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|                Previous analyses have been limited to Atmosphere 
vacuum calculations with untruncated beams. 
and even then have not conserved the ir- 
radlance.    This approach separates the 

|                geometry of the problem (the complex 
aperture distribution) from the beam propa- 

j                gation./   The turbulence parameters appear 
t                only in the mutual coherence function de- 

scribing the reduction in lateral coherence 
\                  with increasing distance.    Based on proofs 

presented in RM-6055,  this report shows 
that, while the vacuum focal point inten- 
sity for a given laser power output will 
increase with finer focusing,  the effect 
of turbulence limits this increase.    Tur- 
bulence can virtually eliminate the vacuum 
advantage of visible over Infrared wave- 
lengths in focusing the beam at practical 

s               ranges.    To predict beam patterns for de- 
•                sign purposes, we need direct mutual co- 

herence function measurements, now notably 
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PREFACE 

As part of The Rand Corporation's continuing efforts for the Ad- 

vanced Research Projects Agency In the study of laser propagation, a 

handbook Is being prepared that presents data and methodology required 

for calculating the atmospheric degradation of laser systems in tac- 

tical missions. The theory developed in this report will be an essen- 

tial input to the preparation of this laser propagation handbook. 

The outputs of many tactical lasers are best approximated by a 

focused, truncated-gaussian disturbance across a circular aperture. 

A quantitative understanding of the manner in which an initially co- 

herent beam of finite cross section propagates through a turbulent at- 

mosphere is required for prediction of the performance of various de- 

vices employing lasers. This report calculates the mean Intensity dis- 

tribution for a focused gaussian disturbance in a finite aperture in 

both the near and fat field and examines in detail the effects of trun- 

cation, wavelength, and aperture size. 

These results should be of use to those Interested in propagation 

theory and its applications to laser range finders, laser line scan- 

ners, communication systems, and various guidance and other systems 

employing an illuminating beam. 
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SUMMARY 

The first section of this report briefly outlines the development 

of RM-6055-ARPA, Propagation of a Finite Optical Beam in an Tnhomoge- 

neous Medium.    A formula is derived for the mean intensity distribu- 

tion from a finite beam in terms of •*« complex disturbance in the 

aperture and the mutual coherence function (MCF; tu-    ^•-'cal wave 

in the medium. The formula is used to examine the effects of turbu- 

lence on the long-term average intensity produced by a focused, trun- 

cated gaussian aperture distribution. In particular, it is shown that 

(a) while the vacuum focal point intensity will increase as the degree 

of truncation decreases for a given laser output power, the effect of 

turbulence limits this increase, and (b) the turbulence can virtually 

eliminate the vacuum advantage of visible over infrared wavelengths 

in focusing the beam at practical ranges. Transverse beam patterns 

and the on-axis Intensity are shown .for CO. wavelength, and a crite- 

rion is established for the condition under which the turbulence pre- 

vents effective focusing. 

■ 
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I. INTRODUCTION 

The output of A  laser, with a mirror system designed to keep dif- 

fraction losses small, can usually be approximated by a gausslan ampli- 

tude and uniform phase distribution   across a circular transmitting 

aperture.  Generally, In order to deliver maximum Intensity to a spec- 

ified receiver, the output beam will be focused onto the target, with 

the focusing optics truncating the gausslan. The complex field at the 

exit pupil of the transmitter for this configuration may be approxi- 

mated by a truncated-gausslan amplitude distribution and quadratic 

phase distribution. In this report, we will calculate the mean Inten- 

sity distribution In space, resulting from the above complex field in 

a transmitting aperture In the presence of a turbulent atmosphere. 

Previous analyses for truncated distributions have been limited 
(2 3) 

to vacuum calculations. * ' The atmospheric calculations have been 

treated * *  by Introducing the fluctuation In refractive Index as 

a small parameter In the wave equation, and expanding the fields in 

powers of this same parameter. This procedure results in the field be- 

ing expressed as a hierarchy of Born-type integrals over the vacuum 

fields existing at each point in space. Because of the extreme com- 

plexity of these integrals, the atmospheric calculations have been 

limited to non-truncated (possibly focused) gaussians, for which a 

closed-form solution exists for the vacuum fields. Even in this spe- 

cial case, because of the approximations necessary to manipulate the 

expressions, it is not difficult to show that none of the expressions 

contained in Refs. 4, 5, and 6 conserve the long-term average irradi- 

ance over a plane normal to the direction of propagation, implying 

that even those solutions must be Incorrect. 

