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ABSTRACT 

An approximate quasi-three-dimensional method of solution is de- 
scribed for the sudden area expansion flow process in the relative 
coordinate system under the assumptions of frictionless, adiabatic flow 
of a perfect gas.    The objective was to determine the radial variation 
of the flow properties at the trailing edge of a rotor given the measured 
flow properties downstream of the rotor through use of the streamtube 
approximation.    Results are derived from one configuration of the blunt 
trailing-edge supersonic compressor rotors tested at AEDC.    The re- 
sults were felt to be an unsatisfactory representation of the average 
flow conditions at the trailing edge, and it is shown that the reasons for 
this are relatable to neglecting the free turbulent shear flows occurring 
in the blade wakes in conjunction with neglecting the large radial second- 
ary flows which apparently occur in the flow field of the rotor investi- 
gated.    It is shown that the streamtube" approximation can produce 
grossly inaccurate results when free turbulent shear is neglected on the 
streamtube boundaries.    A proposal for continued work is also given. 
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SECTION I 
INTRODUCTION 

The description of the three-dimensional flow in turbomachines is 
so mathematically complex and unrewarding to date that analysis of test 
data relating to turbomachines is often accomplished by assuming a 
model of the flow through a blade row and solving the design equations 
at stations between blade rows where there are no blade forces and 
where the analysis may be carried out in the absolute, or stationary, 
coordinate system (see Chapter III of Ref.   1, for example).    As a model 
approximating the influences of a blade row, the analyst may choose 
pertinent cascade results and apply empirical correction factors to 
account for the stacking position of the blade element in the blade span 
and the additional frictional effects occurring in the blade end regions. 
Alternately, he may apply a completely mathematical model that satis- 
fies the equations of fluid flow in two dimensions or one that basically 
originated from results of cascade testing or testing of rotors of simi- 
lar design and then apply the additional three-dimensional correction 
factors. 

Once the analyst has chosen his model, his results are completely 
relatable to that model.    If the results agree with the experiment, then 
the model is considered good for that application, but the model may be 
limited only to that application.    If the results only partially agree with 
experiment, the disagreement is attributable to influences which the 
analyst chose to neglect or could not account for. 

This type of approach has its value to compressor or turbine de- 
signers although it may leave the real flow process in the rotor unex- 
plained.    At AEDC, under the sponsorship of ARL,  several configura- 
tions of a high-reaction shock-in-rotor compressor rotor have been 
tested (Refs. 2 and 3).    The blade element is of blunt trailing-edge design 
for the purpose of promoting supersonic constant-area diffusion to sub- 
sonic trailing-edge velocities while eliminating the starting difficulties 
generally associated with earlier designs of supersonic compressor 
blading (Ref. 4). 

The process of supersonic constant-area diffusion cannot yet be 
handled by purely theoretical means.    However, the process can be 
approximated because experimental results, such as those in Refs. 5 
and 6,  show that, if the passage length-to-height ratio is optimum, then 
the losses in the passage approach the losses of a single normal shock 
at an equivalent passage inlet Mach number.   Thus, at least for optimum 
design, the trailing-edge flow conditions can be approximated. 
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Between the rotor trailing edge and the measuring station down- 
stream of the rotor, unusually large mixing losses were anticipated 
because of the large trailing-edge thickness of the blading.   The quasi- 
two-dimensional studies in Ref.  7 showed, however, that if the passage 
flow process behaved properly, then the Mach number at the trailing 
edge would be small enough so that the additional loss due to the abrupt 
increase in flow area would be of acceptable magnitude. 

The results for the rotors tested at AEDC have been far below that 
expected of the blading, and the author has attempted in Ref.  8 to de- 
termine the cause of the poor performance through re-evaluation of the 
basic flow model.   It was determined that the passage diffusion process 
was incomplete due either to the blade passage design or to the occur- 
rence of separation or both of these.   Therefore, the trailing-edge flow 
property distribution was uncertain since the basic passage flow model 
could not be effectively applied,  and the real influence of the abrupt 
area increase at the trailing edge was unknown. 

In an attempt to learn more about the flow property distribution at 
the trailing edge, and thereby more about the flow process in the rotor, 
it was decided to apply the flow model in a slightly unusual way.    Rather 
than proceeding with the flow from upstream to downstream of the rotor 
as attempted in Refs.  9 and 10, the measured conditions upstream of the 
rotor were used to estimate shock loss alone, whereas the measured 
conditions downstream of the rotor were used to calculate the conditions 
at the trailing-edge plane.    This report relates the consequences of 
using the measured downstream conditions in such a manner. 

Initially, it was suspected that the quasi-two-dimensional theory 
(Ref.   7) would be limited, if not unsatisfactory, because considerable 
radial mass transfer was evident in the results of testing.   Therefore, 
the quasi-three-dimensional technique presented in this report was 
developed both to allow radial shifting of stream surfaces in the flow 
field, a feature not allowed in the much simpler quasi-two-dimensional 
theory, and to allow determination of the radial variation of flow proper- 
ties at the trailing edge. 

Although the method presented in this report does permit these 
goals to be attained, the results must be considered quite unsatisfactory 
as a representation of the average flow properties at the trailing-edge 
plane.    The method involves solution of the integral equations of motion 
in a relative, or rotating,  coordinate system.    Flow is assumed friction- 
less, and it is shown that this assumption is the primary reason for the 
unsatisfactory results.    However, in contrast to general occurrences, 
shear stress is shown to be the determining factor throughout the flow 
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field, not just in the region of hub and tip casing walls.   It is shown that 
the frictionless equations of motion will predict extremely large losses 
in relative total pressure when used in the manner described in this re- 
port, and it is further shown that free-turbulence,  coupled with large 
radial secondary flows, is a reasonable explanation for the unsatisfac- 
tory results. 

SECTION II 
FORMULATION OF THE EQUATIONS FOR SUDDEN AREA EXPANSION 

WITH RADIAL VARIATION OF FLOW PROPERTIES 

The blunt trailing-edge blading may be expected to have substantial 
additional losses in relative total pressure due to the viscous mixing 
process which occurs after the abrupt area increase at the trailing edge. 
The analysis in Ref.  7 develops quasi-two-dimensional equations to 
estimate the additional loss.    The results indicate that the losses due 
to the sudden area expansion process are relatively small if the axial 
Mach number at the trailing-edge plane is not too close to unity.    It has 
been indicated in Section I that the passage of the blunt trailing-edge 
compressor was designed as a constant-area diffuser to reduce super- 
sonic inlet relative velocities to subsonic velocities at the trailing edge. 
Therefore, minimum sudden expansion loss depends on the proper 
design of the passage and requires a compromise between longer pass- 
age length to produce lower exit Mach numbers, thus increasing friction 
loss in the passage, and shorter passages to reduce machine weight, 
thereby increasing sudden expansion loss. 

The quasi-two-dimensional analysis for the loss in relative total 
pressure due to the sudden area expansion process cannot determine 
the radial variation of loss; it can only give average values for the 
annulus.   Furthermore, the quasi-two-dimensional theory requires that 
the radial velocity be zero for the entire process, but the test results 
have indicated that there is considerable radial change of stream surfaces 
through the wheel, especially at design speed.   The use of the quasi-two- 
dimensional theory implies that all radial shift must occur within the 
rotor. 

These considerations place strong limitations on the use of the 
quasi-two-dimensional theory; and a method has been derived which 
should determine the radial variation of important flow properties and 
the approximate position of streamlines at the axial location of the blade 
trailing edges.    The method uses the integral flow equations for inviscid 
flow and provides solutions for the flow properties as a linear function 
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of radius over an arbitrary increment of radial annulus height.    The 
method allows a tangential component of velocity to exist, but the 
polution does not determine tangential flow property variations; i. e., 
flow is still assumed axisymmetric so that the solutions are quasi- 
three-dimensional in nature, representing tangential averages at any 
radial station. 

The method employs the integral equations of motion referred to a 
relative coordinate system rotating with the angular velocity of the com- 
pressor rotor.    As discussed in Ref.  11, the choice of the relative 
coordinate system leads to equations involving volume integrals of the 
force due to Coriolis and centripetal accelerations.   As stated in Ref.  11, 
these volume integrals generally cannot be evaluated without complete 
knowledge of the flow properties in the entire control volume.    In some 
cases, flow property measurements have been made that allow an 
approximate calculation of the volume integrals.    These cases are used 
to determine weighting factors applied to the surface integrals at en- 
trance to and exit from the control volume such that the volume integrals 
determined by use of the weighting factors are equivalent to the volume 
integrals of the approximate calculations. 

The use of the equations of motion in a rotating coordinate system 
should generally be limited to a region where every fluid element is 
participating in curvilinear motion imparted by the angular velocity of 
the wheel.    In turbomachinery,  its use should be limited to flow inside 
a rotating member where the force exerted by the blades generally domi- 
nates the frictional effects at the nonrotating surfaces that tend to change 
the transportational velocity of a fluid element.   In the present application, 
\he equations of motion for frictionless flow in a relative coordinate sys- 
tem are being applied to a region downstream of the rotor, but friction on 
the nonrotating surfaces of the casing walls could exert considerable in- 
fluence on the solution because the flow property measurements are the 
result of a frictional flow field.   In the present solution, frictional effects 
are ignored, and it is assumed that the inertial forces maintain the trans- 
portational motion of every fluid element. 

It is, of course, possible to view the flow field in any coordinate sys- 
tem that may be chosen.   The relative coordinate system was chosen be- 
cause flow is more likely to be steady after the rotor in such a system. 
In the nonrotating, or absolute coordinate system, the flow may not be 
considered steady after the rotor.    Thus, unsteady effects, as well as 
frictional effects, would have to be considered for complete solution of 
the problem in the absolute coordinate system. 
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2.1   DESCRIPTION OF THE PROBLEM 

Consider a rotor of blunt trailing-edge blades and locate a rotating 
cylindrical coordinate system with its origin on the axis of the rotor and 
its axial unit vector <k) pointed along the axis.   The rotational velocity 
of the coordinate system (") will be assumed to match the rotational 
velocity of the rotor.    A positive value of the axial unit vector (k) points 
in the positive direction of « in the right-hand sense.    A positive value 
of the tangential unit vector (sfg) points in the direction of rotation. 
Defining the radial unit vector (ä*"r) to point away from the axis when it 
is positive sets up the right-hand cylindrical coordinate system as shown 
in Fig.  1. 

Fig. 1   A Three-Dimensional View of the Rotor 

At a particular distance from the axis (r) a cylinder of radius r is 
made to intersect the blades.   If this cylinder is then spread onto a 
plane, the blade profiles may be represented as shown in Fig.  2.    This 
is the general representation of compressor blades in cascade.   The 
blades are pictured with a spacing s, chord length c, and trailing-edge 
thickness th. 

A plane perpendicular to the axis containing the blade leading edges 
in Fig.   1 is represented by the line z = Z2 in Fig. 2.   A similar plane 
containing the blade trailing edges is represented by z = Z3 in Fig. 2. 
The plane z = Z4 in Fig.  2 is located far enough downstream so that 
complete mixing of the flow has occurred. 

Figure 3 represents a plane containing the axis of the rotor inter- 
secting the bounding walls of the rotor casing.    This is the general 
representation of the compressor in the meridional plane.    The curve 
C-C represents the generatrix of the compressor casing.    The distance 
from the axis to the compressor casing (r^) may be an arbirtary function 
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pf z, the axial distance from the origin of the coordinate system.    The 
curve D-D' represents the generatrix of the compressor hub, and its 
distance from the axis (r^) may be an arbitrary function of z. 

z =  z. z =   z, 

z  =  z 

z  - z. 

Fig. 2   The Cascade Representation of the Bidding 

Z   =   Z„ 

z = z. 2       ♦ *r z  = z, 

A  
B-=-"-r 

7 
T r-r^T-B' 

Tf 
D' 

rh rt r'i ^O 

£ 
Fig. 3  A View of the Rotor in the Meriodional Plane 
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The region (R) of interest for the solution of the losses due to sudden 
area expansion will now be defined.   The region (R) is enclosed by the 
planes z = Z3 and z = Z4 and the surfaces generated by C-C' and D-D' 
between these planes.    The region will have a total surface area (A). 
Fluid flow may enter the region only through the surfaces area A3, 
where A3 is defined as the annulus area at z = z3 excluding the area A3' 
occupied by the blade trailing edges.    Fluid flow may leave the region 
only through the annulus area A4 at z = Z4. 

It is assumed that the flow through area A3 at z = Z3 has not yet ex- 
perienced the sudden area expansion and, also that it is in such a posi- 
tion that the blades may exert only an infinitesimal moment on the fluid. 

The problem is to define the equations necessary to determine the 
relationship between the fluid properties at the planes z = Z3 and z = Z4. 

Since the problem involves a great many unknowns and since the 
radial variation of some of the flow variables cannot be specified with 
certainty at the plane z = Z3, it is advantageous to divide the region (R) 
into a selected number of streamtubes.   An example of one such stream- 
tube is shown in Fig. 3 bounded by the generatrices A-A' and B-B'. 
Then, with some confidence, radial variation of certain flow variables 
within each streamtube may be ignored.   As an illustration, the adiabatic 
energy equation requires that the total enthalpy be constant along a stream- 
line.   In some cases, the assumption of constant total enthalpy within the 
entire region may be crude.    However, if the region is divided so that 
radial variation of total enthalpy is small within each streamtube, accuracy 
may be improved. 

The streamtube approximation is inaccurate whenever there is net 
mass transfer between streamtubes; i. e., secondary flows within the 
region.    This represents a limitation in the solution of the problem. 

2.2  ASSUMPTIONS FOR THE SIMPLIFICATION OF THE EQUATIONS 

In order to simplify the equations, the following assumptions were 
made: 

1.     The fluid is a perfect gas.    This assumption allows the 
use of the equation of state for a perfect gas, 

P - pRt (1) 
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where p is the static pressure, p is the density, t is 
the static temperature, and R is the gas constant. 
Furthermore, the specific heat at constant pressure 
(cp) is constant so that the ratio of specific heats {*■) 
is a constant which, thereby, tends to simplify com- 
putation. 

The weight of the fluid in the region (R) is negligible. 
In comparison to the inertial forces, the weight of the 
gas is usually quite small, and this assumption allows 
a volume integral to be neglected. 

