BRLCR £

AD

CONTRACT REPORT NO. 42
AAE Report 70-4

A STUDY OF THE TRANS IENT BEHAVIOR OF
FUEL DROPLETS DURING COMBUSTION:

1 THEORETICAL CONS IDERATIONS FOR AERODYNAMIC STRIPPING

Prepared by

University of 1llinois
Aeronautical and Astronautical Engineering Department
Urbana, lllinois

June 1971

This document has been approved for public release and sale;
its distribution is unlimited.

U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER

BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND

Ruepreduced by

NATIONAL TECHNICAL

INFORMATION SERVICE
gt

d VYa 2215




Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating or
sponsoring activity is prohibited.

Addiiional copies of this report may be purchased from the
U.S. Department of Commerce, National Technical Information
Service, Springfield, Virginia 22151,

The findings in this report are not to be construed as
an official Department of the Army position, uniess
so designated by other authorized documents.




Unglassified

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title. body of abaita t and Indexing ennotation must be entered when the uverali repori la classiiied)

I ORIGINATING ACTIVITY (Corporale author) 28, REPORT SECUMITY CLABSIFICATION
Acronauticul and Astronautical Engineering Department Unclassified

Mas Iarmmacn .. _r Twoasr v _ ~ o~ . TR ]
UlAVETSiY U1 11240015 0L Cuampaigu~itvbana 2. snoud

3 REPORT TITLE

A STUDY UF THE TRANSIENT BEHAVIOR OF FUEL DROPLETS: THEOKETICAL CONSIDERATIONS FOR
AERODYNAMIC STRIPPING

4 DESCRIPTIVE NOTES (Type of repest and Inclusive dates)
Final Contract Report

8 AUTHORIS) (First name, middle initial, last name)

Krier, Herman

6 AEPORT DATE 78. TOTAL NO. OF PAGLES 7b. NO. OF REPFL
June 1971 37 . S

88, CONTRACT OR GRANT NO. #8. ORIGINATOR'S REPORT NUMBL R{S)
DAANGS5-70-C-0111 AAE Report 704

b. pmosEcT NO. University of Illinois

¢ o). OTHER REPORT NO(S) (Any other numbers hat may be assigned
this report)
d BRL Contract Report No. 42

10. DISTAIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited,

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
U. S. Army Aberdeen Research and

Development Center, Ballistic Research
Laboratories, Aberdeen Proving Groupd, Md,

13. ABSTRACT

Even though the steady or quasi-steady combust’:n of isolated droplets or droplet
sprays has been studied extensively and is reasonably well understood, the problem of
transient gas dynamics coupled to droplet combustion is so poorly understood at- the
present time that adequate models to describe the phenomena have yet to be proposed.
The problem is, however, extremely important to the technology of combustion devices.
Aside from the detonation of spray droplet mixtures, in which droplet breakup and
combustion are occurring under extremely transient conditions, a full descriptive
theory of this phenomena will be invaluable in furthering eur understanding of such

- varied phenomena as liquid rocket engine instabilities, engine thrust transients,
combustion in liquid propellant gun systems, high pressure fuel-air gun systems, spray
ignition mechanisms, and hybrid rocket dynamics.

This report presents a theoretical analysis of one important phase of heterogeneous‘
flow, namely a model for the aerodynamic stripping of fuel from the assumed spherical
droplets.

m
147 .I’I.AG.. o0 FORM 1.1.. 1 JAM 84, WHICH 1D
DD v wov os SS0LETE FOR ARuY UsE. Unclassified

Security Classification




&cutity Classitication

KEY WORDS

LINK A

LINR B LiNx C

ROLE LAJ

nOLE wT rOwE wY

Aerodynamic Stripping
Spallation
Theoretical model to calculate mass addition

Incompressible two-phase flow

T .mmAre TTTOR L.

ooz

.

a3t n e ot

Unclassified

Security Classification




e Ty W e e
.&r;.u
N S A % T

P
PR

L i T NG SRR SRR s < e -+

R e e U

RO . -y

*

o ey

— -

iy

BLANK PAGE

X

FROwTeEY

-

.
T T ety
.

A — L

p—
1) R

PN WP

——————
U .

11% .

- e Bl
e I(.!V!If..s'.}.?.

