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Abstract

We consider the equilibrium statistical mechanics of classical
fluids in which the potential encrgy is decomposable into repulsive
pair interactions, A gencralized clustcer expansion is derived relating
the thermodynamic and structural properties of such systems to those
of the hard sphere fluid, The expansion is ordered by a softness
paramcter € which is essentially the range of intermolecular distances
in which the dificrence between the Mayer f functions for the repulsive
potential and an appropriate reference hard sphere potential is non-
zero, The first {lovest order) opproximation gencrated by the expan-
sion equates the free encrgy and y(r) for the fluid to the respective
functions appropriate to o system of hard sphercs with diancter d,

Here y(r) = g(r) expl[+Bu(r)], where g(r) ond u(r).denote the radial
distribution function and repulsive pair potential respectively, A
prescription Is given for choosing a temperaturc and density dependent
diemeter d of the reference hard sphere fluid so that the first approxi-
mation for the frec encrgy contains errors of order £* only, and the
corrections to the first approximation for g(r) are of order &,
The methad is used to calculate the properties of a fluid whose’ inter-
molecular potential varies as r"'. The repulsive potential that produces
the repulsive forces in the Lennard-Jones potential Is also studied,
Since the properties of the hard sphere fluid are known from the re-
sults of computer calculations and conveniently summarized by analytic
equations, the application of the first approximation is numerically
very simple, With this approximation, the results obtained for both
model systems agree closely with those obtained by Monte Carlo cal-

culations,



1, _Introduction

At least since the time of von der Waals and Maxwell, the hard
sphere or "billiard boll" model has been thought to represent many
of the esscntia) features of realistic intermolccular repulsive forces
in equilibrium and non-cquilibrium phenomena, As a result, much effort
has been devoted to understanding the propertics of hard sphere fluids,
The Percus=Yevick equation' for hard spheres has been solved exactly,?
giving convenicnt and accurate information about the cquotion of state
and pair distriLlution function at low densitics, The scaled particle
theory® is of comparable accuracy for the thermodynamic properties,

To extend our knuwledge to hlghér densities, Monte Carlo and molecular
dynomics computer calculations have been performdd,*”® Recently, anslytic
expressions for the equilibrium properties have becn presented which
accurately surmarize the results of the computer calculations

at moderate and high densities and which have the proper functional

form at low density,® In addition, molecular dynamics calculations have
shown that hard spheres exhibit a first order phase transition,’
vhich is similar in many respects to the liquid-solid transition of

real fluids,®?

The hard sphere model s obviously an idealization, and the purpose
of this paper is to discuss, within the context of equilibrium statistical
mechanics, the relationship between this idealized model and the
smoothly varying repulsive forces found in real fluids, The usual
method for doing this is & perturbation theory of some type, and several

authors have developed theories to relate hard sphere data to the properties

of fluids with other repulsive potentials, Rowlinson considered fluids whose

repulsive intermolecular potential varied as the inverse n-th power of



the Intermolecular scparation,'® He expanded the thermodynamic proper-
tics In powers of 1/n, the lowest order result corresponding to n=e which
is cquivalent to the hord spherc potential, Barker and Mc:nders.on“a have
shown how to genzralize the Rowlinson method to apply to a wide class

of repulsive potentiols uR(r). In this generolized Rowlinson mathod

a temperoturc-dcpendent hard sphere dliameter Is calculated according

to

dnsj(\-e

o

-udd/ﬂ
] dr

ond the pressure and frce energy arc set equal to those of the assocliated

hard sphere fluid with the same temperaturc and density and with a

diameter dR. Recently, Barker and Henderson have modified this basic

approach by dividing the repulsive potential into two parts at some

b The contribution to the thermodynamic properties from

redlus r =y,
the portion r<u Is calculated by the generalized Rowlinson method
while that from the portion r>u Is given by the first term of the
high temperaturc expansion, Finolly, the parameter u Is chosen to
minimize the excess free energy per particle as given by this combination

of methods,

In our recent discussion of the equilibriur structure of dense
simple Viquids'?, we introduced o new method to relate both the thermo-
dynamic propertics and the equilibrium structure of o general repulsive
system to those of a hard sphere system. We presented physical and
heuristic arguments to justify the procedure. In this paper we show
thot the approximation method is in fact the first step in a rigorous