Flow is steady.    It is necessary to consider a rotating 
coordinate system for rotor flows in order to efficiently 
use this approximation.    The integral equations to be 
applied to this problem contain volume integrals of un- 
steady effects requiring complete knowledge of the 
flow at every point in the region at every instant of 
time.   It is usually not experimentally possible to 
evaluate this integral for the type of problem under 
consideration.    Time averaged values of the flow prop- 
erties reduce the error in this assumption. 

Flow is adiabatic and frictionless.    The energy equa- 
tion will normally include the heat generated by friction 
along the path of a fluid particle if the flow is assumed 
steady and if heat transfer to the boundaries of the 
region is ignored when it is assumed that the heat due 
to friction is immediately and entirely dispersed 
throughout the fluid element.    However, the mathemat- 
ical complexity of including the frictional term in the 
momentum equation requires the total neglection of 
friction for the present calculations. 

Flow is axisymmetric throughout the region (R).   This 
assumption implies that there is no variation of the flow 
properties in the tangential (sfg) direction at any partic- 
ular axial position (z) and radial distance from the 
axis (r).    If the plane z = Z4 is far enough downstream, 
this assumption produces very little inaccuracy at this 
station; however, because of the unusually large thick- 
ness of the blade trailing edges,, this assumption becomes 
progressively poorer as the plane z = Z3 is approached. 

The plane at z = Z3 is essentially made up of two different 
types of surfaces that partially bound the region (R).    One 
is the effective surface of the blade trailing edges com- 
prised of the actual trailing-edge surface area and the 
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portion of the blade surface boundary layer that is 
intersected by the plane z = Z3.    The area of this 
surface was termed earlier A3'.    By assumption, no 
flow may enter the region through this surface, but 
secondary flows, perhaps caused by centrifugal 
forces for instance,  could conceivably cause compo- 
nents of the velocity to exist.    The other type of sur- 
face at Z3 comprises the area between the blades 
through which flow enters the region <R), and it was 
earlier termed A3.    In general,  sizable tangential 
variation of all flow properties may be expected in 
the Z3 plane, particularly if the blades are cambered, 
although one might expect these variations to be peri- 
odic from blade to blade if the flow relative to the 
blades is steady.    The equations used to describe the 
sudden expansion process will account for the assump- 
tion that the velocity is identically zero over the sur- 
face A3 , whereas the assumption of axial symmetry 
will be used to neglect any tangential variation over 
the surface A3.    These assumptions lead to equations 
that still contain terms which allow possible differ- 
ences between the static pressures on the surface A3' 
and A3. 

The results of the calculation presented in this report 
are derived from equations which assume that the 
static pressure on the blade trailing-edge surface and 
the static pressure in the free stream are identical. 
However, some reports (for example, Ref.   12) indi- 
cate that there may be considerable difference between 
these pressures, and the proper equations accounting 
for this are presented.    In this case, a relationship of 
the form 

P3' - P3 f <M3z. A4/A3, K) (2) 

is required where P3' is the pressure on the trailing- 
edge surfaces, P3 is the free-stream static pressure, 
and f(M3z, A4/A3,K) may be an empirically determined 
function of the free-stream axial Mach number (M3Z), 
the flow area ratio (A4/A3),  and the ratio of specific 
heats (0. 

Secondary flows are neglected.   Such an assumption is 
likely to be unrealistic in fluid flow as complicated as 
that in turbomachines.   By way of example,  consider 
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the space behind a blade trailing edge.   In all like- 
lihood, such a region contains an unusually large 
amount of low energy boundary layer material com- 
pared with blading of more conventional design. 
This low energy fluid can be more easily centri- 
fuged outward to .collect at the casing than the 
main stream flow.   This particular type of sec- 
ondary flow is probably inherent in the overall 
picture of flow with the blunt trailing-edge blading. 

Various other types of secondary flows are de- 
scribed in Chapter XV of Ref.  1.   Experimental 
evidence related in Ref.   1 indicates that wheels of 
high hub-to-tip radius ratios may be expected to 
reduce secondary flows.    In any case, only quali- 
tative analysis from experimental data for sec- 
ondary flows is available to date because of the 
mathematical complexity of the problem. 

2.3  THE EQUATIONS FOR A ROTATING COORDINATE SYSTEM 

The following is a list of the equations applied for solution of the 
sudden area expansion phenomenon.   For the most part, they are taken 
directly from Ref.  11.   In review, the derivation of these basic equa- 
tions hypothesized a flow that is representable by field properties   that 
are continuous and continuously differentiable.    The angular velocity of 
rotation has been assumed constant; separation at the planes of entrance 
to and exit from the control volume is assumed not to occur; and flow 
may not both enter and leave the control volume through the same open 
surface area. 

2.3.1   Momentum Equation 

The integral momentum equation for steady relative flow, neglect- 
ing friction and the weight of the gas, is 

/W4 dm,\4  -   / W3dmA3   =     / -npdA  -     J pfi x   (2W   +  ft   x  r) dv O) 

(A4) (A3) (A) <Ri 

where dm A . is the absolute value of the increment of the mass flow rate 

defined by 

' dmA.   =  pi,n • tfjIdAi (4) 

10 
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where p is the density, n the unit vector normal to the element of sur- 
face area dA^, and Wj is the relative velocity given in cylindrical coordi- 
nates by 

*i   =   arWri  +  a0W0i  -   k»8. (5) 

In Eq.  (3), the areas A3 and A4 are the areas through which the fluid, 
respectively, enters and leaves the region (R).   The region (R) is 
bounded by a surface of total area (A).    By convention, the unit normal 
vector (n) points away from the region {R) so that the negative sign in 
the integral of the static pressure (p) indicates that the normal stress 
is exerted on the surface element dA by the surroundings.   In general, 
thefinaL volume integral of Eq.  (3) for the Coriolis acceleration 
(2ft x W) and the centripetal acceleration (ft x (ft x r)) cannot be evalu- 
ated accurately because of lack of sufficient flow measurements within 
the region. 

2.3.2   Continuity Equation 

The continuity equation may be written in integral form for steady 
flow in the relative coordinate system as 

JdmA3   =      JdmA4 

(A3) <A4) (6) 

where dm^. is given in Eq. (4). 

2.3.3   Energy Equation 

The energy equation for steady,  adiabatic flow in*a rotating coordi- 
nate system is 

d'RH' = 0 

where dV.( ) represents the change along the path of a fluid particle in 

the rotating coordinate system and where H' is the relative total enthalpy. 
For a perfect gas, this leads to 

The streamtube approximation is used in approximating an average 
value of T3' in each streamtube based on the mass averaged value of T4', 
the streamtube center at Z4, and an arithemetic average of the inner and 
outer boundary radii at Z3. 

11 
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2.3.4   First Moment of Momentum 

The axial component of the first moment of momentum for steady, 
frictionless flow of a weightless gas in a rotating coordinate system is 
given by 

JB'i   =   / k • r*3  x  W3dmA3 -     f k  •  r4 x W4 dmA4 -    / k  •  r x [pft x  (2W + Q x ?)] dv 

(A3) (A4) <«> 

(7) 

If no force is exerted in the tangential direction, this equation equals 
zero. 

2.4  DERIVATION 

The problem which now remains is the rearrangement of the 
above equations into the most useful form.    To do this,  several addi- 
tional relationships are necessary.'   The relative Mach number vec- 
tor (M') is given by 

M = l a 

where 

a = y'KRt 

Psing the isentropic relation (Ref.   11) gives 

1 . i + JLLi * 
l 2 

The static temperature may be replaced by the relative total temperature 
(T') when the Mach number in the above relation is considered the rela- 
tive Mach number (M').   Then the local speed of sound is given by 

V KltT' 

'x + IzJL M'2)* 

so that the relative velocity (W) may be replaced by 

M'V'KHT' 
W -      :  (8) 

(l   +   4i-M^ 

It is now convenient to define the geometry of the surfaces bound- 
ing the region (R).    The effective thickness of a blade at the trailing 

12 
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edge (th) may, in general, be a function of the radial distance from the 
axis.    If th is considered the arc length at a particular radius r, then 
the angle intercepted by this thickness is th/r.    The cross-sectional area 
at the trailing edge occupied by a single blade is then 

r3t th/r 

A   =    J        J rdödr 
r3h 

'3t 

/ 
•3h 

th dr 

where the subscript 3 indicates the plane at z = Z3, the plane of the 
trailing edge, t implies the tip or outer casing, and h implies the hub 
or inner casing.    Then for n blades the incremental area at the trail- 
ing edge (dA3') is given by 

dA3' =   n th dr (9) 

For the assumption of axisymmetric flow, the element of area at z = Z3 
through which fluid may pass (dAg) is given by 

dA3  =   (2OT -  n lh)dr (10) 

The element of surface area A4 at z = Z4 is 

dA4  =   2m-dr (H) 

for axisymmetric flow. 

To the present point in the derivation, the control volume has been 
considered that volume bounded by the axisymmetric surfaces of the 
inner and outer casing walls, the plane of the rotor blade trailing edges 
(Z3), and the downstream measuring plane (Z4).   The streamtube 
approach is next applied to divide this control volume into smaller 
regions.   This procedure is necessary to allow the linear representa- 
tions of the flow properties in each streamtube to be sufficiently accurate 
and to reduce inaccuracy in the integration of the energy equation.    At 
the downstream measuring plane, several stream surface locations may 
be determined by use of the measurements at this station in conjunction 
with the continuity equation.    It is assumed in the present application 
that the hypothetical stream surfaces of each streamtube are parts of 
right circular cones between measuring planes and the plane of the blade 
trailing edges.    A significant portion of the problem involves locating 
the stream surfaces at the blade trailing edge plane.   It is assumed that 

13 
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there is no net mass transfer across the stream surfaces.   Two exam- 
ples of such stream surface configurations are shown in Fig. 4 as a 
cross-sectional view containing the rotor axis.    Figure 4 (top) shows 
the boundaries of a streamtube that might occur when there are no 
extra measurements at an axial plane between the rotor trailing edge 
plane and the downstream measuring plane.   Figure 4 (bottom) shows a 
possible configuration when the extra measuring plane is included for 
determination of the weight numbers for the volume integrals (see 
Section 2.8). 

Trailing 
Edge 

Plan« 

Downstream 
Measuring 

Plane 

■i 

Trailing 
Edge 
Plane Plane 

oi   Extra 
Measurements 

I 

Downstream 
Measuring 

Plane 

■~h  

.-I 
—1 

I 

Fig. 4   Examples of Arbitrary Stream Surface Configurations 

In order to define the elements of surface area for the axisym- 
metric stream surface bounding the streamtubes, it should be recalled 
that curves like A-A',  B-B',  C-C and D-D' in Fig.  3 represent the 
generatrices of axisymmetric surfaces.   A streamtube like that 
bounded by A-A' and B-B' in Fig.  3 has one surface boundary (B-B') 
that is closer to the axis of generation which will be termed the inner 
boundary (subscript I) and one surface boundary (A-A') that is farther 
away from the axis of generation which will be termed the outer bound- 
ary (subscript O).   The elements of area for the inner and outer stream- 
tube boundaries are given by, respectively, 

dAi  =  2m\{z)   dsi 
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and 
dAo   =   27TTO(Z) dso 

where,  in general, rj and TQ may be arbitrary functions of z and ds is 
the element of length between z = Z3 and z = z^ in a plane containing the 
axis.    For a straight line, the length elements ds may be given by 

, <lz 
ds|  = 

dso 

cos ft 

dz 

ens ft) 

where ? is the angle of a tangent to the surface measured with respect 
to the axis in a plane containing the axis. The elements of area of the 
the streamtube surface boundaries then become 

2mi{y) dz 
«JAi =  — <12) 

cos f] 

and 

dA0 
2lT TQ(Z)  Hz 

*us ft) <13> 

The unit normal vectors to each element of the total surface 
area (A) may now be determined.    First, the planes z = Z3 and z = Z4 
are perpendicular to the axis of the rotor; therefore, the normals to 
these surfaces are parallel to the unit vector k.   The unit normal vec- 
tors point away from the region (R) so that the unit normal vector at 
z = Z3 is equivalent to -k.    Similarly at z = Z4, the unit normal vector 
equals +k.    To designate the components of the vectors normal to dAj 
and dAo consider Fig.   5.    The sign of the angle ? which the wall makes 
with positive axial direction is positive if r^. > rß for Z4 > Z3 and nega- 
tive if r^. < r3 for Z4 > Z3.    Figure 5a shows two possible local orienta- 
tions of the inner boundary generatrix.    The normal to the inner stream- 
tube boundary is given in both cases by 

-»      -+ -» 

n   --   k   sin ifl -   ar cos ft (14) 

Similarly,  Fig.  5b shows two possible local orientations of the outer 
boundary generatrix.    The normal to the outer streamtube boundary is 
given in both cases by 

-*      -♦ -> 

n   =  ar   cos ft) -   k   sin ft) (15) 
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The element of volume for the region (R) is given by 

dV = -2J7T dr dz (16) 

for axisymmetric flow where r may be a function of z. 

The various vector products occurring in Eqs.  ( 3) and ( 7) may be 
evaluated using Eq.   (5),  the relation 

-*      -»        -» 
r   =   arr  +   kz 

and the fact that ß = kfi.  Then the following relations result: 

fl  x   W  =  -arQW0  -   aQtoWj 1 

Q x   (Q  x "r)  = -arQ
2r ' 

Ic   •   r x   Wj-   rW'0           ^ i 

k   -   r  x   [pQ  x   (2W  +  0  x  r)] =   2pfir$r / 

-+«T 

(R) 

^T^Sl 

'3 _ 

}     X I 
a.   Inner Boundary b.   Outer Boundary 

(17) 

Fig. 5   Geometric Relation of the Vectors Normal to the Axisymmetric Stream Surfaces 

The following relations are derived from Fig.  6 and allow substi- 
tution for the components of the relative velocity. 

