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! INTRODUCTION

The performance of a Kalman filter (rocursivo filter) doponda on a

number oi parameters, such as measurement accuracy, a priori statistics

of the initial state, model accuracy, sampling period, and methods of

computing filter gains. Some of these are under the jurisdiction of

the designer while others are specified, either as fixed values or as

a range of values. For the designer to make on appropriate choice of

the parameters, he needs to know the sensitivity of the filter perfor-

mance with respect to the stated parameterb.

The sensitivity information will answer, as ex-mp'`eJ, the following

questions frequently encountered in the design of n, Kalm-n iiecr.

(1) The noise statistics used in the filter need noxc be the

"exact statistics. The question Is: How •.uch perfor-

"mance improvement may be obtained if the statistics

gre more accurate?

(2) The iteration rate in computation (sampling rate) need

not be identical to the data rate. The questions are:

In the interest of computational requirements, how

slow can the iteration rate be? How shall the data

between the iterations be treated?

(3) The dynamics equations in the reference model of the

filter need only be an approximation of the actual

equations. The question is: How much approximation

is tolerable?

(4) A significant part of filter computation is for the

optimum filter gain, yet it has been shown that sub-

optimum gain requiring fewer computations are fre-

quently just as good. Vie question is; What is the

effect of suboptimal gains?

References are listed at the end of the text.
"4~
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(5) Frequently, a certain type oS observations is expinsivc

to mark; therefore, it should be usfd with discretion.

Ti-, question is, When should we use this observation?

%6) In imp amonting & real-time Kalman filter on a computer

with liinted word length, computa•ton noises are intro-

dzced. The questions are: What is the acceptable word

length? Should rhe f iter gain be adjusted to account

for the computa:iov noise?

The sensitivity of Kalman filter may also be applied to analyze

existing filters that are not of the Kalman type. Specifically, the

difference in the estimation errors for the two filters may be computed

from the sensitivities. Since Kalman filter is known to be optimum, we

can then judge how close to optimum is the 3xisting filter's performance.

Derivations of techniques and equations for the stated seA~itivity

questions are the main concern of this memorandum. Special emphasis is

placed on the sampling-period sensitivities. Examples are given mainly

yo illustrate the applications of these results. The techniques can be

int.orporated readily into the existing computer programs.

The organization of this memorandum is escribed in the following.

The error covariances computed by the well-known covariance-matrix

equations are used as the basis of filter performance. The validity of

this appr'oach is discussed in Sec. 11-A and in AppendL, A, In this re-

gard, one should ma'1e a clear distinction between the "actual" covariance

equations, which give the statistical descriptions of the actual errors,

and the computed cvvariance &ýqurtions, whose main purpose is to obtain

the filter gains.

In gain computations., one obtains certain matrices, which are

loosely called the covariance matrices. These may not represent the

actual covariances of the easimation error because erroneous noise acd

dynamics parameter values =ay be used in the computation. This may be

done unintentionally because knowledge of the process is imperfect, or

intentionally to reduce the computat.ion load. In this memo, all



covaridnces an4 equations for their computations shall refer to the

actual ones, u~ness specific reference is made to the contrary.

The exact changes in the error covariances due to parameter varia-

tions are givez in Sec. I!-B. Of spoclal interest to the designer is

the question of gain variation. ThN designer is likely to have more con-

trol of the filter gain parametar than the other parameters, such as the

measure.ment noise. For example, when the parameters change, he may

either readjust the iilter gains to optimal, or not change the gain at

all. This and other special cases of filter gain can usually be studied

better by using the specialized equations given in Sec. II-B.

The stated error-covarionce-variation problem may be considered a3

a special case of the combined optimal control and estimation sensitivity,

a continuous-tize treatment of which is available.2 On the other hand,

most results available in the literature3 - 7 may be considered a special

case of this me=orandum--parameters fixed and filter gains varied from

optimal to arbitrary.

If estimation error at a specific time, say the terminal time, is

of interest, the adjoint matrix technique may be used to fzci2itate the

analysis. The compLtational advantage will be especially significant

whenever an extensive analysis is to be made. This is also discussed in

Sec. II-B with details in Appcndix C.

Sections I1-C, -D. and -E are motivated by the sampling-period

variations. Two charect6ristics of the sampling period call for the

special analysis of these paragrap..s. First, it is a scalar parameter

so that the sensitivity matrices or sensitivity indices may be defined

Ps in Secs. Il-D and -E. This is nct possible, for example, for noise

covariance-matrix variations. Secondly, for a fixed number of stages,

changing the sa=pling period changes the overall duration of the process.

Therefore, if the overall time duration were to remain fixed, reducing

the sampling period would mean more sample points are available for

filtering. In evaluating performance changes, this may have to be taken

into sccount.

3



In Soc. lI-F, we gi~o tho socond-ordor effects of filter gain varia-

tion. This is necessary bocause, if the nominal filter gain is optimum,

the first-order effects ere zero.

Section NII specializes the previous results to the sampling-period

variations. In Sec. Ill-A, it is suggested that the sensitivity matrices,

as defined in Sec. II-C, may be used in a gradient procedure for the de-

sign of sampling period. The sensitivity matrix is computed in the for-

ward direction, and therefore may be most easily incorporated into

existing programs. The restriction of this technique is that the

sampling-period variations must be a function of a scalar variable--for

example, uniform sampling period.

Nonuniform (unequal) sampling periods may be beneficial if, because

of computational limitations, the number of stages are an important con-

sideration. This is discussed in Sec, III-B. Suppose one is interested

in the error covariance at a certain time T. All filtering done prior to

T contributes to the reduction in the error covariance at T, but the

fil,:ering done during certain segments of this time may contribute more

to this reduction than for other time segments. The sensitivity index,

derived from the adjoint matrices, will be a useful techniqne here. The

adjoint matrix is com'zu:ed backwards starting from T; it relates the

covariance variations at T to covariance variations at any stage prior

to T.

In Sec. III-C, we point out possible applications of the sensitivity

techniques to real-time computation allocation in a multiple-threat

estimation situation--many separate estimation tasks are bein. performed

simultaneously (for exazple, the multiple-threat situation in the anti-

missi2.e missile system). At any instant of time, the effectiveness of

the Kalman filter for different targets will vary. Using the sensitivity

indices, we may formulate and optimize the computation allocation problem.

According to a recent study,e a sudden unpredictable change of plant

noise (such as a missile maneuver) may be detected from the measurements.

in the same study, the noise increase is compensated by changing the fil-

ter gain so that it is optimum for the increased noise. However; the

4



response time of the filter is soon to be limited by the sampling period,

even with the reoptimized gains. Further improvement is expected to

lie in the reduction of the sampling period. The amount of reduction

may be estimated from the trade-off between plant noise and sampling

period using the sensitivity information as discussed in Sec. III-D.

In Sec. III-E, an example is presented for a 1/s2 plant with posi-

tion measurements in which the sensitivity techniques that are developed

are applied to the problem of reducing the number of measurements to be

processed.

The trade-off between various parameters, as we have already men-

tioned, may be based on sensitivity information. Section IV describes

this approach. In Sec. IV, sensitivity equations are given for the 1/s 2

plant mentioned earlier. The results given there can be used to provide

insight into more complicated problems. Also, the one-stage reduction

in position error is plotted for various parameters in normalized

quantities.

. m-------------



II ANALYTICAL RESULTS

A. Covariance Equations as a Measure of Estimation Error

Let the actual system be

xk+1 = k(xk + wk
(l)

Z hk h k(xk) + vk

where fk and hk are (in general) nonlinear functions, xk is the state to

be estimated, z k is the measurement, w k and vk are respectively the

plant and measurement noises with zero-mean Gaussian distribution; they

are mutually uncorrelated as well as time-uncorrelated:

Ew k~j Q. ; r

E•v = 0 ; EFi1v =0 for iiJ

E{7 ~T1 0 forali

The estizate of xk, given measurements zo, z1, ... , Zk, is'denoted

by x k/k The extended Kalman filter yields the fellowing recursive

estimation equations:
1 9

0o/-1 0 E x 3=

Xkk-l f: )-I (Xk-I/k-) (2)

zk/k-i h k(Xkik-l

xk/k =k/k-i + W(k - Zk/k-1



whore W k is the filter gain computed from a set of covariance equations:
kT

Pk/k-1 = k-I Pk-/k-i •k-1 + '4k-1

(3)
Pk/k (I kHk) k/k-i WkRkk

where

I k-1 = (fk-1)~ =f- b
xH k = (h k )X 6h kl,/ "--j

and the initial value for the covariance is

P0/-1 = E (xoX 0) (x 0~x)

In Eq. (3), the filter gain Wk is arbitrary. It is common practice

to use the following approximately optimum gain:

~-1
W =P Hk HP H' + R 1 (4)
k k/k-i k k k/k-l k k'

In this memorandum, the error covariance is taken to be a measure

of the performance of the extended Kalman filter. The estimation error,

denoted by ;k/k or Xk/k-l' is defined as

Xk/k = Xk - Xk/k

xk/kl- = Xk - xk/k-i

Sinceothoy are random variables, descriptions of / and / require
k/k k/ki

a description of their probability distributions.

The gain in -q. "4) yields a minimum vari-nce estimator, or maximum
likelihood estimator for the linearized system of Eq. (1) under the
stated assumptions on the noises v and w.

7



Whan fk and hk are lin,'.ar functions, it can bo shown that Rk/k is

a Gaussian variable. Its expectation and covariance are, therefore,

suffician- to describe its probability distribution. In fact,

Xk/k = E[k -0 (6)

L k/k~ 'k/%~ k/k - k/2 P (7)

where Pk/k is given in Eq. (3).

When fk and hk are nonlinear functions, as generally is the case in

practical systems, Xk/k is no longer Gaussian. in such cases, it may be

difficult to obtain a complete description of its probability distribu-

tions, However, the first two moments E 3k/kI and

E Xk/k - Xk/k k/k x/k) give a fairly good idea of the proba-

bility distribution. As showirIn Appendix A, they are easily approxi-

mated by

Sk/k-i = k/k-l -k-1 k-l/k-l

+ 1/2 (k-) xx [Pk-l/k-l + xlk-/k-lxk-l/k-1]

+ 1/2 Qk-1

(8)

k/k X k/k (I - Wk k k/k-1

k I12 Wk ak Lk/k-l + Xk/klXk-/k-

1/2 Wk k '

where we have used the following notation: f xx is a vector, the ith

component of thich is given by

8



(fxX ° P)) Q M2 (i) P

E x 0 pkl' : T_
E Lk/ki -k/k-i k/k-i - xk/k-l k/k-i = •k-I k-i/k-I k-i + ok-1

(9)

L k/k k/k k/k k'%/kJ Is

U (I - W H )P (I 0 WkHk)T + WkR
k k k/k-i kk k

We note that the approximate covariance equations in the nonlinear

case of Eq. (9) are identical to Eq. (3), but the errors are no longer

zero mean, as can be seen from Eq. (8).

