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SUMMARY 

The conclusions of many studies of strategic warfare rest heavily on 

assumptions concerning fatalities and contain errors because of 

inconsistencies in the methodology. This Paper considers in retail 

the types of computational sensitivity that arise in urban blast 

fatality calculations and attempts to uncover areas where errors 

are made. The Paper examines the effects of various assumptions on 

the resulting estimates of fatalities. In order to obtain a tractable 

mathematical problem, most strategic studies neglect: (1) the effects 

of strategic warning, (2) other attack or defense objectives besides 

fatalities, injuries, and (3) the effects of fire and fallout. This 

procedure is also followed here. 

Two basic tools are used in this review of the sensitivity of 

blast fatality calculations: first, a computer program that computes 

survivors in a city under an optimized attack, with a given number of 

weapons, and, second, a quasi-analytical damage law, the "Square Root 

Damage Law," which is used to correlate the results. Neither of these 

tools is new, but they have both been used without adequate cali- 

bration. The computer program used here appears to calculate results 

that are usually within one percent of the mathematical optimum and 

therefore serves as an adequate tool to test the sensitivity to 

various effects. 

This basic computer program is used to study such effects as 

sensitivity of fatalities to weapon yield, reliability, or target 

vulnerability. The effects of various blast shelter options and 

methods of target designation are studied by extending the basic 

calculational methods. Attention is concentrated upon a few metro- 

politan areas, which are studied in detail (no nationwide results 

are presented). Where possible, a rationale is developed to explain 

the results obtained. 
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FOREWORD 

The work described in this paper originated as part 01 the systems 

evaluation assistance rendered to the OEP-OCD Study Group under Task 

Order 4116C, Contract DAHC 20-70-C-0287 with the Office of Civil Defense, 

Department of the Army. 

The computer calculations on which the study is based were all 

performed in the period from August 20 to October 24, 1969. Many 

of the results were supplied piecemeal to the IDA/OEP Study as time 

progressed. The author wishes to express appreciation to Mr. >J. 

Cogdell of IDA, the System Analysis Panel Chairman of the OEP-OCD 

Study for a number of suggestions which led to several of the lines 

of study followed here. 

At the conclusion of the computational effort it was apparent 

|     1      that further analyses were required to properly present the collected 

data. 

The goal of this paper is to fulfill, in at least some degree, the 

purpose of significantly improving the methodology of assessing the 

effectiveness of civil defense systems, and to eliminate at least 

some unnecessary errors from these analyses which must be based on 

many arbitrary assumptions. 

The Systems .Analysis methodology described herein was developed 

under Task Order 4126F, Evaluation of Total Local Civil Defense 

Systems, of the cited contract and was under the general supervision 

of Mr. Neal FitzSimons of the Office of Civil Defense. 
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SUMMARY 

The conclusions of many studies of strategic warfare rest heavily en 

assumptions concerning fatalities and contain errors because of 

inconsistencies in the methodology. This Paper considers in detail 

the types of computational sensitivity that arise in urban blast 

fatality calculations and attempts to uncover areas where errors 

are made. The Paper examines the effects of various assumptions on 

the resulting estimates of fatalities. In order to obtain a tractable 

mathematical problem, most strategic studies neglect: (1) the effects 

of strategic warning, (2) other attack or defense objectives besides 

fatalities, injuries, and (3) the effects of fire and fallout. This 

procedure is also followed here. 

Two basic tools are used in this review of the sensitivity of 

blast fatality calculations: first, a computer program that computes 

survivors in a city under an optimized attack, with a given number of 

weapons, and, second, a quasi-analytical damage law, the "Square Root 

Damage Law," which is used to correlate the results. Neither of these 

tools is new, but they have both been used without adequate cali- 

bration. The computer program used here appears to calculate results 

that are usually within one percent of the mathematical optimum and 

therefore serves as an adequate tool to test the sensitivity to 

various effects. 

This basic computer program is used to study such effects as 

sensitivity of fatalities to weapon yield, reliability, or target 

vulnerability. The effects of various blast shelter options and 

methods of target designation are studied by extending the basic 

calculational methods. Attention is concentrated upon a few metro- 

politan areas, which are studied in detail (no nationwide results 

are presented). Where possible, a rationale is developed to explain 

the results obtained. 
xv 



i 

I 

I 

I 

i 

CONCLUSIONS 

The computer program used tc optimize an attack and compute fatalities 

produces consistent results and appears to produce results close to 

the mathematical optimum. The quasi-analytical law—the square root 

damage law—produces curves representing survivors as a function of 

number of weapons whose shape matches the square root damage law 

very well, often within one percent, and allows a single constant, 

to be used to describe the results of a set of assumptions. 

The major conclusions are listed below (and are broken out to 
! 
i        indicate the section in which they are discussed): 

|        A TYPICAL CALCULATION (Section 3) 

' (1) The distributions of expected survivors (over area) 
obtained from the expected value calculations after the detona- 
tion of several weapons are dominated by the survival probabili- 
ties at large distances. A Monte Carlo simulation yields 
significantly different survival patterns from those resulting 
from expected value calculations. 

(2) The differences in calculated damage due solely to 
uncontrollable statistical fluctuations arising from weapon 
unreliability or aiming errors can be large. This places a 
limit on the accuracy of prediction even if there is perfect 
knowledge of every parameter.1 

SENSITIVITY TO PARAMETERS (Section 4) 

(3) The difference in shape between the "Square Root 
Damage Law" calculations (an expression for calculated survivors 

1. The word small is used here when for any number of weapons the 
difference in survivors between two calculations is less than 5 per- 
cent . The word large is used whenever at some level of survivors more 
than a 20 percent difference between two calculations is obtained in 
the number of weapons needed to give that level of survivors . These 
two words are defined for convenience in describing the results and 
do not imply any judgment on what should be significant differences 
between strategic systems. 

xvi i 



of tiie form e  (1 +v'x)) and the result.; from the computer 
optimization is small in most situations, 

(4) A modified form of the square root damage law gives 
even closer approximations to the shape of the computer results 
in a form chat is consistent with the assumptions in a quasi- 
theoretical derivation using a weapon density assumption. 

(5) The differences in scaled weapon requirements to pro- 
duce a specific number of casualties due to variations in either 
weapon yield, CEP, delivery probability, or target vulnerability 
can be large. 

SENSITIVITY TO TARGET DISTRIBUTION (Section 5) 

(6) The differences in weapon requirements due to differences 
in the details of the population distribution between cities can 
be large. 

INFLUENCE OF ATTACK OPTIMIZATION (Section 6) 

(7) The difference in survivors calculated from an attack 
optimized against one population distribution (e.g., 1960 census) 
and evaluated against a second (e.g., 1975 estimates) and an 
attack both optimized and evaluated against the same population 
distribution is small. 

(8) If an attack of several weapons is optimized against 
targets other than population in a city, the differences in 
calculated surviving population can be large. However, if sub- 
sequent weapons are then optimized against population, the final 
difference may again become small. 

(9) The differences in scaled weapon requirements between 
large- or small-yield weapons can be large. However, if a few 
large-yield weapons are followed by small-yield weapons optimally 
targeted, the differences from an attack using all small-yield 
weapons eventually becomes small. 

BLAST SHELTERED POPULATIONS (Section 7) 

(10) When some fraction of the population, uniform with 
location, has blast sheltering and the rest do not, the survivors 
can be calculated by an exact optimization or by a simple weighted 
averaging of two simpler calculations where each assumes the 
entire population at one of the two overpressures concerned. 
The differences are small. 

(11) When an attack optimized for one shelter fraction, or 
blast shelter overpressure, and evaluated at a second is compared 
with an attack optimized and evaluated at the same condition, the 
differences are usually small. 
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(12) An "optimal" blast shelter deployment can be developed 
through the use of double Lagrange multipliers in a min-max 
calculation where the defender is trying to minimize fatalities 
by choosing a shelter vulnerability that may vary with position 
and the attacker is trying to maximize fatalities against this 
shelter deployment. When this complicated optimal deployment is 
compared with a simple deployment of constant vulnerability that 
costs the same (assuming a cost per space proportional to the 
shelter overpressure and no fixed cost) the differences are small. 

NFSS SHELTERED POPULATION (Section 8) 

(13) Under specific vulnerability assumptions for National 
Fallout Shelter Survey (NFSS) shelters (12 psi below ground, 
7 psi above ground, 4 psi for unsheltered population) the use 
of an NFSS shelter may substantially increase fatalities due to 
blast. 

(14) The difference between an exact calculation of blast 
vulnerability of population in NFSS shelters, where the number 
of shelters may be different at each location, and a simple 
averaging procedure is small. 

(15) The NFSS shelter combinations for each of the tfurae 
cities studied were very different. Further work should determine 
shelter availability in each major city if best use is to be made 
of these shelters. Moreover, shelter allocation routines should 
be developed to determine the best geographic use of the available 
shelters. 

On the basis of these conclusions, the use of the "Square Root 

Damage Law" seems justified in most situations, and simple averaging 

techniques are often applicable for mixtures of populations in 

different sheltering situations. However, care must be taken in the 

manner in which the damage laws are used or large errors may result. 

These errors are not lessened by switching to detailed calculations 

on each census tract unless such calculations properly include such 

effects as weapon reliability and other parameters. In any event, 

a careless calculation of nationwide fatalities which does not pay 

proper attention to how urban blast fatalities are determined will 

not contribute to an understanding of strategic warfare requirements, 

and any specific conclusions obtained are likely to be misleading. 

It is difficult, if not impossible, to find calculations of nation- 

wide fatalities that are not likely to have large errors. 
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INTRODUCTION 

In assessing the merit of various offensive and defensive strategic 

systems, the most commonly used yardstick is the number of people 

killed in urban areas from blast effects. This figure is calculated 

by a number of techniques, usually computer implemented. Curves of 

nationwide fatalities as a function of the number of weapons used is 

usually the result. Underlying these calculations, which are usually 

very precise and often assumed accurate, is the basic model for 

computing, city-by-city, the fatalities from various numbers of 

weapons. If the nationwide calculations are to reflect differences 

in system capabilities in any usable way, the individual city calcula- 

tions must also reflect such differences. In many studies this is 

not the case, and the comparisons of different candidate systems 

cannot be justified on the basis of the assumptions claimed. This 

occurs because the basic models of city damage, upon which the 

evaluation structure is based, are inadequate. 

This paper att* npts to provide a basis for improving the analysis 

of strategic warfare by studying in detail the damage calculations 

of individual cities. It does not discuss the physical basis for 

such calculations, which are treated parametrically, but is restricted 

to considering the logical implication of the types of physical 

assumption usually made. The usual basic assumption made to describe 

the physical situation is that only fatalities produced by the blast 

wave are considered.  This assumption will also be adopted herein. 

1. The limiting of calculations to blast fatalities is not as 
restrictive as may first appear. The result of the physical calcula- 
tion is to produce a curve of probability of kill as a function of 
distance from a weapon. Since the curve may be thought of as repre- 
senting combined effects of blast wave, prompt thermal radiation, 
prompt nuclear radiation, and other effects which are centered at 



Giver, ?he basic physical representation, then, attention can be con- 

centrated upon drawing logically consistent conclusions from comparison 

of calculations in different situations of interest to the analyst. 

The effects of a nuclear detonation in an urban area would cer- 

tainly not be restricted to immediate deaths. There would be also, 

many people injured to various degrees, a large amount of destruction 

of property, and residual nuclear radiation which would leave parts 

of the city unapproachable for a considerable time. These immediate 

effects would, in turn, disrupt economic, social, and cultural in- 

stitutions so that a complete description of the havoc created by 

nuclear weapons would have to include these derived contributions to 

human misery. These elements have generally been ignored for systems 
2 

analysis purposes.  In fact, it often also is assumed that an attacker 

also adopts maximizing direct fatalities as his objective. While this 

type of assumption is necessary to obtain a well-defined mathematical 

problem, it is necessary that the user of such results be provided 

with enough information to be able to apply the purely analytical 

results more subjectively. The common habit of restricting answers 

to nationwide results usually precludes any of this type of heuristic 

information becoming available. 

The mathematical idealization generally adopted assumes that only 

blast fatalities are considered in the value function; that, at best, 

tactical warning of an attack is given so people are in the cities at 

ehe time of an attack; and that an attacker is attempting to maximize 

1. (cont'd) ground zero, the number used to characterize blast 
vulnerability can be nodified to also include some of these other 
effects. Due to the uncertainty present in calculations of physical 
effects, such combined probability of kill curves can combine the 
knowledge available from many effects with no great loss of accuracy. 

2. Many attempts have been made to include economic effects in 
strategic analysis by including calculations of the physical des- 
truction of the capital apparatus of various sectors of the economy. 
However, due to lack of a generally available data base, such efforts 
often cannot represent more than very gross calculations which do not 
allow for any comparisons between certain kinds of systems. 



i 

I 

I 

I 

I 

t 

I 

I 

fatalities. In other words, sufficient assumptions are made to 

reduce the problem to one of mathematical programming. At this point 

one of two paths may be followed: 

(1) An optimization algorithm, which usually requires 
extensive computer calculation, may be developed which produces 
specific calculations of fatalities as a function of number of 
weapons used; or 

(2) A quasi-analytic method may be used to yield an explicit 
expression for fatalities as a function of number of weapons in 
terms of some parameters describing the city. 

In the past decade, a large number of studies have adopted one 

of these two techniques. However, there never has been, to the 

author's knowledge, a serious attempt to investigate in detail the 

effect of the various assumptions made before producing nationwide 

fatality calculations.  The result has been, in the author's opinion, 

not only a duplication of effort and unnecessary complication of cal- 

culations, but a serious confusion concerning the applicability of 

such results. 

The problems of optimization become aggravated when various civil 

defense shelter alternatives are considered. Under such conditions, 

it becomes necessary to consider different population levels mixed 

with various kinds of shelter. If fallout vulnerability of the popu- 

lace is also under consideration, the methods for assessing blast 

vulnerability must be combined with fallout vulnerability calculations 

The problems using either optimization orocedures or quasi-analytic 
4 

techniques are multiplied in this situation. 

In this Paper an optimization program is used to make urban 

fatality calculations under a number of different assumptions. In 

3. The one exception to this statement known by this author is 
an unclassified Appendix by S. Smith to Weapons Systems Evaluation 
Group Report 91, where calculations were made of the distribution of 
fatalities in the presence of ballistic missile defense characterized 
by a "price" model. 

4. Such questions, generated by the IDA/OEP Study, were the imme- 
diate motivation for some of the work in this study. The DASH computer 
program, written by Systems Sciences Corp., and used at the National 



ur^-r to exhibit the re? Its of such calculations, no attempt is 

made to make nationwide fatality calculations. Only exemplar cities 
5 

are used, ar.d '■ e  results are presented in detail for these cities. 

The optimization algorithm seeks to maximize expected fatalities 

from each weapon through a grid searching technique on a population 

located by census tracts. The expected survivors are then used as a 

target and the process repeated. A sequential, rather than simul- 

taneous, optimization is obtained. Although no exact standard is 

available, on the basis of detailed experience, this program appears 

to be usually within one percent of a true optimum. The computer 

calculated results are used in the same fashion that experimental 

data might be and correlated by techniques often used in engineering. 

One of the quasi-analytical techniques develops a damage function, 

called the "Square Root Damage Law," using an assumption of infini- 

tesimal size weapon targeting a Gaussian distribution of population. 

This technique is used here as a means of correlating the various com- 

puter calculations to determine the sensitivity of the blast fatality 

calculations to the sundry assumptions. The results provide a guide 

to the analyst concerning those effects and assumptions which must be 

considered for a particular set of system comparisons. 

Section II presents a summary of the basic methods used to obtain 

the results that are discussed in succeeding sections. It describes 

4. (cont'd) Civil Defense Computer Facility for OCD, could make 
combined calculations, if an attack were given. In addition some 
simplified methods were being used to combine pure blast and pure 
fallout calculations. The DASH program could not produce a sufficient 
number of results, and could not provide sufficient visibility into 
any detailed calculations to yield more than a few check points. The 
approximate calculations were of unknown validity. As a result, the 
effectiveness of various shelter systems, even if all the physical 
and social assumptions were accepted, was difficult to ascertain. 

5. Most of the calculations are for Detroit, Michigan. The cities 
of Washington, D. C, and Flint, Michigan are also used for comparison 
with Detroit. In each case, the entire metropolitan area is taken 
as the target. 
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the derivation of the damage laws used as a means of correction, 

and a specific method of optimally deploying blast shelters which 

is studied in a later section. In addition, the optimizing computer 

program is described, as well as the underlying information needed, 

i.e., vulnerability functions and the population description. 

In Section III, the results of a few sample calculations -are 

presented in detail. The estimated distribution of survivors from 

the expected value calculations are presented in maps which illustrate 

the targeting selections made by  the computer. The meaning of these 

expected value calculations is further illustrated by Monte Carlo 

calculations which show the distributions of results, that might be 

obtained from those statistical events averaged out in the expected 

value calculations. 

In Section IV, the sensitivity of the calculated fatalities to 

variations in the assumed weapon yield, weapon reliability, weapon 

delivery error, or target hardness are presented. This is done 

through use of the square root damage law as a correlating tool. 

Section V compares results using several types of targets such 

as various population distributions in the same city and different 

cities. 

The sensitivity of the calculated results to the methods useo to 

optimize the attack is considered in Section VI. The basic computer 

program is modified to allow different methods of attack optimization, 

but fatalities are compared using the same method of evaluation. 

The effect of optimizing the attack against an uncorrect population, 

assumptions of optimizing against other than population, and the use 

of a mixture of weapon yields on the same city are considered. 

Populations in blast shelters are considered in Section VII. The 

effects of mixing sheltered and unsheltered population, and of blast 

shelter mean lethal overpressure optimization techniques are con- 

sidered. 

In Section VIII, use is made of fallout shelter location data from 

the National Fallout Shelter Survey to compare blast fatalities calcu- 

lations using these shelters with those resulting from normal residential 

locations. 
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BASIC METHODOLOGY 

The methods by which the computer calculations were performed and the 

results correlated are described in this section. The first part will 

summarize the derivation of the basic damage function used as a 

correlation technique. Because the analytical techniques are similar 

this is followed by a summary of the derivation of a method of opti- 

mally deploying blast shelters. Next, the computer program used for 

the optimization and the damage functions are described. Finally, 

the sources of data used to define the targets are described along 

with some basic characteristics of the target obtained from the 

data. 

