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1. ABSTRACT 

The synthesis of a scattering matrix is a problem both of dynamical 

system theory and of operator theory. It transcends the context of finite 

dimensional system theory, as developed by Kalman in ([l]. Chapter 10) in that 

its state space is an infinite dimensional Hilbert space, and so requires a 

slightly different approach based however on similar principles as concate¬ 

nation and Nerode equivalence, and also in that it needs the use of operator 

theoiy, mainly as developed by Helson-Lovdenslager [2]. We give a precise 

description of the scattering matrix as a dynamical system in paragraph 3. 

Then we start to investigate properties relevant for synthesis purposes, a 

synthesis being a ’’complete decomposition of a system into simple subsystems". 

A major class of systems is discerned and defined as the class of "roomy" 

scattering matrices, for which complete synthesis procedures are deduced, 

essentially with the help of the factorization theory for J-contractive matrices 

by Potapov [3], From the point of view of operator theory, a synthesis becomes 

-.me aort of spectral decomposition. The class of roomy scattering matrices — 

which is a class of non-normal contractive operators — proves to be completely 

decomposable through the use of rather unconventional devices: analytic 

transformations and non-associative multiplication, due in the first place — 

in a very physical setting — to Belevitch [k]. Several salient synthesis 

procedures are discussed in paragraphs k to 7. Physical insight from the 

finite situation as described in ([5], [6], [7]) is often a guide in the some¬ 

times tricky developments from one stage to another. There has been consistent 

effort to use invariant subspace theory — the major clarifying concept in the 

theory — in most contexts. This proves to produce a successful generalization 

of the notion of ’degree’ except somewhat in one critical instance discussed in 
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paragraph 7. Many descriptions of the physical implications of the synthesis 

procedures are kept very sketchy and have to he augmented with above mentioned 

technical papers. 



2. INTRODUCTION 

A Scattering Matrix i. an Input/Outpnt d.seripUon of a phyaieal .y,tea 

which « regard for inatance as conaisting of electric^ circuity. i„put 

and (hdtpnt are con.idered to he "ingoing” and "reflected" waves (for precise 

««ins an* definition ae, (8,). We will he priori* concerned with s.stens 

awing a finit. ..t of entriea. "porta", c^^ing each an incooing a 

reflected wave, repreaented hy tine dependent vectors a(t) and hit) 

respectively. There are essentially two types of .nattering natrice, as 

Pictured in figure 1: in the first t™. 
yp , the scattering matrix describes the 

fnnctionü relationship between in- and outgoing waves at the 
B at the same set of ports, 

scattering natrix describes the Actional relationship between inconing 

waves at the first set and outgoing at the second. 

a(t) 

TYPE I 

a9(t) = 0 

2' 1' 

TYPE II 

Figure 1: Different types of Scattering 

Without loss of generality (see (7,). we nay suppose that the two sets 

Sist of an equal number of ports. The definition of incoming and outgoing 

»wes is dependent on an analytic transfocmation A of the unit matrix circle 
a eo/.* e-v-u. _ -wav-xc, 

are 
a fac- that we will have to use in the sequel. More precisely, if 

a set of in and outgoing waves, then any other set is given by 

a(t) 

b(t) 
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«^(t) 

H(S0> 

a(t) 

*(t) 
» 

(1.1) 

in which S is a constant, strictly contractive matrix (i.e. 1 
o n 

SQ being the Hermitian conjugate of Sq) and 

SS >0 
oo n 

H(S0> 

(1 - s s )-1^2 
n oo n 

n 
d - s s r1/2 
n oo 

1 -S 
n o 

-s~ 1 o n 

(1.2) 

In fact So "induces" an analytic transformation A of the set of contractive 

matrix functions in the open right half complex plane {S} into itself by: 

A(S) - (1 - S & r1/2(S - 8)(1 - S 3)^(1 - S S . 
noo ono noo 

a/2 
(1.3) 

a fact that we will use later. 

Since we are in the first place interested in the problem of synthesis, 

we will not be concerned any longer with these physical considerations (which 

are dealt with at length in [5] and in [7]), and we introduce at once 

following axioms: 

An n dimensional scattering matrix is an operator 

/ : - 1=(0,-) : a b “ÍTa 
R' 

such that: 

(l) if is bounded in the L2 norm. 

(2) if is linear. 
(3) ¿P commutes with translations: 

TTb =/(TTa) 

T f(t) = f(t - t) and it is assumed that T a € L2 . 

T T Rn 

(l.fc) 

in which 
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It should be noted that a direct consequence of such a set of axioms is 

that y is ’’causal" (see e.g. [8]). 

By Bochners L2 - theorem {[9], P-1^2 : Bochners proof is literally 

valid in this situation and even in the more general one in which we have any 

Hilbert space instead of L2n)* we have: 
R 

B(jw) » S(j<o)A(jw) (1-5) 

in which A(jw) and BÍJw) are Fourier transforms of a(t) and b(t), 

S(t1w) is a contractive matrix function (i.e. contractive for each w), which 

is moreover analytic, i.e. the non-tangential limit a.e. of matrix S(p) 

holomorphic in the open right half complex plane. Also 

ess. sup. Is(Jü))Ä n = ^ 2 (i-ô) 
w En IT 

Rn 

in which 1*1 is the usual Hilbert norm of constant operators in and 

M is the norm of operators in the Hilbert space of L2 vector functions. 

L2 
IRn 

Bochners theorem leads us right into the theory of vector valued functions, 

its fourier transforms and the theory of Invariant Subspaces. Much of the 

content of this paper bears on this and we will use the results of [2] freely. 

Especially important is the Beurling-Lax theorem [2, p.6l] which will be used 

in severed instemces. 

The synthesis problem consists in actually realizing a given scattering 

matrix by means of a "desirable" physical device. In this context we define 

"desirable" by "using a cascade structure each of which blocks performs a 

simple physical function". (Figure 2). 
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Figure 2: A Cascade Structure 

This means algebraically (see [k], [5]» [?]): 

(a) For a Scattering Matrix of type I, that an analytic transformation A 

(defined by 1.3) must be found so that 

A(S) - S1.S2 (1.Î) 

in vhich S1 is a -unitary analytic matrix function (an "inner function") and 

S2 is contractive and "simpler" than S (to be made precise later). 

