 7 CARDS REQUIRED FOR EACH CONDITION CARD IF COLS. 31-36 OF CAPE 26 = + . FIRST OF THESE 7 CARDS FULLOWS CARD 27 OR CARD 30 IF PRESENT + FORMAT F6.0

13-72 TO VALUES OF ALPHA + DEG + ON FIRST CARD + CORRESPONDING TO GAUSS STATIONS OF CARD 4

13-72 TO VALUES OF BETA . DEG . ON SECOND CARD

13-72 10 VALUES OF THETA . DEG . ON THIRD CARD

13-72 10 VALUES OF GLE ON FOURTH CARD

Figure 34. --- Continued

13 70 10 VALUES OF DEPZDX ON FIFTH CARD 13-70 10 VALUES OF DETZDX ON SIXTH CARD 13-19 CTA ON BEVENTH CARD 19-0 - CPA ON SEVENTH CARD

CARD 1 OR 25 IS NOW READ

Figure 34. --- Concluded

.

#

numbers describing the locations of the field points which are also read from card 14. If this option control is a nonzero negative number the program will interpret these numbers as out-of-plane distances (X) and away-from-axis distances (Y) and calculate propeller noise and aural detectability at a series of field points defined by a rectangular matrix in X-Y coordinates. If, on the other hand, the option control is a nonzero positive number the program will interpret the input ordinates as angles from the axis ( $\psi$ ) and distances (d) to the field point and calculate noise and detectability at a series of field points defined by a rectanily at a series of field points defined by a rectangular matrix in  $\psi$ -d coordinates. For the third calculation option, selected if the control is a zero, the program will calculate minimum undetectable altitude. The undetectable altitude is calculated for enough values of X at the given Y to be able to interpolate for the largest value, the minimum altitude above the observer at which the propeller noise would not be heard. The three calculation type options are represented in the sample cases of Figure 36 discussed in the next section.

Another major option is the selection of the aural detectability criterion against which the predicted propeller noise levels are compared to determine minimum undetectable altitude. The option is controlled by the number punched in columns 25 to 30 of eard 26. The two available criteria are discussed in Section II.

The harmonic loading and thickness rotational noise levels may be calculated by either the near-field procedure, based on Eqs. (3) and (4), or the far-field procedure, based on Eqs. (5) and (6). It is recommended that the control code, punched in columns 37 to 42 of card 26, be zero, thereby letting the computer program select the far-field procedure whenever it is warranted.

The harmonic load noise calculated from Eq. (3) or (5) is less than the rotational noise measured during the test program. The addition of harmonic loads is shown in Section VII.2.b to make a significant improvement in agreement with the data at the higher harmonics, which are most significant in terms of aural detectability. A correlation of harmonic loads is presented in Figure 28. It is recommended that this correlation be used. Therefore, a number equal to (0.86/number of blades) should be punched in columns 31-36 of card 27 to include harmonic loads in the calculation of harmonic noise. Harmonic loads will not be included in the calculation of harmonic loads is 0. or blank.

The last option discussed here, the selection of a method of predicting broadband noise, is controlled by the number punched in columns 19-24 of card 26. Options 2 and 3 are the two methods developed by Hamilton Standard in 1969 and described in Section V.2. Option 1. (or 0.) is the new method whose development is presented in Section V.3. The 3 empirical coefficients in it, selected to correlate with the test data obtained under this contract, will be used unless other coefficients are read from columns 55-72 of card 26.
| 1                 | -AMPLL           | A SIL 1        | . MAX      | IMUM DA   | ATA LUP             | ALLE IN .          | MAXIM      | IN PRIN       | IT ING   | VARY        | ANGLE      |            |
|-------------------|------------------|----------------|------------|-----------|---------------------|--------------------|------------|---------------|----------|-------------|------------|------------|
| .`                | AND DI:          | TANCE 1        | ro ouse    | ERVER (   | VORTE               | X NOIS             | SE OFFI    | 1.14          | NEAR-    | FIELD       | + 308      |            |
| ĩ                 | AME'L E          | HREPELI        | ER COM     | VF LUIS A | 13.                 | 108.9              | • 55 ( ) A | 8.            | • 1.75   |             |            |            |
| 14                |                  | • 9895         | •9443      | • bb 77   | .7662               | •6498              | .5261      | +4087         | . 3072   | .2306       | •1857      |            |
| 1.5               |                  | +0342          | .0415      | • 0491    | •0560               | •0668              | .0886      | •1423         | .2441    | .4379       | .6518      |            |
| ¢,                |                  | +0582          | •U643      | ·U707     | .0749               | .0763              | .0753      | .0712         | .0620    | .0469       | .0385      |            |
| ••                |                  | •230A          | .3133      | • 4889    | •6534               | .7050              | •7085      | +6941         | .6049    | .422        | •128       |            |
| 54                |                  | -3.95          | -3,48      | -2.35     | -+37                | 3.05               | 8.22       | 14.25         | 20.22    | 25+25       | 28.18      |            |
| •                 |                  | 1 •            | 1 •        | 1.        | 1.                  | 1.                 | 2.         | 3.            | 3.       | 3.          | 3.         |            |
| 1.0               |                  | •8923          | .8567      | •804b     | .7570               | .7269              | .6974      | .6439         | .5554    | .4          | •248       |            |
| 11                |                  | •2866          | .3783      | .5676     | .72.53              | .7549              | •7070      | .4563         | 0182     | 21006       | 51126      | 5          |
| 1.1               |                  | •2326          | .2326      | .2326     | .2325               | .2336              | .2248      | •1964         | .1798    | .2212       | .2457      |            |
| 13                |                  |                |            |           |                     |                    |            | •             |          |             |            |            |
| 14                |                  | 2.             | 4.         | 1.        | -1.                 | 105.               | 15.        | 2.            | 75.      | 75.         | 2.         |            |
| 1.5               |                  | • 7            | • 7        | •7        | •7                  | .7                 | •7         | •71           | .72      | •74         | .76        |            |
| 10                |                  |                |            |           |                     |                    |            | • • •         | • • •    | • • •       | • • •      |            |
| 17                |                  |                |            |           |                     |                    |            |               |          |             |            |            |
| 1.9               |                  |                |            |           |                     |                    |            |               |          |             |            |            |
| 19                |                  |                |            |           |                     |                    |            |               |          |             |            |            |
| 20                |                  |                |            |           |                     |                    |            |               |          |             |            |            |
| 21                |                  |                |            |           |                     |                    |            |               |          |             |            |            |
| 5 1<br>5 7        | +                | 2.1.           | 1.         | 1         | 1.                  | ٠.                 | 1          |               |          |             | ,          |            |
|                   | 11-              | 7 • 1 •<br>7 • | 1.         | 6         | 1.0                 | 1.0                | 1          | 1.            | 1•       | 1           | 4.0        |            |
| •. ••             | 1/2010           | 2168           | 1.         | ф.<br>О.  | 77.                 |                    |            |               |          | 1.          |            |            |
| 2.5               | 10000            | 2100.          | 0.         | 0.        |                     |                    |            |               |          | 1           |            |            |
| 11.<br>1. c       |                  | •              |            | 2         | ,                   |                    |            |               | <u>.</u> | ~ ~         |            |            |
|                   |                  | 1 •<br>3       | 1.         | 2.        | 1.                  | 1.                 |            |               | 0.       | •U <b>D</b> | ~1.        |            |
| <i>द (</i><br>जिव | 1.1.7            |                |            | - 007     | 000                 | <b>61</b> <i>6</i> |            |               | 0.2      | 0.96        | <b>~</b> • | A1 (-25    |
| ~ O .             | • U t            |                | 14 .00:    | •007      | •009 •              |                    | /14 •∪∡    | : •02         | دنه      | •035 (      | 04         | Aleonation |
| <. •              | •00 •            | • 0 7 • 1      |            | • 1       | • 4 4               |                    | ່ ເ        | •4            | •0       | • / •       | .9         | A32-500    |
| 10                | 1 • 1 1          | ••• •••        | 3 7•4      | 2.09      |                     | 0 50               | 9 8.0      | ) 903         | 12.5     | 1707 2      | 25.4       | A6.30-10   |
|                   |                  | 1.67           | 6.67       | 3.38      | 4.33                | 0.25               | 9.50       | 13.52         | 20.89    | 27.72       | 30 • 79    | ALPHA      |
|                   |                  | 8.60           | 8.13       | 8+55      | 9.58                | 11.09              | 13.04      | 15.01         | 13+61    | 11.81       | 11+67      | BETA       |
|                   |                  | 10.33          | 10.60      | 11.93     | 13+91               | 17.34              | 22.50      | 28.53         | 34.50    | 39,53       | 42.46      | THETA      |
|                   |                  | • 569          | •748       | •929      | 1.085               | 1.216              | 1.352      | 1.409         | 1.018    | •802        | •765       | CL.3       |
|                   |                  | •1187          | •1431      | •1568     | •1496               | •1222              | •0851      | •0434         | •0128    | •0046       | •0025      | DCP/DX     |
|                   |                  | •2312          | • 3074     | • 35.31   | •3377               | .2719              | •1913      | •1107         | •0396    | •0132       | +0065      | DCT/DX     |
|                   |                  | •1681          | •0744      |           |                     |                    |            |               |          |             |            | CTA+CPA    |
| 1                 | CAMPLE           | CASE 2         | . NOR      | AL DAT    | FA LOAD             | AND F              | PRINT      | • X-Y '       | OCATIO   | ONS . a     | 2 PROP     | 5          |
| 2                 | LOAD HA          | ARMONICS       | 5 + ROL    | LOFF      | , CALCL             | JLAYE /            | BSORPT     | TION .        | FAR-F    | IELD .      | V+N+3      |            |
| 3                 | AMPLE            | PROPELL        | LR CO      | NFIG • b  | 54.                 | 213.8              | •5384      | 11025         | •176     |             |            |            |
| 64                |                  | •9892          | •9443      | .8679     | •7665               | •6493              | •5266      | •4055         | • 3080   | •2316       | •1867      |            |
| Ċ                 |                  | •032           | •035       | • 04 1    | •050                | .062               | •081       | •120          | .213     | •54         | 1.         |            |
| 6                 |                  | •14            | •1422      | •142      | •140                | •1341              | .1235      | •106          | .0815    | •050        | •04        |            |
| 7                 |                  | •24            | •39        | .525      | •627                | .676               | •672       | •589          | .467     | •335        | •16        |            |
| 9                 |                  | -7.2           | -6.4       | -4.3      | 7                   | 4.4                | 10.3       | 16.3          | 22.3     | 27.5        | 31.0       |            |
| 9                 |                  | 1.             | 1.         | 1.        | 1.                  | 1 •                | 1.         | 2.            | 3.       | з.          | 3.         |            |
| 10                |                  | 1.             | 1.         | 1.        | 1.                  | 1.                 | 1          | 1.            | 1•       | 1.          | 1.         |            |
| 11                |                  | 0•             | C •        | 0.        | 0.                  | 0.                 | 0.         | 0.            | 0.       | 0.          | 0.         |            |
| 12                |                  |                | <b>0</b> • | 0.        | 0.                  | 0.                 | 0.         | 0.            | 0.       | 0.          | 0.         |            |
| 14                |                  | 1.             | 5.         | -1.       | 0.                  | 300.               | -300.      | 3.            | 1500.    | С.          | 1.         |            |
| 15                |                  | 0.             | 0.         | 0.        | 0.                  | 0.                 | 0.         | 0             | 0.       | 0.          | 0.         |            |
| 23                | 11.              | 2.             | 1.         | 6.        |                     |                    | -          | -             |          |             | -          |            |
|                   | 162.             | 340.           | 1500+      | 77.       | 0.                  |                    |            |               |          |             |            |            |
| 24                |                  | •              | - 0        | -         |                     |                    |            |               |          |             |            |            |
| 26                |                  | 2.             | ٦.         | 1.        | 0.                  | -1-                | 80.        | 90.           |          |             |            |            |
| 27                |                  | <u> </u>       | -6         | 0.        | .215                | 1.63               |            | <i>.</i>      |          |             |            |            |
| ~ '               | SAMPLE           |                |            | CTAIS H   | - 46.10<br>. 174 Fi | VHV A              | THRUST     |               | r        |             |            |            |
| •                 | .) M. 1977 L. L. |                | • Dell     |           |                     |                    | 111103     |               | I        |             |            |            |
| 2                 |                  | PROPER         | FR CO      | VETG - 4  | 44.                 | 212.8              | .5384      | 11.25         | . 176    |             |            |            |
| ر.<br>م د         | SHOP LL          |                |            |           |                     | a, i 3 € 3<br>() : | -160       | · · • • • • • | 1500     | •           | •          |            |
| 14                |                  | 1 +            | 10.        | U •       | U .                 | U •                | -120+      | 0.            | 12000    | 0.          | 1.         |            |

Figure 35. Listing of Input Data Cards for Four Sample Cases

\*

| 53         | 11.     | 2•      | 1.     | 6.    |          |                |             |       |        |       |
|------------|---------|---------|--------|-------|----------|----------------|-------------|-------|--------|-------|
|            | 0225.   | 340.    | 1-00-  | 77.   | 53+65    |                |             |       |        |       |
| <u></u> 24 |         |         |        |       |          | 1 •            |             |       |        |       |
| 26         |         | 1 -     | 0.     | 0.    | 0.       | 0•             | 0•          | 8.    | •06    | -1+   |
| 27         |         | 0.      | 0.     | 0.    | 0.       |                |             |       |        |       |
| 1          | SAMPLE  | CASE 4  | . SAME | AS    | CASE 3 1 | XCEPT          | UNNECESSARY | PUNCH | ING OF | INPUT |
| .2         | CARDS 0 | DMITTED | • 1 A5 | T CAS | SE . MIN | IMUM PR        | RINTING     |       |        |       |
| З          | SAMPLE  | PROPELI | LR CO  | NETG  | • £14 •  | 213 <b>•</b> 8 | +5384 11+25 | .176  |        |       |
| 14         |         |         | 10.    |       | 1.       |                |             | 1500. |        |       |
| 23         | 11 +    | 2•      | 1 •    | 6.    |          |                |             |       |        |       |
|            | 225•    | 340.    | 1500+  | 77.   |          |                |             |       |        |       |
| 24         |         |         |        |       |          | 1.             |             |       |        |       |
| 26         |         |         |        |       |          |                |             |       |        |       |
| 27         |         |         |        |       |          |                |             |       |        |       |
| 25         |         |         |        |       |          |                |             |       |        |       |

Figure 35. --- Concluded

A discussion of all the input data required by the propeller noise detectability program is shown in Figure 34 and is presented in detail in the user's manual (37).

## 3. SAMPLE CASES

In order to illustrate the results which are produced by the propeller noise detectability program, several sample cases were prepared. The input data required for each case and the resulting printed output obtained are discussed in this section. The sample cases were selected to demonstrate the versatility of the program and its use for representative types of calculation.

Figure 35 is a listing of the input cards for the four sample cases whose computer output is presented in Figure 36. The first case demonstrates the use of several options which would not be employed normally. The input is discussed in the following table.

| Card | Input                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14   | Compute at least 2, but no more than 4 harmonics.<br>Field point locations are punched in angle-distance coordinates.<br>Maximum printing option selected.<br>4 field points at 105 <sup>0</sup> and 120 <sup>0</sup> and distances of 75 and 150 ft.                                                                                                                                                                                         |
| 15   | Thickness noise doublet strength proportionality factors are loaded.                                                                                                                                                                                                                                                                                                                                                                          |
| 23   | One performance condition, static.                                                                                                                                                                                                                                                                                                                                                                                                            |
| 24   | SHP input.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 26   | <ul> <li>One propeller.</li> <li>Vortex noise option 1.</li> <li>Daytime jungle aural detectability option 2.</li> <li>Read propeller loading data after card 30.</li> <li>Use near-field harmonic noise option.</li> <li>Read atmospheric sound absorption coefficients from cards 28, 29 and 30.</li> <li>Te calculate broad-band noise use force factor of 8.0. frequency factor of 0.6, and a Reynold's number exponent of -1.</li> </ul> |
| 27   | Add an empirical correction of 3 dB to the harmonic noise levels.                                                                                                                                                                                                                                                                                                                                                                             |

The second sample case, for which the input cards are listed in Figure 35, is for a different propeller configuration so that new cards 4 to 12 are required. Other features of the input are discussed in the following table:

## Input

| 14 | Compute at least 1, but no more than 5 harmonics.<br>Field point locations punched in X-Y coordinates.<br>Three field points located at X = -300, 0 and +300 ft and Y =<br>1500 ft.                                                                                                                        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | Use area formula for thickness noise doublet strength propor-<br>tionality factors.                                                                                                                                                                                                                        |
| 26 | Two propellers.<br>Vortex noise option 3.<br>Nighttime jungle aural detectability option 1.<br>Use propeller performance program values.<br>Use far-field harmonic noise option.<br>Calculate atmospheric sound absorption coefficients for 80%<br>relative humidity and 90 <sup>0</sup> F.                |
| 27 | Calculate harmonic rotational noise with no empirical adjust-<br>ment of the fundamental and a -6 dB rolloff. That is, each<br>harmonic SPL is 6 dB less than the SPL of the next lower<br>harmonic. Include a harmonic loading of $0.215/\lambda^{1.43}$ in<br>calculating the fundamental loading noise. |

The third sample case illustrates a representative case in which the minimum altitude at which the aircraft can fly overhead without the propeller noise being detected is computed. Features of the input for this case are:

| Cara. | С | a | $\mathbf{rd}$ |  |
|-------|---|---|---------------|--|
|-------|---|---|---------------|--|

Card

Input

| 1-1 | Compute no more than 10 harmonics.                                |
|-----|-------------------------------------------------------------------|
|     | Vary X with increments of 150 ft at $Y = 1500$ ft to find minimum |
|     | undetectable altitude.                                            |

24 Thrust rather than BHP is read from the preceding card.

| 26 | One propeller.                                                 |
|----|----------------------------------------------------------------|
|    | Vortex noise option 0, with recommended coefficients.          |
|    | Program selects near-or far-field option.                      |
|    | Use stored values of atmospheric sound absorption coefficients |
|    | for $70\%$ relative humidity and $77^{\circ}$ F.               |
|    |                                                                |

27 Do not use an empirical increment, rolloff or harmonic loadings to compute harmonic rotational noise.

As discussed previously, it is not necessary to punch a "0." since a blank will be interpreted as a zero. Also, for most cases several input fields may be left blank because the noise program will replace the zero read by the proper value. For example, the program will change a 0, read as the number of propellers in columns 13-15 of card 26 to a 1. Therefore, many of the fields punched in cards 14, 26 and 27 of sample case 3 may be left blank without changing the results obtained from the noise program. The fourth sample case is included to demonstrate this simplification in input card punching which is possible if the recommended options and input coefficients are to be used. This sample case g storms the same calculations as the third sample case. The only difference is in the printed output which is minimized in the fourth sample case by punching a "1." in columns 31-36 of card 14. A 25 card follows the 27 card because sample case 4 is the last case.

The four sample cases for which the input cards are listed in Figure 35, were run on the UAC UNIVAC 1108 computer and they produced the printed output shown in Figure 36.

The printed output of the propeller noise detectability program follows the output of the propeller performance program and begins with the heading "Computerized Propeller Design Technique Program Written by Hamilton Standard Under Contract No. F33615-70-C-1583 for Aero Prop. Lab". The next three lines list the 10 thickness noise doublet strength proportionality factors used and the 20 (only the first 15 are used) parameters read from cards 26 and 27. For the first sample case, the performance data loaded from the 7 cards following card 30 are printed next. Consequently the mitial horsepower of 600 shown on the first page of Figure 36 is replaced by a value of 650.2 printed on the second page. Any alterations made by the program to the numbers loaded have been made before printing. The rotational noise option used is shown by the number in the column headed "AZI": a "0." indicates that the far-field approximation is used, a number "100." or larger indicates that the nearfield calculation is used, and a "-1." indicates a specified rolloff loaded from columns 19-24 of card 27 is used. The first sample case includes extra printing which would not normally be required. The vector components of the loading and thickness noise pressures are printed for each noise harmonic. After the last set of these pressure components, but before the harmonic noise summation, ten lines of data relating to vortex noise are printed if vortex noise option 1 is selected. The columns are, in order from the left, an index, radius, blade thickness, blade chord, sectional velocity, force per foot radial increment, frequency, and a parameter proportional to sound power.

The rest of the output for the cases in Figure 36 is self explanatory.

Because of the several options available a very large number of combinations are possible. It is obviously impractical to demonstrate all of these combinations. However, the cases selected are believed to be representative and to demonstrate the major options available. For production runs to determine the minimum undetectable flight altitude of a propeller, it is recommended that the input be in the form of the fourth sample case in Figure 35. Only one change is suggested: harmonic loads should be included by punching 0.86/number of blades in columns 31-36 of card 27. HAMILTON STANDARD COMPUTER PROGRAM DECK NO. 6196 1A

I SAMPLE CASE 1 , MAXIMUM DATA LOADED , MAXIMUM FRINTING , VARY ANGLE 2 and distance to observer , vortex noise option 1 , mear-field + 308 8 blades AF cli dia. 5.00,P.Rec.Shroud 3 sample propeller config. a 3.0 100.9 .509 0.50 .175 -.000 -.00

| 1,0000      | 1,0000        | 1,0000  | 1.0000       | 1.0000  | 1.0000  | 1.0300 | 1.0000     | 1.0000 | 1.0000 | J LIMIT=99999,0010 |
|-------------|---------------|---------|--------------|---------|---------|--------|------------|--------|--------|--------------------|
| 000         | 000           | ••000   | -•000        | ••000   | 000     | - 000  |            | 000    | 000    |                    |
| 000         | -,000         | 000     | 000          | 000     | 000     | 000    | -,000      | -•000  | 000    |                    |
| - 000       | 000           | 000     | -•000        | 000     | 000     | 000    | -000       | - 000  | 000    |                    |
| 000         | 003           | 600     | 000          | 000     | - 0000  | 000    | -,000      | 000    | -•000  |                    |
| <b>"000</b> | 000           | -, 000  | - 000        | 000     | 000     | 000    | -,000      | 000    | 000    |                    |
| 000         | 000           | 000     | 000          | 000     | -,000   | 090    |            | 000    | 000    |                    |
| .760        | .740          | .720    | .710         | .700    | .700    | .700   | .700       | .700   | .700   |                    |
| 2.000       | 75.000        | 75,000  | 2.000        | 15.000  | 105.000 | -1.000 | 1,000      | 4.000  | 2.000  |                    |
| 000         | 000           | 000     | 000          | 000     | 000     | 000    | -,000      | -•000  | 000    |                    |
| .246        | .221          | .180    | .196         | .225    | -234    | ,232   | 233        | .233   | .233   | D00=               |
| -,113       | 101           | 018     | .456         | .707.   | .755    | . 725  | 9568       | .376   | .287   | (CL A=0)=          |
| °248        | <b>20</b> 7   | , 555   | *t9°         | .697    | .727.   | . 757  | <b>805</b> | .857   | .892   | MCRIT=             |
| ы.<br>•     | а.<br>Г       | •<br>•? | д.           | ج.<br>۲ | η.      | 1.     | 1.         | 1.     | 1.     | AIRFOILS           |
| 28.19       | 25 <b>.25</b> | 20.22   | 14.25        | 8,22    | 3,06    | 37     | -2,35      | -3.48  | -3,95  | DELTA 0=           |
| .128        | .422          | .605    | <b>+69</b> * | . 708   | .706    | .653   | .469       | .313   | .230   | DES CL=            |
| .0385       | 0469          | .0620   | .0712        | .0753   | .0763   | .0749  | -070.      | .0643  | .0582  | B/D=               |
| .652        | .438          | .244    | .142         | .089    | .067    | .057   | 640.       | 140.   | 400.   | H/8=               |
| .1857       | .2306         | .3072   | .4087        | .5261   | .6488   | . 7662 | . 8677     | 5446.  | .9892  | =X                 |
|             |               |         | >            | •       | •       |        |            |        |        |                    |

VON KARMAN EFFECT USED

ALPHA OFF AIRFOIL CHART SERIES 16 USED AT X= .307

ALPHA OFF AIRFOIL CHART SERIES 16 USED AT X= .231

ALPHA OFF AIRFOIL CHART/SERIES 16 USED AT X= .186

۲/H M.N. AP.EFF. EF.EFF. IND.EFF. HI/HO COMP.CP 03/" AP.EFF. .0843 15.31 2788. .0000 ר ,0687 BHP PRPM ALT, V-KNOTS TEMP REG.CP 600.00 2168. 0. 0 537, 06687

ALPHA OFF AIRFOIL CHART, SERIES 16 USED AT X= .307

ALPHA OFF AIRFOIL CHART.SERIES 16 USED AT X= .231 ALPHA OFF AIRFOIL CHART, SERIES 16 USED AT X=

.0722 13.81 2599. .186

ALPHA OFF AIRFOIL CHART.SERIES 16 USED AT X= .307 ALPHA OFF AIRFOIL CHART.SERIES 16 USED AT X= .231 ALPHA OFF AIRFOIL CHART.SERIES 16 USED AT X= .186

2552. 2541. 2541. .0689 13.38 2541. .8469

.7557.

.00000

MS± .8469 \$3=-0. 54= 1. .00 .MT= .00 .0000 THET34= 13.38 PSI= 5

.1857 41.56 29.88 11.67 2306 38.63 26.82 11.81 .3072 33.60 19.99 13.61 .4087 27.63 12.12 15.51 .5261 21.60 8.49 13.11 .7662 .6488 13.01 16.44 3.67 5.60 9.33 10.83 .8677 11.03 2.82 8.20 9443 9,96 2,19 7,70 .9892 9.43 1.33 8.10 THE TA= ALPHA= PHI= ×

Figure 36. Output of Propeller Design Technique Program for Four Sample Cases

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | ,10 ,10<br>9.30 12,50                  |                                                                         | 50%= 2168.                | . FT #HEN 101                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|---------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | 8.00<br>8                              |                                                                         | 2. LB<br>= .85            | 75.                                            | <b>ຑຑຆຎຎຎຎຎຬຬ</b> ຎ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 41 <b>(</b> 4 mi                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | 00°5                                   |                                                                         | it= 263<br>NUMBER         | STANCE=                                        | IICKNES<br>12899-0<br>12899-0<br>12881-0<br>17881-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582-0<br>17582000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 11CKNES<br>17797-0                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1-00<br>-1-00                                     | 5 + · 60                               | 30.79<br>11.67<br>763<br>002<br>002<br>002<br>0065                      | MACH                      | , DIS<br>E Y                                   | 30003004004000<br>100005333300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 101                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100557 0<br>• 74<br>• 00<br>• 00<br>• 100          | 50°50                                  | 27.72<br>11.81<br>39.53<br>.802<br>.0046                                | 650.2<br>CAL TI           | -19.'<br>MUM<br>TECTABI<br>79.                 | 6. F1.<br>9-02<br>9-02<br>9-02<br>8-02<br>1-02<br>6-02<br>8-03<br>1-02<br>1-02<br>1-02<br>1-02<br>1-02<br>1-02<br>1-02<br>1-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65.           | 0, FT.<br>(1P)<br>5-02<br>1-02                             |
| 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 512704FD<br>-72<br>90<br>90                        | 2.20 2.9                               | 20.69<br>13.61<br>34.50<br>1.018<br>.0128<br>.0396                      | 0 , BHP=<br>.85 , HELI    | HEARD , X=<br>ABLE MINI<br>OISE UNDE<br>7 2644 | THICKNESS<br>THICKNESS<br>-1,7286<br>-2,70287<br>-2,70287<br>-2,0561<br>-1,4814<br>-2,0561<br>-1,4914<br>-2,1508<br>-2,1508<br>-2,1508<br>-2,1508<br>-2,1508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | с <b>1453</b> | LBS. PER S<br>THICKNESS<br>7.3422<br>8.9536                |
| 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AMILTON<br>71<br>00<br>00<br>PTIONE                | .020<br>1.80                           | 13.52<br>15.01<br>28.53<br>1.409<br>.0434<br>.1107                      | ER= 0<br>MBER=            | 6 WHEN<br>DETECT<br>TONE N                     | NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS<br>NENTS | 19.           | NENTS (<br>(RP)<br>04-02<br>04-02                          |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TTEN BY N<br>-1.00<br>00<br>Ability o              | ARE 014<br>0 014<br>0 1.40             | 5.50<br>13.00<br>22.50<br>1.352<br>1.352<br>1.352<br>1.352<br>1.352     | MACH NUMBI                | HARMONIC<br>Noise<br>113.1                     | URE COMPOSITE CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.2         | URE COMPO<br>THICKNESS<br>5.672<br>6.920                   |
| 10.84<br>10.84<br>10.160<br>11000<br>11000<br>11000<br>1150<br>1000<br>1150<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000  | RAM WKI<br>70<br>1.00<br>1.43                      | LCADED<br>109 .01<br>90 1.1            | 6.25<br>11.09<br>17.34<br>1.216<br>.1222<br>.2719                       | CAS .                     | ANGLE=<br>IKNESS<br>JISE<br>16.2               | ry PRESS<br>ADIN6<br>197-01<br>111-01<br>111-01<br>111-01<br>111-01<br>44-01<br>144-01<br>144-01<br>144-01<br>144-02<br>195-02<br>155-03<br>155-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5           | IY PRESS<br>ADING<br>196-01<br>106-01                      |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UL PROG<br>1.10<br>1.00<br>.00                     | 1200FT)                                | 4.33<br>9.58<br>1.085<br>1.085<br>1.085                                 | ROTS                      | 15i FT -                                       | 21 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •             | 5.65(<br>5.65(<br>6.13)                                    |
| 6.20<br>.0092<br>.0092<br>.0092<br>.1366<br>.1366<br>.1366<br>.1366<br>.1366<br>.1366<br>.1366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * TECHNIG<br>- 70<br>- 00<br>00<br>ISE OPTIG       | 10N (DB/                               | 3.38<br>8.55<br>11.93<br>.929<br>.1568                                  | AS = (                    | LOADIA<br>NOISE<br>113.0                       | 05(<br>16 (1P)<br>1818-01<br>1618-01<br>1518-01<br>1518-01<br>1518-01<br>1518-01<br>1518-02<br>15176-02<br>1947-03<br>5204-03<br>5204-03<br>1946+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.          | 0.064-01<br>0.054<br>0.054<br>0.054<br>0.054               |
| 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R DESIG<br>.70<br>1.00<br>00<br>RTEX NOJ           | MICROBAF<br>ABSORP1<br>3 .004<br>0 .40 | 2.67<br>8.13<br>8.13<br>10.60<br>.748<br>.1431<br>.1431<br>.3074        | KNOTS 1                   | ATHOS                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · ·         | LOAD1<br>3.55<br>3.99                                      |
| 6.10<br>6.10<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>6.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20<br>7.20 | CD PROPELLE<br>, 70<br>1.00<br>3.00<br>.ER(S) , VO | 3 RE .0002<br>11M05PHERIC<br>.003 .00  | 1.67<br>8.66<br>10.35<br>.569<br>.1187<br>.2312<br>.2312                | TIP VELOCI                | , Y= 72.<br>121 FREQ.<br>12. 108.              | ADING (RP)<br>1,95426-01<br>2,32453-01<br>2,32659-01<br>2,30698-01<br>1,17114-01<br>1,17114-01<br>1,17114-02<br>1,27069-03<br>1,25028-03<br>1,25028-03<br>5,34437-04<br>5,34437-04<br>5,29066+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100. 217.     | 2 <b>ading</b> (RP)<br>-4 <b>.3583</b> 4-01<br>-4.72278-01 |
| BETAE<br>BETAE<br>CL3E<br>CC2CC<br>CC2CCE<br>CC2CCE<br>SECT.EFF<br>SECT.EFF<br>MMCRITE<br>AIRFOILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COMPUTERIZI<br>ACC<br>ANOISE=<br>1. PROPELL        | VALUES OF J                            | ALPHA=<br>BETA=<br>THETA=<br>CL3=<br>CC3=<br>OCP/DX=<br>OCT/DX=<br>CTA= | FLIGHT VELO<br>ROTATIONAL | X= -19.4 (<br>MARMCNIC /<br>NUMBER 1 1         | RADIUS L(<br>* 204<br>* 204<br>• 013<br>• 205<br>• 255<br>• 255<br>• 236<br>• 1.737<br>• 789<br>• 789<br>• 789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N             | A<br>4.2045<br>4.2015                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |                                        |                                                                         |                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                            |