The expected values in Eq. (8) may be made zero by modifying the

extended Kalman filter equation of Eq. (1) to those correeponding to

Eq. (A.11) in Appendix A. Normally, Eq. (8) is not available in an ex-

tended Kalman filter program while the covariances of Eq. (9) are avail-

able. For these reasons, the variations in covariances due to parameter

variations will be analyzed in this memorandum, usiL.g Eq. (9).

B. Variations of the Error Covariance Yatrix

We assume the existence of a nominal Kalman filter. This means

that we use a nominal Wk (not necessarily optimum) in the manner shown

in Eq. (2) for a physical process with parameters PO/_l' k$ Q R .

The resultant filter-error covariance is P k/k Let the physical

parameters as well as the filter gain be changed so that

9



Initial error P / -_l PO/ -I + APO/ -I

Transition matrix k - k. + A§k

Plant noise -4 .+ (10)

Measurement noise R R + AR

Filter gain Wk W k + AWk

Pk/k will be changed to Pk/k + AP k/k We shall develop the formulas

for APk/k 9nd for tr(L T/TP T)T where T is some fixed time and LT/T some

appropriate matrix.

The effect of the variation H. - H + 6H may always be viewed as

!he variation §k k + 0 k in an equivalent problem--for example, if the

state Xk+1 is expanded to include an odditional term ykW Eq. (1) may

now be rewritten as

Sk hk (X[k1)1 0

j (Ul)

Zk = [I Oj K + vk

Lk+lJ
or, with obvious substitution of symbols,

x* f * (x*- ) + w_
k -k-i k-1 k-1:

(12)

z k = z.k + vk •

An alternate way is to transform the state space coordinates so

that the measurement variation appears as a dynamics variation. Thus,

10



let Tk be the trtnsforzation such that the outputs (minus noises) are

components of a new state x*:

=* T (13)

We may write Eq. (1) in the following form:

o viwdTk ,x l T +f (13k)

k+1~ ~ k+ kh k( + T~w

or

Zk = X+ + vk

In this now form., H; is constant. This verifies our assertion that k
• "ny be viewed as a AC.

Forw'ard Recursive Equations

LPk/k may be obtained by a straighxforward substitution of Eq.
(10) into the recursive covariance equations, as sbown in Appendi" B.

The results may best be organized according to the optinality of the

filter gains before and after parameters variations. Let us use the

following notation:

W = Optimal gain for P QY and Rk+1 Mk/k,' k J' Ic k+1

Ak+i Change in gain so that The new gain is optimal for

Pk/k + A~k/k' •k + A~k, Qk + Aqk' and •l, + ARkli (16)

11
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The deviation of the error covariance from its nominal is giveo by the
expression

APk/ 0 I W Hk AP/- (0 - W H )T + W 4R W T + Ak + B• (17)

where

I T
kAk1W('kkk-? + Rk) k/k-2'L"

kELWk5V(Ukpk/kIH' + ') - p' k/kiH'k

if

AlWk = 0 or Wk = IVk0 we have Ak = 0 ; (1e)

Bk [(kK'k/k.jHk + ARk) - p/-lk

+ Allk +~ ,I~/1 Pk) _11JT
It • T T

+ AWk k(Pk/k-1 + APk/k-l )HL + +I. k W (20)

Nominal quantities are used for ki_ Hk Rk' and Wk. If AW 0 = 0
we have the following negative definite expression for (Ak + Bk)0=

o ~ T T]-

(A k + Bk) L k tEýk(H &RR/k AH + 1k)

+ ["k(lHk"lc/k ik k ~ P k/jR~

H k(Pk/k-1 + '/k-1)"k + (R k + ARk)

""- 
k |AuPk/k-i k Rk - pk/k_ (23.)

12



If Wk = the resultant (Ak + 13, -mill be denoted by B k if

AWk = 0. we have Bk = 0 (22)

If &Wk / 0, but APk/k_13 ARk are zero, the expression for Bk becomes

positive definite:

B = P + R TW (23)

This equation and Eq. (8) in fact show that

T -1
Wk = Pk/k-1HkIHkPk/1k- Hi + Rk- (24)

is a rinimum variance filter gain for P and R.: if gain Js changed
kA-l

from the given expression, the error covariance would be changed by an

amount

A = Ak + Bk = 0 + bWk [kP/A T 1f Rk ' (25)

which ib positive definite, indicating an increase in the error co-

variance. To complete the recursive equations, APk+I/k is

AT T

0 A(P +AID T~ + (P ) T /

k k/k + k/k k k k/k + k/k c /c

+ 0 (P +A T (26)
k k/1, k/k kc(6

If A§ = 0) we have

T1-A (27)
"Pk+l/k k Pk/k k -Ik

Of particular interest is a comparison between the cases with
0 0

&W - 0 and AW AW., when W W . AW is zero when the filter is not

13



readjusted after parameter variations; we then have, by Eqs. (17), (19),

and (22),

(I - Wkk) if A - 11 H) + W AR WT (28)

kkkk k/k-I k k k k k

0|

If the gain is readjusted to optimal, i.e., Aw. = A we have
K¾

6/ 'I - wkH ) AP (I - W H ) + W AR •kT + B0  (2)
k=; k k MRk-i k k k k k Ic ,(9

where B is a negative definite matrix (see Eq. (21)3:

*k - - kk k/k- ik 0%k~] [Yu~k(P/l + "'k/k-1)Hk + (Rkc 6k)]

(I WkH )A _l + W ARk]T

Because

AP o (30)
k/k k/k (

Be0 therefore, represents the decrease in the error covariance by optimal

readjustment of the gains according to the variations in §k' k k' Qk' and

R k over the case when the variations are ignored, k is of second-Rk+!lve

and third-order of the variations (see Eq. (21)). When the first-

order term dominates in problems such as the sampling-period sensitivity
0

the Bk term may safely be ignored. On the other hand, this term is of

utmost importance in analyzing suboptimal gains, because the first-order

term is zero. From the value of information viewpoint, B 0 justifies the

accuracies the designer has available or is requesting on §k' Pk' Qk'

and R It tells how much improvement in estimation error he would

obtain if the accuracies were improved.

Thz variational equations up tu this point have been exact and

general. In what follows, we may sometimes use specialized and/or

approximate versions of the variational equations for specific probloms.

14



I
These problems are organized and discussed in Sec. II-G and II, 1 but'

(
first we shall introduce the concept of the adjoint matrix for the

Kalman filter.

The Error Transition Matrix and the Adjoint Matrix

Often one wishes to know how PT/T at a specific sample point T

changes because of changes in Q, R, e, or W at some previous and

possibly widily separated sample points. Using the error transition

matrices and adjoint matrices discussed later in this section, it is

possible to study these changes without having to solve repeatedly the

lull recursive Eqs. (17) and (26). However, for these techniques to be

feasible, we have to use the first-order approximatior. (second-order

approximation in suboptimal gain case) of the full recursive Eqs. (17)

and (26).

Let us study the variations from k - . to kth sample points. The

relevant variations are 0k-l' A-i' Aki and hWk. We also have

APk-i/k-l' which is caused by the previous parameter variations. We

shall take APk-i/k_1 to be first order in magnitude. This is not always

so, as we shall see later on in suboptimal gain analysis that LPk-i/k-I

is second order in AW. Let us also define matrices LZk/ki and AZk/k

by the following equations, which may be regarded as the first-order

approximation of the local (one-stage) covariance variations--by

setting APk-i/k-1 = 0 in Eqs. (13) and (7) Lnd keeping the first-order

terms:

AZ -AQ +0 P T_ + P A 6§T
k/k-.l k-i k-i k-i/k-• ki k-I k-i/k-l/ k-i

AZ = (I - W ik) A•Z/ (I - W HkT + W)ARWT + A (31)
k/k R k k/k-l k k WAk k k

z0/-I G /0!-

vere Ak is given in Eq. (18), a first-order expression in Alv, Bk does

not appear because it is higher than first order. The only parameter

var:ations that appear in the above equations are iocal--ý k-l, 4 ,k-l' ARk,

and AW k. Furthermore, AZk/k = 0 i these local parameters are unchanged.

15



The covariance variations (Eqs. (17) and (26)] are now:

(I' - W H ,)' AP _( -WHT+ Z(2
k/k = k k k- k-li/k-l k (I - k + k/k

Applying the last equation recursively from k = 0 to k = Twe have

A = D. A D T (33)
T/T • DT,j iJ/i TJ

where j = those integers such that at least one of the variations Aji1

AQj_j, AR, and AW. exist. DTj is given by Eq. (34):

D , (I - W H )T (I - W H )T (I - IV H ) (34)
Al T T Tr-i T-1 T-1 T-2 j+]. j+i

The DT,j will be called the error transition matrices. They give a direct

connection between the local covariance variations AZj/j and APT/T. They

are computed backwards, using nominal quantities in time from T to j by

the following recursive equation:

D T, = DT, j+l (I - j+IHj+I) j

(35)

DT T = I the unit matrix

In particular problems, it may be more convenient to use multistage

local variations. The filtering process is divided (see Fig. 1) into m

time segments; let the dividing points be the set of sample points

(l' J21 J31 ... , jm)' We have

ST/T(DJ DT (36)Ii/ ="DT i Aiji/Ji Tl ii

where A ii/ji denotes a multistage local variation for the ji-I to jith

segment, obtained by solving the following recursive equations (Eq.

(37)] (ji- Jili times:

16



6• AZ~l (i-I) T_+Q +0 T
Ak/k-i = k-l Ak-I/k-1 •k- 1 Ak-I +Ak-i k-l/k-l k-1

+ ý k -iP k -1/k -I W kl (37)l)
(37)

i-iT TAZk/k (I - WkHk Azk/k-1 (I - WkH) + W + Ak

where Ak is defined in Eq. (18), and

k = i-I + 11 i-i + 2, j
A1

with:

AZ 0

FIG. .UTITG LOALV-ITI

O i-i/3i i-!

0 i;-, )

k

TI- 5188-716

FIG. I1 MULTISTAGE LOCAL VARIATIONS

The discussed error transition matrices are valuable in filter

synthesis. For example, in order to investigate the effect of m dif-

ference AR0 on APT/T, according to Eqs. (33) and (31), one only has to

TT
investigate the expression D T,6ORoWoD0 IT m times--a great time saving

from having to solve the recursive equations (Eqs. (17) and (26)] m

times from k = 0 to T.
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Often one is interested in knowing the following scalar Iunction,
J) of APT/ rather than the whole AP matrix itself:

: 
~J = tr (L T/TPT/T)(8

AJ = tr ( LT/T6PT/T) ,(39)

where tr denotes the matrix trace operation.

As an example, the so-called root-sum-squared (rss) position error

may be written in the above form for J. Thus, the state of a trajectory

in three-dimensional motion may be

x3
x 3

x4

x5

x6

where x., x2 , x 3 are position and x4 , x5. x6 are velocity coordinates.

