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APPLICATIONS AND RESULTS OF ORBIT DETERMINATION 

by 

R. H. Gooding 

SUMMARY 

This paper summarizes the reasons for determining the orbits of earth 

satellites, and describes how knowledge of the earth's gravitational 

potential and its atmosphere has improved as a result of orbit determination. 

The paper is based on the second of two lectures given at the ESRO summer 

school on Spacecraft Operations, held at Gravenbruch, near Frankfurt, 

West Germany, in August 1970. The first lecture is available as 

Technical Memorandum Space 156. 
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1 INTRODUCTION 

In the first of my two lectures I gave some technical details of orbit 

determination by the method of differential correction, with special 

reference to the computer programs that have been developed at the 

Royal Aircraft Establishment.  In this remaining lecture I propose to list 

and discuss briefly the main reasons why orbit determination is necessary at 

all, and then to elaborate on the last two topics in the list. 

2 OBJECTIVES OF ORBIT DETERMINATION 

Fig.l is based on Merson's classification of the objectives of orbit 

determination as operational and non-operational.  The distinction between 

the two classes is that the former are essential to the particular 

satellite, whereas the latter are not, but this distinction is not always 

clear-cut. 

Orbit achievement may seem too obvious an objective to include in the 

list.  It is too important to omit, however; until a satellite has been 

tracked, there is no certainty that it is in orbit, and until a rough orbit 

has been computed from tracking data, there is no certainty that the orbit 

is satisfactory. Again, the performance of the launching vehicle can only 

be properly evaluated when the resulting orbit is known. 

Guidance and control will be required, in particular, for communica- 

tion satellites and space probes. The correct commands to change an orbit 

cannot be made until the current orbit is known. 

On-board instrumentation plays a vital role for scientific satellites 

such as the Ariels. The telemetered data from such instrumentation must 

usually be correlated with satellite position (for example to plot electron 

density against height and latitude), and continuous knowledge of satellite 

position can only come from orbit determination. 

Tracking and telemetry scheduling, for the various stations in a 

network, require knowledge of the orbit, and the stations will need 

predicted look angles for the scheduled passes. The accuracy desired for 

this objective is usually much less than for the previous one, but the 

urgency is of course much greater. 

General surveillance, the first non-operational objective listed, is 

required in both a military and a technical context.  The military require- 

ment is to monitor all spacecraft and to detect, as rapidly as possible, 
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any object newly launched into orbit. The technical requirement is to dis- 

tinguish one satellite from another, in particular to avoid interference 

when communicating with a given satellite. 

Sensor accuracy, i.e. the accuracy of the instrumentation at a given 

satellite observing station, can be estimated by consideration of the 

equipment itself, but auch estimation can only be validated by studying 

residuals of actual satellite observations relative to computed orbits. 

Navigation and geodesy could as well appear under 'operational 

objectives', since a number of satellites have been launched with these 

objectives specifically in mind. The US Navy has refined a navigation 

system based on Doppler measurement of range rate, in which the orbit of a 

satellite is determined from Doppler observations from a standard network 

of ground stations. The resulting orbital parameters are fed into the 

satellite itself, which transmits them continuously (until a further set 

is fed in). Then a ship, using relatively simple equipment, can track the 

satellite and, from the observed Doppler shift and the orbital parameters, 

can locate its own position. Geodesy, however, has certainly been mainly 

associated with non-operational objectives. Here I am not thinking of the 

'direct' or 'geometrical' method of approach, which is based on the 

simultaneous observation of a satellite from two or more stations which 

have been accurately surveyed relative to the same datum and from a station 

which it is required to survey to this datum, since this method does not 

require an orbit to be determined. I am thinking rather of the 'indirect' 

or 'orbital' method in which one has available a vast number of accurate 

observations of several satellites, and can therefore carry out a simul- 

taneous differential correction, not merely of the parameters of all the 

satellites, but also of the sets of station coordinates. The best known 

contributions to satellite geodesy to date have probably been the 1966 
2 9 

and 1969 Smithsonian Standard Earths ' , for which the observational data 

♦.are obtained mainly from Baker-Nunn cameras. 