(b) For a Scattering Matrix of type II, that, if it has dimension nxn, it has 

to be embedded in a unitary, analytic matrix function E of dimension 2n*2n: 

E 

and that the "Chain Scattering Matrix" 

0 * (P + PLEMPE + pjT1 

(1.8) 

(1.9) 

defined by means of the projection P of !R^n = Rn $IRn on its first 

component, with Px = I - P, has to be factored into factors 0j satisfying: 

(* denoting adjoints) 

VV1 T'p-p± (1.10) 

It should be noted that these physical structures simply stand for specific 

types of spectral decompositions of the operators involved, and these will be 
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»ade precise in the .„u.l without reference to the eituetlon described here 

only as motivation. 

^ ,1,nple 0,,“ervatl0" that th' Of the system at a given time 

t > o i, dependent onXy on the value, of the input for times from tero up 

to t, induces on, to view the system as a ■•memory tanh» (.tate space) in 

which information is stored to he contlnuousiy released. In other words / 

defines something lih, the 'Weal System" defined in [1). and our first 

tash will he to mate this idea precis, for the specific, scattering context. 

Heuristically, on, might that each of the simple hlochs in the cascade 

aynthesi. are to contain seme pi,o, of th. .«t, space. Pulling out such 

Pisces, and/or deciding whether such pulling can he done will become the major 

concern of this paper. 
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3. THE CONSTRUCTION OF THE STATE SPACE 

The main problem in dynamical systems theory has to do with the 

construction of the state space and the action induced in it from the Input/ 

Output data. In this context, this is performed by the following theorem: 

Theorem 1. 

A Scattering Matrix $ induces a Hilbert space as state space (#() 

naturally embedded in (o,»), a projection P : (o,««>) -*• a uniformily 
pH pH 

continuous semigroup o(t) in 'Ji and bounded maps C : 'Ji -► Rn, D : Bn -► !Rn 

such that, for = if*: 

(1) x(t) * o(t-T)x(f) + p^1Tta^ (3.1) 

(2) b(t) = Cx(t) + Da(t) (3.2) 

in which: x(t) is a continuous map [o,®) i^ait) » a(t_T^ I [o,«,) 

(the cut and flip operator, 

[o,®)). 

[o,«) 
meaning: restricted to the interval 

The proof proceeds in steps: 

Step 1: The definition of Nerode Equivalence classes. 

Consider a,(t) € L2 (o,®) such that a.(t) = 0 for t > * i = 1.2. We 
i nn i i 

K N 
will say that a1 is Nerode equivalent to a2, or a1 ~ a2 iff for 

T > ve have that ^ot&2^ a'e' °n ^ —T* Hence, a(t) ~0 

iff <^(i a) = 0 for t > t. Note first that this definition is not 
' or — 

dependent on t, any > T do» ^80 ,,a•e•" is essential 

in order to avoid the difficult problem of concatenation of distributions 

(see e.g. [lO]). The Nerode zero-equivalence defines a set of closed linear 

in the different L (o,t)’s, and they satisfy in a natural way 

2 
t > T. We consider L j^o.t) ^50 as a natural subspace of 

subspaces 

3 WT for 
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1? (o,t)» T > t and define a nap: 

Pn 

/t : U L2 (o.m) L2_(o>«) 
m-1 R" 

by: 

(O,») 

p 
for a(t) € L (o,m). 

Rn 

is uniquely defined and a^ ~ a2 ai^ 

is seen to be continuous in the L2 (o,-) topology since: 
R 

- ^(«2)l < 'T./1omal) (o,s) - (o,-)1 

< l^.l^l 

Hence, is a bounded transformation cn a subspace dense in L^(o,oo). It 

can be extended on the whole space, in a unique way. We denote the extended 

operator al.0 by and consider Its kernel Kl Let be the orthogonal 

complement of W. Hence L2n(o,.) • W ® #. the "Hnllspace" and the 

"State Space” respectively. We note that fllt consists of the restrictions 

of W| to L2 (o.t). 
Rn 

Step 2: The state trajectory. 

If the input is a(t), then the state trajectory x(t) is defined by: 

x(t) = P(i a(t)) where P projects L2n(o,®) on Associated with this 
OT |R 

is a semigroup on ¿t: 

o(t) = PTt (3.3) 
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vier« Tt is a positive shift and % is eonsidered enbedded in 
2 

L n(°»®) — the notation being slightly improper. 
R 

It is easily verified that this is a semigroup, ve must only show that 

PTt - PTtP on L^n(o,»), which follows from the fact that W is an 

invari «it subspace, T^cW for positive t, e property that is, by the 

way, physically obvious. Equation 3.1 now follows directly by linearity. The 

representation 3.3 for o(t) shows that it is a uniformily continuous semigroup. 

Step 3» The output map. 

By linearity and the definition of the state we have that for some (any) 

t > x: 

b(t) - Y(t,T)*x(T) +¿A(T_Ta(t))|(o ^Ht) 

where Y(t,i)': % Rn such that 

Y(t,T) = Y(t,0)a(9-t) for any t < 0 < t, 

and hence, using properties of uniformily continuous semigroups (see [11]) 

y(t,T) » [YÍMJcf^t-oMoít-T) 

= Co(t-T) with 

c = Y(t,0)a-1(t-0) : %)-*■ Rn. 

Note that C is independent of 0, and is a continuous nap. 

Next, consider the system ^ defined by equation 3.1 and b(t) = Cx(t). 

The system ^ has empty state space since the outputs for ^ and ^ 

are equal once the excitation has ceased. Hence the proof of equation 3.2 

will be completed with the following lemma: 
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Lemma. 

If the «tete space of the system / is empty, then / is represented 

by b ■ Da where D is a constant map IRn ^ [Rn. 

Proof of the Lerama: 

The essential support of the response b(t) is contained In the essential 

support of ait). Hence S(JU) is both analytic and conjugate analytic, and 

thus a constant. 

This also proves Theorem 1. 

