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EXPEST OPINION ABOUT UNCERTAINTY 

Barbara Ann Heinrich 

In order to make an optimal decision in the face of uncertainty, 

moat decision-making models require that the decision-maker have 

two types of information; estimates of the probabilities of the 

alternatives involved and estimates of the worths of the alternatives. 

The more accurate these estimates are, the greater the probability 

that an optimal decision will be made. Calling on experts to give 

their opinions is one way of obtaining more accurate estimates of 

the probabilities and worths involved. The decision-maker can then 

use the opinions of the experts to arrive at a final decision, or, 

in fact, can have the expert make the decision for him. 

PROBABILITY, WORTH, AND EXPECTED VALUE 

The estimates given by the expert can be defived from either 

objective or subjective information. Probability estimates based 

on relative frequencies or the logical constraints of a situation 

are considered to be objective. Probability estimates based on the 

personal opinion of an individual are considered to be subjective. 

The same may be said for estimates of worth. Some estimates of the 

worths of alternatives can be expressed in terms of dollars and cents 

(l.e. monetary value), while other estimates can only be expressed in 

terms of subjective feelings (l.e. utility). In many cases an optimal 

decision simply requires the decision-maker to appropriately combine 

probability and worth and choose the most favorable alternative. 

Mathematically the most favorable alternative is that alternative 

which has the highest expected value. Since each alternative has 

to have two or more possible outcomes, the expected value for any 
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given alternative can be calculated by simply multiplying the 

probabilities of each possible outcome of that alternative by 

their worths and summing these values. (For a discussion of the 

various types of expected value models, i.e. EV, EU, SEV, and SEU, 

see Edwards, 1955). In the opinion of some theorists, maximizing 

expected value is the fundamental principle of rational behavior 

(e.g. Good, 1952). This principle has actually been used in many 

areas of applied decision-making such as medical diagnosis and 

weather forecasting. Thus the expert, knowing the probabilities and 

worths of the alternatives involved can make an optimal decision in 

the face of uncertainty by maximizing his expected value. 

If an expert must have knowledge of the prababilities and worths 

Involved in order to maximize his expected value, then these entities 

must be quantifiable, especially in cases where the expert gives his 

knowledge to the decision-maker rather than making the final decision 

himself. Of course objective probabilities and monetary values are 

readily quantifiable. But experts usually do not have objective 

probabilities and values available to them. Thus they must use their 

own subjective estimates. It will be shown shortly that subjective 

probabilities can be measured and quantified and are often quite 

accurate. Although I realize that value and utility estimates are 

also Important to the expert in making a final decision, they will 

not be discussed in this paper. For an extended discussion of 

utility, etc., the reader can consult Parts I and II of Edwards and 

T versky (1967). 

MEASUREMENT OF SUBJECTIVE PROBABILITIES 

Two methods have been used to infer an individual's subjective 

probabilities. The first method Involves having an individual make 
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choices among bets. His subjective probabilities are then Inferred 

from his betting behavior on the assumption that he is trying to 

maximise his expected value (e.g. Preston and Baratta, 19^8: Beach 

and Phillips, 1967; Beach and Wise, 1969). The second, less involved 

method consists of simply asking the individual for verbal estimates 

of his subjective probabilities (e.g. Attneave, 1953; Beach, 1966; 

Beach and Wise, 1969). Accuracy of subjective probabilities can be 

determined by comparing an individual's subjective estimates or 

inferred probabilities with the objective probabilities of the events 

which he experienced. Both methods, bets and verbal estimates, have 

shown that individuals frequently are quite accurate at estimating 

probabilities, depending upon their experience with the events in 

question. They tend to be slightly conservative In their estimates 

(l.e. they over-estimate low probabilities and under-estimate high 

probabilities). 

Beach and Phillips (196?) and Beach and Wise (1969) have also 

shown that subjective probabilities inferred from choices among bets 

and those estimated by individuals are practically equivalent to 

each other. However, estimated subjective probabilities appear to 

correlate slightly higher with objective probabilities than inferred 

subjective probabilities. This is fortunate since in most applied 

decision-making situations the expert is simply asked to give 

probability estimates. Choosing among bets can be a time-consuming 

and costly venture for any expert and therefore is the less preferred 

method for obtaining subjective probabilities in applied decision¬ 

making. 

While all of this research shows that individuals are accurate 

in estimating subjective probabilities, there is still the problem 
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of determining Juet Mho ia an expert or good probability oaaesaor. 

Winkler (1967a) and Winkler and Murphy (1968) auggest two atandarda 

of "goodness" which could be used to evaluate a probability assessor: 

normative and substantive. Normative means that the expert can make 

his probability assessment correspond to his Judgements. Substantive 

means that the expert's probability assessments correspond to something 

in reality. For example, suppose individual A predicts a .20 chance 

of rain tomorrow while Individual B predicts a .90 chance of rain. 

Tomorrow comes and it rains. Who is the better probability assessor, 

A or B? Substantively speaking, B would be called the better 

probability assessor. However, if both A and B's assessments 

correspond to their own respective Judgements, then normatlvely 

speaking, both are good probability assessors. In fact, if both A 

and B feel that the probability of rain is about .20, then A would 

be the better assessor in terms of normative evaluation. 

Basically this paper will be concerned with the substantive aspect 

of probability assessment since it will be assumed that in most cases 

the expert's assessments will correspond to his Judgements, i.e. he 

is a good normative probability assessor. It should be kept in mind 

that if an individual is not a good substantive probability assessor, 

it may be because his assessments fail to correspond to his Judgements, 

in which case training in statistics, etc., might be helpful. 

CONCEPT OF DIAGNOSIS AND SCOPE OF PAPER 

In a broad sense we might think of an expert as an individual who 

attempts to diagnose an event or situation and determine how likely 

it is that his diagnosis is true. Any expert in a diagnostic situation 

must obtain as much information as possible to aid him in arriving 

at his final diagnosis. Of course, the diagnosticlty of this infor- 

flfrtlon will vary. Highly diagnostic information is data which is highly 
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valuable to the decislon-aaker. That is, it has strong implications 

for the problem being considered. Mildly or weakly diagnostic 

information, while not too valuable as a single datum, can aid the 

decision-maker when several data are considered simultaneously. In this 

paper the final diagnosis will often be referred to as the expert's 

final subjective probability estimate. Just how the expert uses or 

combines this information and arrives at his final subjective probability 

estimate is going to be the focus of this paper. Decision-making by 

experts in three different types of diagnostic situations will be 

explored: Military decision-making, weather forecaating, and medical 

diagnosis. However, before looking into these areas I would like to 

discuss the optimal way for the expert to arrive at his final subjective 

probability or diagnosis. In order to do so, I will first discuss 

probability theory and Bayes' theorem. 

SUBJECTIVE PROBABILITY AND PROBABILITY THEORY 

Since the logic of probability theory is going to be used to 

aid experts in making optimal decisions, it is necessary to show that 

subjective probabilities satisfy the basic axioms of the mathematical 

theory of probability if they are to be used along with the logic of 

probability theory. The basic axioms of the mathematical theory of 

probability are as follows: 

1. A probability is a number which lies between 0 and 1. 

2. The sum of an exhaustive set of mutually exclusive events 

is equal to one. 

T The probability of either of two mutually exclusive events 
occurring is the sum of their individual probabilities. 

4 The probability of two independent events both occurring is 
* the product of their individual probabilities. 

Do subjective probabilities sum to one? The studies are few and 
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tht peaults contradictory. In soma casos the sum has boon found 

to be greater than one; in other cases, less than one. Method¬ 

ological problems often arise In trying to determine If subjective 

probabilities sum to one (Peterson and Beach, 1967). However, In 

applied decision-making this inconsistency can easily be removed 

by normalizing the probabilities or having the expert reassess his 

probabilities In some other manner so that they do sum to one. As 

Winkler (1967a, p. 1114) states, "...assessors can be taught, to a 

certain degree, to Identify and reconcile Inconsistencies. Because 

of this, the fact that people do violate the postulates of coherence 

Q.e.consistency} should not create a serious problem." Thus the 

fact that subjective probabilities may not sum to one need not 

necessarily create serious difficulty for applied decision-makers. 

