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I INTRODUCTION

The performance of o Kalman filter (rocurslivo Iilter) doponds on @
number of paramoters, such as measurement accuracy, & priori statistics
of the initial state, model accuracy, sampling pericd, and methods ef
computing filter gains. Some of these are under the jurisdiction of
the designer while others are specified, either as fixed vzliues or as
a range of values. For the designer tc meke sn sppropriate choice of
the parameters, he needs to know the sensitiviily of the filter perfor-

mance with respect to the stated paramaters.

The sensitivity information will answer, as ex-mpies, ithe following

questions frequently encountered in the cesign of 3 Kalmn iiiter,

(1) The noise statistics used in the filter ueed rec¢ be the
exact statistics. The question Is: How nuch perfor-~
mance improvement may be obtained 3if tne statistics

are more accurate?

(2) The iteration rate in computation (sawpling rate) need
not be identical to the datg rate., The guestions are:
In the interest of computational requirements, haw
slow can the iteration rate be? How saall the data

between the iterations be trcated?

(3) The dynamics equations in the reference model of the
filter need only be an approximation c¢f the actusl
equations. The question is: How much approximation

i5 tolerable?

(4} A significant part of filter computation is for the
optimum filter gain, yet it has been'shown1$ that svh~

optimum gain requiring fewer computations are fre-

quently just as good. The question 1s: What is the

afisct of suboptimal gains?

p 4
References are listed at the end of tha text,
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{8) Freguontly, o certain type of cbservations is oxpunsive
to makw; thereisre, it shouid be usad with discrotion.

Ti-o quesiian is: Whsn should we uss this observation?

an,
3}
~r

In impiamentiog @ real~time Kalaman filter on a computer
with limiied word leuwgth, computarion noises are intro-
dyced, Tne gquestions are: What is the acceptable word
length? Should the filter gain be adjusted to account

" for the computatior noise?

The sensitivity of Kalman fiiter may also be applied to analyze
existing filters that are not of the Kalman type, Specifically, the
difference in the estimation errors for the two filters may be computed
from the sensitivities. Since Kalman filter 1s kmown to be optimum, we

can then Jjudge how close tc ¢optimum is the 2xisting filter's pe#}ormaﬂce.

Derivations of techniques and equations for the stated seszitivity
questions are the main councern of this memorsndum. Special emphasis is
placed on the sampling~period sensitivities, Examples are given mainly
tc illustrate the applications of these results, The techniques can be

inuorporated readily into the existing computer programs,
The organization of this memorandum is escribed in the following.

The error covariances computed by the w=2ll-known covariance-matrix
equations are used as the basis of filter performance. The validity of
this approach is discussed in Sec., JI-A and in Appendiiz A, 1In this re-
gard, one should meke & clear distinction between the "actual" covariance
equations, which give the statistical descriptions of the actual errors,
and the computed covariance wquutions, whose main purpcse is to obtain

the filter gains,

In gain computations, one obtains certain matrices, which are
loosely called the covarisunce matrices. Thesé may not represent the
actual ccvariances of the esyimation error bacause erroneous noise and
dynamics parameter values may be used in the computution., This may be
done unintentionally because knowledge of the process is imperfect, or

intentionally %¢ reduce the computation load. In this memo, all

[ 3]
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covariunces gnd egquations for their computations shall refar to the

setual ones, unlsss specific refereace is made to the contrary,

The exact changes in the error covariances due to parameter varia-
tions are giver in See., [I-B. Of special interest to the designer is
the question of gain varistion, The designer is likely to have nicre con-
trol of the filter gain parametar than the cther psarameters, such ss the
measurenent noise, For example, when the parametars change, he may
either readjust the Iilter gains to optimal, or not change the gain at
all. This and other special cases of filter gain can usually be studied

better by using the specialized equations given in Sec., II-B.

The stated error-covarinnce-variation problem may be consideored as
8 special case ol tie ccumbined optimal control and estimation sensitivity,
a continuous~-tize treatment of which is available.® On the other hand,

most results available in the literasture®™

may be considered a special
case of this me=orandum--parameters fixed and filter gains varied from

optimal to arbitrary.

If estimation error at @ specific tims, say the terminal time, is
of interest, the adjoint matrix technique may be used to fzcilitate the
analysis. The computsticnal advantage will be especially significant
whenever an extensive gnalysis is to be made. This is also discussed in

Sec, 1I-B with cetails in Appendix C,

Sections Ii-C, ~D, and -E are moltivated by the sampling-period
variations, Two charescteristics of the sampling period call for the
special analysis of these paragrap.s. TFirst, it is a scalar parameter
Eo that the seﬁsitivity matrices or sensitivity indices may be defined
s in Secs. Il-D and -E. This is nct possible, for example, for noise
covariance-matrix variations. Secondly, for a fixed number of stages,
changing the saz=pling period changes the oversll duration of the process.
Therefore, if tze overall time duration were to remain fixed, reducing
the sampling period would mean more sample roints are available for
filtering. In evaluating performance changes, this may have to be taken

into accoua%,




in Soc, II-F, wo give tho socund-crdex offocts of filter gain varia-
tion., This 1is necessary because, if the nominal filter gain is optimum,

the first-order effects sre zoro.

Section III specializes the previous rasults to the sampling-period
variarions., 1In Sec, III-A, it is suggested that the sensitivity matrices,
as definod in Sec., II-C, may be used in a gradient procedure for the de~-
sign of sampling period. The sensitivity matrix is computed in the for-
ward direction, and therefore may be most easily incorporated into
existing programs., Tire restriction of this technique is that the
sampl ing-period variations must be a function of a scalar variable--for

example, uniform sampling pericd.

Nonuniform (unequal) sampling periods may be beneficial if, because
of computational limitations, the number of stages are an important con~-
sideration., This is discussed in Sec. III-B. Suppose one is interested
in the error covariance at a certain time 7. All filtering done prior to
T contributes te the reduction in the errcr covariance at T, but the
fil-ering done during certain segments of this time may contribute more
to this reduction than for other time segments. The sensitivity index,
derived from the adjoint matrices, will be a useful technigue here., The
adjoint matrix is comnuted backwards starting from T; it relates the

covariance variations at T to covariance variations at any stage prior

to T.

In Sec, III-C, we point out possible applications of the sensitivity
techniques to real-time computation allocation in s multiple~threat
estimstion situation--many separate estimation tasks are being performed
simultancously (for exasple, the multiple-threat situation in the anti-
missile missile system). At any instant of time, the effectiveness of
the Kalman filter for different targetis will vary. Using the sensitivity

indices, we may formulate and optimize the computation allocatlicn problem,

According t¢ a recent study,a a sudden unpredictable change of plaut
roise (such as a missile maneuver} may be detected from the measurements.
in the same study, the noise increase is compernsated by changing the fil-

ter gain so that it is optimum for the increased noise. However, the

4




response time of the filter is seen to be limited by the sampling period,
even with the reoptimized gains. Further improvement is expoected to
lie in the reduction of the sampling period. The amount of reduction
may be estimared from the trade-off between piant noise and sampling

period using the sensitivity information as discussed in Sec. I1i-D.

2
In Sec. III-E, an example is presented for a 1/s plant with posi-
tion measurements in which the sensitivity techniques that are developed
are applied to the problem of reducing the number of measurements to be

processed.

The trade-off between various parameters, as we have already men-
tioned, may be based on sensitivity information. Section IV describes
this approach. In Sec, 1V, sensitivity equations are given for the l/s2
plant mentioned earlier, The results given there can be used to provide
insight into more cumplicated problems, Alsc, the one-stage rcduction
in position error is plotted for various parameters in normalized

quantities.




II ANALYT1CAL RESULTS

A, Covariance Equatioas as a Measure of Estimation Error

l.et the actual system be

o
i

ka1 = TIXD ¥

(1

N
f

hk(xk) + vy , .

where fk and hk are (in general) nonlinear functions, x, 1is the state to

be estimated, zy is the measurement, Wy and v, are respectively the

plant and measuremen® noises with zero-mean Gaussian distribution; they

sre mutually uzncorrelated as well as vime-uncorrelated:

E[wk] =0 H EE’iw:ljj =0 for i # J
.7

My T %
Elv,] =0 ; EEgQ::Omri#J

-}

T
EE/kv;‘ = R

EE/iw:;:‘] = 0 for 211 i, J .

Sae

The estimate of L given measurements z,, z,, ..., z,, is'?enoted

by ik/k' The extended Kalman filter yields the fcllowing recursive

estimation equations:ly9

xO/-l = E[xol = xO ’

X . = f (x )

k/k-1 = Tr-1 Fk-1/x-1

L . )
2y k-1 = Pk

ek = Frk-1 Y% T Zksker’ ’




where W

T
Pr/k-l = ko1 Paed/kel °

P

k/k

where

fear = {fen) = ¥/

h Z oh, /9x,
k x k

-
L}

and the initial value for the covariance is

[ - -~ .T
Pos-1 = B = %) (xg = %g) }.

In Eq. (3), the filter gain Wy

. *
to use the following approximately optimum gsin:

T
¥y = Prsk-1 By (H P

k-1 ¥ %

k k/k-1k

)

is arbitrary.

K is the filter gain computod from & set of covariance aquations:

(3)

. T T
- n - W oW &
(x Hicty “k/k-1 ( “khk) ¥Rl ’

It is commen practice

~1

. )

. (%)

In this cemorandum, the error covariance is taken to be a measure

of the performance of the extended Kalman filter,

denoted by xk/k or xk/k«l’

-~ -~

e/k <

1

»®
]

]

*e/k=1 = ¥k T *k/k-1

Sinces they are random variables, descriptions of 3

a description of their probability distributionms.

is defined as

The estimation error,

(s)

and X

k/k k/k-1 Fequire

*The gain in Eq. {4) yields a minimum variance ¢stimator, or maximum
likelihood estimator for the lincarized system of Eq. (1) under tha

stated assumzptions on the noises v and w,
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When fk end hk are lin=ar functions, it can bo shown that ik/k is
a Gaussian variable. Its expectatior and covariance are, therafore,

sufficiont o describe its probability distribution. In faet,

i) =0 )

- = ~ = T
EExk/k R "k/k)] =P 0 0

where pk/k is given in Eq, (3).

W¥hen fk and hk are nonlinear functions, as generally is the case in
practical systems, §k/k is no longer Gaussian. In such cases, it may be
difficult to obtain a complete description of its probability distribu-
tions. However, the first two moments E[X, , ] and

= k/%
E ﬂi

=~ -~ = T
- - fai d : -
K/k xk/k) ‘xk/k xk/k) give a fairly good ides of the proba
bility distribution, As shown in Appendix A, they are zasily approxi-
mated by

k-1 *k-1/k-1

=Y

E[X =&

y £
x/k-1* = Fx/k-1
= =T
+1/2 (fk-l )xx ° E’k-l/k-l + "k-l/k-l"k-l/k-l]

+ 1/2 Qk-l
(8)

L}

(T - ¥H) Xk

EG 0 & %

.

t

\ . =T
12 W, (hk | Pr/k-1 * *k/k-1"k/k-1

/2 W R,

]

where we have used the following notation: f__ o I' is a vector, the i~th

component of which is given by




aZf(i)
3‘,‘1“ ax(J)ax(k)

¢ o pyD p(3,%)

XX

if-

QT

k-1 * %

(s)

~ = ~ = T
E E"k/k«l = %=1 Frjpa - xk/k-l)] 2 P/k-1 = EeerPre1/k-1

[[>4
"

-~ = -~ -~ T
E Exk/k = X Ky - xk/k)] %/k

- T T .
(I-akuk) + W R W .

= {1 ~ thk)P kB

k/k=-1
¥e note that the approximate covariance equations in the nonlinear
case of Eq. (9) are identical to Eq. (3), but the errors are no longer

zero mean, as can be seen from Eq. (8).

The expected values in Eq. (8) may be made zero by modifying the
extended Kalman filter equation of Eq. (1) to thuse corresponding to
Eq. (A.11) in Appendix A. Normally, Eq. (8) is not available in an ex~
tendad Kalman fllter program while the covariances of Eq, (9) are avail-
able. For these reasons, the variations in covariances due to parameter

variations will be analyzed in this memorandum, using Eq. (9).