W'z   =   W cos y cos ß 
Wr   =  W sin y 

W# =   -W cos y sin ß 
(18) 
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tt" sin -r 

Fig. 6   The Three—Dimensional Velocity Triangle 

By using Eqs.  (1),  (4),  and (5) and relations in Eqs.  (8) to (18), it is 
possible to rearrange Eqs.  (3),  (6), and (7) to the following form 

Radial Component of the Momentum Equation 

'30 

/ P3 M3'2 sin y$  cos 
r3I 

y3 cosjßjl  - Up)  rdr =  A' +  B' +  Rf  +  R'2 (19) 

where 

r40 

A'=      F  p4 M4   sin yi   cos y\ cos ^4 rdr (20) 

r4I 

B' = —     J     (poro  -  Pin) dz 
»3 

(21) 

Ri   =   =        I    —=   (1   +     M * )    cos y sin B dv 
BVKR

      (R)    ^/T'   V 2 

(22) 

«■-■&■ / f(> * V«-1)* (23) 
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Tangential Component of the Momentum Equation 

r30 

J"    p3 M32  cos2   y3 sin j83 cos /S3 M   -  ±£-\ rdr  =  C' +   R3' 
r3I 

where 

r40 

-fl           f            pM'   /            K - 1 -V* 
R3   =   —7=       J        -W(l   +       M'2)    sinydv 

Axial Component of the Momentum Equation 

J°p3<M32cos
2y3cos2)83+^)(l  _ ^  rdr = D'+ E'+ F' 

r31 

where 

r4l 

z4 

r3I 

Continuity Equation 

r30 

(24) 

P4M4  cos2y4 sin/34 cos jS4   rdr (25) 

(26) 

(27) 

r40 

D' -    J    P4 (M42cos2y4Cos2/y4 +  ^-jrdr '     (28) 

E' =   —     f      (pjri tan £1  -  poro tan &) dz (29) 

*3 

—==-      f     p3 M3Cosy3cos j83 (l   + Ms'2)    (1   - -—J   rdr   = —=r        /o.» 
VT3       » \ 2 '     \ 2nt / VT4 w±/ 

r3I 

where 

G'a    F   P4M4 cos y4 cos (84 (1   -   M32)    rdr 
(32) 

41 
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Axial Component of the Law of Moment of Momentum 

r30 . 

J   p3 M'3
2 coS2 y3 sin j33 cos j83(l   -  ^-) r2dr  =   II' +  R4' (33) 

r3I 

where 
r40 

H ' = J   p4 M '4
2 coS2 y4 sin /34 cos /34 r2 dr (34) 

'41 

R4   =  —==r      I     —;= 11  -r    M 7     sin Y rdv 
*VNR       (R)      V'T     V 2 ' 

(35) 

Equations (19),  (24), (27), (31), and (33) describe the process of 
sudden area expansion for a rotor of blunt trailing-edge blading under 
the present assumptions.   In order to actually solve the equations, it is 
necessary to make further assumptions and to select five particular 
quantities to be obtained by the solution.    The following sections deal 
with these problems. 

2.5   FURTHER ASSUMPTIONS TO SIMPLIFY THE PROBLEM 

2.5.1 Assumption 1 

The quantities A' of Eq.  (20),  C' of Eq.   (25),  ö' of Eq.   (28),  G' of 
Eq.  (32), and H' of Eq.  (34) involve only the properties of the flow at the 
plane z = z^.    These quantities may be evaluated numerically from meas- 
urements at the Z4 plane. 

For the specific case of the present analysis, it is assumed that 
the radial component of Mach number is identically zero at z = z^; 
i. e., 74 = 0 (see Eq.  (18)).    Measurements were obtained under this 
assumption,  and in Ref.  8,  it was demonstrated that neglecting radial 
velocity produces only small errors at this plane. 

2.5.2 Assumption 2 

The quantities B' of Eq. (21) and E' of Eq. (29) involve the pres- 
sure on the streamtube bounding surfaces and the shape of these sur- 
faces between Z3 and 24.   In general, neither of these is fully known, 
and therefore, they must be approximated. 
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Static pressure is measured only on the casing walls; but with the 
assumptions that static pressure varies linearly in the radial direction 
and that the stream surfaces form portions of right circular cones, it 
is possible to separate the functions into integrals that remain constant 
for all streamtubes and coefficients of these integrals that are deter- 
mined by a streamtube's location and geometry.   The following discus- 
sion shows the exact procedure leading to this simplification. 

It will be assumed that the surfaces of a streamtube form a por- 
tion of a right cone which has an axis coinciding with the axis of the 
rotor.    This means that, in the representation of Fig.  3, the stream- 
tube has straight lines denoting stream surface shape between planes 
z = Z3 and z = Z4.    Then radial distance of a stream surface at any 
axial location z, Z3 < z < Z4, is given by 

24 — z 
r;(z)   =   r4j   -   (r4j   -   T3j)       ,   i    ==   I or 0 (36) 

Z4 - Z3 

The slope in the z direction of a stream surface is approximated by 

'41 - T3i 
tan tj =   , i  =   I or 0 (37) 

Z4 - z3 

The static pressure is usually measured at static taps positioned 
along the solid boundaries.    The variation of static pressure from inner 
to outer walls is assumed linear.    Then for a particular axial station (z), 
the variation of static pressure with radius is given by 

pfr.rt = Piwd) *  Ms) - PhW]rJ2)L
h
rh

Z
(z) (38) 

where r^(z) and r-t(z) are,  respectively, the hub and tip casing wall 
radii at the particular axial station z, and where Pfote) and pt(z) are the 
static pressures measured at the hub and tip walls, respectively, for 
the particular axial station z.   Since it is of particular interest to know 
the static pressure on the stream surface, the streamtube surface radius 
of Eq.  (36) must be substituted for r in Eq.  (38).    Then the static pres- 
sure on the streamtube surface i (= O or I) at the particular axial posi- 
tion z is given by 

Pi(z)  =  ph(z)  +   [pt(z)   -  Ph(z)] 
f*i   -   fh(z) 

■■t(z) - n,(z)_ 

(39) 

rPtu) - Ph(z)i p-^-1 [>:"■] 
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Substitution of Eqs.  (36) and (39) into Eq. (21) leads to the follow- 
ing representation of B': 

B' =  (r40-r4i)B{ +  (r40   -  r4J) B£  +  2 (r30r40   - r3jr4i)B3 

+  ("-30   - r3i) Bi + (rlo - r^) B5' 
(40) 

where 

«■■J-jl-^f-^n)-. (41) 

B, . 1 j'Vr - Uli.)1 Ö d2 (42) 
*      J       \ z4~z3/      \rt - rh   / 

!3 

14 

Ba4J    (—)('-—)(—)to (43, 
1        f

Z*    / z4 - z\/ Pt~ Ph \ 

z3 

z4 

Similarly, substitution of Eqs.  (36),  (37), and (39) into Eq.  (29) yields 

, o B2 /2 2, Bl ,3 3 * B5 
E' = tii - rW T^rr3 

+ (rh ~ '«> 7pi7 + (r3o - r3i> T^T3 

B' F' (46) 
,2 2   x       B4 ,2 2 N        '   " 

+   ^30   -   r3i )    +   lr30r40   -  F3|r4W 
z4 ~ z3 s4 _ z3 

/ 2 2  \ ho I \ k3 +■   ^3or40   -   r3ir4i)     +   lr30r40   -   r3Ir4|J    a  
z4-23 

z4~z3 

where ~B\, B'2   B 4, and B'5 are given, respectively, by Eqs.  (41), 
(42), (44), and (45) and where 

E;-HteX2-3^)C^)d' <-' 

«-r/V**H) (»-£?- ■>)'■ («) 

21 



AEDC-TR-71-111 

It should be noted that the integrals represented by B'i, i = 1, ..., 
5,  and E'j, i = 1, 2, 3, involve only the measured values of the wall 
static pressure and the annulus wall radii.   Therefore, these quantities 
may be integrated without knowledge of the stream tube configurations 
and considered constants in obtaining the solution.    However, since 
evaluation of the integrals requires knowledge of the annulus wall static 
pressure at the plane of the trailing edge,  a particular problem arises at 
hub wall where no wall static pressure may be measured in practice.    In 
the present application,  the other measured static pressures along the hub 
wall are used to extrapolate for the missing value.   It is felt that since the 
integrals are based on several actual measured values,  little error is in- 
volved in this necessary approximation. 

2.5.3   Assumption 3 

The volume integrals R'i of Eq. (22), R'2 of Eq.  (23), R'3 of 
Eq.  (26),  andR'4 of Eq.  (35) require,  in general,  complete knowledge of 
the flow at every point within the region.    However, it will be assumed 
that the value of the integrals may be approximated by a weighted average 
of the values of the integrands at the planes z = Z3 and z = Z4.    This is a 
strenuous approximation since it completely neglects the flow process 
between these planes.   However, the weights are determined from solu- 
tions of the equations in each streamtube when the surface integrals are 
known at the measuring plane between the rotor trailing edge and the 
downstream measuring plane.   The method of determining the weights 
will be discussed in Section 2. 8. 

Under this assumption and the assumption of axial symmetry, the 
quantities R'i, R'2» R'3» and R'4 may be rewritten in the following form: 

2fi (z4   - z3)(   1 - Wj 
Rf = —1= 

l J T3l 

IiJT3°p3M3coSy3si„^l   +  ^-M32)(l   " ~)rdr  +  ^ I 

(50) 

where X is the integral evaluated at z = Z4 

X'=f       P4M4 cos y4 sin/34 (1   + S-^J— M4'2j      rdr (51) 

MO 

and where Wi is the weight associated with X . 

R... OH^ j,^ r n(i, ^ M.2) (l. ^ ,t + M:J 

(52) 
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where Y  is the integral evaluated at z = Z4 

V-   J40 M(I   '■  ~-    M'4
3)r2dr (53) 

r4I 

and where W2 is the weight associated with Y'. 

2il(Zj-z4)       (1-Kj     'JO / K- I v^   / niliv »3/'   / 
Hi  =  -=     j—r—  f      P3M3S.nya (l   +      M32)     (l J rdr  + -=[ 

\'<« j    VT3'    J3i V 2 /      V 2^r   y V'l 4    i 

(54) 

where Z' is the integral evaluated at z = z^ 

r40 / \ ;* 
z'=J    p4M4'siny4n   +^±    M4'2)      rdr (55) 

TA 1 * ' MI 

and where W3 is the weight associated with Z 

2fl(z,-7,)   (1-W4    /30       ,,, / K-l \'"   / n lh \ w,z"  / 
R4 =   F-™^   j-W-   I P3M3 siny3 (l Ml2)      (l )  r2dr   +   ~~ \ 

VKR I    v'T3     Jr  , V 2 3 /       V 2rrr    y VT4     ) 

(56) 

where Z" is the integral evaluated at z = Z4 

Z" ■   j" P4M4siny4(l   ,   ^— M'4»)     r2dr (57) 
r4I 

and where W4 is the weight associated with Z". 

2.5.4  Assumption 4 

The quantity F 'of Eq.  (30) could be calculated by an iteration pro- 
cess.    According to Eq.  (2), P3'is dependent on the axial Mach number, 
the area ratio, the free-stream static pressure, and the ratio of specific 
heats.    Initially, it is assumed that P3' and the free-stream static pres- 
sure (P3) are equal.   Solution of the equations under this assumption 
yields the information for the evaluation of P3'by Eq.  (2).    This is then 
used to calculate F',  and solution of the equations is again obtained. 
The value of P3'is then recalculated according to Eq.   (2) and the pro- 
cess continues until the values of Pß'for two successive solutions differ 
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by less than some convergence criteria.   To adapt this procedure, 
Eq.  (27) is better written in the following form: 

f       p3   M3'2cos2 y3 cos2 ßJl  - ^p-J +  —   rdr  - K — -j- f     p3 th dr 

rar *- " J r3, 
(27') 

1       n 
= D'  +   E' -  K   —  —    f 3°I>3' th dr 

'31 

where for the initial solution K = 0. 0 to indicate the terms involving p3 

and pg' cancel and for each successive solution K = 1. 0.   The results 
presented in this report are derived for K = 0. 0. 

By using Eq.  (40) for B', Eq.  (46) for E', Eq.  (50) for R'j, 
Eq.  (52) for'R'2, Eq.  (54) for R'3,  and Eq.  (56) for R'4, it is possible 
to rewrite Eqs.  (19), (24), (27), and (33) into a form for which the 
right hand side is independent of any unknown parameters at plane 
z = z3- 
/r3 0                                                           /           n th\ .      / 

p3M3'2sin y3 cos y3 cos ß3 (1 ; J rdr  +   2 (r3|r4| - rsor^o^ ü3 

'31 

-   (r3l   -   r3o)B'l-   (r3i -  r3o) B '5 

2OU3-Z.1) -'30 / K-l \Ü   / nth\ 
 ,=== (1  - Wi)   J     P3M3 cos YS sin /33{I   +  ■   M32)     f1   "    ) rdr 

VKRT3' ^3r V 2 /     V 2m / 

fl2(z4-Z,) ■      Z30    / K-l , \    / nth\     , 
•■ 4      ,'       (1   "  W2)   J     P3(l   +       M3O   (l ) --2dr 

KRT, *..      V 2 /   V 2ffr / 

+ 

KRTS ra, 

A '   .    ( \ D' I  2 2   >      ' 2fi(z4 - z3) A  (23-14)       „,  v, 
= A    + (r40  - r4i) Bj +  (r40 - r4j) B2 ^       »       J     W[X    +       w2Y        (19 ) 

VKRT'4 KRT '4 

J P3M3' 2 cos2 y3 si„ /33 cos ß3 /j   _ £jh \ rdr 

+ tfu4-,al   (i _ ,a)/"°paMB. sin,A + ^i_ MiA'" /,. ^\ rdr 

VKRT3 r3I ^2 /      * 2nr   ' 

r^2^»-'*'   W3z< <24'> 
VKRT4 
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f30p3L'2cos2y3cos2ß3/i   _  JLÜN +  _!_j rdr  +  (r3
3j_r|0 ) -2L- +  Cr§i - r|0)  —— 

J              I                                             \           2rrr   /           K   \                                     z4 — z3 z4 — z 
r3[          L                                                                                    J 

,2                   2           \         El              / 2                    2    i        E2               , x         E3 
+   ^3Ir4l   ~ T3or40^     +  tf3Ii"4I   ~  r30r40>    +   ^3ir4I   ~  r30r40)     z4 - z3                                               z4 - z3 z4 - z3 

r    1       n        r _.IJ ~,       ,   3 3v "2 
~K   7"  ir'     /        P3thdf   =  D'+   (r4I   ~  r40) 

r3I Z4
_Z3 

+  (r4i -r40)      - K I p3' th dr (27") 
Z4-Z3 K    2n   J * ' z4~ z3 r3I 

r30 , tJv 
f     P3M3'2   cos2 y3 sin j83 cos 03 f 1   -  ^- J r2dr 

■•31 

2fi(z4-z3) /30 , / K-I \*   A nth 

VKRT3 

P3 M8' sin y3 (l   -    Ms2)     A ) r2dr 

=   II'   +   2"(Z3~Z4)      W4Z" (33') 
\*RT4 

Note in Eq. (27") that, although p3' is not actually a known quantity, the 
iteration procedure described previously would ensure a value of P3' for 
each iteration step. 