People are not as inconsistent as one might think. Even if they 

are Inaccurate with respect to assessing the true probability of the 

occurrence of a single event or haring their probabilities sum to 

one, they combine subjective probabilities of two or more events in 

accordance with axioms 3 and 4. Beach and Peterson (1966) have shown 

that estimates of unions of events are equal to the sums of the 

e3timates for the component events. Likewise, Shufori (1959) and 

Peterson, Ulehla, Miller, Bourne, and Stllson (1965) have shown that 

estimates of Joint probabilities closely approximate the products of 

the component events. 

Bayes* Theorem 

Since Individuals use the logic of probability theory In 

arriving at their subjective probability estimates, one might also 

ask if they use the logic of probability theory to modify their 

judgements In the light of new information. Probability theory states 

that: 
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P(AnB) X P(A/B) P ( B) = P (B/A ) P(A) 

That is, the probability of the Joint occurence of both events A and 

B is equal to the conditional probability of A, given that B has 

occurred, times the probability of B, and so on. Prom this it 

follows that: 

P(ApBl P(B/A) PjAj, 
P(Bp = P(B) (1) P(A/B) - 

This is called Bayes' theorem and is considered the optimal way to 

revise one's opinion in the light of new information. If we let A 

stand for any hypothesis (H) and B stand for any datum (D), we can 

rewrite equation (1) in the form: 

(2) P(H/D) 

How Bayes1 Theorem Works. An illustration given by Morris (1968, 

pp. 31-32) will illustrate how Bayes' theorem works. Suppose your 

friend has an ordinary coin and a special die, four sides of which 

are labeled "heads" and the remaining two, "tails". Out of your 

sight, your friend flips the coin and rolls the die and then covers 

one of the objects with a cup. Your task is to guess which object 

is uncovered, the coin or the die. Let Hq stand for the hypothesis 

"the coin is uncovered" and stand for the hypothesis "the die is 

uncovered". Since you would most likely be indifferent about either 

hypothesis, your initial probabilities for Hc and Hd would be 1/2. 

That is, H = Hj = 1/2. Now suppose your friend tells you whether 

the top of the uncovered object is heads or tails. How should this 

influence your opinion about the uncovered object? Let's say he 

says, "Heads is showing." Intuitively you would change yjur opinion 

to favor the die. According to Bayes' theorem, you would also change 
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your opinion to favor the die. Why? If we let "h" stand for the 

report "heads is showing", then it follows that: 

P(h/Hc) = 1/2 and P(h/Hd) = 2/3 

Bayes' theorem prescribes that your revised opinion should be 

P(h/Hd) p(Hd) 

PiHd/h) = -PTE!- 

where P(h) = P(h/H ) P(HC) + P(h/Hd) PUid). Substituting the values 
C w 

given above we get: 

p(H4/h) - fâêS&T mr u^) '4/7 

Thus Bayes' theorem tells you your probability of Hd should rise from 

1/2 to 4/7. Note Bayes' theorem not only gives you the direction 

of your revision, but also the amount of revision you should make 

concerning a particular hypothesis. 

So that it will be easier to talk about Bayes' theorem in non- 

mathematical terms, I would like to simplify its description and 

discuss the use of Bayes' theorem in ratio form. In equation (2), 

P(H) is called the prior or a priori probability. It is the initial 

probability or opinion of an event given no other Information. P(D/H) 

is the probability of a given sample result, observation, or item 

of information (i.e. a piece of data), under the assumption that 

some particular hypothesis is true. It is called the likelihood. 

P(H/D) is called the posterior probability and is the prior probability 

revised after receiving additional information. Note that a posterior 

probability may become a prior probability if additional data becomes 

available. 

Baves' Theorem and the Likelihood Ratio. It has baen suggested 

(Edwards, Lindman, and Savage, 1963» Lusted, 1968) that a particularly 

convenient version of Bayes* theorem for some applications in decision¬ 

making is the odds-likelihood ratio form. That is, suppose you are 
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•ntertainlng two hypotheses, and H2. Bayes' theorem can be 

written for each one: 

PiD/Hi) P(Hi) 
PiHi/D) = -pTdT- (3) 

P(D/H2) P(H2) 
P(H2/D) = PlDl (4) 

Dividing equation (3) by equation (4) we obtain: 

P(Hi/D) = PtD/Hj) X FjHl) (5) 
P(H2/D) P(D/H2) P(H2) 

which is often written as: 

* L <XLq 

where ill = the posterior probability of Hi and H2 in odds, L = 

the likelihood ratio, ándito = the prior probability of Hi and K2 

in odds. According to Edwards (1966a) estimating odds or likelihood 

ratios. P(D/Hi). appears to be easier for most individuals than 
ptü/í&T 

estimating conditional probabilities, P(D/Hi) or P(D/H2), and for 

this reason, equation (6) rather than equation (2) is often used in 

applied decision-making. 

Note that if the likelihood ratio is 1.00, it will have no effect 

on one's opinion and the posterior probability will be the same as 

the prior probability. The more the likelihood ratio differs from 

•Mt the greater the difference between the prior and posterior 

probability. Notice also that as long as P(D/Hi) and P(D/H2) are 

multiplied by a constant, the final odds are not affected. This is 

called the likelihood principle, and it states that all observations 

leading to the same likelihood ratio should lead to the same conclusion. 

Or, as Edwards, Lindman, and Savage (1963) put it, two potential data, 

Di and D2, are of the same import if they lead to the same likelihood 

ratio. 
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Bays1 Theorem as a Model for Human Daclalon-Maklng. Do people 

revise their opinions according to Bayes' theorem? The data indicate 

that in some cases they do (e.g. Peterson, Ulehla, Miller, Bourne, 

and Stilson, 1965; Beach, 1966; Phillips and Edwards, 1966). While 

people's behavior resembles Bayes' theorem, their revised estimates 

are asaally much more conservative than Bayes' theorem would predict 

(Edwards, 1968). It should be pointed out that if an expert's subjective 

probabilities do not always conform to the basic axioms and logic of 

probability theory, including Bayes' theorem, it may be because he 

displays inconsistent behavior in arriving at his final probability 

estimates. Because Individuals are inconsistent at times, this is 

no reason for rejecting Bayes' theorem and probability theory as a 

model for describing human decision-making. As de Finetti states 

(1965» p. 88): "Although it is known that people often do not exhibit 

logical or probabilistic coherence O-«®» consistency], this only makes 

it more important to use probability theory to show them how to avoid 

unnecessary losses due to such inconsistency." 

DECISION-MAKING IN THE REAL WORLD 

Are subjective probabilities and Bayes' theorem adequate models 

of how experts form and revise their opinions? To answer this question, 

three areas of applied decision-making will be examined. Each of these 

areas, military decisior-making, weather forecasting, and medical 

diagnosis, require decisions to be made in the face of uncertainty. 

Information about the states of the world (i.e. the probabilities 

of events) are obtained from experts trained in each of these areas. 

The question then becomes one of how reliable and "expert" their 

opinions are. Before reviewing each of these areas, some general 
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questions that can be asked about the quantification and evaluation 

of expert opinion will be discussed, and laboratory data will be 

summarized. These questions will provide a framework for the sub¬ 

sequent discussion of applied decision-making. 

The Questions 

Basically there are ;»i' questions one can ask about the formation 

and use of expert opini./n. These are: 

1. Is there any economic value in using probability estimates, 
as opposed to categorical statements, in the decision¬ 
making process? 

2. Given that probabilistic statements have some value, should 
probability estimates be objective or subjective? 

3. Should individual or group (i.e. consensus) probability 

estimates be used? 