- miaﬂ!\r: tu(“ W

P Irai)..i:-!'rh‘!..v«x‘l\.i

R —e ST

T e o —




BALLISTIC RESEARCH LABORATORIES

CONTRACT REPORT NO. 42
AAE Report 70-4

JUNE 1971

A STUDY OF THE TRANSIENT BEHAVIOR OF FUEL DROPLETS DURING COMBUSTION:
THEORETICAL CONSIDERATIONS FOR AERODYNAMIC STRIPPING

Dr. Herman Krier

University of Illinois
Aeronautical and Astronautical Engineering Department
Urbana, Illinois

This document has been approved for public release and sale;
its distribution is unlimited.

Contract No. DAAD05-70-C-0111

ABERDEEN PROVING GROUND, MARYLAND




TABLE OF CONTENTS

TITLE PAGE i
TABLE OF CONTENTS i1
LIST OF SYMBOLS iid
1.0 ABSTRACT 1
2.0 INTRODUCTION 2
5 3.0 DESCRIPTION OF THE PROBLEM 3
4.0 ASSUMPTIONS 5
5.0 FORMULATION 6
6.0 BOUNDARY CONDITIONS AT THE LIQUID-LIQUID 8
INTERFACE

7.0 TRANSFORMATIONS 10
7.1 Gas Phase 11
7.2 Liquid Phase 11
; 8.0 PROCEDURE FOR FINDING ASYMPTOTIC SOLUTIONS 14
‘ 9.0 PROCEDURAI. OUTLINE FOR SOLVING THE 18

; COUPLED EQUATIONS
: 10.0 COMPUTER PROGRAM 20
5@ 11.0 CONCLUSIONS 26
é 12.0 ACKNOWLEDGMENTS 27
| 13.0 REFERENCES 28
APPENDIX I 29
APPENDIX I1 31
DISTRIBUTION LIST 35:

s toag

™ e s

ii




TTTT T T T nee——

K(x)

S £ mHOU -

> < O

T ¢ E 5 M € ™ X

Subscripts
K
1

©

LIST OF SYMBOLS
Aaved e wdommwd . . .at ,- p—, e—
Svheaty, VaILUSAVY Taliv (I % p vy [/ porvy,)
aondimensional Blasius stream fgncgion (f= Gor=L)

nondimensional stream function for gas boundary layer
Eq. (10)

proportionality factor in spallation boundary condition,
Eq. (6)

nondimensional stream function for Liquid Boundary
layer

characteristic length of flow transformation, Eq. (7)
pressure

radius, specifying contour of body of revolution

droplet radius

boundary - layer velocity along the x co-ordinate
potential free-stream velocity which is a function of x
constant flow velocity far ahead of the droplet
boundary-layer velocity along the y co-ordinate

curvilinear co-ordinate measured along a meridran
from the stagnation point

curvilinear co-ordinate at right angles to the surface
nondimensional Faulkner-Skan wedge parameter, Eq. (17)
v (x,y) stream function, Eq. (7)

nondimensional x co-ordinate, Eq. (8)

nondimensional y co-ordinate, Eq. (9)

viscosity

fluid kinematic viscosity = u/p

fluid density

gas

liquid

free stream

interface between gas-1liguid boundary layer

iii




Tk

P
- - .
=t :
— - e G T VT RS T, e~ oy > -
o

AT 2 e S
7 e PR BT BRI AT T

Wi




T T T

1.0 ABSTRACT

Even though the steady or quasi-steady combustion of isclated
droplets or droplet sprays has been studied extensively and is
reasonably well understood, the problem of transient gas dynamics
coupled to droplet combustion is so poorly understood at the
present time that adequate models to describe the phenomena have
yet to be proposed. The problem is, however, extremely important

" to the technology of combustion devices. Aside from the detonation

of spray droplet mixture:, in which droplet breakup and combustion
are occurring under extremely transient conditions, a full des-
criptive theory of this phenomena will be invaluable in further-
ing our understanding of such varied phenomena as liquid rocket
engine instabilities, engine thrust transients, combustion in
liquid propellant gun systems, high pressure fuel-air gun systems,
spray ignition mechanisms, and hybrid rocket dynamics.

This report presents a theoretical analysis of one important

phase of heterogeneous flow, namely a model for the aerodynamic
stripping of fuel from the assumed spherical droplets.

