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ABSTRACT 

Starting witli the llamiltonian for a linear harmonic chain of 2N 

particles of mass m and one of mass M we have carried out numerical calcula- 

tions for the momentum autocorrelation function of the mass defect particle 

for chains with finite number N of mass points and for non-zero values of the 

mass ratio y s m/M. These results have been compared with the well known expo- 

nential relaxation of the momentum autocorrelation function which is found to bo the 

rigorous result when passing to the thermodynamic and weak coupling limit.  In 

these limits the dynamics of the mass defect particle is exactly described by 

a Fokkcr-Planck equation, i.e. a stochastic equation of motion. We have shown 

that to an excellent approximation an exponential relaxation of the momentum 

autocorrelation function is obtained for mass ratios as high as M ■ 0.1 and 

for chains with only fifty particles. Thus, for the harmonic chain considered 

here, the stochastic equations of motion can be applied to a very good 

approximation far outside the usually imposed thermodynamic and weak coupling 

limits. 

Key Nords: Stochastic Equations, Fokkor-IManck Equation, Thermodynamic Limit, 

Neak Coupling Limit, Momentum Autocorrelation Function, Linear 

Harmonic Chain. 
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1.  INTROUUCTIüN 

In the derivation of the master equation of non-equilibrium statistical 

mechanics from the Liouville equation two limiting processes are always invoked. 

First, one performs calculations in the thermodynamic limit in which the size 

of the system and the number of particles in the system arc allowed to increase 

without bound in such a way that the concentration (number per volume) of the 

particles remains finite. The other limit is the weak coupling limit where 

some interaction parameter is allowed to approach zero while the time approaches 

infinity such that their product is a constant. The passage to these limits 

is essential in the rigorous derivation of the master equation from the 

Liouville equation. ' 

From a practical point of view, however, all physically realizable 

systems are finite, the interaction parameter does not go to zero and it is too 

time consuming to make observations as time goes to infinity. The question 

thus arises as to just what error is involved in applying stochastic equations 

to finite systems with finite strength interaction». It is to this question 

that this paper is addressed. 

Our model system for this study is the ubiquitous linear harmonic chain 

and the specific property to be investigated is the momentum autocorrelation 

function of ■ mass deft it particle in the chain. Ke have chosen this model 

since it it passible to cany out exact dynamic calculations for the auto- 

correlation function for finite chains with finite interaction forces. These 

can then be compared with known analytic stochastic results obtained in the 

thermodynamic (infinite chain) and weak coupling (infinite m»*s  defect) limits.  * 

Since the ultimate aim of any dynamic theory is the calculation of some average 

time dependent quantity, the examination of the momentum autocorrelation 

function is an appropriate test for the validity of the stocha»tic equations. 



It is kiiownv '  that  the dynamical behavior of local properties in a 

finite chain of N oscillators with short range forces is essentially identical 

with the N-x" results over a range of time which is proportional to the size N of 

the system. We present a numerical study of this situation which clearly 

demonstrates this point. We find that for N ^ 50 the computer results on the 

relaxation of the momentum autocorrelation functions are indistinguishable 

from the thermodynamic limit results over a range of time in which 

the autocorrelation function has relaxed essentially to its zero value. This 

certainly indicates, at least for the model studied here, that the stochastic 

equations arc valid for finite systems far removed from the thermodynamic limit. 

We have also examined numerically the weak coupling limit. It is 

known1 ' thai in a one dimensional harmonic lattice with point masses m and an 

impurity of mass N, the heavy particle undergoes Brownian motion in the weak 

coupling limit u ■ m/M -»0, t ■> •», ut»c. This implies that in this limit the 

momentum autocorrelation function decays exponentially.  Our numerical 

computer study shows that this exponential decay of the momentum autocorrelation 

function is also obtained to within a very dose approximation for non-zero 

values of w and for finite times. Thus, excellent agreement with exponential 

relaxation is already found for n ■ 0.1, i.e. for N • 10m. Clearly, the 

stochastic results are «gain im excellent agreement with the exact dynamic 

results far from the weak coupling limit. 

