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ABSTRACT 

This  report outlines  the  solution  to  the  lifting  slender  body   in 
transonic   flow. Remarks are also made  concerning the  transonic   flow past 
cone-cylindrical configurations.    Preliminary calculations concerning 
viscous  effects, and  particularly  plume   induced separation,   are   included. 

11 



1 

FOREWORD 

This report describes  the results  to date of an analysis conducted 
by  the University  of Tennessee Space  Institute under U.S. Army Contract 
No. DAAH01-69-C-1357.     The contract was  initiated under DA Project No. 
1M2326XXA206 and AMC Management Structure Code No.   522C. 11.14800.    The 
technical effort was  performed between March 1970 and April 1971 under 
the direction of the Aerodynamics Group, Aeroball istics Directorate, 
U.S. Army Missile Command, Redstone Arsenal, Alabama.    The Army technical 
representative was Mr. D. J. Spring. 
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Section I.   INTRODUCTION 

The progress made since publication of our  last summary report |1J 
is  summarized and reported herein.    Considerable  knowledge was obtained 
in the  inviscid flow field, which  is necessary before one can study  in 
detail  the viscous  flow field and  interaction on various  bodies of 
revolution including  small angles of attack.    The   studies on viscous 
effeits are preliminary ones;  however,   some   interesting results as well 
as  the direction of  future   investigations ar.-  pointed out.    Since   this 
is a  summary report,  most details were omitted;  however,  a  series  of 
publications which present  the calculation procedures as well as detail 
discussions are referenced. 

The major ideas  and  typical  results on the  inviscid and the viscous 
flow studies are  presented  in Sections  II and   III,   respectively.    The 
analysis on inviscid  transonic   flow field around an ogive-cylindrical 
body at zero angle of attack [2]   has been extended   to  include  the effect 
of cross-flow caused by small angles of attack.    The results are very 
encouraging and check reasonable well with experiments   including recent 
investigations by AMICÖM.     The  flow over a conical  nose   shape has  been 
solved using the  integral  approach for the entire  transonic flow regime. 
It will be shown that this  is a higher order approximation method.    The 
analysis can take into account  the cone at small angles of attack with 
good agreement with the available data.    This  study has been extended 
to calculate the  flow field along a cone-cylindrical body at zero angle 
of attack where the method used for the   cylindrical   body portion has 
been reported in previous  publications  [1.   3] . 

The effect of viscous and  inviscid  flow interaction is studied by 
considering the boundary  layer build up,   including  transition and  through 
a normal shock wave,  and   its results upon the   inviscid   flow field.     (The 
interaction between the potential solution and  the  boundary layer  solution 
is  studied through the iteration process.)    Remarks  concerning the 
usually accepted "equivalent body" concept are noteworthy,  especially, 
if separation is  involved.    A preliminary  study on the  separation caused 
by the exhaust jet plume   indicates  that the transonic  separation could 
be very different  from that of the  lower supersonic case.    Moreover,   if 
the  separated region  is  small,   the usually accepted  "equilibrated"   free 
shear  layer analysis   is not applicable. 

A very basic  study program on the  transonic  separation problem has 
been initiated.    Studies   involving problems   in  improving the  inviscid 
flow solutions are continuously  in progress. 



Section II. INVISCID FLOW FIELD AROUND VARIOUS 
BODIES OF REVOLUTION 

The n o n l i n e a r c o r r e c t i o n theory wi th s t r e t c h i n g procedure has been 
extended to a l i f t i n g o g i v e - c y l i n d r i c a l body. The s o l u t i o n s were 
obta ined over the e n t i r e t r a n s o n i c flow reg ime . The major i deas and 
some r e s u l t s a re p resen ted in Paragraph 1 . The i n t e g r a l e q u a t i o n 
approach to the flow f i e l d a long a c o n i c a l nose i s d i s c u s s e d i n 
Paragraph 2. The complete s o l u t i o n over a n o n l i f t i n g c o n e - c y l i n d r i c a l 
body i s d i s cus sed in Paragraph 3 . 

1. Flow Field Around Ogive-Cylindrical Bodies at Small Angle of Attack 

a. Basic Consideration 

It has been shown [1, 2] that Hosokawa's nonlinear correc-
tion theory [4, 5] with a stretching procedure [2] can be applied to a 
cylindrical body with an ogive nose at zero angle of attack. The surface 
pressure distributions as well as shock wave locations over various body 
configurations have been shown to agree fairly well with experiments. 
Encouraged by these good agreements, an extension to include the body 
at small angle of attack has been attempted. The following discussion 
only presents the major idea and the detailed approach is in preparation 
as a separate publication*. 

The appropriate inviscid transonic flow small perturbation equation 
can be written 

( 1 " *xx + 7 ̂  (r<tr ) + ^ = (T + 1) M 2 $x$xx (1) 

in which the velocity potential, $, is normalized with respect to the 
free-stream velocity UM . The coordinates and the geometry are illus-
trated in Figure 1. A solution must satisfy the boundary conditions of 
tangential flow at the body surface with the perturbation velocities 
vanishing at infinity. 

The tangential boundary condition can be approximated for a 
slender body by 

*Wu, J. M. and Aoyama, K., Transonic Field Around Ogive-Cylinder at 
Small Angle of Attack, U.S. Army Missile Command, Redstone Arsenal, 
Alabama, Technical Report (to be published soon), 1971. 
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[*r + Sin a Cos 9 ] o n b o d y - £ (2) 

where a and R are the angle of attack given in radians and the normalized 
body radius with respect to the total body length L, respectively. 

In Hosokawa's nonlinear correction theory [5], the nonlinear 
solution i of Equation (1) is assumed to be formed by the linearized 
solution 4> of Oswatitsch and Keune [6] type and a correction function g. 
• is a solution of the equation which reads 

(l - + + - K»x (3) 

where the contribution from the azimuth direction is included because of 
the cross flow induced by the small angle of attack. K is an 
acceleration like term and has been assumed to be a constant. This 
assumption leads to the so-called "parabolic" method known to the 
technical community. Hosokawa assumed that 

<t> + g (4) 

where g is the correction function. A further study on this g function 
is underway and will be in a separate technical report*. 