B. Variations of the Error Covariance Vatrix

Ve assume the existence of a nominal Xelman filter. This means
that we use a nominal wk (not necessarily optimum) in the manner shown
in Eq. (2) for a physical process with paramcters pO/«l’ ék’ Qk’ Rk.

The resultant filter-error covariance is P Let the physical

k/k’
paramaters as well as the filter gain be changed so that




Initial errer pO/-l - Po/_l + APO/~1

Transition matrix ék - ék + b@k
Plant noise Qk - Qk + AQk (10)

Measurement noise Rk - Rk + ARk

Filter gain Wk - Wk + Awk .

Pk/k will be changed to Pk/k + Apk/k' ¥We shall develop the formulas

for Apk/k snd for tr(LT TPT/T

appropriate matrix,

), where T is some fixed time and L

/T some

The effect of the variation Hk nd Hk + ka may always be viewed as

ihe variation Qk - ék + AQk in an equivalent problem--for example, if the
state xy+1 is expanded to include an sdditional term yk, Eq. (1) may
now be rewritten as

y .] t; {x ;1 0

k Kk i
= +
Xk+1 fk(xk) wa
(i1)
¥
q |7k
zk = [1 o} . + Vk
L_k+1
or, with obvious substitution of symbols,
* - f* (xk *
% = k) i
(12)
Z =

X Hkxg + vy .

An alternate way is to transform the state space coordinates so

that the measurement variation appears as a dynamics variation., Thus,

10




let Tk be the tremsformation such that the outputs (minus noises) are

componrents of a new state x::
é. T X = . ) (13)

¥e may write Eq. (1) in the following form:

4

h {x.)
-1 k' 'k
Terr®ke1 = Teaaf 1T * T
. Yy
(14)
h, (x, 2}
zk = [I 0] ko k + vk
Yk
or
x* = f*(T-lx*) + wk
k+1 ¥\'k "k X
(15)

In this new form, H; is constant. This verifies our assertion that AHk

iaay be viewed es a A®.

Forward Recursive Equations

Apk/k may he obtained by a straighvforward substitution of Eq.
(10) into the recursive covariance equations, as shown in Appendix B.
The results may best be organized according to the optimality of the
filter gains before and after parameters variations. Let us use the

following notation:

o : P
wk+1 = Optimal gain for pk/k’ ék’ Q, and Rk+1
Aw:+l = Change in gairn so that the new gain is optimal for

Pusc * Prjior 3 + B8, Q + 4Q, and Ry, + OR . (1)

11




The deviation of the error covariance from its nominal is givenr by the

expression

*y T
Apk/k = (I «Ww H ) Apk/k*l (1 - \ank) + WLARka + Ak + Bk R (17)
where
I [~ , T
Ay = ‘jk(HkPk/klek * Rk) Pkt ;} A”
T
T T}
+ “wk[wk(”kpk/u-x”k ¥ Rk) pk/k-l”ld (18)
if
= = w° - . o
Awk = Q or LA W, we have AL =0 ; (12

T LY
By = {: (12 ey + Bl = 2k é]aw

AT
+ W [: (nkapk/‘ 1“ + OP ) - Apk/k_laé]

T T \
+ AW {%R(Pk/k at Apk/k-l)ﬁk + (Rk + ARki]AWk . (20}

< v - o
Nominal quantities are used for Pk e1? Hk’ Rk’ and ﬁk 84 A“k = Awk,

we have the following negative definite expression for (A + Bk)o

] Y
Ay +B)" = - {{%R(Hkbpk/k~l o ARk) L/k~1dé]

/ T ) T
{%k\ﬂkpk/k~lﬁk ¥ Rk) Py /rx-11x

+

i~ T -1
[ K Prsk-1 * AP 0B ¢ R+ ARR{]
. w ) - 77
k Py e k * AR = AP By
7
K
E%k Fr/e-1! k * Rk) P /k-1 é] } - (20

12

+




“e - .o o (]
1f W, = W,, the resultant (Ak + Bk) #ill be denoted by B . If

A, =0, we have B, =0 . (22)

If v, # 0, but &P ., OR
positive definite:

x 8re zero, the expression for Bk becomes

7T T
k = AW,. [. P/k 1Hx + né] Awk . (23)

This equation and Eq. (8) in fact show that

-1

T T !
¥, = 24
Y pk/k~1Hk(RkPk/k«1“k * Ry (24
is a minimum variance filter gain for pk/k-l and R : 1if gain jis changed

irom the given expression, the error covarianve would be changed by an
amount

T aeT
= = y 25
APy = A, + B =0+ 40 [%kp Sk IHk + R.J N s (28)

which i» positive definite, indicating an increase in the error co~

variance, To complete the recursive equations, Apk+1/k is

BPy 1k = Dy k + bQ

T ,
+ Aék(pk/k ) § + & (pk/k k/k) Aék / -~
+ BB (P . + OP. ) AR (26)
PALEWPE wk' My - N
1t A§k = 0, wg have "
B a/k = SDPun® k M (27)

0f particular interest is a8 comparison between the cases with

a¥, = 0 and AW, = £WD, when W = We. MW, is zero whea the filter is not

i3
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read justed after parameter vesriations; we then have, by Eqs. {17), (13),

and (22),

.

e T T .
Apk/k = (I Wkdk) Apk/k-l(l Wkuk) + kaRka . /(38) -
If the gain is readjusted to optimal, i.e., Awk = Aw:, ve have
My, = {1 -WH) AP (1 ~WH)" +WARW 4+ B2 (283
X/k k' k k/k=~1 k'k k k k k ’

where Bﬁ is a negative definite matrix {see Eq. (21)1:

-1
. T ) T
[(I - WH Mkt “k!m}:c] [ﬂk(p}:/k-l + B (R - Mx’]

T
T .
[;(I = VR Byl ¢ NkAﬁé] :

Because

By = B = By ' (30)
Bi, therefore, represents the decrease in the error covariance by optimal
read justment of the gains according to the variations in ék’ Pk, Qk, and
Rk+l over the case when the vsriations are ignored. B: is ¢f second-
and third-order of the variations [see Eq. (21)]. When the first-
order term dominates in problems such as the sampling-pexiod sensitivity
the B: term may ssfely be ignored, On the other hand, this term is of
utmost imporiznce in analyzing suboptimal gains, because the first-order
term is zero. From tane valiue of information viewpoint, B; Justifies the
accuracies the designer has available or is requesting on Qk’ Pk, Qk’

and Rk#l'

obtain if the accuracies were improved.

It tells how much improvement in estimation error he would

Ths variational cquations up to this point have been exact and
general, In what follows, we may sometimes use specialized and/or

gpproximate versions of the variational equations for specific probloms.
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These problems are organized and discussed in Secs, II-G and IILI, but.

first we shall introduce the concept of the adjoint maxyrix for thne

Kalmen filter.

Tho Error Transition Matrix and the Adjoint Matrix

{O{ten one wishes to know how pT/T at a specific sample point T
changes because of changes in Q, R, 9, or W at some previous and
possibly wid:ly separated sample points. Using the exror transition
matrices and adjoint matrices discussed later in this section, it is
possible to study these changes without having to solve repecatedly the
full recursive Eqs. (17) and (26). However, for these techniques to be
feasible, we have to use the first-order approximatior. {second-order
approximation in suboptimal gain case) of the full recursive Eqs, (17)

and (26).

Let vs study the variations from k - 5 to kth sample points, The

- - i 3 e . W
relevant variations are Aék-l’ AQk_l, ARk, and Awk e also have

APy 1 /x-17
shall take AP

which is caused by the previsus parameter variations., We

P ie s s .
k=1/k~1 to be first order in magnitude. This is not always
so, as we shall see later on in suboptimal gain analysis that Apk-l/k-l
is second order in AW, Let us aiso define matrices Azk/k-l and Azk/k
by the following equations, which may be regarded as the first-order

approximation of the local (one-stage) covariarce variations--by

satting AP = 0 in Egs. (13) and (7) und keeping the first~order

k~1/k-1
terms:

T

Aék_l

T
- . I
b2 o1 = By * B P ke ¥ * fk-Pre1/k

g
N
[}

- » - T T (31;
(1 thk) Azk -1 (1 Wka) + wkazkwk + AL

k/% /K

n>

AZO/ -1 bp ¢/~1 ’

wvhere Ak is given in Eq. (18), a first-order expression in A, Bk does
not appear bacause it is higher than first order. The only parameter
var:ations that appear in the above equations are 1ocal-~5§k_1, AQk—l’ ARE’

and Awk. Furthermore, Azk/k = 0 if these local parameters are unchanged,

18




The covarlance variations [Eqs, (17) and (26)] are now:

AP T

. ) T
k= 0T W ED G B ke Fn (T W) T+ 02 (32)

k/k ’

Applying the last equation recursively from k = 0 to k = T, we have
OP, . = ZD sz, ,. DY (33)
/T T ST, YT,y

where j = those integers sucl that at least one of the variations Aéj_
AQj-l’ ARJ, and AW

l’

o

D, . A(1-WH)? (1 - W, H, )8 veo (1 -

T, 3 T T T=1 T-1" *T-2 H. )&, . (34)

¥
‘j+l J+17 3

The DT j will be called the error transition matrices. They give a direct
?

connection between the local covariance varistions AZJ./J and APT/T' They

are ccmputed backwards, using nominal quantities in time from T to j by

the following recursive squation:

‘1

Dp 5 = Pp 501 (X = WiaH5,00%
(35)
DT,T = I, the unit matrix .

in particular problems, it may be more comvenient tc use multistage
local variations, The filtering process is divided (see Fig. 1) intom
time segments; let the dividing points be the set of sample points
(Jl, dps dg5 ey jm), We have
(3,42 T

k., (36)

0., = QD . 8z,
7% S ol V5 Tt IV M %

(4,

where Azji/ji denotes a multistage local variation for the ji-l to jith
segment, obtained by solving the following recursive equations [Eq.
(301 (3, - 3iq? tiTesz

16
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e e T et | o A e
- -

(3;.9) G,_y)
S Jim1 -1 7 T
B er = Bl Bedsker Feen 0%t 0P e e
. T
+@ P o (B )
o ( k=1"k=1/k-1 ' k-1 (37)
i-1) 3 T T
bz o = (T =W BZ T (T =W W ARW A
where Ak is defined in Eq., (18), and
. K =3 1, j 2
S =Jia t b diptE s
&
with . 3§ !
! (3, 1)
bzt o .
Ji-1/di1
f ary
J.11i 1 - K
iy iz is im* T
TA-31880-7T0)
FIG.1 MULTISTAGE LOCAL VARIATIONS ‘
e

The discussed error transition matrices are valuable in filter

synthesis., For example, in order to investigaie the effect of m dif-

ference ARO on APT/T’ according to Eqs. (33) and (31), one only has to
T..T

. . ' - _. . .

investigate the expression DT,O“OROWODQ,T m times--a great time saving

from having to solve the recursive equations (Eqs. (17) and (26)] m

times from k¥ =0 to T.

17




Often one is interested in knowing the following scalar functien,
J, of AP

+ . g 3 I3
/T rather than the whole APT/T matrix itself:
= 38
J tr (LT/TPT/T) (38)
= 9
AJ tr (LT/TAPT/T) , {39)

where tr denotes the matrix trace operation,

As an example, the so-called root~sum-squared (rss) position error
may be written in the above form for J. Thus, the state of a trajectory

in three-dimensional motion may be

wihere x are position and X4s Xg, X are velocity caordinates.

17 *20 %3
The error in x is &x:

ox = .

P

/T is the covariance matrix of bx,

18




Ppyp = BLCOx = B (5x = F0T) .

The rss position errox is, by the d.finitions of rss and the trace

operator,
(rss) = tx(L /TPT/T>
»r
with .
L O
1
Lom=] © (40}
/T ~ 0 ‘
4]
O
L. -

The variation in rss position error is now expressible by

AJ = Alrss) = tr(LT/?APT/T) .

LT/T is the adjoint matrix at T. Its exact form deperds on the problem

at hand. As another example, if we are only interested in the covariance

should then be

of 6x1, LT/T

’ZOOOT

T/T

The equation for computing AJ is obtained by combining Eqs. (39)
and (33;:

19




) 1 v\
AF = tr (LT/T ;DT’ 25,00 5
T
- ;g: tr(LT/TDT’jAZJ/JDT’j)
Y Y S
= ;;3 tr(DT/J“T/TDT,jAZJ/j)
AT = JZ tr(LJ/JAzJ/j) (41)
L T (42)

b .
i/5 2 P, sPr/70r, 5

»

The Lj/j
(35)] by the following backwards recursive equation:

are called the acdjoint matrices; Lj/j may be computed [see Eq.

