

This document has been approved for public release and sale; its distribution is unlimited.

AD _____

......

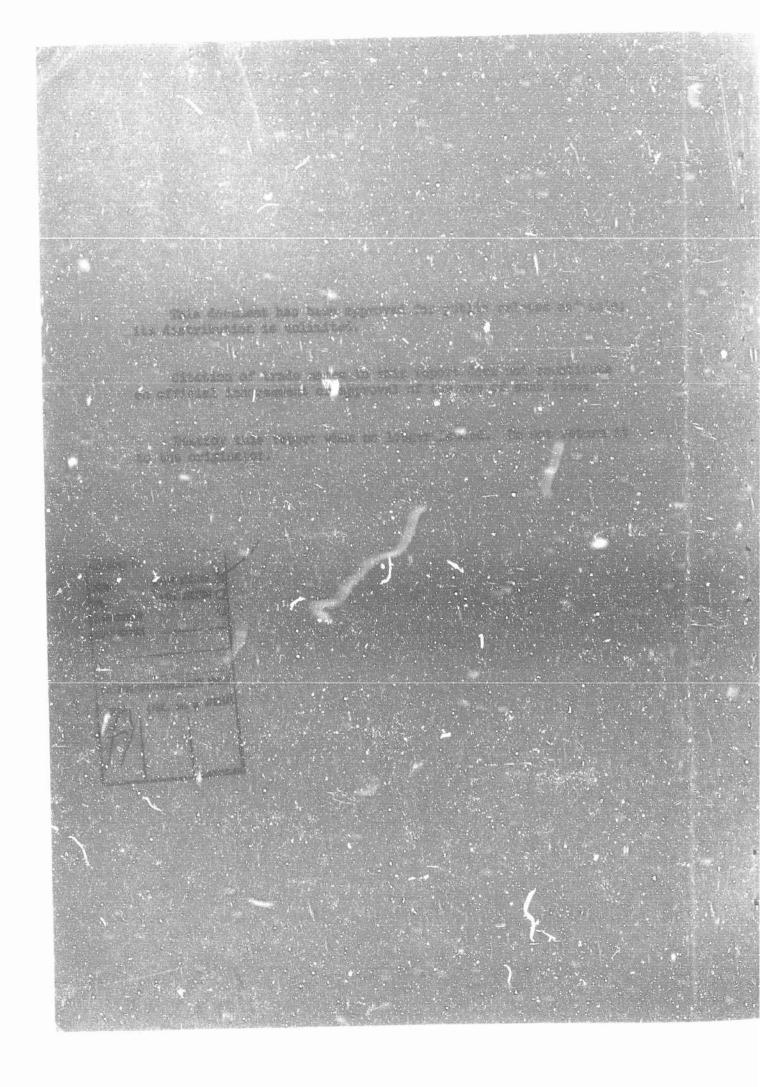
22.

TECHNICAL REPORT 71-43-ES

MORPHOMETRY OF LANDFORMS: DRUMLINS

by

H. FRANK BARNETT, JR.


and

PETER G. FINKE

May 1971

Earth Sciences Laboratory U.S. ARMY NATICK LABORATORIES Natick, Massachusetts 01760

> Series: ES-63

FOREWORD

From late 1968 to mid-1970 the Earth Sciences Laboratory of U. S. Army Natick Laboratories measured slopes on drumlins in the northeastern United States and in southern Germany. This report outlines the field measurement techniques and summarizes the data as a contribution to the general bank of ground-truth information fundamental to descriptive classification of terrain for military and scientific purposes.

Drumlins were chosen for study because these glacially deposited hills are distinctive locally accessible landforms useful in developing and evaluating a methodology for describing any terrain quantitatively. They are of military interest as factors affecting visibility, mobility, fields-of-fire, and defilade.

The work reported here is a step toward classifying glaciated terrain quantitatively by describing component landforms individually. Additional field measurements of associated landforms will establish a base from which classification of broader areas can be made from airphotos or topographic maps. The same methodology will be applicable to descriptive classification of terrains other than glacial.

Security Classification			
DOCUMEN	T CONTROL DATA -	R & D	
(Security classification of title, body of abstract and	indexing annotation must		ويراك بالمتكالية ويزدان وتبقيهم والبقي متقلقا تنوا الاقتار فلمتكام ومستعرب وترافعك
ORIGINATING ACTIVITY (Corporate author)		28. REPORT	ECURITY CLASSIFICATION
U.S. Army Natick Laboratories			SSIFIED
Natick Massachusetts 01760		2b. GROUP	
REPORT TITLE			
MORPHOMETRY OF LANDFORMS: DRUMLINS			
I. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
3. AU THORISI (First name, middle initiel, last name)			
H. Frank Barnett, Jr. and Peter G. F.	inké		
REPORT DATE	78. TOTAL NO	D. OF PAGES	75. NO. OF REFS
May 1971	34		16
A. CONTRACT OR GRANT NO.	98. ORIGINAT	OR'S REPORT NU	TBER(5)
5. PROJECT NO.	71-43-1	15	
с.	9b. OTHER RI this report	PCAT NO(S) (Any	other numbers that may be savigned
		,	
d. 0. DISTRIBUTION STATEMENT	ES-63		·
UNLIMITED.	U.S. A	ng Military Act rmy Natick L , Mass. 017	aboratories
3. ABSTRACT			
Lengths, widths, heights, in Massachusetts, New Yor derived from 46 miles of lengths were measured in titative description of a to military operations an	and asymmetries k, and southern traverse. Slop the field as a glacial landfo	s of 55 drum Germany are e gradients basis for qu	lins and an-
Lengths, widths, heights, in Massachusetts, New Yor derived from 46 miles of lengths were measured in titative description of a	and asymmetries ok, and southern traverse. Slope the field as a l a glacial landfo ad materiel.	s of 55 drum Germany are e gradients basis for qu rm significa	lins and an-

. KEY WOR	D8	LINI		LIN		LINK C		
net WOR		ROLE	WT	ROLE WT		WT ROLE W		
Length		8			1			
Width		8						
Height		8						
Asymmetry		8						
Drumlins		9	· .		!			
Quantitative		0				Į		
Description		4						
Landforms		4						
Glacial features		4						
Military requirements		4			1			
	i I							
					1			
	<u></u>							

UNCLASSIFIED

UNCLASSIFIED Security Classification

MORPHOMETRY OF LANDFORMS: DRUMLINS

.

Contents

	Page
List of Illustrations	iv
Abstract	v
Purpose and Application	1
Results	3
Limitations of the Study	4
Definitions	4
Historical Background	5
Study Areas	6
Field Methods	8
Data Compilation and Interpretation	13
Explanation of Selected Drumlin Profiles	18
Recommendations for Further Study	21
Bibliography	23
Appendices	25

iii

ILLUSTRATIONS

Figures		Page
1	Drumlins measured in the HUDSON ARLA, Massachusetts	9
2	Drumlins measured in the WEEDSPORT AREA, New York	10
3	Drumlins measured in the EBERFING AREA, Germany	11
4	Drumlins measured in the BODANRÜCK AREA, Germany	12
5	Cumulative slope-gradient frequencies	15
6	Field-measured profiles of drumlin, EBERFING AREA	19
7	Field-measured profiles of drumlin, HUDSON AREA	20

Tables

1	Slope-gradient frequencies	14
2	Summary of mean drumlin dimensions, by areas	17

APPENDIX

Dimensions of individual drumlins	A.	HUDSON AREA	25
	в.	WEEDSPORT AREA	27
	c.	EBERFING AREA	29
	D.	BODANRIICK AREA	31
	E.	CATO, CAYUGA, and ROSENHEIM AREAS	33

iv

ABSTRACT

Lengths, widths, heights, and asymmetries of 55 drumlins in Massachusetts, New York, and southern Germany are derived from 46 miles of traverse. Slope gradients and lengths were measured in the field as a basis for quantitative description of a glacial landform significant to military operations and materiel.

v

MORPHOMETRY OF LANDFORMS: DRUMLINS

Purpose and Application

The data of this study are intended to provide ground-truth control for modeling terrain in glaciated regions dominated by drumlins. The data are a contribution to the bank of detailed information essential to development of regional quantitative terrain descriptions guiding design, test, and use of military materiel. The field and data-analysis techniques used illustrate a methodology for landform description.

