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A GENERALIZED UPPER BOUMDIIMG ALGORITHM FOR 

MULTICOMMDDITY NETWORK FLOW PROBLEMS 

ABSTRACT 

An algorithm for solving min cost or max flou multicommodity flou 

problems is described. It is a specialization of the simplex method, 

which takes advantage of the special structure of the multicommodity 

problem. The only non-graph or non-additive operations in a cycle involve 

the inverse of a working basis, whose dimension is the number of currently 

saturated arcs. Efficient relations for updating this inverse are derived. 
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SECTION I 

INTRDDUCTIOIM 

Multicümmodity netuork flou problems require the selection of optimal 

floL) patterns for each of a number of distinguishable commodities in a 

capacitated network. The objective can be either to minimize the cost of 

achieuing given flows, or to maximize the sum of the flows,  When a node- 

arc formulation is used, these problems may be written as block diagonal 

linear programs with coupling rows.  In this paper a compact inverse version 

of the simplex method for solving multicommodity problems is described. 

By using the special structure of any basis matrix, the simplex method can 

be performed while maintaining the inverse of a working basis whose dimensior 

is only the number of currently saturated arcs. Aside from multiplication 

by this'inverse,all other simplex computations are performed using addition 

or graph theoretic operations. The algorithm is a specialization of the 

generalized upper bounding method for block angular problems (%], [5], 

It is similar to Saigal's method [6] which was derived using an arc-circuit 

formulation. 

The approach taken here has two important advantages. First it 

presents the algorithm as a direct specialization of a well known general 

procedure for linear programs.  Second,in Saigal's work, at each iteration, 

several systems of linear equations must be solved and no procedures are 

given for updating the matrix inverses associated with these equations. 

Here we show that the only non graph theoretic or nan additive operations 
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required are multiplication by and updating of the uorking basis 

inverse. Hence all the nonunimodular aspects of the problem are 

condensed into a single matrix uhich appears to be of minimal size. 

Efficient relations for updating the uorking basis inverse are 

derived here as specializations af those in the generalized upper 

bounding method. 
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SECTION II 

PROBLEM STATEMEIMT 

Cünsider a network uhich has nodes 1, 2, ..., ..., IM and directed 

ar^s a,, a„, ...,   a^. The case uith undirected arcs uill 

I        be considered later. Arcs a, a^ (>^<CM) have capacities 

j        b,, .,,, btf.  Let there be K commodities and define x.   as the 

flou of commodity k in arc a . Each commoditv k has associated m ' 

1        uith it a source node s.  and a sink node t. . The constraints are 

1.  flous are nonnegative 

xkni > 0      (all k and m) (1) 

2. capacity restrictions on arc a ^        ' m 

K 
s xi.m "^  bm     

(1< m<^) W . . km -  m       -  - k=l 

3.  flow conservatidn for commodity k at node n. 

r-fk    if n = 3k 

E x.   - E x, if n ^ s. . n ^ t      (3) 
a eB km  aCA km ~ S     ^      k      k 

m n     m n 

"+fk  if "^k 

where f. is the amount of flow of commodity k in the 

network, B is the set of arcs terminating at node n, 

and A  is the set of arcs originating at ncde n. 

• 



For the min-cost problem,  the floua    f^    arB giv/Bn and the obJECtiv/e 

is to minimizB total cost 

min    Z = E    ckm xkm 
i<,m 

(4) 

The max-flou problem vieus the f.  as variables and has objective 

max E f. (5) 

Since the max flou problem is a special case of the min cost problem, 

UB will use (4) as the objective. 

In matrix form (1) - (U)  becomes 

minimize Z 

subject to 

Z S^,,,S^ x     • #<   x IM    A21 '•• A2M SK1 • e • 'KM 

1 Ö -cn -c1M -C21 -C2M ■   »   • -cK1 -CKM 

G 
^/ '/^ 

0 
'j^ 

0 •   • • 
^ 

0 

F 

F 

= 0 

= bl 

=  d. 