By Equations (1), (3), and (4), and by order of magnitude arguments 
[5], it has been found that the g function has to satisfy the following 
equation: 

£|[(M-2 -i) + (1 - 7) it2L « 2 „2 
2 8x + 2 §x 

- -[(1 +r) M ̂  $xx - *]•„• (5) 

The correction function g may be understood to be a function of x with 
r and 9 as parameters, i.e., g(x;r,9). Integration of Equation (5) 
gives 

""Wu, J. M., Some Remarks on Transonic Flow Nonlinear Correction Theory 
(in preparation). 
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gx (x;r,g) = - "x 1-M w n 
d+7 )Mi 

Y (x) (6) 

where 

Y(x) = 
I-M: 

<»x " 
(1+7)M, 

- 2 
A f. K 

' XX 
(y+i)Mi 

X X 

in which x* is the unknown parabolic point where the coefficient of £xx 

in the nonlinear transonic equation vanishes. 

The double sign of Equation (6) is determined according to the first 
term on the right side of Equation (6) [2, 5], i.e., 

1-M. 

( 7 + D M C 

< 0 (7) 

It is suggested that the parabolic point x* is determined such that 
the x component of perturbation velocity determined from the linearized 
transonic equation, gives the nonlinear solution at that point, i.e., 

1-M, 
$x (x*;r,y ) 4X (x*;r,d ) 

(7+1 )M 2 
(8) 

This satisfies the condition that the acceleration is continuous in the 
accelerated flow regime. From comparison of Equations (1) and (3) with 
Equation (8), one obtains, 

4>xx (x**>r»0) = 
K 

(1+7 )Moo 
(9) 

Therefore, Equations (8) and (9) are the two equations which determine 
the two unknowns, K and x*. The nonlinear solution, can thus, be 
constructed according to Equation (4) with Equation (6) as follows: 

1-M. 
<t> x = (7fl)Mi 

y ± /Y(x) (10) 
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where 

Y(x) = -2 4>x(x*) k(*) " »x(x*) 1 + —— " <KX*)1 ' 
L J (7+1)M2 L J 

The linear perturbation potential is assumed to be expressible as 
the sum of two parts because of the axial flow and the cross flow. This 
assumption is valid only if the angle of attack is small and no boundary 
layer separation is present in the flow field. This gives 

(x,r,tO = $a (x,r) + $c (x,r,0) (ID 

where <t>a and <J>c denote the axial and cross flow, respectively. 

By the linearized small perturbation Equation (3), the governing 
equations for $a and $c read 

(1 " "») + (r*s)" ( 

and 

(i - Mi) + - ̂ (r + r2 
de2 

= K $, (13) 

The solution for the axial flow <t>a has been discussed in detail by Wu 
and Aoyama [2]. The discussion on the solution for the cross flow $c 

is given by Liepmann and Roshko [7]. The simplified cross flow 
solution reads 

(x,r,0) => Cos 9 ^ = Sin a Cos 9 R ^ . (14) 
Sr r 

The last expression is known as the Munk-Jones cross flow term. 

The boundary condition, Equation (2), can be rewritten* for the 
linear solution as follows: 

*For details, see Wu and Aoyama, loc. cit. 
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body 
dR 
dx 

(15) 

and 

K + Cos 9 Sin aj = 0 
body 

(16) 

Now, if the angle of attack is small, it is reasonable to assume 
that the linear perturbation velocity may be expressed as 

0 (x,r,0) a <l>0 (x,r) + A <J> (x,r,e) (17) 

where the subscript o denotes the basic solution at zero angle of attack, 
i.e., the axial flow solution. Thus, by comparison of Equations (11) 
and (17), one identifies A 4> with the Munk-Jones cross flow term. 
However, it should be noted that 4>0 is not the same solution of the 

axisymmetric equations discussed in reference [2], because of the shift 
in the sonic point location and the change in the constant K. 

By the conditions set out in Equations (8) and (9), one obtains 

<f°x (x0* + Ax*, KQ + AK) + A4>x (x0* + A x*, KQ + AK) 

= ( 1 " M J ) / (18) 

and 

0°xx (X°* + AX*' K° + A K) + A *xx (X°* + AX*' K° + A K) 

(1+^)M^ 

where xQ,v and KQ are the solutions based on the axisymmetric solution 

[2] . 
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The nonlinear perturbation velocity 0X, finally reads 

1-M^ 
$x = T ± V Y 0 + AY (20) 

(7H)M2 V 

where Y_ is due to the axial flow and AY is due to the small angle of 

attack. The expressions for Y0 and AY are: 

Y 0 (x) = -2 
I-MJ 

(i+y)M* 

2*o 

(H7)M2 

l-Mr; 
0o (x) - " 

x (1+7 )MJ 

0o(x) " •o(xo*» Ko) (21) 

and 

1-M 2 AY (X) = -2 °° A <t>x(x) + 2AK <t>Q(x) 
(1+7 )Ml (I+7 )M2 

2K r 
+ r* A <> (x) - AK« 0 (xfl*, KQ) 

d+7 )Mi L 

- AX* «>o (x0*, K 0 ) J (22) 

therefore, the correction of Y(x) due to the angle of attack can be 
performed. 

b. Discussions of Solutions and Comparisons with Data 

Without going into details (which will be published as a 
separate report*), some typical solutions are presented in Figures 2 
through 7. 

The pressure distribution along the 0 = 90 degree surface changes 
with angle of attack as illustrated in Figure 2. An increase in angle 
of attack increases the shock wave strength as expected. In the 

*Wu and Aoyama, loc. cit. 
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a* 5dag 
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Figure  3.    Mach Number Contours on Leeward and Windward 
Planes   for  5-Degree Angle of Attack at ^ - 0.975 
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Figure A.    Mach Number Contours on Leeward and Windward 
Planes  for 5-Degree Angle  of Attack at ^ ■   1.00 
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Figure 6.    Comparison of Present Theory with Experiments 
Leeward Side   for 2-Degree Angle of Attack at ^ ■ 0.95 
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axisymmetric  flow case [2],   the  pressure coefficient along  the cylindri- 
cal  body vanishes.    However,   this   is not so in the angle  of attack case 
because of the cross  flow. 

The entire flow field,  disturbed by the  presence  of a body,  is 
illustrated   in Figures  3 and 4  for a  subsonic and a  sonic   free  stream 
case,   respectively,   for the   plane   including the  leeward and   the windward 
variations.    The  flow pattern on the  leeward side changes more gradually 
compared with  the windward  side.     It can be  seen   in Figure   3  that  the 
movement of  the sonic   point   is more  sensitive   to the movement of the 
shock location at angle of attack. 