4. What role should computers play in applied decision-making? 

5 What kinds of data should the expert base his opinion upon, 
and does he use the available data appropriately? 

6. How can individuals be trained to become experts, and how 
can experts improve their own performance? 

The Evidence 

Questions 1. 2. and 3. Questions 1 and 2 cannot be appropriately 

discussed without reference to a specific area of applied decision¬ 

making, so no laboratory evidence will be presented here. As far as 

individual versus consensus estimates are concerned (question 3)» 

Winkler (1967b), in an experiment involving the assessment of 

probabilities for the outcomes of collegiate and NFL football games 

by college students, found consensus estimates to be better than 

individual estimates. Given that consensus probability estimates 

appear to be valuable, question 3 raises such problems as how one 

can best combine the opinion of several experts in the same field 

(e.g. five radiologists) or different fields (e.g. a diagnostic group 

consisting of a radiologist, a surgeon, and an internist). Winkler 
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(1968) has suggested several methods for arriving at a consensus of 

subjective probability distributions or estimates. He divides these 

methods into two general categories: Mathematical approaches and 

behavioral approaches. 

Mathematical approaches. These approaches involve using 

either a weighted-average or combining expert opinions using Bayes' 

theorem. The difficulty with using the weighted-average method lies 

in determining how to weight the experts' opinions. Winkler (1968) 

suggests several ways: Assign equal weights; assign weights according 

to where the expert lies on a ranking scale of "expertness"; assign 

weights according to experts' self-ratings of "expertness"; or assign 

weights based primarily on previous performance of the experts. In 

one study, Winkler (1967b) found little difference between three 

different weighted-average consensus systems. 

The second mathematical method essentially Involves combining a 

group of experts' estimates by having a final decision-maker treat 

each expert's estimate as a datum from a sample, and revising his 

own opinions using Bayes' theorem. 

Behavioral approaches. These approaches involve simply letting 

a group of experts come up with a final probability estimate. This 

can be done using either of twa methods. The first method Involves 

allowing each expert to see the opinions of the remaining experts with¬ 

out actually meeting them. Of course this system will work only if 

repeated reassessments by the experts lead to some sort of convergence 

of opinion. 

The second method allows experts to discuss the issues with each 

other in order to arrive at a final probability estimate. One of the 

difficulties with this method is that the experts may falsify their 

own estimates in the hope of swaying other experts towards their own 
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point of view. Once a group probability estimate has been arrived 

at, the experts might want to reassess their own individual estimates. 

These revised estimates might then be combined mathematically, this 

final estimate being used rather than the group's non-mathematically 

derived opinion. 

Winkler (1968) investigated the use of severa] of these methods. 

Since he had no "correct" opinion, he could not determine which 

method was most accurate. He did find, however, that different mathods 

produced different results. He also found that when the behavioral 

approach is uaed, convergence of opinian does indeed occur. That is, 

the difference between the experts' individual opinions decreased after 

group feedback, with or without contact. 

Question 4. Computers can play a valuable role in applied 

decision-making. A good example of a general man-machina system 

called Probabilistic Information Processing, or PIP for short, is 

given by Edwards (1966b) and Edwards et al. (1968). This system 

appears to be fairly successful and will be described in greater 

detail when military decision-making is discussed. Yntema and Torgerson 

(1961) have also shown that computers can aid man in making decisions. 

Their system takes both probability and worth into account and arrives 

at a final decision by maximizing expected value. 

Question 5. Many issues are implicit in the question of the 

expert's use of data. Some types of data may be more valuable than 

others in helping the expert form accurate subjective probabilities. 

Do experts give these data more weight? And do experts agree on such 

weightings? Stated a little differently, are experts able to dis¬ 

criminate between highly diagnostic and mildly or weakly diagnostic 

data? One way of evaluating this is by comparison of experts' 

estimated likelihood ratios for different data. Alternatively, a 
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multiple regression model (e.g. Beach, 196?) or a non-linear 

configurality model (Hoffman, 1968) could be used to analyse how the 

"better" experts utilize the information available to them. 

A second issue is how information should be presented to an 

expert for anelyeis. Data can be presented all at once (l.e. 

simultaneously) or piece-by-piece (i.e. sequentially). Peterson and 

DuCharme (196?) have found a primacy effect when data are given 

sequentially. Too much data can also create problems. It is well 

known that individuals have difficulty aggregating information when 

the amount of data is increased (e.g. Peterson, Schneider, and Miller, 

1965; Peterson and Swensson, 1968). As we shall see later, in 

applied decision-making, where the amount of data may be considerable, 

use of a PIP-type system (e.g. Edwards, 1966b) is a possible solution 

to this problem. 

A third issue is how much data is needed in order for an expert 

to form his opinion. In some applied decision-making situations, 

data can be expensive and therefore prohibitive. Thus part of the 

skill of the expert lies in knowing when it is appropriate to stop 

obtaining additional data and quantify his opinion. While there is 

some evidence that individuals "purchase" information optimally, 

(e.g. Edwards and Slovic, 1965), other research has shown that individuals, 

instead of purchasing an optimal amount of information, tend to purchase 

too much or too little information (e.g. Pitz, 1968; Pitz, Reinhold, 

and Geller, I969), depending upon the exact nature of the task 

presented to them. Pried and Peterson (1969) have also found that 

while individuals do a near optimal Job of purchasing information in 

a fixed stopping condition (i.e. where the individual has to decide 

prior to purchasing how much information he wishes to buy), they tend 

to purchase too little information in an optional stopping condition 
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(i.e. where the Individual decides after receiving a piece of 

Information if he wants to buy more information). 

Question 6. The last question concerns the training of naive 

individuals to become experts and the improvement of the performance 

of existing experts, given that they are performing sub-optimally. This 

is intimately tied up with questions 3, 4, and 5, and leads us to a whole 

series of issues. There is the issue of whether an expert sh>uld be 

an expert in statistics, in his field of interest, or both. There is 

some evidence that training in statistical concepts leads to better 

performance (e.g. Wheeler and Beach, 1968; Peterson, DuCharme, and 

Edwards, 1968). Winkler (1967b) showed that being an expert in one's 

own field helps. He found that sportswriters were better than 

college students at predicting scores of football games. Evaluation 

scores and giving payoffs for good performance may be used to aid the 

expert in giving good unbiased estimates (e.g. Phillips and Edwards, 

1966; Winkler and Murphy, 1968). 

Another issue lies in whether there is a need for developing 

prior probabilities in experts and experts-to-be. Prior probabilities 

are important if very little new data is forthcoming. However, if 

there is a great deal of new data, prior probabilities become relatively 

unimportant. Edwards, Lindman, and Savage (1963) have mentioned that 

if several individuals were to start with completely different prior 

probabilities about the same hypothesis and were all given a great 

deal of additional data, they would all end up with very similar final 

posterior probabilities. However, no psychological data on this 

argument seem to exist. With respect to training potential experts, the 

recent development of computer simulation training techniques, which 

can teach students prior and likelihood probabilities, may prove 

valuable, but little has been done in this direction. 
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Laboratory Versus Real World Daclslon-Maklng 

Now that the questions have been raised, discussed, and answered to 

the extent that there is relevant laboratory evidence, let us look 

at what is going on in the real world. It ahould be kept in mind that 

laboratory studies on Bayesian decision-making have been concerned with 

modifying Bayes' theorem, the optimal model for making decisions, to 

make it descriptive of how human beings actually make decision«. 

Laboratory experimenters have been primarily interested in finding out 

if information processing by human beings resembles Bayesian logic. 

They have relied upon very abstract tasks to test their hypotheses. 

These tasks typically Involve having an individual try to determine from 

which of two well-defined populations (e.g. two urns filled with poker 

chips) a given sample of events (i.e. poker chips) has been selected. 

Por example, urn A may contain 70 red chips and 30 blue chips while 

urn B may contain 70 blue chips and 30 red chips. An urn is randomly 

selected by the experimenter and a sample of "x" chips is drawn. 

The individual, ignorant of which urn has been selected, is shown the 

«anple and is asked to state the probability that the sample was drawn 

from urn A or urn B. 

In applied situations, such as the ones we are about to discuss, 

the "experimenters" are concerned more with producing optimal results; 

that is, in using Bayesian logic to help people make optimal decisions. 

