BOLT BERANEK AND NEWMAN INC

C ONSULTING - D EVELOPMENT o R E S E ARCH

P=yf BBN Report No. 2180 15 Auqust 1971

AD 72596

TENEX, A PAGED TIME SHARING SYSTEM FOR THLE PDP-10 -

by

baniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy
and Raymond S. Tomlinson

DDC
U (=M NP

SEP 8 197
GobL0U
B -

The views and conclusions contained in this document are
those of the authors and should not be interpreted as
necessairly representing the official policies, either
expressed or implied, of the Advanced Pesearch Projects
Agency or the U.S. Government.

This research was supported Distribution of this docu-
by the Advanced Research ment is unlimited. It mav be
Projects Agency under ARPA released to the Clearinghouse,
Order MNo. 1967; Contract MNo. Department of Commerce for
DAHC=-71-C-0088, sale to the general public.

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151

53

BEST
AVAILABLE COPY

Unclassified
Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of title, body of abstiact and indexing annotition must be entered when the vverall report i~ classified)
1. ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION
Bolt Beranek and Newman Inc. Unclassified
50 Moulton Street b, BROVE
Cambridge, Massachusetts 02138

3 REPORT TITLE

TENEX, A PAGED TIME SHARING SYSTEM FOR THE PDP-1¢g

4. DESCRIPTIVE NOTES (Type of report and, incfusive dates)

Scientific

%. AUTHORI1S) (First name, middle initial, last name)
D.G. Bobrow D.L. Murphy
J.D. Burchfiel R.S. Tomlinson

6 REPORT DATE 74, TOTAL NO OF PAGES 7b. NO. OF REFS
15 August 1971 47 8

8a. CONTRACT OR GRANT NO %0. ORIGINATOR'S REPORT NUMBE R(S)
DAHC15 71 C 0088

b. PROJECT NO. BBN Report No. 2180
ARPA ON 1967

c. 9b. 3.:'7:53:0?1;:90'2' NOI(S) (Any othet numbers that may be assigned

d.

10 DISTRIBUTION SYATEMé‘NT
Distribution of this document is unlimited. It mav he released to

the Clearinghouse, Department of Commerce for sale to the general
public.

11 SUPPLEMENTARY NOTES 12. SFONSORING MILITARY ACTIVITY
This research was sponsored by the
Pdvanced Research Projects Agency
under ARPA Order No. 1967.

13 ABSTRACT

TENEX is a new time sharing system implemented on a DEC PDP-10
augmented by special paging hardware developed at BBN. This
report specifies a set of goals which we feel are important for
any time sharing system. It then describes how the TENEX design
and implementation achieves these goals. These include specifi-
cations for a powerful multiprocess large memory virtual machine,
intimate terminal interaction, comprehensive uniform file and I/O
capabilities, and clean flexible system structure. Although our
implementation required some compromise to achieve a system
operational within six months of hardware checkout, TENEX has
proven to be a good interactive system with flexible multi-process
facilities and reliable operation.

NI\ FORM 4 A ™" {PAGF 1) e e e -

Unclassified
Security Classification

14 LINK A LINK B LINK C
KEY WORDS

ROLE wY ROLE wTY ROLE wT

TENEX

raging

Virtual Machines

Time sharing system
Scheduling algorithm
Process structure PDP-10

DD .".2™..1473 (sacx)

S/N 0101-807-6821

Security Classification A-31409

TENEX, A PAGED TIME SHARING SYSTEM FOR THE PDP-10%

D. G. Bobrow, J. D. Burchfiel; D. L. Murphy, and
R. S. Tomlinson

Bolt Beranek and Newman, Inc.
Cambridge, Massachusetts

*This paper has been accented by the Association for
Computing;, Machinery and will be presented at the Third
Symposium on Operating Systems Principles, October 18-20,
1971, In addition to the authors, significant contributions
to the design and implementation of TENEY were made by
T. R, Strollo, whe led the technical staff, and
J. R. Barnaby who implemented the EXEC subsystem. Others
who contributed include T, Myer, E, Flala, D, Wallace and
J. Elkind.

Report No. 2180 Bolt Beranek

2.0

3.0

5.0

TABLE OF CONTENTS

INTRODUCTION & ¢ ¢ = ¢ o o « o o o o o o
HARDWARE DEVELOPMENT FOR TENEX« &
2.1 The BBN Pager . . « ¢« ¢ ¢ ¢ ¢ o &
2.2 Processor Modifications
THE TENEX VIRTUAL MACHINE « &
3.1 Virtual Memory Structure
3.2 Job Structure ¢ ¢ o o .

3.2.1 Process Hierarchy
3.3 Pseudo=-Interrupt . . « « « « &« ¢ &
3.4 Other Monitor Functions
3.5 Backward Compatibility . . « « «
USER INTERACTION WITH TENEX . . « . . .
h,1 Terminal Interaction Capabilities
b,2 Human Engineering . . . « « « «
4,3 General Form of Commands . . + + &

h,3.1 Command Input . . « « « &
b,y Interrupt Characters . « « « « « &
THE TENEX FILE SYSTEM .+ « ¢« o« ¢ o o o &
5.1 File Names + ¢« ¢ o o o o o o o o o
5.2 File Access Protection

5.3 File Cperations . . ¢« « ¢ ¢ ¢ o« &

it

and

Newman Inc.

10
12
12
14
14
16
17
16
20
20
21
23

26
27
29
30

Report No. 2180 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS (cont.)

6.0 THE MONITOR & ¢ 4 ¢ ¢ o o o o s o o o o s s o o o o & 33
6.1 Schedule€r . . ¢ o« ¢ o« o o o o o o o o o o o o 33

6.1.1 Scheduling CPU Pricrities . . « « « o & 33

€.1.2 Balance Set +« ¢« ¢ 4 4 4 0 4 0 e e .. 35

6.1.3 Resource Guarantces and
Limitations . « & o ¢ o ¢ o ¢ o o o o & 36

6.2 Core Management . ¢« ¢« ¢« « ¢ o o o o o o o s o o 37
6.3 System Measurements .« o« o« « o o o o o o o o o o 39
6.4 Debugging AidS o ¢« & ¢ ¢ ¢ o o o o o o o o o o 1
7.0 CONCLUSION « o o o o o o o o o o o o s s ¢ o o s s s & L
7.1 Design o ¢ o o ¢ ¢ o o o o o o o o o o o o o o o Ly
7.2 Implementation « « o ¢ o ¢ o o o o o o o o o o o h5
8.0 BIBLIOGRAPHY & & o« ¢ o o o o o o o o o o o o o o o o uv

l,»’.() Aii:“'rl‘}?»‘\(v"l‘ & :)i}in‘JU}-.L):“ ® 0 0 0 0 0 8 0 8 50 00 0 0 8N OO OO O NS00 e e (i)iv“ ll"{3)

111

BLANK PAGE -

Report No, 2180 Bolt Beranek and Newman Inc.