A. DAMAGE LAW DERIVATION 

Several methods have been used to obtain simple analytic expres- 

sions for survivors as a function of the number of weapons delivered 

on a city. This paper uses the approach derived by R. Galiano and 

H. Everett which is probably the most elegant of these and has gained 

wide acceptance. 

The basic formulation as described by Galiano and Everett uses a 

concept of weapon density, which implies a weapon effects radius that is 

small compared to other parameters of interest. Their approach is 

summarized here, using their terminology, as follows: 

Define: 

P        = Position coordinate 
U)(P) = Density of weapons at P(number/unit area) 

1.    Robert J. Galiano and Hugh Everett, III, Defense Models IV, 
Family of Damage Functions for Multiple Weapon Attacks,  Lambda Corp., 
Paper 6, March 1967. 

PRECEDING m BUK 



V(P) = Target value density (value/unit area) at P 

F(x) = Fraction of destruction produced by tu, without 

hardening 

u(P) = Vulnerability (hardening) factor (0 < u < 1) ex- 

pressed as an effective degredation of weapon density 

W   = Total number of weapons intended against the target. 

The total payoff, H, is given by 

Hj.* fA    V F(u(U)dA (1) 

where the integration is over the entire target area A.    The total 

number of weapons  is given by 

W = /AwdA (2) 

A Lagrange multiplier, X, is introduced to find the optimum weapon 

density. Thus an unconstrained maximum for the Lagrangian 

L = Hj." XW 

is sought.    This can be found by maximizing 

L =J^[VF(uiu)  - Xuu] dA 

or,  since V, x, and \x depend only on P, at each P finding the x* 

which maximizes 

[VF(mu)  -  Xu>]   . (3) 

An internal maximum is found by equating the derivative with respect 

to x equal to 0. Then 

HE FK>= h 
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Call G, (F')~ , the inverse function of the derivative of F. Then 

(4) 

I (4) is valid if UJ* > 0 and if L is maximized. Sinco L - 0 is always 

a possible solution, L(uu*) > 0 is necessary for Eq. 4 to be used. 

Otherwise uu* = 0. Thus 
A. 

UJ: ,* = 
i G(^j-) if UJ* > 0 and L(UJ*) > 0 

(5) 
0 otherwise, 

The total payoff H. and weapon usage W is obtained by substituting 

Eq. 5 into Eqs. 1 and 2. 

Now expressions for F(uu) are desired. For one case suppose N 

weapons are delivered at random over a region of area A, and each 
2 

weapon has a lethal area n R-  and delivery probability P,, so the 
2 

expected lethal area, K, is rrR   P,.    The survival probability is 

S(N) =- 
(.-#) 

N 

The weapon density UJ is N/A so 

Kuu 
N 

S(u>) = (1 - ~)    . 

The destruction is 

FN (») = 
(1 - % 

N 
.<{[ 

UJ > N/X 

(6) 



where a limit of Ifbr fraction destruction is clearly necessary. 

For many weapons 

lim F («0=1- e"1^ (7) 

Suppose now weapons are perfectly delivered with no overlap. 

Then F is given by 

KID   ID < 1/K 
F = ! (8) 

1   ID > 1/K . 

Now Eq. 6 has as limits Eq. 7 or Eq. 8 as N approaches » or 1. 

Thus Eq. 6 can lead to a family of curves, described by the parameter 

N, where as N -» »,   "random" weapon deliveries are obtained and as 

N -♦ 1,   "perfect" weapon deliveries are obtained. 

The Lagrange optimization (Eq.  5) may be oombined with the damage 

law (Eq. 6) to give an expression for F in terms of value V and 

hardening u.    This gives 

N/N-l 

(K^TJ KMi < 

FN  («JO  =    j        *     ' (9) 

The target may be assumed to be Gaussian, i.e., have a value density 

distribution of the form 

V = -i- exp(-r2/2c2) , (10) 
2na 

10 I 
I 
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I      where r is the distance from point of maximum density and j is the 

"standard deviation" of population. The total city density is nor- 

malized to one. Now Eqs. 9 and 10 may be substituted into Eqs. 1 

and 2 to yield the damage as a function of X. Introduce ß as I 
i 

•(*£) 
1/N-l 

(11) 

Then using |3 as a parameter the integration yields 

5ß" 
SS = ß N_1[l + (N-l)  (1 -1)] (12) 

Wg = ^-y2™2  CB - in ? - 13 (13) 

where the survivor value 5g is 1 - Hg . 

The limits when N -• 1 and N - « are 

S1 = exp (-KW/2TT02), (14) 

S 
as 

(l «"*(-#)• 

This completes the summary of tha Galiano-Everett derivation of damage 

laws.    The law of Eq.  15 is the "square root damage law," whose veri- 

fication is one of the objectives of this study. 

To obtain dimensionless parameters for the present analysis, 

call 

„,       TTRT^P,W 
X=^ = -J^_. (16) 

rra no" 

11 



Then Eqs.  12 through 15 become 

S-  = ^[l - (N-l)  (1-g)], (17) 

X = 2N (N-l)  [P - In g  - 1], (18) 

S1 = exp (-X/2), (19) 

S^ = (1 + ^X) exp (-$). (20) 

The family of curves bounded by Eqs. 19 and 20 is shown on Figures 1 

and 2 with N as a parameter. In subsequent discussions, city size will 

be determined from the standard deviation of population in east and 

north directions, ax and a... The lethal radius is the distance at which 

the nominal overpressure describing target vulnerability is obtained. 

Call 

-V  . (21) 

J3 is a parameter obtained from inputs to a damage calculation.    By 

fitting computer results a parameter, R, may be obtained where 

K W = X (22) 

A parameter a is obtained by 

ä ß = K (23) 

ä should be a weakly varying constant associated with changes in 

targeting conditions or targets. An objective of succeeding chapters 

is to study the variations in a,  especially using the square root 

damage law. Thus, this parameter may be used to attempt to correlate 

results obtained by the computer optimizations due to parametric varia- 

tions such as weapon yield, city shape, etc. The specific numerical 

12 
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8       techniques by which thr'.s parameter is calculated are described 

in Section IV. 

I        B. BLAST SHELTER OPTIMIZATION 

j Since some parts of a city are more likely to be attacked than 

I       ethers, it is possible that an advantage might be gained by constructing 

blast shelters resistant to varying overpressures. If this is done, 

the defender may wish to take account of the fact that the attacker 

knows where the blast shelters are deployed and shift his aim points 

accordingly. The mathematical problem thus generated is a min-max 

problem where the attacker attempts to maximize fatalities against 

whatever defense is deployed and the defense, realizing this, deploys 

that defense which minimizes fatalities against such an attack. 

The weapon density concept may be extended for the purpose of 

blast shelter optimization. There follows a summarization of a 
2 

development by Galiano which determines optimum blast shelter hardness 

as a function of value density. The damage function used is that for 

random impact, i.e., Eq. 7. 

The constant K in Eq. 7 is taken as a function of psi hardness 

of the shelters locally emplaced, P. The function takes the form 

K="V (24) 

where K* is a constant. The cost per person of obtaining a specified 

hardness C(P) is taken as 

C(P) = a + bP1/2. (25) 

2. R. J. Galiano, "An Analytical Model for Blast Shelter Deploy- 
ment," Appendix C to Lambda Report No. 3. An Optimization Study of 
Blast Shelter Deployment by David T. Mitchell, Lambda Corporation, 
September 1, 1966, Unclassified, A.D. No. 659 378. The method does not 
guarantee optimum deployments except for certain specialized cost 
functions. However, plausibility arguments can be developed which 
indicate that these deployments are "fairly good," 

15 



The allocation method is based on a double Lagrange multiplier approach 

L = H - \C* + uCD, (26) 

where L, H^ ,X are as in the previous subsection, \x  is a Lagr&nge mul- 
A    D 

tiplier for the defense, and C and C are costs for defense and 

offense. As before let V be the local value density. Then by Eqs. 

7, 24, and 26 

L = v(l - exp(- £p)J- \ui + uV C(P). (27) 

For a given P the value of uu* is first found.    This is 

0!*   = 

p 1X1 xF VK* > XP 

X 
0 VK* < XP. 

(28) 

The value of P to yield VK*/XP = 1 is called P ,  i.e., 

P    =W* ro       X (29) 

Equation 28 is substituted into Eq. 27 and this equation is differen- 

tiated with respect to P to find the stationary point yielding a 

maximum of L. This gives 

P=P0exp(-^ §) (30) 

Using Eq. 25 in Eq. 30 gives 

P = PQ exp ( 
UbPQP 

-1/2 

)• (31) 

16 
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Substituting Eq. 31 into Eq. 27 gives 

P       ?o L/V = 1 - §- (1 - In =2. ) +ua, (32) 
o 

Now L is to be minimized by the defenders. Call P the hardness with 

no shelter. Then for no shelter 

P       P 
L/V = l - -Ü (l - in-ü ) . (33) 

*o 

Shelters are deployed only if Eq. 32 is not larger than Eq. 33. 

This completes the summary of the Galiano report and yields 

a strategy for deploying shelters given by Eq. 30 or Eq. 31. A 

simple extension is to generalize the exponent in Eq. 25 to 

C(P) = a + bFn . (34) 

Then the analogue to Eq. 31 is 

P u 
P = P0 exp ( - -2-n bPn), (35) 

and to Eq. 32 is 

L/V = 1 - P/P0 (1 + S~i In P/Po) + Ua   . (36) 

For any cost function C(P), Eq.   30 gives 

P =P0 exp(-Pop§ )   . (37) 

17 
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Substituting Eq. 31 into Eq. 27 gives 

P       Po L/V = 1 - £- (1 - in f-  ) + ua. (32) 
o 

Now L is to be minimized by the defenders. Call P the hardness with J u 
no shelter. Then for no shelter 

P       P 
L/V = 1 - Ji (1 - in pH. ) . (33) 

o 

Shelters are deployed only if Eq. 32 is not larger than Eq. 33. 

This completes the summary of the Galiano report and yields 

a strategy for deploying shelters given by Eq. 30 or Eq. 31. A 

simple extension is to generalize the exponent in Eq. 25 to 

C(P) = a + bPn . (34) 

Then the analogue to Eq. 31 is 

P u oM  ,„n, 
P = Po exp ( - -js-n bP"), (35) 

and to Eq. 32 is 

L/V = 1 - P/Po (1 + E-Z-i in P/Po) + ua .      (36) 

For any cost function C(P), Eq. 30 gives 

P = Po exp (- PQU jj| ) . (37) 
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Plots of PQe  o are shown in Figure 3 for several values of T. AS 

=een if ' does not depend on C, this function achieves a maximum 

when ? - 1/te with a value P av of lAe. 

form C - a +  bP , the maximum pressure is 

For a cost function of the 

Pn '< 

1/n 
•jnEe' 

This occurs at a value of P,. given by 

n-1    _1 

Po = e n ()anb) n 

The effectiveness of this type of blast shelter deployment can 

be assessed by comparing it with a blast shelter deployment at a uni- 

form pressure. This is done by assuming, for simplicity, that mean 

lethal overpressure is a linear function of cost in the form a + b (P-P ). 

To do this, a deployment is made which is optimized for an attacker 

Lagrange multiplier ^D, and evaluated for another multiplier X, The 

population of the city is assumed to have a Gaussian distribution with a 

total population V       We then have, analogous to Eq. 10, 

n 22 V = —iL exp (- r /2 a ), 
2TTCT 

(38) 

In order to put the equations in dimension dess form we let 

V, 

2TTCT 

z = e 

9 
r 
—T 
2a * 
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I T = UD 

«P = rT" 

^ 

Y = 
V0K* 

3 = £- X 

5 = Pu T and 

t = Ua . 

Then using Eq. 39 in Eqs. 38, 30, 27, and 28 we obtain 

cp = max , (Z Y e -Z Y § 

(39) 

(40) 

(41) 

H = max 

UJ* = max 

v0 Z (1 - f* ) 

0 

o 
The condition that Eq.  36 is less than Eq.  33 is 

If the inequality does not hold, then Eq.  41 is replaced by 

cp = 1.    We now call 

-     HT       1 f* F=_i=-£-2TT   J n  H rdr 
V0      V0 

0 uu* rdr 

(42) 

(43) 

(44) 

(«5) 

(46) 

cp = 1 + ~   J     (cp - 1) V rdr (4 7) 

^0 
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P = 5 p (■-.) u v ; 

p 

Then, analogous to Eq. 16, we define 

X=*V (50) 
TT a 

In the following development, the cost function shall be taken in the 

form b(P-P ), i.e., there is no fixed cost of deployment. By doing this, 

Eq. 44 is automatically satisfied,    Moreover, the cost of deployment is 

proportional to 5 - 1, which is used as a basis of comparison. One 

example will be given at the end where the more complicated cost is 

considered. If the pressure of the blast shelters were in fact ur.itorr 

(cp is constant), then the square root law would result from these 

definitions. With a variable pressure the function F(X) can be 

directly compared with the square root law. From Eqs. 40 to 50 we get 

1    * 
F = J7 (1 - l£ ) dZ (SI) Z v   ZY m 

5-1 = 11 (cp - i) dz (5;) 

x=r /t|*|jdz. (S3) 
cp    m   r~ 

In Eq. 52, the lower limit of integration Z is determined when z 

reaches a value of 1,  in other words 

ZYe"Zy§  = 1  . (54) 



in Eqs.  51 and S3, Z^ is determined from Bq. 43 by the requirement 

rhat x* be non-negative,  i.e. 

ZJL = i <55> 

For large values of %,  the value of ~L can  become less than 1 near 

the origin as well. In this case the integrals must be divided cor- 

rectly. This case will be ignored in the subsequent equation to 

simplify the algebra, although not ignored in the numerical results. 

Equations 51 to 53 can be readily integrated. Two cases are considered: 

Case I, Z < 2, and Case II, Z > Z.  For Case I 
' m - m 

For Case II 

F*l+£(Se-* -»-1) (56) 

*    vT)  ZY? 

, J  i£ll--l-+2ni--^-l|      C59) 
V i  5   ZY 

x __ 2 \ , + _1_ . e_ (Y5+1) 

5 i   ZY? 

A  2 i 

+ 
s     ZY 
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And cp is still given by Eq. 58. For these equations, " and ■: are 

functions of ß analagous to Eqs. 17 and 18. Unfortunately trying to 

obtain F(X) directly, analagous to Eq. 20,does not lead to a simple 

result. 

For a linear cost function with a = 0, the total cost, - - 1, is 

a function of § and Y only and is preserved in Figure £. The general 

shape of the curves is similar to those in Figure 3. The orcinate 

plus 1 multiplied by the inherent city hardness is proportional to 

the average overpressure of the shelter deployment. Thus, for example, 

if the inherent city hardness is taken as 7 psi, then, for value c: 

i =  .05 and Y = 40, the average hardness is about 40 psi. 

In Figure 5, the percent survivors for three different deployments 

is presented as a function of X. These three deployments have the sa-.c 

cost but are optimized for different attack levels, i.e., X equal 

0.4, 4, and 13.6. The survivor level derived from the square root 

law at the same average overpressure is also presented. The differences 

are a measure of the benefits to be gained by the optimized deployment 

over a uniform deployment. The optimized deployments are about 3 percent 

better at the optimized attack level. They become somewhat worse as 

the attack departs from the optimum level. The uniform pressure deploy- 

ment appears to be a stable deployment in the sense that it is nowhere 

optimum, but nowhere much less than optimum. On the other hand, the 

optimized, or tuned, deployments tend to become considerably worse at 

attack levels somewhat different than the design attack. 

In Figure 6 survivors as a function of X are presented from three 

deployments optimized at the same attack level but with average costs 

(values of cp - 1) of 0.53, 13.8, and 148.5. The lowest cost deployment 

is closer to the square root law than the middle-cost deployment (also 

shown on Figure 5.) However, the higher cost deployment is almost 

identical to the middle-cost deployment. 

3. This gives more survivors at the higher cost, of course, 
does not show on Figure 6 since scaled, rather than absolute 

number of weapons is used on the abscissa of Figure 6. 
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FIGURE *.   Values of <p- 1 as u Function of y for Various Values of g 
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FIGURE 5.   Survivors as a Function of Scaled Number of Weapons for 3 Blast 
Shelter Deployment Optimized at Different Attack Levels 

25 



100 

90 

t- 

I 
SYMBOL y I 

• 100 0,0* 13.8 

+■ 10.75 0.2 0.53 

X 1000 0.002 148.5 

FIGURE 6.   Survivors as a Function of Scaled Number of Weapons for 3 Blast 
Shelter Deployment at Different Costs 
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_ One case is presented in Figure 7 where the fixed cost of shelter 

1       deployment is not zero. Here the cost function is C = 400 + P. 

These values were chosen to present a case where the fixed costs can 

1       be more than the pressure dependent costs. In addition to the criterion 

for limits of integration for Eqs. 51-53 already discussed, inequality 

I       (44) must also be satisfied. The integration was performed numerically 

over those regions where the integrands were greater than zero. The 

results cannot be presented in the terms of scaled numbers or weapons 

since the cost is no longer simply proportional to cp. To convert 

to absolute weapons Eq. 50 can be rewritten 

no2 

W =Tsr   cp x. 
u 

2 
These results are for the factor TT a /K*P equal to one. The 

shelter cost per person for all cases is the same, about *.490. The 

three curves with open symbols are for deployments optimized at attack 

levels which give 79 percent, 53 percent, and 20 percent survivors. 

The ratios of fixed to total costs are 74 percent, 63 percent, and 

43 percent. The efficiency of the deployments at various attack sizes 

differs considerably, with no single deployment being close to optimal 

over the entire attack range presented. A uniform deployment of 

shelters for weapons is shown by the Xs, and is rot considerably 

below the optimal deployment levels at the middle levels of fatalities. 

This occurs because the $400 fixed cost allows only $92 for pressure 

dependent costs. The deployment indicated by dots is ori3 where 

inequality (44) was not used. Even with nonzero fixed cost inequality 

(44) is automatically satisfied at deployments optimized at zero 

attack levels, and the curve obtained is close to the curve for a 

correct deployment optimized at 79 percent fatalities. 
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C. COMPUTER PROGRAM FOR OPTIMIZING TARGETS 

The computer program used, called DGZSEL, was developed by 

H. Everett at IDA in 1964 for the CDC 1604 computer. It has been 

used extensively in determining blast damage in urban areas, both 

for direct use and to generate input to the BRISK-FRISK damage 

estimating system. ' A large number of calculations were available 

that indicated that the program yielded consistent results. The 

attack locations obtained by this program were used in the BRISK- 

FRISK damage evaluation system, which uses that same formula to 

calculate blast fatalities, to produce nationwide fatality estimates 

which were carefully compared to calculations made independently at 

other facilities. Good agreement was obtained. This program was 

selected as a reliable standard for calculating optimized blast 

fatalities= The basic program is short, consisting of about 190 

FORTRAN lines of coding and 20 machine language instructions. 