In the course of the proof of Theorem 1 we have only used the fact that is 

a bounded map. From now on however, especially since this seems more practically 

interesting, we will add the property that S(jw) or / is contractive. 

Several avenues seem now open to obtain a reduction of the state space. 

The simplest one would be to observe that a(t) being uniformily continuous, 

has a hounded generator, .ay A, such that a(t) = eAt. If A is normalj 

then a spectral decomposition can be performed on A. This leads to an 

additive decomposition of S(jW), an unphysical and undesired feature. If A 

is nonnormal, then one could try to embed it, but this would increase the 

complexity of the state space, an undesired feature equally. Another way 

altogether would be to consider the "characteristic function" of A in the 

sense of Nagy and Liv*i* (see e.g. [12]). The matrix S(jW) itself however 

is easily seen to be very closely related this characteristic function. We 

will thus have to exploit the very close connection between state space 

decomposition and harmonic analysis of operators. This will be the subject 

of the next paragraph. 
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k. STATE CHARACTERIZATION AND INPUT/OUTPUT MAP 

2 2 
L _(o,») is isomorphic to H through the Fourier transform 
fT (R 

(indicated by means of a ^). We denote by 7K. the image of 'Wl under this 

2 2 «o 
isomorphism. Denoting further by K the complement of H in L (-«,») 

d” B" 

and by S*(jto) the adjoint of S(jo)) in L (-«o,») which is also a matrix 
R 

function, we have: 

Proposition. 
/s _ 

A(jü>) i It and only if S(-Jw)A(Jy) € H or equivalently 
Rn 

A(jul) X S»(-Ju)K2„. 
Rn 

Proof. 

2 N 
Suppose a(t) € L (o,9). Then a(t) ~ 0 if and only if 

IRn 

T_^(io0a(t)) € L2n(-«,o). But: ^(i^ait)) = S(jw). (io0a(t))A, and 
F 

(iQ0a(t)) * A(-Jw)e Next: T^^i^^gait)) = A(-Jüj), and the fact that 

the set of 'IŸIq'b is dense in shows the first part. Further, if 

S(-Ju))A(jo)) X H2 , then S(-Ju)A(ju)) j. K2 and A(ja,) X S*(-Ju,)K2 . This 
Rn lRn (Rn 

proves the proposition. 

Corollary. If ^ is unitary (i.e. if S(Juj) is an inner function), then 

yfl S*(-Ju»)H¿ . 
IRn 

Proof. S»(-Jw)K2 XS*(-Jü3)H2n, 
IR Rn 

for since S(ju) is inner, so is S*(-Ju)). 

Thus, 7¾ consists of vector functions which push S(-Jw) into 

analy-ticity. There may hot be any such vector. Most important is the case 

TVi where has "full range", which means that for each Jw there are vectors 

/'A 

in JA which span R . 
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It should h, noted that It is enough that there are rectors in ft vhlch span 

R only at one u). 

~^ltl01 '• ^ 18 8alä t0 b' « its null-space ft has mi range. 

fetlnitions. A system is said to he finitely reachable if, for any state r 

there exists „ input a(t) € I^to.e) for so«, 9, such that x = Pa(t) 

(In other words: if every state can be reached in finite time). 

—■nltl°n A “la to be finitely controllable if, for every 

state x there exists an input a(t) € L2 (o a) 
J is 10,0; for some e, such that 

a(t) brings x to zero at 0. 

Theorem.9. 

A syste« is roo^ if and only if every non-sero one dluensional syste« 

t^a. X* Ç (IR“,., a 6 Rn, (x^a)g(t) . x./(ag(t)) is roo«y. 

Proof. 

2äüU£’ " y Uro^r, then ft has mi range, and by the Beurling tax 

em^8ee^1)' -V ''h'" u Is “ loo« function. Since we have 

(d<t W)HR2n C ^ « -1=0 have that (det U).*.S(-Ju)a is analytic, and the 

one dimensional system xl^ i8 roomy. 

- USlng a ba8lS {a?’ {\> („n, w have for eveiy 

an inner function ^ suchthat bet 

,,S(-J“) 6 h2' “a ^ C ft, which thus has rni range"’’ ^ 

Ssrouaa. A syste« is roorçr if any subsyste« x^a is finitely reachable 

and controllable. 
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—' ^ ^ 13 'lth‘r 2'ro' °r «•'« «i.t. a finite non-zero Input 

producing a zero .tata. In which case It Is roony. The th.or«z shows that 

roominess is essentially a property of the entries of the matrix S(Ju). We 

Vill use this fact later. 

TOsorsUr A *stmn ,/ is roomy if there exist n state, ^ which can be 

brought to zero respectively by means of n inputs of the form 

«k^V «k'*) « ^pto, a base for Rn. 
R 

äSSi- The n state. Xj, cm be represented by n functions in 

ft: ({x^}). One constructs n h, (t) ■ g, (t)a. + T 
®k^;alc Te which are zero stat< 

equivalent. By Titchmarsh theorem ([13], p.l66), the function 

^ ® on (0,min 0 ) — the * ¿ a n °k; Tne indicating convolution. 

Hence, the ^(jw) form a full rank basis of 

The notion of roominess is a very important one for the further develop¬ 

ment of the theory. There are systems which are not roomy. An eash way to 

construct such systems is indicated by Cambern and Helson ([2], Ch.IX): 

Suppose that S(J<a) ^ls such that U.S(-JU) e Sine, it is automatic 

that U*S*(-Jw) . U-Sl-Ja) 6 H^n, .e also have that U.(S(-ju) + S(-Ju)) . 

U"S Í"J“) ( V’ where for the HermitiM part of 3(3,,) 

Hence *.t(U.3-(-3.), ? H-n for some p since the determinant is a sum of a 

product H2 functions. Hence logfdet SH(-Ju)) must be integrable by a 

corollary of SzegB's theorem (see e.g. [ik] p.53). We will thus have constructs 

a non-roomy system by choosing a non-trivial 3(3.) suchthat det 3¾.) is 

aero on a set of positive measure, using a Poisson integral to determine S. 

