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ABSTRACT

Starting with the Hamiltonian for a linear harmonic chain of 2N
particles of mass m and one of mass M we have carried out numerical calcula-
tions for the momentum autocorreclation function of the mass defect particle
for chains with finite number N of mass points and for non-zcro values of the

mass ratio u = m/M. Thesc results have becn compared with the well known expo-

nential relaxation of the momentum autocorrclation function which is found to be

rigorous result when passing to the thermodynamic and weak coupling limit. In
these limits the dynamics of the mass defect particle is cxactly described by
8 Fokker-Planck equation, i.c. a stochastic equation of motion. We have shown
that to an cxcellent approximation an exponential rclaxation of the momentum
sutocorrclation function is obtained for mass ratios as high as p = 0.1 and
for chaius with only fifty particles. Thus, for the harmonic chain considcered
here, the stochastic equatious of motion can be applied to a very good
spproximation far outside the usually imposcd thermodynamic and weak coupling

limits.

Key Words: Stochastic Equations, Fokker-Planck Equation, Thcrmodynamic Limit,
Weak Coupling Limit, Momentum Autocorrelation Function, Lincar
Harmonic Chain.
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1. INTRODUCTION

In the derivation of the master equation of non-cquilibrium statistical
mechanics from the Liouville equation two limiting proccsses are always invoked.(l)
First, one performs calculations in the thermodynamic limit in which the size
of the system and the number of particles in the system are allowed to increase
without bound in such a way that the concentration (number per volume) of the
particles remains finite. The other limit is the weak coupling limit where
some interaction parameter is allowed to approach zero while the time approaches
infinity such that their product is a constant. The passage to these limits

is essential in the rigorous derivation of the master cquation from the

(1)

Liouville equation.

From a practical point of view, however, all physically realizable
systems are finite, the intcraction parametcer does not go to zero and it is too
time consuming to make obscrvations as time goes to infinity. The question
thus arises as to just what crror is involved in applying stochastic equations
to finite systems with finitc strength interactions. 1t is to this question
that this paper is addresscd.

Our mode] system for this study is the ubiquitous lincar harmonic chain
and the specific property to be investigatced is the momentum autocorrelation
function of a mass defcit particle in the chain. We have chosen this model
since it is possible to carry out exact dynamic calculations for the auto-
correlation function for finite chains with finite interaction forces. Thesc
can then be comparcd with hnown analytic stochastic results obtained in the
thermodynamic (infinite chain) and weak coupling (infinitc mass defect) li-its.(z)
Since the ultimate aim of any dynamic theory is the calculation of some average
time dependent quantity, the cxamination of the momcntum autocorrelation

function is an appropriate test for the validity of the stochastic cquations.



It is known(s) that the dynamical behavior of local properties in a
finite chain of N oscillators with short range forces is essentially identical
with the N+« results over a range of time which is proportional to the size N of
the system. We present a numerical study of this situation which clearly
demonstrates this point. We find that for N » 50 the computer results on the
relaxation of the momentum autocorrclation functions are indistinguishable
from the thermodynamic limit results over a range of time in which
the autocorrclation function has relaxed essentially to its zero value. This
certainly indicates, at lcast for thc model studicd herc, that the stochastic
cquations arc valid for finite systems far removed from thc thermodynamic limit.

We have also examined numerically the weak coupling limit. It is
known(z) that in a one dimensional harmonic lattice with point masses m and an
impurity of mass M, the hcavy particle undergoes Brownian motion in the weak
coupling limit y s m/M + 0, t » @, ytec. This implies that in this limit the
momcntum autocorrelation function decays cxpoucntially. Our numerical
computer study shows that this exponential decay of the momentum sutocorrelation
function is also obtaincd to within a very closc approximation for non-zero
values of u and for finite times. Thus, excellent agrecment with exponential
relaxation is already found for y = 0.1, i.e. for M = 10m. Clearly, the
stochastic results arc again in excellent agreement with the exact dynamic
results far from the weak coupling limit.

We have also studied the infinite chaim with lomg rangc interactions.
We have shown that one obtains an excellent spproximation to the expomential

relaxation of the autocorrelstion function of the heavy impurity M for » > 0,



and 0 < y <1, where y is an interaction parameter such that y»0 corresponds
to nearest neighbor interactions and y»l corresponds to intecractions of zero
strength and infinite extent.

