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ABSTRACT

The equations of motion are presented for the inertia weight,
firing pin and detent balls of the graze module of the high
performance point detonating fuze. These equations are all
in terms of the generalized graze forcing functions. The
equations are also presented for the case where the graze
forcing functions-time plot is assumed to have a triangular
shape. The criteria are established for the minimum wvalues
of forcing functions required to activate the graze module.
All differential and constraint equations are presented in
numerical form, but no numerical results are obtained. The
numerical constants used are for the 105mm Howitzer Shell,Ml.
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le INTRODUCTION

The Fuze Research and Engineering Division, AED, at Pica-
tinny Arsenal presently has an ongoing development program

for the Hi-Performance fuze. One element of this program

is the response of the graze module of the fuze to various
forcing functions acting on the shell casing. The senior
scientist of Edutronics Analysis, Inc., Dr. Joseph F. Shelley,
had formerly been a consultant to the Fuze Research and
Engineering Division, Picatinny Arsenal, through the Army
Research Organization at Duke Unive?i}ty. In this capacity

he performed a preliminary analysis of the operation of

the graze module. The results of this analysis identified

the conditions which are required to obtain dynamic response
of the graze module under the application of the grazing forces.
This study indicated that a more detailed analysis of the mo-
tion of the several elements of the graze module, with various
values of forcing functions, was required in order to define
the dynamic force-motion history of this fuze mechanism.

The present Picatinny Arsenal design of the graze module of
the Hi-Performance fuze is a purely mechanical device. 1Its
essential elements are a weight which is concentric with the
long axis of the shell, and which has an inclined face, eight
steel balls which are equally spaced about the long axis of
the shell, three springs which hold the weight in a rearward
position against the balls, and a housing which contains the
entire assembly.

In the case of normal impact of a shell on a terrain the fir-
ing function is straightforward, since the force of the de-
celerating shell is available to activate the central firing
plunger in the nose of the suaell. When the shell grazes the h
terrain, however, thare will be some angle of graze below

which the central firing plunger will not be activated. The
graze module is designed to effect the firing function in
this case

When the shell grazes the terrain, the resulting lateral ac-
celeration field acting on the graze module has the effect of
forcing several of the steel balls against the inclined face
of the weight. The weight then moves forward towards the nose
of the shell. As this weight moves forward, two detent lock-

(1) Preliminary analysis of graze module of high performance
PD Fuze assembly - Dr. Joseph F. Shelley, January, 1970,
Unpublished Picatinny Arsenal Report.




ing balls are released and a spring loaded, internal firing
pin 1is free to close.

In order to evaluate the effectiveness of the graze module,
both as an individual mechanism and as an element of the
fuze system, the following information is required.

l. The minimum magnitudes of the external graze forcing
i functions on the shell casing which will cause the

t device to function.

g 2. The time for the weight to move forward sufficiently
i

to release the two detent balls.

* 3. The time, after the release of the two detent balls
for the internal firing pin to move to the closed
position with sufficient energy to activate the
initiator.

2. OPERATION OF THE GRAZE MODULE

Figures 1 and 2 show the elements of the graze module. The
vertical center axis in Figure 1 is the shell longitudinal
center axis. In the inactive position, the 8 steel balls,
A, and the 4 detent locks, C, are in the position shown.

The 3 creep springs, F, force the inertia weight, B, down-
ward at all times. When the shell leaves the barrel, the
spin velocity causes the detent locks, C, to assume maximum
outboard positions, so that the inertia weight is free to
move upward. When the shell grazes on the terrain, several
of the steel balls, A, are forced radially inward and the
inertia weight, B, is forced upward. When this inertia
weight has moved upward by a sufficient amount, the two fir-
ing pin detent balls, D, move radially outward. After suf-
ficient movement of these two balls, the firing pin, E, moves
downward under the influence of the firing pin spring, G.
When the firing pin assumes its maximum downward position,
the firing process is initiated.

3. ASSUMPTIONS

The assumptions used in the present study are listed below.

a. The present analysis is for the case where the
graze module is in a partially static condition. 2s
the shell grazes the terrain., there will be a graze
force acting on it for a short duration. Due to
the spin of the shell, there will be a continually
varying position of any graze ball with respect to
the line of action of this force. It will be as-

‘ sumed in this first analysis, subject to confirma-
tion, that the time for the total firing process to
occur is less than the time for any ball to occupy
a successive position. The effect of this assump-
tion is to reduce the problem to the situation de-
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picted in Figure 3. 1In this Figqure, a; 1is the total

Direction of ap

Fiqure 3 - Graze Ball Orientation

lateral acceleration of the graze module housing.
Balls 1 and 2 will be referred to as the primary
and secundary balls, respectively. The assumption
implied by Figure 3 is that the present study con-
siders the case where the radial position vector of
ball 1 is collinear with the direction of a, and
that these directions are constant with respéct to
each other.

b. All friction forces are neglected except the fric-

tion forces between:
1. the inertia weight and the firing pin housing of

the graze module.
2. the firing pin and the firing pin housina of

graze module.

c. The coefficient of friction between aii sliding parts
is constant.

10
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The spin velocity of the shell is constant, and the
other components of rotation of the shell are small.

During graze the shell moves in a plane which is
normal to the graze terrain , and the shell remains
at a constant angle with resvect to this terrain.

The graze module activating balls translate only in
a plane through the center axis of the graze module,
and thus the tendency of the graze halls to move cir-

cumferentially out of their radial groove is neglected.

The direction of aqm 1s collinear with the line joining
the two detent balls. This orientation is also assum-

ed to be constant throughout graze, for the reasons
given in assumption a.

The dimension C_ is constant, and the details of this
conclusion are fecorded in Appendix B.

The graze force P acts at the tip of the ogive shell
nose.

The mass moment of inertia of the firing pin, about
an axis through its center of mass and normal to the
longitudinal axis of the shell, is negligible.

The firing pin only moves forward with respect to the
graze module housing.

The firing pin spring is a massless element with a
constant spring rate.

The forcing function for one case is assumed to have
a triangular shape, and for this case the equations
of motion are expressed in numerical form.

The centripetal acceleration of the graze module, with
respect to an axis through the center of mass of the
shell and normal to the center axis of the shell, is
negligible.

11
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4. ACCELERATION FIELD OF THE GRAZE MODULE DUE TO THE
SHELL FORCING FUNCTIONS

.ie typical shell is shown in Figure 4. The dimensions
d andlﬁ are peculiar

d

|
1‘

l Graze
‘/zx *todule

Figure 4 - Shell and Graze Force Relationsui: s

to a given shell. Qp,yand o are components of
acceleration of the center o. mass, CM, of the shell.
PA and P, are components of the graze force V' (t) and
is the graze angle. The graze module is at a constant
distance from the nose for all shells. The graze force P
is some complicated function of time, and it will be car- ’
ried through the present derivation in symbolic form. The
equations of motion of the shell are

D -

Lt

Pa =M ay \4-2)
(4-3)

PN ( ,Q_—(;L\ = .Ic,p.«\ A

Where v is the mass of the shell, Tem is i he moment
of inertia with respect to the CM, &, and 4 are accel-
erations with senses as shown in Figure 4, and .X is the
angular acceleration of the shell.

The total lateral acceleration ap of the graze module is

ALy =Gy +(L-cd - 4) (4-4)

S i _ '/
Cp = N L -d-aYRy (_{‘____CQ (4-5)

" 'LCJV!

12




(4-6)

~Where K¢, is the radius of gyration,

(L-CL)(L-L(-—M]

L= %}_, +

T (4-7)
| Kem
A Equation (4-7) may be used directly to find a_, when P,V
LG is known. s
From Equation (4-7)
CL,,— Y PN (4-8)
and from Equation (4-2),
CL,.‘\ N PA (4-9)
PA and PN are components of the same force, so that
PA A 'DN (4<10)
and therefore
Finally, from Equation (4-3)
A~ Py (4-12)

Consideration of the above results now leads to the conclusion

Ay, o~ v ar (4-13)

) or
| A =k ar (4-14)
| *oTkedr (4-15)

where K. and K2 are known constants. These results will
subsequéntly be“used to express the right hand sides of the
Lo equations of motion jin terms of &y only.

! For the purpose of the present analysis, the graze module
will be assumed to experience acceleration components which

are oriented as in Figure 5.

13
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Graze Ly Forward
Module 0 & » Direction
—

*
Figure 5 - Acceleration Components Acting on Graze lodule

5 ABSOLUTE ACCELERATION OF THE GRAZE MODULE ACTIVATING
BALLS

To obtain the accelerations of the balls and of the inertia
weight, a secondary coordinate system will be used. Figure 6
shows the general system. P

71

Z¢
Figure 6 - Coordinate Axes Orientation

Xe, Y. ,2. are inertial coordinates, and _the X,4,Z coordinates
rotate with absolute angular velocity w, The absolute ac-
celeration W, of point P is then
] = dw . § o xR W x (xR
Qo:u’\r/L,Lf°th!L +2WwW x Lp + (5-1)

<

LX4

—

Each of these terms will now be identified. & is the ab-
solute acceleration of O’ , the origin of the secondary co-
ordinate system.

*The senses of certain components, for convenience, are di€ferent
from those siown in Figure 4
14
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LnCX+JYtk 2 |, where C,j, K are unit vectors
in the X,y4,¢ coordinate system, is the relative ac-
celeration, measured in the X,4,¢ frame of reference.

FL;L=ZX +:j-lj +k is the relative velocity, measured
in the X,y,t frame of reference. ’

R=CX+JYy+k?r is the position vector, in the
X,y, system, of the point P.

dt‘\3/cl:(: is the time rate of change of w

“%t_’-x-l{_ is the tangential acceleration effect

2o X ‘,:';_n_ is the coriolis acceleration
wx(WxRYis the centripetal acceleration.

From Figure 3, the primary activating ball, Ball 1, lies
on the line of action of the graze module lateral acceler-
ation a,. The secondary balls, Balls 2, are located sym-
metricale with respect to Ball 1. Equation (5-1) will
now be used to obtain the absolute accelerations of Balls 1
and 2.

The secondary %X,4Y), & coordinate axes are attached to
the graze module housing. The x axis passes through the
center of the primary Ball 1 and the y axis is collinear
with the axis of the inertia weight. The orientation is
shown in Figure 7. These coordinates will rotate with
the graze module and thus possesses the spin velocity of
the shell. For this orientation of a,, the primary ball
is forced radially inward and it tendg to move the in-
ertia weight forward.

The absolute acceleration Ao, _ of the primary ball
will now be obtained. The rotation w is

W =7 wy (5-2)
since wy 0O and wg*0, Wy , the spin_velocity,

is assumed to be constant. The position vector 1L of
Ball 1 is

so that X locates ‘he center of Ball 1.

15




Forward ~ €y '
Direction 0

w
f
1

-

frimary Ball -

Figuwe 7 - Coordinate Axes COrientation on Graze !‘odule

The several other terms now appear as

R =T (ap) + J(—aq)

P I
=

1"

X

‘ktg_ < v el =0

"

16
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(5-5)

(5-6)

(5-7)
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K
o) = E(—lwﬂk) (5-8)
O |
i J K
WxR = | O wy O = \Z(—thj) (5-9)
X ®) @
< J K
— o~ : - %
'UUX(WXR> = O wy O =c (- Xy ) (5-10) ‘
0o O —Xwy

The final result for the absolute acceleration is then

5.,0/, = (__i )Z = thjL + Q,Tl + ][-a,‘] H‘([-Z-wg X] (5-11)

Figure 8 shows the primary ball 1 and the two secondary
balls 2. The acceleration field AT was assumed to be
uniform along a direction normal to the shell axis and
have a constant direction with respect to the position
of the three balls. Thus,if Ball 1 experiences ag, then
Balls 2 experience a corresponding acceleration

AT o 45° =0.707 Ar
The acceleration of Balls 2, (QLo,. , would then be giv-
en by Equation (5-11) with a, replaced by o0.707 X1 .

