
BOLT BERANEK AND NEWMAN INC

CONSULTING DCVeiOPMENT It F S E A R C H

mii Report Mo. 2180 15 Auaust 1971

CO

JO TENEX, f PAGED TIME SHARING SYSTEM FOR TUE PllP-10

by

Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy
and Raymond S. Tomlinson

D D C

SEP 8 1971

EtsEinns
B ^

The viev;s and conclusions contained in this document are
those of the authors and should not be interpreted as
necessairly representing the official policies, either
expressed or implied, of the Advanced Research Projects
Agency or the U.S. Government.

This research was supported
by the Advanced Research
Projects Aqency under ARPA
Order Ho. 1967; Contract Mo.
DAHC-71-C-0088.

Distribution of this docu-
ment is unlimited. It may be
released to the Clearinghouse,
Department of Commerce for
sale to the general public.

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, V«. 221S1

/3

BEST
AVAILABLE COPY

Unclassified
Security Classification

DOCUMENT CONTROL DATA R&D
(Security classification ot title, body ol abstract und indexing annot&tion must he entered when the averaU reparf i^- c lussified)

1 ORIGINATING ACTIVITY (Corporate author) £«. REPORT StCURlTV CLASSIFICATION

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge» Massachusetts 02138

Unclassified
26, GROUP

3 REPORT TITLE

TENEX, A PAGED TIME SHARING SYSTEM FOR THE PDP-10

4. DESCRIPTIVE NOTES (Type of report and,inclusive dalex)

Scientific
5 AU THOR(S) fFirsf name, middle initial, last name)

D.G. Bobrow
J.D. Burchfiel

D.L. Murohy
R.S. Tomlinson

6 REPORT D* TE

15 August 1971
7a. TOTAL NO OF PAGES

47
7h. NO. OF REFS

8
8a. CONTRACT OR GRANT NO

DAHC15 71 C 0088
b. PROJEC T NO

ARPA ON 1967

•ill. ORIGINATOR'S REPORT NUMbtRISi

BBN Report No. 2180

9h. OTHER REPORT NOI5I {Any other numbers thai may be assigned
this report)

10 DISTRIBUTION STATEMENT

Distribution of this document is unlimited. It may be released to
the Clearinghouse, Department of Commerce for sale to the general
public.

M SUPPLEMENTARY NOTES

This research was sponsored by the
Advanced Research Projects Agency
under ARPA Order No. 1967.

12 SPONSORING WILITARt ACTiViTv

13 ABSTRACT

TENEX is a new time sharing system implemented on a DEC PDP-10
augmented by special paging hardware developed at BBN. This
report specifies a set of goals which we feel are important for
any time sharing system. It then describes hov; the TENEX design
and implementation achieves these goals. These include specifi-
cations for a powerful multiprocess large memory virtual machine,
intimate terminal interaction, comprehensive uniform file and I/O
capabilities, and clean flexible system structure. Although our
implementation required some compromise to achieve a system
operational within six months of hardware checkout, TENEX has
proven to be a good interactive system with flexible multi-process
facilities and reliable operation.

nn FORM iA-io (PAdF 11

Unclassified
" Security Clatiification

KEY WORDS
LINK •

TENEX

Paqinq

Virtual Machines

Time sharinq system

Scheduling algorithm

Process structure PDP-10

DD FORM
I NOV •• 1473 (BACK)

s/N oioi-eo^-eizi Security Classification

TENEX, A PAGED TIME SHARING SYSTEM FOR THE PDF-10»

D. 0. Bobrow, J. D. Burchflel, D. L. Murphy, and
R. S. Tomllnson

Bolt Beranek and Newman, Inc.
Cambridge, Massachusetts

•This paper has been accepted by the Association for
Computlnp; Machinery and will be presented at the Third
Symposium on Operating; Systems Principles, October iB-PO,
1971. In addition to the authors, significant contributions
to the design and implementation of TENEX were made by
T. R. Strollo, who led the technical staff, and
J, R. Barnaby who implemented the EXEC subsystem. Others
who contributed include T. Myer, E. Plala, D. Wallace and
J. Elkind.

Report No. 2180 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

1.0 INTRODUCTION ... 1

2.0 HARDWARE DEVELOPMENT FOR TENEX 7

2.1 The BBN Pager 7

2.2 Processor Modifications 10

3.0 THE TENEX VIRTUAL MACHINE 12

3.1 Virtual Memory Structure 12

3.2 Job Structure I2*

3.2.1 Process Hierarchy I1*

3.3 Pseudo-Interrupt 1"

3.1* Other Monitor Functions 17

3.5 Backward Compatibility l8

4.0 USER INTERACTION WITH TENEX 20

4.1 Terminal Interaction Capabilities 20

4.? Human Engineering 21

4.3 General Form of Commands 23

4.3.1 Command Input 23

4.4 Interrupt Characters 25

5.0 THE TENEX FILE SYSTEM ?6

5.1 File Names 27

5.2 File Access Protection 29

5.3 File Operations 30

li

Report No. 2180 Bolt tieranek and Newman Inc.

TABLE OP CONTENTS (cont.)

6.0 THE MONITOH 3j

6.1 Scheduler 33

6.1.1 Scheduling CPU Priorities 33

6.1.2 Balance Set 3fj

6.1.3 Resource Guarantees and
Limitations 36

6.2 Core Management 37

6.3 System Measurements 39

6.4 Debugging Aids ill

7.0 CONCLUSION ^H

7.1 Design M

7.2 Implementation ^5

8.0 BIBLIOGRAPHY ^7

[}. 0 ABSTRACT & -'.KYWuHU'" (DD 1^73)

lii

*

••.

BLANK PAGE

^•fc

■*:■

'^^i

l

Report No. 2180 Bolt Beranek and Newman Inc.

1.0 INTRODUCTION

TENEX Is a new time-sharing system implemented on the DEC

PDP-10 processor augmented by special paging hardware

developed at BEN. In this introduction we specify a set of
v

goals which we feel are imoortant for any time-sharing

system, and which governed the design of TENEX. The

following sections describe how TENEX tries to achieve these

goals. The constraints on the implementation required that

minimal changes be made to the PDP-iO processor, including

no change to the basic address computation. In addition,

the system had to be in service for users within six months

of the operation of the hardware, including standard

subsystems, such as PORTRAH, editors and assemblers.

The first class of user oriented goals is centered around

the virtual machine seen by the user.