The error in x is 6x:

6x 1

6x 2  )

6=6x 3
6x-4

6x6

6x6

PT/T is the covariance ;iatrix of 6x,

18



"" PTIT = B[(6X- )5x - FX)T I

The rss position error, is, by the d-finitions of rss and the trace

operator,

(rss) =tr(LT/,T PT/T)

with

LT/T ' 0 (401

L0 0o

The variation in rss position error is now expressible by

AJ = M~rss) = tr(LT/TIITT)

LT/T is the ad-joinL' matrix at T. Its exact form depends on the problem

at hand. As anot.her example., if we are only interested in the covariance

of SXl, L T/T should then b

= 0L T/T .0

The equation for computing AJ is obtained by combining Eqs. (39)

and (33):
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= r(LrIDT!JL•T/TDT " •7 jj

T~j

Ai Z trLTTDT j T

Z tr(D ,T L TD &~ZV

E >1 ( i/ 6 (41)

L D T LDD (42)
- Tj T/TTj (j

The Lj/j are called the adjoint matrices; Lj/j may be computed (see Eq.

(35)] by the following backwards recursive equation:

L~/~ T_ kl(I - WkHk) T L /(I - WkHkk_ (43%)

where LT/T is to be appropriately defined for the particular problem.

To summarize the above technique known as the adjoint-matrix tech-
nique, we first use Zqs. (42) and (43) to compute the adjoint matrices(

L k/k k = T, T - 11 T - 2, ... I using the nominal quantities Wk' Hk,

and § k-l ( J may now be written easily using Lk/k and local variations
AZ j/j of Eq. (31), thus

tr(LT/T6PT/T) =J = tr(Lj/jZj/j)

where j are those samples points with nonzero LZj/j.

L j/ and DTIJ enable one to relate directly local covariance varia-

tions &Z with terminal-error variation. This provides a systematic

and straightforward technique for such sensitivity and trade-off analysis

as
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(1) The necessary duration of the filtering process

(2) Sceking least sensitive spots on the filtering time

axis for sampling rate reduction

(3) Redistributing the sampling points for improved

terminal azcuracy

(4) Optimizing the usage of an expensive observation--

the seeking of sample points when the observarioz

causes the largest terminal error reduction

(5) Optimum radar resource allocation

(6) Trade-offs between various error sources--measure-

ment, modeling, and sampling rate.

These topics will be discussed in more detail in later sections,

and in examples of Sec. III.

C. The Sensitivity Matrix--Variations Due to Scalar Parameters

Up to now, we have considered the independent variations to be in

the general matrix form--0 k-l, AQkI Alk- ARk' Here we introduce

another level of parametrization; we let A6k-l, AQk-l' AWk, and &Rk be

functions o! a scalar variable denoted by o. For example, the sampling

period (time between two consecutive sample points) in a filter with

uniform sampling rate is such a parameter. o

Let each element in the matrices A0kl, A0k_' AWk, and AR be

functions of a scalar variable u. Each element of Pk/k isY therefore,

a function of e. This leads to the following definition of a sensi-

tivity matrix:

BP BPij) (y)-Sk/k A k/ l I I
k/k ] =li C + A)- P li 1( ) A (44)

600 AoV k/k

(aP k/k/A) propagates in time according to a set of recursive equations,

which will be shown later. Once (OPk k1605 is obtained, APk/k may be

easily computed to first order as
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&Pk/k ( C) P- (Sk/k /bci Act .(45)

The recursive equations for the sensitivity matrix may be derived

by taking limits [as indicated in Eq. (44)) of Eqs. (17) and (26):

BP k/k• aPk/k-i T k ýRk wT+= (I - WH( - W H + W _-W A' (46)

F3 )1 kI k LYHk k botk

and

-ýP k~/ /k T 6Qk + k + TP '4fk (7

pokecs k +ur s T be k/ks k k k/kh (

A' Smlkn kPk/kerio + Ik) - Pk/k 1 H (nWk)

+(~ , kN k-lH + Rk ]T-'
[k (-kpk/k k ) HT k/k~k , (48

where all second- and third-order terms vanish because of the limiting

process. These equations are seen to be similar to the covariance

equations, Eq., (3). This indicates that in a simulation of the Kalman

filter., the sensitivity-matrix computation may be added with a minimum

amount of effort.

The scalar parameters we shall be concerned with are:

*(l) Sampling period r: In general, § W kJ' and R kare

functions of T. §kW the transition matrix for the

system dynamics, is a time integral depending on T.

Qk generally increases with T because a longer

sampling period allows the dynamics' error to build

up between sampling points. The measurement error

Rk zhanges with T in a manner depending on the data

prosmoothing used with the filter. If no prosmoothing

s.a used, then Rk does not change with T. To summarize:
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U 0, 0 Q,/bT / 0, and bR /AT may or may not
k ic k

equal zero.

(2) Dyvamic error parameter, d: The dynamics error is

commoniy modeled as plant noise. Qk is, therefore,

a function of d, while ý and R are not:

bQbd 4 0, BRit =/6k/d = 01 .ý k /8d

(3) Measurement noise parameter, r: BR k/r 0, but

Bý /kr = 0, and BQk/kr = O.

To compute the sensitivity matrices of these parameters, we use

Eqs. (46) and (47) with a = T, d, or r.

D. Special Considerations in the Sampling-Period Sensitivity Matrix--

the Time-Based Sensitivity Matrix

The sensitivity P k/k/BT discussed previously is evaluated with k

fixed. The derivative is therefore evaluated along the slanted dotted

line in the P vs. t diagram of Fig. 2. But we are often interested

P "k/k (r)

(r) +i/ Apk

kr ktr*÷Ar)
Ta* SI 8 -73ZP

FIG. 2 TIME SHIFT IN SAMPLING-
PERIOD VARIATION

in a sensitivity that is time-fixed; for example, consider the case in

which the time duration of the filtering process is to remain unchanged.

Then, in Fig. 2, we should consider a derivative evaluated along.the

vertical direction by letting P (T) + APk' approach P (T). In thistýk/k k/k k/k

section, we shall devise techniques to evaluate the time-fixed sensitivity.
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In Fig. 3 we depict the effect of a small change 6T in the

sampling period , for k iterations. P (1), denoting the error co-
k/kI

variance at k-th sample point with sampling period 7, is changed to

P k/k (T + AT) A= Pk/k(T) + APk/k' and PkI/k-l () to Pk-l/k-l(T + AT).

Pk-/- (r t Ar) A

Pk-1/kI (r) Pk-1/k-l

{k-/k k/"

A h ~ A

Ta- 5.ae-7011

FIG. 3 INTERPOLATION BETWEEN SAMPLE POINTS

While, strictly speaking, the error covariances are not defined between

the sample points k - 1 and k, we shall interpolate using Pk_1/k- ('r + AT)

and P k/k(T + AT) to assign a covariance matrix at the point marked A.
I I )

This matrix is designated by P1 (,r + AT) = P (T) + APkk, and k/k
k/k k/k kk /

is taken to be the fixed-time variation under the influence of AT.

Carrying out the interpolation, we have

P (T~) + AP/ I - P (r) + AP
k/k k/k k/k k/k

(P+ k-k-l/k-I - Pk/k (T) - APk/ R(AT)
(T + AT).

Therefore,

API AP P (T) AP -AD
k/k k/k k ki/k-( - k/k k -k/k-i k/k (49)

AT kT (T + AT) (+ + AT+ )
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Letting A& 0, and remembering that AP kl/kI - 0, 6Pk/k 0 as AT 0,

so that the last term is zero as AT - 0, we have:

6 k/A k/k()P
-k/k krn l- + P (T) - p (T)) (50)

6T AT- : AT - T 7 [k-i/k-1 k/k

The time-fixed sampling-period sensitivity matrix 'OP' /BT is
k/k

therefore obtainable from the sampling-point-fixed sensitivity matrix

P k/k/AT by taking into account the slope of Pk/k (), as shown in Eq.

(50).

E. The SensitivityIndex

If we limit our discussion to scalar parameter variations Ace and

scalar filter performance criteria J. we are then interested in sensi-

tivity indices of the type

SA• sa ACy= Fix 51

where a = various scalar parameters, for example, those lisced in the

last part of Sec. lI-C.

Tese sensitivity indices may be precomputed using the previcus

results on sensitivity and adjoint matrices; the S, being scalars, are

stored more easily than the adjoint or sensitivity matrices. S are

therefore seen to be a useful technique for real-time modifications of

the filter. For example, in the antimissile defense system, we may let

J be the covariance of the error in the position estimate at a certain

range from the radar sites, where interceptor commitments have to be

made. Let a be the iteration rate C. Now, assume a multiple-threat

situation arises such that the design iteration rate C cannot be met0

for all incoming .vehicles because of computation limitations. This

calls for a real-time decision on how the iteration rate should be re-

duced, and an estimate of the consequences. These tasks are made easier

if the sensitivity indices S( (j = 1) 2, m for m different reentryC "

vehicles) are available in real time, for then the increase in terminal
U) (j)

position error for each vehicle is expressible as - c (&Cj).



From criterion on Aj (j), bciausC the terminal accuracies are the main

concern in this example, we may compute AICj from the stated equations.

To compute the sensitivity indices, we use the sensitivity matrices

and adjoint-matrix technique discussed previously. This gives

b3 B p ) T/T~
S = - = rot tr(LT/TPT/T tr T/T T )

= Etr( az /i (52)

where (OZ k/k/ba) are the local one-stage sensitivity matrices obtained

by the following limit:

azklk /zkkk
- =liam . (53)21a Act0 c

Therefore, upor using Eq. (31), we have

a'- •Zk/k-1 bQ k- .. k-1 IT +' (54)
6( t 0 k-1/k-1 _ k-l k-1k-/k-I C1I

)z •k/k TZ/- 'IRk WT

- _(I - WH * (I - Wk Hk) + Wk T + Ak
atk k a k k kOct k k

/ -. k T

+ Ek(Hk k/kHT + Rk) - P H ] pk/k _ ,T
+ k [k ("kpkk/k l k k/- Pk/kIHa

Note that the same equations may be obtained from the sensitivity equa-

tions [Eqs. (46) and (47)) upon setting

(* bk-1/k-/act) = 0

If we are computing the sampling-period sensitivities for time-

fixed variations, the slope correction shown in Eq. (50) must be used.

Also, instead of using a one-stage local variation, AZ it may be

26



more convenient in particular problems to use a multistage local varia-

tion, ýkC'. of Eqs. (36) and (37).

F. Special Considerations in the Gain-Matrix Variation

If the nominal filter gain is optimum Wk, the sensitivity-matrix

techniques such as those in Secs. II-C, -D, and -E, do not give usable

answers, becau:!e in those techniques only first-order variations are

considered, while the variation in performance about the optimum Wkisk
second order in AWN Here the analybis calls for a return to the exact

equations of Sec. II-B for second-order variations. We shall consider

only the special case that Wk varies from W0 to W + AWk; all other
k k k

parameters (k)' Qk' Rk+l1 P0 / 1 ) are to remain fixced. Then, in the varia-

tional equations [Eqs. (17) and (36)] all first-order terms disappear.,_

We have 7

AP0/-1 0

TT
k/k-I =k-1k-/k-k-i k-If (55)

+ AW FH Pk/ HR + R] AW T + (hig-her-order terms)

We have used the following observation in the last equation:

APk/k and APk+1/k stays second order for k = 0, 1, 2, ... as may be seen

by tracing the recursive equation for k = 0, 1, 2, .... Therefore,T T

although the APk/k iHkATk term in 1k, Eq. (20), appears to be of second

order, it is reilly of third order.