Before taking on the cascade synthesis of a roomy system (it will be shown 

that for non-roomy systems there is no lossless cascade synthesis) we point to 
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following useful consequence of the Beurling-Lax Theorem: 

If / is roomy, then and only then there exists a n*n Unitary matrix 

function U(jw) such that U(Ju))S*(Jcd) is analytic. In fact, with 

Wl » we have by a previous theorem that SÍ-JüjJu^Jüj) is analytic, 

and so is u£(-Jw)S*(jw). The converse statement is obvious. 

We end up with essentially two invariant subspaces: 

(d H = S(jw)H2, the closure of the range of S(jw). 
Rn 

(2) 7M» nullspace. 

Because of the intimate relationship between and in the Unitary case 

as exemplified by a previous corollary, the synthesis of such a system proves 

easiest, and as the synthesis proceeds the nullspace increases. More 

generally however, we will show that a common feature of all synthesis 

procedures is the increase of the nullspace through admissible operations: 

factorizations and analytic transformations. 
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5. CASCADE SYNTHESIS OF A UNITARY MATRIX FUNCTION 

In the unitary case, a product decomposition of SÍJco) corresponds 

exactly to an increase of the nullspace of the system. This is seen as 

follows (following [2], p.8l): 

With $ - S*(-JW)H2n, 

ws have that (det S*(-Jw))H C S*(-Jw)H , in which q_ * det S*(-Ju>) is an 
BT Rn 

inner function. It can he decomposed as q ■ in which q^ is the 

"Blashke part” and q^ the ’’singular part”: 

00 

n 
k=0 

j 

a. ^ a^ if J ¿ k. 

q2 =1 exp du.(“> 

q^ determines a set of zeros with rank while qg determines a 

singular positive measure on the Jw-axis which is finite for the measure. 

A comprehensive treatment of such inner functions is to he found in ([1¼], Ch.8), 

In the finite case (i.e. when S(jw) is rational) we have that the ordinary 

notion of degree coincides with £ 6^* «Ij and q2 represent some kind of 

k 

generalization of the notion of degree, as is indicated hy the following. 

We have: 

5n which: 

7¾ . ^ n ([2], p-82) 

7VL = {F €H2 , q/erft} 
(Rn ¿ 

A 

n, {F e H2n, € ytl] 

Suppose 

(1) det U1 = q1 

(2) detíU"^) = 

7¾ 

IR 

= U.«H , then 

«1 1 Rn 

\ 

I 
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Hence $. U Wt with W » u h2 and Ä . u -H2 r 
¿ ll 1 Rn 2 U2 H n for ^1°11 

' ä« Og * (Jg. 

We wm ,v that reduction in d,eree occurs, whenever such a reduction in 

encountered. There seems to he no simple relationship between W and 4¼ , 

the process being essentially non-associative. However ^ as nullspace of 

the system with lable is strictly bigger than « ae same decomposition 

oan be perfomed for subproduct, of qi and v the only condition being 

that they are prime. For the Blashh. part the basic step hence becomes the 

extraction of a .l„gi, cero of m»imal order V Th, father decomposition 

of such a tero 1. essentially a finite procedure and 1. discussed at length 

in [7!. To^see th. finiteness ([2], p.87) we remar* that th, invariant 

subspace . corresponding to any finite Blashke product has 

rational Hence, using th, theory of finite scattering matrir synthesis 

([5]» [7]) we have : 

U. 
°k 

TT 
£-1 

(1 2akUÃu£ 
a ~ r+ij- 

- - (pk + pk), and ^ ls chooaen so that the resulting Blashke 

product will converge, i.e.: 

det Ül¿ 
i - pi 

The convergence of th, BlashXe product on compact subsets of the open 

right half complex plane is well known ([3], P.l38). However, this result 

is not very attractive from the systems point of view. Better is the 

following result (inspired from the scalar case as treated in [H], p.65): 
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Proposition. The partial Blashke products formed with the first n factors 

(Bn) converge to the Blashke product B in the uniform operator topology on 

Proof. For m > n ve have: 

/00 

H[B - B ]Fl2 
m n „n 2 

5? /_ t[B. - - BnlF)Bn 

R 1+w 

du 

R 1+u 

é [ ([Bm " ’ Bn]F* F) „ 2* m n m n Rn 1+u)2 

¿r (F,F) du _ 1 

Rn 1+u2 
Re r 1+u 

Denoting by the analytic Blashke product B*Bm> consisting of the 

m-n last factors in B we have, with 
m 

= I 

(Note: we use the fact that the , k = 0,1 ... form a basis in 
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The infinite product 6^(0) is close to one, since ßm(0) converges 

([3], p.138), hence 6,^(0) * 1 + am n* *am nB < e(m,n) and 

Hence 

and 

I (6m-n(0),k>*k) ’ I * I <WV 

' ^T'T)l2 + I <WV 
En 

,(Bm-Vr^ -íll'Vk-V 
IRn 

£ 2e(ni,n)»lFl^ 
IT 

Pn 

l(Bm “ Bn^2 — 2E(®»n) + 0 

The L2p»y topology ensures in fact time domain convergence of 

'1+w ' 

f(t)#e ^'s in the L2 sense. It also ensures plain L2 convergence on 

finite segments. Each Blashke factor results in a cascade section containing 

a specific circuitry. Since the number of sections has to be finite it is 

essential that only a finite number of Blashke factors be realized. 

Concerning the singular part we refer to Potapov's messy procedure of 

obtaining a product integral by meaks of approximating Blashke products 

([3], p.lUo). It may be noted that, by our first result and a close look at 

Potapov's proof we have here also L |convergence of Riemann sums in 
'l+W » 

the product integral. Potapov's result states that: 

where: (l) U is the to-be-synthesized singular inner function. 
3 

(2) a)(t) is a monotone increasing function from -00 to ». 
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(3) E(t) is a monotone increasing family of Hermitian matrices, 

/w(t)+ 

dt defines a singular 
~00 

Ji 
measure u , which is such that —~ is finite. 

8 i+ü¿ 

(10 The product integral has the meaning of a Riemann-Stieltjes 

integral, i.e. the limit of the product: 

exp 
pjwie.) - i 

exp 
Pjio(0 ) - 1 

P - Jw(e„) E(tn " tn-l) 

in the correct order. 