Figure  5 presents  an indication of the circumferential   pressure 
distributions at various stations.    The .suction reaches  a maximum near 
the shoulder.    The major  lift component comes   from the   front  portion of 
the body.    On the cylindrical  portion of the body,  the cross  flow contri- 
bution  is more significant. 

A comparison was made with  recent AMICUM data  fur various angles of 
attack over  the entire  transonic   flow region and the agreement  is very 
good.    Two  typical examples  of windward and leeward pressure distribu- 
tions compared with the  theory are presented  in Figures 6 and  7, 
respectively.    More comparisons will  be  included  in  future publications. 
The   inclusion of the viscous effect will be discussed   in Section III. 

2.      Flow Fitld Along NOM COOM 

a.      Basic Consideration 

The analysis of the   invlscld  flow around a conical body 
at various  transonic speeds has been performed with much success.    This 
is very encouraging,   in view of  the  fact that  the existing available 
techniques are restricted to a free stream of Mach number I   (or a very 
minor perturbation from I).    Moreover,  the present method can also take 
care of the  small angle of attack case. 

The appropriate small disturbance transonic  flow equation is Equation 
(1), given In Paragraph  I.    For the present case, all   the lengths are 
normalized with respect to the axial  length of the cone  (Figure 8). 
Now,   in case of the transonic   flow past a cone,   It  is a well   known fact 
that  Che sonic velocity  is  fixed at  the shoulder, and  the  flow is sub- 
sonic  over  the entire conical  forebody, as long as the angle of attack 
is small and the shock wave  is not  attached to the body. 

Rewriting the nonlinear  transonic equation.  Equation (I;, as 

15 
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then,   the above  observation  for subsonic  flow over  the entire  forebody 
suggests  that the coefficient of 4'xx has to be  positive  and nonzero. 

This  inspired the following linearization technique: 

(l-Mi) .2    .    _     f2 (l+7 )M^   1.x =     ^(x) (23) 

where  f(x)   is an unknown  function which will  be determined later.    This 
approach  is  somewhat  similar  to  that  devised by Cole  and Royce  | 8]   in 

which   ■;/ x  Is approximated  but n'l/^x'  is  not. 

Now,  by   Introducing a new Independent variable   :   such that 

f [*(')]   -    £ (24; 

tlte original equation,  Equation (I1)   Is reduced to 

t2 r    r\       r  /        r2 2 
(25> 

which  Is a Laplace equation,  and C   Is  Che   linearized velocity  pottntlal 
normalized with respect Co Che  free scream velocity. 

As approximated   In Paragraph  I,  assume  Chat   tlte  perturbation 
velocity potential :   is composed of the axial   flow contribution :a  and 

Che cross  flow  term »c   Is due to tlte  small angle  of attack.    This 
gives 

i   O ,r, •)    -    :a  (« ,r)    +    :c   (: ,r,   ) (26) 

The appropriate boundary conditions  for :a and :c are 

^c   ('.r.   )    ■    Sin a Cos        R2(')/r (27) 

and 

• :a (^  r) 
(28) 

body   surface 

17 



where ;    is   the half-angle  of  the cone measured  in radians. 

The   fundamental  solution to Equation (25)  for $a  is 

l I* F(t) 

7 v/(f-t)id+ r2 

where  F* is   the  sonic velocity point  in the transformed plane corresponding 
to  the  shoulder  location,   and F(t)   is  the  source  distribution along the 
body axis  determined by the boundary  condition of  the  problem, 
respectively . 

Without  going  into details   (the  details will  be  published as a 
separate   report"),   it  is   found  that 

j ^a    =      F(5) (30) 

.-r 2 it r 

where the  source distribution F(£)   satisfies 

F(f) =  2jt     R(fJ = 2JT&2 X(5)     . (31) 

The  relation between X and  p   is,   from Equation (24), 

X(|) -    r^     f(t)    dt      . (32) 

Therefore, 

F 

F(0    .    2rt^2     C     f(t) dt (33) 

o 

^  f   f(t: 

and,  with Equations   (29) and  (26),  one obtains the velocity  potential 
as, 

Wu,  J, M.,  and Aoyama, K., On Transonic Flow Past a Cone-CyUnder Body 
with and Without Angle of Attack,  U.S. Army Missile Conmand Technical 
Report, Redstone Arsenal  (to be published soon),  1971. 

lö 



2 r f(s)ds 

/(?-t)' + r 

+ Sin Q Cos ; 41 
2 x r2 

2 

dt 

f(t)  dt (34) 

To obtain the  expression for  fCO»   following Equation  (34),   one  obtains 

u i) 

Jil-P*)2 + r2 / 

f(t) 
dt 

(?-t)2 + r2 

+ 2 ^^    Sin U Cos       f   (s) 
r 

/ 
f(t) dt (35) 

However, 

■ e -r  -r   -   f(f) 
I-MJ    - f2(0 

i 

C' + DM2 
(36) 

where the.relation between   • : / x and    f(t)   in Equation  (23) was  employed 
Then, Equations   (35)  and  (36) are  reduced   to the  following integral 
equation along the body surface, 

[  f(oJ3    -     ((I-MJ)  -    2 :(!+■/ ) M2   Sin   . Cos f(0 

+ i   S  (1 + y) M2 I /* f(t)  dt 
00 [-b       /(t-t)2 + R2(« )     /(t-.*)2 +  K2(t)_ 

(37) 

The  function  f(*).  whicli behaves as  the  square root  of  the  perturba- 
tion velocity, must  satisfy the boundary conditions at the apex and  at 
the shoulder.    At  the apex where x ■ 0,   the  stagnation condition 
requires 

"co +  IU *X 0 (38) 

VJ 



or 

*x = -1 (38') 

From Equation (23) and by Equation (38'), the solution should asymptoti- 
cally behave as 

f(o) = [(l-M2)+ (l+r)M2 
1/2 

(39) 

At  the  sonic point v^here  | =  |*,   one expects 

f(rv)   =   0    . (40) 

By employing Equation  (32),   the  sonic velocity location  is at the 
shoulder and is determined  by  the  condition 

t* 

J        f(t)  dt    =    1     . 
o 

(41) 