-1~
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2.0 INTRODUCTION

? One of the most difficult problems encountered in the develop-
ment of high-spced compression-ignition chambers has been the
proper atomization and distribution of the fuel in the combustion
chamber during the extremely short time available. Rapid comhustion
of the frrel does not take place as soon as it enters the combustion
chamber, but a certain time, knowr. as the ignition lag, elapses
during which the temperature of the fuel is raised to its auto-
ignition point by the absorption of heat from the compressad air.
The rate of heat absorption by a fuel drop is directly proportional
to its surface area; the rate of its temperature rise is inversely
proportionsl to its volume. Because the surface area varies as

the square of the diameter, whereas the volume varies as its

cube, a small drop will have a shorter ignition lag than a larger
one. The time required for the complete combustion of small

drops is also less than that for the large ones; therefore, the
smaliast drops are the most desirable if they can be obtained
without sacrificing good distribution.

This report discusses a description of one of the physical
phenomena for reducing the size of the droplets, namely that of
aerodynamic stripping.




3.0 DESCRIPTION OF THE PROBLEM

A —amee .
As a resuls sf d:cplct b‘cak.:p. ie iz vaualls nhaarvrad thae

burning rates are obtainable which are higher than those possible

under the conditions of low velocity and forced convection where
no disintegration occurs. In order to increase the rate of a
complete comhustion, the stripping effects of the breaking up
process of a fuel droplet is considered in this study. This
theoretical study on stripping effects of a droplet in high
speed air is made in order to investigate how to properly model
such a physical phenomena. Therefore, the formulation of the
problem, i.e., the governing equations and the proper boundary
conditions are given considerable detail.

Basically, this is a two-phase viscous flow problem.
Since the droplet is in a high speed air stream, the problem is
further simplified by application. of standard boundary layer
theory. This means that a high Reynolds number flow problem
is reduced to a two-phase boundary layer flow problem. In
order to illustrate this problem, a sketch of the flow field is
presented in the following sketch:

Calwso L. L
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Gas Boundary Layer
interface, y = v

Liquid Boundary Layer

-

¥ Liquid Droplet
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The two phase boundary layer flow problem has been developed

for many engineering applicatiens, such as ablation, spallation,
aerodynamic shattering, etc. Ranger and Nicholls(l) studied the
aerodynamic shattering of a iiquid droplet. Their work gives
experimental results and has attempted a theoretical descripticn.
The theoretical analysis in their study is to integrate the
boundary layer equation by Karman's momentum integral method.
Then an approximate solution of the velocity distribution of the
gas and the liquid is posed. This is exactly the same as G. I.
Taylor's analysis(z) in a somewhat different problem. With the
assumption of knowing a-priori the velocity distribution, they
celculated the mass stripped away from the droplet. G. W. Sutton
studied a related problem of hydrodynamics and heat conduction
of a melting surface near the stagnation point of a high speed
stream. He carefully studied the boundary conditions and for-
mulated the problem as an axially symmetric Falkner-Skan flow.

He also applied his analysis to experiments on the ablation of
reinforced plastics in supersonic flow(4). E. W. Adams inves-
tigated transient and quasi-steady performance of melting type
re-entry shield(s). There are many others who also contributed

(3)

in this field; the references are included.

-4 -
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4.0 ASSUMPTIONS REQUIRED

Because this problem is quite complicated, some assumptions

have to be made in order to simplify the problem, sc that it can

be made mathematically tractshle. The assumptions made are as

follows:

1, The flow is considered as i ..ompressible.

2. It is assumed that the problem is one of a steady state
flow.

3. There is no slip at the interface of gas and liquid boundary
layers ( at y = 0).

4. The outer solution of velocity over the spherical droplet
is assumed to be Um'-'%UQ SIN )!(i-l , which is the poten-
tial flow, where R is the radius of the droplet, and x
is the curvilinear streamline coordinate,

5. The boundary condition at the gas liquid interface was

suggested by G. I. Taylor and is/U9 24 = He ZLU
. . C 29 T2
since there is no slipping (see Assumption 3j.