It may be interesting to point out that the product integral for U consists 
s 

of variations on three basic structures (for real U ): 
s 

(1) when ys is concentrated at », and E(t) is a commuting family: 

U8 » exp(-p*M) = U exp(-pA)U_1 

in which M ■ UAU”1 is constant Hermitian, U constant unitary and A a 

diagonal matrix consisting of the (non-negative) eigenvalues of M. One 

recognizes easily a circuit consisting jf a transformer and an LC transmission 

line. 

(2) when yg is concentrated at 0, and E(t) is a commuting family: 

U = exp(- i M) - U exp(- I A)U_1 
a p p 

where M, U and A have same meaning as above. Here we have a (not-very 

physical but conceivable) CL-transmission line. 

(3) when yg is concentrated at, say, p = -J sind, since supposed real 

also at p = +J with identical commuting families at the two points: 
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U » cxp(- m) * U expf—^ A^U"1 
8 'p¿ + 1 ' 'p2 + 1 / 

A CIi-LC line structure, combination of (l) and (2). 

The product integral adds to this following features: 

(1) at a fixed point of singularity in y : a gradual rotation in U and 
s 

a gradual change in transmission line characteristic through change in A, 

hence produces a non uniformily coupled, non uniform set of n transmission 

lines of given type. 

(2) a possibly infinito r:equence of transmission lines of different types, 

since yfl needs not to be concentrated on a finite number of points. 

We will say that a network is finitely generated if (l) it has only a finite 

number of Blashke factors, (2) y is concentrated on a finite number of 
S 

points, and (3) for each of these points E(t) is a step function. Potapov's 

factorization hence gives a complete characterization of type I cascade 

synthesis for Unitary functions. This fact was first seen by Dominguez ([15]). 

However, it is useful to draw attention here to following facts: 

(1) The Riesz-Herglotz-Potapov factorization of a non-unitary matrix function 

(e.g. a contractive S(jü))) is not useful in this context since it does not 

reduce the degree. It ends up with an outer function which is "as complicated" 

as the original as is made precise by comparing nullspaces: a factorization is 

expected to reduce the codimension of the nullspace, which is not necessarily 

done in the Riesz-Herglotz formula: the nullspace of has codimension 

one, and so has the nullspace of its outer part (actually, they have 

identical nullspaces). 

(2) A type I unitary synthesis is not physically interesting. Much more 

N 

important is either a type II synthesis, or a general contractive synthesis. 

We turn to these in following paragraphs. 
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6. CASCADE TYPE II SYNTHESIS 

We will restrict ourselves to the case where SÍJw) is strictly 

contractive, i.e. when eaa. sup. Is(ju)! < p < 1. Ihis is no serious 

R 
restriction in generality since every bounded transformation can be brought 

to this form followed by a trivial constant map. 

Proposition. If S(jw; is strictly contractive, then there exists an 

analytical transformation A of the nxn matrix circle into itself such 

that A(8(j<*))) is a homeomorphism of . 

IRn 

Proof. We have indicated in the introduction that an analytic transformation 

of the nxn matrix circle is induced by the set of strictly contractive 

constant matrices Sq through the formula 

A(8(») * (1n - Vo>'1/2<s - V<ln - - WU2 (6.1) 

A(S(ju>)) will be a homeomorphism iff Sq lies outside the closed range of 

matrix values of S(p), Rep >0 in any Rn topology. Because S(p) is 

assumed to be strictly contractive in Rep > 0, its range is not dense in 

the unit matrix circle. Hence it suffices to choose Sq outside the closed 

range of S(p). 

Proposition. If S(jw) is roomy, then so is A(S(jw)). 

Proof« By formula (6.1) we have 

(ln ‘ SSi-joOrW) €H2 

IRn 

whenever A(jw) Ç (ln - SoS(-jü)))$ = 
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/ni a range invariant subspace, and if (l - s S(-líi)))”1 € H2 
n o Jlu/ ' n , 

so does So8(-JW)(ln - SoS(-Jw)) 1. This proves the proposition in case Sq 

is non singular. When it is singular, ve observe that, if » U*H2 , it i 

enough to take A(» € det to ensure analyticity, proving again that 

A(S(jo))) is roomy. 

TheoremJt. If S is a strict contraction, then it can be embedded in a 

2n)£n unitary matrix function if and only if it is roomy. 

Proof. We perform first an analytic transformation A on S so that A(S) 

is a homeomorphism. This is possible by Proposition 1. A(S) is roomy also 

by Proposition 2. The analytic transformation can easily be reversed on the 

result. 

If: Wt have to construct the unitary matrix function: 

in which S is embedded as the 1,1 element (labeled here 2,1 because S is 

conceived as being a transfer, Type II matrix). The other I are also 
J 

nxn matrices. 

First to deteralne Unirai and Zs2 -Through spectral factorisations 

(see [2], p.lll): 

E* E hihi 

E T 
22l22 

= 1 - S*S 
n 

= 1 - SS* 
n 

E’ will be a unitary matrix function £2 £2 if and only if 

(Rn ¡Rn 

22 (6.3) 
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In order to make E’ analytic it is necessary to push E12 into analyticity 

by means of a unitary — to he choosen minimal — analytic matrix function V. 

In other words, we construct from (6.3) the inner function 

E 

S EjjV 

r e V Lrll L12 J 

(6.4) 

with E12V analytic. 

We must show that such a V exists. To this end, consider the maximal 

invariant suhspace T[ which is such that E-iJ^ ^ ® we show 
(R 

- 2 
that 71 has full range. In fact, 71 contains all analytic F Ç H such 

R 

that F = Egge, G and S*G analytic. This is seen by computing: 

£nls*W 

= EfrVd - SS*)G 
11 n 

2US«0 

Note that E22 is an outer homeomorphism since it is assumed minimal and S 

* -1-1 
is a contractive homeomorphism. It follows that = ” ^22^^*^ 

analytic together with S*G. Since S is assumed to have a roomy nullspace, 

the set G such that S#G is analytic has full range. This produces a V 

for 71 by the Beurling Lax theorem. 

Only if: We have: S*[SE“^E12 - E^] = E^E^. Hence the Hermitian transpose 

of S is roomy, and so is S, since roominess is a property of the entries. 

