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LIST OF SYMBOLS

r V* * & .. . .. . . ..Y A k P VV / P V V j
f nondimensional Blasius stream fanchion (f m G or = L)

G nondimensional stream function for gas boundary layer
Eq. (10)

K(x) proportionality factor in spallation boundary condition,
Eq. (6)

L nondimensionl stream function for Liquid Boundary
Layer

1 characteristic length of flow transformation, Eq. (7)

P pressure

r radius, specifying contour of body of revolution

R droplet radius

u boundary - layer velocity along the x co-ordinate

U potential free-stream velocity which is a function of x

U, constant flow velocity far ahead of the droplet

V boundary-layer velocity along the y co-ordinate

X curvilinear co-ordinate measured along a meridran
from the stagnation point

y curvilinear co-ordinate at right angles to the surface

8 nondimensional Faulkner-Skan wedge parameter, Eq. (17)

S'* (x,y) stream function, Eq. (7)

nondimensional x co-ordinate, Eq. (8)

n nondimensional y co-ordinate, Eq. (9)

U viscosity

v fluid kinematic viscosity w 1/P

p fluid density

Subscripts

g gas

I liquid

free stream

o interface between gas-liquid boundary layer
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1.0 ABSTRACT

Even though the steady or quasi-steady combustion of isolated

droplets or droplet sprays has been studied extensively and is

reasonably well understood, the problem of transient gas dynamics

coupled to droplet combustion is so poorly understood at the

present time that adequate models to describe the phenomena have

yet to be proposed. The problem is, however, extremely important

to the technology of combustion devices. Aside from the detonation

of spray droplet mixture,, in which droplet breakup and combustion

are occurring under extremely transient conditions, a full des-

criptive theory of this phenomena will be invaluable in further-

ing our understanding of such varied phenomena as liquid rocket

engine instabilities, engine thrust transients, combustion in

liquid propellant gun systems, high pressure fuel-air gun systems,

spray ignition mechanisms, and hybrid rocket dynamics.

This report presents a theoretical analysis of one important

phase of heterogeneous flow, namely a model for the aerodynamic

stripping of fuel from the assumed spherical droplets.



2.0 INTRODUCTION

One of the most difficult problems encountered in the develop-

ment of high-spued compression-ignition chambers has been the

proper atomization and distribution of the fuel in the combustion

chamber during the extremely short time available. Rapid comhustion

of the fuel does not take place as soon as it enters the combustion

chamber, but a certain time, known as the ignition lag, elapses

during which the temperature of the fuel is raised to its auto-

ignition point by the absorption of heat fiom the compressed air.

The rate of heat absorption by a fuel drop is directly proportional

to its surface area; the rate of its temperature rise is inversely

proportional to its volume. Because the surface area varies as

the square of the diameter, whereas the volume varies as its

cube, a small drop will hav..r a shorter ignition lag than a larger

one. The time required for the complete combustion of small

drops is also less than that for the large ones; therefore, the

smaliest drops are the most desirable if they can be obtained

without sacrificing good distribution.

This report discusses a description of one of the physical

phenomena for reducing the size of the droplets, namely that of

aerodynamic stripping.

2-



3.0 DESCRIPTION OF THE PROBLEM

Is a ..~ut of~ J.....I. TC1.UP it i. uzal osnha edr that

burning rates are obtainable which are higher than those possible

under the conditions of low velocity and forced convection where

no disintegration occurs. In order to increase the rate of a

complete combustion, the stripping effects of the breaking up

process of a fuel droplet is considered in this study. This

theoretical study on stripping effects of a droplet in high

speed air is made in order to investigate how to properly model

such a physical phenomena. Therefore, the formulation of the

problem, i.e., the governing equations and the proper boundary

conditions are given considerable detail.

Basically, this is a two-phase viscous flow problem.