The centrifugal pressure gradient is small; thus 2e = O

A

It should be pointed out that the boundary layer equations, when
transformed from the x, y co-ordinate system to the £ and )7 system

(wherc £ is related to x and'? is the similarity variable) have

neglected the partial derivative terms with respect to {. Similar

solutions are assumed thereby, although strictly not allowed, since

the outer velocity distribution over the sphere is not of the

correct power-law form, It is assumed as is usual that the non-

similar terms do not appreciably modify the results.
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5.0 FORMULATION OF THE PROBLEM

Since the assumptions made correspond to reasonable physical
circumstances, the mathematical formulaticn for this problem
is a straight forward application of boundary layer analysis.
A difficulty that arises is to determine what boundary conditions
to apply at the liquid-liquid interface that describe the
physics.

The governing equations take the following form:
(A) Gas Phase

(1) continuity equation

d(Ygh) d(Ver) _ .
St ""'(3'%‘""0 ()
(2) momentum equation
UgdUy AUy 1 3p o St
EARE e e i
(3) boundary conditions
Y=o {V,i:O; u3=u,(x\_,~ [&3%%},..}&3%(3)

3200 { Ug= T (x)
(B) Liquid Phase

(1) continuity equation

(u-xg.’) " Q(V! H a0 @

(2) momentum equation

“:%!“HQ P U%ﬂ 7{% (5)

6
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(3) boundary conditions
At v = 0, the same as gas phase

» -w, several

’

Because at the liauid-liquid interface, ¥
possible boundary conditions can be posed; two g
are written in following form.

roups oi thonm

Note that within the "goundary-layer’ assumptions, we assume that

liq. gas




6.0 BOUNDARY CONDITIONS AT THE LIQUID-LIQUID INTERFACE

shows the different physical situations possible at liquid-
liquid interface. Consider Figures (1) and (2) below.

Potential Flow

T _— g o

G-L Interface

Gas// >/’_ 3 4o

Liquid rr L~-L Interface
M Droplet Wplet
4a-o
Figure 1 Figure 2

Figure (1) shows that the velocity is zero at liquid-liquid
interface. Figure (2) depicts the case where the velocity is not
zero there. As far as the physics is concerned at liquid-liquid
interface, these are then really two different problems. The
problem depicted in Figure (1) is a mass addition boundary layer
flow problem, and the one in Figure (2) is called a '"spallation'
problem. Therefore, the two different boundary conditions to be

specified at \j 2 = o0 are,
For problem (1), mass addition:| For problem (2), spallation:
Uy=0 Uy = Kia f‘EL (6)
Ug# © % =0 &

where K above is a physical parameter which can be related to the
surface tension or viscosity, both of which may be functions of
the liquid temperature. As the first approximation we may assume

K = constant. - 8 -

= |
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layer conseivaiion equations i axisymmetric <80
general, the standard non-dimensional similarity transformation
variables will be useful, since they transform the two partial
differential equations into one ordinary differential equation.
0f course, we must check whether our boundary conditioms can also

be transformed in similarity space.




7.0 TRANSFORMATIONS

As is usual, we introduce the non-dimensional stream func-
tion 74 » Sc that the gas phase dependent variables are,

= 4 _ L
w T%‘%T v = -F-%.gé- G

where ,L is the characteristic length of the body.

Defining the similarity variables, } and 7 such that

b
}' = j oo Ued 4y (8)
° 2* Ua

and

7, U ¥id -

(2_-,‘5-‘[']"° 5] Yo

We arrive at the standard stream function, written as

v = (250-3)"* G a0

This ie theref.ra 2 dcfinition of GI(r).
All the terms in momentum equation are transformed again

in the standard way.

w= Uw G,(ﬂ ,

(9)

(11)
- X ‘ U : ‘
o= - B 60 4 -ty
“ iU _ 7Uy*
éi;‘-.= c,(,)all;l»«Ué'('v;)f?'F“a‘i‘) zu;u., (1%

- 10 -
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sw. - U'r &'
T TRy

o, 32 1 G”/(
%%—"-‘s‘-a,_ = Uzrz‘u..}j) (15)

7.1 Gas Phace

(14)

Substituting all these .erms into gas phase momentum equations,

an ordinary differential equation is obtained as

G+ GG+ ﬁ(ﬁ) -G ") =0 (16)

ﬁ(}) = 2_5 d Log W(x)
d ; (17)

For example at the point% from the leading edge, F(})-; 0.245.
(See Appendix I.) .

where

The boundary conditions are now.

h=0 {(;,:O wd G,’(o\=?f.(x)}
1= {C=1.0

Note that, in general, at V] =0, C,, (d) = 0.