Ma have alao studied the lafimita chain with long rango interactions. 

He have shown thai OM obtains am excellent approximation to the exponential 

relaxation of the autocorrelation function of the heavy impurity N for n > 0, 

S - 



and 0 < Y < li where y is an interaction parameter such that ^-»0 corresponds 

to nearest neighbor interactions and y-*l corresponds to interactions of zero 

strength and infinite extent. 

In Section II we introduce the model Hamiltonian and indicate the 

various representations from which one can compute the momentum autocorrela- 

tion function of the impurity.  In Section III we discuss the autocorrelation 

function for finite systems and for finite interaction strength for chains 

with nearest neighbor interactions. In Section IV we introduce the chain with 

long range interactions and discuss the new features which occur in this system. 

In Section V we present a summary and discussion of our results. 
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II.    HAMILTONIAN AND REPRUSÜNTATION OI; AUTOCORRKLATION FUNCTION 

The Hamiltonian appropriate to a chuiii of 2N particles of mass m and 

one of mass M bound by harmonic nearest neighbor forces with cyclic boundary 

conditions is 

u       1    ^2       1      v      A2  A a    ^■1     rA    A      ,2 

k=l      "      fc    k=l 

Here the tpk.qk) are the momenta and positions of the 2N equal mass particle, 

P and Q are the momentum and position of the impurity particle and a is the 

force constant. If one partially diagonalizes this Hamiltonian according to 

the transformations 

«1/2 $k - qi M1/2 $ - Q 
(2.2) 

■hi 

with 

A    2N *    2N 

Pk' C. TUP; ^k" Jk Tk^ C2.3) 
A=l     I i=l 

one obtains 

2M 

H-|(P2^2Q2)^ ElCpi)2*^)2] 

7 » 
(2.5) 

with 

5 - 



»Ü •-I •l», A-   !    -''ST'        ■,-I"-J «2(,J 

whore u   is the fuiiJoimriitnl frequency of the chain, o 

TO"     5,n   'B^T «in   TOTT (K-1,5...2N-1J 

(2.7J 

and 

ck - 0 {lr2,A,..2S) 

m (2.8) 

In this for» the Hamiltonian exhibits an explicit dependence on the mass ratio 

u which is a convenient for» for our discussion of the weak coupling limit.    Wc 

now transform to the fully diagonal form with 

(2.9) 

Q -  t   X^n, P -   t   VJ 

Si •   L'   Xkjnj pj-   E'    XkjII. (k.l.3...2N.l) 

^k'^k      '      P2k"n2k      (k'1'2 N) 

where the prime on the sums indicates j=0,l,3,..2N-1. 

By direct substitution, one then finds that the secular equation may be 

written in the fornr ' 

G(2) - 0 - z - n2 - TN(2) (2.10) 

with , 

TN(z) - E  -^ (2.11) 
i»l i-w. 

The solutions {z ■ s^ of this secular equation are the eigenfrequencies {s.} 

the fully diagonalized Hamiltonian. In addition one finds that 

»2     1 X0k " UsM (2.12) 
N 
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kl til 

^l^) ■   2-   —^ TT 
»»I   l»|i"ui^ 

(2.13). 

As indlcatcJ in the Introduction wc shall focus on the momentum auto- 

corrclutiun function p of the impurity. The normalized correlation function is 

givt-n by 

P(.) ■ i^i- (2.14) 
<f'> 

Mhcio the brack«,t denotes the canonical average 

<A(M.,V)> - I^y^WA/*} (2.15). 
JdPdQdp dq c 

If one now use» the equations of Motion of the harmonic lattice and the 

indicated canonical transformations [Eqs. (2.1) through (2.13)] one finds that 

P-Cu.t) - E' xj. cos ».t (2.16) 
"      k   ^    R   Ck.0,l,...,2N-l) 

where X.. is given by Eq. (2.12) and where the (s.) arc the normal mode 

frequencies of the fully diagonal!zed llamiltonian. The representation (2.16) 

is convenient for discussing the momentum autocorrelation function for the 

finite N case if one can sum the functions TN and SN of Eqs. (2.11) and (2.13). 