In using DGZSEL, the target is described by the value of a number 

of points (in this study either the population of census tracts or 

the capacity of fallout shelters) located by latitude and longitude. 

These tract points are not necessarily ordered in any particular 

fashion or located with any particular regularity. These data are 

read by the program from a magnetic tape which contains these value 

points clustered by city target areas. Additional inputs are values 

of weapon yield, delivery error, reliability, a surface or airburst 

indicator, and a target mean lethal overpressure. The calculation is 

initiated by calculating probability of kill as a function of dis- 

tance from the weapon by means of equations given later in this sub- 

section. The probability-of-kill curve for 100 percent reliability 

is multiplied by the weapon reliability to obtain the curve usec1 in 

the calculation, which is interpreted as the expected fraction of 

value destroyed by each weapon. 

4. Lambda Corp., BRISK/FRISK II: A Damage Assessment System, 
Report 2, 4 Vols., Arlington, Va., 1966. 
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Tc start the optimization for a city, a mesh of points is con- 

structed whose intersections will be used as initial trial weapon 

locations. The mesh is centered on the population center of gravity 

and has six lines in the north-south direction and six lines in the 

east-west direction. The size of the grid is three times the popula- 

tion standard deviation in each direction, A trial weapon is located 

at each grid point and the expected value destroyed is calculated for 

each of these grid points. This value is calculated as the sum of 

the value at each tract point times the expected fraction of kill of 

that tract from the weapon at the trial grid point. (This expected 

fraction killed is actually determined as a function of the distance 

squared, which is quickly obtained as the sum of the squares of the 

difference of the north-south and east-west distances.) In the 

vicinity of the grid point that yielded the largest kill, a more 

refined grid is constructed that has half the mesh spaces of the 

previous grid. By the same method, the best weapon location in this 

more refined grid is found. The process of decreasing grid size in 

the vicinity of the previously best location is continued until the 

mesh spacing is less than 1/4 the CEP or 1/8 the weapon lethal radius. 

The weapon is then located at this point and the expected value des- 

troyed is deleced from the value of each value tract. 

The process is repeated, with successive weapons attacking the 

expected survivors from the prior weapons, and with the expected kill 

for the weapons subtracted from the value system for successive weapons 

until either the kill per weapon or number of weapons terminates the 

process. If at any time in the calculation the expected kill of the 

weapon being analyzed is greater than from any previous weapon, all 

weapon calculations back to that previous weapon are deleted and the 

kill from those previous weapons are restored to the target system. 

In this way, insurance has been provided against missing local maxima 

due to the relatively coarse size of the initial grid. At the end of 

the calculation the location of each weapon and the value destroyed 

from that weapon is listed. 

This program was modified to provide a greater flexibility; 

the types of output were increased and it was renamed AGZSEL. 
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It is the basic apparatus of the experimental mathematics used in 

this study. 

The modifications were made, however, in a fashion that did not 

change the basic allocation method except in one respect, which was co 

decrease the size of the initial grid in cases where the weapon lethal 

radius was small compared to city size. A method of adjustment was 

used that chose grid size as a compromise between computer time spent 

in searching a grid pattern and progress lost when weapons are re-.noved 

from the calculation. 

The additional features added are described in the section where 

they are used. It should be emphasized, however, that the computer 

drawn maps did not change the method of calculation. The value in 

each rectangular grid in these maps was computer by summing the values 

of all tracts which fell within that particular grid. 

Most calculations here were terminated after 50 weapons were 
5 

dropped.  The computer time required for a typical calculation was 

about one hour. In most cases the number of weapons removed was be- 

tween 50 percent and 100 percent of the total number of weapons. The 

number of weapons removed at a time because a local maximum was missed 

usually ranged from one to ten, with the smaller values more likely. 

A few examples were found where local maximums were missed in the final 

product.  However, this procedure generally appears to yield answers 
7 

with at most a small percentage error, usually less than 1 percent. 

5. The program was terminated when either 50 weapons were dropped 
or the estimated kill per weapon dropped below 10,000 people. For 
most cases reported the first criterion was applicable. 

6. This is, of course, more likely near the end of a calculation 
than the beginning. 

7. Since there is no absolute standard available this judgment 
must be qualitative. In some unpublished calculations, weapons were 
dropped on Washington, D. C. in a random fashion, and the results 
compared with this program. The weapon locations were drawn from a 
Gaussian distribution that had the same center of gravity and standard 
deviation as that of the city value function. About 7000 trials were 
made, and for two and three weapons, the DGZSEL program fell behind 
by a few percent. After five weapons, however, the random dropping 
procedure had luck against it, and the DGZSEL optimization always won. 
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D. DAMAGE FUNCTIONS 

The calculation of probability of kill as a function of distance 

is done by use of the Single Shot Kill Probability (SSKP) function 

described in Lambda Paper No. 6. 'X  is expressed in the form: 

where 

GK(r) = e"
K v If 

K       j=0 3* 

2 2 
K = Wr /R7 , 

Li 

r is distance, 

R is the lethal radius, and 

W is a shape parameter. 

Aiming errors are included by integrating this function over a circu- 

lar normal probability distribution. The lethal radius is obtained 

from the distance from an atomic weapon at which a certain assumed 

pressure occurs that is lethal 50 percent of the time. This distance 

was computed by 

10      V RL   ) 

2.2 
P > 10 psi 

p 

To 
ffl 

1.6 
P < 10 psi 

op.  cit. 
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for a one megaton surface burst, with the lethal radius in nautical 
q 

miles.  The variation of probability of Kill with distance is shown 

for several typical overpressures in Figure 3 and for several GEPs 

in Figure 9. 

In order to evaluate the effects of specific weapon irop, 5 

kill function which is closer to unity near ground zero was desired. 

This would reflect the high probability of kill very close to an 

actual weapon burst. A  kill function which was one minus the cumula- 

tive normal function was used. The mean was the lethal radius and 

the standard deviation was taken as 0.20 times the lethal radius 

for most calculations. This kill function, used for evaluation, is 

compared with the one described above, used for optimization, in 

Figure 10. The evaluation kill function is close to the optimization 

kill function for small CEP. 

P2-25-70-37 
DISTANCE (noulieol mile«) 

FIGURE 8.  Variation of ProDability of Kill with Distance for Several Overpressures 
for One-Megaton Yield, 0.5 NMl CEP 

9.    To use in Eq. 24, the exponent 2.2 is replaced by 2 and the 
p        /n   Q/I\2 

curve matched at 30 psi. The equation then becomes ■« / 0.94 V 

\RL ) 
The 

difference is less than 5 percent over the pressure ranges of interest, 
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FIGURE 10.  Variation of Probability of Kill with Distance for Optimization 
and Evaluation Kill Functions 
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The damage functions are the representation of the physical 

weapon effects. They can be interpreted as representing only vulner- 

ability to the blast wave, or as representing all effects which are 

centered at the weapon detonation point and wh.'ch fall ir. intensity 

with distance. The specific interpretation depends upon the context 

in which the results are used. 

E. DATA BASE 

Two basic kinds of representation of the population were con- 

sidered; the first was population location based upon US Census data 

and its extrapolations, and the second is based upon fallout shelter 

spaces as located by the National Fallout Shelter Survey. 

The population bases for Detroit, Michigan, Washington, D. C, 

and Flint, Michigan were obtained from Office of Civil Defense popu- 

lation tapes. These tapes describe the US population in approximately* 

44,000 standard location areas (SLAs) with each SLA described by a 

latitude, longitude, population, and area. They were originally 

prepared using 1960 census tracts, with some aggregation of census 

tracts, primarily in rural areas. The population data are 1960 census 

data, and OCD extrapolations of residential population to 1969 and 

1975. In addition an OCD estimate of 1969 daytime population was 

used. 

The area included for each city is basically the urbanized area 

of each city as defined in the 1960 census. These are shown in 

Figures 11, 12 and 13 as shaded areas. There were 746 Standard Loca- 

tion Areas in Detroit, 349 in Washington, and 55 in Flint. For the 

majority of these Standard Location Areas the population is between 

2,000 and 10,000 people. In order to illustrate the population distri- 

bution, computer maps were drawn as shown in Figures 14 through 16. In 

these figures each printed symbol represents the population in an area 

one nautical mile in the north-south direction by .606 nautical mile in 

the east-west direction. The rectangular size is chosen to preserve 

shapes in the map. The population represents the sum of the 

10. "National Location Code," Bureau of the Census, prepared for 
for OCD-OLP, FG-0-31/1, 1962.    35 
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FIGURE 11.   Census Bureau Man of Detroit Urbanized Area 
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FIGURE 13.   Census Bureau Man of Flint Urbanized Area 

3e 



I 
1 
I 

~r~—r 

» r.    .-«.« If HI 
<■» L .1 

• *       WM       *     «f *« an       M     *> N 

'•**!. 

o o 
-o 

.-".  -- HPIJ 

.     «        -    «L    «-•Iff»»« 

i   I 

_« "«    *^ "lit •«    -1    «{a 

► »Is- H- I . 
*" n 

««  • « 
• 

• * 
0) 
E 
4- 
4- 
_c 
0) 

Z 

3 o> 

►1 "*• 
I 

M     M 

••I 

-t 

► "if    115 5=3" •"* 
- i"   «-    «s—-'s..» •?*„.. 
«J!SW        ♦     •»- a     -a 

» i*  •       -     - • ^JCV* 

-   r-1 - 

o 
E 

O) 
i   g 
S .2 

3 
-Q 

sn 

Q 

E 

O) 

■o 
o 

c 
o 

3 
a 
o 

a: 
=) 
O 

" K":^ 

Ti ! 

"p, -" 

39 



values for those Standard Location Areas whose latitude and longitude 

coordinates fall within the rectangle being drawn.  The population 

associated with each symbol is given in Table 1. The center of 

gravity of the population is indicated on these figures by the inter- 

section of the dashed line at each edge of the figure. Table 2 
12 

presents some properties of these populations. 

Figure 17 shows the area within one standard deviation as a function 

cf population. Lines through the origin or constant slope represent 

constant overall population density. As expected, the 1969 daytime 

population principal area is appreciably lower than that for nighttime in 

all the cities. For Detroit the daytime population is 500,000 higher, 

and for Flint 120,000 higher. These differences may represent errors 

in daytime population estimates, since as far as is known no attempt 

was made in the original estimates to compare the day-night differences 

with estimates of diurnal immigration.  The nighttime population pro- 

jections used by the Office of Civil Defense (OCD) held the population 

in the central city constant, attributing all of the growth to the 

suburbs. This is not reflected on the maps because even small shifts 

of the center of gravity can change the standard location areas 

aggregated together in one rectangle. 

In addition to population, fallout shelter spaces in the National 

Fallout Shelter Survey have been considered. The fallout shelter 

spaces are reported by OCD by standard location area, and so can be 

considered by the same methods as population data. The computer 

optimization can be run against the shelter spaces. If these are 

uniformly occupied, then the optimization is again a prediction of 

fatalities. Table 5  indicates the overall distribution of spaces, 

which are presented on the maps in Figures 18 through 20. The spaces 

are divided into four categories, above ground spaces, below ground 

spaces, tunnel spaces, and special facilities. The last two 

11. This aggregation is done solely for the purpose of displaying 
the population on maps, and in no way affects the optimization. 

12. The value of cr^ is taken as the product of the tast-west 
and north-south standard deviations, rather than the sum of the 
squares of these values. 
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Table 1 

POPULATION KEY FOR COMPUTER MAPS USED IN THIS PAPER 

Population Range Symbol Population Range Symbol 

0 -   499 — 16,500 - 17,499 G 
500 - 1,499 1 17,500 - 18,499 H 

1,500 - 2,499 2 18,500 - 19,499 I 
2,500 - 3,499 3 19,500 - 20,499 J 
3,500 - 4,499 4 20,500 - 21,499 K 
4,500 - 5,499 5 21,500 - 22,499 L 
5,500 - 6,499 6 22,500 - 23,499 M 
6,500 - 7,499 7 23,500 - 24,499 N 
7,500 - 8,499 8 24,500 - 25,499 O 
8,500 - 9,499 9 25,500 - 26,499 P 
9,500 - 10,499 0 26,500 - 27,499 Q 
10,500 - 11,499 A 27,500 - 28,499 R 
11,500 - 12,499 B 28,500 - 29,499 S 
12,500 - 13,499 C 29,500 - 30,499 T 
13,500 - 14,499 D 30,500 - 50,499 $ 
14,500 - 15,499 E 50,500 -100,499 * 

15,500 - 16,499 F 100,500 - t 
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categories have only a small number of entries.        The shelter spaces 

considered are all in the PF2-8 category, i.e., have a protection 

ractor of at least 40.    Also shown are the ventilation improvable 

spaces, i.e., those additional spaces available by use of a ventilation 

kit.    A comparison of Tables 2 and 3 shows that the shelter spaces 

are much more concentrated than the population.    A general popula- 

tion movement in toward the center of the city would therefore be 

necessary to fill the shelter spaces.   In Section VTII this is found, 

mder certain conditions, to increase fatalities. 

IS*   The number of tunnel spaces are 38,000 for Detroit, 7,000 for 
Washington, D. C, and 1,000 for Flint.    The number of special 
facility spaces are 10,000 for T)*+~ At,  3,000 for Washington, D. C, 
and 1,000 for Flint.    These wou      .tave to be added to the above ground 
and below ground spaces to get tne total shown in Table 3.    These two 
categories have been neglected,  however,  in the calculations in 
Seccion VIII. 
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I 

III 

EXAMPLES OF THE BASIC CALCULATIONS 

This Section exhibits in detail the results of a few exemplar calcula- 

tions to assist in interpreting the results of the analysis reported 

later. First, some typical results of the computer optimization 

program are presented. These are in the form of maps which show 

the optimized weapon locations as well as the calculated expected 

survivors. This information describes the optimization "as 

the computer sees it." In order to assess the effects of the statis- 

tical fluctuations arising from the assumptions concerning weapon 

reliability and delivery error, the results of a Monte Carlo simula- 

tion are presented in the same fashion. The relation between the 

modeled cities used for blast fatality calculation and the real cities 

which are targets of nuclear weapons will vary with the system being 

studied (e.g., it is different for blast shelters and fire fighting). 

The base case is characterized by weapons with a yield of five 

megatons, a C.E.P. of 0.5 nautical miles, and a delivery reliability 

of 0.75. An alternative case employs weapons with a one-megaton 

yield. These parametric values are representative of the ones currently 

appearing in the unclassified literature and are used as typical in 

the remainder of this Paper. These values also are interesting from 

a mathematical programming viewpoint, because each parameter contri- 

butes some effect, but does not dominate the calculation. The mean 

lethal overpressure used here is 6.5 psi. This value was selected 

to enable comparison of these calculations with a large number done 

several years ago at IDA using the same basic optimization program. 

All weapons in this study are assumed to be surface burst. The popu- 

lation estimate used is the 1975 nighttime population and the primary 

city considered is Detroit. In all the calculations in this Paper 5 

these base case conditions are assumed unless otherwise stipulated. 
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The results of the optimization with five- megaton weapons targeted 

on Detroit are given in Table 4. Shown are the expected survivors 

remaining after each weapon is detonated, the expected kill for this 

weapon, and the latitude and longitude of the weapon aim point. As 

a rule, calculations were ended when either the kill per weapon dropped 

below IOJOCO or 50 weapons were used. 

To further illustrate the results, computer maps were drawn in 

the same way as the population maps presented earlier. Figure 21 

indicates the locations of the aim points for the first ten weapons. 

(The last weapon is illustrated by a star.) The location of these 

weapons (the letters on the population maps) tends to be at places of 

high population density. 

Tne distribution of the expected survivors from these ten weapons 

is shown in Figure 22 (a-j). The major effects from the first 

weapons are to change the regions of higher population density to 

medium population density. This is due, of course, to the 75-percent 

weapon delivery probability, because at least 25 percent of the original 

population are expected to survive. The first five weapons are well 

spread over the city and the resulting maps of expected survivors do 

not show major differences unless "before" and "after" populations 

are specifically compared in the vicinity of the weapons. The sixth 

weapon, however, is located between the first and second and a de- 

finite thinning of the population, represented by blank spaces, 

ones, or twos for the population values, is apparent in its vicinity. 

By the time the tenth weapon has been delivered population 

depletion is apparent over a large part of the central portion 

of the city. 

Figure 23 is a map of the aim points of all 48 weapons targeted 

in this calculation. (For weapon numbers of 10 or over the last digit 

represents the weapon location. Where two or more weapons overlap, a 

dollar sign is printed to indicate an ambiguity.) The expected sur- 

vivors, at five-weapon intervals are shown in Figure 24 (a-h). A 

successively greater paucity of valuable remaining targets is indicated 

by these figures. At the 15th weapon there are few remaining 
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locations where ehe original population densities remain. By the 

time the 48th weapon is targeted, the remaining population consists 

primarily of those people spared by the statistical tails of the 

probability of survival curves. While the expected kill for the 48th 

weapon is as correct, within the mathematical assumptions, as 

the first, the applicability of these assumptions to the physical 

situation becomes idther tenuous. These maps are presented here 

to help the reader judge for himself the extent to which these 

assumptions should be used. 

A better pictorial representation of the surviving population is 

obtained through a Monte Carlo approach to calculating survivors. 

This calculation was mada by using the evaluation damage curve, shown 

in Figure 10, determining whether an aimed weapon detonates through 

use of a random number selected from a uniform distribution and 

then selecting the specific target location by points selected from 

a Gaussian distribution representing the C.E.P. Maps of results of 

a particular sample are shown in Figure 25 (a-h) for the first ten 

weapons, and Figure 26 (a-h) for the remainder at five-weapon intervals. 

In this sampxe, weapons 4, 8, 11, 20, 25, 39, and 47 did not detonate. 