Augmented by field measurements of associated landforms, these data can form the basis for quantitative description of broad tracts of glacially deposited terrain throughout the Northern Hemisphere.

Glaciated areas are significant to military operations. They occur over 33.6 to 54.8 million square kilometers (12 to 20 million quare miles) of the earth's surface (Charlesworth, 1957, p. 704; see tabulation below). More than half of the areas in the Northern Hemisphere are in North America, and more than half of the remainder in northwest Europe.

Regio	n	Surface A	Area (milli	Lon sq km)
		Ir	nvestigator	c
		Antevs	Penck	Valentin
North Europe an Siberia	nd west	3.3	13.0	10.2
East and southe	east Siberia)		3.2	1.5
Central Asia	ý	3.3	0.5	1.5
Faerces and Ice	eland, etc.		0,1	0.4
Greenland		2.0	3.0	2.3
North America		11.5	16.7	15.8
Temperate and T latitudes	Fropical		2.4	0.1*
Patagonia and A Islands	Antarctic		1.4	1.0**
Antarctic cont:	inent	13.5	14.5	14.0***
	Totals	33.6	54.8	46.8
*Australasia	**South America	***Anta	rctica	

No estimate is available to suggest the total number of drumlins. They are, however, more widespread than is generally recognized.

Quoting from Charlesworth (1957), p. 393: British drumlins are especially well developed in County Donegal, County Mayo and in northeast Ireland where they extend from the Ards Feninsula to the Shannon and County Louth and constitute one of the biggest continuous drumlin countries in the world; in Galloway, the Tweed Valley and the Midland Valley in Scotland; in Wensleydale, the neighborhood of Kendal, Oxenholme and the Ribble Valley, between Hellitield and Skipton, in the Vale of Eden and Solway area in England; and in Anglesey and the Wrexham district in north Wales. On the mainland of Europe . . . they are found in various parts within the Alpine glaciation and, relatively rarely, in north Germany, in Holland, and in Jutiand and Denmark. They have been recorded from the lands east and southeast of the Baltic and from Poland, the Ukraine and Fronoscandia (e.g., Narke, Ostergotiand, Vastergotland, Finland), Forms have been identified with them from central France, the Dinaric Alps, Tienshan, Siberia, Novaya Zemlya and China.

"North American drumlins are grouped mainly in five areas: (a) Manitoba and Athabasca; (b) New England, ranging from Ontario, New Brunswick and Nova Scotia (2300 in the southwest) through south Maine and New Hampshire (c. 700) to Connecticut and Massachusetts (c. 1800), including 180 about Boston; (c) Michigan and Wisconsin, of whose 5000 drumlins 1400 are situated in the southeast; and (d) central Western New York. This state has one of the most remarkable groups in the world; the belt which is 35 miles (56 km) broad and 140 miles (c. 225 km) long between Lake Ontario and the Finger Lakes and rises to 1700 ft (518 m), comprises 5000 sq. miles (c. 13,000 sq. km) and over 10,000 drumlins. Where set close, they are 20-35 per 4 square miles, though 5 to the square mile is common and 3 is the average . . . A fifth area occurs in British Columbia where they probably number several hundred thousand."

Results

Slopes were measured on 55 drumlins in classic areas of drumlin occurrence - north-central Massachusetts, central-western New York, and southern Germany. Gradients and lengths of 3200 slope segments (slopedistance increments) totalling more than 46 miles of traverse, recorded on EAM punch cards, are the data from which quantitative expressions of drumlin size, shape, and asymmetry have been derived.

Limitations of the Study

Although the 46 miles of walked traverses on drumlins appear to be the most intensive field measurements available, the data express an exact range of values for only the 55 features measured. It is reasonable to assume a closely similar range for the drumlins associated with those measured; but it cannot be assumed that the range is more than a first approximation for all drumlins of the world.

Features with smooth oval, elliptical, or rounded ground plans were chosen for measurement whenever possible, in the hope that the information might thus serve both military and academic glaciclogical interests. Sampling, therefore, was not random, but unpredictable circumstances of accessibility and cultural development forced a measure of randomness upon final field selection.

The study considers only the geometry of drumlin surfaces, rather than cover, composition, or internal structure.

Within the limitations of the sampling, the density of traverse lines (four per feature), and the precision of the measuring instruments (gradients to one degree, distances to two percent of actual), the data are accurate.

Definitions

Drumlins are oval, elliptical, or elongated hills formed under thick ice sheets as accumulations of clayey stoney material compacted and streamlined by pressure of the moving ice. Long axes of the features are parallel with major directions of ice movement and, approximately, with orientations of scratches on associated bedrock overridden by the ice. The material of drumlins is generally unlayered and directionless, although bedrock knobs, waterlaid sand and gravel, and stress-layering may be included. Thin surface soils on the clayey substratum usually support only pasturage, fodder, orchard, and tree crops.

Drumlins usually occur as "fields" - a large number of features in a group, close together and sometimes coalescing near their bases. Among the better-known fields of North America are those in Massachusetts, New York, Wisconsin, Manitoba, Ontario, British Columbia, and Saskatchewan. In Europe, such groupings are found principally in Germany, Ireland, England, and Switzerland.

Drumlin shapes range widely, to include smooth oval hills, almostround mounds, and elongated ridges; some are double-tailed, have undulating crestlines, or show other irregularities in plan or profile. Heights range from 20 feet to at least 200 feet; lengths, from several hundred feet to a few miles. In spite of their irregularities, drumliss meet Barton's (1893) ideal as "the most symmetrical and grateril hill that nature produces".

Historical Background

Earliest recorded interest in the picturesque, gracefully rounded hills now known as drumlins was in Ireland and Scotland, in the "basketof-eggs", "bag-of-potatoes" countrysides. Bryce used the term drumlin in 1833, Close brought it into glacial literature in 1866; W. M. Davis introduced it into America in 1884, thereby retiring more coloriul but less objective terms such as sow-back, whale-back, horse-back, manmillary or elliptical hill, lenticular hill, parallel ridges, drift hill.

Sir James Hall in 1815 wrote of hills near Edinburgh, commenting that their rubbish-like irregular composition must result from some cause other than "ordinary detritus and wearing away of the land"; he favored earthquake waves as that cause. M. H. Close, writing in 1866 of rocks near Dublin, made the first clear reference to dramling as directly dependent upon glacial action for their form; their parallelism with neighboring striae on bedrock led him to this interpretation.

The ensuing several decades of the nineteenth and early twentieth centuries saw considerable interest in drumlins as part of the glacial scene. Nearly all the investigations, however, were qualitative surficial studies directed toward explanation of possible origin; quantitative description was only rarely a product of the investigations. Ebers' (1926) collection of drumlin shape and size data was one outstanding such product, although many of these data are for broad ranges and mean values which are imprecise numerical descriptions. Actual field measurements of drumlin slopes seem never to have been published.

Quoting from Smalley and Unwin (1968): ".... although much has been written about drumlins, very little hard fact has emerged. Only recently, in accordance with the general trend in geomorphology, has the quantitative investigation of drumlins and drumling fields been undertaken. Chorley (1959) has given a meaningful interpretation of the shape of drumlins; Reed and others (1962) have measured discributions and orientations, and Vernon (1966) has measured spacings and distribution; these three papers represent the basis of the new approach to the problem of drumlin formation."

The data of this report contribute "hard fact" descriptions of the three-dimensional form of drumlins.