(S) 

= dr 

=  d,. 
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In the aboue linear program there are 4 + 1    coupling roua and K 

identical diagonal blocks. The miatrix F ia the node-arc incidence 

matrix of the network uith the laat roui deleted. Hence F ia (\l-l x M 

and has rank l\l-l. The variables S  are nonnegative alacka for the 

capacity constraints, and the vector d.  haa -f.  in position  a. , 

+fk in poaition t   and zeroes elaeuhere. 
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SECTION III 

THE  GENERALIZED UPPER BOUIMDING ALGORITHM 

FDR BLOCK ANGULAR PROBLEMS 

Consider the general block diagonal problem uith coupling rous. 

minimize    Z 

arubject to    AQXQ + A-x1 + .   .   .  + A..X.,    =    b (7) 

D,1x1 =    b. 

Xi >;0 

Vh    =    bh 

I 
I 

uhere each    A.     is an    m    x n.    matrix,  each    D.     is    m.  x n.,   and i o        i iii 

Z is the first component of    x .    We assume throughout that the 

constraint matrix of (7) has full rank.    Hence each    0.    has rank 

m..     The method is based on the follouing result proved in  [5], 

Theorem 1      Any basis matrix    B    for (7) can partitioned to have 

the form: 

nifi i ii ii ■ 
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i 

m.j-. colunina 

B = 

A 
B A11A21   *   '   '   AK1 

Bi 
C B

2 

• 
• 

• 

BK 

j   mc rows 

(8) 

non-key 
columns 

^ 
key 

columns 

where each    B.     is an    m.   x m.   nonsingular submatrix of D.. 

Using the fact that the   .B.     are nonsingular ue develop a trans- 

formation matrix V such that    B T_   is block triangular.    The simplest 

such I has the form 

T = 

h 0 

\l h 

W.Q    rows 

m'D columns 

where    Iivand    1^    are identity matrices and 

W = - 

,-1 

B -1 
2     . 

.-1 

(9) 

(10) 

a ■■■I   i 
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Then 

B T = 

8 

m.g columns 

B A    A Hll  21"* 
A 
Kl 

0 

3i 
B2 

m 

• 

'ah 

m       rous 

(11) 

s       v 
is the block triangularized basis matrix.     The submatrix    B,   given by 

B = ^ +  [A11  A21  ...  AK1  ]  W (12) 

is called the uorklng basis.    Since    B T^    is nonsingular,     B    is 

also nonsingular. 

I 
I 1 

Ue nou examine hou the operations of the revised simplex method 

may be carried out using quantitites associated uith the uorking basis. 

These operations require only that tuo  sets of linear equations,   uith 

coefficient matrices    iB'   and    B,  be solved  (one  for the pricing vector, 

the other für the transform of the entering vector),    Triangularizing 

B    greatly simplifies their solution. 

Determining the Simplex Multipliers.     Here the vector of simplex 

multipliers   TT-   (rr     TT TT   )  ig to  be  computed.     These  satisfy 

or,  since only    Z    has a nonzero objective coefficient,   and its column 

is the leftmost column of B, 

TT B =  (1,   0 0) (13) 
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Multiplying on the right  by    T, 

n (B T) =   (1,   G,   ....   G)  T    =     (1,   0 0) m) 

Since B^ T_ is triangular, these are easily solved yielding 

" _ = first rau af B* 

71 i = -"o Ail Bi 
-1 

(i = 1, ..., K) 

Thus if B~  and B7  are maintained, the vectors rr  and 

17 .  are easily computed. 

(15) 

(16) 

Determining the Column to Enter the Basis.     This is done as in 

the  revised simplex method by computing 

c    =- T 
j -J (17) 

for each ncnbasic column   P.,     IMote that only 2 partitions of any 

colurr.n    P.    are nonzero.     If 

min    c . = c    > 0 
J        s — 

then the current solution is optimal. Otheruise P  enters the 
—a 

basis.    Suppose    P      is a column from the  <T      block so that 
■■s 

p = [pQn, o ... a, p  , o ... o]: —s su SQ- 

- - 
, -. .—^ 
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ID 

Frirdi.-g   'p    = B"1  P 3    —a      —     —« 

Here uie must  solv/e the  linear  syatem 

A 
B P    = P 
 S        —9 (18) 