If an expert does not perform optimally according to Bayes' theorem, 

the experimenter will do what he can to help the expert perform optimally. 

It should also be remembered that optimal performance does not mean 

"always being right" but rather maximizing one's expected value over 

a long period of time. Not all of the questions that have been raised 

above have answers in the real world. Part of this is due to the fact 

that many companies, professions, etc., are not strongly pressed to do 
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research and report their techniques in existing Journals. Fortunately 

there are three areas in the real world for which there are considerable 

data available. These three areas will be reviewed in the following 

order: Military decision-making, weather forecasting, and medical 

diagnosis. 

MILITARY DECISION-MAKING AND PIP SYSTEMS 

Economic Value (Question 1) 

While the exact procedures used in much military decision-making 

are uaavailable because they are classified, there is a rather large 

body of literature concerning military decision-making from simulation 

studies performed in the laboratory. There is no doubt that there is 

much to be gained from optimal military decision-making. Money and lives 

can be saved by determining which of several strategies the enemy may 

be using, or determining if a radar signal received symbolizes a friend, 

an enemy, or something else. Given a certain number of fighter jets, 

one may want to determine how to schedule their missions so as to get 

maximum benefit from them in the shortest amount of time. 

Basic PIP System (Question ±1 
Since men are conservative information processors (Edwards, 

Lindman, and Phillips, 1965; Phillips and Edwards, 1966; Schum and 

Martin, 1968), the problem arises of how to aid them in making more 

nearly optimal decisions. Edwards (1966b) has suggested having experts 

estimate P(D/H) rather than P(H/D), and letting a computer aggregate 

the P(D/H) estimates to come up with a final posterior probability 

estimate. This type of a system is called a Probabilistic Information 

Processing system, or PIP for short. A general diagram of how such a 

system might work for the military is given in figure 1. Briefly, a 

list of all the available hypotheses (e.g. Russia is about to attack 
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China) and their prior probabilities, P(H), are established. Information 

coming Into the system Is then filtered and interpreted by experts 

specifically trained for this task. This data is then passed on to 

experts who have been trained to make likelihood estimations, P(D/H), 

for these data. These P(D/H)'s are then processed by a computer using 

Bayes' theorem. A display of the final posterior probabilities, P(H/D) 

over all given hypotheses (H), is then made available to the decision¬ 

maker to aid him in making his final decision. 

Comparison of Various Decision-Making Systems (Questions 4 and 

Independent Data. Most simulation studies of military decision¬ 

making, using independent data, have compared a PIP system with other 

decision-making systems. Edwards compared four information processing 

systems in a large scale simulation study with a political-military 

setting (Edwards, 1966b; Edwards et al#, 1968). Subjects well-trained 

in the history of a "world of 1975", which supposedly consisted of six 

major nations, were asked to make inferences about six predetermined 

hypotheses (e.g. Russia is about to attack the UAR; Peace will prevail) 

on the basis of information received from three sources: radar, 

reconnaissance satellites, and intelligence. These "experts" were given 

sixty items of information, one at a time. After seeing each item, the 

experts were asked to make one of a number of types of probability 

inference, depending upon which type of information processing system 

was being investigated: 

1 PIP experts were asked to estimate likelihood ratios, always 
comparing one of five war hypotheses with the sixth hypothesis 

which was always "peace will prevail". 

2 POP experts were asked to estimate posterior odds, always 
comparing one of five war hypotheses with the sixth hypothesis 
which was always "peace will prevail". 

1 PEP experts, who would be penalized if the data turned out to 
Tavor a war hypothesis, were asked to decide on a fair price 
for an insurance policy that would pay the penalty for them. 
There was no penalty for peace. This system was assumed to 
resemble decision-making in the military as it exists today. 
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PUP expert« simply ware asked to estimate 
probabilitleg for each hypothesis, rather than postatior 
odds. 

Results showed that while all four systems gave very similar 

qualitative results (i.e. all favored the same hypothesis, r - .85), 

quantitatively, the PIP system was superior to POP, PEP, and PUP. 

That is, PIP extracted much more certainty from the data and favored 

the appropriate hypothesis earlier in the data sequence than the other 

systems did. Por example, when PUP final odds were 1:5, PIP’* 

1:32.8; when PEP final odds were 1:5, PIP'a were 1:35.3; and when 

POP final odds were 1:5, PIP's "«re 1:12.4. Edwards also found that 

if PIP experts are given feedback about the current posterior probabilities 

for each hypothesis, their performance was impaired, possibly because 

the experts were being swayed in the direction of estimating P(H/D) 

and not P(D/H). Thus feedback may not be desirable in a PIP system, 

as the question mark in figure 1 Indicates. 

Kaplan and Newman (1966) also compared a PIP system (>.e. men 

estimate P(D/H)J with a POP system [i.e. men estimate P(H/d3 by 

having "experts" try to detect an enemy's strategy by observing bombs 

falling on certain targets. They performed three different 

experiments. In the first experiment, they varied the certainty of 

the data and no feedback was given. They found the PIP system to be 

more efficient in that it gave higher posterior probabilities for the 

correct hypothesis, amd reached an asymptote at a faster rate. They 

also found that as data became less diagnostic (i.e. the difficulty 

of the task increased), POP performance was reduced while PIP 

performance remained unaffected. In their second experiment, they added 

both an information purchasing system and a feedback system. The 

result of this change was to show no difference in PIP or POP 

performance. Both systems performed very poorly. That there was 
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no difference may be due to the fact that the task was too difficult; 

also the feedback system nay have turned the PIP task into a POP 

task. Their final experiment again showed PIP to be superior to 

POPj but this difference in performance decreased as the amount of 

information given to the experts increased. In all three experiments 

both PIP and POP were inferior to ideal performance (i.e. these 

experimenters had objective P(D/H)'s which, when put into Bayes' 

theorem, gave optimal posterior probabilities). 

Schum and his associates have done a considerable amount of 

research in military decision-making. Briggs and Schum (1965) found 

a PIP system to be better than a POP system. However, as they 

decreased the fidelity (i.e. diagnosticity) of the data, they found 

the POP system to be better except when fidelity was very low, in 

which case the PIP system did better. This is contrary to the 

findings of Kaplan and Newman mentioned earlier. However, feedback 

was always given by Briggs and Schum, so this may be part of the 

reason why their PIP system showed poor performance. 

Dependent Data. In all of the experiments discussed so far, all 

items of data received by the experts were independent of each 

other. Schum was also interested in seeing if subjects would be 

sensitive to items of data that were dependent, or what he calls 

conditionally nonindependent data. For example, suppose one has two 

items of data, Di and D2. The problem is to determine the probability 

of a hypothesis (H) given and D2. If the two data are dependent, 

the estimate of P(H) may be greater than it would be if the two data 

were independent of each other. By hiving subjects estimate P(H/D)'s 

in a military diagnostic situation when given information about 

conditional nonindependencies, Schum (1965) has shown men are capable 

of taking these dependencies into account. In fact, when compared 
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to optimal performance (i.e. Bayes' theorem for conditionally 

nonindependent data), Schum found little conservatism. Schum (1966) 

has also shown that when the amount of available information increases, 

whether dependent or independent, prior probabilities become 

relatively unimportant. 

Different Evaluation Techniques. Schura (1967a) has discussed 

several ways of evaluating probabilistic information processing systems. 

Pour evaluative measures have generally been used by investigators 

in this area and these measures all have their good and bad points 

(Schum, 1967a). One can compare different information processing 

systems in the following ways: 

1. Number of times the correct hypothesis is chosen. 

2. Magnitude of the final posterior probabilities. 

3. Accuracy Hatio (AR) - ratio of the system's log likelihood 
estimates to optimal log likelihood estimates as given by 
Bayes' theorem. 

4. Difference Measure (DM) - difference between the system's 
final posterior probability estimates and optimal posterior 
probability estimates as given by Bayes' theorem. 