Equations (19'),  (24#),  (27"),  (31), and (33') represent the final 
form of the five equations describing the sudden area expansion pro- 
cess.    The following section will describe the particular assumptions 
necessary to limit the unknowns on the left hand side to five. 

2.6  ASSUMPTIONS CONCERNING THE PARTICULAR FUNCTIONAL 
FORM OF THE FLOW VARIABLES 

2.6.1   Assumption 1 

It has been assumed that static pressure varies linearly with radius 
across the annulus in order to evaluate integrals of streamtube boundary 
pressure forces.   The flow variables are to be considered linear func- 
tions of radius in each streamtube so that radial changes from stream- 
tube to streamtube may be represented by a continuous, piecewise-linear 
curve.    These two approximations are consistent only if the static 
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pressure (P3) is assumed linear across the annulus and not piecewise- 
linear; therefore, at z = Z3 the static pressure at any radius is deter- 
mined from 

P3   =  Ci   +  C2r, n,<z3)   <  r  <   r, (z3) (58) 

where 

and 

C2 - Pt <za> -Ph U3) 

Ci   -   Pt (23)   -  C2 rt (7.3) 

The wall static pressure is measured at the tip, and,  in order to 
specify the variation, it must be determined at one other point, such 
as the hub wall.   Such a value has been extrapolated from other meas- 
urements on the hub wall to evaluate the integrals of the resultant force 
due to pressure on the stream surfaces, and this pressure must be 
used to yield the necessary function in the solutions here.    However, 
this is a very strenuous assumption since the extrapolated pressure 
does not necessarily obey any of the laws of fluid flow.    The extrapo- 
lation is felt to yield reasonable but,  certainly, unjustifiable estimates 
of the hub wall static pressure at the plane of the rotor trailing edge. 

By considering the simplification that this approximation provides in 
allowing direct integration of B'j,  i = 1, 2,  .. . ,  5,  and E\, i = 1,  2,  3, 
considering the limited number of equations available to determine the 
flow variables at z = Z3, and considering the other simplifications neces- 
sary to this problem, then the extrapolation to obtain p^^) is justified; 
but it is noted that improvement in this assumption should be considered 
necessary in a more advanced solution of this problem. 

2.6.2  Assumption 2 

The relative flow angle at the blade trailing edge (ßg) is assumed to 
vary linearly in each streamtube; i. e., 

fa  =  bi  + b2r,       i-31 < r 1 r30 (59) 

Use of the integral equations that are being applied to the sudden expan- 
sion flow process demands that there exist no flow separation at either 
the entrance to or the exit from the bounded flow region between Z3 
and Z4.    Therefore, this demand is obeyed if the solution for £3 deviates 
very little from the average angle of the blade trailing edge (£3'). 
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Furthermore, cascade tests have shown that £3 is greater than £3' ex- 
cept in end wall regions where secondary flows may cause ß3 to be less 
than £3'.    These considerations are expected to form one basis for judg- 
ing' the applicability of the present method for solution of the sudden ex- 
pansion flow process. 

2.6.3 Assumption 3 , 

The sine of the relative pitch angle (73) is assumed to vary linearly 
in each streamtube; i.  e., 

sin Yi   =   gl   +   g2r. r3I   <   *   <  r30 (60) 

From the assumption in derivation that flow may only enter the region 
at z = Z3, the value of sin ^3 is limited to values between +1 and -1; 
i.e. ,  -90°<73 <+90°. 

2.6.4 Assumption 4 

The relative Mach number (M'3) is assumed to vary linearly within 
each streamtube; i. e., 

M3   =  dj   +   d2r, r3i   <  r    <  r30 (61) 

2.6.5 Assumption 5 

The thickness-to-radius ratio (th/r) may be considered the angular 
distance per blade at a fixed radius through which no flow may enter the 
control volume.   In real flows, this angular distance would be composed 
of the angle subtended by both the blade trailing edge and some flow de- 
fect that is due to boundary layer accumulation on the blades.-   However, 
the governing equations are frictionless and axisymmetric and contain 
no mechanism that would determine this angular distance.    The equations 
certainly do prescribe a certain flow area, but they give no preference as 
to its linear dimensions, whether tangential or radial.    This implies that 
either th/r or the stream surface locations at the blade trailing-edge 
plane must be specified.   In the present solution, th/r is specified as the 
blade trailing-edge thickness-to-radius ratio, while the stream surface 
locations are demanded from the solution. 

Since a certain flow area is required by the equations and since the 
measurements used to calculate various terms in the equations are re- 
sults of real flows, it is reasonable to expect that some flow defect will 
show up in the overall calculations.    For instance, the flow area may 
not extend radially from the hub completely to the tip.    This yields a 
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flow area defect, or blockage, which is theoretically due to the frictional 
effects that are ignored in the problem but may also include measure- 
ment errors.   Examples of the frictional effects include the boundary 
layer blockage at the trailing edge,  annulus wall friction,  and the fric- 
tion at the planes of entrance to and exit from the control volume.   The 
flow defect is a result of all these factors, and each component is in- 
distinguishable from the other.    Therefore, the blockage factor is char- 
acteristic of the friction in the general flow process and not necessarily 
representative of the actual boundary layer blockage at the trailing edge. 

From consideration of Eqs.  (19'),  (24'), (27"), (31), and (33') and 
Eqs.  (59),  (60), and (61) describing the functional form of the variables, 
the following quantities must be specified by solution of the equations in 
each streamtube:   r«^,   r^Q,  b\, b2, gi, g2. di, d2-    Since there are 
five equations, only five of these quantities can be determined.   The 
following section outlines the selection of the proper five constants to be 
determined and the method of solution. 

2.7  SELECTION OF UNKNOWNS AND METHOD OF SOLUTION 

Substitution of Eq.  (61) into Eq. (2 7") leads to the following quad- 
ratic formulation of Eq.   (27") in terras of dy. 

d?V.    -   2d! d2V2    •-   d2\'3   -   RHS (27") =0 (62) 

where 

RMS (27")   =--   D' +   (r.ji   -  r^)     —     +   tr.»  -  rj0) 
U~ '3 z4-/-3 

L -Li- 
'30 r

r3 0 
I p3 '  tli dr   -   I p3 th dr       - —   I P3 rdr 

r3l r3[ 

■■30 

r3[ 

,  j             j    ,         --   .,               ,  -              -   ,           [J4 ,2 2 . £1 
(r3l -   rgo) (131   -   r30) —   -(r3[r4i   ~  r3or40> 

■» n 

and where 

»4" '3 *4 ~ "3 vi ~ z3 

■ o I-. 2 K 3 
-   U"3|r4I   ~  r30r40)   7-3"" "   (r31r4l   ~  r30r10' 7"   _ A. 

LVh V2. Vsl   - / "   1»3 f"s2 Ti ^s2 ft (l   - —-)   lr, r2, r3l dr 
r31 
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The rearrangement of Eq.  (27") into Eq.   (62) is very important be- 
cause,  as will be shown, it eliminates the necessity of iteration on one 
of the five equations since d^ can be determined exactly,   satisfying 
Eq.  (62), if the other variables are known or guessed. 

To begin the solution, the particular streamtube is selected for 
which the overall relative total pressure loss was a minimum.   The 
variables,  183,  SÜTY3,  anc* ^3* are assumed constant over the entire 
radial height of this initial streamtube,   i. e. ,  D2 = g2 = ^2 = 0.    Thus, 
for the initial streamtube,   di may be determined from 

H,   =   .. |RHS(27")/V,r (62') 

and there remains exactly five undetermined constants, T^Q, r3i, b\, 
g\, di, to be found by solution of the five governing equations, 
Eqs.  (19'),  (24),  (63'),  (31),  and (33').    The iteration process leading 
to solution is illustrated in Fig.  7, and the convergence criterion guar- 
antees at least six significant digits for each variable. 

The solution of the initial streamtube provides boundaries of that 
streamtube and the values which £3, sin 73, and M3' must have at these 

boundaries in the neighboring streamtubes.   It is demanded that the 
solution values be continuous across the common boundary between two 
streamtubes.    Then, the following conditions must be satisfied for every 
streamtube except the initial one: 

l>2  =  ißn  ~ b|V-rn (63) 

g2   ■=   (sin y\)   -   g|)/'B (64) 

d2   =   (M'B   -   di)/rB (65) 

where rg, ßg, sin J-Q, and Mg are determined from the solution in a 
neighboring streamtube.    Since one of the streamtube bounding radii is 
determined from the solution of a neighboring streamtube, the number 
of unknown quantities has been reduced from eight to seven.    The three 
additional relations, Eqs.   (63), (64),  and (65), give a total of eight equa- 
tions so that the problem is not solvable unless one of the five governing 
equations is dropped.    The axial component of the moment of momentum, 
Eq.  (33'), was eliminated since it really supplies no more information 
to the system of equations than the tangential component of the momentum 
equation, Eq.  (24'). 
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If Eq.  (65) is substituted into Eq.  (62), the following relation results: 

A dj + B di + C = 0 

where 

A  - vj   - 2 — ^   —2- 
rD rB 

B  =  2M 
L rB rB   J 

C  = MQ 2 ll- RHS(27"1 
rB 

with the solution 

d,  - -B ± H! - 4AC (62") 
2A 

Experience has shown that,   in general,  the positive sign on the radical 
is applicable when the upper boundary of the streamtube is known and 
the negative sign applies when the lower boundary is known. 

The iteration cycle yielding solution of Eqs.  (19),  (24),  (62 '), 
and (31) is illustrated in Fig. 8.   The convergence factors guarantee at 
least six significant figures for each variable. 

It remains to comment here that, even though the scheme is straight- 
forward, simple, and relatively certain of finding a solution if it exists, 
the method is time consuming.    One complete case takes approximately 
15 min of computation time for the IBM 360/50 computer in accomplish- 
ing 7000 or more iteration steps to obtain reasonable accuracy.    There- 
fore, a much faster scheme must be sought if the problem is to be 
economically solved.    The present iteration scheme serves only to 
demonstrate that the problem can be solved and to acquire a few 
example results. 

2.8   DETERMINATION OF THE WEIGHTS FOR EVALUATION OF THE VOLUME INTEGRALS 

Obtaining and correlating values for the weights W^i = 1,  2, 3, 4) 
in Eqs.  (50), (52),  (54), and (56) presents a formidable problem in 
itself.    In essence, the task is to find values of Wj which, when substi- 
tuted into Eqs.  (50), (52),  (54), and (56), give good approximations of 
the values of R'l,  R'2» ^3* an(^ ^ 4 obtained by more accurate evalua- 
tions of Eqs. (22),  (23),  (26), and (35).   These evaluations may involve 
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measurements at other planes z, Zß< z <Z4.    However, in fluctuating 
flow fields, such as those experienced behind a rotor, measurement 
interpretation becomes questionable.   Therefore, even the more accu- 
rate evaluations of the volume integrals probably only represent low 
order approximations. 

With this in mind consider the following simple approach.    For the 
particular case under consideration, measurements of the flow proper- 
ties are available 2 in. downstream of the rotor trailing edge.    This is 
interpreted as the plane z = z^.    In a few cases,  measurements are 
simultaneously taken at a distance of 1/2 in. behind the rotor.    This 
plane will be specified z = ze.    Assuming a straight-line variation of 
the integrals between the z stations allows the approximation of the 
volume integrals in the following manner for axisymmetric flow: 

RfA   =  -"        j-4^   f30p3M3''cosy3 sinfr (\   +  -^1    \\A '"    (l   -  ~~) rdr 
VKR /     VT3 J \ 2 / V 2I7T   / 

'31 

-  -4=   [cosy,.   ——— \;   <z4  -   z3)   H   X'<z4  -   zJt (66) 

where 

Xe'   =   J        peMa   sin fir M     I    ^-   \IH'2J      rdr (67) 
rel 

and where X' is given by Eq. (51) 

n>    ( 
R2A 

2KB 

1 
r,,   f 

where 

—— y; da - *4) * if''/. - 24W (68) 

2dr (69) Ye   -   J       p.(l    .   K-^~  Me2) 

and where Y' is given by Eq.  (53) 

n 
R3A   -   -== )       v77 Jt \ 2 M 2,r    y 

——-    sin ye     -  Ze <z I   -   z-l)   +   Z'UR   -   z*)f 
VT'L Aege„ ji 
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where 
r,-0 

U   *    /     P.M.'   (l    y   !~— M/2) '   rdr (71) 

and where Z' is given by Eq.  (55) 

llt'A   -= ——      ---—C     f     p3M3 9i«r3 (1  +    M*2)    [ J ) 
VM» VT; J V 2 /      V 2-r    / 

r J ■>I 

Tip    sin » ~——     Ze"^1   ~   Z4)   +   /" tzP   -   z.j» ' 
(72) 

where 

j"  p,.M,:(i   -    ^-   Me'2)Vdr (73) 

and where Z ' is given by Eq.   (57).    In each case T' represents an 
average of Tg and T4 which should partially account for heat transfer. 

A certain inaccuracy is admitted in these equations over and above 
the measurement uncertainty."  This report considers tests for which 
the pitch angle has not been measured.   If the plane z ? Z4 is sufficiently 
far downstream, it is expected that the direction of the flow would be in 
the average direction of the bounding walls.    For the case of cylindrical 
bounding walls, 74 = 0, however, at the plane z = ze, such an approxi- 
mation may not be realistic.    Instead,  the pitch angle (ye) is assumed 
constant, hence its removal from the integrals of Xe in Eq.  (66),  Ze in 
Eq.  (70), and Ze' in Eq.  (72), and it is to be related to the average 
direction of the streamtube walls at the plane z = ze. 