Let t-n (19) 

SLbstitüti-g  (19) into  (IB) gives 

CB T)  Z = P  —     —s 
which  cap be easily  solved  for    Z =  (Zn,   Z. ,   ...,   Zu)

/since   .8 T 

is block triangular; 

CD) 

Z.   = D 
i 

ZQ-^ B^ P 0        c*      so~ 

ZD=B'   iPsO -    **i z<r 

i  = li   . •. (  H  ;  i /   o- CD 

(-) 

C3,) 

T*.U3 ZJJ-  and    Zn    can be computed if    B~      and    B"       aie known. 
■D 

A A        A 
Then    P    =  ',P „,   P 

A 
._g sß,   '' i-    •••>   Psyi>^     is  -c'mP,-,tecl  ^^-rT,   (15)  giving 

A 
P 

50    '  ZD Ck) 

A 
p . - iy. zn 1   =   1 ;     . . . ,    K;    W     o- (15) 

A 
P       =   W     7       +   Z^_ SO"      cr □ cr 

Lü^exe     I/.     is the 
i 

partition of    U. 

^.^„m^^. 
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Choosing the Column to leave the Basis. This is done according to 

the standard simplex formulas. If the solution is not unbounded, then 

column    r    of    E3  i   F*        leaves the basis.     Assume that this column is 
■h h 

from the p block of (7). Since computing the neu values of the basic 

variables also proceeds as in the revised simplex method, ue nou consider 

updati-g the matrices B" , B7 and any other quantities needed for the 

^B>t   iteiation. 

Updat i.-g Formulas. There are tuo cases uhlch can occur.  Drly the 

results axe stated here; derivations may be found in [5], 

Case 1  The leaving c^umn is ron-feey,. Here the entering columr car 

directly replace the one leaving without destroying the block diagonal 

structure of £. Then ror.e of the B7  charige, and B~  is trans- 

fürmed to *B~ by a piwot operation. 

•B"1 = E B"1 

where E is a." m x mn elementary column matrix equal to the identitv, 

except i" coljon r.  Let i.   be the i   component of P .  Then 
1S 5 

coluTi'-    r    of    E    has components 

r 
-  ais/ais 

l/a rs 

1 = 1?   ...jHi«;     i^r 

i = r 

C.V) 
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1 
Case 2  The leaving column is a key columr.  Here when caluTin 

P.  leaves the basis, the block Bp will have only mp - 1 columns. 

Her re it is necessary to find another basic column from the f 
block to restore the basis structure. Theie are two subcases. 

th 

1 
I 
1 

Case 2a      There may be a basic ron-key column  from the    o 

block uhl^h ca:~ be interchanged Lüth    P.    in the basis,    Then the 

leaving column    P.      uill become non-key and Case 1 can be applied. 

Suppose    P.      is the    i?        key column in the basis and that  it will 

change places with the    i, non-key column.    Then the working basis 

is updated by 

^B"1 = E B"1 

where E is an mn x mn elementary row matrix equal to the identity 

except in the i,*'1 row. Row i, of E is just the i„        row of 

t~e aubmatrix U in the transforming matrix T in (9). There is a 

non-key column which can be exchanged with P.  if and only if there 

-1    ~Jr 
is a nonzero element in this row,  Bp  will charge by a simple pivot, 

-1 
and all other B,  will remain unchanged. 

Case lb      If Case 2a cannot be performed, then by Theorem 1, the 

th 
e teiing column P  must be from the p  block and a direct pivot 

is possible. In this case Bp  changes by a simple pivot, and the 

walking basis will not change at all. 
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This cümpletes  the description of the algorithm for the  general 

•rase.     Mit a   fiat   at  each  iteration  it   is necessary  to update  at most 

an    m    x m       working basia ir„erse  and an    m.   x m.     diagonal  block 

ir.verse.    All  updates can be perfomed using multiplication by an 

eleme/'ar»/  IUOJ or column matrix. 