As is evident from Figure 25a, the results from even the first weapons 

are spectacular. The results after ten weapons show large parts of 

the city destroyed, but other significant areas surviving. After 

15  weapons, in Figure 26a, the same general result is seen, although 

the areas surviving are decreasing. After this weapon, the city of 

Pontiac (the cluster of population northwest of Detroit) is still 

surviving with the closest detonation 11 miles away. This would give 

an overpressure of between one and two pounds per square inch. The 

11th weapon was aimed at Pontiac but happened to fail. The 18th 

weapon was closer being about 8 miles away. However, not until the 

2lst weapon did Pontiac receive a direct hit. By this time the over- 

all estimate of survivors in Detroit is 12.8 percent. The general 

picture as shown by these maps is one of intense destruction alterna- 

ting with areas which are relatively better off. By the time the 

48th weapon detonates, the calculated survivors are so small that little 

of the original map can even be discerned. 
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I 
In Figure 27 (a-h), eight samples from different Monte Carlo runs 

|       have been selected at random. These maps were selected for cases where 

the number of survivors were reduced to about 40 percent. Again all 

I       of these maps show areas of intense destruction alternating with areas 

of much less destruction, but these areas vary in location even when 

I       the targeting stays the same. 

Four hundred Monte Carlo trials were made and the distribution of 

I        results were determined. The average value of estimated survivors 

*       was slightly lower for the Monte Carlo runs than for the optimization 

runs, ranging from about 1.8 percent lower at about 10 weapons to 

i        about 0.7 percent lower at 40 weapons. However, the integrated 

lethal areas for the evaluation probability-of-kill curve was about 

four percent larger than for the optimization curve. This difference 

in area could explain one-half to two-thirds of the difference in 

estimated survivors. The residual does not seem to be significant and 

in fact tends to confirm the validity of the expected value method 

of optimization. 

The mean value of the survivors as a function of number of weapons 

obtained from these Monte Carlo runs is shown in Figure 28. Also 

shown is the value of the standard deviation, and the band about the 

mean value obtained by adding and subtracting one standard deviation. 

This band represents variations due to statistical differences alone, 

and represents a lower limit of predictability of damage, even if 

everything concerning physical damage and attack optimization were 

known. 

The variability may come from either the delivery probability or 

the weapon CEP. Of the two, by far the larger contribution is 

from the delivery probability. As an example, with five weapons 

targeted and.samples selected where all were delivered, all variations 

are due to the CEP. A sample of eight cases where this occurred 

gave a standard deviation of 0.53 percent. The total standard devia- 

tion for five weapons was 11.06 percent; thus here the variation due 

to CEP accounted for about 5 percent of the total. 
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20 30 

NUMBER OF WEAPONS 

FIGURE 28.   Survivors as a Function of Number of Weapons for Monte Carlo 
Evaluation with Five-Megc*on Weapons on Detroit 
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I 

In Figure 29, several frequency distributions of estimated sur- 

vivors are shown for different numbers of targeted weapons. To obta".i 

these curves, the percentage of estimated survivors was divided 

into 5-percent intervals and the percentage of time that the calculated 

survivors from the 400 trials fell into a percentage-survival interval 

was plotted as the ordinate. The abscissa is the value of survivors 

at the center of this interval. The breadth of these distribution 

depends primarily upon the weapon reliability; for higher reliability 

the distribution would be tighter and for lower reliability still 

broader. 

A similar set of calculations with five-megaton weapons was made 

for Washington, D. C. The estimated number of survivors after each 

weapon detonation is shown in Table 5. The calcul'icion ended here 

at 27 weapons. The location of the first ten weapons is shown in 

Figure 30 and of all twenty seven in Figure 31. The same general 

features are seen as for Detroit, except that the pattern is some- 

what tighter for Washington, D. C. The expected survivors are shown 

in Figure 32 (a-k) and the results of a sample Monte Carlo run in 

Figure 33 (a-k). In this particular Monte Carlo run, weapons 11, 17, 

19, and 27 were taken as unreliable. In Figure 34 the mean number 

of survivors and standard deviation about the mean are given. The 

standard deviation here is an appreciable percent of the mean. 

In Figure 35 a map of the location of all five megaton weapons 

on Flint is shown. The estimated number of survivors after each 

weapon are given in Table 6. The calculations ended with six weapons. 

With the exception of the fourth weapon, these form a close pattern 

in terms of the 3.7-mile lethal radius. The pattern of expected 

survivors is shown in Figure 36 (a-f) and the results of a sample 

Monte Carlo calculation are shown in Figure 37 (a-d). In this sample, 

weapons 3 and 4 were taken as unreliable. The results of the Monte 

Carlo calculation are shown in Figure 38. 

The other extreme from five-megaton weapons detonated on Flint 

would be one-megaton weapons detonated on Detroit, i.e., smaller 

weapons on a larger city. Table 7 shows the estimated number of 
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FIGURE 34.   Survivors as a Function of Number of Weapons from Monte Carlo 
Evaluation with Five-Megaton Weapons on Washington, D.C. 
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Table 6 

OPTIMIZATION RESULTS (EXPECTED SURVIVORS) FOR FIVE-MEGATON 
WEAPONS TARGETED ON FLINT, MICHIGAN 

Weapon No. Survivors Weapon Kill Longitude Latitude 

( 1) 175479. 177374. 83.682 43.032 

( 2) 111050. 64429. 83.701 43.024 

( 3) 79240. 31810. 83.664 43.046 

( 4) 56350. 22890. 83.655 42.966 

( 5) 41821. 14528. 83.729 43.039 

(6, 32451. 9370. 83.655 43.076 

76 



I 

I 

I 

1 

I 
i 
i • 

! 
1 
| 

i 

r>  i 

1 1 

f 

1 •M 
—1 

in ; 

i 

1 
1 
1 

i 
i 

... , 

c 
o 
VI 
c 
8. 
o 

c 
o 
o 

i 

> 

c 

o 
o 
o 

o 
a. 

'     «4. 
M l/l 

rii 
—• M a 

ui      —       ' — 
"-< |A MM   MM M 

»MM 
M M 

MM PI 
I 

* if 

c 
8. 
o 
4> 

CM 

- ■   I 
CO 

D 
o 

—     I4I 

c 
8. 
o 

*   4 
J     "• p» PI »*    x 

*. (•) M 4« M 
PI rt p* pi M ry 

ct     <ti     n CM 
4 »»ci     rt 

(V <v      IP 

4- 

c 
o 

8. 
o 
a> 

c 
o 
o 

I 

> 

o 
> 

3 
in 

X 
LU 

CO 

UJ 

D 
o 

77 



* 4 

-     4 
it« 

C 

8. 
o 
0 

- I 

s 
8. o 
i) 

CO 

Ifl 

- t - 
f.

  
 6

 W
ea

p
o

n
s 

• •—r 

—    ♦ 

8. o 
0 

v 

—       !       <D 

t 

_-J_  

c 
O 

8. 
o 
V 

c 
£ o 
% 
i 
0 > 

e 
o 
> 

E 
to 

TJ 
0 •*- 
U 

8. 
X 

0 
D 
C 

c 
o 

U 

«o 
CO 

D 
Ü 

1 

78 



i 
1 
I 

(Nj 

(V 

i 
o 

8. 
o . 
« 

>o 

r~" 

—      ¥ 

I 
D 

n 

in 
C  . 

8. 
o 

IV 

c 
o 
c VI 
3 c 

OS R 
Ü o 
i- 0) 
o £ 

r o o -•- 

AJ 

O) 

Q.  (U 

E* 
s 5 

o 
> 

i/o 

UJ 

o 

IT 

79 



at 
o > 

2 3 4 

PM5.70.ii3 NUMBfcR OF WEAPONS 

FIGURE 38.   Survivors as a Function of Number of Weapons from Monte Carlo 
Evaluation with Five-Megaton Weapons on Flint 
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survivors after each one-megaton weapon.    Figures  39 and 40 show the 

location of the first ten and first 50 weapons for such a calculation. 

The pattern of the first ten one-megaton weapons  is slightly smaller 

thar that of the first ten five-megaton weapons, but shows some simil- 

arities.    The following tabulation indicates a reasonably close 

correspondence of weapons: 

I 5 MT Weapon Numbers 1      23456'    89 10 

Corresponding 1 MT Weapon Numbers    1    10    4973    -8-2 

I 
The expected survivors for the first ten weapons are shovn  in 

I Figure 41 (a-h) and for the remainder in Figure 42 (a-h).    There is 

some similarity of pattern at comparable percentages of survivors. 

I However, the one-megaton patterns are more uniformly spread over 

' the city.    The estimated survivors for a sample Monte Carlo run are 

. shown in Figures 43 (a-f) for the first 10 weapons, and Figure 44 

I (a-h) for the remainder.    In this particular sample, weapons numbers 

4, 8, 11, 20, 25,  39, 47, and 49 did not detonate.    Once again more 

uniform patterns are observed.    In Figure 45 the survivors from the 

Monte Carlo calculation are shown.    The peak value of standard 

deviation is about one-half that for the five-megaton case. 

However, at large numbers of weapons the one-megaton standard devia- 

tion is larger than that for the five-megaton case.    This is probably 

due to the almost complete obliteration of the target system with 

the five megaton weapons. 
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FIGURE 45.   Survivors as a Function of Number of Weapons from Monte Carlo 
Evaluation for One-Megaton Weapons on Detroit 
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IV 

SENSITIVITY TO PARAMETERS 

In this Section the sensitivity of the calculated survivors tc the 

assumptions concerning weapon yield, CEP, delivery probability, and 

target vulnerability are examined. The analysis is based on a series 

of computer runs using a single population base—the estimated 1975 

Detroit nighttime population. The variation with data base for a 

single set of parameters is discussed in Section V. 

As described in Section II, the basic damage functions were de- 

rived in terms of parameters ß and N. ß is the expected fractional 

coverage of the city for the detonation of one weapon. N is a shape 

parameter; N = 1 corresponds to perfect weapon delivery and gives 

an exponential damage law, and N = » corresponds to random delivery 

and yields the "square root damage law." Intermediate values of N 

yield intermediate cases as illustrated in Figure 1 (Section II). 

The computer data is fitted by first finding the shape of the damage 

law curve best approximating the results, i.e., finding N and then 

determining a value of the parameter K. Then, the parameter a is 

i        calculated by dividing the experimentally measured K by ß. 

The differences in shape of the various damage law curves can be 

demonstrated by multiplying the abscissa of each of the curves of 

Figure 1 by a constant to force all of the curves to pass through 

common values of 1.0 fraction survivor at X = 0 and the same value 

of X for a 0.5 fraction of survivors. This is illustrated in Figure 

46, choosing 1.36, the value for the exponential damage law, as the 

value of X for .5 fraction of survivors. Figure 46 shows that the 

difference in shapes for these values is small, especially at rela- 

tively large fractions of survivors. Thus, the value of N will not 

radically alter the shape of these curves although the efficiency 

,       of weapon usage may be changed. The value of X to yield 50 percent 
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survivors, X _, is a measure of this efficiency. This is shown in 

Figure 47 as a function of 1/N, along with values of X to yield other 

fractions of survivors. The function is almost a straight line 

for S = 0.5. This line is given by the equation 

1 431 X = 2.817 - x „ x N 

From Figure 47 the ratio between the values of X™ for N = °° and 

N = 1 at S 20.5 is 1.97. It represents the improvement predicced 

between perfect and random targeting. 

The alternative to the above method is to determine a value of K 

which gives the best fit of the square root damage law to the cal- 

culated survivors by transforming the ordinate in a plot of estimated 

survivors as a function of number of weapons so that a curve following 

the square root damage law is a straight line. Figure 48 shows such 

a plot for various values of N for the theoretical curve shapes. In 

this curve the abscissa of all curves has been multiplied by a con- 

stant so that all have the same value at 50 percent survivors. 

This type of presentation accentuates differences at low values of 

survivors. Only by including such values does the difference in 

shape for various values of N become apparent. The determination of 

N for each computer run was accomplished by plotting the estimated 

number of survivors and finding that curve which best matched one 

of the theoretical curves. Such "by eye" matching had the advantage 

of not being as sensitive to small irregularities which sometimes 

occurred due to peculiarities of the optimization process. The value 

of K is then estimated by the straight line on "square root damage 

law paper" which best fits the computed results. 

The measurement of K is more directly related to the basic pro- 

cesses but the "by eye" matching has a subjective element to it. 

The use of computer fitting, by, say, weighted least squares has 

the disadvantage of sensitivity to the choice of weighting factors. 

The determination of the number of weapons at 50-percent survivors 
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FIGURE 47.   Scaled Number of Weapons Required for a Certain Fraction 
Survival, S, as a Function of ]/N 
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was used primarily to eliminate subjective measurements from this 

calibration process. 

In Figure 49, two calculations for survivors of Detroit 1975 

nighttime population a*'e shown for casas chosen to be near the 

exponential and square root damage law. The exponential and square 

root laws are shown by the solid lines which have been forced to 

match the calculated damage for each case of 50-percent survivors. 

Thus the shape of the curves indicates the agreement. The case 

selected to match the exponential law shows close agreement while 

the case for the square root law deviates somewhat at the lower 

values of survivors and would match more closely a value of N of 

about eight. No sample cases studied have both values of N near 

infinity and went to small enough percentages of survivors to consti- 

tute a good test. However, also shown on Figure 49 is the damage 

curve for N = 8. This curve is indistinguishable on this plot from 

the points obtained from the damage calcu3.ation. 

The similarity of shape shown by these curves is typical. The 

shape of the calculated results turns out to be well represented by 

the family of curves specified by the two parameters N and K. Thus 

if values of these parameters can be determined for various weapon 

parameters, the survivors as a function of numbers of weapons can be 

accurately estimated. 

The sensitivity of results to delivery probability and CEP are 

indicated by Table 8 for one-megaton weapons against 6.5 psi hardness. 

The value of X at 50-percent survivors, given in the table, is found 

by multiplying the number of weapons for 50-percent survivors by 8 

as given in Eq. 21 of Section II. This table shows a discrepancy in 

the value of N for P, - .75 and CEP =0.5 since the variation with 

increasing CEP is not monotonically increasing as expected. However, 

this is well within the possible error in measuring N. These values 

are plotted in Figure 50. In this figure the abscissa is reduced to 

dimensionless form by dividing the CEP by the lethal radius, IL . 

The number of cases available is too small to estimate the shape very 

well. The shapes of the curve> have been taken similar to each other 

as an indication of the best estimates. 
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Table 8 

VALUE OF X AT 50-PERCENT SURVIVORS, K, AND a FOR 
ONE-MEGATON WEAPONS AND 6.5psi HARDNESS 

CEP 
Probability of Delivery (P.) 

(nmi) 0.5 0.75 1.0 

0.1 X50 1.28 1.14 

N 17 2 

a 2.38 2.75 

0.25 X50 

N 

a 

1.15 

2.54 

0.5 X50 
1.36 1.19 

N 100 2 

a 2.24 2.41 

1.0 
30 

1.66 1.52 1.37 

N CD 20 4 

a 1.70 1.86 2.08 

A number of calculations were made at delivery probability of 

0.75 which was used as the base case.    These are listed in Table 9. 

Here the data are ordered by increasing the value of CEP/R,.    The 

yield and hardness can vary to affect the lethal radius.    The tabular 

entries are divided by a city radius, which is defined as the geo- 

metric mean of the standard deviations of population in the north 

and east direction for the 1975 nighttime Detroit population. 

The values of X at 50-percent survivors are shown as a function 

of CEP/R.  on Figure 51.    The data are inadequate to obtain a repre- 

sentation of tne shapes of curves except for values of Ri/<JC = 0.325. 

If it  is assumed that the curves for the other values of R. /a    have 

the same slope as the 0.325 curve does between CEP/R.   =0.23 and 

0.46 (i.e.,  0.696) then the ordering is correct.    If this assumption 
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FIGURE 50.   Scaled Number of Weapons for 50% Survivors, X_-, as a Function 

of CEPA. for Various Delivery Probabilities, I MT, 6,5 psi 

FIGURE 51.   Scaled Number of Weapons for 50% Survivors, X    , as a Function 

of CEP/R. for Different Values of Lethal Radius/City Radius, R. /a 
L L      c 
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Table 9 

CALCULATIONS OF X5Q, N, AND a AT 0.75 

DELIVERY PROBABILITY 

Vc 
CEP/R 

L 
Yield 

(MT) 
Hardness 
(psi) 

<o0- 
6.63 nmi) N a Xb0 

.046 1 6.5 .325 17 2.38 1.28 

.079 25 6.5 .951 20 1.76 1.62 

.13 6.5 .556 25 1.89 1.48 

.14 1 3 .527 16 2.02 1.46 

.18 25 30 .414 33 2.21 1.37 

.19 5 12 .387 00 2.16 1.37 

.20 1 5 .382 17 2.15 1.375 

.23 1 6.5 .325 100 2.24 1.36 

.23 25 50 .325 CO 2.20 1.35 

.31 5 30 .243 00 2.11 1.32 

.33 1 12 .226 33 2.03 1.32 

.39 5 50 .191 CO 2.16 1.30 

.40 0.2 6.5 .190 00 2.07 1.32 

.46 1 6.5 .325 20 1.86 1.52 

.53 1 30 .142 00 2.30 1.26 

.67 ^ 
.L 50 .111 rj 2.26 1.24 
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is made, the value of X at 50-percent survivors can be estimated for 

CEP/R. =0.3. The corresponding curve is shown in Figure 52. This 

curve is reasonably well represented by the equation 

X = 1.82 - 0.82 log10 \/OQ 

In order to be able to assess the effects of variations in the 

shape of the curves of probability of kill as a function of distance, 

several runs were made with the evaluation function described in 

Section II, i.e., where the probability of kill varies as one minus 

the cumulative exponential. The shape of this function for several 

values of standard deviation over lethal radius, a/R. , is shown in 

Figure 55. The results of the calculations performed are shown in 

Table 10. Here, associated with each value of o/IL is a value 

of CEP/R, that represents that value where the probability-of-kill 

curves match the best, with more weight given to the higher value 

of probability of kill. For small values of a/RT, no corresponding 

CEP/R. value gives a small enough variation, since even with zero 

CEP, a distributed probability-of-kill curve is assumed. 