Equation (55) is now approximated by neglecting the higher-order

terms, obtaining

LP k/k= (I- WkHk k-l(pk-l/k-l) kT (I kHk)T

+ LWk(H.,PkHkT + R) T (56)
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It is noted that, due to the separation of 6P k-1/k-1 and 6Wk terms,

we may employ the concepts of the local covariance matrices, the error

transition matrices, and the adjoint matrices--concepts that were de-

veloped originally for the first-order variation. The applicable equa-

tions are given below:

The local covarianco variation is

AZk/k= Wk (HkPk/k Hk+ Rk) k,,

so that

APk/k (I - Wklk) •k-l(Ak-llk-l) UT_(I - W H ) T + Z /(58)
k/k k -1 -1/k1 k1 1. kk/k

Terminal covariance variation is expressible as sum of local variations:

APT/T D AZ DT (59)
k/ T k k k T kS k

where DT~k is the error transition matrix by the recursive equation

DT, k D T,k+I(I - Wk+ Hk+l k (60)

with

DTT = I

Terminal AJ is expressible as sum of local variations:

AJ= tr(L P ) tr(L/kZkk) (61)
c ' •

where Lk/k is the adjoint matrix defined by the recursive equati-.n

"L = T(I - W H ) L (I - W H ) (62)k/k k+1 k..l k--L/k+l k+1 k+1 k (2

with LT/T defined arbitrarily depending on the problem.
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I
Suppose we wisn to investigate the effect of 6k at a certain sample

point of PT/T' then we need only evaluate the matrix

DT kAlk (HkHk/kl HT Dk T 6z T (63)
/ kDTk = DT,k k/kDTsk

or the following scalar if J = tr(L T/TPT/T) is of interest:

tr TLk/kwk (HkPk/klHk + R = tr[Lk/kZk/k . (64)

These two terms provide a valuable aid for the design of suboptimal

Kalman filter gains. Suooptimal gains are of practical interest because

often they may be computed simply and their use causes very little in-

crease in the estimation error. As an example, suppose we specify an

allowable WJ. AJ can be allocated among the sample points by some

acceptable rules depending on the problem:

AJ E'•(AJ) k

k

Setting

(6J)k = tr[Lk/k AZk/k]

= ( kr • k/k Vk) (lkpk/k-ik k

we obtain an elliptical region around W, within which any 6Vk will cause

i J within the allocated (W) k" In this way, a manifold may be defined

around the W vs. k curve such that it contains all the allowable sub-
k

optimal gain curves. Many other ways of applying these equations are

possible.

G. Applications to Problems

Depending en the particular problem, different parameters are varied

and different performance criteria are used. The following are a few

examples:
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(1) Inaccurate statistics: Since the statistics Po/-lI

%k1' and R.k are used to obtain the filter gain Wk)
the real question is the effect of using the wrong

I I

gain. Put, for computation, we may use the following

equivalent problem. Let /* Q*1  R* be the' 0/_-.' Qk-l R) k h

erroneous statistics that give W* and P* P* is
k k/k* k/k

not the real covariance; however, the real covartanco

is Pk/k = Pk/k + 6PkAk' where APk/k may be computed
using the variational equations (Eqs. (17) and

(26)) with AWi =0, AP0/-1 = P0/-- P*/-ll
Q. = Q * and AR =R R* P may
'K-i k-l k-l'= k k k k/k

therefore be computed from P* which is availablek/k'
in the gain computations.

(2) The valie of exact statistics: Suppose we know the

exact statistics, the estimation-error covariance

may be iwproved from the Pk/k described in (1),

"because we are now able to compute the exact optimum

gain. Let the resultant covariance be
Pk0/ = P*/k + AP0 where APkik arises out of the
k,/k -k/ h/k k/
A Po/- 1 AQk-,, and AR of (l), but with 0W =

0Ak O lk = lk
instead of zero. The value of the exact statistics

is therefore

p 0 -p P =p* + AP .P* - 6P 6p0 A
k/k k/k k/k k/k k/k k/k t l'k/k - k/k

This turns out to be the negative definite term Bk

shown in Eq. (21).

(3) Increased sampling period: This will be discussed

in detail in the next section. In general, AQk-l,

0 k-l, ARk, LWk exist and are parameterized by a

scalar T, the sampling period; therefore, the sensi-

tivity matrix technique of Sec. II-C may be used.

The value of ARk depends in part on what, if any pre-

smoothing of the data is used.

30



(4) Approximate reference model eynamics: The common

practice is to represent the model error as a plant

noise. The approximate dynamics are regarded as the

re-l dynamics plus noise. The difference in perfor-

mance is then between the use of the full and optimum

filter and the full and optimum filter with increased

plant noise: AP is computed for At_1 and ANOW to
k/k

give deterioration in estimator performance.

(5) A varying model parameter: Assume that the varying

parameter causes a 0 k-l' and assume that this change

is known to us so that we may incorporate it into

the filter reference model as well as the filter

gain. 6Pk/k may be computed from Eqs. (17) and

(26) with optimal B0 and with AL§
k k-1*

* (6) Suboptimal gains: If the available nominal filter

is a full optimum filter then k k/k is second

order in &V through B.. Using the error transitionkX
matrices and adjoint matrices of Sec. II-B, it is

possible to specify regions around the optimal

gains W 0 such that any suboptimal gains within

these regions will produce acceptable performances.

(7) Expensive observations: Suppose the estimation error

at T is of major interest. We should locate the ex-

pezisiva observations at some point k < T so that

APTIT is as negative as possible. This information

is provided by the error transition matrices and the

adjoint matrices of Sec. lI-B. An application of

this is. given in Sec. II-E.
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III APPLICATIONS TO SAMPLING-PERIOD PROBLEMS

There are two types of problems concerning the sampling period. The

design problem 's to find a set of sampling periods such that the esti-

mation errors are within certain specifications. The sampling periods

may or may not be uniform. The real-time problem exists when, for one

reason or another, the conditions are changed from the design values,

and one attempts to adapt to these changes in some optimum fashion. In

this section, we shall define these problems and give methodologies for

their solution. An illustrative example is given in Sec. III-E.

A. Design of Uniform S..pling Period

The sampling points shown in Fig. 4 are equally spaced from 0 to

T with period T. The estirmator accuracy PT!T at a specified time T is

to meet a certain specificatiDn. An iterative procedure (Newton's

method) may be defined as shown below.

t t

0 +IH T
TA- $168-714

FIG. 4 UN:FORM SAMPLING

PERIOD

Given:

P0/ l Qj, ý R) BQ/-3 7,) B /BT • , R/bT , LT/T, J*

Find:

Sampling period 7 such that

tr(L T/TPT) T J (65)

32



Algorithm:

(1) Select T1 as an initial sampling period, and solve the

recursive equations (Eqs. (3), (46), and (47)] for

(PIVT)1 and (BPT/T/BT)l

(2) Find T2 by

(-r 2 1)tr[LT/T( (PTiT/b3T), = J*- tr T/T(PT T/T)]

or

T2= i 4 *- tr / T/ /tr[LT/T(° T/T O• (66)

Steps (1) and (2) are then repeated until Eq. (65)

is satisfied.

The convergence of this iteration procedure remains to be proved. How-

ever, iii case of difficulty one may take a sufficiently swall step to at

least obtain an improvement over (PT/T) 1 P i.e., for X < 1

T 2 =TI+ X * trET/ýPTT 1/tr ELT/¶rT /T')1 (67)

B. Design of Nonuniform Sampling Period

A typical nonuniform sampling-period design problem may go like

this. From results of Sec. III-A or from an examination of the computa-

tional capabilities, the total allowable number of sample points are de-

cided. The problem is to reduce the terminal-error covariance by

redistributing the sample points, while keeping the total number the

same. To do this we may divide the time into m segments, and change

the sampling period uniformly within each segment as depicted in Fig. 5.
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4 P
..- 4 p..-PTp

o T
-n3 UNIFORMLY SPACED SAMPLE POINTS

T4-S 715

FIG. 5 NONUNIFORM SAMPLING PERIOD

Given:

P0/-i' Q, 01 R, WQITp / •/ 6, •R/I•Y, LT/T . (38)

n = number of sample points

m = number of time segments.

Find:

( Sampling peiiod, Tip i - 1 2, ... , M,
1.'i-- i_1

n=n, ni (69)

such that

J =tr(L T/TPT/T) (70)

is minimized.

Discussion:

Consider T7i i = 1, 2, ... , Mp as m scalar parameters. The

following sonsitivity indices may be computed using the reýsults of

Sec. II. I'

s tr(LT/TPT/T)

The problem is then oquivalent to first order to the following problem:
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Minimizo s i AT

1T '

A±)( i-ti- n (72)

We must realize that the sensitivity as defined here gives only an

indication of the change in performance to first order, and the results

will be inaccurate if AT. are too large.

We shall therefore limit the step sizes for 6T i by adding the

following linearity constraint to Eq. (72):

i T << 1 (73)

Ti

From Eq. (72), it follows that a necessary condition for optimum

distribution points is obviously

S1 = S2 = Sm (74)

if not, we may always obtain an improvement in performance (a reduction

in J) by moving some sample point from a segment with higher s;. A

gradient procedure is shown below for solution of this problem.

Algorithm:

(1) Comlpute the sensitivity indices si by Eqs. (52)

and (54).

(2) Select two tire segments u and A that have respec-

tively the min (s i) and max (si ). nU points are

then moved from the u-th segment to the A-th seg-

ment, until censtraint [Eq. (73)] is met for i = u

or i =A.

(3) If the linearity constraint is reached for segment L,

further improvement may be possible by moving points
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from the u-',h segment to the segment with the next

highest si. In this case) repeat steps (1) and (2)

until all segments are modified or until the u-th

segment has reached the constraint (Eq. (73)].

(4) Recompute the s. using the now sampling times, as1

determined above and proceed to step (2).

(5) Terminate the process when the si are sufficiently

close to being identical. The examples in Sec.

III-E illustrate this technique.

The sensitivity indices may of course be used in other types of

gradient procedures.

C. Real-Time Allocation of Computing Resources to Multiple Trajectories

flere we address ourselves to the problem of optimum allocation of

limited computation facilities to multiple trajectories when the number

of trajectories cannot be predetermined accurately. We note that in

case the number may indeed be predetermined, then the algorithms in Sees.

III-A and III-B may be used, with slight modifications, to obtain optimum

sampling schedules for the multiple trajectories. Although many types of

problems may be formulated, we shall consider the following special

formulation:

(1) Any one trajectoly is to be filtered a fixed length of

time. The terminal esLimation errors are of interest.

(2) The initiation and termination times for each trajectory

are arbitrary. They are therefore likely to be staggered

in time to amounts that cannot be prespecified.

(3) The filtering system has available a nominal sampling

rate c for the i-th trajectory.

(4) The computation facility capacity may be characterized

by • c1 . ThaL is, the facility can only handle the
i

load
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(75)
i

. a number denoting the capacity.

(5) The allowable real-time modifications are A ci.