1.0 INTRODUCTION

TENEX 1s a new time-=-sharing system imvolemented on the DEC
PDP=-10 processor augmented by svecial pagling hardware
develoned at BBN. In this 1ntroduct;on we specify a set of
goals which we feel are 1moortaht for any time-~sharing
system, and which governed the design of TENEX, The
following sectlons describe how TENEX tries to achleve these
goals., The constraints on the imnlementation required that
minimal changes be made to the PDP~i0 processor, lncluding
no chanpge to the basic address computation. In addition,
the system had to be 1in service for users within six months

of the operation of the hardwvare, 1including standard

subsystems, such as FORTRA!l, editors and assemblers,

The first class of user orlented goals 1s centered around

the virtual machine seen by the user.

1. Process Memory. A user should see a memory snace which
is 1ndevrendent of the system confipuration of core memory.
The memory snace for a particular process should &allow
indenendent read, write, and execute protection for units
smaller than the total memory snace. No part of a user

process's memory space should be usea for system functions

(e.g. buffers).

’ -

Bolt Beranek and Newman Ing.

'

{

Report No. 2180

2. Multiprocess interaction. A single user job shoulj be

b

able to have multiple processes with independent Temory
spaces and computaticnal power. Facilities shouyp bg
provided for several kinds of communication amopg such
processes, including memory sharing, interrupt capab%bities,

f

and direct control.

3. Extended Instruction Set. In addition to the 'basic

instruction repertoire of the PDP-10, the user should 'be

provided with an extended instruction repertoire for common

operations. We attempted to make monitor functions and:

other monitor overations general arnd uniform while fetaiﬁing
the degree of economy and efficiency appropriate for the
power of the system. This balance was achieved 'in many
cases by the specification of default arguments, simple-case
calling sequences, and by the coding of special routinés “to

handle frequent cases most efficiently.

Another set of criteria is aimed toward maximizing;the ease

and efficacy of terminal use,

1. Terminal Character Transmission Protocol: The 'system
should make effective wuse of full duplex ﬁerminals-(wiﬁh
system-originated echos) to improve interactive capability
and control outrut 1in a consistent manner, Intimate

interaction reguires that the system and user be able to

conduct a dialogue with each typing only a few characters '

-2- . !

t

i

!

1

!

| ! !

Report No.. 2150 Bolt Beranek and Newman Inc.
| : ' ! i o

i

before beingpproﬁnted by the other.

i
[

.) ! ! g
2. Terminal Lnterrunts: A number of characdters shoulg be

!
!

available on the terminal which can interruot the' program
v § , .
for various actions. o ' /

!
!

' . "] ! I
3." User-User' Communication: Facilities should exist to .
!) q '

! ;)
enable two or more users on the machine concurrently to

communigcate with each other via the system, and thereby

coonerate on various activities.

i ' ' | o I ; ! '

b, Comnmand Lanphage FPorm: The user command largpuage

inpernréterl should provide an easily understoqd,'mneménic
interaction facility, with common onerations ' available as
simhle commands (e.p. lisé a:file, rerort resources used).
The language should be adaptable to th? ski}l and experieqce

of the user,

I

5. The commanq ianguage should provide quick access to all

of ' the geheral funbtion§ of the system (thosé not .a part or,

specific subsystems), provide access to the sutsystems, 'and
}) ' !
always be: avallable ‘as, the final "fall-back" in case of a
o ! . } '
prorram malfupction or user nanic.

'
. i
i i

A'third'set of user'oriénted'goals is focused on éhe file

systen. ’ g

Report No. 21%0 Bolt Beranek and Newman Inc.

1. Uniformity of Access: All byte stream devices should be
treatable uniformly and symbolically, e.g. Storage files
and terminals. All file media which could provide effective
user random access storage should allow it. All external
devices and byte streams should be accessible through the
file system, and file operations should be able to 1invoke
general (user or system) programs to absorb or generate

data.

2. Lack of Small Arbitrary Limits: No arbltrary small limit
should be placed on 1individual file size, e.g. a flle
should be able to contain at 1least 8everal full address
spaces, File names should be 1large encugh (with enough
parts) to distinpuish important classes of files, with

efficient lookun so as to provide file name completion.

3. Efficiency of I/0: File operations should be implemented
efficiently so that the user 1s not tempted to go around the

file system on special devices.

4, File Protection: Flle access ought to be 1limited 1in a
number of ways, and default protection rules should provide

the user with adecuate protection.

A nunmber of system oriented goals governed the structure,

desiegn process, and implementation of the TENEX monitor.

-l

Report No. 2180 Bolt Beranek and Newman Inc.

1. Adjustable Scheduling: Scheduling should be equitable
with good response time for short interactions. The
scheduling procedures should be dynamically adjustable by
operators so as to provide regulated services to selected

Jobs.

2. Measurablility: Measurements of system, module, and user
program performance should be avallable so that dynamic

adjustments can be made or system changes could be noted.

3. Modularity. The system had to be bullt 1n senarated
modules with well defined 1nterfaces to device dependent
programs so that 1t could be easily adantable to a number of
different confisurations 1in the ARPA community, and new

modules could be added easily.

4, Reliability and Ease of Debugring: The system had to be
built with 1Internal reuundancy checks to maintain hiph
reliabllity, to make crash recovery with file interrity
easy, to allow burs to be found before having destructive
consequences, anc¢ to allow intermittent hardware fallures to

be detected,

5. Backward Comnatilbility. Useful overation within six
months of hardwvare oneration reaquired that manuf..cturer

supplied standard subsystems should be made onerational

5=

Report No. 2i%0 Bolt Beranek and Newman Inc.

without need for special changes.

The set of goals specified above have been met in the TENEX
system, which has been operational for users since June
1970, Although none of them 1s entirely new, a currently
operational system which meets all these specifications is a

sienificant accomnlishment,

P

Report No. 2180 Bolt Beranek and Newman Inc.

2.0 HARDWARE DEVELOPMENT FOR TENEX

Hardware development and modification for TENEY. was
minimized as much as possible consorant with achieving the
goals specified above, These included an address maoning
(paring) box to be imnlemented with then curren. DEC modules
(to speed development time), and some chanres to the PDP=10
processor. A hard 1limit on the latter changes was imrosed
by the nhysical room availaﬁie in the processor, Both
proJects were constrained to be upward compatible from the
standard PDP=10 so that the standard DEC time sharing

software and dlarnostics could be run.
’

2.1 The BBll Pager

The BBN pager 1is an interface between the PDP=-10 preocessor
and the memory bug, It proviies 1individual mapping
(relocation) of each pare (512 words) of both user and
monitor address snades using separate maps for each. The
parer uses "assoclative reristers™ and core memory tatles to
store the manniny information. On each memory recuest from
the processor, the 9 high=order bits of the address, and the
request-typoe level (rcaa, write, execute) arc comnared in
varallel with the contents of each assoclative register, If
a match 1is forrnd, the recister containing the match also
contains eleven hipheorder address bits to reference un to

one million words of physical core.

-T=

Report No. 2180 Bolt Beranek and Newman Inc.

