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INTRODUCTION

The purpose of this report is twofold: first, aerodynamic static
and dynamic measurements are presented for the Basic 20mm general
purpose projectile.anid-f6r configurations which are simple modifications
of this basic hape; secondly, these aerodynamic data are used in
a Specialy devel6ped-cbmputer program for the rapid evaluation of
projectile stability. Details of this program are presented in this.
report.

This investigation program was carried out in several phases.
Initialy, a number of configurations were selected from simple
modifications of the basic shape. A simple modification is defined
as a single change in an important feature of the shape, such as
smoothness, lehgth, base geometry, etc. 'The change, of two or more
of these s lient configurdtion features would be considered a
compound:modification. In this early phase these modifications
consisted of a 0.6- and O,.3-aliber length extension, a seven-
degree 0.5-caiiber-long boattail and, finally a smooth 'body. This
last shape was formed from the Basic body by omitting the rotating
band and filling in the crimping and fuze grooves. The, Basic
configuration, which will be discussed in more detail in the
next section, is a 4.9-caliber-long, 20mm projectile intended for
generkal us6 within the U. S. Navy.

As a result of this initial inivestigation it was decided', for
various reasons, to retain the Basic configuration as originally
formulated. However, it-was felt that it would be of value to
obtain a fairly detailed set of aerodynamic data on the smooth
body. If removable, or consumable, rotating bands have wide use
and if improved projectile case bonding eliminates the crimping
groove, thelow-drag advantages of the smooth configuration might
be approached.

These tests were carried out in the-Naval Ordnance Laboratory's
Supersonic Tunnel No. 1 and Pressurized BaIlistics Range. The
wind tunnel was used to obtain nonlinear variations of the normal-
force-and pitching-moment coefficients and the Magnus force and moment
coefficients with angle of attack. The ballistics range tests were

intended to obtain the damping-in-roll and the damping-in-pitch
derivatives which were not available from the wind-tunnel measurements.
The ballistics range also furnished the normal-force, pitching-
moment and Magnus derivatives, providing a common ground for
comparison between the wind tunnel and ballistics range.

In addition to the aerodynamic data, this technical report
presents a digital computer program assessment of the stability of
the configuration under a variety of conditions. The program is
presented in detail in one of the sections. Finally, a comparison
is made between the wind-tunnel-ballistics range measurements of
the normal-force and pitching-moment derivative with an analytic
evaluation of these derivatives based upon a seimempirical method
due to Wood. A computer program formulation of Wood's method is
presented.

,I
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SYMBOLS

CD drag coefficient, D/QS

CN normal-force coefficient, -F /QSN z

CN normal-force derivative, CN/3

C pitching-moment coefficient, M /QSd
m y

Cm pitching-moment derivative, '00, /c

C + C damping-in-pitch derivative, Cm /(qd/2V) + Cm/ (&d/2V)Cm Cm . i
q

C£ rolling-moment coefficient, Mx/QSd

C£ damping-in-roll derivative, 3C / (pd/2V)
p

C n  yawing-moment coefficient, M z/QSd

Cn Magnus moment coefficient, C n/3(pd/2V)
P

C Magnus moment derivative, 32C /D(pd/2V)3an pa

Cy side-force coefficient, F y/QS

C Magnus force coefficient, aC /3(pd/2V)
yp y

C
Ypa Magnus force derivative, /2Cy/ (pd/2V)aa

y

d reference length

D drag force

F force along the Y axis
y

F force along the Z axisz

Ix moment of inertia about the X axis, axial moment
of inertia

I moment of inertia about the Y axis, transverse moment
YY of inertia

2
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K nondimensional axial radius of gyration, 4IZ/md 2
x

K nondimensional transverse radius of gyration,
Y ~yy/d

Mx  rolling moment

M pitching momentY

Mz  yawing moment

m body mass

p spin rate (rad/sec)

pd/2V, ' reduced spin rate

Q dynamic pressure,(1/2)pV 2

S reference area

i/Sg reciprocal of the gyroscopic stability factor

S d  damping stability factor

V airspeed

v vehicle velocity along Y axis

w vehicle velocity along Z axis

X,Y,Z conventional aeroballistic body axes

x horizontal coordinate axis, range

y vertical coordinate axis, altitude

a angle of attack, tan
-1 w/V

aR total angle of attack, V2 + 82

angle of side slip, tan 1 v/V

> R yaw angle of repose

0 flight path angle

3
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TEST FACILITIES

Al aerodynamic data presented in this report were measured
in the Naval Ordnance Laboratory Pressurized Ballistics Range
No. 3 and Supersonic Tunnel No. 1. The Pressurized Ballistics
Range is a three-foot-diameter 170-foot-long steel tube that
can be evacuated to a pressure of 3mm Hg-. There are 27
divergent light spark shadowgraph stations along the range tube
spaced alternately five and eight feet apart. At these
stations, high-quality shadowgraph photographs are obtained
in both the vertical and horizontal planes. A complete
projectile trajectory is determined from this photographic
information. These shadowgraphs are very useful for flow
phenomena studies also, although no flow visualization was used
in the present work.

Model launchers available for use in this facility include
a variety of powder guns, both rifled and smooth bore, as well
as a two-stage light-gas gun with a smooth-bore launch tube
of 20mm diameter and a smooth-bore launch tube of 1.25-inch
diameter. In these tests of the 20mm projectile a rifled
powder gun was used. For the smooth projectile tests, a driver
plug was used to engage the gun rifling, with the plug in turn
keyed to the projectile's base.

The wind-tunnel measurements were carried out, as mentioned,
in the NOL Supersonic Tunnel No. 1. This is a blowdown facility,
having a 16- by 16-inch test section. Stagnation conditions
are essentially atmospheric. The Pressurized Ballistics Range
No. 3 and Supersonic Tunnel No. 1, as well as other NOL Aero-
and Hydroballistics Facilities, are described and illustrated
in Reference (1).

4
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CONFIGURATIONS

All aerodynamic data presented in this report are centered
around the Basic 20mm General Purpose Projectile or configurations
formed from simple configurational modifications of this basic
shape. The Basic configuration is illustrated in Figure 1. it
will be noted immediately that this projectile has a number of
surface irregularities due to nose fuze, rotating ban and crimping
groove. While all these contour undulations are necessary on the
operational projectile, it was decided to construct a Smooth
configuration as a datum to assess the effect of such irregularities
on projectile performance. Thus, the Smooth configuration was
constructed from the Basic shape by removing the irregularities.
This Smooth configuration is illustrated in Figure 2. Most of the
data, and a~ll of the analysis, in this report are concerned with
these two configurations.

In the initial phases of this program other configurations were
studied. Two overlong shapes were formed by adding 0.3- and 0.6-
caliber cylindrical afterbody extensions to the Basic shape. Both
of these shapes had satisfactory aerodynamic performance, as will
be pointed out subsequently. A 0.5-caliber long, seven-degree
boattail was also investigated.

Some of the relevant physical properties of the Basic
configuration of the 20mm general purpose projectle are given below:

Length: 4.9 calibers
Maximum diameter: 20 millimeters or 0.786 inch
Center of gravity: 2.21 calibers from base
Mass: 1.00578 x 10-2 slugs
Axial moment of inertia: 5.283 x l0- 4 slug-ft 2

Transverse moment of inertia: 6.0133 x 10- 3 slug-ft 2

The geometric details of the Basic configuration are given in

Figure 3.

DATA ACQUISITION

In the Pressurized Ballistics Range, spark shadowgraphic
photographs are taken of the model as it passes each station. These
photographs are etched on glass to provide a permanent record. Model
attitude and down-range position are read on an optical analyzer.
Drag and aerodynamic derivatives are then reduced from these
measurements by the methods outlined in Reference (2).

In the wind-tunnel tests the model is mounted on a four-component
strain-gage balance. Since a Magnus test requires that load
measurements be made with the model spinning, it is necessary to
provide means for supporting the model in spin to keep vibratory
interaction with the load-sensing gages to a minimum. In addition,
there must be some source of torque to drive the model in spin.