| 1,1,244-1,<br>4,12357-02<br>1,75357-02<br>1,75357-02<br>1,75357-02<br>1,75357-02<br>1,75357-02<br>1,75357-02<br>4,29381-03<br>4,29381-05<br>4,29381-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80 ISE= 114.9 DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.80302-02<br>5.30659-02<br>1.38658-02<br>1.38658-02<br>4.89160-03<br>1.23982-03<br>1.23982-03<br>5.42311-03<br>5.42311-03<br>5.42311-03<br>5.42311-03<br>5.42311-03<br>5.42311-03<br>5.423105<br>11995-05<br>11995-05<br>11995-05<br>11995-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>11965-05<br>1196                                                                                                                                                                                                                                                                                                                                                    | OVEFALL MARMONIC<br>ALL NOISE= 115.0 D<br>CE - FT<br>Oise<br>Oise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Continued Contraction Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 00004000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000 CK<br>00 CK<br>0 |
| 2.05288<br>2.01450<br>2.01450<br>2.2220766<br>5.22207070<br>5.222070<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25056<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.25070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.57070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50070<br>5.50000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 × 4<br>× 4<br>× 5<br>× 5<br>× 5<br>× 5<br>× 5<br>× 5<br>× 5<br>× 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8822222<br>74154-01<br>74154-02<br>74154-02<br>956469<br>956469<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>9573<br>95649<br>95649<br>95649<br>95649<br>95649<br>9573<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>95649<br>956649<br>95649<br>95649<br>956649<br>956649<br>956649<br>956649<br>956649<br>956649<br>9566649<br>9566 | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # 1<br>F =  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 889 99 99 99 99 99 99 99 99 99 99 99 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| <pre>Active uncr(L(LAL T = 20x49, FT AT A = 19, xF<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>4.14.04.04.000.001.E1.14.6.1.13.4.7<br/>4.14.04.04.001.E1.14.6.1.13.4.7<br/>4.14.04.114.04.114.04.114.04.114.04.114.04.114.04.114.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014.04.014</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10000.0                       | D                                      | 6.99         | 5.66                          | C.0C                                          |                                          | - 196                |                                                               |                          |                                        |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------|--------------|-------------------------------|-----------------------------------------------|------------------------------------------|----------------------|---------------------------------------------------------------|--------------------------|----------------------------------------|--------------|
| The set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>T. J., F. G., C. M. C. M. C. MALE JO, C. S. effort, E. J. J.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>T. J. J. F. S., I. J. MALER, D. C. E. S. MALER, D. C. E. S. MALER, J. M. J. M. S. J. J.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NUMINIW                       | UNDETECTABLE                           | Y= 26447     | 79. FT AT                     | X= -19.4 FT                                   |                                          |                      |                                                               |                          |                                        |              |
| Occurrent         Occurrent <t< td=""><td>Occurrent of the second connectory of the second</td><td>ACTIL ATOM Rep: ACCOMPANY         ACTIL ATOM Rep: ACCOMPANY         ACCIL ATOM ACCUMPANY         &lt;</td><td>X= -37,<br/>HARMONIC<br/>NUMBER</td><td>5 / Т= 65.<br/>: AZI FHEG.<br/>100. 108.</td><td>ATMOS</td><td>HCEE 7.<br/>LOADINE NOISE</td><td>5. FT . ANGLE<br/>6 THICKNESS<br/>NOISE<br/>93.7</td><td>= 120.0 DE<br/>HARMONIC<br/>Noise<br/>113.9</td><td>EG WHEN H</td><td>EAPD , X= -37,5<br/>BLE MINIMUW<br/>ISE UNDETECTABLE<br/>212434.</td><td>, DISTANCE=<br/>€ Y</td><td>ili<br/>Ili<br/>Ili<br/>Ili<br/>Ili<br/>Ili</td><td>10102 a 2007</td></t<> | Occurrent of the second connectory of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACTIL ATOM Rep: ACCOMPANY         ACTIL ATOM Rep: ACCOMPANY         ACCIL ATOM ACCUMPANY         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X= -37,<br>HARMONIC<br>NUMBER | 5 / Т= 65.<br>: AZI FHEG.<br>100. 108. | ATMOS        | HCEE 7.<br>LOADINE NOISE      | 5. FT . ANGLE<br>6 THICKNESS<br>NOISE<br>93.7 | = 120.0 DE<br>HARMONIC<br>Noise<br>113.9 | EG WHEN H            | EAPD , X= -37,5<br>BLE MINIMUW<br>ISE UNDETECTABLE<br>212434. | , DISTANCE=<br>€ Y       | ili<br>Ili<br>Ili<br>Ili<br>Ili<br>Ili | 10102 a 2007 |
| <ul> <li>M. M. S. COLING (19) (2001) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1) (2004) (1)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>FULLIS LOUDING (10) (10) (10) (10) (10) (10) (10) (10)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>W.G.B. (2015) (2016) (17) (2015) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (2016) (17) (20</li></ul> |                               |                                        |              | osc                           | ILLATORY PRES                                 | SURE COMPC                               | DHENTS (LI           | 95. PER 50. FT.)                                              |                          |                                        |              |
| <ul> <li>2.579</li> <li>2.779</li> <li>2.770</li> <li>2.770</li> <li>2.771</li> <li>2.771</li> <li>2.771</li> <li>2.771</li> <li>2.771</li> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RADIUS                        | LOADING (RP)                           | LOADI        | 40 (1b)                       | 5.9344401                                     | 1410KNES                                 | 259-02               | -1.30363-02                                                   | 3.13636-02               |                                        |              |
| 3.666       2.90237-01       -5.0104-01       5.7064-01       -1.1025-02       -1.0000-02       2.5722-02         2.757       1.12339-01       -5.0114-01       2.7733-01       1.1302-02       2.6000-02         2.757       1.12339-01       -5.0114-01       2.7733-01       1.0000-02       2.5722-02         2.758       -5.0174-01       2.7733-01       -5.7153-01       -5.0176-03       2.6715-03         2.758       -5.0176-01       -5.7753-01       -5.7153-01       -5.0100-01       2.6766-01         2.758       -5.0104-01       -5.0104-01       2.7333-01       -5.0100-01       2.6766-01       2.6756-03         2.100       2.117       -0       106.4       9.2       100.9       1.41792-01       2.6756-01       2.6556-01         2.100       2.117       -0       106.4       9.2       100.9       1.41792-01       2.6756-01       2.6556-01         2.100       2.117       -0       106.4       9.2       100.9       1.41792-01       2.6556-01       2.6556-01       2.6556-01       2.6556-01       2.6556-01       2.6556-01       2.6556-01       2.6556-01       2.6556-01       2.6556-01       2.6556-01       2.6556-01       2.6556-01       2.6556-01       2.6556-01       2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.666       2.99937-01       5.77047-01       5.77647-01       5.77647-01       5.77647-01       5.77647-01       5.77647-01       5.77647-01       5.77647-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77747-01       5.77754-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717554-01       2.717564-01       2.717564-01       2.717564-01       2.717564-01       2.717564-01       2.717564-01       2.717564-01       2.717564-01       2.717564-01       2.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.666       2.4027-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5.700-01       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.013                         | 2.57557-01                             | -6.54        | 10-1061                       | 7.03727-01                                    | -3.77                                    | 585-02               | -1.73106-02                                                   | 4.15648-02               |                                        |              |
| 2.55%       1.00130×01      0000000       2.5372-02      0000000       2.5372-02         1.101       1.100130×01      00110×01       2.5175/0-03      000000       2.5972-02         1.101       1.100130×01      01110×01       2.5175/0-03      000000       2.5972-03      000000         1.101       1.100120×01      010140       8.23934-03      0100100       2.5972-03      000000         1.101       2.5100010       2.5100010       2.5100010       2.5100010       2.5000000       2.5000000         1.101       2.510010       2.510010       2.510010       2.5100010       2.5000000       2.5000000         2.100       2.11      0       100.10       8.239000       2.5112310.01       2.5000000         2.100       2.11      0       100.10       8.2390000       2.5112310.01       2.5000000         2.100       2.111       2.0001000       8.51110000       8.51110000       8.5100000       2.5000000         2.100       2.100       2.0001000       8.51110000       8.511100000       8.5100000       8.5100000       8.5100000       8.5100000       8.5100000       8.5100000       8.5100000       8.51000000       8.5100000       8.5100000 </td <td>2,250       112033-01       -7.7001-01       2.0000-01       2.0000-02       2.0000-02         1,100       1.0012-01       -2.0000-01       2.0000-01       2.0000-02       2.0000-02         1,00       2,0000-01       -2.0000-01       2.0000-01       2.0000-02       2.0000-02         2       100       2,11       -0       100       2.11       -0       1000-02         2       100       2,11       -0       100       2.11       -0       1000-02       2.0000-01         2       100       2,11       -0       100       2.11       -0       100       2.0000-01       2.0000-01         2       100       211       -0       100       2.11       -0       1000-02       2.0000-01       2.0000-01         2       100       211       -0       100       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01<td>2,255       119339-01      </td><td>3,688</td><td>2.49237-01</td><td>1 -6.3</td><td>10-040</td><td>6.77640-01</td><td>290°**</td><td>221-02</td><td>20-32510.3-</td><td></td><td></td><td></td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,250       112033-01       -7.7001-01       2.0000-01       2.0000-02       2.0000-02         1,100       1.0012-01       -2.0000-01       2.0000-01       2.0000-02       2.0000-02         1,00       2,0000-01       -2.0000-01       2.0000-01       2.0000-02       2.0000-02         2       100       2,11       -0       100       2.11       -0       1000-02         2       100       2,11       -0       100       2.11       -0       1000-02       2.0000-01         2       100       2,11       -0       100       2.11       -0       100       2.0000-01       2.0000-01         2       100       211       -0       100       2.11       -0       1000-02       2.0000-01       2.0000-01         2       100       211       -0       100       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01       2.0000-01 <td>2,255       119339-01      </td> <td>3,688</td> <td>2.49237-01</td> <td>1 -6.3</td> <td>10-040</td> <td>6.77640-01</td> <td>290°**</td> <td>221-02</td> <td>20-32510.3-</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,255       119339-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,688                         | 2.49237-01                             | 1 -6.3       | 10-040                        | 6.77640-01                                    | 290°**                                   | 221-02               | 20-32510.3-                                                   |                          |                                        |              |
| <ul> <li>F. 19. Lange of the second seco</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>F. 200 (1000-10)</li> <li>F. 200 (1000-10)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.10       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11       1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.250                         | 10-%5168.1                             |              | 10-/002                       | 0.00456-01                                    | 11.010                                   |                      | -1.49449-02                                                   | 3.54943-02               |                                        |              |
| 11.3173       11.6563-07       -6.5663-07       -1.6564-07       -1.6564-07       -1.6563-00       1.7562-03       -1.6563-02       1.7665-02       -1.6667-02       -1.6667-02       -1.6667-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03       -1.7566-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11313       1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11735       1:62:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:1-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6-10       -:56:6:6:6-10       -:56:6:6:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.23                          | 1.133935-01                            |              | 1661-01                       | 1.42794-01                                    | -2.31                                    | 779-02               | -1.08040-02                                                   | 2,55722-02               |                                        |              |
| 1.306       3-6000-03       2-31724-03       -5-3733-03       2-3773-03       -5-3733-03       2-3773-03       -5-3733-03       2-3753-03       2-3753-03       2-3753-03       2-3753-03       2-3753-03       2-3753-03       2-3753-03       2-3753-03       2-3753-03       2-3753-03       2-3753-03       2-3500-03       2-3753-03       2-3753-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03       2-3500-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.300       5:0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00       -0.0009:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.300       3.6000-00       -9.0000-00       -9.0000-00       -1.0000-00       -1.0000-00         2       100       2.1000-00       -1.0000-00       -1.0000-00       -1.0000-00       -1.0000-00         2       100       2.1000-00       -1.0000-00       -1.0000-00       -1.0000-00       -1.0000-00         3       100       211      0       100.4       90.4       100.4       11.943         8       100       211      0       100.4       90.4       100.4       11.943         8       100       2.1000-0       2.10000-0       2.10000-0       2.10000-0       2.10000-0         3       100       2.1000-0       2.10000-0       2.10000-0       2.10000-0       2.10000-0         3       2.10000-0       2.10000-0       2.10000-0       2.10000-0       2.10000-0       2.10000-0         3       2.10000-0       2.10000-0       2.10000-0       2.10000-0       2.10000-0       2.10000-0         2.10000-0       2.10000-0       2.10000-0       2.10000-0       2.10000-0       2.10000-0         2.10000-0       2.10000-0       2.10000-0       2.10000-0       2.10000-0       2.10000-0         2.10000-0       2.10000-0       2.1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.737                         | 1.96265-02                             | -4.56        | 613-02                        | 4.97007-02                                    | -1.636                                   | 542-02               | -7.65232-03                                                   | 1.80650-02               |                                        |              |
| 790         9.0000-00         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1303-01         2.1000-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.1001-01         2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>900 0.0000-00 -2.119932-03 2.53794-03 -7.23934-03 2.50990-03 2.50990-03 2.50990-03 2.50990-03 2.50990-03 2.50990-03 2.50990-03 2.519932-03 2.519932-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.519930-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.55990-03 2.5</li></ul> | 1,306                         | 3.98611-03                             | 30.9- 8      | 3091-03                       | 9.91726-03                                    | -9-37                                    | 039-03               | -4-35130-03                                                   | 1.03483-02<br>* 47480-01 |                                        |              |
| 2       100.       217.      0       100.       217.      0       100.       11732.         2       100.       217.      0       100.0       92.9       10.6       11732.         3       000106       100.0       001016       117032.       117127-02       5.9095-02         4       000106       17.0       000106       117040       11727-02       5.9015-02         4       000106       17.0       100.00106       117127-02       5.9015-02       5.9015-02         4       100.00106       17.0       100.00106       117040-01       1.0005-01       5.9005-02       5.9005-02         3       100.00106       100.00106       2.9005-01       2.9005-01       2.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02       5.9005-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z 100. Z170 100. 92.9 10.9 19.6 11792.<br>ACTIN LOUDIG FIL CONTINUE FIESURE COMPONENTS (LBS. FER 56, FT.)<br>ACTIN LOUDIG FIL CONTINUE FILSCARE COMPONENTS (LBS. FER 56, FT.)<br>ACTIN LOUDIG FIL CONTINUE FILSCARE COMPONENTS (LBS. FER 56, FT.)<br>ACTIN LOUDIG FIL CONTINUE FILSCARE COMPONENTS (LBS. FER 56, FT.)<br>ACTIN LOUDIG FIL CONTINUE FILSCARE COMPONENTS (LBS. FER 56, FT.)<br>ACTIN LOUDIG FIL CONTINUE FILSCARE COMPONENTS (LBS. FER 56, FT.)<br>ACTIN LOUDIG FIL CONTINUE FILSCARE COMPONENTS (LBS. FER 56, FT.)<br>ACTIN LOUDIG FIL CONTINUE FILSCARE COMPONENTS (LBS. FER 56, FT.)<br>ACTIN LOUDIG FIL CONTINUE FILSCARE COMPONENTS (LBS. FER 56, FT.)<br>ACTIN LOUDIG FIL CONTINUE FILSCARE COMPONENTS (LBS. FER 56, FT.)<br>ACTIN LOUDIG FIL CONTINUE FILSCARE COMPONENTS (LBS. FER 56, FT.)<br>ACTIN LOUDIG FILSCARE FILSCARE ACTIN LOUDIG FILSCARE FILSCARE FILSCARE LOUDIG FILSCARE                                                                                                                                                                                                                                                                                                                                                                                            | 2       100.       211.      0       10.4.       9.4.       11703.         RDD       211.      0       10.6.       9.4.       10.4.       9.4.       11703.         RDD       2000.       211.      0       10.6.       9.4.       10.4.       9.4.       10.4.         RDD      000106       11703.       10.000106       11703.       10.000106       11703.         *.2014      000109       11.000106       11.000106       11.000106       11.000106       11.000106         *.2014      000106       11.000106       11.000106       11.000106       11.000106       11.000106         *.100106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106         *.100106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106       11.000106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .980<br>.789                  | 9.69690-04<br>4.02902-04               |              | 4025-00<br>2453-04<br>2091-04 | 2.55/94-05<br>9.67351-04                      | -2.29(                                   | 029-03<br>039-03     | -1.07564-03<br>-2.64366-01                                    | 2.55039-03<br>2.85564-02 |                                        |              |
| A Lue.         Lue. <thlue.< th="">         Lue.         Lue.         <t< td=""><td>A 100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100</td><td>A. Mar. State       OSCILLATORY PRESS, UR1       THICKNESS       (P1)         ADDIUS       CONDUCTORY PRESS, UR1       THICKNESS       (P1)         ADDIUS       CONDUCTORY PRESS, UR1       THICKNESS       (P1)         ADDIUS       CONDUCTOR       1, 29050-01       5, 3770-02       5, 970-02         ADDIUS       CONDUCTOR       1, 5570-01       2, 2970-01       2, 2970-02       5, 970-02         ADDIUS       2, 30000-01       1, 00119-01       2, 9700-02       5, 970-02       5, 970-02       5, 970-02         ADDIUS       1, 00119-01       2, 0000-02       1, 00119-02       5, 970-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02<td>ſ</td><td></td><td></td><td></td><td>0 00</td><td>108.9</td><td>19.6</td><td>117932.</td><td></td><td></td><td></td></td></t<></thlue.<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A 100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100       100.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A. Mar. State       OSCILLATORY PRESS, UR1       THICKNESS       (P1)         ADDIUS       CONDUCTORY PRESS, UR1       THICKNESS       (P1)         ADDIUS       CONDUCTORY PRESS, UR1       THICKNESS       (P1)         ADDIUS       CONDUCTOR       1, 29050-01       5, 3770-02       5, 970-02         ADDIUS       CONDUCTOR       1, 5570-01       2, 2970-01       2, 2970-02       5, 970-02         ADDIUS       2, 30000-01       1, 00119-01       2, 9700-02       5, 970-02       5, 970-02       5, 970-02         ADDIUS       1, 00119-01       2, 0000-02       1, 00119-02       5, 970-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02       2, 9905-02 <td>ſ</td> <td></td> <td></td> <td></td> <td>0 00</td> <td>108.9</td> <td>19.6</td> <td>117932.</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ſ                             |                                        |              |                               | 0 00                                          | 108.9                                    | 19.6                 | 117932.                                                       |                          |                                        |              |
| ADDIUS         CONCLIMENTOR         PRESSURE         CONCLIMENTOR         Description         THICKNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RADIK LONDING (RP) LONDING (RP) CARDING FREESURE CONFONNS (LEGK, FER So, FT.)<br>OSCILLATON FREESURE CONFONNS (LEGK, FER So, FT.)<br>22530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Andis         Oscillar (off)         Description         Secondary (FS)         HICKWESS         HICKWESS<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 100. 211                               |              | 0*0NT                         | 1                                             |                                          | •                    |                                                               |                          |                                        |              |
| 4,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.010       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.0000       -0.000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000       -0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>*.265</li> <li>*.267</li> <li>*.275</li> <li>*.267</li> <li>*.275</li> <li>*.2675</li> <li>*.2757</li> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                             | RADIUS                        | LOADING (RP)                           | I LOADIA     | 46 (1P)                       | ILLATORY PRES                                 | THICKNES                                 | ONENTS (L            | BS. PER SQ. FT.)<br>HICKNESS (IP)                             | THICKNESS                |                                        |              |
| 7.500       -7.505/10       5.0004-01       4.5200-02       5.1567-02       5.1567-02       5.64106-02         7.575       7-10003-01       1.0004-01       4.5200-02       2.4750-01       2.5750-02       2.4501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.5501-02       2.50046-03       3.75601-02       2.50046-03       3.75601-02       2.50046-03       3.5001-02       2.50046-03       3.5001-02       2.50046-03       3.5001-02       2.50046-03       3.5001-02       2.50046-03       3.5001-02       2.50046-03       3.5001-02       2.50046-03       3.5001-02       2.50046-03       2.50046-03       2.50046-03       2.50046-03       2.50046-03       2.50046-03       2.50046-03       2.50046-03       2.50046-03       2.50046-03       2.50046-03       2.50046-05       2.50046-05       2.50046-05       2.50046-05       2.50046-05       2.50046-05       2.50046-05       2.50046-05       2.50046-05       2.50046-05       2.50046-05       2.50046-05       2.50046-05       2.50046-05       2.50046-05       2.50046-05       2.50046-05 <td>7:000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:10000       5:1000       5:1000</td> <td>7:555       -7:5556:00       4:5565:00       5:557-02       5:1557-02       5:1557-02         2:555       -1:40179-01       5:13570-01       5:13570-02       2:557-02       5:1557-02       2:6002-02         2:555       -1:40179-01       5:13570-01       5:13570-01       2:3575-02       5:1557-02       5:1557-02         1:737       -1:40170-01       5:1952-01       5:1575-01       3:2597-01       3:2597-02         1:737       -2:41721-01       2:3992-03       5:0907-05       5:2992-04       3:2972-04         1:737       -2:4223-05       2:5932-05       3:2992-04       3:2972-04       3:2972-04         1:737       -6:01106       2:39972-01       2:10720-01       1:1776-04       2:2996-05         1:906       -2:2932-05       3:29972-05       5:2032-05       3:29977-04       2:2996-05         1:906       -2:2932-05       2:1193-01       2:1193-01       2:15770-04       2:15770-04         2:5533       -5:2932-05       2:1193-01       2:1193-01       2:1997-05       2:1996-05         2:5559       0:01       -2:1933-01       2:1996-01       2:1997-01       2:1996-01         2:555       0:03       0:03       0:130-05       2:29977-01       2:1996-01</td> <td>4,204</td> <td>-4*01040-01</td> <td>1<br/>1<br/>1</td> <td>9703-01<br/>1053-01</td> <td>5.39434-01</td> <td>00.00</td> <td>798-02<br/>156-02</td> <td>4.48120-02<br/>5.37727-02</td> <td>6.93573-02</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7:000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:1000       5:10000       5:1000       5:1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7:555       -7:5556:00       4:5565:00       5:557-02       5:1557-02       5:1557-02         2:555       -1:40179-01       5:13570-01       5:13570-02       2:557-02       5:1557-02       2:6002-02         2:555       -1:40179-01       5:13570-01       5:13570-01       2:3575-02       5:1557-02       5:1557-02         1:737       -1:40170-01       5:1952-01       5:1575-01       3:2597-01       3:2597-02         1:737       -2:41721-01       2:3992-03       5:0907-05       5:2992-04       3:2972-04         1:737       -2:4223-05       2:5932-05       3:2992-04       3:2972-04       3:2972-04         1:737       -6:01106       2:39972-01       2:10720-01       1:1776-04       2:2996-05         1:906       -2:2932-05       3:29972-05       5:2032-05       3:29977-04       2:2996-05         1:906       -2:2932-05       2:1193-01       2:1193-01       2:15770-04       2:15770-04         2:5533       -5:2932-05       2:1193-01       2:1193-01       2:1997-05       2:1996-05         2:5559       0:01       -2:1933-01       2:1996-01       2:1997-01       2:1996-01         2:555       0:03       0:03       0:130-05       2:29977-01       2:1996-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4,204                         | -4*01040-01                            | 1<br>1<br>1  | 9703-01<br>1053-01            | 5.39434-01                                    | 00.00                                    | 798-02<br>156-02     | 4.48120-02<br>5.37727-02                                      | 6.93573-02               |                                        |              |
| 3.555       -1.066455-01       1.5159-01       2.4776-01       2.5550-02       3.50051-02       4.00021-02         2.757       -1.07001-02       6.09311-02       2.9550-01       2.9550-01       2.9550-02       2.95607-02         2.555       -1.00011-02       1.95520-01       2.9550-01       2.95972-01       3.9002-01         1.306       -2.702292-05       2.8961-01       5.17960-01       5.90952-01       1.9575-01         1.306       -2.702392-05       2.69072-05       5.69072-01       1.25661-04       1.2576-03         900       -2.82232-05       2.80532-01       1.9002-01       5.59972-04       1.26697-02         789       -6.21013       017       .495       941.26       1.26697-02       2.95967-02         2       4.013       011       .495       942.45       1.00024-05       1.26697-01       2.59967-02         2       2.6103       013       0.23       347       9013-96       1.127494-05       1.1277-04         2       2.130       013       4.2178       2.366.0       4.7177-05       2.9967-05         2       2.130       013       4.94.37       2.950-01       2.9967-05       2.5400-05         2       2.130       013<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.557       -1.0603-02       2.9003-02       2.9003-02         2.557       -1.0603-02       1.9003-02       5.9003-02       2.9003-02         2.534       -1.0611-02       1.9922-01       2.3950-02       3.9003-03       3.9502-03         2.534       -1.0611-02       1.9932-01       5.1932-01       5.9032-03       3.9502-03         2.534       -2.1021-02       2.99922-03       5.9097-03       1.9507-04       5.95902-03         2.9912-05       2.1932-05       2.1932-06       2.1932-03       2.59927-04       1.9577-03         2.9912-05       2.1932-05       2.1932-05       2.1932-05       2.1937-05       4.7177-05         2.66303-01       1.1018-33       1.0119-05       2.9997-03       1.9177-05       4.7177-755         2.66304       0.01       0.01       2.1930-05       1.9165-05       2.9966-07       2.9966-07         2.757       0.03       0.01       2.1930-05       2.996-05       1.9177-05       4.7174-05         2.757       0.03       0.01       0.01       2.1930-05       1.916-05       1.9957-05         2.757       0.03       0.01       0.01       0.01       2.9195       1.9177-05         2.757       0.01       1.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3:355       -1:0603-02       3:0001-02       4:0012-02         2:357       -1:0613-02       1:0520-02       3:0001-02       4:0012-02         2:357       -1:0613-02       2:0902-03       3:0012-02       9:5902-03         2:357       -1:0613-02       2:0902-03       5:0012-02       9:5902-03       9:5902-03         2:359       2:3933-06       2:1903-06       2:1903-03       2:0907-03       9:5902-03       9:5902-03         2:3933-06       5:1796-06       5:1796-06       5:1796-06       2:0907-02       3:5905-05       4:1773-05         2:000       5:1796-06       5:1796-06       2:9902-01       2:59067-05       3:5905-05       4:7173-05         2:000       2:317       0:21       0:21       0:21       0:21       0:21       0:21         2:000       2:1796       0:21       0:21       0:21       0:21       0:21       0:21         2:000       0:01       0:21       0:21       0:21       0:21       0:21       0:217       0:506-05       0:7177       0:02       0:7177       0:02       0:7177       0:02       0:7177       0:02       0:7177       0:02       0:7177       0:02       0:7177       0:7177       0:71777       0:7177 </td <td>3.688</td> <td>-3-30561-01</td> <td></td> <td>10-4-01</td> <td>4.52409-01</td> <td>4.165</td> <td>978-02</td> <td>5.15675-02</td> <td>6.63105-02</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.688                         | -3-30561-01                            |              | 10-4-01                       | 4.52409-01                                    | 4.165                                    | 978-02               | 5.15675-02                                                    | 6.63105-02               |                                        |              |
| 2.757       -1.0001-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-03       5.55012-03       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-03       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02       5.00012-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z.57       -7.0700-01       2.050-01       2.050-01       2.050-01       2.0500-01       2.0500-01       2.0500-01       2.0500-01       2.5500-01       2.5500-01       2.5500-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       2.5000-01       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.57       -7.0700-02       5.9009-03       7.5075-03       5.9009-03       7.5075-03       5.9009-03       7.5075-03       5.9009-03       7.5075-03       5.9009-03       7.5075-03       5.9009-03       7.5075-03       5.9009-03       7.5075-03       5.9009-03       7.5075-03       5.9009-03       7.5075-03       5.9009-03       7.5075-03       5.9009-03       7.5075-03       5.9009-03       7.5075-03       5.9009-03       7.707-04       5.9009-03       7.707-04       5.9009-03       7.707-04       5.9009-03       7.707-04       5.9009-03       7.707-04       5.9009-03       7.707-04       5.9009-03       7.707-04       5.9009-03       7.707-04       5.9009-03       7.707-04       5.9009-03       7.707-04       5.9009-03       5.707-04       5.9009-03       5.707-04       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.9009-03       5.90090       5.9009-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.256                         | -1.86435-01                            | 1.6          | 178-01                        | 2.47761-01                                    | 2.67                                     | 580-02               | 3.59051-02                                                    | 4.60021-02               |                                        |              |
| 1.757       -1.00122-03       2.0005-03       4.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03       2.0005-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11737       -1.1279       -1.1279       -1.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000       -0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.737       -5.1981*103       2.39996-03       5.07827-03       2.30726-03       2.30726-03         1.906       -2.7078*9-05       5.1991-06       5.11928-04       5.5337-04       1.6170+05         1.906       -2.1708*9-05       5.1991-06       5.11920-05       5.5996-03       2.9972-06         1.906       -2.1708*9-06       5.11901-06       5.11901-05       5.1770+05       5.1770+05         2.4011       0.211       5.993-050       1.61930-01       2.59930-01       2.59997-05         2.4011       0.213       547       9011-06       2.993-55       4.7470       5.9997-05         2.505       0.017       0.213       547       9011-05       5.1794-05       4.7470-05         2.505       0.031       623       547       2.3561-0       1.6193-0       5.9996-03         2.505       0.031       623       547       2.3561-0       1.6193-0       5.9996-03         2.506       0.035       607       527       2.9997-05       5.9996-03       5.9996-03         2.506       0.035       607       527       2.9959-06       5.9996-03       5.9996-03         2.506       0.126       1.277       2.266-06       4.7470-05       5.9997-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2, 757                        | -7.07503-02                            |              | 5715-02<br>2520-02            | 20-00007* 6                                   |                                          | 20-701               | 7.50759-03                                                    | 9.55402-03               |                                        |              |
| 1300       -2.703700       2.30523-04       3.64005-04       5.10228-04       5.53547-04       6.53547-04       6.53547-04         780       -2.30232-05       2.20523-04       3.54072-05       3.55005-01       1.61704-04         780       -2.30239-00       2.161893-01       3.55007-01       4.42930-01       2.59967-05         2       4.013       023       547       901.906       5.490       3346.3       2.89972-05         2       4.013       023       547       901.905       547       1205       3.56507-01       2.59967-05         2       4.013       023       547       901.905       547       1213.8       2.906-05         3       556       035       647       724.901       314.6       9.474-05         3       556       035       647       724.905       54.617       57.805         3       1366       123       25.64       1213.8       2799-05         3       1366       123       25.64       124.64       144.94         4       1.777       123       25.64       7396-05       15164-05         9       1366       123       25.64       124.93       14.9       174-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1300       -2.70280-01       2.80523-05       3.6603-04       5.10220-04       6.1070-04         190       -2.8253391-00       5.1780-06       0.0010-05       3.17805-05       0.1797-05         1       -2.85393+00       5.1780-06       0.0010-05       3.93407-03       3.65205-05       0.1797-05         1       +.001       001       2.93972-01       3.55507-01       1.26603-05       0.1797-05         2       +.011       011       011       947       901-965       5.4470       3.6500-05       0.1797-05         2       +.011       011       011       947       901-965       0.477-05       0.477-05         2       +.013       011       011       947       901-965       0.477-05       0.9991-05         3       5.66       013       673       510       963       963-95       6.172       993-95         6       2.175       003       661       577       563       993-95       993-95       993-95         7       101       778       901-96       52.1       134.4       993-95       993-95         7       101       783       95.4       101-95       95.4       134.4       194-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1130       -2:02392-05       3:0405-04       5:10220-04       5:35347-04       9:2092-05         799       -2:02393-05       5:1702-05       5:6505-01       2:59957-05       4:17197-05         799       -2:023931-05       5:1706-06       6:09101-05       2:09972-05       4:1279-05         2:05393-05       5:1706-06       6:09101-05       2:09972-05       5:6507-01       2:59957-05         2:05391-05       5:1706-05       5:07101       3:56507-01       2:59957-05       4:1719-05         2:0539       0:01       0:01       0:01       0:01       5:0975-05       5:6507-01       2:99972-05         2:053       0:01       0:01       0:01       0:01       2:09972-05       4:1710-05         2:053       0:01       0:01       0:01       0:01       2:0472-05       4:1710-05         2:053       0:03       0:01       0:01       0:01       0:01       0:01       0:01         2:053       0:03       0:04       0:053       0:0450       0:054       0:0560       0:04005         2:053       0:04       0:01       0:02       0:01       0:02       0:01       0:02         2:050       0:05       0:05       0:05       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.737                         | -3.14212-03                            |              | 1968-03                       | 4.07627-03                                    | 2.032                                    | 907-03               | 2.60466-03                                                    | 3.30726-03               |                                        |              |
| •980       -2.92232-05       2.69922-04       1.00792-05       1.00792-05       1.00792-05       1.00792-05       1.017       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.013       023       1.014       1.017       1.42930-005       1.017       1.42930-013       2.55507-013       4.7179-055       4.7179-055       4.7179-055       4.7179-055       4.7179-055       4.7174-055       4.7174-055       4.7174-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055       4.714-055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900       7-06233-005       2.65932-05       3.65401-05       1.00749-04       4.12779-05         1       4.203       017       195       943.565       34.640       3.55507-01       4.2930-01       2.59967-02         2       6.013       023       547       901.906       4.24476       2.99967-05       4.7147-05         2       8.013       023       547       901.906       4.24476       2.99967-05       4.7147-05         2       8.013       601       87.995       943.505       34.640       943.441       4.714-05         3       3.566       036       601       87.995       601.91       9.714-05       99967-05         3       3.566       036       601       87.995       999       9.93.565       9.9991-05       8.7999-05         3       3.566       036       617       87.995       50.728       80.995       64474       9.714-05         9       2.656       036       617       87.995       50.728       80.995       1215.405       9.799-05         9       2.666       176       87.995       52.86       1213.60       1215.405       1215.405         10       1.757       108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 900       -2.625393-00       5.5993-05       5.5993-05       5.7993-05       5.7993-05       5.797-05         1       4.203       011       -995       5.3933-00       1.61893-01       3.55507-01       4.42299-01       2.59967-05         2       4.011       -095       5.17400-05       5.917505       35.5507-01       4.42299-01       2.59967-05         2       4.011       -095       5.917       5.550       5.5507-01       4.42299-01       2.59967-05         2       5.557       033       031       647       723.46       2.99991-05       5.7997-05         2       5.557       033       051       573       850.3       5.7734       821.3       5.7746       5.9991-05         6       2.255       057       069       673       2.233       115.108       179-05         7       1179       2.173       92.11       19.4       1.7746       101.402       19.4       179-05         8       1.356       112       53.96       92.17793       92.3       19.4       10.6       10.770       10.6       10.470       10.6       10.770       10.6       10.6       10.6       10.6       10.6       10.6       10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.306                         | -2.70249-04                            | 2.2          | 1523-04                       | 3.46605-04                                    | 5.10                                     | 228-04               | 6.53347-04                                                    | 8.28972-04               |                                        |              |
| -0.27941-00       3.11493-01       3.55507-01       4.42930-01       2.59967-02         2       4.013       017       4.993       93.585       34.640       344.74-05         2       4.013       017       4.993       547       901.966       42.4478       2566.0       4476-05         3       3.560       030       601       8277       293.56.0       4476-05       4476-05         3       3.560       030       601       8277       266.3       27446       2744-05         5       3.556       030       607       640       49.517       2991-05       4774-05         5       2.757       040       944.527       50.391       134.4       3591-05         6       2.255       0057       640       944.617       53.784       168.353       161.4474-05         8       1.366       129       527       290.895       53.3       154.405       5784-05         9       1.366       129       53.7793       254.11       74.9       3677-06         10       789       213       74.9       3677-06       174.9       3677-06         10       789       179       100-412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .980                          | -2.82232-0                             |              | 5932-05<br>1:00-05            | 50-/ 04/50*C                                  | 100.1                                    |                      | J.65205-04                                                    | 4.71973-05               |                                        |              |
| 1       4.204       .017       .495       943.555       34.640       3346.3       .2486-05         2       4.013       .023       .547       901.996       42.478       2366.0       .4478-05         3       3.556       .030       .637       782.987       50.534       123.88       .9474-05         4       3.256       .035       .637       782.987       50.534       123.98       .9474-05         5       2.757       .043       .649       6447       647.23       50.544       .9594-05         7       2.225       .055       .069       .054.17       50.649       74.9       .774-05         9       1.506       .129       .527       209.090       78.431       74.9       .174-05         9       1.306       .129       .527       209.090       78.431       74.9       .376-06         9       .1306       .177       .174.9       .174-0       .4556-05       .356-05         9       .1306       .129       .274-05       100.422       49.4       .367-06         9       .174.9       .174-05       .174-9       .174-05       .454-55-07         10       .739 <td< td=""><td>1       4.204       017       .495       943.585       34.640       3346.3       .2486-05         2       4.013       023       .547       901.906       42.478       2366.0       .4474-05         3       3.556       036       .637       728.907       961.55       .4474-05         5       3.556       035       .637       728.907       561.37       .5391-05         5       2.757       049       641.229       55.3       .1215.0       .3991-05         9       1.737       .066       647.723       255.4       .7836.06       .3961-05         9       1.306       .175       .53.6107       78.3       .367-06       .397-06         9       1.306       .175       .327       175.476       100.432       .95.4       .5645-07         9       .306       .217.779       92.431       74.9       .164-05       .6455-07         10       .789       .217.779       92.431       77.476       .00.432       .95.451       .15.77       98         10       .789       .0817       .0144       .0143       7074L       046411       .0156=       115.1       D8         MARMONIC</td><td>1       4.204       017       .095       943.585       34.640       3346.3       .2486-05         2       4.013       023       .547       901.966       42.178       2366.0       44774-05         3       2.266       036       .637       728.987       50.534       1633       3391-05         5       2.255       036       .637       728.987       50.534       123.3       3991-05         7       1.777       043       .649       643.235       50.128       850.8       .2784-05         7       1.777       0495       .607       949.43       75.366.06       740.405         9       1.366       .175       .399       217.793       265.4       786.06         9       .366       .175       .399       217.793       265.4       786.06         9       .366       .175       .239       177.793       90.44       78.46         10       .789       .213       77.46       100.455       113.44       .7840-06         11       744       .7014.0056       113.44       .7014.005       .1784-06       .1784-06         11       .779       .00       .27441       7014.0056&lt;</td><td>697 •</td><td>-6.21981-00</td><td></td><td>1393+00</td><td>1.61893-01</td><td>3.56</td><td>507-01</td><td>10-02624.4</td><td>2,59967-02</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1       4.204       017       .495       943.585       34.640       3346.3       .2486-05         2       4.013       023       .547       901.906       42.478       2366.0       .4474-05         3       3.556       036       .637       728.907       961.55       .4474-05         5       3.556       035       .637       728.907       561.37       .5391-05         5       2.757       049       641.229       55.3       .1215.0       .3991-05         9       1.737       .066       647.723       255.4       .7836.06       .3961-05         9       1.306       .175       .53.6107       78.3       .367-06       .397-06         9       1.306       .175       .327       175.476       100.432       .95.4       .5645-07         9       .306       .217.779       92.431       74.9       .164-05       .6455-07         10       .789       .217.779       92.431       77.476       .00.432       .95.451       .15.77       98         10       .789       .0817       .0144       .0143       7074L       046411       .0156=       115.1       D8         MARMONIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       4.204       017       .095       943.585       34.640       3346.3       .2486-05         2       4.013       023       .547       901.966       42.178       2366.0       44774-05         3       2.266       036       .637       728.987       50.534       1633       3391-05         5       2.255       036       .637       728.987       50.534       123.3       3991-05         7       1.777       043       .649       643.235       50.128       850.8       .2784-05         7       1.777       0495       .607       949.43       75.366.06       740.405         9       1.366       .175       .399       217.793       265.4       786.06         9       .366       .175       .399       217.793       265.4       786.06         9       .366       .175       .239       177.793       90.44       78.46         10       .789       .213       77.46       100.455       113.44       .7840-06         11       744       .7014.0056       113.44       .7014.005       .1784-06       .1784-06         11       .779       .00       .27441       7014.0056<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 697 •                         | -6.21981-00                            |              | 1393+00                       | 1.61893-01                                    | 3.56                                     | 507-01               | 10-02624.4                                                    | 2,59967-02               |                                        |              |
| 2       4.013       .023       .547       901.996       42.478       236.0       .4478-05         3       3.568       .036       .637       728.987       59.372       158.55       .4774-05         5       2.757       .036       .637       728.987       50.355       .4774-05         6       2.255       .036       .637       728.987       50.355       .4774-05         7       1.737       .043       .649       614.329       50.728       850.8       .2784-05         7       1.737       .096       .657       78.90.997       56.353       .1616-05       .2784-05         9       .129       .129       .399       217.476       100.432       .49.4       .3670-06         9       .980       .175.476       100.432       74.9       .5670-06       .1784-06         10       .789       .2175       .190.097       74.31       74.9       .1645-06         9       .980       .175.476       100.432       49.4       .6455-07       .6455-07         10       .784       .170.066       .175.476       100.432       49.4       .6455-07         10       .784       .175.0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2       4-013       023       547       901.906       42.478       2366.0       4478-05         3       3.266       030       601       87.726       901.966       49.478       50.53       1213.6       5991-05         5       2.757       035       640       94.427       50.53       1213.6       5991-05         6       037       640       94.517       53.61       1213.6       5991-05         7       1.755       036       657       728.095       56.47       56.54       758-06         9       1.506       1129       527       256.4       736-06       56.74       56.64       56.64         9       1.506       1129       527       250.09       74.91       74.9       5670-06         9       1.75       599       217.793       92.431       74.9       5670-06         9       0.789       217.793       92.431       74.9       5670-06       5675       56774       5676-06         9       1780       217.793       92.431       74.9       5670-06       5675       5674       56755-01       5676-06       5675       5674       56455-07       5674       56764       56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2       6.013       .023       .547       901.966       42.478       2366.0       .4477e-05         3       3.256       .036       .637       726.987       64.37       16.33       .3991-05         5       2.757       .043       .637       726.987       50.534       16.835       .3991-05         6       2.757       .043       .637       726.987       50.534       12.83       .3991-05         7       1.177       .006       .649       \$64.572       55.64       7284-05       .3991-05         8       1.356       .127       .999       54.723       25.54       7385-06         9       9       .175       .999       217.733       25.475       100.432       49.48         10       .789       .213       .227       49.49       54.54       64.55-07         10       .789       .217       .999       217.733       92.431       74.94       54.55-07         10       .789       .217       .004.47       .704.04       005.455-17       100.455-115.7       108         11       .775       .213       .227       .707.44       0.0456-115.7       108.455-17         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -4                            | 4.204                                  | ,017         | • 495                         | 943.585 34                                    | .640 33                                  | 346.3                | •2486-05                                                      |                          |                                        |              |
| 3       3.560       0.030       601       827.929       40.372       1683.5       .4774-05         5       2.755       .003       .603       50.534       1213.8       .2784-05         5       2.755       .005       .640       494.617       50.534       1213.8       .2784-05         6       2.256       .0057       .640       494.617       53.816       523.3       .1616-05         7       1.1777       .006       .605       50.0997       53.78       56.73       .1560-05         9       1.506       .175       .399       217.793       92.431       74.9       .1566-05         9       .900       .175       .399       217.793       92.431       74.9       .1784-06         10       .789       .213       .327       175.476       100.432       49.4       .56455-07         10       .789       .213       .327       175.476       100.432       49.4       .56455-07         11       .789       .215       .577       175.476       100.412       174.9       .5455-07         12       .786       .215.476       100.412       174.0       0.6455-07       .5455       .5455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3       3.660       0.30       .601       857.929       49.372       1680.5       .4774-05         5       5.777       .043       .649       644.329       50.534       121.0       .394-05         5       2.757       .043       .649       644.329       50.534       121.0       .394-05         6       2.235       .057       .060       957       55.13       134.4       .356-05         9       .990       .129       55.7       250.997       54.123       55.3       135.4       .3670-05         9       .990       .175       .390       .974.5       100-432       99.4       .3744-05         9       .990       .175       .55.1       55.4       .0166       55.1       .1616-05         9       .990       .175       .24.32       26.43       26.44       .3770-05         9       .780       .175.476       100-432       99.4       .0445-05       .1784-05         147.00012       .129       .175.476       100-432       99.4       .0458-17       .1744-05         9       .780.016       .175       .174.010       .0485-17       .0495-106       .1784-05         1.13-0012<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3       3,560       030       601       657,029       943.37       150.65.5       19774-05         5       2,755       0035       6537       726.097       56.534       150.9       27.929         7       1,737       005       603       5977       726.997       56.534       150.9       27.929         9       2,255       0037       649       949.617       55.13       150.66       27.629         9       1306       123       527       250.997       56.13       55.34       150.66         9       1306       123       527       253.476       100.432       74.9       156.64         9       .900       175       92.13       92.13       92.13       92.14       156.66         9       .785       99.097       74.32       74.9       .156.64       156.16         10       .785       217       100.432       74.9       .156.66       156.16         10       .785       99.097       74.16       1074.05       05456.07         11       .785       99.16       74.16       0764.06       156.75         12.5       13       13       106       1774.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                             | *.013 .                                | .023         | 547                           | 901.986 42                                    | .478 21                                  | 386.0                | .4478-05                                                      |                          |                                        |              |
| 4       3.256       .036       .637       720.03       .771.04         5       2.757       .043       .649       .44.329       50.126       .773.40         7       1.737       .045       .649       .44.329       50.126       60.53       .1616-05         6       1.1737       .046       .655       .800.095       .64.723       256.4       .7835-06         9       1.137       .399       217.739       92.431       74.9       .1844-05         9       1.306       .117       .399       217.739       92.441       .7835-07         10       .789       .217       .799       92.441       79.4       .5455-07         HARMWIC NOISE SUMMATION - LOADING= 115.0 DP       .714L MARMONIC NOISE= 115.7 DB       .774L MARMONIC NOISE= 115.7 DB         LARAD       .789       .7014L OVERALL MARMONIC NOISE= 115.7 DB         BAND       NUMBER       BAND       0.0452       .7014L OVERALL MARMONIC NOISE= 115.7 DB         LARAD       NUMBER       BAND       NUMBER       MAXIMUM       .7014L OVERALL MARMONIC NOISE= 115.7 DB         LAND       NUMBER       BAND       NUMBER       MAXIMUM       NUMERLES       .7014L OVERALL       .6455-07         LAND <td>9       3,255       0.03       649       90.0124       120.00       2734-05         6       2,255       0057       640       976.617       53.36       1616-05         7       1,737       0.043       655       53.065       53.35       1616-05         9       1,205       129       557       5640       976.617       53.36       557.75         9       1,737       0.06       567       50.097       53.365       53.36       53.366         9       1,737       0.095       54.773       29.431       74.9       1784-05         9       900       175       399       217.793       92.431       74.9       1784-05         10       789       213       327       175.476       100.432       49.45       1784-05         11       789       210       100.432       49.45       1784-05       1784-05         1780       010.432       175.476       100.432       49.45       1784-05         1780       010.432       176.40       100.432       49.45       1784-05         1780       010.412       170.412       100.412       1764.016       164.55         1750</td> <td>9       3.755       0.03       6.047       6.040       6.04.525       50.756       6.05.3       50.756       6.05.4       7.754-055         7       1.777       0.06       175       5.361       55.35       1616-05       55.4       7.755-055         9       1.360       1175       5.395       56.77       55.3       1616-05       55.3       1616-05         9       1.360       1175       5.395       265.4       78.361       78.361       78.361       78.361       78.361       78.361       78.361       6455-07         9       1.360       1175       .397       175.476       100.432       78.361       78.361       78.361       78.361       78.361       78.361       78.361       78.361       78.361       78.361       78.466       77.84       56.55       78.561       78.466       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.565       78.561       78.561</td> <td>'n</td> <td>3.588</td> <td>030</td> <td>-601</td> <td>827.929 48</td> <td>.372 1(</td> <td>683.5<br/></td> <td>.4774-05<br/>3001-05</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9       3,255       0.03       649       90.0124       120.00       2734-05         6       2,255       0057       640       976.617       53.36       1616-05         7       1,737       0.043       655       53.065       53.35       1616-05         9       1,205       129       557       5640       976.617       53.36       557.75         9       1,737       0.06       567       50.097       53.365       53.36       53.366         9       1,737       0.095       54.773       29.431       74.9       1784-05         9       900       175       399       217.793       92.431       74.9       1784-05         10       789       213       327       175.476       100.432       49.45       1784-05         11       789       210       100.432       49.45       1784-05       1784-05         1780       010.432       175.476       100.432       49.45       1784-05         1780       010.432       176.40       100.432       49.45       1784-05         1780       010.412       170.412       100.412       1764.016       164.55         1750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9       3.755       0.03       6.047       6.040       6.04.525       50.756       6.05.3       50.756       6.05.4       7.754-055         7       1.777       0.06       175       5.361       55.35       1616-05       55.4       7.755-055         9       1.360       1175       5.395       56.77       55.3       1616-05       55.3       1616-05         9       1.360       1175       5.395       265.4       78.361       78.361       78.361       78.361       78.361       78.361       78.361       6455-07         9       1.360       1175       .397       175.476       100.432       78.361       78.361       78.361       78.361       78.361       78.361       78.361       78.361       78.361       78.361       78.466       77.84       56.55       78.561       78.466       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.561       78.565       78.561       78.561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 'n                            | 3.588                                  | 030          | -601                          | 827.929 48                                    | .372 1(                                  | 683.5<br>            | .4774-05<br>3001-05                                           |                          |                                        |              |
| 5       2.55       640       99.617       53.816       52.55       1616-05         7       1.737       066       605       390.895       64.723       265.4       7836-06         9       990       129       527       290.995       78.9       178.4       361.66-05         9       980       175       99       217.793       92.431       78.9       178.4       3670-06         9       980       213       327       1793       92.431       78.9       178.4       3670-06         9       980       213       327       175.475       90.432       78.9       178.4       3670-06         9       789       213       327       175.476       100.432       49.4       6455-07         10       789       213       327       175.476       100.432       49.4       6455-07         0       71.3-067       101.422       77.16       101.432       77.4       107.4L       178.406         0       71.3-067       101.422       77.16       101.422       178.406       156.7       156.7       166.7       156.7       156.7       167.4L       178.4       178.4       178.4       178.4<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5       2.25       057       640       99.617       53.616       52.55       166-05         7       1.737       006       605       390.995       64.723       265.4       356-06         9       1.66       129       527       179.46       175.476       100.432       79.9       159.406         9       1.737       006       605       390.995       64.723       265.4       356-06         9       1.173       327       175.476       100.432       79.9       1784-06         10       .789       .213       .327       175.476       100.432       79.9       .6455-07         11       .789       .213       .327       175.476       100.432       79.9       .6455-07         11       .789       .213       .327       175.476       100.432       79.9       .6455-07         11       .784       .774       00.472       00.452       101.452       1154.7       05         1.5-0774       018       0414       MAXIMUM       MINIMUM UNDEFECTABLE       04555-115.7       05         0       0       05       0       0574       074       0757045       155.7       05 <td>5       2.25       057       040       076.617       53.016       52.35       11610-05         7       1.777       006       605       500.895       64.723       252.4       78.96       78.96         9       1.306       1.75       .397       290.095       64.723       252.4       78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96</td> <td><b>3</b> 1</td> <td>3.256</td> <td>000</td> <td>100.</td> <td></td> <td></td> <td></td> <td>-27A4-05</td> <td></td> <td></td> <td></td>                                                                                                                         | 5       2.25       057       040       076.617       53.016       52.35       11610-05         7       1.777       006       605       500.895       64.723       252.4       78.96       78.96         9       1.306       1.75       .397       290.095       64.723       252.4       78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96       .78.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>3</b> 1                    | 3.256                                  | 000          | 100.                          |                                               |                                          |                      | -27A4-05                                                      |                          |                                        |              |
| 7       1.737       006       605       500.695       64.723       265.4       78.36-06         9       980       .175       .399       217.793       92.431       74.9       .1784-06         10       .789       .217       .327       175.476       100.432       49.4       .3670-06         10       .789       .217       .327       175.476       100.432       49.4       .3645-07         10       .789       .213       .327       175.476       100.432       49.4       .36455-07         10       .789       .213       .327       175.476       100.432       49.4       .6455-07         HARMONIC NOISE SUMMATION - LOADING=       115.0       De       THICKNESS=       96.3       DB. OVERALL HARMONIC NOISE=       115.1       DE         1/3-0CTAVE BAND DATA IS       .215.0       DI       MINIMUM UNDETECTABLE       115.7       DB         1/3-0CTAVE BAND DATA IS       PAL MAX       PAL MAXINUM MOETECTABLE       VERALL NOISE=       115.7       DE         1/3-0CTAVE BAND DATA IS       VORTEX       MAXIMUM UNDETECTABLE       VERTLAL NOISE=       115.7       DE         1/3-0CTAVE BAND NORTEX       NARIMUM UNDETECTABLE       VERTICAL DISTANCE       FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7       1.737       006       505       500.895       64.723       255.4       .785-06         9       .800       .129       .527       290.090       78.9       .134.4       .357-06         10       .789       .115       .397       217.793       92.431       78.9       .1754-06         10       .789       .115       .397       217.793       92.431       78.9       .1784-06         10       .789       .213       .397       175.476       100.432       49.4       .0565-07         HARMONIC NOISE SUMMATION - LOADING=       115.0 DB       THICKNESS=       96.3 DB       OVERALL HARMONIC NOISE=       115.1 DB         HARMOLIC NOISE SUMMATION - LOADING=       115.0 DB       THICKNESS=       96.3 DB       OVERALL HARMONIC NOISE=       115.1 DB         HARMOLIC NOISE       BAND       NOTEX       MAXINUM <minimicalectable< td="">       107.4L       OVERALL NOISE=       115.1 DB         J/S-OCTAVE BAND       NUMBER       BAND       VARIEX       TOTAL OVERALL NOISE=       115.1 DB         RAND       NUMBER       BAND       VARIEX       TOTAL OVERALL NOISE=       115.1 DB         RAND       NUMBER       BAND       VARIEX       TOTAL NOISE=       115.1 DB     <td>7       1.737       066       605       56.4       7836-06         8       1.306       1173       399       217.793       74.9       138.4       .3670-06         9       900       117       .399       217.793       74.9       .1784-00         10       .789       .217       .327       175.476       100.432       74.9       .184.4       .3670-06         11       .789       .213       .327       175.476       100.432       74.9       .184-06         MARMMIC NOISE SUMMATION - LOADING: 115.4 DP       THICKNESS=       96.3 DB       OVERALL MARMONIC NOISE=       1158-7 DB         OVERALL VORTEX NOISE:       106.7 DB       NITH MAX SPL AT 5000. HZ       776.4 OVERALL NOISE=       115.7 DB         DOCTAVE BAND DATA IS       NAXIWUM       MINIMUM UNDETECTABLE       1157.7 DB         RAND NUBER       BAND VORTEX       NAXIWUM       MINIMUM UNDETECTABLE       115.7 DB         RENER       NORTEX       MAXIWUM       MINIMUM UNDETECTABLE       157.7 DB         RAND       NORTEX       MAXIWUM       NORTEX       107.4 NOISE=       115.7 DB         RAND       NATAUR       MAXIWUM       MINIMUM UNDETECTABLE       157.0 D       15.7 DB         RAN</td><td>n 4</td><td>2.076</td><td>057</td><td>640</td><td>494.617 53</td><td>.816</td><td>523.3</td><td>.1616-05</td><td></td><td></td><td></td></minimicalectable<> | 7       1.737       066       605       56.4       7836-06         8       1.306       1173       399       217.793       74.9       138.4       .3670-06         9       900       117       .399       217.793       74.9       .1784-00         10       .789       .217       .327       175.476       100.432       74.9       .184.4       .3670-06         11       .789       .213       .327       175.476       100.432       74.9       .184-06         MARMMIC NOISE SUMMATION - LOADING: 115.4 DP       THICKNESS=       96.3 DB       OVERALL MARMONIC NOISE=       1158-7 DB         OVERALL VORTEX NOISE:       106.7 DB       NITH MAX SPL AT 5000. HZ       776.4 OVERALL NOISE=       115.7 DB         DOCTAVE BAND DATA IS       NAXIWUM       MINIMUM UNDETECTABLE       1157.7 DB         RAND NUBER       BAND VORTEX       NAXIWUM       MINIMUM UNDETECTABLE       115.7 DB         RENER       NORTEX       MAXIWUM       MINIMUM UNDETECTABLE       157.7 DB         RAND       NORTEX       MAXIWUM       NORTEX       107.4 NOISE=       115.7 DB         RAND       NATAUR       MAXIWUM       MINIMUM UNDETECTABLE       157.0 D       15.7 DB         RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n 4                           | 2.076                                  | 057          | 640                           | 494.617 53                                    | .816                                     | 523.3                | .1616-05                                                      |                          |                                        |              |
| B         1.366         1129         .527         280.090         78.51         134.4         .3570-06           9         980         .175         .399         217.793         92.431         74.9         .1784-06           10         .789         .213         .327         175.476         100.432         49.4         .1784-06           10         .789         .213         .327         175.476         100.432         49.4         .1784-06           1.30         .789         .213         .327         175.476         100.432         49.4         .1784-06           ARMONIC NOISE SUMMATION - LOADING=         115.4         00.455=         96.3         00         .6455-07           1.3-0CTAVE BAND DATA IS         NUMBER         MAXIWUM         MINIMUM UNDETECTABLE         115.1         0           1.3-0CTAVE BAND DATA IS         VORTEX         MAXIMUM         MINIMUM UNDETECTABLE         115.7         DB           1.3-0CTAVE BAND NORTEX         MAXIMUM         MINIMUM UNDETECTABLE         115.7         DB           1.3-0CTAVE BAND NORTEX         MAXIMUM         WIDETECTABLE         115.7         DB           1.4         NAXIMUM         VORTEX         VIDADADADADADADADADADADADADADADADADADADA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8       1.366       .129       .527       280.090       78.361       134.4       .3670-06         10       .789       .175       .327       175.476       100.432       74.9       .1784-06         10       .789       .175       .327       175.476       100.432       74.9       .1784-06         HARMONIC NOISE SUMMTION - LOADING:       .327       175.476       100.432       94.9       .6455-07         HARMONIC NOISE SUMMTION - LOADING:       115.476       100.432       96.3 DB       NOVERALL HARMONIC NOISE:       115.1 DB         OVERTALL VORTEX NOISE:       105.7 DB       NIHMUM UNDETECTABLE       VENTLAL NOISE:       115.7 DB         BAND NUMBER       BAND VORTEX MAXIMUM MINIMUM UNDETECTABLE       VENTLAL NOISE:       115.7 DB         CENTER       OF       SPL       BRADD DATA IS       15       0         BAND NUMBER       BAND VORTEX MAXIMUM INDETECTABLE       VENTEX TOTAL NOISE       115.7 DB         CENTER       OF       SPL       DB       NORTEX TOTAL NOISE:       115.7 DB         CENTER       OF       SPL       DB       NORTEX TOTAL NOISE:       115.7 DB         0       SC       0       SPL       DB       NORTEX TOTAL NOISE:       12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8       1.306       .129       .527       2590.090       75.351       134.4       .3570-06         10       .789       .213       .397       1217.793       92.4431       74.9       .1784-06         10       .789       .213       .397       1217.793       92.4431       74.9       .1784-06         HARMONIC NOISE SUMMATION - LOADING=       .15.0 DB       .715       .397       115.0 DB       .714.9       .0585-07         HARMONIC NOISE SUMMATION - LOADING=       115.0 DB       .7165-00       .789.000.412       .71674L OVERELL MOISE=       96.3 DB       .0000.412       .7061L DISE=       115.7 DB         1/3-0CTAVE BAND DATA IS       BAND NATI IS       MAXIMUM MNDETECTABLE       VETECAL DISTANCE       FT       115.7 DB         1/3-0CTAVE BAND DATA IS       BAND NUMBER       VATEX MOISE=       115.7 DB       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.05       .000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~                             | 1.737                                  | ,086         | 605                           | 380.895 64                                    | .723                                     | 265.4                | .7836-06                                                      |                          |                                        |              |
| 9       980       .175       .539       217.75       75.476       100.432       .95.9       .6455-07         10       .789       .213       .327       175.476       100.432       .95.9       .6455-07         HARMONIC NOISE SUMMATION - LOADING= 115.0 DP       .715.476       100.432       .95.3 DB       .0VERALL HARMONIC NOISE= 115.1 DP         OVERALL VORTEX NOISE = 106.7 DB WITH MAX SPL AT 5000. HZ       .707 AL OVERALL NOISE= 115.7 DB       .73-001 AE       .715.7 DB         1.3-001AUE       BAND DATA IS       DAND VORTEX MAXIMUM MINIMUM UNDETECTABLE       .115.7 DB       .016.2         1.3-001AE       BAND DATA IS       PAND DATA IS       .707 AL OVERALL NOISE= 115.7 DB         1.3-001AE       BAND DATA IS       DATA IS       .007 LOSE       .015.7 DB         1.3-001AE       BAND VORTEX MAXIMUM MINIM UNDETECTABLE       .707 AL OVERALL NOISE= 115.7 DB       .0000 E         1.4       NUMBER       BAND VORTEX MAXIMUM MINIMUM UNDETECTABLE       .017 LOSE       .015.7 DB         1.4       NUMBER       BAND VORTEX MAXIMUM UNDETECTABLE       .077 LOSE       .015.7 DB         1.4       NUMBER       BROADBAND DB VORTEX TGTAL DISTANCE - FT       .010.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9       980       .175       .327       175.476       100.432       49.4       .6455-07         10       .789       .213       .327       175.476       100.432       49.4       .6455-07         HARMONIC NOISE SUMMATION - LOADING:       115.476       100.432       49.4       .6455-07       .6455-07         OVERALL VORTEX NOISE:       106.7       DB WITH MAX SPL AT 5000. HZ       707AL OVERALL NOISE:       115.7       DB         1.3-0CTAVE BAND DATA IS       DATA IS       MAXINUM       MINIMUM UNDETECTABLE       115.7       DB         1.3-0CTAVE BAND DATA IS       DATA IS       MAXINUM       MINIMUM UNDETECTABLE       115.7       DB         1.3-0CTAVE BAND DATA IS       DATA IS       MAXINUM       MINIMUM UNDETECTABLE       115.7       DB         1.3-0CTAVE BAND DATA IS       DATA IS       MAXINUM       MINIMUM UNDETECTABLE       115.7       DB         1.4       NUMBER       BAND UNCETECTABLE       VERTICAL DISTANCE - FT       0       0       0         1.4       NA       SPL - DB       BROADBAND DB       VORTEX       TOTAL NOISE       12.0       0       0         1.4       O       D       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9       980       .173       .327       21.75.476       100.432       49.4       .6455-07         10       .789       .213       .327       175.476       100.432       49.4       .6455-07         HARMONIC NOISE SUMMATION - LOADING= 115.0 DB       .175.476       100.432       49.4       .6455-07         OVERALL VORTEX NOISE= 115.1 DB       .175-070       HZ * TOTAL VORTEX NOISE= 115.7 DB       .015-070         1/5-00TAVE BAND DATE X       NAXIMUM UNDETECTABLE       MAXIMUM UNDETECTABLE       115.7 DB         1/5-00TAVE BAND NORTEX       NUMBER       MAXIMUM UNDETECTABLE       115.7 DB         1/5-00TAVE BAND NUMBER       MAXIMUM UNDETECTABLE       115.7 DB         RAND       NUMBER       BAND VORTEX       NAXIMUM UNDETECTABLE         RAND       NUMBER       BAND VORTEX       1074L VOISE         CENTER       OF       SPL       BROADBAND DB       VORTEX         1.6       0       12.0       120.0       0       0         2.6       18.2       18.2       117.0       0       0         2.5       0       18.2       18.2       117.0       0       0         2.5       0       18.2       117.0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>a</b> 0 (                  | 1.366                                  | ,129         | .527                          | 285.090 78                                    | .361                                     | 4. 401<br>4 4 0      | .3670-06                                                      |                          |                                        |              |
| HARMONIC NOISE SUMMATION - LOADING= 115.0 DP. THICKNESS= 96.3 DB., OVERALL HARMONIC NOISE= 115.1 DP<br>OVERALL VORTEX NOISEE 106.7 DB WITH MAX SPL AT 5000. HZ , TOFAL OVERALL NOISE= 115.7 DB<br>J/3-OCTAVE BAND DATA IS<br>I/3-OCTAVE BAND DATA IS<br>BAND NUMBER BAND VORTEX MAXIMUM MINIMUM UNDETECTABLE<br>CENTER OF SPL BROADBAND UNDETECTABLE VERTICAL DISTANCE - FT<br>CENTER OF SPL BROADBAND UNDETECTABLE VERTICAL DISTANCE - FT<br>1.6 0 5.8 5.8 121.5 0.0<br>2.0 0 12.0 12.0 12.0 12.0 0.0<br>2.0 0 18.2 18.2 117.0 0.0<br>2.5 0 18.2 18.2 117.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HARMONIC NOISE SUMMATION - LOADING= 115.0 DB , THICKNESS= 96.3 DB , OVERALL HARMONIC NOISE= 115.1 DB<br>OVERALL VORTEX NOISE= 106.7 DB WITH MAX SPL AT 5000. HZ , TOTAL OVERALL NOISE= 115.7 DB<br>OVERALL VORTEX NOISE= 106.7 DB WITH MAX SPL AT 5000. HZ , TOTAL OVERALL NOISE= 115.7 DB<br>DAND NUMBER BAND VORTEX MAXIMUM MINIMUM UNDETECTABLE<br>CENTER OF SPL BROADBAND UNCETECTABLE VERTICAL DISTANCE - FT<br>FRQ. HZ HARMONICS DB SPL - DB BROADBAND DB VORTEX TOTAL NOISE<br>1.6 0 12.0 12.0 12.0 12.0 0.0.0.<br>2.0 0 12.0 12.0 12.0 0.0.0.<br>2.0 2 18.2 18.2 117.0 0.0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HARMONIC NOISE SUMMATION - LOADING= 115.0 DE, THICKNESS= 96.3 DB, OVERALL HARMONIC NOISE= 115.1 DE<br>OVERALL VORTEX NOISE= 106.7 DB WITH MAX SPL AT 5000. HZ, 7 TO FAL OVERALL NOISE= 115.7 DB<br>J/3-OCTAVE BAND DATA IS<br>BAND NUMBER BAND VORTEX MAXIMUM MINIMUM UNDETECTABLE<br>CENTER OF SPL BRIODDAND UNDETECTABLE VERTICAL DISTANCE - FT<br>FRQ. HZ HARMONICS DB SPL - DB BRADDBAND DB VORTEX TOTAL NOISE<br>1.0 0 12.0 12.0 120.0 0.0.0.<br>2.0 0 18.2 18.2 117.0 0.0.0.<br>2.0 2 0.18.2 18.2 117.0 0.0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>1</b> 0                    | . 789                                  | -175<br>-213 | .327                          | 175.476 100                                   | 432<br>432                               | 4.67                 | .6455-07                                                      |                          |                                        |              |
| OVERALL VORTEX NOISE= 106.7 DB WITH MAX SPL AT 5000. HZ , TOFAL OVERALL NOISE= 115.7 DB<br>1/3-OCTAVE BAND DATA IS BAND VORTEX MAXIMUM MINUMUM UNDETECTABLE<br>BAND NUMBER BAND VORTEX MAXIMUM MINUMUM UNDETECTABLE<br>CENTER DH SPL BROADBAND UNDETECTABLE VERTICAL DISTANCE - FT<br>CENTER DB SPL - DB BROADBAND DB VORTEX TOTAL NOISE<br>1.6 0 5.8 12.0 120.0 0. 0.<br>2.0 0 12.0 12.0 12.0 120.0 0. 0.<br>2.5 0 18.2 18.2 117.0 0. 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OVERALL VORTEX NOISE= 106.7 DB WITH MAX SPL AT 5000. HZ . TOFAL OVERALL NOISE= 115.7 DB<br>1/3-OCTAVE BAND DATA IS MAXIMUM WINIMUM UNDETECTABLE<br>BAND NUMBER BAND VORTEX MAXIMUM WINIMUM UNDETECTABLE<br>CENTER OF SPL BROADBAND UNCETECTABLE VERTICAL DISTANCE - FT<br>CENTER OF SPL BROADBAND UNCETECTABLE VERTICAL DISTANCE - FT<br>FREQ. HZ MARMONICS DB SPL - DB BROADBAND DB VORTEX TGTAL NOISE<br>1.6 0 12.0 12.0 12.0 120.0 0. 0.<br>2.0 0 18.2 18.2 117.0 0. 0.<br>2.5 0 18.2 18.2 117.0 0. 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OVERALL VORTEX MOISE= 106.7 DB WITH MAX SPL AT 5000. HZ . TOTAL OVERALL NOISE= 115.7 DB<br>1/3-OCTAVE BAND DATA IS MAXIMUM WINIMUM UNDETECTABLE E<br>BAND NUMBER BAND VORTEX MAXIMUM WINIMUM UNDETECTABLE<br>CENTER OF SPL BROADBAND UNCETECTABLE VERTICAL DISTANCE - FT<br>CENTER OF SPL BROADBAND UNCETECTABLE VERTICAL DISTANCE - FT<br>FREQ. HZ MARMONICS DB SPL - DB BROADBAND DB VORTEX TOTAL NOISE<br>1.6 0 12.0 12.0 120.0 0.0.0<br>2.0 0 18.2 18.2 117.0 0.0<br>2.5 0 18.2 18.2 117.0 0.0<br>Figure 36 Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HARMONIC                      | INDISE SUMMAT                          | LION - LC    | DADING= 1                     | 15.0 DE , THI                                 | CKNESS= 6                                | 96.3 DB 1            | OVERALL HARMONI                                               | C NOISE= 115.1           | DB                                     |              |
| FILTER NUMBER BAND VORTEX MAXIMUM UNDETECTABLE<br>BAND NUMBER BAND VORTEX MAXIMUM UNDETECTABLE<br>CENTER OF SPL BROADBAND UNCETECTABLE VERTICAL DISTANCE - FT<br>CENTER OF SPL - DB BROADBAND DB VORTEX TOTAL NOISE<br>1.6 0 5.8 12.0 12.0 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FILTER NUMBER BAND VORTEX MAXIMUM UNDETECTABLE<br>BAND NUMBER BAND VORTEX MAXIMUM UNDETECTABLE<br>CENTER OF SPL BROADBAND UNCETECTABLE VERTICAL DISTANCE - FT<br>CENTER OF SPL - DB BROADBAND DB VORTEX TOTAL NOISE<br>1.6 0 5.8 12.15 0.0<br>2.0 0 12.0 12.0 12.0 12.0 0.0<br>2.5 0 18.2 18.2 117.0 0.0<br>Figure 36 Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FREQ. HZ MAND VORTEX MAXIMUM UNDETECTABLE<br>BAND WOMBER BAND VORTEX MAXIMUM UNDETECTABLE<br>CENTER OF SPL BROADBAND UNCETECTABLE VERTICAL DISTANCE - FT<br>CENTER OF SPL - DB BROADBAND DB VORTEX TOTAL NOISE<br>1.6 0 5.8 12.1 0 0. 0.<br>2.0 0 12.0 12.0 12.0 0. 0.<br>2.5 0 18.2 18.2 117.0 0. 0.<br>Figure 36 Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OVERALL                       | VORTEX NOISE:                          | = 106.7 (    | DB WITH M                     | AX SPL AT 500                                 | 0. HZ . T(                               | OTAL OVER            | ALL NOISE= 115.7                                              | 90                       |                                        |              |
| CENTER OF SPL BROADBAND UNCETECTABLE VERTICAL DISTANCE FI<br>FREG. H2 HARMONICS DB SPL - DB BROADBAND DB VORTEX TOTAL NOISE<br>1.6 0 5.8 5.8 121.5 0 0. 0.<br>2.0 0 12.0 12.0 12.0 12.0 0. 0.<br>2.5 0 18.2 18.2 117.0 0. 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CENTER       OF       SPL       DRIADBAND       UNCETCABLE       VERTICAL       DISTANCE       FI         FREQ. H2       HARMONICS       DB       SPL       - DB       BROADBAND       DB       VORTEX       TOTAL       NOISE         1.6       0       12.0       12.0       12.0       12.0       0       0         2.0       0       12.0       12.0       12.0       0       0       0         2.5       0       18.2       117.0       0       0       0       0         2.5       0       18.2       117.0       0       0       0       0       0         2.5       0       18.2       117.0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CENTER       OF       SPL       BROADBAND       UNDERCABLE       VERTEX       LOTANCE       Fr         FREQ. H2       HARMONICS       DB       SPL       DB       BROADBAND       DB       VORTEX       TOTANCE       F         1.6       0       5.8       5.8       121.5       0.0       0       0       2.0       0       2.0       0       0       0       2.0       0       2.0       0       0       2.0       0       0       2.0       0       0       0       0       2.0       0       0       0       0       2.0       0       0       0       0       0       2.0       0       0       0       0       0       0       0       0       0       0       0       2.5       0       117.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BAND                          | NUMBER                                 | BAND         | VORTEX                        | MAXIMUM                                       | INININ W                                 | M UNDETEC            | TABLE                                                         |                          |                                        |              |
| FREG. HARMONICS UB SFL - UD DEVANCENT VIEW VIEW VIEW VIEW VIEW VIEW VIEW VIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FREG. HA HANNICS UN SFL - UN DEVUCANUE UN VALUE VIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                | FREG. HARMONICS UP SFL = UD DEVOCATION UP VIET VIET VIET VIET VIET VIET VIET VIET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CENTER                        | 0F                                     | ۍ<br>کې      | BROADBAND                     | UNCETECTABL                                   | E VERTIC                                 | AL DISTAN<br>Trial N | CE - F1<br>015E                                               |                          |                                        |              |
| 2.0 0 12.0 12.0 120.0 0 0 0 0<br>2.5 0 18.2 18.2 117.0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2:0     0     12:0     12:0     12:0     12:0     0     0       2:5     0     18:2     18:2     117:0     0     0     0       2:5     0     18:2     18:2     117:0     0     0       2:5     0     18:2     18:2     117:0     0     0       2:5     0     18:2     18:2     117:0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2:0 0 12:0 12:0 120.0 0. 0. 0.<br>2:5 0 18.2 18.2 117.0 0. 0.<br>Figure 36 Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FREQ. H                       | Z HARMONICS                            | 80           | 5PL - UG                      | BRUAUDANU U                                   | 5 VUNIEN                                 |                      | -1510                                                         |                          |                                        |              |
| 2.5 0 16.2 16.2 117.0 0. 0. 0.<br>Figure 36 Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5 0 16.2 16.2 117.0 0. 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5 0 18.2 18.2 117.0 0. U.<br>Figure 36 Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0<br>4.0                    | 90                                     | 12.0         | 12.0                          | 120.0                                         |                                          |                      |                                                               |                          |                                        |              |
| Figure 36 Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Figure 36 Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Figure 36 Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2°2                           | 0                                      | 18.2         | 16.2                          | 117.0                                         | <b>.</b>                                 | •                    |                                                               |                          |                                        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                        |              |                               | Fimre                                         | 36 Co                                    | ntinued              |                                                               |                          |                                        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                        |              |                               | that t                                        |                                          | אורדיותבמ            |                                                               |                          |                                        |              |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10. FT WHEN NOISE PRODUCED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DISTANCE= 1:<br>THICKNESS<br>2.600416-02<br>3.14741-02<br>3.14741-02<br>2.97658-02<br>1.73734-02<br>1.74602-03<br>1.99688-02<br>1.99688-02<br>1.99688-02<br>1.99688-02<br>1.99688-02<br>1.99688-02<br>1.896688-02<br>1.896688-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ), X= -30.8 ,<br>MINIMUM<br>UNDETECTABLE<br>264006.<br>PER S0. FT.)<br>.45111-03<br>.45231-02<br>.424243-02<br>.41243-02<br>.424243-02<br>.122460-03<br>.55781-03<br>.55781-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52250-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.52550-03<br>.55550-03<br>.55550-03<br>.55550-03<br>.555500-03<br>.55550-03<br>.555500-03<br>.555500-035500-03<br>.555500-035500-00                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 212494<br>1778<br>2985<br>1778<br>2985<br>17982<br>1778<br>2985<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>77245<br>7775<br>77245<br>7775<br>77245<br>7775<br>777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DEG WHEN HEARD<br>C DETECTABLE<br>TONE NOISE<br>24.7<br>24.7<br>24.7<br>24.7<br>2425-02<br>3623-02<br>3995-02<br>3995-02<br>3995-02<br>3995-02<br>3995-02<br>3995-02<br>19.6<br>19.6<br>19.6<br>55.6<br>27(87)<br>19.6<br>55.6<br>29.6<br>29.6<br>29.6<br>29.6<br>29.6<br>29.6<br>29.6<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| № 409406643440090894004006989800<br>14441866643498400406<br>403418666434366440089380<br>141418666434866440089380<br>14141866643486644089380<br>1469864344034646089380<br>1469864344034646089380<br>1469864344034646089380<br>146986434403460405<br>1469864440080380<br>1469864440080380<br>1469864440080380<br>146986444008040<br>1469864440080380<br>1469864440080380<br>1469864400405<br>146986440000<br>146986440000<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640<br>14698640000000000000000000000000000000000 | FT<br>FT<br>FT<br>FT<br>FT<br>FT<br>FT<br>FT<br>FT<br>FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>X = -37.5<br/>X = 741<br/>X = 741<br/>X = 741<br/>X = 741<br/>X = 701<br/>X = 704<br/>X = 704</pre> |
| u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HJ44 FT AT<br>NGE IS<br>NGE IS<br>NGE IS<br>NOISE<br>NG (IP)<br>166,9<br>05<br>1746 (IP)<br>166,9<br>166,9<br>166,9<br>166,9<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>17447-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747-02<br>1747                                                                                                                                                                                                                                                                                                                     |
| uutttuvaaaaaerra 11<br>uutttuvaaaaerra 11<br>utttuvaaaeerra 19<br>uttaauvaaeerea<br>uttaaavuttaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C C C C C C C C C C C A A C C A C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MUETECTABL<br>AZI FR:<br>AZI FR:<br>LOADING [F<br>-1.43095-<br>-1.43095-<br>-1.3691-<br>-7.13591-<br>-7.13591-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3695-<br>-1.3691-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3695-<br>-1.3691-<br>-1.3695-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.3691-<br>-1.369                                                                                                                                                                                                                                                                                                                                                         |
| 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MINIMUM (<br>X= -38.(<br>HARMONIC<br>NUMBER<br>NUMBER<br>NUMBER<br>1.236<br>3.256<br>3.256<br>3.256<br>2.757<br>2.757<br>2.757<br>2.757<br>2.757<br>2.757<br>2.757<br>2.759<br>2.789<br>1.789<br>84DIUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| 4.204    | 2.34104-0     | 21 I.          | 55992-01                              | 2.81315      | -0,         | <u>.62428-02</u>     | -3,90444-62        | 4.62176-02      |
|----------|---------------|----------------|---------------------------------------|--------------|-------------|----------------------|--------------------|-----------------|
| 4.613    | 2,54152-(     | 01 1.          | ,69074-01                             | 3.05252      | -01 3       | .20033-02            | -4.64058-02        | 5.63720-02      |
| 3.688    | 2.09528-0     | 01 1.          | 39341-01                              | 2.51631      | -01         | .14666-02            | -4.56434-02        | 5.54388-02      |
| 3.256    | 1,23181-0     | 01 8.          | 20716-02                              | 1.48018      | -01 2       | .25442-02            | -3.27108-02        | 3.97270-02      |
| 2.757    | 5-06051-0     | 22             | 38619-02                              | 6.08492      | -02         | 18542-02             | -1.72019-02        | 2 AR425-02      |
| 2.2.16   | 1-45834-0     |                | 81500-01                              | 1.757.87     |             | .05657-03            | -7 10440-01        | 5 7265 03       |
| 1.737    |               |                | 16100-04                              |              |             |                      |                    |                 |
|          |               | •              |                                       |              |             |                      |                    |                 |
|          | -Thece's      |                | +0+T0/60                              |              | <b>t</b>    | +0-20224.            | -0.44202-04        | 1.01755-04      |
|          | 2.62308-0     | 15             | CD-02111                              | 3.10508      | -07         | • 62732-05           | -1.26762-04        | I. 53335-04     |
| 68/ .    | 6.01715-0     | 26             | ,92778-06                             | 7.18565      | -06 2       | .42441-05            | -3.69629-05        | 4.42044-05      |
|          | 1.63124+(     | 00 1.          | 00000000                              | 9.17313      | -02 2       | .67597-01            | -3.88205-01        | 2,20664-02      |
|          |               |                | 201                                   | 202 240      | 0.00        |                      | 2611.00            |                 |
| • •      |               | 10.1           |                                       | 100 . 100    | 0404040     | 0.010<br>0.010       | 00-11C2.           |                 |
| 1 11     | 3.648         |                | 104                                   | A27, 020     | ER. 172     | 1683 5               |                    |                 |
| *        | 3.256         | 036            | 657                                   | 728.987      | 50.534      | 1213.8               | 1057-06            |                 |
| S        | 2.757         | 04.5           | 649                                   | 614.329      | 50.728      | 850. B               | 2884-05            |                 |
| 4        | 2.236         | 150            | 640                                   | 494.617      | 51. 815     | 5 1 2 3              | 1735-06            |                 |
| •        | 1.737         | CAS            | 202                                   | ADD AGS      | 64 - 10 I   | 265 4                |                    |                 |
| •        | 1.106         | 120            | 507                                   | SAL DOD      | 70 141      |                      |                    |                 |
| 0        |               | 175            |                                       | 217.701      | 111 00      |                      |                    |                 |
| 10       | .789          | .213           | .327                                  | 175.476      | 100.432     |                      | .1118-07           |                 |
|          | 1             |                | •                                     |              |             |                      |                    |                 |
| ARMONIC  | NOISE SUMMA   | - NOIT         | LOADING= 1                            | 108.7 08 .   | THICKNESS   | = 93.8 DB            | . OVERALL HARMONIC | NOISE= 108.8 DB |
| VERALL \ | VORTEX NOISE  | = 101.4        | HITH BO                               | IAX SPL AT   | 6300. HZ    | , TOTAL OVE          | RALL NOISE= 109.6  | DB              |
| 13-0CTAN | YE BAND DATA  | 15             | ı                                     |              | i<br>,      |                      |                    |                 |
| BAND     | NUMBER        | BAND           | VORTEX                                | MAXIM        | NTN MIN     | CHUM UNDETE          | CTARLE             |                 |
| CENTER   | 5             | 9              | BROADBANE                             | INDETEC      |             | TICAL DISTAL         |                    |                 |
| RED. HZ  | HADMANT'S     | ŝ              |                                       | ROADRA       |             | TEX TATA             |                    |                 |
|          |               | 8 .<br>1       |                                       |              |             |                      |                    |                 |
| 00       | ) c           |                |                                       |              | 0 6         | ••••                 |                    |                 |
|          | > <           |                |                                       |              |             | ••••                 |                    |                 |
| )<br>    | <b>&gt;</b> c |                |                                       |              | 5           | •••                  |                    |                 |
| 4 6      | 2 (           |                |                                       |              | 0.0         |                      |                    |                 |
| ) (<br>  | 5 0           |                |                                       | - 40-        | -           | ••••                 |                    |                 |
|          | 9             |                |                                       |              | -           | •••                  |                    |                 |
|          | 5             |                |                                       | 5            |             |                      |                    |                 |
|          | 5             |                |                                       |              | 3           |                      |                    |                 |
| 0 ° 0 1  | 9             |                |                                       | 16           | 0           | 1.                   |                    |                 |
| 14.5     | 0             | 50.5           | 50.5                                  |              | 5           | 2. 2.                |                    |                 |
| 16.0     | 9             | 53.3           | 53.3                                  | <b>9</b> 5.1 | ~           | 5. 5.                |                    |                 |
| 20.0     | 9             | 56.0           | 56.0                                  |              |             | 17. 17.              |                    |                 |
| 25.0     | 0             | 58.6           | 58.6                                  | 65.(         |             | 59. 69.              |                    |                 |
| 31.5     | Ö             | 60.5           | 60.5                                  | 26.          | 2           | 14. 244.             |                    |                 |
| 40.0     | G             | 62.6           | 62.5                                  | <b>84</b>    |             |                      |                    |                 |
| 50.0     | , c           |                |                                       |              |             |                      |                    |                 |
|          |               |                | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |              |             |                      |                    |                 |
|          | 5 0           |                |                                       |              |             |                      |                    |                 |
|          | 2.            |                |                                       |              |             |                      |                    |                 |
|          | -4 (          | 1.101          | <b>100</b>                            |              |             | // cotulo.           |                    |                 |
| 1.021    | •             | 8.<br>6.<br>6. | 0/                                    |              |             | 28. 8528.            |                    |                 |
| 100.001  | •             | 0.2            | 11.6                                  | 20           | 18          | 14. 8114.            |                    |                 |
| 200.0    | -             | 104.1          | 73.3                                  | 36.          | 5           | 58. 245132,          |                    |                 |
| 250.0    | 0             | 96.8           | 74.9                                  | 37.          | 5 83        | 17. 8347.            |                    |                 |
| 315.0    | •             | 77.7           | 76.4                                  | 36.          | 36:         | 15. 7615.            |                    |                 |
| 0.00#    | a             | 78.3           | 76.3                                  | 39.6         | 64          | 11. 7911.            |                    |                 |
| 500.0    |               | 79.B           | 79.8                                  | 39.          | 76          | 24. 7624.            |                    |                 |
| 630.0    |               | 61.6           | 81.6                                  | 60           | 1           | 77.55.               |                    |                 |
| 0.000    |               | 9.5.6          | 83.4                                  | 0            |             | 7720.                |                    |                 |
| 1000.0   | • •           | 84.9           | 84.9                                  | 8            |             | 7113.                |                    |                 |
| 1250 0   |               |                | 94                                    |              |             |                      |                    |                 |
| 1600.0   | • •           |                |                                       |              |             |                      |                    |                 |
|          | > <           |                |                                       |              |             | 12. 0616.<br>10 6404 |                    |                 |
|          | <b>&gt;</b> < |                |                                       |              |             |                      |                    |                 |
|          | 2             | -              | ***                                   |              |             |                      |                    |                 |
|          |               |                |                                       |              |             |                      |                    |                 |
|          |               |                |                                       | <b>H</b>     | igure 36. – | Continued            |                    |                 |
|          |               |                |                                       |              | >           |                      |                    |                 |