With these boundary conditions,   the nonlinear integral equation. 
Equation  (37),  is solved  for  f  (?,)*•    The velocity  potential is then 
obtained  by 

,    co       (l-Mi).[f(..)P 
(7+l)Mj 

(42) 

Then,  x   (?)  is related to f   (f) by the condition of Equation (32) 
pressure coefficient on the  body  surface  is determined  by 

The 

Cp - -2 tx - ,s2 + ( 1-4 Sin2   ») Sin2 a    . (43) 

'vFor the details of solving Equation (37),  see Wu and Aoyama, 
loc.  cit. 
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b.       Discussions of Solutions and Comparisons with Data 

The  limited available   theories,  which were  developed by 
quite different  approaches   for  sonic   flow over a cone-cylindrical  body, 
are  compared   to  the  present  theory.     The available  theories  are   the 
local  linerization method  of Sprieter  and Alksne  [9],  Yashihara's 
numerical  approximation [10],   and Leiter and Oswatitsch's   time  dependent 
characteristic  method  [11].     These are  compared  to  the  original  data  of 
Page   [12]   and   the  present   theory   in  Figure  9.     The   present   result  and 
Leiter and Oswatitsch's  fall very  close   to each other and  agree  very 
well with the   data. 

It may  be  noted  that  the  present   theory predicts  reasonable  values 
along the  center portion of  the  cone .     The  theory  predicts  a  somewhat 
poorer solution near  the  shoulder because  of  the  approximation used  in 
solving the   integral equation for  f(?)   (discussed  in detiil   in a  report 
to be  published).    The  poor agreement  near  the  apex  point   is   caused  by 
violating  the   small disturbance  assumption.    Treating  the  apex  and  the 
shoulder  as   singular  points   and matching of  the asymptotic solutions agree 
with  the   present  result away   from  the   singularity. 

The  applicability of  the  present method  to flows other  than  the  sonic 
flow are  demonstrated  in Figures  10,   11,   and  12.    The agreement  of the 
data   for  the   slightly subsonic  flow  of  Figure  11 and  slightly   supersonic 
flow of Figure  12 is very encouraging. 

Typical   results  for bodies at  small angles of attack are  shown  in 
Figures  13 and  14.    It can be seen that the pressure  change with azimuth 
angle  is  rather significant on the windward side.     In Figure   15,   the 
variation of  pressure distribution resulting from different  angles of 
attack is  shown.    A comparison with data  is also given  in Figure  16   for 
a slightly blunted cone at a 6-degree  angle of attack. 

3.       Flow Field Along Cone-Cylindrical Bodies 

The  analytical  treatment of   the  flow downstream of   the  sharp 
shoulder  of a   cone-cylindrical body  configuration has  been  studied and 
reported   [3] .     Therefore,   by matching  the  cone-solution as  described  in 
Paragraph  2  to  the developed  local   two-dimensional  approximation method, 
it  is  possible  to obtain the complete  "on body" solution for a  cone- 
cylindrical  body at zero angle of attack.    The restriction to  zero angle 
of attack is  because  the work derived  and  reported  in reference   [3]   was 
based upon the  axisymmetric condition. 

From the  conical-nose  portion of   the analysis,   the  local Mach 
number at  the   shoulder lias been taken as unity in transonic   flow.    A 
Prandtl-Meyer  expansion around  the corner is  then assumed.     The   local 
two-dimensional  approximation method   permits transformation between the 
axisymmetric  and  the two-dimensional  bodies.    The  final  result   for  the 
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Figure  16.    Flow over a Blunted   15-Degree Cone at M    =0.9 
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perturbation velocity along the cylindrical portion of the  body calculated 
from the shoulder downutream can be expressed as [3]: 

1 

'' J< (l+>)M 273 25 
(* - £11 

(i+y)nJ/3 

T 1/2 

and C   is  given by 

C2 =    25 (1+ r)^/3 

1-^ 

! l-M 

2     d+y) ^ 

2/3 

J  I 00 

4l(l+7)^ 

9 1-M2 V
2
/
3 , v4/3 

Mi/J    (I+X)M200 ^2V/T+T/ \2yi^: ^^ 

1/2 

where :    is   the semiapex angle of the  cone.    The pressure coefficient 
along  the  cylinder reads 

1/2 

Cp (x -  c) 

7(1+7)  M2^3 

1 / \2 1-Mt, —        (x -  c) * 
25     (1+7) M^3     "     (1+y)^ 

Some typical calculated results compared with experiments are given 
in Figures 17 through 19 for subsonic, sonic, and supersonic freestream 
Mach numbers, respectively. The shock condition and the possible 
boundary-layer separation for subsonic freestream Mach number cases will 
be discussed in more detail in a report to be published on cone- 
cylinders in transonic flow*. 

'^Wu and Aoyama, loc . cit. 
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Section III. CONCERNING VISCOUS EFFECTS 

This part of the  report discusses two main topics.    Paragraph 1 deals 
with the distortion of the potential  flow field due to the development of 
the  boundary-layer on the body surface, while Paragraph 2 concerns  the 
interaction of a jet exhaust  plume with the body  flow field. 

The work described  is  the  first stage  in the determination of the 
entire, viscous,   flow over a missile configuration at transonic speeds. 
It will be shown that such calculations can be performed adequately; with 
the  exception of certain vital components.    Areas where little success 
can be claimed,  relate  to  the  turbulent boundary-layer close to separa- 
tion  in a subsonic  flow,  and  to a turbulent boundary-layer developing 
on a body containing discontinuities  in slope.    Work is in progress  to 
redress these deficiencies. 

1.      Studies on Viscous/lnviscid Interactions 

Writing the Navler Stokes equations   (under the assumption of 
constant coefficient of viscosity) 

f -»4 1 
+    —    grad P «=   c   curl curl  q   + -r    grad A 

Dt p I J J 
D_a_   + i 

|^   + div  (pq) =  0 (44) 

where  for the general vector A 

-^ -» 
ÖA 1 9      "* 
T-^—   +    2 8rad A^ - A    x    curl A 

DA 
Dt 

and A is the dilatation div   q; we consider only steady flow, wherein all 
temporal derivatives are zero. 

Then, writing 

q ^ q0 + (_!&) c^ + . . . 