5
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Figure 4 illustrates the essentials of the Magnus balance.
In this figure a representative Magnus model is shown mounted on a
Magnus balance. It will be noted that the model makes contact with
the balance via fore and aft ball bearings. Torque is generated
by means of a two-stage air turbine with air entering through
the sting and exiting from the model base. The operational procedure
is something like the following: Air is admitted to the air turbine
at about 400 psi. Once the model has attained a spin rate of about
500 revolutions per second, the air to the turbine is terminated.
The strain gages are sampled about 80 times per second as the model
undergoes spin decay. A magnetic tachometer, located in the model.
as shown in Figure 4, provides a nearly continuous record of spin
rate. If gage readings are converted to aerodynamic coefficients
by means of the balance calibration and a knowledge of the flow
properties, it is easy to conceive of a graphical record of force
or moment coefficient versus spin. Actually, such a record is
essential to wind-tunnel Magnus data reduction.

The view indicated in Figure 4 is such that the plane of the

paper is the yaw plane. The component indicated as the Magnus
flexure lies at the heart of the Magnus balance. A set of these
Magnus flexures is illustrated in Figure 5. It will be noted that
the flexure is essentially a miniature beam mounted such that it
will be loaded eccentrically by the main beam or balance as the
balance is subject to bending by the aerodynamic loads on the model.
For example, as the balance is subjected to yaw loads the flexure
is eccentrically end loaded. This induced secondary bending results
in the flexure acting as a mechanical amplifier. This secondary
bending is illustrated, although with considerable exaggeration,
in Figure 6. Because the Magnus flexures are used only in the
yaw plane, the sensitivity of the balance in yaw is about nine
times that of the balance in pitch.

DATA REDUCTION

No discussion will be given herein of the methods used in
reducing ballistics range measurements. An outline of the
mathematical foundations is given in Reference (2). Several
formulations of ballistics range data-reduction methods have been
made for application to the technique of wind-tunnel free-flight.
One such report is Reference (3).

In the wind tunnel, force and moment data were obtained using
the Magnus balance in a rotating sector arm. The model-balance
combination is brought to a desired angle of attack, the model then
spun to the desired spin rate and the drive air terminated after
the flow conditions are established. After tunnel flow has been
established, the tachometer and the strain gages are sampled at
about 80 times per second. These signals are digitized and
recorded on magnetic tape. This record, together with the
balance calibration and flow characteristics, produces plots of the
force and moment coefficients as a function of reduced spin rate at
a specific value of Mach number and angle of attack. The variation

6
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of normal force and pitching moment with spin is usually small and
considered negligible in this presentation. However, the side-force
and yawing-moment coefficient indicate a nearly linear variation
with spin rate. A representative plot of side-force and yawing-
moment coefficients versus reduced spin rate is given in Figure 7.
It will be noted that even at this rather large angle-of attack
these force and moment coefficients are linear with reduced spin
rate. In.order to discuss the Magnus data-reduction methods as
used in wind tunnels, it is necessary to consider the analytic
formulation of the Magnus effect.

The Magnus force, F, will be defined as a force depending upon
body spin rate and angle of atta.k, and acting normal to the plane
established by the spin vector, p, and he free-stream velocity
vector, V.. Mathematically this force, F, and its corresponding

moment, M, can be expressed as

and

tx'v](2)

where k is a scalar constant for a given set of flow conditions;
r is the vector distance from the center of gravity to the Magnus
center of pressure, along the body's axis of symmetry;- and, p ,s
the spin-rate vector defined along the axis of symmetry.

All forces and moments are referred to the conventional aero-
ballistic body axis system, an axis system which is fixed to the body
and shows all its rotational and translational motion, except spin.
In the axis system, the x axis is forward along the axis of symmetry;
the y axis is to the right when the store is viewed along the
positive x axis; the z axis completes a right-handed triad. The
origin of this axis system is at the moment reference center taken,
in this case, to be the center oS grjvity. Unit vectors along the
x, y, z axes will be defined as I, 1, lz . The wind-tunnel

constraints are such that the x, z plane is vertical; and, that
this plane contains the flow velocity vector.

4.+ (Vsn)4,Euto

Since p = p I x' V, = (V cosa)1x + (Vzsina)l z Equation

may be rewritten as

F. . .(3)

7
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where the side force, Fy, is equal to -kpV sina. This relationship

demonstrates that the Magnus force is an odd function of the angle
of attack with spin rate. The Magnus moment equation also may be
rewritten using the components of the spin-rate and free-stream
velocity vectors. That is,

M-K rS

where the yawing moment, M , is equal to -kpr sin. It can be
seen from Equation (4) thai the Magnus moment is an odd function in
center-of-pressure location, spin rate and angle of attack. For
example, the Magnus center of pressure is usually behind the center
of gravity, giving a positive Magnus moment (nose to the right as
viewed from the rear).

The yaw-force and yaw-moment coefficients are defined as:

Cy= F/ S Ctn=MI/9S _ (5)
The above coefficients depend upon the body-pressure distribution,
which, in turn, depends upon the compressibility, viscosity and
unsteadiness of the flow field. To indicate the degree of simulation
of these effects, it is. necessary to present coefficients as functions
of the appropriate flow similarity parameters.

Since the free-stream velocity is in the vicinity -of the
speed of sound, it is nucessary to regard the medium as compressible.
Simulation of compressibility effects is assured by testing a4
identical free-flight Mach numbers. Also, since the Magnus effect
on the forebody originates entirely in the boundary layer, it is
necessary to test at the anticipated Reynolds numbers to simulate
viscous effects. Finally, since each surface element on a sted-dkly
spinning body experiences a cyclically changing flow field, the test
must be made at a parameter which matches flow unsteadiness. In
Magnus tests this flow unsteadiness parameter is designated as the
reduced frequency, -. Testing at identical reduced frequencies
assures a matching of the flow angularity at similarly located
surface elements on geometrically similar bodies. Thus, it vill
be postulated in a Magnus test that the coefficients must be
expressed as functions of Mach number, Reynolds number and reduced
frequency, as well as body angular attitude.

If the Magnus force is assumed to be an analytic function of
angle of attack and reduced frequency, the yaw-force coefficient can
be expanded in a truncated Taylor series in a and p, as:

r a, (6)

8
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where all derivatives are evaluated at -and p equal to zero. Since,

0) Cy, (,4° o(7)

it follows that all but the cross derivatives vanish. Thus, Equation
(6) becomes, as a first approximation,

Ao O - a C(8)

A similar relationship for the moment coefficient, Cn , would be

The terms on the right in Equations (8) and (9) are the
familiar Magnus force and moment derivatives, respectively, for linear
aerodynamics. It should be noted that Equations (8) and (9) are
compatible with Equations (3) and (4) for small angles of attack.

Before coming to grips with an analytic description of the
problem's nonlinearities, it is important to recall the methods
of data acquisition. :Side-force and yawing-moment measurements were
made while the model was undergoing spin decay at a fixed angle
of attack and immersed in a flow of constant Mach number. After
-tachometer and strain-gage signals are recorded, the angle of attack
is changed. The model is spun again to some predetermined upper
limit, the drive air is terminated and the procedure repeated.
After the entire angle-of-attack range has been spanned, the Mach
number is changed and the procedure repeated. Since it is noted
that for configurations without fins, the Magnus force and moment
coefficients are linear with spin rate, Equation (6) may be
rewritten as

The variation of the Magnus effect with angle of attack is represented
by the derivative, 3C (a)/a. If the Magnus effect varies linearly

y

with angle of attack, then Equation (10) may be replaced by Equation
(8). Experiments show that, generally, the Magnus effect varies in
a nonlinear fashion for angles of attack greater than two or three
degrees. Thus, the wind-tunnel procedure is to obtain C / for A

y
several angles of attack at a fixed Mach number. Since the
ballistics range data-reduction methods are based upon linear
aerodynamics, the Magnus effect can only be represented by the Magnus

9
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derivatives of Equations (8) and (9). Such a limitation is usually
acceptable as ballistics raige tests are usually limited to
a few degrees angle of attack. Wind-tunnelmeasurements can be
compared with ballistics range measurements by obtaining the slope
through the origin of the 3C /3 ve±sus angle-of-attack graphs.

y
This Slope, a/aa(C /a) or C is the Magnus force derivative.

y Ypa

AERODYNAMIC MEASUREMENTS

As mentioned several times earlier, the aerodynamic data
contained in this report were obtained in the NOL Pressurized
Ballistics Range and Supersonic Tunnel No. 1. The flow environment
experienced by the range and wind-tunnel models might be summarized
in a plot of Reynolds number versus Mach number. Such a plot is
presented in Figure 8 with the Reynolds number being based upon
body diameter.