Study Areas

Investigations were conducted in areas long accepted by geologists as drumlin fields, to permit correlation of measurement data with published information and to minimize identification and verification of features in the field.

Sampling density (number of features measured relative to the number occurring in a definable area) differed greatly in the several areas studied. In Germany the drumlin fields were relatively small and clearly separable from adjacent non-drumlin landscapes; in New York the great number and extent of drumlins make a quantitative expression of sampling density almost meaningless; in Massachusetts, sampling was limited to an apparent local field. The following tabulation is, therefore, illustrative only with the above limitations in mind:

Area	Approx. Total Drumlins	Drumlins Measured	Percent of Total
Hudson (quadrangle), Mass.	56	17	30
Weedsport (quadrangle), N. Y.	71*	9	13
Eberfing, Germany	45	13	29
Bodanrück, Germany	70	10	14
Cato (quadrangle), N. Y.	85*	1	
Cayuga (quadrangle), N. Y.	90	2	~ -
Rosenheim, Germany	15	3	20
*Reed and others, 1962.			

The <u>Hudson Area</u>, <u>Massachusetts</u>, (Figure 1), west of Boston and including the town of Hudson, occupies approximately the southern half of the Hudson 7 1/2-minute topographic series map of the U. S. Geological Survey (1966) at a scale of 1:24,000 and a contour interval of 10 feet.

Alden (1924) investigated drumlins of the Hudson area as early as 1906. More recently, W. R. Hansen (1956) published Geological Survey Bulletin 1038 discussing the geology of the Hudson and adjacent Maynard quadrangles. Drumlins measured in the Hudson area were chosen from Hansen's surficial geology map.

δ

The Weedsport Area, New York, (Figure 2), transected east to west by the valley of the Seneca River and including the town of Weedsport, is depicted topographically on the Weedsport 7 1/2-minute topographic series map of the U. S. Geological Survey (1954) at a scale of 1:24,000 and a contour interval of 10 reet.

The <u>Cato</u> and <u>Cayuga Areas</u>, <u>New York</u>, adjatent to Weedsport and part of the same large drumlin field, are also shown on U₁ S. Geological Survey topographic 7 1/2-minute maps. (Figures showing individual drumlins measured are not included in this report because only three widely separated features were measured.)

The New York areas were recognized as a drumlin field at least as early as 1882. A recent map and airphoto analysis (Reed, Galvin, and Miller, 1962) of 71 features in the Weedsport quadrangle presents data on form, orientation, and spacing which are amenable to correlation with the field data of this report.

The <u>Eberfing Area</u>, <u>Germany</u>, (Figure 3), southwest of Munich and Würm (Starnberger) See and including the towns of Eberting and Marnbach, is on the Seeshaupt and Iffeldorf topographic sheets published by the Bayerisches Landesvermessungsamt (1959) at a scale of 1:25,000 and a contour interval which varies from one to ten meters according to the steepness of the slopes. (Figure 3 is from a 1:50,000-scale map.)

Named by Rothpletz (1917), the Eberfing Drumlin Field has been well documented by several glaciologists. Ebers (1925, 1926) referred to it as "one of the most beautiful drumlin fields of the continent".

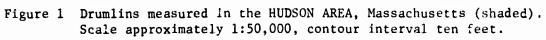
The <u>Bodanrück Area</u>, <u>Germany</u>, (Figure 4), occupying the southeastern half of the peninsula at the western end of Boden See (Lake Constance), is on the Überlingen topographic sheet published by the Landesvermessungsamt Baden-Württemberg (1957) at a scale of 1:25,000 and a contour interval of 10 meters with 5-meter supplementaries. (Figure 4 is from a 1:50,000scale map.)

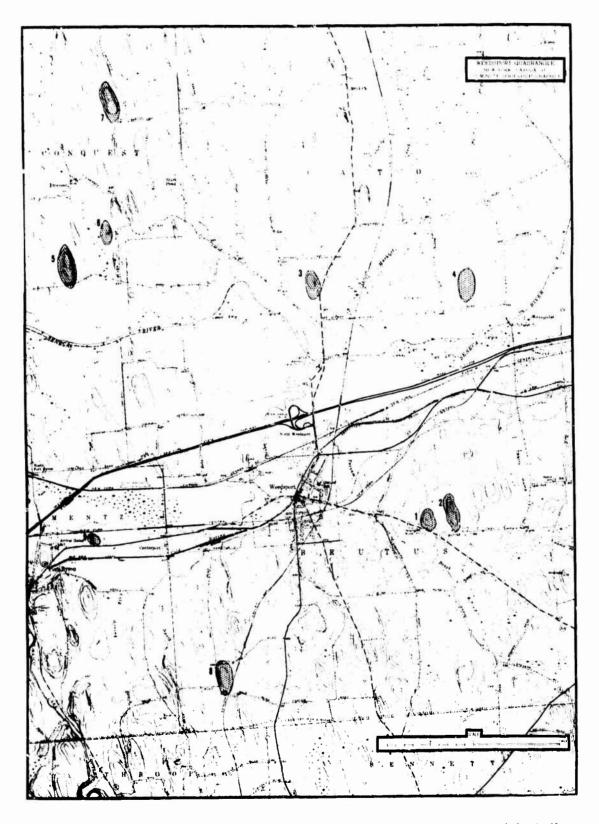
The Bodanrück area ranks a close second in glacial literature as the most often mentioned drumlin field of Germany. The maximum concentration of drumlins is between the towns of Dettingen and Wollmatingen. There are some smoothly rounded features which Ebers referred to as "real gems."

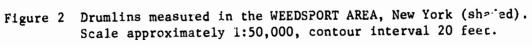
The <u>Rosenheim Area</u>, <u>Germany</u>, east of the Inn River and northwest of Simssee, extends from the city of Rosenheim to the village of Vogtareuth. The area is shown on the Rosenheim topographic sheet published by the Bayerisches Landesvermessungsamt (1961) at a scale of 1:50,000 and a contour interval which varies from 2-1/2 to 10 meters according to the steepness of the slopes. (A figure showing individual drumlins measured is not included in this report because only three features were measured.)

This small drumlin field was mentioned by the glaciologists Ebers and Früh principally to point out the apparently incomplete, less developed forms of the features. Field observations during this study confirmed the rather unusual shapes of most of the features, so only three were measured. Although these three drumlins may be incompletely developed, they are, nevertheless, bona fide representatives of the drumlin population of the earth.

Field Methods


In Massachusetts, individual drumlins measured were selected by reference to a published geologic map and in consideration of their accessibility. In New York and Germany, they were selected as accessible, oval or elongated, arched, non-bedrock hills occurring in areas referred to in geologic literature as drumlin fields. Irregularly shaped features were not included, as mentioned under <u>L mitations of the Study</u>. A given drumlin field was sampled across its extents, parallel and normal to the direction of ice movement, where possible. Drumlins of different sizes were chosen to reflect roughly the range of sizes in an area.


Terms adopted to standardize field reporting define drumlin slope positions by reference to the known direction of ice movement (see Figures 6, 7): the longitudinal axis parallels that direction and is the longest dimension; looking along that axis toward the source area of the ice sheet, slopes normal to the axis are <u>left</u> or <u>right</u>; the end of the feature toward the ice source is the <u>stoss</u> (proximal) end; and the opposite end, the <u>lee</u> (distal) end. The <u>highpoint</u> of the drumlin was usually identified in the field. Cross (transverse) traverses, thus, are referred to as stoss cross, highpoint cross, and lee cross.


The direction of the first (longitudinal) traverse was determined by a line drawn through the oval or ellipse enclosed by the uppermost closed topographic map contour. Slope measuring usually began at the highest point of the feature as determined in the field. Three cross traverses were made normal to this longitudinal line, one through the highpoint and one across each flank. Those on the flanks were approximately midway down the slopes, but the actual locations were chosen to avoid obviously altered topography and obstructions.