Since the droplet is in a high speed air stream, the problem is

further simplified by application of standard boundary layer

theory. This means that a high Reynolds number flow problem

is reduced to a two-phase boundary layer flow problem. In

order to illustrate this problem, a sketch of the flow field is

presented in the following sketch:

L!

-3-



Gas Boundary Layer
interrace, y

Liquid Boundary Layer

L•iquid Droplet

The two phase boundary layer flow problem has been developed

for many engineering applications, such as ablation, spallation,

aerodynamic shattering, etc. Ranger and Nicholls(1) studied the

aerodynamic shattering of a liquid droplet. Their work gives

experimental results and has attempted a theoretical description.

The theoretical analysis in their study is to integrate the

boundary layer equation by Karman's momentum integral method.

Then an approximate solution of the velocity distribution of the

gas and the liquid is posed. This is exactly the same as G. I.

Taylor's analysis(2) in a somewhat different problem. With the

assumption uf knowing a-priori the velocity distribution, they

celculated the mass stripped away from the droplet. G. W. Sutton( 3 )

studied a related problem of hydrodynamics and heat conduction

of a melting surface near the stagnation point of a high speed

stream. He carefully studied the boundary conditions and for-

mulated the problem as an axially symmetric Falkner-Skan flow.

He also applied his analysis to experiments on the ablation of

reinforced plastics in supersonic flow (4) . W. Adams inves-

tigated transient and quasi-steady performance of melting type

re-entry shield(51. There are many others who also contributed

in this field; the references are included.

-4-



4.0 ASSUMPTIONS REQUIRED

Because this problem is quite complicated, some assumptions

have to be made in order to simplify the problem, so that it can

be made mathematically tractable. The assumptions made are as

follows:

1. The flow is considered as i .. ompressible.

2. It is assumed that the problem is one of a Tteady state

flow.

3. There is no slip at the interface of gas and liquid boundary

layers ( at y - 0).

4. The outer solution of velocity over the spherical droplet

is assumed to be V•-• U. -SIN - , which is the poten-

tial flow, where R is the radius of the droplet, and x

is the ;urvilinear streamline coordinate.

5, The boundary condition at the gas liquid interface was

suggested by G. I. Taylor and is,,L-',- •

SinCL there is no slipping (s e Assumption 3 ).

d. The centrifugal pressure gradient is small; thus--- "' 0

It should be pointed out that the boundary layer equations, when

transformed from the x, y co-ordinate system to the E and I system

(where & is related to x and is the similarity variable) have

neglected the partial derivative terms with respect to ý. Similar

solutions are assumed thereby, although strictly not allowed, since

the outer velocity distribution over the sphere is not of the

correct power-law form. It is assumed as is usual that the non-

similar terms do not appreciably modify the results.



5.0 FORMXLATION OF THE PROBLEM

Since the assumptions made correspond to reasonable physical

circumstances, the mathematical formulation for this problem

is a straight forward application of boundary layer analysis.

A difficulty that arises is to determine what boundary conditions

to apply at the liquid-liquid interface that describe the

physics.

The governing equations take the following form:

(A) Gas Phase

(1) continuity equation

(2) momentum equation

L~q~ LAP ±P 1 (2)

(3) boundary conditions

Lt@ U A

(B) Liquid Phase

(1) continuity equation

(2) 0 +enA 0 (4)

C2) momentum equation

-6-



r ? 7I
(3) boundary conditions

At y a O, the same as gu phase

Because at the liauid-liquid interface, Y a " several

possible boundary conditions can be posed; two groupb v' t,,-

are written in following form.

Note that within the "Boundary-layer" assumptions, we assume that

liq. gas

7



6.0 BOUNDARY CONDITIONS AT THE LIQUID-LIQUID INTERFACE

lIqi aim..c PI r fc. - -4 u

showL the different physical situations possible at liquid-

liquid interface. Consider Figures (1) and (2) below.