....    , ... .^^^ ,      . ■          - . __ ...^—^tofc» 
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SECTIDIM lU 

WORKING BASIS STRUCTURE FDR THE MULTICOMMOOITY PROBLEM 

In the fdllouing sections the generalized upper bounding algorithm 

is  applied to the multicommodity problem.     Because of the special 

structure,  significant simplifications occur. 

Consider any basis matrix    E[   for the multicommodity problem  (6). 

By Theorem 1 the basis matrix can be partitioned as follous 

s+1 
rows 

-s 
rous 

B = 

s+1 Jt-3 
columns columns 

1 roujs 

(28) 

1^ 

mmmmmm 
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In this basis there are    s     saturated arcs,   and hence  ^-  s    slack 

variables in  the basis.    For each of the    K    cammodities there is a 

diaganal block    B.    uhich,  by Theorem 1,   is an    l\l-l x (\l-l    noneihgular. 

submatrix of the node arc incidence matrix    F,    The remaining    a+1 

columns in  [R,   R,, R-,]'    consist n^ the cost variable  (uhich is always 

the first basic variable) and    s    columns uhich are excess columns from 

some of the  ccmmodity blacks. 

It  is uell knaun that the    l\l-l     arcs corresponding to the columns 

of each matrix    B.     form a spanning tree in the netuork  [2].    Consequently 

ue will be able to perform all the simplex operations which require 

B7      by graph theoretic means,   so  it  is not necessary to maintain these 

inverses   (or the matrices    B.) explicitly. 

The only portions of the algorithm which are not "graph theoretic" 

involve multiplication by the working basis inverse, so we now consider 

■the structure of the working basis.     It  .arises   from the  suomatrix 

Rl 
D 

Ro I 

of    B    in   (28) when    B_    is triangularized by  driving    R,     to  zero. 

Suppose    IP    is cne of the    s    excess  columns in    [R,   R^  R-,]'   of the 

basis,   and that  it  is from the    k 
th commodity blcck,   so 

i  '   • ■        
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P = (P0, D ... G, Pk, D ...D)' 

uhere  Pn has /( + 1    components and P.  has l\l-l. The 

I        Dorrespondlng column in the uiorklng basis uill then be given by 

QD = PD - Akl Bk1 Fk (29) 

(see  (12)).    Here    P.     is a column of    F    not contained in    B   , 

so  it  corresponds  to   an out-of-tree arc   for  the    k        commodity. 

Any such cLt-ofrtrge, arc forms a unique  circuit uith the arcs 

of the spanning tree,   and this circuit  is  described by the vector 

- B~    P.     uhose    j component  is    [ 1 ] 

+1      if the tree  arc corresponding to the    j        column of    B. 

is in the circuit and oriented the  same as the out of tree arc. 

-1    if the tree arc corresponding to  the    j        column of    B.      is 

in the circuit and oriented in the opposite direction as the 
out of tree  arc. 

D      if the tree  arc corresponding to  the    j    '    column of    B.      is 
r.2t in the circuit. 

Hence the vector     -  B~     P.     can be calculated uithout knouing    B~ 

by a simple labelinc;  orocess in the netuiork: 

(a)    Label the destir.atiar; ncde of the cut-of-tree arc with 

the label     +0.     Go to Step b. 
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(b) Take some node n uhich has been labeled but not scanned 

and scan it. This means that every unlabeled node which 

is con-ected to node n by a tree arc (in the k  spanning 

tree) is given a label.  If the new node is reached by 

moving foruard on arc a , then the neu node is labeled +m. m 

If the neu node is reached by moving backward on arc a , 
m 

then the reui node is labeled -m. Go to Step c. 

(c) If the origin node of the out-of-tree arc has been 

labeled, go to Step d, Dtheruise go to Step b, 

(d) Backtrack throLigh the tree until the +0 label is found, 

recording the vector -B~ P.  as the backtracking is 

performed. 