The present analysis is based on a proof developed in an earlier 
m ** 

study, ' which states that the Huygens-Fresnel principle can be ex- 

tended to a medium exhibiting a spatial variation in refractive index. 

From this principle, the field due to a disturbance specified over an 

With confocal mirrors, the lowest-order mode is exactly gausslan. 
Mb 
See p. 370 of Ref. 8. 
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aperture can be computed by superlmpoaing spherical wavelets radiating 

from all elements of the aperture. The mean intensity distribution is 

then found by first computing the intensity at a point from an arbi- 

trary pair of elements in the aperture. Applying a reciprocity theorem 

(also proven in Ref. 7), and averaging, reveals that the above quantity 

is essentially the mutual coherence function (or MCF) for a spherical 

wave in the medium. The integration over the aperture is performed as 

a final step, resulting in a simple formula for the mean intensity pat- 

tarn valid in both the Fresnel and Fraunhofer regions of the aperture. 

The development is outlined in Section II. 

In contrast with previous work, the properties of the medium (e.g., 

the turbulence parameters) appear only in the MCF of a spherical wave. 

The present calculation separates the geometry of the problem (i.e., 

the complex aperture distribution) from the propagation problem, which 

is determined by the manner in which a spherical wave propagates in the 

medium. The MCF describes the reduction in lateral coherence between 

different elements of the aperture, effectively transforming it into a 

partially coherent radiator, with the degree of coherence decreasing 

as the distance from the aperture increases. In Section III, the gen- 

eral formula relating the MCF to the spectrum of index of refraction 

fluctuations for homogeneous Isotropie turbulence is presented, and ap- 

proximate formulas are given for the MCF at various propagation ranges 

for a modified Kolmogorov spectrum. A curve of normalized coherence 

length, p , defined as the transverse separation at which the coherence 
0   -1 

is reduced to e , versus normalized range. Is also presented. 

In Section IV, the case of a focused, truncated-gaussian field 

distribution is examined in detail. The general features of the vacuum 

pattern, with particular emphasis on the effect of truncation, are dis- 

cussed first. For a fixed laser output power, a curve is presented 

showing the vacuum variation in focal-point Intensity as a function of 

the degree of truncation. The curve shows, for example, that when the 

Intensity at the circumference of the transmitting aperture is reduced 
-3 

to e  from the intensity at the center, the intensity at the focus is 

reduced to «85 percent of that corresponding to a uniform distribution 

(this latter distribution maximizes the vacuum gain) . The effect of 
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turbulence Is shown to reduce this difference In all cases and,  In 

fact,  the distribution that maximizes the gain Is no longer a uniform 

one.    A criterion Is also given for which no further Increase In the 

on-axls Intensity at a given range can be realized through focusing 

because of the turbulence.    In a further example It Is shown that for 

a 30-cm beam focused at 0.5 km, the effect of the turbulence Is vir- 

tually to eliminate the vacuum advantage of visible over infrared 

wavelengths In focusing the beam. 

In addition, beam patterns and the on-axls Intensity are shown 

for CO« wavelength, for both a 30-cm and 1-m aperture, using turbu- 

lence parameters that are characteristic of paths of the order of a 

few meters above the ground. 

The results are briefly summarized In Section V, where It Is ar- 

gued that the spherical-wave MCF Is the basic quantity to be measured 

for computing the degradation of an Intensity pattern. 

■   ■ ■   ■ 
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II. THE HUYGENS FORMULATION 

Reference 7 shows that for optical propagation In a weakly In- 

homogeneous, non-absorbing medium, the field at the observation point 

P from a complex aperture disturbance U.(r-) can be written as 
- A -1 

U(P) - f-p J G(P.E1)UA(Ei) d
2Ei (1) 

where k ■ 2ir/X Is the wave number, r. Is a coordinate In the plane of 

the aperture, and the Integration Is carried out over the aperture. 

The term G(?tT.)  Is the field at point P due to the spherical wave 

propagating In the medium from a delta function source at r.. Equa- 

tion (1) Is valid for atmospheric optical propagation where the scat- 

tered field can be shown to vary slowly over a wavelength for all 

propagation distances of Interest (e.g., «»10 km over horizontal 

paths),   and for sufficiently small scattering angles where the 

obliquity factor ' can be taken as -1/A. 