In the ballistics range, two pressurization levels were used--
one atmosphere and one-tenth of an atmosphere. These levels are
also indicated in Figure 8. The wind tunnel, being a blowdown
facility, has a total pressure head -of -one atmosphere. At the lower
Mach numbers (below Mach 1.5) it will be noted that a higher Reynolds
number is achieved in the wind tunnel. This higher Reynolds number I
occurs because the wind-tunnel model is nearly three times the
linear size of the full-scale ballistics range models (2.0 inches as
compared to 0.786 inch for the ballistics range model).

Figures 9 through 17 present the wind-tunnel measurements of
the normal-force and pitching-moment coefficients for the Basic
configuration; Figures 18 through 24 present the same information
for the Smooth configuration. It will be noted that the pitching-
moment coefficient is linear through the origin and remains linear
up to about 10 degrees angle of attack f,.r subsonic measurements
(see, for example, Fig. 11). SupersonicA!ly, the pitching moment
begins to give evidence of nonlinearities at about eight degrees
(see Fig. 15). This same sort of observaticn can be made for the
Smooth body, indicating that nose geometry rather than surface
irregularities is the main contributor.

It was mentioned earlier that a variety of configurations were
briefly examined in the ballistics range at the inception of this
program. In addition to the Smooth conficur-ation, these configurations
consisted of a 0.3-caliber cylindrical e Aon, a 0.6-caliber
cylindrical extension and a seven-degre .S-caliber-long
boattail. The normal-force and pitchir.. ..,t derivatives for
these configurations are compared with t . of the Basic body in
Figures 25 and 26. It will be noted, foi example, that the 0.3-
caliber extension gives a pitching moment about equal to that of the
Basic configuration; the 0.6-caliber extension seems to make an
appreciable increase in the pitching moment. The boattail configuration
has a significantly lower pitching moment. It should be emphasized

10
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that the Smooth body data,, given in Figures 25 and 26, ,are
questionable and should not be used foj comparative purposes. Due
to a defective plug design there was gas blow-by which seemed to
distort the model base. This design was corrected in later tests.

Since the most important configuration is these tests is the
Basic body, it was desired to have a fairly detailed data coverage.
Figures 27 and 28 present comparisons of ballistics range and wind-
tunnel measurements of the norm&l-force and pitching-mbment derivatives
of the Basic body. Figure 29 gives the center-of-pressure location
from the body vertex, calculated from the data of Figutes 27 and 28.

The correlation between ballistics range and wind-tunnel data is
quite satisfactory. It should be recalled from Figure 8, that
the Reynolds numbers in both facilities are fairly close up to a
Mach number of 1.5. Figure 29 shows that the center of pressure
moves rearward with increasing Mach number. Figures 30 and 31
present the normal-force and pitching-moment derivatives, respectively,
for the Smooth configuration. The data for the Smooth configuration
are much more sparse than the Basic configuration, with only one
data point available from the ballistics range. Figure 32 presents
the center-of-pressure location in calibers aft of the vertex. In
comparing Figure 29 to 32 it appears that even within the scatter
of the data, the center of pressure for the Smooth configuration
is slightly ahead of that for the Basic configuration.

One of the most important single measurement made in the
ballistics range is drag. Drag measurements for the Basic and
Smooth configurations are presented in Figure 33 in the form of
the zero-lift drag coefficient. It is quite obvious from this
figure that the Smooth configuration enjoys a significant drag
advantage over the Basic configuration.

In Figures 34 and 35 the damping-in-roll derivative, C,
p

and the damping-in-pitch derivative, Cm + Cm., are presented
q a

respectively, as functions of Mach number. The damping-in-roll
derivative is reduced according to the methods of Reference (4).
The roll angle is determined by pins located in the base of the model.
The damping-in-pitch derivative, unfortunately, has a great deal
of scatter in the measurements. Since this derivative is essential
in specifying the dynamic stability criterion, Sd, there will be

some uncertainty concerning regions of dynamic stability.

Also vital in the determination of the dynamic stability of
a configuration is the Magnus effect. The Magnus effect had been
discussed earlier in the Data-Reduction Section. Magnus measure-
ments were carried out in both the wind tunnel and ballistics range.
In the wind tunnel, both the side force and yawi:io moment are
measured as functions of spin rate and angle of attack. As pointed

11
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-out in Equation (10), the force and moment are considered linear with
spin rate and are expressible as force and moment derivatives
with spin rate. These derivatives,_ C / and C /3, have been

y n
designated as the Magnus force and moment coefficients, C and Cnp

respectively. Figures 36 through 4-1 present the Magnus force and
moment coefficients for the Basic configuration and Figures- 42 through
47 for the Smooth configuration. It will -be noted that while the
slope of the Magnus force coefficient, the Magnus force derivative,
remains negative over the entire M&ch- number range, the Magnus moment
derivative changes sign in-going from subsonic to supersonic Mach
numbers (compare Figure 37 to 38). The above observation indicates
that the Magnus center of pressure is slightly ahead of the center
of gravity subsonically and slightly aft of the center of gravity
supersonically. It will be pointed out later that a Magnus center
of pressure ahead of the center of gravity always results in dynamic
instability. Thus, it would be expected that the Basic donfiguration
is dynamically unstable subsonically.

Interestingly enough, the Smooth configuration appears to be
dynamically stable over the whole flight regime as the slope of the
Magnus moment coefficient, Magnus moment derivative, is negative for
subsonic and supersonic Mach numbers (compare Figure 43 to 44). The
dynamic instability of the Basic configuration is-not serious as it
would- be expected that this projectile would only be effective in
the moderately high Mach number range (Mach 2 to 3.5).

In- examining the Magnus data of Figures 36 through 47 it will
be noted that the variation of C and C with angle of attack isyp np

p p
nonlinear for angles- much beyond two degrees. This is particularly
true for the Basic configuration. For small angles of attack there
appears some justification in linearizing the Magnus effect by
representing the Magnus force and moment by the Mdgnus derivative
(see Eq. (10)). This linearization has been done for the Basic
configuration and the resulting Magnus force and moment derivatives
plotted as functions of Mach number in Figure 48. These data appear
quite ragged because the Magnus derivative is formed by twice
differentiating experimental data, once with respect to spin rate
and again with respect to angle of attack.

In the ballistics range an entirely different procedure is
used. Since the observed motion (as obtained from the photographic
plates) is assumed to be the "solution" of a set of linear
differential equations, the Magnus effect can only be expressed in
terms of the Magnus derivative. Also, as measurements were made at X
only one center-of-gravity location, only the Magnus moment
derivative is available.

Figure 4.9 presents the Magnus moment derivative as a function
of Mach number comparing the wind-tunnel and ballistics range
measurements. It will be observed that the Magnus moment changes

12
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sign somewhere around a Mach number of 1.1. Thus, one would expect
that the projectile would become dynamically unstable below this
Mach number.

ANALYTIC DETERMINATION OF THE STATIC COEFFICIENTS

There are a variety of methods for predicting the normal-force
and pitching-moment derivatives as a function of Mach number.
Probably the simplest is that due to Hitchcock (Ref. (5)).
Hitchcock's method is entirely pmpirical and has the disadvantage
of ignoring compressibility effects. The normal-force derivative,
CN , and the center of pressure, h, are given as follows:

= .o4+ (12)

where

A is the angle of the boattail in degrees
B is the length of the boattail in calibers
C is the length of the cylindrical part in calibers
D is the length of the ogival head in calibers
E is the radius of the ogival arc in calibers

If reference is made to Figure 27 it is possible to compare the
prediction of C , using Hitchcock's formula of Equation (11), with

Nawind-tunnel and ballistics range measurements.