The last two non-operational objectives, concerned with improved 

knowledge of the earth's gravitational field and of atmospheric density 

and rotation, are my two main topics, to be covered in some detail in the 

following sections. The first of these objectives is related to the 

geodesy objective, the difference being that an even broader view is taken - 

we are concerned with the gravitational constants of the solid earth and not 

merely with the surveying of its surface.  Only an 'indirect method' is 

possible. 



SP 
157 

The same principle is involved in the orbit-based study of both the 

earth's gravitational field and its atmosphere, namely that orbits suffer 

'perturbations'  as I indicated in my first lecture.    Such perturbations 

may be represented by a mathematical theory - the 'orbital model' or 

'orbit generator'  - and the numerical parameters of this theory may be 

inferred from observation of the perturbations. 

It is important to realise that the method depends   not only on the 

study of the orbits of a number of satellites    but also, usually, on a 

large number of orbit determinations,  over a long period, for each satellite. 

The principle is illustrated in Fig.2.    Here an existing orbital model is 

assumed to be good enough to describe the motion of a satellite during a 

short period,  i.e. good enough for orbit determination over such a period to 

yield pmall final residuals.    After many orbit determinations for the same 

satellite, over a long period, the graph of one of the orbital parameters is 

plotted, its variation being due to perturbations.    The existing orbital 

model gives a poor fit to this long-term variation of the orbital parameter, 

but the fit may be dramatically improved by use of revised earth constants in 

the model.    Alternatively,  it may be that an improved model,  incorporating 

previously neglected perturbations, is required before an adequate fit can be 

obtained. 

It is fortunate that gravity-induced perturbations have a very different 

character from atmosphere-induced perturbations.    This means that the two 

subjects can essentially be considered independently, as I now proceed to do. 

3 GRAVITATIONAL FIELD OF THE EARTH 

If the earth were spherically symmetrical its field would be the same 

as that of a point mass as its centre;     i.e.  satellite motion would be 

unperturbed.    Thus gravity-induced perturbations yield information about 

asphericity. 

The simplest improvement upon an assumption of sphericity is to take 

the earth as an oblate spheroid.    This is illustrated in Fig.3.    The 

'flattening* of such a spheroid is defined,  in terms of the polar and 

equatorial diameters,  by the relation 
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here flattening must not be confused with eccentricity, a term not usually 

used in this context but which would be defined by 

2   2 
2    DE-DP e 

"l 
The first estimate of    f    was by Newton who, by theoretical argument, 

obtained the value 1/230.    After the development of refined geodetic methods, 

Hayford gave the value 1/297.0 in 1909,  and this was adopted as an 

international standard in 192A.    The current best value,  based on orbit 

determination,   is  1/298.25,  so that Hayford overestimated the difference 

between    D      and    D ,    which is about A3 km,  by some 180 metres. 

The next improvement in the assumption about the earth's shape, made 

worthwhile by the advent of satellites,  is to take it as axisymmetric,  so 

that the gravitational potential is  latitude-dependent but longitude- 

independent.     From the fact that the potential must satisfy Laplace's 

equation it  follows that the most general form,  subject to axial symmetry, 

is given by the Legcndre expansion 

r ^\(sin3)J     . 1    -      Z    V5I   P«  Csia 3)^     , (2) 

where    u    is  the product GM of the gravitational constant and the mass of 

the earth,     R    is the equatorial radius of the~*arth,    r    is distance from 

the earth's  centre,    3    is geocentric latitude,    P      is the Legendre 

polynomial of degree    2.,    and the   'zonal harmonic'  coefficients    J      are 

dimensionless constants which represent the shape of the earth.    The first 

coefficient  in the series,    J-,    is directly related to the flattening,    f, 

but the relation is not as simple as might be expected, because    JL    is 

associated with the gravitational  field, whereas    f    is associated with the 

gravity field  (i.e.  the gravitational  field plus the centrifugal field on 

the surface of the earth due to its  rotation). 

Fig.4  interprets the first four harmonics    (J-, J-, J,     and    J.)    as 

distortions   (from circularity) of a meridional cross-section of the earth. 

The distortions are greatly exaggerated,  and the shapes for    J,     and    J. are 

for positive values of these constants, whereas  they are actually both negative. 

Although all  the zonal harmonics are axisymmetric, only the even harmonics - 



SP 
157 

i.e. those for which i    is even - are symmetric about the earth's equator. 

Because the perturbations produced by the even harmonics are quite different 

from those produced by the odd harmonics, it is usual to study them 

separately. 