17




Figure 8 - Acceleration Components Acting on Graze Balls

For this case, the secondary X axis would pass through
Ball 2.

It may be seen from Equation (5-11) that there will be
an inertia force on, the balls in the ¥ direction, of
magnitude 2 wmswy X , where mc is the mass of the
actlvatlng ball. "This force will tend to displace the
balls in a circumferential direction. This effect is
assumed to be small compared to the other forces on the
ball and accounts, in retrospect, for assumption f .

6. DYNAMIC EQUILIBRIUM REQUIREMENTS OF THE GRAZE MODULE
ACTIVATING BALLS

The free body diagram of the primary ball 1, together with
the inertia forces, is shown in Figure 9. The ramp angle
of the inertia weight is

Fb is the reaction force on Ball 1 by the floor of the

graze module, and F N is the normal reaction force
between Ball 1 and the inertia weight. The friction forces
induced by Fq, and F,, are zero, in view of assumption

b . These effects could be included in a more refined study.

18




Inertia

Weight

Primary Ball

@

: * X

Figuwee 9 - Free Body Diagram of Primary Ball

The components of F],‘ are related by

Fl\(,l = F|ql|‘tdme (6-1)

A necessary constraint condition is that

F.. 20 (6-2)

Foy 20 | (6-3)

since these forces are compressive contact forces.

Since Figure 9 is a concurrent force system, the equilib-
rium requirements are

19
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T , ]
Frgy = Me(X +dr - Xuwy ) (6-4)
The constraint equation is

X< XRo
where Xo is defined on page 88.
F'.jl' a W]C_‘L‘LA + F:bll (6_5)

Fix,y is eliminated between Equations (6-1) and (6-4 ),
with the result

oo 'R
F“j)l -‘-VNGMEJ( X T'(LT -)(W\j ) (6-6)
Equations (6-5) and (6-6) are now combined to find FLﬂ
and
o, 3
Fe,i = Mot ® (X + A = XWy ) ~ Mg XA (6-7)

The above equation is obviously true only for FL,I:>C>-

The opening effect of the ball on the inertia weight is B
indicated by the magnitude of Iy, . From Equation f
(6-6), as the ball moves inward X < © and X decreases ’r
and only the term a; is always positive.

Since the desired final result of this study is an equation
of motion of the inertia weight in terms of Y , all X

quantities and their derivatives will be expressed in terms
of Y . Figure 10 shows the kinematic relationships as the

ball moves inward.

+ Y

_ Second Position

.First Position

A - X

Figure 10 - Kinematic Relationship Between Graze Ball and
Inertia Weight

— s L e Y
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tam € = T et
Ay 7 - aX e (6-9)
e v P (6-10)
&E 3¢

.‘5 = - Xtan® (6-11)
X = -4 wte (6-12}

X and Y displacements are related by an equation of
the form

Xx=Cp4 +Cq (6-13)

where Cg¢ and Cq are constants to be chosen later.
Equation (6-6) now appears as

Fig, = mMguwt el"q A 6+ AT = (Co qu>w: ](6-14)

The Y components of the reaction forces on Balls 2, desig-
nated by F!q,L , are then

X . . L
Fiy,z = Mg et e[—v; Wt 8 +0.T07aT - (Cey+Cq)wy ] (6-15)
Each of the remaining five balls will exert a direct axial
force F|% , s ON the inertia weight of magnitude
)

By, = Mg (6-16)
and acting in the positive 4y sense.

The total force ]:g,ToT- of the balls on the inertia
weight, acting in the positive Y4 sense, is then

Fumor. = Fugn +2Fg,0 +35 Py (6-17)
’e L
F"J/TOT' = Vne(/g/te i;“’_) et O 'f-CL-T = (Cg‘j -f—C_c’)wL1 :l

21




+ SMG(LA (6-18)

F’j)TD'T. = mei ot e\\‘ >l'j (vt & +24.41Aq -5((..3 Y

2
+Cq)w§ ] + 5y g (6-19)

The free body diagram of the secondary balls 2 is shown in
Figure 1l1. The equilibrium equations for balls 2 are

F“ﬂ)l =N  WMglg (6-20) ’

— o 3
FIX,L = \‘.‘1,1%9 = MG{OJ o1 Q-T“j (,the-(Cg‘_-j+Cq)w~1] (6-21)
Each of balls 2 exert less axial force on the inertia weight
because of the term ©O.707 &L+ in Equation (6-21) com-

pared with the term ap in Equation (6-14). A limiting con-
dition for ball 2 is reached when

Fo,. = O (6-22)
At this condition, following Equation (6-20),

Fly,2 =~ MgQa (6-23)

22
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Figure 11 - Free Body Diagram of Secondary Ball
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The graze forcing functions are applied to the shell at
: € =0t . If +t, 1is the time corresponding to Equa-
‘ tion (6-23), then Equation (6-21) reduces to

L4

%\W\Ga.,q{amg = W\GX_O.‘IO*I At — 5 X ©

. T
'(C-Bkj -r-C.c,) Wy ] g (6-24)
t =1,
or

(z 9 :mme[onoﬂcu —(Cag-r(.q)w: -a—AtMeli (6-25)
=

23
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} q *'Cg%“;WGME‘ :‘AHE*{O,YQ7CLT—LWuW

et

k S s (—'}g (6-26)

i With the numerical values in Appendix A, the above equation
: appears as
ge - wr .2 \ 6-27
%») -2.LBXICT Y 3 OLACE (L~ L3933y 1 Lxag it;tc {6=27)
After Y =Y ) is obtained, the time t -t ., which satis-

fies Equation (6-27) may be obtained. The ‘4 component of
forece; Fﬂ T , on the inertia weight for t =t,.
] d

is then

Fg et = \T‘.lu;,t + F\L&.% (6-28)

— . 20 . L
‘_Lﬂ;m'\'. S \’“GLC"—(: 6‘\"") X e +(LT _((—E.‘j +(_c‘>LUL‘}

+ T g (L (6-29)

- S0 . . . 3 s
‘,— V},TOT. = VV\G% ((;‘t ‘:l [ =P Lj L(.__-( b} + (LT —(L ' Lj -‘-(_L]) L\J\"' }

+ Ty i ER O (6~30)

where t , is the tim: ~ich satisfies Equation (6-27).

24
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The term TFiy,5 in Equation (6-28) reflects the direct
axial effect of the balls which do not contribute wedging
action on the inertia weight. The two possible regimes of
motion will now be summarized.

Case I - For © £t¢t<t, , the primary and secondary halls
contribute wedging action and the remaining five balls con-
tribute direct axial effect. Equation (6-19) expresses the
axial force acting on the inertia weight.

Case II - For T,¢ € » the primary ball only contributes

wedging action while the remaining seven balls contribute di-

rect axial effect. For this case, Equation (6-30) expresses
the axial force on the inertia weight.

A continuous test of whether Case I or Case II operation oc-
curs may be had by consideration of Equation (6-20). 1If

Fb 1>0 then the secondary balls contribute to the
wedgn’ug effect of Balls 2 on the inertia weight. For this
situation Equations (6-20) and (6-21) are valid. At times
€t =Zto , when [,;, =0 , Equation (6-20) will
still be valid, resulting in

Fig,. = Mgl (6-31)

However, Equation (6-21) will no longer be true, since the

kinematic relationship between Balls 2 and the inertia weight,

given by Equation (6-13), is no longer true.

Fig,2 is eliminated between Equations (6-20) and (6-21),

with the result

Fb;L = me(/l}_’teio\—”)’_[ CLT - ‘j (’O:t@
~(Cey +Cc‘)w§ -O_A‘ta,h9} (6-32)

In a similar fashion Feo , from Equation (6-7),
and (6-13) appears as ,

ol T W %X@{ a + —guﬁe -(C.g)tj

)

+CC\)U\)‘§ — C(.A tCLV\ G] (6-32a)
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The condition Fb,t > O 1is thus, following Equation (6-32),
equivalent to

: ’e R . L
(_0.107 at -4y 8 ~Cley rlq)wy -CLA‘&me]

or

[—LRQ +4.u§x\ol’q +C vl ag —Apg -4, 117X |0°}>o (6-34)

Equation (6-34) may be used to determine whether Case I or
Case II operation prevails, and the time T, at which
Case II operation commences is found from Equation (6-27).

n ABSOLUTE ACCELERATION OF THE CENTER OF MASS OF THE
A WEIGHT

With the secondary X, Y,¢ coordinates positioned as de-
scribed before, the absolute acceleration 5.0,: of
the center of mass of the inertia weight will now be ob-
tained. The several terms needed in Equation (5-1) are

1S 3 Wy (7-1)
-,'-L :J \j (7-2)

so that Y is the position of the CM of the inertia weight.

R =Tlay) +7(-ay) e
- - (7-4)
Rn_ =Y
fp =39 22
(i—;)—x/z=5xﬁ=0 (7-6)
26 o
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Z 3 K

LW xRy =0 YR O & (7-7)
C Lj O
L 7 K.

WXR = |0 wy C]|-G (7-8)
O < ("

wx (R xL) =0 (7-9)

The absolute acceleration W o, T is then
C{"O,I = :CCLTB + I (—(&.A + Y ) (7-10)

8. DYNAMIC EQUILIBRIUM REQUIREMENTS OF THE INERTIA WEIGHT

Figure 12 shows the applied and inertia forces acting on the
inertia weight. These forces are identified below.

Fl,l ‘>"'IXA )Fl‘dal ) FI,L y Fixe F"’J/«’— - reaction
forces and components of Balls 1 and 2, as previously de-
fined, on the inertia weight.

=,,Fs - Normal reactions of center rod on inertia
) weight -
\:5, F4 - Friction forces induced by - and Fs

7 - Inertia force of inertia weight.
Fs - Total force of three creep springs. K
is the combined spring constant of the
_ three springs
_ g - Total initial force of 3 creep springs
d.o* - Inertia moment due to angular accelera-
tion of shell. Lo is the mass moment
of inertia about the CM.

The sense of the inertia force Wmpclr which acts through
the CM is obtained from the X component of Equation (7-10),
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while the sense of the term 1 A is obtained from Figure 5.