1. Process Memory. A user should see a memory space which

is independent of the system configuration of core memory.

The memory space for a particular process should allow

indenendent read, write, and execute protection for units

smaller than the total memory space. No part of a user

process's memory space should be used for system functions

(e.g. buffers).

Report No. 2180 Bolt Beranek and Newman Ii

i
2. Multiprocess Interaction. A single user Job should be

able to have multiple processes with Independent memory

spaces and computational power. Facilities shoulfl be

provided for several kinds of communication amopg such

processes. Including memory sharing. Interrupt capabmltles,

and direct control. '

i

3. Extended Instruction Set. In addition to the basic

Instruction repertoire of the PDP-10, the user should be

provided with an extended instruction repertoire for common

operations. We attempted to make monitor functions and

other monitor operations general and uniform while retaining

the degree of economy and efficiency appropriate for the

power of the system. This balance was achieved in many

cases by the specification of default arguments, simple-case

calling sequences, and by the coding of special routines to

handle frequent cases most efficiently.

Another set of criteria is aimed toward maximizing the ease

and efficacy of terminal use. ,

1. Terminal Character Transmission Protocol: The system

should make effective use of full duplex terminals (with

system-originated echos) to improve interactive capability

and control output in a consistent manner. Intimate

Interaction requires that the system and user be able to

conduct a dialogue with each typing only a few characters

-2- .

Report No. 21 HO Bolt Beranek and Newman Inc.

before belnn promnted by the other.

2. Terminal Interrupts: A number of characters should be,

available on the terminal which can interruot the1 program

for various actions. ' , .

3.' User-User Communication: Facilities should exist to

enable two or more users on the machine concurrently to

communicate with each other via the system, and thereby

cooperate on various activities.

4. Comnand Lann^aro Form: The user command ianpuage

interpreter should provide ah easily understood, mnemonic
i i , , i . i

interaction facility, with common operations available as

simle commands (e.p;. list a-file, report resources used),.

The ian^uaste should b<- adaptable to the skill and experience

Of the user.

i

5. The command lannuace shpuld provide quick access to all

of the general functions of the system (those not a part of

i specific subsystems)^ provide access to the subsystems, 'and
; I

always bei available as, the final "fall-back" in case of a

program malfunction or user nanic.
i ; i

A third set of user oriented goals is focused on the file

I : ' i

. system. , ,

-3-

Report No. 2ISO Bolt Beranek and Newman Inc.

1. Uniformity of Access: All byte stream devices should be

treatable uniformly and symbolically, e.g. storage files

and terminals. All file media which could provide effective

user random access storage should allow it. All external

devices and byte streams should be accessible through the

file system, and file operations should be able to invoke

general (user or system) programs to absorb or generate

data.

2. Lack of Small Arbitrary Limits: No arbitrary small limit

should bo placed on individual file size, e.g. a file

should be able to contain at least several full address

spaces. Pile names should be large enough (with enough

parts) to dir.tlnrulsh important classes of files, with

efficient lookup so as to provide file name completion.

3. Efficiency of I/O: Pile operations should be Implemented

efficiently so that the user is not tempted to go around the

file system on special devices.

k. Pile Protection: Pile access ought to be limited in a

number of ways, and default protection rules should provide

the user with adequate protection.

A number of system oriented goals governed the structure,

design process, and implementation of the TENEX monitor.

Report No. 2180 Bolt Beranek and Newman Inc.

1. Adjustable Scheduling: Scheduling should be equitable

with good response tine for short interactions. The

scheduling procedures should be dynamically adjustable by

operators so as to provide regulated services to selected

Jobs.

2. Measurability: Measurements of system, module, and user

program performance should be available so that dynamic

adjustments can be made or system changes could be noted.

3. Modularity. The system had to be built in separated

modules with well defined Interfaces to device dependent

programs so that it oould be easily adaptable to a number of

different configurations in the ARPA community, and new

modules could be added easily.

4. Reliability and Ease of Debugging: The system had to be

built with internal redundancy checks to maintain high

reliability, to make crash recovery with file interrity

easy, to allow burs to be found before having destructive

consequences, and to allov/ intermittent hardware failures to

be detected.

5. Backward Comnatibility. Useful oceration within six

months of hardware operation required that manur cturer

supplied standard subsystems should be made oneratlonal

-5-

Report No. 2ih0 Bolt Beranek and Newman Inc.

without need for special changes.

The set of goals specified above have been net in the TEMEX

system, which, has been operational for users since June

1970. Although none of them is entirely new, a currently

operational system which meets all these specifications Is a

significant accomnlishment.

-6-

Report No. 2180 Bolt Beranek and Newman Inc.

2.0 HARDWARE DEVELOPMENT FOR TENEX

Hardware development and modification for TENEX was

minini^eii as much as possible consonant with achieving the

goals specified above. These Includt'd an address manninp;

(par^inp;) box to be imnlemented with then current DEC modules

(to snoeü development tine), and some chanres to the PDP-10

processor. A hard limit on the latter chanres was imposed

by the nhysical room available in the processor. Both

projects were constrained to be upward compatible from the

standard PDP-10 so that the standard DEC time sharing

software and diagnostics could be run.

2.1 The BBN Pager

The BBN paper is an interface between the PDP-IO processor

and the memory bur.. It provides individual mapping

(relocation) of each pare ('312 words) of both user and

monitor address snakes using seoarate maps for each. The

oarer uses "associative roristers" and core memory tables to

store the mannlnr information. On each memory recuest from

the processor, the 9 high-order bits of the address, and the

renuest-tyoe level (road, write, execute) arc compared in

parallel with the contents of each associative register. If

a match is found, the rerister containing the match also

contains eleven high-order address bits to reference un to

one million words of physical core.

-7-

Report No, 2180 Bolt Btranek and Newman Inc.

If no match Is found, reference is made to a 512 word "page

table" in physical core memory. The word selected in this

page table Is determined by a dispatch based on the original

9 high-order address bits. In the simple case of a private

page which is in core, the 11 high-order address bits and

protection bits are found in this word and are automatically

loaded into an associative register by the pager.

There are three other cases:

A. The page is not in core, is protected from the

requested type of access, or is non-existent; in

this case a page fault (trap) will occur.

B. The page is shared; in this case the map contains a

"shared" pointer to a system table which contains

the location information for the page.

C. The page belongs to another process; in this case,

the entry contairu: an "indirect" pointer to an

entry in another oage table from which the

location information is obtained.