With

A= 0
B= 0
C =2.41
D = 2.49
E = 7.40

Equation (11) gives

C = 3.54

13
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This value, which is invarient with Mach number, is higher than
any measurement made in either the wind tunnel or ballistics range
at any Mach number. According to Equation (12) the center of
pressure is 2.17 calibers aft of the vertex. The Hitchcock
relationship predicts a center of pressure which is too far aft.
The pitching-moment derivative, C , determined from Equations (11)

and (12), is 1.85. Comparison with Figure 28 shows that this value
is lower then any of the measurements, regardless of Mach number.
Supposedly, the empirical constants of Equations (11) and (12) could
be adjusted to bring the predictions in better agreement with the
measurements. However, the primary shortcoming of this method is,
as pointed out earlier, its failure to account for compressibility
effects.

A second method due to Wood (Ref. (6)) is available which
does take into account compressibility effects. Wood defines the
normal-force derivative and the pitching-moment derivative about
the base, respectively, as:

C a,= (ZS6/S (13)

6 zX\/OLUtAI

where Sb (S + Sb)/2 and where S and Sb are the reference area and

base area, respectively. The center-of-pressure location, in
calibers, forward from the base is given as,

C c) / cwo (15)
The pitching-moment derivative about the center of gravity is
easily written from Equations (14) and (15) as,

c ~ ~iG~C~ (16)

where G is the location of the center of gravity, in calibers,
forward of the base. The functions, fl and f2 , are empirical

functions of the fineness ratio and the Mach number. These
functions are equal to unity for Mach numbers between 0 and unity
and are available, in graphical form, for Mach numbers in excess
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of unity. Graphs of fl and f are available in both References

(6) and (7).

Table 1 presents a listing of a BASIC program to calculate
the normal-force and pitching-moment derivatives and center-of-
pressure location aft of the vertex. In order to use the f1 and

f2 functions in the program, a seventh-order polynomial was

fitted to these graphs. These polynomials, together with Equations
(13) through (16), were formulated in the BASIC language to
provide a fairly good semiemphirical estimate of the normal-force
and pitching-moment derivatives and the center of pressure.
Estimates of CN , Cm and center-of-pressure location from Wood's

Fm a a
method are compared with wind-tunnel and ballistics range measurements
in Figures 27, 28 and 29. The agreement may be considered fair
and probably limited to preliminary design estimates.

BASIC COMPUTER PROGRAM FOR THE RAPID DETERMINATION
OF PROJECTILE STABILITY

In this section, a computer program developed for the rapid
evaluation of the stability of an unguided weapon is described.
This program assum.es that the forces and moments acting on the
body arise from linear aerodynamic loads and a constant gravitational
field. More elaborate simulation of projectile characteristics
is certainly possible in six-degree-of-freedom programs, such as
Reference (8). While the increased precision of such programs is
obvious, the lengthy table preparation and long computation time often
discourages the use of such programs. For example, it is not
uncommon to have a computation time 2000 times longer than real
time. In this program only two second-order differential equations
are solved. Other relationships, which might be written in the
form of differential equations, are approximately integrated and
it is these analytic approximations that are programmed. The
assumption of linear aerodynamics avoids lengthy tables. This
latter assumption may not be severely restricting, as a designer's
first performance studies are usually limited to estimates of
the stability derivatives. Even in considering operational
vehicles, satisfactory performance usually restricts the projectile
to small angular excursions.

This program was written, primarily, for spin-stabilized
projectiles although it is entirely adequate, within the restrictions
of the force and moment representations, to spinning fin-stabilized
weapons as well. Regardless of the stabilization characteristics
of the weapon, the program operates in the following manner:
A particle trajectory is calculated to provide the dynamic pressure,
velocity and Mach number. These quantities are then used to
calculate the reduced frequency, the yaw of repose, the damping
stability parameter and the gyroscopic stability parameter.

15
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Various print statements provide these quantities as a tabular
function of altitude and time.

In carrying out the computation there are three distinct
sets of equations. First, two second-order differential equations,
nonlinearily coupled through aerodynamic drag, are used to provide
a particle trajectory program. This particle trajectory "locates"
the weapon as it moves through a uniform gravitational field
subject to aerodynamic drag. Since a solution in closed-form
is out of the question, it was necessary to solve these equations
using numerical integration.

The second set of equations provides reduced frequency as a
function of arc length. If the Mach number is assumed to be
constant, this equation may be integrated to give reduced frequency
as a function of arc length. If changes in Mach number affect
the value of the drag and roll-damping coefficients, it is necessary
to carry out the integration piecewise over intervals of constant
Mach number. Such a procedure avoids a lengthy numerical integration
procedure and keeps the program formulation within a reasonable
length.

Finally, a third set of equations is needed to describe the
angular motion of the body. Two coupled second-order differential
equations are integrated to express the -aw and pitch motion of
the vehicle about its velocity vector. -une integralsof these
equations are used to formulate the gyroscopic and damping
stability parameters. As in the case of the spin-rate equation,
this integral of the angular motion is valid only over intervals
of constant Mach number. The result is that the above-mentioned
stability criteria will vary with Mach number.

The sketch given below illustrates the variables used in
the trajectory equations. It will be assumed that all motion
takes place in a vertical plane, with the "y" axis vertical
(defined positive upwards) and the "x" axis horizontal (position
forward in the directions of flight).

1
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If the gravitational and drag forces are resolved into the
vertical and horizontal components (according to the above
sketch) the equation of vertical and horizontal motion may be
written as,

IVx _ Dcs )V (17a)

Ja- --- sG- --T)V
~ (17b)

= (17d)

Where Equations (17) have been rewritten in alternate form by
replacing cose by Vx/V and sine by Vy/V. If the following

x y
substitutions are made:

D=Al x=X V =Y

dx = dy = Y1

dt dt

g =32.174 V = Q Vy = P

dV dV

dt dt

Equations (17) may now be expressed in terms of computer variables
as,

(18b)

(18d)

17
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All computer variables are defined in terms of problem variables in
Table 2.

The second equation needed in the stability analysis is that
relating spin rate to some independent variable, such as time
or range. The most straightforward approach is to first state
the following easily established identity.

-t =vi (19)

where p is the spin rate, t is the time and V is the free--stream
airspeed. From the roll-damping equation, or the equation relating
deceleration to the roll-damping moment, we have,

_ _ _ _ _ _ _ _ _ (20)

where Ixx is the moment of inertia about the longitudinal axis, C£
p

the damping-in-roll derivative, m the mass and K the nondimensionalx

radius of gyration defined as I xx/m. Next, the drag equation can be

written as

8 _____ C-- V(21)

Inserting Equations (20) and (21) into identity, (19) gives

~LQ*> (%-()L K;;'+ A (22)

The above equation may be rewritten changing the independent variable
from time, t, to downrange distance, x, through the following
operator

18
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Equation (22) then becomes,

~W ~Q (4k)(23)
Equation (23) can be rearranged to give,

z__ +-.]Y (24)

where cosO = Vx /V. An exact integral of Equation (24) in closed-

form is impossible because cosO is a function of x, which can only
be known by integrating the particle trajectory. However, if
the integration is carried out over a short enough time interval
that cose may be replaced by a constant value, say its value at
the beginning of an interval "i," the integral of Equation (24) may
be written as,

X _ ((25)

If the number 5 is attached to a symbol to mean the value at the
beginning of an interval, it is possible to rewrite Equation (25)
in computer variables.

P7= (P*\)1V5
Now P5, the value at the beginning of the next interval, is
P5 = P7*E5. Again, reference is made to Table 2 for the definition
of the computer variables in terms of the problem variables.

Equations (17) describe the position of the projectile as
a function of time as it moves through a uniform gravity field.
It is obvious that no interaction is assumed between the angular
motion of the body and its trajectory. This is obviously a
simplifying assumption, but is justified on the grounds that the
angular motion of a stable projectile should be small and, therefore
interaction terms, such as lift force, Magnus force and angular
dependent drag, can be neglected. The question arises as to how
one can be sure that the angular motion will remain small under
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response to an initial disturbance. In order to answer this
question, two stability criteria will be developed to provide
the necessary and sufficient conditions that the projectile's
aigular motion will not grow in response to a disturbance. These
criteria will be formulated in terms of the body's mass distribution,
spin rate and Magnus, damping and static aerodynamic characteristics.