Fig.5 gives values of the even harmonics, as determined by various 
3 4 5 

authors ' ' , and it is seen that there is good agreement as far as J,. 

It is striking that, although J. is of order 10 , subsequent even 
—6 

harmonics (and in fact all other harmonics) are of order 10 ;  thus it is 

not surprising that only J. could be estimated prior to the satellite 
2 

era. The fact that J  (£. > 2) is of order J- is important in the 

various theories of satellite perturbations in the earth's gravitational 

field. 

The main effects of the even zonal harmonics are on the orbital elements 

n    (right ascension of the node) and    ui    (argument of perigee).    These have 

secular perturbations, as I explained in my first lecture, and formulae for 

their rates of change are 

ft    "    " | J2 n (R/P)2 cos i    +   0 (J4 etc.) (3) 

and u> | J2 n (R/p)2 (4 -   5   sin2 i)    +    0 (J4 etc.)     , (4) 

3 i 2 where   n » (y/a ),    i.e.    n   is the mean motion,    p • a(l - e ),    and the 

remaining notation has already been given.    Fig.6 illustrates    ft    as a 

westward rotation of the orbital plane;    this rotation vanishes only for 

polar orbits.     Similarly    iL,    interpreted as the rate of rotation of the 

orbit within its plane, vanishes for inclinations such that sin i - +/0.8 . 

These are the important 'critical inclinations', which are of both 

theoretical and practical interest and which I referred to in my first 

lecture.    (Many Russian satellites have been launched with near-critical 

inclination,  so that perigee - or apogee for communication satellites - 

might remain for long periods in the northern hemisphere.)    It is from the 

observed values of   ft    and   u    (or sometimes just from   Q),  averaged over 

long periods for a number of satellites,  that the even harmonic coefficients 

are derived.    Thus if the average value of    ft   observed for satellite    A   is 

Ü.,    we have an equation of   condition of the form 

A2 J2 + A4 J4 + A6 J6 +  ••••    "    "A    ' 
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where    A«  = -1J  n.   (R/pA)     cos i      and    fi.    has been corrected by removal 

of all  the   (small)  effects of other sources of perturbations.    Similar 

equations of condition for satellites    B, C    etc. may be  set up - it  is 

important   that as wide a range of orbital inclinations as possible be 

covered - and the whole set solved by the method of least squares.    The 
3 

King-Hele/Cook solution   was for  four    J    coefficients,  using seven 

satellites. 

Fig.7  gives values of the odd harmonics, one set determined by King-Hele, 

Cook and Scott   ,  and another set determined by Kozai  .     (Exactly zero-values 

appear in  the set of King-Hele et al.,  because in their first least-squares 

solution  they obtained such small values of these coefficients  that they 

dropped them altogether;    having set nine odd   J's   to zero  they determined 

values of six others,  using 22 satellites.)    Agreement between the two sets 

is good up  to    J7. 

The odd harmonics do not lead to secular perturbations,  so they are 

determined from long-periodic perturbations,  usually from the perturbations 

in    e    (eccentricity).    Fig.8,  repeated from my first lecture,  shows  the 

secular and long-periodic variation of    e    for the satellite Ariel 2.    If 

the secular variation is removed,   the amplitude of the long-periodic 

oscillation - of which the period  is about 120 days - is easily obtained, 

and from this an equation of condition for the odd harmonics,   in the form 

A. J    + A. J    + A_ J_ +  ....    -    e       , 

may be derived.    As with the even harmonics,  a set of such equations may be 

solved  for as many    J    coefficients as desired. 

I have mentioned that the odd zonal harmonics relate  to equatorial 

asymmetry  in  the shape of the earth,  and it is often said  that    J. 

represents  a  'pear-shaped'  effect.     The actual value of    J_    implies  that, 

at mean sea  level,   the north pole - which is at the stalk of the pear - 

is  32 metres  further from the equator  (which is defined to contain the 

earth's centre of mass)   than the south pole is.    Taking into account the 

other odd harmonics this figure  is more  like 41 metres.    The general picture 

is  given by  Fig.9,  which shows  the  height of  the geoid  (i.e.  of mean sea 

level),   relative   to a  spheroid of  flattening 1/298.25,  as  a  function of 

latitude.     Two  curves  are plotted;     both curves relate  to a  seven-coefficient 

set of odd  harmonics obtained by King-Hele  two years before  the  set  listed 
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in Fig.7,  but one curve relates  to the King-Hele/Cook set    of even harmonics 

4 given in Fig.5 and the other to the Smith set  . 