The Intensity at the point P Is then given by 

I(P) - U(P)U*(P) -(^)W 0(5,^)0*(P.r^^Cr^U*^) d2^ d2r2 
. (2) 

It Is shown In Ref. 7 that In a refractive medium, the complex 

field at P due to a point source at r. Is Identically equal to the 

field at r, due to a point source at P—I.e., reciprocity exists In 

the form GCP,^) - CCr^P). Hence, G(P.r1)G*(P,r2) - G(r1,P)G*(r2,P) 

Is the field at r-, multiplied by the complex conjugates of the field 

at r«, due to a spherical-wave source at P. The ensemble average (de- 

noted by angular brackets) 

"{liril-lij-il] 
<G(Tltm*(r7,?))  s S- —  M-^r-.P)     (3) 

III - l\  (l2 - ll 

A more general theorem Is proven by Raylelgh (see p. 380 of Ref. 9) 
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1s the cross correlation of the complex fields at the points £^«£2 (iue 

to a unit point source at P. When the scattering angles are suffi- 

ciently small so that the aperture points r.»r« can be considered as 

lying on the surface on a sphere centered at P, then the function 

MgCr-.r-,?), defined by factoring out the vacuum fields In Eq. (3)» Is 

the mutual coherence function for a spherical wave. 

If the vector £ Is defined as the normal from the z-axls of sym- 

metry to the observation point P, then In the small-angle approximation 

r   ^1 ■ e)2' ■] 
lit " l\ 

Hence, we obtain from Eq. (2) 

(A) 

<l>^)  " fe)2 J J -P {- I7[2E ' (l! - I2) + '? " r
2
2]} 

x MS^l»E2»2)V£l)üA(E2> d2Sl d2S2 (5) 

Changing variables In Eq. (5) to ^ - (r. - r2), r - §(£- + r2), 

and restricting the analysis to the case of homogeneous Isotropie tur- 

bulence where MgCr^r-.z) " MgCp.z) (with p ■ I^I), yield 

<1><fi^>" fe)2 Id2£ V^>e'(lk/Z)li*£ I Vs+ h) 

x U*(r - ^)e<
ik^>£*E d2r (6) 

Equation (6) gives the mean spatial Intensity distribution In both 

the Fresnel and Fraunhofer regions from an arbitrary complex disturbance 

In a finite aperture In the presence of a homogeneous, Isotropie, tur- 

bulent medium. It should be noted that Integration of Eq. (6) over the 
9 0      0 

£ plane yields J <I> d £ - j* lu^Cr)] d r. Hence, this development Im- 

plies energy conservation for arbitrary aperture functions. 

/ 
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III. THE SPHERICAL-WAVE MCF 

The long-term effect of the turbulence on the beam pattern enters 

through the spherical-wave MCF. Over a uniformly turbulent path, M- 

1s related to the spectrum of index of refraction fluctuation!! by the 

formula^ 

MgCp,«) - exp 
C. dKK» (K) /J J (Kpu) du 

J"^ »„WK « i (7) 

where 

I2A2 \  »„OOK dKr1 
(8) 

is the propagation distance at which the mean spherical-wave field is 

reduced to e~ of the vacuum field. 

Lutomirski and Yura   have used a modified Kolmogorov spectrum 

for the turbulence 

♦n(K) 

2 -(K*«> 
0.033CS   0 

(K
2 + i-

2)n/6 
(9) 

where C is the index structure constant, and I - 2ir* and L »« 2wt n 0000 
are the inner and outer scales of turbulence, respectively. 

In Fig. 1, a plot of z versus X is shown for three values of 
2 —16  —2/3 

C roughly corresponding to weak (3 x 10   cm   ), medium (3 x 
,"15 cm"2/3), and strong (3 x 10-14 cm"2/3) turbulence. For hori- 10" 

zontal propagation near the ground, we have used the nominal values 

* ■ 0.1 cm and -L ■ 100 cm. In the usual atmospheric case, Jt « 
o o r       ' o 
L , and the integral in Eq. (8) can be approximated to yield 
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X(M) 

Fig. 1—-Propagation distance z    as a function of wavelength 
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(0.39k2cV/3r n o (10) 

The mean field-decay length, z , and hence the MCF, will depend strongly 

on the outer scale of turbulence. 