Potential Flow

G-L Interface

LiquidLL Interface

Figure 1 Figure 2

Figure (1) shows that the velocity is zero at liquid-liquid

interface. Figure (2) depicts the case where the velocity is not

zero there. As far as the physics is concerned at liquid-liquid

interface, these are then really two different problems. The

problem depicted in Figure (1) is a mass addition boundary layer

flow problem, and the one in Figure (2) is called a "spallation"

problem. Therefore, the two different boundary conditions to be

specified at • r - 0 are,

For problem (1), mass addition: For problem (2), spallation:

Lk C)4 QL (6)

where K above is a physical parameter which can be related to the

surface tension or viscosity, both of which may be functions of
the liquid temperature. As the first approximation we may assume

K = constant. - 8 -
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The governing equations are just the classical boundary

general, the standard non-dimensional similarity transformation

variables will be useful, since they transform the two partial

differential equations into one ordinary differential equation

Of course, we must check whether our boundary conitions can also

be transformed in similarity space.

-9-



7.0 TRANSFORMATIONS

As is usual, we introduce the non-dimensional stream func-

tion , so that the gas phase dependent variables are,

where I is the characteristic length of the body.

Defining the similarity variables, y and 7 such that

f r()U(A d (8)
V gTill

and

(9)
cz U l,:.c:

We arrive at the standard stream function, written as

Th6s is there*.ý2'1a dfcinition of G(r).
All the terms in momentum equation are transformed again

in the standard way.

2- .(12)

d)( 2. VS ZL.Ua (13)
10 -



Tj

elfl

-~ (14)

kJ~ (-1)

7.1 Gas Phase

Substituting all these .erms into gas phase momentum equations,
an ordinary differential equation is obtained as

+"' +& &" /-4(" 0,= (16)

where

5 d ) (17)

For example at the poinft % rom the leading edge, p ai

(See Appendix I.)

The boundary condition are now.

* C (18)

Note that, in general, at (0 9( /

7.2 Liquid Phase

Similarly, the non-dimensional stream function and the sim-

ilarity variables for liquid phase are defined as



I= f (20)

l (21)

The only difference between the above quantities equation

(19-21) for the liquid and those of the gas is the kinematic

viscosity coefficient 14 in equations (8-10). Again a similar

procedure is used to transform to the similarity space. The

governing differential equation is obtained for the liquid phase

as, I.." 4 LL +j> "
LL

(22)

Notice the term S/P in the above equation. The operator is

therefore different than that of equation (16) for C(

The boundary conditions for equation (22) are as follows For

(1) The mass addition problem:

0 {L(o) -0; L'0,o Jo%.23)

(24)

(2) The spallation problem:

2 0 4 L(oO ; ))i~ L(0): (m r (25)

- 12-
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'2 6)

where k is the non-dimansional form of the parameter K.

By examination of both the governing equations and boundary

conditions, it is easy to see that this two-phase boundary-layei

flow problem is coupled by the interface conditions. (See equa-

tions (23) and (18)). Because our main goal in this analysis is

to find how much liquid has been stripped away from the liquid

droplet, the liquid-liquid interface boundary conditio.i is really

the most important part in this analysis. If the boundary con-

dition at -00 is defined, the subsequent interest is the

asymptotic solution to equation (22) for the liquid phase. The

specification of our imposed boundary conditions there will depend

upon the behavior of the asymptotic solution of the problem.

In equation (23) or (25), we have attempted to impose at q -

either V1 0 or V " -the asymptotic solutions will

provide a check of whether any or either of these are allowed.

NOTE: r * pg

- -- and is typically less than 0.A,

13

is .