T T N
L =8 (I -WH) L (I-¥H)? , (43}

k-1/k-1 k/k k'k” k-1

where L is to he appropriately defined for the particular problem.

T/T
To summarize the above technique %nowrn as the adjoint-matrix tech-
/
nique, we first use Zgqs. (42) and (43) to compute the adjoint matrices =
k=T, T-1, T~-2, ..., using the nominal quantities wk, Hk’
and iocal variations

Y
and ék-l' J may now ke written easily using L

k/k
AzJ/J of Eq. (31), thus

tr(LT/TAPT/T) = AJ = JZ tr(LJ/jAzJ/J) 3

where j are those samples points with nonzero Azj/j,
Lj/j and DT 3 enable one to relste directly local covariance varia-
3
tiocns AZJ/J’ with terminal-error variation. This provides a systematic

and straightforward technique for such sensitivity and trade-off analysgis

as

20




(1) The necessary duration of the filtering process

{2) Sceking least sensitive spots on the filtering time

axis for sampling rate reduction

(3) Redistributing the sampling points for improved

terminal accuracy

(4) Optimizing the usage of an expensive observation--~
the seeking of sample points when the observarctiod

causes the largest terminal error reduction
(5) Optimum radar resource allocation

(6) Trade~cffs between various error sources--measure-

ment, modeling, and sampling rate.

These topics will be discussed in more detail in later sectious,

and in examples of Sec. III.

cC. The Sensitivity Matrix--Variations Due to Scalar Parsmeters

Up to now, we have considered the independent variations to be in
the general matrix form~-A§k_a, &Q, _,, W, &R, . Here we introduce
ancther level of parametrization; we let A§k~1’ 8Q, _,, A%, and ARk be
functions of a scalar variable denoted by &. For example, the sampling
period (time between two consecutive sample points) in a filter with

uniform sampling rate is such a parameter. s

Let each element in the matrices A% AV, , and Aﬂk be

k-1’ Aqk~l’ k
functions of a scalar variable o. Each element of pk/k

a function of o, This leads to the following definition of a sensi-

is, therefore,
S

tivity matrix:

[

ap 3p{ i3 (o)

Sk g | KLk = lin 3o [Pla+ b0) - P(o)] = Lin 3= 8P (a) . (49)
' Ax0 © ber /

(aPk/klaa) propagates in time according to a set of recursive equations,

which will be shown later, Once (aPk/k/coD is obtained, Apk/k may be

easily computed to first order as
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(or) (op /Bd) A . (45)

k/k

The recursive equations for the sensitivity matrix may be derived

by taking limits ([as indicated in Eq. (44)] of Egs. (17) and (26):

3P opP oR

k/k . Pk /K1 o T M S
S = (T - WH) — 5 (I =W H) +¥ =W +A (46
and
Pk o Prmor | B % o 6 . 3T 3%y )
oa - 'k B« k "8 *3& "xkk ¥ Tk k/k\da

’ r T T awk
Ay = t" (Hkpk/k-l x * Rk) = Prsk-18x ! | 59
R ' (‘awk\

T
' T
\3 ) ‘: (P oot * i) - pk/k-—lﬂk:l > U8

+

where all second~ and third-order terms vanish becausz of the limiting
process. These equations are seen tu be similar to the covariance -

equations, Eq. (3). This indicates that in a simulation of the Kalman
filter, the sensitivity-matrix computation may be added with a minimum

amount of effort.
The scalar parameters we shall be concerned with are:

,(1) Sampling period T: In general, ék’ Qk’ and Rk are
functions of T, Qk’ the transition matrix for the
system dynamics, is a time integral depending on T,

Qk generally increases with T becasuse a longer
sampling period allows the dynamics’ error to build

up between sampling points. The measurement error

Bk changes with T in a manner depending on tho data
prosmoothing uscd with the filter, If no presmoothing

<8 used, then Rk does not change with T, To summarize:
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Bék/ar # 0, EQR/BT # 0, and BRP/aT may or may not

equal zero,

{2) Dyramic error parameter, d: The dynamics error is
commoniy modeled as plant noise. Qk is, therefore,

a function of d, while ¥ and R are not:

3Q, /8d # 0, 3R,/3d = G, 3¢, /3d =0 .

(3) Measurement noise parameter, r: aRk/Br # 0, but
B@k/ar = 0, and BQk/ar =0,

To ccimpute the sensitivity matrices of these parameters, ws use

Eqs. (46) and (47) with ¢ =T, &, or r.

D. Special Considerations in the Sampling-Period Sensitivity Matrix--

the Time-Based Sensitivity Matrix

The sensitivity BPk/k/BT discussed previously is evaluated with k
fixed. The derivative is therefore evaluated along the slanted dotted

line in the P vs. t diagram of Fig. 2. But we are often interested

P / Popu (1) + 85
’/Pk/k (ri+ Apk/k
’
Pendt!

-1
! kr kir+Ar)
Ta-sise-n2

FIG.2 TIME SHIFT IN SAMPLING-
PERIOD VARIATION

in a sensitivity that is time-fixed; for exampie, consider the case in
which the time duration of the filtering process is to remain unchanged.
Then, ie Fig. 2, we should consider a derivative evaluated along. the

y (). 1In this

k/k k/k
sectior, we shall devise techniques to evaluate the time-fixed sensitivity.

vertical direction by letting Pk/k(f) + AP approach P
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In Fig. 3 wo depict the offect of a small change 67 in the

sampling period v for k iterations, Pk/k(T)’ denoting the error ce-

veriance at k-th sample point with sampling period T, is changed to
-y A
T 8 T
PokT + 07) 2 P, ( ) + 0P and P

k/K’ k-1/k-18T) 10 Py /g {7+ 01

P/t {T + A7) 4
Prei/iet TV AP0y

el (x-1)Ar~=| — kbr

Yy \\\\\ Pusuir+an 2

P s {T)
v
{k=0)r kr
TA=5108-713
FIG.3

INTERPOLATION BETWEEN SAMPLE POINTS

While, strictly speaking, the error covariances are not defined between
the sample points k

- 1 and k, we shall interpolate using P
and P

T
k-l/k-l(T + A1)
k/k(¢ + A7) to assign a covariance matrix at the point marked A.

. . . ’ H [
This matrix is designated by Pk/k(T + AT) = Pk/k('r) + Apk/k’ and Apk/k

is taken to be the fixed-time variation under the influence of AT,
Carrying out the interpolation, we have

!
PrylTy +# 8P = [Py (T) + AP ]

Py /52T + 2Py seer ~ BT - BB ) )
* (tr + a1y . . :
Therefore,
’ ) - - -
P PP Perwa®? " P’ Branea T B o
At~ bt T (T + A1) (= + b7 )

~——
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- -

tti t - 0 g - - 3 -
Letting A , and remembering that Apk-l/k-l 0, Apk/k 0 as AT ~ 0,
3o that the last term is zevo as AT - 0, we have:
ap, ap! 3p
k/k A k/k k/k K -
ar = zifo & = ot t 7 Praakal™ P - (30

The time-fixed saempling-period sensitivity matrix BP;/R/BT is
therefore obtainable from the sampling-point-~fixed sensitivity matrix
BPk/k/BT by taking into account the slops of P

(50} .

(7}, as shown in Eq.

k/

E. The Sensitivity Index

If we limit our discussion to scalar parameter variations A« and
scalar filter performance criteria J, we are then interested in sensi-
tivity indices of the type

i

aJ
A (51
Sa = ’ )
where a = various scalar parameters, for example, those listed in the

last part of Sec. II-C.

These sensitivity indices may be precomputed using the previcus
results on sensitivity and adjoint matrices; the S, being scalars, are
stored more easily than the adjoint or sensitivity matrices. S are
therefore seen to be a useful technique for rzal-time modifications of
the filter. For example, ia the antimissile defense system, we may let
J be the covariance of the error in the position estimate at a certain
range from the radar sites, where inierceptor commitments have to be
made. Let a be the iteration rate C, Now, assume a multiple-threat
situation arises such that the design iteration rate Co cannot be met
for all incoming vehicles because of computation limitations. This
calls for a real-time decision on how the iteration rate should be re-

duced, and an estimate of the consequences. These tasks are made easier
(3
c

vehicles) are available in real time, for then the increase in terminal

if the sensitivity indices § (j =1, 2, ..., m for m different reentry

position arror for each vehicle is expressible as AJ(J) = séJ) (ACj).
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" . 3

From criterion on AJ , hecause the torminal accuracies are the main
concern in this example, we may compute ACj from the stated equations,
To compute the sensitivity indices, we use the sensitivity matrices

and adjoint-matrix technique discussed previously., This gives

5J 9 oP T/T
=5 = 5 tr(LT/TPT/T) = tr (L'r/'r 3a

/

where (azk/k/aa) are the local one-stage sensitivity matrices obtained
by the following limit:
e M
Sq = lim Ao . (53)
Ho0

s Therefore, upor using Eq. (31), we have
i

- T
A °Zy 1 % . 0% 11 : T s p 0% 1 (54)
. o - ox k-1/k-1 k=1 =~ “k-1 k-1/k-1\| o«
Az oz oR
k/k k/%-1 T kK T ’
Sa = (1 - wknk) Sa (1 wka) + wk Sa wk + Ak

, - awk T
Ay = E ( K k/ka + Rk) - Pk/k-lﬂlj 5%
aw\ T T T
( E” P /k-1Mk * Rk) - Pk/k-l“k] .

Note that the same eguations may be obtained from the sensitivity equa-

tions [Eqs. (46) and {(47)] upon setting

(6 /’Ba) =0 ' ..

Pr-1/k-1

If we are computing the sampling-period sensitivities for time-

fixed variations, the slope correction shown in Eq. (50) must be used.
Also, instead of usibg a one-stage local variation, Azj/j, it may be
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more convenient in particular problems to use a multistage local varia-

tion, Az;fi, of Eqs. (36) and (37).

F. Special Considerations in the Gain-Matrix Yariation

If the nominal filter gain is optimum W the sensitivity~matrix

2
techniques such as those in Secs, II-C, -D, :nd -E, do not give usable
answers, becauce in thos? techniques only first-order variations are
considered, while the variation in performance about the optimum W: is
second order in Awk. Here the analysis calls for a return to the exact
cquations of Sec. II-B for second-order variations. We shall consider
only the special case that Wk varies from w; to W: + Awk; all other
parameters (Qk, Qs Ry PO/l) are to remain fixea. Then, in the varia-

tional equations [Eqs. (17) and (36)1 all first-order terms disa7pear.\

We have

APO/_1 =0 .
AP =8 _AP 87

k/k=1 k=1~ k=1/k-1 k-1

! T (55)
'o o
BPy ke =\ - “kﬂk) Apk/k--l(I - wk}.)
+ AW I; P H + R AWT + (higher-order terms)
k k k/k-1"Kk k e *

We have used the following observation in the last equation:

Ap ané AP stays second corder for k =0, 1, 2, ... as may be seen

k/k k+l/k
by tracing the recursive equation for k=0, 1, 2, ... . Therefore,
although the AP H Ah term in B, , Eq. (20), appears to be of second

k/k-1"k k’
order, it is really of thlrd order.,

Equation (55) is now approximated by neglecting the higher-order

terms, obtaining

T
o 2 T - w©
BPy = (I - wkﬂk) 18Py k)’ §k—1(1 wka)
T T '
+ Awk(“kpk/k~1"k + Rk) o (56)
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it is noted that, due to the scparation of AP and AWk terms,

k-1/k-1
we may employ the concepts of the local covariance matrices, the error
transition matrices, and the adjoint matrices--concepts that were de-
veloped originally for the first-order variation, The applicable cqua=~

tions are gaiven below:

The local covariance variation is

T T -
82, i = Awk(ﬂkpk/k-lﬁk * Rk) By » k=0,1,2 .. 6D
so that
AP, , = (I -WH) 3 .(AP y 8% (1 -wH)T + Az (58)
k/k ~ kK k k-1l k-1/k-1 k-1 kK k k/k i

Terminal covariance variation is expressible as sum of local variations:

T
= (59)
ApT,/'I‘ :;: DT,kAzk,kDT,k ’
where DT X is tha error transition matrix by the recursive equation
2
- - (60)
DT,k D’I‘,lﬂ»l(I wk+1Hk+1) ék
with
DT,T =1 .