(6) The criterion for the modification is equal degradation

at terminations of each trajectory

S(1) (2)
= A j = (76)

where

= tr ITPT/1.

The solution is simple if the system has in its computer

storage a proper set of sensitivity figures as follows:

At real-time t, the i-th trajectory will be in a certain

"filtering stage denoted k., see Fig. 6. Let (i)

(ik i
be the sensitivity of J wit' -espect to ci, when ci

is changed by A c. from k . to T. Then A ci, obtained

by solving the following set of equations, is che

answer to our problem:

s(1) (2) C

E (Ci + Aci) =
i

The solution is

*Ac- (6~Z i) [sl) W- ]
. _l1  iSki -(78)

i kI ki "

The sk i are easily precomputed using the equations in
"Soc. II-E for sensitivity indices. The required storage
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I
for si deoends a great deal on the particular

ki
problem. If various possible trajectories have

similar sensitivities, tb',. one set of sk,

k = 0, 1. ... , T is sufficient. Further simplifica-

tion may be effected by segmentation of the time

axis, and assigning a sensitivity to each time

segment (see Fig. 6).

0 .T

JXI TRAJECTORY I
0 TRAJECTORY 2

T TRAJECTORY 3

t REAL TIME

FIG. 6 RELATIONSHIP OF ITERATION

STAGES TO REAL TIME

D, Real-Timpe M.1aneuver Compensation

A vehicle in motion is said to perform an unknown maneuver when its

trajectory suddenly deviates a large amount from the trajectory generated

by the filter :eference dynamics. Unless we know when or how the vehicle

will maneuver, we are forced to use in the filter a model of the dynamic

equations that does not account for the maneuvers. This causes high

estimation errors during unknown maneuvers.

The maneuvers can be modeled as plant noise whose magnitude and

occurrence are inferred from observation; experience shows that the esti-

mation can be improved by adjusting the filter gains closer to optimal

for the increased plant noise. Our experience also shows that the speed

of adaptation to maneuvers, even with the stated refinements, is limited

by the sampling period. Three or four sampling periods are necessary to

correct the large maneuver-induced estimation error. The direction for
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further improvement of filter performance lies obviously in increased

sampling rate when a maneuver is detected.

The required change in the sampling period &T may bc computed from

the inferred acceleration noise increase La by employing the sensitivity

indices of Sec. II-E. We shall decrease the sampling period to counter-

act the eff±cts of increased acceleration error, which leads to the

following equation:

_ k -1 b-

( k+l 1+l

where iJ k+/BTk and Jk+i/6ak are precomputed sensitivity indicies. If

J k+ is defined as the root-sum-squared position error, then 6J k+i/Tk

is the change in Jk+1 due to a change in sampling time from k to k + 1;
bJk+I/bak is the change due to acceleration changes from k to k + 1.

Instead of the one-stage sensitivity, we may use the multistage

sensitivities BJ A/T Jk /ba which are the changes in root-sum-k+m k' k+m k'
squared position error m stages ahead of the sample point k when the

maneuver is detected. Thus, assuming that the maneuver acceleration

uncertainty (Aa) is maintained for the m stages, we have

-Bjk4= Bjk+m Aa (80)

where the sensitivity indices are obtained by solving the recurrent

equations [Eqs. (46), (47), (50), and (34)) m times using zero initial

values. (
E. Examples

The procedures discussed in Sees. III-A and -B will now be illus-

trated by a simple estimator problem using a .1/s2 plant. The numerical

values used are, however, on the order of what one might encounter in

the estimation of ballistic trajectories.

Example 1:

Assume that the ballistic vehicle moves in a straight line with no

"other driving force than the acceleration noises. That is, let p be the
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position of the vehicle and n the acceleration noise, then

j=n a (81)a

The position is observed in the presence of additive noise n :m

z = p + n (32)

The discrete-time, state-variable description is

x k+l x k + w k

I0 k (83)
z = [i O xk + vk

where T is the sampling interval from k to k + 1 and

xk= (84)

The quantities wk and vk are the plant noise and measurement ixoise vrith

covariance matrices Qk and Rk, respectively, and x is assumed to be

Gaussian-distributed with mean r(x ) and covariances PO/-l.

The Kalman filter, Eq. (2), computes xk/kI the estimate of

using the observations zO, Z1, ... s z .

We shall assume the following numerical values;

Rk = 10 4 (85)

for 100 It standard deviation in measurement noise,
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Qk=[0.239T. ]
for 1-g acceleration error,

Q k '=[.9 (86)
0 10400

for 10-g acceleration error, and

PO/-I = [06 0]

for initial position and velocity standard deviations of 1000 ft and

1000 ft/sec.

T varies in the program, with 0.1 sec as its nominal value.

The total time of the estimation process is 5 sec, which is divided

into five segments of 1 sec each. Within each segment, the sampling

points are equally spaced. Thus, when the number of sampling poipts are

changed from 10 to 8 in a certain segment, the sampling period is changed

from 1/10 sec to 1/8 sec.

Case 1: Plant Noise is I g

First we use the (10, 10, 10, 10, 10) sampling scheme--numbers in

the parentheses denote the number of sampling points in each segment.

The position estimation-error covariance is shown in curve a of Fig. 7,

where a terminal position error covariance of 876 ft2 is observed.

Now, suppose the computation capability of the system is such that

only 40 sample points are allowable in the 5-sec interval instead of the

proposed 50. First, we modify the filter in the most obvious way,

namely, using the scheme (8, 8, 8, 8, 8). The results are shown in

curve b of Fig. 7; the terminal error has deteriorated 21 percent to
21060 ft2. We will now use a better sampling scheme in order to decrease

the terminal error. For this, we need the guidance of a sensitivity

computation.
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FIG. 7 POSITION COVAR!ANCES, 1-g PLANT NOISE

The sensitivity of terminal error to sampling period, s(T); is

plotted in Fig. 8. The least sensitivity occurs in the second segment.

The reduction in sampling points, therefore, should be in the second

'o 6

III

s•o 4-

r2 ,

• 0 4

0 I 2 3 4 5

SEGMEN's NQ

FIG. 8 SENSITIVITY OF TERMINAL ERROR TO SAMPLING
PERIOD, 1-g PLANT NOISE
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segment. Allowing a reduction of 50 percent for linearity as disc ssed

in Soc. III-B, the number of sampling point- is .educed within the

second segment froin 10 to 5. Since tne next lower sensitivity is in

segment 1, the remaining reduction is carried out in segment 3; from 10

to 5. With the new -cheme of (10, 5, 5) .0, 10), the terminal position

error covariance change, from the sensitivity indices, should be:

AP= sr (T X A-2 2 + s(¶3) x 6'r3

= 227 X (0.2 - 0.1) + 33L X (0.2 - 0.1) = 55.8 ft2

The error covariance with (10, 5, 5, 10, 10) is computed and

plotted in curve c of Fig. 7. The terminal position-error covariance

of 8S4 ft2 represents an increase of only 18 ft2 (compare with 55.8 ft2

as predicted above) over the scheme using (10, 10, 10, 10, 10). It is

interesting to note that 10 sample points may be removed from the right

places with very little effect on the terminal estimation accuraf'y.

The only additional labor involved is the computation of the sensit.'.ity

indicas s(Ti ).

The diagonal elements of xhe adjoint matrices are plotted in Fig.

9. The curve a shows the (U, 1) element of with LT/T = 0 '
which may be interpreted as the sensi-_ivitY of the terminal position-

error covariance to the k-th position-error covariance. Similarly, curve

b shows the sensitivity with respect to the k-r.h velocity error covariance;

i.e., the (2, 2) element of I. k/k This plot provides additional insight

into the estimation problem belond those given by the sensitivity in-

dices. The design of an estimator may be greatly improved with this

insight. ReferriiJg again to Fig. 9, it can be seen that in the 4-th bog-

ment (3 to 4 see), velocity-error sensitivity predominates. This indi-

cates that If e perform a velocity measurement at that rime, terminal

estimation acculacy mny be much improved. To obtain some definite

quantities, the velocity measurement is assumed to have an error co-
"2. 2variance of 100 (ft/see) .We shall perform the velocity measurement at

3.5 sec, at which time the nominal velocity covariance is 413 (ft/sec)
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FIG. o TERMINAL POSITION SENSITIVITY TO COVARIANCE
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from computations. With a single measurement, the velocity estimate im-2.
proerement is at least 413 - 100 = 313 (ft/sec) Since curve b in Fig.

9 snows a sensitivity of 0.4 at 3.5 sec, the terminal position accuracy
2_

is expected to improve by 0.4 X 313 = 125 ft -- an improvement of

125/876 = 14 percent.

Further insight that may be obtained from the adjoint matrix of

Fig. 6 is that although position measurements are made in the 3 to 4-sec

segment, their predominant purpose is to obtain better velocity estimates,

which in turn improves the terminal accuracy. Given a choice of position

or velocity measurement improvement in 3 to 4 sec, one should take the

velocity improvement if Fig. 9 is applicable to the system.

Case 2: Plait Noise is 10 g

"With the plant noise increased, we would expect that what the esti-

mator does initially has less effect on the terminal estimationlerror.-

This fact is dramatically illustrated in the following.
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The position-error covarianco is shown in curve a of Fig. 10 for

? (10, 10) 10, 10, 10) sampling sche.o. The terminal position-error

covariance is 2249 it2. The terminal-orror :ovariance sensitivities

to sampling period are shown in Fig. 11. It is seen that changing the

-8 (I0,I0,I0,10,I0)

- - - - - - -- (8, 8, 8, 8, 8)

70- 5, 5,10,10,10)7_

6~

' \ \

3- \%*\

2

2 --

o t.i !
0 i 2 3 4 5

SECONDS

FIG. 1O PCSITION COVARIANCES, IO1-g PLANT NOISE

sampling period in the first two segments will hqve virtually no effect

on the terminal error. Therefore. the reduction in sanpling period

should be confined to the first two segments, 0 to 2 sec. According to
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this argument, a (5, 5, 10, 10, 10) scheme is tried with the results

plotted in curve c of Fig. 10. The terminal error of 2250 ft2, as

compared with 2249 ftZ, is almost exactly the same as the (10, 10, 10,

10, 10) scheme. If the same 10-point reduction were taken uniformly.

namely the (8, 8, 8, 8, 8) scheme, the terminal error would be 2600 ft2

as shown in curve b of Fig. 10--a 15.5-percent increase.

Figure 12 shows the sensitivity of the terminal position covariance

to the k-th covariance (diagonal elements of the adjoint matrix L k/k.
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Similar to the l-g case, we sue from this plot the advantage of making,

a velocity measurement at 4.3 sec. Assuming a measurement covariance

of 100 (ft/sec) 2, the terminal position covariance is expected to de-

crease by approximately the amount

L k/k(2,2) X [Pk/k( 2 , 2 ) - 100) = (0.05) X (8240 - 100) = 407 (ft )

wbich represents a 407/2249 = 18 percent decrease.

Example 2:

Ir this example, we shall point out the precautions that should be

exercsed in deriving sensit.vity indices for smoothed measurement.,

Under certain conditions the sampling-period sensitivity may become

negative, indicating one should update less frequently in order to re-

duce terminal error. While this may seem to contradict our engineering

intuition, mathematically it is perfectly rigorous. Nevertheless, if
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this becomes unacceptable for any reason, it is essential to analyze

carefully the assumptions concerning th, measurement smoothing and the

plant noise.