The goal of program (code and data) sharing was given

extensive consideration in the design of the BBN Pager. The

indirect and shared pointer mechanism allows pages to be

actively shared (exist in more than one memory space) but

still have the current address (core or secondary storage)

stored in only one place. This means the memory management

-8-

Report No. 2180 Bolt Beranek and Newman Inc.

software may move pages between core and secondary storage

by changing only one address thereby avoiding the overhead

and programming difficulties which would result from finding

and changing many copies of the same address. The pagor

permits Indlvliual pages to be shares for write as well as

read references, so two or more processes may communicate

effectively and efficiently by sharing a common page Into

which any or all may write.

An Independent per-nage status bit Is available to users

which will produce a trap on a write or read-modify-wrlte

reference. This bit marks a shared page which may be

changed by a running program and for which a private copy

should then be created. This permits shared progiin.s to be

prepared with pre-constructed data areas which will be keot

shared If not modified, and put In private storage If

changed. This capability also permits some sharing of

programs which are not completely pure (usually older

prorrams), since an overlooked Impure reference will cause

no malfunction, only a loss of storage efficiency.

One final unlouc feature Is that the pager maintains a

record of t'no activity of the pages in core memory in a

"core status" table. The parer notes when a page has been

referenced, which processes have used that page, and whether

the page has been written into. This information is

narticularly useful for the evaluation of working set states

-9-

Report No. 2180 Bolt Beranek and Newman Inc.

and sires by the memory management software.

2.2 Processor Modifications

The hardware modifications to the PDP-10 processor added a

new system call Instruction, JSYS, and two ways of accessing

a calling memory context (user or monitor) from the monitor.

Of the latter, the first Is an execute Instruction which

allows current or previous context to be specified for each

memory reference of the object instruction, and the second

is a group of move Instructions in which the references are

done in the previous context. The previous context can be

either user or monitor, and a bit in the state word of the

F ocessor is set accordingly at each monitor call. The

pager also contains an 'AC base register* which specifies

the location of the stored AC'S (general registers) of the

previous context.

Except for the pager trapping facilities, all of the TEMEX

virtual machine facilities (monitor calls) are reached via

the JSYS instruction. It provides a new and indeoendent

transfer mechanism into the monitor which does not conflict

with "UUOn system calls used by DEC software. The JSYS

instruction meets a number of desirable objectives for a

monitor call instruction. It accomplishes a transfer from

the user program to the specified monitor routine in one

Instruction time. Further, it stores the state of the

processor. Including the return PC, in a location specified

-10-

Report No. 21^0 Bolt Beranek and Newman Inc.

by the monitor so that It Is suitable for reentrant code.

The transfer vector occupies exactly one pap;e In the monitor

snace and could be mapped Independently for each process,

but this is no*: needed in the current system.

-11-

Report No. 2180 Bolt Beranek and Newman Inc.

3.0 THE TENEX VIRTUAL MACHINE

A user process running under TENEX operates on a virtual

machine which looks something like a PDP-10 arithmetic

processor with 256K of attached memory. This virtual memory

Is a creation of the paging hardware and swapping software

which traps processor references to any data not in core,

and performs the necessary I/O operations to second- or

third-level storage to make the referenced page available.

Such traps are Invisible to the user process.

The virtual processor does not make available to the user

the direct I/O Instructions of the PDP-10, but through

Instructions which call monitor routines, the virtual

machine provides facilities that are considerably uore

powerful and sophisticated than typical hardware

configurations used directly.

3.1 Virtual Memory Structure

The TENEX virtual memory may be viewed as a single block of

256K words, and programs may use it in this fashion.

However, the existence of the paging hardware means that tie

monitor mu^t deal with memory in pages of 512 words, a.id

some of the power which the mapping hardware provides is

accessible to a user program.

-12-

Report No. 2180 Bolt Beranek and Newman Inc.

The cont3nts of the virtual memory at any time arc specified

by the virtual memory map of 512 slots, which the user may

read or write. The contents of each slot specify the page

in that position in the virtual address space, and the type

of access allowable (read and/or write and/or execute) for

that pap-e. A page contents may be unique, a particular page

may be specified in more than one slot of a single process,

or in several processes, or it may apnear in a combination

of processes and files.

In the simplest case, a map slot may contain (a pointer to)

a private page. By the term private, we mean shared with no

other processes in the system. A private page is

automatically created whenever a process mal'es a reference

to a page and the mac word for that page is empty.

A slot may also contain an indirect pointer to a pare in

this or sone other process. A memory reference to a

location in such a page will be executed Just as thourh the

instruction had directly addressed the papre pointed to. Any

change made to the pare by either process will be seen by

both processes. If the owner of the papc changes the

contents of his memory map, the the process with the

indirect pointer will see the change. A virtual memory slot

may also contain a pointer to a page from a file in the file

system, as discussed later.

-13-

Report No. 2180 Bolt Beranek and.Newman Inc.

i

3.2 Job Structure

A Job Is a set of one or more hierarchically related

processes, and It has the following attributes.

1. The name of user who initiated th^ Job

2. An account number to charge costs associated

with use of system resources.

3. Some open files.

4. A hierarchy of running and/or suspended

processes.

i

A Job may also have one or more terminal or other device?

assigned and attached,

I

3.2.1 Process Hierarchy

TEIIEX permits each Job to have multiple simultaneously

runnable processes. The relationship among them is defined

by a structure which looks like an inverted tree. A process

always has one superior process and may have one or more

inferior processes. Two processes are said to be parallel

if they have the same superior.

i

Although not completely general, a tree structure process
i '

heirarchy implicitly provides the protection and reference

facilities that are wanted in most applications. These1

-14-

i i

I

Report No. 21^0 Bolt Bera'nek and Newman Inc.

i i,

include referenclnp; Inferior forks as a class for freezing,
i

killing, and'resunlnp;, fleldlrip; of interrupts and special

conditions by a superior fork1, and protection of the

superior fork frpm inferiors.

In TEWEX, a process may create processos inferior, but i not

parallel or superior in the structure. A fork can
i

communicate with other members ' of the structure by (a)

sharing memory (b) direct control (.superior to inferior

only), or (c) pseudo (software simulated) interruots, as

described in 3.3.