|                                                                       | +OISE PRODUCED                                   |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |
|-----------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                                                       |                                                  |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |
|                                                                       | 153. F                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90                                                                                        |
|                                                                       | , JISTANCE=<br>Y                                 | THICKNESS<br>1. <b>56459-02</b><br>2.07341-02<br>2.40594-02<br>2.25928-02      | 1,77018-02<br>9,00796-03<br>5,15978-03<br>2,31928-03<br>2,33182-03<br>1,42455-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | THICKNESS<br>2.88857-02<br>3.45937-02<br>3.30699-02<br>2.29380-02<br>1.16910-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.76206-03<br>1.64771-03<br>4.12782-04<br>8.08646-05<br>2.35778-05<br>2.35778-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DB 105.0                                                                                  |
|                                                                       | , X= -75.0<br>MINIMUM<br>UNDETECTABLE<br>212122. | PER SQ. FT.)<br>(NESS (IP)<br>.46548-03<br>.88513-03<br>.14550-02<br>.07392-02 | 3,40026-03<br>5,04260-03<br>6,25349-03<br>2,44020-03<br>1,10221-03<br>5,96129-04<br>1,46833-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 117829.  | PER SQ. F1.)<br>KNESS (IP)<br>2.40064-02<br>2.87277-02<br>2.87278-02<br>1. <b>89</b> 954-02<br>9.66650-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,93218-03<br>1,35939-03<br>3,40696-04<br>6.70138-05<br>1,95029-05<br>2,29576-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .5919-06<br>1067-05<br>.11067-05<br>.9570-06<br>.6713-06<br>.3913-06<br>.1913-06<br>.1913-06<br>.1913-06<br>.1913-07<br>.1597-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IERALL HARMONI<br>. Noise= 109,5<br>. Ble<br>. Ft                                         |
| 3457°<br>2600<br>2129<br>11389<br>1196                                | G WHEN HEAPD<br>Detectable<br>Tone Noise<br>24.7 | NENTS (LBS.<br>(RP) THICK<br>99-02 77<br>60-02 7<br>74-02 1<br>74-02 1         | 84-02<br>84-02<br>848-03<br>91-03<br>91-03<br>91-03<br>88-03<br>91-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19.6     | NENTS (LBS.<br>(RP) THIC<br>(49-02<br>(49-02<br>(29-02<br>(28-02<br>(56-02<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-02)<br>(18-0 | 111-03<br>124-04<br>124-05<br>574-05<br>574-05<br>996-01<br>996-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1 | 90.3 DB , 0V<br>Otal Overalla<br>M Judetectae<br>AL Distance<br>AL Distance<br>107al Noi? |
| 3457.<br>2600.<br>1589.<br>1196.<br>881.                              | = 120.0 DE<br>Harmonic<br>Noise<br>107.8         | SURE COMPO<br>THICKNESS<br>-1.374<br>-1.822<br>-2.115<br>-1.947                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 102.9    | SURE COMPG<br>THICKNESS<br>1.600<br>1.921<br>1.821<br>1.841<br>1.281<br>1.281<br>6.575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80.00<br>80 | 22.440<br>22.440<br>22.440<br>22.440<br>22.440<br>22.440<br>22.440<br>22.440<br>22.440<br>23.440<br>23.440<br>24.440<br>25.440<br>25.440<br>25.440<br>25.440<br>25.440<br>26.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.440<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.4400<br>27.44000<br>27.44000<br>27.4400000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ICKNESS=<br>00. HZ + T<br>minimu<br>Le vertic<br>DB vortex<br>00                          |
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1    | FT · ANGLE:<br>THICKNESS<br>NOISE<br>87.6        | LATORY PRES<br>LOADING<br>2.950202-01<br>3.350789-01<br>3.35635-01             | 2.43346-01<br>7.12346-02<br>2.47908-02<br>4.94657-03<br>1.17598-03<br>4.82408-03<br>4.82408-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86.8     | LLATORY PRES<br>LOADING<br>2.68928-01<br>2.685740-01<br>2.25551-01<br>1.235254-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.22656-02<br>2.03249-03<br>1.73742-04<br>1.81747-05<br>4.04100-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 443.585 34<br>101.986 45<br>280.987 56<br>280.987 56<br>280.617 55<br>594.617 55<br>594.75<br>594.617 55<br>594.617 55<br>594.517 55<br>594.                                                                                                                             | 00,9 0B , TH<br>ax SPL at 50<br>maximum<br>undetectab<br>broadband<br>1215                |
| 91.4<br>92.1<br>92.7<br>92.8<br>92.4<br>91.4                          | CE= 150.<br>LOADING<br>NOISE<br>107.7            | 05CI<br>(6 (IP)<br>(622-01<br>(607-01                                          | 1883-01<br>1788-01<br>1566-02<br>1513-02<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-03<br>1213-0 | 102.7    | 05C[]<br>46 (IP)<br>4622-01<br>1533-01<br>1740-01<br>9644-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2543-03<br>5543-03<br>5543-03<br>0738-05<br>2147-01<br>2147-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66495<br>66495<br>66495<br>6649<br>6649<br>6649<br>6649<br>66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CADING= 1(<br>DB WITH M/<br>Vortex<br>Broadband<br>SPL - 29                               |
| 91.4<br>92.1<br>92.7<br>92.6<br>92.4<br>91.4                          | DISTAN<br>ATHOS.<br>ABSORP                       | LOADIN<br>1 -2.556<br>1 -2.035<br>1 -2.92                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •••      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 017<br>023<br>023<br>036<br>043<br>065<br>175<br>175<br>213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATION - L<br>E= 100.0<br>A IS<br>A BAND<br>SPL<br>DB                                      |
|                                                                       | . Y= 130.<br>. Y= 130.<br>AZI FREQ.<br>190. 108. | OADING (RP<br>-1,48075-0<br>-1,75620-0                                         | -1.26233-0<br>-7.38869-0<br>-3.49540-0<br>-3.49540-0<br>-2.39245-0<br>-2.39548-0<br>-2.29948-0<br>-1.55324+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100. 217 | LOADING {RP<br>2.26731-0<br>2.41653-0<br>1.89875-0<br>1.03780-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.02419-0<br>1.02419-0<br>1.69235-0<br>1.44442-0<br>1.51274-0<br>3.35128-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,204<br>3,6013<br>3,256<br>3,256<br>2,256<br>1,757<br>1,737<br>1,737<br>1,737<br>1,737<br>1,737<br>1,737<br>1,737<br>1,737<br>1,737<br>1,737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NOISE SUMM<br>VORTEX NOISI<br>VE BAND DAT<br>NUMBER<br>OF<br>HARMONICS                    |
| 1150.0<br>1000.0<br>1000.0<br>0000.0<br>10000.0<br>10000.0<br>10000.0 |                                                  | RADIUS<br>4.204<br>4.013<br>3.688                                              | 3.256<br>2.757<br>2.236<br>1.737<br>1.737<br>1.736<br>1.306<br>.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5        | RADIUS<br>4.204<br>3.6688<br>3.2688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.236<br>2.236<br>1.737<br>1.737<br>1.739<br>980<br>.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HARMONIC<br>OVERALL 1<br>1/3-0CTAN<br>BAND<br>CENTER<br>FREQ. HZ                          |