Reference 10 shows that there are three distinct propagation ranges 

for which approximate expressions exist for the MCF. 

The first is found by observing that for any z, MG is a monoton!- 
-2z/z 

cally decreasing function of p with Mg(0t2) - 1 and M-O»^) ■ e   c. 

Substituting Eq. (9) into Eq. (7), it can be seen that this asymptotic 

value Is reached when p » L . Physically, when the separation is large 

compared with the distance over which the refractive index fluctuations 

(or temperature fluctuations) are correlated, ~L , then 

Mgfo.z) - (U(rl,z)U(r1 + p.z)> •*■ Wr^XU^ + £.z)> - e 
-2z/z 

p » L 

because the light retching the points (r.,z), (r. + p,z) has propagated 

through essentially statistically Independent media. Hence we define 
(1) M Ms(e. z « z ) - 1. c 

To describe the remaining two regions, it is convenient to first 

characterise the MCF at a given range by the separation p , for which 
o 

e . Then the second region is found by observing that for w* 
I « p « L , the Integrand in Eq. (7) can be expanded in powers of 
o   o   0 (q\ 

(p/l.o) to yield
w 

M^2)(p,z) - exp {-0.55k2C2 

exp 

.P
5/3

[I - o.nif)1' 

c  o   L       o  _ 
(11) 

The expansion proves valid only when Mgd^z) •* 1 and ^(Lo,z) « 1, 

which implies the range limitation 
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Z  « 2 « z. 
c       i 

where 

5/3 

^«(O^kWV1-^  Z' l        no ■'■© 
For ranges greater than z., M_(8, ,z) « 1, and all of the p's of In- 

terest are small compared with the inner scale. Then, for p « & > 

the Bessel function in Eq. (7) can be expanded In powers of (p/<t ) 

to yield 

Mj3)(p,z) - exp [-k2qzp2] 

- exp |-0.80(|-)(£-) |  z » z,       (12) 
L     1  o  J 

where 

q - (IT
2
/3) \ « (K)K3 dK« 0.56C2r1/3 

Hence, for propagation paths that are short compared with z., the 

MCF does not depend on the inner scale, and can be written as 

i 

Ms(p,z) • exp 

" F(*",7~)   0 < z « zi (13) 
o c 

3       5 
For the range 0 < z « z. (for L /l - 10 , z. - 10 z ), p /i versus 

1      00        1      coo 
z/z , obtained bv inverting the equation ^(p /t , z/z ) ■ e"1, is 

C ' 0 o    c 
plotted in Fig. 2. For ranges z < ^z , Mc(<»,z) > e"

1, and the coher- 

ence length as defined here is infinite. 
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It Is apparent that for p    much greater than the aperture diameter 

D, M_ in Eq.   (6) can be replaced by unity, and the mean Intensity Is 

given by Its vacuum value.    When p    < D, the turbulence reduces the 

average Irradlance on a target. 

10 

^ 10'' 
*.0    u 

io-2|- 

10 

0.5 

■    ■ Mi | ■""■' 1    I  lUllll 1    I  '"IIL 

10" 10 
A 

ic' io3 io4 

L   T. 

Fig. 2—-The normalized coherence length,   p /Jt > as a Function 

of z/z    for a spherical wave 
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IV.  THE FOCUSED. TRUNCATED-GAUSSIAN DISTURBANCE 

THE MEAN INTENSITY 

The complex field In the aperture corresponding to a gausslan 

amplitude distribution with standard deviation a, focused at range f, 

and normalized to unit amplitude at the center of the aperture is 

- 0 

Hkjca^+lkf'1) 
[rj ^D/2 

Ei! > D/2 

(1A) 

With U.  given by Eq. (14), the inner integral in Eq.   (6) is the 

Integration of the function 

exp  [-a"2(r2 + ^p2) + IKz"1 - f"1)^  • r] 

over the area of overlap of two circles, each of diameter D, with cen- 

ters relatively displaced at opposite ends of the vector p. The inte- 
2 

gratlon is straightforward and yields for the inner Integral D r. a(x), 

where 

rM(x) " e" 
-262x2 f008"1^) fcos (x)   fl 

COSfp 

2 2 
-6 (u -2yx coscp) 

x cos [26x(u cos Q) - x)]u du    x < 1 
(15) 