The object of the subsequent analysis is to obtain the fric-
tion forces Fa and r4 , so that a summation of forces in
the Yy direction may be made. The moments will be summed
about the CM. Figure 13 shows the configuration of the
components of ball force which contribute to moment about

the CM depicted in Figure 12. There will be a slight addi-
tional contribution to the sum of moments about the Cl caused

by the forces F = ma and these effects will be
neglected. 14,3 ¢tA '

ik

X, L

Point A - X
(Fig. 12) <G

F'x;’

F]x,L

Figure 13 - Components of Force of Primary and
Secondary Graze Balls
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The equilibrium requirements, from Figure 12, are

ZMCM =0 (clockwise moments are positive)
~Tor +Fily + Fay + Fix, (Cs-C3) - Fiy,, C2

tPsCs ~Faly +23 0T Fiyg (C5-Ca)

2
~ Fiye (o1o1C ) § =0 (8-1)
Z Fx = & (Forces positive in positive X sense)
FL “Wid T - F‘n(/] - Fg ~1.4] le,l =0 (8-2)

Motion of the inertia weight is assumed to be impending, so
that

Fy =pLFs (8-3)

Fq = . Fs (8-4)
With the results
Fix,j = Fnd,j lan 6 J=42 (8-5)
The normal reactions Fz and Fe are

'

T C—,T gIcok + (s -/&4} mz AT

+]Co + Cla-mCeYtamo [(Fy, , + 14 F.M)g (8-6)

-

F ¢ gIoaL =Gy T u &) wm QT

alies
<y
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-+ {Cz_ -C C7 +/M (ﬁ4>'t,@,v\ &,] C 't:.‘j’! + .41 F,%)g__>ki) (8-7)

The total friction force i’":) e is
FF, ToT. = "’?) T "4 :“LL ( FL b He S (8-8)
For equilibrium of the inertia weight in the Y direction,

from Figure 12, for

o2 U,
is
Fiymr. - FF,mr my ( ~ag) {\ +K(‘J“4v>}o (8-9)
For the regime of the motion where WIS R S ,

the above equation appears as
msgwte[-alj' (Wt 4 2,41 Ay -3( Gyt Ywy | +§CLAZ§
"/‘:_‘ g Tot + (s ~mCq)ymy g

+‘_C2. + (¢q = 64)%“,\@](' Fiy,, + 141 Fuj,¢>
Do e =G +w () mpar

+[ 2 -Cerrucg)une (P, +141Fy,. %

-y (4 —ag) = (Fy +K[4-9.]) =0 St &t (8-10)
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where mq is the mass of the inertia weight. Using
and F from LCquations (6-14) and (6-15),

an.l Pt
the above equation finally appears as

L " 5 U >
"W‘I fmgbei (‘)%'ﬁ) -4 - legg t tan. € (C4-Cyq
(

Sl

"Z'/b( (-4-)]%:( :_{ + ‘» Kt Lu\..,L mew'( t—)%s-amﬁ—(‘[&ct l

+ law € (C5-17‘~’u(.45]<)] Y =[M__,_ +S'MG]CLA

_ 7 >

+\mGM8{Z.4I—:E’L—t[l.CL-fi%e’CCS Sy “Z—/(C"ﬂ% |
i

|

. L .
—A ( Cs -Cy _?/,MC4> MIJCLT —}-CC(WL, Mcboieé 3
Ci 2
— Z A fz“—[zcﬁuﬂe (Cy-Cq -2./11\(;4)]% + Z&___CH" +Fy - Iqu} (8-11)
.l |
C)f této

For Case II, where only the primary ball has a wedging effect

on the inertia weight and ¢ Zto ; the equilibrium re-
quirements of the inertia weight, from Figure 12, are

-To A1 FZ, (*l..: -4 F;)Qﬂq_ + le ((g; —(.*)> —‘FILJ Co

+ F: (e F4 Lq, = O (8-12)
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FL -Wiat+ - \:,x -Fs = O

(8-13)

Motion is again assumed to be impending, so that
Fo =u e (8-14)
F4 = K FS' (8-15)

The forces 3z and F4 are then found to be
oF

Fy = /_“:,gIO,,L +C¢s —/L\C4) My LT -1-[(.1 3 -G ) tan 9] Fiy (s-16)

Fq- :,k gIod\ ~(Cotpls) mpa p+[Co-(C7 +u C“)t’"‘ej Fig 8-17)

The total friction force FF,TDT. is
Femr =Pyt Fy (e-1e)
so that.

(8-19)

'-f[lc-l + C Cy -Cq '—Z/AC_“, )‘ta,,,\ S]Flgg

For Case II operation,where only the primary ball acts on the
inertia weight,

Fig,or. = Fig, (8-20)
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T - (Coy req )y K -z (g —ag)~[Fy +r(y-9]-

T T Y T B T Y TR TR T e

The equilibrium requirement of the inertia weight in the |
direction, from Figure 12, is

Frgr = Fenr =g () g ) - LRy ey -y 5} - ¢ (8-21)

The above equation may be written as

{
Z" EZIUd\ +<C;‘ "'C-L\ “2~HC4) mj_((.'[‘

+in. . GX_Z-C'_ + ( Cs “Cy -l Cy )lan, @]{\_-U et O

(8-22)

The term ( Tm q,;\ in the above equatlon is added directly
to account for the effect of the remaining seven balls. The
terms in Equation (8-22) are combined, and the final result is

Mg ngtdz't’v\zt - A [U( +(Cq -C7 -Ty )'.--,\GKJZJ'

-
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TR T I | it o g e

il 1 Tl Wiy mgLed 65 | —'(.-'{—Lit-s_* (O =gl g Vs ‘CJ’\' 1 =
G Y| -

= W\G Let & % [ [:_(_:‘ 4 o —(;7 - < Ll4, N " tJ S

N

_./L__(_ VV]I (C«; —'CQ, —u?-/M C4> (LT -f—[ ‘/’1;)67 ”'j‘_}('(’r’

Cq bu«i' M g et €41 - --—L-L[?-C¢ (O =Cq =2 Cq Ve (:] 2
-
i L}L:E_"_j: -+ Fq — e e € =EE g (8-23)
c,

The dimension (g in Figure 12 is a function of 4 . The
effect of this is to make the equations of motion of the
inertia weight, Equations (g.j;) and (g-33), nonlinear.
However, as is shown in Appendix B, the term (. exhibits

a weak dependence on 4y . It will be assumed that the

term G, is a ?Systant, and the magnitude of this constant
will be chosen'“’to yield conservative results for the motion

(2) See Appendix B for the details of this computation
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of the inertia weight. If (, 1is a constant, the equations
of motion of the inertia weight, Equations (8-11) and (8-23),
are second order linear differential equations with constant
coefficients, of the form

A,l% -f—-A?.‘j =Ny apq 4 A4CLT t s~ + Ay (8-24)

where the Aj are constants.

The initial conditions are
t: o 4 Yo < Lanst. (8-25)

€ =0 (RENE (8-26)

where Y. is the initial displacement of the center of mass
of the inertia weight. The above conditions are chosen to
correspond to the application of the graze forcing function
at t:o.

9. NUMERICAL FORMS OF THE EQUATIONS OF MOTION OF THE INERTIZ
WEIGHT

Appendix A contains a tabulation of the numerical constants of
the present problem. The particular shell considered is the
105mm Howitzer M1l. Appendix B compares the forms of the e-
quations of motion of the inertia weight for maximum and min-
imum values of the dimension (2 . It is seen in this ap-
pendix that the maximum percent differences between the co-
efficients in the equations of motion of the inertia weight,
in the extreme cases, are less than 8%. It will thus be as-
sumed, in order to obtain linear forms for the equations of
motion of the inertia weight, that ¢, = constant. 1In addi-
tion, the constant value of C. will be taken to be Cz,max. .,
so that conservative (3) results will be obtained for the mo-
tion of the inertia weight. With the above assumptions, the
equations of motion of the inertia weight for the two regimes

VLtETy, and t,£ T are, from Equations (8~11) and
(8-23),

(X

- =15 , -4
1.L9 X10 4% - 212y = 34xlo ar tL37XI0 Tay

(3) One of the purposes of this study is to determirne whether
the graze module functions under the application of min-
imum values of the forcing functions. Equations (8-6)
and (8-7) reveal that the retarding friction forces, [g
and F4 , acting on the inertia weight will be maximum
for maximum values of 2z
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e =

rmran + e

—reee————

S

~-b
-3, x10 o~ — 4] (9-1)

Case I -~ Operation, (< €% t:. , Balls
1l and 2 both exert wedging action on in-
ertia weight,

Ceo =Comax, = C. 4706, (Equation 8-11)

L

l.i0 XlO-4.Lj -Sb.2y = [ LTxieT A FLSTxC ey

- =
-3,20 X106 &~ —47.7 S

Case II - Operation, <+“,¢1¢ , Ball 1
only exerts wedging action on inertia
weight, (, =¢, .. =0.476 .+ Equa-
tion (8-23) Ll

The constraint equation which determines whether Case I or
Case II operation prevails, Equation (6-27),appears as

(X (9-3)
[g\ —Z.b%mo"g - 0. 4008 &t +0.333An +I»L-Oxlo"] =&
t=t,
For o0<£t< To , the motion of the inertia weight will
be given by Equation (9-1). For ¥ = Co , the motion is

given by Equation (9-2). It may be observed that, for certain
magnitudes of the forcing functions, there may be no positive

to which satisfies Equation (9-3). For this case the
equation of motion of the inertia weight would be given by
Equation (9-2).

10. EQUATIONS OF MOTION OF THE INERTIA WEIGHT WHEN THE GRAZE
FORCING FUNCTIONS ARE APPROXIMATED BY TRIANGULAR SHAPES.

The lateral acceleration field ap; of the graze module housing
will now be assumed to have the shape shown in Figure 14. By
properly choosing <@.,t, and T, , the best approximation
to the dr(t) curve may be obtained. The three regimes of
time are then

B




a .t
ol e (L & =i (10-1)
t,
e .
tet &, (Lp = (g, ) (10-2)
tL‘ i
Ep et Ly =C (10-3)

CLD """ A

e i t

Figure 14 - Triangular Approximation of Graze Forcing Functions

where t, and t p are the times of peak and cessation,
respectively, of the acceleration function.

4

Equation (9-1) is divided by /.09 X 10~ , with the re-

sult

[}

i) -l X10%y = 0.21b A7 +C.BI0 gy
-0.019 A —8,%Z><IC‘§ (10-4)
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Using Equations (4-14) and (4-15), the abovc cquation appears
! as

Y —l26xichy =&c~-.:.m el O TR S A B S

- 8.5Zx|os (10-5)

Kz is defined as

Ky =}.O.le = e &, =0, C 0 \\;_} (10-6)
and Equation (10-5) now appears as

b) S
Yy =126 X 0%y = Ka@y - 8.3 X 10 (10-7)

Equation (10-7) will now be solved for the three regimes of
operation

Oftétl

an is given by Equation (10-1) as

CLT_ = A » (10-8)
=
; With
Kz Ao
bz — -2 == (10-9)
4 +
Equation (10-7) appears as
{ i
= 0 G SN .
Y4 -2 xwety = KgT - 8. 50 x i (10-10)

v e ke
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The complementary solution satisfies the equation

o

b
Y = b X110 Y =0 (10-11)

or

Ye = A hmia 1120t + A el l1Zo t (10-12) |
The particular solution Y, is assumed in the form
Yp = At +1B (10-13)

Equation (10-13) is substituted into Equation (10-16),with
the result 3

o_l.z_c;x\oL(Atﬂ’.ﬂ = K4 € - 8,32 X10°" (10-14)

= s X |O(" A = K4 (10-15) '{
=3 e A w10°B = -8.32 x10S (10-16)
S
A- -T.94 x10 Ky (10-17)
B = 0.660 (10-18)

% P is then

Yp = A )<le_71<4’¢ + C.L6O (10-19)
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and the general solution is

Yo +4, (10-20)
or
L’S = Ag At~ LELG T t "\2 ol 7o
-7.94 xxo‘7\c4 + C,0600 (10-21)
The velocity L} is
§ = 2o A, cob 2ot + HZO A, Mg, Lot
S
-T7.94 x\0 Ky (10-22)
ac t -0, ‘j = O, so that
O=1toA, -17.494 x'lo'7l<4 (10-23)
e
A,z T7.0¢ x 1o K 4 (10-24)
At =0 ,4=9. =0.2773, so that
O 15 T AL+ CLLLG (10-25)
AL Sl (e Bi:j (10-26)
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The complete solution for the interval © £t¥ ¢ €, is
finally

ic

-1
47 7.08%x1C K4 Add. 1120t - 0,37 oty HZet
4
-7.44 xic” kg4t + CoLLGC (10-27)

. ~7
Kj = 7.94 X \o \Q4 (VAN 2ot — 434 AA.‘VJ-\ ||Z-Ct

-7
-1 G
T.94 x\o  Ka (10-28)

In the interval LA S = Y the equation of
motion is

« a 2

de L . -
J =126 X107y = K3 (.-t)| - 8.32 X10°  (10-29)
Tl
- Kz Qo tL - Ksa.ot ”'8.52.)(\05_ (10-30)

t.&-fC| t.-T,
With the notations

Ke = — KaRo (10-31)

+,-t,
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Ky = Kyte b (10-32)
t, -t

Equation (10-29) appears as

L
Y - L2 X 10 4 = kgt +K — B, AL X107 (10-33)