Traverse directions were maintained with a Brunton compass ("pocket transit") read to whole degrees. Slope angles were measured with a hand-held Abney level, also read to whole degrees.

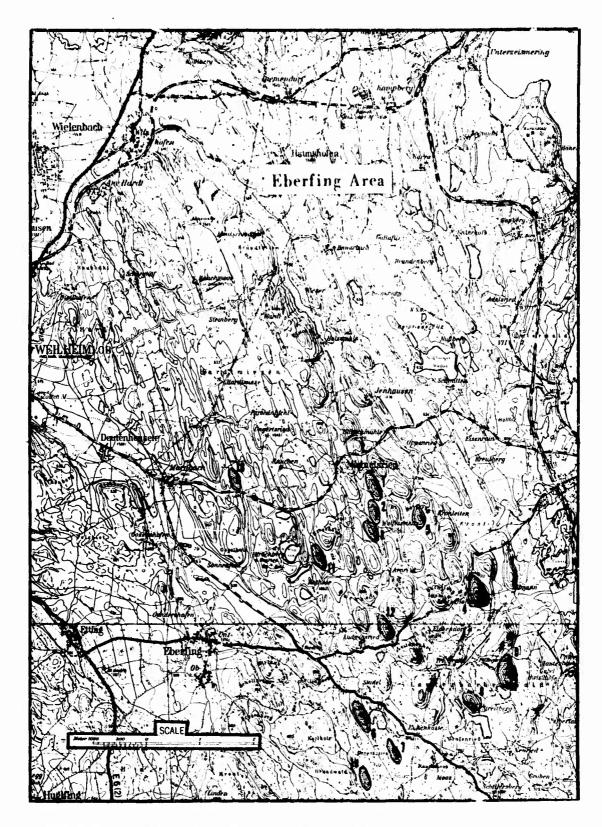
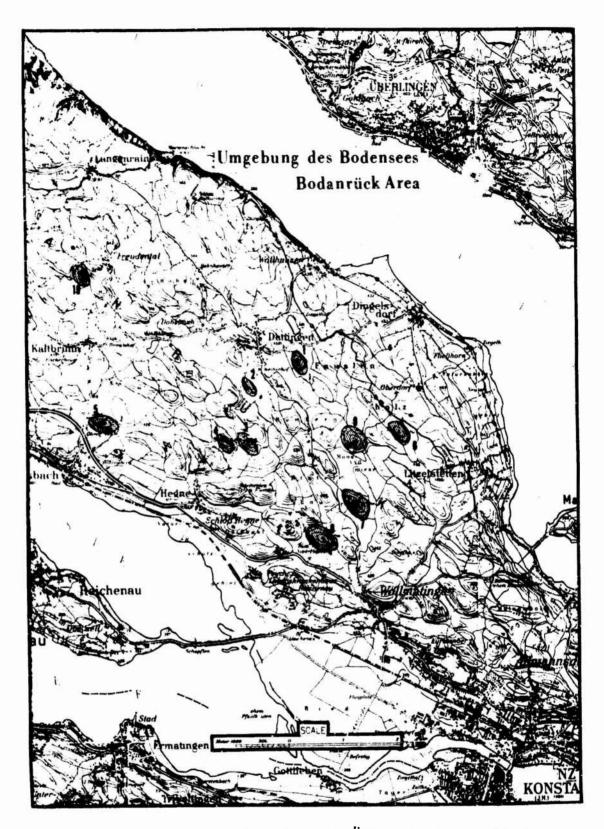
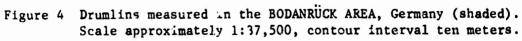
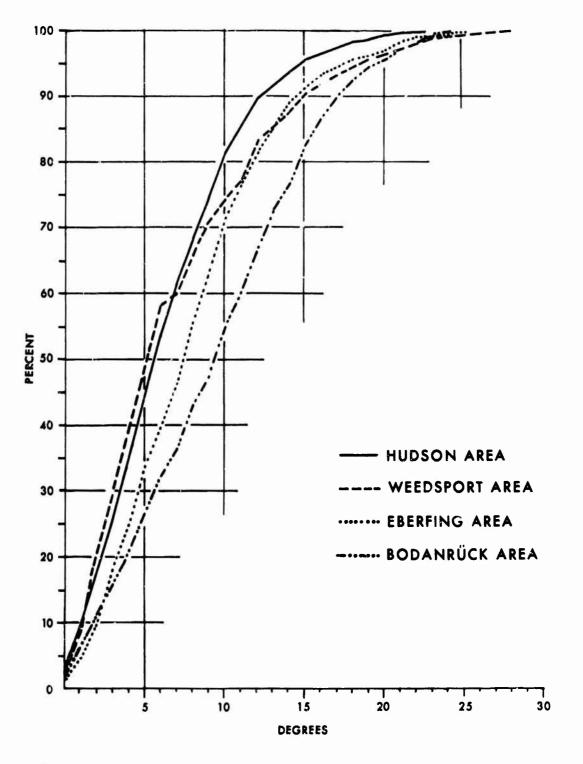




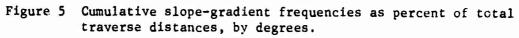
Figure 3 Drumlins measured in the EBERFING AREA, Germany (shaded). Scale approximately 1:37,500, contour interval 1-10 meters.

Slope distances were measured with a superimposed-image optical rangefinder having a parallax base length of 9-3/4 inches, calibrated in one-foot graduations from 17 to 50 reet and in gradually coarser graduations to a maximum range of 1000 feet. The rangefinder, checked against a steel tape at the beginning of each field day, is accurate to about two percent if the ranging target (a second member of the team) is clearly visible. Distances sighted ranged from 17 feet in heavy vegetation to about 200 feet in the open, averaging about 70 feet for all of the study. Every apparent break in slope was taken as a measurement station, and long uniform slopes were divided as appropriate.

Data Compilation and Interpretation

Although the actual sequence and directions in which slopes were measured varied as expedient in the field, the data have been compiled on EAM cards as if collected from stoss to lee along the longitudinal axis, and from left to right on the cross traverses (see definitions under Field Methods). The data do not include slopes considered, in the field, to be off-feature surfaces slopes near the probable base of the feature which flatten upon adjacent fill or steepen into an erosional depression.


It is often impossible to define in the field the exact extents of drumlins. Where do drumlin slopes end and ground moraine, post-depositional fill, or erosion begin? The question becomes repetitive in areas such as north-central Massachusetts where fields of drumlins occur interspersed with bedrock features. For military evaluation, however, the few data in this report which may be for slopes beyond the actual limits of drumlins cannot noticeably affect slope-gradient and relief statistics.


Each slope segment (slope-distance increment) is recorded on a single EAM punchcard. Included on the card is information as to traverse location and orientation, as well as separation of data into stoss, lee, left, or right slopes (of particular use in describing asymmetry of the drumlin).

Sums of slope distances by degrees for each geographic area visited are the basis for the statistics presented in the accompanying tables and graphs. Slope-gradient frequencies (Table I and Figure 5) are, therefore, given as percents of total traverse distances (not reduced to horizontal).