In Section.II we introduce the model Hamiltonian and indicate the
various representations from which one can computc the momentum autocorrcla-
tion function of the impurity. In Section IIl we discuss thc autocorrclation
function for finite systems and for finite interaction strength for chains
with nearest neighbor intcractions. In Section IV we introduce the chain with
long range interactions and discuss the new features which occur in this system.

In Section V we present a summary and discussion of our results,



11, HAMILTONIAN AND REPRLSUENTATION OF AUTOCORRELATION FUNCTION
The Hamiltonian appropriate to a chain of 2N particles of mass m and
onc of mass M bound by harmonic nearcst ncighbor forces with cyclic boundary

conditions is

2N ;!
1 A2 1 A2« A A 2
HeaP"so— 2 -+ (9, -4, ,,)
2N m 2 & e
ANAL2 A 2
+ ‘g' ‘(Q"ql) - (Q-GZN) l : (2.1)

Herc the {ﬁk,ak} are the momenta and positions of the 2N cqual mass particle,
A A

P and Q arc the momentum and position of the impurity particlc and a is the
force constant. If onc partially diagonalizes this Hamiltonian according to

the transformations

g-1/2 Sk . w28 . p
(2.2)
1/2 1/2
n / ak = Qi M / 6 = Q
al.l
2N 2N
A A
P = 2 TP Q = 2, T.a! (2.3)
k" & kP, k® & Tk
with
2 ken
T "\eT  Sih T (2.4)
one obtains
1,2 22 1 i& 2 2, .2
1 (2.5)
3 N
" €,q!Q
&

with



U: ] u: slnz R;a-:-n- . 0: = ;—n' R uz s '5- h»‘i (2.6)

where o, is the fundumental frequency of the chain,
ﬂz k ’
¢ * - !2\/}%;1- sin g (Re1,3,..2N-1)

=0 (hre,4,..2N)

(2.7)

and

¥ -a- . (2.8)

In this form the Hamiltonian cxhibits an explicit dependence on the mass ratio
u which is a convenient form for our ciscussion of thc weak coupling limit. We

now transform to the fully diagonal form with

Q- ? Xo3™s P ? 03Ty

(2.9)
at = X' X .0, v e Y x .n (k=1,3,..2N-1)
K 3 Ky '3 k 3 ki)

qik = Mok ’ pik = “2k (k=1,2,...,N)

where the prime on the sums indicates j=0,1,3,..2N-1,

By direct substitution, one then finds that the secular equation may be

written in the form(d)

G(z) = 0=z - 8% - T,(2) | (2.10)
with
2N cf
=l z-w

. 2 .
The solutions {z = ’i] of this secular equation are the eigenfrequencies {si}

the fully diagonalized Hamiltonian, In addition one finds that

2 1
ok = To50y ¥ (2.12)



with

(2.13).

Sylkh) = % —r.'ls—-

R
|=1 (.‘k'ui)

As indicated in the introduction we shall focus on thc momentum auto-
correlation function p of the impurity, The normalized corrclation function is
given by

y
p(ey » L)) (2.14)
(P%)

wheie the brachet denotes the canonical average

] g N N <fll o NN
(A(P,Q.p",q")) = L‘ML&‘I_‘TA&LQJ‘LLLL (2.15).

Japaqupdqe !

1f one now uscs the equations of motion of the harmonic lattice and the
indicated canonical transformations [Eqs. (2.1) through (2.13)] one finds that
ouit) = 2 X3 cos st (2.16)
k (k=0,1,...,2N-1)
where X%k is given by Eq. (2.12) and where the (skl arc the normal modc
frequencies of the fully diagonalized llamiltonian. The representation (2.16)
is convenient for discussing the momentum autocorrelation function for the

finite N casc if one can sum thc functions TN and sN of Eqs. (2.11) and (2.13).

These sums have been evaluated and yield for G(z) and SN(ck) ()
nak
G(ck) = 0= (l-y) - "cot'ffiﬂzTT' |cotuak - cscnckl (2.17)
(k.l .3. e 'ZN-I)
and
" na, -
sﬂ‘“k) = --;-;;: 2N + cot INTT'Si""“k - cosma, (2.18)
2cos —2—
(k'loso---oZN'l)

where the o) are related to the normalized eigenfrequencies 8, by



2 2 ﬂak
Sk = sin m 0 k = (1,3,...,2N°1) (2.19)-

It is casy to see that as u»l one just recovers the equal mass nearest ncighbor

spectrum

2, .2 7k
Sk(u=l) = sin z—m (2.20).