In Example 1, assume the meazurcments ara smoothed such that the

measurement covarianco is

Rk= -3 ft 2  (87)4k 2

Note that when T = 0.1 sec. the nominal sampling period, RI is 104 ft2

the value used in Example 1. !u Fig. 13, the sensitivities s(Ti) are

plotted, fV'r plant noises of 1 g and 10 g. Both cases show negativ.

sensitivities toward the end of the estimation process, meaning that the

terminal accuracy is improved for more widely separated sample points.

To verify the negative sensitivity, the covariance equation is re-

computed for the l0-g case with the number of sample points reduced from

2{ .-

-- l-g PLANT NOISE

I 10-g PLANT NOISE
0

-- 2

"0 -2 3 4 5 6
SEGMENT NO.

FIG. 13 SENSITIVITY OF TERMINAL ERROR TO SAMPLING
PERIOD, SMOOTHED MEASUREMENTS
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10 to 6 in the last segment. The new terminal position covariance is
2 2 22070 ft , a reduction of 179 ft from the original 2249 ft

The negative sensitivity arises from the fact tilat the reduction

in measurement covariance, Eq. (87), outraces the increase in plant

noise, Eq. (86), as sampling period increases. We shall now examine

the validity of these assumptions about the noise.

It may be shown that if the plant noise is approximated by a white

noise in the continuous-time description of the dynamical system, then

its discrete description will have a noise covariance, as described by

Eq. (86), proportional to T. However, if the plant noise is meant to

represent mathematical modeling errors, this may not be a valid assump-

tion. A better noise model is perhaps an acceleration noise that re-

mains constant over T, where its magnitude is a random variable, zero

mean and Gaussian in distribution with standard deviation a. For a

given time interval T, the plant noise covariance matrix would then be

better expressed as

Q = L./ar 2  a) (88)
1(1//2 aT)

The fourth and second powers of r here indicate that as the sampling

period T increases, the true plant noise is likely to increase more

rapidly than those assumed in Eq. (86). This will cause the sampling

period sensitivities to tend towards positive values.

Returning to the question of the measurement noise covariance,

we see that the form of Eq. (87) is valid only if the data are "per-

fectly" smoothed. Namely, the data must be fitted to a curve repre-

senting the precise uutput -f the dynamical system. Yet in practice,

data are smoothed using arbitrary curves such as scraight lines or

polynomials. In doing so, ad-itional errors are introduced beyond those

represented by Eq. (87). A more truthful representation of the smoothed

measurement is perhaps
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R 103 ,
lO3

The offcct is that as sampling period , increases, the noise covarkance

does not decrease as rapidly. This will also tend to move the sensi-

tivity to the positive side.

We have seen that any refinement of our noise assumptions tends to

move away from a negative sensitivity index for sampling period. It is

therefore doubtful that the negative sensitivity should be taken

seriously as a significant phenomenon.

(
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IV ONE-STAGE TRADE-OFF STUDIES USING A SI?4?L1FIED INIODEL

A. One-St3ge Trade-Off

The purpose of this section is to provide formulas and curves that

will promote a general understanding of the relationship between filter

performance and various parameters, and the resulting trade-offs betwetin

these parameters. Such understanding is necessary when one is doing,

for example, trade-off studies between sampling period and plant noise,

sampling period and measurement accuracy, plant noise and measurement

accLracy, etc.

Since our interest is in deriving qualitative relationships that

;ire easily computable, we shall! limit our discussion to the following

case. These assumption., should be kept in mind when the results are

applied to practical problems.

(1) Ils 2 plant: The state equation is

x + U or x 1 'TJ xk + uk
10 '01 P k+1 = [0 1 (89)

where x is a 2-vactor composed of position and

velocity, u is the plant noise, T* is the sampling

period.
f

(2) Position measurement: The observation equation is

z k = RX k + v k = [1 03 X k + V k (90)

where v is the observation noiseJ EN k I

EN 2 3 R
k k
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(3) Plant noise:

Ecu 0 0

k -q

(4) Uk, Vk) k = 0, 1, 2, ... , are Gaussian white and

uncorrelnted.

The formula we shall develop is for the covariance of the estima-

tion errors from k to k + 1 sampling point. They apply, therefore, only

to local considerations. The behavior of the error covariance matrix is

depicted symbolically in Fig. 14.

Tpk1 k-i k/k

TA- 5168-T19

FIG. 14 PREDICTION AND
UPDATING STAGES IN
KALMAN FILTER

Fr"om Pk-I/k-I to Pk/k-i' prediction of the state is performed; the

covariance usually grows because of the velocity error and the plant

noise. From P /k-I to Pk/k' the k-th measurement is used to update the

state; the reuuction in the covariance is a function of the measurement

accuracy.

Let

1 (p ry) ] (92)

~k~-lk-l xv )k-l/k.l 1 j
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SP ~ ')k k (93)

(PV k/-X(V )k/1

Sk/k Pxvk/k (94)

L\P/v k/

Note that tI'o diagonal elements of Pk-1/k-I in Eq. (92) are unity.

Pk-Ik-i ma y always be brought to this form by a normalization process

which is discussed in Appendix C.

The prediction process, P k-/k-i to Pk/k-' is given by the equation

k/k-I :k-l Pk-i/k-i @k-i + k-i (95)

Under our assumptions, we have

Px) k/k- 1 + 2 k-/k1

=(Pxv + T (96)(xvlk/k-l = l k-1/k-1

Pv) k/k-= 1 +

The updating process, Pk/k-I to PI/k' is given by the following

equation, assuming the optimal gain is used:

= HT " T -i

Pk/k Pk/k-1 - k/k-1 (HT (Pk/k-1 + R.) HPk/k1 (97)

Using the assumptions, we have
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(~~) X ~) k/k-I

R

=('Px ~k/k-I
(P)k/k-1 (98)

R +x

a2
(r~ - k/k-i- x Vk/-

x

( )k/k-i

P kkmay be expressed directly in, terms of P k1/k-1 by combining Eqs.

(96) nnd (98):

(Px) 1 +2 (Px)k-,/- + T2+ q

~xk/k 1+ 2 (P x)k-/- r+-~

R
X

( Px v k / k =l + 2 (P X V) k - / - + q JC
1 +R

X

(pjk/k = v -~+[ + 2(P)v + q

Rx
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For trade-off studios, we need the sensitivity rf Pk/k with respect

to various parameters. Those are easily derived using the result (see

Sec. II-C,) that if Pk/k-I and Rk arc functions of a scalar parameter M

and if W is chosen optim-ally or fixed, then

k/ki -~ K-l Pk-l/'k-l k-l + V
(100)

F- kk ( - W:kH) (~y Pk/k..:) (I W kHFI)+: W~ k 1 k

'k Pkk-1HT (H Pkk-&HT + R1- = optimal gain
k= k/k-i =kk.

or

Wk = fixed

( Let us choose the parameters T., qx, qv. and R for a trade-off

study. Furthermore, qx. qv. and R and ý are dependent on sampling

period (T), q and qv on acceleration error (.1), and R on parameter

qx = qx(a, T) qv qv( O -T)

Rx R x (101)

The parameters are then c, l, and T;

Pk/k-1 = Pk/ (0a,1)

(102)

Pk/k = Pk/k0' I', Pk/k-])

Using Eq. (96), the following equations may be written
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aqI -*o

""Pk/K--I

bqj.L 0  vJ

apk-k-1 2 (p•V k-1/k-+ - 1(03

'Pk/k-i • _ o.

x

Substituting Eq. (103) into Eq. (100), we obtain the following expressions

for the elements of 6Pk/kiAa, the sensitivity to the plant noise parameter

S(Px) k/k (l k2 Bqx

•=- (1 - k1) ~

-(1 - kl) (- x2 ) (104)

ba 2

Y 2 qx bqvdc - 2 B0 + FO -I

where () (pxk

k =.k/k-i and k2 = (105)
R + (p) 2 + (px) (105
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I
W !

.+ (P:)'

Similarly, for the sampling period parameter T:

~ k/k 2 [,x 2 x= (1- k 2'

(106)

( Px~k/k F / BRBT ( k-I1  . k 2T + 2(xk 1/k 1 + 1J k I 1 k 2

k2 [2T + 2 2  +B V 2B
= 2 LOTj 2 +7 2

And similarly, for the measurement noise parameter 5:

( kx)k/k 2 
\

-- -=k, k -(107)
1 2~

Example 1:

Let us illustrate the use of the above equations by a problem fre-

quently encountered it Kalman filtering: the trade-off hetween model

accuracy and sampling period (1/s2 plant approximation). In an attempt

to reduce computation time, one wishes to use a simplified dynamics

model. However, in doing so, the state estimate error increases. This

may be compensated by sampling (processing data) more frequently, which

increases the computation time. One, therefore, needs a set of alterna-

tives on sampling-period and model accuracy to analyze their computa-

tional requirements.

SV5
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Trade-of' batw4oen plcim;t nots and sampling per iaud may also occur in

the oetimation on -aneuveriLg! reentry v'ehicle trajoctortos, as discussed

in Sec. 111-D. A maneuver may bue modeled as an increase in the plant

naise that causes large- than expectcd estimation errors if the sampling

period is held fixed. By sampling more frequently, this error may con-

verge more rapidly.

Let plant noise be represented by

q x = (2 t- =• 7ia

where T and a are respectively the ;zormalizod sampling period and nor-

malized acceleration standard deviation.

q= , = a. (108)

And let the measurement noise be independent of sampling period. Then,

BRx

6T 0

Bq x 1 4 Oq x 3

, w =a (109)

Oq v 2 aq v =22 "
2 '

br- 2 aT , .- 20f

Let Aa represebt the increase in plant noise from normal to high; AT,

the required chazge in sampling period to bring the position estimate

error buck to its original value is obtained from the first equations

of iqs, (104) ard (IC5):
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K - -2 k)

1 -i-a "rcvk1 k (- Ji.kTA
2 (A) = + 6k-I 2k _] AT1

232

k ; T A c y = LT- k 2 T +X 2 / x- kl ,_

S2 I+a2"-'-•T +P~vk-2 /k-1

2f T 3 '

When cz T is small, ,.AT!T m 0; when large, A'r/T -- - 1/2 Ace/a. In the

maneuvering reentry vehicle exnmple above, this equation may be used to

change the sampling period by the amoun't. AT after estimating the noise

increase Ace. Ac may be inferred from the measurement residuals.

It should be noted Lhat Eq. (10£) is given in normalized quantities;

see Appendix C for reconversion £nto the original variables.