Using these various measures, Schum, Southard, and Womboldt (1968) 

also evaluated a semi-PIP and POP system in a military diagnostic 

situation. (For details of the basic experimental method see Schum, 

1967b). In a semi-PIP system experts are asked to estimate one 

p(D/H) for several items of information given simultaneously. Pairs 

of conditional nonindependence existed among the items of information, 

and all subjects had access to information about these conditional 

nonindependencies. Three specific experiments were performed. In the 

first, experts were given six items of information either one at a 

time, three at a time, or all six at once. Thus "sample size" was 

varied. Results showed POP to be unaffected by sample size while PIP 

performance got worse as sample size increased. PIP performed better 
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than POP when sample size equaled one. Again the results are contrary 

to those of Kaplan and Newman who found differences between PIP and 

POP to decrease when the amount of information increases, ochum 

et al. (1968) feel the POP superiority with the six item samples may 

be due to the fact that their subjects had had considerable experience 

with probability estimation. Thus they may have been doing six 

quick revisions rather than treating all the items as one 

datum. In a second experiment, varying the amount of information, 

semi-PIP always showed smaller DM scores than POP, although DM scores 

for both systems increased with the amount of information. In a final 

experiment where the diagnostic!ty of the information and the amount 

of information were varied independently, it was found that a semi- 

PIP system is always superior to a POP system, especially when the 

information is highly diagnostic, abundant, or both. In one case, 

semi-PIP produced final posterior odds four times greater than those 

produced by POP. 

Problems Involved With Use of PIP Systems in the Real Worid „(questions 

5 and 6) 

The evidence reviewed here appears to favor a PIP system, at 

least in a military decision-making context. However, there are some 

problems with diagnostic tasks in the real world that have not been 

studied extensively in a "laboratory PIP" system, so applying PIP 

systems elsewhere should be done with caution (e.g. Schum, 1968). 

There are problems in the real world of defining an exhaustive set 

of mutually exclusive hypotheses, nonindependence of data (either pairs 

or higher orders), reliability of data, and nonstationarity of data 

(l.e. P(D/H) may change with time). Specific sequencing of data may 

also be important. Edwards (1966b, p. 76) has found that, at least 

when estimating posterior probabilities, P(H/D), early data exerts 
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more influence than later data. However, Kaplan and Newman (1966) 

have found that when subjects estimate p(D/H), they do not appear 

to be influenced by prior information, so it is possible that 

specific sequencing is not important in a PIP system but it may be 

in a POP system. Schum (1968) has also suggested a semi-PIP system 

may be more successful in making use of conditional nonindependencies 

and weakly diagnostic data. Both Edwards and Schum have repeatedly 

pointed out the importance of training individuals to use a PIP-type 

system. Most "experts" in the above mentioned experiments would not 

be considered similar to experts in the real world who may have been on 

the Job for 20 years or longer. Heal world experts have much more 

experience and possibly a better feeling for the impact of the information. 

Because of this, there may be less of a difference between PIP and 

POP systems in the real world. The crucial part of training experts to 

function in a PIP system lies in teaching them what a P(D/H) is. 

Even if experts understand likelihoods, it is very easy for them 

to slip back into estimating the probability of the hypothesis, P(H/D). 

Also even if experts are denied access to the current state of affairs 

among the hypotheses, one might assume that they might keep track in 

their head. 

WEATHER FORECASTING 

Economic Value (Question 1) 

Most meteorologists and users of weather forecasts will agree 

that there are sound economic reasons for reporting weather fore¬ 

casts in terms of probability statements (e.g. Thompson and Brier, 

1955; Malone, 1957). A hypothetical but descriptive example given 

by Malone (1957, pp. 156-157) aerves to illustrate this: Imagine 
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a construction company faced with the problem of deciding whether 

or not to pour concrete each day. If the concrete is poured and 

.15 of an inch of rain falls in the subsequent J6 hours, $5,000 

damage will result. If, on the other hand, the newly poured concrete 

were protected from such rainfall, the cost of these protective 

measures would be $400. If no protective measures were taken, say, 

for one winter season, the cost would average around $85,000. If 

protective measures were taken everyday, the cost would be approx¬ 

imately $72,800. If protective measures were taken only when the 

probability of rain was .50 (the ordinary type of forecast), the cost 

would average $32,600. If, however, one had a probability forecast 

of rain, the cost could be reduced even further. The problem is to 

select the probability level that will minimize the total expense. 

According to Malone, this can be done using the principle of the 

calculated risk, which prescribes that protective measures should 

be taken only when P>C/L, where P is some probability of the cfritical 

amount of rain falling within 36 hours of the time the concrete was 

poured; C is the cost of protective measures; and L is the contingent 

loss. Thus in the illustration just given, C = $400; L = $5,000, 

therefore P « 400/5000 ■ .08. If protective measures are taken only 

when the probability of rain exceeds .08, the total cost would average 

only $24,400. The same sort of paradigm can be applied to dispatching 

and cancelling commercial aircraft, evacuation of aircraft from a 

military base when a tornado or hurricane threatens, and scheduling 

stand-bys or overtime crews for telephone line maintenance if a 

thunderstorm should occur (Malone, 1957). 

Can meteorologists provide realistic probability statements about 

meteorological events? Some investigators doubt that they can (e.g. 

Dexter, 1962), but most existing research shows that they are indeed 
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capable of providing realistic statements (Root, 1962; Sanders, 1963). 

In fact, Epstein (1962) has suggested using Bayes' theorem in 

obtaining information about future weather events. 

Objective Versus Subjective Probability Estimates (Question 2) 

Which is best, objective or subjective probability forecasts, 

where the former are usually based on climatological expectancies? 

These climatological expectancies are really relative frequencies, 

l.e. given the initial state of the atmosphere, what has been the 

occurence of each of the available meteorological events in the past 

for this state? Subjective forecasts, on the other hand, utilize the 

forecaster's skill in arriving at a probability estimate for a 

meteorological event. Often the forecaster uses the climatological 

expectancy as an initial probability estimate (i.e. his prior probability) 

and "sharpens* this estimate by using any additional information 

available to him. Both Root (1962) and Sanders (1963) found subjective 

probability estimates to be better than objective probability estimates 

for a variety of meteorological events (e.g, occurence of precipitation, 

wi-id speed, visibility, temperature, etc.). However, Sanders (1963) 

has found that forecasters have little or no skill in making 

probability statements about meteorological events which have 

extremely high or low climatological expectancies (i.e. probability 

below .10 or above ,9<j. 

Individual Versus Consensus Probability Estimates (Question 3) 

Sanders (1963) has given some data to show that group-mean 

probability estimates, his group consisting of 12 meteorological 

students, are more accurate than single estimates of any one particular 

student, even the best one. Even when two instructors were asked to 

give estimates, the mean probability estimates for the two were better 

than the estimates of either instructor alone. Therefore it appears 
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that thar© la aorae value In "consensus forecasting". 

Computers and Meteorological Data (Questions 4 and 5) 

I have been unable to find any reference to the use of a PIP- 

type system In meteorology. Computers aid mostly in data collection. 

Given that forecasters have an abundance of meteorological data, a 

PIP system might easily help them aggregate all the data more 

efficiently. There also appears to be no data comparing Bayesian- 

produced probability estimates with those of the meteorologist to 

see If conservatism exists in weather forecasting. 

Very little reference is made to the types of data used by 

meteorologists. It is not known, for example, whether more optimal 

predictions are obtained with data displayed simultaneously or with 

data displayed sequentially. No description of how meteorologists 

weigh various types of data in arriving at their final probability 

estimates is given in the studies reviewed. Malone (1957) discusses 

some of the problems involved in the prediction of meteorological 

events. Por example, data used is often incomplete in that there are 

many technical difficulties involved in obtaining information about 

the initial state of the atmosphere. Also there are problems in 

that the atmosphere is inherently unstable at times. Sanders (1963) 

has found that forecasts for a particular area are more accurate 

when more valid synoptic (i.e. immediate weather conditions for s 

broad area) information about that area is made available (e.g. 

weather ships on the North Atlantic Ocean), Forecasts sre mors 

accurate for some meteorological events than others because of the 

information available (e.g. wind direction is easier to forecast than 

wind speed). 