Figure 36, --- Continued

Figure 36. --- Continued

MJNIMUM UNDETECTABLE Y= 212122, FT AT X= -75.0 FT

| •<br>•         | 5.       |             | •     | •     | •    | ••    | 1.   | 2.   | 5.   | 18.  | 69.         | 247. | 784. | 2039. | 4083. | 7004. | 212122. | 8266. | 7883. | 117829. | 7930. | 7268. | 7481. | 7171. | 7223. | 7056. | 6680.  | 6339.  | 5545.  | 4771.  | 3848.  | 2984.  | 2215.  | 1783.  | 1313.  | 975.   | 712.    |
|----------------|----------|-------------|-------|-------|------|-------|------|------|------|------|-------------|------|------|-------|-------|-------|---------|-------|-------|---------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| ö              |          | <b>.</b>    | •     | •     |      | ••    | ۲.   | • N  | 5.   | 18.  | <b>6</b> 9. | 247. | 784. | 2039. | 4083. | 7004. | 7895.   | 8266. | 7883. | 8300.   | 7930, | 7268. | 7481. | 7171. | 7223. | 7056. | 6680.  | 6339.  | 5545.  | 4771.  | 3848.  | 2984.  | 2215.  | 1783.  | 1313.  | 975.   | 712.    |
| 120.0          | 0.111    | 113.5       | 109.0 | 104.0 | 99.5 | 95.0  | 91.5 | 87.5 | 82.0 | 74.5 | 65.0        | 56.0 | 48.0 | 41.5  | 37.0  | 0.40  | 33.5    | 34.5  | 35,5  | 36.5    | 37.5  | 38.5  | 39.0  | 39.5  | 39.5  | 39.0  | 36.5   | 38.0   | 36.0   | 39.0   | 41.0   | 0.44   | 47.0   | 50.5   | 53.5   | 55.0   | 56.5    |
| 0°0            | 797      | 18.5        | 25.2  | 31.3  | 37.6 | 43.8  | 47.2 | 51.5 | 54.3 | 57.1 | 59.6        | 61.6 | 63.6 | 65.4  | 66.8  | 68.5  | 69.9    | 71.3  | 72.7  | 5.46    | 75.7  | 77.4  | 79.1  | 60.7  | 82.4  | 83.9  | 85.4   | 86.7   | 88.0   | 6.99   | 69.7   | 90.3   | 90.6   | 90.8   | 90.5   | 89.7   | 88.3    |
| 6•C            | 2.21     | 18.6        | 25.2  | 31,3  | 37.6 | 43.64 | 47.2 | 51.5 | 54.3 | 57.1 | 59.6        | 61.6 | 63.6 | 65.7  | 69.0  | 81.2  | 107.8   | 100.5 | 29.3  | 102.9   | 95.6  | 78.2  | 79.1  | 80.7  | 82.4  | 83.9  | 85.4   | 86.7   | 66.0   | 88.9   | 69.7   | £°06   | 90.6   | 90.8   | 90.5   | 89.7   | 86.3    |
| <b>-</b> , , , | <b>.</b> | 0           | G     | 0     | 0    | 0     | 9    | 0    | 0    | •    | 0           | 0    | 0    | 0     | 0     | 0     | 1       | •     | 9     | -       | 9     | 0     | 0     | 0     | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 9      | 0      | •      | 0      | Ģ       |
| 2.0            |          | <b>1</b> .0 | 0°#   | 5.0   | 6.3  | 8,0   | 10.0 | 12.5 | 16.0 | 20.0 | 25.0        | 31.5 | 0.04 | 50.0  | 63.0  | 80.0  | 100.0   | 125.0 | 160.0 | 200.0   | 250.0 | 315.0 | #00°0 | 500.0 | 630.0 | 800.0 | 1000.0 | 1250.0 | 1600.0 | 2000.0 | 2500.0 | 3150.0 | 4000.0 | 5000.0 | 6300.0 | 8000.0 | 10000.0 |