In Figure 54 the variation of Xro as a function of ~/P.T is aiven 3 50 L 
for one-megaton weapons at P, = 0.75 and 1.0 and for five-megaton 

weapons at P, = 0.75. Also presented on this figure are the results 

using the previous kill function at the estimated values of matching 

CEP/R. . Good agreement is obtained for the one-megaton weapons and 

fair agreement for the single five-megaton value. The variation 

seen on this curve is almost linear with a/RT as opposed to the 
u 

quadratic-type variation with small values of CEP/R   shown on Figure 50, 

This might be explained for small values of CEP if the shape of the 

probability of kill versus distance curve is slightly modified 

for these CEP values.    The actual optimization, however, only depends 

upon the shape of  the probability-of-kill-versus-distance curve,  so 

appreciable changes in CEP are needed for any effect.    It is also 

interesting to recall that the majority of the slope of the proba- 

bility-of-kill-versus-distance curve is attributed to the variability 
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FIGURE 52.   X at 50% Survivors for CEP/R, = 0.3 es a Function of \/oc Assuming 

Linear Variation of X with CEP/R. 
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Table 10 

CALCULATIONS OF X50, N, AND a WITH EVALUATION PROBABILITY 
OF KILL FUNCTION USED FOR OPTIMIZATION 

a/RL 

) 

CEP/RL 
Yield 

(MT) Pd Vac N a X50 

.001 - 5 .75 .556 4 2.43 1.27 

.01 - 5 .75 .556 6 2.26 1.34 

.1 - 5 .75 .556 10 2.28 1.37 

.2 .046 5 .75 .556 16 2.07 1.48 

.4 .30 5 .75 .556 32 1.85 1.68 

.6 .52 5 .75 .556 16 1.67 1.80 

.001 - 1 .75 .326 16 2.77 1.09 

.2 .046 1 .75 .326 09 2.30 1.28 

.001 - 1 1. .326 1 3.68 .91 

.2 .046 1 1. .326 4 3.06 1.11 

.6 .52 1 1. .326 8 2.24 1.39 

.2 .045 5 .1 .556 - 1.40 2.05 

104 



i 

I 

n-lt-70-37 

FIGURE 54.   Scaled Number of Weapons ar 50% Survivors, X    , 
as a Function of a/R, , 6.5 psi 
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in the target ccmplexs i.e., the differences in overpressure at which 

a certain likelihood of kill is achieved for different target ele- 

ments. (Some part of this variability may also be attributed to 

lack of knowledge concerning weapon effects.) For relatively small 

CEP's, uncertainties in the target complex variability could have 

a much larger effect than uncertainties in the CEP. It is possible 

that efforts to better estimate the target complex variability could 

be of more assistance in predicting urban casualties than efforts to 

better estimate the CEP. 

In Figure 55 the variation of X as a function of delivery pro- 

bability is given for two values of yield, one-megaton and five- 

megaton. Extrapolating these curves linearly to zero delivery pro- 

bability indicates that a ratio of 1.7 in efficiency of delivery is 

due to the variation in delivery probability. The value given for 

five-megatons at P, of one is for the probability-of-kill curve 

based on CEP with a value of CEP =0.1 nmi assumed, which is almost 

equivalent to a 0.2 value of o/RT. The calculation for 0.1 probabil- 

ity with one megaton reached a value of survivors of 0.764 at the 

end of the calculation, which was 50 weapons. The value given was 

determined by assuming that the future part of the fatality curve would 

follow the square root law. This appears to be a valid assumption at 

the low delivery probability; therefore the probable error of the value 

obtained is not more than a few percent. 

The parametric variations cause changes in the value of N as 

well as the value of X at 50-percent survivors. Because N is con- 

sidered a basic measure of delivery capability, it would be of 

interest to determine how much of the variability in X^Q could be 

explained by the theoretical variation of X50 due to changes of N. 

In order to do this, the theoretical variation of X™ with N as shown 

in Figure 47 was determined for the cases in Table 8, i.e., for 

variations of CEP and delivery probability with one megaton yield 

and 6.5 psi hardness. Table 11 shows the ratio of the theoretical 

value of Xrn for the value of N measured to the theoretical value 

of Xr„ at N = °°. Also given is the measured value of X divided by 
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Table 11 

RATIO, R, OF THEORETICAL X5Q AT MEASURED N TO N = • 

AND MEASURED VALUE OF X5Q DIVIDED BY THIS RATIO, %5Q 

CEP 
(nmi) 

Probability of Delivery 

0.5 0.75 1.0 

0.1 X50 
1.33 1.54 

R .96 .74 

0.25 X50 

R 

1.55 

.74 

0.5 X50 
1.36 1.61 

R 1.00 .74 

1.0 X50 
1.66 1.57 1.57 

R 1. .97 .87 
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this ratio. These values are also presented in Figure 56. If the 

change in N accounted for all of the variations then the measured 

values of XJ-Q should be constant. A considerable portion of the 

variation of X™ is eliminated by this procedure. Ti.< •. tasui <•:•.: i 

of N was not too accurate so it is possible that even more constant 

results would be obtained with more accurate measurements o: ,\". 

Of course a scheme to predict the X,-n through use of values of' N 

would require a means of finding N as a function of the parameter 

of interest. Since this can only be done empirically now, it is 

simpler to use Xr0 as a measure of effectiveness. 

As can be seen from Table 8, the variation of N with ?r.  and 
Li 

CEP/R. is as expected, i.e., increasing P<j or decreasing CEP both 

appear to tend to decrease the value of N. A decrease in N as R /a 

increases might be expected. However, as can be seen from Table 9, 

the data discussed in this Section do not allow any conclusions to 

be made concerning a detailed variation of N with the parameters 

considered here. At any rate, all the values of N shown in the 

tables are so large as to yield only small corrections. (See 

Section II.) 

The values of the correction factor a are presented along with 

values of X5Q in Tables 8 through 10. Since the measurement of a 

is less accurate than X^, the discussion has concentrated on the 

latter value, even though conceptually using values of a may be more 

attractive. If the measurement of both a and X , is exactly correct, 

then the product of a and XrQ should be a constant. For those cal- 

culations presented in Tables 8 and 9, the average value of the pro- 

duct is 2.89. The standard deviation of this product is 4.2 percent 

of the mean, with the largest difference being 8.6 percent of the 

mean. These values appear within the measurement error of a (the 

error in the measurement of X5Q is well under 1 percent.) Thus the 

figures may be interpreted as presenting values of 2.8'j/a. The 

values of a range from a minimum of 1.4 to a maximum of 3.68, giving 

a ratio of maximum to minimum of 2.6. This represents the range of 

variation of effectiveness from the types of variations considered. 
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FIGURE 56.   Value of Scaled Number of Weapons at 50% Survivors, X-Q, 

Corrected Using Values of N as a Function of CEF/fe. 

for Different Delivery Probabilities. One Megaton, 6.5 psi 
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The reason that the typical valua of a is about two, rather than one 

which would be obtained if the damage law derivation applied 

perfectly has not been careful.iy studied. A value of a greater thai. 

one implies a greater efficiency than in the square root law derivaLii 

F~om the above data the value of X5Q can be obtained as lullows: 

Xcn = 1.28 + 0.66 (0.75 - P.) + 0.82 ( 2_ _ 0.2) 
50 d R. 

RL + 0.81 (lcg10 f- - log10 0.327). 
c 

In this equation, the expansion is about the value cons ice-red ds J 

base case showing the range where the result is best verified. It 

the multiplications are carried out we have 

_ R, 
Xcn = 2.096 - 0.66 P, + 0.82 §-  + 0.81 log,. — , 
bu d       RT ±0 o 

L C 

where the extra significant figure is added to give the appearance 

of respectability. The amount of empirical verification should cer- 

tainly be improved before this equation is used for conditions rr.uch 

different than those presented here. However, it summarizes 

the variations of numbers of weapons needed to achieve some amount 

of damage based upon the calculations available. The calculations 

have all been with one type of target. The differences with type 

of target for the base case is discussed in the next section. How- 

ever, the sensitivity coefficients were only determined for a single 

:arget cype. 
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SENSITIVITY TO TARGET DISTRIBUTION 

A. CITIES AND POPULATION TYPES 

In order tc study the effects of different targets on estimated 

survivors, calculations were made for two conditions for each of the 

four different population types of the three cities described in 

Section III. The calculations were for the base case conditions 

(i.e., a CEP of 0.5 nmi, delivery probability of 0.75, and mean 

lethal overpressure of 5.5 psi) for both one-megaton and five-megaton 

weapons. The values of X™, and a obtained are shown in Table 12 

along with values of Rr/c\,. The values of a times X50 have a mean 

of 2.89 with a standard deviation that is 7.6 percent of the mean 

value. Thus either X5Q or a can be used with reasonable accuracy 

to obtain the other. 

In Figure 57, an attempt is made to correlate the values of X.n 

by plotting them as a function of R /a for different cities and 
L  C 

weapon yields. In each connected group of four dots as R, /a    in- 
jj     c 

creases, the population types are 1975 night, 1969 night,  1960 night, 

and 1969 day populations.    The first five-megaton weapon on Flint, 

for all the population types, gives  fewer than 50-percent survivors, 

thus the value of X™ can only be approximately estimated.    The 

arrows for the value of RT/a    - 2.07 indicate the range of variation 
L     C 

which might be expected by using different means to estimate the number 

of weapons to give 50-percent survivors.    The dotted line connects 

the two values discussed in Section IV, i.e., for Detroit 1975 night- 

time population. 

An increase in weapon yield gives a decrease in the value of 

CEP/RT   (0.23 for one-megaton weapons and 0.13 for five-megaton 

weapons.)    The previous section indicates that about a  5-percent 

decrease in X5Q should occur when the yield is increased from one to 
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live megatons to account for these accuracy effects. Figure 58 

is the same as Figure 57 except that the values of XrQ for the five- 

megaton weapons have been multiplied by .35 to correct for the 

difference in relative accuracy. The results are all brought into 

a tighter grouping by this correction. 

The change in data bases has the general effect of increasing 

the value of X^n as the city size is increased. This is contrary 

to what could be expected from variations of RT/°„ alone based upon 

the results developed in the previous section. The most likely 

explanation seems to be in the way in which the population extrapola- 

tions were made. For the nighttime population the population growth 

was all in the suburbs, giving a much less peaked population distri- 

bution. Since the results are already scaled by the second moment 

of population distribution, it is the scaled fourth moment, (i.e., 

the peakedness[or kurtosis]) which would be of interest for this type 

of correlation and which should increase with time. Since most of 

the daytime population is concentrated in the central part of th3 

city, this population distribution should be considerably more peaked 

than any of the nighttime populations. This might explain the 

general character of the change with data base, except for minor 

variations evident on the figure. Unfortunately, the fourth moments 

were not calculated so a quantitative correlation cannot be attempted. 

The method by which the damage functions were derived was based 

on the concept of a weapon density, which is only justified if RT/GC 

is much less than one. This is certainly not justified for all of 

the present set of calculations. It is of interest then to see if 

L"hese calculations indicate the limits of applicability of the damage 

laws. Figure 59 shows the survivors as a function of number of 

weapons for the worst cases considered here, i.e., five-megaton 

weapons on Flint. The linear presentation does not particularly 

reveal the degree of adherence to the damage laws. The same calcula- 

tions are presented in Figure 60 on the "square root paper," that is 

where the ordinate is transformed so that the square root damage law 

is linear. In this figure each of the curves is concave upwards, 
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which indicates that there is a deviation. However, the maximum 

deviation is not large; in each of these cases a line can be fitted 

which yields at most a few percent deviation from the calculated 

curves. Figures 61 and 62 show damage curves for Washington and 

Detroit on "square root paper" with five-megaton weapons. These show 

chat the values can be very closely approximated by the damage laws 

with values of N from 8 to infinity. It is interesting to observe 

that for Detroit the 1975 nighttime population curve has a value cf 

N associated with it of about 12, whereas for the 1969 daytime popu- 

lation the value appears to be infinity. 

In Figure 63 the one-megaton calculations for Flint are presented 

on "square root paper." Only the 1969 daytime population is concave 

upwards here, with the other curves being close to the shapes for 

the square root damage law curves. There is an apparent high degree 

of random deviation of the curves from a straight line in this type 

of presentation. The values of R./a for this case are comparable 

for the five-megaton weapons on Washington. In order to obtain a 

better visual comparison, the weapons for Washington on Figure 61 

are replotted in Figure 64 with an expanded abscissa, the same as 

that of Flint. The noise levels for Washington seem somewhat less 

than for Flint. A certain amount of noise may be expected from 

irregularities in the data base and the optimization process. In 

order to show this, Figure 65 presents the opposite extreme, one- 

megaton weapons for Detroit on approximately the same scale. In 

this figure ch-,  "noise level" for the 1975 nighttime population is 

quite low although it is still appreciable for the 1969 daytime popu- 

lation. The noise in the latter case may be due to the more irregular 

population distribution. 

Although the calculations for Flint appear to about exhaust the 

range of applicability of the damage law, the case is by no means 

complete. Further calculation with additional targets are needed. 

The variation of Xrn with R /  ts not inconsistant with the varia- 

tion seen in the last chapter although again more calculations are 

35-percent variation in the value of X50 can be 
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observed. This appears to be due to variations between individual 

targets. Although one might a?sume that the peakedness of the popu- 

lation distribution could explain this variation, no attempt has 

been made to verify this either theoretically through integrating 

weapon density (as in Section II) or through empirical correlation. 

B. RANDOMLY GENERATED CITIES 

A set of twenty computer runs were made where the survivors were 

computed from one-megaton weapons against cities which were randomly 

generated. Each city had 45 census tracts. The location of these 

tracts was determined by picking values at random from a cumulative 

normal distribution with standard deviation in latitude and longitude 

of 0.05 degrees. The population of each tract was picked at random 

from a uniform distribution between zero and 10,000 people. A map 

of one of these cities is shown in Figure 66. For the one-megaton 

weapon with 0.75 delivery probability, the distribution of the values 

of ß was determined. The mean value was 0.642 with a standard devia- 

tion of 0.125 for a ratio of standard deviation over mean of 0.20. 

Values of number of weapons to give 50 percent survivors were com- 

puted and the distribution of the scaled number of weapons for 50 

percent survival determined. This had a mean of le05 and a standard 

deviation of 0.147 for a ratio of standard deviation to mean of 0.14. 

This ratio is smaller than that of ß, indicating less sensitivity 

to changes in population distribution than could be expected from the 

changes in city area. 

The distribution of values of ß and X™ are shown in Table 13. 

The distribution of 0 shows two values far separated from the mean, 

which will strongly influence the statistics on ß. By removing 

these two points, the values of mean, standard deviation, and standard 

deviation divided by the mean were recomputed. This yielded values 

*,f 0.609, 0.056, and 0.092 respectively for ß and values of 1.06, 

1.404, and 0.137 for X5Q. The statistics for X™ a^e about the 

same, but for ß the values of standard deviation divided by mean is 
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reduced from 0.20, a value significantly greater than for X5Q> to 

0.09, a value significantly less than for X5Q. 

Thus ^hese calculations appear to indicate, on the whole, that 

the distribution of values of 3 characterizing city vulnerability 

in terms of statistical properties of the population might serve as 

a fair representation of the variation of weapons needed to achieve 

a certain level of damage. 

Table 13 

DISTRIBUTION OF VALUES OF 0 AND X,-« FOR RANDOMLY GENERATED 
CITIES 

Interval 

.500 - .549 

.550 - .599 

.600 - .649 

.650 - .699 

.700 - .749 

.750 - .799 

.800 - .849 

.850 - .899 

.900 - .949 

.950 - .999 

1.000 - 1.049 

1.050 - 1.099 

1.100 - 1.149 

1.15G - 1.199 

1.200 - 1.249 

1.250 - 1.299 

Number of Occurrences 
of ß in Interval 

Number of Occurrences 
of X5Q in Interval 

3 

5 

5 

5 

1 

2 

1 

3 

1 

1 

1 

4 

3 

2 

1 
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VI 

INFLUENCE OF ATTACK OPTIMIZATION 

The variations in estimated survivors from attacks that are not 

completely optimized are considered in this Section. First, we 

investigate attacks optimized for one condition and evaluated for 

another, then we investigate results from attacks which may 

be considered to be optimized for other effects than population des- 

truction, and finally we consider the case when weapons of different 

yield are used in the same attack. 

A. OPTIMIZED ATTACKS THAT ARE EVALUATED FOR DIFFERENT CONDITIONS 

A series of calculations were made for an c^tack on Detroit with 

five-megaton weapons optimized for the I960 nighttime population but 

evaluated for three other population types. In Figure 67, the estimated 

survivors as a function of the number of weapons are presented for 

the optimization against 1960 population, with evaluation against 

1969 daytime population, 1969 nighttime population, and 1975 night- 

time population. The values are shown within a single oval, with 

the lower value representing the attack where the optimization and 

evaluation were for the same condition.  Most of the points for the 

1975 nighttime population are shown slightly displaced to the right 

to avoid overlap with the 1969 nighttime values. 

The two curves for optimization at the two different conditions 

are quite close. The percent difference between the curves is 2.5 at 

the maximum. This difference, i.e., estimated survivors with the 

1960 nighttime optimization minus survivors with the proper optimiza- 

tion,as a function of the number of weapons»is plotted in Figure G8. It 

1. The two points for 8 and 10 weapons for the 196S nighttime 
population are an exception. 
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is clear chat there is no strong tendency in the differences except 

that the differences tend to increase as the population differences 

increase. The ratio or city areas for 1969 nighttime to 1960 night- 

time arid 1975 to 1960 nighttime population are 1:09 and 1:14. The 

ratio of the difference is 14/9 or 1.6. The ratio of difference in 

Figure 67 could be considered comparable. The difference for 1969 

night is about 0.6 percent or about 7 percent of the difference of 

areas, and for 1975 night, the difference is about 1.2 percent or 

about 9 percent of the difference of areas. However, the ratio of 

areas for 1969 daytime to 1960 nighttime is 0.87, but the difference 

for this curve appears to be the smallest. 

The values of numbers of weapons to obtain 50-percent casualties 

are given in Table 14. Here it can be seen that the differences 

for the scaled value of X to give 50-percent casualties, Xrf), for 

ehe different types of optimization are less than the differences 

between population types. The differences in absolute number of 

weapons are even more apparent. 

Table 14 

VALUES OF X50 AND N5Q FOR ATTACK OPTIMIZED PROPERLY 

AND ATTACK OPTIMIZED FOR 1960 NIGHTTIME POPULATION 
WITH FIVE-MEGATON WEAPONS ON DETROIT 

Proper      N5Q 
Optimization Y 

X50 

1960 Night   N5Q 
Optimization Y 

*50 

Population Types 

1960 Night 1969 Day 1969 Night 1975 Night 

5.45 

1.44 

5.45 

1.44 

4.40 

1.34 

4.59 

1.40 

6.15 

1.49 

6.30 

1.51 

6.38 

1.48 

6.75 

1.57 
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These displays seem to indicate that the attack optimization is 
2 

quite insensitive to the population distribution.  Thus while, for 

example, the day-night shift in population might result in appreci- 

able differences in vulnerability that is proportional to city area 

(the ratio of city areas for 1969 night-day population is 1.26 and 

the ratio in number of weapons for 50-percent survivors is 1.40) 

very little loss in efficiency occurs if a single targeting scheme 

is used in both cases. The lack of sensitivity to optimization is 

probably due to the fact that the optimization has already adjusted 

itself in accounting for delivery probability and delivery error in~o 

one which does not take much advantage of local peculiarities in 

population distribution. If these calculations were repeated for 

situations where a damage law with N near 1 rather than N near » 

occurred, then larger differences resulting from deviations from the 

appropriate optimization might be anticipated. 