Some examples of current use of multiple processes In TENEX

include:

1. The EXECUTIVE (command1 interpreter program) is ia

user, program which resides' in the tor fork of every
I , ' Mt1 ,

Job. To RUN another program, the EXEC creates an

inferior fork, places the other prograrh in it, and

causes execution to begin. The program cannot

reference or change the EXEC so it is perfectly

orotected. If the program malfunctions, , control

returns to tY\e EXKC which printis a'diagnostic message

for the user.

,' V - . '
2. A program wishes to wait for terminal, inputs but

i ' i • ■ *

i ; i

1 ■ ' .• i ,

-15-

Report No. 2lJ;o Bolt Beranek and Newman Inc.

only for a speclfiod length of time, after which It

will prornnt the user. An Inferior fork Is started

which Invokes a monitor call to wait for the specified

tine, and the main process waits for Input. If the

Input arrives first, the Inferior fork Is disabled and

the pronran continues. If the time elapses, the

Inferior wakes up and signals (see PSI below) the main

process. By uslnp this technique, a program can wait

for any one of an arbitrary set of events.

3. Invisible DDT (debusing program). The detupp.lng

profran and symbols reside In a fork with the program

under test In an inferior fork. This allows the

debugrer to detect and interoret various types of

malfunctlonR such as illegal instruction execution. It

also protects the debugger from erroneous references by

the program.

3.3 Pseudo-Interrupt

TEMEX provides a facility for a process to receive

asynchronous signals from other processes, from terminals,

or as the result of Itr, own execution. The various

processes in a Job may exnilcitly direct interrupts to each

other for purroses of communication. A process may enable

an Interrupt which will occur whenever the user hits a

-16-

Report No. 2lR0 Bolt Beranek anu Newman Inc.

particular key on the controlllnp; terminal. Finally, a

process may use the pseudo-lnterrunt system to detect any of

a set of unusual conditions, including: illeral references to

memory, processor overflow conditions, end-of-flle and data

errors.

The fork and nseudo-interrunt features of TE.JEX have been

found to be a general purpose caoability suitable for

solving a number of diverse problems which would otherwise

require a less general facility to be added to the system.

3.^ Other Monitor Functions

Other functions which form a part of the virtual machine

include:

a) Functions which provide information to the program

about the state of the system or job. (Tire of day;

runtime used, nar.e of user, etc.)

b) Functions which save and restore the environment of

a fork.

c) Functions which provide frequently needed forms of

I/O conversions such as fixed or floatinf point number

inout and output, ami date and time to strinn-

conversions.

-17-

Report No. 21*0 Bolt Beranek and Newman Inc.

3.5 Backward Compatibility (DEC 10/50 monitors)

Since TEMEX was belnp; implemented on a machine for which a

large useful prorram library existed, mostly for use under

the DEC 10/50 time sharinp: monitor, we felt it was hiphly

desirable to be able to ran such programs under the nev;

monitor system. We felt it should be possible to run binary

images of old progr^r.s, i.e. without reassembling.

Toward this end the following stens were taken. First, none

of the instructions which were used by the 10/50 monitor for

user-to-monitor conmur.catlon were used by TENEX. All of the

TENEX monitor calls were imnlemented with the JSYS

instruction.

Secondly, routines were designed which implemented all of

the exlstlnr 10/50 monitor calls in terms of the available

TEMEX monitor calls. This set of routines imolements all of

the functions available in the 10/50 monitor except those

specifically intended for the maintenance of the system.

Assembled together as the comoatability package, they occupy

slightly less than 2.'.)K of core. The package is kept as a

core image file and is never seen by programs which use only

TEIIEX monitor calls. However, the functions are

automatically made available to 10/50 type programs by the

monitor. When a program ma'.ces its first 10/50 tyre monitor

-18-

Report No. 2180 Bolt Beranek and :iowman Inc.

call, the TEMEX monitor maps the compatability package into

a remote portion of the process address snace. Subsequent

10/50 type monitor calls cause a transfer to the

cornnatabiMty packape which then ir.ternrots the call.

The compatibility routines are placed in the user space for

several reasons: a) regular use can be made of the pseudo

interrupt system, b) the conpability package (which requires

constant maintenance) can be maintained as a separate

module, totally indeoendent fron the monitor, and c) the

monitor 1B protected from malfunction by the conpatlbllty

routines.

-19-

Report No. 2lfl0 Bolt Beranek and Jlewman Inc.

1.0 USER INTERACTION WITH TENEX

Users at ternlnals communicate and work with TENEX primarily

through a command language Interpreter called the TENEX

Executive, or EXKC, The EXEC Is an Interactive, well human

ennlneered program which can accept commands from a user's

teletype or from a file. It Is Implemented as a reentrant,

shared prorram which runs In user mode, usually as the too

level process In the structure.

The EXKC provides the user with a multitude of facilities

which are activated by simple, easy-to-learn commands.

These facilities allow access to the system (e.g. LOGIN);

utility onerations on files and file directories; initiation

of private nro^rams and subsystems; limited debugrinr aids;

initiation of batch (detached onerations); printout of user

information and system statistics; and system maintenance.

'M Terminal Interaction Capabilities

The TEIIKX EXF.C is nrlmarily Intended to be used with a full

duplex terminal, and when so used, its interactions are

typically on the order of one or a few characters. However,

a number of modes of echo and wakeur are available to the

programmer which allow use of half duplex and/or

-20-

Report No, 21QO Bolt Beranek and Newman Inc.

llne-at-a-tlne processing. Uppor/lower case terminals are

not required, but may be used to no disadvantage.

^.2 Human Engineering

The EXEC was deslfrnod with two primary objectives—ease of

learning and ease of use. To ease the learnlnr process, all

commands are English words which are descriptive of the

facility belnr activated, (e.r. COPY to copy Information

from one file to another, STATISTICS to obtain a listinr of

current system statistics). In order to heln novice users,

two snecial assistance features were incornorated. First,

when the EXFC reoulros Input from the user durlrr a jonmand

Interaction, (for Instance, to collect arpumonts of that

command) a cue Is tyoed to indicate to the user what is

exnected. For exannlc, an Interaction which renames a file

mlp;ht be:

ÖRENAME.-!; (EXISTIilO FILL) ALPHAS (TO BK) BETA

The user's Input has been utuierlined. The $ inaicates a

typed ESC (ASCII escane, coae 3i(B)) which invokes the

EXEC's verbose cueinr responses in parentheses. If the

novice user still doesn't understand what is expected In his

response, he may tync the character '?' at any time. This

causes the EXKC to type out a list of all options availahle

-21-

Report No. 2180 Bolt Beranek and Newman Inc.

to the user at that point, then reauest a response.