Slope (°)	Hudson	Weedsport	Eberfing	Bodanrück	Cato/Cayuga	Rosenheim
0	2.85	2.03	1.11	1.66	7.26	7.55
1	6.49	6.81	3.54	4.74	17.44	10.85
2	8.03	10.89	5.00	4.79	7.68	14.75
3	8.18	9.97	8.42	4,57	7.56	6.61
4	9.45	9.73	6.84	5.03	8.97	21.48
5	9.32	9.82	8.87	5.66	5.16	13.53
6	9.41	8.86	6.10	6.13	6.61	10.04
7	9.41 8.13	1.97	6.70	3.94	5.71	1.53
				6.38	1.1.8	3.37
8	6.52	5.93	9.11			1.84
9	6.27	4.85	7.44	4.72 6.85	5.16 1.19	2.66
10	5.71	3.56	8.10	0.05	1.19	2.00
11	5.31	2.76	5.38	5.65	0.45	0.48
12	4.12	5,95	4.84	6.44	2.37	1.93
13	2.05	2.35	4.04	6.24	2.48	
14	1.94	2.33	3.47	3.57	1.37	1.30
15	1.96	2.46	2.50	5.04	3.21	
19	1170	2140			•••==	
16	0.90	1.63	1.86	4.07	2.09	
17	0.71	1.32	1.07	3.32	2.27	
18	0.90	1.32	1.29	2.44	3.67	1.12
19	0.49	1.15	0.48	2.09	1.71	
20	0.54	0.94	0.90	1.19	2.47	
21	0.48	0.52	1.22	1.80	1.46	
22	0.20	1.02	0.61	0.83	0.41	
23		0.79	0.25	1.18	0.43	0.45
24	0.04	0.17	0.46	0.36	0.36	
25		0.24	0.22	0.16	0.30	0.51
26		0.24	0,11		0.56	
27		0.23		0.04	0.47	
28		0.16	0.07			
29		~~~~		0.03		
30				0.08		
30						
	100.00	100.00	100.00	100.00	100.00	100.00

Table 1. Slope-gradient frequencies as percent of total traverse distances, by degrees

Values describing ground-plan dimensions of drumlins (Table 2 and Appendices A-E; refer to Figures 1-4 for locations) - length, width, axial ratio, height, orientation, and asymmetry - are derived from horizontal distances calculated from the summed slope distances. Drumlin length is the total of stoss and lee lengths. Drumlin width is the projection of the highpoint cross. Axial ratio results from division of the length by the width.

Drumlin heights are computed trigonometrically as the mean of both left and right slopes along the highpoint cross, and lee and stoss slopes along the longitudinal axis. Heights along the other transverse axes are shown on the tables but were not used.

Compass orientations of the longitudinal axes are in degrees True on a 360-degree azimuth circle, always in the north half of the circle. There is, therefore, no expressed relationship between orientation and the direction of regional movement of glacial ice. (The ice moved southward in North America and northward in southern Germany.)

Longitudinal asymmetry derives from division of lee length by stoss length; transverse asymmetry by division of total right slope lengths by left slope lengths.

The number of drumlins measured in the Cato and Cayuga, New York, quadrangles, and in the Rosenheim, Germany, area (total of six) is too few to characterize the drumlin fields of which they are a part. No cumulative slope-gradient frequency curves, therefore, are shown for them on Figure 5. The measurement data, however, are valid descriptors augmenting drumlin data in general.

The data of this study have not been interpreted for evaluation of effects on military materiel or operations. They are available on EAM punch cards at Natick Laboratories and interpretations for terrain modeling, design, mobility, etc. can be made from them as specific requirements arise with concerned agencies or activities. The section on <u>Recommendations for Further Studies</u> suggests lines of investigation for which the data can be quantitative inputs.

A summary of mean drumlin dimensions is included in the body of the report (Table 2); dimensions of individual drumlins are in Appendices A-E, in feet.

		NOSCIUH	WEEDSPORT	EBERFING	BODANRÜCK	CATO/	ROSENHEIM
		Mass.	New York	Germany	Germany	New York	Germany
SAMPLING RECORD							
No. of drumlins measured Distances measured: (ft) t1	long. transv.	17 32,684 56.601	9 16,069 20.613	13 23,436 30,282	10 14,903 19,003	3 11,115 6,768	3 7,334 6,253
DIMENSIONS			,				
Mean length	feet	1,923	1,785	1,803	1,490	3,705	2,445
Mean width	feet	1,284	827	879	776	792	916
Mean axial ratio <u>1</u> 0 v	<u>length</u> width	1.54	2.19	2.18	1.98	4.66	2.80
Mean height	feet	100	80	94	96	107	52
Long. axis orientation °	true	347	347	335	315	344	034
Asymmetry, longitudinal	lee stoss	1.00	1.29	1.65	1.22	1.63	1.09
Asymmetry, transverse	right left	1.18	1.18	1.37	1.34	1,16	1.09

Table 2. Summary of mean drumlin dimensions, by areas

ł

Explanation of Selected Drumlin Profiles

Profiles across two drumlins are shown with inset enlargements from topographic sheets.

The feature portrayed in Figure 6, from near Eberfing, Germany, was selected as an example of an apparently little-modified drumlin. It is isolated from nearby hills by a considerable expanse of level ground and is not obviously impinged upon by any present drainageways. It is, perhaps, more representative of an assumed original, "pure" form than is any other drumlin measured in the several areas.

The drumlin of Figure 7, from the Hudson, Massachusetts, area, appears to have a relatively little-eroded longitudinal profile, but the transverse profiles may have been shortened and steepened by channeling suggested by the pattern of adjacent swamps. The Hudson example illustrates an occurrence common in the irregular topography of north-central Massachusetts, and cautions against assuming nearoriginal shapes for drumlins in any area for which the detailed geomorphic history is unknown.

Military use of the data of this report will not be concerned with the geomorphic complexities implied in the two drumlin profiles. Academic use, however, must recognize that the entire form and volume of a drumlin as originally laid down can never have remained intact.

One longitudinal and three transverse profiles are shown for each drumlin. The solid-line surface traces indicate apparent extents of the features, generally terminated in the field at abrupt changes or reversals in slope; dashed portions (not included in data compilation) indicate total traverse lengths. Vertical tick-marks on the traces are actual measurement stations. At the bases of the profiles are reference lines at a common elevation equivalent to that of the lower end of the longitudinal profile. Small circles on the profiles indicate common points of intersection: to visualize the feature three-dimensionally, rotate profiles upward on their respective basal reference lines. Traverses are slways numbered in Roman numerals in the following order: longitudinal, I; highpoint cross, II; stoss cross, III; and lee cross, IV.

The topographic insets use standard symbols. The longitudinal line parallels that of the accompanying profile, regardless of actual compass orientation. The elevations shown for contour lines indicate the interval.

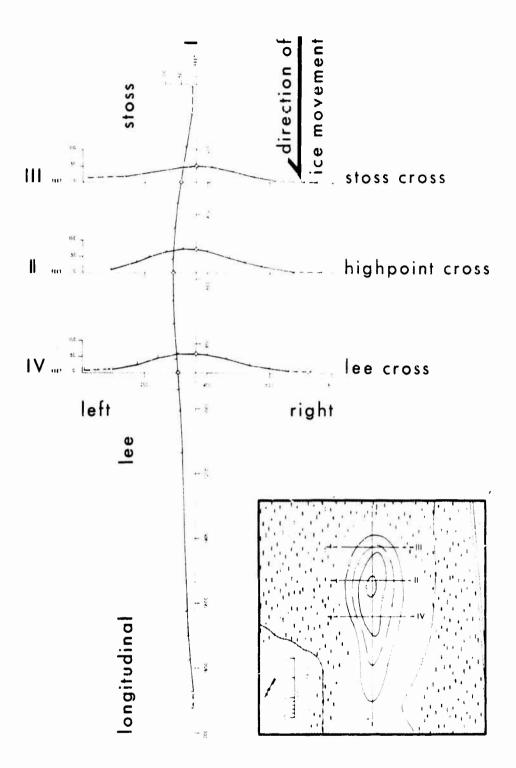


Figure 6 Field-measured profiles of drumlin in the Eberfing Area, southern Germany. (Feature No. 7, Fig. 3). No vertical exaggeration. Topographic map at right not to same scale.