Murphy, in Reference (2) Equations 4.24 and 4.25, introduces

the complex variable

_ W (27a)

which, for small angles of attack and sideslip, becomes,

(27b)

The above formalism allows the differential equations of lateral
motion to be expressed in terms of a single second-order differential
equation, rather than in two second-order equations in the real
variables v/V and w/V or 0 and a. As indicated by Murphy in Equation
6.12 of Reference (2), this equation of motion becomes

+ '.T ~ ~ '''-(28)

where

E t ((29a)

(79~3 C~3(29b)

(29c)

G~ 7~c1(29c)

Equations (29a) and (29c) differ from those given in Reference (2)
(see Eq. 6.12), in that the coefficients Cm + Cm and Cm are

q a pa

multiplied by 1/2. This factor of 1/2 is necessary as NOL dynamic
moments are nondimensionalized with respect to pd/2V whereas in
Reference (2), pd/V is used. This factor of 1/2 occurred earlier in
Equation (23).
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Since Equation (28) is linear, its solution is given as,

.~ +(K.,ot J+ (30)

Since the requirement for stability is that

it is necessary and sufficient that X and X are both negative.

The exponentials of Equation (30) may be written as,

+ _,_______-__-___-_ _ Zi P - H_ (31)

If the Magnus-lift coupling term, T, and the damping term, H,
are neglected, one has

(32)

where 1/Sg = 4M/P 2 and is designated as the reciprocal of the

gyroscopic stability parameter. Thus, in a spin-stabilized vehicle
it is necessary that i/S be less than unity for the vehicle to

g
be stable. A fin-stabilized vehicle will always be gyroscopically
stable as M is negative. If 1/S is greater than unity, X would

g
equal 1/ l/Sg - and, being positive, would result in divergence

of the projectile from its initial conditions.

If 1/S is less than unity and X1 and X2 are both zero,

](33)
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Equation (33) followed from Equation (31) after T and H were
set equal to zero. The exact values of the frequencies d and2 /

will vary with the relative magnitudes of T, H, M and P; however,
Equation (33) is usually an excellent approximation for the modal
frequencies 0 and The criteria for such a approximation is
thatt 2

Murphy (Ref. (2)) then goes on to show that, regardless of the
values of i/I X2, 11 and X2, one may write,

P (34)

where Sd = 2T/H or the ratio of the Magnus-lift coupling to the

damping. It follows, from Equation (33), that P/[ 2]

must be less than unity for a statically stable missile and greater
than unity jor a statically unstable missile. In either case,
Equation (34) may be rewritten using Equation (33) to give:

Conditions for stability (Xil, X2 < 0) are that

or equivalently

\- 1/5e

The boundary between stability and instability follows as

(36)

which is Equation 7.7 of Reference (2).
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dynamically stable model must have an inverse gyroscopic
stability parameter less than that given by Equation (36).

If a trajectory is determined for a given projectile and if
i/Og and Sd are calculated at a fixed interval, then the locus

of the curve in the i/Sg - Sd plane readily indicates the stability

over its flight path.

It is possible now to write I/Sg and Sd in terms of the

aerodynamic coefficients and projectile mass, mass distribution and
geometry. In terms of problem variables, Sg is:

T(37a)

or in terms of computer variables,

(2C tW CPS z) (37b)

Iz G (0.1Ci)3) W (Y4iZ) Af

similarly,

ZT M________ .. (38a)

and in terms of computer variables,

z ,- S* / /I')* F (38b)

It has been shown that the solution of Equation (30) will be
stable if i/Sg has a value no greater than that given'by Equation
(36).

The third term on the right in Equation (30) is the steady-
state value of , this term is designated as Eg and called the
yaw of repose. This term is, according to Murphy (Ref. (2), Eq. 6.13),
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-1-~ (39)

Inserting the appropriate values for M, P and T from Equations (29),
the above expression becomes, after rationalizing the denominator:

X 9C C (40a)

Since pd/V is the order of 0.1, the imaginary terms in Equation (40a)

0

can be ignored. If this is done, it is possible to rewrite
Equation (40a) in terms of the computer variables as,

S3- __________ (40b)

In calculating Sg (Eqs. (37)) it is necessary to insert a
value for the density. The density, of course, changes with
altitude and this change is assumed in this report to be
exponential with altitude, y, as:

(41a)

The main assumption in deriving Equation (41a) is that the
atmosphere is isothermal. In computer variables, Equation (41a)
becomes

Kx

-R,,= .ooZ377 EX.?:(. 31-ZE-1tr") (41b)

The aerodynamic coefficients which are necessary to
calculate Sd, Sg and Cg are entered into the program as a

table with Mach number. Mach number is, of course, the ratio
of the body's speed to the speed of sound as

244
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V /C C42)

The body's speed is obtained in the particle trajectory program,
Equations (17). The speed of sound varies solely with the

temperature for an ideal gas and in the English units may be
given as,

c =A4q.o T + 4O0(43)

where T is in degrees Fahrenheit and c is in feet per second.
The speed of sound may be written as

c = c0 + C0 + ; % (44)

where

ae c

from Equation (43) and ;T/3y (partial derivative) will be taken
at -0.0039 degrees Fahrenheit per foot. Thus, Equation (44) may
be written as

C m7-.OO'Z' (45)

The Mach number may be written in computer variables as

Equation (44) and, hence, Equation (46) are assumed to be valid
only up to 36,000 feet. Above this altitude the temperature
and, therefore, the speed of sound are assumed to be constant.
In this case, Equation (46) will be replaced by

5(47)
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Table 2 gives the correspondence between the computer variables,
as used in the BASIC language, and the problem variables,
most of which have been defined in the list of symbols. The
general rules of the BASIC language and terminal apply. One need
only supply the input data starting on line 1890 (see Table 2).
Data are input in the following order:

T5 initial time (seconds)

XO initial horizontal displacement (feet)

YO initial vertical displacement (feet)

VO platform velocity relative to inertial space
(feet per second)

Vl projectile muzzle velocity (feet per second)

4initial flight path angle (degrees)

H program parameter to control integration step
size (seconds)

N program parameter to control the print-out frequency
(integer multiple of H)

W mass of projectile (slugs)

D5 diameter of projectile (feet)

Ii axial moment of inertia (slug-ft2 )

12 transverse moment of inertia (slug-ft2)

P5 initial spin rate (radians per second)

Z9 an integer designating the table length (number
of Mach number entries - maximum value is ten)

Following the above data are the tables. The tables are
supplied per line:

M(J) Mach number

A(J) CD

B(J) C

C(J) Cm + C
q a

D(J) CN

E(J) C
p

F(J) Cmpa

26
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The input data should appear as follows:

1890 DATA T5, XO, YO, VO, VI, 0

1900 DATA H, N

1910 DATA W, D5, II, 12, P5

1920 DATA Z9

1930 DATA M(l), A(l), B(l), C(l), D(l), E(l), F(l)

1940 DATA M(2), A(2), B(2), C(2), D(2), E(2), F(2)

19.. DATA M(Z9), A(Z9), B(Z9), C(Z9), C(Z9), E(Z9)

Typical output from the program is shown in Table 4. As
indicated, the first part of the output is the coefficient table.
After this table is printed, the quantitites H and N are printed.
These numbers indicate the step size and print-out frequency,
respectively. The remainder of the print out is the trajectory
parameters and stability derivatives (as defined in Table 1).

These data are presented in pairs. Each pair contains TIME
(seconds), X (horizontal distance - feet), Y (vertical distance-
feet), V (speed relative to inertial space - feet per second),
p (spin rate - radians per second), i/Sg (inverse gyroscopic
stability parameter), Sd (damping stability parameter), Yaw

of repose (radians), pd/2V (reduced frequency), MACH (Mach number).
Following the initial conditions is a print out of the above
trajectory constants at the appropriate step dictation by the
quantities H and N. The program automatically terminates at zero
altitude. It will be noted, in Table 3, that the projectile
velocity relative to inertial space, V, is calculated in line
430 from the platform velocity and muzzle velocity.