These sums have been evaluated and yield for G(z) and SN(o.) 
l ' 

0(0^) « 0 • (l-y) - ycot jrgfcn    [cotn^ - cscirak|        (2.17) 

(k-1.3,...,2N-l) 

and 

W T7H       
2N ♦cot WT *iMak ' C05,,0k 1 (218) 

2co$' -A  L J 

* (k-l,3,...,2N-l) 

where tho a. arc related to the normalized eigenfrequencies s^ by 
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2     2  ""k 
sj; *  sin 2(2N*ij   ,   k = (1,3,...,2N-1) (2.19). 

It is easy to see that as ji-»l one just recovers the equal mass nearest neighbor 

spectrum 

To study the effect of the mass ratio u  in the thcrmodynamic limit, 

N-x», it is more convenient to represent the momentum autocorrelation function 

by 

1     sk  cos/T t     . 
nir j -GU7~ 

dz 'V - m y Tiif^ d2 (2-21) 

where the contour is chosen as a circle in the complex z-plane enclosing all 

the zeroes of G(z). The representation (2.21) is equivalent to that in (2.16). 

Note that in the limit N-"» the zeroes of G(z) become dense on the interval 

2 
(O.u ) and one may then contract the above contour to an integral running Just 

above and below the real axis in this interval. If one computes G(z) from 

Eqs. (2.10) and (2.11) in the limit H-**,  one obtains 

P1     2 1/2 
P(T) - |f- I    it£l.   .  cosxtdx (2.22) 

2v   J-l      (l-2vi)x2V 

where we have introduced the scaled time 

T ■ uot (2.2S). 

This spectral representation holds for 0 < u 1; for u > 1« a light impurity, 

one obtains another term corresponding to an isolated frequency which give» 

rise to a purely periodic component in the correlation function. '. 

This completes the summary of the equations for the oscillator chain 

with nearest neighbor interactions. In the next Section we discuss the results 

of computer solutions of Eqs. (2.16) and (2.22). 
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111.     CALUll M luN Ol   ,\;4 vh UKWI AI ItlK HIM I I'MS 

Kv fust consider the auaentuB •uitovorrvlatlon function of the mm*% N 

purticle in the thcntodynaBic linit with tlu help of 14.  (2.22).    Ihlt integral 

cannot be evaluated -liulyticjlly.    For 1. ■■. 1  it ha» an i'a|Mn%iun in the foru1  *  ' 

p(i) • 2in {K(i) 

(j.u. 

Thift e*|'rrsjnon» »Kpltfict for certain us» ratios; for ii"l( equal nass particle«, 

one obtains 

0(0 • J0(t) (J.2) 

and for v ■ y 

PlO • V0 *,,2(,) (SS)- 

In the conbined wesV coupling Unit, »-HI, t ••, iii«constant, and thernodynanic 

Unit, K*», one obtak« fro« the spectral representation, Iq. (2.21)( the 

«ell known result"' 

la   p(t) - •'** 
tW (S.4). 

|I1*C 

Ik« phjrslcal basis of tbo wak OMpl&H >*•*» to »>»• •«istenee of 

processes occuring on different tiaa scnlos. Nocessos «bldi iswir slonlp 

relnx to equilibriun in the NBean field»1 of tbo fast procostoa. la UM pratabt 

easaple tbo equal nass pnrticUa tolna m n UM scaia of l/«# tiUla tba —W of 

the heavy particle (N » a) relaxes on a tlae seals Maaurod by UM asas ratio 

p • mJH.   This latter tiae scale ia slow conpstad to the I/M# tiae scala of 

0 - 



the Mi«» a p»lticlif.  1« the limit  «hvn w*0 Ihr ^«arntun of the hr*vy (Mrtlclc 

it • coMtmt «f tlit sat ion. 