(18)

7.2 _Liquid Phase

Similarly, the non-dimensional stream function and the sim-
ilarity variables for liquid phase are defined as

- 11 -




Y= (1§Uo.74)g‘ L\?) (19)
X vt Uin d
3 J e

(20)

7 = Fix) Uik

The only difference between the above quantities equation
(19-21) for the liquid and those of the gas is the kinematic
viscosity coefficient ‘Vx in equations (8-10). Again & similar
procedure is used to transform to the similarity space. The
governing differential equation is obtained for the liquid phase
as,

L+ LU +£5) [‘-:gi_ -u” ] =0 (22)

Notice the term %/ﬁ in the above equation. The operator is
therefore different than that of equation (16) for G,(”) .
The boundary conditions for equation (22) are as follows. For

(1) The mass addition problem:

7=D {L(o) :0; L)z Go'm/- lf'(O)-'-G/'(O)rLzs)

7.—.-oo { U(-%) =D (24)

(2) The spallation problem:

7: 0 {L(OS =0; L(@)=G ’(M L'0) = G (0 ™ 2

- 12 -
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(26}

7:-‘0 .{-L’(-Oo\ = ,&L”('%\}

where k is the non-dimensional form of the parameter K.

By examination of both the governing equations and boundary
conditions, it is easy to see that this two-phase boundary-laye:
flow problem is coupled by the interface conditions. (See equa-
tions (23) and (18)). Because our main goal in this snalysis is
to find how much liquid has been stripped away from the liquid
droplet, the liquid-liquid interface boundary conditio.. is really
the most important part in this analysis, If the boundary con-
dition at V’= -00is defined, the subsequent interest is the
asymptotic solution to equation (22) for the liquid phase, The
specification of our imposed boundary conditions there will depend
upon the behavior of the asymptotic solution of the problem.

In equation (23) or {25), we have attempted to impose at ﬂ =%
either L’= O or L’ - l: K’(—“}the asymptotic solutions will
provide a check of whether any or either of these are allowed,

NOTE: T = p /V
s g

and is typically less than 0.1,

/o

AN

- 13 -
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8.0 THE PROCEDURE FOR FINDING THE ASYMPTOTIC SOLUTION

One boundary condition we plan to set at the liquid-liquid

interface 1s that L{(-m)=0 . This implies that L(—h}zc, 0.

Following the usual procedure to find the asymptotic solution

of the governing equation, namely

T VA WP

we first ditferentiate the above and obtain

L&’ 4 LLm 4 LILM(| 'Z_B)"-'o -

/
Applying the conditions L(‘d 20 and L(‘Q=C to the

above relation we see that

W p
L + C L =0 (28)

Integrating the above once, we have

w

L = é,c"-f B, (29)

"
Now since L. (-90)  must be zero due to breaking up con-

dition from the droplet at - ©®, this implies that B, = 0 in

the above relation,

Integrating equation (29) once more, then

L”-'-'*%e.'c" + B (30)

- 14 -
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Also L(‘W) must be zero (since L(""“')= O ); this implies
that E2 = 0 in equ~tion (20, The proceeding boundary condition
means no shearing stress at 7.-.-.-—00, which means that actually

some fluid has broken away sirom the liquid droplet

Continuing. we integrate once more, and find that
oA s
S
L '+ B (31)
C 3

Y
Again L(-@):O , the original supposition. Therefore, 83 = 0.
Finally the solution for [‘(v) is

-G
L==52t8, 52

c?

We note that since L\,%)g C » then B, = C. thus

P (33)
L a4+ C

L is the asymptotic solution for the mass addition problem.

In the process of finding the asymptotic solution, one can
make a very important observation as to the physical phenomenon
occurring in the two boundary layer problem. That is, L' can be
expressed as,

n" -C
L™ = - -c‘-'-JZ, (34)

This expression indicates that there is an inflection point
for the velocity distribution of the liquid phase. The following

- 15 -




figure gives an indication of the resulting expected velocity
distribution that must result; if we are to match the boundary
conditions at y = 0.