Sanders (1963) has also found spot forecasts (i.e. forecasts for 

a specific instant of time) to be less accurate than period forecasts 
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(i.e. forecasts for a longer period of time), and both Sanders (1963) 

and Root (1962) have found a decrease in forecast ability as the range 

of the forecast period is extended («.g. from a 24-hour to a 48-hour 

period). H0wever, Root reports that in spite of this, subjective 

forecasts are still better than climatological expectancies for any 

given length of forecast period. 

Expert Forecasting (Question 6) 

How can one become an expert forecaster? Perhaps by using Bayes' 

theorem as suggested by Epstein (1962). Another way would be by 

using evaluative methods such as scoring rules, which encourage a 

meteorologist to be honest, i.e. to make his assessments correspond 

to his judgements (e.g. Murphy and Epstein, 196?; Winkler and Murphy*- 

I960). These scoring rules have the effect of motivating the fore¬ 

caster to minimize or maximize his score (depending upon which rule 

is used), especially if a system of payoffs is attached to the score. 

Scoring rules also aid forecasters in becoming better assessors because 

they allow for comparison of scores among different forecasters, and, 

as a result, can point out unreasonable biases held by forecasters 

which may be hindering their performance. 

Does a great deal of experience in probability forecasting lead 

to better performance? Evidently not, according to Sanders (1963)» 

who found that students and instructors in meteorology perform about 

equally well, although students tend to overforecast the probability 

of occurence of an event, possibly because of their previous academic 

experience in which the results of laboratory experimenta were usually 

positive. Sanders also found, however, that when synoptic information 

offers little concrete guidance, forecasters tend to remain close to 

the climatological expectancy and use this value as their probability 

estimate. If the synoptic information offers a gain over prediction 
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based solely on climatological expectancies, some forecasters grasp 

the implications more firmly than others. Thus, experience of some 

sort may help. There appears to be very little information about what 

kinds of experience aid the forecaster. Nor is there much information 

about how to train forecasters to weigh data differentially, etc. 

Finally it might be mentioned that Epstein (1962) has shown that 

the different types of prior distributions held by forecasters are 

essentially unimportant as long as subsequent data used to revise 

prior opinions is available. Therefore training experts so that they 

have accurate prior probability distributions may not be necessary. 

MEDICAL DIAGNOSIS 

Economic Velue (Question 1) 

Sir William Osier once said, "Medicine is a science of uncertainty 

and an art of probability." 1 This stfitement is more descriptive of 

medical diagnosis than prognosis. There is no doubt that use of 

probabilistic statements in medical diagnosis has economic value. In 

some cases, waiting for absolute certainty about a diagnosis (if it 

exists at all) before initiating treatment may lead to the death of a 

patient. In other cases, if probabilistic statements are taken into 

account, one might reduce the number of laboratory tests, etc., needed 

for diagnosis, thereby reducing time, cost, and discomfort to both the 

patient and the doctor. In fact, probability theory can act as the 

basis for setting up an efficient screening program where the more 

probable cases can be referred to a specialist for further examination 

before a final diagnosis is made. 

1 From Bean, W. B. (ed.) Aphorisms From His Beadside Teaching and 
Writings. N. Y.: Schuman, 1950, p.125. 
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Public Models and Subjective Probabilities (Question 2) 

Are subjective or objective probabilities more effective In 

medical diagnosis? It should be pointed out that often all the 

medical diagnostician has to go on is his own subjective probabilities. 

For rare or uncommon diseases, It is very difficult to determine 

any kind of reliable objective probabilities (i.e. relative frequencies). 

Lusted (1968) refers to the objective probabilities which exist as 

"public models". Using terms we have already discussed, objective 

prior probabilities, P(H), would be the incidence of each disease in 

a given sample. P(D/H)'s would be the incidence of a symptom (D) 

given a particular disease (H). These public models are simply 

relative frequencies and can be derived from a sample of medical 

records of previous cases for any particular disease. These 

relative fraquencies can then be arranged into a symptom-disease 

matrix, which is essentially the public model Lusted is talking 

about. For illustrative purposes, a symptom-disease matrix for 

primary bone tumors is given in figure 2. Often problems arise be¬ 

cause public models do not exist, or because there is disagreement 

among diagnosticians as to the usefulness of public models since the 

sample from which the model was developed may not be random or 

representative. 

In spite of these disagreements, Winkler, Reichertz, and Kloss 

(1967) have shown that there can be agreement between objective 

P(D/H)'s. These investigators found great similarity between P(D/H) 

estimates for symptoms of hyperthyroidism derived from a sample 

taken in West Germany and those derived from a sample taken in Florida. 

Lodwick (1966) has shown that when probability values taken from 

public models are modified by personal experience (i.e. so that they 

now become subjective probabilities), there is an increase of approx- 
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Inuitely in correct diagnosis of bone tumors. This suggests that 

the best estimates to use in Bayesian decision-making may be the 

objective P(D/H)'s, modified by the individual diagnostician who takes 

hla own specialized knowledge about local or special conditions into 

account. As Overall and Williams (1963) point out, "Too much time 

is required for the individual to acquire experience which is an 

adequate basis for reliable subjective probability estimates." Thus, 

development of public models may help reduce some of the problems 

faced by medical diagnosticians. 

Individual Versus Consensus Diagnosis (Question 3) 

There appears to be no literature on whether individual or 

group probability estimates are more profitable. Part of the reason 

for this may be that it is impractical and too costly to have five 

specialists diagnose the same patient. Edwards, Cox, and Garland 

(1962) have suggested that determination of whether or not ex¬ 

ploratory thoracotomy should be undertaken on patients suepected of 

having a malignant coin lesion should be decided by a conference of 

three types of specialists (i.e. radiologists, surgeons, and internists). 

This procedure should help even out biases held by each of the 

specialists. However, no suggestions are made as to how this 

conference should arrive at a final decision. 

Use of Comnuters and Baves1 Theorem in the Diagnostic Process (gestion.41 

As far as I can tell, Ledley and Lusted (1959) introduced 

Bayesian decision-making to medical diagnosis. They also suggested 

that computers should be used to make the long, tedious calculations 

required by Bayes' theorem. Of course, computers can aid medical 

diagnosis in many other ways such as interviewing patients, storing 

medical histories, analyzing radiographic film, monitoring physio- 

logical signs of patient, at the bedside or In the operating room, and 

so on. For Illustrations of these uses the reader Is referred to 
» 
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Tolles (1964) and Earle (1966). However, this section will be 

concerned only with the role of computers In helping the diagnostician 

form his opinion once he has all the available Information. Diagnosis 

of quite a few diseases with the help of Bayes' theorem and a 

computer has been attempted. Several of these studies will be 

summarized briefly. 

Heart Disease. Several investigators have studied diagnosis of 

heart disease using Bayes' theorem to aid them (e.g. Bruce, 1963; 

Warner et al., 1964; Bruce and Yarnall, I966; Templeton et al., 1966), 

Warner et al. (1964), using a matrix of 53 symptoms and 35 diseases, 

compared physician and computer diagnosis of congenita] neart disease. 

In their study, physicians were asked to fill out a symptom check-list 

made up of mutually exclusive symptoms. They did this by indicating 

whether a given symptom was present, absent, or uncertain. Then the 

physician was asked to make a diagnosis. The check-list information 

of each physician was also input to a computer which already had a 

symptom-disease matrix, i.e. P(H)'s and P(D/H)'s, stored in its memory. 

The computer then made a diagnosis on the basis of all this info¬ 

rmation using Bayes' theorem. On the average, the computer diagnoses 

were better than the physicians'. However, Warner et al. also found 

that the physicians improved in accuracy with time. They attributed 

this greater accuracy to the physician's gradually increasing 

experience in preparing data for the computer and in receiving feedback 

from the computer in the form of differential diagnosis. 