To obtain tnforaatton about tl < fom of the »ooentuB autocofiUt ion 

functtun for oon-tofo a, p < lt «■ have mncricaUy integrati-J i«|. (2.22j. 

In lifurr I «« plot p(t) versu» i for vanou» value» of i,. The tin« i» 

■va»ur.*d In unit» of tht IKAAIMM fr«quvnc>° %.0 of the lattice, vtueh Is ty|>Uallx 

of ordci 10*  »oc. Th»- ätimped osclllatof) ^chavior U clrar^ evident ti. 

tkl» figure, but for yOA  one already U**  bvhavior »u^c«ting enponvntial drc«>. 

A log plot of thl» data in Figure (2j »how» that for all intent» and purpoie» 

one has reached the veak coupling Unit when ►•o.l. A coapartson of tht* VOIMM 

of oap(-Ni) and p(t) of iq. (2.22; for ..»O.l In Tablv 1 »how» that they differ 

by only 1% for t * b, i.e. for tines longer than about (*10  »econd». 

Note that there is an initial transient period where the autoeerrilatlon 

function nuat bo Gaussian for any n. ' On the other hand for Ion.: tine», I.e. 

tine» i grootor than the aaponontial decay tint l/n, one ha» a correction of 

JM^td oscillatory fona to the weak coupling Unit. These contribution» to 

a(i) are howovor loss thai 0.1% of the initial value e(0). 

It should be neted that the aaas ratio appears as the square root In 

fho Haniltonian, iq. (2.S), so that one has eapotvntlal relaxation of the 

autocorrelation function for a value of 0.S of the "»nail" paranetcr in the 

MaBiltonlan. 

for the case of finite II we oust find the oigenfrequencies of the 

secular Iq. (2.10) which are the solutions of the transcendentnl Eq. (2.17). 

There are only n*i node» which are pertinent to thi» prabltti: the tero frequency 

■ode duo to the translational invariance of the lattice and K mode» arising 

froo the synoetric aodes of the unperturbed lattice. Hue antl-s>-noetric node» 

have a node at the position of the heavy nass particle and thus do not Influence 

Its djynaaical behavior, these N frequencies (s^lfor (h«lt.2,...2fl.}) ore 
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rj»tl> KHIUJ mmmri<mllf frvm l<|». (2.17) and (2.19) and «rr u»c4 to obtain 

n.. \~ btth tin It« lp of Lq. (2.12) an«! (2.;3). Hit «narntiM autoconvlation 

hMT'tloo VM then calculated by cari>in& out the »uaaatio« in tq.  (2.16), In 

lifcuiv 13) fcr plot the calculated tnlnaa of .^(^.t) v» t for various »nail 

\.>lu* i of K. 

A» hj» t ,.-ii pointed out by iubin( ' and othera one e&|iect» that for 

tinr> I»»» than thute re^uin-d for a »tgnal to propogate around the lattice, 

flu autocorrelation function »liould clo»ely appro«luate the N— result. This 

i» due to the fact that there it, to a good approaination, no way for the signal 

to knot that it is trnvolling in a finite lattice until it reaches the 

boundaries. For a signal travelling the lattice with the speed of sound, the 

taae !(••..t) required to propogatt around a lattice of 2N nass points is i •• 2*. 

For tines t < 2N the results for the finite lattice should thus be nuaericslly 

indtsttaguishable fron tho» of the infinite lattice. This is born out by 

the calculations presented here. Airthernort, for relatively snail values of 

H« for which p(i) decays fairly rapdiiy, the finite N results are In eacellent 

agreenent with the thernodynwic linit results oven üben N is only of the 

order of SO. Ibus even in a haraonic sysien «bore one has coherent signal 

propagation, snail N results am quite accurote in describing the dynanic» of 

local perturbations. One oust of coma restrict such statenents to systens 

«ith potentials whose range is snal' conpared to the sito of the systen as 

otherwise the boundaries would bo NfeltH by the signal at all tines. 