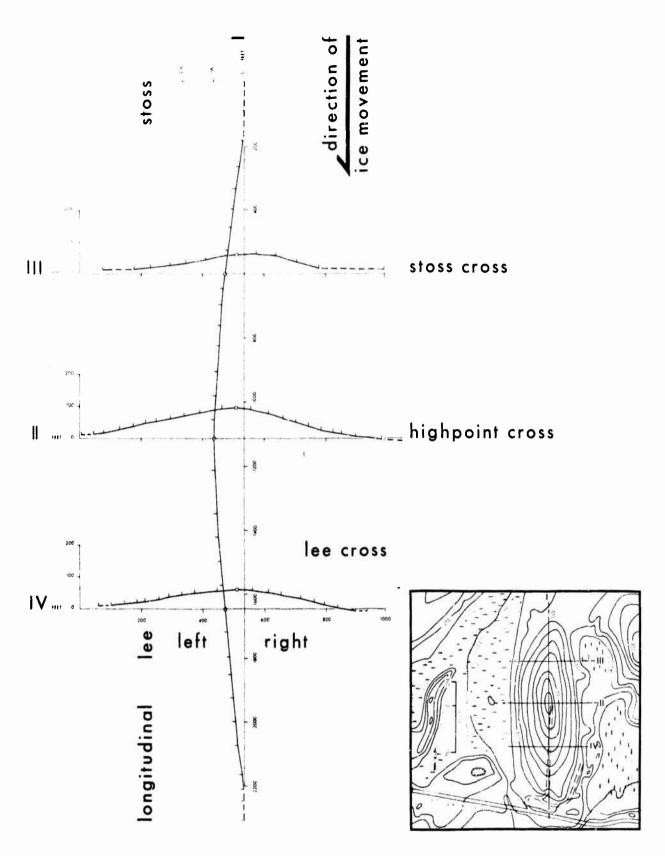


Figure 7 Field-measured profiles of drumlin in the Hudson Area, Massachusetts. (Feature No. 5, Fig. 1). No vertical exaggeration. Topographic map at right not to same scale.

Recommendations for Further Studies

Field ground-truth data are indamental to the development of regional quantitative terrain classifications. Detailed knowledge of representative component landforms of a given terrain estations a range of values to control description and evaluation of simpler terrains at other scales and for specific purposes. Further studies should include field sampling of other terrain types immediately pertinent to military operations.

Using the field measurements in this study, it is possible to construct a valid mathematical terrain model of a field of drumlins distributed over an assumed level plain. Statistical data on distribution and spacing of drumlins are available from published sources (particularly Reed and others, 1962; Vernon, 1966; and Chorley, 1959). The model, representative of several glaciated areas of the earth, would be useful in evaluation of, at least, military mobility and intervisibility problems.

If the present data were augmented by field measurements of landforms intervening between drumlins (e.g., outwash plain, moraines, kames, kettles, recent drainageways), a detailed model of broad tracts of glaciated terrain throughout the Northern Hemisphere could be constructed.

BIBLIOGRAPHY

Morphometry

- Chorley, R. J., 1959, The Shape of Drumlins; Jour. Glaciology, v. 3, no. 25, p. 339-344.
- Reed, B., and others, 1962, Some Aspects of Drumlin Geometry; Am. Jour. Sci., v. 260, p. 200-210.
- Smalley, I. J. and Unwin, D. J., 1968, The Formation and Shape of Drumlins and their Distribution and Orientation in Drumlin Fields; Jour. Glaciology, v. 7, no. 51, p. 377-390.
- Vernon, Peter, 1966, Drumlins and Pleistocene Ice Flow over the Ards Peninsula/Strangford Lough Area, County Down, Ireland; Jour. Glaciology, v. 6, no. 45, p. 401-409.

Areal

- Alden, Wm. C., 1924, Physical Features of Central Massachusetts; U. S. Geol. Survey Bull. 760-B.
- Ebers, E., 1925, Die Bisherige Ergebnisse der Drumlinforschung. Eine Monographie der Drumlins; Neues Jahrbuch für Mineralogie usw., Beilageband LIII. Abt. B.
- ----, 1926, Das Eberfinger Drumlinfeld; Geognisches Jahresheft 39, 47-85.
- Früh, J., 1896, Die Drumlinlandschaft mit Spezieller Berücksichtigung des Alpinen Vorlandes; Jahresbericht der St. Gallischen Naturwissenschaftlichen Gesellschaft, 1894-1895.
- Hansen, W. R., 1956, Geology and Mineral Resources of the Hudson and Maynard Quadrangles, Mass.; U. S. Geol, Survey Bull. 1038.

Rothpletz, A., 1917, Die Osterseen und der Isarvorlandgletscher; Landeskundl. Forschungen, Geographische Gesellschaft, München, heft 24, p. 99-314.

PRECEDING PAGE BLANK

Historical

Barton, G. H., 1893, Remarks on Drumlins; Proc. of the Boston Soc. of Natural History, no. 26.
Bryce, J., 1833; Jour. Royal Geol. Soc. of Dublin, v. 1, p. 37.
Charlesworth, J. K., 1937, The Quaternary Era with Special Reference to Its Glaciation; two volumes, London: Edward Arnold.
Close, M. H., 1866, Notes on the General Glaciation of Ireland; Jour. Royal Geol. Soc. of Ireland, I, 207-42, p. 231.
Davis, W. M., 1884, The Distribution and Origin of Drumlins; Am. Jour. Sci., 3rd Ser., 28, p. 407-416.
Hall, J. (Sir), 1815, Revolutions of the Earth's Surface; Trans, Royal Soc. of Edinburgh, 7, 139-212, p. 169.

		Mean Height	49	80	142	184	93	89	70	111	73	81	85	56	166	148	88	100	78	100
		Axial Ratío	2.06	1.31	1.76	1.55	2.06	1.56	1.14	1.48	1.62	1.33	2.31	1.21	1.42	1.04	1.31	1.47	1.59	1.54
		Mean	50	91	141	189	93	66	67	86	70	85	80	55	1.84	172	84	i 0 .	73	
	Height	Ríght	44	69	146	198	66	i18	001	107	35	106	17	35	161	198	87	76	51	
(11)	Ŧ	Left	55	113	135	179	86	80	33	68	65	63	83	73	177	146	81	86	64	
CROSS		Asymm Ratio	1.40	0.94	1.13	1.53	1.18	0.97	2.16	0.78	0.82	1.36	0.74	1.00	1.52	1.19	0.71	0.68	0.69	1.11
HIGHPOINT	th	Total	109	804	1430	1967	586	1352	1581	1548	1035	853	1044	1044	1636	2042	1368	1399	1145	21835 1284
(H	Length	Right	351	389	758	1189	534	664	1081	678	465	492	443	522	988	1111	569	566	466	
		Left	250	415	672	778	452	688	500	870	570	361	109	522	648	931	799	833	679	
		Mean	48	70	143	180	93	62	74	124	75	77	66	57	148	123	91	105	83	
	Height	Lee	47	78	146	173	86	78	49	130	73	60	85	75	152	83	94	109	88]
(E)	Hei	Stoss	48	61	140	186	66	80	66	117	77	63	95	39	144	163	88	100	i1	
T AXIS		Asymm Ratio	1.35	0.57	1.41	1.23	1.19	0.49	0.92	0.54	0.76	0.75	1.85	1.50	96.0	0.99	0.84	0,89	0.81	1.00
GITUDINAL	th.	Total	1236	1054	2513	3049	2036	2108	1801	2289	1681	1134	2409	1263	2323	2114	1796	2060	1818	32884 1523
LON	Leng	Lee	711	384	1469	1684	1105	689	861	798	725	485	1565	757	1140	1051	818	970	812	s
		Stoss	525	670	1044	1365	931	1419	056	1491	956	649	844	506	1183	1063	978	1090	1006	Totals Means
1 1		0rtent	005	353	320	004	360	003	329	335	327	356	350	347	36.9	013	323	319	346	1
	ON L	Drumlir	-	2	m	4	5	Ŷ	~	œ	61	10	11	12	5	14	15	16	11	1

Dimensions of individual drumlins - HUDSON AREA (Axes I and II) (See Figure 1 for locations). APPENDIX A.