Terminal AJ is expressible as sum of local variations:

85 = tr(ly APy ) = :;: tr(Lk/kézg/k) s (61)
where Lk/k is the adjoint matrix defined by the recursive equatiin
L, =&l -% H )7L (1 -%, H )% (62)
k/k k k+1 k+l k+1/k+1 k+1 k+1° 'k
with LT/T defined arbitrarily depending on the problem.
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Suppose we wish to investigste the effect of Awk at a certain sample

point of pT/T’ then we need only evaluate the matrix
T T, T T
= 3
DT,kawk(Hkpk/k-lﬂk + Ry B D k= Pr k% il k (63)
or the following scalar if J = tr(LT/TpT/T) is of interest:
tr (AWTL v ) (H P HY + R ) = trlL , 02 , ] (64)
k'k/k™ k K k/k-1"k k k/k"k/k ‘

These two terms provide a valuable aid for the design of suboptimal
Kalman filter gains. Suooptimal gains are of practical interest because
often they may be computed simply and their use causes very little in-
crease in the estimation error. As an example, suppose we specify an
allowable AJ. AJ can be allocated among the sample points by some

acceptable rules depending on the problem:

b= LD,
k
Setting

(AJ)k = tr{L ]

w/kB%%/k

i

tr [(A\v;fz,k /i) (1 e * Rk)] ’

we obtain an elliptical region around W , within which any AW will cause

k’ k
3 AJ within the allocated (AJ)k. In this way, a manifold may be defined

around the Wz vs, k curve such that it contains all the allowable sukb-
Jptimal gain curves. Many other ways of applying these equations are

possible,

G. Applications to Problems

Depending cn the particular problem, different parameters are varied
and different performance criteria are used., The following are a few

examples:
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P

(1)

(2)

o
k/k

3)

- P = P*

Inaccurate stutisties: Since the statistics PO/ .
Q

k=1’ and Rk arc used to obtain the filter gain wk,

the r%al question is the effect of using the wrong

gain, Put, for computation, we may usc the following
s ) * * *

equivalent problem, Let pO/-l’ Qk-l’ Rk be the

erroneo tatisti * ¢ * . PX
rrongous statistics that give wk and pk/k Pk/k is

not the real covariance; howoever, the real covarianco
- p*
k/x = Pi/k * Oy o WhOTE OPy
using the variational equations ([(Egs. (17) and
5 = = - pk
(26) 1 with AW, =0, &Py, , =Py, P5/-1
= - QK = ~ R¥
AQK,3 = Qk-l Qk—l’ and ARk = R R*, P

K k k/k
therefore be computed from P:’k’ which is available
/

is P may be computeod

may

in the gain computations.

The valuae of exact statistics: Suppose we know the
exact statistics, the estimation-~error covariance

may be improved from the P described in (1),

k/k
because we are now able to compute the exact optimum
gain., Let the resultant covariance be

o o o
= px iz

pk/k Pk/k + Apk/k’ where Apk/k arises cut of tze

AP0/~1’ AQk-l’ and ARk of (1), but with Awk = Awk

instead of zers. The value of the exact statistics

is therefore

- AP

- Pk - Al -
/x " Pk wk = DPysi ~ OP

o
+ AP,
K

k/k k/k k/k

This turns out to be the negative definite term BE

shown in Eq. (21).
Increased sampling period: This will be discussed

in detail in the next section., In general, Aqk-l’

A§k-1’ AR, , LW, exist and are parameterized by a
scalar T, the sampling period; therefore, the sensi-
tivity matrix technique of Sec. I1I-C may be used,

The value of ARk depends in part on what, if any pre~

smoothing of the data is used.
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(4)

-~
tn
LY

(6)

(N

Approximate reference model cyramics: The common

practice is to represent the model error as a plant
noise. The approximate dynamics are regarded as the
re~l dynamics plus noise, The difference in perfor-
mance 1is then between the use of the full and optimum
filter and the full and optimum filter with increased

plant noise: AP is computed for AQy—l and Aw: te

k/k
give deterioration in estimator performance.

A varying model parameter: Assume that the varying

parameter causes a A® and assume that this change

k-1’
is known to us so that we may incorporate it into
the filter reference model as well as the filter
gain. AP may be computed from Eqs. (17) and

and with Aanl'

k/k o
{26) with optimal By

Suboptimal gains: If the available nominal filtex

is a full optimum filter (wg), then APk/ is second

k
order in Awk through Bk' Using the erroxr transition

matrices and adjoint matrices of Sec. II-B, it is

possible to specify regions around the optimal
o
k
these regions will produce acceptablo performances,

gains W, such that any subeptimal gains within

Expensive observations: Suppose the estimation error

at T is of major interest. We should locate the ex-
pensive observations at some point k < T so that

B s
is provided by the error transition matrices and the

is as negative as possible. This information

ad joint matrices of Sec. II-B.

this is given in Sec. II-E.

An application of
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III APPLICATIONS TO SAMPLING-PERIOD PROBLEMS

There are two types of problems concerning the sampling period, The
design problem is to find a set of sampling periods such that the esti-~
mation errors are within certain specifications, The sampling periods
may or may not be uniform. The real-time problem exists when, for one
reasol or another, the conditions are changed from the design values,
and one attempts to adapt to these changes in some optimum fashion. 1In
this section, we shall define these problems and zive metaodologies for

their solution, An illustrative example is given in Sec. III-E,

A. Design of Uniform Sempling Period

The sampling points shown in Fig. 4 are equally spaced from O to

T with period T. The estimator accuracy P at a specified time T 1is

T/7T
to meet a certain specification. An iterative procedure (Newton's

method} may he defined as shown below,

|

LS S I B O | L

o —tltk— 1

TA=~3108~718

FIG.4  UNIFORM SAMPLING

FERIOD
Given:
Po/-17 @ %, R, 5Q/37, 3%/d7, OR/4T, Lot jops J*
Find:
Sampling period 7 such that
< -
Ly P /'r) J* {63)
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Algorithm:

’ (1) Sciect Tl as an initial sampling period, and solve the
recursive equations [Eqs. (3), (46), and (47)] for

(2) Find 7, by

- a7 = JK o 3
(r ™) tr[LT/T(aPT/T/a‘)ll =J t2

2 LT/T ?T/T

.
A

:
- X - . 2 P a
Ty =Ty + J tr LT/T (PT/T 1l /tr [LT/T(OPT/T/OT).:.] . (66)

Steps (1) and (2) are then repeated until Eq. (65)
is satisfied,

The convergence of this iteration procedure remains i{o be proved, How-
. ever, iu case of difficulty one may take a sufficienctly small step to at

least obtain an improvement over (pT/T)l’ i.e., for A< 1

Ty = Ty + MIF - il P ;} /e | Ly g apT/T/agl . (8D

B. Design of Nonuniform Sampling Period

A typical ronuniform sampling-period design problem may go like
this. From results of Sec. II1I-A or from an examination of the computa-
tional capabilities, the total allowable number of sample points are de-
cided, The problem is to reduce the terminal-error covariance by
redistributinrg the sample points, while keeping the total number the
same, To do this we may divide the time into m segments, and change

the sampling period uniformly within each segment as depicted in Fig. 5.
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FIG.5 NONUNIFORM SAMPLING PERIOD '
Given:
o S &, R, 3Q/dT, 33/dT, BR/3T, Ly . (58)
n = number of sample points
m = number of time segments,
Find:

Sampling period, Ti’ i=1,2, ..., m

Z t5 " S
n, =0, n, = ———nm (69)
1 i i Ti
such that
J = t?(LT/TPT/T) '(70)

is minimized. ‘
Discussion:

Consiger T,, i =1, 2, .,., m, as m scalar paramcters. The

i)
following sonsitivity indicos may bo computed usiag the results of
Sec. II. . ' :
9tr(L_ , P ,m)
T/T T/T .
8i = ST, , i = 1’ 2, ceey M . {(71)
i

The probiem is then cguivalent to first order to the following protlem:
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Minimizo & s, Ar s
i 71
br,

1
Z (-r + A.ri) (ti ad ti"l) =N . (72)

i i

We must realize that the sensitivity as defined here gives only an
indication of the change in performance to first order, aad the results

will be inaccurate if ATi are too large.

We shall therefore limit the step sizes for ATi by adding the

following linearity comstraint to Eq. (72):

iATi{
<< 1 . (73)

Ty

From Eq. (72), it follows that a necessary condition for cptimum

distribution points is obviously

(74)

)
]
0n
"
.
.
it
@

if not, we may always obtain an improvement in performance (a reduction

in J) by moving some sample point from a segment with higher s A

i
gradient procedure is shown below for solution of this problem.

Algorithm:
(1) Conpute the sensitivity indices Sy by Eqs. (52)

and (54).

(2) Select two time segments u and £ that have respec-

. tively the min (si) and max (si). LW points are
then moved iIrom the u-~th segment to the £-th seg-
ment, until censtraint [Eq. (73)] is met for i = u

or 1 = &.

(3) If the linearity constraint is reached for segment 2,

further improvement may be possible by moving points
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from the u-ih segment to the secgment with tho noxt

highest s In this casc, rcpeat steps (1) and (2)

i
until all segments are modificd or until the u-~th

segment has reached the constraint [Eq. (73)].

(4) Recompute the si using the ncw sampling times, as

determined above and proceed to step (2),

(5) Terminate the process when the s, are sufficiently

i
close to being identical, The examples in Sec.

IXI-E illustrate this technique.

The sensitivity indices may of course be used in other types of

gradient procedures,

c. Real-Time Allocation of Computing Resources to Multiple Trajectories

Here we address ourselves to the prcblem of optimuwnm allocation of
limited computation facilities to multiple trajectories when the number
of trajectories cannot be predetermined accurately. We note that in
case the number may indeed be predetermined, then the algorithms in Secs.
III-A and III-B may be used, with slight modifications, to obtain cptimum
sampling schedules for the multiple trajectories. Although many types of
problems may be formulated, we shall ccasider the following special

formulation:

(1) Any one trajectory is to be filtered a fixed length of

time. The terminal estimation errors are of interest,

{2) The initiation and termination times for each trajectory
are arbitrary. They are therefore likely to be staggered

in time tc amounts that cannot be prespecified.

(3) The filtering system has available a nominal sampling

rate ci for the i~th trajectory,. ’ / —

(4) The computation facility capacity may be characterized
That is, the facility car oniy handle the
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, Do st (15)

i
£ a number denoting the capacity.
(5) The aliowable real-time modifications are A .
(6) 'The criterion for the modification is equal degradation

at terminations of each trajectory
Aj =AJ = e (76)

where

) (i)
3 o=t E‘T/TPT/'I] .