Velocity Profile .—

Gas

"=.. Interface

Liquid

Droplet

Figure 3

The physics should be carefully studied and investigated,
and we plan to do so. A suitable explanation for the maximum

velocity in the liquid layer is necessary.

The other boundary condition for the s»allation problem we
plan to specify is L’(..;\ - }E L”(.Q),. This implies that

Uy = &1, )

The above expression indicates that L’(oo).f-O, As 7
approaches = %0 | L’(-“)approaches C. This corresponds to the
velocity distribution in Figure 2. Because this integ: :1ion
constant C is a function of many physical propertics, i . s
difficult to determine it a-priori. For this reason, a f.riuer

- 16 -
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study of the asymptotic solution of the,spallation problem is
required but 1s not made here. We plan to attempt such an
analysis later.

- 17 -
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9.0  PROCEDURAL OUTLINL PCR SOLVING THR COUPLED EQUATIONS

The equation of motion in the gas and liquid phase have
been transformed into ordinary non-linesr differential equations.
Because these equations are non-iinear and the boundary conditions
are given at more than one point (spiit), the existence of a sciu-
tion to this problem is not guaranteed. Therefore, at this point,
an analytic approach which attempts to solve this problem is
deferred until later.

A numerical solution is, therefore, applied to this problem.
Because the boundary conditions at the gas-liquid interface are
indefinite, the procedure used in solving this problem is to first
guess a condition there. Then an iteration process is applied
until all the other boundary conditions are satisfied. For
example, at y = 0, we guess the slipping velocity, that is a
value for G'(0), to meet the condition that G' (oe = 1. A part
of the solution is then a value for G''(0).

We then proceed to the liquid phase; we start here by setting
Lo=6&'©) | and “(0)> &7 (0) . Again LAV =0 | we
solve numerically the governing Falkner-Skan equation for L\f]\ »
and if we are doing the mass addition problem, we stipulate that
atVa-oq , L_’(-Oo).'::o . If we cannot satisfy this condition
at the liquid-liquid interface, then we go all the way back
to the gas phase, guess a new value for G'(0), obtain a new value
for G''(0), and then solve the liquid phase with these new con-
dicions. Eventually (recall all these are one value of }(5.))
there will be only one slipping velocity g’(o) = Lf(O) which

- 18 -
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will satisfy both outer boundary conditions, which are C;’(°05==‘
and I/(-ocﬂezq) . Wa then proceed to other points along the
streamline, where we varylp from the near the stagnatxon point

to the maximum (shoulder location) height at %/R = ‘“7&1

Mass Stripped:

We can easily determine the mass added to the liquid boundar:

layer at one_p location by the relation,

-%—':—L—= "’Dﬁj;“x“‘é

=7 Df L ”—%%3 l(ol:“l)dq e

Thus the total mass stripped in an arbitrary time period, T, .s

mepg T AEITEE j;_cy) VR

- 19 -
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10.0 COMPUTER PROGRAM (SEE APPENDIX 1I)

Before a numerical solution of the Falkner-Skan equation
can be made, it must be reduced from a split boundary value
problem to an initial value problem. The boundary conditions
for the generalized Falkner-Skan equation usually prescribe
L), ;'(0\/ f”(oo) To numerically integrate the equation,
£''(0) must be known. Note that 5(7) corresponds to either

G(1) or L(v)) .

To solve for £"(0), we must use the other boundary conditions,
and a 4th order Runge-Kutta method. The following scheme is used.

AL = 5;:-'?' EXSES

where 8, &, are initial guesses for £,"(0) and £,"(9), ‘-?', , S-BL
are the corresponding values of 5 (%) and § t(cm) The
A'S' (o) so obtained is added to 5,”(0) andj”.'o) becomes

& to)- This process is repeated until Ii.(.o) fL(ﬁ), <1070
The value of f''(0) which satisfies this condition is then the
correct value. This method, however, is not full-proof. This
entire process depends on the initial guesses of £"(0). This
initial guess must be within 50% of the true value, or the
method will not converge. '

Once the method converges, a least squares curve fit is used
to find the relationship between f£' [0) and £'(0). The values
obtained are cerved out for a three degree polonomial. This
should be more than sufficient, since values of £ (0) are usually
less than .5. The least squares curve fit was based on a weight-
ing function of 1 for all values.