P ~ P0 + ^OO Pi + . . . 

p    ~    po   +    e   (\) p1    +    .   .   . (45) 
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where \ ■ 1/Re with Re the Reynolds number, and substitution into Equation 
(44) gives in the limit \ -» 0 

D qo 
  + — grad P., 
Dt     , 0 

Brau ro 

('o?o) 

The subscripts o, 1, and 2 indicate the order of the solutions. 

These equations are the classical potential flow equations - if 

curl q0 =» 0, so that q0 a    grad rn 

when 

grad ■^W^] "> 

div (iQ grad Vo) =    0 • (46a) 

These equations have been solved  for transonic flow as discussed  in 
Section II and  previous  publications  [1,   2], 

Transforming the  independent variables 

-1/2 
x    =    X;  y    =    Y\ 

where X, Y ~ 0(1), and placing, 

P~ Po
:L    +    ^(A.) P^    +   .   .   . 

■o1    +    &!(*.) V    +   .   .   . (47) P ~   p. 

with similar expressions  for the velocity components,   gives   in the limit 
(\ -> 0) 
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div U1 %') - 
uo1 ^^1  + v^ ^ +  1 !!£. _  y ^Z£_     (48) 

•u0i + Vo1 

ay 
+ 1 ^o1 

dx 
= i* 

02U01 

x 
oy2 

as the first approximation to the inner expansion (i.e., the classical 
boundary-layer equations) . The solution to these equations will be 
indicated in Paragraph 2 for laminar and turbulent flow. 

liquations (46) and (48) represent the classical solutions to the 
flow over a body.  However, these solutions do not introduce any inter- 
action between the boundary-layer development and the external flow. 
Only through the evaluation of (at least) the second terms in the sequences 
[Equations (45) and (47)] can this interaction be accounted for. 

To some approximation, it is possible to evaluate the interaction 
by utilizing the equivalent body concept. Here the boundary-layer dis- 
placement surface is added to the geometric body, thus generating an 
"equivalent body". The potential flow is then determined for this 
equivalent body and an iteration is established between the body shape 
and the boundary-layer development. 

It should be noted that for steady flow, 

1     o  -♦  -♦     1 r        -*4      1 
-z  grad q^-qxw = -- grad P + ^  curl curl q + T grad A 

so that only if y = 0 and the vorticity vanishes (v^ s 0) is the pressure 
gradient aligned with the velocity gradient. The assumption of zero 
vorticity implies an irrotational approaching flow and that any shock 
waves in the flow are sufficiently weak for their entropy gradients to 
be ignored. In viscous flow this is not so and the additional terms, 
v   curl w, etc must be included.  In the equivalent body technique, 
these terms are forced to be zero outside the displacement surface and 
the streamlines in the boundary layer do not "match" those of the 
external flow. The potential flow past an equivalent body does not 
model the real flow [13] . However, unless the flow is near to separation, 
the correction is small (d5,v/dx small) and the equivalent body technique 
gives a good result. 

Figure 20 presents a typical calculated boundary-layer development 
for a four calibre tangent ogive body in transonic flow (^ a 0.975). 
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This   result is  taken from reference [13).    The correction introduced into 
the  calculated surface pressure distribution is presented  in Figure 21. 

We readily conclude from this  result   (i.e., Figure 21),  that provided 
the boundary layer is  thin,  we can ignore  the  interaction between the 
boundary  layer growth and the  external  potential  flow.    This result may 
seem  surprising in a transonic  flow where  the nonlinearity  generally 
produces rapid changes  in the   flow with small changes   in boundary 
conditions.    More discussions  can be  found  in reference  [13]. 

2.      Comments on Plume Induced Separation 

The  potential   flow  theories discussed  in Suction   II cannot 
describe the interaction between an exhaust jet plume  and  the body flow 
field because the details of  the  interaction are intimately controlled 
by viscous  forces in the flow.     In this section,  some   techniques  for 
describing the viscous effects are discussed. 

Five major components of  the   interaction may be  isolated.    Each 
will  be considered,   in term,   in the  following paragraphs.     It should 
be emphasized that the applicability of the interaction  studies presentad 
are  restricted to supersonic  conditions. 

a.      The Approaching Boundary Layer 

As a necessary  initial condition for the  shear-layer cal- 
culation,   the boundary-layer development on the body must be  known.     It 
is  in  this way that changes  in the Reynolds number  (and boundary-layer 
transition)  influence the interaction between the plume and  the body 
flow field.    Once  the  flow is  essentially turbulent, however,   further 
increases  in Reynolds number will be of little  significance. 

The potential  flow theory  provides  the basic pressure distribution 
from which  to calculate the boundary-layer development.     Since the 
current theoretical treatment   is only applicable  if the   flow is  super- 
sonic,   it is adequate to assume  that the presence of the plume does not 
influence the body pressure  field ahead of the  interaction.     In addition, 
it was   shown [13]   that the distortion of the  flow field   resulting from 
the   boundary-layer development   is also negligible for the present 
purpose.    Hence,   the boundary-layer development may be  estimated directly 
from the pressure  field  provided by  the theory of reference  [ 2] . 

Applying the Mangler-Stepanov transformation [14,   15]   and the 
Stewartson-Illingworth transformation [16,   17]   to the  laminar boundary- 
layer theory of Thwaites   [18]   yields  the following result   for  the 
momentum thickness: 
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The nondimensional pressure gradient, (1), is 

7-2 
/   / T \ 

r 
"^       dx 

then the  form factor and  skin friction coefficient are  related  to  the 
function F by  the  empirical  relations  given by Thwaites.     Some  details 
are also given in reference  [ 19] . 

Transition of the laminar boundary layer was considered to occur 
either at some prescribed location (e.g., as dictated by experimental 
evidence)   or when  the Reynolds  number, 

iy>* 
=     900, 

is reached locally in the flow. This latter criterion was taken from the 
expc . :'^ ncal data presented in reference [20].  If boundary-layer 
sepc.i ". - Ljn was predicted before the satisfaction of the above Reynolds 
number criterion, then the separation point was used as the point of 
transition. Note, that separation is taken to be when I = -0.09. 

To complete the boundary-layer calculation, the turbulent boundary- 
layer theory of Nash [21] was used.  This integral theory, based upon 
the momentum integral equation. 