The solution is simple if the system has in its computer

. storage a proper set oi sensitivity figures as follows:

- At real-time t, the i~th trajectory will be in a certain

filtering stage denoted k., see Fig. 6. Let sﬁz)

be the sensitivity of J(i} with wespect to s when ey
is changed by A ¢, from ki to ¥. Then A 4> obtained
by solving the following set of equations, is che

answer to our problem:

(2)
s
ky

1
:E: (c, +Ac) =12 .
1 i i

The solution is

’A°1=é';°i>/sﬁnz-%5 / -
i -

(78)

(L
Sk Acl =

(77)

(1) Ac /s(i)

k1 1 k1

Ac, =s

The séi) are easily precomputed using the equations in

Sec. YI-E for sensitivity indices. The required storage
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for s

(1)
k

depends a great deal on the particular
prohlem., If various possible trajectories have
similar sensitivities, th . one set of s
k=0,1, ..

k,
., T is sufficient. Further simplifica-

tion may be effected by scgmentation of the time
axis, and assigning a sensitivity to each time

segment (see Fig. 6).

k=0
t
(o] T
1A R ZLJ-LJ"LJ—LJ TRAJECTORY
A bbbt ] T
| Ff . o gf;; TRAJECTORY 2
“ rEa
¥ '-*—-t—'—*—-‘-*—*-ﬁ TRAJECTORY 3
T ° k3
K
i3
’ t  REAL TIME
TA~S108=710
FIG.6 RELATIONSHIP OF ITERATION
STAGES TO REAL TIME
D. Real~-Time Maneuver Compensation

A vehicle in motion is ssid to perform an unknown maneuver when its
trajectory suddenly deviates a large amount from the trajectory generated
by the filter reference dynamics, Unless we know when or how the vehicle
will maneuver, we are forced to use in the filter s mecdel »f the dynamic
equations that does not account for the maneuvers, Tais causes high

estimation errors during unknown maneuvers,

The man2uvers can be modeled as plant noise whose magnitude and
occurrence are inferred from observation; experience shows thsat ?he esti~
mation can be improved by adjusting the filter gains closer to optimal
for the increased plant noise, Our experience also shows that the speed
of adaptation to maneuvers, even with the stated refinements, is limited
by the sampling period. Three or four sampling periods are necessary to

correct the large maneuver-induced estimation error. The direction for
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further jimprovement of fiiter performance lies obviously in increased

sampling rate when a maneuver is detected,

The required change in the sampling period AT may bc computed from
the inferred acceleration noise increase ha by employing the sensitivity
indices of Sec. II-E. We shall decrcase the sampling period to counter-
act the effcets of increased acceleration error, which leads to the

following equation:

-1
aJk+1 aJk+1
ATk = - = Aa

(79)
}
OTk Bak k

*

are precomputed sensitivity indicies. 1If
/37

where 3Jk+1/BTk and 3Jk+1/dak

is defined as the root-sum-squared position erroxr, then BJk+1 K

due to a change in sampling time from k to X + 1;

Jk+1
is the change in J

3

k+1

Jk+,/aak is the change due to acceleration changes irom k to k + 1.
Fs

Instead of the one-stage sensitivity, we may use the multistage
sensitivities &J, /87 , 38J = /3da ,whichk are the changes in roct-sum-
k+m' "k k+m" K
squared position error m stages ahead of the sample point K when the
maneuver is detected. Thus, assuming that the maneuver acceleration
uncertainty (Aa) is maintained for the m stages, we have
-1
aka aJk+

- m 8
oT sa 42 ? $80)

AT

where the sensitivity indices are obtained by solving the recurrent
equations {Eqs. (48), (47), (50), and (34)] m times using zerc initial
values, / e
E. Examples -

The procedures discussed in Secs., II1I-A and -B will now be illus-
trated by a simple estimator problem using a.l/sa piant, The numerical
values used are, however, on the order of what one might encounter in
the estimation of baliistic trajectories.

Example 1:

Assume that the bkallistic vehicle moves in s straight line with no

other driving force than tbe acceleration noises. That is, let p be the
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position of the vehicle and no the acceleration ncise,.then

P=n . (81)

The pousition is observed in the presence of additive noise nm:
Z=p+n . (82)

The discrete~time, state-voriable description is

1 7
xk+1 = o 1 Xk+wk
(82)

[1 0] xk + Vv

N
I}

k 2

where T is the sampling interval from k te k¥ + 1 and

o
xk = [.j ¢, (84)
P

The quantities wk and vk are the plant noise and measurement unoise vtith

covariance matrices Qk and Rk, respectively, and x5 is assumed to be

Gaussian—-distributed with mean r(xﬂ) and covariances PO/~1'

The Kalman filter, Eq. (2), computes X the estimate of x

k/k? k!
using the observations Zgs Zpa ocers Zpe
We shall assume the following numerical values:
4

= 85
R, =10 » (85)

for 100 {t standard deviation in measurement noise,
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00,2597 0
Qk i 0 1047
for l-g acceleration error,
25,97 0
Q = (86)

kLo 104001

for 10-g acceleratior error, and

P =
0/-1 o 106

for initial position and velocity standard deviations of 1000 £t and

1000 ft/sec.
T varies in the program, with 0.1 sec as its nominal value,.

The total time of the estimation process is 5 sec, which is divided
into five segments of 1 sec each, Within each segment, the sampling
points are equally spaced, Thus, when the number of sampling points are
changed from 10 to 8 in a certain segment, the sampling period is changed

from 1/10 sec to 1/8 sec.

Case 1: Plant Noise is 1l g

First we use the (10, 10, 10, 10, 10) sampling scheme--numbers in
the parentheses denote the number of sampling points in each segment.
The pcsition estimation-error covariance is shown in cuxrve a of Fig. 7,

2
where a terminal position error covariance of 876 ft  is observed.

Now, suppose the computation capability of the system is such that
only 40 sample points are allowable in the S5-sec interval instead of the
proposed 50, TFirst, Qe modify the filter in the most obvious way,
namely, using the scheme (8, 8, 8, &, 8. The results are shown in
curve b of Fig. 7; the terminal error has deteriorated 21 percent to
1060 ftz. We will now use a better sampling schema in order to decrease
the terminal error., For this, we need the guidaunce of a sensitivity

computation,
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l | ]

—— (10,10,19,10,10) -
w=w- {8,8,8,8,8) -
e (10, 5,5,10,10) .

Py (L1 10>

o | | 1 i
0 { 4 3 4 5
SECONDS
4 TA«3i88-722
e FIG.7  PUSITION COVARIANCES, 1-g PLANT NOISE

The sensitivity of terminal error to sampling period, s(’t’i) . is
plotted in Fig. 8., The least sensitivity occurs in the second segment,

The reduction in sampling points, therefore, should be in the second

[+

s{r)x 10°

[0py, 7 11705 010°
~n

(v} [ 2 3 4 5
SEGMEN'T NQ

A~ Hi8-T28

- FIG.8 SENSITIVITY OF TERMINAL ERROR TO SAMPLING
X PERIOD, 1~g PLANT NOISE
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segment., Allowing a reduction 9f 50 percent for lincaraty as discussed
in Sec, III-B, the number of sampling points is .educed within the
second segment frem 10 to 3, Siace the next lower sensitivity is in
segmoent 3, the romaining reduction is carried out in segment 3; from 10
to 5. With the new scheme of (10, 5, 5, 10, 10), the terminal position

error covariance change, from the sensitivity indices, should be:

Ap

5(72} X ATZ + 5(13) X ATS

227 X (0.2 - 0,1) + 33L X (0.2 «0,1) = 55.8 ftz .

[

The ervor covariance with (10, 5, &, 10, 10) is computed and
plotted in curve ¢ of Fig, 7. The terminal position-error covariance
of 8¢4 ftz represents an increase of only 18 ftz (ccmpare with 55.8 ftz
as predicted above) over the scheme using (10, 10, 10, 10, 10). It is
interesting to note that 10 sample points may be removed from the right
pluces with very little effect on the terminal estimation zcouracy.

The conlv additional labor involved is the computation of the sensit.vity

indices S(Ti).

The diagonal elements of the adjoint matrices are plotted in Fig.

. 1 O
K/% with LT/T =10 ol

which may be interpreted as the sensitivity of the terminal position-

9. The curve a shows the (1, 1) element of L

error covariance to the Kk-th position-e¢rror covariance. Similarly, curve
h shows the sensitivity with respect to the k-th velocity error covariance;

i.e., the (2, 2) element of I This plot provades additional insight

k/k’
into the estimation problem besond those given by the sensitivity in-
dices. The design of an estimater may be greatly improved with this
insight. Referriug'ngain to Fig. 9, it can be seen that in the 4-th seg-
ment (3 to 4 sec), velocity-error sensitivity predominates. Th;s inQ}-
cates that if " e perform a velocity measturement at that rime, términal
estimation accuiacy nay be much improved. To obtain some¢ definite
quantitiss, the velocity mezsurement is assumed to have an error ¢o-

variasnce of 100 (ft/sec)z. We shall perform the velocity measurement at

3.5 sec, at which time the pominal velocity covariance is 413 (ft/sec)
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FIG.©  TERMINAL POSITION SENSITIVITY TO CGVARIANCE
AT TIME k, 1-g PLANT NOISE

from computations., With a single measurement, the velocity estimate im-
provement is at least 413 ~ 100 = 313 (ft/sec)‘. Since curve b in Fig.
9 snows a sensitivity of 0.4 at 3.5 sec, the terminal pesition accuracy

is expected to improve by 0.4 X 313 = 125 ftz--an improvement of
125/876 = 14 percent.

Further insight that may be obtained from the adjoint matrix of
Fig. 6 is that although position measurements are made in the 3 to 4-sec
segment, their predominant purpose is to obtain better velocity estimates,
which in turn improves the terminal accuracy. Given a choice of position
or velocity meazsurement improvement in 3 to 4 sec, one shouid take the

velocity improvement if Fig., § is applicable to the system,

Case 2: Plant Noise is 10 ¢

¥ith the plant noise increased, we would expect that what the esti-
mator does initially has less effect on the terminal estimation/error ~

This fact is dramaticeslly illustrated in the following,

’
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The position-error covariance is shown in curve a of Fig., 10 for
z (10, 10, 10, 10, 10) ssmpling scheme., The terminal position-error
; . .2 .
covariance is 2249 {t . The rerminal-error tovariance sensitivities

to sampling pericd are shewrn in Fig., 11, It is seen that changing the

| T

s e {10, 10, 10, 10, 10)
e~~~ {8, 8,8, 8, 8)
— e {55, 10,10, 10}

- o ]
: - ——
o | n | 1
o l 2 3 4 S
SECONDS
TA=-380-n7

. FiG..IO PCSITION COVARIANCES, 10--g PLANT NOISE

sampling period in the first two segments will have virtually no effect
on the terminal error. Therefore, the reduction in sampling period

should be confined to the first two segments, 0 tc 2 sec. According to
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this argument, a (5, 5, 10, 10, 10} scheme is tried with the results
plotted in curve ¢ of Fig. 10. The terminal error of 2230 ftz, as
compared with 2249 ftz, is almost exactly the same as the (10, 10, 10,
10, 10) scheme, 'If the same 10~point reduction were taken uniformly.
namely the (8, 8, 8, 8, 8) scheme, the termimal error would be 2600 ft2

as shown in curve b of Fig. 10--a 15.5-percent increase,

Figure 12 shows the sensitivity of the terminal position covariance

to the k~th covariance (diagonal elements of the adjoint matrix Lk/k).

16




0.8 |~ w——e POSITION -
L. e VELOCITY 4
0.6 }— A
v.l 0.4 d
s
~ .
0.2~
0 i 1
o i 2
SECONDS

Ta~3i88~ 720
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Similar to the 1l-g case, we se¢e from this plot the advantage of making.

a2 velocity measurement at 4.3 sec. Assuming a measurement covariance
2 . .

of 100 (ft/sec)”, the terminal position covariance is expected o de-

crease by approximately the amount

k,,k(z,z) -~ 100] = (0.05) X (8240 - 100) = 407 (££%) s

by (2,2 % [P

which represents a 407/2249 = 18 percent decrease.

Example 2:

Ir this example, we shall point out the precautions that should be
exerc.sed in deriving semsitivity indices for smoothed measurements.
Under certain conditions the sampling-period sensitivity may become
negative, indicating one should update less frequently in order to re-
duce terminal error. While tnis may seem to contradict our engineering

intuition, mathematically it is psrfectly rigorous. Nevertheless, if
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this becomos unacceptable for any reason, it is essential to eualyze

cerefully the assumptions concerning the measurement smoothing and the
plant noise.

In Example 1, assume the measurcments ara smoothed such that the
measurement covariance is

(87)

. . 4 2
Note that when T = 0.1 sec, the nominal sampling period, Rk is 10 £t
the value used in Example 1.

Iu Fig. 13, the sensitivities s(?i) are
plotted, for plant noises of 1 g and 10 g.

Both cases show negativ:
sensitivities toward the end of the estimation process, meaning that the

terminal accuracy is improved for more widely separated sample points.,

To verify the negative sensitivity, the covariance equation is re-

conputed for the 10-g case with the number of sample points reduced from

i i i
smmmeeneew {~g PLANT NOISE
1 = e Q=g PLANT NOISE

p—

-

3P,y 1, /07 2103 = 5 (r;) x 1073

\
\
\
i
1
\
\
i
'
\
!
1

3 ] ! ! ' ¢
i 2 3 S
SEGMENT NO.

e

6

Tas%188-119

FIG. 13

SENSITIVITY OF TERMINAL ERROR TG SAMPLING
PERIOD, SMOOTHED MEASUREMENTS
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10 to 6 in the last segment., The new terminal position covariance is

2070 ftz, a reduction of 179 ftz from the original 2249 £t2.