For example,

«AVAIL$ARLi: ? ONE OP THE FOLLOWING:

LIMES

DEVICES

alAmiLABLE D$EVICES

MTAO, MTA1, MTA2, MTAB, DTAO, DTA3, FTP, FTP

In the above exannle, the user typed ESC after 'AVAIL'.

This Invoked command completion by the EXEC, a feature which

makes the lancua^e particularly easy to use. An ESC after

any initial substring of a command or argument (»uch as a

file name) invokes completion. If the substring is

insufficient for unique identification of the intended

input, tne EXHC rings the teletype's boll and awaits

additional characters. If the initial substring cannot be

recognized the EXEC types •?' to ask the user to retype that

input.

The EXEC also provides editing characters to permit the user

to correct tynino; errors in his input. These editing

characters permit the user to delete the last character of

his typed input, the last word, or all of it. He can also

ask for his edited input to be retyped for clarity,

-22-

Report No. 2180 Bolt Beranek and Newman Inc.

All these features contribute to making the TENEX executive

very easy to learn and use.

^.3 General Form of Commands

Each command begins with a keyword. Dependinp on the

command, the Initial keyword may be followeu by arruments

such as file names, numbers, and additional keyv.'ords, and/or

"noise words" to make the command more readable. The noise

words are enclosed in parentheses to distinguish them from

the arguments. The initial keyword usually identifies the

command function. Some commands include optional arguments

or arn^ment lists of indefinite length. A few commands,

such as that for fllr directory list inn, take optional

"sub-commands", each with arguments, to specify options.

Any Initial word not recor;nlzd as a command keyword is taken

as the name of a subsystem to be smarted.

^.j.l Command Input

Three general stylos of innut may be used. The stylos are

distinguished by syntactic analysis and by Innut

terminators; hence they do not require different innut modes

and thus may be Intermixed freely within a session or even

-23-

Report No. 2180 Bolt Beranek and Newman Inc.

with a statement.

1. Complete Input. A complete command may be typed

In, with all keywords and noise words given In their

entirety, and without use of .any non-nrlntlng

characters. This style is good for novices who are

copying a typescript, command file, and terminals

without the full ASCII character set (e.g. ESC).

2. Abbreviations. The user may shorten a command In

two ways: he can omit noise words completely, and he

can shorten keywords. Any keyword may be abbreviated

with any initial substring (terminated with soace) long

enough to distinguish It from the other keywords

acceotable in that context. Keywords have been made

unique in three characters or less Insofar as possible

without producing very non- english-like words.

3. Completion. The user types the same characters as

in abbreviated input, except he terminates each field

(keyword or argument) with the ESC key. This produces

a print-out of the complete conmand—each ESC causes

the rest of the field (if an abbreviated keyword or

file name) and any following noise words (with

enclosing parentheses) to be printed.

-24-

Report No. 2180 Bolt Beranek and Newman Inc.

Most commands are confirmed with a carriage return, but some

which only print Information are executed as soon as they

are recognized.

^.4 Interrupt Characters

ASCII Control-C Is the EXEC's attention character. When

typed by the user, It causes any running program to be

stopned and control to be given to the EXEC via the pseudo

Interrunt system. The user may then continue his program or

take any other action.

Another terminal Interrupt character, control-T Is service!

by the EXEC. It Interrupts a user's EXEC process to tyne

out total CPU and console time used, and status of the fork

belnf run under the EXEC.

-25-

Report No. 21fl.O Bolt Beranek and Newnan. Inc.

i

5.0 THE TENEX PILE SYSTEM ,

The TEÜEX file system provides a general mechanism for

obtaining information from and sending data to external

devices attached to the TEIIEX system. Write only and read

only devices are included in the file system so that all

TEMEX I/O may be handled uniformly. The first major

function of the TEMEX file system is to provide symbolic

file name management. This includes two separate but

related activities. The first involves translation'of a

symbolic name into an internal pointer associated with that

name, which we call a file descriptor block. Second, it

involves chocklnp; information concerned with 1) if the .file

exists, and if so information related to the file as found

in the descriptor block; and 2) the process requesting

access to the file. This information is used to determine

if this process should be allowed to know about the

existence of this file, and if so, what accesses are

allowable. This activity is known as Pile Access

Protection.

A symbolic name for TEIIEX files consists of up to five

fields and thus conceptually represents a tree of maximum

deoth five. Mot all nodes of this tree go down to maximurri

deoth. This scheme was chosen rather than a full tree to

simplify the problem of comnatlbillty with existlnr: DEC

/

-26-

Report No. 2^80 Bolt Beranek and ^Jevmnn Inc.

PPP-lO software and name, lookup and recognition. We are

currently considering the feasibility of inplementlns; a full

tree directory structure. At ea6h level tiier^ would be set

i of infornation which is related to access .rifhts, and media

dependence, of the data access for this node. Each node

renresents a .collection of related inforr.ation. with the

terminal nodes belnr; files.
i

■' The fundamental unit of storage in a TENEX file is , a byte

v/hlch may be. from 1 to 36 bltsi in lenrth. A stream of bytes

constitutes a* file which is the basic named element in thd

1 file' system. Prof-r^ms may r^erencc files byte by byte in a

sequential manner or,1if the device permits, at random.

Piles may ßlno be referenced by byte strinp-s. iNo structure
i • ■ ■ . i '

other than bytes and files is imposed on the user; and byte

and string input and outout are the basic ooerations'. Of

course, additional structure and other operations may be

imhlemented bv the user programs. '

I ;

' 5.1 File Names ' '

A TEilEX file 'is named by a file descrirtor comnosed of b

fields some of which are, omitted for certain devices. The

five fields are device name, directory name, fil^ nane,

extension, and version rjunber. , , '
• i ■

, , ' -27-

Renort No. 2180 Bolt Beranek and Newman Inc.

The flic name field Is intended to deslßnate a class of

files which are related in some way. This convention is not

enforceable of course but most users of TENEX tend to follow

the convention since it facilitates management of a users

files. The extension field is intended to designate

variously processed forms of the same information. A file's

extension is frequently specified by a program. For

example, FPT.MAC, FFT.REL, and PPT.SAV would be used to

indicate the asser.bly code source, relocatable file, and

binary imare of a slnrle program.

The version number of a file enumerates successive versions

of a file. Normally each time a file is written a new

version is automatically created by making its version

number be one greater than the highest existing version.