This "recurrence" tine t % 2N boars no relation to the Foincard 

rocurrenco tine which refers to the recurrence of a particular phase point, 

these latter tines are auch longer than any tine scale conaidered here.* ' 
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IV.    MffUUJttMUATIOOl IIMCTION KNl UTIIU   Nllll L'JNÜ KANUL  IM1 KA<:ilO\ 

Im Uli» MCtion Mt turn our •tti-ntion to the ca^c of - hataunic lattice 

with long range interaction».    Ke con»i<kr hen- only the cate of the infinite 

chain. 

The lianiltonian can bv «ritten as 

"•k-'-kl/f-l H vv. C4.i) 
«here av t^i M • Q. hv irp« »v |H,rtuJic I- .a..;.. ..;•».;• un tht chain ami 

a»»une that 

Ihia last conüition oapreatea the itliysicaliy reallvtlc aaaubption that the 

interaction hetaeen t«o naa» point» depend» only on their »eparatian in the 

lattice,  he ttko tht interaction to ho of the for« 

At - J (l-t)/'
1 0<t<l  ,  In 1,2  

(4.S). 

Note that at t^O rnt recovers the n<arest nei.h'uir interaction and as i*l  one 

ohtaint tn inttrtction of sere strength and infinite extent. The nomalizaticm 

factor (I-T) ensures that the total potential energy of the infinite system 

rtmims con»ttnt for all f. 

ly prcctdurtt tntlogous to those used in obtaining fcq. (2.22), the 

spectral representttion of the momentum autocorrelation function of the heavy 

mass ptrticle it found to be 

tCt.T.O.t/ [T *prt m  3 j A CO». .1^ 

(4.4) 
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iU.i) *  3^ 5- (4.6) 

1 ■ -~ I {4.7) 

an«! khcrc the fr».|uoncy « i*  no« fÜBvOsionlck» fuvm^ lurn »v«lc«l by tht- 

maM.az.  ürt-«|Uiii«,% «.' . The autocorrelation function P(I«(V»0 "f Lq. (4.4J 

e<tii f.»»il> he evaluated for dlfffivnl v«luea of i> and » hy niMerical integration 

and »oac representative result» are displayed In 11cures (4). Hie taoe 

daaped oscillatory behavior a> shovn in Fig. (1) for nearest neighbor intrr- 

actions is obtained in this case for intoraediate values of v and f. For 

SIMII enough u and r < 1 one again obtains a« exponential decay of the auto- 

correlation function. As » increases, i.e. as the range of interaction increase», 

one aust go to saaller values of u  to obtain esponential relaxation. In the 

mfk  coupling liait, which one can obtain fro« Li|. (4.4), by setting 

»* ■ u/u    ,    f * ■ lit 

and holding i* constant, one finds 

--S-t 

iit>e,N«* 

The weak coupling Unit thus yield» again an eaponential relaaation for the 

nenentwn autocorrelation function. For ?•©, Iq. (4.t) reduces to the nearest 

neighbor interaction result (S.4). 

It ha» been denonstratedl* ' that for interactions which are of the 

for* A . ■ Ai. ... eaponential relaaation is obtained in the Unit ir*0 «hen 

the squared frequency distribution of the equal nass systco (ii*l) satisfies 

- IS - 



6(-2) -w J --O (4.9J 

for «Mil m.   Our interaction ^itrU »ati»fii& this crlttrla ftiace OIH. find» 

fro« fcqs.  (4.4) through (4.6) that for ►•J 

C(-2) - ii^l       j—^ r-fp (4.1U). 
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\.  MOWUtt AM« tUSOJUSlOII 

Starting irltk thv iljailtuiiian for 4 llmrar hamuulc chain of 2N 

particlo» vitli OIK »**% defect |tartlclr, no have calculated via analytical 

dyuautwk the ou»cntiu autfK'urrilJtion luiuiiun of the ma%*  defect particle for 

finite chain» and fat  non-zero naa» ratio» u. Ve have »hown that one obtains 

to a very good appronlaatlon an exponential relaxation of the aoaenti« auto- 

correlation function for u»» ratio» a» high a» p*0.1 and for chains with only 

SO particle». As Is nell known, pa»s«gr to the thcraodynoHlc and weak coupling 

lialt» yield» tho result that the dyna«lc» of the infinite »a»» particle I» 

rigorously described by a lokker-Plaiick ei^uation. Thl» In turn yields tho 

rigorous result that the uoaentuu autocorrelation function of the infinite «ass 

particle has an «aponential tlue decay. It is clear fron the above results that. 