II

8-0 THE PROCEDURE FOR FINDING THE ASYMPTOTIC SOLUTION

One botindary condition we plan to set at the liquid-liquid

interface is that This implies that L(-ft)zc.) 0o.
Following the usual procedure to find the asymptotic solution

of the governing equation, namely

L" LL (22)

we first differentiate the above and obtain

L L" ' L i LL -zL.y) o (27)

Applying the conditions 0-4 Z0 and L(o4z(. to the

above relation we see that

LIV 4 c(L" =0 (28)

Integrating the above once, we have

"(2)4 (

Now since L(•-00') must be zero due to breaking up con-

dition from the droplet at - , this implies that. B1 = 0 in

the above relation,

Integrating equation (29) once more, then

-4(30)

-14



Also L(4) must be zero (since 0 ); this implies

that B2 = 0 in equ-.tion (!n'. The proceeding boundary condition
means no shearing stress at -0, which means that actually

some fluid has broken away irom the liquid droplet

Continuing. we integrate once more, and find that

L (31)

Again ,(-0= 0 the original supposition. Therefore, B3 = 0.

Finally the solution for L(J) is

L - (32)

We note that since LO)-Ž 2 . , then B4= C, thus

L is the asymptotic solution for the mass addition problem

In the process of finding the asymptotic solution, one can

make a very important observation as to the physical phenomenon

occurring in the two boundary layer problem, That is, L" can be

expressed as,

L - - (34)C.

This expression indicates that there is an inflection point

for the velocity distribution of the liquid phase. The following

- 15 -



figure gives an indication of the resulting expected velocity

distribution that must result; if we are to match the boundary

conditions at y - 0

Velocity Profile "

yGas

S•. Interface

Liquid

Droplet

Figure 3

The physics should be carefully studied and investigated,

and we plan to do so. A suitable explanation for the maximum

velocity in the liquid layer is necessary.

The other boundary condition for the spallation problem we

plan to specify is 1 )~C(-~i This implies that

L L_
-'7/A(35)

The above expression indicates that As

approaches- , • •-•)approaches C. This corresponds to the

velocity distribution in Figure 2. Because this integ.

constant C is a function of many physical properties, i.. ;a

difficult to determine it a-priori. For this reason, a -

- 16 -



study of the asymptotic solution of the,spallation problem is

required but is not made here. We plan to attempt such an

analysis later.

17 -



9.0 ~ ~ u AKVUaO.. UALt. CUPLED EQUATIONS

The equation of motion in the gas and liquid phase have

been transformed into ordinary non-linear differential equations.

Because these equations are nom-ltnear and the boundary conditions

are given at more than one point (split), the existence of a solu-

tion to this problem is not guaranteed. Therefore, at this point,

an analytic approach which attempts to solve this problem is

deferred until later.

A numerical solution is, therefore, applied to this problem.

Because the boundary conditions at the gas-liquid interface are

indefinite, the procedure used in solving this problem is to first

guess a condition there. Then an iteration process is applied

until all the other boundary conditions are satisfied. For

example, at y a 0, we guess the slipping velocity, that is a

value for G'(0), to meet the condition that GI (c) a 1. A part

of the solution is then a value for G"(0).

We then proceed to the liquid phase; we start here by setting

ko)= Q0) ,and L(0'*)S 9 '(o) I1. Again L(O) =O . we
solve numerically the governing Falkner-Skan equation for Lw
and if we are doing the mass addition problem, we stipulate that

at L 0 , -If we cannot satisfy this condition

at the liquid-liquid interface, then we go all the way back

to the gas phase, guess a new value for G'(O), obtain a new value

for G''(0), and then solve the liquid phase with these new con-

diLions. Eventually (recall all these are one value of

there will be only one slipping velocity r' 0) L (0) -which

- 18 -



will satisfy both outer boundary conditions, which are G=,("O
=nd L - l W# then proceed to other points along the

streamline, where we vary.0 from the near the stagnation point

to the maximum (shoulder location) height at %/R

Mass Stripped:

We can easily determine the mass added to the liquid boundai.,

layer at oneY location by the relation,

*0

~ (36)

Thus the total mass stripped in an arbitrary time period, T, is

vwn-fj (37)

19-



10.0 COMPUTER PROGRAM (SEE APPENDIX II)l1

Before a numerical solution of the Falkner-Skan equation

can be made, it must be reduced from a split boundary value

problem to an initial value problem. The boundary conditions

for the generalized Falkner-Skan equation usually prescribe

-S(S), -P(d),' S"(o0) To numerically integrate the equation,

f"(0) must be known. Note that _+(7) corresponds to either

G(.v) or L(7).