B. ATTACKS WITH SOME WEAPONS PREASSIGNED 

If an attack has as its prime objective targets other than 

population, then the population surviving these attacks will be 

greater than the population surviving attacks where the objective 

is population. The size of the difference will, of course, depend 

upon the distribution of the objects being attacked relative to the 

distribution of population. P.s  cities change, attack objectives 

change, or weapons change, these differences could vary. 

In order to obtain illustrations of these effects, attacks upon 

a set of arbitrary targets were devised and the estimated casualties 

from these attacks were compared with those where the targeting was 

optimized against population. After the specified number of pre- 

assigned weapon;* had been used, the optimization routine was again 

allowed to operate, so that the estimated casualties obtained 

represent an attack where, after a certain number of weapons, the 

2. In Section VII some additional results on attack optimization 
effects are presented which have the same general features. 
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targeting objective suddenly switches to population. The preassigned 

attack locations are listed in Table 15. These weapon locations were 

chosen on an arbitrary and slightly capricious basis to avoid giving 

an illusion or false validity to these calculations. They represent 

a set of possible aim points, but only one of many. 

Table 15 

SPECIFIED WEAPON LOCATION (JC ATTACK) 

No. of 1 

City Weapons Longitude Latitude Target Name 

Detroit 1 83.067 42.389 Highland Park 
2 8 3.150 42.500 River Rouge Plant 
3 83.042 42.458 Warren Automobile Plants 
4 82.967 42.367 Chrysler near Grosse Pt. 
5 8 3.146 42.475 Ferndale Shopping Center 
6 63.100 42.333 Cadillac and Other Ind. 
7 83.050 42.342 Central Business District 
8 83.292 42.660 General Motors at Pontiac 

Washington, D C. 1 77.050 38.873 Pentagon 
2 77.038 38.889 White House 
3 77.047 38.869 I.D.A. 
4 77.008 38.892 Capitol 
5 77.021 38.869 Fort McNair 
6 77.025 38.384 F.B.I. 
7 76.875 38.809 Andrews Air Force Base 
8 77.136 38.952 Bureau of Public Roads 
9 77.100 38.867 Arlington Hall 

10 76.943 38.984 College Park 
11 77.826 39.101 Wheaton 

Flint 1 83.667 43.067 General Motors at Flint 

i 
2 83.683 43.017 Central Business District 

The estimated survivors for these attacks are shown in Figures 

69, 70, and 71 for Detroit, Washington, and Flint. The portion of 

the curve where the weapons are preassigned is shown by the dots. 

The weapon yield used for both optimized and preassigned locations 

was one megaton or five megatons as indicated. In the remaining por- 

tion or the curves, the weapon locations are optimized. Shown for 

comparison are the survivors when all weapon locations are optimized. 
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As can be seen and would be expected, each of the cities shows a 

different effect, with the maximum deviations in survivors for one- 

megaton and five-megaton weapons being 22.5 percent and 25.0 percent 

for Washington, 5 percent and 12 percent for Detroit, and 12 percent 

and 10 percent for Flint. The value of these deviations changes with 

the yield. A qualitative inspection of the curves indicates also 

that the shape varies also with yield. One might expect that smaller 

yield weapons would be less efficient in producing casualties if 

the aim point is an area of appreciable extent compared to the lethal 

indices. However, factors such as overlapping areas of coverage, 

or high residential population densities near large factories might 

compensate for this. The estimated number of survivors for the op- 

timized weapon locations following the preasrigned ones appear to 

approach the all-optimized curve for Detroit much more rapidly than 

for Washington. Here again, this behavior probably depends upon the 

details of the previous weapon locations and target distributions. 

The five-megaton results for Flint present an embarrassing anomaly, 

i.e., for attacks of three weapons or more, the arbitrary placement 

of the first two weapons are better than the carefully optimized 

machine placement. This effect is probably due to the limitations 

of sequential optimization. A simultaneous optimization would be 

needed to correct the situation and this would require a completely 

different type of machine algorithm. Fortunately, the differences 

are no greater than the presumed error range of the optimization 

algorithm used. 

C. ATTACKS WITH WEAPONS OF SEVERAL YIELDS 

If more than one weapon yield is used in an attack, the optimi- 

zation process becomes more complex. One might attempt, however, an 

optimization process where the larger yield weapons are first opti- 

mized, sequentially, and then the smaller yield weapons are optimized 

on the surviving population. The results of such calculations are 

displayed in Figure 72. The lethal radius varies as the cube root 

of the yield, thus the lethal area varies as the yield to the 
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two-thirds power.    In order to present the results> the points for 

the first four 25-megaton weapons were plotted at intervals of 2.92 

- (25/5) '   .    If targeting with 25-megaton weapons were equally as 

efficient as targeting with five-megaton weapons, then this curve 

should be the same as a curve with all five-megaton weapons, also 

shown on the Figure.      The 25-megaton weapons curve is above the 

all-five-megaton weapon curve, but the differences are not large. 

The estimated survivors after the four 25-megaton weapons,  plotted 

at a value of 4 x 2.92 = 11.66 weapons,  is 35.6 percent.    It re- 

quires 10.42 five-megaton weapons to reach the same value, thus the 

25-megaton weapons are less efficient in the ratio of 11.66/10.42 

or 1.12, compared to theoretical predictions.    These results, of 

course, are not different than those which could have been predicted 

from Section IV.    The rest of the curve with five-megaton weapons 

appears to return to the all-five-megaton curve.    As an example, 

after the 26th five-megaton weapon, which is plotted as the 37.66th 

weapon,  the estimated survivors are 332.9 thousand.    This number of 

estimated survivors for the all-five-megaton calculations occurs at 

37.52 weapons, for a ratio of 1.0038.    Thus in this case almost all 

of the original loss in efficiency due to the 25-megaton weapons has 

been recovered,  indicating that the rest of the five-megaton weapons 

can  "fill in the gaps" from the four 25-megaton weapons as well as 

when all the weapons are five megaton. 

A similar calculation is shown for Washington, D. C. in Figure 73. 

Here only one 25-megaton weapon is dropped followed by five-megatons 

weapons again.    In this figure the agreement with the all-five- 

megaton curve is much closer.    2.86 weapons are needed in the all-five- 

megaton case to produce the same number of casualties as the one 25- 

megaton weapon.    The ratio of weapons  is  2.92/2.86 or 1.02.    At 

J.    No effort is made here to correlate results by other than 
scaling by yield to the two-thirds  power.    Such methods are in effect 
attempting to reflect variations in efficiency due to variation of 
Rr/a   .    The methods of Section IV seem to be a much better way to L    c 
include such effects. 
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larger numbers of weapons,  the mixed case is actually better; for 

example, at 6.25 percent estimated survivors, 22.39 weapons are 

needed in the all-five-megaton case and 21.92 in the mixed case. 

This gives a ratio of  21.92/22.39 = 0.98. 

In Figure 74 a similar calculation is shown for Flint.    Here 

the single 25-megaton weapon is appreciably worse than the all-five- 

megaton case.    However, the  "optimal" location of the 25-megaton 

weapon was guessed at, so the difference may represent more a poor 

estimating capability of the author than a real mathematical program- 

ming effect.    However,  it can be seen that most of the difference 

disappears.    Thus 5.92 weapons are needed to reach the point of 

9.6 percent estimated survivors in the mixed case, while 5.82 are 

needed in the all-five-megaton case for a ratio of 1.02. 

In Figure 75 a calculation similar to Figure 72 is shown except 

char one-megaton weapons rather than five-megaton weapons are used 

after the four 25-megaton weapons.    In this case the deviation from 

the single yield case is larger.    Thus four 25-megaton weapons, 

scaled to ehe two-thirds power are equivalent to 34.2 one-megaton 

weapons, and leave an estimated 35.6 percent survivors.    The number 

of one-megaton weapons for the same number of survivors is 27.85. 

The ratio of mixed case to all-one-megaton weapons is then 35.6/27.85 

= 1.20.    This  is considerably larger than the 1.12 when 25- and five- 

megaton weapons were mixed.    Again a rapid recovery to the single- 

yield curve case is seen.    Thus to obtain an estimated 20.7 percent 

survivors,   50.2 weapons are needed in the mixed case and 49.75 

weapons in the single-yield case for a ratio of 1.01 as compared to 

a value of 1.02 in the five-megaton case.    This recovery is achieved 

with just 16 weapons, and such weapons appear to be quite efficient 

in recovering to the higher efficiency obtained for the single-yield 

case. 

A similar case is shown in Figure 76.    Here four five-megaton 

weapons are used on Detroit followed by all one-megaton weapons, and 

the difference between the two cases  is much  less.    The four five- 

rnegaton weapons,  equivalent to 11.68 one-megaton weapons, render an 
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estimated 62.0 percent survivors where 11.04 one-megaton weapons 

are needed for the same result.    The ratio here is 1.055.    This 

smaller value is to be expected compared to the 25-five-megaton 

case since,  even though the ratio of yield is the same,  the degra- 

dation in efficiency is larger going from five- to 25-megaton weapons 

than from one to five-megaton.    Here the mixed case recovers to be 

;x>re efficient than the all-single-yield case with, for example, 

an estimated 20.6 percent survivors being obtained from 48.68 weapons 

in the mixed case, and 49.83 weapons in the all-one-megaton case, 

for a ratio of 0.98. 

Figures 11 and 78 illustrate the same case,  i.e., five-megaton 

weapons followed by one-megaton weapons for two smaller cities, 

Washington and Flint.    For Washington, the ratio of mixed weapons 

to all-one-megaton weapons is 1.11 after four five-megaton weapons 

but when the estimated survivor level drops to 10.6 percent, the 

ratio is exactly 1.000.    For Flint the mixed case is considerably 

worse,  the ratio of mixed to all-one-megatcn weapons being 1.28 

after three five-megaton weapons.    As can be seen from the figures, 

a rapid recovery is  being made to the all-one-megaton case. 

We have made no attempt to compare all these cases in a single 

table, although the trends obtained and illustrated b<' the figures 

are all consistent.    The surprising thing observed is the rapid 

recovery which is made from the mixed attack to the attack with all 

single weapons.    Thus although there is a loss in efficiency when 

large weapons are used,  i.e., for large values of R./a  ,  this loss 
L      C 

can be made up when the attack is supplemented with smaller weapons. 

This effect was seen in the previous subsection where weapons were 

arbitrarily assigned locations. It is not evident, at least on an 

a priori basis, that this same effect should be repeated for mixed 

yields, where the weapons are optimized. The evidence presented 

here aoes show that this is, in fact, the case. 
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VII 

BLAST-SHELTERED POPULATIONS 

If the entire population is in shelters designed to uniformly protect 

against a single overpressure level, then the methods described in 

Section IV are adequate to estimate survivors. Two additional questions 

are addressed in this Section. The first concerns both the effect of 

having the population at two hardness levels (sheltered and unsheltered) 

and the effect of an attacker assuming the incorrect fraction of 

sheltered population. The second concerns the effects of optimizing 

blast shelter deployment, allowing shelter hardness to vary as the 

population density varies. 

A. POPULATION "SHELTERED" AT TWO DIFFERENT HARDNESSES 

In this, set of calculations it is assumed some fraction of the 

population is unsheltered—and is nominally "hardened" to 6.5 psi 

overpressure—and that some other fraction of the population is 

sheltered at a different "hardness"—usually 12 or 30 psi. We 

assume that the sheltered fraction of entire population is uniform. 

The targeting is optimized to maximize the sum of fatalities from the 

sheltered and unsheltered population components with each weapon 

dropped. 

At first thought it might seem that an average hardness of the 

^two shelter fractions might be used and the attack be optimized 

1. This assumption does not appear to be critical. Ir. the next 
section, a calculation is presented where the population is not 
uniformly sheltered. The results obtained are almost the same as 
would ce obtained by the uniform sheltering assumption used here; 
although varying fractions of the population sheltered would be of 
interest, the number of possibilities to consider would require 
considerable extra effort. 
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against this single population in the manner considered in previous 

sections.    This would be adequate except for one thing:    the fraction 

or sheltered population changes, both locally and on the average, ! 

after a weapon is detonated.    Thus in the vicinity of a detonated 

weapon,  'he surviving population is harder (more protected) than in J 

regions distant, from previous detonations.    This changing population 

hardness will affect the optimum drop locations and therefore change 

the basis for the entire calculation.    The basic point of the present 

calculations is to investigate the importance of this effect.    If it 

is not too important, then simple averaging procedures will give 

adequate accuracy. 

The results of two typical calculations are shown in Figure 79. 

In one case, at every location (Standard Location \rea),  50 percent 

of the population is assumed to be at 6.5-psi vulnerability (mean 

lethal overpressure), and the other SO percent  is assumed to be at 

12-psi vulnerability.    For these calculations and all others in 

this subsection, unless specifically excepted, the yield is five- 

meg atons, the CEP is 0.5 nmi, the delivery probability is 0.75, and 

the data base is Detroit's 1975 nighttime population.    The other case 

is the same except the sheltered 50 percent of the population is at 

tO-psi vulnerability.    Also shown, is the fraction of the survivors 

in shelters of 12-psi and 30-psi overpressure vulnerability.    Due to 

details of the computer operation more data points were available for 

the 6.5-30 psi case, therefore there is greater unevenness in the 

6.5-30 fraction-of-survivcrs curve.    At any rate it can be seen 

that the fraction-of-survivors curve varies in slope depending upon 

the fraction of the original population which is sheltered in the 

vicinity of the last weapons dropped.    If this area has been 

subjected to other weapons,  then a larger portion of the survivors 

are in shelters and an additional weapon would tend to decrease the 

slope of the fraction-of-survivors curve. 

Also exhibited on Figure 79 for comparison are the survivors for 

the pure 6.5,  12, and 30-psi cases.    The plus marks indicate the 

average survivors calculated when the survivors,  at a given 
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number of weapons, for the pure 6.5 psi and the higher psi case are 

each multiplied by the appropriate original fraction at 6.5 psi and 

at the higher psi and then added together. If the optimal targeting 

for the two cases was the same, then this averaging procedure should 

give the calculated curve. This procedure works quite well in the 

6.5-30 psi case but not as well in the 6.5-12 psi case. 

An alternative procedure to estimating the mixed curves would 

be to estimate an equivalent lethal radius and find a damage law 

curve which best fit the calculated mixed curve. A way of testing 

this method is to plot the curves on "square root damage law" paper 

and observe if the shape is either linear, for a square root law, 
2 

or similar to a curve with a value of N less than infinity.  The 

two cases presented in Figure 79 are replotted in Figure 80 on 

"square root damage law" paper. The 6.5-30 psi case has only a small 

variation from the square root law, but this variation is in the 

wrong direction, i.e., instead of being above the line for over 50- 

percent survivors and below for less (corresponding to some finite N) 

the reverse is true. Thus this case shows a behavior not possible 

with any of the damage laws, but the difference is small. The 6.5-12 

mixture fits the square root law very well to 30 weapons but then 

breaks below the square root law line. 

The najor deviations from the damage law observed in the calcu- 

lations are shown in Figure 81. Here the trends of the previous 

Figures are repeated, only accentuated somewhat. The causes of 

the deviations, of course, are due to preferentially attacking either 

the softer or harder targets at various stages in the optimization. 

Nevertheless, the deviations from the square root law are small 

enough that the methods of comparison in Section IV will be adopted 

here. 

Another way of analyzing the calculated results is to compare the 

fraction of survivors of the initial sheltered or unsheltered population 

2. Due tc the changed nature of the optimization, the applica- 
bility of the "square root damage law" is not a priori evident. 
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FIGURE 80.   Survivors as a Function of Number of Weapons on "Square Root Damage 
Law Paper" for Equal Mixes of 6.5/12 and 6.5/30 Population 

Uniformly Sheltered in Two Components 
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FIGURE 81.   Survivors as a Function of Number of Weapons on "Square Root Damage 
Law Paper" for Two Extreme Mixed Cases of Population Uniformly 

Sheltered in Two Components 
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I component in the mixed case with the fraction of survivors where the 

entire population is either unsheltered or sheltered. This is done 

in Figure 82 for the 50-50 mixture of 6.5-30 psi population, and in 

Figure 83 for the 50-50 mixture of 6.5-12 psi population. The larger 

nvTiber of points plotted in the 6.5-30 psi calculation is due only 

to a calculational detail, and the 6.5-12 case would probably yield 

similar oscillations if more points were available. In order to 

more clearly exhibit the differences in survivors, the difference of 

the mixed case and the pure case are shown in Figure 84 as a function 

of the number of weapons. Figure 82 and Figure 84 show deviations in 

both directions from the pure cases for both the 6.5 and 30 psi curves. 

For example, initially the 6.5-psi fractions in the pure case and the 

mixed case for both agree, while the mixed case fraction of survivors 

actually does better initially than the pure case. Also, at about 

30 weapons the hump in the 30-psi case indicates preferential attacking 

of the harder targets. The dip in the 6.5-psi fraction indicates that 

this was done in a region relatively richer in 30-psi sheltered popula- 

tion rather than 6.5-psi unsheltered population. In Figure 83 the 

deviation is uniform for the portion shown, with the mixed case, 12 psi 

and 6.5 psi always being below the values for the pure case. 