STABILITY ANALYSIS

In considering the stability of the projectile the analyst
must, in some way, limit the infinite number of initial conditions
in altitude and velocity that the projectile theoretically might
encounter. A relatively small number of initial conditions can
be chosen which will represent typical operating conditions. Since
the 20mm projectile under considerLtion is intended for general
purpose, one must consider firings from high-speed aircraft,
helicopters and ground.

In order to represent firings or launchings from high-speed
aircraft, the gyroscopic stability factor was calculated at the muzzle for
launchings from aircraft flying at 300, 475 and 600 knots and at
altitudes of 0, 5000, 10,000 and 15,000 feet. In addition, since
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atmospheric conditions are influential, it was decided to carry
out identical calculations for a cold day (-65*F) and a standard
day (-59*F). Usinq the program described in the preceding section,
the gyroscopic stability factor was rapidly and easily determined
for these 24 various launchers.

Figure 50 presents results for the cold day and Figure 51
for the standard day. A comparison of these figures indicates
that the most critical firing condition of those studied occurs on
a cold day in firing from an aircraft having a 600 know airspeed
at Sea level. Clearly, the projectile's stability decreases with
an increase in speed and decrease in altitude of the launch aircraft
and with decreasing ambient temperature. Both Figures 50 and 51
indicate that the projectile is gyroscopically stable for all
conditions studied.

It was stated in Equation (36) that the necessary and sufficient
condition for projectile dynamic stability is that

I/S 5 < 0 <S<z (48a)

and -'< SA(Z -S)
S@ (48b)

It can be shown that a good approximation to Equation (38a)
might be written neglecting the normal-force, CN, and the drag, C,

contributions

__ __ __ _ . A9)

cI. A Xn(CM I4IC"'U)

Now since Cm  + Cm will always be negative, it can be seen that
q a

the sign of Sd will be identical to the sign of the Magnus derivative,

C . It will be noted, in Figure 49, that the Magnus derivative
pa

changes sign from positive to negative in going from supersonic to
subsonic flight. Thus, in light of Equations (48), the projectile
will be unstable for subsonic flight. Figures 35 and 49 also point
out that there is considerable scatter in both the damping-in-pitch
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derivative and the Magnus derivative. There might be some doubt as
to the projectile satisfying the condition that Sd < 2. The

stability conditions, as specified by i/Sg and Sd' can now be

examined for a number of representative operational conditions.

Since projectile stability becomes more severe the higher
the platform velocity, it was decided to examine the trajectory
of the projectile fired from an aircraft flying at an airspeed of
600 knots and at several altitudes. In Figures 52 through 55,
the reciprocal of the gyroscopic stability factor is plotted
versus the damping stability factor for launchings from an
aircraft having an airspeed of 600 knots and altitudes, respectively,
of 15,000, 10,000, 5,000 and 500 feet. Certain conclusions
about projectile stabii~ty may now be drawn from these figures.

In Figure 52 it will be noted that the projectile remains
gyroscopically stable throughout the entire flight. This conclusion
was made on the basis of Figures 50 and 51. More significantly,
the dynamic stability factor decreases steadily with diminishing
flight speed. Thus, an error made in the location of Sd due to

scatter is not too serious as the damping stability factor decreases
steadily through the flight. In comparing Figures 52 through 55
it will be noted that stability becomes more critical at the
lower altitudes, not only gyroscopic stability, as pointed out
earlier, but damping stability as well. It is interesting to note
that at 15,000 feet the unstable conditions are encountered at
between six to seven seconds after firing and around 13,000 feet
downrange. By contrast, at 500 feet instability is encountered
at less than four seconds and at a downrange distance of about
7500 feet. In both extremes, projectile velocities are comparable
at the onset of instability.

Since the projectile under consideration is general purpose,
is was decided to examine its stability under conditions of
horizontal firing from a stationary platform and a 45-degree
firing from the ground. From the stationary platform the instability
is encountered at less than three seconds and about 5,000 feet down-
range. For ground firing at 45 degrees, the instability occurs
at an altitude and range both of about 3500 feet (see Figs. (56)
and (57), respectively).

CONCLUSIONS

This report has presented aerodynamic data on the U. S. Navy's
general purpose 20-millimeter projectile. The data were obtained
in both a pressurized aeroballistics range and in a supersonic
wind tunnel. A computer analysis was carried out to determine
the stability of the projectile under several operational
situations. It may be concluded that the projectile is both
gyroscopically and dynamically stable under all conditions

29
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examined. Gyroscopic stability becomes lessened with decreasing
altitude and temperature and increasing platform velocity. The
dynamic stability decreases with decreasing altitude, although
it is relatively insensitive to platform velocity.

In addition to the above computer stability analysis,
attempts were made to calculate the normal-force and pitching-
moment derivatives, CN and.Cm , respectively, using Wood's

a a
semiempirical method. The agreement is considered only fair.
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TABLE I
PROGRAM FOR CALCULATION OF NORMAL FORCE AND PITCHING MOMENT DERIVATIVES FOR A SHELL

100 REM THIS PROGRA2M CALCULATES NORMAL Flas CE AND PITCHING MOMENT
110 REM DERIVATIVES ANO CENTER OF PxESSURE FOK A SHELL.
120 REM THIS IS A SEMI-EMPIRICAL METHOD BASEU UPON BRL854
130 REM Cl IS TIE NORMAL FORCE DEt<IVATIVE
140 REM C2 IS THE PITCHING MOM1ENT UEKIVATIVE ABOUT THE BASE
150 REM C3 IS THE PITCHING M3MEN'T AbOUT THE CENrE, OF GIRAVITY
160 REM S IS THE STATIC MARGIN
170 REM CO IS THE CENTER OF PRESSURE IN CALItES FR0m THE NOSE
180 REM R IS THE FINENESS RATIO ,BODY VOLUME/(K EF. AhEAXUIAMETEN)
190 REM G IS THE LOCATION OF THE CG FRO'1 THE 6ASE
200 REM L IS THE LENGTH OF THE BODY IN CALIBERS
210 REM T IS THE CENTER OF PkESSURE AFT OF THE VEz'TEX (IN CAL.)
220 REM A) IS THE RATIO OF EFFECTIVE 80ATrAIL CROSSECTIONAL AREA
230 REM TO REFERENCE AREAp(AB+AR)/2*Ar wHEgE AB IS 80ATTAIL ArEA
240 REM AND AR IS THE REFFEkENCE AREA
250 FOR I = I TO 15
260 READ M
270 LET R = 3.83148
280 LET L = 4.9
290 LET Al =1
300 LET N0=.14331
310 LET NI=-9.32777E-2
320 LET N2=.453401
330 LET N3=.581451
340 LET N4=-4.97 192
350 LET N5=6.97863
360 LET N6=-3o80723
370 LET N7=.736042
380 LET MO=.192947
390 LET Ml=-.112361
400 LET M2=.872645
410 LET"M3=-2.37587
420 LET M4=1.33114
430 LET M5=.924154
440 LET M6=-1.07323
450 LET M7=.263S8
460 LET G=2.21
470 IF M>l THEN 510
480 LET F1 = I
490 LET F2 = 1
500 GOTO 580
510 LET N = SOR((Mt2)-1)/R
520 LET FI=NO+NI*N+N2*(Nt2)+N3*Nt3)+N4*(Nt4)+NS5(Nt 5)
530 LET FI=F+N6*(Nt6)+N7*(Nt7)
540 LET F2=MO+Ml*N+M2*(Nt2)+M3*(Nt3)+M4*(Nt4)+M5*(N?5)
550 LET F2=F2+M6*(Nt6)+M7*(N?7)
560 LET Fl FI*SOR((Mt2)-I)+I
570 LET F2 = (F2)*SQR((Mt2)-I)+I
580 LET Cl (2*Al+.5)*Fl
590 LET C2=2*R*F2
600 LET C=C2/C1
610 LET T = L -C
620 LET S=C-G
630 LET C3=CI*S
640 IF I>l THEN 670
650 PRINT "PITCH*MOM."p "NOR.FORCE" "STAr. MAR<. "p "G.P.","MACH NO."
660 PRINT
670 PRINT G31C1,SPTPM
680 NEXT I
690 DATA *4.,1. l.2,1.5,1.75,2,2.5,33.5
700 END
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Table 2