To solve for f"(O), we must use the other boundary conditions,

and a 4th order Runge-Kutta method. The following scheme is used,

where k,, Q(, are initial guesses for fi(0) and f"() i ,2",,

are the corresponding values of (llJ¢ and oa) ,The

467"#(4) so obtained is added to (o), and -0(d) becomes

"b 'o). This process is repeated until lZ - GO •

The value of f"(0) which satisfies this condition is then the

correct value. This method, however, is not full-proof. This

entire process depends on the initial guesses of f"(O). This

initial guess must be within 50% of the true value, or the

method will not converge.

Once the method converges, a least squares curve fit is used

to find the relationship between f' lO) and f"(0). The values

obtained are carved out for a three degree polonomial. This

should be more than sufficient, since values of f (0) are usually

less than .5. The least squares curve fit was based on a weight-

ing function of 1 for all values.

- 20 -
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0 m 30o, 0 - .1850

f (0) f" (0)

01 .6698

,02 .6668

03 .6638

,04 .6607

.05 .6575

06 .6542

.07 .6S08

,08 .6472

.09 .6436

1.0 .6399

1.2 .6322

1.4 .6241

1,6 .6157

1 8 .6069

2.0 .5978

2.5 .5735
3.0 .5471

3.5 .5188

4.0 .4885

5.0 .4228

A0  ' •67267, A1 1 " 0,2777, A2  -0.50645, A3 3 0.12543
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em 0 8.2950

f' 0)(o)

.01 .7666

.02 .7627

,03 .7586

.04 .7544

.05 .7502

.06 7458

.07 .7413

.08 7368

.09 .7327

1.0 .7274

1.2 .7177

1.4 .7076

1.6 .6972

1.8 .6864

2,0 .6753

2..5 .6460

3.0 .6148

3.5 .5816

4.0 .5466

5.0 .4713

AO .77061, A1  - 0.38473, A2  = 0,47954, A3 a 0.10396
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Fi
a. •0n R * 0.0808

f' 1 ( ) fit 0)

01 .5646

.02 .5630

.03 .5613

.04 .5594

.05 .5575

.06

.07 .5532

.08 .5509
Q09 .5485

10 .5460

1.2 .5407

1,4 .5349

1-6 .5288

1 8 .5223

2.0 .5154

2.5 .4966

3.0 .4756

3.5 .4526

4 0 .4276

5.0 .3721

A 0  56626 A1 = - 0.14753, A2  O - 0.565176, A3 - .167826
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a * 9goo. a 0.0

f' (0) f"(0)

.01 .4695

.02 .4693

.03 .4689

.04 .4684

.05 .4677

.06 .4669

.07 ,46b0

.08 .4650

.09 .4638

1.0 .4625

1.2 .4595

1.4 .4561

1.6 .4522

1.8 .4479

2.0 .4431

2.5 .4295

3.0 .4135

3.5 .3953

4.0 .3750

5.0 .3287

A° .46984, A * - 0.0095135, A * - 0.66554, A3 * .24078
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This report has dealt with the problem of the interaction

between a liquid droplet and the convective flow field surrounding

it This problem has received some attention by other invezti-

gators, as indicated in the list of references. Mcst studies

hr.ve been experimental ones, and one in particular, by Nicholls

and Ranger, has attempted an approximate boundary-layer analysis

by first assuming arbitrary simple velocity distributions, both

in the gas and liquid layers.