Bruce (1963) and Bruce and Yarnall (1966) suggest that Bayes' 

theorem and computer diagnosis may be less effective than the Warner 

et al. (1964) results imply. For example, in diagnosis of valvular 

heart disease, Bayes' theorem came up with the correct diagnosis in 

only 45# of the cases; in diagnosis of congenital heart disease, 86# 
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of the cases were diagnosed correctly. However, these Investigators 

also suggested some possible reasons for this poor performance and 

these wil be discussed later. 

Templeton et al. (1966), in comparing diagnosis of congenital 

heart disease by radiologists and by computers, obtained results 

similar to Warner et al. (1964). Using 231 cases whose correct diagnoses 

were confirmed by autopsy and surgery, and a technique similar to that 

of Warner et al., they found that radiologists correctly diagnosed 
Ccanpa-Wr cipAM cO ¿te* > \ t¿rf ¿X. 7*/* 

approximately of the cases/ These investigators also pointed out 

that since a radiologist must accurately identify radiographic 

information so it can be input to a computer, he may reassess and 

reorganize his pattern recognition process so he becomes more precise 

at identifying relevant data. This in turn, will aid both the 

physician and the computer in making a more accurate dißgnosis. 

Bone Tumors. Lodwick and his co-workers (1965) have developed a 

general classification of bone tumors, using descriptions and photo¬ 

graphs for illustrative and diagnostic purposes. On the basis of this 

classification system, they have set up a symptom-disease matrix 

which includes both P(H) and P(D/H) for nine types of bone tumors. 

When check-list data (e.g. age, radiographic information, etc.) was 

input to a computer, which already had stored in its memory information 

from the symptom-disease matrix, Lodwick et al. (1966) found that out 

of ?6 cases, the computer correctly diagnosed 85.5# of thera while the 

diagnostician, without the aid of the computer, diagnosed only 80# of 

the cases correctly. 

Thyroid Disease. Overall and Williams (1963) and Fitzgerald et 

al. (1966) have investigated computer diagnosis of thyroid disease. 

They have set up a computer program which revises the computer's 

symptom-disease matrix whenever a new case is diagnosed by the computer. 
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Thus the computer "learns" as the physician would, modifying its 

PWs and P(D/H)'s with "experience". Overall and Williams (1963), 

using a 21 symptom - 3 disease matrix, found the compiler to diagnose 

correctly 258 out of 268 cases (96jO of thyroid diseases. If analysis 

is made using only subjective symptoms (i.e. laboratory data not used) 

the computer then diagnosed 88# of the cases correctly. 

Cushing's Disease. Nugent (1964) has used Bayes' theorem to 

diagnose Cushing's disease. Using a total of 11 symptoms which 

differentiated between individuals having Cushing's disease and those 

not having it, he had a computer diagnose 211 cases, of these cases 

having Cushing's disease and the remaining 159 not having Cushing's 

disease. Ninety-five of the non-disease cases were given a posterior 

probability of .01 of having the disease, while 19 of the disease 

cases were given a posterior probability of .99 or higher. The 11 

symptoms used were based on simple clinical data. For the cases where 

the posterior probabilities were less differentiating, i.e. .3 to .6, 

one might want to give more detailed, expensive tests before making a 

final diagnosis. 

Epigastric Pain. Hinaldo, Scheinck, and Rupe (1963) input a 

computer with an 8 symptom - 6 disease matrix based on 204 cases of 

epigastric pain. Again the symptoms were all subjective, i.e. no 

laboratory data was used. The computer then analyzed 96 cases of 

epigastric pain. The percentage of correct predictions for the six 

diseases were 73, 69, 2?, 75, 38, and 33#. For some diseases this 

is not bad given that diagnosis was made only on the basis of 8 sub¬ 

jective symptoms. The investigators suggested that one of the reasons 

for the low percentage of correct diagnoses was due to the variability 

of the data received from the patients, thus making it difficult to 

construct a reliable symptom-disease matrix. 
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Computer Versus Physician Diagnosis. Prom the results of the 

studies mentioned above, it appears that computers can function as 

effectively as the physician in many diagnostic situations. Some 

studies did not make comparisons between computer diagnosis and 

physician diagnosis so it is not known, for example, if the general 

physician does a better job of diagnosis than the computer or if the 

specialist does a better job of diagnosis than the computer. Given 

that the computer can do an effective job, the physician might spend 

more time trying to obtain more precise and reliable data, etc., which 

would then increase the accuracy of computer diagnosis. 

Apparently no studies have been made using a PIP system in medical 

diagnosis where the diagnostician estimates P(D/H) or P(H/D). In most 

of the studies reviewed, posterior probabilities were derived by 

comparing the probability of one disease to the probability of all 

other diseases considered or no disease. Likelihood ratios in the form 

of odds for one disease to another disease were rarely estimated. 

Naturally if one has 35 diseases and 53 symptoms like Warner et al. (1964), 

estimation of likelihood ratios in this manner could be a very time- 

consuming process. Lusted (1968, pp. I63-I68) has suggested experi¬ 

mental PIP programs for diagnosis of primary bone tumors and congenital 

heart diseases, as well as for selection of optimum treatment for any 

given disease. 

It should be pointed out that most of the studies cited were 

concerned with having the physician diagnose the correct disease rather 

than having him give a posterior probability distribution for the 

entire set of diseases being considered. Therefore, although physicians 

and computers do equally well in diagnosing the correct disease, it is 

impossible to tell whether the physician is more conservative than the 

comouter. Lodwick et al. (1966) point out that the computer will give 
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posterior probability estimates as high as .99 or as low as .01, and 

It Is doubtful that physicians would come up with such extreme estimates. 

It is interesting to note that Edwards, Cox, and Garland (1962) found 

that when specialists showed a high degree of preoperative diagnostic 

ability in predicting whether a coin legion was benign or malignant, 

they appeared to be unaware of their ability to diagnose correctly, 

because they usually recommended surgical removal of the tumor for 

further diagnostic purposes. Thus we might consider them conservative 

information processors. However, it should be remembered that the 

important task of medical diagnosis is that the correct diagnosis be 

reached rather than attaching any sort of magnitude estimation to the 

diagnosis. 

Problems Involved in Use of Medical Data (Question 5) 

Independence of Symptoms. Coneider the data used in medical 

diagnosis. Data fed to the computer has to be obtained from the 

physician who usually records it on a symptom check-list. This data 

can be obtained both by interviewing the patient (e.g. age, subjective 

symptoms such as headaches, shortness of breath, etc.) and by perform¬ 

ing certain laboratory tests. One problem that arises is whether the 

data, or what might be called symptoms, used in diagnosis are independent. 

In several of the studies mentioned, the investigators used only 

those symptoms that were independent. Use of Bayes' theorem requires 

that symptoms be independent, unless, for example, conditional 

nonindependencies (e.g. Schum, 1965) are taken into account when 

estimating likelihoods. In spite of this problem, Overall and Williams 

(1963) have found that Bayes* theorem appears to work well, even 

when some dependent symptoms are treated as independent symptoms. 
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Defining a Set of Diseases. Another problem with using Bayes' 

theorem is in establishing an exhaustive set of mutually exclusive 

diseases. Here it may be advisable to have a "residual" category where 

rare or unknown diseases are all lumped together. If two diseases 

are not completely independent, one can merely regard them as a third 

disease. This may be necessary, for example, when one particular 

symptom is absent when an individual has either one disease (D^) or 

another disease (D2) but not both. However, if an individual has both 

diseases (D^ + D^) at the same time, then the symptom will be present. 

Complete Versus Partial Information In the Diagnostic Process. 