■'■ --- ■ m 
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I 
The submatrix A. .  in (29) has columna uhich contain a cost 

coafficient as the firat component, and either zeroes or a unit 

v/ectoi" as the remaining components. Essentially this matrix per- 

mates the arcs of the tree into the order in uhich they appear 

in the capacity constraints. Because B~ P.  is all 0 or +1, 

no multiplications are required to compute fi., B~ P  and hence 

Qn in (29) is readily computed. This column fQn of the uorking 

basis can be interpreted as follous. For i = 1 X   let the 

i   capacitated arc be the one corresponding to the i+1   roui 

of B, Then 

a) The "irst component of Qn is the sum of the cost 

coefficients of arcs in the circuit for P, uith a 

plus sign for arcs oriented aa £'s arc and minus 

otherwise. 

b) The remaining components are all zero or + ones uith the 
ii"h ■ — 

i+1   component being 

+1 if the i   capacitated arc is the arc associated uith 
the column P . 

+1 if the i   capacitated arc is in the unique 
circuit formed in the tree by the addition of P 
and oriented the same as P. 

-1 if the i   capacitated arc is in the unique circuit 
formed in the tree by the addition of P, but oriented 
opposite to P. 

D otheruise. 

As a result of this interpretation,  Qn can be computed by a simple 

extension of the labeling algorithm for finding circuits. 
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The slack col umns in the original basis are not affected by the 

triar.gularization. Hence the working basis B uill have the foi 
jrm 

B = 

B+l    J~l 

S+l 

(3D) 

where the columns of 
have the form of Q  in (29), 

The algorithm presented in Section III.involves the inverse of B 

in several places.  In general, the elements of B'  are not integers, 

ard it is necessary to maintain B"  explicitly. The presence of the 

slack calumns lets us write 

.-1 

,-1 

^Si 

0 

(31) 

and we will mair.tai.-! only    S"       explicitly.     Rows of    -S^ST      are 

just  •linear combinations of rows of    S"      uith coefficients    +1, 

so  they  are easily obtainable  from    S~      wherever needed. 

  -__^_^_ 
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The result, then, of the special structure of the multicommodity 

problem is that it suffices to maintain and update a submatrix, 

37 , of the uiork.ing basis inverse. The dimension of S~  is 

s+1, uhere there are s saturated arcs in the current basis B. 

Thus, considerable savings are obtained whenever the number of 

saturated arcs is small relative to the total number of capacitated 

arcs. All other computations are performed by graph theoretic means, 

1 

I 
I 
I 
I 
I 

j 
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SECTIOIM \1 

THE ALGORITHM FOR THF MULTICOMMODITY PROBLEM 

Assume that at the beginning of some simplex iteration the 

folloiüing quantities are knoun: 

1. The Submatrix S~  of B"1 in (31) 

2. The values ar.d  indices of the basic variables 

3. The spanring tree for each commodity 

In addition it may be desirable to maintain the submatrix 1/ of 

T in (9) and the submatrix S2 of B in (30) (see Section \ll 

for further discussion). The simplex iteration proceeds as follous. 

Determining the simplex multipliers. By (15) the multipliers TT 

for the capacity constraints are found in the first rou of B~ . 

Referring to (31) multipliers for saturated arcs are found in the 

first row of    S~  and multipliers for unsaturated arcs are zero. 

Uncapacitated arcs can be assigned a multiplier of zero. The vector 

T .  contains multipliers for the rous intersecting the k   commodity 

block.  By (IS) these satisfy 

TT  B = -Tr  A 
k Dk    0 kl 

(32) 

mntm^^imillimmam 
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The vector n
n has a 1 as its first component, and the first roiu 

of A   contains the negatives 8f thB coefficients for the arcs in the 

l<th tree. Hence for 1<. i <■ N ~ 1    the i h component of 

- ^  Akl is the cost coefficient of the ith arc of the l<th tree 

minus the component of ^D    corresponding to this arc*. Ue yill call 

this the price,  p. , of the i '  tree arc.  Since B  js triangular, 

equations (32) can be solved by successive elimination.  In graph 

theoretic terms the procedure is: 

I 
i 
I 

1. 

2. 