If no match is found, reference is made to a 512 word "page
table™ in physical core memory. The word selected in this
page table is determined by a dispatch based on the original
9 high-order address bits. 1In the simple case of a private
page which 1s in core, the 11 high-order address bits and
protection bits are found in this word and are automatically

loaded into an assoclative register by the pager.

There are three other cases:

A. The page 1s not in core, 1s protected from the
requested tynme of access, or is non-existent; in
this case a page fault (trap) will occur.

B. The page 1s shared; in this case the map contains a
"shared™ pointer to a system table which contains
the location information for the page.

C. The page belongs to another process; in this case,
the entry containc an "indirect®™ pointer to an
entry 1in another »age table from which the

location information is cobtalned.

The goal of program (code and data) sharing was given
extensive consideration in the design of the BBN Pager. The

indirect and shared pointer mechanism allows pages to be

actively sharei (exist 1in more than one memory space) but
still have the current address (core or secondary storage)

stored 1in only one place. This means the memory management

-8

P o [] 23 2 -l [] Lt |

—

Report No. 2180 Bolt Beranek and Newman Inc.

software may move papes between core and secondary storage
by changingy, only one address thereby avoiding the overhead
and programming difficulties which would result from finding
and changins many coples of the same address. The pager
permits individual pares to be shared for write as well as
read references, So two or more processes may communicate
effectively and efficiently by sharing a common pare 1into

which any or all may write.

An indenendent ver-nage status bit 1is available to users
which will produce a trap on a write or read-mnodify-write
reference. This bit marks a shared page which may be
chanzed by a runnine program and for which a private copy
should then be created. This permits shared progi.ms to be
prepared with pre-constructed data areas which will be kept
shared 1f not modified, and put in private storage if
changed. This capability also permits some sharing of
programs which are not cormpletely pure (usually older
profrans), since an overlooked imnure reference will cause

no malfunction, onlv a loss of storage efficlency.

One final uniaque feature 1s that the paper maintains a
record of the activity of the pages in core memory in a
"eore status" table., The parer notes when a parce has been
reference’d, which orocesses have used that pare, ard whether
the pare has been written into. This inforrmation 1is

particularly usoful for the evaluatior of working set states

-9-

Report No. 2180 Bolt Beranek and Newman Inc.

and sizes by the memory management software.

2.2 Processor Modifications

The hardware modifications to the PDP=10 processor added a
new system call instruction, JSYS, and two ways of accessing
a calling memory context (user or monitor) from the monitor.
Of the latter, the (first is an execute instruction which
allows current or previous context to be specified for each
meiiory reference of the object instruction, and the second
is a grouo of move instructions in which the references are
done 1in the previous context. The previous context can be
elther user or monitor, and a bit in the state word of the
p-ocessor 1s set accordingly at each monitor call. The
pager also contains an 'AC base repgister' which specifies
the 1location of the stored AC's (general registers) of the

previous context.

Except for the pager trapping facilities, all of the TENEX
virtual machine facilities (monitor calls) are reached via
the JSYS instruction. It provides a new and indevendent
transfer mechanism into the monitor which does no% conflict
with "UUO" system calls used by DEC software. The JSYS
instruction meets a number of desirable objectives for a
monitor call instruction. It accomplishes a transfer from
the user program to the specified monitor routine in one
instruction time. Further, 1t stores the state of the

processor, 1including the return PC, in a location specified

Report No. 2140 Bolt Beranek and Newman Inc.

by the monitor so that it is suitable for reentrant code.
The transfer vector occuples exactly one page in the monitor
snace and could be mapped indenendently for each bprocess,

but this 1s no* needed in the current system.

Report No. 2180 Bolt Beranek and Newnun Inc.

3.0 THE TENEX VIRTUAL MACHINE

A user process running under TENEX operates on a virtual

machine which 1looks something 1like a PDP=10 arithmetic

processor with 256K of attached memory. This virtual memory

is a creation of the paging hardware and swapping software
which traps processor references to any data not 1in core,
and performs the necessary I/0 operations to second- or
third-level storage to make the referenced page avallable.

Such traps are invisible to the user process.

The virtual processor does not make available to the user
the direct I/0 4instructions of the PDP=10, but th.ough
instructions which call monitor routines, the virtual
machine provides facilities that are considerably mnore
powerful and sophisticated than typical hardwvare

configurations used directly.

3.1 Virtual Memory Structure

The TENEX virtual memory may be viewed as a single block of
256K words, and programs may use it in this fashicn.
However, the existence of the paging hardware means that tae
monitor must cGeal with memory in pages of 512 words, a.ad
some of the power which the mappirg hardware provides :is

accessible to a user program.

Report No. 2180 Bolt Beranek and Newman Inc.

The contants of the virtual memory at any time arc soecified

by the virtual memory map of 512 slots, which the user may

read or write. The contents of each slot specify the page
in that position in the virtual address space, and the type
of access allowable (read and/or write and/or execute) for
that page. A page contents may be unique, a particular page
may be specified in more than one slot of a single process,
or 1in several processes, or 1t may apnear in a combination

of processes and files.

In the simplest case, a map slot may contain (a pointer to)
a private page. By the term private, we mean shared with no
other processes 1in the systen. A private pare is
automatically created whenever a process males a reference

to a pare and the mao word for that nare 1s emnty.

A slot may also contain an indirect pointer to a pare 1n
this or some other process. A memory reference to a
location in such a pare will be executed Just as thourh the
instruction had directly addressed the pare pointed to. Any
change made to the pare by elther process will be seeir by
both processes. If the owner of the pare changes the
contents of his memory man, the the process with the
indirect pointer will see the change. A virtual memory slot
may also contain a pointer to a page from a file in the file

system, as discussed later.

-13-

Report No. 2180 Bolt Beranek and. Newman Inc.

3.2 Job Structure

A Job 1s a set of one or more hierarchically related

processes, and it has the following attributes.,

1. The name of user who ;nitigted th: job

2. An account number to chargé costs associated
with use of system resources.

3. Some open files. i '
4, A hierarchy of running and/or ,suspenéed

processes.

A Job may also have one or more terminal or other devices
' . i

assipned and attached.

3.2.1 Process Hierarchy

TEIEX permits each Job to have multiple simultaneously
runnable processes., The relationship among Qheh 13 de%ined
by a structure which looks like an 1nverted tree, A proéess
always has on¢ surerior process énd may have.oneior more

inferior processes. Two processes are sald to "be parallel
' |

if they have the same sunerior. b

i
Although not completely general, a trece structure process

heirarchy implicitly provides the protettion and }eferencé

facilities that are wanted in most arplications. These

lle

! !
)

Report No. 2199 . " Bolt Beranek and Newman 'Inc

|) . f

i
| .)
' i '

include referencing inferior forks as a class for freezing,
!

killing,:and 'resuming, fieldiﬁg of 1intérrupts and special °

- conditions by a supérior fork), and protectidn of the

1

t
! +

superior fork from iprerioré.

i ') ! ;
In TENEx; a process may cre§te processas inferior, but ' not
' ? . !) ! i

pérallel or superibr‘ in the structure. A fork can
! : . ‘) k 1
communicate with other members 'of ' the structure by (a)

sharing memory (b) direct control ' (suverior to inferior
i ! : i ! ; !)
only), or'(c) pseudo (software simulated) Interrupts. as
Ll ' ! ' l I '
degcribed in 3.3.. °
! : ' , \ | \
I ‘ ! :

’Somé examples of current use of multiple processes in TENEX

' 1
!