- 0 x > 1 

2 —1   -1 
where x - p/D, 6  - D/2a, and ß - ^kD (z  - f ). Then, usin^ polar 

coordinates for the p integration, performing the angular Integral, 

and changing variables from p to x - p/D, yield 

■ 

/ 
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.2v2 n 

<1>(a'z> " ?(§") \0 ^0<2^)Ms(^.Z)r^ß(x) dx (16) 

where J is the zero-order Bessel function, and a ■ kDp/2z ■ ^kD tan 6, 

where 6 Is the angle that the direction to P makes with the central di- 

rection. 

THE VACUUM PATTERN AND EFFECT OF TRUNCATION 

In the limit of zero turbulence, ML - 1, and Eq. (16) reproduces 

the vacuum intensity pattern. In this limit, it follows from the def- 

inition of $ that the angular pattern in the focal plane (z ■ f) is 

identical with the Fraunhofer pattern for the unfocused case (f ■ <», 

z ■ •). Further, because r. .(x) is an even function of 0, the angular 

vacuum patterns are identical in planes for which |z~ - f ] - constant. 

For the limit D « a (6 -»■ 0), the problem reduces to the focusing 

of a plane wave diffracted by a circular aperture. No simple expres- 

sion exists for the transverse vacuum intensity except in the focal 

plane, where the distribution is given by the Airy pattern 

s^-K#)M kDp 
' 2f (17) 

The on-axis intensity is given by 

lp(0,z) 
1 /kD )*(f)" (18) 

which has an absolute maximum at the focal point. 

are located at 

The on-axis nulls 

1 ± 
16mrf 

M.2 

1,2,... 
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2 
When 16irf/kD > 1, the only on-axls nulls lie between the transmitter 

2 
and the focal plane; when 16irf/kD < 1, there are on-axls nulls beyond 

o 
the focal plane. In the limit löirf/kD « 1, the nulls—Indeed the 

whole pattern—are synmetric about the focal plane for ranges 

l(z - f)/f| « 1. 
In the limit D » a (or S ->■ <»), when the aperture does not effec- 

tively truncate the gaussian, the vacuum pattern propagates as a gaus- 

sian in all transverse planes according to the equation 

I (p.z) - 1~ e-p2/a2w (19) 
8      w2 

where 

■!-('-»N*) 
The maximum intensity in this case does not occur at the focal point, 

2 
but rather on the axis at the shorter range z - f/(l + (f/ka )1, where 

2  2 
the intensity is 1 + (ka /f) > Generally, in order to focus the laser 

beam effectively, the focal length should be much less than the smaller 
2   2 of ka , kD , in which case the intensity at the focal point is approx- 

imately the smaller of (ka2/f)2, i(kD2/f)2. 

For the case of arbitrary truncation, the on-axis intensity can 

be shown to be 

«•■•> - [w) * ^77 l ™ 

with no simple formula for the transverse pattern, even in the focal 

plane. The average aperture intensity, defined as the total laser out- 

put power, W, divided by the area of the aperture, can be computed by 

integrating |uj over the aperture, and is 

/ 
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I = 4W 1 - e 
-«2 

(21) 
itD 

The effect of truncation on the Intensity at the focal point for 

a given output power can then he computed from the gain 

f   l4£ ^ 4 - .-2) 
(22) 

It has heen shown^ '  that of all possible aperture distributions, 

the focal-point Intensity for a given W Is maximized by a uniform dis- 

turbance, corresponding In our case to 6 » 0, and yielding 

0.» ^\          1 
o.a N. 

ON N. 
07 

>v 

0.» \l 
0.S - 

0  1         1 1 1         III         1 

Fig. 3—The normalized gain 
as a function of S 

3 .i/iBiV Ju  4 \Af / 

In Fig. 3 the normalized gain 

S-t:-4 
u 

L - M 
4 -'-') 

(23) 

Is plotted versus £ , the power 

of e by which the Intensity at 

the circumference Is reduced from 
-3 

the Intensity at the center. For example, a ratio of e yields a 

vacuum reduction of wl5 percent. The effect of turbulence will be 

shown to reduce this difference. 