To study the effect of the mass ratio u in thc thermodynamic limit,
N+«, it is more convenicnt to represent thc momentum autocorrclation function

by

p(t) = mr ¢ %i-g—‘ dz (2.21)

where the contour is chosen as a ¢ircle in the complux z-plane enclosing all
the zeroes of G(z). The representation (2.21) is equivalent to that in (2.16).
Note that in the limit N+« the zerocs of G(2) become dense on the interval
(o,wg) and one may then contract the above contour to an integral running just
above and below the real axis in this interval. If one computes G(z) from
Eqs. (2.10) and (2.11) in the limit N+, one obtains
+1
plr) = & f , % cosxtdx (2.22)

where we have introduced the scualed time
T = wot (2.23).

This spectral representation holds for 0 < u 1; for u > 1, a light impurity,
one obtains another term corresponding to an isolated frequency which gives
rise to a purely periodic component in the correlation function.(6).

This completes the summary of the equations for the oscillator chain

with nearest neighbor interactions. In the next Section we discuss the results

of computer solutions of Eqs. (2.16) and (2.22).



I, CALCULALIUN OF AUIOQURKLELATION FUNCTIONS
We first contider the momentus autocorrelation function of the mass M

particle in the thermodynaaic limit with the help of Lq. (2.22). 7This integral

cantot be cvaluated analytically. For & = 1 it has an cxpsnsion in the l‘om(("”

(1) s 2im o (4)
‘ = X

«Jd (1) o {-}'-113- ‘z_:l u-zu)‘au(n)

This cxpressions simplifics for certain mass ratios; for usl, equal mass particiles,

(3.1).

once obtajns

p(r) = J.(t) (3.2)

|

and for v = y 1
p(1) = I (1) + J,(1) (s.3).

In the combined wezk coupling limit, u+0, 1+, ytsconstant, and thermodynamic
limit, N+=, onc obtsiis from the spectral represemtation, Eq. (2.21), the

well known multu)

im p(t) = &

oo
w0 (3.49).

utsc
The physical basis of the weak coupling liait is the existemce of

processes occuring on different time scales. Processes which eccur slewly

relax to equilibrium in the "mean field™ of the fast processes. Ia the preseat

example the equal msmauumucu-ouuotlh.wommof

the heavy particle (M 5> a) relaxes on & time scale measured by the mess rstio

» o a/M, This latter time scale is slow compared to the llu. time acale of



the sass = particles. In the limit when 420 the noacntum of the heavy particle
is a comstant of the sotion.

Yo obtain information about tlic form of thc momentum autocos~clation
function for mon-ze10 u, ¥ 2 1, we have nuacrically integrated Lq. (2.22).
In Figure 1 we plot p(1) versus : for various values of v. The tiec is
mcasurcd in units of the maximum frequency o of the lattice, vhich is typically
of order lO’" sec. The dumped oscillatory hehavier is clearly evident fron
this figure, but for us0.) onc already has buhavior suggusting exponential decay.
A log plot of this data in Figure (2) shows that for all intents snd purposes
onc has reached the weak coupling lirnit when 4#0.1. A cosmparison of the values
of exp(-uz) and p(1) of Eq. (2.22) for 0.1 in Table 1 shows that they diffcr

T2 scconds .

by only I\ for 1 a2 6, §.¢. for timcs longer than sbout 6a10

Note that there is an initial transient period where the autocerrclation
function must be Gaussian for any u.(" On the other hand for lon; times, §.c.
timss 1 greater than the exponential decay time 1/u, one has 8 corrcction of
dampod oscillatory form to the weak coupling limit. These contributions to
o(1) sre however less thun 0.1\ of the injitial value ¢(0).

1t should be noied that the mass ratio appears as the squarc root in
the Hemiltenian, Eq. (2.5), so that ome has exponcntial relaxation of the
autocorrelstion function for a value of 0.3 of the “small"” parameter in the
Nemi 1tonion.