142

,

NO.F33615-70-C-1583 FOR AER0 PRCP. LAB ۳/۲ .00000 COMP.CP 03/4 AP.EFF. M.N. AP.EFF. EF.EFF. IND.EFF. HI/HO .893 .859 1.0000 PROPELLER THRUST= 225.20 .859 CONTRACT 1.0000 .1867 74.29 .15 74.14 .17 73.97 .059 .4758 .4758 .4758 .0068 .0068 .0068 .0108 .1218 -1.00 4 5107 .4095 .3080 .1260 .213 .1060 .0015 .589 .467 16.30 22.35 16.30 22.35 16.30 22.35 16.30 22.35 16.30 1.000 .000 -000 .000 -000 .000 -000 .000 -000 J LIMIT=99999.0010 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .862 .859 .1170 .2316 70.79 .110 .2554 .0193 .0123 .2419 .1242 .36 70.38 70.74 -.06 STANDARD UNDER 4,6961 MS= .1170 S3=-0. S4=-0. , 852 5.1030 I SAMPLE CASE 2 \* YORVAL DATA LOAD AND PHINT X Y LOCATIONS , 2 PROPS 2 LOAD MARWOWICS \* ROLLDFF , CALCULATE ABSORPTION , FARFIELD , V.N.3 8 LOAD MARWOWICS \* ROLLDFF , CALCULATE ABSORPTION , FARFIELD , V.N.3 8 LOAD MARWOWICS \* ROLLDFF , CALCULATE ABSORPTION , FARFIELD , V.N.3 9 SAMPLE PROPELLER CONFIG. B 4.0 213.8 538 11.25 176 -000 -000 40,99 42,48 43,29 CUMPUTERIZED PHOPELLER DESIGN TECHNIGUE PROGRAM #RITTEN BY HAMILTON .4095 59.59 59.59 57.13 57.13 57.13 57.13 57.13 57.13 577 51115 51115 5142 51115 5142 51115 5142 51388 51388 51388 51388 90.06 -.00 5.8218 .2914 .3990 .4585 .5266 53.59 54.966 59.906 50.908 50.908 .0131 .0131 .0131 .0131 .1504 .1504 80.00 -.00 6.9036 J C 2.0413 .00 -1.00 8.3277 -00 OMT= ALT. V-KNOTS TEMP REQ.CP 1500. 77.0 513. 4574 9.9653 21 13.6243 12.9675 11.6010 1.00 2.0413 THET34= 43.29 PSI= 1.000 -.000 1.000 .9892 .032 .1400 .240 .74 3.00 -6.00 X= H/H= B/D= DES CL= DELTA D= AIRFOIL= AIRFOIL= ACRIT= (CL A=0)= 2.00 2.00 HP PRPM 62.00 340. = 3 ENOISE= ÿ BHP 4

--- Continued

tgure 36.

HAMILICA SIA4JAAJ G.MOUTLH PHOSHAM DEGK 40. 6196 15

| UNITONAL TETT 77, NOTS TAS = 75, KUGT GALS : MACH NUMBER: 12, FIF- 451, FIF-      | LIGHT VELOCITYE 77<br>OTATIONAL TIP VELOC |          |                           |               |                          |                             |                         |                              |                 |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|---------------------------|---------------|--------------------------|-----------------------------|-------------------------|------------------------------|-----------------|------------------|
| <pre>1: 30.0.0 · 1= 1500. · 0151ANCEE 1330. F1 ANGLE 70. 7 F0. 7 MGLE 70. 7 F0. 7 MGLE 70. 7 F0. 7 MGLE 70. 7 MGLG 70. 7 MGLE 70. 7 MGLG 70. 7</pre> | The Contraction of the Second             | . KNOTS  | TAS = 75.                 | XHOTS CAS & 1 | MACH NUMBE<br>P MACH NUM | (R= .12 / B)<br> 6ER= .18 / | HELICAL TIP H           | HRUST= 226.  <br>ACH NUMBER= | LB , RPN<br>,21 | 10 <b>4</b> 0.   |
| MUNDER         H2         ASSORP         MOISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ARMONIC AZI FRED                          | ATMO     | ANCE= 1530.<br>S. LOADING | FT + ANGLE=   | 78.7 DEG<br>HARMONIC     | N WHEN HEARD<br>DETECTABLE  | , X= 484.4 ,<br>Minimup | DISTANCE= 1                  | 576 <b>.</b> FT | #HE* +OISE PRODU |
| 2         -1,         7,         -2,         2,         -1,         7,         -1,         7,         -1,         7,         -1,         7,         -1,         7,         -1,         7,         -1,         7,         -1,         7,         -1,         7,         -1,         7,         -1,         7,         -2,         7,         -1,         7,         -2,         7,         -1,         7,         -1,         7,         -2,         7,         -1,         7,         -2,         7,         -1,         7,         2,         7,         7,         7,         7,         7,         7,         7,         7,         7,         7,         7,         7,         7,         7,         7,         7,         7,         7,         7,         7,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,         11,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NUMBER HZ                                 | ABSO     | RP NOISE                  | JSION         | 40156                    | TONE NOISE                  | UNDETECTABLE            | ~                            |                 |                  |
| 3         -1         71         -2         26.7         26.7         39.           5         -1         14.5         -14.9         14.5         20.6         79.6           6         -1         14.5         -14.9         14.5         20.6         79.1           6         -1         14.5         -14.9         14.5         20.6         70.6         70.6           6         70.0         DB< UTH MAX Shi L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 -1, 47                                  |          | 2 32.8                    | * * *<br>* *  | 32.8<br>32.8             | 0.07<br>10.07               | 44.<br>421.             |                              |                 |                  |
| 5       -1.       39.       -3.       20.5       39.         4.000MUC MOISE SUMMATION - LOADING= 90.10 B / MICKNESS= 10.6 B / OVERALL MOISE= 40.5 DB       737.       737.         ARMONIC MOISE SUMMATION - LOADING= 90.1 DB / MICKNESS= 10.6 B / OVERALL MOISE= 40.5 DB       737.       740.5         AMOO       MARCE MOISE SUMMATION - LOADING= 90.1 DB / MICKNESS= 10.6 B / OVERALL MOISE= 40.5 DB       737.         AMOO       MARCE MOISE MOISE - FT       14.5       711.0.1         AMOO       SAL VORTEX MAXIAW       MINIMA WORTECTABLE       FFTTCAL DISTENCE - FT         AMOO       SAL       DAT       SAL       VORTEX MAXIAW         AMOO       SAL       DAT       SAL       VORTEX MAXIAW         AMOO       SAL       DAT       SAL       VORTEX MAXIAW         AMOO       SAL       DAT       DAT       DAT         AMOO       SAL       DAT       DAT       DAT         AMOO       SAL       DAT       DAT       DAT       DAT         AMOO       SAL       DAT       DAT       DAT       DAT       DAT         AMOO       DAT       DAT       DAT       DAT       DAT       DAT       DAT         2.3       DAT       DAT       DAT       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1- 2                                     |          | 2 26.7                    | -2-1          | 26.7                     | 32.3                        | 789.                    |                              |                 |                  |
| MARINIC         District Noise         Molice         Molice <t< td=""><td>5 -1, 116</td><td></td><td>20.0</td><td>-14.9</td><td>20.0<br/>14.5</td><td>8.02</td><td>893.<br/>737.</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 -1, 116                                 |          | 20.0                      | -14.9         | 20.0<br>14.5             | 8.02                        | 893.<br>737.            |                              |                 |                  |
| Default         Netter         No.         Default         No.         Netter         No.         Default         Default </td <td>ARMONIC NOISE SUMMA</td> <td>- NOIL</td> <td>LOADING= #0</td> <td>1 DB . THIC</td> <td>KNESS= 10</td> <td>.6 DB . OVE</td> <td>TALL HARMONIC P</td> <td>1.04 =3210V</td> <td>80</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ARMONIC NOISE SUMMA                       | - NOIL   | LOADING= #0               | 1 DB . THIC   | KNESS= 10                | .6 DB . OVE                 | TALL HARMONIC P         | 1.04 =3210V                  | 80              |                  |
| BIND         WARE         MAXIMUN         MAXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DVERALL VORTEX NOISE                      | 1 30.0   | DB WITH MAX               | SPL AT 136.   | . НZ , ТОТ               | AL OVERALL !                | 401SE= 40.5 DI          | n                            |                 |                  |
| CENTER         OF         SPL         DERADDAND         UNDETECTABLE         VERTICAL         DISTANCE         FT           1.4         0         -18.6         -18.6         120.0         11.1         1.1         1.1           2.3         0         -18.6         120.0         120.0         1.1         1.1         1.1           3.1         0         -18.6         120.0         120.0         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BAND NUMBER                               | BAND     | VORTEX                    | HAXIMUN       | MININUM                  | UNDE TECTABLE               |                         |                              |                 |                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CENTER OF                                 | 5        | BROADBAND                 | UNDETECTABLE  | VERTICAL                 | DISTANCE -                  | FT                      |                              |                 |                  |
| 2.5       0       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FREU. HZ HARMONICS                        |          |                           | SKUAUBANU UC  | VORIEA                   | UTAL NUISE                  |                         |                              |                 |                  |
| 25       -14.5       117.0       117.0       117.0         5.0       -12.3       -12.3       117.0       117.0       117.5         5.0       -12.3       -12.3       117.0       117.5       117.5         5.0       -5.7       95.7       -5.7       99.5       117.5         5.1       -5.7       99.5       113.5       113.5       117.5         5.1       -5.7       99.5       113.5       113.5       117.5         5.1       -5.7       99.5       113.5       113.5       111.5         5.1       -5.7       99.5       113.5       111.5       111.5         5.1       13.5       13.5       113.5       111.5       111.5         5.1       13.5       111.9       74.5       111.5       111.5         5.1       13.5       111.9       74.5       111.5       111.5         5.1       22.5       23.5       23.5       23.5       111.5       111.5         5.1       23.5       23.5       23.5       23.5       111.5       111.5         5.1       13.5       13.5       13.5       13.5       111.5         5.1       13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0                                       | 9.91-    | -16.6                     | 120.0         | •••                      | :-:                         |                         |                              |                 |                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5 0                                     | -14.5    | -14,5                     | 117.0         | 1.                       | 1.                          |                         |                              |                 |                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>0</b> ,1                               | -12.3    | -12.3                     | 113.5         | :.                       | <b>.</b>                    |                         |                              |                 |                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | -10.0    | -10.0                     | 104.0         |                          | • -                         |                         |                              |                 |                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |          |                           | 1.00          |                          | • •                         |                         |                              |                 |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |          | - <b>-</b>                | 95.0          | • •                      | :                           |                         |                              |                 |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0 0                                    | -1.2     | <b>-1.</b> 3              | 91.5          | 1.                       |                             |                         |                              |                 |                  |
| 25.0       1       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0       25.0 <t< td=""><td>12.5<br/></td><td></td><td></td><td>67.5<br/></td><td>•</td><td><b>.</b></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.5<br>                                  |          |                           | 67.5<br>      | •                        | <b>.</b>                    |                         |                              |                 |                  |
| 25.0       1,4         31.5       0         31.5       0         31.5       0         50.0       1         50.0       1         50.0       1         50.0       1         50.0       1         50.0       1         50.0       1         50.0       1         50.0       1         50.0       1         50.0       1         51.0       1         52.0       161         53.5       53.5         53.5       53.5         53.5       53.5         50.0       23.5         50.0       23.5         50.0       23.5         50.0       23.5         50.0       23.5         50.0       23.5         50.0       10.5         50.0       10.5         50.0       10.5         50.0       10.5         50.0       10.5         50.0       10.5         50.0       10.5         50.0       10.5         50.0       10.5         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0                                      | 28.5     | 2 C                       | 74.5          | <br>                     |                             |                         |                              |                 |                  |
| 31.5       0       14.6       7       7       7         50.0       1       22.8       14.0       40.0       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5       23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.0 1                                    | 38.9     | 4.4                       | 65.0          |                          | • # #                       |                         |                              |                 |                  |
| 50.0       1       32.8       14.0       41.5       63.4       42.1         63.0       1       25.0       16.1       35.5       16.1       789         100.0       1       25.3       16.1       35.5       16.1       789         125.0       1       21.2       23.9       30.5       16.1       789         125.0       1       23.5       20.3       39.0       495       591       591         125.0       0       21.2       21.2       23.5       591       591       797         125.0       0       0       20.1       29.5       591       591       591       797         200.0       0       18.6       31.5       29.5       594       524       524       524         200.0       0       18.6       31.5       295       395       524       524         200.0       0       14.9       31.5       31.5       270       270       270         200.0       0       14.9       31.5       31.5       176       176       176         10.0       0       11.6       176       176       176       176       164 <td><b>J1.</b>5 0</td> <td>8°41</td> <td>9°6</td> <td></td> <td>7.</td> <td>7</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>J1.</b> 5 0                            | 8°41     | 9°6                       |               | 7.                       | 7                           |                         |                              |                 |                  |
| 63.0       1       25.0       16.1       35.5       161.       789.         80.0       1       23.5       18.4       32.0       313.       313.         125.0       1       23.5       18.4       32.0       313.       313.         125.0       1       23.5       20.3       32.0       313.       313.         125.0       1       23.5       21.2       23.3       313.       313.         125.0       1       23.5       59.1       591.       591.       591.         200.0       0       20.1       29.5       593.       594.       524.       594.         250.0       0       18.6       31.5       29.5       591.       591.       591.         250.0       0       18.6       31.5       29.5       594.       524.       524.         250.0       0       18.6       31.5       295.       295.       295.       296.         315.0       0       16.6       31.5       270.       220.       220.       220.         10.0       0       11.7       32.5       14.9       35.5       149.       164.         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.0                                      | 32.8     | 14.0                      | 41.5          | 63.                      | 421.                        |                         |                              |                 |                  |
| 00.0 $23.9$ $18.4$ $32.0$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $313.$ $324.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $524.$ $526.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$ $220.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63.0 1                                    | 25.0     | 16.1                      | 35.5          | 161.                     | 789.                        |                         |                              |                 |                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.0                                     | 23.5     | 20.5                      | 30.05         | 010<br>1961              | 505.<br>895.                |                         |                              |                 |                  |
| 160.0       0       21.2       21.2       29.5       591.       591.       591.         200.0       0       20.1       20.1       29.5       524.       524.         250.0       0       18.5       30.5       524.       524.       524.         315.0       0       18.6       31.5       395.       395.       595.         315.0       0       18.6       31.5       295.       395.       524.         \$15.0       0       18.6       31.5       395.       295.       595.         \$150.0       0       18.6       31.5       295.       296.       296.         \$00.0       0       11.7       32.5       270.       220.       220.         \$00.0       0       11.7       32.5       144.       164.       146.         \$00.0       0       10.2       32.5       146.       146.       146.         \$00.0       0       10.2       32.5       146.       146.       146.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125.0                                     | 22.1     | 21.3                      | 29.0          | 623;                     | 737.                        |                         |                              |                 |                  |
| 200.0       0       20.1       29.5       324.       324.       324.         315.0       0       18.5       30.5       395.       395.       395.         315.0       0       18.6       31.5       395.       395.       395.         \$15.0       0       18.6       31.5       395.       395.       395.         \$15.0       0       18.6       31.5       395.       296.       296.         \$00.0       0       14.9       31.5       270.       220.       220.         \$00.0       0       11.7       32.5       164.       164.       164.         \$00.0       0       10.2       32.5       33.5       146.       164.       164.         \$00.0       0       10.2       32.5       33.5       146.       164.       166.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 160.0                                     | 21.2     | 21.2                      | 29.5          | 591.                     | 591.                        |                         |                              |                 |                  |
| 530.0       0       16.9       30.5       295.       295.       295.         500.0       0       14.9       31.5       296.       296.       296.         500.0       0       14.9       32.5       220.       220.         500.0       0       13.2       33.0       176.       176.         630.0       0       11.7       32.5       164.       164.         100.0       0       10.2       10.2       32.5       146.       146.         1000.0       0       6.6       33.5       116.       146.       146.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200.6                                     | 20.1     | 20.1                      | 29.5          |                          | 524.                        |                         |                              |                 |                  |
| •00.0         0         14.9         14.9         32.5         22.0         22.0           •00.0         0         13.2         13.2         33.0         176.         176.           •00.0         0         11.7         32.5         33.0         176.         176.           •00.0         0         11.7         32.5         33.0         176.         176.           •00.0         0         11.7         32.5         146.         146.         146.           •00.0         0         0.2         10.2         32.5         146.         146.           •000.0         0         36.6         35.5         146.         146.         146.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | 16.0     | 16.3                      |               | - 40.<br>246.            | - 740 -                     |                         |                              |                 |                  |
| 500.0         0         13.2         13.2         33.0         176.         176.           639.0         0         11.7         32.5         164.         164.         164.           600.0         0         10.2         10.2         32.5         146.         146.           1000.0         0         8.6         8.6         33.5         118.         118.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | 14.9     | 14.9                      | 32.5          | 220.                     | 220.                        |                         |                              |                 |                  |
| <b>630.0 0 11.7 11.7 32.5 164. 164.</b><br><b>800.0 0 10.2 10.2 32.5 146. 146.</b><br>1000.0 0 <b>8.6 8.6 33.5 116. 118.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500.0 0                                   | 13.2     | 13.2                      | 33.0          | 176.                     | 176.                        |                         |                              |                 |                  |
| 000.0 0 0.6 8.6 33.5 116. 118.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | 11.7     | 11.7                      | 32,5          | 164.                     | 164.                        |                         |                              |                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | 7.01     | 7 ° 7                     |               | 110.                     | 118.                        |                         |                              |                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1250.0 0                                  | 6.9      | 6°9                       | 37.6          | 72.                      | 72.                         |                         |                              |                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1600.0 0                                  | 8°.4     | 4°9                       | 42°0          | .9<br>?                  | 36.                         |                         |                              |                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | 5•2<br>5 | <b>.</b> .                | 41.5<br>64 6  | 17.                      | • •                         |                         |                              |                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3150.0                                    | 10       | <br>                      | 0.65          | <br>D #                  | • •<br>• <del>•</del>       |                         |                              |                 |                  |
| 4000,0 0 -7,3 -7,3 63,0 2, 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4000.0                                    | -7.3     | -7.3                      | 63.0          | 5.                       | 2.                          |                         |                              |                 |                  |
| 5000.0 0 -10.0 -10.0 65.0 2. 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5000°0 0                                  | -10.0    | -10.0                     | 65.0          | <b>۲</b> •               | 2.                          |                         |                              |                 |                  |
| Figure 36 Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |          |                           |               |                          |                             |                         |                              |                 |                  |

| All and the second states         JSU, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>RAR<br>RAPI<br>RAPI<br>RAP<br>RAP<br>RAP<br>RAP<br>RAP<br>RAP<br>RAP<br>RAP<br>RAP<br>RAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |             |                        |                      |                   |                          |                             |                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|------------------------|----------------------|-------------------|--------------------------|-----------------------------|--------------------------|
| AMORE         ALI         FEG.         ATOMES         -ADOLE         ATTOMES         -ADOLE         -ADOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A 010000000<br>1000000<br>100000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>1000000 | Y= 1540.     | • DISTA     | ANCE= 15004            | FT + ANGLEE          | 90°0 DE           | S WHEN HEARD             | • X= 176.7 • CISTANCE= 151  | 0. FT #HEN +CISE PROJUCE |
| 2         -1         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2         -2 </td <td></td> <td>VZI FREG</td> <td>a. ATMOS</td> <td>S. LOADING<br/>PP NOISE</td> <td>THICKNESS +<br/>NOISE</td> <td>ARMONIC<br/>NOTSE</td> <td>DETECTABLE<br/>TONE NOISE</td> <td>MINIMUM<br/>HNOFTECTEDIE V</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VZI FREG     | a. ATMOS    | S. LOADING<br>PP NOISE | THICKNESS +<br>NOISE | ARMONIC<br>NOTSE  | DETECTABLE<br>TONE NOISE | MINIMUM<br>HNOFTECTEDIE V   |                          |
| 2         -1.         6.5         -2.3         3.5.5         3.0.6         372.           ARMALL NOTES         M.1         1.3         -1.1.         3.0.         3.0.         3.0.           ARMALL NOTES         M.1         1.3         -1.1.         3.0.         3.0.         3.0.           ARMALL NOTES         M.1         1.1.         2.5.         2.0.3         3.0.         0.0.1           ARMALL NOTES         M.1         M.1         2.5.         3.0.         0.0.1         0.0.1           ARMALL NOTES         M.1         M.1         1.1.1.         0.0.1         0.0.1         0.0.1           ARMALL NOTES         M.1         M.1         M.1         0.0.1         0.0.1         0.0.1           ARMALL NOTES         M.1         M.1         M.1         M.1         0.0.1         0.0.1           ARMALL NOTES         M.1 <t< td=""><td>N 17 :</td><td>0.</td><td></td><td>1 38.6</td><td>9.9</td><td>38.6</td><td>70.1</td><td>010011001A000</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N 17 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.           |             | 1 38.6                 | 9.9                  | 38.6              | 70.1                     | 010011001A000               |                          |
| New Control         No.         No.         No.         No.         No.           Administry of the Net Control         No.         No.         No.         No.         No.           Administry of the Net Control         No.         No.         No.         No.         No.         No.           Administry of the Net Control         No.         No.         No.         No.         No.         No.         No.           Administry of the Net Control         No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1. 4        | 5.<br>      | 2 32.5                 | 3.8                  | 32.5              | 9.44                     | 372.                        |                          |
| 3       11       152       101       101       101         3       11       152       101       101       101       101         3       11       152       101       101       101       101       101         3       11       101       110       111       101       101       101         3       101       101       101       101       101       101       101         3       101       101       101       101       101       101       101         3       101       101       101       101       101       101       101         3       101       101       101       101       101       101       101       101         3       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1-          |             | 26.5                   | -2.3                 | 26.5              | 33.0                     | 708.                        |                          |
| Memoric NOTE Summarics         Symetrics         Table III. DB         DFRALL MADORIC NOTE         39.6 DB         TATCRNESS         11.1 DB         OFRALL MADORIC NOTE         39.6 DB         TATCRNESS         11.1 DB         OFRALL MADORIC NOTE         39.6 DB         TATCRNESS         11.1 DB         OFRALL MADORIC NOTE         39.6 DB         TATCRNESS         11.1 DB         O FRALL MADORIC NOTE         70.1 DB         70.1 DB <th70.1 db<="" th=""> <th70.1 db<="" th=""> <th70.1 <="" db<="" td=""><td>* vî</td><td>-1. 115</td><td></td><td>5 50°3</td><td>-14.4<br/>-14.4</td><td>20.5</td><td>23.1</td><td>817.<br/>681.</td><td></td></th70.1></th70.1></th70.1>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * vî                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1. 115      |             | 5 50°3                 | -14.4<br>-14.4       | 20.5              | 23.1                     | 817.<br>681.                |                          |
| CENTE         OSCIAL         DOTES         GLAL         OFFEL         GLAL         OFFEL         GLAL         OFFEL         GLAL         OFFEL         GLAL         OTES         GLAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ARMONIC NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INHUS 351    | ITION - L   | OADING= 35             | P.8 DB . THICK       | INESS= 1          | t.1 nm . OVEF            | NALL HARMONIC NOISE 39.8 AB |                          |
| ANGUINT RADIA         MATINA         MATINA         MATINA         MATINA           ANGUINT R         PARACIAL F         PARACIAL F         PARACIAL F         PARACIAL F           11         HUNCIS         PARACIAL F         PARACIAL F         PARACIAL F         PARACIAL F           11         HUNCIS         PARACIAL F         PARACIAL F         PARACIAL F         PARACIAL F           11         HUNCIS         PARACIAL F         PARACIAL F         PARACIAL F         PARACIAL F           12         HUNCIS         PARACIAL F         PARACIAL F         PARACIAL F         PARACIAL F           11         HUNCIS         PARACIAL F         PARACIAL F         PARACIAL F         PARACIAL F           11         HUNCIS         PARACIAL F         PARACIAL F         PARACIAL F         PARACIAL F           11         HUNCIS         PARACIAL F         PARACIAL F         PARACIAL F         PARACIAL F           11         HUNCIS         PARACIAL F         PARACIAL F         PARACIAL F         PARACIAL F           11         HUNCIS         PARACIAL F         PARACIAL F         PARACIAL F         PARACIAL F           11         HUNCIS         PARACIAL F         PARACIAL F         PARACIAL F         PARACIAL F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VERALL VOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TEX NOISE    | 1 30.3      | DB WITH WAN            | ( SPL AT 133.        | HZ . TO           | TAL OVERALL N            | IOISE= 40.3 DB              |                          |
| Control         Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /3-OCTAVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BAND DAT     | IS<br>Strip |                        |                      |                   |                          |                             |                          |
| REF         L         MARMALIS         Display and the second states         Display and the second states <thdisplay <="" and="" second="" states<="" td="" the=""><td>CENTER</td><td>NURBER<br/>OF</td><td></td><td>BROADBAND</td><td>UNDETECTARI F</td><td>MUMINIMUM NUMINIM</td><td>UNDETECIABLE</td><td>51</td><td></td></thdisplay>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NURBER<br>OF |             | BROADBAND              | UNDETECTARI F        | MUMINIMUM NUMINIM | UNDETECIABLE             | 51                          |                          |
| 1.16       -1.47       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46       -1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REG. HZ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARMONICS     | 80          | SPL - 08               | BROADBAND DB         | VORTEX            | TOTAL NOISE              |                             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •            | -16,2       | -18.2                  | 121.5                |                   | 1.                       |                             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.0<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0            | -16.1       | -16.1                  | 120.0                | 1.                | ١.                       |                             |                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0            | -14.0       | -14.0                  | 117.0                |                   | 1.                       |                             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •            | -11.8       | -11.8                  | 113,5                | -                 | •                        |                             |                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 0          |             |                        | 0.601                | -                 |                          |                             |                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - C          | - 4         | * -<br>-<br>-          |                      | •                 | •                        |                             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             |                        |                      | -                 | -                        |                             |                          |
| $ \begin{bmatrix} 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5 \\ 12.5$ | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • a          |             |                        | 91.5                 | 52                | 52                       |                             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0            | 1.9         |                        | 07.5                 |                   |                          |                             |                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0            | 8.7         | 3.7                    | 82.0                 |                   | •                        |                             |                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0            | 31,9        | 5,8                    | 74.5                 | 1.                | 1.                       |                             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 0          | 38.6        | 0.0                    | 62°0                 | <b>.</b>          | 39 <b>.</b>              |                             |                          |
| 65.0       1       25.2       14.5       44.5       45.5       172       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       375       376       376       376       376       376       376       376       376       376       376       376       376       376       376       376       376       376       376       376       376       376       376       376       376       376       376 <t< td=""><td></td><td>• •</td><td>0.01</td><td>10.6</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • •          | 0.01        | 10.6                   |                      |                   |                          |                             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) -4         | 32.6        | 14.5                   | <b>#1</b> .5         |                   | 372.                     |                             |                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -            | 26.9        | 16.7                   | 35.5                 | 172.              | 708.                     |                             |                          |
| 100.0       1 $22.4$ $20.6$ $52.4$ $51.7$ $29.0$ $55.4$ $51.7$ $29.5$ $51.7$ $29.5$ $51.7$ $29.5$ $51.7$ $29.5$ $51.7$ $29.5$ $51.7$ $29.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $51.5$ $52.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$ $22.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0            | 22.2        | 18.9                   | 32.0                 | 336.              | 336.                     |                             |                          |
| 1600       21:5       29:5       500         250.0       0       17:0       17:0       31:5       29:5       500         910.0       0       17:0       17:0       31:5       29:5       500       600         910.0       0       17:0       17:0       31:5       29:5       535       535       535         500.0       0       17:0       31:5       20:5       32:5       535       535       535         500.0       0       17:0       31:5       32:5       325       535       535       535         500.0       0       12:1       12:1       31:0       32:5       225       225       225         500.0       0       10:5       32:5       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1       12:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 1-         | 23.7        | 20.8                   | 30.0                 | 524               | 817.                     |                             |                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 C          |             | 21.5                   | 5.00                 | . 100<br>119      | - 190<br>610-            |                             |                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 0          | 20.3        | 20.3                   | 29.5                 | 535.              | 535.                     |                             |                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ٥            | 18.7        | 18.7                   | 30.5                 | +0+               | . +0+                    |                             |                          |
| $\phi 000,0$ 0       15.2       32.5       225.       225.       225. $500.0$ 0       12.4       33.6       160.       180. $1250.0$ 0       12.4       33.5       160.       180. $1250.0$ 0       9.0       33.5       151.       151.       151. $1250.0$ 0       7.3       37.0       74.       74.       74. $1250.0$ 0       3.7       121.       121.       121.       121. $1250.0$ 0       7.3       37.0       74.       74.       74. $2500.0$ 0       5.2       5.2       180.       180.       180. $2500.0$ 0       5.2       5.2       121.       121.       121. $2500.0$ 0       74.       74.       74.       74.       74. $2500.0$ 0       -2.6       5.2       5.2       2.2       5.2       5.2 $2500.0$ 0       -2.6       5.2       18.       18.       4.       4. $2500.0$ 0       -2.6       5.0       4.       4.       4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 315.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •            | 17.0        | 17.0                   | 31.5                 | 302.              | 302.                     |                             |                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400°0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0            | 15.2        | 15.2                   | 32.5                 | 225.              | 225.                     |                             |                          |
| 10000       0       10.5       32.5       151       151       151         1260.0       0       7.3       7.3       37.0       74       74         1260.0       0       5.2       42.0       37.0       74       74         1260.0       0       5.2       42.0       37.0       74       74         1260.0       0       5.2       42.0       37       37       37         1260.0       0       5.2       42.0       37       37       37         1500.0       0       -2.6       5.2       42.0       37       37         1500.0       0       -2.6       5.5       53.0       10       4         1500.0       0       -2.6       53.0       10       4       4         5000.0       0       -2.6       53.0       10       4       4         5000.0       0       -2.6       50.0       1       1       1         5000.0       0       -2.6       53.0       2       2       2       2       2         5000.0       0       -2.6       50.0       2       2       2       2       2 <td< td=""><td>0.002</td><td>• •</td><td>3.01</td><td>3 0 1</td><td>0,00</td><td>180.</td><td>180.</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •          | 3.01        | 3 0 1                  | 0,00                 | 180.              | 180.                     |                             |                          |
| 1250.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       9.0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 7           |                        |                      | 100.              | 100.                     |                             |                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             |                        |                      | 101               | 101                      |                             |                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • c          |             |                        | 37.0                 | 74.               | 74.                      |                             |                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1600.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0            | 5.2         | 5.2                    | 42.0                 | 37.               | 37                       |                             |                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 0.0         | 3.0                    | 47.5                 | 10.               | 18.                      |                             |                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0            | <b>.</b>    | S.                     | 53.5                 | 8.                | 8.                       |                             |                          |
| 4000.0       0 $-6.5$ $-6.5$ $63.0$ 2.       2. $5000.0$ 0 $-9.1$ $65.0$ 2.       2.       2. $6000.0$ 0 $-14.2$ $66.5$ 1.       1.       1. $6000.0$ 0 $-29.4$ $-29.4$ $69.0$ 1.       1. $0000.0$ 0 $-29.4$ $-29.4$ $69.0$ 1.       1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3150.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0            | -2.6        | -2.6                   | 59.0                 |                   | #                        |                             |                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0            | -6.5        | -6.5<br>               | 63.0                 | s.                | s.                       |                             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0            |             | -9.1                   | 65,0                 | <b>~</b>          | •<br>•                   |                             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50           |             |                        | 00°.5                |                   | <b>.</b>                 |                             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>,</b>     | 9 90 -      |                        |                      | -                 | • -                      |                             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5            | + • • • •   |                        |                      | :                 | •7                       |                             |                          |
| INTWOM UNUELECTABLE TE BIT, FT AT . O FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INIMUM UND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ETECTABLE    | . Y= 8      | 317. FT AT A           | (= .0 FT             |                   |                          |                             |                          |