This protects a user from loss if he accidentally writes on

the wrong file. Excess versions may be deleted by the user

or automatically by the system when they have been put on a

backun storare medium.

Any of the fields of a file description may be abbreviated

excent for device and version.The appearance of an ESC in

the file descriptor causes the portion of the field before

the ESC to be looked up. In this case the system will

supply the omitted character and/or fields. Abbreviation

without this outnut is not provided in order to insure that

-28-

Report No. 2180 Bolt Deranek and Newman Inc.

the typescript reflects exactly what was done. The system

provides default values for each field except the file name.

A default value Is used for a field if the user omits any

input for that field, e.g. the device and directory. This

simplifies references to files in most common cases.

5.2 File Access Protection

Because TENEX must service a diverse user community, it is

essential that access to files be protected in a general

way. Generally, access to a file depends on two things: the

kind of access deslro'i, and the relation of the program

making the access to the owner of the file. Presently, a

slmnle protection scheme is inolemented in which the only

nossible relatlonshlns a program may bear to the file's

owner are:

1. The directory attached to the Job under which the

program is running is the same as the owning directory.

2. The directory attached to the Job under which the

program is running is in the same group as the owning

directory.

3. Neither 1 or 2.

-29-

Report No. 2180 Dolt Beranek and Newman Inc.

Five kinds of access are dlstlnpulshed for a file; directory

list lap;; read; write, execute and append. The above three

relationships and five protection types are are related by

IB bits (a 3 by 6 binary matrix) in which a one indicates

that a particular access is pernitted for a particular

relationship. If directory listing access is not permitted,

the process requestlnp: access is given an error return which

Is indistinguishable fron the error for nonexistent file.

Other access restrictions cause errors only when an attempt

Is made to open a file, as described below.

For purnoses of determlninn; group access, a 3^ bit word is

administratively associated with each directory and each

user. If the bitwise "and" of the user group word of the

accessor and the directory group word of the accessee is

non-zero, the group access permission is used.

Provision has been made for a more general file protection

system in which more general access relationships may be

expressed in a special file protection language. For

example, access may be allowed only to an explicitly named

set of users.

5.3 File Operations

Usinn a file in TE'IEX is basically a four step process.

-30-

Report No. 2l80 Bolt Beranek and Newman Inc.

First a correspondence Is established between a file name

and a Job File Number (JFN) which Is a small Index Into a

Job table for files. Next the file Is opened, establishing

the mode and access permission and setting up monitor tables

to permit data of the file to be accessed. Third, data is

transferred to or from the file; and finally the file is

closed fixing up the directory information and releasing the

space occupied In system tables for the file.

For purposes of file sharing, all Instances of opening a

particular file reference the same data. Data written in a

file will be Immediately seen by readers of the file. To

protect against confusion resulting from multiple

uncooperating simultaneous writers and readers of a file, a

file can be opened with either thawed or unthawed access.

With unthawed access, a file may have either exactly one

unthawed writer or any number of unthawed readers thus

preventing any potentially conflicting operations. With

thawed access, a file may have any number of thawed writers

and/or thawed readers. Simultaneous accessors of a file

must be all thawed or all unthawed.

The contents of a disk file are always accessed by maoping

pages of the file into an address space. Monitor calls are

provided which transfer single bytes (1-36 bits) or strings

of bytes sequentially to and from files, with no user

-31-

Report No. 2lHo Bolt Deranek and Newman Inc.

bufTerlnc required. These are simply monitor calls which

reference pap;es of the file which have been mapped Into

regions of the monitor map of the process. These pages are

called window pa.^es into the file.

-32-

Report No. 2180 Bolt Beranek and Newman Inc.

6.0 THE MONITOR

6.1 Scheduler

The TENEX scheduler is designed to meet a set of potentially

conflicting requirements. The first and most fundamental

requirement of any time sharing scheduler is to provide an

equitable distribution of resources, principally CPU

service, to various Jobs that are competing for such

resources. Secondly, because TENEX is designed to be a good

interactive system, the scheduler must Identify and give

prompt service to Jobs making interactive requests.

Thirdly, because use of the CPU is intimately tied to the

allocation of core memory, and because TENEX is a paged

system, the scheduler must be sensitive to the changing

memory and swapping requirements of the various running

processes, and work with the core memory management routine

to provide efficient use of core memory. Finally, the

scheduler should have provision for administratively

controlling the allocation of resources so as to obtain

other than equal distribution.

6.1.1 Scheduling CPU Priorities

To implement the basic scheduling function, a scheduling

algorithm was chosen which groups processes together on a

number of separate queues each with associated runtime

-33-

Report No. 21BO Bolt Beranek and Newman Inc.

quantum, similar to algorithms described by Corbato (2) and

BDII (1). Lower queues in general have lower priorities but

longer runtimes. A common problem with many schedulers of

this type is that processes are placed on the highest

priority queue after any interaction. Under conditions of

heavy load or with poorly behaved interactive processes, it

may happen that the interactive processes succeed in using

all of the available time and so lock out the compute bound

processes which have fallen to the lower queues.

In TENEX, priority is based on a long term average ratio of

CPU use to real time, and a process's priority after an

interaction Is determined by its priority before the

interaction and the length of the interaction.

Specifically, a process's priority is decreased while

running at a constant rate, C, and Increased while blocked

at a rate of C/N, where N in the number of runnable

processes in the system. This ensures that equitable

service is given both to comnute-bound and Interactive jobs.

To imrrove response characteristics, an interactive "escape

clause" is included in the scheduling algorithm. After a

block wait of greater than a minimum time of 100 ms., a

process is given a short quantum at maximum priority.

Priority and queue position after this burst are determined

by the lonr term average. The effect of this provision is

to ensure quick service to very short interactions, even

-34-

Report No. 2180 Bolt Beranek and Newman Inc.

when requested Immediately after a long computation.

6.1.2 Balance Set

The algorithm described above provides at any time a

priority ordering of all the runnable processes in the

system. However, some additional structure is imposed on

the scheduler in order to optimize the use of core memory

and reduce swapoing overhead. For each process in the

system, the core manager maintains an estimate of the size

of the working set (5). The scheduler uses this information

to maintain a balance set, that is, a set of processes whose

working sets can co-exist in core. These processes will be

chosen in order from the first N processes in priority

ranking as determined above.