By using Fig.  6, the following relations may be derived: 

tan )■(.-, - 
M„ 

K. 
\i;r 

sin )v r 

where 7e is the angle between Mg and the projection of Mg into a tangen- 
tial plane and where 7ez is the angle between Mez and the projection of 
Mg into a radial plane.    These relations lead to 
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tan ye =   tan yez cos ße 

tan yC7- cos /3e 
sin yc 

COS   V.    = 

Vl + tan2 yez cos2 0e 

 1  

Vl + tan2 Xez cos2 ße 

For the purposes of this approximation, ße in these relations is taken 
as the mass-averaged relative flow angle in each streamtube, and 7ez 

is given by 

re0-r30 rel-r31 r40-re0 r41~rcl  +           +           +    i  tan ye7, =   — 
4 

Unfortunately, the addition of the estimated value of ye results in 
only about 1-percent correction of the continuity balance so that the re- 
maining error may be due to inaccuracies in flow property measure- 
ments.   It is now the problem to force the continuity equation to balance 
through the planes ze and Z4, but it is not feasible to apply theoretical 
correction factors to each of the flow property measurements.    There- 
fore, it is reasoned that the unsteady flow at the plane z = ze may be 
represented as the periodic passing of conditions of zero mass flow and 
the full mass flow per blade passage.    The sum total of the mass flow 
per passage is set equal to the total mass flow measured at the plane 
z = Z4.    This procedure will then yield a blockage factor (Ae/Aegeo) to 
be applied to the integrals evaluated at z = ze.    Essentially, the assump- 
tion is that the blocked area of zero mass flow is so small in terms of 
time and the time constants for the sensors are so long that the effects of 
the zero mass flow sections is not noted in the measurements. 

Certain errors may appear with the use of this correction factor. 
These are related to the fact that 7 has been ignored in the tests to date. 
Both the total mass flow and the radial locations of the stream surfaces 
at z = ze could be affected.    The effect should be small since the mass 
flow depends on the cosine of this angle. 

It is noted that the correction factor directly results from the conti- 
nuity equation and that it is used on certain terms of momentum conser- 
vation equations.   Although an analogous correction factor could be 
derived from the one-dimensional momentum equation, such a factor 
accounts for shear forces and may be highly sensitive to the shearing 
effects that naturally occur in this flow problem.   The only real solution 
to this problem is the correction of every measurement to account for 
the very turbulent, unsteady flows that must occur.   Such a task is 
beyond the scope of this report. 
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Since R'IA 
nas been obtained by Eq.  (66), it is a simple matter to 

set this value equal to Eq.  (50) and then to solve for W]_.    The weights 
W2, W3, and W4 may be found in a similar manner.   This process has 
guaranteed that the volume integrals are equal; however, it has not en- 
sured the equality of the solutions by both methods.   This fact is brought 
about by the new approximations of the terms B' of Eq.  (21) and E ' of 
Eq.  (29) which have to be made since rßQ, reQ, and r40, as well as r3i, 
rej, and r^j, may not be colinear points.    However, since the difference 
between the static pressure on hub and tip walls is not very large, the 
differences in the solutions should be small.    At any rate, it is time- 
wise more advantageous to directly calculate the weights by equality of 
volume integrals rather than through an iteration process for the weights 
guaranteeing equality of solutions. 

In general,   it is unlikely that the representation of the volume 
integrals given by Eqs.  (66),   (68),   (70),   and (72) represent more 
than a first-order evaluation.    Improvement of this scheme can come, 
first,  through actual measurement of the pitch angles,  and second, 
through providing more measurements at various planes between Z3 
and Z4.    Certainly,  more elaborate representations of the volume inte- 
grals may be made with the available data.    For instance,   a quadradic 
approximation of the integrands may be hypothesized rather than the 
linear variation assumed here; however,  the basic uncertainty in the 
interpretation of the measured data lends doubt that the more complex 
approximation would increase accuracy. 

SECTION III 
RESULTS OF CALCULATION 

The following paragraphs present the calculation results for rotor 
R1C2 to exemplify some of the data which can be obtained from solution 
of the two-dimensional sudden area expansion flow process.    The rotor 
is described in Ref.  2,  and the measured data are summarized in that 
report.    Because of the excessive computation time required, it was 
necessary to limit the investigation to one rotor and, in general, to the 
cases of maximum pressure ratio operating conditions for each speed 
line.    These conditions are the most interesting because maximum 
efficiency generally occurs at these conditions for the rotors tested thus 
far.   One speed line has been selected, however, for which calculations 
were performed for all operating conditions in order to examine the 
variation of sudden area expansion loss with absolute total pressure 
ratio.    A description of the quasi-two-dimensional solution is provided 
in Appendix I for comparison purposes. 
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3.1   DETERMINATION OF THE WEIGHT NUMBERS 

The weight numbers are determined such that,  in each streamtube, 
the volume integrals calculated using a weighted average of the surface 
integrals at z = Z3 and z = Z4 are equivalent to the volume integrals 
calculated by assuming straight-line variation of the surface integrals 
with axial position between the rotor trailing-edge plane and the plane 
of extra measurements and between the plane of extra measurements 
and the downstream measuring plane.    This procedure is possible only 
when the necessary extra flow property measurements are available; 
and, at present, this corresponds to the maximum-pressure-ratio 
operating conditions only. 

Figure 9 is a plot of the calculated weight numbers in function of 
the radial position of the streamtube centers at the downstream meas- 
uring plane.    Results have shown that W3 and W4 are very nearly equiv- 
alent.    This could have been expected since both determine essentially 
the same parameter; i. e., the tangential component of the volume inte- 
gral for the force due to Coriolis acceleration (see Eqs.  (54) to (57)). 

First-order dependence of the weight numbers on the proximity of 
the hub and tip walls is evident. This probably results from the influ- 
ence of annulus wall friction on the measured data. It is noted that W3 
and W4 are least influenced by wall proximity. 

The weight numbers, especially Wj and W2, are noted to be widely 
scattered.    They exhibit no apparent dependence on such parameters as 
wheel speed,   Mach number at the downstream measuring station,   etc. 
It was originally intended to correlate these weight numbers in order 
to attempt calculations at conditions for which the extra flow property 
measurements do not exist.    The correlation could be valuable for 
calculations at maximum pressure ratio operating conditions when it is 
desired to interpolate between constant speed characteristics,  but it 
may not be applicable to constant speed characteristics when the abso- 
lute total pressure ratio is not maximum.    A correlation applicable to 
the latter case would be of more significance for this purpose, but it 
is not possible to guarantee the reliability of such a correlation using 
the data currently available.    Therefore, the correlation has not been 
attempted. 

It has been pointed out that there will .probably exist a difference 
between the solutions obtained when the extra plane of measurements 
are used in calculating the volume integrals and when the weight num- 
bers are used.    These differences were suggested to be due mainly to 
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Fig. 9   Variation of Weight Numbers as a Function of the Radial Position 
of the Streamtube Centers at the Downstream Measuring Plane 

differences in pressure-induced forces resulting from the two geometri- 
cal approximations of the streamtube bounding walls.    Figure 10 com- 
pares the results of solution using the extra plane of measurements with 
the results using the calculated weight numbers for the 90-percent N/\[& 
data point.    This plot is typical of such results, and it is noted that 
major differences in the two solutions occur in the streamtube nearest 
the tip where the geometrical differences in the streamtubes are the 
greatest.   As the hub wall is approached, the solutions become more 
nearly the same. 
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In the presentation of the general results which follows, the results 
derived from the solution are examined using the weights rather than the 
solution determining the weights because only this alternative is avail- 
able when the extra plane of measurements does not exist.    It is appar- 
ent from Fig.  10 that this solution produces results that are less erratic 
in the streamtube nearest the tip. 
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3.2  GENERAL RESULTS OF THE TWO-DIMENSIONAL SOLUTION 

Solution of the two-dimensional sudden area expansion problem 
yields the radial variation of the relative Mach number (Mi), the rela- 
tive yaw angle (£3), and the relative pitch angle (73) as well as an esti- 
mate of the stream surface radial locations at the trailing-edge plane. 
Figure 11 presents the radial variation of M3 and £3, the deviation 
angle 63 (i. e., the difference between £3 and the blade angle at the 
trailing edge),  and 73 for various rotational speeds of rotor R1C2 at 
maximum absolute total pressure ratio operating conditions.    These 
results should represent circumferentially averaged values at each 
radial station in the trailing-edge plane.   The relative Mach number is 
seen to decrease with decreasing rotational speed, and this is consistent 
with the decrease in the relative Mach number at the wheel inlet. 

The relative yaw angle is more easily understood through its rela- 
tion to the exit blade angle.   The deviation angle (6) depicts such a 
representation,  and it should be positive since conditions of overturning 
by blading are rarely observed in practice.   Within the limitations of 
the problem concept, this practical condition is very nearly met at all 
rotational speeds except 100-percent N/yfd.   Evidently, the flow field 
at design speed is such that the basic assumptions of the problem are 
grossly violated. 

The results for the relative pitch angle indicate that this angle in- 
creases with decreasing wheel speed.    Such a result is extremely sur- 
prising since the radial forces in the wheel are. not expected to be suf- 
ficiently high to justify this result.   It will be shown in a later section 
that this discrepancy can be directly related to neglecting frictional 
effects. 

The results for the radial shifting of streamtubes indicate, in 
general, that all streamtube centers, except the one nearest the tip, 
are located between their known positions upstream and downstream of 
the rotor, but at higher rotational speeds (70-percent N/\ir0 and above), 
most of the shift apparently occurs within the rotor.    Again in reference 
to the higher speeds,  it appears that the streamtube center nearest the 
rotor tip is even further depressed than is indicated by the streamtube 
center locations at the measuring plane 2. 0 in.  downstream of the rotor. 
The magnitude of the depression that must occur within the rotor de- 
creases with wheel speed.    These results can be directly related to the 
use of the extra plane of measurements located 0. 5 in. downstream of 
the rotor, but they also infer that the difficulty in the flow field indi- 
cated by the wall static pressure measurements downstream of the rotor 
(see Refs.  2 or 9 or Fig.  26 of Ref.  8) probably results from separated 
flow within the rotor. 
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Fig. 11   Solution Results for Rotor R1C2 for Various Rotor Speeds 
at Maximum Absolute Total Pressure Ratio Operating 
Conditions 

The main objective of these calculations has been the determination 
of the loss in relative total pressure attributable to the mixing process 
which occurs when the flow leaves the rotor blade passages.   The calcu- 
lated flow properties at the rotor trailing edge allow the estimation of 
an average relative total pressure in each streamtube, and this average 
value is used to calculate the loss by the equation: 

WSE  - 
P2    " 

The radial variation of sudden area expansion loss is shown in Fig.   12. 
There is a direct correspondence between USE *n this figure and the 
solution for sin 73 shown in Fig.   11 demonstrating that WgE is extremely 
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dependent on the radial component of the flow velocity.   However, it is 
very doubtful that the radial component behaves as the present solutions 
indicate.   This point will be examined in a later section. 

A ioo%N//e 
a   90%N//e 

O 80%N//6 
O 70%N//9 

U   60%N//9 
V 50%N//9 

Fig. 12   Calculated Radial Variation of co'rp for Rota R1C2 for Various 

Wheel Speeds at Maximum Absolute Total Pressure Ratio 
Operating Conditions 

Figure 13 shows the variation of USE 
as a one-dimensional param- 

eter for conditions of maximum absolute total pressure ratio in com- 
parison to the variation of the overall relative total pressure loss. 
Three points are shown for each rotational speed.    These indicate the 
repeatability of the measurements since the three points were taken at 
approximately the same operating conditions and emphasize the small 
effect of repeatability on the solutions. 

The results shown in this figure indicate that ugE *s grossly over- 
estimated in the lower speed range since ugg cannot physically be 
greater than Ü'.   This fact and the direct relationship between ugE 
and 73 tend to indicate that the solutions for 73 are physically unreal- 
istic in the lower speed ranges. 

It is, of course, uncertain that any of the two-dimensional solutions 
presented here are valid approximations to the real flow process. Since 
the overall relative total pressure loss is composed of sudden area 
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Fig. 13   Comparison of the Annulus Average Relative Total Pressure Loss Coefficient 
due to Sudden Area Expansion with the Measured Overall Loss at Maximum 

Absolute Total Pressure Ratio Operating Conditions 

expansion loss, passage shock loss, and profile loss,  it is certain that 
all solutions below 80-percent N/>/0^are invalid because in these cases 
the sum of the calculated sudden area expansion loss and a reasonable 
estimate of the shock losses occuring within the blade passage is greater 
than the measured overall loss.    Even the 80-percent N/-\J9 case is very 
close to violating this condition.   However, in an effort to determine the 
influence of the absolute total pressure ratio for constant wheel speed 
operation, the solution for the 90-percent N/>y 9 speed line has been ob- 
tained.    To perform the calculations, the weight numbers, determinable 
only at the maximum total pressure ratio, were assumed constant for 
the entire speed line.   Example solution results are shown in Fig.   14, 
and the general behavior of the solutions appears quite reasonable. 
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Figure 15a shows the radial variation of the sudden area expansion 
loss for the same cases as shown in Fig.   14, and in Fig.  15b the one- 
dimensional average losses are shown for the complete speed line in 
comparison with the overall loss.   This figure shows that the radial 
variation of USE changes considerably in function of absolute total pres- 
sure ratio, whereas the one-dimensional average of USE remains about 
constant.    The fact that the average is about constant may depend on the 
assumption of constant weight numbers.   Quasi-two-dimensional solu- 
tions for this problem suggest increasing sudden area expansion with 
decreasing absolute total pressure ratio (see Appendix I). 

3.3  DISCREPANCIES IN THE RESULTS AND THEIR POSSIBLE CAUSES 

Several discrepancies have been noted to result from solution of 
the two-dimensional sudden area expansion problem.   The major dis- 
crepancy noted in the present solutions is that sudden area expansion 
losses become extremely large at the lower rotor speeds.    This 
appears to be directly linked to the rapid increase noted in the pitch 
angle 73 as rotor speed decreases.    It was further noted that 73 in- 
creases in the vicinity of the casing walls and that 73 is positive while 
the stream surface boundaries generally have negative slope at the 
trailing-edge plane.   Such effects may occur at discrete points in the 
flow field, but these were not expected to be representative of the mean 
flow. 