We now remove all restrictive assumptions about the earth's shape.    The 

general expression for the gravitational potential, with no symmetries at 

all,  is 

-    1    +      I      I    (-)    P? (»in ß)  {C.      cos mX + S.       sin mX}       , r   [ *-l mi0 W      £ l>* *"* J 
...   (5) 

where X is longitude, F  is the associated Legendre function of degree 

i   and order m, and the harmonic coefficients C.   and S.   are * £,m      l,m 
dimensionless constants. When m ■ 0 the harmonics are 'zonal'; C 

is simply -J., and S    does not arise since sin 0-0. When m - £ 
X« X> y o 

the harmonics are  'sectorial1, and when   0 < m < £    they are  'tesseral', 

though the  term 'tesseral'  is often taken to include 'sectorial'.    It is 

sometimes preferred to replace    C.        and    S.        by coefficients    J. r r Ä,,m Ä,m     ' Ä,,m 
and    X.     .    defined by the relations 

J.      cos mX„        ■    C,, £,m £,m £,m 

and 

J.      sin mX.        -    S.        , itm il,m £,m 

where    J0      > 0.    Then   Jn      ■  |jj   . £,m £,o       '   V 

Certain of the harmonic coefficients can be eliminated without loss of 

generality.    If the  'geocentric'  origin of the coordinates    6    and    X    is 

taken to be  the earth's centre of mass,  it follows that    C.  0 ■ C.  .   - S-   i ~ 0. 

If the 'polar'  axis  (on which    ß - ±\v)   is  taken as a principal axis of the 

earth,  it follows that    C2 1 " S2 1 " 0'    th" ^s rea8onable»  since the axis 
of the earth's rotation is a principal axis.    However,  it  is pointless to try 

to make    S2 9 " 0   by ta^in8 the origin of    X    as another (equatorial) 
principal axis, since only the polar principal axis is known with any precision. 

We now rewrite the general potential expression as 

Ü   + 
I 

I       I      V™ (6) 
£-2 m-0      *"* 



10 

where 

SF 
157 

U
8 m "  7 JP nYl)  P? (8in ß> C08 m(X -  Xlim)      ' (7) 
l,m r  x.,m I r / I »»m 

For an arbitrary satellite, the three spherical coordinates r, ß and X 

may be expi 

M. We get{ 
may be expressed in terms of the six orbital elements a, e, i, ft, u and 

8 

u«.. - jo ,Lu^ • w 

where 

U„ -    ^J -|   A [F.     (i)  G.     (e)  exp /T {(£ - 2p)  u) +  (Ä - 2p + q) M + 
Impq a     )i,,mla/ Jimp £pq 

m (ft - v  - X.    )}]    ;   (9) 
ic,m 

here F and G are standard functions, which fortunately represent inclina- 

tion and eccentricity effects completely and independently, <R denotes 

'real part', and v is the sidereal time. 

A full study of the perturbing effects of the general U.    potential 

term would be an enormous undertaking, so I do not propose to do more than 

to consider briefly the cases when these effects are most significant. The 

main criterion for significance is the rate of "Change of the argument of the 

exponential function in (9);  if we write 

*• - (£ - 2p) a) + (£ - 2p + q) M + m(n - v)  ,       (10) 

then this argument is <t> - m X  ,  and the critical quantity is $. 

The general situation is that * changes at least as rapidly as M, so 

that the resulting perturbations are of short period and hence (apart from 

those due to J- of course) negligible.  It turns out that G  (e)  is 

of order eiq'  and it follows that, unless e is large, significant terms 

only arise for q ■ -1, 0 or +1. 
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In the more familiar zonal-harmonic situation we have m = 0 and there 

are two important cases:  (1) if £ - 2p • q = 0, * vanishes and we have 

secular perturbations, as used to determine the values of the even harmonics: 

(2) if £ - 2p + q ■ 0, but q ^ 0,  then we have long-periodic perturbations, 

as used to determine the odd harmonics. 