The complementary solution is

Ye = Az Burt~ 1120t 4 AL Cobs l120E (10-34)

The particular solution is assumed to be

y = Ct + D (10-35)

Equation (10-35) is substituted into Equation (10-33), with
the result

-1 x10t | CE +D] T Kst + ke —8.32 (TS (10-36)

L2 X10° C = Ks (10-37)
C=-1.94x15 <o (10-38)

—L2e 1Lt D =k, -8 32 xS (10-39)
D . Ko - 8.32x 1o (10-40)

-1.206 X106
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D= -7.94 xu’;J Ko +0.600 (10-41)

and

N7 &=l
Ljp - =-1.94 x 1O KS C-1.94x%x 10 K 0 6LIC (10-42)

The final solutions for t—j and ¢y are then

-7
Y= Ay berin 1120 T 14 catunZet - T7.94 X0 Ke t

-7.94 X’O‘_, Ko + 0. LEE (10-43)

[

-7
Y= 11TOAs cour 120t + 1120 Hg busy 1ot -T-94x10 Ks  (10-44)

The boundary conditions are that, at [ ' , Equa-
tions (1n-27) and (10-28) must be equal to Equations (10-43)
and (10-44), or

[ Equation (10-27) ] = [ Equation (10-43)]

(10-45)

+
rt

[ Equation (10-28) ] = L Equation (10-44) (10 .20
~t":-tl t.=-t-l
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3 Equations (10-45) and (10-46) are solved simultancously for
B A, and A4 . The final result for the equation of motion

| in the interval 8 T & LR is then

. -t _
‘6:{7, C’?) X 1O L4 ‘-Xk\‘—.l; x Il /+| -, :)'f;-] 7 b e '\'.(MJ
) . _ o
- 194 X160 kgt 1 114 xXie  ps T,
- / ‘
+T7.94 x 10  Kev Cob V(2o (t-T,)

l .

+ — i'7 014 | X |c*7 g (bl 20t | —454 Neau {1201

2o

_ -7 |
~=1.94 x 10 K4 t 194 %1€ Keg p Seal, M EC (L -T ﬁ

iy . -7 . ;
=T 44 x 16 Ket =194 x 10 K +( s 6 € 0~y 7)

-1

1 . . . -t R . ) - . )
o :‘I‘S("éj,b-’(‘-’(l(_) |<\4 ,&\,‘.]_ ll‘.(--tl"(‘.""ll z‘~\|"~f~11

’ L
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o i
-T1.94 X167 ke £, +T1.94 x\0 | Ke
e Z
+7.94 x10 K ¢ Aunls HI20 (+-t,)
J
N ,
+%—|,q4 X 10D |44 Col ||ZOt‘ —454 PPN/ ”Z()tl

-7 = !
__7q4 X 10 \(4 +‘I.Ci4 X 10 7Kg§ Canl. HZO('& ‘tly

-7
—7.94 x 10 K¢ Eh E k) Sy
(1048 )
For t,. < t 7 a“r =0 and the equa-
tion of motion appears as
(X L _ (J _ ’ 5 ) s
o=l Ll Xty - 8.3% X |C (10-49)
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The solution to Equation (10-49) is

Y= As daiv ict 1y Coia it T L eLl 0-50)

and the velocity Y is

Y= 1120 Hs ol 117t + 11 ¢ AL domes [1LoT (10-51)

The above two functions must be equal to Equations (10-47)
and (10-48), at t-t, . This condition is expressed as

[ Equation (10-47) ] = (_Equation (10-50) ] (10-52)

t:tz_ -t:tz_

[ Equation (10-48) ] [ Equation (10-51) -} (10-53)
Tty E ik,
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Equations (l10-52) and (10-53) are solved simultaneously for
and A, . The final result for the equation of
motion in the interval €, < C is then

—ic , -
\jf%"f.f)‘éxno Kg dnt NYGTE; =307 cpdn 20T

- -7
-T.94 X1 Kgt, +T.94 X1 ket

-7 _'
+7.94 xic m% Catv 1120 (€ -1 )

|
i rss)

=T
+ {7,614 X1e Kg Cal (20T, =43 AdL I1ioT,

-T1.94 xlD_7K4 +T.94 %107 Kg‘g Bunty 1120 (£ =€)

-7 | '
=T1.494 xi0 Ks’[_ta Lol 1120 (¢ -ch)+“+ bl N2o(€ T,
v
| o =1
+ (-7.94 X1c K, '+O.L»L)()> Caals it £ ‘"CLS

=0.LLO Cul 1l (t -t 2_3 + O.L60 t, 4 € (10-54)
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] . -l ] PP
L Y = 11202 T.ODX16  ¥ag Mg, (Rt [ ~C. 297 cesly 14 T

-7 oy -7
- T.94 xi1C ket TG4 x0T s T

= /
+7.94 x )0 K 3 Buetifee, 1 2ua (F =5 )
+z'1,ff4 x‘lc\‘7K4 Col 112¢T, =434 Neyr _ 1120

] : T, ] -
~-7.94 X 10 7|<,+ + 1.4 xlcC K()-f Cola 1120 (T )

-7
-7.94 X0 Kg[ 20 T, Aale, e (€ -T,)

+ (ols [IZ/Q("C ‘tL>J

-1
+(=T7.94 xie K, + . GLOY e Aol H12o(t-1 )

— i BT (,H ?.0} Au‘fﬁa\ Lo (-t - ( L» tz-f- t - 1

49




The above equations are all for the case where both the
Primary Ball, 1, and the Secondary Balls, 2, exert wedg-
ing action on the inertia weight.In all of these cases,

< i <t . The equations of motion for the
case where Ball 1 alone exerts wedging action on the in-
ertia weight, where t & E , can be derived

in a similar manner.
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1l e COMBINED MOTION OF INERTIA WEIGHT, DETENT BALLS AND
FIRING PIN

When the inertia weight moves forward sufficicntly, the two
detent locking balls will be released. The oricntation of
the line of centers of these two balls with respect to the
line of action of ap, for the duration of the graze, is ar-
bitrary. Figure 15 shows two extremes of this orientation.
In Figure l5a both balls will have the same forces acting
on them and the problem is symmetric. In Figurc 155 the
problem is antisymmetric, since one ball will have the arp,
effect tending to release it while the other ball will have

the a,, effect opposing it.

// N /// N
y \ , \
[ \ L [
l =k - ek [
\ + / @ + @
I |
\ / \ /
\ . /
N // ~ _ -
a : b

Figure 15 Detent Ball Orientation

Figure 16 shows the configuration of the firing pin, the
detent ball and the inertia weight. Y is an axial co-
ordinate of the firing pin, positive downwards, and 4o

is an arbitrary positive constant, so that the relative
axial displacement of the firing pin is '}, -

X, 1s a radial coordinate of the ball and X, is
some positive constant, so that the displaccment of the
ball, positive outwards, is X, = %o . The disvlacement
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of the inertia weight is Y4 —Y¢ . as derived earlier,
and the radius of the ball is designated by . . Xg
and Ye, will presently be defined.

As the inertia weight moves upward, the detent balls will

move radially outward. The edge of the inertia weight will
be in contact with the ball, Figure 16, for some
part of the motion.

ﬁ\._ﬁ-\'\_}‘ R "
- -
-~ = |

\__f-_-'_'-—ﬁ‘\_.-._.l

Inertia

Firing Pin

Weight

— e wme s m——

D’Etail Irhll |

(A

,“Z Subsequent
/ Position

Locked
.—— Position

\/

P‘ﬁfqb|

Ball Center in /
Locked Position

X|"x;l

h.-—'-"'_'\_.-*-\h_’_.
Detail “A"

Figure 16 - Firing Pin, Detent Ball, Inertia Weight Orientation

The Kinematic relationship between the motion of the firing
pin and the ball is given in Figure l1¢. From this figure,

: X, = Xoj , (11-1)
tO/V\ F_) = : X‘ '2 XOI
%| “(JOI
or
X = 0577y, -0.056L (11-la)
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The Dimension A in Figure 1€ is given by

/\ = Q~ (X) - )<‘-‘I (11-2)

The relationship between the motion of the inertia weight and
the ball, while they are both in contact, is

4

"= i -, ‘>' + A7 (11-3)

or

L
L

L R Y R

Equation (11-4) will be true only for the time that the ball
is in contact with the inertia weight. This effect is very
significant in the present derivation, and it will be sub-
sequently discussed. From Figure 16,

fan ¢ = AL (11-5)
L~ (X, =X )

The relationship between the velocities X, and Y is now
found by taking the first time derivative of Eguation (11-4).
This result is

L4

O=2(4-4.) Zj TL[ T~( Xy = Xoy ) (= %) a1-6)
I _ o ,
Y-Ye G = %, (11-7)
v = (X, "X01>
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With the aid of Equation (11-5), the above equation appears
as

L

X, =Y Ta y (11-8)

Equation (11-8) is a kinematic relationship between the
velocities of the detent ball and the inertia weight. As
the ball moves radially outward, it will exert an upward
component of force on the inertia weight. This force will
be assumed to be small, and thus it will not influence the
equation of motion of the inertia weight. Thus, the pre-
viously obtained equations of motion of t.ue inertia weight
will be valid.

-

As o —= LL" . (11-9)

tom § —= oo (11-10)

and, following Equation (11-8),

X, == R (11-11)

The physical significance of Equation (11-11) is that at
some angle, designated by <P, , the ball and the jinertia
weight are no longer in contact. For © % ¢ £ ¢, y
the motion of the detent ball bears a purely kinematic
relationship to the motion of the inertia weight, in ac-
cordance with (l11-8). For P, £ & » the motion
of the ball is governed by its own equation of motion.
This limiting value of ¢, will be identified in a sub-

sequent section.

The antisymmetric case of Figure 15b will now be analyzed,
with the previous assumption of quasi-static behavior.

All friction forces on the detent balls will be neglected,
but the friction force between the firing pin and its hous-
ing will be included.As the inertia weight moves forward
several regimes of operation are possible, depending on the
magnitude of the forcing functions. These regimes are ident-

ified below.

Case A - Both Detent Balls in Contact with Inertia Weight
and with Firing Pin

For this case the motion relationship is purely kinematic.
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| The ‘4 (inertia weight) motion is related to the X,
(detent ball) motion through Equation (11-4). The X,
, motion is related to the Y, (firing pin) motion by
1 Equation (11-1). From Equation (11-4),

! PR A T SIP NP IRY & (11-12)

is the kinematic relationship between the inertia weight
and the detent balls. Case 2 operation will exist until

or

y>C.213 +\/c.~’\o(,x, -X -3 08 xT (11-14)

This limiting condition for Case A operation will be dis-
cussed in a subsequent section of this report.

Case B - Both Detent Balls in Contact with Firing Pin, but
Not in Contact with Inertia Welght

For this case, the free body diagram will be as shown in
Figure 17. The forces 1%y and {4 are normal con-
tact forces on Balls 3 and 4, respectively. Both balls
will have equal radial displacements, since they are as-
sumed to be in contact with the firing pin. P, and V; 4
are reaction forces, of the detent ball guides on the de-
tent balls, acting in the axial direction. The coordinate

Xy 1s measured from the center axis of the shell. Xg,
will be taken to be the coordinate of the balls in the lock-
ed position. Thus, X,-X., is the relative, outward, radial
displacement of the balls.

Figure 18 shows the free body diagram of the firing pin,
corresponding to the situation depicted in Figqure 17. The
coordinate Y, 1is measured from the ceiling of the graze

. module and 4,, 1s a known constant.