Assign node N    a multiplier of D (the equation for 
this node has been dropped from F) 

nl Suppose the multiplier TT .   for rode n^ has been 

evaluated and n, is connected to n„ by an arc a. 
in the tree with price p. . Then 

"2.   n'l i    . 
<      + Pk    if the arc is oriented    n       xn 

1      7n? 
k    = 

11    ^ _   n   1 
k    *      k - Pk    if the arc is oriented    n 

3.    Cc^tir.ue branching alo-.D thp    i,th    * 
have been assigned mltVlUrefur thT ^S11 a11 "^ 

-ne    K        commodity. 

Strictly speaking,   urcapacitated arcs have no components in   TT. 

The multiplier  for such an arc is taken to be zero. 

^^^M   
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Defexmi'!: ig the colümr; to enter the basla.  Let c.   be the 

relative cast factor for x. . Referring to (6), 5.  has at most 

four nor-zero terms: 

n.   n2 
ckm = ckm -  "Di + "k - nk m 

uhere 

r,  is the aiigin node of arc a i m 

is the destination node of arc a m 

ar.d 

TT „. is the component of TT  corresponding to arc a if 
m 

the arc is capacitated and zero otheruise. 

The slack variable  S.  has relative cost factor - ^i-,*. 

Suppose column P = CP_n, Ü ... G, P . , 0  ... 0]'  from the sD sk' 
th k ' commodity block is chosen to enter the basis,  (k = D implies 

P  is a slack column). 

Findi-ig P = B"  P  The trarsformation of the entering column    —s  —  —s 

P  1- terms of the currer.t basis is  outlined in equations (21) - (26). 
"■S 

I." terms of the multicommodity problem these steps become 

Zi =0 

Zk = Bk1 Psk 

i = 1 > •.. i H 1 / k 

Z0 = B"1 (PS0 " flkl Zk' = S'1 «SO 

Mate that Z,  is just the negative of a circuit vector ar.d Q n i 

a LDlum- like QD in (29). 



■'■■—'             ■ 

Hence both    Z^    and    QB(-)    can be camputed using  the  graph  theoretic 

labeling procesa described in Section 11/.     To obtain    Z      it  is 

necessary to multiply by    B"   ,   a non-graph operation;     The  details 

of the computation are: 

zo = B'1 %0 
^ D 

-s.sj1 
I 

*sD 

'sO 

S"1  Q1 

1    H
B0 

-^'i1 in + io 

so a matrix multiplication of order s+1 must be performed to get 

Sl ^sG * ThBn the  rest of the column is generated by additive 

operations, since Sn is a matrix of zeros and + I's. 

A 
Transforming back  to    P      is  accomplished as  in   (24)  -   (26) by 

A 
= zo 

^ 
= \1, 

1 
zo 

K* = "k zo + zk 

i = 1,   ...,   H   ;   li^k 

Here \l.     is an l\l-l x ^ 1  matrix uhich is all zero except in 

columns corresponding to excess columns from commodity block i. 
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The nonzero columns contain the circuit vectors for those excess 

A columns (see (ID)). Thus this transformation from Z to P 

is also accomplished using only additive operations.  If the entering 

column is a slack column, then the computations are even simpler - 

all Z.  are zero (i ^ D), and Z- is just a column of B" , 

Choosing the Column to leave the Basis. This is done according to 

the standard simplex formulas. Assume that column r of B leaves 

the basis. Since computing the neu values of the basic variables 

also proceeds as in the standard simplex method, ue nou consider up- 

dating the submatrix S~ . 

i i   mmmalmmtmimmtmtmtmmmmlmmmimmil 
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SECTIOIV UI 

UPDATING FORMULAS 

1 
I 

In previous sections, ue have maintained only a submatrix S~" 

of B 
-1 

All other quantitites are calculated as needed by graph 

theoretic and additive methods.  Hence, in the updating procedures 

for B" , it suffices to ccnsider updating only S~ . The cases 

are the same as in Section III. 