and systematic procedure, In Sec, Il we introduce and analyze the
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theory, which Is bascd on a generalization of the fomiliar Mayer cluster
thecory, In Sec, IIl we demonstrote the accuracy of our method for the
thermodynamic properties of two systcms composed of ''soft sphere'!
particles, The first system is 8 fluld in which the intermolecular
potential is inversely proportional to the twelfth powver of the inter-
molecular separation (the r='? potential), In the second system, the
potential is chosen to have the same repulsive forces as those of the
Lennard-Joncs potential, In both cascs, the results obtained compare
favorably with those found by Monte Carlo calculations, The paper is
concluded in Sec, IV with a discussion of our method for relating hard

sphere and soft sphere fluids,



, oy

A conventiona) nalel for o Viquid Is o (lassical systom of N inter-
acting porticles In o volume: V, for which the total potential energy, U,
Is assumed 1o be o sum of pale cnergles which depend only on the scalor

distonces between particles
N

U= z U(I"J) o
i<j

1
When using the canonlcal enscmble, the contral problem for this model is

to determine ho.: the cxcess Helmholtz free energy depends on the potential

u, We let
(l(p.t::p) = -86MV =V In Q

Q= v ot 1 o(ryy) o

i<}

1
p = N/V Is the thermodynemic particle donsity, B" is Boltzmonn's con-
stant, k, times tho temparaturc, T, and @(r) = exp{=Bu{r)] is the usus!
Boltzmann factor for the palr potential u, The notation :." denotes the
positions of the N particlics, and AA Is the excess Helmholtz free energy
(comparcd with an idca) gas at the seme temperaturo, density and volume),
From a(p.B;q;) vic can calculate the pressure, entropy, and other thermo-
dynomic propertics by stralightforward differentiations with respect to
p and f, Also, tho radial distribution function, g(r), can bo deter-

mined by functional differentiation with respect to g(r):

(072) olr) =olr) (8Q!5.8:9)/80(r)),



For tho presont purposes, It Is more convenlent to deol not with g(r) directly

but rothor with y(r), which is defined os
v(;;p.a::p) - 08"")9(£:o.a:c).

Thus. we have
v(r) = (2/p") (eQree) (2 S)

Note that y(r) is a more slowly varying function of r thon is g, (In fact,
even for hard splore potentiols, y(r) Is finite and continuous for all r, as can be
scen from an Inspuction of its viriol serics or from the foct that it is
aquivolent to the polr distribution function of cavitics in o hard sphere
fluid. '3)

For soft sphorc perticles which have continuous, positive and puraly
repulsive potentials, the function q»,(r) is Indicoted schematically in Figura
la. (In the following discussion, the subscript s alwoys denotes a quantity
for a soft sphere fluid,) The function risos smoothly from zoro at smell
distancos (where v assuno ug is extrem:ly lorge) to unity at large distances.
For comporison, the CH function for hard sphoras with diamster d Is shown in
Figuro 1b, (We donote all quantitias for a hard sphere fluid with a sub-
script d.) If tho continuous potential of intorost is harshly repulsive, the
@, function is very similar to the @4 function, and since ddopends only on
@, We might expoct that the thermodynomic proporties and y(r) for
a horshly repulsive potential might bo quita similar to the corresponding
quantities for herd spheres, provided that the diomoter d is chosen properly.
For a reasonsble choice of d, @,(r) = o &) s effectively non-zerc only for
a small range of values of r (Ses Figure lc.), If that range is £d, then ¢

Is « dimonsionloss paramstar which Is a moasure of the softness of the potontial,



The Torger T Is, the softur is the potentinl, and dnly for hard spheres Is

% cqual to zero. Ve will now develop an expression ford in powers of this

sof tness parcmcter,  To do this we necd to know howachangu when @ Is chonged,
In general, if ¢(r) is chonged from one function to snother (1.,e, If

olr) 15 chonoed from polr) to elr) + aplr)), the resulting changs in @ can

be cxpressed in terms of a functional Taylor saries:

Qinsine + &) - QpBie) + Jdr ﬂﬁa@“ sokr)

+ 3 [ dr dr' if Qb Lalg) sp(r')

+ see (2. ‘)
Those functional corivatives con be evaluated in severol woys (see Appendix
A). The first derivative is given In Eq. (2.3). The second darivative is

ﬁ:‘é&ff‘}%- p* V='[de8(ria=r)8(r15=r') Wrie)ye(rs) J,P)(L’)