The negative sensitivity arises from the fact tihat the reduction
in measurement covariance, Eq. (87), outraces the increase in plant
noise, Eq. (86), as sampling period increases. We shall now examine

the validity of these assumptions about the noise,

It may be shown that if the plant noise is approximated by a white
noise in the continuous-time description of the dynamical system, then
its discrete deseription will have a noise covariance, as described by
Eq. (86), proportional to 7., However, if the plant noise is meant to
represent mathe@atical rodeling errors, this may not be a valid assump-
tion. A better noise model is perhaps an acceleration noise that re-
mains constant over T, where its magnitude is & random variable, zero
mean and Gaussian in distribution with standard deviation a. For a
given time interval T, the plant noise covariance matrix would then be

better expressed as

Z
(1/2 aTz) 0
0 (aﬂ')—j
The fourth and second powers of T here indicate that as the sampling
period T increases, the true plant noise is likely to increase more
rapidly than those assumed in Eq. (86). This will cause the sampling

period sensitivities to tend towards positive values,

Returning to the question of the measurement noise covariance,
we see that the form of Eq. (87) is valid only if the data are "per-
fectly" smoothed. Namely, the data must be fitted to s curve repre~
senting the precise vutput af the dynamical system. Yet ir practice,
data are smoothed using arbitrary curves such as avraight linces or
polynomiats, In doing so, aduitional errnrs are intrnduczd beyond thwvse
represented by Eq. (87). A more truthful representation of the smoothed

measurement 13 perhsaps
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R, = — <1

The effcct is that as sampling period 7 increases, the noise covariance
does not decrease as rapidly. This will also tend to move the sensi-

tivity to the positive side.

We have seen that any refinement of our noise assumptions teads to
move away from a negative sensitivity index for sampling period, It is
therofore doubtful that the negative sensitivity should be taken

seriously as & significant phonomenon.
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IV ONE-STAGE TRADE-OFF STUDIES USING A SIMPLIFIED MODEL

A, Cne-~Stage Trade-0ff

The purpnse of this section is to provide formulas and curves that
will promote a general understanding of the relationship betwecen filter
performance and various parameters, and the resulting trade-cf{fs betweun
these parameters. 3uch understanding is necessary when one is doing,
for example, trade-off studies between sampling period and plant noise,
sampling period and measurement accuracy, plant noise and measurement

accuracy, etc,

Since our interest is in deriving qualitative relationships that
are easily computabie, we shall limit our discussion to the following
case, These assumption: should he kept in mind when the results are

applied toc practical problems.

(1) l/s2 plant: The state equation is

0 '1 1l 7T
X = Xx+u , or x . = X, + u R (89)
0 0 k+1l 0 1 k k

where x is a 2-vector composed of position and
velocity, u is the plant noise, T* is the sampling

period,

(2) Position measurement: The observation equation is

z. = Hx, +

K K Vi = {1 0] X, + v (90)

k )

where v is the observation neoise, E[vk] = 0,

2
E{Vk] = Rks
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(3) lant roise:

E[uk] =0
I
. q 0
Elu, u:] =g =" , (91)
0 gq
(4) Yo Vs k=9, 1,2, ..., are Gaussian white and

uncorrelated.,

The formula we shall devolop ie for the covariance of the ostima-

tion errors from k to k + 1 sampling point. They apply, therefore, only

to local considerations., The behavior of the error covariance matrix is

depicted symbolically in Fig. 14.

k~1 M
TA~ 5188719

FIC. 14  PREDICTION AND
UPDATING STAGES IN
KALMAN FILTER

From pk-l/k-l to Pk/k—l’ prediction of the state is performed; the

covarisnce usuzlly grows because of the velocity error and the plart

noise., From Px/k~1 to pk/k’ the k-th measurement is used to update the

state; the reuuction in the covariance is a function of the measurement

accuracy,

Lat

__]
—

(e )

k-1/k=1
s 92
Py -1/k-1 (92)

p ) 1
XV h-1/x-1
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) b

P s k&= k/k=1 (93)
: buv) oy )
el ] N
(av) . (),

. - . " )
Note that tho diagonal eloments of pk-l/k-l in Eq. (92) aro unity,

pkwl/k-l may always bo brought to this form by a normalization procoss

which is discussed in Appendix C,

The prediction process, t

pk-l/k-l o Pk/k-l’ is given by the equation

3 T

D -
Pr/k-1 = k-1 Px-1/k-1 k-1t -1 (95)

Under our assumptions, we have

(px)k/k-l =i (va)k-l/k—l et %
(p”v)k/k-l ] (va’k-l/k-l T 0
(pv)k/k-l =t

The updating process, Py /. to pk/k’ is given by the following
equation, assuming the optimal gain is used:

T

o
Pk = Pxsk-1 ” Pr/k-l B (Hpk/k-l H

#R) HP o . (9D)

Using ths sssumptions, we have
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(px)k/k—l

(px)k/k ] (px)k/k-l
T,
(va)k/k~1
(va)k/k G )
(" k/k-1 | 4 (98)
RX
2
. (Fx)k/)g_l(pv)k/k-]_ ) (va)k/k"l
—_— (pv)k/k-l ' "
(pv)k(k ) (p')k/k—l
i "_—;:_—_—
2
(va)k/k—l

= fol ) - "
( Vi o R + (p
®/’k-1 X x)k/k-l

-~ oo 3 - £ - 3
pk/k may be expressed dirsctly in terms of pk-l/k-l by combining Eqs.
(96) and (98):

1,2(va) T+72+qx
(p ) k-1/k-1 )
= {-
X k/k L? + 2(va) T + ¢2 + q%]
- k~1/k~1
L r R
X
(p ) + T
XV
k-1/k-1
@xv) = 2 (99)
k/k [-1+2(va) TAT +aq
t k-1/k~1 .
1+
R
X
[(va) 4 1]2'/8‘!
( \ 1+ g k-1/k-1 :
. ] = 4 - e " = .
‘;,k/k v [1 + 2(va) T + ’r2 +q
k~1/k-1 ]
1l +
R
X
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For trade-off studies, we need tho sensitivity of P with respect

k/k
to various paramaters, These are c¢asily derived using the result (see

Sec, II-€) that if P and R, arc functions of 8 scalaer pzrsmeter M

k/k-1 k
and if W is chosen optimally or fixed, then

) ) T )
5 Pr/k-1 = 55'(§k~1 Pr-1/k=1 §k-1) * o %A

3

. (100)
_ - ) \ T o [d \ LT
55 Prsk = (1 = WD (SF P/k-1) (3 - W 4+ W ( = ki Yk

=1

T (x H' + R} = optimal gain

e =Pkl B B P n

or
W, = fixed .
Let us choose the parameters 7, 9> 9 and Rx for a trade-off
study. Furthermore, Qs 99 and Rx’ and ? are dependent on sampling

period (1), q, and q, on acceleration error {a), and R_ on paremeter

(B8):

q, = qx(a, T) R q, = qv(d, T)
R, =R (8, ) (1012
& = Q(T) .

The parameters are then &, 8, and T:

Pe/k-1 = Pr/g-1(®
(102)

Pk = Puk® T P y)

Using Eq. (96), the following equations may be written
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aq}S
o
’aPkf/k ".’.
o =
0
2 t
Pkl
) e
OP, /-1 0
5 =
3R
X.0
da .=

-
qu
LY
3q .'
X
+ P, + 1
( xV)k"I/k' = (103)
aqv
1 g?t;

Substituting Eq. (103) into Eq. (100), we obtain the following expressions

for the elements

(e H

whexe

of oP

k/

a(p")k/k
[+ 4

1]

]

k/Bd, the sensitivity to the plant noise parameter

dq
2 x
a - ki) Sa
aqx
(1 - kl) (- k2) So {104)
2 aqx aqv
28 Y% ..
lp
and k. = ! xv)k/k'l (105)
2R ¥ (px)
k/k~-1
/ S~

l’ !




‘.

R
x

1 ¥ Rx + (p

-
.

)kfk-l

Similarly, for the sampling period parameter T:

(106)

a -
(px) %q T} 9R
aTk/k =Q - kl)z 27 + 2:’px ) + a——x + ki g
VRV a1 /K1 o7
B(p ) .
XV 9q oR
k/k [' o L3
s A g e 2(a) R e
k-1/%x-1
(e, 3q 3 3R
KXkl for 4 2 P PSR A o
oT = %2 (p v)k-l/k-l ot 2 P57 B BT .
And similarly, for the measurement noise parameter 8:
o (p,
( ")k/k 2 OB
B i
a(va) oRr
L70 S (107)
¢ 1728
B@%) °R N
k/k 2 / -
o3 T2 28 )
Example 1: ~

Let us illustrate the use of the above equations by a problem fre~-
quently encountered in Kalman filtering: the trade-off hetwesan model
accuracy and sampling period (l/s2 plant approximation). In an attempt
to reduce computation time, one wishes to use a simplified dynamics
model. However, in doiug so, the state estimste error increases. Tais
may be compensated by sampling (processing data) more frequently, which
increases the computation time. One, therefore, needs a set of alterna-
tives on sampling~period and model accuracy to analyze thair computa-

tional requirements.
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Trade-o{i betugan plant noise snd sampling periovd may also occur in
the estimation ol manouvering reeniry vehicle trajectories, as discussed
in Sec. III~D. A moneuver may be modeled as an increase in the plant
nsise that causges large~ than expected estimation crrors if the sampling
period is held fixed. By sempling more ireguently, this error may <on-

verge more rapidly.

Let plant noise be represented by

5.2

E3 b
QN
-3

-

where T and & are respectively the Sormalizod sampling period and neov-
malized accelerstion standard deviation.
q. = ‘a7 = cg'2 3 . ' (108;

~

And let the measurement noisc be independent of sampling period. Then,

BRx

o = 0

ot

8q ) cq

5&5‘2%074 5 -é-gzaz 1’3 (109)
qu 2 aqv 2

i

N
R
A

v T

Let A¥ represeunt the increase in plant noise Irom normal te high; AT,
the required chesge in sampling »ericd tc bring the pesition estimate
error buck to its original value 6 is obtained f{rom the f{irst equatioms

of fqs. (104) sud (10S): .
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o, 20
BN 72 SIS )
A = a7
(110)
8q [ Bq'] 3R
2 X 2 ! X 2 X
(L~ k,)" o Ay = (1L ~ k) 74—3;)) oo v KL g3~ AT)
17 oo L 1 Py )1 /k-1 B.WJ i o7
% o . (Ac) = |21 + 2(p . Tsl(- M)
I . LT
N k=1/k-1
Ly ot
(A1) = - 23 () (133}
27 + Z(va) +a T
k“l/k“l
br _ .1 _ 1 (é?.) (112
T - 2 1 4 22 = E + (va) o
o« T k-1/k~1

2 3
When o T is small, &7/7 = 0; when large, AY/7T = - 1/2 fpo/a. In the
manauvering reentry vehicle exwumple above, this equation may be used to
change the sampling period by the amoun* AT after estimating the noise

increase Ax. Ag may be inferred from the measurement residuals,

It should bes noted that Eq. (1G2) 1s given in normalized quantities;

see Appendix C for reconversion into the original variables.

Example 2:

The trade-off between measurement noise and sampling period (1/52

plant appreximation) will now be considered. In radar observation of
reentry vehicles, this gquection may comy up in different phases of de-
sign and cperation. In the design phase, tnere is the gquestion of praoper
baiance bsetween radar accuracy and data processing requirement. For
exzmpie, if the radar noise is reduced, the samﬁling pericd may bs in-
oreased--mecning less date processing. The messurement noise may also
change during operation; for example, damage to the radar elemenis, or
splitting of the array into subprrays for simultanecus observatiom of
multiple targets will, in geaeral, increzse the neise. This mey be

compensated by faster sampling.
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To compute the change in sampling period necessary to compensate

for the changed measurement noiso, we may use the following formula:

a(p ) dp )
———ggfﬁi M = - -——%;Eii At (113)

which becomes, upon using Eqs. {106) and (107), for a local correction

2 BRx 2F- aqx 2 aRx
kl 5 88 = - ({1 - kl) [if + 2(va)k-1/k-1 +57| ¢ k1 e At .- {(1149)

1% the plant noise is q_ = 1/4 a? 14 and tho measurement noiso is
N

R =8/1 s (115)

whicl represents respectively model acceleratior ersror and presmoothed

measuraments; Eq, (114) may be rewritten as

w &% T : 3| 8
= N ——;——)-E———~J 2T + 2(p V) + o 0] - -3 iYS (116)
T 1
%. - - =3 %g ,  (117)
(r)2 2T+ 2(va) o T
Tx k~1/k-1
-1+ B )
1+ 2(va) THT +q
k~1/k-1

when 1'2/3 is large, A7/7 = 0; when small, AT/T = A3/B.