The scheduler periodically monitors the state of the balance

set and performs the following operations. If the sum of

the working sets of the processes in the balance set has

increased above the maximum, then the lowest priority

process is removed. Secondly, if there is a runnable

process not in the balance set, it is moved into the balance

set if there is room for its working set, or if it is higher

in priority than the lowest priority process now in the

balance set.

-35-

Report No. 2lu0 Bolt Beranek and Newman Inc.

This scheme provides a coherent way of dealing with page

faults of runnlnr processes. A running process page faults

If it makes a reference to page which Is not currently in

core. To maxlnl'.-o system efficiency, the scheduler must

have something else to do when this occurs. That is, it

should have one or more other processes to run while the

requested pare is beinr sv/npoed in. This is best

accomplished if the scheduler has under consideration a

small set of processes which can co-exist in core. At one

extreme, if the scheduler considered only one process, then

it woul^ have nothinr to do when that process page faulted.

At the other extreme, if the scheduler considered as

equivalent all runnable processes, then it would be likely

that no process would have enough pares in core to run

efficiently and so a great deal of thrashing(6) could

result.

6.1.3 Resource Guarantees and Limitations

The overall result of the above scheduling algorithms is to

provide to each, of the processes demanding CPU service at

least 1/M of the available service, which is our definition

of an equitable distribution of resources. In some cases

other distributions art; desired. These might include

running a demonstration which requires significant CPU time

during a period of medium or heavy load, or a user who is

-36-

Report No. 2180 Bolt Beranek and Newman Inc.

willing to pay extra for premium service which does not

degrade as the load on the machine Increases. A facility Is

Implemented In TENEX to handle these situations.

An operator or other perfjon with appropriate administrative

access can assign to any Job or user of the system a

fraction, F of guaranteed CPU service. For any Job so

designated, the scheduler will attempt to ensure that:

C/T > F

where C Is the CPU seconds used by the process, and T is

real time. For example, if the parameter is set to 3055, the

scheduler will provide at least 18 seconds of CPU service to

the specified Job during each minute of real time.

This parameter acts as a ceiling as well as a floor for CPU

service. That is, if there are other runnable processes on

the system which are not declared special, then the

scheduler will ensure that the special process receives no

more than the stated fraction of CPU service. A process

with this sort of resource guarantee will display very

consistent interactive behaviour despite widely varying

loads on the time sharing machine.

6.2 Core Management

The Information provided in the core status table by the

-37-

Report No. 21^0 Bolt Beranek and Newman Inc.

paginr1; hardv/aro is essential to the proper management of

core memory in TKNKX to avoid thrashing and other forms of

inefficient operation. Paging is doni on demand. No

ordinary pages are preloaded before a process is run, and in

general, a process will not have all the pages of its

virtual menory in core at once.

The only basis for predicting the futi^re use of a set of

pages is the history of the recent use of those pages and a

logical assumption (without further information from the

user) is that those which have been used most recently will

be used again. The paging hardware stores a 9-bit age field

for each pare when a reference to that page causes a pager

reload. This does not hanncn on every reference, but does

happen often enough to record any' change in the age

register. The software uses a 9-bit register in,, the pager

as a logical clock so that any set of pages may be ordered

according to the time at which they we^re referenceu 'by

comparinp: the 9-bit age fields. This allows the core

manager to remove the oldest pages' of a process when core

must be reallocated.

Certain other information is also used in1the core managing

alforithm. When a process references a page which is not in

core, a oager trar occurs ana a first level core management

routine Is invoked. The run time since the last page fault

-3R-

Report No. 21HO Bolt Beranek and Mewman Inc,

Is use.d for a' running average of page fault times. A

process Is considered to have enoufrh of its working sbt if .

the average pafre fauit: tine equalä PAV, ä system parameter '

currently set to 6yrnp (o,r 2 drum revolutions). If the ■

process is faulting mbre often than PAV, it if- below its

working set si:ie, and a swap to bring in the requested pcige

Initiated. Control returns to the scheduler so that It can
) i • •

; I ' ; ,

run another process \ until the ,swan is, complete. If the1

process is faulting less often, a second core managing

routine is Invoked to reduce the size of the process. I.e.'

remove ^ome of Its pages from core if, snace is needed. This

operation uses 'the are field from the core status table word

for each page belonging to the process.

6.3 System Measurements

In order to observe and imnrovo the performance of TKMEX in

regular1 service, various measuring, functions were built into

monitor routines. Quantatlve measurement Is usually the

only way to trul^' ascertain the- pcrformnoe of a 'time

shariric mcnltor: suh'ectlve information such as reactions of

users does hot provide' comnarabile results dav-to-day, and
t

week-to-v;eel:. ,
i

Some valued serve to indicate the efricicncy of, scheduling,

the , core/CP'J balance, an'', the nature of , the' various

-39-

Renort Ho. 21 Bolt Beranek and Newr.an Inc.

proccsser. runninr- on tl:-- syntem. The scheduler malntalr.s a

set of" interrair. over tine wi:ic;! Rive (as a fraction of real

tine):

IDLIi - tine when no processes are renuestlnpr CPU

service

WAIT - tine when all runnahle processes are waitlr.r for

connletlon of part- fault

CORE - overhead tire sper;t in core managenent

Tr>AP - tire spent hai. illnr pafer traps

The various rclationshlns amenfr these are:

IDL" + V/AIT = total tine srent in scheduler

1 - IPL\ - ^:AT,T, - TRAP = tine spent runnlnr user

nrocoscor

Also naintained b;; the schiviuler is an integral over tire- of

tiie nunher of processes in the balance set, the nunber of

transfers between core and secondary storage, and number of

ternl r.al interactions.

One neas'.'!"•■ is of interest or. a recurring basis to all users

of the syslen. The scheduler mnlntains three exncr.ential

averares (v/ith. tine constants of 1 minute, 5 minutes, and Vj

minutes) of th^ number of runnatle processes on the system.

This Indicates the true current load on the system better

than th: nurler of Jobs lorred in. Users often choose on

the basis o0 th^so lord firures what they do on the system

at a particular tlnr.

Report No. 2180 Bolt Beranek and Newman Inc.

6J» Debugging Aids

Certain debugging procedures used in the development of the

system contributed greatly to the speed of development and

Integrity of the system. We felt Initially that debugging

facilities were important and that we should not skimp on

efforts to provide them. However, the facilities that we

did use did not cost significant effort.