+ (p'74) V"I‘L‘“Lu'{) 5(534',5" Yo(riz) vo(rss) Jo("([," (2.5

3 4
wherc 6(:) is the thrae dimensional Dirac delta function, and J.( ) and Jo( )

are certain corrciotion functions (sae Appendix A). The subscript zaro
indicates that the correlation functions are those for the fiulid in which
@~ ¢o- (The p and g dapendence of tha correlation functions in €q, {2,5)
shoyld be undcrstood evan though it is not Indicated explicitly,)

When (2.3) and (2. 5) and highar functional derivatives are substituted
into (2.4), we obtain a formally exact infinite saries for d If @o Is
chosen to be i, i.e. up = 0 which corresponds to an ideal gas, this series
becomes the usual virial expansion, 1In this case Ap(r) Is the Mayer f
funct ion, ,'B"(") =1, and tho first functional derivativa term bacomes the

femillor sccond virial cocfficlient contribution, since yo = | for an ideal



o
ges, The sccond functiona) derivative term vanishes because Jo( 3) and Jo(‘)
arc zero for on ideal gas, Higher functional derivatives give the remain-
ing terms of the virial series,

To discuss soft spheres, hovever, we will use this expansion with the
choico go = @y and Lp = @, = @y The resvlting cquation is simplified if

we define

r .
Bd(r) & YJ(")LCQS( l’) - Cﬁd( r)J.
This function is shown in Figure 1d. As can be scen, it is natural to call

this the "blip" function, Then Eq. (2.4) can be expresscd as
a(o.B:cp,) > 1'2(0.53:06)4 (p’lz)deBd(r)

+ (p¥20)de>8 (e )8 (r13) 0403 ()

+ (p4/8V)ldr*B,(r12)8,(rsa)9,{*) (c*) (2.6)
+ .00

The subsequent terms convain three or more factors of Bd(r) (or tp,( r) -cpd( r))
which is non-zero only for a small range of values of r (namely,

for |r-dl < gd), Hence we might expect that the contribution of the nth
functional derivative term is of order ;". We hove not yet chosen d however,

It Is reasonoble to choosc d such that
fdr y,(r)lo,(r) = g4(r)] = fdr By(r) = 0. (2.7)

This choice couses the first functional derivative term (which is apparently
of order € and hence is potentially the largest term) to vanish identically,
This Is Indced a felicitous choice for d, since it makes the second derivative

terms, which nominally appear to be of order £%, actually become of order 2*

(see Appendix B), Indeed it can be shown that all the subsequent

terms are of order &4 or higher order. Thus we have the result that



.

Mobing) - Alaping (14 0(5*)] (2.8)
when d is chosen to satisfy Eq. (2.7). Equation (2.8) provides a direct
conncction between the thermodynamic propertles of hard sphercs and soft
spheres, The associated hard sphere dismeter is density and temperature
dependent, ond (es will be seen below) has the physicolly reasonable property
thot d decrcases as the temperature or the density is increased.

The same'blip function'' expansion can be used to obtain an expression

for ys(r) using Eqs. (2 6) and (2, 3).

v(rig) =v(rig,) [l+(Zplv)j'dg;’6(;.:-;)Bd(rus)-ld(’)(;’)

s () drt8(r1a=r)8y(rs) s () + L)

In general it Is not possible to choose d such that the first functional
derlvative corrcction term for y vanishes ldentically for all r. This
first correction appears to be of order & However, If we use the same
value of d as wo chose above for the frce energy series, It can be shown
(sec Appandix B) that this term is actually of order 22 for all r. Indced

all subsequent terms are of order £ or smaller. Thus we have
v (r) = y4(r) [V + 0(g?)] (2.9)

or 9s(r) y e-Bus(r) Yd(f) [1 + 0(g?)) (2.9')

This equotion gives a relationship butween the structure of a soft sphere
fluld end that of a hard sphere fluld,

Equations (2.8) and (2.9'), together with (2.7), provide convenient
approximate exprcssions for the excess Helmholtz free energy and palr
correlotion function of a fluld with a repulsive Intermolecular potential,

To opply these formulas It is necessary to have informstion about the excess

Helmholtz frce cnergy and y(r) for the hard sphere fluld, Fortunately,
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"Verlet and Weis® have presented nnalyti& expressions for these functions
which accurately sumuarize the results of cunputer calculations on hard-
sphere systems,