Por the case of finite N we must find the eigenfrequencics of the
secular Bq. (2.10) which arc the solutions of the transcendental Eq. (2.17).
There are only Nel modes which are pertinent to this preblecn: the zero frequency
sode dus to the tramslational invariance of the lattice and N modes arising
from the symmetric wodes of the unperturbed lattice. The anti-sysmetric modes
have & node at the position of the heavy mass particlce and thus do not influence

its dynsmical behavior. These N frequencics (sk)for (ke1,2,...2N-1) are



casily feund awarically from bqs. (2.17) and (2.19) and arc used to obtain

Iy
the )N‘

funciion vas then calculated by carrying out the susmstion in Lq. (2.16). In

with the help of Eq. (2.12) and (2.:3). The momentum autocorrelation

Figure (3) we plot the calculated valucs of oy (u,1) vs 1 for various small
valuos of N,

As has been pointed out by Iubln(” and others one eapects thet for
tirnes less than those required for 8 sighal to propogate around the lattice,
the autocorrclation function should closely approximate the Ne= result. This
is duc to the fact that there is, to a good approximation, no way for thc signsl
to hnow that it is travelling in s finite lJattice until it rcaches the
boundaries. For s signal travelling the lattice with the speed of sound, the
tine t(ec t) required to propogete arvound & lattice of 2N mass points is t ~ 2N,
For times t < 2N the results for the finite lattice should thus be mumerically
indistinguishable from thos: of the infinite lattice. This is bomm out by
the calculations presented here. Purthermore, for relatively small values of
b, for wvhich p(1) decays fairly rapdily, the finite N zesults arc in exccllent
agreesent with the thermodynamic limit results even whem N is only of the
onder of S0. Thus even in a harmonic system where one has coheremt signal
propogation, small N results are quite accurate in descridbing the dynamics of
local perturbations. Une must of co !rse restrict such statements to systems
with potentials vhose range is smal’ comparcd to the size of the system as
othervise the boundaries would be "felt” by the aignal at all times.

This "recurrence” time t ~ 2N bears no relation to the Poincaré
recurrence time which refers to the recurrence of a particular phase point.

These latter times are much longer than any time scale coasidered Mn.(’)

- 11 .



IV. AUNOUDMKLLATION FUNCTION FOR LATTICL W11 LONG KANUL INTERACTION
In this section we turn our attention to the casc of a harmonic lattice
with long range imnteractions. Wc considcr here only the case of the infinite

chain.

The llaniltonian can be written as

1 2.1 & 2 1 & &
He 3z p . A 4.
R f}, O };0 ,5}0 M9, )

where we tabe 4, * Q. We impose perivdic bouidary conditivns on the chain and

assume that

Ay * Ak-gi ® M 4.2).

This last condition expresses the physically scalistic assumption that the
interaction between two mass points Jepends only on their separation in the

jattice. We take the interaction to be of the form

A= 2 (! 0<y<l , tel,2,....
(4.3).

Note that as y+0 cme reccovers the ncarest meijhhor intcraction amd as y*) onc
obtains an interaction of zcrc strength and infinitc extent. The normalization
factor (1-y) ensures that the total potential cnergy of the infinitc system
remains cemnstant for all vy.

By prccedures snalogous to those uscd in obtaining Eq. (2.22), the
spectral representation of the momentum autocorrclation function of the heavy

mass particle is found to be

|
o(¥,v,1) = » ] [T LIC . ] cose tdw
-1 Lnfe2u(i-un)ub(e, on’ (1-0) (A (u,v) 08 (0, 1) )

(4.4)

vhere



(-vy)
Al=,) (4.5)
(-2 hev) 4y
Blon) - i (4.6)
[41°- (1))
[
1o =2t 4.7)

and shiere the freguency o §s now dimernsionless having boen scaled by the

Bas imus frequency “o° The autocorrclution function p(u,v,1) of Lq. (4.4)

can casily be cvaluated for different values of » snd v by mmerical ifntegration
and some representative results are displayed in Figures (4). The sume

damped oscillatory behavior as shown in Fig. (1) for ncarest ncighbor intcr-
actions is obtained in this case for intermcdiate valucs of v and 1. For

stall enough u and v € ] onc again obiains an cxponentisl decay of the auto-
comut‘lea function. As y imcreascs, i.c. as the ramge of interaction increascs,
onc must go to smaller values of u to obtain exponential relaration. In the

weeh coupling 1imit, which one can obtain from Lq. (4.4), by sctting
»weufy , L L Y §

and holding :* constant, one finds

loy l-
iis (v,v,%) = ¢ (4.9).
e atenn - (1)
1 3
pteg Noew

The weak coupling limit thus yields again an exponentisl relaxstion for the
soncntum sutocorrelation function. For y=0, Bq. (4.8) reduccs to the mearvst
neighbor interaction result (3.4).