CORRESPONDENCE BETWEEN COMPUTER AND PROBLEM VARIABLES

Computer Problem

Variable Variable Definition

A CD drag coefficient, current value

2Al D drag, CDPSV /2

A(Z) -- drag coefficient array

B Cm  pitching-moment derivative, current value
ma

B(Z) pitching-moment array

C C + C damping-in-pitch derivative, current value
m In.q

C(Z) damping-in-pitch derivati.ve array

D CN normal-force derivative

Dl variable used in Runge Kutta

D2 -- variable used in Runge Kutta

D5 d diameter of projectile, reference length
(feet)

D(Z) -- normal-force derivative array

E C Z damping-in-roll derivative
p

El -- variable used in Runge Kutta

E2 -- variable used in Runge Kutta

E5 -- exponential part of Pd/2V formula

E(Z) -- damping-in-roll derivative array

F C Magnus moment derivativen
pa

F(Z) -- Magnus moment derivative array

G -- counter

G5 -- switching variable

H -- step size

I -- counter

Ii I axial moment of inertia (slug-ft2

xx

12 I transverse moment of inertia (slug-ft2

yy
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Table 2 (Cont'd)

Computei Problem
Variable Variable Definition

J -- index variable

K1 variable used in Runge Kutta

K2 -- variable used in Runge Kutta

K3 -- variable used in Runge Kutta

K4 -- vaiiable used in Runge Kutta

K6 md2  mass times reference length squared
2(slug-ft

Ll -- variable used in Runge Kutta

L2 -- variable used in Runge Kutta

L3 -- variable used in Runge Kutta

L4 -- variable used in Runge Kutta

M -- Mach number

Ml -- variable used in Runge Kutta

M2 '-- variable used in Runge Kutta

M3 -- variable used in Runge Kutta

M4 -- variable used in Runge Kutta

M(Z) -- Mach number array

N -- print-out frequency

Nl -- variable used in Runge Kutta

N2 -- variable used in Runge Kutta

N3 -- variable used in Runge Kutta

N4 -- variable used in Runge Kutta

0 initial flight path angle in degrees

P Y dy/dt velocity in vertical direction
Y in ft/sec

PO -- variable used in Runge Kutta

P1 -- dP/dt, P, dVy/dt

P5 p current value of spin rate in rad/sec

P7 -- nonexponential part of pd/2V formula

P8 pd/2V current value of pd/2V

Q V dx/dt, velocity in horizontal direction
X in ft/sec
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Table 2 (Cont'd)

Computer Problem
Variable Variable Definition

QO variable used in Runge Kutta

Q1 -- dQ/dt, Q, dVk/dt

Q5 Vxo previous value of Vx in ft/sec

R p density slugs/ft3

S S reference area wd2/4 in ft2

Sl Sg gyroscopic stability factor

S2 Sd dynamic stability factor

S3 6Y yaw angle of repose in rad

T t time in seconds

TO variable used in Runge Kutta

T5 to initial time in seconds

V v velocity of projectile relative to
inertial space

VO velocity of platform relative to
inertial space

Vl -- muzzle velocity
2 2V2 v2  total velocity squared in ft /sec

V5 vo previous value of V in ft/sec

W m mass of projectile in slugs

X x horizontal distance in feet

XO -- variable used in Runge Kutta

Xl dx/dt horizontal velocity

X5 Xo previous value of X in feet
Y y vertical distance in feet

YO -- variable used in Runge Kutta

Yl dy/dt vertical velocity

Z -- index variable

Z9 -- table length
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TABLE 3
BASIC PROGRAM FOR THE CALCULATION OF PROJECTILE STABILITY

0O0 REM THE PURPOSE OF THIS PROGRAM IS TO OBTAIN THE STABILITY
110 REM OF A PROJECTILE IN TERMS OF THE RECIPROCAL OF THE
120 REM GYROSCOPIC STABILITY FACTOR AND THE DAMPING STABILITY
130 REM FACTOR. THE FOLLOWING IS A LISTING OF THE REQUIRED
140 REM INPUTS TO THIS PROGRAM.
ISO REM T5 IS THE INITIAL TIME(SECONDS)
160 REM XO IS THE INITIAL H3RIZONTAL DISPLACEMENT(FEET)
170 REM YO IS THE INITIAL VERTICAL DISPLACEMENT(FEET)
180 REM V IS THE VEL. OF PROJ. REL. TO INEKI*IAL SPACE(Ff/SEC.)
190 REM VO 13 THE PLATFORM VELOCITY rEL. TO INERT. SPACE (FT/SEC)
200 REM Vi IS 7HE PROJECTILE MUZZLE VELOCITY )FT/SEC)
210 REM 0 IS THE INITIAL FLIGHT PATH ANGLE(UEGxEES)
220 REM H IS PROGRAM PARAMETER TO CON'TROL INT. STEP SIZE(SEC.)
230 REM N IS PROGRAM PARAMETER TO CONTROL PRINT-OUT FREOUENCY
240 REM (INTEGER MULTIPLE OF H)
250 REM W IS THE MASS OF THE PROJECTILE (SLUGS)
260 REM D5 IS THE DIAMETER OF THE PROJECTILE(FEET)
270 REM II IS THE AXIAL MOMENT OF INERTIA(SLUG-FT SU.)
280 REM 12 IS THE TRANSVERSE MOMENT OF INERTIA (SLUG-FT SU.)
290 REM Z9 IS AN INTEGER INDICATING THE LENGTH OF THE TABLES
300 REM (NUMBER OF MACH NUMBER ENTRIES-MAXIMUM NO. IS 10)
310 REM THE TABLES ARE SUPPLIED PER LINE AS FOLLOWS:
320 REM M(J) IS THE MACH NUMBER
330 REM A(J) IS THE DRAG COEFFICIENT,CD
340 REM B(J) IS THE PITCH. MOMENT DERIVATIVE, CMA
350 REM C(J) IS THE DAMPING-IN-PITCH DERIVA'TIVECMO+CMA
360 REM D(J) IS THE NORMAL FORCE DERIVATIVEPCNA
370 REM E(J) IS THE DAMPING-IN-ROLL DERIVATIVECLP
380 REM F(J) IS THE MAGNUS DERIVATIVECMPA
390 PRINT " PROJECTILE STABILITY PROGRAM"
400 PRINT
410 READ T5, XOYO VOViOHN
420 LET V = VO + VI
430 READ W,DS,11,I2,P5
440 DIM M(lO), A(lO), 8(1O), C(10), D(10),E(l0), F(10)
450 READ Z9
460 PRINT "COEFFICIENT TABLE"
470 PRINT " M A B C D E F"
480 FOR J=l TO Z9
490 READ M(J), A(J), B(J), C(J), D(J), E(J)p F(J)
500 PRINT M(J);A(J);B(J);C(J);D(J);E(J);F(J)
510 NEXT J
520 LET Z=I
530 LET S=(3.14159*D5t2)/4
540 LET PO=V*SIN(0/57.296)
550 LET 00=V*COS(O/57.296)
560 LET K6=C(*([)5t2))
570 LET TO=T5
580 PRINT
590 PRINT "FOR H ="H;"N ='N
600 PRINT
610 PRINT
620 PRI NT "TI ME", "X', "Y", "V, pt
630 PRINT
640 PRINT "I /SG", "SD", "YAW OF REPOSE", "PD/2V", "MACH"
650 PRINT
660 PRINT
670 PRINT "INTITIAL CONDITONS:"
680 PRINT
690 LET T=TO
700 LET TO=T5
710 LET X=XO
720 LET Y=YO
730 LET 0Q0
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(CONT'D)