	Mean	Height	25	67	83	90	53	47	43	66	62	48	53	33	66	97	57	59	40	60
		Mean	21	52	75	117	59	39	27	97	59	42	46	22	112	57	46	40	35	
	Eelght	Aight	10	49	49	114	67	46	43	110	61	73	56	20	130	69	44	54	32	
(IV)	ฉั	Left	31	54	100	120	50	32	10	83	56	11	36	24	94	45	47	26	37	
CROSS (Asymm. Retto	0.49	1.17	06.0	1.41	1.05	0.85	1.15	0.93	0.80	2.96	1.90	5.15	1.98	0.67	1.01	0.68	0.85	1,41
LEE 0	th	Total	421	713	1296	1648	824	704	726	1606	1223	519	389	707	1581	1088	1627	1414	749	17735 1043
	Length	Right	139	384	615	963	421	324	388	773	545	388	582	592	1050	435	817	574	344	
		Left	282	329	681	685	403	380	338	833	678	131	307	115	531	653	810	840	405	
		Mean	29	82	91	63	47	54	58	35	64	53	59	43	85	137	67	17	44	
	Height	Right	30	80	96	4	43	66	90	19	62	11	63	17	109	142	57	79	36	
	H	Left	28	83	85	121	51	41	25	51	65	34	55	69	60	131	76	74	51	
(111)		Asymme Ratio	0.98	1.22	1.33	0.11	0.51	0.96	1.75	0.79	1.12	1.40	0.91	0.86	1.03	1.04	0.86	1.79	0.62	1.02
STOSS CROSS	t h	Total	554	856	1172	948	589	1188	1029	868	832	950	676	1159	926	1756	815	1095	1345	17031 1002
STC	Length	Right	274	471	668	92	200	581	655	384	439	554	452	536	469	896	378	703	515	8
		Left	280	385	504	856	389	607	374	484	393	396	497	623	457	860	437	392	830	Totals Means
• •N	uīl	Drum	-1	2	e	4	5	9	2	80	0	10	Ħ	12	13	14	51	16	1	

Dimensions of individual drumlins - HUDSON AREA (Axes III and IV) (See Figure 1 for locations). APPENDIX A. (cont'd.)

•

*

	Kean	Height	16	92	84	27	122	39	65	84	81	80
	Axial	Ratio	1.75	4.07	1.98	1.90	2.29	1.81	2.03	2.37	1.48	2.19
		Mean	88	83	85	28	121	47	85	87	85	
	Height	Right	80	¥4	61	27	125	43	61	87	81	
(11)	H	Left	96	82	90	50 10 10	117	50	109	86	88	
CROSS		Asymm Ratio	0.9 4	1.21	0.97	1.16	1.06	0.70	0.72	1.79	1.38	1.10
HIGHPOINT CROSS	th.	Total	866	539	663	1121	1262	334	823	919	586	7443 827
НІС	Length	Right	420	295	490	602	650	138	345	590	340	
		Left	446	244	503	519	612	196	478	329	246	
		Mean	93	101	83	27	124	31	113	81	78	
	Height	Lee	95	118	110	32	143	32	127	61	68	
Ξ	He	Stoss	16	83	56	21	104	30	66	101	88	
TUDINAL AXIS		Asymm Ratio	1.69	2.81	1.36	1.12	1.00	06.0	0.35	0.93	3.46	1.29
	th	Total	1519	2196	1965	2130	2892	603	1718	2180	866	16069 1785
LONG	Lengt	Lee	955	1619	1131	1123	1443	285	448	1052	514	LIS IS
		Stoss	564	577	834	1007	1449	318	1270	1128	352	Totals Means
		Jnsir(345	360	348	356	360	357	342	346	305	1
	ON U	11 ImurC	- 1	~	m	4	5	و	-	∞	6]

Linki Linkini

×

r

Dimensions of individual drumlins - WEEDSPORT AREA (Axes I and II) (See Figure 2 for locations). APPENDIX B.

												
	Mean	Height	52	55	62	17	88	42	89	4 6	59	
		Mean	46	36	53	15	97	36	78	40	52	
	height	Right	24	61	52	15	105	48	57	30	37	
	н	Left	68	11	53	14	89	23	66	49	67	
(VI) 2205		Asymm Ratio	0.68	0.73	1.03	1.01	0.86	2.92	0.78	1.00	1.46	1.16
LEE CROSS	ţth	Total	725	630	1046	736	1611	239	932	727	464	6690 743
	Length	Right	293	265	531	370	551	178	409	363	275	
		Left	432	365	515	366	640	61	523	364	189	
		Mean	57	73	70	19	78	47	57	52	66	2
	Height	Right	59	76	82	16	88	49	53	51	67	
	1	Left	55	69	57	22	68	44	19	53	64	
(III) S		Asymm Ratio	1.52	1.23	2.27	6.93	0.86	06.0	06.0	1.63	1.22	1.27
STOSS CROSS	gth	Total	914	592	973	763	619	356	655	813	435	6840 720
LS	Length	Right	552	326	675	367	453	169	310	504	239	els ns
		Left	362	265	298	396	526	187	345	309	196	Totals Means
••	N UT	Drumi	-1	2	m	4	5	9	2	æ	6	

Dimensions of individual drumlins - WEEDSPORT AREA (Axes III and IV) (See Figure 2 for locations). APPENDIX B. (cont'd)

۲

																r	
		Mean	Height	96	85	84	164	101	73	66	89	130	78	06	56	67	94
		Axial	Ratio	3.01	2.07	2.07	1.83	1.57	2.05	3.06	1.40	1.56	2.41	2.21	1.73	3.39	2.18
			Mean	81	92	73	145	103	79	70	109	132	80	96	164	73	
	Height		Right	05	105	57	132	135	80	11	107	116	86	92	66	82	
(11)	He		Left	72	78	88	158	70	77	68	110	147	74	66	109	63	
CROSS		Acrem	Ratio	1.35	1.69	66.0	0.92	3.59	1.33	1.13	1.10	1.07	1.53	1.03	0.97	1.93	1.43
HIGHPOINT CROSS	ţth		Total	763	767	785	1331	1041	763	582	1004	1248	605	903	1105	528	11425 879
HIC	Length		Right	<i>4</i> 38	482	391	638	814	436	309	526	644	366	454	543	348	
			Left	325	285	394	693	227	327	273	478	604	239	45	562	180	
			Mean	111	62	ġ5	183	66	67	63	69	129	75	84	86	62	
	Height		Lee	142	81	78	213	111	75	66	80	147	75	67	100	61	
(E)	Hei		Stoss	62	76	112	154	87	58	60	58	110	75	101	72	63	
ITUDINAL AXIS			Batio	1.35	1.06	0.92	2.27	1.62	1.64	2.64	1.41	1.56	1.79	1.34	2.40	1.46	1.65
NIGUTION	th		Total	2296	1589	1626	2430	1638	1564	1781	1402	1952	1460	1997	1913	1788	23436 1803
LONGI	Length		Lee	1319	817	781	1686	1013	972	1292	821	2211	936	1144	1350	1061	ß
			Stoss	572	772	845	744	625	592	489	581	780	524	853	563	727	Totals Means
		• 1u	9110	337	343	327	344	347	326	334	315	339	339	331	338	333	
	oN	uţŢ	שנחש		7	3	4	S	9	7	8	6	10	11	12	5	

and the second second

¢

Dimensions of individual drumlins - EBERFING AREA (Axes I and II) (See Figure 3 for iocations). APPENDIX C.