It has been demonstratedt’®) that for intcractions which are of the
form A“ s A“.’l. exponential relaxation is obtained in the limit u+0 when
the squared frequency distribution of the equal mass system (usl) satisfics



TR v (4.9)

for small w. Our interaction matrix satisfics this critceria since onc finds
from Eqs. (4.4) through (4.6) that for .=l
2

) 1
Glw") = Va3 (4.10).
v TS RTTIRILL )

- )4 -



V. NIEMARY AN DISCUSSION

Starting with the lamiltonian for a lincar harsouic chain of 2N
particles with one mass defect particle, we have calculated via anslytical
dyraaics the momentus sutocurrelation function of the mass defect particle for
finite chains and for non-2cro mass ratios u. We have shown that onc obtains
to a very good approximation an caponcntial rclaxation of the momentum auto-
corrclation function for mass ratios as high as u=0.] and for chains with only
50 particles. As is well huown, passage to the thermodynumic and weak coupling
linits yiclds thc result that the dynamics of the infinite mass particle is
rigorously described by a Fohher-Planch cyuation. This in turn yiclds the
rigorous result that the momentum uutocorrclation function of the infinite mass
particle has an eapunential time decay. It is clear from the above results that,
at least for the harmonic chain studied here, the Fokher-Planck equation (or,
equivalently, the corresponding Langevin equation) can be used to describe to
a very good approximation the dynamics of a heavy (but not necessarily infinitely
heavy) particle im a finite chain. The thermodynamic limit and thc weak coupling
linit, while necessary to obtain rigorous analytical results for the validity
of stochastic equations of motions, are thus uanccessarily stringent conditions
for the usc of stochastic equations in describing the dynamics of the model
considered here.

Onc important question which immediutely arises is how applicable this
conclusion is to other systems. 1Is this true in general or are these findings
quite specific to the harmonic chain? We believe that our result on the
validity (in an appreximate rather than rigorous semnse) of stochastic equations
such as the master equation, the Fokker-Planck equation, or the Langevin equation
far outside (vhatever that may mcan in any given case) the thermodynamic and
weak coupling limits is a very gencral onc. Unfortunately, this must rcmain a

conjecture for the time being since we know of no gemeral proof.



A somcwhat related study has recently been carried out by Bishop and
bernc(ll) who investigatced via comjuter calculations the onscet of Brownian
motion in a one dimensional fluid. They found an cxponential relaxation of
the velocity autocorrclation function for clusters with mass M > 250 where m
is the mass single fluid particle. Their results thas point definitely in the
sanc direction as ours.

The analytic treatrents of this problea inply that the momentum auto-
corrclation function can be written as a sceries oapansion in the coupling
paramcter b where the leading term is given by the thermodynaric and weak
coupling limit result and where the corcection terms, arising from finite
strength coupling and the finite sizc of the systua, are proportional to powers
of u. As we have seen, these correction terms are very small in the cxample
considered herc. It should be pointed out that it is exceedingly difficult to
demonstrate analytically that corrcctions to the "rigorous™ stochastic cquations
arc indeed proportional to powers of the coupling paramcter. It is oniy very

(12)

recently that it has been shown that the Langevin cquuation and the Fokker-
Planck equation for a hcavy particle in a classical fluid do ' ve corrcction

terms proportional to the coupling parameter u which arc bounded for all times.

- 16 -
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TABLE 1

Comparison of exp(-ut) and p(u,3) of Eq. (2.22) for u=0.1

1 exp(-p1) p{u,1)
0 1.000 1.000
3 0.741 0.8190
6 0.549 0.570
9 0.407 0.415

12 0.301 0.292

15 0.223 0.212

18 0.165 0.159

21 0.122 0.108

24 0.090 0.076

27 0.067 0.056

30 0.050 0.039

33 0.037 0.028

36 0.027 0.020
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FIGURE CAPTIONS

Figure 1o Normaliced momentun autocorrclation function p(1,u) for u=.05,
Jdoand 5.0 The scaled time 1 is measured in units of the maximum

frequency Y of the luttice,

Figurc 2: A logarithmic plot of p(1,u) vs 1 for p=0.5 and p=,1. The circles

are data points; this data is closely approximated by a straight

line,

Figure 3: Normalized momentum autocorrclation function pN(I,u) for 2N+1

particles with N=12 and N=24 and u=.1.

Figure 4: Normalized momentum autocorrelation function p(v,u,y) for u=.1 and
y=.1 and y=.5, For small values of y one still obtains exponcntial

relaxation for small yu,
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