The princinal debugging aid is a program called DDT,

available in several forms in the system. DDT is a program

which allows memory locations to be examined and modified

and breaknoints to be placecj in a running program. All

interactions with DDT are symbolic using the symbols defined

in the source program and obtain from the assembler.

The form of DDT first used and still necessary for debugging

basic level code Is a stand alone version which resides in

core memory along with monitor. It is used for debugging

the scheduler, portions of the core manager, and other basic

routines.

The second form of DDT was added as soon as the basic

monitor could sunnort demand paging and create a virtual

memory. This DDT exists in the monitor map and may be used

as an ordinary program at a system terminal. It is capable

-41-

Report No. 2180 Bolt Beranek and Newman Inc.

of examining and changing the running monitor and all of the

associated tables and other contents of the monitor virtual

memory. Use of this form of DDT actually allows several

oersons to work on debugging portions of the monitor

simultaneously.

A third form of DDT Is used with user programs and Is

cognizant of the access status (execute or write protected,

etc) of pages of the user program.

One additional debugging facility Is actually a coding

convention. Early In the coding, an entry point to a

routine was defined to handle cases that were not

implencntod or which were logically Impossible. It Is

called BUGHIiT and a Jumn there indicates a situation so

anomalous as to suggest that the system can not continue to

run. This routine takes two different actions depending on

the setting of a switch. If the system Is attended by

system personnel, the the routine enters a DDT breakpoint

and the state of the monitor can be examined to determine

what has gone wrong. If the system is unattended, (e.g. at

nlnht), a system restart procedure Is invoked.

Later In the develonncnt a second entry point was added

which Indicates an Inconsistency which is not considpved

fatal to the system. This routine also stops with a

-42-

Report No. 2180 Bolt Beranek and Newman Inc.

breakpoint If the system is attended, but continues if the

system is unattended. The occurrence of either of these

calls is reported on a logging teletype in the computer room

so that attention is drawn to developing problems. As the

system developed, consistency checks were added to many of

the most critical monitor routines, and calls made to one of

these two routines when trouble is indicated. This

procedure was very significant in enabling us to find

obscure or infrequent bugs in the software. They also serve

to prevent hardware or softv/are failures fron cascading and

causing great loss of information.

-^3-

Renort No. 2lv'n Bolt Beranek and Newman Inc.

7.0 coucLusion

TF.1IEX was built with the knowledge of a number of other time

sharing systems, Inoludlng the DEC PDP-1 systems designed at

BBM, the Berkeley System for the SDS-940, MIT CTSS, the DFX

10/^0 System and MULTICS. We stole freely from the good

design Ideas of all these systems, and tried hard to avoid

problems of operation and Implementation we saw In these

systems. We attempted to dominate all but MULTICS which had

even grander goals than ours, and there we attempted to get

a system operational for users much more quickly, still

meetlnr what we considered the most important goals for a

system. We conclude here with a brief summary of the

Implementation strategy which allowed us to get a good state

of the art time-sharing system operating reliably within a

very short time frame.

7.1 Design

Virtually all of the work on TEHF.X from initial inception to

a useable system was done over a two year period. There

were a total of six people principally involved in the

design and inplemcntatlon. Approximately the first six

months were spent in discussion and thought aimed at

producing a design for the paging hardware. Actual hardvrare

technical design drawing of prints, and wlrelists was begun

Report No. 2180 Bolt Beranek and Newnan Inc.

at that time and took a total of approximately 9 months.

The construction and a checkout of the pager was completed

in another three months, that is approximately 18 months

after the start of the project. During this latter 12

months, an increasing amount of effort was spent on software

design, and this effort culminated in a series of documents

which describe in considerable detail each of the important

modules of the system. These documents were carefully and

closely followed during the actual coding of the system, and

in retrospect, it is our Judgement that they contributed

significantly to the overall integrity of the system.

7.2 Implementation

The actual codin?; of the system was begun approximately 18

months after the start of the project. The first stage of

coding was completer in 6 months. At this stage, the system

was operating and capable of sustaining use by non-system

users for work on their individual projects. The efforts of

five full-time people were involved over this six months,

and were distributed as follows:

Two people worked on the monitor (including scheduler, core

manager, file system, etc.). One person was involved full

time on the EXEC as a user program. An average of one

person was involved on a number of other projects including

-45-

Report No. 21 HO Bolt Beranek and Newriin Inc.

the I0/rj0 comoatabillty routines and one person was involved

almost full tine in documenting the system as it grew and

evolved. This consisted mainly of preparing the JSYS

manual, the document which describes all of the calls that

user programs can make on the monitor. The concurrent

development of this documentation was necessary not only so

as to have it available when users came on the system, but

also to provide essential communications among the

implementors of the system.

We felt it was extremely important to optimize the size of

the tasks and the number of people working on the project.

We felt that too many people working on a particular task or

too great an overlap of p^ocle on separate tasks would

result in serious inefficiency. Therefore, tasks given to

each person were as large as could reasonably be handled by

that person, and in so far as possible, tasks were

indeoendcnt of each another or related in ways that were

well defined and documented. We believe that this procedure

was a ma^or factor in the demonstrated Integrity of the

system as well as in the speed with which it was

imnlenentou.

-46-

Report No. 2180 Bolt Beranek and Newman Inc.

8.0 BIBLIOGRAPHY

(1) BBN Medical Information Technology Department: "The

Hospital Comnuter Project Time Sharing Executive

System" - BRIJ Report Number 1673, April 1968

(2) Corbato, F. J., et al: "An Experimental Time-sharing

System" - AFIPS Conference Proceedings Vol. 21 (1962

SJCC)

(3) — : "An Introduction and Overview of the Multics

System" - AFIPS Conference Proceedings Vol. 27 {1963

FJCC)

(4) Digital Equipment Corn.: "PDP-10 Reference Handbook" -

DEC, 1971

(5) Denning, P.: "Workimr Set Model for Program Behavior"

Communications of the AC.W. Vol. 11, No. 5, May, 19fS

(6) — : "Thrashing, It's Causes and Prevention" - AFIPS

Conference Proceedings Vol. 33 (1968 FJCC)

(7) Lampson, B., et al: "A User Machine in a Time Sharing

System" - Proceedings of the IEEE, Vol. 5^, No. 12,

Dec. 1966.

(8) Spier, M. J. and Organick, E.: "The Multics

Interprocess Communication Facility" - Proceedings of

the Second Symnoslum on Operating System Principles,

-4?-