r					r	r					r			r	[
	Mean	Height	62	55	53	11	62	50	97	81	80	50	19	83	60	63
		Mean	81	53	43	91	53	42	52	66	87	56	63	11	51	
	Height	Right	96	68	29	85	38	44	53	96	11	48	64	83	51	
6	4	Left	65	37	56	96	17	39	51	102	102	63	62	11	51	
0SS (IV)		Asymm Ratio	1.75	2.45	0.52	1.11	3.29	0.42	1.09	0.73	1.25	0.77	0.92	1,06	1.03	1.26
LEE CROSS		Total	1013	603	551	975	678	707	559	1084	1146	587	612	850	577	9942 765
	Length	Right	644	428	189	512	520	210	292	458	637	255	294	438	293	
		Left	369	175	362	463	158	497	267	626	509	332	318	412	284	
		Mean	43	57	62	63	70	58	39	63	72	43	56	88	68	
	Height	Right	42	54	64	61	87	64	46	83	53	67	69	67	96	
	He	Left	44	65	59	64	52	51	34	43	80	36	46	78	39	
CROSS (III)		Asvum Ratio	1.04	1.43	96*0	1,05	1.23	1.20	1.12	1.66	1.08	1.59	1,30	0.73	4.07	1.42
STOSS CROS	th	Total	534	542	535	1106	786	734	488	607	845	424	590	666	725	8915 686
SI	Length	Right	272	319	262	566	489	400	258	379	439	260	334	420	582	lls Is
		Left	262	2.73	273	540	268	334	230	228	406	164	256	579	143	Totals Means
• 0]	< uj [חדעם	٦	2		4	2	9	7	80	6	10	11	12	13	

Dimensions of individual drumlins - EBERFING AREA (Axes III and IV) (See Figure 3 for locations). APPENDIX C. (cont'd)

•

.				 1									
	Mean	Height	83	57	83	135	105	4 6	109	129	129	81	9 6
	Axial	Patio	2.39	2.19	2.09	1.87	1.28	2.08	2.69	1.85	1.53	1.86	1.98
		Mean	60	57	83	123	119	48	105	125	135	83	
	Height	Right	94	53	134	125	123	38	85	150	169	97	
(11)	He	Left	86	61	2	120	511	58	124	66	101	69	
HIGHPOINT CROSS		Asymm Ratio	1.33	0.95	3,13	76.0	0.73	1.02	06.0	1.69	1.57	1.97	1.43
IGHPOIN	gth	Total	604	573	586	870	1015	607	744	1098	1006	657	7760 776
Н	Length	Right	345	279	777	428	427	307	353	690	615	436	
		Left	259	294	142	245	588	300	391	408	391	221	
		Mean	77	57	82	148	92	45	114	133	123	79	
	Height	Lee	65	55	53	134	127	16	95	125	117	52	
(I) \$	He	Stoss	88	59	111	161	56	73	132	14()	123	106	
AAL AXIS		Asymma Ratio	1.71	0.91	0.59	1.29	1.54	0.51	1.64	1.05	1.58	1.39	1.22
(I) SIXY TANIGULISON	gth	Total	1441	1256	1226	1631	1304	1265	1998	2028	1535	1219	14903 14903
Ä	Length	Lee	910	600	457	919	791	426	1242	1039	940	710	
		Stoss	531	656	769	712	513	839	756	989	595	509	Totals Means
	• 1	nsi 10	327	320	318	315	287	315	318	292	314	348	
· ,	N ut	Druml	-	2	9	4	S	و	~	æ	5	10	

Dimensions of individual Drumlins - BODANRÜCK AREA (Axes I and II) (See Figure 4 for locations). APPENDIX D.

31

ŧ

	Vean	Height	83	57	83	135	105	46	109	129	129	81	96
	Arial	Ratio	2.39	2.19	2.09	1.87	1.28	2.08	2.69	1.85	1.53	1.86	1.98
		Mean	90	57	83	123	119	48	105	125	135	83	
	Height	Right	94	53	134	126	123	38	85	150	169	97	
E	Η	Left	86	61	32	120	115	58	124	66	101	69	
T CROSS		Asymm Ratio	1.33	0.95	3.13	0.97	0.73	1.02	06.0	1.69	1.57	1.97	1.43
HIGHPOINT	Length	Total	604	573	586	870	1015	607	744	1098	1006	657	7760 776
H	Len	Right	345	279	777	428	427	307	353	690	615	436	
		Left	259	294	142	442	588	300	391	408	391	221	
		Mean	77	57	82	148	92	45	114	133	123	79	
	Height	Lee	65	55	53	134	127	16	95	125	117	52	
(1) \$	He	Stoss	88	59	111	161	56	73	132	140	128	106	
ITUDINAL AXIS		Asymma Ratio	1.71	0.91	0.59	1.23	1.54	0.51	1.64	1.05	1.58	1.39	1.22
LONGITUDIN	gth	Total	1441	1256	1226	1631	1304	1265	1998	2028	1535	1219	14903 1490
rc	Length	Lee	910	600	457	919	162	426	1242	1039	940	710	
		Stoss	531	656	769	712	513	839	756	989	595	509	Totals Means
	• 1	0rten	327	320	318	315	287	315	318	292	314	348	
• 0	X uj	Druml	-	2	Э	4	ς	9	~	80	6	10	

Dimensions of individual Drumlins - BODANRÜCK AREA (Axes I and II) (See Figure 4 for locations). APPENDIX D.

.

31

	Mean	Height		146		93	82	88		61	40	56	52
	Axial	Ratio		4.58		6.70	2.71	4.71		2.01	4.53	1.87	2.80
-		Mean		164		86	82			59	30	63	
	Height	Right		167		1.00	85			87	26	42	
(II)	He	Left		160		95	79			31	33	83	
CROSS		Asymma Ratio		0.83		0.89	2.15	1.52		06.0	1.00	0.86	0.92
HIGHPOINT CROSS	th	Total		983		712	680	1392 696		168	778	1080	2749 916
H	Length	Right		445		336	317			422	685	667	
		Left	0	538	IGA	376	363		HEIM	469	389	581	
		Mean	CATO	129	CAYUGA	89	83		ROSENHEIM	63	50	50	
	Height	Lee		96		76	70			69	48	49	
E	He	Stoss		161		102	95			57	51	50	
IAL AXIS		Asymma Ratio		1.03		2.54	1.33	1.94		1.41	0.81	1 - 04	1.69
LONGITUDINAL AXIS	ų.	Total		4504		4768	1843	6611 3306		1789	3524	2021	7334 2445
LOL	Lengrh	Lee		2284		3422	1053	s s		1048	1579	1031	s
		Stoss		2220		1346	790	Totals Means		741	1945	056	Totals Means
	••	uət 10	-	339	 110 systems (110 for 110 sec.	345	348		 	040	021	040	
• (on ut	Druml				-1	7			-	2	m	

APPENDIX E. Dimensions of individual drumlins - CATO, CAYUGA, and ROSENHEIM AREAS (Axes I and II)

33

	Mean	Height		106		80	66	73		56	36	45	46
1		Mean		111		74	58			56	24		
	Height	Right		107		73	66			66	36		
	He	Left		114		74	20			46	12	field	
LEE CRUSS (1V)		Asymm Ratio		0.87		1.35	1.44	1.40		0.82	2.04	in the f	1.43
LEE CR	д	Total		1097		756	555	1311 656		835	776	Not measured	1611 806
	Length	Right	•	511		434	328			375	521	Not m	
		Left	LO	586	UCA	322	227		HEIM	460	255		
		Mean	CATO	101	CAYUGA	85	74		ROSENHEIM		48	45	
	Height	Right		104		86	65				63	28	
	Ĥ	Left	-	67		83	82			field	32	61	
(111) 550		Asymma Ratio		1.00		1.09	0.80	0.95		in the	1.09	ن .89	66.0
ST055 CK055	th	Total		681		736	568	1304 652		measured	1038	855	1893 947
n	Length	Right		341		384	253	Totals Means		Not m	541	401	Totals Means
		Left	1	340		352	315	E			497	451	To
ON I	111	Drug		-	 		~		 	-	2	m	1

APPENDIX E. Dimensions of individual drumlins - CATO, CAYUGA, and ROSENHEIM AREAS (Axes III and IV) ٤

•••

•

,

.