F If the free length of the spring is des.gnated
by . then the spring force I, is

Py = e 106 =) (12~-15)

where K, is the spring constant. The initial spring force
v, 1s given by

GNER SATIPRTE AN (11-16)

i Bt et it e €

58




F

Figure 17 Free Body Diagram of Detent Balls,
Case B Operation

Ceiling of
Graze !lodule

‘dﬂ'l

r——==— — = = - -

Figure 18 Free Body Diagram of Firing Pin
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Equations (11-19) and (11-16) may be combined, with tae re-
sult

R U TR (11-17)

The friction force due to the normal force Jdifference

) N\

b}
S A RS N e

has been neglectod. The equilibrium requirement of the
firing pin is

O R T

N .
-'l,b A\M(,ﬁ "‘|)|‘4 AR oo - (11-18)
and that of the detent balls is given by

X X L

\—)"* LM(JJ -—"\'lo x' | .‘10()(.,4 Lbﬂ —(LT 3 = C\ (11-19)
(4 /18

‘3“') L/C’P’ - n‘\)x' -,.\”D(X‘I,S LUL] + CLT) = C (11-20)

where "o and Mg are the masses of the balls and the fir-
ing pin, req?ectively. Equations (11-19) and (11-29) are
solved for ¥, , and P, 4 with the result

\ £ t
Pl , = —-—-—lmo Xy = Mp (X, wy T(LT)] (11-21)
¢ Con (b
0 L
P = —i- Mp X, = Wiy (X, wy - fLﬂ] (11-22)
')4 28 N |
l,
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From Equation (ll-1l),
(X ’e

K, -, taw i (11-23)

Cquations (11-1), (ll=-1a) and (l11=-2]) throuah (11731 ) are
now combined and the result {s

\Whﬁdtb*lwhiah§}x.'th”anthS-Kbu1$JK‘:

2 Fp + Ko Xoy (ot p =g (g Py (11-24)

or

L rall X

1.1S x10 X, +BeOX, = 5,35

-6
- b.%0 x 10 (Cl,q +O.|CLr) (11-25)

Equation (11-24) is the desired result for the motion of
the balls when both balls are in contact with the firing
pin in case B operation. It may be observed that ap ap-
pears in Equation (11-24) only in the form of a friction
force effect. After Equation (11-24) is integrated, the

X, and 4, motions are related by Equation (ll-1). The
necessary condition for case B operation is that

P,y >0 (11-26)

Pla 2O (11-27)

since these forces are compressive contact forces. These
conditions, from Equations (11-21) and (11-22), are




T e e P g 1

I CrY (11 -2H)
X, - - - . (11-29)
X, (X ey Cey oo
or

[ ‘ -0
X,o=C <Lt - (11-10)
o - L.

X, =(e. g x e X, - uy) =« LT

Case C - One Ball Only in Contact with Inertia Veigat

The two detent balls, from Figure l1° experience differ-
ent outward forces due to the terms (L y. Since 3all 3
has a greater outward force on it than Ball 4, there is
a possibility that it might loge contact with the firing
pin before Ball 4 does. The case will now be analyzed
vivhere Ball 4 is in contact with the firing pin and Ball 3
8 not.

The free body diagram for this condition is shown in Fiqure
19

=
» 2
‘3,4 LR
|
Py P4
[“‘DQA ! rm"a""
'X; b z
L )
Mg (X,w = . —= Mo X, Mp X, y= + /—-— Mg ()(" 5 Wy
an\ ® /) ® oy
F— Xi4 } B i <
by 2
L4 I '
L}
|
Figure 19 Free Body Diagram of Detent Balls,

Case C Operation
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The displacemunt X, ,of Ball 4 will be rolated to the dis-
placement 4, of tho firing pin by Equation (l1-1). The
displacoement >4 of Ball 3, {f Nia > Xy 4 , Wwill bo in-
dependent of 4, . The frec body diagram of the firing
pin will be the same as that shown in Figqure 19, i{f the
force P, , is removed,

The equilibrium requirement of the firing pin is

Co '\(O(\S‘ "S(w\ —“\F (\'\ "U“‘-_ ::s. -/u “\F(LT "““" &wq‘, L ()(11-32)

and that of Bull 4 is

0 2 1
P toop - g Kt mp (X, 4wy ) 2O (11-33)

¥,,4 is eliminated between the above two equations and,
using Equation (ll-1), the final result is

[ et b+ wiptan g | Ky [ oo witam g - ko st )%,
= Fo + Ko ch (-B-tgs - MF (ap\ ~ /U\(lTB-W\ CL*r"CLn(’)(ll'34)
or

. = , -6
P a %\o'qu-f%(,)(,ﬁ: S.3 -6.%50x10 Qnp

R -
-9l X110 Qv (11-35)
The equilibrium requirement for Ball 3 is

—wg X, omp (X5 Wy + )0 (11-36)
and the constraint equation is
/ X ")( >>< - >t(\/v\
N R S S & (11-37)

60




The numorical form of Pquation (11-3¢) in

Xoy =tatt e 0N (11-38)
llquation (11-37) apocar:s as

LTI N S T B IS TR S S
The constraint condition for Iquation (11-34) iy (1) -38.)

V',« > (11-39)

or, from Equation (11-29),

o

L
Kia= (X gy ) >0 (11-40)

or

(R

. . \
Xiom (200 xiL" X4 ~ Q7)Y >0 (11-41)

Case D - Both Balls Not in Contact With Firing Pin or 'lith
Inertia Weight

For another regime of motion, where the firinqg pin exerts
no force on the balls and the balls do not cortact the
inertia weiqht, the free body diagram is as shown in Fig-
ure 20,

For this case the displacements of the two balls, X, , and

X4 . are different, due to the terms * Q¢ . The
corresponding free body diagram of the firing pin will be
the same as Figure 18 with the forces °, 5 and P, 4
omitted.

From Figure 1§,

FC '*ﬁ.(tﬂ“Wc.\‘“ quC{A -Wg %1 - Uw T = (11-42)
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Figure 20 - Free Body Diagram of Netent Balls
Case D Operation
and, from Figure 20,
¥ k= - (11-43)
6 o
— Wy X, +WMp (X, Wy + aq) =0 (11-44)

The conditions for operation in this regime are that

(%15 =%a1), (X, 4 “Xo ) >4y -Yer ) tan b

and that Egquation (11-13) is satisfied.
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) Equations (11-42)through (l11-44) arc now rcarranged to
appear as

Med, koY = Fuothay,, wig (g +100tr) (11-45)

L
Xi,4 Ty Xe 5 TaA7 (11-46)
L] L

)(“5 = WL1 X"J, = CLT (11-47)

or

-4 -
.50 x10 o, + L.O0Y, =594 (3010 (a,, +C, | CL-T)(11-48)

G
X4 — & L1X10 X, 4, = —arT (11-49)

e

L
X1,3 =269 x10 X, = QA7 (11-50)

The coordinate Y 1is a measure of the axial displacement
of the inertia weight, while the coordinate Y, measures
the axial displacement of the firing pin. For computer
solutions of the present problem, it may be more efficient
to express all results in terms of Y . The transforma-
tion equations which relate Y and ¢, , and their deriva-

tives, are _
Yt =Cu =0 549 (11-51)
& ‘ .
j g = -y, (11-52)
% = —Lj, (11‘53)
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12. LIMITING CONDITIONS FOR INERTIA WEIGHT TO BI' IN
CONTACT WITH DETENT BALLS

The combined motion of the inertia weight, detent balls
and firing pin is an effect which exhibits bilinear be-
havior. 1In addition, for a small part of the motion of
the detent balls the motion may be nonlinear, and this
situation shall bc discussed in the followinqg paraqraph.
Numerical values of the forcing functions are required
befow a definite identification can be made of the vari-
ous regimes of combined motion of the detent balls and
firing pin.

Figure 21 shows the detent ball at the last point at
which it is tangent to the inclined surface of the fir-
ing pin. As the pin moves down further, and if it still
contacts the ball, the magnitude and direction of the
contact force will continually be changing. This will
be a regime of nonlinear motion because of the chang-
ing direction of the force.

_.--"'\——-’—‘—-—\

i e

Firing Pin

Detent Ball

—————— ——

Figure 21 - Kinematic Relationship of Firing Pin and Detent Ball
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Since this motion is a small part of the total motinn, it
will be treated as a linear motion. That is, when the pin
goes down past the position shown in Fiqure 21, it will bo
assumed that there is no further contact between the nin
and the detent ball. From Fiqure 22, wihcn a detent ball
has moved through a radial distance C,. , it will be as-
sumed to no longer be in contact with the firing pin.

P ]

- ——— =

Inertia Weight
L///in Locked
Position

—

s P

Figure 22 - Limiting Position of Firing Pin and Detent Ball

In the initial configuration, at time t -0~ , the in-
ertia weight is down, Figure 1, and the detent balls are in
the locked position. At t:=c the graze forcing functions are
applial and at some later time, for sufficiently large values
of the forcing functions, the inertia weight begins to rise.
In this initial stage of the motion balls@and@ are in
contact with the inertia weight, in Case A Operation. A
method of superposition will now be employed to determine

the time and position at which this contact is lost.
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For Case A operacion, the displacements and velocities of
the balls and the inertia weight are related by Faquations
(11-4) and {1l-8). Alsc, at the outset of motion both de-
tent ballz are in positive contact with the firing pin.

Th: inertia weight will now be imagined to be reinoved and
he equation of motion, Equation (11-24), for the situa-
tion of Figure 17, will be solved. 7This solution will bhe
called Xya (1) . The kinematic relationships between
the tunertia weight and the balls are repeated below

[11 =i &2 —L’D\’"F\fL =l -XD,)J (12-1)

R ( (12-7"

The function Y is the moticn of the inertia weight and at
this stage of the analysis is a known function of time. Thao
rerm X, in the above twe equations wil'l Le designated by
Xy 0 (€D and these *two equatioris are rewritten as

[ - (2-5=3)

& ; L-
Kl,b ;\/\0‘ '\"r(- - G = (%‘“jcs

Ay =4 tand (12-4)

The inertia weight s now placed back in the problem. Con-
tact between the bali® and the inertia weight will tinin be
maintained so long as

XI,’L :.). X".h (12"5)
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This expression implies that the X, motion of the balls
for this hypothetical case is "ahecad" of the X, motion
of the inertia weight. The limiting condition when con-
tact is lost occurs when

(_x.,a =) xl)y,:lt_-t4_ (12-6)

Both X, and X, are known functions of time, after the
forcing functions have heen described. The time T 4 which
satisfies Equation (12-<6) may now be found, and this time
T4 is the time at which the inertia weight loses contact
with the detent balls, at the end of Case A operation. L

The relationship

[kuﬂ = Kb lt:-t4 (12-7) ‘

may be used to find 4,; .+ the limiting angle which was
defined in the section following Egquation (11-11).

67




LS SUMMARY OF EVENTS DURING THE TOTAL FUNCTIONING TIME
FROM GRAZE TO FIRING

In order for the graze module to be effective in performing
its design function it must open sufficiently to release the
detent balls whicl, in turn, release the firing pin. The
test of whether the inertia weight moves forward with re-
spect to the shell is as follows.

a. The solution for 4, from Equation (8-11) and (9-1),
or from Equation (8-23) and (9-2), must be positive.
A positive value of Y would indicate that the in-
ertia weight moves forward with respect to the graze
module housing.

b. The velocity, ¢ ,of the inertia weight must be posi-
tive. In view of the definition of the orientation
of the secondary X,d,t coordinates, a nega-
tive value of 4y would be incompatible with the
physical constraints of the problem.

The graze forcing functions are assumed to be applied at
time +-=0%Y . At this outset of motion of the inertia
weight two regimes of motion are possible, if the magni-
tude of the graze force is sufficiently large. In one

of these regimes, both the primary and the secondary balls
will exert wedging action on the inertia weight, and the
equation of motion of this weight is expressed, in its
most fundamental form, by Equation (8-11l) or (9-1). This
will be Case I Operation, as previously defined. For this
regime of motion the inequality, Equation (6-33), must be
satisfied. If Equation (6-33) is not satisfied, then only
the primary ball will exert wedging action on the inertia
weight. For this case, previously defined as Case II Opera-
tion, the equation of motion of the inertia weight is given
by Equation (8-23) or (9-2).