. . ! ! '
, | . " ' l

5)

include:

t
.
! ' \ ' !

i, The EXECUTIVE (cohmand'interpreter' program) 1s .a
! | i :

user , prorsram which resides’ 1n the tor fork of every

[' |

!) !
Job. To RUN another program, the EXEC' creates an
! ! !

: 1nfér16r for¥, places the other ' program in it, and

causes execution to begin. The progran cannot

!

reference or 'chanme the EXEC so ft’ is perfectly
I . i

protected. If the program malfunctions, control
: : : ' ' !
returns to the EZXC which prints a'diagnostiq message

] . , . !
. .

for the user, o ')

[|
0 !
: i !
!
! ’ 1‘, p 1 B o !

2. A,ﬁrogfam wishes to wa%t fqn terminal, 1pput* but

1 . |
1 H
! 0)

ST . .

! .]

Report No. 2180 Bolt Beranek and .Jewman Inc.

only for a specified 1length of time, after which it
will promnt the user, An inferior fork 1s started
which 1invokes a monitor call to walt for the specified
time, and the main process waits for 1input. If the
input arrives first, the inferior fork 1s disabled and
the prorram continues, If the time elanscs, the
inferior wakes up and signals {see PSI below) the main
process. By:using this technique, a program can walt

for anv one of an arbitrary set of events,

3. Invisible DDT (debugring progranm), The debugging
progran and symbols reside in a fork with the program
under test 1n an 1irferior fork. This allows the
debugrer to detect and interoret various types of
malfunctions such as illegal instruction execution., It
also protects the debupgger from erroneous references by

the program,

3.3 Pseudo-Interrupt

TENEX provides a facility for a process to receive
asynchronous sicrals from other processes, from terminals,
or as the result of 1ts own execution. The various
processes 1n a job may exnlicitly direct interrunts to each
other for purnoses of communication. A process may enable

an interrunt which will occur whenever the user hits a

-16=

Report No. 2140 Bolt Beranek and Newman Inc.

particular key on the controlling terminal. Finally, a
process may use the pseudo=interrupt system to detect any of
a set of unusual conditions, includirg 1llegal references to
memory, processor overflow conditlions, end-of=file and data

errors.

The fork and pseudo=intcrrunt features of Ti.kX have been
found to be a general purpose capnabllity suitable for
solving a number of diverse problems which would otherwlse

require a less general facility to be added to the system.

3.4 Other Monitor Functions

Other functions which form a part of the wvirtual machine

inc¢lude:

a) Functions which provide information to the prorram
about the state of the system or job. (Time of day;

runtime used, name of user, etc.)

b) Furictions which save and restore the environmert of

a forl.

¢) Functions which provide frecuently needed forms of
1/0 conversions such as fixcd or floatinr point number

inobut and outout, and date ard time to striner

conversions.

-17-

Report No. 21%0 Bolt Beranek and Newman Inc.

3.5 Backward Compatibility (DEC 10/50 monitors)

Since TENEY was belng implemented on a machine for which a
large wuseful propram library exlsted, mostly for use under
the DEC 10/50 time sharing monitor, we felt 1t was highly
desirable to be able to run such pregrams under the new
monitor system. We felt it should be possible to run binary

images of old prograrms, 1.e. without reassembling.

Toward this end the following stens were taken. First, none
of the instructions which were used by the.10/50 monitor for
user=-to-monitor cornmur.cation were used by TENEX. All of the
TENEY monitor calls vore imnlemented with the JSYS

instruction.

Secondly, routines werc desifned which 1imnlemented all of
the existinr 10/50 monitor calls in terms of the avallable
TEMNEX monitor calls. This set of routines implements all of
the functions avallable 1in the 10/50 monitor except those
specifically intended for the malntenance of the system.
Assemhbled to~ether as the compatability package, they occupy
slightly less thaon 2.%K of core. The package 1s kent as a
core image file and 1s never seen by programs which use only
TEHNEX monitor calls. However, the functions are
automaticallv made avallable to 10/50 type progsrams by the

monitor. Wher a progran males 1ts first 10/50 tyre monitor

-18-

Report No. 2180 Bolt Berarek and lewman Inc.

call, the TE!EY monitor maps the compatability package into
a remote portion of the process address snace. Subsequent
10/50 typoe monitor calls cause a transfer to the

comnatabilityv packapge which then internrets the call,

The compatibility routines are placed in the user snace for
several reasons: a) regular use can be made of the pseudo
interrupt system, b) the compability packare (which requires
constant maintenance) can be maintalned as a senarate
module, totally independent from the monitor, and ¢) the
monitor 1s protected from malfunction by the comnatiblity

routines,

-19-

Report No. 2180 Bolt Beranek and llewman Inc.

4.0 USER INTERACTION WITH TENEX

Users at terminals communicate and work with TENEX primarily
through a command language interpretur called the TENEX
Executive, or EXrC. The EXEC is an interactive, well human
enrinreered program which can accept commands from a user's
teletype or from a file. It is implemented as a reentrant,
shared prorram which runs in user mode, usually as the top

level process in the structure.

The EXEC provides the user with a multitude of facilities
which are activated by simple, easy=-to~learn commands.
These facilities allow access to the system (e.g. LOGIN);
utility onerations on files and file directories; initiation
of private nrosrams and subsystems; limited debugring aids;
initiation of batch (detached onerations); printout of user

information and system statistics; and system maintenance.

h,1 Terminal Interaction Capabilities

The TE.i"Y EXEC 1is nrimarily intended to be used with a full
duplex terminal, and when so used, its interactions are
typically on the order of one or a few characters. However,
a number of modes of echo and walkeur are available to the

nrogrammer which allow use of half duplex and/or

w20=

Report No. 2180 Bolt Beranek and Newman Inc.

line-at-a=-time processine. Upper/lower case terminals are

not required, but may be used to no disadvantare,

4,2 Human Engineering

The EXEC was desicned with two primary oblectives--ecase of
learning and ease of use, To ease the learninr process, all
commands are English words which are descrintive of the
facility beins activated., (e.r. COPY to cory information
from one file to another, STATISTICS to obtain a listirr of
current system statistics). In order to helop novice users,
two snecial assistance features were 1incornorated, First,
when the EXI'C reaulres inrut from the user durlng a command
interaction, (for irstance, to collect arruments of that
command) a cue is tyoed to indicate to the user what 1is
expected, For examnlc, an interaction which renames a file

might be:

#RENAMES (EXISTING FILL) ALPHAY (TO BE) BETA

The user's inout has been underlinec. The $ 1inulcates a
typed ESC (ASCII escare, codie 33(8)) which invokes the
EXEC's verbosc cuelng responses 1in parentheses. If the
novice uscer still doesi't understand what 1s exrected in his
response, he may tyoe the character '?' at anv time, This

causes the EXLC to tvne out a list of ail ontions aveilatrle

-2]1-

Report No. 2180 Bolt Beranek and Newman Inc.

to the user at that point, then reauest a response.