THE EFFECTS OF TUBBULENCE 

The long-term effect of the turbulence, as discussed In Section 

III, Is to reduce the lateral coherence between the fields radiating 

.     -r - 
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from different elements of the aperture for separations :> p  . For 

p  < a,D, the beam will be confined to a circularly symmetric area 

of dimension ~2/kp at a distance z. The ratio of the field intensity 
0 2 

to aperture Intensity is then ~(kDp /z) , and the on-axls intensity 

can be Increased by focusing the beam only if this quantltly is con- 

siderably greater than unity at the range of interest. In general, 

this partially coherent aperture will produce an intensity pattern 

with less detailed structure than the vacuum distribution, and with 

the maxima and minima tending to be averaged out. Further, because 
2 

z oe X , there will be less degradation of longer wavelength patterns. 

In Figs. 4a-4c, the focal-plane atmospheric patterns, normalized to 
2   2 

the vacuum focal-point intensity (1/4) (kD /4f) , are shown for a uni- 

form aperture disturbance with D/£> ■ 0.01, 0.1, and 1, respectively. 

With z determined from Eq. (10) (or Fig. 1), these curves can be used 

for arbitrary wavelengths. The dashed curve in each figure is the 

vacuum Airy pattern, Eq. (17), similarly normalized. For a given ra- 

tio of z/z , the greater the diameter (D/L ), the less the effective c o 
coherence over the aperture, and hence, the greater the degradation 

from the vacuum pattern. 

In the remaining examples, the normalized intensities (I)«, de- 

fined as the ratio of the mean Intensities (I) to the mean aperture in- 

tensity I - 4W/TrD , are plotted. Turbulence parameters have been 

chosen that are characteristic of the strengths and scales found from 
.L.  ^. .  _„. «2 _ , „ ,ft-5  -2/3 zero to several meters above the ground: C - 3 * 10  cm   , & B 

n o 
0.1 cm, and t,   ■ 100 cm. 

Figures 5a and 5b display the effects of truncation on the focal- 

plane intensity of a 10.6-y beam from a 1-m aperture focused at 0.5 km. 

The vacuum and atmospheric patterns are shown in Fig. 5a for a uniform 

distribution, whereas in Fig. 5b the gausslan intensity distribution 
-4 Is reduced to e  at the circumference from its value at the center. 

In vacuum the truncated distribution has a focal-point intensity of 

«25 percent less than the uniform case; however, the effect of turbu- 

lence Is to reduce both intensities such that the difference is only 

<*10 percent. Because the MCF reduces the effective average cohererce 

between different radiating elements of the aperture in a manner that 

depends only on the distance between them, elements near the edge of the 

/ 
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aperture weigh less than those near the center In contributing to the 

average Intensity. Hence, the relative Intensity gain of a uniform 

distribution over a truncated-gausslan distribution will always be 

less than In the vacuum case. In fact, It can be shown from Eqs. (6) 

and (21) that In the presence of turbulence, the aperture distribution 

which maximizes the gain, G - (l)(0,f)/Y, Is, In general, not uniform, 

but somewhat peaked at the center of the aperture. 

In Figs. 6a-6c, the focal-plane vacuum and atmospheric patterns 

are compared for D - 30 cm, 6 ■ 0, and z - f ■ 0.5 km, using the wave- 

lengths 0.6328 v (He-Ne), 1.06 y (Nd), and 10.6 y (CO,). Although the 

vacuum Intensities at the focal point for the shorter wavelengths are 
-2 

greater (the "antenna gain" Is proportional to X ), the effect of the 

atmosphere for the chosen geometry essentially eliminates the shorter 

wavelength advantage In focusing the beam. For larger apertures, the 

advantage of CO» In producing an Intense focal Intensity will be greater. 

In Figs. 7a-7c, for X - 10.6 y, the vacuum and atmospheric focal- 

plane patterns are shown for D = 1 tn and 6*0 (uniform distribution) 

at focal lengths of 0.5 km, 5 km, and 10 km. The long-term effect of 

the turbulence at the larger ranges Is to reduce the on-axls Intensity, 

and to spread out the beam. Hence, the positioning accuracy required 

to Illuminate a target can be considerably less than a vacuum calcula- 

tion would Indicate. As discussed above, the solid curves (with turbu- 

lence present) are relatively Insensitive to the degree of truncation. 