If the magnitudes of the graze forcing functions are not
sufficiently large, the inertia weight will not open. 1In
the following discussion it will be assumed that the forc-
ing functions which are applied at t=0t result in

Yy >o t =0 (13-1)

y>o t>o (13-2)
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This assumption may be tested when the numerical results
are obtained.

The several possible regimes of motion which follow the
opening of the inertia weight will now be considered.

It must be emphasized that a positive identification of
a particular regime of operation will be possible only
after the numerical values of the forcing functions have
been specified. Consideration will now be given to thc
combined motion of the inertia weight, detent balls and
firing pin. There are several possible sequences of e-
vents which may occur after the application of the forc-
ing functions. Two typical sequences will be presented
below.

In the first of these sequences, designated as Circuit 1,
the sequence will be

Case A —» (Case B —» Case D
where the cases are defined in section 11.

When both detent balls have moved through a distance (,, .
Figure 22, the firing pin is free to close. 1In the second
sequence, designated by Circuit 2, Case A Operation will

be assumed to exist until both detent balls have moved
radially through a distance C,, . The equation of motion
of the firing pin will then be as outlined in Case D. Other
sequences may exist, depending on the numerical values. The
computations below, however, outline the typical details of
going through a particular circuit.

Circuit 1

At the outset of motion, at + =0f , the inertia

weight is in the downward position displayed in Figure 1.

In this position, which is Case A Operation, both detent
balls are in positive contact with the inertia weight. If
the forcing functions are of sufficient magnitude to cause
the inertia weight to commence its opening process, then a
limiting condition occurs when the inertia weight lo ses con-
tact with the two detent balls. This condition will occur at
a time designated by t 4 where t,4 1is the time which satis-
fies Equation (12-6). The time t4 1is now compared with Co
where t . is given by Equation (6-26). If T4 < to ,

then the solution of Equation (9-1) is evaluated at t =ty
This value will be designated by YA , where Y4 1is a con-
stant. It will represent the upward travel of the inertia
weight which corresponds to the time T 4

If ts > T, the problem is inherently more difficult.
A test is first made to ascertain whether t. 1is positive.
If t¢ 1is not positive, then the two secondary balls (2)do
not exert any wedging effect on the inertia weight. For this
case the solution of Equation (9-2) is evaluated at T - U 4
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This value will be designated by ¢f, , where 'J3 is a con-

stant, and it will represent the upward travel of the inertia
weight which corresponds to I 4 :

If tag >t , and t,. > C , then for part of
the travel of the inertia weight all three balls will exert
wedging action, and for another part of the travel only the
primary ball will exert this action. The solution for T <t
will be designated by Y¢ , and it may be found from Equa-
tion (9-1). The solution for t.<t < tg4 will be
designated by Y . The initial conditions for this prob-
lem are then

t -0 Ye = Ye (13-4)
J, =0 (13-5)
O S Ye = Yo (13-6)
U=y (13-7)

The total displacement of the inertia weight at time t4_ 7
designated by Yy , is then

Y =“5o' (13-8)
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The initial conditions for the solutions which result in
\JA and "SB are

(:3-9)

1 =0 (o= (13-10)

At this stage of the analysis there are three possible dis-
placements of the inertia weight which may exist, and these
are Ypa / Yg or Yz . The several values of the
displacement of the inertia weight, at the point where it

lo ses contact with the detent balls, are summarized below,.

S t4 <to Lj) S (13-11)
s K
t & 6 tq T ki\ = Y (13-12)
1:"(4
te >0 tp >te T4Ee  Y=¢ (13-13)
t, >0 e wits T retie R s Y (13-14)
g Bl 7 =t Lﬂ =ty T Yo (13-19)
.t:t"‘ 1 -1 4
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Figure - 23 ¥Kinematic lMelationshios

Figure 23 shows a detail from Figure 16. The subscribt
may be A, B or E. &, is the limiting angle at which
the inertia weight looses contact with the detent ball,
definel by Equation (12-7 ), and A. corresponds to ¢,
From Equation (11-2)

A =1t -(x, - Xo.\ (13-16)

From the figure

Ac> S (‘4j =Y ) Cé*(yo (13-17)

X¢j will be the radial displacement of the detent balls,
at the position ¢ = Pe , which corresponds to Y; ,
where ) = A, B or E. Equation (13-16) is substituted into
Equation (13-17), with the result

(Y3 ‘dc\ ot g == (%5 = X, (13-18)

or

Xo, TR = (Y =y, ) et ¢y (13-19)

J

<
"
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Equation (13-19) gives the radial location of the detent balls

at the time T 4 when the inertia weight lo S€S contact with
these balls. The corresponding velocities of the detent balls
may be found with the aid of Equation (11-8) which appears as

[).(i = 4 ta, ¢ 1t=t4_ (13-20)

The functional forms of ‘“J have already been obtained for the
several regimes of time which are defined by Equations (13-11)
through (13-15), and the initial conditions. The values of

9 , Wwhere = A,Ror & may then be ob-
taind for T = L4. - The detent ball velocity K,J is then
related to the inertia weight velocity Y, , following equa-

tion (13-20),by

o

X,; =Y Yn ¢, (13-21)

where ¢, is as previously defined and ' =A,Bor &

In Circuit 1 Operation, Case B Operation is assumed to follow
Case A Opemation. This implies that, from Figure 22,

X175 = KXo < €z =0.0%9 (13-22)

X< €179 (13-23)

The two detent balls are in contact with the firing pin, but

no longer in contact with the inertia weight. The motion of
the detent balls is given by Equation (11-24). This equation
is integrated, and the solution is designated by ,KB , where
the superscript B signifies Case B Operation.

The initial conditions are

~+
Vi
f'"
P
X
]
x
c
—
U

,A)% or [ (13-24)

AR L E (13-25)

—+
(-1.
D
X
it
P
(=
{1
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When

Y AT (13-26)

or
AN (13-27)

the detent balls lose contact with the firing pin and Case

B Operation ceases. The corresponding time is Ts .

For ¢+ >ts ., Case D Operation prevails and the equa-
tion of motion of the firing pin is given by Equation (11-45).
Following Equation (11-1),

(Y -, YEanp = X, = Xoy (13-28)

For the conditions of Equation (13-26), Equation (13-28)
appears as

("jl "'\'50!) 5 Cll C,ci(s (13-29)

and, from Equation (11l-1),

Yy, =X, cc‘-tfs (13-30)

Equation (11-45) is now integrated, and the solution is desig-

nated ql . The initial conditions are
-+ D ~ o = I o ° (13-31)
t=%Cs L5l Jen s \°
. D ¢ 6
o g, = X | e (13-32)
T e 5
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If the maximum travel of the firing pin is “Jimax = ‘3¢,
and the corresponding time at the end of this travel is
t- b ’ then

(LJ‘D - L’j(;.\x S ‘.h,&lr\x. _L'itq (13-33)

CaRae

Equation (13-33)may be used to find T, . The velocity of
the firing pin on striking the detonator is

1 "t.b

and the kinetic energy of the firing pin on impact is

5 2

== e L |

RE =2 W‘F‘. ok \ I (13-34)
Tty

Circuit 2

In Circuit 2 Operation, the inertia weiqght is assumed to
remain in contact with both detent balls until these balls

have moved through a radial distance (. . The correspond-

ing time will be designated by t g . As in Circuit 1

Operation, a preliminary test is whether tv >To or
Ty 2 G, , and this analysis would follow the steps out-

lined earlier. The condition when the detent balls lose con-
tact with the firing pin is

1 = T = X, - Ko; = G L
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The displacement of the inertia weight at A is
given by Yle:t 5 When Equatlon (13-35) is substitut-
ed into Equation (ll 4), the result is

("Sl - Y) = +J’1L’(’I'C’L )Z (13-36)

1=’t7

Time {14 may now be found from Equation (13-36).
The corresponding velocity of the detent balls is, from Equa-
tions (11-5) and (11-8),

. y | -4 | .

| +t=

X ‘ = o g (13-37)
SO .

The displacement and velocity of the firing pin at =1y P
following the form of Equation (13-29), are

=l ; 13-38
t=1y (9} - Yoi) = Cio &P B
{;21_7
t =t %“ = X'l (,c;tﬁ (13-39)
t:t-, t’t7
The motion of the firing pin for Ti > Ty is
glven by Equation (l£-45) The integral of this equation
is designated by Y, . The initial conditions are, us-

ing Equations (13-36) through (13-39).

(13-40)

(R}

1=t <‘j$‘“%on§=clamr’>
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‘j‘E = AP \/'7'L‘<'~"("LY CS (13-41)

c
When the final form of 91 is obtained the solution
proceeds as before, starting with Iquation (13-33).

All of the numerical values of the constants in this section
are contained in Appendix A.

14. DISCUSSION OF ASSUIMPTIONS

The purpose of the present report is to investigate the
effectiveness of the graze module of the Hi-Performance
point detonating fuze. The assumptions which are the
basis for this study will now be commented on. It should
be emphasized that, since no numerical results are obtain-
ed in this study, certain conclusions must, of necessity,
be general.

Assumption a, which states that the direction of Q+is
constant with respect to the position of a particular
graze ball, reduces the situation to a static analysis
of a dynamical problem. If Tg is the time for any graze
ball to occupy a successive position, then

Co = /4wy (14-1)

where Wy is the assumed constant spin velocity of the
shell. If the total time from the initiation of graze

to the firing event is much less than Ty , then assump-
tion @ can be justified. If this situation does not
prevail, the analysis would have to be modified to show

the time varying effect, due to shell rotation, of Qqcn

the graze balls. In the present analysis, QT is assumed
to have a constant direction with respect to the graze
balls, as shown in Figure 3. In the more refined analysis,
the effect of A1 along a radial axis through the graze balls
would be of the form

Ly Mo (gt + oo ) (14-2) l
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where <o is a conveniently chosen phasc angle. 'he above
conclusion also applies to assumption 9 ’ (: age 11),
which assumed that the direction of Q-+ is co! stant
with respect to the direction of the two detent lalls.

Assumption b states that friction forces exist only be-
tween the inertia weight and the center post, and between
the firing pin and the center post. The friction forces
which have been neglected are those between the graze balls
and their mating surfaces. As the graze balls move radial-
ly inward, they will possess a combined rotating and trans-
lating motion. The normal contact forces on the graze and
detent balls were defined earlier. It is thus possible

to compute the tangential friction forces acting on the
graze balls, after the motion has been established. A
similiar line of reasoning applies to the tangential fric-
tion forces acting on the detent balls. %When these fric-
tion forces are obtained, they may be compared to the other
forces acting on the balls, and the validity of the assump-
tion may be tested.

Assumption C states that the coefficient of friction be-
tween all sliding parts is constant. This standard assump-
tion is usually true for the case of low contact pressures
between the surfaces in contact. In the present problem,
the impact nature of the graze forcing functions may cause
considerable contact pressures between the graze balls and
their contacting surfaces. As a result, the coefficients

of static and kinetic friction may be considerably higher
than the present estimates. 1In these cases, the coefficients
are found to be dependent on the relative velocity, at a
given pressure value, of the mating surfaces. The maximum
value of the constant coefficient of friction in the present
problem is assumed to be 0.1l. If solutions are obtained for
AM=0.1, and JA=O , the range of the effect of friction
forces on the problem can be determined. 1In a more refined
analysis of the problem, the variation of the coefficient

of friction should be considered.