Example 2:

The trade-off between measuremen* noise and sampling period (1,52

plant approximation) will now be considered. In radar observattion of

reentry vehicles, tb:.s question may come up in different phases of de-

sign and operation. In the design pha~.e, there is the quest1oM, of proper

balance betweun radar accuracy and data processing requirem•,nt. For

example, i.f the radar noise £-s rejuced, the sampling period may be in--

crease-d--meening less data processing. The measurement noise nay also

change during operation; for example, damage to the radar elements, or

splitting of the array into subarrays for simultaneous observatiou of

multiple targets wxll, in •enera1, •.ncrease the noise.. Ths may b

• K compensated by faster saimplir•.g
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To compute the change in sampling period necessary to compensate

for the changed wGastarement noise, we may use the following formula:

SPX)k/k k(Px )k/. T(13•B ,AB -• A•(123)

which becomes, upon using Eqs. (106) and (107), for a local correction

2 xR X
k 1ýr0 -I~ -k )L2r 2(PX')k-l/.l + BTI+k I .A (114)

2 4

1'h the plant noise is q = 1/4 a T and the measurement noise is
A

R =8/ , (115)

which represents respectively model acceleration error and presmoothed

measurerments, Eq. (114) may be rewritten as

[ LP~~l 2Tr + 2 (P.v,'/ + C j - L (116)
. - X"Ik-l/k-1

2''l 2 3 • , (17
2 2T 4 +2 T

(TR ) ) 2 v k-1/k-i

- + 1 + 2(PxV) T + T2 + qx

when T2/2 is large, &-./T R! 0; when small, AtT/T a! A/$.

Normalized variables are used in Eq. (117); Appendix C gives

equations for reconversion to the real variables.

B. One-Stage Sampling-Period S' Isitivities

in this section, plots are presented giving the zensitivity and the

reducti~on of estimatioa-error covariance. ir one stage of Xalman fil-

tering, as functions of sampling period for various types of plant and

measurement noises. Using these plots, the effect of spnpling-period

variations to local-error variations may be estimated quickly. Their
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effects on errors at later times can be estimated using ti. ut'joints,

Sec. II-B. The dynamical system is a double integrator (seC Eq. (99)J

subject to random acceleration excitation; the measured quantity is

position [see Eq. (90)]. Normalized quantities are used. Appendix

C shows the relationships between the actual values (denoted by a siiper

*) and the normalized quantities (unstarrod quantities) to be as follows:

P.. (118)
k-i/k-i

and

Pk-I/k-l =

LiP") -( PX -I/---J

(119)
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(P4

p k /k-

(P." ) kkI /( V) /k- 1 l-/ P k1k1

T=T*) (122)

I] (123)

=P. (1k 0)V (124

Pk62



r r (125)= Pxrx (*k-i/k-1

q= q*/(px) (126)

q = q*/(Pv* - (127)

(Px)k/k-l' the predicted next-stage position covariance, and (px)k/kI

the co.rect•d next-stage position covariance, are plotted in Fig. 15.

Using the following equations [see Eqs. (89)-(99)),

2

( x) = I + al + T (128)

r(Px)k/k1 1 (129)

(Px)k/k rx + (Px) k/k- +

x x ()k

The parameters are, besides (Px)k/k_1 and T. the position measure-

ment noise, rX.4 and the time rate of change of the predicted covariance,

denoted by a:

a = 2 (P )k-/k- (130)

if the plant noise qx is independent of the sampling period T.
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The vulue of a is

a = 2 p) + o (131)

if the plant noise qx depends on the sampling period, e.g., qx =

rx = constan., if position data is not smoothed. (132)

* = riT, if position data is perfectly smoothed (133)

(r is a position noise parameter).

Figure 15 is organized as follows: the lower horizontal axis is
for T, the vertical axis for (p.) k/k-, and the upper horizontal axis

for (pX)k/k. Therefore, if the problem is to find (Px)k/k for a given

set of T. rx, and a: we start from the lower horizontal axis, where the

given -, is located. We then traverse up vertically until the appropriate

rx curve is reached. (Px)k can now be read from the vertical axis.

To continue, we traverse horizontally to the curve with appropriate value

of a. The upper horizontal axis now gives the answer on (Px)k/k. For

other types of probtems, the stated procedure may be modified easily.

Figures 16 and 17 show the relationship between the sensitivity,

CAPx/PX)k/k/(Ak ), and T for a = 0 and I. The equation for these

figures is easily derived from Eqs. (128) and (129):

=p rN / rIT(a +. 2T) * (134)
(ix)k/k 1+ aT + " +1) (1 + ar + T2)

rX

Note that this sensitivity is dimensionless, relating percentage change

in (p*)k/k to percentage change in ¶*:

feAPX A ~x/tr (135)

Two exarples are given below illustrating the use of Fig. 15.
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Exam ple 1:

Chsnge in sampling period

[ 3422 5,380ki/ki Lj,380 11,197]3

xr* 104 ft2 (136)

q* . 0.259 X ¶* ft2qx

We wish tc find and compare (P for sampling periods, T*, of

0.1 and 0.2 sec. According to Eqs. (118)-(127), the normalized quan-

tities are

64030' [ 0.8401
1k--/k-i = 3 0

"ki/- 0.840 i1

T * X 1 .87 = 1).187 11 T* = 0 . 1

= 0.374 if 7* = 0.2 (137)

4r x 10 /3422 2.92x

0.259 X T* 0.259
ýx 3422 3422X1.8" 0.0000405X

Therefore,

= 0.0000405

and

a = 2x r (138)

"= 2x 0.840 + 0.0000405 = 1.68
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To obtain values of (Px)kik for r of 0.187 and 0.374, the dotted
lines in Fig. 15 are traversed from T axCis to (PX) k/k axis. Tho results

) k = 0.92 for T = 0.187

k/k 1.0 for r =0.374k/k

The conclusions are therefore thus: If a sampling period of 0.1

sec (¶* = 0.1) is used, the one-stage po)sition covariance reduction is

0.92, from 3,422 to 3,150. If the sampling period is increased to 0.2

sec, the position covariance increases by a factor of 1.06, from 3,422

to 3,630. Furthermore, this increase is due mainly to velocity errors

rather than to plant noise; this may be seen in Eq. (138), where

(PXV) k-l/k.1 s due to velocity errors, and a is due tD plant noise.

These values are verified by Fig. 7 at 1 sec.

Example 2:

Sampling-period change with smoothed ieasurement

Assume all quantities have values identical to the last example

with the exception of rx:

0.187 X 2.92 (140)rx T (10

For T* = 0.1 and 0.2, rI is 2.92 and 1.46, respectively. The first

case .* of 0.1 is read from Fig. 15 exactly as in the last example,

which. gives (p.)k/k = 0.92. For T* = 0.2, we have to use the rx = 1.46

curve (approximated as shown in dotted line by r. = 1.50), obtaining

(P) k/k = 0.8.

Based on the values, we have the conclusion that for larger posi-

tion covariance reduction using smoothed data, Eq. (140), one should

use a sampling period of 0.2 sec compared to 0.1 sec. If this seems

unreasonable according to engineering intuition, one should refer to

the discussionts in Example 2 of Sec. III-E.
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For 1* between 0.1 and 0.2 (I betwoen 0.187 rnd 0.374) one may
interpolate ufir| tiae -,- line sho-w'n in Fig. 15. In the smoothed data

case then, thIs line takes the place of constant r lines of the non-x

smoothed data case.

Perbaps the greptest utility of Fig. 15 is in obtaining rough and

quick estimution ox" the filter characteristics at the operating points.

For example. when r is small and when (Px)k/k-l is large, changes in

sampling period do not affect (px) /k very much--see, as specific values,

r, = 0.5, a 1n 1, and I = I in Fig. 15. Another example is the trade-

off exampIn shown in the following.

Example 3:

Trade-offs

Let the filter oporation be represented by the two points a and b

in Fig. 15, representing T = 1, a = 1, and r% = 1. (Px)kik is 0.75.

Suppose in order to reduce computational load we wish to change T from

1 to 2; we have a choice of either improving model accuracy or improving

measurement accuracy to maintain (Px)ki*k at 0.75.

First let us change model accuracy while r is held fixed. As Tx
is changed to 2, a = - 1 is required (point d) to maintain (Px)k/k at

0.75. If (Px) k_/k_) is positive, a negative a is impossible because

by Eq. (131) a is a positive number. This leaves us the only choice of

reducing the measurement noise. This is represented by the point c.

The requircd r is about 0.8. The measurement noise covariance there-x
fore needs to be reduced by (1 - 0.8)/1 = 20 percent.

7
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V CONCLUSIONS A4,D FUTURE WORK

We have given techniques for sensitivity analysis of the Ka]lran

filter with respect to simultaneous variations in measurement noiso.

plant noise, dynamic model, sampling period, and filcer gain, These

analytical techniques will greatly aid the design and evaluation of

Yalman filters and other types of filters. Two basic 3ssumptic-ns were

used:
/ '-•

(1) There are nominal quantities about which variations

may be taken.

(2) The estimation-error covariances are the filter

performance measures.

Future work shall be the application of the techniques to the

problems described in Sec. II-G.
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APPENDIX A

ACTUAL COVARIANCES IN EXTENDED Yi#12,1N FILTER

The extended Kalman filteor s becoming 4r impeortant technique esti-

mation of nonlinear dynamical system. The purpose of this appendix i5

to give expressions for the expectations and of the estimation-error

covariances using the extended Kalman filter, and to reconcile them with

the covariance equation of the filter. The discrete time case shall be

cons idered.

The system is described by

Xk+l =fk(xk' ")

(A.l)

• hk h k(xky vk)

We note that the lyna-ic equations of Sec. II, Eq. (1) are a

special case of the above equations.

We will analyze the following filter:

X ~f (X 0
Xk/k- X-l( k-1/k-l'

"Zk/k- h k hXk/k-l' 0) (A.2)

X k/k Xkkl-I + W(Zk -( )kk-)

where f and h are nonlinear functions with sufficient smootheness for

our later derivations, x is the state to be estimated, z the measure-

ment, and w ard v the plant and measurement noises. The noise are

assumed to be zero mean and uncorrelated both to each other and in time.

WV is the filter gain; the super-hat symbol denotes the estimated

quantities.

73

.