Obtaining medical data can be a costly venture for the patient and a 

time-consuming process for the diagnostician. Gorry and Barnett (1968) 

investigated the possibility of balancing the risk of making a diagnosis 

against the cost of further testing and the value of the evidence 

which is obtained. Using data from Warner et al. (1964), they put 

P(H)'s and P(D/H) 'si<fco a computer along with the costs of tests and 

misdiagnoses, the latter being rather difficult to establish. They 

then compared sequential and complete diagnostic accuracy. They found 

no difference in accuracy between diagnosis made on the basis of 

complete information and diagnosis made on the basis of information 

received sequentially until it became too expensive to obtain more 

information. This is quite remarkable considering that 31 pieces of 

information were used in the complete diagnosis, while only an average 

of 6.9 pieces of information were needed for sequential diagnosis. 

Other Factors Influencing Diagnostic Accuracy. Mount and Evans 

(1963) simulated a medical diagnostic situation using Bayes' theorem. 

Two of their findings are relevant here. First, they found that there 

is an improvement in the percentage of correct diagnoses as the number 
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statistically independent symptoms used in the diagnostic process is 

increased. Second, they found that as the sample size from which 

the symptom-disease matrix, P(H) and P(D/H), is constructed is increased, 

accuracy of diagnosis increases up to a point and then begins to 

decrease slightly. One problem with increasing sample size, however, 

is that dependencies among symptoms may begin to appear. If so, one 

can simply reanalyze the data into a new symptom-disease matrix, either 

eliminating dependent symptoms or taking these dependent relations 

into account when estimating P(D/H)'8. 

Establishing a reliable symptom-disease matrix can be difficult. 

Bruce (1963)1 for example, prepared two symptom-disease matrices, one 

for acquired valvular heart disease based on 170 cases and one for 

congenital heart disease based on 124 cases. When the computer diagnosed 

these same cases using Bayes' theorem and the established symptom- 

disease matrix, it correctly diagnosed 97# of the valvular heart 

disease cases and 98# of the congenital heart disease cases. However, 

when the same symptom-disease matrix was used to analyze cases which 

were not part of the sample used to construct the matrix, the computer 

did rather poorly. In diagnosing 119 ^ew cases of valvular heart 

disease, the computer was correct only 45# of the time; for 76 new 

cases of congenital heart disease, it was correct 86# of the time. 

Bruce feels that part of this poor performance was due to the paucity 

of specific symptoms for the new cases. 

Expertise and the Education of Medical Students (Question 6) 

Finally we come to the problem of training a doctor to become 

a good diagnostician. Expertise in a special area appears to increase 

accuracy in diagnosis. For example, Gustafson (1963) compared the 

diagnosis of congenital heart disease made by a computer, pediatric 
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cardiologists, and non-specialized physicians. The pediatric card¬ 

iologists and the computer appeared to be about equally accurate, 

correctly diagnosing 63-74# of the cases, while the non-speôiallzed 

physicians were less accurate, correctly diagnosing only 36-52# of 

the cases. Gustafson suggests that computers can be valuable aids to 

physicians with diagnostic problems outside their area of special 

training. 

The basic problem in training the diagnostician appears to be in 

making him aware of P(D/H). Developing prior probabilities does not 

appear to be that important (e.g. Lodwick et al., 1966), especially if 

the amount of available information is large. One way of "teaching" the 

to-be diagnostician P(D/H) would be to give him a symptom-disease matrix 

to study or memorize. Using this symptom-disease matrix as a starting 

point, he can modify it once he has had some diagnostic experience. 

Another way of teaching P(D/H) to the to-be diagnostician would be 

through use of computer instruction techniques. These techniques get the 

student personally involved in the diagnostic process and the 

experiences the student obtains from them more nearly resemble those 

which he would obtain out in the real world. Of course, another 

major problem of training the diagnostician is in teaching him to 

recognize symptoms, etc., but this problem is beyond the scope of this 

paper. A very interesting example of a hypothetical medical case 

presented to a student by a computer is reproduced in Lusted (1968, 

pp. 80-87). 

Several investigators have suggested use of computer diagnosis using 

Bayes' theorem rs a teaching or learning device, even for specialists 

(e.g. Bruce, 1963; Warner et al., 1964; Lodwick et al., 1966). That is, 

by having specialists fill out a check-list of symptoms and signs, they 

are forced to focus more systematically on what they are doing. Re- 
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c»t?lng fetdback from the computer then helps the specialists re¬ 

analyze their diagnostic process so they may become even more accurate. 

CONCLUDING REMARKS 

The literature reviewed here favors the use of subjective prob¬ 

abilities in making diagnoses and decisions, whether it be a military 

decision, a weather forecast, or a medical diagnosis. Subjective 

probabilities can be measured, and individuals are quite able to make 

accurate estimates of the probabilities of events that they have 

experienced, although they do not always revise their estimates in an 

unbiased manner. Moreover, when the implications of a decision are 

great, they require more than the objectively required amount of 

information before they are willing to make a decision. In this sense, 

men are conservative information processors. 

It is true that in most everyday decisions conservatism may not 

exert much influence and can therefore be considered negligible. 

However in some areas of applied decision-making, such as those 

that have been reviewed in this paper, elimination of this conservatism 

may have great value in terms of saving both lives and money. 

Systems like PIP, that apply Bayes' theorem to quantified expert 

opinion, clearly show that this approach is profitable. In some cases 

it was shown that Bayesian techniques were superior to currently used 

techniques. Even when there is no difference, use of Bayesian techniques 

in a man-machine system would be valuable in that it would free the 

expert from many routine tasks. He could then spend more time trying to 

develop more reliable data, which would, in turn, result in a more 

optimal decision-making system. 
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While a great deal of experimentation using Bayesian techniques 

has gone on in the laboratory, ouch more research needs to be done 

out in the "real world". PIP systems could be developed for weather 

forecasting and medical diagnosis. These systems could then be tried 

out in the real world and their usefulness evaluated. In areas where 

several expert opinions are available, decision-makers could 

experiment with Winkler's methods for combining the opinions of several 

individuals (Winkler, 1968). In doing so they might find a method 

which would aid them in arriving at more nearly optimal decisions in 

that area. Bayesian decision-making techniques can also be applied 

to other areas where decisions must be made on the basis of probabilistic 

information such as in business and the buying and selling of stock 

(e.g. Schleifer, 1961; Green, Halbert, & Minas, 1964; Green, 196?; 

Hi ter, 1967). In fact something similar to the climatological 

expectancies used by meteorologists or the public models used by 

physicians could be developed for business organizations. 

In conclusion, the application of Bayesian techniques to areas 

which require decisions to be made in the face of uncertainty can be 

beneficial. Using Bayesian techniques, one can set up a structured 

decision-making program for any specific area; the results of this 

program will then provide feedback that can be used to evaluate the 

program. Experience and information gained from this evaluation can 

then be used to re-design certain aspects of the program to make it 

function as efficiently and as near to optimal as possible. 
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Glossary 

For those who are Interested In the meanings of some of the technical 

terms mentioned in this paper, the following definitions are provided. 

SlliSJt&l&SiS&I expectancies - relative frequencies or averages of 
weather events for a given period of time. 

Climatology - a science which deals with climates and their phenomena. 
Note: Climate = the average course or condition of the weather at a 
place over a period of time. 

Coin lesion - a rounded coin-like tumor . 

Cushing's disease - a disease characterized by obesity, especially of 
head, neck, and trunk, brownish streaks on the abdominal wall, and 
muscular weakness; associated with dysfunction of the adrenal cortex 
or the anterior lobe of the pituitary gland. 

Epigastrio pain - pain in the upper middle portion of the abdomen, over 
or in front of the stomach. 

Exploratory thoracotomy - surgical incision of the wall of the chest for 
exploratory purposes. 

Hyperthyroidism - excessive activity of the thyroid gland characterized 
by increased basal metabolism, protrusion of the eyeball, and disturbances 
in the vegetative nervous system. 

Meteorology - the science which deals with the atmosphere and its 
phenomena; more specifically it deals with weather and weather fore¬ 
casting. 

Pediatric cardiologist - a physician who specializes in the study and 
treatment of heart disease in children. 

Radiograph - a photograph taken with roentgen rays, i.e. x-rays or 
gamma-rays. 

Synoptic - relating to or displaying atmospheric and weather conditions 
as they exist simultaneously over a broad area. 
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