|              | 4 = 1 = 1     | 540<br>FREQ.     | UISTANCI<br>ATMOS.   | E= 1530.<br>LOACI' | THICKNESS    | 101.1 DEG<br>-ARVONIC                                                   | DETECTABLE   | : + XE -123.9 . CISTANCEE 1505. FT WMEN MOISE PRODUCE |
|--------------|---------------|------------------|----------------------|--------------------|--------------|-------------------------------------------------------------------------|--------------|-------------------------------------------------------|
| MBER         |               | 24               | ABSORP               | 1401SE             | NOISE        | NOISE                                                                   | TONE 101SE   | UNDETECTABLE Y                                        |
| -4           | <b>.</b>      | <b>5</b> 5-      |                      | 36.2               | 9.6<br>,     | 38.2                                                                    | 70.9         |                                                       |
| <b>N</b> I I | ;             | 4<br>1<br>1<br>1 | N (                  | 32.1               |              | 1.50                                                                    |              | JCJ.                                                  |
| n :          |               | •                | 1                    | 1000               |              |                                                                         | 94.9         | 736.                                                  |
| # .n         | ;-            | 112.             |                      | 13.9               | -15.7        | 0.04<br>0.01                                                            | 21.6         | 621.                                                  |
|              |               |                  |                      |                    |              | 0<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1 |              | test usbunktfri∩tSer 30 4 na                          |
| NERALL VO    | RTEK X        | UNER I           | 00 - LOA.<br>30.5 DB | DIRGE SY           | SPL AT 130   | HZ . 101                                                                | AL OVERALL   |                                                       |
| /3-0CTAVE    | BAND          | DATA IS          | 5                    |                    |              |                                                                         |              |                                                       |
| BAND         | NUMBE<br>O    | œ,               | BAND V               | ORTEX              | MAXIMUM      | NUMINIM                                                                 | UNDETECIABL  |                                                       |
| LENICK       |               |                  |                      |                    | BROADBAND DR | VERTEX                                                                  | TOTAL NOISE  |                                                       |
| 1-6-         |               |                  | 12.0                 |                    | 121.5        | 1.                                                                      | 1.           |                                                       |
| 2.0          | • •           | ĩ                | 15.6                 | -15.6              | 120.0        |                                                                         | .0           |                                                       |
| 2.5          | • •           | ĩ                | 13.5                 | -13,5              | 117.0        | ••                                                                      | 0.           |                                                       |
| 3.1          | 0             | •                | 11.3                 | -11.3              | 113.5        | 1.                                                                      |              |                                                       |
| 0.4          | 0             |                  | -9.0                 | 0.0-               | 109.0        |                                                                         |              |                                                       |
| 5.0          | 9             | -                | 6 9 I                | 6 I<br>9 I         | 104.0        |                                                                         | •••••        |                                                       |
| ю.<br>9      | 0 0           |                  |                      |                    |              |                                                                         |              |                                                       |
|              | <del>,</del>  | -                |                      |                    |              |                                                                         | 5 e          |                                                       |
| 10.01        | <b>&gt;</b> c |                  |                      |                    | 1. TA        |                                                                         |              |                                                       |
|              | <b>,</b> c    |                  |                      |                    | 82.0         |                                                                         | •            |                                                       |
| 20.0         | • •           | ~ •              | 35.4                 | 6.3                | 74.5         | -                                                                       | 1.           |                                                       |
| 25.0         |               |                  | 36.6                 | 8.4                | 65.0         | 2.                                                                      |              |                                                       |
| 31.5         | •             |                  | 13.0                 | 10.6               | 56.0         | 8.                                                                      | <b>8</b>     |                                                       |
| 40°0         | 0             |                  | 29.4                 | 12.9               | 5°0°         | 26.                                                                     | 26.          |                                                       |
| 20.0         | -             |                  | 30.6                 | 15.0               | 41°5         | .1.                                                                     | 323.         |                                                       |
| 0.00         | -             | - •              | 80°0                 | 1.11               |              | 101.                                                                    | 353.         |                                                       |
|              |               |                  |                      | 0.10               |              | 5.67.                                                                   | 736.         |                                                       |
| 125.0        | -             |                  | 22.4                 | 21.9               | 29.0         | 673.                                                                    | 673.         |                                                       |
| 160.0        | • 0           |                  | 23.7                 | 21.7               | 29.5         | 623.                                                                    | 623.         |                                                       |
| 200.0        | • •           |                  | 20.4                 | 20.4               | 29.5         | 540.                                                                    | 540.         |                                                       |
| 250.0        | 0             |                  | 18.8                 | 18.8               | 30.5         | 408.                                                                    | - 90a        |                                                       |
| 315.0        | 0             |                  | 17.1                 | 17.1               | 31,5         | 305 <b>.</b><br>225                                                     | 500.<br>200. |                                                       |
|              | <b>&gt;</b> ( |                  |                      |                    |              |                                                                         | . 101        |                                                       |
|              |               |                  | 1.01                 | 10.1               | 12.5         | 171.                                                                    | 171.         |                                                       |
| 000          | <b>o</b>      |                  | 10.7                 | 10.7               | 32.5         | 153.                                                                    | 153.         |                                                       |
| 1000.0       | 0             |                  | 9.6                  | 9.2                | 33,5         | 123.                                                                    | 123.         |                                                       |
| 1250.0       | 0             |                  | 7.5                  | 7.5                | 37.0         | 75.                                                                     | 75.          |                                                       |
| 1600.0       | 0             |                  | 5.4                  | 5.4                | 42.0         | <b>38.</b>                                                              | 36.          |                                                       |
| 2000.0       | •             |                  | 3.2                  | 2.5                | 5°24         | 18.                                                                     | 18.          |                                                       |
| 2500.0       | 0             |                  |                      |                    | 50°5         | <b>0</b> , 2                                                            | •<br>•       |                                                       |
| 0.000        | •             |                  | * • ×                |                    |              | •                                                                       |              |                                                       |
|              | •             |                  |                      |                    | 65.0         |                                                                         | 2.           |                                                       |
| 6300.0       | <b>,</b> a    | Ĩ                | 0.41                 | -14.0              | 66.5         | -                                                                       |              |                                                       |
| 8000.0       | 0             | ĩ                | 20.7                 | -20.7              | 68.0         | 1.                                                                      |              |                                                       |
| 0.0000       | •             | ĩ                | 29.2                 | -29.2              | 69.0         | 1.                                                                      | 1.           |                                                       |
| NO NOWINI    | DETECT        | ABLE Y:          | = 736                | . FT AT X          | (= -300.0 FT |                                                                         |              |                                                       |
|              |               |                  |                      |                    |              |                                                                         |              |                                                       |

Figure 36. --- Continued

146

,

| 14       |
|----------|
| 6190     |
| 202      |
| DECK     |
| PANGHAM  |
| COMPUTER |
| STANUAPL |
| MAMILIUN |

I SAMPLE CASE 3 , DETECTABILITY FLYBY , THRUST INPUT 2

CLI DIA. S.CO.P.REC.SHROUD A L BLADES

| .000  | £68 <b>.</b> | , 859      | 1.000  | .1170         | .453<br>785<br>.861<br>.859<br>.859 | 6 42,91<br>6 43,25<br>6 43,25<br>7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 192<br>191<br>191<br>192<br>192 |           |               |                      |               |             |                  |
|-------|--------------|------------|--------|---------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------|---------------|----------------------|---------------|-------------|------------------|
| 9H/IH | IND.EFT.     | EF.EFF.    | F٦     | 7 <b>2°</b> N | AP.EFF                              | CT 03/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COMP.                           | J 2.041   | REG.CT . 1924 | 0TS TEMP<br>7.0 513. | r. v-kn       | PRPM AL     | 1HRUST<br>225.00 |
|       |              | 1.0000     | 1.0000 | 1.3000        | 1,0000                              | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00001                           | 1.0000    | 1.0000        | 1.0000               | 1,0000        | 99999.0010  | U LIMIT=         |
|       |              | -*000      | -,000  | ••600         | -,000                               | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000                             | 000 -     |               | 000                  | 000           |             |                  |
|       |              | -,000      | 000    | -,000         | 000                                 | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 000                           | - 000     | 000 -         | - 000                | 000           |             |                  |
|       |              | <b>.00</b> | -,000  | 000           | 000                                 | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000                             | - 000     | -,000         | 000                  | 000           |             |                  |
|       |              | 000        | - 600  | - 000         | - 000                               | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000 -                           | - 000     | 000           | 000                  | - 000         |             |                  |
|       |              | - 000      | 000    | - 000         | - 000                               | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 000                           | - 000     | 000           | - 000                | - 000         |             |                  |
|       |              |            | 000    | 000           | 000                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 000                             | 000       |               | 000.                 | 000.          |             |                  |
|       |              | 1,000      | .000   | 000.000       | .00015                              | 50,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-000°                          | .000      | 000           | 10.000               | 1.006         |             |                  |
|       |              | -,090      | 000    | 000           | 000                                 | 000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -,000                           | - 000     | 000           | 000 -                | 000           |             |                  |
|       |              | 000        | 000    |               | 000.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | 000       | 000           | 000                  | 000.          | 10CL ASU -  |                  |
|       |              |            |        | 000           | 000                                 | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,000                           | 1,000     | 000 Í         | 1.000                | 1,000         | MCRIT=      |                  |
|       |              |            |        | 'n            | ~ .                                 | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | 4         | . 1.          | 1.                   |               | AIRFOILE    |                  |
|       |              | 31.00      | 27.50  | 22.30         | 16.30                               | 10.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07.1                            | 70        | -4.30         | -6.40                | -7.20         | DELTA 0=    |                  |
|       |              | .160       | .335   | -95°          | .589                                | .672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,676                            | .627      | ,525          | .390                 | .240          | DES_CL=     |                  |
|       |              | .0400      | .0560  | .0815         | .1060                               | .1235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .1341                           | .1400     | 1420          | 1422                 | .1400         | 8/0=        |                  |
|       |              | 1.000      | 540    | .213          | .120                                | .061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .062                            | .050      | 140           | .035                 | .032          | H/B=        |                  |
|       |              | .1867      | .2316  | .3080         | , 4095                              | .5266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .6493                           | . 7665    | . 6679        | 5443                 | <b>.</b> 9892 | x=          |                  |
|       |              |            |        |               | • • •                               | . 000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 116                           | 535 11.25 | 213,8         | 8 4.0                | CONFIS.       | E PROPELLER | 3 SAMPL          |

CUMPUTERIZED PROPELLER DESIGN TECHNIQUE PROGRAM WRITTEN BY MAMILTON STANDARD UNDER CONTRACT NO.F33615-70-C+1583 FOR AERO PROP. LAB

F/H

.00000

61,94 1.000

PROPELLER BHP=

| -1.00                     |
|---------------------------|
| - 00<br>- 00              |
| 8.00<br>9.00<br>-00       |
| 1 - 00<br>- 1 - 00<br>- 1 |
|                           |
| .74<br>.00<br>1.43        |
| 74<br>00                  |
| .74<br>1.00               |
| 74                        |
| 14<br>1.00<br>.00         |
| enolse=                   |

NIGHTTIME JUNGLE 1. PROPELLER(S) , VORTEX NOISE OPTION# 0. , DETECTABILITY OPTION= 1 Noise in ob re .0002 microbar

STANDARU VALUES OF ATMOSPHEPIC ABSORPTION (DB/1000FT) AT 70PCT MUMIDITY \*77DEG F ARE .003 .004 .005 .004 .005 .007 .009 .010 .014 .020 .02 .03 .03 .04 .05 .07 .09 .11 .14 .17 .22 .28 .35 .44 .55 .11 .87 1.11 1.41 1.78 2.22 2.87 3.65 4.70 5.90 7.60 8.60 11.10 14.90 20.40

FLIGHT VELUCITY= 77, KNOTS TAS = 75, KNOTS CAS + MAC4 NUMBER= .12 + BHP= 62,0 + THPUST= 225, LF + RPM= 340, Rutational tip velocity= 200.3 FPS + Rotational tip Mach Number= .18 + Helical tip Mach Number= .21

X1 .0 .Y1 1500. DISTANCEX 1500. FT .ANGLEM 90.0 DEG WHEN HEARD , XX 176.7 . DISTANCEX 1510. FT WHEN NOISE PRODUCED HARMONIC AZI F4EQ. ATWOS. LOADING THICKNESS HARWONIC DETECTABLE MINIMUM NUMBER HZ ABSORP NOISE NOISE NOISE UNDETECTABLE Y 2 0. 46. -11 17.9 6.9 18.1 70.1 4. 3 0. 69. -2 -89.3 -86.3 -84.7 33.0 0.

--- Cuntinued Figure 36,

|                               |                             |                                                       |       |            |                     |       |               |      |          |            |       |              |       |       |                                                                                 |       |       |                  |       |             |            |       |             |        |                        |        |                                                                                                  |              |                   |              | JEN + OTSE DROUICED |             |              |        |                  |         |                    |            |
|-------------------------------|-----------------------------|-------------------------------------------------------|-------|------------|---------------------|-------|---------------|------|----------|------------|-------|--------------|-------|-------|---------------------------------------------------------------------------------|-------|-------|------------------|-------|-------------|------------|-------|-------------|--------|------------------------|--------|--------------------------------------------------------------------------------------------------|--------------|-------------------|--------------|---------------------|-------------|--------------|--------|------------------|---------|--------------------|------------|
|                               | 9*0 CB                      |                                                       |       |            |                     |       |               |      |          |            |       |              |       |       |                                                                                 |       |       |                  |       |             |            |       |             |        |                        |        |                                                                                                  |              |                   |              | : 1505. FT #        |             |              |        |                  |         |                    |            |
|                               | ALC NOISEE 16<br>47 DB      |                                                       |       |            |                     |       |               |      |          |            |       |              |       |       |                                                                                 |       |       |                  |       |             |            |       |             |        |                        |        |                                                                                                  |              |                   |              | -9 DISTANCE         |             | BLE T        |        |                  |         |                    |            |
|                               | ERALL HARMC<br>. NOISE= 53  | ۲ الد<br>۲ ا                                          |       |            |                     |       |               |      |          |            |       |              |       |       |                                                                                 |       |       |                  |       |             |            |       |             |        |                        |        |                                                                                                  |              |                   |              | 0 . X= -123         | MUMINIM     |              |        | 00               | 0       |                    | ba         |
| 18.5<br>15.5<br>15.2          | 6.4 38 . OV<br>Ital Overall | I UNDETECTAB<br>IL DISTANCE<br>TOTAL NOIS             |       |            |                     | ••    |               |      | 21 4     | 22.        | 75.   | 232.         | 1477. | 3162. | 4947.<br>6309.                                                                  | 6912. | 6318. | - 1011 -<br>#965 | 4073. | 3259.       | 2453.      | 2031. |             |        | 192.                   |        | 14.                                                                                              | \$ <b>1</b>  | ກໍູ່              |              | 10 WHEN HEAR        | DETECTABLE  | JONE NULSE   | 3 · 00 | 33.6<br>26.2     | 21.6    | 18.7<br>16.7       | Continu    |
| -189.7<br>-186.8<br>-186.9    | CKNESS=<br>5. HZ + TO       | MINIMUM<br>E VERTICA<br>B VORTEX                      |       | ċ          | • •                 | •     |               | - ~  | <b>.</b> | 22.        | 75.   | 232.<br>626. | 1477. | 3162. | 4947.                                                                           | 6912. | 6318. | 1965             | 4073. | 4220<br>441 | 2453.      | 2031  | 900.        | 435.   | 172.                   | 31.    | 547 .<br>                                                                                        | ŝvi          | r) (1             |              | z 101.3 DF          | HARMONIC    | N015E        | -35,8  | -87.1            | -188.9  | -189.7<br>-186.8   | Figure 36, |
| -192.7<br>-192.6<br>-192.9    | 7.6 C9 . THI<br>X SPL AT 12 | MAXIMUM<br>UNDETECTABL<br>BROADBAND D                 | 121.5 | 117,0      | 113.5               | 104.0 | 2 <b>.</b> 69 | 91.5 | 87.5     | 74.5       | 65.0  | 56.0         | 41,5  | 35.5  | 32.0                                                                            | 20.02 | 29.5  | 10.5             | 31.5  | 32.5        | 32.5       | 32.5  | 5.05<br>0.1 | 0      | 0 6 10<br>1 10<br>1 10 | 59.0   | 0<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 66.5<br>66.5 | 68.0<br>69.0      | X= -150.0 FT | FT . ANGLE          | THICKNESS   | NUISE<br>Se6 | -41.0  | -84.0            | -186.3  | -192.7<br>-192.8   |            |
| -192.7<br>-192.6<br>-192.9    | ALINGE L                    | VOPTEX<br>ROADBAND<br>PL - DS                         | 4.9   | 17.9       | 20.6                | 27.5  | 30.J          | 34.2 | 35.7     | 38.1       | 39. Í | 40°0         | 5     | 41.9  | 1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1 | 42.7  | 42.7  | 4 ° ° 4          | 41.2  | 40°2        | 37.6       | 35,8  |             | 28.3   | 21.2                   | 16.7   | 11.3                                                                                             |              | -9.2              | 2. FT AT     | re= 1530            | LOADING     | NU156        | -37.1  | -145.7           | -192.7  | -192.7             |            |
| n a ∩<br>* " •<br>I I I I     | 1104 - LO                   | SP<br>SP<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U | 6.4   | 17.9       | 20.6<br>25.0        | 27.5  | 30,3          | 34.2 | 15.7     | 38.1       | 39.1  | 0°0          | ***   | 41.9  | # 5, #<br># 0, #                                                                | 42.7  | #2°4  |                  | 41.2  | 2.04        | 34.FE      | 35.8  | 31.4        | 28.3   | 21.22                  | 16.7   | 11.3                                                                                             |              | -9.2<br>-20.7     | Y= 691       | · DISTAP            | ATMOS.      | ABSON        | •      | 1 1              |         | n a<br>• 1         |            |
| 6. 136.<br>6. 159.<br>6. 182. | SE SUMMAT                   | AND CATA<br>UMBER<br>OF<br>FMONICS                    | 00    | <b>،</b> ت |                     | . 0   | 00            |      | 00       | - <b>0</b> |       | 0 0          | > -4  | -1    | o -                                                                             | • ~   | - 4   | 4 0              | . 0   |             | - <b>G</b> | •     |             |        | • •                    | . 0    | <b>a</b> a                                                                                       | הכ           | 00                | TECTABLE     | Y= 1500.            | I FREG.     | 0. 22.       | 0.     | 0. 67.<br>0. 90. | 0. 112. | 0. 135.<br>0. 157. |            |
| ρr∝α)                         | MARMONIC NOI                | LIJOUCIAVE D<br>BAND NI<br>CENTER<br>FREQ. HZ HAN     | 1.6   | 5          | -1 -1<br>• •<br>• • | 5.0   | 5°3           | 10.0 | 12.5     | 20.0       | 25.0  | 31.5<br>#0.0 | 50.0  | 63.0  | 80.0<br>100.0                                                                   | 125.0 | 160.0 | 250.0            | 315.0 | 0.004       | 0.000      | 800.0 | 1250.0      | 1600.0 | 2000.0                 | 3150.0 | 4000 ° 0                                                                                         | 5300.0       | 8000.0<br>10000.0 | JONN WOWINIW | X= -300.0 .         | HARMONIC AZ | NUMBER       | 1.04   | n 3              | · Ω     | 91                 |            |