This concludes the proof. 

Remarks. Roominess, according to paragraph 4 is a property of the entries. 

Hence, if S cannot be embedded in a 2n*2n inner function, then it cannot 
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be embedded in any bigger one of finite dimension. The remaining possibility 

is to use an (necessarily infinite dimensional) dilation (see [12]). This 

indicates a sharp division between networks: (l) those which can be realized 

with a finite number of resistors, and (2) those that cannot. Thus: "A 

passive scattering matrix can be realized with a finite number of resistors 

if and only if it is roomy". 

It was indicated in paragraph 2 that a type II synthesis requires the 

factorization of the Chain Scattering Matrix which in this case is: 

0 = [p + p^iHpz + PA] ^-1 

with 1 0 
n n 

0 0 
• n n- 

When E is unitary, then 0 is J-unitary with J = P - P1-. We fall in the 

domain of factorization of J-unitary matrices where again the factorization 

of Potapov [3] is applicable. However, again, except for the strictly 

numerical results, we will use the theory of invariant subspaces. In fact, 

0 determines two invariant subspaces: 

(1) 'M, the subspace of H2. mapped by 0 into H2 . 

e2 R2n 
(2) '/l, the subspace of H2^ image of ^ under 0. 

R 

Proposition. )K and are closed, full range invariant subspaces of H2 

(R2n 
whenever S is a homeomorphism on its closed range. 

Proof. The assertion that M and Y\ are invariant subspaces is obvious. 

That they have full range follows from the fact that [PE + Pi]H2 is mapped 

into [P + PXZ]H 2n* Both have full range since S is assumed to be strictly 
[R 
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contractive. In fact: 

TK = [PZ + P^H2 
2n (6.5) 

01 = [p + p-^jH2 

which shows directly that 7/1 and 

2n 

are closed. 

Propos 111 on. If 0 maps H onto « . 
p R2n nt0 ‘Lan then © is a constant J-unitarj 

ojK*rator. 

—' ^ th' hypothesis it foil owe that S Is m out« hom«MorphlM1, <md 

siso, by (6.3) and (6.1.), Hsnce It folio« that 

a ss-ij* H2 . Thus s'-V I S + I - < 
Rn H |pn 11^110 ^11 ^11 analytic, meaning 

that £u must be cohstaht en hence S because of Its outer homeomorphlsm. 

The synthesis procedure Is then reduced to representing W and ft as 

^ ' ^p2n* ^ * BHR2n’ A and B J-unltary, A (-J(-contractive R2n |R2n 
B, J-contractive. Then 

and 

91 = A0B-1 

”“PS HE2n onto Hp2n’ ls tllU8 a constant J-unltary matrix (which can 

obviously be choosen to be one). Hence: 0 = A-1B In which A carries the 

poles of 0, together with a singular part and B carries Its zeros 

together with a singular part. A'1 and B must be such that they originate 

from unitary scattering matrices, hence A must be (-J)-contractive and B, 

J-contractive, so that the synthesis stays In the same category. 

When S is an outer homeomorphlsm, then of course I'M = H2 . It Is 

always advantageous to choose an analytic transformation on S "resulting In 

this situation. This will ensure minimality in the synthesis since 7\ 
proves 
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to be the same for either S or its outer part. It would be tempting to 

attribute the occurence of an strictly smaller than H22n to a non- 
R 

minimality in phase shift. This is not necessarily correct — and the notion 

of phase-minimality does not carry over easily to the general situation. 

Nor is the occurence of 7Î = H2 an indication that the system is an all- 

R2n 

pass in the conventional meaning — although this makes sense for individual 

sections. 

It should also be noted that not every full range invariant subspace can 

be represented as A«H 2n» where A is J-contractive. Using a 2n constant 

unit vector u and a * Hep^, if = UH2 with U = 1 
o o E2n _ , ,0 

2aQuu 

_ T—¥ » then 

2n 2n p + p* 

£ can be represented as A^H^n where A^ is J-contractive if and only 

2 ® 
if uïu > 0, and as A-H 0 where A. is (-J)-contractive if and only if 

2R2n 2 

uJu < 0 and when ulu = 0, not at all in terms of J and -J contractive 

matrices. 

However, in this case, because of the minimality of the spectral factori¬ 

zations and the minimality of V in (6.U) it is clear that 

71 = [p + = [p + pxr]H 
tR IR 

2n 

where E' is built on the outer part of E, for which YK’ = H _ . Hence 

Y] * B*H2- with B analytic and J-contractive. Similarly 7l/[- A*H4 
r,2n It 2n 

with A, (-J)-contractive and analytic. 

It is possible to determine step by step the J-unitary matrix A from 

its corresponding inner function. In the case that TYÍ is finitely generated 

we have: (A^ > o): 

7)1=71(: ,, . pJVx ~] 
2n P + p; 1' j eXP[Xí 

i. -^in 
j 
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It is easy to see (by direct computation) that: 

U, VA 
2n p + p; or UA exp 

and 

PJwn-l 

p - JwÄUJlUJl 

or A 
K 2n u^Jv^ P + p* aA exp 

pj^i > 

4 p - J“t Vuii 

define the seme invariant subspaces, it being understood that > 0 and 

V“i > 0 for all k and 1. We will not prove this latter assertion which 

follows fairly easily from the above remarks. At this point it is necessary 

to introduce Potapovs factorization ([3], p.133) which here reduces to: 

B 

00 

TT 
k=l ' 

fvvV\ 
2n P » P* I \ 

in vhich: 

(1) = Repk > 0, = 1 

(2) is J-unitary, insuring the convergence of the Blashke product, i.e. 

det 
l1-^ 

i-p,‘ 

(3) u(t) and E(t)J are as in section 5, t being the trace of E(t)J, 

with same integrability as in section 5. 

W E(t) = A(t) A(t)' 

0 

n 

n 

[A(t)] 
-1 

in which A(t) is diagonal and A(t) is J-unitary. 

ibe last assertion needs some proof, but we shall only indicate that one 

([3], P.I69) generally would expect 
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E(t) « A(t) 

.Ait) 
2 . 