This report is an attempt to solve the problem of aerodynamic

stripping of liquid from a spherical drop by solving (numerically)

the full coupled steady boundary layer equations (for incompressible

flow) and stipulating certain realistic interface conditions,

No solutions are given since the work represents a funded effort

of only one half year. However, considerable insight into the

nature of the coupling behavior of the gas and liquid viscous

flows has been made, and we expect later to carry out to com-

pletion the solution to the model proposed. The main parameter

of interest to be solved for will be mass of fluid in the cir-

cumferential liquid layer that was swept along by the gas stream.

- 26 -



12.C ACKNOWLEDGMENTS

This project was sponsored by the Ballistic Research Lab-

oratories, U. S Army Aberdeen Research and Development Center

The work was carried out at the University of Illinois at

Champaign-Urbana,

Dr. Hui-Wen Chen and Mr. Harold Kerzner, both of whom were

graduate students enrolled in the Aeronautical and Astronautical

Engineering Department of the University of Illinois in 1969-

1970, assisted the author in the analytical and numerical com-

putation studies of this project.

-27-



F1

13.0 REFERENCES

1. Ranger, A A and Nicholls, J. A., "Aerodynamic Shattering

of Liquid Drops", AIAA J., Vol. 7, 2, Feb. 1969, 28S-290.

2. Taylor, G. I.,"The Shape and Acceleration of a Drop in a

High Speed Air Stream", The Scientific Papers of G. I. Taylor,

edited by G. K. Batcher, Vol. III, University Press,

Cambridge, 1963.

3. Sutton, G. W., "The Hydrodynamics and Heat Conduction of a

Melting Surface", J. of Aero. Sci., Vol, 25, 1, Jan. 1958,

29-36.

4. Sutton, G. W., "Ablation of Reinforced Plastics in Supersonic

Flow", J. of Aero. Sci., Vol. 27, 5, May 1960, 377-385.

5. Adams, M. C., Powers, W. E. and Georgiev, S., "An Experi-

mental and Theoretical Study of Quart". Ablation at the

Stagnation Point", J. of Aero. Sci., Vol. 27, 7, July 1960,

-35-5458

-28-



APPENDIX I

CALCULATION OF THE VALUES FOR 8

-rmS

d X R

Now Zs4 j

iR

R

-29 -



II'

IT

"7-

C- 4,

h~3) 4U~ ~t(~cdCos~

JA

30



COMPIITER PROGRAM FOR SOLVING THE FALKNER-SKAN FUIJAT IrN

UIM ItrT kFA14RdA-H.n-y)

I)IMENS!(1N YlI?00IY2(200) ,Y3(200),0Y1(200),Dy2(?0O),ny3(2OO),XIINC(
12001,ALPHA(10).aiETAAtlO),TRY(1OhtTHETA2(100),THFTA1(100JPRA(20),Z
ITX(2),ZTY(2),ZF1I20O),ZF21(.00)ZF3(200),ZF4(?OO),IXINIC(20OI)
CALL UNDERZ(OOFFI)
CALL ERRSFT(207,256,-1,1)

C,

c INITIALIZE VARIAJRLFS
C
C

REAO(5,10)(PRA(J),J=1,20)
10 FORMAT(20F4e2)

H=5.0P)-2
DNSTY=1.0-1
DNSTY= 1.000
TRY ( ) =0..Ol ____ __

TRY(2 )=0.29500O
TRY (3)=.080800
TRY( 4) =0.189OO
ZF2 (1)w90.

Z F2 ( 2 ) =30.