| RHONIC GOLE SUMMATION - LOGINGE 17.3 D         FEALL VORTEX NOISE S3.5 Cb WITH PAX 5PL         ADOCTAVE BANC VARTEX MARE         BAND         FENTER NOISE         BAND         CENTER NOISE         BAND         CENTER NOISE         SENTER NONSER         BAND         CENTER NONSER         BAND         CENTER NONSER         BAND         CENTER NONSER         BAND         CENTER NONSER         BAND         CORREA         DIE         DIE         CORSE         DIE         DIE         DIE         CORSE         DIE         DIE <th>2 − − − − − − − − − − − − − − − − − − −</th> <th>2555<br/>2555<br/>2555<br/>2555<br/>2555<br/>2555<br/>2555<br/>255</th> <th>1987年1月19日<br/>1997年1日<br/>1997年1日<br/>1997年1日<br/>1997年1日<br/>1998年1日<br/>1998年1997<br/>1998年1997<br/>1998年1997<br/>1998年1997<br/>1999年1997<br/>1999年1997<br/>1999年1997<br/>1999年1997<br/>1997年1997<br/>1997年1997<br/>1997年1997<br/>1997年1997<br/>1997年1997<br/>1997年1997<br/>1997年1997<br/>1997年1997<br/>1997年1997<br/>1997</th> <th>53.5 DB 17.5</th> <th>ຍ<br/>ດ<br/></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 − − − − − − − − − − − − − − − − − − −                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2555<br>2555<br>2555<br>2555<br>2555<br>2555<br>2555<br>255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1987年1月19日<br>1997年1日<br>1997年1日<br>1997年1日<br>1997年1日<br>1998年1日<br>1998年1997<br>1998年1997<br>1998年1997<br>1998年1997<br>1999年1997<br>1999年1997<br>1999年1997<br>1999年1997<br>1997年1997<br>1997年1997<br>1997年1997<br>1997年1997<br>1997年1997<br>1997年1997<br>1997年1997<br>1997年1997<br>1997年1997<br>1997                                                                                                                                         | 53.5 DB 17.5      | ຍ<br>ດ<br>                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|
| BAND       WUNBER       BANC       VORTEX       MA         2:5       0       5:0       10.6       0       5:0       10.6         2:5       0       10.6       0       5:0       17.9       17.9       17.9       17.9         2:5       0       10.6       0       20.5       24.9       17.9       17.9         2:5       0       27.4       27.4       27.4       27.4       27.4       27.4         2:5       0       27.4       27.4       27.4       27.4       27.4       27.4         4:0       0       27.4       27.4       27.4       27.4       27.4       27.4         4:0       0       27.4       27.4       27.4       27.4       27.4         1:0.0       27.4       27.4       27.4       27.4       27.4         1:0.0       32.5       33.5       34.0       37.4       37.4         1:0.0       1       38.0       37.4       27.4       11.0         1:0.0       1       38.0       37.4       27.4       27.4         1:0.0       1       38.0       37.4       27.4       27.4         1:0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A Π δ μ 1 μ 1 μ 1 μ 1 μ 1 μ 1 μ 1 μ 1 μ 1 μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INIMUM CITAL DIS<br>CATTICAL DIS<br>CATTICAL DIS<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 王本<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                            |
| TC       HARMONICS       DB       FL       DB       DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L<br>V<br>V<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                               |                   |                            |
| 1.6       0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ៹៹៹៹៹<br>៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21992<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21972<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
| 25.0     17.0     17.0     17.0       3.1     0     20.5     20.5       3.1     0     20.5     20.5       3.1     0     20.5     20.5       3.1     0     20.5     20.5       3.1     0     20.5     20.5       3.1     0     20.5     20.5       3.1     0     20.5     20.5       3.1     0     30.1     30.1       3.1     0     30.5     30.5       3.1     0     30.5     30.5       3.1     0     30.6     30.6       3.1     0     30.6     30.6       3.1     0     30.6     30.6       3.1     0     30.6     30.6       3.1     0     1     30.1       3.1     0     0     30.6       3.1     0     0     30.6       3.1     0     0     30.6       3.1     0     0     10.0       3.1     0     0     30.6       3.1     0     0     10.0       3.1     0     0     30.6       3.1     0     0     10.0       3.1     0     0     10.0   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ៹៹៹៹<br>៹៹៹៹<br>៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
| 3.1     0     20.5     20.5     20.5       5.0     0     27.4     1       5.1     0     27.4     27.4       5.1     0     27.4     27.4       10.0     0     27.4     27.4       112.5     0     32.2     32.2       112.5     0     32.2     32.2       112.5     0     32.2     32.2       112.5     0     32.5     32.5       112.5     0     32.5     35.9       112.5     0     32.5     35.5       112.5     0     37.9     38.9       250.0     1     38.9     38.9       250.0     1     38.9     38.9       1100.0     1     41.2     41.2       1100.0     1     41.6     41.7       1100.0     1     41.6     42.5       1100.0     1     41.6     42.6       1100.0     1     42.5     33.5       1100.0     1     41.0     41.0       1100.0     1     41.0     41.0       1100.0     1     41.0     41.0       1100.0     1     41.6     42.5       1100.0     1     42.6     42.6 </td <td>៹៹៹<br/>៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹</td> <td>00<br/>00<br/>00<br/>00<br/>00<br/>00<br/>00<br/>00<br/>00<br/>00</td> <td>ဝင်င်ငံ ငံ ငံ လဲ ခံ လဲ ကို စံ ကို ကို စီ စံ ကို ဖို့ လံ ခံ ကို ဖို့ စံ ကို</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ៹៹៹<br>៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ဝင်င်ငံ ငံ ငံ လဲ ခံ လဲ ကို စံ ကို ကို စီ စံ ကို ဖို့ လံ ခံ ကို ဖို့ စံ ကို                                                                                                                                                                                                                                                                                                                                                                     |                   |                            |
| %.0     2%.9     2%.9     2%.9     2%.9     2%.9       18.0     30.1     30.1     30.1       18.0     37.2     37.9     37.9       18.0     37.9     37.9     37.9       18.0     37.9     37.9     37.9       18.0     38.9     38.9     38.9       25.0     1     38.9     38.9       31.5     0     38.9     38.9       31.5     0     38.9     38.9       31.5     1     38.9     38.9       31.5     0     38.9     38.9       31.5     1     38.9     38.9       31.5     1     41.8     41.8       46.0     1     41.8     41.9       31.5     31.2     42.5     42.5       31.5     31.2     31.2     31.5       31.5     31.2     31.5     31.5       31.6     1     42.5     42.5       31.6     31.2     31.5     31.5       31.6     31.2     31.5     31.5       31.6     31.2     31.5     31.5       31.6     31.2     31.5     31.5       31.6     31.2     31.5     31.5       31.6     31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ៹<br>៹៹ໟຬຬຌຬຬຑຬຑຎຌຌຎຎຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬຬ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ១៩១ <sup>៹</sup> ៳៹៷៷៷៷៰                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                            |
| 0.0     30.1     30.1       10.0     0     32.2     32.2       12.5     0     32.5     35.5       21.0     0     32.5     35.5       21.0     0     32.5     35.5       22.0     0     32.5     35.5       31.5     0     32.5     35.5       31.5     0     36.9     36.9       31.5     0     36.9     36.9       31.5     0     36.9     36.9       31.5     0     1     30.1       31.5     0     1     38.9       31.5     0     1     38.9       31.5     1     41.8     41.8       40.0     1     41.8     41.8       31.5     31.2     42.5     42.5       315.0     1     42.5     42.5       315.0     1     41.0     41.0       315.0     1     42.5     33.5       315.0     1     42.6     35.6       315.0     31.2     31.2     31.2       315.0     1     42.6     35.6       315.0     1     42.6     35.6       315.0     1     42.1     42.8       315.0     1 <td>ໟຬຌຌຌຬຬຬຉຑຌຌຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨ</td> <td>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>200<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2000<br/>2</td> <td>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</td> <td></td> <td></td> | ໟຬຌຌຌຬຬຬຉຑຌຌຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                            |
| 10.0     32.2     32.2     32.2       12.5     10.0     35.5     35.5     35.5       22.0     3     36.9     37.9       22.0     3     36.9     37.9       31.5     0     36.9     36.9       31.5     0     36.9     37.9       31.5     0     36.9     36.9       40.0     1     36.9     37.9       31.5     0     1     36.9       40.0     1     41.8     41.8       65.0     1     42.2     42.5       80.0     1     42.5     42.5       80.0     1     42.5     42.5       80.0     1     42.5     42.5       80.0     1     42.5     42.5       80.0     1     42.5     42.5       80.0     1     42.5     42.5       80.0     1     42.5     42.5       80.0     1     42.5     42.5       80.0     1     42.5     42.5       80.0     1     42.5     42.5       80.0     1     42.5     42.5       80.0     1     41.0     41.0       80.0     1     1     42.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ຨ຺ຨຬຬຩ຺ຨຑຎຌຌຆຎຎຑຑຑຏຆຎຎຎຏຆຏຏ<br>຺຺ຨຎຎຉຑ຺ໟຉຉຎຎຉຉຉຑຎຎຑຎຎຉຎຎຑຉຬ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 222<br>222<br>222<br>222<br>222<br>222<br>223<br>223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ំណំតំសំលំភ្នំសំភ្នំសំភ្នំសំតំ ភ្នំសំតំ សំតំ សំតំ សំតំ សំតំ សំតំ សំតំ សំត                                                                                                                                                                                                                                                                                                                                                                       |                   |                            |
| 10.0     0     94.0     34.0       12.5     0     35.5     35.5     35.5       22.0     0     36.9     37.9       25.0     1     36.9     36.9       31.5     0     36.9     36.9       31.5     0     36.9     36.9       31.5     0     36.9     36.9       31.5     0     36.9     37.9       25.0     1     41.2     41.2       40.0     1     42.2     42.5       80.0     2     42.5     42.5       80.0     2     42.5     42.5       80.0     2     41.7     41.7       80.0     2     41.7     41.7       80.0     2     40.0     40.0       80.0     3     35.5     35.5       80.0     3     35.5     35.5       800.0     3     35.5     35.5       800.0     3     35.5     35.5       800.0     3     35.5     35.5       800.0     3     35.5     35.5       800.0     3     35.5     35.5       800.0     3     35.5     35.5       800.0     3     35.6     35.6    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ៹៙ៜ៹៹៷៷៹៹៷៷៷៰៴៷៷៷៷៷៷៷៷៷<br>៹៸៰៓៹៷៰៹៹៷៷៰៹៰៰៷៷៷៷៷៰៰៷៷៷៰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2229<br>223<br>223<br>233<br>233<br>233<br>233<br>233<br>233<br>233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | លំដដែល ហុំភ្លាំ ហុំ កុំ ភ្លាំ ភាំ ភ្លាំ សំ ភ្នំ ហំ ជុំ ភ្នំ ភាំ ភាំ                                                                                                                                                                                                                                                                                                                                                                            |                   |                            |
| 12.5     1     35.5     35.5     35.5       25.0     1     36.9     36.9     36.9       31.5     0     36.9     36.9     36.9       40.0     1     36.9     36.9     36.9       40.0     1     36.9     36.9     36.9       40.0     1     40.6     40.6     40.6       65.0     1     42.2     42.2     42.5       65.0     1     42.5     42.5     42.5       65.0     1     42.5     42.5     42.5       65.0     1     42.5     42.5     42.5       65.0     1     42.5     42.5     42.5       65.0     1     42.7     41.7     41.7       800.0     2     40.0     41.7     41.7       800.0     2     40.0     41.7     41.7       800.0     31.2     31.2     31.2     31.2       800.0     31.2     31.2     31.2     31.2       800.0     0     31.2     31.2     31.2       800.0     0     31.2     31.2     31.2       800.0     0     31.2     31.2     31.2       800.0     0     31.4     20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ຬຌຬຨຑຆຌຌຆຆຆຬຎຎຎຎຎຎຎຎຎຎຏຬຏ<br>ຎຬຎໟຬຉຎຎຘຘຘຒຎຎຎຎຬຎຎຎຬຬ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84<br>84<br>85<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ៛ ម៉ល់ ភ្លំ ច. ភ្ ំ ភ្លំ ភ ្លំ ថ្លំ ៖ ហំ ថ្លំ កំ ភ្                                                                                                                                                                                                                                                                                                                                                                                            |                   |                            |
| 25.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ៱៹៷៷ឨ៹៷៷៹៰៰៰៷៷៷៷៷៷៷៷៹<br>៰៷៰៰៰៷៷៰៰៰៰៷៷៷៷៰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 222<br>222<br>222<br>222<br>223<br>223<br>223<br>223<br>223<br>223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ม <sub>ี</sub><br>พ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ                                                                                                                                                                                                                                                                                                                                                                                      |                   |                            |
| 25.0 1 38.9 38.9 38.9 38.9 5.0 5.0 5.0 1 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ຨຑຆຌຏຎຎຎຎຎຎຎຎຎຎຎ<br>຺຺຺ຉຉຆຑຑຉຉຉຒຎຎຎຎຎຎຎຎຌ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73.<br>229.<br>229.<br>229.<br>229.<br>229.<br>229.<br>229.<br>240.<br>209.<br>209.<br>219.<br>219.<br>219.<br>219.<br>219.<br>219.<br>219.<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ค.ค.ค.ค.ค.ค.ค.ค.ค.ค.ค.ค.ค.ค.ค.ค.ค.ค.ค                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                            |
| 31.5 0 39.8 39.8 39.8 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ຑຆຆຎຬຬຬຬຎຎຎຎຬຎຎຎຬຬ<br>ຬຬຎຎຬຬຬຬຎຎຎຎຬຎຎຎຬຬ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 229<br>633<br>633<br>30999<br>501<br>6191<br>6191<br>6191<br>6191<br>6191<br>6191<br>6199<br>56285<br>56202<br>56202<br>56202<br>5199<br>5199<br>5199<br>5199<br>5199<br>5199<br>5199<br>519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ٥.٥.٣.٥<br>٥.٠.٠<br>٥.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠<br>٠.٠.٠ |                   |                            |
| 40.0     40.6     40.6     40.6       55.0     1     41.2     41.12       60.0     1     42.5     42.5       60.0     1     42.5     42.5       60.0     1     42.5     42.5       60.0     1     42.5     42.5       20.0     1     42.5     42.5       20.0     1     42.5     42.5       20.0     2     42.5     42.5       20.0     2     42.5     42.5       20.0     2     41.7     41.7       20.0     2     42.5     42.5       20.0     3     35.6     33.5       200.0     3     31.2     31.2       200.0     3     35.6     31.2       200.0     3     35.6     31.2       200.0     0     20.9     20.9       200.0     0     20.9     20.9       200.0     0     20.9     20.9       200.0     0     20.9     20.9       200.0     0     20.9     20.9       200.0     0     20.9     20.9       200.0     0     20.9     20.9       200.0     0     20.9     20.9 <t< td=""><td>៹៹<u>៷៷</u>៷៰៰៰<br/>៰៷៷៰៰៰៰៷៷៷៷៰៰៷៷៷៰</td><td>613.<br/>613.<br/>61447.<br/>1447.<br/>14449.<br/>6191.<br/>61846.<br/>6186.<br/>6186.<br/>6186.<br/>61875.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.<br/>618.</td><td><u>,</u></td><td></td><td></td></t<>                                | ៹៹ <u>៷៷</u> ៷៰៰៰<br>៰៷៷៰៰៰៰៷៷៷៷៰៰៷៷៷៰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 613.<br>613.<br>61447.<br>1447.<br>14449.<br>6191.<br>61846.<br>6186.<br>6186.<br>6186.<br>61875.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.<br>618.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>,</u>                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                            |
| 50.0     1     41.2     41.6       60.0     1     42.5     42.5       25.0     2     42.6     42.5       26.0     1     42.5     42.5       26.0     1     42.5     42.5       26.0     1     42.5     42.5       26.0     1     42.5     42.5       26.0     1     42.5     42.5       26.0     1     42.5     42.5       26.0     1     42.6     42.5       26.0     1     42.6     42.5       26.0     1     42.6     42.5       26.0     1     41.7     41.7       26.0     1     24.6     34.9       26.0     35.6     33.5     31.2       26.0     1     24.4     20.9       26.0     1     20.9     20.9       26.0     1     21.1     21.1       26.0     0     20.9     20.9       26.0     0     20.9     20.9       26.0     0     20.9     20.9       26.0     0     20.9     20.9       26.0     0     20.9     20.9       26.0     0     20.9     20.9       26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1888000828283883823<br>086660000000000000000006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1949<br>1949<br>1949<br>1949<br>1949<br>1949<br>1949<br>1949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
| 25.0 0 42.2 42.5 42.5 5 5.5 5.5 12.5 42.5 42.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64949<br>64949<br>64949<br>66191<br>66191<br>66191<br>66191<br>66191<br>66191<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>6619<br>660000000000 | ក្ល - ខ្មុំសុំ ៖ ហំ ៥ ភ្ ំកំ                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                            |
| 25.000 1 42.5 42.5 42.5 2000 1 2 42.5 42.5 42.5 2000 1 2 42.5 42.5 42.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8088888888888888<br>6600000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6191. 619<br>6786; 678<br>6202. 678<br>5844; 584<br>4875. 487<br>1998. 319<br>31998. 319<br>3199. 319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
| 25.0 2 42.6 42.6 42.6 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ຜູຜູຜູລະມຸດສູດສູດສູດ<br>ວັດເປັນເປັນເປັນເປັນ<br>ອັດເປັນເປັນເປັນເປັນເປັນ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6786, 678<br>6202, 620<br>5844; 584<br>4875, 487<br>3998, 399<br>3199, 319<br>3199, 319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ម៉ូលំដំហំចំចំកាំ                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                            |
| 60.0     1     \$2.5     \$2.5     \$2.5       15.0     2     \$12.5     \$2.5       15.0     0     41.0     \$1.0       15.0     0     41.0     \$1.0       15.0     0     41.0     \$1.0       15.0     0     36.9     36.9       201.0     0     37.4     37.4       201.0     0     31.2     31.2       201.0     0     31.2     31.2       300.0     0     31.2     31.2       300.0     0     31.2     31.2       300.0     0     31.2     31.2       300.0     0     28.1     28.1       300.0     0     28.1     28.1       300.0     0     26.9     20.9       300.0     0     26.5     16.5       300.0     0     11.0     11.0       300.0     0     -4.4     -4.4       300.0     0     -21.1     -21.1       300.0     0     -21.1     -21.1       300.0     0     -4.4     -4.4       300.0     0     -4.4     -4.4       300.0     0     -4.4     -4.4       300.0     0     -4.4     -4.4<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6202. 620<br>5844: 584<br>4875. 487<br>3998. 399<br>3199. 319<br>2583. 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | លំដំណំធំ ទំ កំ                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                            |
| 00.0     2     42.2     42.2     42.2       55.0     0     41.0     41.0       00.0     3     40.0     40.0       00.0     37.4     37.4       00.0     37.4     37.4       00.0     31.2     31.5       30.0     31.2     31.5       30.0     31.2     31.5       30.0     31.2     31.5       30.0     31.2     31.5       30.0     31.2     31.5       30.0     31.2     31.5       30.0     31.2     31.5       30.0     31.2     31.5       30.0     28.1     24.8       00.0     26.9     20.9       00.0     11.0     11.0       00.0     0     11.0       00.0     0     -4.4       00.0     0     -4.4       00.0     0     -21.1       00.0     0     -21.1       00.0     0     -4.4       00.0     0     -4.4       00.0     0     -4.4       00.0     0     -4.4       00.0     0     -4.4       00.0     0     -4.4       00.0     0     -4.4 <td< td=""><td>252222222222<br/>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>5644. 564<br/>4875, 487<br/>3998. 399<br/>3199. 319<br/>3199. 319</td><td>* ហំ ឆ្នំ • ហំ</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 252222222222<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5644. 564<br>4875, 487<br>3998. 399<br>3199. 319<br>3199. 319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | * ហំ ឆ្នំ • ហំ                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                            |
| 25.0 0 41.0 41.0 41.0 41.0 41.0 41.0 41.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3996. 399<br>3199. 319<br>3199. 319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •<br>•<br>•<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                            |
| 00.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 225222222<br>22222225<br>22222525<br>25222525<br>25222525<br>252225<br>25225<br>25225<br>25255<br>25255<br>25255<br>25255<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>25555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>255555<br>2555555 | 3199. 319<br>26631 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • m                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                            |
| 00.00     0     38.9     38.9       30.0     0     37.4     37.4       30.0     0     37.4     37.4       50.0     0     31.2     31.5       50.0     0     31.2     31.2       50.0     0     31.2     31.2       50.0     0     31.2     31.2       50.0     0     28.1     28.1       00.0     24.8     24.8       00.0     24.8     20.9       50.0     0     24.8       00.0     24.8     20.9       50.0     0     24.8       00.0     0     24.8       00.0     0     24.9       00.0     0     24.9       00.0     0     24.9       00.0     0     24.9       00.0     0     20.9       00.0     0     24.9       00.0     0     24.4       00.0     0     24.4       00.0     0     24.4       00.0     0     21.1       21.1     21.1     21.1       21.1     21.1     21.1       21.1     21.1     21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53550<br>53550<br>53550<br>53550<br>5550<br>5550<br>5550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26831 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ••••                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                            |
| 50.0 0 37.4 57.4 57.4 57.4 57.4 57.4 57.5 55.6 55.6 55.6 55.6 53.5 53.5 55.6 53.5 55.6 53.5 53.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5555<br>5555<br>5555<br>5555<br>5555<br>5555<br>5555<br>5555<br>5555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
| 50.0 0 33.5 33.5 55 55 55 55 55 55 55 55 55 55 55 55 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
| 50.0 0 31.2 31.2<br>00.0 0 20.1 20.1<br>50.0 0 24.8 24.8<br>50.0 0 24.8 24.8<br>11.0 11.0<br>11.0 11.0<br>00.0 0 16.5 16.5<br>6.6 6.6<br>6.6 6.6<br>00.0 0 -21.1 -21.1<br>2.0.0 0 -21.1 -21.1<br>2.0.0 0 -21.1 -21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1502. 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                            |
| 00.0 0 28.1 28.1<br>00.0 0 24.8 24.8<br>50.0 0 24.8 24.8<br>50.0 0 16.5 16.5<br>11.0 11.0<br>11.0 11.0<br>00.0 0 -4.4 -4<br>100.0 0 -21.1 -21.1<br>10.0 0 -21.1 -21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 889. 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                            |
| 00.0 0 24.8 24.8 24.8<br>00.0 0 16.5 16.5<br>00.0 0 16.6 16.6<br>00.0 0 16.6 6.6<br>00.0 0 -4 -4<br>00.0 0 -21.1 -21.1<br>10.0 0 -21.1 -21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 424 · 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
| 50.0 0 16.5 16.5<br>100.0 0 11.0 11.0<br>100.0 0 6.6 6.6<br>00.0 0 -4 -4<br>100.0 0 -21.1 -21.1<br>11Mum UNDETECTABLE Y= 6786. FT AT X= -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101. 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
| 00.0 0 11.0 11.0<br>100.0 0 6.6 6.6<br>00.0 0 -4 -4<br>00.0 0 -21.1 -21.1<br>11Mum UNDETECTABLE Y= 6786. FT AT X= -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
| 00.0 0 0 6.6 6.6<br>00.0 044<br>00.0 0 -9.6<br>00.0 0 -21.1 -21.1<br>11Mum Undetectable Y= 6786. FT AT X= -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>4</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                            |
| 00.0 044<br>00.0 0 -9.6 -9.6<br>00.0 0 -21.1 -21.1<br>11Mum Undetectable Y= 6786. FT AT X= -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>8</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8°.                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                            |
| 00.0 0 -21.1 -21.1<br>00.0 0 -21.1 -21.1<br>11Mum Undetectable Y= 6786. FT AT X= -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
| JAWUM UNDETECTABLE Y= 6786. FT AT X= −3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ก้                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.<br>2.                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300.0 FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
| ilmum undefectable Y = 6925. FT AT ANGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LE= 93.2 DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                            |
| 150.0 · Y= 1500. · DISTANCE= 1507, FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ANGLET B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.3 DEG NHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N HEARD . X= 3                                                                                                                                                                                                                                                                                                                                                                                                                                 | 329.7 . DISTANCE= | : 536. FT WHEN NOISE PRODU |
| NONIC AZI FREG. ATMOS. LOADING THI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ICKNESS HAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MONIC DELE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTABLE MINIMUT                                                                                                                                                                                                                                                                                                                                                                                                                                 | M<br>Fteris Y     |                            |
| <b>MULEK ML ML ABSUKF NULSE F</b><br>1 0. 231 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101.2E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.7 000 molece                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -39.2<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                            |
| 3 0. 702 -90.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -86.7 -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6 0.                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                            |
| 4 0, 93, -,3 -144,1 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 134.7 -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.4 0.                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                 |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36 - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ntinued                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r igure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 20° CU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | עוונותנים                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                            |

|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                              |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 ACC E0                                                                                                                      |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۲<br>۲                                                                                                                         |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10: 4                                                                                                                          |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |
|                                       | <u>م</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76 <b>.</b> F                                                                                                                  |
|                                       | 2 • 8 · C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                             |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TANCE                                                                                                                          |
|                                       | 5 I O V G O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S 10 .                                                                                                                         |
|                                       | 210<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84°4<br>1401<br>1                                                                                                              |
| 0000                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |
|                                       | L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>ระสา</b> ย<br>- พ.ศ                                                                                                         |
| 21.0<br>16.3<br>15.0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N HE<br>CTABL<br>NOIS<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |
| 00000                                 | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.<br>36.                                                                                                                     |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 188<br>HARN<br>HARN<br>100<br>110<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                     |
| 0.000                                 | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                |
| 6666<br>1111<br>1111                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11111111111111111111111111111111111111                                                                                         |
| ເວັດ ທີ່ ເວັ<br>ເປັນ ທີ່ ເວັ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                    |
| 6666                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L COAL<br>COAL<br>COAL<br>COAL<br>COAL<br>COAL<br>COAL<br>COAL                                                                 |
| 1111<br>1111                          | ່ ເລັ້ນດີທີ່ທີ່ຜູ້ທີ່ດີ ພື້ດທີ່ດີ ພື້ດທີ່ຜູ້ທີ່ທີ່ທີ່ທີ່ທີ່ທີ່ທີ່ທີ່ທີ່ທີ່ທີ່ທີ່ທີ່ທ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U<br>4 0<br>4 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120<br>14<br>11<br>11<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14                                              |
|                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                                                                                                              |
| 50000                                 | Z concerses a concerse | 2 X W<br>2 X W M M M M M M<br>2 C                                                                                              |
|                                       | Image: Construction     Image: Construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                |

Figure 36. --- Continued

MINIMUM UNDETECTABLE Y = 6905, FT AT ANGLE= 90.0 DEG PROPELLER UNDETECTABLE ABOVE Y= 6925, FT

|                  | •••<br>196                      |                        |            |       |       |       |       |       |                |              |      |         |      |          |      |      |      |       |              |       |       |       |       |       |       |               |       |       |     |           |        |        |        |        |        |        |        |        |        |            |          |   |
|------------------|---------------------------------|------------------------|------------|-------|-------|-------|-------|-------|----------------|--------------|------|---------|------|----------|------|------|------|-------|--------------|-------|-------|-------|-------|-------|-------|---------------|-------|-------|-----|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|----------|---|
|                  | 17                              |                        |            |       |       |       |       |       |                |              |      |         |      |          |      |      |      |       |              |       |       |       |       |       |       |               |       |       |     |           |        |        |        |        |        |        |        |        |        |            |          |   |
|                  | 4015E=                          |                        |            |       |       |       |       |       |                |              |      |         |      |          |      |      |      |       |              |       |       |       |       |       |       |               |       |       |     |           |        |        |        |        |        |        |        |        |        |            |          |   |
| •••              | HARM041C<br>E= 53.2             |                        |            |       |       |       |       |       |                |              |      |         |      |          |      |      |      |       |              |       |       |       |       |       |       |               |       |       |     |           |        |        |        |        |        |        |        |        |        |            |          |   |
|                  | OVERALL                         | TABLE<br>CF - FT       | OISE       |       |       |       |       |       |                |              |      |         |      |          |      |      |      |       |              |       |       |       |       |       |       |               |       |       |     |           |        |        |        |        |        |        |        |        |        |            |          |   |
| 16.2<br>14.9     | 6.4 08 /<br>Tal over            | UNDETEC                | TOTAL N    | 1.    |       | •     | 1.    | ••    | ••             | •            | -    | 5.<br>5 | *    | <b>.</b> | 21.  | 71.  | 221. | 613.  | 1400.        | 2986. | 4663. | 5938. | 6506. | 5937. | 1666  | <b>4665</b> . | 3830. | 3067. |     | <br>1947. | 658    | 411.   | 182.   | 73.    | 29.    | 13.    | 8.     | 4      | 'n     | <u>ه</u> . |          |   |
| -186.8<br>-186.9 | ESS=<br>. HZ . TO               | WINIMUW<br>VEBITU      | VORTEX     | •     | 1.    | •     | -     | ••    | ••             | •            | 1.   | 2,      | 1    | 8        | 21;  | 71.  | 221. | 613.  | 1400.        | 2986: | 4663. | 5938. | 6506. | 5937. | 1665  | 4665.         | 3830. | 3067. |     |           | 858.   | 411.   | 182.   | 73.    | 29.    | 13.    |        |        | д.     | <b>5</b> . |          | ļ |
| -192.9           | 58 . THIC'<br>PL AT 125.        | MAXIMUM<br>Detectari e | CADBAND CB | 121.5 | 120.0 | 117.0 | 113.5 | 109.0 | 104.0          | <b>99</b> ,5 | 95.0 | 91.5    | 87.5 | 82.0     | 74.5 | 65.0 | 56.0 | 48.0  | <b>\$1.5</b> | 35.5  | 32.0  | 30.0  | 29.0  | 29.5  | 29.5  | 30.5          | 31.5  | 32.5  |     |           | 37.0   | 42.0   | 47.5   | 53.5   | 59.0   | 63.0   | 65.0   | 66.5   | 68.0   | 69.0       | 300.0 FT |   |
| 192.9<br>193.0   | 46= 16.6<br>[TH MAX S           | LEX<br>DAMO HA         | - DB BK    | 3.8   | 9.6   | 6*9   | 9.7   | +. F  | 5.8            | 9.7          | 1.8  | 5.7     | 5.2  | 5•6      | 1.7  | 3.7  | 9.5  |       | 9.9          | 1.4   | ••1   | 2.1   | ~~    |       | 6.1   | * (           |       |       |     |           |        | .6     | , n    | 1.4    | 5.8    |        | 5.8    | L.3    | 7      | 2.6        | T AT X=  |   |
| 7 Y              | OBC W                           | VOR                    | SPL<br>SPL |       | •     | ä     | Ä     | ň     | <del>ب</del> ة | Ň            | ที   | ň       | ทั   | ň        | 'n   | Ř    | ň    | ž     | ž            | Ŧ     | đ     | *     | *     |       | Ŧ     |               | ă I   | n,    | ň í | 5         | ň      | 2      | å      | š      | -      | ĭ      |        | ĩ      | 7      | 2          | 106. F   |   |
|                  | 104 - 1<br>53.2                 | BAND                   | 18         | 3.8   | 9.6   | 16.9  | 19.7  | 24.4  | 26.8           | 29.7         | 31.8 | 53.7    | 35.2 | 36.6     | 37.7 | 36.7 | 39.5 | 0.3   | 40.9         | 41.4  | 41.9  | \$2.1 | 42.2  | 42.1  | 6°1*  | * * *         | 40.7  | 20.7  | 2   |           | 30.7   | 27.6   | 24.3   | 20.4   | 15.8   | 10.3   | 5.0    | -1.3   | -10.7  | -22.6      | Y= 6!    |   |
| 165.<br>188.     | SUMMAT<br>NOISE=                | E H                    | NICS       | _     | _     | _     | -     | _     | _              | _            | _    | -       | -    | _        | _    |      | _    | _     | _            |       | _     |       |       | _     |       | _             | _     | _     |     | <br>      | _      |        | _      | _      | _      | _      | _      | _      | -      | _          | TABLE    |   |
| •••              | NOISE<br>VORTEX<br>VF AAM       |                        | HARMO      |       | 0     | 3     | 3     | 3     | 3              |              | 3    | 3       | J    | 3        | 3    | -    | 3    | 3     | -            | ~     | 5     |       | •4    |       |       |               | 3     |       |     |           | , d    | . 0    | 3      |        | 9      | 3      | 0      | 0      | 3      | 3          | UNDETEC  |   |
| r- 0             | HAPMONIC<br>OVERALL<br>1/3-OFTA | BAND                   | FREG. HZ   | 1.6   | 2.0   | 2.5   | 3.1   | 4.0   | 5.0            | 6.3          | 9.0  | 10.0    | 12.5 | 16.0     | 20.0 | 25.0 | 31.5 | \$0°0 | 50.0         | 63.0  | 80.0  | 100.0 | 125.0 | 160.0 | 200.0 | 250.0         | 315.0 | 0.004 |     | 1660.0    | 1250.0 | 1600.0 | 2000.0 | 2500.0 | 3150.0 | 4000.0 | 5000.0 | 6300.0 | 6000.0 | 10000.0    | MUMINIM  |   |

152

¢

HAMILTON STANDARD COMPUTER PHOGHAM DECK 110. 6196 14

1 SAMPLE CASE 4 , SAME AS CASE 3 EXCEPT UNNECESSARY PUNCHING OF INPUT 2 CARDS OMITTED , LAST CASE , MINIMUM PAINTING 2 CARDS OMITTED , LAST CASE , MINIMUM PAINTING 3 CLI DIA, S.CO.P.REC.SHROUD J SAMPLE DOVORT

| 00.   | . 893    | , 959   | 1.000       | .1170    | 453<br>785<br>861<br>861<br>859 | 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 120.<br>161.<br>181. |             |        |                      |         |                    |                  |
|-------|----------|---------|-------------|----------|---------------------------------|-----------------------------------------|----------------------|-------------|--------|----------------------|---------|--------------------|------------------|
| он/1н | IND.EFF. | EF,EFF, | F1          | . M.N.   | AP,EFF                          | CT 03/4                                 | COMP.                | ۲<br>۲<br>۲ | REG.CT | 015 TEMP<br>7.0 513. | 1. V-KN | PRPM AL            | THRUST<br>225.00 |
|       |          | 1.0003  | 1,0000      | 1.0000   | 1,0009                          | 1.0000                                  | 1.0000               | 1.0000      | 1.0000 | 1.0000               | 1.0000  | 99999,0010         | J LIMIT=         |
|       |          | - 000   | 000         | 000      | ••000                           | 000                                     | -,000                | 000 -       | ••000  | 000*+                | 000     |                    |                  |
|       |          | 000     | 000         | 000 -    | - 000                           | - 000                                   | 000                  |             | 000    | 000                  | - 000   |                    |                  |
|       |          | 000 -   | - 000       | 000.1    | 000                             | 000 -                                   | 000                  | 000         |        | - 000                | 000     |                    |                  |
|       |          | - 000   | 000         | 000 -    | - 000                           | 000                                     | - 000                | -000        |        | 000                  | 000     |                    |                  |
|       |          | 000     | -,000       | 000      | 000                             | 000 -                                   | - 000                | - 000       | 000 -  | - 000                | 000     |                    |                  |
|       |          | 000 -   | 000 -       | 500.000  | - 0001                          | 000 -                                   | 000°-                | 1.000       | 000    | 10.000               | - 000   |                    |                  |
|       |          | 000     | 000         | 000      | 000                             | 000                                     | 000                  | 000         | 000 -  | 000                  | 000     |                    |                  |
|       |          | .000    | 000         | 000      | 000                             | 000                                     | 000                  | .000        | 000    | .000                 | .000    | =000               |                  |
|       |          | 000     | .000        | .000     | 000                             | 000                                     | 000                  | .000        | 000    | 000.                 | -000    | (CL_A=0)=          |                  |
|       |          | .000.1  | 3,<br>1,000 | 1, 000 J | 1,000                           | 1.000                                   | 1.000                | 1,000       | 1,000  | 1.000                | 1.000   | AIRFOILE<br>MCRITE |                  |
|       |          | 31.00   | 27.50       | 22.30    | 16.30                           | 10.30                                   | 07.7                 | 70          | -4.30  | -6.40                | -7.20   | DELTA 6=           |                  |
|       |          | .160    | .335        | .467     | .589                            | .672                                    | .676                 | .627        | 525    | .390                 | .240    | DES CL=            |                  |
|       |          | .0400   | .0500       | .0815    | .1060                           | .1235                                   | 1961.                | .1400       | .1420  | .1422                | .1400   | 8/0=               |                  |
|       |          | 1,000   | .540        | .213     | .120                            | .081                                    | .062                 | .050        | .041   | .035                 | .032    | H/8=               |                  |
|       |          | .1367   | .2316       | .3080    | •4095                           | .5266                                   | 649.                 | .7665       | .4679  | 5446.                | .9892   | ΞX.                |                  |
|       |          |         |             |          | • 00                            | - 000                                   | 25 .176              | 538 11.     | 213.8  | 8                    | CONFIG. | E PROPELLER        | J SAMPL          |
|       |          |         |             |          |                                 |                                         | 361 36               |             |        | 3                    |         |                    |                  |

COMPUTERIZED PROPELLER DESIGN TECHNIQUE PROGRAM WRITTEN BY HAMILTON STANDARD UNDER CONTRACT NO.F33615-70-C-1583 FOR AERO PROP. LAB

F/H

.00000

61,94 1.000

PROPELLER BHP=

-1.00 . 66 6.00 -.00 , 000 - 000 \* 00 • • • • . 74 1.43 \* 00 • 00 .74 1.00 -.00 \* 00 • 00 • • 0 .74 1.00 -.00 =351000

1. PROPELLERIS) , VORTEX NOISE OPTIONE-0. , DETECTABILITY OPTION= 1 NIGHTTIME JUNGLE Noise in DB Re .0002 Microbar

STANDARD VALUES OF ATMOSPHERIC ABSORPTION (DB/1000FT) AT 70PCT HUMIDITY ,77DEG F ARE .003 .004 .005 .004 .005 .007 .009 .010 .014 .020 .02 .03 .03 .04 .05 .07 .09 .11 .14 .17 .22 .28 .35 .44 .55 .71 .87 1.11 1.41 1.78 2.22 2.87 3.65 4.70 5.90 7.60 8.60 11.10 14.90 20.40

FLIGHT VELOCITY= 77, KNOTS TAS = 75, KNOTS CAS • MACH NUMBER= .12 • BHP= 62.0 • THRUST= 225. LB • RPM= 340, Rutational tip velocity= 200.3 FPS • Rotational tip MacH number= .18 • Helical tip MacH number= .21

MINIMUM UNDETECTABLE Y = 6925. FT AT ANGLE= 93.2 DEG MINIMUM UNDETECTABLE Y = 6905. FT AT ANGLE= 90.0 DEG PKOPELLER UNDETECTABLE ABOVE Y= 6925. FT Figure 36. --- Continued

HAMILTON STAHDARD COMPUTER PROGRAM CECK 10. 6196 14

Figure 36. --- Concluded

ł

ę

ŕ

,

The propeller performance should be computed for a pressure altitude which is the sum of the observer altitude and the expected minimum undetectable altitude above the observer.

The computer outputs shown in Figure 36 were obtained from a UNIVAC 1108 computer. The output on another computer, such as the CDC 6600, will not be identical to that in Figure 36 because of differences in word length. However, these differences are not expected to be significant to the user.