at least for the haraonic chain studied here, the Pokker-Planck equation (or, 

equivalvntly, the corresponding Langevin equation) can be used to describe to 

■ very good approaiaation the dynaaics of a heavy (but not necessarily infinitely 

heavy) particle in a finite chain. Hie thcraodynaaic Unit and the weak coupling 

Unit, while necessary to obtain rigorous analytical results for the validity 

of stochastic equations of motions, art thus unnecessarily stringent condition» 

for the use oi stochastic equations in describing the dynaaics of the nodel 

considered here. 

One i*portant question which iMediately arises is how applicable this 

conclusion is to other syatens. Is this true in general or are these findings 

quite specific to the haraonic chain? Ne believe that our result on the 

validity (in an appreaiaate rather than rigorous sense) of stochastic equations 

such «s the aaster equation, the Pokker-Planck equation, or the Langevin equation 

far outside (whatever that aay aean in any given case) the thcraodynaaic and 

weak coupling Halt» is a very general one. Unfortunately, this aust rcaain a 

conjecture for the tiae being since we know of no general proof. 
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A »OMCwIiat related study has recently bven curried uut by bishop and 

btnic   who investigated via cun|utrr calculations the- onset of brownian 

■otion in a one dinensional fluid. Tiay iound an exponential relaxation of 

the velocity autocorrelation function for clusters with mass M ft 2Sin where it. 

is the nass single fluid particle. Their results thus point definitely in the 

sam direction ax ours. 

The analytic treattr.cnts uf this problem imply that the momentuni auto- 

correlation function can be written as a series expansion in the coupling 

parasteter u where the leading tern is given by the thcraodynaniic and weak 

coupling limit result and where the correction terns« arising from finite 

strength coupling and the finite size of the system, arc proportional to powers 

of M. As we have seen, these correction terms are very small in the example 

considered hero. It should be pointed out that it is exceedingly difficult to 

demonstrate analytically that corrections to the "rigorous" stochastic equations 

are indeed proportional to powers of the coupling parameter. It is omy very 

recently that it has been shown1 '  that the Langevin equation and the Fokkcr- 

Plonck equation for a heavy particle in a classical fluid do ' v« correction 

terns proportional to the coupling parameter u  which arc bounded for all times. 
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TABLE 1 

Comparison of exp(-in) and p(u,;) of liq. (2.22) for p=0.1 

T cxji(-in) oiv,}) 

0 1.000 1.000 

3 0.741 0.810 

6 0.549 0.570 

9 0.407 0.415 

12 0.301 0.292 

15 0.225 0.212 

18 0.165 0.159 

21 0.122 0.108 

24 0.090 0.076 

27 0.067 0.056 

30 0.050 0.039 

33 0.037 0.028 

36 0.027 0.020 
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FKiURIi CAI'TIÜNS 

lij;ur(. 1: Nonnali^cd momentum autocorrelation function P(T,P) for w=.05, 

.1 aiul .5. The- scaled time i is measured in units of the maximum 

frci.iut.iKv u of the lattice. 

Figure 2:  A logarithmic plot of PC^.M) VS I for p=0.r> and p=.l. The circles 

are data points; this data is closely approximated by a straight 

line. 

Figure 3;  Normalized momentum autocorrelation function PJJCT.P) for 2N+1 

particles with N-12 and N=24 and M=.1. 

Figure 4: Normalized momentum autocorrelation function P(T,W,Y) for M=.1 and 

Ys.l and Y=.5. For small values of Y one still obtains exponential 

relaxation for small p. 
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