If it is assumed that the targeting does not change, then these 

figures can be used to calculate survivors for other shelter fractions 

as well. Thus for example, if the.actual fraction unsheltered, F, > 

and sheltered, Fp > are the same as the fraction unsheltered, F, , 

and sheltered, F2 , assumed for targeting, and all equal 0.5 then to 

calculate survivors at 10 weapons, say, for the 6.5-30 psi case one 

would compute, using Figure 82 

S = Fla fl(10) + F2a f2(10) 

= 0.5 x 36.8 + 0.5 x 76.3 

= 56.1. 
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FIGURE 82.   Survivors as a Function of Number of Weapons for 6.5 and 30 psi Pure 
Cases, and Percent of Survivors of the Original 6.5 and 30 psi 

Components inthe Mixed 6.5/30 psi Cose Originally with Equal Mixture 

156 



I 
t 

I 

20 30 40 
NUMBER OF WEAPONS 

P2-25-70-54 

FIGURE 83.   Survivors as a Function of Number of Weapons for 6.5 and 12 psi Pure 
Cases, and Percent of Survivors of the Original 6.5 and 12 psi 

Components Remaining in Mixed 6.5/12 psi Cases, Equal Mixture 
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FIGURE 84.   Percent Difference in Survivors of Mixes Case Minus Corresponding Pure 
Case For6.5 and 30 psi Components as a Function of Number of Weapons 
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Here f.(NW) and f„(NW) are the calculated fractions surviving for 

the unsheltered and sheltered population as a function of number of 

weapons. The 56.1-percent survivors agree with Figure 79. As 

another example we take the 6.5-12 case at 30 weapons with the same 

fractions. Now we obtain 

S = Fla fl(30) + F2a f2(30) 

= 0.5 X 9.8 + 0.5 x 21.6 

= 15.7 

This value is also given on Figure 79. Now suppose that the optimal 

targeting assumed a 50-50 mix, i.e., F, = F2t =0.5, but 0.75 of 

the actual population was sheltered and 0.25 unsheltered. Then, 

since the targeting is unchanged, the curves in Figures 83 and 84 

can still be used so we have for the 6.5-30 case at 10 weapons 

S = Fla fx(10) f F2a f2(10) 

= 0.25 x 36.8 + 0.75 x 76.3 

= 66.5. 

For the 6.5-12 case at 30 weapons we have 

S = Fla fx(30) + F2a f2(30) 

= 0.25 x 9.8 + 0.75 x 21.6 

= 18.6. 

Later in the section we compare the results when targeting is performed 

for one mixture and damage evaluated at a second with the situation 

where the targeting is performed and damage evaluated both at the 

second mixture. 
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Calculations of survivors were made with different sheltering 

rractions and different overpressures for the sheltered fraction 

when the targeting and damage assessment were both at the same assumed 

conditions. The number of weapons needed to obtain 50-percent sur- 

vivors is shown in Table 16. 

In previous sections the number of weapons, N,-n, was multiplied by 

3, the ratio of expected value of area covered by one weapon to target 

area, to obtain a value X^, the normalized coverage to give 50-percent 

survivors. It may be hypothesized that in the mixed-fraction case, an 

average 6 weighted by the fraction unsheltered and sheltered could be 
3. 

used as a normalizing factor. If 01 is the unsheltered B and 32 the 

sheltered value, then 

0a=Fla0l+F2a*2' 

With the value of ß,  the values of X5Q were computed for different 

shelter fractions and overpressures.    These are exhibited in Table 17. 

The ratios F,   ß-i/Fo,^? are s^own *n parentheses.    These ratios should 
be a measure of the relative importance of the sheltered and 

unsheltered population components.    Also given in the table are 

values of X50 for shelter fractions of 1.0/0 and 0/1.0,  i.e., for 

single overpressure cases at 6.5 psi and at 12,  30, or 100 psi. 

No calculation at 100 psi was available; where the weapon has a 

lethal radius of 0.92.    However, a calculation with one-megaton 

weapons at 30 psi, all else being the same, had a lethal radius of 

0.94 which is almost the same.    The value of X™ for this close 

case was used for the 100-psi case here. 

The values in Table 17 are illustrated in Figure 85, where X5Q 

is plotted as a function of the fraction unsheltered.    If the mixture 

of population had no effect upon the results, a linear variation 

between 0 and 1 would result.    (Since the shape of the curves is 

"almost" a square root damage law,  such a linear variation would 

indicate a  simple averaging of  the pure cases and would give a good 
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Table 16 

^          NUMBER OF WEAPONS TO GIVE 50-PERCENT DAMAGE FOR DIFFERENT 
■o_             FRACTIONS OF SHELTERED AND UNSHELTERED POPULATIONS 
U  CV 
<V U 
4->  CV 
r-i *J 

CV H 
JC CV 

CO JZ 
C CO 
a 
a) 26.5/12 
U 3 
3 CO 
g $6.5/30 
cv b 

& 2*6.5/100 
CV  > 

Fraction Unsheltered/Fraction Sheltered 

0.9/0.1 0.75/0.25 0.5/0.5 0.25/0.78 0.1/0.9 

6.58 

7.29 

7.56 

9.10 

S.22 

13.26 

21.84 

9.54 

18.69 

9.90 

23.60 

32.65 

Table 1 7 

VALUES OF X50 AND RATIO OF F^/t^ F0R DIFFERENT 

FRACTIONS OF SHELTERED AND UNSHELTERED POPULATIONS 

1 

( 'Values of F.  B.. /F9flß2 in Parenthesis) 

sh
el

te
re

d
/ 

le
lt

er
ed

 

Fraction Unsheltered/Fraction Sheltered 

1.0/0 0.9/0.1 0.75/0.25 0.5/0.5 0.25/0.35 0.1/0.9 0/1. 

CV  U 
U 3 

1.48 1.45 
(19) 

1.53 
(6) 

1.41 
(2) 

1.36 
(1/1.5) 

1.25 
(1./4.5) 

1.37 
d/») 

co cv 6.5/30 
cv u 
u a, 

1.48 
(») 

1.55 
(52) 

1.68 
(16) 

1.85 
(5) 

1.70 
(1.75) 

1.46 
d/1.7) 

1.32 
d/») 

£ >6.5/100 
o 

1.48 2.68 
(20) 

1.19 
(1.8) 

1.26 
d/») 
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approximation to the more accurate calculation.) This is almost so 

tor the 6.5-12 psi case. As the shelter overpressure design increases, 

nowever, the deviation from the simple average also increases. 

The peak value of X,-0 is 1.32 times the linear prediction at 30 

psi and 1.94 times at 100 psi. 

o 
> 
> 

z 
o a. 
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o 
at 

5 
=) 
Z 
a 
UJ 
-I < 

n-lb-iü-» F, (FRACTION UNSHELTERED) 

FIGURE 85.   Value of Scaled Number of Weapons for 50% Survivor, X_fi/ as a Function 

of Fraction Unsheltered for Different Shelter Overpressures for Mixed Cases 
It might be expected that the peak deviation from the linear 

situation occurs when the value of F-IPT/POP? *s ab°ut one* i*e>> 

when the relative ''importance" of the sheltered and unsheltered 

fractions are about the same. An inspection of Figure 85 indicates, 

however, that this is not the case, for the 6.5-12 case a small peak 

occurs at a value of 6 and for the 6.5-30 case a definite peak at a 

value of 5. The peak shown for the 0.5-100 case is at a value of 

20, however the next lower calculation is 1.8, so a still higher 

value of Xrn could have been obtained for some intermediate calcula- 

tion. It appears then that when the unsheltered population is about 

five times the "importance" of the sheltered population, as measured 
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by the weighted ß, there is a maximum deviation due to the mixture 

of the two populations. The shapes of the curves of calculated sur- 

vivors as a factor of number of weapons appear to be close to the 

square root law when the deviation is a maximum, (i.e., when 

F,ß,/F2ß2 *
s about five. For higher values of F^ßi/Fo^?' tJie cnrva-s 

appear to bend above the square root law at high numbers of weapons, 

and for values of F,ß,/F2ß2 less than five, the bending appears to 

be in the other direction, It is surprising that, for values of 

F,ß1/F„ß2 so different from one, significant deviations from the 

pure cases are still found.  The peak deviation occurs when the 

fraction unsheltered is about 1/2, indicating that the number of those 

sheltered, rather than their "importance", is critical. 

A few calculations were performed at different delivery proba- 

bilities. These were for a 50-50 mixture at 6.5 and 30 psi. The 

values of X5Q obtained are given below: 

Delivery probability      0.5       0.75        1.0 

X50 2.02       1.83 1.68 

These values are illustrated in Figure 86 . Also presented in Figure 

86 is the variation in all-6.5 psi case presented in Section IV. 

These indicate that the variation with delivery probability appears 

quite similar in both cases. 

A single calculation for the 6.5-30 case for one-megaton weapons 

yielded a value of X5Q = 1.52. The ratio of values of X™ for five- 
megaton weapons divided by that for one-megaton weapons is 1.83/1.52 

= 1.20. From Table 17, cases with similar values for ß are those 

for five-megaton weapons and one-megaton weapons at 12 psi vulnera- 

bility. Here the ratio of the values of X5Q are 1.37/1.32 = 1.04. 

Thus the variation of effectiveness with yield (that is, with R./a.) 

seems more significant in the situation based on average psi. On 

the other hand, using only the unsheltered fraction, i.e., a compari- 

son at 6.5-psi vulnerability between five-megaton and one-megaton 

weapons gives a ratio of X™ equal 1.48/1.28 = 1.15. Since the 
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FIGURE 86.  Value of Scaled Number of Weapons for 50% Survivors, X_Q/ as a Function 

of Delivery Probability for 6.5/30 psi Mixture at 50-50 Fractions 
and for Several Pure Cases 
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ratio of *\0T/F2^2 is five» and since empirically the ratio with 

the unsheltered component is closer to the measured ratio, the 

finiteness of the target seems to affect primarily the targeting 

of the unsheltered component. 

Figures 87 and 88 illustrate the effee : of having the attack 

optimization and evaluation at different conditions and confirms 

the conclusions of the previous section. In these Figures an attack 

is optimized as before but evaluated using the cumulative normal 

kill function. In Figure 87, each pair of curves illustrate a pair 

of cases where one optimization was for the same condition as the 

evaluation while the other optimization was at a different over- 

pressure vulnerability. The results for the 6.5-12 psi evaluation 

are quite close, and the results for the single 6.5-30 psi evaluation 

are close at small number of weapons but diverge at large number of 

weapons. It appears for this case that the optimization on the 12 

psi sheltered fraction left an appreciable amount of residual 

population when evaluated at 30 psi, thus generating the difference. 

The curves in the figures are less smooth than usual: this is especial- 

ly noticeable for the curve optimized and evaluated at a 10-90 mix 

of population at 5.5 and 12 psi vulnerability. This occurs due to 

the smaller tail on the cumulative normal curve which causes con- 

siderable differences in the kill for each weapon. 

In Figure 88 the optimization ana evaluation occur at different- 

fractions sheltered. Here the differences when the optimization is 

at either the correct or incorrect shelter fraction are smaller than 

for the incorrect overpressure. It appears, from both figures, that 

errors made by an attacker in his estimate of either shelter fraction 

or shelter mean-lethal-overpressure have only a small effect upon the 

efficiency with which he can use his weapons. 

B. OPTIMIZED DEPLOYMENT OF BLAST SHELTER HARDNESS 

In this subsection it is assumed that blast shelters are deployed 

as in the Galiano report described in Section II. The blast shelter 

hardness will vary aa a function of the local population density, with 
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FIGURE 87.   Comparison of Calculated Survivors as a Function of Number of Weapons 
for Mixed Cases where Optimization is at the Same or at Different 

Shelter Pressure as Evaluation 
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FIGURE 88.   Comparison of Survivors as a Function of Number of Weapons for Mixed 
Cases where Optimization is at the Same or Different Shelter 

Fraction as Evaluation 
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all the population sheltered.    Tne cost per person is given 

by 

C(P)  = b(P - p  ) 
u 

Then tne average vulnerability (psi) excess above the inherent city 

vulnerability of the deployment is the same as the average shelter 

':ost. Moreover a uniform shelter overpressure at the average psi 

would cost the same as the varying deployment. The effects of a 

fixed cost are shown in Section II. The expression for the local 

optimized overpressure is (see Eq. 37 of Section II) 

D       VK* ,     VK*       . P  = y exp  (- Y"    T   ), 

2 
where        V    is the local population density [people/miles   ], 

2 2 K" is the coefficient for the R,   variation [miles   ], 

X    is the offense Lagrange multiplier  [people/weapon], and 

T - ub is the scaled defense Lagrange multiplier  [people/$ 

x $/psi = people/psi]. 

The following calculation are all for five-megaton weapons, with 

0.5-nmi CEP,  0.75 delivery probability, against 1975 nighttime 

population.    Then,   if K* is calculated  from a lethal radius at  30 psi 

we have 

K*= rrR^ Pd x 30 = 132. 

The equation used to compute the blast shelter mean-lethal 

overpressure is 

P = V/265 exp (-  VT/265). 

Ihus K/x = 1/265 or X = 48,300 people per weapon.    This value was 

chosen as an  interesting attack region.    For uniform 12-psi shelters 

in Detroit this corresponds to about 25 weapons and 30-percent sur- 

vivors;  iov uniform 30-psi shelter,   it is about  29 weapons and  51 

percent  survivors.    Values of  T  equal 0.01 and 0.02 survivors/psi 
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were used. (The effect of these values of T is illustrated in 

Figure 3. The population was found to be protected at between 

7- and 55- psi vulnerability. The basic population data 

listed the area of each Standard Location Area (SLA). Thus the 

population density for each Standard Location Area was readily 

computed by dividing the population by the area. 

The probability of survival for each SLA for each trial  weapon 

location was computed in the optimization. Since each of these 

SLAs was at a different overpressure, it was necessary to obtain a 

damage curve for each overpressure. This was done by dividing 

the allowable overpressure range into twelve intervals and computxng 

tables of probability of kill as a function of distance for these 13 

levels« During the optimization calculation values at intermediate 

overpressure levels were obtained by parabolic interpolation. 

On the basis of the results it appears that a linear interpolation 

would have been adequate. However, in these first calculations 

it appeared that extra effort was desirable to insure that the 

numerical approximations were not significantly biasing the results. 

The deployment of shelters is mapped in Figures 89 and 90 for 

T = 0.01 and 0.02, In these maps the average overpressure for all 

the SLAs within the 0.6 by 1.0 mile rectangle is given. The varia- 

bility of overpressures averaged within one of these rectangles may 

be considerable due to SLA by SLA variations in population density. 

In these maps the numbers represent the excess shelter pressure over 

7.0 psi, with each increase of 2 psi causing an increase of one 

digit in the presented values. The distribution of the population 

at various overpressures is shown in Figure 91. In this figure 

the number of people within a pressure range of 1.1 psi is plotted 

on the ordinate with the numbers on the abscissas representing the 

middle of the pressure range considered, As is evident the higher 

value of T is significant in decreasing the spread of pressures. 

The exponential term in the equation for pressure becomes large 

enough here to cause the significant change. 

Previous figures indicate that the distribution of shelter 

overpressures varies rapidly with locations. This arises since the 
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FIGURE 139.   Blast Shelter Deployment with r = 0.01, Unsmoothed, for Detroit 
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basic derivation of the deployment equation assumes a weapon density 

and a shelter density. In effect a lethal radius small compared to 

any other significant dimensions is assumed. This is not the case 

here, and a method that attempts to deploy shelters using population 

density averaged over some dimension comparable to a weapon radius 

may well give a shelter deployment yielding more survivors than 

those shown here. Accordingly, for each Standard Location Area an 

average population density was computed. To do this we determined 

a lethal radius at a pressure that is the average of the minimum and 

maximum allowable pressures (31 psi here). The weighting function 

for the calculation of average density was then taken as a Gaussian 

function of distance with the lethal radius corresponding to the 

50-percent value. This function is approximately the same as the 

probabiiity-of-kill function so that these smoothed blast shelter 

variations tend to give equal protection over all localities that 

are equally attractive to an attacker. Although we have not developed 

a rormal justification for this procedure, it heuristically seems to 

provide an adequate way of deploying blast shelters. 

The smoothed blast shelter deployments obtained are shown in 

Figures 92 and 93 for T - 0.01 and T = 0.02. It is clear from the 

maps that the pressures vary more slowly. Moreover, there is only 

negligible variation among all the SLAs averaged within each 

rectangle plotted, compared to the unsmoothed deployments where the 

variations may be largo. An interesting feature of the deployment 

readily observed for T =0.02 is the much discussed "inside out" 

feature, i.e., in region of highest population density, the shelter 

pressures are lower. This is not observed in Figure 92 for T =0.01 

where the effect of the exponential part of the deployment equation 

is not yet so dominant. The distribution of population at various 

overpressures are shown in Figure 94, plotted in the same fashion as 

Figure 93. The overall distributions are similar although difference 

in detail can be seen. 

The calculated survivors for the unsmoothed and smoothed deploy- 

ments for ~  -  0.01 are compared in Figure 95. The lower curves are 
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fort =0.01 and 0.02, Smoothed, for Detroit 
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the results for the unsmoothed deployment and the upper for the 

smoothed deployment. The average overpressures are slightly different. 

To correct for this, the number of weapons for the unsmoothed deploy- 

ment is multiplied by the ratio of the square of the letnal radius 

at the average overpressure for the unsmoothed deployment to that for 

the smoothed deployment, a ratio of 1.087. This, in effect, corrects 

by the ratio of the average ß's. The resulting curve is the middle 

curve in the figure and represents the one which should be compared 

with the smooth deployment. Thus the smoothed deployment everywhere 

gives as many or more survivors as the unsmoothed although the dif- 

ferences are not large. At a constant percentage of calculated survi- 

vors, the ratio of number of weapons needed is about constant. At 

50-percent calculated survivors this ratio is 1.07. Since the smoothed 

deployment does give higher survivors, it will be used for further 

comparisons. 

In Figure 96 the results of the optimal deployment are compared 

with a calculation assuming the population to be protected at a 

single overpressure of 30 psi, one of the cases discussed in Section 

IV. Since the difference in average pressure is less than one half 

of one percent, the scaled result would be indistinguishable on 

the figure from the direct one. The optimal deployment gives more 

survivors than the uniform deployment, but the difference is not 

large. The maximum difference in survivors is about 2.5 percent. 

If this difference is not considered significant, the simple deploy- 

ment (shelters at a single uniform overpressure) gives almost as 

many survivors as the optimized deployment where each location has 

a different overpressure. 

The shelter deployment is optimized for a particular value of 

marginal return, i.e., 48,300 people per weapon. This '.'alue, at 

about 32 weapons, is indicated on the figures. The optimized de- 

ployment seems to yield more survivors at smaller numbers of weapons. 

At larger numbers any benefits from the optimized deployment soon 

disappear. There has been no attempt, however, to vary the attack 

level optimized against, so the drop may not be related to the location 

of the optimized attack. 
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FIGURE 95.   Comparison of Survivors as a Function of Number of Weapons for 
Unsmoothed and Smoothed Deployments with f = 0.01, for Detroit 
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"IGURE 96.   Survivors as a Function of Number of Weapons for Optimal Smoothed 
Bloit Shelter Deployment with T =0.01, for Detroit 
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In Figure 97 the survivors are shown for an optimized deployment 

with T = 0.02.    The average pressure is 15.19 with a value of lethal 

radius of 2.23.    This is compared with a calculation with all popu- 

lation at a single overpressure, five-megaton weapons at 12 psi 

Jwith a lethal radius of 2.57, and one-megaton weapons at C.5 psi 

with a lethal radius of 2.16.    As in Figure 95 the number of weapons 

scaled by the ratio of lethal radii squared gives values of 1.2 7 

I and 0.898.    The scaled values,  indicated by plus signs for the 12-psi 

case, and crosses for the 6.5-psi one-megaton case are the values 

| which should be compared with the optimized deployment.    The values 

obtained from these two cases are almost coincident.    The shape of 

1 the optimized deployment is similar to the uniform deployment thus 

indicating that the square root damage law gives a reasonably good 

(representation.    The optimized deployment does slightly better for 

less than 45 weapons,  but the difference is a little less than for 

. T = 0.01.    Once again, the optimal deployment seems to give slightly 

I more survivors until the number of weapons of the optimized attack 

level is reached, 29 weapons, when the optimized deployment does 

worse than the uniform deployment. 