For example,

@AVAILSABLE ? ONX OF THE FOLLOWING:
LINES

DEVICES

¢AVSAILABLE D$EVICLS
MTAO, MTA1, MTA2, MIA3, DTAO, DTA3, PTR, PTP

In the above examnle, the wuser typed ESC after 'AVAIL'.
This invoked command completion by the EXEC, a feature which
makes the languapge particularly easy to use. An ESC after
any 1initial substring of a command or argument (such as a
file name) 1invokes completion. If the substring 1is
insufficient for unique 1identification of the 1intended
input, the EXiC rings the teletyne's bell and awaits
additional characters. If the iritial substring cannot be
recornized the EXEC tyves '?' to ask the user to retype that

input.

The EXEC also provides editing characters to permit the user
to correct tynine errors in his input. These editinge
characters permit the user to delete the last character of
his typed input, the last word, or all of it. He can also

ask for his edited innut to be retyped for clarityv.

Report No. 2180 Bolt Beranek and Newman Inc.

All these features cortribute to making the TENEX executive

very easy to learn and use.

4.3 General Form of Commands

Each command becrins with a keyword. Depending on the
command, the 1initial keyword may be followeu by arguments
such as file names, numbers, and additional keywerds, and/or
"noise words" to make the command more readable. The noise
words are enclosed in parentheses to distinrulish them from
the arruments. The initial keyword usually 1ldentifies the
command function. Some commands include optional arruments
or arrument 1lists of indefinite lenpth. A few commands,
such as that for file directory 11isting, take optlonal

"sub-commands", each with arcuments, to srecifv options.

Any initial word not recorniczd as a command kevword is taken

as the name of a subsystem to be started.

4,3.1 Command Input

Three general stvles of inout mavy be used., 7The styvles are
distinruished by syntactic analysis and by in~ut
terminators; hence they do not reauire different inrut modes

and thus may be intermixed frecely within a session or even

-23-

Report No. 2150 Bolt Beranek and Newman Inc.

with a statement.

1. Complete Input. A complete command may be typed

in, with all keywords and noise words given in their
entirety, and without use of any non=-nrinting
characters. This style 1s good for novices who are
copying a typescript, command fille, and terminals

without the full ASCII character set (e.g. ESC).

2. Abbreviations. The user may shorten a command in

two ways: he can omit nolse words completely, and he
can shorten keywords. Any keyword may be abbreviated
with any initial substring (terminated with soace) long
enough to distinguish 1t from the other keywords
acceotable in that context. Keywords have been made
unique in three characters or less 1lnsofar as possible

without producing very non~ english-=like words.

3. Completion. The user types the same characters as
in abbreviated 1input, except he terminates each field
(keyword or argument) with the ESC key. This produces
a print-out of the complete command--each ESC causes
the rest of the field (if an abbreviated keyword or
file name) and any following noise words (with

enclosins parentheses) to be printed.

Report No. 21890 Bolt Beranek and Newman Inc.
Most commands are confirmed with a carriage return, but some
which only print 1information are exccuted as soon as they

are recognized.

4,4 Interrupt Characters

ASCII Control=C 1s the EXEC's attention character, When
tyned by ¢the user, it causes any rurning prorsram to be
stonpped and control to be given to the EXEC via the pseudo
interrunt system. The user may then continue his proceram or

take any other action.

Another terminal interrupt character, control-T i1s serviced
by the EXiC. It irnterrunts a user's EXEC process to tyne
out total CPU and corsole time uscd, and statuc of the forx

veinr run under the EXIC,

-25-

Report No. 2180 Bolt Beranek and Newman Inc,
5.0 THE TENEX FILE SYSTEM :

The TE!!EY file system provides a general meéhanism for
obtainings 1information from and sending data to external
devices attached to the TENEX system., Write only and read
only devices are 1included 1in the file system so that all
TENEY I/0O may be handled uniformly. The first major
function of the TENEX file system is to provide symbolic
file name management. This 1includes two s8separate bu@
related activities. The first 4involves translation of a
symbolic name into an internal pointer associated with that
name, which we call a file descriptor block. Secoaa,'it
involves checking, information concerned with 1) if the .filé
exists, and 1if so information related to the file as rbund-
in the descriptor block; and 2) the bprocess requesténg
access to the file, This information is used to determihe
if this process should be allowed to know about the'
existence of this fi1le, and 1if so, what éccesses_are.
allowable, This activity 1is known as File Access

Protection.

A symbolic name for TEIUEX flles consists of wup %o five
fields and thus conceptually represcents a tree of-maximum
denth five. Not all nodes of this tree go down to maximum -
deoth. This scheme was chosen rather than a full tree!to

simplify the protlem of comnatibility with existing DEC

-26-

| | | .
Report No. 2380 , Bolt Beranek and Newman Inc.

PDP-10 software and hame, lqokupxand recognition, We are
currently considering tﬁe feasibility of 1mblemént1ng a full
tree directo;y Struqture. At eaéh level éheré'would be set
of,infogmation wﬁich is related to access . rirhts, and media
dependence, of the daté_ access for this node. Each node
represents a collection of rélated information, _with lthe

terminal nodes beinr files.
!

0 |)) i ! ! 1
The fundamental unit of 'storage in'a TENEX file, is . a byte
! t ' !
which may be=fqom 1'to 36 bits in lenrth. A stream of bytes
‘ oy
constitutes 'a' file which 1s the basic named element 1in thd
' |

filc' system. Programs mayw referercc flles byte by byte in a

sequential manrer or,'1f the device permits,' at random.
li

Files may'glsp be referenced by byté strings. No structure

other than bytes and files 1s imposed on the user; and byte
' . : . 0 i g .
and 'string 4innut and outout are the basic ooerations. Of

! . ! !

course, adgditional structure and other opcrations may te

implenented by the user prosrams. :
N .’ '

1
! L ! | ! :
5.1 File Names

' ' f !

A TEJEX file 'is naned by a file descrirtor comnosed of 5

fields some of which are omitted for certain devices. The

! !
. ' ,‘
five fields are device name, directory name, {lle nane,
! - . 8

!
extension, and version nunbter.. . !

! . ! [

, -271- I :

Report No. 2180 Bolt Beranek and Newman Inc.

The file name field is intended to designate a class of
files which are related in some way. This convention is not
enforceable of course but most users of TENEX tend to follow
the convention since it facilitates management of a users
files. The extension fleld 1is 1intended to designate
variously processed forms of the same information., A file's
extension 1s frequently specified by a program, For
examole, FFT,MAC, FFT,.REL, and FFT.SAV would be used to
indicate the assembly code source, relocatable file, and

binarv imare of a sinrle program.