I 
I 
I 

i 

I 
' 1 

1 

by 

Case 1  When the leaving column is non-key, B"  is updated 

♦B"1 = E B"1 (33) 

where E is an elementary column matrix.  Since none of the diagonal 

blocks are affected, the spanning trees are unchanged. There are 

h  subcases: 

a) The leaving column is a flou column, and the entering 
column is a floui column. 

b) The leaving column is a flou column, and the entering 
column is a slack column. 

c) The leaving column is a slack column, and the entering 
column is a flow column. 

d) The leaving column is a slack column, and the entering 
column is a slack column. 

Ccnsider first Pases la and lb in which the leaving column 

is a flow column. Then, writing (33) in partitioned form gives 



  I pavaOT^wa 

B -1 
c 

*R-1 

I 

1 

'l 
\> 

0 

1 

I 
—•- 

I 

^i1 0 

-S2Si1 I 

-I1 0 

-•vsr i 

Luhere 

1 
'l 

«., 

Ok) 

Hence S"1 is updated by an elementary column matrix. 

If the entering column is a flau column, then the updating 

is ccmplete.  If the entering column is a slack column, then 

S~  can be reduced in dimensicn by ens, since *S,  in ("*!+) uill 

ccntain a unit vector column.  To see this, suppose that the leaving 

column is in position r in the basis (r < s+1) and that the slack 

in row t  (t < s+1) is entering.  As shown in Section 1/ the first 

l+L  cDirtpcr.ento of the transformed entering column are the t 

column of B . Updating the working basis is accomplished by 

pivoting on the r"'  element cp this column, as illustrated below: 

si1 0 

-S2S? I 

f 
column t 
3f    B"1 

s— r 
(pivot) 
element 

t 
Pivot column is 

,-1 

^mmm 
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Sir.cB the pivot reduces the pivot column to a unit vector, it uill also 

reduce column t of B~  to the r   unit vector. Consequently ue can 

reduce the dimension of *S"  by dropping its t   column and r   row. 

In Cases 1c and Id, the leaving column is a slack column in 

position r in the basis (r>s + 1), so (33) becomes 

~ 

♦ Q-l 

I D 
\ 

0 

0 
'l 

C 

'l 

Here 

*c-l 

*? 0 

-VI1 I 

I - G V 

I - ?, 

-I1 0 r 
_*q   *c~^ \ 

^ 

t 
colLim: 

T 

. th 
uhere v is the r-s-1   X-DUJ of S^. As seen from (35), the block 

triangular structure of B"  has been destroyed by the presence of the 

eta column.  If the entering column is the slack in IOU t, (Case Id) 

then just as in Case lb, column t of *B~  uill contal". the r' 

unit vector. The structure can then be restored by exchanging the 

r   and t   columns of *B" . This correaponds tu replacing colum- 

t of *S"  (which is a zero column) with t^e COIUTI- 
?I- 

(35) 

(3 ') 

■MM 
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Finally, if the entering column is a flou column (Case 1c), 

,-1 *S~'L must increase in size by one since there is one less slack 

in the basis. To preserve the structure of *B" , the r   column 

and rou are moved to position B+2. Then *S"  is augmented by a 

border 

k1 d 
i   u M 

uhere (   is the r-s-1   element of ^s and w is the r-s-l 
( 

rou »c-1 of   -*S2  *S7  .    To compute    u    note from (35) that 

- b2 b1    - 

'''r N Sz3!1 

Hence its    r-s-1        row is 

D ^        0 S2  S-1  = -^v S-1 (37) 

th uhere,   as in  (36),   v    is the    r-s-1 row of    S„.     If the calculations 

in  (36) are carried out  from right to left(as is clearly preferable), 

vS~      uill  already have been computed. 

■■MMaaMBM 
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Case 2      Uhen the leaving column is a key  column,  the corrBsponding 

arc is an arc in one of the spanning traes  (say  for commodity    k).     Re- 

moving it  from the basis uill  destroy this tree,   so the    k        spanning 

tree must be redefined.     Aa in Oase 2a of Section  III,  ue first attempt 

to  exchange the leaving column with a basic non-key column from block    k. 