Assumptions h  and € exclude all gyrodynamic effects of

the moving shell. Assumptionci.describes the shell as possess-
ing only constant spin velocity. When the shell grazes the
terrain, there will be a decrease in this spin velocity of
unknown magnitude. The centrifugal forces on the graze balls,
caused by the spin velocity, tend to retard the functioning

of the graze module assembly. By assuming the spin velocity

to be constant, a test is made of whether the graze module

will function under the most adverse condition. If the numer-
ical results indicate a borderline situation of operation, then
a more refined analysis could include an assumed functional
form for the decrease with respect to time of the spin velocity.
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For this case the tangential (i.e. in a direction normal
to the radial grooves) inertia forces on the gqraze balls
would have to be included. The remainina two rotation
components in the present problem, “vx and W, )
of the shell absolute rotational velocity are assumed

to be much smaller than bdj, and are thus neglected.

Assumption ¢ states that the shell moves in a plane which
is normal to the graze terrain, and remains at a constant
angle with respect to this terrain. This assumption implies
that the shell impacts the terrain with zero angle of attack,
and that there is no spin decay. »s the shell grazes the
terrain, it is acted upon by some net external moment.
Since there will be a change in all three components of the
shell absolute rotational velocity, the shell must change
its direction in such a way as to continually satisfy the
moment-moment of momentum equation. The net result of this
will be that the shell, at some time, will move out of its
original direction. The magnitudes and durations of the
graze forcing functions cover a wide range of values. 1In
addition, these values are not known with qgreat accuracy.
It is the anticipation of the vpresent desiqn of the graze
module that the total time from the initiation of graze

to the firing event is small compared to other times in

the problem. It thus appears that the above assumption,
which states that the shell direction is constant with
respect to the graze terrain, is reasonable. This assump-
tion can more accurately be tested when the numerical re-
sults are obtained.

Assumption A states that the graze balls translate only
in a plane through the center axis of the graze module. As
the graze balls move radially in their grooves, there will
be coriolis inertia forces which tend to displace the balls
in a direction normal to these grooves. In addition, there
will be components of the inertia force which tend to dis-
place certain of the balls laterally. This latter effect
is shown in Figure 24.

The two balls in the upper part of the figure, for the
position shown, will have acting on them inertia forces,
in a direction normal to the grooves, of magnitude

WM At A& 45" . It is assumed in the present.
study that the effects of these forces, and of the coriolis
inertia forces, are small compared to the other forces act-
ing on the balls. These forces could be included in a more
refined analysis of the graze module. The tangential in-
ertia forces on the graze balls, which are absent because
of assumption ¢l , are also neglected.
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Fig. 24 - Tangential Effect,due to (LT, on Graze Balls

Assumption\ﬁ assumes that the dimension C, is constant, so

that the equations of motion will have linear forms. Appen-

dix B contains the details of the computation of the range

of values of Cg . A constant value of this term is 3
chosen which will yield conservative results for the mo- ’
tion of the inertia weight. It is the feeling of the pre-

sent author that the error introduced by assuming Cz to

be constant is less than the uncertainty in the magnitudes

of the actual graee forcing functions.

Assumption ¢ assumes, merely for convenience, that the graze
force acts at the tip of the ogive: shell nose.

Assumption J states that the mass moment of inertia of the
firing pin, about an axis through its center of mass and
normal to the longitudinal axis of the shell, may be neglect-
ed. This assumption is made since the firing pin is a slend-
er element which, for a considerable part of its length, has
the shape of a thin walled shell. It should be observed that
this assumption was not made for the inertia weight, since
this element has a shape which resembles a thick disc.

Mssumption K states that the firing pin moves only forward
with respect to the graze module housing. When the detent
balls move outwar:# sufficiently, the firing pin is free to




move forward under the influence of the firing pin spring.
The axial friction force on the firing pin will always
act to oppose the motion, so that this frict..on force on
the firing pin will have a sense which is towards the
nose of the shell. This effect is reflected in the sian
of the terms Mme QT in T'quations
(11-18), (11-32) and (11-42. The criteria of whether the
firing pin does indeed move forward are

4y Mo > G (14-3)

and

\'L > G (14-4)

If this situation does not prevail, then the signs of the
terms Mmer in the above referenced e-
quations are changed for the regime of motion where the
firing pin moves towards the nose of the shell. The ini-
tial conditions of the firing pin would, of course, have
to be modified accordingly.

Assumption L states that the firing pin spring is a mass-
less element with a constant spring rate. This appears
to be a valid assumption for a first approximation solu-
tion of the present problem. This spring tends to be
compressed by the inertia forces induced by the direct
effect of QLo on the mass particles of the spring. 1In
addition, the firing pin spring has a mass which is not
negligible compared with the mass of the firing pin. It
is possible, then, that the spring force which is actually
available to accelerate the firing pin may be much less
than the design value which is used in this study.

Assumption M approximates the true agraze forcing functions
by a triangular shape. The general shape of the actual forc-

ing function is shown in Fiqure 25. 2n improvement in the
representation of the forcing functions may be obtained by
a combination of the functions
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| Acceleration

- Time

Fig. 25 - Typical Acceleration - Time Function at Impact

This new function for the acceleration (LY would be of
the form

oy = A ((’,ut - QVt )

(14-5)
where A,tk. and \J° are constants to be chosen, and
W,y < 0 and LU

These constants may then be selected so that the best approxi-
mation to the actual curve is obtained.
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15. CONCLUSICNS AND RECOIZILNDATIONS

An analysis has been made of the major elements of the araze
module of the Hi-Performance point detonating fuze, subject

to the assumptions which are described in this report. The
analysis shows a favor-ble form of solution for thc equation

of motion of the inertia weight, and this is an imporant fact-
or in the sequential operation of the graze module. The analv-
sis identifies two cases for the combined motion of the inertia
weight and the graze balls, and four cases for the sequential
motion of the inertia weight - detent balls - firing pin.

Any combination of these latter cases may occur, denending

on the values of the graze forcing functions. A numerical

form of each equation was obtained, based on present desiqn
parameters for the 105 rm lowitzer, :!1. The forcing functions
in one section of the report were also approximated by trianqu-
lar shapes. UNo numerical values are obtained in this report.
These values must be known before definite judgements may be
made of the assumptions.

The following recommendations are offered for future study.

a. the dependence of the acceleration ‘L5 on the shell
rotation

b. the effect of spin decay on the equations of motion

c. the effect of the tangential inertia forces ( i.e.
in a direction normal to the radial qgrooves) on the
graze balls

d. the dynamic effects of the firing pin spring, and
of the inertia weight creep springs

e. the inclusion of a more accurate representation of
the graze forcing functions

f. the inclusion in the impact configuration of the
initial yaw angle of the shell. This analysis, to-
gether with the inclusion of spin decay, would
provide more detailed results for the gyrodynamic
motion of the shell during impact, and its instability
behavior thereafter.

g. the effect of a variable coefficient of friction on
the motion of the graze module components.
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APPENDIX A - EVALUATION OF THE CONSTANTS OF THE PROBLEM

a. Location of The Centroid of The Inertia Weight

Figure A-1 shows the nominal dimensions of the inertia
weight. 1In the calculation of the location of the cen-
troid and the moment of inertia about the centroid, the
following portions of the inertia weight will be neglect-
ed

The groove, as shown in Figure A-1
The C.(F13%  locating hole

1
2
3. The ¢.21%92% hole

As a preliminary calculation, the centroid of a frustrum
of a right circular cone will be obtained. Figure A-2
shows the solid, and it is also piece "A" in Figure A-1l.

0150 N Piece A
. B =

T x("'
-— D.iiO-qJ &)
e = ma s el e
/ " i
.18 P 0.401,
Loob |
-__cb_.1 ,-"' / D.ES'U
i 1
| :
— 0,190 j-—
Groove
L — QLD

e ENRUER o el

Figure A-1 - Inertia Weight
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- O L~ - (T

L

|

C
r)

(03

C

S I

TE
0.487 | T )

Figure A-2 - Piece A of Fig. A-l

For a right circular cone, the volume is L TTp‘ h
the centroid is at W/, 2

The coordinate W is

Large Cone Small Dotted Cone

L (0.080)| £T(0.48T) (0,200 - 0122+ £ (0, i) sTeo.s Y(o,5)]

3T (0. 4e7) (0. 000) =L T (0. 2715 ) (0. ise )

[‘ . 0.4 96 -0, 00L0L
B QLS - GOl 25

W= C.0498
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The computation of G , the location of the centroid,
is shown on the following page. The result is

C, = O.iel (A-4)

., Moment of Inertia of The Inertia Weight About The
Centroid

Figure A-3 shows the elements which comprise the inertia
weight. The frustrum of a cone, Piece A, is approximated
as a circular disc. For a right circular cylinder, the
mass moment of inertia about a diameter through the cen-
troid is m( M/ +4L5//12 ) , where {' is the diameter
and & 1is the height. The moment of inertia about an
axis parallel to the centroidal diameter is

(A-8)
! L\L + ~——'£‘L m L
"\ A T ¢

where [Z-o _Jf the distance between the two axes. From
Figume A-3 , L, may be expressed as

“°=I¢,|+I$-,L+.-I¢15+I¢-)4- (n-9)

The mass WY may be written as vV , where v is the
mass density and V is the volume. 7., now appears as

(.

L 3 )L PA
_Ta, e_)_( ')!g)[_l.l‘d- L Q37 o aa J
4 16

< lH

— et
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Figure A-3 = Subsections of Inertia Weight

C. Relationship of Inertia Weight Motion to Graze Ball
Motion

Figure A-4 shows the kinematic relationships between the
inertia weight and the ball. X 1is the position of the
ball and Xo is the most outboard position. Y is the
position of the CM and Yo, is the position which corre-
sponds to X, . From consideration of the triangle

y-Yo (A-14)

‘C(\m6=

Xu _"X | v




so that
K= (—wtle )y + (Xo +0 ot ) (A-15)
Ay

CH4, Position 2
e

- 4"

i
Pnsition : Position 1
y } !
| Czg — (Y-Yo) .
I
— & Lon, ! |
Position 1 - ="
4 )
{

Figure A-4 Kinematic Relationship

of Graze Ball and Inertia Weight

From Equation (6-13), (A-16)

X=Cgy 1—C:q
Comparison of Equations (A-16) and (A-17) results in
(A=17)

Cg = - ceX &

CL‘ = Xo +L3L, (c:te
(~-18)
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d. Computation of Remaining Constants of The Problem

Figure A-5 shows the assembly of the inertia weight in the
graze module housing. All of the dimensions shown are nomin-
al. The ball diameter D is S/," , and the radius is 0,56 .,
From Figure A-S,

Xo = ILAL _ 0,150 = 0.SS4 (A-19)
011 +Y¢ + C. 181 = 0.0625 (A-20)
Yo = ©.173 (A-21)

Cy= 01T +0.156 ¢r30° =011 + 0,15 (0.86L) (a-22)

C: = 0,500 (A-23)
¢ ) Y
io
| § (A-24)
¥
$ 1422
1 i
Ch={}.iﬁl
0.71L0
0.8
r=x
o0.111
| 4
L _
0.015
e b 4 — g
Xo 0.156

Figure A-5 - Geometry of Graze Ball
Travel 90
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The dimansion C, represents the maximum possible motion
of the inertia weight with respect to the housing. From
the figure,

Cie 10,025 =0, 720 (P=24)
Cilo = ©.q« (r-25)

The maximum displacement, Ymax, of the ¢m of the in-

/
ertia weight is then

Sy, ot i -26)
= O, 2T15 +0, 099 (r=-27)
Ymax, = O. % 8 (r-28)

The permissible range of Y , the coordinate of the CM,is
thus

Yol Y & Ye +C0o (A=29)

Oo EL—{)) -L— (d é Ov ?)(-‘6 (’\_30)
The dimension C.; is a function of X . When X=Xo,C2 =Co(X,),
For any other X , (¢ =(, (%) . From the figure,

C. + D/L kw8 =X (A=-31)

Cz will now be found in terms of 4 . From Equation (2-15)

X= —Y (et ® + Xo + o et 6 (n=33)
so that

Ca=z Xo +Yp ot 30° 0. I1SG hn30° = Y (o 20°  (2-34)

In this maximum outboard position, 11 = uSO: 0.3,

so that

Comax. 7 Xe tYe e 30° =€ S0 41 307 -4y ot 50° (a-35)

C-i,mﬁx, = GhES -0, ISG _(C), S‘) (*-36)

Comax, = O. 476 il
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When the inertia weight touches the ceiling of the graze
module housing, the displacement is given by Equation (;-33)

and Cg_’M,M is

Crmal) =0.554 HOLATRLTEY = C. 1§65 =1L T3 8. 3¢ ) (1-38)

= 0,55 (P=318)

Cz,min.