# SECTION IX

# PROPELLER NOISE DETECTABILITY TREND STUDY

## 1. INTRODUCTION

The major purpose of this contract is to develop a computer program which would predict propeller noise and compare the predicted noise spectrum with an aural detectability criteria. The program then provides an estimate of the minimum flight altitude which would avoid aural detection.

With this propeller noise detectability program available, one can investigate various propeller configurations and operating conditions to determine combinations which will permit lower flight altitudes without detection. A study was made of the effects of several propeller configuration parameters and of tip velocity on minimum undetectable altitude over a jungle at night. An acceptable propeller configuration was required to be able to meet the following 4 operating conditions:

| Condition | Thrust  | Indicated Airspeed | Altitude     |
|-----------|---------|--------------------|--------------|
| 1         | 1600 lb | 0 knots            | 0 <b>f</b> t |
| 2         | 1300    | 50                 | 0            |
| 3         | 250     | 120                | 10000        |
| -1        | 225     | 75                 | 1500         |

Aural detectability was evaluated only at the last condition.

The results of this study are summarized in Table XVII and Figure 37. The propeller rpm and blade angle are permitted to vary to achieve optimum performance at each condition. Recommended harmonic loads derived from data required in this program are included in the calculations.

It should be pointed out here that the harmonic load noise and the broadband noise predictions used by the propeller noise detectability program involve empirical coefficients derived from the data obtained for static conditions in this program. The accuracy of these coefficients has not been established for flight conditions such as number 4 in the table above. Indeed, the two spectra in Figure 29 suggest that the use of static data for predicting propeller noise characteristics in flight may lead to significant errors in predicted minimum undetectable altitude. TABLE XVII

RESULTS OF PROPELLER NOISE DETECTABILITY TREND STUDY

Minimum undefectable albitude. 19 •175 (ps. 7ap Speed ••Also 110 HP, 5423 (f. albitude at 100 (ps.



### 2. EFFECT OF TIP SPEED

As would be expected, the minimum undetectable altitude decreases with decreasing tip speed. Figure 37 shows that the minimum undetectable altitude decreases about 1600 feet for a decrease of 100 fps in tip speed. The minimum tip speed is determined by the ability of the propeller to produce the thrust of 225 pounds required for condition 4. The horsepower is generally a minimum at a tip speed over 200 fps. Therefore, depending on the tradeoff between range (horsepower) and flight altitude, the tip speed should be near 200 fps.

## 3. EFFECT OF PROPELLER GEOMETRY

The effects of four geometry parameters on minimum undetectable altitude are shown in Figure 37. The top left sketch in the figure shows that increasing propeller diameter from 8 feet to 11.25 feet reduces the minimum undetectable altitude slightly and permits a lower tip speed. The top right sketch shows that increasing activity factor by increasing the blade chord reduces the altitude. Sketches of the blades are shown on the left of Figure 38. The bottom left sketch shows that increasing the number of blades from 4 to 6 increases altitude. This change is due to increased broadband noise. A further increase in altitude is shown if the blade chord is reduced to maintain total activity factor. On the other hand, if the number of blades is reduced from 4 to 3 the harmonic loading noise increases considerably and increases the minimum undetectable altitude. Therefore, 4 blades appears to be the optimum.

The effect of radial distribution of blade chord is shown in the bottom right of Figure 37. Sketches of the 3 blades are presented on the right of Figure 38. The A-shaped blade configuration is quieter than the square- or V-shaped blade configurations but requires slightly more horsepower.

The last two lines of Table XVII are for two of the propeller configurations tested during the experimental phase of this contract. A study of the test data shows that the broad-band noise in the 250-1000 Hz range is 3.4 dB less from the new wide 47X-464 blades than from the narrower 47X-451 blades. The predicted reduction in minimum undetectable altitude shown in Table XVII is 14%. It is not known how much of the measured reduction in broad-band noise is due to the change in airfoil family from NACA 64A to 66A and how much is due to the change in planform. The computer program evaluates only the latter change. However, it is encouraging that the 47X-464 blades, which were designed to be quieter, are measured to be quieter.



Figure 38. Blade Planforms

•

# 4. OPTIMUM PROPELLER DESIGN

The trends discussed in the two preceding sections may serve as a guide to designing a quiet propeller:

a. The propeller must be large enough (diameter, blade activity factor, number of blades) to achieve all required operating conditions.

b. The largest diameter evaluated is least detectable.

c. Detectability is reduced by increased blade activity factor (or chord). However the weight increases with diameter and activity factor and, therefore, a complete mission trade-off study is required to select an optimum propeller configuration. Of course advanced technology composite blades allow larger diameter designs to be used without undue weight penalty.

d. The tip speed in the quiet mode, condition 4, should be a minimum consistent with achieving the required thrust. A trade-off study to consider the increased horse-power required at low tip speeds may be required to select an optimum tip speed. Also, a thrust margin is required for flight safety reasons.

e. Four blades seems to be optimum. More blades increase detectability of broad-band noise and fewer blades increase detectability of harmonic noise.

f. The blade chord should decrease towards the tip. Probably a rounded tip is better than the "A" shape shown in Figure 38.

#### SECTION X

## CONCLUSIONS

The following conclusions were derived from the analytical and experimental study described in this report.

1. The propeller noise levels measured during static tests conducted in this study are predicted within acceptable accuracy by the propeller noise detectability computer program using an experimentally-derived correlation of unsteady blade loads and the vortex noise strip-integration procedure developed in this study.

2. The presence of a narrow-band random noise source has been revealed by a detailed evaluation of the static test noise data. This noise appears as broad peaks at harmonics of the blade-passing frequency and is not explained by current propeller noise theories.

3. Although no suitable low-tip-speed propeller data was available during this study to show the effect of forward speed on propeller noise, data from a moderatelylow-tip-speed propeller show a significant reduction in mid-frequency harmonic noise and in high-frequency broad-band noise in forward flight compared to static operation. Therefore, the ability of the propeller noise detectability program to predict noise spectra of a flying quiet aircraft with a low-tip-speed propeller requires further investigation.

4. A trend study using the propeller noise detectability program developed in this study shows that for minimum detectability, a propeller must a) operate at the lowest practicable ip speed, b) have a wide blade chord, c) have a larger diameter than required for performance, and d) have three to five blades. A reduction in broad-band noise due to an increase in blade chord predicted by the new vortex noise procedure was confirmed experimentally. A theoretical study of the effect of airfoil shape indicates that little change in vortex noise should be expected for different airfoils with good aerodynamic performance.

## SECTION XI

# RECOMMENDATIONS

As a result of the study reported here, the following recommendations are made:

1. The effect of forward flight on low-tip-speed propeller noise and on the correlations between measurements and predictions by the propeller noise detectability program should be investigated.

2. Further analytical and experimental studies should be undertaken to define the sources of the propeller noise observed in this study and to develop the computer program to establish correlation with measured flight data.

.

 $\sum_{i=1}^{N} \left( \frac{1}{2} \sum_{i=1}^{N} \left( \frac{1}{$ 

and the second second

163/164

## APPENDIX I

# DERIVATIONS OF EQUATIONS FOR HARMONIC ROTATIONAL NOISE

Kemp and Arnoldi<sup>(18)</sup> derive and present equations for the near-field propeller harmonic loading sound pressure. In these equations (numbers 10 to 13 in Ref. 18) all distances are nondimensionalized by dividing by the propeller tip radius D/2. Equation (3) in this report is obtained by substituting Equations (12) and (13) into Equation (10) and by adding Equations (10a) and (10b) together. Also, the following replacements are made because of changes in nomenclature:

1. Replace  $R_t$  by D/2, s by 2S/D, x by 2X/D,  $\theta$  by  $\phi$ , mBM<sub>t</sub> (Mx+s)/ $\beta^2$  by k $\sigma$ , and mBM<sub>t</sub>/ $\beta^2$  by kD/2(1-M<sup>2</sup>).

2. The local blade chord (A in Ref. 18) is replaced by the projection of the chord onto the propeller plane, b  $\cos \theta$  in the nomenclature of this report. Therefore, replace a by b  $\cos \theta/2r$ .

3. The derivatives of the two force coefficients,  $C_T$  and  $C_F$ , in Ref. 18 are replaced by  $(D/2)dC_T/dr$  and by  $(D/2\pi r)dC_P/dr$ , respectively. The thrust coefficient  $C_T$  in Ref. 18 (see Equation (5)) and in this report have the same definition and the power coefficient  $C_P = 2\pi r C_F/D$ .

Alternatively, Equation (3) may be derived from Equations (21) and (23) of Ref. 17 by replacing  $\beta^2$  by 1-M<sup>2</sup>,  $\theta$  by  $\phi$ , T and Q by corresponding terms involving the coefficients  $C_T$  and  $C_P$ , respectively and by noting that because of symmetry  $S(-\phi) = S(\phi)$  and, therefore,

$$\int_{0}^{2\pi} f(S) e^{-imB\phi} d\phi = 2\int_{0}^{\pi} f(S) \cos mB\phi d\phi$$

Equation (4) for thickness noise in this report is derived from Arnoldi's<sup>(23)</sup> Equations (1) and (2). The parameters defined by his Equation (2) are substituted into Equation (1). These two equations are added together and multiplied by the factor  $e^{-imB\Omega t}$ . The resulting equation for  $P_m$  is rearranged,  $\theta$  is replaced by  $\phi$ ,  $\beta^2$  is replaced by (1-M<sup>2</sup>), (Mx+S)/ $\beta^2$  is replaced by  $\sigma$ , and mBM<sub>T</sub>/R is replaced by k to derive Equation (4) in this report.

Equation (5) for the far-field loading noise may be derived from Equation (3) by a similar process to that used by Kemp and Arnoldi<sup>(18)</sup> to derive their Equation (16) from their Equation (6). In doing this, a phase term  $i^{mB+1}$  is ignored because absolute phase is not important. Terms of order  $1/s^2$  are neglected relative to terms of order 1/s, the substitutions listed above in connection with

the derivation of Equation (3) are made, and  $s_0$  is replaced by  $2S_0/D_{\bullet}$ . Also the Bessel function  $J_{\rm mB}$  is replaced by the terms inside the [ ] brackets of Equation (7) of this report, which is a corrected version of the equation derived by Arnoldi (28).

Equation (6) for the far-field thickness noise is derived from Equation (15) in Ref. (38) by adding a factor  $e^{-imB\Omega t}$ , replacing  $\omega$  by m $\Omega$ B and  $\beta^4$  by  $(1-M^2)^2$ . As for Equation (5), the J<sub>mB</sub> term is replaced by the terms in the [] brackets. Numerical calculations show that the relative phase between the loading and thickness noise sound pressures is the same for the far-field and near-field equations.

Equation (8) is obtained from Equation (36) of Ref. 20, Equation (2) of Ref. 21 or Equation (10) of Ref. 22 by eliminating the radial load terms  $a_{\lambda C}$  and  $b_{\lambda C}$  which are small for propellers, replacing n by mB, replacing  $a_0$  by a, replacing  $r_1$  and r by d, replacing  $a_{\lambda D}$  by  $a_{\lambda Q}/r$ , and by replacing  $b_{\lambda D}$  by  $b_{\lambda Q}/r$ .

Equation (9) is derived from Equation (8) by ignoring all terms with  $J_{mB+}\lambda$ , which is small relative to  $J_{mB-}\lambda$ , as a factor, replacing ia  $\lambda_T - b\lambda_T$  by  $T_\lambda$  and replacing ia  $\lambda_Q - b_{\lambda Q}$  by  $Q_\lambda$  because of the assumption of random phasing, and substituting  $S_0$  for d.
#### APPENDIX II

#### ALTERNATE METHOD FOR CALCULATING UNCORRECTED DETECTION RANGE\*

#### **INTRODUCTION**

The received noise from an aircraft during flyover is from multiple sources and is non-stationary and random in character. The magnitude and apparent frequency associated with each source continually changes as the aircraft approaches and passes a microphone making the separation of pure tone and broadband noise very difficult if not impossible.

An approach for determining the detection range from sailplane flyover measurements has been applied in Ref. 29. These results are discussed below and are followed by step by step procedures for obtaining the uncorrected detection range using only a pure tone detection spectrum for the case where flyover data are used and for the case where predicted noise spectra are used.

#### AURAL DETECTION OF SAILPLANES

Reference 29 reports the results of measurements of the noise radiated from three sailplanes. The reported results are in the form of overall sound pressure levels and one-third octave band spectra obtained from a microphone located five feet above the ground and directly under the sailplanes as they passed overhead. Measurements are reported from each of the sailplanes flying at various altitudes and speeds.

Also included in the report are the results from a subjective determination of the altitude at which two of the sailplanes could just be heard. One of the sailplanes, the Schweizer 2-33 was aurally detected by four observers at approximately 2000 feet altitude and 80 degrees elevation while flying at 50 miles per hour. The other sailplane, the Libelle, was aurally detected by three observers at approximately 2600 feet altitude and 80 degrees elevation while flying at 69 miles per hour. The aural detection range was also predicted from noise measurements of the sailplanes flying overhead. The predicted aural detection range, corrected for atmospheric absorption, was 1300 feet for the Schweizer 2-33 and 2100 feet for the Libelle.

These predicted ranges were obtained by comparing the spectrum level of the received noise to an aural detection spectrum for pure tones. The values for the spectrum levels were determined using a Hewlett-Packard 5450 Fourier Analyzer with an equivalent 50 millisecond averaging time. This averaging time is within the range of 20 to 250 milliseconds given for the integration time constant of the ear as reported in Ref. 39. The spectrum levels were arrived at by decreasing the bandwidth

<sup>\*</sup> Does not include the effect of atmospheric absorption

of the analysis until the level remained constant. This procedure resulted in levels which were 9 to 12 dB greater than the constant energy spectrum level obtained from

$$SPL_{SL} = SPL_{1/3} - 10 \log \Delta f \qquad (dB) \tag{51}$$

where,  $SPL_{SL} \in Constant energy spectrum level, (dB)$ 

 $SPL_{1/3} = 1/3$  octave band level, (dB)

 $\Delta f = Bandwidth of 1/3 octave band, (Hz)$ 

From the results of the sailplane measurements it appears that the ear responds to rapid changes in amplitude and frequency and a detailed spectral analysis of the received noise is required in order to determine the aural detection range of an aireraft. This analysis should be conducted with an averaging time in the range of the ear's integration time constant. When equipment is not available to conduct narrow band analysis, the sailplane results indicate that the spectrum level from those portions of the spectrum where pure tones do not dominate may be obtained from

 $SPL_{SL} = SPL_{1/3} - 10 \log \Delta f + 10$  (dB) (52)

These results have led to the following procedures for obtaining the uncorrected detection range from measured flyover data and from predicted noise spectra.

#### UNCORRECTED DETECTION RANGE FROM MEASURED FLYOVER NOISE

The following procedures are given for determining the uncorrected detection range of an aircraft flying directly over a microphone whose output is tape recorded. Also included in Figure 39 is an example taken from Ref. 29 where these procedures were followed.

1. From the hearing threshold and ambient noise measurements made at the test site, determine the pure tone detection spectrum as shown in Section II. An example is plotted in Figure 39.

2. Determine the maximum sound pressure level which occurs in each one-third octave band during the flyover. An alternate approach is to determine the one-third octave spectra when the signal has reached its maximum overall value. The time constant (averaging time) used in the data reduction should not exceed 0.3 seconds. An example one-third octave band spectrum is shown in Figure 39.

3. Determine the maximum difference between the one-third octave band spectrum and the detection level spectrum and note the frequency band at which this occurs. In the example in Figure 39 this difference is 30.5 dB and occurs in the one-third octave band centered at 315 Hz.

168





4. Conduct a narrow band analysis over a frequency range including this one-third octave band. The averging time for this analysis should not exceed 0.1 seconds. This analysis should be repeated with narrower bandwidths until the peak spectrum level remains essentially constant. Note this spectrum level and the frequency at which it occurs. Determine the difference between this level and the detection level spectrum. In Figure 39 this spectrum level is 37 dB at 285 Hz resulting in a difference of 20.5 dB.

5. In the event that the received signal is not dominated by pure tones (which should appear in step 2) the spectrum level may be determined by substituting the level of the one-third octave band noted in step 3 in Equation (52).

$$SPL_{SL} = SPL_{1/3} - 10 \log \Delta f + 10$$

This level is applied at the center frequency of the one-third octave band and the difference between this level and the detection level spectrum is noted. In Figure 39 this level is 38 dB at 315 Hz resulting in a difference of 22 dB.

6. The uncorrected detection range is then determined from

$$20 \log \frac{R_{\rm u}}{R_{\rm o}} \approx {\rm SPL}_{\rm SL} (\mathbf{f}) - L_{\rm d} (\mathbf{f}) \qquad (dB)$$
(53)

where,  $R_{u} = Uncorrected detection range, (ft)$ 

 $R_0 = Aircraft altitude above microphone, (ft)$ 

 $SPL_{SL}$  (f) = Spectrum level of received signal from step 4 or step 5, (dB)

 $L_d$  (f) = Pure tone detection level from step 1, (dB)

The differences in Figure 39 found from step 4 and step 5 resulted in uncorrected detected ranges of 1340 and 1585 feet respectively.

Note that this detection range does not include corrections for atmospheric and terrain attenuation effects.

UNCORRECTED DETECTION RANGE FROM PREDICTED AIRCRAFT NOISE

The following procedures are given for determining the uncorrected detection range from predictions of aircraft noise.

1. For a given ambient noise environment, determine the pure tone detection level curve as shown in Section  $\Pi$ .

170

2. Determine the power level and frequency of the fundamental and several of its harmonics for each pure tone noise source, using appropriate prediction methods.

3. Determine the power level and 1/3 - octave band spectrum of all broad-band noise sources associated with the aircraft configuration using appropriate prediction methods.

4. Obtain the combined 1/3 - octave band power level spectrum for all broadband noise sources.

5. Determine the approximate power spectrum level of the combined broadband noise sources by use of the following expression;

 $PWL_{SL} = PWL_{1/3Oet} - 10 \Delta f + 10 \qquad (dB)$ (54)

where,  $PWL_{SL} = Power spectrum level,$  (dB)

PWL1/3Oct = 1/3 - Octave band PWL, (dB)

 $\Delta f$  = Bandwidth of the 1/3 - Octave band, (Hz)

6. Compare the power level of all pure tones and the power spectrum level of all broad-band noise sources with the pure tone detection level spectrum. Determine the maximum difference between the power level or power spectrum level and the detection level spectrum, and note the frequency at which this occurs.

(55)

7. The uncorrected detection range is then determined from

20  $\log R_u \approx PWL$  (f) - L<sub>d</sub> (f) (dB)

where,  $R_u = Uncorrected detection ranges, (ft)$ 

PWL (f) = Power level or power spectrum level at point of maximum difference from step 6, (dB)

 $L_d$  (f) = Pure tone detection level at point of maximum difference from step 6, (dB).

#### REFERENCES.

- 1. Smith, U.L. and R.P. Paxson, <u>The Aural Detection of Aircraft</u>, Air Force Flight Dynamics Laboratory Paper TM-59-1-FDDA, AD859892, Sept. 1969
- Robinson, D.W. and R.S. Dadson, "Threshold of Hearing and Equal-Loudness Relations for Pure Tones and the Loudness Function," J. of the Acoustical Society of America, Vol. 29, No. 12, Dec. 1957.
- 3. Shaw, W.A., E.B. Newman, and I.J. Hirsh, "The Difference Between Monaural and Binaural Thresholds," J. of Experimental Psychology, Vol. 37, 1947.
- 4 Normal Equal-Loudness Contours for Pure Tones and Normal Threshold of Hearing Under Free Field Listening Conditions, ISO Recommendation R226, Dec. 1961.
- Neowart, N.S., M.E. Bryant, and W. Tempest, "The Monaural M.A.P. Threshold of iteraring at Frequencies from 1.5 to 100 c/s," J. of Sound and Vibration, Vol. 5, No. 3, pp. 335-342, 1967.
- 6. Corso, J.F., "Absolute Thresholds for Tones of Low Frequency," American J. of Psychology, Vol. 71, 1958.
- 3. Bryant, M.E. and W. Tempest, "Low-Frequency Noise Thresholds," J. of Sound and Vibration, Vol. 9, No. 3, 1969.
- 8. Rebinson, D.W. and L.S. Whittle, "The Loudness of Octave-Bands of Noise," Acustica, Vol. 14, 1964.
- 9 Hawkins, J.E. and S.S. Stevens, "The Masking of Pure Tones and of Speech by White Noise," J. of the Acoustical Society of America, Vol. 27, No. 1, Jan. 1950.
- Hand, R.F. and R.H. McLaughlin, Analysis of Background Sound from Data Recorded in Thailand - Final Report, ARPA order No. 236, amendment no. 21, contract no. DAHC-15-67-C-0119, AD817276, June 1967
- 11. Eyring, C.F., "Jungle Acoustics," J. of the Acoustical Society of America, Vol. 18, No. 2, Oct. 1946.
- Gutin, L.J., On the Sound Field of a Rotating Propeller, TM1195, NACA, Oct. 1948.

- 13. Yudin, E.Y., On the Vortex Sound From Rotating Rods, TM-1136, NACA, 1947.
- 14. Morrey, C.L., "Sound Generation in Subsonic Turbomachinery," J. Basic Engineering, A.S.M.E., Vol. 92, Series D, No. 3, pp. 450-458, Sept. 1970.
- 15. Douglas Aircraft Co., Proposed Revision to Aerospace Recommended Practice ARP 866, SAE Committee A-21, April 1970.
- 16. U.S. Standard Atmosphere, U.S. Govt. Printing Office, Dec. 1962.
- Garrick, I.E. and C.E. Watkins, <u>A Theoretical Study of the Effect of Forward</u> Speed on the Free-Space Sound-Pressure Field Around Propellers, Rept. 1198, NACA, 1954.
- Kemp, N. and R.A. Arnoldi, <u>Machine Calculation of Free-Space Sound-Pressure</u> <u>Field Around Propellers in Forward Motion</u>, Rept. R-22673-1, UAC Research Dept., Feb 1954.
- 19. Schlegel, R., R. King and H. Mull, <u>Helicopter Rotor Noise Generation and</u> <u>Propagation</u>, Tech. Rept. 66-4, AD645884, USAAVLABS, Oct. 1966.
- 20. Lowson, M.V. and J.B. Ollerhead, <u>Studies of Helicopter Rotor Noise</u>, Technical Report 68-60, AD684394, USAAVLABS, Jan. 1969.
- 21. Ollerhead, J.B. and M.V. Lowson, <u>Problems of Helicopter Noise Estimation and</u> Reduction, Paper No. 69-195, AIAA, Feb. 17-19, 1969.
- 22. Lowson, M.V. and J.B. Ollerhead, "A Theoretical Study of Helicopter Rotor Noise," J. Sound and Vibration, Vol. 9, No. 2, pp. 197-222, March 1969.
- 23. Arnoldi, R.A., <u>Near-field Computations of Propeller Blade Thickness Noise</u>, Rept. R-0896-2, UAC Research Dept., Aug. 1956.
- 24. Hubbard, H.H., <u>Propeller-Noise Charts for Transport Airplanes</u>, TN-2968, NACA, June 1953.
- Davidson, I.M. and T.J. Hargest, "Helicopter Noise," J. Royal Aeronautical Soc., Vol. 69, pp. 325-336, May 1965.
- Stuckey, T.J. and J.O. Goddard, "Investigation and Prediction of Helicopter Rotor Noise, Part I, Wessex Whirl Tower Results," J. Sound and Vibration, Vol. 5, No. 1, pp. 50-80, Jaa, 1967.
- Widnall, S.E., "A Correlation of Vortex Noise Data From Helicopter Main Rotors," J. Aircraft, Vol. 6, No. 3, pp. 279-281, May-June 1969.

- 28. Shartand, I.J., "Sources of Noise in Axial Flow Fans," J. of Sound and Vibration, Vol. 1, No. 3, pp. 302-322, May 1964.
- 29. Smith, D.L., R.P. Paxson, R.D. Talmadge and E.R. Hotz, <u>Measurements of the</u> Radiated Noise From Sailplanes, TM-70-3-FDDA, AD709689, AFFDL, May 1970.
- 30. Bodner, M., J.B. Gibbs and G.J. Healy, Far Field Aerodynamic Noise Measurement Program, LR23640, Lockheed-California Co., June 1970.
- 31. Lowson, M.V., "The Sound Field for Singularities in Motion," Proc. Roy. Soc. of London, Series A, Vol. 286, pp. 559-572, Aug. 1965.
- 32. Chuan, R.L. and R.J. Magnus, Study of Vortex Shedding as Related to Self-Excited Torsional Oscillations of an Airfoil, TN2429, NACA, Sept. 1951.
- Ffowes Williams, J.E. and D.L. Hawkings, "Theory Relating to the Noise of Rotating Machinery," J. of Sound and Vibration, Vol. 10, No. 1, pp. 10-21, July 1969.
- 34. Tanna, H.K. and C.L. Morfey, "Sound Radiation From a Point Force in Circular Motion," Symposium on Aerodynamic Noise, Paper E5, Sept. 14-17, 1970.
- 35. Allen, II.J., General Theory of Airfoil Sections Having Arbitrary Shape or Pressure Distribution, Report 833, NACA, 1945.
- 36. Griffiths, J.W.R., "The Spectrum of Compressor Noise of a Jet Engine", J. Sound and Vibration, Vol. 1, No. 2, pp. 127-140, 1964.
- 37. Barry, F.W., User's Manual for Propeller Noise Detectability Computer Program, AFAPL-TR-71-38, June 1971.
- 38. Arnoldi, R.A., <u>Propeller Noise Caused by Blade Thickness</u>, Rept. R-0896-1, UAC Research Dept., Jan. 1956.
- 39. Zwislocki, J., "Theory of Temporal Auditory Summation," J. of the Acoustical Society of America, Vol. 32, No. 2, pp. 1046-1060, Aug. 1960.

### Reproduced From Best Available Copy

#### BIBLIOGRAPHY ON AURAL DETECTABILITY

Beranek, L.L., Noise Reduction, McGraw-Hill Co., 1960.

Bryant, M. E. and W. Tempest, "Low-Frequency Noise Thresholds," J. of Sound and Vibration, Vol. 9, No. 3, 1969.

Campbell, R.A., "Detection of a Noise Signal of Varying Duration," J. of the Acoustical Society of America, Vol. 35, No. 11, Nov. 1963.

Corso, J.F., "Absolute Thresholds for Tones of Low Frequencies," American J. of Psychology, Vol. 71, 1958.

Duifhuis, II., "Audibility of High Harmonics in a Periodic Pulse." J. of the Acoustical Society of America, Vol. 48, No. 4 (part 2), 1970.

Egan, J.P., G.Z. Greenberg and A.I. Schulman, "Interval of Time Uncertainty in Auditory Detection," J. of the Acoustical Society of America, Vol. 33, No. 6, 1961.

Eyring, C.F., "Jungle Acoustics," J. of the Acoustical Society of America, Vol. 18, No. 2, Oct. 1946.

Finck, A., "Low-Frequency Pure Tone Masking," Letter to Editor, J. of the Acoustical Society of America, Vol. 33, No. 8, Aug. 1961.

Fletcher, H. and W.A. Munson, "Loudness, Its Definition, Measurement and Calculation," J. of the Acoustical Society of America, Vol. 5, Oct., 1933.

Gayne, W.J., <u>Aural Detection of an Aerial Vehicle Operating of Low Altitudes</u>, AIAA paper No. 65-329, 1965.

Green, D., "Auditory Detection of a Noise Signal," J. of the Acoustical Society of America, Vol. 32, No. 1, Jan. 1960.

Hand, R.F. and R.H. McLaughlin, <u>Analysis of Background Sound from Data Recorded</u> in Thailand-Final Report, ARPA Contract DAHC-15-67-C-0119, AD817276, June 1967.

Hawkins, J.E. and S.S. Stevens, "The Masking of Pure Tones and of Speech by White Noise." J. of the Acoustical Society of America, Vol. 22, No. 1, Jan. 1950.

## Reproduced From Best Available Copy

Hubbard, H.H. and D.J. Maglieri, <u>An Investigation of Some Phenomena Relating to</u> Aural Detection of Airplanes, NACA TN 4337, Sept. 1958.

Loewy, R.G., "Aural Detection of Helicopters in Tactical Situations," J. of the American Helicopter Society, Vol. 8, No. 4, 1963.

Mulligan, B.E., J.C. Adams, M.J. Mulligan and R.E. Burwinkle, "Prediction of Monaural Detection," J. of the Acoustical Society of America, Vol. 43, No. 3, 1968.

Mulligan, B.E., M.J. Mulligan and J.F. Stonecypher, "Critical Band in Binaural Detection," J. of the Acoustical Society of America, Vol. 41, No. 1, 1967.

Normal Equal-loudness Contours for Pure Tones and Normal Threshold of Hearing Under Free Field Listening Conditions, ISO Recommendation R226, Dec. 1961.

Plomp. R. and A.M. Mimpen, "The Ear as a Frequency Analyzer II," J. of the Acoustical Society of America, Vol. 43, No. 4, 1968.

Richards, A.M., <u>Monaural Loudness Functions Under Masking</u>, U.S. Naval Submarine Medical Center, Report No. 509, Feb. 1968.

Robinson, D.W., and R.S. Dadson, "Threshold of Hearing and Equal-Loudness Relations for Pure Tones and the Loudness Function," J. of the Acoustical Society of America, Vol. 29, No. 12, Dec. 1957.

Robinson, D.W., and L.S. Whittle, "The Loudness of Octave-Bands of Noise," Acustica, Vol. 14, 1964.

Schafer, T.H., R.S. Gales, C.A. Shewmaker, and P.O. Thompson, "The Frequency Selectivity of the Ear as Determined by Masking Experiments." J. of the Acoustical Society of America, Vol. 22, No. 4, 1950.

Shaw, W.A., E.B. Newman and I.J. Hirsh, "The Difference Between Monaural and Binaural Thresholds." J. of Experimental Psychology, Vol. 37, 1947.

Shipley, E.F., "Dependence of Successive Judgements in Detection Tasks: Correctness of the Response," Letter to Editor, J. of the Acoustical Society of America. Vol. 33, 1961.

Smith, D.L. and R.P. Paxson, <u>The Aural Detection of Aircraft</u>, Air Force Flight Dynamics Lab. Paper TM-69-1-FDDA, AD859592, Sept. 1969.

Swets, J.A. and D.A. Green, "On the Width of Critical Bands," J. of the Acoustical Society of America, Vol. 34, No. 1, 1962.

Taylor, M.M. and C.D. Creelman, "PEST: Efficient Estimates on Probability Functions," J. of the Acoustical Society of America, Vol. 41, No. 4, 1967.

van den Brink, G., "Detection of Tone Pulses of Various Durations in Noise of Various Bandwidths," J. of the Acoustical Society of America, Vol. 36, No. 6, 1964.

Wandsdronk, C., "Threshold Mechanism and Masking by Noise," Letter to Editor, J. of the Acoustical Society of America, Vol. 35, No. 5, May 1963.

Yeowart, N.S., "Low-Frequency Noise Thresholds," J. of Sound and Vibration, Vol. 9, No. 3, pp. 447-453, 1969.

Yeowart, N.S., M.E. Bryant, and W. Tempest, "The Monaural M.A.P. Threshold of Hearing at Frequencies from 1.5 to 100 c/s," J. of Sound and Vibration, Vol. 6, No. 3, pp. 335-342, 1967.

Zwicher, E., G. Flottorp, and S.S. Stevens, "Critical Bandwidth in Loudness Summation," J. of the Acoustical Society of America, Vol. 29, No. 5, May 1957.

# Reproduced From Best Available Copy