Coneider the basic non-key columns from block    k.    The arc corresponding 

to each of theee induces a unique circuit  in the    k        tree.     If one of 

theee circuits contains the leaving column,   then adding that arc to the 

tree and removing the leaving column uill leave us uith a neu spanning tree. 

Ae in Section III,  the uorking basis is then updated by an elemantary  rou 

matrix, 

r 
•B -1 B -1 

(38) 

The vector    v    is a rou of the submatrix    U    in   (10).     It contains zeroes 

except  for    +1    in columns corresponding to excees columns from block    k 

uhosB circuits involve the leaving column.     Hence,   in particular,     v    is 

zero in the last ^f-s    columns,   ths slack columns.     Hencs,   in partitionad 

form  (38) is 

»S^1 D 

-*s2*s-1        I 

I'. 
D 1   ^ 

'', 

D I 

^ 
D           i 

-VI1 I 

L 
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uhere v,  contains the first s+1 componsnts of v. Then 

i *s-l 
,-1 

gives the updating relation for bl  ' IMote that only one row of 

S~      changes,   and that row becomes a linear combination of rows of 

S7      uith coefficients    0,  + 1.     Hence no multiplication is required 

for this update. 

If no  such exchange is possible,  then,   as in Case 2b of Section 

III,   a direct pivot can be performad.    A single spanning treeits Töde- 

finsd  (one arc changes).    There is no change in the uorking basis and 

isnce no change in    S. -1 

,-1 In each case,   in addition to updating    S..       and one of the    K 

spanning trees,  ue may wish to update the submatrices    \J    and    S„. 

Each column of    \1    contains at most one nonzero partition,   and that 

partition is a circuit vector of the form    -B~    P. . 

When a non-key column leaves the basis,   (Case 1),  one column of 

\J    mill change and a neu circuit vector must be computed.    Uhen a 

key column leaves,a spanning tree  (say the    k        tree) changes,so all 

circuit vectors in    \l      must be recomputed.    Since at moat tuo partitions 

of    \l    are changed at any iteration,   it may be desirable to store the 

nonzero columns of    U.     explicitly.     Since these contain only  zeroes 
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and + ones, they can be stored compactly.  The alternative is to 

rBCompute them at each cycla. The best courae of action depends on 

|       the amount of high speed storage available. 

I The matrix S«  ia a aubmatrix of B, and aa ahoun in (29) B 

haa columns of the form 

*D = PG - Akl 
Bk1 Pk 

Aa ahoun in Section  I\l,   Q-    is eaaentially a permutation of the circuit 

vector    -Bj"    P. .     Hence    S_    probably ahould not be atored explicitly; 

it ia eaaily generated as needed from the columns of    \l. 

i 

M^aaiMMa—Mt^ ^ -   -         
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SECTIOIM Uli 

MAX FLOW  PROBLEMS AMD UNDIRECTED ARCS 

To  salve the max flau prüblem, a column for the commodity  floui 

variable    f.     must be added to the k        block.    This column corresponds 

to  a  fictitious arc from the  sink t.     to the source    s.     for commodity 

k. The right hand   side vectors    d. in  (6) are all  zero,   and the cost 

coefficients are unity  for the    f. and zeroes otheruise.    Asids from 

the change from minimization to maximization,   the  algorithm proceeds 

as before. 

As shoun in [ 3 ] problems uith undirected arcs can be formulated 

by  defining neu variables      y.-,      and    y."     satisfying 

+ 
xkm =    ykm    "    ykm 

Vk'm    >   0' Vk'm    > D 

Then the capacity  constraint 

^xkm|<    bm 

becomes 

E  (y.       +    y.    )   <1    b .      ykm ykm      -      n 
k 

33 
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provided that 

'km    ykm 
=    0 (39) 

If the prablem has an optimal aolution,  then it has a solution in uhich 

(39) is satisfied.    The constraint matrix then takes the  form 

(T ö h .   h • « • i 1 K ^          1 

P i i 0 I D « « • I D I D 

F -F 

The algorithm described above can be applied directly  to this case. 

The structure of the uorking basis  is exactly the same.     The only 

change  is that  the extra columns must be considered in the  pricing 

operation. 
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