The estimation errors are dofinod as

xk/k-i ' k -x k/k-1

(A.3)

Xk/ik x k k/k

Assume that at the (k - 1)th stage, w- have

E k-i/k-i 
- i

(A .4)

EL k-/k- k-i/k-i)( k-i/k-i) = Pk-i/k-l

For the predictior part of the filtering, we have

Xk/ki Xk - xk/k-1

f k-l(X k-il, wk-i - (k^(kI/k_-i 0)

It is assumed thav" I(x, w) may be approximated by a two-term Taylor

series about f(xc, 0). Dropping the subscript k - 1 on fk-1 for sim-

plicity, we obta.,na

x IfxO+ ( x )+f 0ow
k/k-i j('k-i/k-l-' O) + fx " (xk-i - ýk-i/k-i w k-i

+ (xk~-'kiki (xk ~ -T/~2 xx k-_ Ik.I/k-l) _- •k-1iik-l)T/

I f 0(V W T +! (Xkw_1
+-f ow x )~

w k-i Wk- + f °(Xk-
2 Ww k-i xw k-i k-i/k-i k-i

V f(k-i/k-l' O) ,.(A.5)

where the following notation is used. Let f be an n-vector function of

an n-vector x and a p-vector y, and let B be an n X p matrix. f 0 B

will denote an n-vector, the kth component of which is
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52

f •3) B (A.6)

The special caae of y x and B = 6x 6x is the following iamiliar term

in the Taylor expar.sion
52

9 o 6x 6xx)i 6X 6x (A .7)

Note that

f o (A-+ B) =f o A + f a B (A.8)
xy xy xy

Therefore,

f f 1-T
k/k-i x )k-1/k-i +w ' Wk k- 2 f Xk1/k-1 Xkl/kl

+-1f ow wT + f 0 T(A9
ww k-i k-i xw k-l/k-i k-i Xki/-

Therefoe, upon using Eq. (A.5), and since wkl and R k-1/k- are un-

correlated and ENwkl = 0, the expected value of Xk/k-1 is

Xk/k-l = E[X k/k-I = x Xk-i/k-

+ - --T 1
+ 2 xx k-i/k-1 + xk-i/k-l Xk-i/k-l

+i f °A.0

2 ww - (A.lO)

S k/k- = fx k-1/k-i - xk-1/k-l) + fkW." W k-11

-T-I
2kx-1/k-1 k-i/k-I k-I/k-i1+ 5" f T

SwT)k w J + f Xk-/k-i + 1  (A.11)

2 ww L k-. - xwA

75



Now ue compute the covariance

Pk/k-1 E (k/k-' k/k-1 )(Xk/k-1 k/k-i

+ f E F( k_

k/k-i X Lk/k-l/kl-ýklkl k1k1 x 1k1T

T T i

k/ f w E [jk-I/k k k]/- w

T Tf; =x P k-i/k-I x + f w QkE-I w (A.12)

where all terms involving third or higher orders of ak-/k- n ad w,_1

are assumed to be negligible compared to Pk/k-l* This is a valid

.ssurption when either ;k].k1 and Wkl are small or (B2 1.M/(ax. BXk)

and f i)/f(x. ;w>) are small.

For the updating part of the filter, we have (dropping the sub-

script k on WV and h)

xk/k = Xk -x k/k

k- Xk/k-1 +W(zk Zk/k-l)

= k- - / - Wh(xk, vk) + Wh(xk/k-l, 0)

Using a second-order approximation of h(xk, vk), we have

A - +Wh~ )h~x x )+ hv
Ak/k = xk/k-1 - h(k/k-l' x) + xk - /k-. +v k

h (X -x )(x -x )+- o1 vv
2 xx k k/k-l k _ k/k-1 vv vk Vk

+ hv (xk T]/~l V h(
ov k k/k k hXk/k-li 0)
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(I- Why vk WhI o to th

k/k= x kk_- v k 2 Wxx k/k-i k/k-i

TT TA1
1Wh vv v V k v Wh xv 0 ~/- vk (A. 13)

Using the last expression, the expectation and covariance of Rk/k
may be computed upon using smallness assumptions similar to the pre-

diction part for Pk/k:

xk/k - E[k/k (I - Whx xk/k-1

Xkk) h Wh~ Ro (A .14)
_1Whx o Pk/k-l ÷Xk/k-1 Xk/k-1. 2 • vv oP• (.4

xk/k -xk/k (I -Wh x)( - R) - Wh vk

Wh xxa • x)k/k-l - (• T)k/k-l - Pk/k-_1
1' T i ~

1 Wh o T - R - Wh 0  vT (A.15)
F vv k J 2 xv ýk/k-i k

Pk/k ELXk/k- xk/k)(xk/k- xk/k)]

(I - Wh Pk/k-i (I - Wh ) + Wh k hT WT (A.16)
X /k1x v k v

A comparison of the actual covariance expressions, Eqs. (A.12) and

(A.16), with the computed covariance equations of the extended Kalman

filter shows that they are identical. The computed covariance equations

therefore give the actual covartances approximated to the second order.

However, the estimation-error means given in Eqs. (A.1O) and (A.14) are

no longer zero, as is true in a linear system.

By modifying the extended Kalman filter equations of Eq. (A.2),

the estimation-error means may be made zero. The optimality cf the
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,modified fi'ter will not be discussed here. The modifications consists

of adding second-order terms as follows:

x/_ ( 1) 1f

xk/k-l xk-i/k-l0) 2 xx k-i/k-I 2 ww ok-i

Zk/k-i = ~k/k-l' )

1 1

Xk/k Xk/k.-l 1h, oP/ 1 + Whvv R k

x 0/-I =xO/-i (A.17)

For this filter, xk/k_1 = 0 and xk/k 0 0 with the actual covariances

given by Eqs. (A.12) and (A.16).
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APPENDIX B

THE VARIATIONAL EQUATION OF THE COVARIANCE EQUATIONS

In this appendix, the change in P k./k+l as a roslt of changes in

Pk/k' k' %k Rk+l will be studied. For simplicity of notation, all

subscripts will be droppen on §k' Qk' Rk+1' and Wk+l. Pk+l denotes

Pk+l/k~l' p denotes P k,/k' and Pk denotes Pk/k"

The prediction-error covarianco matrix when P k ',. and Q are changed

toP Pk, § + 0, and Q + AQ.is

P + tip =0( + 60) (P k + tipk ) (§ + A0)T + (Q + AQ)

T ( 4.~ Q) + A•P T + 0 1% §T + Op A§
T

+ (§ - 60 AP k (§ + 0) + AQ (B.)

Since P § Pk T + Q, we have

AP = (§Apk§T + &Q) + (AýPk j + §PkT)

+ (A§Pk•T + AP k T + IAPk AT)

+ (A•e~kA•T) .B2t§ (B.2)

If 6§ = 0, only the first bracketed term is nonzero. For nonzero A§

AP is given to the first order by the first two bracketed terms of Eq.

(B.2).

The updated error covariance P k+ changes because of AP, AR, and

AW. For the general case with no assumptions on AW, we have

Pk+1 + LPk+1 = [I - (W + AW)H] LP - LP] [I - (W + AW)H]T

+ (W + AW) (R + AR) (W + AO)T (B.3)
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Upon subtracting the expression

T T3
Pk41 = CI - WHI P[I - WHT + WRW (B.4)

and gathering terms, we have

Apk+1 ((I - wil) 6P(I - WH)T + A k+1 + Bk+1 (B.5)

where / -.../
Ak+ [ (I - WH) PIz + YR ] AW T + AIV[- (I - WH) PHT +V %iT]

"-i; ~ ~WWT p + _ii (IL( _: piiH÷ wRPT,
B k+1 = AW[TIPHT + R] LW ' I W) H +W•,AR] AWT

+ AlW[- (I - WH) APH T + WAR)T)

+ (AW[HAPH T + AR) J T

The first bracketed term and A k+ contain the first-order terms; the

B k+ is of second and third order.

If the gain is fixed, AW = 0, then only the first bracketed term

is nonzero.

If the nominal gain IV is optimal (before changes in P and R), then

A k+ is zero, regardles, of AW, because

w° = PH(HPH + R) (B.6)

or

C o- (I - WoH) =+ 0 (B.7)

but B assumes some nonzero value depending on AW.8k+0
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We havel in fact. obtained a verification that W°, as shown in Eq.

(1.0), is optimum in the sense that it ciuses the smallest estimation-

error covariance. The verification consists of showing that any varia-

tion from W0 will result in higher covariance Pk+/kl" Accordingly, wO
.c-t •P = 0, A3R = 0 in Eq. (B.5), obtaining the following B that is

T T k
positive definite for all 4K--AW[HPH + R] AWT. Therefore, if W of Eq.

(B.6) is used, 'hen A is zero, and 6P = B is positive definite.
k+I k+l - +

This verifies the optimality of W in Eq. (B.6).

Let us now investigate the case in which W is arbitrary but AW is

such that (W + AW) is optimum under parameter variation P + AP and

R + A.. We shall denote this AlW by AIW. By Eq. (B.6),

W + NWa= (P * APHT [H(P + &P)HT + (R + AR) 1  , (B.8)

which may be rearranged as

-" 0 = 2 1 (B.9)
2 1

where

7I = HO(P + LP)HT + a + /AR

'2 = (I - WH) (P + AP)lT - W(R + AR) ", (ioO)

Now Ak+1 and Bk+1 may be expressed as

Ak+1 ' Bk+1 = (AW) TI(A)- '2(Al) T (AW) 12 (B.11)

Using the optimum AW0 of Eq. (B.9), we have

A + B 17T 1r 1- T2 "T-l
k+1 k+1 = 2 1 2 2 1 2

= T -Y (B.12)

2 1'



0
Therefore, if A° is used regardless of the optimality of the nominal W,

Ak+1 + B k+ is the negative definite matrix of Eq. (B.12).

Of particular interest is the case when W and W + AW are both

optimal:

APk+1 =(I - WH11) AP(I - W0H) T + W0 ARW°OT
k+l

- - APH + o°(HAPHT + AR)] [H(P + AP) HT + R + AR]-1

- APHT . W+(IAPHT + AR)]T (B.13)

and when W is fixed, (AW = 0), regardless of the optimality of W:

APk1 = (I - WH) AP(I -WH)T + WARWT (B.14)
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APPENDIX C

NORMALIZATION OF THE COVARIANCE EQUATION

The recursive covariance equations are

k*/k-1 k l*P-/k-1 *"+*

-i (C.1.)
p* ..P* "" " *" H* (* p* +1*T -+ (
k/k k/k-i k/k-i ' k/k-i k J k k/k-i

where

k -l/k-1 s (C.2)

)k-1./k-.1 (pvk -i/k-i.

•*L ii (C.3)

H* = Ilx hi . (C.4)

Multiplying both sides of Eq. (C.1) by the normalization matrix

r 1
X-1/2 "• X k-1/- (C.5%/

L V-k-k/k--

we obtain the following normalized equations:
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~k/k-l 1 Pk-1/ki 1

p T+ k-1 (C.6)

kk k/-p - kl- 'k/k-I H k/ P k/k-1 '

where

pN1/2 * _N-1/2 1k1k1 C7
k-i/k-i k 1/k- P.) k V -

r (Ps)/k (x k/-
p /- N-1 /2 p* N14 1 2 = (px)k-/- (.Vx Pv)k-/- (C. 8)

V~ ___

P~~~~~F -v~ N1"'2 * 12=I(v M)k-1/kl (.

k/k P Nk(PPx) k/k /
LI (~)k-/kx (Pv)k-1 j

*k/ = N 12 P* N1/2L ] p~ -/- In -Q ) 'v )k1 (C.9O)

k/kk/ ~ kO

1/2 (1/02 1 2  
(C.10)

The easremet vctorH an 1b noml* zc to" [ 1 0] ytas
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R= (1 0] NA-1 2 A-R AT- [ 0] N-1/2 (C.12)

Similar equations exist for H* that are matrices rather than vectors.

Special cases of If are:

R

if H* = [1 0) , then If = (1 0) and R = x (C.13)
(Px)k-1/k-1

R
if H* = [L 1) , then H = C0 1) and R = v (C.14)

(Pv) k-1/k-1

Rx 0

if H*= ] then 11= and R= (pr)k-/-

LO RL ii k ii0 ( V j

(C.15)

.-12 Q* N1 2 = (C.16)

q qXv q v
{ p p
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