1 ; -i 
S I s 
-- 

¡ J- i -1 i 

“•>--^5--¡- 

: : : -Mttjs 
(A(t)] 

-1 

this would produce infinitesimals of the forms: 

(1) 

! 1a ! -1 J..A ! . s 

! 1s ' 
—f-9-- 

' -1 

A’^t 

m Idempotent ng th. operator A not onto on its ran*, (a -Brnne' 

section) and 

(2) 

! -m'2* 

A'^t 

Vhioh would make A not analytic. Both are unacceptahle leaving only (1,). 

This Riesz-Herglotz-Potapov product can hence be approximated by a 

cascade of sections of the forms: 

(1) 

(2) 

2a aaJ 
o 

2n p + p 

exp 
p>0-i 

P - Ju> 
aaJ 

wherein £la - 1, <xo > Repo > 0 and ^ is real. 

Both types of sections can easily be synthesized and essentially produce 

the sane type of circuits as in Chapter 5, which however a different 

synthesis procedure described in [7]. 

Hence, we obtain a cascade of sections containing either a reactive 

element or various types of transmission lines. Bon uniformities and infinite 

cascades are obtained as in Chapter 5. 
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T. SYNTHESIS OF A ROOMY STRICTLY CONTRACTIVE SCATTERING MATRIX 

Suppose So(jw) is a roomy, non singular (to avoid trivialities) 

scattering matrix and that 

S0(jw) = S^JooWjü,) (7.1) 

with V an inner function and S^(jw) analytic, 

are the nullspaces of Sq and S^ respectively. 

Suppose 

Then: 

and 

Proposition. V(-Jw)^ C 

Proof. S(-Jw)V*(-Jw) * 31(-Jw) 

Hence S(-Jw)V*(-Jw)U^(ju)) is analytic, and thus 

T*(-3u)U. (Ju)H2 C UH2 
1 B” Rn 
A A 

or v*(-ja))?yi- c m. 
X 0 

Remark. The factorization So(Jü)) = S1(jcü)V(ja)) may or may not reduce the 

nullspace since it is perfectly conceivable that det Un = det U . An easy 
1 o 

example: SQ = has identical $0 and 7)^. Hence, in this case, a 

factorization does not reduce the "degree” defined, e.g. by means of the 

determinant of the nullspace. / 

Definition. The factorization (7.1) is to be called ’minimal' if det V(jw). 

det U^Jw) = det Uo(joo). 

Given S(jw), then a factorization (7.1) requires at least that S*(-Jw) 

(and hence also S) has an inner part. This is, as indicated above, not 

sufficient. Also, we touch here the main reason why a Riesz-Herglotz-Potapov 

factorization does not produce a synthesis. The way out of this difficulty. 
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in the case of roomy, strictly contractive scattering matrices is the subject 

of t.ie remainder. 

Iv has been indicated earlier that an analytic transformation A 

(induced by a constant contractive matrix Sq) may be performed on S. The 

pair (A(S),A) will describe the same system as (8,1). Actually, a scattering 

matrix defines a partition in the set /x#, where / stands for the set 

of contractive analytic matrix functions, and dL for the set of analytic 

transformations. The partition is described by (S^) = (S,I) if and only 

if * A1(S). This is clearly an equivalence relation, which does not 

respect neither the additive, nor the multiplicative structures on J. If 

S(jœ) is inner, with corresponding nullspace = S»(-Jo,)H2n, then A(S) 

has nullspace A*(S*(-Jw))H2n, where A* is induced by supposing that 

A is induced by S0. However, if S(jœ) is not inner with the nullspace 

2 
= U(ju>)H n, then it is not true that the nullspace of A(S) is 

A*(U(jw) )H¿ . 

Rn 

It may be noted that the set 1% has the structure of a non-commutative 

group with an involution. We have for instance: 

[A(son -1 A(-so) 

and define: 

A* (Sq) = A(So). 

(Note: it is necessary to identify S with USV, U and V constant unitary.) 

To discuss the decomposition of S ve adopt the following notation: Let 

denote the equivalence class of (S^I). Then we will say: 

a = o □ a 
o 1 2 (7.2) 
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if 

A(V = 

This composition is neither commutative 
nor associative. Hence it is not 

necessary that: 

01 ^ (a¡ ^ O3) = (¾ cf 0.) cf 

(it might be, e.g. when A1 . Aj, or vhen the Sj are Uhitarjr). Me 

the following compact notation: 

define 

n 

I 
i=l 

or even the integral: 

°i * "i ^(“a ^ (•••Vi 

A N 

M(t) * lim füe )| f(0. )AY 
0 1 i i 

in the obvious ».y (v, not use these integrais for lach of a handy theory 

of convergence). 

Tbe remainder of this paragraph Mill be used to shov that a roomy, non¬ 

singular, strictly contractive scattering matrix can be decomposed by means 

of this composition me. Suppose S as stated. Then it can be embedded 

in a 2n*2n unitary 

ï * 
S21 Z22 

S E 
'12. 

with a corresponding 0 as in formula «.b. S can, as customary, be choose, 

to be a homeomorphism on its closed range, which can be choosen H^. Then 

r21 will have same properties, since it is choosen minimal. Hencfthe 

subspace W of section 6 is and f] can be represented as 0H2,. 
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Suppose Yl is finitely generated (we will generalise later). Then 

by section 6 again, essentially composed of factors of the fom: 

12n ' BG(P)BJ 

in which: 

(1) 

G(p) 

«lip) 

sJp) 

Md G(p)G(p) > ln everywhere in Rep > o. 

(2) B 
is a 2nx2n constant scattering matrix 

such that: 

BiBi - y2 s ^ 

For example, in the case of a simple Blashke factor: 

%(?) = 2a0/(p+p*), g (p) « o, (i > i) Qnd in 

¿ PJW -i d 1 se of a simple singula 
factor: g, n) » i > o 1 

1 «i d > d. 
Proposition J.1 

If a 9 “ [l2n ' BG(P)B]01 

then a = a'Do" in which: 

(1) 
= ([in - wgïï]-1^) 

\“l/2r w = (1 - g- s )‘1/2[b . g b 1 
n oo LCl oB2 

Í2) A is induced by Sq with S = B B“1 

(3) » = (S\I> where S" originates from 01 i„ the natural way. 