- 20 -
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A
o

. 56626

A

1

fl

01

.02
.03

= - 0,14753,

1.0
1.2
1.4
1.6
1.8
2.0
2.5
3.0
3.5
4.0
5.0

.04
. 05
.06
.07
.08
.09

a = AN®, R = 0.0808

(0)

£ (0]

.5646
.5630
.5613
.5594
.5575
.5554
.5532
.5509
. 5485
.5460
. 5407
.5349
.5288
.5223
.5154
. 4966
.4756
.4526
.4276
3721

A2 = - 0,565176,
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A

3

= ,167826




Ao

= 46984,

A

1

g = 900°, 8 =0.0

£ (0)

.01
.02
.03
.04
.05
.06
.07
.08
.09
1.0
1.2
1.4
1.6
1.8
2.0
2.5
3.0
3.5
4.0
5.0

= - 0.0095135, A

2
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f!l (0)

. 4695
L4693
. 4689
. 4684
L4677
. 4669
. 4660
. 4650
,4638
.4625
.4595
.4561
L4522
4479
4431
4295
.4135
.3953
.3780
. 3287

= - 0.66554,

A

3

. 24078
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This report has dealt with the problem of the interaction
between a liquid droplet and the convective flow field surrounding
1t This problem has received some attention by other investi-
gators, as indicated in the list of references. Mcst studies
heve been experimental ones, and one in particular, by Nicholls
and Ranger, has attempted an approximate boundary-layer analysis
by first assuming arbitrary simple velocity distributions, both
in the gas and liquid layers.

This report 1s an attempt to solve the problem of serodynamic
stripping of liquid from a spherical drop by solving (numerically)
the full coubled steady boundary layer equations (for incompressible
flow) and stipulating certain realistic interface conditions.

No solutions are given since the work represents a funded effort
of only one half year. However, considerable insight into the
nature of the coupiing behavior of the gas and liquid viscous
flows has been made, and we expect later to carry out to com-
pletion the solution to the model proposed. The main parameter
of inrerest to be solved for will be mass of fluid in the cir-
cumferential liquid layer that was swept along by the gas stream.

-2 -
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APPENDIX 11

COMPUTER PROGRAM FNR SNLVING THE FALKNER-SKAN FRUATINN

IMPLICIT RFEAL *8(A-HD=Y]

DIMENSION Y1(2001,Y2(200),Y3(200),0Y1(200),DY2(200),NYI{200)4XINMCH
1200) 4 ALPHA(LO) +BETAALLO) 9 TRY {10 )« THETA2(100) s THFTALI(100),PRAL20)4Z
LTXU2) 9 2TY(2)92ZF11200)4ZF2(200)92F3(200)92ZF46(200),ZXINCI200)

CALL UNDERZ('QFF*)
CALL ERRSFT(20742564=1,1)

INITIALIZF VARIARLES

10

READIS,10) (PRA(J) 4J=1,+20)
FORMAT{20F442)

H=5,0D=2

DNSTY=1.D-1

NNSTY=1.0D0

TRY{1}=0.0D0

oo TF2(3)=60a

TRY(2)=0.295N0
TRY(3)=0.0808DQ
TRY(4)=0.185D0
ZF2(1)=90.
2F2(2)=45,

LF2(41)=30.
X=0.000 .

M=101
BETA=1.000 .. .
NO 5000 JKL=1,4
RETA=TRY (UKL}

506

507

WRITE(69506) ZF2{JKL)TRY (JKL)

FORMAT('1'423Xs'THETA = '"¢F5als!

WRITE(64507)
FORMATL' ',23Xs'F'*(0)
D0 4999 LM=1,20

V910X tFEVVIL(0) /)

DEGREESs BETA = "+FTa4s/4/)

NATE: THE VALUE OF CONST 1S TO BE USED AS FOLLOWS § # s i i

IF BETA=0.0

QF JHE - BLASIUS _EQUATION TQO BE _USED

THEN CONST=1.0 DR 0.5 DEPENDING

AN THE FORM

2 Xalskzisiaisisiaizials

IF BETA <NE. 0.0

CONSTI=h.0D=1

‘THEN CONST=1.0

ALWAYS!