If m # 0,  true secular terms cannot arise but there are still two 

important cases. First, if £ - 2p + q ■ 0, then $ - - m v+ smaller terms, 

and if m is small we have perturbations of period several hours;  these 

will just be significant for close earth satellites.  Secondly, if M and 

v are roughly commensurate, there will be values of £, m, p and q such 

that $ is close to zero; this is the condition known as resonance.  In 

an extreme case, if drag is negligible so that M is virtually constant, 

the resonant condition may give rise to terms that are effectively secular. 

As an example of important non-resonant perturbations, Fig. 10 shows 

an apparent error, of about 12-hour period, that was detected in residuals 

associated with RAE orbit determinations for the satellite Ariel 2. An 

early version of the orbit-determination program was being used, with no 

representation of tesseral (or sectorial) harmonics, and it was realised 

that the 'time error' was really an along-track perturbation due to various 

U    with £ - 2p + q - 0 and m - 2, but in particular to U221o 
Viien 

the along-track term due to J. 9 was added to the orbital model, the 

apparent time error was very much reduced. It is from residuals, such as 

those represented in Fig. 10, for a number of satellites, that a general 

least-squares determination of some set of tesseral harmonics is normally 

carried out, usually in conjunction with the improvement of station 

coordinates.  Ref.9, for example, gives the set from the 1969 Smithsonian 

Standard Earth, in which all harmonics up to (£, m) - (16, 16) are 

included (together with 14 pairs of higher degree derived from resonant 

perturbations). 

The physical meaning of resonance is that the ground track of a 

satellite repeats after some simple fraction of a day. The most familiar 

example is th« once-per-day repetition of synchronous communication 

satellites (also described as 'geostationary' when the orbit is circular 

and equatorial) . The condition for a synchronous satellite is that 

M * v,  so it follows from (10) that synchronous resonance occurs for 

U.    such that 
£mpq 

£ - 2p + q - m . 
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If we neglect 0(e) perturbations (and also the 0(1) eccentricity pertur- 

bation that arises for q * ±1), then we must take q ■ 0,  so that 

£ - m • 2p.  It follows that resonance effects are associated with all the 

J„   for which I - m    is even. However, due to the distance cf a 

synchronous orbit from the earth, the dominant resonance is that due to 

J« „. The J2 _ resonant perturbation arises through ^2200' an(* I t^n^ 

it is worth repeating that the condition is completely different from the 

non-resonant condition associated with U^^.^. 

We can interpret J„ „ in terms of earth shape, just as we did the 

J  zonal harmonics. The interpretation is that the equator is elliptical, 

with its major axis pointing towards the directions given by A- . and 

\2 „ + TT. A synchronous satellite which is stationed in either of these 

directions would be in unstable equilibrium;  stationed above either 

extremity of the equator's minor axis, it would be in stable equilibrium, 

and above any other point it would start to drift towards the nearer 
10 

stable point  .  (One stable point is in the Indian Ocean, and the other 

is in the Pacific Ocean, west of South America.)  The actual value of 

J    is about 1.79 * 10  (and of  A9 „ about -18 ) and this is equiva- 

lent to a difference between the major and minor equatorial semi-axes of 

about 69 metres. 

Important resonances have occurred for a number of non-synchronous 

satellites, and determinations of some of the tesseral (and sectorial) 

harmonics have been based on the study of the resonances. An interesting 

example was for the inclination of the satellite Ariel 3, plotted (from the 

RAE orbit determinations by the program PROP) for 840 days in Fig.11. It is 

immediately clear that, in addition to an oscillatory behaviour due to 

luni-solar perturbations, there was a marked decrease in i,  amounting to 

about 0.02 degree, early in 1968.  In a paper on the Ariel 3 orbit , I 

considered a number of possible explanations of this phenomenon, but 

unfortunately overlooked the true one entirely, namely that it was due to 

a U-c ic 7 0 resonance associated with J.. ... The variable $, 

given by 

J-  - u) + M + 15 (il - v)  , 

became resonant just before 0 hours on MJD 39889 (3 February 1968), and was 

within 120 of the resonant value during a three-month period centred on 

this date.  By fitting to the values of inclination plotted in Fig.11, an 
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excellent estimate of the value of J ,. .,. - more precisely of an equation 

of condition relating J.. -. , J._ .5, J-Q .- etc. - has been obtained. 