X0o..00fl
M=1 01

-BETAi.l0DO
0lf 5000 JKL=lp4

WRITE(6,506) ZF2(JKL) ,TRY(JKL)
506 Ft)RMAT('1,123Xv,'ThFETA = ',F5aloO 0EGREES.I--i-ETA =t74//

WRITJ (6,507)

507 -F.0PRMAT.LL1 Z3 F' '0) '91OX*.'F .. ''(0) ,9/)
DOl 4999 LM1lt20

C

C NflTF: THE VALUE OF CONST I S Tfl BE USED AS ~L O S~~
C

*C IF BETA=0.0 THEN CONSTI1.0 nR 0.5 DEPENDING ON THE FORM
~~~Q Ln IHE 81 A StI tc, U OI IAOfN If I.S.En.__~~-

C IF BETA XEi- 0.0 THEN ClNsST=1.0 ALWAYSI!!!!
C
c
C

-- ~ ~ ~~~ - CNi-T=-5 o-1 ___-___ ------ *. .

CON ST=1. 000
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F INFKN=O.ODO

FIIINFY-.Ofl0

YZ I 1.zQ.01ZQ
Y2(1l=PRAiLM)

ZF IILtL)-PRA{LM)
ALPHA(1)= .0. 5
.Jl la.A.LA4" anA0
INCRFM=O

CCr A ~ * * * MAINI PRnn(RAM *******

t-OLDInALPHAt1)
HIlLD2=ALPHA( 2)

4r%..A 24hQfl &I1fl I I =1 26
IFU(NCREM.EQ.2) GO TO 6314

6314 ALPHA(Ij=HOL-DI+3.OC-2
ALPJ±AAIZ)H0KLD2+3~..D-2
HOLD1=ALPHAll)

______801_D afl Al7 PHA f4
INCREM=O

631 0D 150 JJ=192
Y- 3.(1- 11;LL HA (J J).....---- -

KKK=JJ

DYl (1 )Y2( ii

DV3(1Iu-CONST*Yl(l)*Y3(l)-4'BETA*(DN.ýiTY-(Y2(1)**2)))

KNuJ

P2=H*DY2(J-1)

AZYl (J-1 ) +(5.00-1) *Pl

C=Y3(J-1 )+(5.O0-.1)*P3

Q2=H*C

A=Y1 (J-1 )+(5.OD-1 )*Q1

C=Y3 (J-1 + (5.00-1) *Q3

R2=H*C

A=Y1(J-1 )+Rl

C=Y31J-1 )+R3
U$ = :I.*R _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _

S2=H*C
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S3vý*H(ii-CflNST)*A*C-(BFTA*(DNSTY-(fB**2)))

Y2(J)=Y2(J-1)+(P2+(2.OD)O)*02+(2.OflO)*R2+S2)/h.ofloI Y3(J)=Y3(J-1l.(P3+(Z2flDO)*Q3+(2,ODO)*R3+S3)/6.ODO

~y2 (J =Y3 (J)

-. IF(Y2(j).GT.l.5Qn) r-n To looo
XINC(J)=Xi\JC(J.-l)+i4

1 CONTINUE
1000 IF(KKK.FQ,2) GO TO 190

FINF1=Y2(KN)
WI TO 150

390 FINF2=-Z21KN)___
150 CONTINHE

XB=FINFKN-FINF2
XC=(ALPHA(2)-ALPHA(l)H/(FINF2-FINFI)
DEL TF =XC4X
ALPHA( 1)=ALPHA(2)
ALPHA(2)=ALPHAt2)+DFlLTF __ __

IF(nARS(FINFKN-FINF2).LE,.1.0)-5) GO IFTO 505
ICOUNT=ICOUNT+I.. -
IF( ICOINT.EO.1O) INCRFM=2

I C, C 0NT I NU E

C PRINT OUT RESULTS
c
C

5__- WRITFlA.5O4) Y2(1i.Ylill

504 FORMAT(' l,23X,Fl4.10t5X,Fl4.10)
4t999 .CONTINUEJF-. ..

I CfIJNT=O

5000 CnNT INUJE

U.. END

//GO.SYSIN OF)

.01 .02 .03 .0-4-05 ..06 .07 .08 .09 .,10 .12- .14 .16 e18 *20 .25 ..30 .35 .
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