The result of increasing 73 with decreasing rotor speed may be 
shown to result from the particular relation between the radial and 
axial momentum changes.    The present solution is a result of the 
assumption that the fluid particles, in traversing the distance between 
the blade trailing edge and the downstream measuring station,  are 
affected only by the radial forces due to pressure, to centripetal accel- 
eration, and to Coriolis acceleration.    Figure 16a shows the magnitude 
of each of these effects for the entire control volume at each rotational 
speed as well as the net radial force acting on the control volume.    This 
illustrates that in the present problem the radially inward forces due to 
pressure and Coriolis acceleration are larger than the outward force due 
to centripetal acceleration.   Thus, if the fluid particles are to leave the 
control volume on cylindrical surfaces (i. e., 74 = 0), then the radial 
momentum at the trailing-edge plane must be directed outward. 

The axial force on the fluid particles in the control volume is simply 
a result of the axial static pressure differential.   The ratio of the resul- 
tant radial force to the axial force is shown in Fig.   16b.    The ratio of 
momentum changes are equivalent.    Thus, as rotor speed decreases, 
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the radial momentum becomes increasingly larger than the value of the 
axial momentum.    Therefore, the average radial Mach number in the 
control volume is predicted larger in value than the average axial Mach 
number, and 73 will increase correspondingly. 

At this point,  it is reasonable to question the applicability of the 
equations in the absolute coordinate system to this problem.   The change 
in the absolute radial momentum depends only on the force due to the 
annulus pressure differential under the assumptions of steady, friction- 
less flow of a weightless gas.    Figure 16a shows that the force due to 
pressure is greater than the resultant force in the relative coordinate 
system.    Thus, the radial momentum change must be even greater in 
an absolute coordinate system than the present solution indicated for the 
relative coordinate system.   Therefore, the discrepancies would be even 
greater. 

The present solution neglects the forces due to friction, unsteady 
flow,  and the weight of the gas.    The detailed consideration of friction 
and unsteady flows is beyond the scope of this report, whereas the weight 
of the gas may still be considered negligible.    However,  it must be ques- 
tioned whether any of these could produce the necessary correcting 
forces. 

Of the three neglected forces, the force due to friction is the only 
one considered here since it is probably the largest.    Although solutions 
have been obtained under the assumption of frictionless flow, the meas- 
urements used to obtain the solution result from a real, viscous process. 
Thus, the present solutions suggest no more than the distribution of the 
flow properties at the trailing edge if the measured flow properties re- 
sulted from an inviscid process. 

Friction in the relative coordinate system will cause fluid particles 
near the casings to tend to adhere to the casing walls which are moving 
in this system.    This causes the relative velocity to approach the velocity 
of the walls; i. e., a velocity directed opposite to the wheel rotation with 
the magnitude of the wheel speed.   This result has two related conse- 
quences on the present solution,  indicating that friction in the measure- 
ments is retained by use of the inviscid equations.    First, since the 
radial component of the force due to Coriolis acceleration is a function 
of the tangential component of the relative velocity, this radial force, 
directed inward, increases in magnitude very rapidly as the wall is 
approached.    The solutions for 73 reflect this phenomenon since 73 
tends to increase as either casing wall is approached. 
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Second, the relative Mach number near the tip casing wall should 
increase in value, ultimately becoming equal to the Mach number of the 
wheel.    This condition seems to be occurring in the solutions for the 
trailing-edge plane. 

In the vicinity of the tip casing wall, the addition of the shear stress 
term to the radial component of the momentum equation will tend to 
counteract the large increase in the force due to Coriolis acceleration 
thereby reducing the net resultant force inward.   In the vicinity of the 
hub wall, the local velocity gradients with respect to r are opposite to 
those at the tip and, thus, tend to increase the net inward force.   How- 
ever, if real flows are to be considered at the trailing-edge plane, it is 
necessary to include the boundary condition that the relative velocity 
tends to zero in the blade passage as the hub is approached.    This sig- 
nificantly alters the velocity gradient at the trailing-edge plane and re- 
quires that the radial component of the force due to Coriolis accelera- 
tion approach zero.    Thus, the net resultant force inward should tend to 
decrease at the hub. 

It has been qualitatively shown that the effect of friction will tend to 
reduce the discrepancies noted in the solution for the radial component of 
the relative Mach number in the vicinity of the casing walls.   This im- 
plies 73 may be expected to behave more rationally if the flow of a real 
fluid is considered.   However, it is obvious in Fig.  11 that the discrep- 
ancies are continued into the main-stream flow. 

In Appendix II, an attempt to estimate the effects of free turbulent 
flows has been made to show that free turbulent shear cannot be ne- 
glected on a stream surface.    The analysis shows that the effect of fric- 
tion on the radial component of the momentum equation is not sufficient 
to reduce the discrepancies in the center portion of the annulus.   It 
demonstrates that-the tangential component of the momentum equation is 
primarily affected by free turbulence.    The force due to Coriolis accel- 
eration then produces the coupling necessary to actually correct the 
present solutions for the radial component of velocity. 

The analysis in Appendix II demonstrates that it is necessary to con- 
sider the fully three-dimensional nature of the problem.     The tangential 
variation of velocity in the blade passage initialize irregular velocity 
variations in the blade wakes which result in unbalanced shear forces in 
the wakes.    Radial secondary flows in these wakes are shown to be ex-    ■ 
tremely important.    The analysis is only an approximation, however, 
because of the severe limit in knowledge about such flow phenomenon. 
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Neglecting friction in compressible flows is commensurate with 
neglecting heat transfer in the energy equation.    However, it must be 
pointed out that heat transfer apparently does occur from the fluid to 
the tip casing.    This statement is based on the fact that measurements 
at the extra measuring, plane 0. 5 in. behind the rotor and the measur- 
ing plane 2. 0 in. behind the rotor indicate that the entropy of the fluid 
decreases between these planes in the streamtube nearest the tip for 
all rotational speeds.   Sufficient temperature measurements allowing 
calculation of the heat transfer rate have not been made in tests to date. 

Because of the great number of assumptions incorporated into this 
analysis,  it is impossible to point out any other single feature,  besides 
friction, which has had a large influence on the present results.   The 
author has investigated the consequences of errors in the weight num- 
bers and in the specification of the static pressure at the hub in the 
trailing-edge plane.    Such errors are relatively minor in comparison 
to the gross error introduced by neglecting friction.    Certain other 
assumptions, such as straight-line static pressure variation radially 
across the annulus, the conical form of the stream surfaces, and others 
which purport to estimate unmeasured flow properties, may be deemed 
critical when it is possible to include friction in the present analysis. 
The interpretation of the existing measurements may ultimately be ques- 
tioned.    It should be recalled, however, that frictional effects were de- 
picted as large in Appendix II under the basic assumption that radial 
velocity components were relatively large in the blade wakes; i. e.,  con- 
sideration of secondary flows becomes an essential part of the solution. 
Furthermore, it is the variation of flow properties from blade to blade 
that initiates the velocity gradients of sufficient magnitude to produce the 
large frictional effects.    Thus, it can be concluded that the sudden area 
expansion problem for the blunt trailing-edge rotor is a fully three- 
dimensional problem which will not be completely understood without 
a general and complete three-dimensional analysis. 

SECTION tV 
CONCLUDING REMARKS 

The sudden area expansion process is fully three-dimensional in 
rotor flows.    Tangential blade-to-blade flow property variations and 
radial velocities in the blade boundary layers and wakes, indicative of 
secondary flows,  play an extremely important part in determining the 
flow development.    At present, these are not well enough understood to 
allow any more than a qualitative estimate of their effects. 
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This report has investigated the sudden area expansion process as 
a quasi-three-dimensional, frictionless,  adiabatic flow process by the 
use of the streamtube approximation, and it has been demonstrated that 
the real flow process cannot be approximated in such a manner.   The 
general behavior of the solutions for the relative Mach number and the 
relative yaw angle at the trailing edge may be considered quite good; 
however, the behavior of the solutions for the relative pitch angle must 
be considered very poor as a description of the average flow process. 

The reasons for the difficulties are relatable to neglecting friction. 
Friction at solid boundaries is important, but it is shown that the pri- 
mary effect of friction on a problem approached by the streamtube 
approximation is relatable to free turbulent shear.    Velocity profiles 
are highly nonaxisymmetric at the trailing-edge plane because of the 
blade element curvature.    This results in unbalanced shear forces in 
the blade wakes.    The solutions of the problem considered in this report 
indicate that these effects must be accounted for.    In addition,  sizable 
radial velocities in the wakes are also required to account for the dis- 
crepancies noted in the present solutions. 

It is believed that the discrepancies occurred because real-flow 
measurements were used with the ideal-flow equations.    Measurements 
were available to describe the flow properties downstream of the rotor, 
and the flow conditions at the rotor trailing edge were demanded from 
the inviscid flow equations.    The resulting solutions can only be inter- 
preted as the conditions at the trailing edge if the process leading to the 
measured data were inviscid. 

The quasi-two-dimensional equations lead to more reasonable re- 
sults for sudden area expansion flow process. This result can only be 
related to the real flow process if it is hypothesized that neglecting 
friction and radial secondary flows are at least partially compensating 
assumptions. It should be emphasized that the solutions of the quasi- 
two-dimensional equations will lead to incorrect results if the stream- 
tube assumption is used. 

The development and form of the quasi-three-dimensional equations 
show that it is not currently possible to solve the problem for the flow 
conditions downstream of the rotor if only the conditions at the rotor 
trailing edge are supplied.    The solution requires some knowledge of the 
flow process.    In particular, it requires the static pressure develop- 
ment along the annulus walls as well as some information about the vol- 
ume integrals of the forces due to Coriolis and centripetal acceleration. 
Only experience with the solution of the equations in a form similar to 
the present analysis will lead to knowledge necessary to solve the in- 
verted problem. 
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An experimental and theoretical program is proposed to continue 
study of this problem.    Some suggested experiments are: 

1. Sudden area expansion in pipe flows,   similar to those of 
Ref.   12,  to include a sufficient variety of area ratios 
and a further investigation of the effect of geometry 
over the complete range of initial Mach number 
(0 to 1. 0) and possibly varying back pressure when 
the inlet flow is choked and the downstream flow be- 
comes supersonic.   Such an investigation is aimed at 
determining the static pressure on the trailing sur- 
face.    The theory for this problem is simple for fric- 
tionless flow and should agree very well with experi- 
mental results. 

2. n.ows in cascades designed to produce symmetrical 
outlet flows from each passage.   The theory is still 
one-dimensional and the effects of shear stress are 
probably still negligible, but the objective is to deter- 
mine the effects of wake flows on the trailing-surface 
static pressure.    Studies of free turbulence may be of 
interest to determine wake development. 

3. ITlows in cascades of curved surface blading produc- 
ing tangential gradients in the initial flow before the 
sudden area expansion.    The theory becomes two- 
dimensional,  and the objective is to determine the 
applicability of basically one-dimensional theories 
such as Ref.   7.    Discrepancies due to shear stress 
are expected to become increasingly important.   Studies 
of free turbulence should definitely be attempted. 

4. Flows through curved blades in annular cascade to 
determine the effect of radial pressure gradients. 
The theory must become completely three-dimensional 
now,  and very significant discrepancies should occur 
if the effect of shear stress is neglected in the analysis. 
Wake studies become extremely important here since 
this is the simplest case through which experiments 
can demonstrate the effects of radial forces on the 
development of the wakes. 

5. Plows in rotors.   At present, because of the lack of 
techniques for measuring flow properties in the rotating 
system, this study must be completely theoretical.    All 
the information gathered by the previous studies may 

52 



AEDC TR-71-111 

still be insufficient except at very low rotor speeds 
where the forces due to Coriolis and centripetal 
acceleration may be considered negligible.    This 
study is intimately connected with a study of the 
flow development through the blading since the ad- 
vantage of knowing the initial conditions before the 
sudden area expansion process does not exist in 
the case of rotor flows. 
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APPENDIXES 
i.   THE QUASI-TWO-DIMENSIONAL APPROACH 

II.  AN ESTIMATE OF THE EFFECT OF FREE TURBULENT FLOWS 
ON THE STREAMTUBE APPROXIMATION 
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APPENDIX I 
THE QUASI-TWO-DIMENSIONAL APPROACH 

FORMULATION OF THE PROBLEM AND REVIEW OF A RELATED EXPERIMENT 

In an effor to establish the approximate order of magnitude of loss 
due to the sudden expansion process, the analysis in Ref.  7 used the 
momentum theorem with certain simplifying assumptions.    The main 
assumptions were: 

1. The flow is steady, adiabatic, and axisymmetric in the 
absolute frame of reference with concentric cylindrical 
stream surfaces. 

2. Friction is neglected. 

3. Radial secondary flows are neglected. 

The loss in total pressure then becomes a function only of the area 
ratio and the component of the Mach number in the direction of the area 
increase.    Thus a fully three-dimensional problem is reduced to solu- 
tion in one dimension.    The axial component of the momentum equation, 
neglecting the shear stress term and the weight of the gas, is used in 
the form 

p4Wz4A4  - p3Wz3A3  =  p3A3  -  p4A4  + p3'(A4-A3) (i_i) 

where P3' represents the pressure on the surface of the blade trailing 
edges.    In Ref.  7, P3' is assumed equal to P3 which leads to 

p3(A4 - A3) +  p3A3 ± P3WI3A3  - p4A4 - p4Wz4A4. = 0 

By using the one-dimensional continuity equation, the energy equation, 
and the equation of state to eliminate P4/P3, the equation above becomes 

A4 
  +.   K\13'2  cos2/33 t   -    KM4'2cosSj84 

(1-2) 
M3  cos /33 (l + ^—  Hi 2Y ft I cos |84 (l - ^-   U 4 2) '* 

If station 3 is assumed to be located at a plane such that the flow has 
not yet experienced the sudden area expansion and such that the rotor 
may not further impart momentum to the flow, then substitution of the 
two-dimensional flow triangle relations into the tangential component 
of the momentum equation leads to 
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M3 sin ß3 M4 sin /8.t 

k1 +—2—y32;     [i*-^-*?) 
(1-3) 

since the stream surfaces are assumed cylindrical.   Thus Eqs.  (1-2) 
and (1-3) relate the variables A4/A3, M3,  ,83, M'4, and 34.   Any three 
of these may be chosen as knowns and the other two may then be deter- 
mined uniquely.   The static pressure ratio and the total pressure re- 
covery are then determined from the continuity equation in the form: 

P 1 A3     M3 cos /33 

P3 A.j     H4'coajS4 

1 
K ~   I 

2 
M.;2 

1 K ~   1 
1 M;

2
_ 

(1-4) 

P4 

P3 

A3      M3'  cos ß3 

A4       M4 cos /S4 

l*^"*'2 

1  +  ~^ Mi2 

*H  1 
21*- 1) 

(1-5) 

The one-dimensional approximation is valid as long as no cross- 
flow components exist; however, the approximation may be applied to 
real flows if the velocity profiles are fully developed.   This means that 
integration of shear stress over a control surface perpendicular to the 
mean flow direction must be zero; then neglecting friction merely re- 
quires that friction along solid boundaries be negligible. 