Fig.12 re-plots the Ariel 3 inclinations over 200 days, with a fitted curve 

representing the J.,. , c Perturbation, and also gives a plot of the resonant 

variable. It is planned to refine the values of C.,. ,_ and S., ._, 

which were obtained in this way, by removing the luni-solar perturbations 

from the values of i, and then re-fitting. 

When a complete set of zonal, tesseral and sectorial harmonics has 

been derived, it is convenient to summarize it in a contour map, representing 

the height of the geoid (mean sea level) above a spheroid of some suitable 

flattening. Fig.13 shows such a contour map based on the 1966 Smithsonian 
2 

Standard Earth ; it differs very little from the latest map for the 1969 
9 

Standard Earth . 

4    THE UPPER ATMOSPHERE 

The effects of the upper atmosphere on a satellite orbit are much more 

difficult to represent, mathematically, than are the effects of the earth's 

gravitational field. One reason for this is that the gravitational field 

has a potential function - i.e. the field is conservative - whereas there 

is no such function for the drag force exerted by the atmosphere. A more 

important reason, however, is that the earth itself is essentially solid, 

so that the harmonic coefficients, which specify the potential, are constant 

(neglecting tides, earthquakes, etc.), whereas the atmosphere is changing all 

the time. It is still possible to represent the perturbing force mathematically, 

but the parameters of such a representation - for example the 'density scale 

height' - can only be treated as constant in a first-order analysis of the 

orbital perturbations. 

In spite of the inherent complexity that we now have to face, the basic 

expression for the aerodynamic drag force on a satellite is actually very 

simple, viz. 

D - - i p cD S V V , (11) 

where    p    is the density of the air in the vicinity of the satellite,    C 

is the drag coefficient,    V    is the velocity of the satellite relative to 

the surrounding air, and    S    is the projected cross-sectional area perpen- 

dicular to the direction of    V.    For certain satellites there may also be 

a lift force, but we ignore this possibility. 
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If the air is assumed to be stationary, relative to geocentric inertial 

axes, so that V is identical with r, then D acts within the orbital 

plane of the satellite and there is no tendency for the orbital plane to 

rotate;  i.e. with this assumption the motion becomes two-dimensional, 

within a fixed orbital plane.  (An actual orbital plane still rotates, of 

course, due to gravitational perturbations, but, as I have said, the two 

classes of perturbations may be considered as essentially independent.) 

This two-dimensional motion is governed by the air density p, as it varies 

along the orbit, and so information about p can be inferred by studying 

the perturbations in the motion. I propose to give a brief survey of this 

subject, and then to conclude with an even briefer survey of how 

atmosphere-induced rotations of the orbital planes of various satellites 

have been observed, with a surprising corollary about the rotational 

speed of the atmosphere. 

4.1  Air density 

Equation (11) showed that the drag force is proportional to the air 
12 

density, and air density is primarily a function of height. Thus  average 
—r    "X 

values of o are lü  kg/m at about 100 km height, but less than 
-14    3 

10   kg/m at 1000 km.  The variation with height, h, is approximately 

exponential, so that we have 

h - h 
p ■ Po exp —g  , (12) 

where H is the 'density scale height* and p  is the density at a 

reference height h . To a first approximation H is taken as constant - 

and would be about 50 km to reproduce the average variation from h ■ 100 km 

to h - 1000 km that has been quoted - but if better accuracy is desired H 

must itself be taken as a function of height. 

Let us consider what happens to a satellite in an orbit of moderate 

eccentricity, say for which 0.02 < e < 0.2.  (It is the e > 0.02 

part of the inequality which concerns us here.)  It follows that the 

effect of air drag is effectively concentrated within a small arc of the 

orbit around perigee. Loss of energy near perigee means that the next 

apogee is lower than the previous one, and the evolution of the orbit is 

as shown in Fig.14. The orbit contracts and becomes more circular;  i.e. 

both a and e decrease with time.  It is interesting to note the 

slightly paradoxical fact that the height of perigee, where nearly all the 

drag is, decreases only very slowly, whereas the height of apogee, where 

there is virtually no drag, decreases relatively rapidly. 