740 LET P:PO
750 LET X5=X
760 LE'f U5=U
770 LEr V5=V
780 GOSUB 1620
790 LET G5=O
800 LET G=O
810 LEr I = N
820 LET G=G+1
830 IF G5=O THEN 1400
B-10 LET G5=1
850 GOSUB 1560
860 LET KI1YI*H
870 LET NI=XI*H
880 GOSUB 1590
890 LET LI=PI*H
900 LET MI=01*H
910 LET T=TO+H/2
920 LET Y=YO+KI/2
930 LET X=XO+NI/2
940 LET P=PO+LI/2
950 LET 0=0+MIi/2
960 GOSUB 1560
970 LET X2=Yl*H
980 LET N2=XI*H
990 GOSUB 1590
1000 LET L2=PI*H
1010 LET M2=01*H
1020 LET Y=YO+K2/2
1030 LET X=XO+N2/2
1040 LET P=PO+L2/2
i050 LET G=OO+M2/2
1060 GOSUB 1560
1070 LET K3=YI*H
1080 LET N3=XI*H
1090 GOSUB 1590
1100 LET L3=PI*H
1110 LET M3=01*ff
120 LET T=TO+H
1130 LET Y=YO+K3
1140 LET X=XO+N3
1150 LET P=PO+L3
1160 LET 0=UO+M3
1370 GOSUB 1560
1180 LET K4=YI*H
1190 LET N4=XI*H
1200 GOSUB 1590
1210 LET L4=PI*H
1220 LET M4=01*H
1230 LET DI=(KI+K4)/6+(K2+K3)/3
1240 LET EI=(NI+N4)/6+(N2+N3)/3
1250 LET D2=(LI+L4)/6+(L2+L3)/3
1260 LET E2=(MI+M4)/6+(M2+M3)/3
1270 LET YO=YO+D!
1280 LET XO=XO+Ei
1250 LET PO=PO+D2
1300 LET 00=00+E2
1310 LET TO=r5+H*G
1320 LET T=TO
1330 LET Y=YO
1340 LET X=XO
1350 LET P=PO
1360 LET 0=00
1370 GOSUB 1620
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(CONT 'D)
1380 IF Y-~0 THEN 1400
1390 IF G<I THEN 820
1400 LET B=B(Z)+((B(Z+1)-BCZ))*CM-M(Z) ))/(,4'Z+1)-MCZ))
1410 LETC=Z)CC(+I)CZ)*M(Z))/M.+1-a)
1420 LET D=D(Z)+((D(Z+1 )-D(Z))*(M-ICZ) ))/(MCZ-1)-MZ)-)
1430 LETFF()(((+1F())(-1L))((1)MZ)
1440 LET S1=(2*(11t2)*(P5t2))/(I2*3.1416*R*(D5?3)*(Vt2)*8)
1450 LET 81=1/Sl
1460 LET S2=(2*(D-At.-.4(K6/11)*F))/(D-(2*A)-.5*(K6/12)*C)
1470 LET S3=(11*P5*64.348*C0/V))/(R*S*D5*(Vt3)*8)
1480 PRINT TXY.,V,*PS
1490 PRINT S1,S2pS3jP8.,M
1500 PRINT
1510 PRINT
1520 IF Y-=0 THEN 2030
1530 IF 65=0 THEN 840
1540 LET I = I + N
1550 GOTO 820
1560 LET Xl=0
1570 LET YI=P
1580 RETURN
1590 LET Pl=-C(AI)/(W~*V))*P-32*174
1600 LET U1=-CUA1)/CW*V))*0
1610 RETURN
1620 LET V2=P*P+u*0
1630 LET V=SOR(V2)
1640 IF Y<36500 THEN 1670
1650 LET M=V/971
1660 GO TO 1680
1670 LET -M=V/(1I17-.0042*Y)
1680 IF %I<=M(Z+1) THEN 1720
1690 LET 'L:Z+l
1700 IF Z> Z9 THEN 1880
1710 GO TO 1680
1720 IF M>=N(Z) THEN 1760
1730 LET Z=Z-1
1740 IF Z<I THEN 1880
1750 GO TO 1720
1760 LET A=A(Z)+((A(Z+1)-A(Z) )*(M-M(Z)))/( M(L+1)-M(Z))
1770 LET R=.002377*EXP(-.31582E-4*Y)
1780 LET A1=(A*S*R*V2)/2
1790 LET E=E(Z)+((E(Z+1)-E(Z))*(M-M(Z) ))/(M(L+1)-M(Z))
1800 LET P7=(P5*V)/VS
1810 LET E5=EXP((V/05)*((UR*S)/(2*W))*((X6/I 1)*.5*E+A)*(X-XS)))
1820 LET P5=P7*E5
1830 LET PB=(P5*D5)/(2*V)
1840 LET XS=X
1850 LET 05=0
1860 LET VS=V
1870 RETURN
1880 PRINT "ERROR MACH NO. ="M" NOT IN DAFA"
1890 DATA 0,p0p1000p1010p2700p0
1900 D)ATA .1P10
1910 DATA -0100578,,.06562j,.5283E-5.,.601331E-4iI0285
3920 DATA 10
1930 DATA 0p.25p2#.i-22.5s1.-.044,--1
1940 DATA .8'.27S.-2.84P-22.Sp2.19p-.039,--.76
1950 DATA 1o.435p2.98j--22.5,,2.429 -.037b),-.45
1960 DATA I *1,.#515,3.06,-22.S,2.52,-.-037,-.2
1970 DATA 1.2i.523j,3.09*-22.5p2.63,-.0365,.15
1980 DATA 1.5,.5,-3.13,-22.S,2.9,#-.031j45,75
3990 D)ATA 2.,.412,2.92,-22.,3.22,--.0315S,15
2000 DATA 2.5,.-33p2.48*-22.s3.-.0285P1.2
2010 DATA 3j,.285,1.88,*-22.5,3.4,--.025P1.3
2020 DATA 5,.275,1.88,-22.5,3.,-.025P1.35
2O3OEND
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TABLE 4 SAMPLE OUTPUT FROM BASIC STABILITY PROGRAM
5 t,J tGr ILE [.£ bb ul LY PfLEGi<Al

A L) E F
0 .'b 2.! -,2.5 I -. 04 . -l

.2/5 2.4 -22.5 2.19 -. 039 -. 76
I .4,35 2.98i -22.5 2.42 -. 0375 -. 45
1 .1 .515 3.06 -22.5 2.52 -.037 -.2
1.2 .523 3.09 -22.b 2.63 -. 0365 . 15
1.5 .5 3.13 -22-5 2.9 -.0345 .75
2 .11 '.92 -22.5 3.22 -- 0315 1.15
2.5 .,33 2,4t -2.5 3.5 -. 0265 1.2
2.5 .33 .5.0 -2.5 3.4 -.025 1.3
S .275 I. i -22.5 3.4 -.025 1.35

FJ:<, 31 = .I Nq = 10

r I E y

I/SG Si) YA-: OF i EVJ$E r'V/2V .MCH

I I I l AL G.)NDII F3 S:

0 U 1000 3710 10285
.53q756 1.55077 7.12572E-5 9.09571E-2 3.3339J

1. 3086-0 985.713 2560.05 9033.62
•469929 1/4607 1•34782E-4 .115776 2.30043

2. 5240.29 948.669 1800.31 8129.82
.333251 1.17706 3.00232E-4 .148163 1.6175

3. 6761.7-7 894.5'37 1326.18 7445.86
.216.24 • 5317,75$ 6 .'1470.6E- 4 .184213 1.19127

4. 7958.41 824.715 1063.04 6898.39
.I5504, -. 0,13,30, .28484.E-3 .212915 .95465

5. 194/.59 736.226 929.799 64$l.
-130026 -. 198919 I. 462E-3 .-228696 .d34718

6 9823.76 626.746 846.664 6150.03
-119228 -.27014.7 2.33566E-3 .233,327 .7z)9771

7. 10625.8 496.031 780.785 5875.64
.11054 -.305903 2.8/106E-3 .246913 .700308

8. 11363.2 345.051 "26.424 5644.65
• 1031. -. 33571. 3.36913E-3 .254.949 •65118

12045.2 174379 681-208 ! q 51 •
).7/169E-2 -.361018 3.90519E-3 .262545 .610255

10. 12679.2 -15.2999 643.423 5290.76
).23195E-- -.38i2419 4.43269E-3 .269791 .575995
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GAGE IN COMPRESSION

GAGE IN TENSION

FIG. 6 MAGNUS BRIDGE UNDER YAW MOMENT
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