These considerations imply that the quasi-two-dimensional equations 
are best applied to the entire annulus and not to individual streamtubes. 
The results for an extension of the analysis presented in the main body 
of this report affirm this conclusion and point out that tangential blade- 
to-blade velocity variations produce large shear forces in the blade 
wakes that must be accounted for in the streamtube approximation. 

Under these circumstances, the best approximation seems to be 
calculation of the sudden area expansion loss based on average flow 
properties for the entire annulus and,  assuming the same resulting loss, 
occurs in each streamtube. 

In Ref.   12, an attempt is made to correlate empirically the value of 
P3' in Eq.  (1-1) with the actual measured losses in one-dimensional pipe 
flow (i. e.,  j3j = 0, j = 3, 4) for both sudden area expansion and contrac- 
tion.   The assumptions of this reference and those of Ref.  7 are other- 
wise the same.    The average base pressure for sudden area expansion 
and contraction is measured experimentally, and the actual losses are 
compared with those determined analytically using the average measured 
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base pressure.   A good correlation results indicating that use of 
Eq.  (1-2) yields somewhat lower losses than those which occur in experi- 
ment.   If P3' is left in Eq.  (1-1), an equation similar to Eq.  (1-2) results. 

^-'(-Ji - l)+ 1 +*M8'? co.*j83 I-Mi* coS2j84 

M 3'cos ßS(i+«--± v;*y  M4-cosßi (1+^u'^y 
(1-2') 

Since Eq.  (1-3) remains unchanged, the Eqs.  {1-2') and (1-3) relate the 
variables A4/A3, M3, £3, M4, j34, andp3'/P3.    Thus, it-is necessary 
to know four of these quantities before the other two may be determined 
uniquely.    However, if sufficient data are available to establish an accu- 
rate correlation of P3'/P3 in function of, say, A4/A3 and M3 cos £3, then 
again selection of any three of the variables as known quantities allows 
unique solution for the remaining two variables. 

In Ref.   12, two area ratios (outlet area/inlet area) were tested, 
2. 25 and 4. 00, using both circular and square ducting.   Definite depend- 
ence of base pressure on geometry was noted.    The results for expansion 
indicate that, as the Mach number before expansion approaches sonic, 
as much as 10-percent error may be made in the calculation of the total 
pressure recovery factor through the use of an equation like Eq. (1-2) 
rather than Eq.  G>2') at an area ratio of 2. 25 and about 15-percent 
error occurs in the case of an area ratio of 4. 00.    The difference in the 
results of Eqs.  (1-2) and (1-2') decreases as Mach number decreases. 

These experiments indicate that some error is made in the use of 
Eq.  (1-2); i. e., by the assumption that P3' = P3 and that the error de- 
creases as both the Mach number before expansion and the area ratio 
decrease.   Insufficient data exist at the present to allow correlation of 
P3' for area ratios useful in this investigation (1. 37 to 1. 83). 

It might be useful to make additional tests extending the data of 
Ref.  12 to smaller area ratios so that Eq.  (1-2') may be used in the one- 
dimensional analysis of the blunt trailing-edge blading.    The reasons 
against such a program include the fact that the flow in an apparatus 
like that of Ref.   12 may be quite different from that experienced by a 
blunt trailing-edge stator.and certainly must be different from the flow 
experienced by a rotor due to the peculiarities of the rotating flow field. 
However, until flow measurement in a rotating flow field becomes prac- 
tical, researchers must be satisfied with experiments performed in a 
nonrotating field conscientiously applied as guides for describing the 
flow in a rotating coordinate system.   Certainly refined experiments 
similar to that in Ref.  12 should be attempted for flow in annular 
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cascades when the problem is critically important to the analysis, but 
for the moment, the simplest experiment should be attempted to deter- 
mine the order of magnitude of the error made in using Eq. (1-2) rather 
thanEq.  (1-2'). 

METHODS OF SOLUTION AND RESULTS OF CALCULATION 

The particular use of Eqs.  (1-2) to (1-5) for the calculations of this 
report requires some further rearrangement of those equations.    Meas- 
urements at the downstream measuring plane may be used to yield aver- 
age values of M4 and 184 for the annulus.    Thus, one of the remaining 
three variables, A4/A3, M3, or 33* must be specified in order to deter- 
mine a solution of Eqs.  (1-2) and (1-3).   It is immediately obvious that 
M3 cannot be specified and that A4/A3 should not be specified since one 
of the objectives of the calculation was to determine the effective flow 
area at the trailing edge.    Under the basic .assumption of the applicability 
of these equations, it is necessary that the flow should not be separated 
at either the trailing-edge plane or the downstream measuring plane. 
Therefore, the flow angle (ß$) should be reasonably close to the exit 
blade angle (.33).    Their equivalence is assumed for the calculations for 
Method One below. 

A second possible method of calculation requires somewhat more 
leniency in both data interpretation and the assumptions.   This method 
involves the specification of the static pressure ratio accomplished by 
the process.    Measurements of static pressure are made along the hub 
and tip casing walls between the rotor trailing-edge plane and down- 
stream measuring stations except at the hub wall in the trailing-edge 
plane where measurement is not physically possible.    If this static pres- 
sure were available together with the static pressure measurement at 
the rotor tip, then a linear variation could be used to approximate the 
static pressure at any radius.    Use is made of the Legrange interpolation 
formula and all static pressures measured on the hub wall to extrapolate 
for the hub wall static pressure at the rotor trailing-edge plane.    The 
closest measured pressure is 0. 25 in. downstream of the rotor trailing 
edge, and this is one of five used in the extrapolation, the most distant 
being at the plane of the downstream flow measurements.    This is 
Method Two described below. 

Description and Results of Method One 

The critical Mach number, given by 

Mt2 
^M2 

K~ l        2 
—S   M    + 1 
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may be used to put Eq.   (1-3) into the form 

M3'* sin/93 - M4*sin/84 

which, for given )3o, J84, and M4, may be solved for M3* leading to 
M3.   Equation (1-2) may then be solved for A4/A3.    These computations 
yield sufficient information to determine the static and total pressure 
ratios from Eqs.  (1-4) and (1-5).   The relative total pressure loss attrib- 
utable to the sudden area expansion process is then given by 

Pa - P4 
GJSE   = 

P2   ~   P2 

The average one-dimensional losses are plotted versus absolute total 
pressure ratio in Fig.  1-1 for rotor R1C2. 

Careful examination of Fig. 1-1 shows that sudden expansion loss 
generally increases as the absolute total pressure ratio decreases for 
constant speed operation except in the case of design speed operation. 
Since maximum pressure ratio implies maximum diffusion to a minimum 
passage exit Mach number, most of the results show reasonable varia- 
tion for the loss due to the sudden area expansion flow process.    As the 
pressure ratio is decreased at constant wheel speed, the trailing-edge 
Mach number increases, implying that the level of sudden expansion 
loss should increase. 

However,   each of the curves for design speed operation exhibit an 
abrupt decrease in loss at minimum total pressure ratio.   This result 
of the calculations can be directly linked to the occurrence of a sharp in- 
crease in the axial Mach number downstream of the rotor when back 
pressure is reduced to a minimum.   The calculated trailing-edge rela- 
tive Mach numbers tend to show that the flow through the rotor has 
actually been accelerated for these minimum-pressure-ratio operating 
conditions.    Static pressure measurements at the rotor tip also tend to 
confirm the acceleration at minimum pressure ratio (see Refs. 2 and 3 
and Fig. 26 of Ref.  8). 

Description and Results of Method Two 

Equation (1-4) may be solved for A4/A3 and used to eliminate the 
area ratio from Eq.  (1-2).    Then substitution of Eq.  (1-3) leads to 

tan/83 =  * £♦ tli  
1_^_  x  KM.;

2
COS

2
/34 

»4 
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Open symbols - traverse measurements 

Closed symbols - rake measurements 
A 100%N//6   o 80%N//9    V   60%N//6 
a    90%N//e      o 70%N//e        v 50%N//e 

USE 

Fig. 1-1   Sudden Area Expansion Loss Calculated by Method One 
versus Absolute Total Pressure Ratio 
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from which ß3 may be calculated when p3/p4, M4, and £4 are given. 
The calculation procedure is then similar to Method One leading to the 
calculation of the relative total pressure ratio by Eq.  (1-5).    The aver- 
age one-dimensional sudden expansion losses are plotted versus abso- 
lute total pressure ratio in Fig. 1-2 for rotor R1C2. 

The general trends of variation of sudden expansion loss for each 
speed line in Fig.  1-2 is very similar to that observed in Fig. 1-1; i. e. , 
increasing loss with decreasing pressure ratio.    The calculation results 
must then be considered to yield plausible results.    However, it is noted 
that the magnitude of sudden expansion loss is considerably reduced with 
the use of Method Two. 

Figure 1-3 shows the variation of the deviation angle (63) at the 
trailing-edge plane in function of absolute total pressure ratio for 
selected wheel speeds.    The deviation angle is defined as the difference 
between the flow direction and the blade angle, both measured in a plane 
perpendicular to the radial direction.    The deviation angle is a measure 
of the flow guidance accomplished by the blading.   In Method One, flow 
guidance was assumed perfect; i. e. ,  63 was identically zero. 

COMPARISON OF METHODS 

In this section, it is intended to compare and contrast the results of 
the three methods (two quasi-two-dimensional methods   and the quasi- 
three-dimensional method) to determine which,  if any,  can be used to 
approximate the losses due to the sudden area expansion process that 
occurs as the flow leaves the rotor blade passages. 

From the discussion of Fig.   13, it must be concluded that sudden 
area expansion loss is grossly over-estimated by the quasi-three- 
dimensional calculations at low rotor speed; however, the possibility of 
reasonable predictions at high speeds must be considered.    The behavior 
of the solutions at 90-percent N/^fd in function of absolute total pressure 
ratio shown in Figs.  14 and 15 may be reasonable even though the trend 
of loss variation is not substantiated by the quasi-two-dimensional 
results.    The single feature which must lend doubt to the accuracy of the 
solutions is the large values of 73 and the fact that, in most cases, the 
flow at the blade trailing edge is not directed par ailed to the bounding 
stream surfaces.    This occurrence   has been directly linked to neglect- 
ing viscous shear.    (It might be commented here that an attempt has been 
made to force solution of the equations to negative values of 73.   Such 
solutions were not possible, indicating that the inviscid equations could 
not be solved if 73 were approximated by the local slope of the stream 
surfaces at the trailing-edge plane.) 
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Open symbols - traverse measurements 

Closed symbols - rake measurements 

A   100%N//6   O 80%N//6     V  60%N//e 
D  90%N//6   O   70%N//9    V 50%N//9 

Fig. 1—2   Sudden Area Expansion Loss Calculated by Method Two versus 
Absolute Total Pressure Ratio 

64 



AEDC-TR-71-111 

Open symbols - traverse measurements 
Closed symbols - rake measurements 

R1C2 

2.0 

*p 

1.8- 

1.6- r • 

1.4- . 

k— 
-20 20 

63[»] 

A ioo%N//e 
D 90%N//6 

O 80%N//6 
O 70%N//6 

U    60%N//6 
V 50%N//6 

Fig. 1-3  Variations of the Deviation Angle Calculated by Method Two 
as a Function of Absolute Total Pressure Ratio 
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Since much of the effort to correct the quasi-three-dimensional 
solutions in the previous section was directed toward reduction of the 
radial velocity, it appears reasonable that the quasi-two-dimensional 
solutions which ignore the existence of a radial component in velocity 
should give more reasonable results.   However, neglecting shear stress 
would be just as critical in the case of the quasi-two-dimensional solu- 
tions as it is in the case of the quasi-three-dimensional solutions if the 
streamtube approximation were used. 

An approximation similar to the quasi-two-dimensional method may 
be attempted using the quasi-three-dimensional equations.    This is 
accomplished by solving the entire annulus as if it were the initial stream- 
tube (see Section 2. 7).   Essentially, this means all solution variables 
are assumed constant at the trailing-edge plane, but that both radial 
and tangential components of velocity are allowed to occur.   The results 
for sudden area expansion loss are shown in comparison to the com- 
pletely quasi-three-dimensional results, the quasi-two-dimensional re- 
sults by both methods, and the measured overall loss in Fig. 1-4.    This 
method produces a significant reduction in the estimated loss but not 
nearly sufficient to consider it a correct approximation to the actual loss 
at low rotor speeds. 

Comparison of the two quasi-two-dimensional methods reveals that 
Method One generally yields higher relative total pressure losses for the 
process and smaller values for the flow angle, static pressure,  and flow 
area at the trailing-edge plane.   The tendancy of increasing sudden ex- 
pansion loss with decreasing absolute total pressure ratio for constant 
speed operation is apparent in both quasi-two-dimensional methods. 
This is more consistent with ideas of how flow in the passage behaves 
than the results of the quasi-three-dimensional analysis which suggests 
that the loss is constant. 