SP 
157 
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I capnot resist remarking on a further paradox which people sometimes 

find difficult to understand: the immediate effect of drag is that a 

satellite is retarded and its orbit contracts, but a contracted orbit means 

(by Kepler's third law) a shorter orbital period, so that the satellite has 

actually been accelerated. The paradox cannot be resolved by saying that a 

contracted orbit means the satellite has less far to go;  it really does 

travel - on average - faster. The explanation, of course, is that a (genuine) 

retardation at perigee involves a loss of energy and that it is at the next 

apogee that - relative to the preceding one - a speeding up occurs.  If, from 

one apogee to the next, an amount of total energy AE has been lost, this 

corresponds to a loss of potential energy amounting to 2 AE, so that there 

is actually a gain of AE in kinetic energy. 

It is the decreasing value of T,  the orbital period, that is the most 

easily and accurately measured perturbation of an orbit. The rate of change 

of T is directly proportional to p , the reference density in 

equation (12), so that from observations of t it is possible to infer p . 
13 ^ o 

The formula is 

mi- 'a   '   -0-157 f (Ä) i1 - 2e + 2^ - 8^ I1 - 10e + T& 4 0 

(13) 

where 6 - FSC./m; here F is a factor which can be introduced to allow for 

atmospheric rotation and m is the mass of the satellite (which no longer 

cancels out in the equations of motion, as it does for gravitational pertur- 

bations). It is assumed, still, that 0.02 <e <0.2, and the formula is 

derived by truncating asymptotic expansions of Bessel functions of argument 

ae/H. The reference height, h , to which this value of p  applies, is 

not the height of the satellite's perigee, but a height JH above perigee. 

The advantage of a formula which gives density at height h + JH is that 

it is less sensitive to errors in H than a formula for density at height 

h ; for example, an error of 25Z in H gives an error of only 1* in p. 

(Since e is assumed to exceed 0.02, apogee height exceeds perigee height 

by at least 250 km, so the air at height h + :lH really is being visited!) 

The overall accuracy for absolute values of density, as given by equation (13), 

is usually about 10Z, due to lack of an exact value for C . But variations 

in density can be measured much more accurately, often to better than 2Z. 
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Discoveries about the density of the upper atmosphere, based entirely 

on the use of equation (13) for many satellites (in almost every case as a 

'non-operational objective'), have been remarkable. The first discovery was 

that the atmosphere was far less tenuous than had been supposed prior to the 

satellite era. The second was that the density, at the same height above 

the same point on the ground, can be incredibly different at one time from 

another; at 500 km height, for example, the maximum value of p can be as 

much as 200 times greater than the minimum value. 

The variation of atmospheric density with time is under the control of 

the sun, and this control acts in a number of ways, not all of which are 

fully understood as yet. Some of the control mechanisms may be regarded as 

acting 'directly', while others act 'indirectly', and an example of each of 

these may be seen in the plot of T, for the satellite Explorer 1 (h about 

350 km), in Fig.15. At heights between 200 km and 1000 km density increases 

during the (local) morning, as a result of solar heating, and decreases 

during the afternoon and evening, so that there is a 'day-to-night' varia- 

tion which is 'indirect' in the sense that it is not associated with any 

change in the sun itself. This effect does not manifest itself diurnally, 

however, because the earth is rotating underneath the satellite orbit;  it 

is the angle between the sun and the satellite perigee, as seen from the 

centre of the earth, which is important, and the period of a complete cycle 

of variation of this angle is usually several months, about nine in the case 

of Explorer 1. During each cycle the rate of decrease of T - and hence the 

atmospheric density - is greater during the periods of perigee 'day' than 

during the periods of perigee 'night'. The 'direct' effect in Fig.15 is 

visible as the steady reduction in the rate of decrease of T from 1958 to 

1962. This can only mean that the satellite perigee, as it very slowly 

descended, sampled less and less dense air, contrary to what might be 

expected. The explanation lies in the gradual reduction in solar activity 

as the sun moved from the maximum of the 10- or 11-year sunspot cycle, in 

1958, towards the minimum, in 1964. At heights above 200 km the atmospheric 

density is directly related to the solar activity;  as the extreme ultra- 

violet radiation increases, and the particles ejected by the sun become 

more numerous and more energetic, the air heats up and hence becomes denser. 