Normalized varisbles are used in Eq. {117); Aprendix C gives

equations for reconversion to the real variables.

B. One -Stage Sampling-Period S sitivities

in this section, plots are presented giving ihe sensitivity and the
reduction of estimation-~errs>r goveriance, in one stage of Kalman £il-
tering, as fuactions of sampling period for various types of plant and
measurenent noises. Using these plots, the effect of sampling-pariced

variations to locsl-error varistions may be estimated quickiy. Their
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cffects on eorrors at later times can bo estimated using ths adloints,

Sec. II-B. Theo dynamical system is a doublc intogrator [ses Eq. (99)]

subject to random acceleration cxcitation; the measured quantity is

position [sec Eq. (90)]).

Normalized quantities are used.

Apyuendix

C showss the relationships betwoen the actual values (cdonoted by a super

*) and thoe nermalized quantities (unstarrod quantities) to be as follows:

Pe-1/k-1 =
and
-
(px)k-l/kml
Pe-1/k-1 =
(pyv)k-l/k—l

=3
g

b

(va)k-l/k~1

(pv)k~1/k~1 |

1

Gﬁ;)k-l(k~1//L\A?: pg)k-l/k—l
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(p:v)k-l/k-l
(118)
(pg)k-l/ku1_
(p:v)k~l/k~1/A\J«P: pt)k-l/k-l
1
-
C(119)




-

Prrk-1 =

k/k =

()

.(va)

*\
val

-

l/x-1 (va)k/k-l

=)
k/k-1 /=1 ]

(p: )k/k-l/ (p: )k-l/k—l

(), o)y,

prv)k/k//(pv)k/k_“

(px)k/h/tpz)k-l/k-l

p* ,,*
K/k I/A\Jl -l/k-l

Py k/4¥/( % 3 k-1/k~1

* *
k/x—l/ﬁ\f p '1/k‘1

(p:)k/k-1/4?:)k-l/k-l

—

/\/ (7% %)
k -1/k~1

(pt)k//p'\

( :’k-l/k~1

-

VL

| 1 7
. ¢ =
0 1
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by = r*/ p"")

x % ( * h~1/k-1

q, = q*/(p*)

£ X VX /k-1

a, = q*/{p*) .
v A'4 ( vlk"l/',{—l

(Pxd y /12

(125)

(126)

(127)

the predicted next-stage poesition covariance, and (px)k/k’

the correct.d next-stage position covariance, are plotted in Fig. 15.

Using the following equations [see Eqs. (89)-(99)],

i (px)k/k~1 =1+ aT + 7T
(v ) x px)k/k-l ) 1
S e s

(128)

(129)

The parameters are, besides (px)k/k_1 and 7, the position measure-

mext noise, s and the time rate of change of the predicted covariance,

.

dencted by a:

T 2(va)k-1/k-1 '

if the plant noise a, is independent of the sampling period T,
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FIG. 15 EFFECT OF SAMPLING PERIOD FOR 1/s? PLANT

WITH POSITION MEASUREMENT
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The vulue of a is

a =2(p v)~ + o (131)
T k~1/k=},
if the piant noise qx depends on tho sampling period, o.g., qx = ar,
r, = comstant, if position data is not smoothed. (132)
£, = r/T, if positioun data is perfectly smoothed (133)

{r is a position noise parameter).

Figure 15 is organized ss follows: the lower horizontal axis i3
for T, the vertical axis for (px)k/k~1’ and the upper horizontal axis
for a given

for (py) Therefore, if the problem is to find (py)

set of Tf/ix, and a, we start from the lower horizontalkgiis, where the
given T is located, We then traverse up vertically until the appropriate
rx curve is reached. (px)k/k—l can now be read from the vertical axis.
To continue, we traverse norizontally to the curve with appropriate value
of a. The upper horizontal axis now gives the answer on (px)k/k' For

other types of proilems, the stated procedure may be modified easily.

Figures 16 end 17 show the relationship between the seansitivity,
(Aprpx)k/k/(AT(7), and T for a = 0 and 1. The equation for these
figures is easily derived from Egqs. (128) and (129):

e&(. /(_A_l} _ T (a + 21..;‘ ’ (134)
) /" 2 A ¢
* b (l___-_l) Qs ar e

x

Note thai this semsitivity 1is dimensionless, relating percentage change

in (pP), . to percentage change in Tk

Ap* Ap

"’_.3.‘_ {ﬁ_“i)= k.3 /(A_T.) . (135)
T T

NE ek

k/kl

Two examplss are givern below illustrating the use of Fig., 15,
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j
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FIG.16 SAMPLING-PERIOD SENSITIVITY OF ONE-STAGE
KALMAN FILTERING, o =- 0
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Exnmgle 1:

Chsnge in sampling periocd

Dk =
“k-l1/k-l T

W

r*
X
q¥ -

X

We wish tc find and zompare

3,422 5,380

5,380 11,973
TR
10° £t (136)

0.25¢ X 7% ftJ .

(p¥), 55, Tor sampling periods, T¥, of

G.1 and 0.2 sec. According to Eqs. (118)-(i27), the normalized quan-

titiss are
. 5380
1 -é-zo—o- 1 C.840
Prel/k-1 = = -
£380 0.840 1 N
6400 ‘ N / -
T=7%¥X1.87 =9.187 it T1%¥=0,1 .
= 0.374 if ¥ o 0.2 (137)
4
r = 10/3422 = 2,92
Y 0.259 X 7% 0.259
q, = =153 = 3535 X 155 7 = 0.00004057 .
Therefore,
a = 0.0000405
and ’
a = 2x (p ) + &
pre s

2x 0.840 + 0.,0000405 = 1,58 .

68




To obtain values of (py) for 7 of 0,187 and 0,374, the dotted

k/k

lines in Fig. 15 are traversed from T axis to (p,) axis, Tho results

k/k

H

0.187

(px) =0.92 for T
k/k

(px)k/k

The conclusions are therefore thus: If a sampling period of 0.1

(139)

1.06 for T 0.374 .

]
i

sec (1% = 0.1) is used, the one~-stage pasition covariance reduction is
0.92, from 3,422 to 3,150, If the sampling period is increased to 0.2
sec, the pocition covariance increases by a factor of 1.06, from 3,422
to 3,630, Furthermore, this increase is due mainly to velocity errors
rather than to piant noise; this may be seen in Eq. (138), where

(va)k-l/k-l is due to velocity errors, and & is due to plant noise.

These values are verified by Fig. 7 at 1 sec.
Example 2:
Sampling~period change with smcothed measurement

Assume all quuntities have values identical teo the last example

with the exception of rx:

0.187 X 2,92
x - T

{140)

For 7* = 0.1 and 0.2, r_is 2,92 and 1.46, respectively. The first
case T* of 0.1 is read from Fig. 15 exactly as in the last example,

vhich. gives (p,) = 0.92, For 7¥ = 0.2, we have to use the r, = 1.46

k/k
curve (approximated as shown ia dotted line by r, = 1.50), obtaining

Based on the values,.we have the conclusion that for larger posi-
tion covariance reduction using smoothed data, Eq. {14C), one should
use a sampling pericd of 0.2 sec compared to 0.1 sec, If this seems
unreascanable secording to engineering intuition, one should refer to

the discussions in Example 2 of Sec. IIXI-E.
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For ™ bsotwoen 9.1 and 0.2 (7 botwoen 0,187 snd 0.374) cno may
interpolate usirgy the -.- line shown in Fig. 15. In the smoothod data
case then, this line takes the place of constant ¥ lines of thée non-

smoorhed data cuse,

Perbaps the greatest utility of Fig, 15 is in ottaining rough and
quick estimation ox tho filter charascteristics at the operating points.
For exanple. when r is small and when (px)k/k~1 is large, changes in
zampling period do not affect (px)k/k very amuch--see, as specific values,
r, = 0.5, o =1, and 1 = 1 in Fig. 15. Another example is the trade-
off example shown in the following.

Fxample 3:

Trade-cffs

Let the filter oporation be represented by the two points a and b
in Fig. 15, representing T = 1, a = 1, and r, = 1. (px)k/k is 0.75,
Suppese in order to reduce computational ioad we wish to change T from
1 to 2; we have a choice of either improving model accuracy or improving
measurement accuracy to maintain (px)kfk at 0.75,

First let us change model accuracy while r, is held fixed. As 7T
is changed to 2, a = = 1 is required (poiut d) to maintain (px)k/k at
0.75. 1If (px)k—l/k-l
by Eq. (131) « is a positive number. This leaves us the only choice of

is positive, a negative a is impossible because
reducing the measurement noise. This is represented by the point c.

The requircd T, is about 0.8, The measurement noise covariance there-

fore needs to be reduced by (1 - 0.8)/1 = 20 percent.
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V. CONCLUSIONS ALD FUTURE WORK

We have given techniques for sensitivity analysis of the Kalman
fiiter with respect to simultancous variations in measurement noiso,
plant noise, dynsmic model, sampling period, and filcer gain. These
analytical techniques will greatly aid the design and evaluation of
Yalman filters and other types of filters. Two basic assumpticns wvevre

used:

(1) There are nominal quantities about which variations :

may be taken,

(2) The estimation-error covariances are the filter

performance measures.

Future work shall be the application of the techkniques tTn tle

problems described in Sec. II1-G.
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APPENGIX A

ACTUAL COVARIANCES IN EXTENDED XALMAN FILTER

The extended Kalman {ilter is becoming «n important technigue esti-
mation of nonlinear dynamical system. The purposc of this appendix is
to gave expressions for the expectetions and of the estimation-error
covariances using the extended Kalman filter, and to reconcile them with
the covariance equation of the filter. The discrete time case shall be
considered.

The system is describec by

un

Ko = T ¥

(A.1)
zk = hk(xk, vk)

¥e note that the 4ynsiic equations of Sec. II, Eq. (1) are a
special case of the above equations,

We will analyze the following filter:

-~

X /k-1 = TP si-r @

2 k-1 = hk(xk/k—l’ Q) (A.2)

A
X

R U S S )

%% /x-1

y

where T and h are nonlinear functions with sufficient smootheness for
our later derivations, x is the state to be estimated, z the measure-~

ment, axd w ard v the plant and measurement noises. The noise are

assumed to be zerc mean and uncorrelated both to each other and in time,

% is the filter gain; the super-hat symbol denotes the estimated
quantities.
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Tha estimation orrors aro defined as

k-1 T ¥k T Xk/k-1

(A .3}

77 S "/

th
Assume that at the (k - 1) stage, w~ have
~ ~
BBy 1 /k-1? = %eo1 ke

(A.4)

X

F? - 3 -5 T .
E li"k«l/k-l k-1/k-17 % xk-—l/k-l)] =Pk -
For the predictior part of the filtering, we have

*)x-1 = *x T skl

( w ) ~-f {

*ee1r Va1 k-1 0 .