Considering the relation between the two quasi-two-dimensional 
methods it may be concluded that the results would be the same by each 
method if: 

1. The flow were assumed to have a small, generally posi- 
tive deviation from the blade angle at the trailing edge 
for use in Method One, or 

2. The extrapolation procedures necessary for Method Two 
were to have produced a hub wall static pressure at the 
trailing edge that was too large, or both of these. 
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1.0 

Overall loss 

One-dimensional 
Method One 

One-dimensional 
Method Two 

Two-dimensional 

Two-dimensional 
constant proper- 
ties radially 

0.2 0.4 0.6 0.8 1.0 
tu' 

Fig. 1—4 Comparison of the Measured Overall Relative Total Pressure Loss with 
the Results of vario.us Methods Predicting Sudden Area Expansion Loss 
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Either of these alternatives could have occurred for any given set 
of measured conditions downstream of the rotor, thereby making the 
choice between them quite arbitrary.   Ultimately, the decision as to 
which method is more realistic for this problem can be made only in 
connection with the flow model as a whole.    This report does not deal 
with the consequences of selecting the calculation procedure; however, 
some comments on these two alternatives may be made here. 

First, some deviation from perfect flow guidance certainly must 
be expected at the trailing edge.   Its magnitude could be calculated 
from Method Two if the trailing-edge static pressure were known with 
some certainty and, of course, if the assumptions of the analysis were 
obeyed in reality.   Second, it is felt that the extrapolated static pres- 
sure on the hub wall is not predicted too large.    As a matter of fact, 
in a small number of cases (actually amounting to only 1 percent of the 
total number), the extrapolated pressure was too small to allow solu- 
tion of the equations. 

This qualitative analysis suggests that, if the assumptions of the 
theory are obeyed, Method Two is probably superior to Method One.   If 
the assumptions are not obeyed, in particular, if the flow contains radial 
flow components, then the results of the quasi-three-dimensional analy- 
sis suggests that Method One is more reasonable since it predicts 
larger losses in relative total pressure. 
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APPENDIX II 
AN ESTIMATE OF THE EFFECT OF FREE TURBULENT 

FLOWS ON THE STREAMTUBE APPROXIMATION 

According to Ref.  13 and others, turbulent boundary layer theory 
assumes that the shear stress may be given by 

i \    du 
T = p(v +  a   -— 

dy 

where v is the laminar kinematic viscosity, eis the virtual kinematic 
viscosity of turbulent flows, ü is the local time-averaged velocity of the 
mean motion, and y denotes the direction transverse to the mean motion. 
For free turbulent flows, such as jets and wakes,  v may be neglected 
in comparison to e.    From page 481 of Ref.   13, 

.. . L.  Prandtl assumed that the dimensions of the lumps of 
fluid which move in a transverse direction during turbulent 
mixing are of the same order of magnitude as the width of 
the mixing zone. ... The virtual kinematic viscosity, e, is 
now formed by multiplying the maximum difference in the 
time-mean flow velocity with a length which is proportioned 
to the width, b, of the mixing zone.   Thus 

f  =  K\ b (5"mBI - Smin) (II-1) 

Here «i denotes a dimensionless number to be determined 
e xpe r im entally. 

The value of e is often assumed to remain constant over the whole 
width of the wake at every cross section; and, in the case of plane wakes, 
Ref.  14 demonstrates that e is constant, independent of the distance 
from the body, as long as velocity profile similarity exists.    The latter 
result is then valid only at large distances from the wake-producing body, 
whereas the former assumption may be corrected by introducting an 
intermittency factor accounting for the periods of time in which turbu- 
lence occurs at a particular point in the flow field. 

Most theoretical wake flow studies have been applied to incom- 
pressible flows with negligible pressure gradients,  and these have been 
successful only in application to large distances from the body.   In 
application to the present problem, Eq.  (II-1) for e  and the resulting 
equation 

P  Kl b (umax   -  umm)   —— 
dy (II-2) 
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for shear stress will be used to arrive at estimates for these quantities 
in the vicinity of the rotor trailing edges. The quantity («j) is assumed 
a constant, but in reality it may depend on the type of problem to which 
the approximation for e is being applied as well as on the distance from 
the body at which T is being calculated. 

Certain further assumptions must be made for the present applica- 
tion.   The solutions of the quasi-three-dimensional sudden area expan- 
sion problem make it possible to estimate the average relative velocity 
and density at the plane of the rotor trailing edge.   The variation of 
these quantities with percent of design rotor speed is shown in Fig. II-1 
(top).    By assuming that the wake width (b) may be approximated by the 
blade trailing-edge thickness (th) and that the velocity difference is given 
by 

"max   ~   umin   =   W3 - 0 

then 

.ref (f) w3 M ' 'rP* W "a (II-3) 

where rref is the radius of the blading reference profile.   The results 
of this calculation are shown in Fig. II-1 (middle). 

Several examples using the approximation for e expressed by 
Eq.  (II-1) are given in Ref.   13.    The value of the constant apparently 
depends on the problem.    The following results have been noted: 

i0.014 frcc-jet boundary 
10.047 quadi-lhree-dimen'iional   wake 

#q =     A).0333 wake behind row of bars 

10.0185 two-dimensional jet 
'0.0128 circular jet 

According to Ref.   15, *i may be on the order of 0. 1 for the case of the 
mixing of parallel streams when initial velocity gradients on the body 
are taken into account. 

For the purposes of this investigation,  a value of 0. 0333 is chosen 
for «i because the wake behind a row of bars best represents the prob- 
lem and because it is convenient to state that the final results may be 
too small or too large by a factor of three-.    Then, e is given by the 
right-hand scale of Fig.  II-1 (middle). 
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Fig. II—1   Calculated Dependence of Certain Flow Properties on Wheel Speed 

71 



AEDC-TR-71-111 

Two surfaces over which shear stress must be integrated are of 
particular importance to the present problem.    The first consists of the 
planes perpendicular to the axial direction.    For such a plane the inte- 
grand of the shear stress integral in the momentum equation is (-tz)rz 

which may be resolved into radial and tangential components: 

(-Ü rz   =  (-ar) rzr   +  (-aQ) rzQ (II-4) 

The second type of surface is the conical stream surface which bounds 
each streamtube.   By resolving the force which produces the shear 
stress on this type of surface into its components,  it is found that (-t)r 
may be represented by 

(-t)r   =   (-ar) r.,r sin f +   (-afl) (rr0 cos £  +   rz0sin £)   H   (-£) TXZ COS £ (II-5) 

where § is the inclination of the stream surface with respect to axial 
direction measured in a plane containing the axis and where the normal 
stresses Trr and TZZ have been neglected in the transformation. 

By using Eqs.  (II-4) and (II-5), the shear stress integral of the 
momentum equation may be written 

J   (-1) rdA   -   (-ar)    J       r/rdA3   -f       rzrdA4   + J       fzr sin £ dAff 
(A) '-(As; U4) (Aw) J 

6 dA3   '■ J      Tzd 'IA4 

(A4) 

J    (rrfl cos ^ +  rz0sin£)dAw 

iAff) J 

H   <-k) J       r„. CosfdAw (II-6> 
IAW) 

where A3 is the surface area at the blade trailing-edge plane, A4 is the 
surface area at the downstream measuring plane, and A\y represents 
the area of the axisymmetric surfaces bounding the streamtubes between 
A3 and A4, and where i'rom page 54 of Ref.  13, 

, , (iff, r        (?W 7\ 

'"" P(U + C] KIT +~rj (II-7a) 
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ö    /Viß\      I     <9U'~| 

/l   ÖW2        dW0\ /TT       . 
rz0  =   '0z   =  p(u  +   ()[-  —— +   —— (II-7c) 

\T    30 dz / 

The surface A3 has been assumed to be located infinites im ally far 
upstream of the blade trailing edge.   Therefore, the integral of shear 
stress over this surface is associated with the boundary layer on the 
blade profiles.    Since turbulence is inhibited by the presence of solid 
boundaries, shear stress is expected to be less at this plane than that 
set up by the free turbulence occurring downstream of the rotor.   For 
this reason, the integrals over A3 will be ignored in the analysis which 
follows. 

Consider first the radial component of Eq.  (II-6).    The surface 
A^ is 

r* rZi 

Aw   =  2JT J       rQ(z)dz   +   2n J       n(z)dz  = 2ffAz (rQ -  ri) 

*3 z3 

if average values of ro and ri are selected.   The largest possible value 
of sin f is given by 

sin |£|  < tan 'fl  =  T-^- 
Az 

Then, 

A4   =  ST  (1$  -  r?)   =   — sin  \g\ Aw 

Thus, if an average value of Tzr is selected for the entire control volume, 

ar   ■  J      (-?) rdA  =  ffr  =*  -  rzr A4 (1   ±   2) 
(A) 

where the sign of the shear stress integral over Aw depends on the 
slope of the surfaces.    The maximum value of this integral is then 
-3TZI.A4.   If the force due to shear stress is to cancel the resultant 
radial force shown in Fig.   16a, then using the values of p and e 
(neglecting v) shown, respectively, in Fig. II-1 top and middle and 
Eq.  (II-7a) for Tzr, it is possible to estimate the magnitude of the term 
(9Wr/8z + 9Wz/8r).    The result, as shown in Fig.  n-1 (bottom), indi- 
cates that this term should be approximately 2 x 1(P sec    .    If such 
gradients occur, then Wr will approach zero so that, essentially,  9Wz/8r 
alone must be on this order of magnitude.   At design speed, 9Wz/9r is 
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on the order of 10^ in the center of the annulus at the downstream meas- 
uring plane, and it becomes much less than this as rotor speed decreases. 
Thus, gradients on this order (and higher, of courseware observed only 
in the proximity of the casing walls so some other influence must be 
critical. 

Consider now the tangential component of Eq.   (41) involving rrß 
and Tzß as given by Eqs.  (II-7b) and (II-7c), respectively.   In the center 
portion of the annulus, 9 Wg/9r may be ignored.    As a first approxima- 
tion,  9WQ/9Z may be ignored.   It must be noted that, even if the analysis 
demonstrates that Wr becomes small in the free stream, neglecting the 
change of Wr in the tangential direction would deny the existence of 
secondary radial flows which may occur in the wakes.   Therefore, this 
term must-be included in the present analysis, and the tangential com- 
ponent of Eq.  (II-6) becomes,  approximately 

30  •   f        (4)rdA   *  Ud -  - f     rz$d.\A -f      (»Y0cos£ -r  rz0sin£dAv; 

(A) (A4) (A«) 

f '       3*Z   ,A f (    *• P =   ~ J     pt  ~    ~d0    dA*   ' J        pe[ COS   f 

(A4) (A»)       ^      r 

1     dWr 1 
cos £ + —  — sin   f J dA\v 

r      dd     '      =        r      dd .4 
where v has been ignored in comparison to e.   The term Wg/r is ne- 
glected in comparison to the velocity change in the tangential direction. 
Since e is of large magnitude in the wakes and negligible in the free 
stream, this equation reduces to 

p4f    dVI7i b f*   pi   /d\HT <9WZ     .       \    b 
Ud = - — 

dd 

Since 

then 

b f *   pe   /d\Ht dWz \   b 
2„rref  r (,0  -  „)  -  4,rref J      - ^— cos ( +  —sin *) - dz 

z3 

Wr
2 +  Wg -  K'i 

dW Wr      dWr W0    dViQ Wz    dVI. 
+        + 

dd W       dd W     dd W      dd 

or, solving for 9Wr/9ö 
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where it has been assumed that the chance of \\T
Q in the tangential direc- 

tion is negligible in the wake.   The result of the approximation for 
3Wr/90 depends on the local value of Wr.    It will be assumed that,  in 
the wake, all velocity components are of comparable orders of magni- 
tude; i. e., 

W2 «  3K'2  ■- 3W2 ■= 3W^ 

Then, 

r?Wr dW„ 
,   2 

dO dO 

For plane wakes at large distances from the wake producing body, 
Ref.   14 demonstrates that b is proportioned to z'i and that the velocity 
defect varies as z~'*, so that 

—     b   =   constant 
r      dd 

If b may be represented by th, if 

1     dW, »3-0 2 W3 

90 j_ 
2    rrof (?)     '-'(') 

and if Eq. (II-3) is used to eliminate e, then for constant density 

{(0  -   -  in P3K\ R!3rref f^-J fTQ  -  r,)   +   2 (2 cos f +   sin £) (z4   -   z3H 

«   -brpsfciWfrref   ("J^M   +   H2 cos £ +   sin ©1 (1 in.) ÜI-9) 

since 
ro   -  rj   ~   1  in. 

/,j   -   7.3 =   2 in. 

Equation (II-9) shows that integration of the shear stress over the 
stream surfaces is quite important.    By assuming that ? is small, 
commensurate with small values of Wr in the free stream,  then ff$ 
becomes 

UO "  -36frp3Kiffsrref^—) U in>) 
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The results of the calculation of the absolute magnitude of the force due 
to friction in the tangential direction (ffg) are shown in Fig. II-2 -where 
the computations have used P3 and W3 given in Fig. II-la, 

«1 = 0.0333 

■ref = 20.450 in. 

th 

s = 0.272 
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Ü 
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Fig. 11-2  Comparison of Forces Affecting the Tangential Component of 
the Momentum Equation 

Consider the following simplified form of the tangential component 
of the momentum equation neglecting unsteady effects and the weight of 
the gas: 

mW40  -   mW30 =   i{0  -   iConolisö 

or,  solving for W30 while noting W40 and ffg are negative in the present 
case, 

»30 =   ^ ('Conoid  -  m|W40|    1    Ifföj) (11-10) 

The tangential components of the force due to Coriolis acceleration and 
of the quasi-two-dimensional average momentum passing through A4 
are also shown in Fig. 11-2 in relation to this equation.    It is seen from 
Eq.  (11-10) that the addition of the tangential frictional forces will cause 
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W30 to be less negative.    This is indicated in Fig.  II-2 by the differences 
between the tangential momentum at A3 calculated by neglecting friction 
and by the inclusion of the frictional force.    Since the radial component 
of Coriolis acceleration depends on Wg, the neglection of friction implies 
an overestimation of the radial force due to Coriolis acceleration. 

It is noted that,  if Wr is decreased by the addition of friction, then 
the tangential force due to Coriolis acceleration is also reduced and that, 
if W30 is reduced,  it is possible that the good agreement between the 
present solution for £3 and the blade angle may be destroyed.    Both of 
these factors are fundamentally dependent on the coupling of the compon- 
ents of the momentum equation through, not only the Coriolis accelera- 
tion term which connects the radial and tangential components, but also 
the introduction of friction which connects all three components.    The 
effects of coupling make the final result extremely difficult to predict, 
but it is felt that the tendency toward correction of the present solutions 
has been satisfactorily demonstrated. 
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