The sunspot-cycle variation in density is greater than the day-to-night 

variation, as can be seen from the four plots of density against height 

shown in Fig.16. 
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Besides the correlation with the sunspot cycle, the direct response 

of the atmosphere to solar activity shows itself in two other ways, both 

of which may be seen in the plot of f for Explorer 9 (h about 700 km) 

in Fig.17. The peaks in this plot correspond to violent storms on the sun, 

alternative evidence for which is given by the geomagnetic index a , 

which is probably the best indicator of the effect of solar particles 

impinging on the earth and is also plotted in Fig.17; the correlation 

between a  and f is very striking.  (Similar striking correlations 

between f, for various satellites, and the energy of solar radiation at 

wavelength 107 mm have been observed.)  If we ignore the peaks, the other 

feature of the T plot in Fig.17 becomes clear, namely the 27-day cycle. 

A cycle of this period is characteristic of solar phenomena, since it is 

the period of the sun's rotation. 

Finally, in this summary of solar-induced variations in the density 

of the upper atmosphere, there is the 'indirect* effect known as 'semi- 

annual variation'. Though the effect is believed to arise from variations 
14 

in the lower atmosphere , it is most clearly visible high in the upper 

atmosphere. Fig.18 shows the effect for Echo 2 (h about 1100 km>,  The 

cause of the semi-annual variation is still uncertain, but its features 

are well established:  the density at a given height, after correction for 

all other sources of variation, exhibits a residual oscillation which has 

maxima in early April and late October and minima in mid-January and 

late July;  the maximum in October is usually - though not in Fig.18 - 

higher than that in April, and the minimum in July is usually lower than 

that in January. 

4.2  Atmospheric rotation 

I" have already remarked that, if it were not for the rotation of the 

atmosphere (and for the possibility of lift forces), there would be no 

tendency for atmospheric forces to rotate the orbital plane of a satellite. 

Thus if any slight rotation of an orbital plane is observed, after correc- 

tion for non-atmospheric perturbations, it will provide direct evidence - 

not merely that the atmosphere rotates, which is obvious - but of the 

magnitude of the rotation. 

Suppose, then, that the atmosphere has an angular velocity which is A 

times greater than that of the earth itself. Here A may be assumed to be 

a function of height, equal to 1.0 when h « 0;  we might suppose that as h 

increases A would decrease, since the frictional effect of the earth would 

wear off, but this turns out to be wrong. 
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Fig.19 gives a vector diagram for velocities and drag forces as a 

typical satellite crosses the equator from south to north. By resolving 

the drag force D within and perpendicular to the orbital plane, it is 

seen that there is a small lateral force which tends to decrease the 

inclination of the orbit. Half an orbit later, as the satellite crosses 

the equator from north to south, the force acts in the opposite direction, 

but this means that its tendency is still to decrease the inclination. 

In fact TT ^ 0 all round the orbit, except at the north and south apexes 

where TT " 0 (and except for an equatorial orbit, for which JT " 0 

everywhere) . The integrated effect around an orbit can be expressed, like 

the ordinary atmospheric perturbations, in terms of Bessel functions;  the 

resulting change in the inclination, Ai say, contains p  (the density 

at height h + iH) as a factor, and p  can then be expressed in terms 

of T, by equation (13). The final formula is best expressed in terms 
13 

of AT, the change in T over a long interval of time, and it is given by 

Ai 
A AT sin  i 

3  /F 
(1 - 4e)  cos2 ai - ^- cos 2a) + 0  |e% ~^]}     .   CM) • (•'• AI ■ 

Thus if Ai is observed, for a suitable satellite for which an appreciable 

AT has also been observed, a value for A can be estimated.  (Formulae for 

Af; and Au can also be obtained, but are of less practical use.) 

Values of A for 27 satellites are shown in Fig.20 with the extra- 

ordinary indication that A increases with height. The standard deviation 

of each determination of A is large, due to the smallness of the values of 

Ai used, but the effect must be regarded as a genuine one, and it has been 

confirmed more recently for other satellites  . As an example of the care 

which has to be exercised, however, I can point to the Ariel 3 tesseral- 

harmonic resonance I described earlier;  if this were overlooked, it would 

be possible to obtain a value for A of about 2.3, taking a Ai of about 

-0.018 over two years from Fig.11, but when the resonant effect is allowed 

for the value obtained for A seems to be less than 1. 

A number of attempts have been made to explain the observed increase 

of A with height. Challinor's model  of ionospheric winds, for example, 

leads to A = 1.1 at 200 km, rising to nearly 1.5 at 350 km, and this is in 

excellent agreement with Fig.20. 
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