The version number of a file enumerates successive versions
of a file. Normally each time a file is written a new
version 1s automatically created by maliing 1its version
number be one greater than the highest existing version.
This protects a user from loss if he accidentally writes on
the wrons file. Excess versions may be deleted by the user
or automatically by the system when they have been put on a

backun storarse medium.

Any of the fields of a file descrintion may be abbreviated
excent for device and version.The appearance of an ESC in
the file descrintor causes the portion of the field before
the ESC to be looked up. In this case the system will
sunply the omitted character and/or flelds, Abbreviation

without this outnut 1s not provided in order to insure that

=28~

Report No, 2180 Bolt Beranek and Newman Inc.

the typescript reflccts exactly what was done, The systenm
provides default values for each fleld except the file name.
A default value 1s uscd for a field if the user omits any
input for that fleld, e.r. the device and directory. Tnis

simplifies references to flles in most common cases,.

5.2 File Access Protection

Becausc TENEX must service a diverse user community, 1t 1is
essential that access to filles be protected in a general
way. Generally, access to a file demends on two things: the
kind of access desired, and the relation of the progran
making the access to the owrer of the flle. Presently, a
simnle protection scheme 1s 1rmnlementec in which the only
nossible rclationshins a program mavy bear to the file's

owner are:

1, The directory attaclicd to the Job under which the

prorram is running is the same as the owning directory.

2. The directory attached to the Job under which the
progiram 1s running is in the same groun as the owning
directory.

3. Neither 1 or 2.

-29-

Report No. 2100 Bolt Beranek and Newman Inc.

Five kinds of access arc distinpuished for a file; directory
listing; read; write, ex«cute and append. The above three
relationshions and five protection types are are related by
18 bits (a 3 by 6 binary matrix) in which a one indicates
that a particular access 1s pernitted for a particular
relationship., If directory listing access 1is not permitted,
the process requesting access is‘given an error return which
is 1indistincuishahle from the error for nonexistent file,
Other access restrictions cause errors only when an attempt

is made to open a file, as described below,

For purnoses of determirning group access, a 36 bit word is
administratively assoclated with each directory and each
user, If the bitwise "and" of the user grour word of the
accessor and the directory group word of the accessee 1is

non=-zero, the groun access permission is used.

Provision has been made for a more general file protection
system 1in which more general access relationships may be
exoressed 1In a special file protection 1language. For
exanple, access may be allowed only to an exnlicitly named

set of users.

5.3 File Operations

Using a file in TE!IEX 1s basically a four step process.

~30-

L 2

Report No. 2180 Bolt Beranek and Newman Inc.

First a correspondence 1s established between a file name
and a Job File Number (JFN) which is a small index 1into a
Job table for files. Next the flle is opened, establishing
the mode and access permission and setting up monltor tables
to permit data of the file to be accessed. Third, data 1is
transferred to or from the file; and finally the file 1s
closed fixing up the directory information and releasing the

space occupled in system tables for the fille.

For purposes of flle sharing, all instances of ovpening a
particular file reference the same data., Data written in a
file will be immediately seen by readers of the file. To
protect against confuslon resulting from multiple
uncooperating simultaneous writers and readers of a file, a
file can be opened with either thawed or unthawed access.
With unthawed access, a file may have elther exactly one
unthawed writer or any number of unthawed readers thus
preventing any potentlally conflicting operations. With
thawed access, a file may have any number of thawed writers
and/or thawed readers. Simultaneous accessors of a flle

must be all thawed or all unthawed.

The contents of a disk file are always accessed by mapping
pages of the file into an address space., Monitor calls are
provided which transfer single bytes (1-36 bits) or strings

of bytes sequentially to and from flles, wilth no user

-31-

Report No. 2140 Bolt Beranek and Newman Inec.

buffering required. These are simply monitor calls which
reference pages of the file which have been mapped into
rerlions of the monitor map of the process. These pages are

called window pacges into the file,.

-32-

Report No. 2180 Bolt Beranek and Newman Inc.
6.0 THE MONITOR
6.1 Scheduler

The TENEX scheduler 1s designed to meet a set of potentially
conflicting requirements. The first and most fundamental
requirement of any time sharing scheduler is to provide an
equitable distribution of resources, principally CPU
service, to various Jobs that are competing for such
resources, Secondly, because TENEX 1s designed to be a good
interactive system, the scheduler must 1dentify and gilve
prompt service to Jobs making 1interactive requests,
Thirdly, because use of the CPU 1s intimately tled to the
allocation of core memory, and because TENEX 1s a paged
system, the scheduler must be sensitive to the changing
memory and swapplng requirements of the various running
processes, and work with the core memory management routine
to provide efficlient use of core memory. Finally, the
scheduler should have provision for administratively
controlling the allocation of résources so as to obtaln

other than equal distribution.

6.1.1 Scheduling CPU Priorities

To implement the basic scheduling function, a scheduling
algorithm was chosen which groups processes together on a

number of separate queues each with assoclated runtime

=33

Report No. 2180 Bolt Beranek and Newman Inc.

quantum, similar to alrorithms described by Corbato (2) and
BB!N (1). Lower qucues in general have lower priorities but
lonper runtimes. A comnmon problem with many schedulers of
this tyne is that processes are placed on the highest
priority aqueue after any interaction. Under conditions of
heavy load or with poorlyv behaved interactive processes, it
may happen that the interactive processes succeed 1in using
all of the avallable time and so lock out the compute bound

processes which have fallen to the lower queues.

In TENEX, priority 1s based on a long term average ratio of
CPU usc to real time, and a process's priority after an
interaction 1s determined by 1ts priority before the
interaction and the lenrth of the interaction.
Specifically, a process's priority 1s decreased while
running at a constant rate, C, and increased while blocked
at a rate of C/N, where N 1in the number of runnable
processes 1in the system. This ensures that equltable

service is glvenr both to comoute-bound and Interactive Jjobs.

To imrrove resvronse characteristics, an interactive "escape
clause”™ 1s incluled 1in the schedulins algorithm., After a
plock wait of greater than a minimum time of 100 ms., a
process 1s given a short quantum at maximun priority.
Priority and qucue position after this burst are determined
by <¢the 1lone term avecrare. The effect of this provision is

to ensure quick service to very short 1nteractions, even

-34-

Report No. 2180 Bolt Beranek and Newman Inc.

when requested immediately after a long computation.

6.1.2 Balance Set

The algorithm described above provides at any ¢time a
priority ordering of all the »runnable processes In the
system, However, some additional structure 1s 1imposed on
the scheduler 1In order to optimize the use of core memory
and reduce swapnlng overhead. For each process 1in the
system, the core manager maintains an estimate of the size
of the working set (5). The scheduler uses this information
to maintain a balance set, that is, a set of processes whose
working sets can co-exist in core. These processes will be
chosen 1in order from the first N processes in priority

ranking as determined above.