1  d  /  „^ „ \ „ dUe 
(peUe R ) = R dx \Jeue  lx /'  'rw "  ' eUe HF" 

is applicable to compressible, axisymmetric flow. The shear stress inte- 
gral is taken to satisfy a differential equation which (at least 
heuristically) is representative of turbulence phenomena (and is somewhat 
reminiscent of the equation of Burgers [22] ) . 

Finally, if the boundary layer encounters a discontinuity in 
pressure distribution (weak shock-wave or expansion fan) then it is 
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assumed  that   the  boundary-layer momentum  thickness  suffers  a discontinuity 
;; i vc n   by 

./   1     =      e,   V..    M"   /„     Ve    Hg 
-     l L 1     L 1     Li/   c2       2       2 

The  appl icalii 1 i ty   ol   this  equation  to a   sudden expansion   (e.g., 
supersonic   flow  over  a  boat   tail   configuration)   is open  to speculation. 
Thus,   it   is  shown  in Figure  22  that  the  boundary-layer development on 
such  a  boat  tail   is  extremely  sensitive   to  changes  in the   initial 
conditions  after   the   expansion.     The  result  quoted by White   [23],   being 
of  the  same   form as   the above  equation,   is  not  sufficiently different 
to give more   satisfactory  results.     In addition,  according to  the  data 
of Rubin  [24),   there  can be a   significant  acceleration of   the   flow 
ahead  of  the  boat   tail.    The assumption of  a  discontinuous velocity 
change  at  the   boat   tail   is  not adequate  and  a more  detailed theory   for 
this   region   is   required. 

b.       Turbulent Boundary-Layer Separation 

In  the  case of  a  rapid  separation of a turbulent boundary 
layer   in supersonic   flow,   the  appr^' inate   theory of Mager  [25]   may  be 
used.    Although designed  for  two-dL    asional   flow,   the  result  shown  in 
Figure  23   indicates   that  the  pressure  rise   to  separation  in axially 
symmetric   flow may  also be estimated  by  this method.    The  experimental 
data  shown  in Figure   23  is  taken  from Kuehn  [26]. 

The data   from reference  [26]   also  shows   that above  a  Reynolds 

number  of R^  ~   10   ,   the  pressure  rise  to separation is  little   influenced 

by  increase   in Reynolds number.     Indeed,   the  data in reference   [27] 

suggests  a variation  like Re-l/^O   (which  is   considerably  smaller  than 
-1/8 the Re     '     variation predicted  by Ray   [28]X    For  the  present  study,  we 

neglect  the   influence  of Reynolds  number  on  the  pressure  rise   to 
separation.     Reynolds  number  then only  enters   the calculation as   it 
influences  the   boundary-layer momentum thickness at the  start  of  the 
interaction.     It   is  considered  that  this  neglect of Reynolds  number  on 
the pressure  rise  to  separation is of higher  order than the accuracy of 
the basic  theory   (Figure  23)   for  separation  prediction. 

It  is also  shown  in reference   [26]   that  the sensitivity  of a 
boundary layer   to  separation  is a   function of  the velocity profile.     The 
further  removed  the   profile  is   from  its  equilibrium value,   the more 
easily will   the  boundary  layer  separate.     This  point will  be  of 
significance   in  the   later discussion on  the   flow past a body with a 
boat   tail. ; 
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The pressure  rise  to  separation also depends  on the downstream 
conditions   (Figure 23) .    Although this result  is  contrary to the usually 
accepted situation  in supersonic  separation  (as  embodied  in the  results 
of reference  (291),   it   is   physically  reasonable  to expect  some  small 
dependence on downstream conditions  resulting  from  the  reversed   flow  in 
the  separation  region.     This  point  is  of  significance  in the  plume 
induced  separation  problem where  the  downstream conditions   (plume   shape 
and  shear  layer ronfluence)  depend upon  the  jet  pressure  ratio.     It   is 
hoped  that   future developments can go  towards  evaluating the magnitude 
of  this "upstream  influence." 

The equations  of  Paragraph 1 decermine   the  boundary-layer momentum 
thickness at the  start  of  the  interaction.     Following  the  suggestion  of 
McDonald  [30],   this momentum thickness may  be  related  to that  at  the 
start of the  shear  layer  by  the relation: 

1+. 
7-1 

^ 

M. 

M 
[l -  0.605 Cp +  11 .725 CP

2J 

where 

Cp =  1-M, 

and M]^  is  the Mach number ahead of  the  shock,  M2   the Mach number  behind 

the  shock, and   '0  the  boundary-layer momentum  thickness  at  the  start  of 
the  interaction. 

c.       Free Shear Layer 

It  is  assumed   (following Kirk  [31])   that the  free  shear 
layer  leaving the body  surface at  the  separation  point can be  replaced  by 
some  equivalent asymptotic   shear  layer;   the  correct  asymptotic   layer being 
selected by matching momentum thicknesses  between  the  shear  layer and 
the  separated boundary layer   at the separation  point.    Clearly,   as  the 
free  shear layer  is  reduced  in length   (compared  to   its width)   the 
utility of the equivalent  shear layer concept  is  reduced.     In cases 
where  the  flow is  not much  different  from that  in a  bubble,   the  concept 
is  entirely inappropriate. 

Since we have  included  the effect of  the  boundary  layer  on  the 
shear  layer development,   the  results are more  sophisticated  than  those 
obtained by Dixon et al.   [32]   or Schulz  [33]   and  go,   at  least some way, 
towards  including Reynolds  number effects. 
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The   flow equations   in  the  asymptotic  shear  layer were described  in 
reference  |1]   and  need  not  be  repeated here. 

The  unknown constant   (the  boundary-layer momentum thickness at  the 
start  of   the  shear   layer)   is  determined  from  the  boundary-layer calculation 
outlined   in Paragraph a  and  the  relation across  the   interaction given  in 
Paragraph  b. 

d.      Jet  Plume 

Initial  calculations  have been performed  using the plume 
geometry  developed  empirically  by Herron [34].     Further  details were 
given   in reference  [1] .    At   the  same time,  a more  complete calculation 
using  the method  of characteristics  program developed  by  Prozan [35]   is 
being undertaken. 

Conditions  at Confluence 

We  follow Korst and assume  that  the   final  static  pressure 
after  the   recompression  is  equal   to the stagnation pressure on the dividing 
streamline  before  the  confluence.     Figure  24 shows  this  diagramatically • 

If   it   is  assumed  that  the  recompression  is   isentropic,   then 

7/7-I 

pf - 

where  Pf  and P^ are   the  static   pressures before and  after  the recom- 

pression,   and M    is  the Mach number on the dividing streamline. 