Finally, In Figs. 8a and 8b, the vacuum and atmospheric on-axls 

Intensities are compared for a 10.6-y beam focused at 0.5 km with 5 - 

0, and D - 30 cm and 1 m, respectively. The Intensities are shown for 

a range of 50 m on either side of the focal plane. The on-axls Inten- 

sity for the 30-cm-aperture case remains reasonably constant over the 

100-m range, with a maximum at «30 m on the aperture side of the focal 

plane. The axial distribution for the 1-m aperture Is almost symmetric 

with respect to the focal plane and obviously requires greater focusing 

accuracy to produce the available gain of »10 at a specified target. 

At ranges of 5 and 10 km, the on-axls Intensities are essentially con- 

stant within 50 m of the focal plane and are equal to the focal-point 

values of Figs. 7b and 7c, respectively. 
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V. DISCUSSION AND CONCLUSIONS 

Based on the results of Sections III and IV, the following pro- 

cedure can be used Co estimate the focal-point Intensity. 

First, from a knowledge of (1) the Index structure constant Cn, 

(2) the (outer) scale over which the temperature fluctuations are rea- 

sonably correlated, L and (3) the wave-number of the radiation, k, 

the mean-field decay length can be constructed according to Eq. (10) 

as 

- («•♦wy k-i 
8c 

Then the equivalent coherent aperture size, p , at range z, can be 

computed from Fig. 2. If the smaller of the two quantities (kDp /z) , 
2 

(kap /z) Is considerably greater than unity, then the Intensity at 

the range z can be Increased by focusing the beam at that range. If 

this Inequality Is not satisfied, no Intensity amplification can be 

realized by focusing the beam. 

These estimates are also correct for the case of Inhomogeneous 

turbulence when p , corresponding to the e~ point of the MCF for the 

Inhomogeneous medium. Is used. The formula for the spherical-wave 

MCF In an Inhomogeneous medium Is given In Ref. 10. In either case. 

If a more precise estimate of the degradation due to the turbulence 

Is required, the Integral of Eq. (16) can be evaluated. This will 

usually be necessary when p ~ a or D. When p « a,D, then the ap- 

proximate formulas of Ref. 7 are applicable. 

While the expressions for p depend upon particular models for 

the turbulence spectrum for homogeneous turbulence, and model profiles 

for the Inhomogeneous ease, the Intensity distribution can always be 

determined from Eq. (6) If the MCF Is known. Hence, In order to pre- 

dict the beam pattern from an arbitrary wavefront In an aperture. It 

Is the MCF that should be measured rather than specific beam patterns. 

The measurement of turbulence parameters that rely on specific models 

for the spectrum are also of limited utility. 
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Thls point can be clarified by first observing that Eq. (16) Is 

the Fourler-Bessel transform of the quantity 

.2^2 

(l)(Ä-) h^*)T6tfi(*) 

which can be Inverted to yield 

D2r i.e^) V^ " 2,f So 'Jcf-y1^'** A* (2A) 

where (I)(p,z)  Is the mean Intensity at a distance p from the axis at 

range z. 

For an arbitrary disturbance In the aperture, the function r.  .(x) 
o f p 

given by Eq. (15) would be replaced by the appropriate overlap Integral 

of Eq. (6). Equation (2A) thus provides a possible method for deter- 

mining part of the MCF from measurements of the beam pattern. 

However, because I", g(p/D) ■ 0 for p > D, Inverting the Intensity 

distribution can give no Information regarding M^p,«) for spatial 

separations larger than the diameter of the transmitting aperture. In 

particular. In order to determine the distance z from a beam pattern 

measurement, It would be necessary to have an aperture diameter greater 

than the largest scale of turbulence, L , which might be of the order 

of meters. Hence, If one can determine the spherical-wave MCF for all 

spatial separations at a given range (e.g.. by using an interferometer), 

one can Infer the Intensity distribution from an arbitrary aperture 

distribution at that range, while the reverse is not true unless aper- 

tures greater than the coherence length at that range can be constructed. 

Even If the beam pattern were measured, M_(p,z) would first have to be 

constructed from Eq. (2A) from the given measurement to determine the 

general response. Therefore, for design purposes, direct measurements 

of the MCF, which are notably lacking, are required. 

■ .'4 
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