The scheduler periodically monitors the state of the balance
set and performs the following overations. If the sum of
the working sets of the processes In the balance set has
increased above the maximum, then the 1lowest priority
process 1s removed. Secondly, 1f there 1s a runnable
process not in the balance set, it i1s moved into the balance
set 1f there 1s room for 1its working set, or if it is higher

in priority than the 1lowest priority process now in the

balance set.

Report No. 21%0 Bolt Beranek and Newman Inc.

This scheme provides a coherent way of dealing with page
faults of runninr processes. A running process page faults
if it makes a refcrence to page which is not currently in
core., To maximivze system efficiency, the scheduler must
have somethinec else to do when this occurs, That 1is, it
should have one or more other processes to run while the
requested pare 1s beinr swapved 1in. This is best
accomplished 1f the scheduler has under consideration a
small set of processes which can co-exist in core. At one
extreme, 1f the scheduler considered only one process, then
it would have nothinr- to do when that process page faulted.
At the other extreme, 1f the scheduler considered as
equivalent all runrable processes, then it would be 1likely
that no process would have enough pares in core to run
efficiently and so a great deal of thrashing(6) could

result,

£.1.3 Resource Guarantees and Limitations

The ovcrall result of the above schedullng aleorithms is to
nrovide to eacii of the processes demanding CPU service at
least 1/M of the availahle service, which 1is our definition
of an enuitable distribution of resources., In some cases
other distributions arc desired. These might include
runnine a deronstratlion which requirecs sirnificant CPU time

durine a period of medlun or heavy load, or a user who 1s

-36-

ONE D ow un ek b e

Report No. 2180 Bolt Beranek and Newman Inc.

willing to pay extra for premium service which does not
degrade as the load on the machine increases, A facility is

implemented in TENEX to handle these situations.

An operator or other person with appropriate administrative
access can assign to any Job or user of the system a
fraction, F of guaranteed CPU service. For any Job so
desipgnated, the scheduler will attempt to ensure that:
C/T > F

where C is the CPU seconds used by the process, and T 1is
real time, For example, if the parameter is set to 30%, the
scheduler will provide at least 18 seconds of CPU service to

the specified job during each minute of real time.

This parameter acts as a ceiling as well as a floor fer CPU
service, That is, if there are other runnable processes on
the system which are not declared special, then the
scheduler will ensure that the special process receives no
more than the stated fraction of CPU service. A process
with ¢this sort of resource guarantee will display very
consistent 1interactive behaviour despite wildely varying

loads on the time sharing machine,

6.2 Core Management

The information provided in the core status table by the

-37-

Report No. 2140 Bolt Beranek and.Newman'Inc.

pagine hardware 15 essential to the praper hanagement of

core memoryv ir TE!MNY to avold thrashing and other forms of

inefficient operation. Paging is' don:l orn Idemand. No

ordinary pares are preloaded before a process is run, and in
)

general, a process will not have all the 'paces of its

virtual merory in core at once.

The only basis for pre.iicting the futyre use of a set of
pages 1s the history of the recent use of those pages apd ;
lopical assumption (without further information from the
user) 1is that those which have been used most recently wiil
be used arnin., The paging hardwareAétores'a 9-bit agesfield
for each vpare when a rcferenc¢ to that page causeé a papger
reload., This does not hapnen on gver; reference, 'but doés
happen often erourh to record. any: changé in the age
recrister. The software uses a 9-bit regsister in, the pager
as a lorical clcek so that any set of pages may bé ordered
according to the time at which they were referenced ‘by
comrarine the 9-bit are ficelds, Tpis allows the core
manarer to rerove the olaest pares-of,é process When core
nust be reallocated. -

Certain other informotion 1s also used inlthe core ﬁanagiﬁg
alrorithm., Wher a process references a page which 1is not %n
core, a mager tran occurs and a first level core mapagement’

routine 1s irvoled, The run time since the last page fault

-38-

Reporf No. 2140 - Bolt Beranek and Newman Inc.

]
B
]

is'usad for a' runninpg average: of page fault tihes. A

process 1s consldered to have enouph of its working set if

the averagc.page!fauit;tfme equals PAV, 4 system parameter

! i
‘eurrently set to 67ms (or 2 drum revolutions). If the

d
i

_process is faulting more often than PAV, it 4s below 1ts

' !

! ! N ' *
workine set size, and a swap to bring in the requested pare
. ! '

1ih1tiaﬁed. Control returns to the scheculer so that it can

J [
' !

run another process:,uétil the ,swap is, comnlete, If the:

. . , :

process 1s faultirne less often, a second core manaring
' ! . ' ! t

routine 1s 1involed to reduce the size of the process, 1i.e.

remove somc of its pares from ‘core 1f snace 1s needed., This

' . !

operation uses 'the are field from the' core status table word

1 ! 1
for each pare beloncihg to the process,

]
!
L] ’ ! : !

i

6.3 System Measurements

! ' ! . a

In order to observe ani imnrove the performance of T=NIY 1in
. a i

rerular service, various measuring fungtions were pullt into

!
!

monitor routines. Quartative measurement is usually the
!
J

i .
only wav 'to truly' ascertain the. performince of a 'tire
¢ 1 : -

! [1 "
sharide meniteor; subfective informntion such as reactions of
_ : : : ,
users does not proviac ,qomn?rabde'rGSuits dav=toensy, and

! !
weell=t.0=ucol:, , X :

! .
; b
!]

'Some valued serve to indlente the efficicney of, scicduling,

!

the core/CPU balance, and the nature of .the' varlous
!
! L ! !

, | S -39- T

' i '

Renort o, 21 Bolt Beranek and¢ Newran Inc.,

nrocesses ruanntae on the gsvstem., The scheduler maintal:s a
set of interrals over tine wihiteh glve (as a fraction of real
tinme):

IDLI = time when no processes are reauestinege CPU

service

WATT = tlme wher all runnable processes are waltin,s. for
completion of pare fault

CORL = overne:d tire spernt in core managenent

TPAP =« tire srent hamlling pacrer traps

The varioas relationstins ameng these arc:
INDL. 4+ WATT = total tim~ srent in scheduler
1 - IPL = WATT = TRAP = tire snent runninr user

procesca’l

Also nmainvalnod by the sceheduler 1s an intepral over tire of
the nuter of processes in the balance set, the nunmber of
transfers betueen core and secondary storage, and number of

terminal 1Invterzctions.

One measi» 1s of interest on a recurrine basis to all users
of the systen. The schrduler maintains three exncnential
averares (wit tinc constants of 1 minute, 5 minutes, and 1Y
mirmtes) of thoe nunter of rannatlc procvesses on the svstem,
This Indlentes the true current lond orn the system Letter

than th: nuster of Jobs lorredi in, Users often choose on

tre haala of theno lo~d flcures what they do on the svsten

at a nartieualar tinr,

.

ammn Nk TR TG W e

e

Report No. 2180 Bolt Beranek and Newman Inc.

6.4 Debugging Alds

Certaln debugring procedures uéed in the development of the
system contributed greatly to the speed of development and
integrity of the system. We felt initially that debugging
facllities were 1mportant and that we should not skimp on
erforts to provide them, However, the facllitles that we

did use did not cost significant effort.