ÏÏ22Î- The proof is purely algebraic and the reader is referred to the 

appendix for the computation, it should he noted that a- is a genuin 

scattering operator since it is produced through a y-contractive matrix 

is, 
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The proposition disposes at once with the synthesis cf a finitely generated 

case. Also, we have for Blashke products: 

Theorem -5, Suppose S 

H^_. Then : 

is roomy and a strictly contractive homeomorphism of 

S 

in which: 

(1) 

°i = [(Si^)] 

S2i+1’ 1 a O»***»"3 are Blashke factors with zeros at the zeros for 

1} : ({pi>). 

S2i* 1 * !*•••»*» are convergence producing constant factors. The A. 

belong of course to 

(2) o2 = (S2,I) is such that A(S2) does not contain any Blashke factor 

for arbitrary A (in the meaning of reduction in ). 

(3) The notation S = ®cans: 

the limit being uniform convergence on compact subsets. 

Proof. We have G = in which 01 is Blashke, and thus a product of 

factors of the form discussed in Proposition 7.1. It was shown there that for 

each such factor an AQ existed producing the composition law □. At each 

step the remaining a corresponds exactly to the input scattering matrix of 

the remaining 0. Hence the same procedure can be repeated. Convergence 
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we 

producing f«t0r. originate from the name in the deoompoaition of 0, and do 

not produce any difficulty. The competition converges because the product in 

e converges and both produce the same (2,1) .latent in the corresponding £. 

Remark. It is not true that from ß = fí o _ 
ran - 01O2 for some J-contractive 01 and 

02. on. can deduce that ^th the 0l corresponding to the 9,. 

Only the very specific form for the 0's in the proposition allovs It. 1 

Corolla*7. 0lT'" a ««tractive and roosy H2n honeomorphism s, 

have that for a at most countable -Blashhe- set of points and corresponding 

ansfonaations Aj, AjfS) is factorable in the sense of a reduction in fj. 

-■ljltl°n- ^ SerM of ^ “■« «^«1 Point, of local losslessness of s. 

as-mi. s ls such that ^ is singlar, then s is the limit in the 

sense of convergence on compact subsets, of 

|| [1n - 

with Wi defined as in Proposition 7.1 and: 

^(p) 
^(p) 

«„(P) ’ ^(P> ' 1 - “’WSf)] • \ > 0. 

—' ^ pr00f re9tS «« Proposition 7.1 and on the approxima'.ion of 

e by means of a finite product: since 

V. have, choosing partitions of t corresponding to constant values of coft): 
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in which, "because of the special form of E(t): 

M 
i ]J 

Hence, the proposition is again applicable. The convergence on compact subsets 

follows again from convergence on compacts in 0. 

Remark 1. The preceding theorem could lead to an integral representation for 

S. Pending a complete theory of convergence for such integrals, it should be 

noted that the theorem does show that a particular finite decomposition converges, 

but not that any decomposition resulting from the integral representation does 

indeed converge. 

Remark 2. Undoubtedly, there is more them convergence on compacts, in fact, 

there is L2(-^r-] convergence as was the case in Chapter it. (We give no 

'l+CJ ' 

proof for this, but note that it follows from the representation of Yl by 

means of a product of 0's converging in this topology, the 0's being 

deduced from the inner function U with Y] “ UH2 .) 

Bn 

Remark 3. The synthesis produces a continuous reduction of the space 7|. 

The author has not been able to connect directly this space to the nullspace 

of S: the two spaces are in some sense equivalent, but vhat sense? 
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8. CONCLUSION 

Th. previous developments produce several new problems both of fundamental 

and practical interest: 

(1) The,synthesis of non-roomy systems, or 'dilation-synthesis'. Many new 

«suits are available In the theory of dilations (see [12],, but nothin« similar 

to a synthesis has emerged yet. 

(2) The theory of equivalence of invariant subspaces : although it is possible 

to construct a substitute for the Smith form In case of inner function,, not 

«ch 1. hnovn of it. properties. Such a theory could lead to Improvements in 

the synthesis of par. 7. 

(3) The theory of non-.ssoci.tiv, integrals: a technical point indicated in 

par. 7. 

The generalisation of the several syntheses from to an arbitrary 

Hilbert space %> (some results are e.g. in [16]). 

From the technical vievpoint also a lot remains to be done. A good 

theory of transcendal approximation is lachlng, for instance. 

Hence, although it appears to the author that the theory is very promising, 

still merry problems are there to be solved and it is hoped that the first step 

taren her, villiead to an efficient theory for scattering synthesis in general. 
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APPENDIX 

Analytic transformations and the proof of Proposition 7»!• 

It is shovn in ([7], Chapter 2, par. 3) that 0O » induces the 
A 

composition law aQ * □ Cg with A induced by So, if and only if 01 

can be diagonalized by means of an analytic transformation of dimension 2n 2n 

Induced by: 

S 0 
o n 

0r, ^ n o 

(or, in other words: A © A* with obvious meaning £>r ©). Such an analytic 

transformation on the 2nx2n system induces a transformation on 0 given by: 

0' « H(S )•0#X,H(-S )X o o 

in which H(S ) is given by (1.2) and 
o 

X = 
0 1 
n n 

n n 

With 

0 

ln - Bx0Bl Bl0B2 

-VB1 "n + B20B2 

we have: 
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H(So)0XH(-So)X 

(1-ÏÏS ) 0 
n o o n 

(1 -S S ) 
n o o 

-1/2 

^n-Vo’ - (Br?oB2)G(Wo) 

-(b2-sobi)g(Bi-b2so) 

-1/2 

'V^o1 + (B2-SoV0'VVo> 
(1 -s sn) 0 
n o o n 

(!_—S S ) 
n oo 

Hence, choosing Sq « B^B”1, *e obtain: 

0’ 

1„ - WGÎy o' 
n n 

with 

The corresponding Z is then: 

(1 -WGW)"1 o 
n n 

producing 

a1 = ([l^WGW]“1^) 

where A is induced by S . 
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