CONST=1,000




'
\
f
;
'
i

RSP ——

FINFKN=0,0DO

RINEXNxL . ODO

ALRMAL2)20,6D0
C ICOUNT=O_._... . e e -

Y1(1)=0.0D0
Y211)=0.0100
Y2(1)=PRA(LM)
IFLILM)=PRALLM)
ALPHA(1)=0.5N0

S

INCREM20

P,

ey pkeegsns MAIN ~ PROGRAM dfrgorsorsgaydor s

nnnpnnn

4824

HOLDL=ALPHA(L1) [V oo !
HOLD2=ALPHAL2) i
DO_A10 LL=).202

6314

CALPHA(2)=HOLD2+3,0D=-2 . . .. . .. . ..

IF{INCREM.EQ.2) GO TO 6314
GOLTND B3N8 e
ALPHA(1)=HOLD1+5.,00D=2

HOLD1=ALPHA(L)
HOI D2=AL PHAL2)

6315

e XINCLY) =X —

JICOUNT=0 SR

Y301 =ALPHACIYY .

INCREM=0

DO 150 JJ=1,2

KKK=JJ - a | - -

DYl (1l)=Y2())

0Y241)=Ya(1) — _— et e e
DY3(1)==CONST®YL1(L)*Y3(1)=(BETAX(DNSTY=(Y2(1)%%2)))

DO 1 Je2eM e e

KN=J
PlsHENY1(J=1]

e PAuHROYI (S ) e

. Q3=HR ((~-CONST) #A%C—(BETAX(DNSTY—-[R%%2))})
- B=Y2({J=1)+{8,00-1)%Q2 L o

P2=H*DY2(J-1)

A=Yl (J=1)+(5,00=1)%P1 .
BeY2(J=1)+(5.00=1)%P2 . e e
C=Y3(J=1)+(5,0D=1)%P3
Dlz=H*B
Q2=Hx%_C 4

AZY1(J=1)+(5,00=1)%Q] S ,

C=Y3(J=-1)+(5,00=-1)%*Q3
R1zH%R

e RASHE L (=CONST) % AXC—({RETAX(ONSTY= (B2} )}y ) .. =

. BzsY2(J=1)+R2 e e e

R2=H*%C

A=Y1l(J-1)+R1

C=Y3(J=-1)+R3
S1sH¥R _

S2=H%C
. 32
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S3=HA({=CONST)*A%RC~(BRETAX(DNSTY=(R%%2))))
- Y0 eVl j=lValBDlalad ANNI#NT (s nontwns oty 2o S50
Y2(J)=Y2(J=1)+{P2+(2,0D0) %02+ (2.0N0)*R2+52)/6.0D0

Y3(Jh=Y3(J=1)+{P3+(2,0D0)1%Q3+(2,000)%R3+53)/6,000
nYIESY=y21J}

DY2(Jr=Y3aiy)
DY3(J)==CONSTHYL(J)RY3(J)~(BETAR(DNSTY={Y2(J)*=2))}
IFE(Y2(.)aGTalasb00) GO TO 3000

A gt = e e sas RSSO

XINC{J)=XINC(J=]1)+H

1 CUNTINUE

3000 ITFIKKKGER.2) GN TN 390
FINFLl=Y2(KN)
6N 70 150

e 390 FINF2=Y2(KN)

150 CONTINUE
XB=FINFKN-FINF2
XC={ALPHA(2)=ALPHA(]1))/(FINF2=FINF1)
NELTF=XC*XB
ALPHA(1)}=ALPHA(2)

— AlLPHA(2)=AI PHA(2)+DELTF
TF(DARS{FINFKN=FINF2) .LEL1.,0D=-5) GO TN 505
ICOUNT=1COUNT+]1_ . . .

IFLICOUNT EQ.10) INCREM=2

610 CONTINUE
C
. C R

c

C PRINT QUT RESULTS

C

C

C

505  WRITE(H.504) Y2(1)eY3(1)

504 FORMAT(' *,23X4F14410¢5XsF14.10)
4999 _CONTINUE _ S
ICGUNT=0
SINCREM=0._ ... .
5000 CONTINUE
— SI10e

END
/x
//GNGSYSIN DN %

a0l 402 403 404 405 406 o007 408 409 410 .12 14 416 418
/%

220 425 430 435 44
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