Figure 98 shows a map of a smoothed optimized deployment for 

Washington, D. C. for T - 0.02.    Again the "inside out" deployment 

is evident.    The average shelter pressure is 14.98 psi.    In Figure 99 

the survivors as a function of number of weapons is presented, along 

with a 6.5-psi one-megaton calculation for Washington.    The plus 

signs indicate the 6.5-psi one-megaton scaled calculation, the 

scaling factor being 0.875.    Here again the optimized deployment 

gives slightly more survivors but in this case the best performance 

appears to be at about the attack level, 13 weapons, which gives X 

for a marginal return. 

Figure 100 gives the optimized smoothed blast shelter deployment 

with T = 0.02 for Flint, and Figure 101 shows the survivors as a 

function of the number of weapons.    The peak population density of 

Flint is low enough that the  "inside out" features of the deployment 

do not develop here.    The average pressure of the deployment is 16.12 
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FIGURE 97.   Survivors os a Function of Number of Weapons for Optimal Smoothed 
Blast Shelter Deployment with T =0.02, for Detroit 
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psi.    In Figure 101 the calculated survivors ca.i be compared with 

tne 6.5-psi one-megaton scaled curve  (the ccaJimj iact:or  is  ■.t.c'ja)i 

Again for attack sizes  less or equal that where the marginal retun 

is X,  the optimised deployment gives sligntiy ::;ore survivor:;,    how- 

ever, at larger attack sizes the optimised deployment  is  somewhat 

worse than the uniform deployment. 
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FIGURE 100. Blast Shelter Deployment with T =0.02, Smoothed, for Flint 

All these calculations presented indicate only a relatively s::.all 

benefit from adopting an optimized depoloyment similar to the results 

of Section II. Although a non-zero fixed cost has not teer, considered 

here, and only linear cost functions used, nevertheless, a Llast shelter 

deployment with only one single overpressure design for the shelter seems 

to be a serious contender for optimal shelter deployment for at least 

some typer. of cost functions, but not necessarily for all types. As 

seen in Figure 7, a large value of fixed cost can re:.der t.-.e efficiecc.;./ 

of a deployment attack highly size-dependent thus appreciably compli- 

cating the deployment problem. 
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FIGURE 101.    Survivors as a Function of Number of Weapons for Optimal Smoothed 
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VIII 

NATIONAL FALLOUT SHELTER PROTECTED POPULATIONS 

At this point the vulnerability of populations utilizing the National 

Fallout Shelter Survey (NFSS) facilities in the three exemplar cities 

will be studied.    This Section will differ somewhat  in viewpoint from 

previous ones in that more emphasis is given to the question of what 

is implied from the population data base as it really exists      Neverthe- 

less, since results are presented only for exemplar cities, this Section 

is similar to the others in pointing the direction toward future analysis 

rather than yielding specific detailed answers. 

The assumptions made for the calculation in this Section are: 

the vulnerability of unsheltered population is 4 psi,  for population 

above ground in NFSS shelters it is 7 psi, and for population below 

ground in NFSS shelters it is 12 psi.    Since the NFSS shelter data 

represents the current shelter posture,  the 1969 residential popula- 

tion is used. 

In these calculations, a five-megaton yield, a 0.5 nmi CEP and 

0.75 delivery probability are used.    Since no more than 30-percent 

calculated survivors remain after 10 weapons in any case studied, the 

calculations are followed this far.    This will enable more attention 

to be concentrated on the first few weapons.    The populations for the 

four cases considered are given below for these three cities: 

Population Type Detroit        Washington,D.C. Flint 

69 Daytime 3,765,740 2,203,337 553,213 

69 Nighttime 4,263,758 2,188,193 331,455 

Above Ground Shelter Spaces    2,735,075 5,874,387 85,130 

Below Ground Shelter Spaces    1,417,739 2.855.971 111,735 

Total Shelter 4,152,814 8,730,358 196,065 
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1. The exemplar cities were chosen before the shelter spaces 
were known, so that this variation is not premeditated. 

184 

The total shelter availability for the three cities varies rrom an 

excess ot spaces m Washington through spaces about equal to the 

population in Detroit to a deficiency in Flint. 

For each ot these population types the percentage of calculated sur- 

vivors as a function of number of weapons is given in Figures 102 to 

104 for Detroit, Washington, D. C, and Flint. Since the total popu- 

lation for these cases is different, the absolute number of survivors 

varies from case to case in these figures. Thus, these figures 1 

indicate the relative vulnerability of the population in the different 

postures. Also shown on these figures for comparison is the survi- 

vors for the 69 nighttime population at 6.5 psi vulnerability. 

h  number of comparisons can be made directly from these figures. j 

The population is relatively more vulnerable to blast effects in the 

above-ground shelters than in the normal daytime or nighttime loca- 

tions. This occurs, despite the higher mean lethal overpressure for 

these shelters of 7 psi compared to the assumed 4 psi, due to the 

high concentration of shelter spaces in the center of the city. If 

the mean lethal overpressure used as a base in previous sections, 

i.e., 6.5 psi, is used then the nighttime locations yield the most 

survivors. For the vulnerability assumptions in this Section, however, 

compared to below-ground shelter, the nighttime population is less vul- 

nerable at few weapons but more vulnerable otherwise for both Washington. 

". . C. and Detroit. The crossover occurs due to the heavy concentration 

of shelter in the central area which allows the first weapon to ob- 

tain a disproportionately large kill. The ordering of relative 

vulnerability from these figures could give rise to strategies 

which are not necessarily achievable due to the number of shelters 

available. Before listing relative vulnerabilities for consistent 

strategies, however, the predictability of these curves will be 

addressed. 
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The calculated survivors for the four basic cases are replotted 

on  "square root damage law paper" in figures 105,  1U6, and 107 for 

Letroit, Washington, D. C, and Flint.    The points for each case are 

connected by straight line segments to emphasized deviations from 

the square root law.    For Detroit the below-ground shelter line inter- 

sects the ordinate at 0.8 rather than 1.0, while the above-ground 

shelter curve has a break upward in slope after three weapons.    These 

both illustrate the higher payoff for the first weapons as compared 

to the later ones due to the central concentvation of shelters.    The 

same effect can be seen for Washington, D. C, although not as 

accentuated.    For both Detroit and Washington, D. C, the 4-psi 

daytime and nighttime population seems to follow the square root law 

fairly well.    For Flint the shelter calculations and the daytime 

calculations both appear to follow the square root law, with the 

shelter curve actually being closer than the normal calculation. 

However, the number of weapons involved is so small here that this 

agreement  is not to be expected from the basic derivation.    For Flint 

due to the 0.75 delivery probability,  25-percent survivors would be 

expected even if the actual detonation of the first weapon should 

kill everyone.    The calculated first weapon survivors are only 5 

percent above this  25-percent value for two of the cases calculated. 

Thus the expected survivors result primarily from the non-unit 

delivery probability, and only secondarily from the finite size of 

the weapon lethal radius.    As can be seen from Figures  105 and 106, 

attempts to predict either values of a or X5Q would be rendered 

difficult  by the higher payoffs from the first few weapons.    If 

statistical moments higher than the second of the shelter distribu- 

tions were available,  then correlations of experimental results with 

these statistical moments as well as integration of weapon densities 

and fatalities for other distributions might be attempted.    The 

methods of Sections  IV and V can  be used to predict the number of 

weapons required for 50-percent survivors, N_n from the scaled 

numbers,  X     .    When this  is done,  the 4 psi calculation with day- 

time and nighttime population yield  values of  X,-n which agree wit.': 
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those expected. Best estimates of values of X™ were made using 

extrapolations from Figure 57, based on daytime population trends. 

The values of Nsn predicted by this method are plotted as underlined 

points for the above- and below-ground shelter cases in Figures 104 

to 107. For Detroit and Washington a line drawn through the point 

for 1.0-fraction survivors with a slope equal to the slope of the 

shelter curves with large number of weapons will pass approximately 

through this point. For Flint, where the lines are almost straight, 

the prediction is good. However, since the difference between initial 

slope and the final slope of the calculated curves cannot be estimated       I 

on the basis of any available data, this method has little predictive 

power. Once again, it would be necessary to calculate some values 

such as higher statistical moments to hope to make such predictions. 

The previous Figures assumed all the population at a single : 

condition. If the number of shelters of one type is insufficient < 

to house all of the population, then mixtures of the population in 

different conditions must be studied. In the following two figures j 

the percent of calculated survivors at a given number of weapons is 

computed by taking the sum of the percent survivors for each popula- j 

tion type times the fraction of the population in this condition, as 

was done in Section VII. • 

In Figure 108 consistent shelter possibilities for Detroit are ' 

shown along with the daytime and nighttime postures. The total . 

number of shelter spaces is about equal the population, so a popula- J 

tion consisting of all the above- and below-ground shelter spaces 

is possible. If the entire population is sheltered, the blast vul- J 

nerability is increased under the vulnerability assumptions of this 

Section. Thus, sending the entire population to shelter is effective        I 

only if the loss due to increased blast vulnerability is compensated 

tor by the benefits of increased fallout protection. Since many of | 

the shelters with survivors have been subjected to appreciable, if 

not lethal, blast overpressures, the pre-blast fallout protection 

factors might be appreciably degraded for many NFSS shelters. Thus 

these calculations are an indication that, depending on the fallout 
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FIGURE 108.   Survivors as a Function of Number of Weapons for Consistent 
Shelter Occupancies for Detroit 
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yields and fallout protection of damaged structures of various types, j 

sending all the population to shelter may not be beneficial for 

Detroit, and may actually be harmful. 

The case for sending the population to below-ground shelters is 

better since for more than three weapons the blast vulnerability of 

the below ground shelters is  better.    For a daytime population the 

simplest change in vulnerability is obtained by simply telling the 

population to  "go home".    After that,  some further decrease in vul- 

nerability might be obtained by occupying below-ground shelters. 

In Washington, D. C. there are enough shelters available of each I 

type to house the entire population.    Thus any of the curves shown 

on Figure 103 represents a consistent strategy.    Since the above- ] 

ground sheltered posture is the most vulnerable of all postures 

to blast, and no less vulnerable to fallout than the below-ground j 

posture,  it can be rejected immediately.    The same general ordering for * 

Washington that was seen in Detroit occurs.    The 6.5-psi curve on 

this figure is an indication that a change in assigned vulnerability | 

can quickly change the ordering of preferred options. 

In Figure 109 calculated survivors as a function of number of I 

weapons for consistent strategies in Flint, Michigan are shown. 

Here some benefit accrues from using all shelters, for either day 

or night population, and a little more benefit accrues from using 

only the below-ground shelters.    However, these differences are 

small.    Going from daytime to nighttime unsheltered postures yields 

more benefit from blast than going to the shelter postures. 

A calculation was made where the optimization was performed 

against Detroit population in two shelter fractions.    The fractions 

in shelters of each type in each standard location area was not uni- § 

form, as in Section VII,  but       , determined by the number of above- 

ground and below-ground shelters in each SLA from the NFS£ data tapes. 

The vulnerabilities were 7 psi for the above-ground and 12 psi for 

the below-ground shelters.    This calculation then, optimizes in the 

proper fashion against the exact distribution of NFSS shelters.    The 

results are shown in Figure 110.    They are compared to the calculation 
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FIGURE 109.   Survivors as a Function of Number of Weapon» for Consistent 
Shelter Occupancies for Flint 
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FIGURE 110.   Survivors as a Function of Number of Weapons for Exact NFSS 
Above and Below Ground Shelter Distribution for Detroit 
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I       made in Figure 109 for the above- and below-ground shelter population 

where the percent survivors was determined by weighted averages of 

I       the two unmixed calculations. As can be seen there is less than a 

■       1C-percent difference in the two methods. This indicates that the 

_       weighted averages do give results close to the exact calculations. 

I       Also shown in this figure is the fraction of calculated survivors in 

below-ground shelters. This fraction grows from about 35 percent 

I       to about 70 percent for the ten weapons considered. By the averaging 

method of Figure 107 a value of the below-ground shelter surviving 

I       fraction of 58 percent would have been computed instead of the 70 

percent actually obtained. 

| In Figure 111 (a-j), maps of the calculated surviving population, 

weapon locations, and average fraction surviving in each square are 

given. The fraction surviving is the fraction of the total surviving 

in each square who are in below-ground shelters. The values printed 

in the maps presenting the fraction below ground increase by one for 

each 5-percent increment in the fraction. A value of J thus repre- 

sents everyone in below ground shelters. The original population is 

presented, as well as the survivors after 1, 2, 3, and 10 weapons. 

In other calculations in this paper the use of one (or three) 

cities seemed to yield results which could be generalized for almost 

all cities of fair size. The variability among the three cities 

studied here indicates that no generalization to all cities appears 

justified. At present, it seems that each city must be studied on 

its own merits. Such a procedure, it seems, will yield valuable in- 

sights into the best way of utilizing the civil defense resources 

represented in the NFSS shelters. 

In these calculations no attempt was made to preferentially uce 

fallout shelters based upon their location. In view of the sensitivity 

of results to the population dispersion, it certainly appears that 

much benefit would be gained from preferentially occupying shelters 

which would increase population dispersion. Such calculation would 

require development and testing of an allocation routine for popula- 

tion which would allocate shelters to reduce blast vulnerability. 
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Development of such capabilities appears as a most desirable next 

step and would form a much better basis for developing specific 
2 

shelter use plans. 

I 

I 

I 

I 

I 2. The DASH computer program does allocate people to sheltars, 
but in a preprogrammed way which does not internally attempt to re- 
duce bläst vulnerability. Moreover, because there has been no study I 
of individual cities, it is not now known which input parameters are         | 
most effective in obtaining good shelter allocation for oach city. 
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LIST OF SYMBOLS 

(The numbers in parenthesis refer to the 
page where the symbol is first used.) 

A   Target Area (p. 7) 

C  Blast Shelters Cost, Dollars/Person (p. 14) 

F   Local Fraction of Destruction (p. 7) 

F   Local Fraction of Destruction for Some Value of N (p. 8) 
_n 
F Overall Fraction of Destruction (p, 8) 

F, Fraction of Population in Blast Shelters (p. 153) 

F„ Fraction of Population Unsheltered (p. 153) 

H Local Payoff from Attack (p. 18) 

Ht Total Payoff from Attack (p. 7) 

K Expected Lethal Area of Pro Weapon (p. 8 to p. 30 only) 

K  Same Definition as K (p. 90 et. seq.) 
X 

K  Weapon Scaling Factor in Fitting Results = g (p. 11) 

X* Constant to Relate K to P in Blast Shelter Analysis = KP (p. 14) 

L Lagrangian Function (p. 7) 

N Parameter in Damage Law (p. 8) 

N5n Number of Weapons Needed for 50% Survivors (p. 184) 

P Position Coordinate (p. 6 & 7 only) 

P Blast Shelter Overpressure Hardness, psi (p. 14 et. seq.) 

P,  Probability of Weapon Delivery (p. 8) 
VK* 

P   Critical Equivalent pressure = -r— (p. 15) 

P Hardness with no Shelter, psi (p. 16) 

P Average Shelter Hardness = cpP (p, 18) 

R P^ Lethal Radius, where Probability of Kill is 1/2 (p. 8) 

S Total Fraction of Survivors (p. 8) 

V Local Target Value Density, Value/Unit Area (p. 7) 

V Target Population in Normalized Area = V /2TTO (p. 17) 

V Total Target Population (p. 17) 

W Total Number of Weapons (p. 7) 
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a 

1 
TTR?P W 

X       Dimensionless Number of Weapons -       ■        (p. 10) 
na 

Xc. Value of X at 50% Survivors (p. 95) 

2/n  2 
Z   Transformed Dimensionless Distance = e~ ' 

Z   Value of Z when Attack Density is Zero (p. 20) 

Z   Value of Z when Dimensionless Pressure is One (p. 20) 

a   Fixed Blast Shelter Cost Constant, Dollars/Person (p. 14) 

b  Pressure Dependent Blast Shelter Cost Component, Dollars/Person- 
psi (p. 14) 

n   Exponent in Cost Shelter Hardness Equation (p. 16) 

r   Polar Position Coordinate (p. 17) 

V 
Adjustment Factor in Computer Results = £   (p. 11) 

2 
TTRTP, 

3   Weapon Scaling Parameter Square Root Damage Law = --- - (p. 11) 
nox°y 

/  o N 1/N"1 

3   Scaling Parameter in Square Root Damage Law = \    ^  J     (p. 10) 

*   Dimensionless Attack Lagrange Multiplier = X/Xd (p. 18) 

V K* 
y       Dimensionless Target Value Density = - -■  (p. 18) 

^d^u 

X Lagrangian Multiplier for Attacker (p. 17) 

X, Lagrange Multiplier for Attacker Used in Shelter Deployment (p. 17) 

u Local Hardening Factor (p. 7-9 only) 

u Lagrange Multiplier for Defense (p. 15) 

| Dimensionless Defense Lagrange Multiplier = P T (p, 18) 

a Standard Deviation of Value Qp. 9 to p. 29) 

a   Standard Deviation of Cumulative Normal Probability of Kill 
Function (p. 100 et. seq.) 

a       Standard Deviation of Value in East Direction (p. 11) 

a   Standard Deviation of Value in North Direction (p. 11) 

■3       Standard Deviation of Value for City (p. 97) 

T   Normalized Defense Multiplier = ^b (p. 18) 
p 

to   Dimensionless Shelter Hardness = «- (p. 18) 
u 
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i 
I       cp  Average Dimensionless Shelter Hardness (p. 18) 

ty  Dimensionless Fixed Shelter Cost = ua (p. 18) 

tu  Local Weapon Density, Number /Unit Area (p. 6) i 

i 

t 

J 

uu*  Optimal Weapon Density with Lagrange Multiplier X (p. 7) 
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