For   the  isoenergic   flow,  we  have: 

2      :    ^l    C"     <U/Ue^/[L-C»  ("Ale)2] M0 

witli 

2 7-I     2 1 + ZliM2 

2      M 

and u/Ue   is  the velocity distribution in the approaching shear-layer. 
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The solution of  the confluence region is  closed by means of the 
relations between pressure  change and  turning angle   in linearized super- 
sonic   flow.     The   solution  is valid only when  the   flow downstream of the 
surface  separation  is   supersonic  because  this   supersonic  turning angle 
is  as sumod. 

C.       Calculated Results 

A   typical  missile configuration   (4-calibre  tangent  ogive 
body) was  used  to obtain data on plume effects   (Figure  25). 

Initial  calculations were  performed at a   free  stream Mach number  2 
on  ttu'  body  shown  in Figure  25 without  the boat   tail.     The extent  of 
separation as  a   function of  jet  pressure  ratio   is   shown in Figure   26. 

The calculations were repeated at a free stream Mach number 1.1. 
Again the body was taken without the boat tail . For low jet pressure 
ratio   (Pj ~  10 ?„,),   it   is  seen in Figure  27  that no  flow separation is 

present.    At  significantly higher pressure  ratios,   separation  is 
produced. 

Figure  28  presents   two   important  points.     First,   it  is  shown  that 
variation in the  boundary-layer transition point has very  little  influence 
on the  location of the   plume  induced separation point.    Only when the 
transition occurs   in  the  immediate vicinity of  the  separation point will 
the  flow exhibit  a  significant variation with   the  actual  location of 
transition.     Secondly,   Figure   28  shows  that  the   influence of  the  plume 
has  provoked  separation of  the  boundary  layei  ahead  of the point of 
separation predicted  by   the  boundary  layer calculation in the absence 
of   the  plume. 
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Figure 28.     Interaction of Plume with Fore-Body Flow at H,, - 1.1 

50 



1^ 

Section IV.  CONCLUSIONS AND RECOMMENDATIONS 

A fairly complete understanding of the  invlscld  transonic  flow over 
various bodies of revolution was obtained during this study.    Engineering 
methods  for  the computation of  the  flow over an ogive-cylindrical body 
with small angle of attack,   the conical  nose with and without angle of 
attack and the cone-cylindrical body at  zero angle of attack were 
developed.    The analytical results check very well with the available 
experiments.    This  increases our level  of confidence  In the analysis 
discussed herein. 

Many  improvements are still  needed  to obtain more general   solutions. 
For  instance,   application of the existing theory  to an arbitrary shaped 
smooth body   (including the acceleration and deceleration portions)   is 
very desirable.    The improved solution around the apex point and the 
shoulder for a cone-cylindrical configuration should also be  studied. 
To  include the angle of attack,  or the effect due  to the cross-flow, 
on the  local  two-dimensional method  is another subject needing 
careful  study. 

It was   found that the viscous effects on an ogive-cylindrical body 
are not too significant.    However,  estimation of the viscous effects 
applicable to the boat tail  portion needs  specific  attention.     Our 
preliminary viscous analysis indicates  that the shoulder of a boat tail 
is very crucial   to the boundary layer  separation caused by  the  exhaust 
jet plume. 

The calculation of an entirely subsonic or a mixed supersonic/ 
subsonic  seperation will  form the  subject of further study. 

51 



1 

REFERENCES 

1. Wu,  J,  M   ,  Aoyamn,   K.,  and Moulden,  T.  H.;  Study of Flow Around 
Axtsymmetric   Bodies with and  Without Plume  Induced  Separation at 
Tranaonlc  Spoeds  -  Summary Report;   U    S.  Army Missile Command, 
Redstone Arsenal,   Alabama,  Technical Report No. RD-TR-70-3; March 1970 . 

2. Wu,   J.  M.   and Aoyama,  K.,  Transonic   Flow-Field Calculation Around 
Ogive Cylinders  by  Nonlinear - Linear   Stretching Method,   U.   S. 
Army Missile Command,  Redstone Arsenal,  Alabama,  Technical Report No. 
RD-TR-70-12,   April  1970.    Also AIAA 8th Aerospace Sciences Meeting, 
AIAA Paper,   January  1970,  pp.   70-189. 

3. Wu,   J. M.   and Aoyama,  K.,  Pressure Distributions  for Axlsymmetrlc 
Bodies with Discontinuous Curvature   in Transonic  Flow,  U.   S.   Army 
Missile Command,   Redstone Arsenal,  Alabama,  Technical Report No. 
RD-TR-70-25,   November  1970. 

4. Hosokawa,   I.,   "A Refinement of the Linearized Transonic Flows 
Around Thin  Bodies",  J■   Phys.   Soc.,   Japan, Vol.   15,   1960, 
pp.   149-157. 

5. Hosokawa, I., "A Simplified Analysis for Transonic Flows Around 
Thin Bodies", Symposium Transonicum, Editor, K. Oswatitsch, 
Springer-Verlag, Berlin, 1964, pp. 184-199. 

6. Oswatitsch, K.  and Keune, F., "The Flow Around Bodies of Revolution 
at Mach Number One", Proceedings of the Conference on High-bpeed 
Aeronautics, Polytechnique Institute of Brooklyn, January 1955. 

7. Liepmann, H. W. and Roshko, A., Elements of Gas Dynamics, John 
Wiley and Son, Inc., New York, 1957. 

8. Cole, J. D. and Royce, W. W., "An Approximate Theory for the Pressure 
Distribution and Wave Drag of Bodies of Revolution at Mach Number 
One", Proc. 6th Midwestern Co \ference on Fluid Mechanics, 1959, 
pp. 254-276. 

9. Sprieter,   J.   R.   and Alksne, Y.,   Slender  Body Theory  Based  on 
Approximate  Solution of the     ransonic   Flow Equation,   NASA Technical 
Report.   R-2,   1959. 

10. Yashihara,   H.,   On the  F"        A/er a Cone-Cylinder Body at Mach 
Number One,  WADC Tcchnic.     .ieport  52-295,   1952. 