The possible range for C: in the present problem is then

O.313 ¢« C, & 0476 (r-40)

e. Summary of Constants of Problem

The several constants of the problem are summarized below.
The system of units is pound-seconds-inches.

-S 5
Mg = LO% X107 A e B/

wmrt = 3,19 x \()_S' " r
sl i

VY\D = fu(a X '(—')

= - b 1
Mg = 6.30 X110
C, = 0.L1S C, =0.18|
CZ,M!»J. = O‘-S‘?) C"( :O.‘?)\q
Cz max. 2 0.4776 Cg = —1T3
(7) = 0. 306 C‘( = .03
L4 = 0.L03 C—lo = C>.Oq5_ |
C =G4 G 0. 541
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C . = 0.040 Mo

& = 30° Xq = 0.554

p =30° Yo = 027753
tand = 0.577 KXoy = 0. 140
et B = (.73 Yo = 0,340
T, =1X107 2. 302 ca. K = (9 M [on,
Fq = 8.52 (aximum) Ko =6 2. [in.
Fo = 3.9 (Minimum) =0 063
Ymax, = 0.368 Br=l0. 315

The spin velocity is assumed to be for the 105 mm.
Howitzer, Ml, so that

Wy = IS, 700 RPM = 1,640 Ned./pec.
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APPENDIX B - COMPARISON OF THE EQUATIONS OF MOTION OF THE
INERTIA WEIGHT FOR _ C, = Capun, AND . C o = Coimnn,

The equations of motion of the inertia weight for the two
regimes of operations, Equations (8-11) and (8-23), will
now be evaluated for the two extreme valves of C. S £ =
will be seen that the differences in these equations which
result from this variation in the magnitude of C., are
small.

a. Both Primary and Secondary Balls Exert "edgina Effect

on The Inertia Weight, Case I Operation

Using the numerical values in Appendix A, the equation of
motion of the inertia weight, Equation (8-11), appears
as

ya

-4 < -4
1.LAXI0 "y -l y = 3.64 X'\DS(LT + 1.31X10 g

-k . .
-2,2 X {0 " — 14| Cr sCe pax, = 0-4T6  (poq,

Py} - -4
.73 x\o‘A‘uJ -2lly = 3.8:1X10 saT+(.%‘!x‘\o ap

-6
-3.L X110 & —-147 Cz=Cz,mn =0.313% (R=2)

The above two equations will be compared term by term using
a percent difference, %D, as defined below.

$D= Coefficient of FEquation (B-2)-Coefficient of Equation (B-1)

Coefficient of Equation (B-1)

The results are tabulated in Table B-1l

Term Y A1 Qg | & Const.
3D +2.4 |[+47 |+477| O o | +4.3
Table B-1
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b. Primary Ball Alone Exerts Wedging Effect on Inertia
Weight, Case II Operation

The equations of motion of the inertia weight, Equation (8-23),
for the two extreme valves of (, now appear as

o F o G . !
AT I O Y P e NS

L)

i e XiO“4Lj *fb,&us

i 3,2 x0Tk - 4] 5 = 6 e e 1, < T )| (R

- L] 1 o __-:)" . . _4_
[.]Z X110 +uJ LG Ly Tl X Tt o5 K% L4

-0 o
8,0 XD S — ST A DR o s = O Bt 2 B0

The percent differences, %D, in the above two equations are
defined by Equation (B-6) as

$D= Coefficient of Equation (B-5)-Coefficient of Equation (B-4)
Coefficient of Equation (B-4)

I The results are tabulated in Table B-2
e T
Term Y Y Ly | @A * Const.
$ D +.6 [+ |+78 C C + 5.7
Table B-2 |

APPENDIX C - IMPACT OF INERTIA WEIGHT ON CEILING OF GRAZE MODULE

For very large magnitudes of the graze forcing functions, it
is possible that the inertia weight might rebound off the ceil--
ing of the graze with sufficient velocity to “pinch" a de-
tent balls on their way out, and thus prevent the closing of
the firing pin. This section establishes the conditions for

i the impact of the inertia weight on the ceiling of the graze
module. The time t, is defined as the time when the inertia
weight strikes the ceiling of the graze module housing. Since
the mass of the inertia weight is much less than the mass of
the shell, it will be assumed that the velocity of the shell
is unaffected by this impact. Thus, the rebound velocity of
the inertia weight will be governed by the definition of tne
coefficient of restitution.




For two spheres in direct central impact, the coefficient
of restitution € 1is defined to be

!

|
Ve -\Vg (c-1)
VA "NIB

where A and ® signify the two spheres and the primes
designate conditions after impact. The velocities in
Equation (C-1) are absolute. The impact of the inertia
weightwill be considered to be comparable to the case of
spheres impacting, and a representative value of & will
subsequently be chosen.

Figure C-1shows the inertia weight and graze module ceil-
ing, before impact. The velocity of the X4y # coordinate
system is Vg so that

Va = Vg +4 (C-2)
In view of the assumption,

| E
Ve = Vg (C-3)
and thus
/ ] o ! e !
. Va =Vg+Yy =Vpty (c-4) ,
where Y is the relative velocity of the inertia weight

after impact.

Vb = Shell
Velocity

Figure C-1 - Inertia Weight
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The results are substituted into Equation (C-1), with the
result

I 1 ot
Wl TS T
g = LR EERELUE R (C-5)

N\

Vi = vy, ( Vi, 4 “] Y= \’"\',

The final result is

The boundary conditions at t -1, are then

t -ty Yr Y mnx, (C-8)

(C=89)

t;'to) Y f:—(:jLJ
3
where Ymax. is the maximum displacement of the (M of the
inertia weight.

13

APPLNDIX D - NOILINCLATURE

Term Definition (Page on which first used)
L — Shell "imension (12)
i —_ faell Dimension (12)
O Comnonent of shell acceleration (12)
oy, — Component of shell acceleration (12)
A — Comoonent of sinell acceleration (12)
Py — Axial commonent of araze force (12)

Ve — Normal cormmonent of qgraze force (12)
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Term

4 B S

r”,ll kuﬁl

Wi G
Ce

Cq

Definition (Page on which first used)

Graze anale (12)

Mass of shell (12)

l'oment of inertia of shell about an axis normal

to the longitudinal axis, with respect to center
of mass (12)

Lateral acceleration of graze module housing (12)
Radius of gyration of shell, about an axis normal
to the longitudinal axis, with respect to the cent-
er of mass (13)

Constant of proportionality (13)

Constant of proportionality (13)

Inertial coordinates (14)

Secondary coordinates (14)

Absolute acceleration of an arbitrary point (14)
An arbitrary point (14)

Terms in expression for absolute aczeleration (15)
Unit vectors in the X,Y,2 coordinate system (15)
Absolute acceleration of primary graze ball (15)
Spin anqular velocity of shell (15)

Absolute acceleration of secondary graze ball (17)

Pamp anqgle of inertia weight (18)

Reaction force on primary graze ball 1, by floor
of graze module (18)

Normal contact force between inertia weight and
nrimary araze ball (18)

— X and Y components of F‘.,, (19)

Craze ball mass (20)
Constant (21)

Constant (21)
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Term Definition (Page on which first used)
= Normal contact force between inertia weiaht and
thl secondary graze ball 2 (21)
Fu,& , F.,,, — *and | components of o (2)')
[ —— Direct axial force on inertia weiqght (21)
IE
Fb,L —— Reaction force on secondarv graze ball 2, by
floor of graze module (22)
t, — Limiting time at which secondary balls no lonmer
exert wedqginag action on inertia weicht (23)

ELO’I — ’bsolute acceleration of inertia weight (26)
i:z.,P‘; — Normal reactions on inertia weight (27)
1:5, Fj." Friction forces induced by FL and Fﬁ; (27)

M. — Constant coefficient of friction (30)

/

FF+ —— Inertia force of inertia weight (27)

Ffb —— Total force of three inertia weiaht creep snrinas (27)
K, —— Total spring constant of three inertia weiaht creep
springs (27)
F(‘ —— Total initial force of three inertia weight creen
springs (27)
1 . — Ilass moment of inertia of inertia weight, about an
' axis through the center of mass and normal to the
longitudinal axis (27)
W+ —— Inertia weight mass (27)
€.,C.,C3,Cq, Cs, C.,Ly -— Constants (28)
F:F T, Total axial friction force on inertia weiqght (31)
SO VI TR DR PO A, — Constants (3€)

Y. —

Initial displacement, at € :¢ , of center of mass
of inertia weight (36)

Peak magnitude of triangular anmproximation of qraze
module lateral acceleration (38)

Time which corresponds to  tt. (38)

Time of cessation of trianaular amwroximation of
graze module lateral acceleration (38)
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W\(:

Definition (Page on which first used)

Constant (42)

Constant (43)

MAxial displacement of firing »in (51)
Positive constant (51)

Radial dismlacement of detent ball (51)
Positive constant (51)

Padius of detent ball (52)

tamp angle of firing pin (52)

Variable anagle (52)

laximum value of ¢ (54)

Normal contact forces between firing »in and
detent balls (55)

Peaction forces, in the axial direction, on
detent balls (55)

Tree lenath of firing pin spring (55)
Spring constant of firing pin spring (55)
Force of firing pin spring (55)

Initial force,at T =0 , of firing pin
spring (55)

""ass of detent ball (57)
‘‘ass of firing pin (57)
Constant (63)

Designation of cases of combined motion of
inertia weiqht, detent balls and firing pin (54)

Constant (65)

Time at which inertia weight loses contact with
detent balls (67)

Time at which inertia weight impacts on ceiling
of araze module housing (95)
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t N e a

Definition (Page on wnich first used)

Constant value of ‘| (69)
Constant value of ) (70)
Variable values of ‘| (70)
Constant value of bh . (70)

Dummy subscript to represent »,R or ' (72)
X, motion for Case P “peration (73)

Time at which detent balls lese contact with
firinag onin (74)

“}; motion for Case D Cperation (74)
Ilaximum disvlacement of firing pnin (75)

Time at which firing pin achieves its maximum
displacement (75)

Time at which detent balls have moved throuah

the distance ¢ : (75)

l'lotion of firing pin for > g (76)
Certain function of X, (66)
Certain function of X (66)

laximum outward disvlacement of araze balls (88)

liaximum relative displacement of inertia weiqght
with respect to graze module housing (91)

Maximum displacement of C'i of inertia weicht (91)
Diameter of craze balls (90)
Coefficient of restitution (96)

Absolute velocity, before impact, of the
coordinate svstem (96)

2bsolute velocity, before immact, of the inertia
weight (96)

2bsolute velocity, after impact, of the
coordinatz system (96)
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K3 —— Constant (39) ,

Ky — Constant (39) !

Ye ——  Complementary solution for 4 (40) i

Yp —— Particular solution for | (40) i

\/4 —— Mbsolute vglocity, after impact, of the o
inertia weiqglit (96) H

t.? —— Time for the center of a qraze ball to

rotate 45° with resvect to the shell axis. (77)

The reference for dimensions used in this report is drawing i
¥D-84300, entitled 'Sraze Delay ?ssemblv.” pll of the other {
subassembly drawing numbers are included on this drawing. r
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