The princinal deburging ald 1s a program called DDT,
avallable 1in several forms in the system. DDT 1is a program
which allows menory locations to be examined ancd modified
and breaknoints te¢ be placed 1n a running program. All
interactions with DDT are symbollic using the symbols defilned

in the source proeram and obtaln from the assembler.

The form of DDT first used and stlll necessary for debugging
basic 1level code 1s a stand alone version which resides in
core memory along with monitor. It 1s wused for debugging
the scheduler, portions of the corc manager, and cther basic

routines.

The second form of DDT was added as soon as the basic
monitor could surnort demand paging and create a virtual
memory. This DDT exists in the monitor map and may be used

as an ordinary prorram at a system terminal. It 1s capable

lf]a

Report No. 2180 Bolt Beranek and Newman Inc.

of examining and changing the running monitor and all of the
associated tables and other contents of the monitor virtual
memory. Use of this form of DDT actually allows several
vpersons to work on debugging portions of the monitor

simultaneously.

A third form of DDT is used with user programs and 1s
cognizant of the access status (execute or write protected,

etc) of pages of the user program.

One adiditional debugging facility 1s actually a coding
convention. Farly 1in the codirng, an entry point to a
routine was defired to handle cases that were not
implencnted or which were 1logically impossible. It is
called BUGHLT arnd a Jumn there indicates a situation so
anomalous as to sugrest that the system can not continue to
run, This routine tales tvo different actions denending on
the settinre of a switch, If the system is attended by
systen personncl, thie the routine enters a DDT brealkpoint
and the state of the monitor can be examined to determine
what has gone wronrs. If the system i1s unattended, (e.p. at

nirht), a system restart procedure is invoked.

Later in the develonrcnt a second entry point was added
vhich 1indicates an inconsistency which is not consideved

fatal to the systen. This routine also stops with a

TR ®amm aEE ER TN BN N owe

Report No. 2180 Bolt Beranek and Newman Inc.

breakpoint 1f the system 1s attended, but continues 1f the
system 1s unattended. The occurrence of elther of these
calls 1s revorted on a loggling teletype in the computer room
so that attention 1s drawn to developing problems. As the
system developed, consistency checks were added to many of
the most critical monitor routines, and calls made to one of
these two routines when trouble 1s 1indicated. This
procedure was very significant 1n enabling us to find
obscure or infrequent bugs 1n the software. They also serve
to prevent hardware or software fallures from cascading and

causing great loss of information.

43

Renort No. 210 Bolt Beranek and Newman Inc.

7.0 COICLUSTION

TEHEX was built with the knowledge of a number of other time
sharing systems, 1includling the DIC PDP-1 systems designed at
BBN, the Berkeley System for the SD3-940, MIT CTSS, the DEC
10/50 System and MULTICS. We stole frcely from the good
design ideas of all these systems, and tried hard to avoid
problems of operation and 1mplementatlion we saw 1n these
systens., We attemnted to dominate all but MULTICS which had
even grander goals than ours, and there we attempted to get
a system ovnerationnl for users much more quickly, still
meetine what we considered the most imvortant goals for a
svstem, We conclude here with a brlief summary of the
implenentation strateey which allowed us to get a good state
of the art time-sharing system onerating reliably within a

very short time frane.

7.1 Deslgn

Virtually all of the worlk on TENEX from initlal inception to
a uscable systen was done over a two year verliod. There
were a total of six 'people principally involved 1in the
desien and 1mplenentation. Approximately the first six
months were spent In discussion and thought aimed at
producing a desipn for the paring hardware. Actual hardware

technical desien drawing of prints, and wirelists was bepun

=44

D onmun -]] L]]

Report No. 2180 Bolt Beranek and Newnan Inc.

at that ¢time and took a total of approximately 9 months.
The construction and a checkout of the pager was completed
in another three months, that 1s approximately 18 months
after the start of the project. During this latter 12
months, an increasing amount of effort was spent on software
design, and this effort culminated in a series of documents
which describe in considerable detall each of the important
modules of the system. These documents were carefully and
closely followed during the actual coding of the system, and
in retrospect, it is our Jjudgement that they contributed

significantly to the overall integrity of the systenm.

7.2 Implementation

The actual codinz of the system was begun approximately 18
months after the start of the prolJect. The first stare of
coding was completed in 6 months. At this stage, the system
was operating and cavable of sustaining use by non=system
users for work on their individual projects. The efforts of
five full-time people were involved over this six months,

and were distributed as follows:

Two people worked on the monitor (including scheduler, core
manager, file system, etc.). One person was involved full
time on the EXEC as a user program, An average of one

person was involved on a number of other projects including

-us-

Report No., 2140 Bolt Beranek and Newri.an Inc.

the 10/50 compatability routines and one person was involved
almost full ¢time 1in documenting the system as it grew and
evolved, This consisted mainly of preparing the JSYS
manual, the document which describes all of the calls that
user programs can make on the monitor. The concurrent
development f this documentation was necessary not only so
as to have 1t availlable when users came on the system, but
alsc to provide essential communications among the

implementers of the system,

We felt 1t was extremely important to optlmize the size of
the tasiis and the number of peovnle worling on the project.
We felt that too manv peoole working on a particular task or
too great an overlan of [peorle on separate tasks would
result in serious inefficlency. Therefore, tasks given to
ecach person were as large as could reasonably be handled by
that person, and 1in so far as possible, tasks vere
indevendent of each another or related in ways that were
well defined and documented. We belleve that thls procedure
was a malor factor 1in the demonstrated integrity of the
systerr as well as 1in the speed with which it was

implemented.

=46

D o) oy o Sy ER g

Report No. 2180 Bolt Beranek and Newman Inc.

8.0 BIBLIOGRAPHY

(1)

(2)

(3)

(W)

(5)

(6)

(7)

(8)

BBN Medical Information Technology Department: "The
Hospital Comnuter Project Time Sharing Executive

System" - BB!! Report Number 1073, April 15€8

Corbato, F. J., et al: "An Experimental Time-sharing
System" « AFIPS Conference Proceedings Vol. 21 (1962
sJce)

== ¢ "An Introduction and Overview of the HMultics
Systen" = AFIPS Conference Proceedingss Vol. 27 (1965

FJccC)

Digital Equipment Corn.: "PDP-1i0 Reference Handbook" =

DEC, 1971

Penning, P.: "Working Set Model for Program Behavior" -

Communications of the ACM, Vol, 11, No. 5, May, 198

«= : "Thrashing, It's Causes and Prevention" - AFIPS

Conference Proceedings Vol. 33 (1968 FRJCC)

Lampson, B., et al: "A User Machine in a Time Sharing
System" = Proceedings of the IEEE, Vol. 54, No. 12,

Dec. 1966,

Spiler, M. Je and Organick, C.: "The Multics
Interprocess Communication Facility" - Proceedings of

the Second Symnosium on Operatins System Principles,

“47=