11. Leiter,  E.   and Oswatitsch,  K.,  "Ermittlung Statls\narer Schallnaher 
Strömung   in Abstclgenrerfahren aus dem  Instattonarcn. /AMM,  Vol.  48, 
1968,   S.   187-191. 

PREKO!« m\ BUNK 



12. Page, W.  H,,  Experimental Study of the Equivalence  of Transonic 
Flow About Slender Cone-Cyllndera of Circular and Elliptic 
Cross Sccllon.  NACA Technical Note 4233,   1958. 

13. Moulden, T.  H.,  Spring,  D.  J.,  Salsl,  R.  0./ Aoyama,  K.,  and 
Wu,  J. M.;  Bodies of Revolution at Transonic Speeds:    The Estimation 
of Reynolds Number Effects;   Paper to ACARD Specialists McotiiiK 
on "Facilities and Techniques  for Aerodynamic Testing at Transonic 
Speeds and High Reynolds Numbers";  GÖttlngen;  April   26-28,   1971. 

14. Mangier, W.,  "Zusammonbang   /iwlschon Ebenen und Rotation Asymmetri- 
schen Gronzschlchter  In Komprcsslblcn Medien",   /J\MM,   Vol  28, 
1948,   p.   97. 

15. Stepanov, E.   I.,   "On the  Integration of the  Laminar   Boundary- 
Layer Equations   for  a Motion with Axial  Symmetry",   PMM,  Vol.   11, 
1947,  p.   203. 

16. Stewartson,  K.,   "Correlated   Incompressible  and Compressible 
Boundary-Layers",   Proc.  Roy.   Soc.,  Vol.   200,   1949,   p.   84. 

17. Illingworth,  C.  R.,   "Steady Flows in the  Laminar  Boundary-Layer", 
Proc.  Roy.  Soc., Vol A199,   1949,  p.   533. 

18. Thwaites,  B.,   "Approximate Calculation of the Laminar Boundary- 
Layer",  Aero.  Quart.,  Vol.   1,   1949,   p.   245. 

19. Moulden,  T.  H.   and Wu,   J.  M.,   An Outline  of Methods  Applicable 
to Viscous  Fluid  Flow  Problems,   U.   S.  Army Missile  Command, 
Redstone Arsenal, Alabama,   Technical Report  No.   RD-TR-71-4, 
March 1971. 

20. Czarnecki,  K.  R.  and Jackson,  M. W.,  Effects of Nose Angle  and 
Mach Number on Transition on Cones  at Supersonic  Speeds,  NACA 
Technical Note 4388,   1958. 

21. Nash, J. F., A Practical Calculation Method for Compressible 
Turbulent Boundary-Layers in Two-Dimensional Flows, Lockheed 
Georgia Research Memorandum ER-9428,   1967, 

22. Burgers,  J. M.,   "A Mathematical Model  Illustrating   the Theory 
of Turbulence",  Advances  in Applied Mechanics, Vol.   1, Academic 
Press,   1948. 

23. White,  R.  A.,  Turbulent   Boundary-Layer Separation   from Smooth 
Convex Surfaces  in Supersonic Two-Dimensional  Flow.   Ph.   D.  Thesis, 
Mechanical Engineering Department,   University of  Illinois, 
Urbana,   Illinois,  1963. 

54 

L. 



24. Rubin,  I).  V., A Transonic Investigation of Jet Plume Effects on 
Base and ACterhocly Prcssuroa of Boattatl and Flare Bodies of 
Revolution,   U.  S.  Army Missile Conunand, Redstone Arsenal,  Alabama, 
Technical  Report No.   RI)-TR-70-10,   1970. 

25. Mager,  A.,   "On the Model of  the  Free Shock-Separated, Turbulent 
Boundary-Layer",  Journal Aeronautical Science, Vol.   23,   1956, 
p.   181. 

26. Kuehn,  D.  M., Turbulent  Boundary-Layer Separation Induced by 
Flares on Cylinders  at   Zero Angle  of Attack,  NASA Technical 
Report R-117,   1961. 

27. Chapman,   D.   R. ,  Kuehn,   D. M.,   and  Larson,  H.   K.;   Investigations 
of Separated Flows  in Supersonic  and Subsonic Streams with 
Emphasis  on the Effects of Transition; NACA Report No.   1356, 
1958. 

28. Ray,  A.   K.,  "Estimation of the Critical Pressure Rise  for  Separa- 
tion in Two-Dimensional Shock Boundary-Layer Interaction Problems", 
Z.   Flugviss. Vol. 6,   1962,  p.   237. 

29. Bogdonoff,   S.  M.  and Keppler,  C.  E.,   "Separation of a Supersonic 
Turbulent   Boundary-Layer",  Journal Aeronautical Science,  Vol.   22, 
1955,   p.   414. 

30. McDonald,   H.,   "A Study of the Turbulent Separated  Flow Region 
Occurring  at a Compression Corner  in Supersonic  Flow",  JFM, 
Vol.   22,   1965,   p.  481. 

31. Kirk,   F.   N.,  An Approximate Theory of Base  Pressure in Two- 
Dimensional Flow at Supersonic Speeds, RAE Technical Note Aero. 
2377,   1959. 

32. Dixon,  R.   J., Richardson, J. M.,   and Page,   R.  H.;   "Turbulent 
Base  Flow on an Axisymmetric Body with a Single Exhaust Jet"; 
J.  Spacecraft; Vol.   7;  1970;  p.  848. 

33. Schulz,   R.,  Rocket Exhaust  Plumes   in a Separated Supersonic 
External  Stream, M.   S.  Thesis,   University of Tennessee Space 
Institute,  Tullahoma,  Tennessee,   1970. 

34. Hcrron,   R.   D.,   "Jet  Boundary Simulation Parameters  for Under- 
expanded  Jets   in a Quiescent Atmosphere",  J.  Spacecraft.  Vol.   5, 
1968,   p.   1155. 

3^.       Prozan,   R.   J.,   Development  of  a Method of Characteristics  Solution 
for Supersonic   Flow of an  Ideal.   Frozen or Equilibrium Reacting 
(■as Mixture.   LMSC/HREC  A 782535,   April  1966. 

55 



Tl 

36.      Scddon, J.,  The Flow Produced by Interaction of a Turbulent 
Boundary-Layer with a Normal Shock Wave of Strength Sufficient 
to Cause Separation,  RAE Technical Memorandum Ac 667,   1960. 

36 