=3 Xg1/k-1°

It is assumed thav {(x, w) may be approximated by a two-~term Taylor
series abeut f(i, 0). Dropping the subscript k -~ 1 on fk~1 for sim-
plicity, we obta:a

/-1 = F(xk-—l/k-l’ O + 2, - Gy =X )t Vg

1 . o T
- - 4 -
3 N 0 O T Fpaamer) R 7 %oy e /[~
/
1 T - T -
* 2 kel e * T e T Rk wk-]] )
=2y e O > (A.5)

where the following notation is used. Let f be an n-victor function of
an n-vector x and a p-vector y, and let B be an n % p matrix. fxy °B
will denote an n-vector, the kth component of which is
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The special case ol y

I §
oB)kQ}; Z:m;.}d-a“ . (A.6)

= X and B = 8x 6xT is the following familiar term

in the Taylor exparsion

-~

[ © 8

Note that

Therefore,

X/k=1 = *x " Fk-1/x-1 T v " Ykel

o £
T E“ 1
6X = - 6x 6X . (A .7)
)k 1 JZ S}‘i Byi i 77
(A +B) = fxy ° A 4 fxy °B . (A.8)

- T
xx  Fk-1/k-1 Xk-1/k-1

T -~ T

1
+3 fww S W1 W t fxw ° Xy e1/k-1 Y1 {A.9)
Therefove, upcn using Eq. (A.5), and since W1 and X} -1/k-1 are un-
correlated and E[wk-I] = 0, the expected value of X /K1 is
z - EI% - . %
“k/k=1 E‘xk/k--ll - fx *k-1/k-1
- - n|

{(x - X)k/i{-l = fx . (

~ ~T
x ° Ex x )k-l/k-l -«

L3 4]

1
* 7 i l_pk-l/k-l * Xg-1/k-1 xk-l/k-1J

1
o+ E fww ° Qk-l (A .10)
X1k T -1 F T Yk

)

“u

k=1/k=1 " Pk-l/k-l]

o .
Lf“' Y " %al *f A ° *k-1/k-1 V-1

o

. (A1)

! .
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Now we compute the covariance

r~_ ~ o~ ~ T
Prrk-1 = B[ Fi/x-1 ~ X /x-10 S k-1 T xk/k~1):]

pk/k-—l = fx EE§R-1/lc-1 " §k-1/k-1) (§k~1/k-1 B §k~l/k-1)T:] f:
8 * fw EE'k—l w:-l:] f:
i?- PSS NUPNINE LR AT S (A.12)
where all terms involving third or higher orders of §k~l/k~1 and wk-l

are assumed to be negligible compared to pk/k-l' This is a valid

2 .y
and w are small or (a fi!,/(axj Bxk)

gssumption when either X -1

o k-1/k~1
and (5 fi)/(axj Bwj) are small,

For the updating purt of the filter, we have (dropping the sub-
script k on W and h)

ok T *x T *k/k
=%, - [xk/k-l + “(zk - zk/k-l)]
R N Wh(xk, vk) + Wh(xk/k-l’ 0y

Using a second-order approximation of h(xk, vk), we have

~

xk/k = Xy ppey T wl}ﬁxk/k-l’ 0) + hx(xk - xk/k—l) + hv vy

R - T o1 D
B © % = X)) Op T Fe ) T3 By 0 Ve Y

o

-~ T N
+he =X ) Vé} “ WRlxy peqr O .

’
]
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'
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Therefore, [ -

~ . ~ 1 ~ ~T
= - W - - N
¥ = 2TV Xy TR Yy T Wiy Rkl Ri/ked
1., T ~ T
- - ] - W [
FWh o°v v =Wh % /-1 Yk . (A.13)
Using the last expressicen, the expectation and covariaince of §k/k
may be computed; upon using smallness assumptions similar to the pre-
diction part for Pk/k:
X = Bl pd = (= WhY) X
1 = =T 1.,
g Whyx ° (pk/k-l * Fk/k-1 xk/k~1) T Va0 R (R
Xk "~ Fk/x = (1 - th)(x -X) - “hv vy

1 o |¢ - -
2 "hx l—‘x X~ F X Dy Pk/k—l]

1 . ) 1 - T
FWh,y o W Vi TR T Wy P g Ve A9
~ Py ~ ~ T
Pe/k © EE"R/}: /i) Pk xk/k)]
> (I -Wh) P (I -Wh ) +Wh k_ hlwr (A.16)
X k/k-1 x” v kv * ’

A comparison of the actual covariance expressions, Egqs. (A.12) and
(A.16), with the computed covariance equations of the extended Kalman
filter shows that they are identical. The computed covariance equations
itherefore give the actual covariances appreximated to the second order,
However, the estimation-error means given in Egs. (A.10) and (A.14) are

no longer zero, as is true in a linear system.

By modifyang the extended Kalman filter aquations of Eq. (A.2),

the estimation-error means may be made zero. The optimality cf the
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modified fi~ter will not bo discussed here, The modifications consists

of adding second-order torms as follows:

, . 1 1
Remer = I ke @ 75 e P Biizker T2 faw C %
Z k-1 = Py ey O
X = X clwn o +i2wn R
k/k - Tk/k-1 T Z "Uxx K/k= T 2 vy k
~ =% . 17
Xa/-1 = %a/-1 (A.17)
. - = 3 o .
For this filter, X k-1 = 0 and X1 /k = 0, with the actual covariances

given by Eqs. (A.12) and {A.18),

78




APPENDIX B

THE VARIATIONAL EQUATION &F THE COVARIANCE EQUATIONS

In this appendix, the change in P as a result of changes in

K+1/k+1
pk/k’ ék’ Qk’ Rk+1 will be studied. For simplicity of notation, all

subscripts will be dropped on ék’ Qk’ Rk+1’ and W P denotes

k+¢l® “k+l
pk+1/k+1’ P denotes Pk*l/k’ and P, denotes P

l k/k*
The prediction-error covariance matrix when Pk’ {, and Q are changed
to Pk + AP, ® + A%, and Q + AQ.1s
P+ P = (8% A (B + 8P (34 8DT 4 (Q+ 0Q)
O T T T
| = (2" Q) + aep " + 2p, 38" + avp 02
(-89 o0 (24007 +0Q . (B.1)
. Since P = &P &7 + Q, we Lave
i = %P, 8 , A
) T T T :
b= (e, 2"+ 0Q) + (pep, 8" 4 e, 887)
T T T
+ (a%p 83" + 24P, + 20P 2 ) |
+ (AQAPk[séT) ] (B.2)
If 4% = 0, only the first bracketed term is nonzero. For nonzero A%,
: AP is given to the first order by the first two bracketed terms of Eq.

+

o

(3.2).

The updated error covariance P changes because of AP, AR, and
k+l

AW, For the general case with no assumptions on AW, we have

. , - T
Py * P, = [1 = (F+ SOHL P+ 821 [I - (W + OW)H]

+ (W + AW) (R + AR} (W + A'.»')T . {B.3)
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Upon subtracting the exprossion

P,y = (I = WH] PLI - WH]® + WRW', (B.4)
and gatnering terms, we lLave
AP = {(1 -~ wi) aP(I -7+ wzmwT} + A + B (B.5)
K+l k+l k+l ’ *
where / ~
!
A,y = (= (1 - wi PH" + WR] MY + AW[~ (I - WH) PH® + WR]')
B,,, = (v [HPH® + R} AW® + [~ (1 - WH) APH® + WARJ AW~
+ W[~ (I - WH) APH + %ARDT)
+ {AWIHAPH' + AR) AwT} .
The first bracketed term and Ak+1 contain the first-~order terms; the
Bk+1 is of second #nd third order.

1f the gain is fixed, AW = 0, then only the first bracketed term

is nonzero.

If the nominal gain W is optimal (before changes in P and R), then

Ak+1 is zero, regardless of AW, because

WO = PET(HPH + R)
- (1 -wm P’ +w°RI=0

but B + assumes someé nonzero value depending on AW,

k+1
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We hove, in fact, obtained a verification that Wo, as shown in Eq.
(B.6), is optimum in the sense that it causes the smallest estimation~
error covariance, The verification consists of showing that any varia-

tion from wo w1ill result in higher covarisnce P Accordingly, we

k+1l/k+1"’

56t AP = 0, AR = O in Eq. £B.5), obtaining the following Bk+1 that is
positive definite for all AK—~AW{HPHT + R] AwT. Therefore, if W of Eq.

(B.6) is used, then A is zero, and AP =B is positive definite,

K+l k+1 K+l
This verifies the optimality of W in Eq. (B.6).

Let ws now investigate the case in which W is arbitrary but AW is
such thet (W + AW) is optimum under parameter variation P + AP and
R + AR. We shall denote this AW by MW®. By Eq. (B.6),

W aw® = (P o+ APIHS [H(P + AR)HT + (R + 8R)17T s (B.8}

which may be rearranged as

O _ o ol
AW = , o (B.9)
wheare
n1=xi<p+;p)xT+a+5n ;
{
i, = (1 - W) (P4 EPIH «W(R + BRY . . T (B.10)
Now Ak+1 and Bk+1 may be expressed as
T T
= X H : - ] it \ . » l)
At B,y = (aW) *rl(m*) 'Tz(.’m) (&) 7, (8.1

Using the optimum aw® of Eq. (B.9), we have

1T -1 T -1 7T
A a v B =T ™ Tyt T T Ty Ty T,
' 1T
==, "1 n, . (5.12)




Therefore, ii AWO is used regardless of the optimality of the nominal ¥,

Ak+1 + Bk+1 is the negativa definite matrix of Eq. {B.12).

Of particular interest is the case when W and W + AW are both
optimal:

o oT

AP, . = (1 - WO aPCI - WO 4+ w° Amw

k+1

- [~ 8PHT + wOHAPHT + AR)T [H(® + AP) H® + R + sR1™Y

{- APH® + W(HAPH® + AR)1T (B.13)

and when W is fixed, (&% = 0), regardless of the optimality of W:

8P, . = (I - W) ARCI - WH)T + WARWS . (B.14)
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APPENDIX C

NORMALIZATICN OF THE COVARIANCE EQUATION

The recursive covariance equations are

. T
* - % DR V3
Pkl = TP ¥+ Q
px px px .'H*T H* pX H*Y . R* % * pk
k/k = Tr/x-1 " Pk/k-1 ( k/x-1 & * Rk) B P /k-1
waere
p* p* \
( x)k-l/k-ol ( xvlk-l/k-l
pX =
k-1/k-1
p¥ ) p*
( XV g-1/k-1 ( v)'x-l/k~1
1 7*
-2 .
0 1

Multiplying both sides of Egq. (C.1) by the normalization matrix

—

N-1/2

= >

P\
- '\/( VIk-1/x-1]

we obtain the following normalized equations:
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(c.2)

(c.3)

(c.49)

(c.5)




o
T
Prsk-1 = ¢ Pyoyka &+ Q
’ 4 (c.e)
T T )
. . Pk = Pasker " Pk ¥ (PP Bt R HR
where — -
P
) ( Y/ x-1/K-1
VB, P
o SV 2 N1/2 _ (VP Vherwery o .
k-1/k=l :=1/k-1 = (va) .
k~1/k-1 N
P. P
_( x v)k—l/k~‘ -
. P ) P )
( *ly/x-1 ( *Vix/x-1
p (\/P, P
=12 . =1/2 ( x)k-l/k—l (V% v)k~1/k-1
pk/k"l = P* N = (p ) (p ) {(C.8)
» Vi /x-1 Vik/k-1
—~ ' ) P
S e v)k—l/k-l ( v)k—l/k’-l
P ) P,
( * Ix/x ( “v)k/k
P P. P
. ~1/2 g ~1/2 ( x)k-l/k-l (VP v)k-l/k~1
P, =N P* N = (C.9)
k/k (va) (pv) / ~
k/k k/k ]
/P, P Ip '
( x V)k-l/k-l \ V)k-l/k~1
. -
1 x
8 = N V2 gx 512 , T o= (1% - . (C.10)
0 2 px
k=1/k-1
The measurement vector H¥ can be normalizeé to [1 0] by trans-
forming H* and R* using some noasing lar matrix A in the following
manner. This will leave P unchanged; verification is by substitutinug
k/k :
. . Egs. (C.11), (C.12) and Egs. (C.7)-(C.1(, into Eq. (C.1).
) RY’R R S 1/2
H=0 O0lFN AT H*N = {1 0] (C.11)
~
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-1/
) Rk = (1L O]N

Similar equations exist for H¥ that are matrices

Special cases of H¥ are:

1 o} ';

if H¥ =
™9
if H* = , then
o i
¥
£ -
t . i
¢ ‘ \\
- -} /2
Q,: N 1/2 Q* N L/ =

~e

1
2 A

0

-1

i
R ATl [ o) N1/ .
0

ratnexr than vectors.

Vo)

Py \
%-1/k-1 ( Vik-1/k-1
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(C.12)

‘R
then H =[1 0] and R = > X ; (C.13)
( x)k-l/k-l
RV
ther H = [0 1] and R = o i (C.14)
( v}k-l/k-l
_ . -
0
(Px)
0 k-1/k-1
H = and R =
1 R,
0 -
(pv) 1/k-1
" k=
(C.15)
qx qXV
. p \/P p
( x)knl/k-l ( X v)k-l/k-l
=N\ . (C.16)
qXV qV