In previous work by the present authers concerning the effect of
repulsive forces on the structure of the Lennard=Jones fiuid, Egs,
(2.8) ond (2.9), without the correction terms, and (2,7) were postulated
(on the basis of some intuitive arguments) to be the rclationships between
hard sphere and soft sphere fluids, It is now seen that these postulates
arc rcally the lerding terms in systematic cxpansions in powers of the
softness of the potentiai., It can also be secn that the thermodynamic re-
lationship (2.£) is inherently more accurate thun the structural one (2.9).
One might expect the former to be accurate cven for quite soft potentials
since the first correction is of fourth ordur in tHe softness,

When the excess encrgy and cxcess precsurc arc obtained by differen-
tiating the lovest order result for the free cnergy, Eq. (2.8), the crrors
are of order €4, If these excess quantitios are calculated from the

radial distribution function using the energy and vicial equations,

BAE/N = (Bp/2)[dr g(r) u(r) , (2.10)

=(Bo/6) [ dr a(r) r (du(r)/dr) , (2.1)

pap/p
the errors in cach will be of the same order as the errors in g, namely
E? if the lowest order g is used and 8% if the next approximation is used,
It can be shown however that the ratio of the cxcess encrgy to the cxcess
pressure is the same for both approximations for g and is the same as the

ratio obtained when the energy and pressure are calculated from the 1owest

approximation to the free energy, Since this latter ratio has error
only of order %, it follows that the ratio of excess energy to excess
pressure calculated from cither of the two lowest order approximations

for g Is more accurate than the individual values,



The blip function expansion was developea specifically to apply to
dense flulds, However, it Is casily shown that the theory is exact iIn
the Vimit of low density, The correct sccond virial coefficient Is
obtained from Eq. (2.8), and the correct g(r) is obtained from Eq,
(2.9'). As a nccessary corollary of this it follows that the numerical
value of a correcction of given order in £ depends on the density and
may be significant at high density although negligible at low density,

In the next section we exemine the numerical predictions of the

theory,



JI11. Nurmericol Results

A. Inverse Twelfth Power Potential

Recent Monte Carlo calculations for a ''soft sphere' fluid with an

inverse twelfth power pair interaction potential

u(r) = e(o/r)'? (3.7)

provide accuriate thermodynomic date with which tc compare our theory,
This potential Is sufficicntly ''soft' that it provides a severe test
of the accuracy of our method,

There is no temperature-independent characteristic length in an
inverse power potential, As a result, the cxcess thermodynamic func-
tions have simple scaling proparties, For examplc, for the potential
In Eq. (3.1) It can be shown that pan/N (= =& /p) is a function only
of the single variable (Bc)'/% po®., This scaling law has two immediate

consequences, From the thermodynamic cquations

par/p = - o (5 (d/o))a (3.2)
and
paE/N = - 8 (33 ((l/p))B (3.3)

it follows that gAp/p and BAE/N are also functions of (ae)'/‘ pa® only

and are related by

BAP/p = & BAE/N (3.4)

An analogous scaling law holds for the radial distribution function

o(riB,p) and y(riB,p). These functions actually depend on only two
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fndependent variebles, a scaled length which is r/o(Bc)'/" and the

single thermodynamic variable (8e)'/* po®; i.e.

a(riB,p) = 6 (r/o(Be)'/ 125 (3e)'/* po?) (3.9)

“12 potential,

vhere G is o universal function for the r

As a result of these scalings laws, Monte Carlo calculations for
this potential need be performed for only onc temperaturc, The thermo-
dynamic propuerties ond the radial distribution functions along one isotherm
can be used to obtain the results for any other temperature ond density,

The scaling laws hold for the exact thermaxynamic propertics and
palr corrclation function, The results of an approximate theory might
not obey these relationships, The Rowlinson theory, for example, does
not obéy the scaling laws, For the blip function expension, however,
it can he sheoan that each of the terms in the series for BAA/N satisfies
the scaling law exactly, i,e, Is @ function only of (Be)'/‘ po®, pro-
vided that the hard sphere diameter d is chosen according to Eq. (2.7).
Furthermore, cach term in the blip function expansion for y satisfies
the scaling law Iimplicd by Eq. (3.5).

We now comparc the results of the theory with Monte Carlo cal-
culations and other thcoretical methods, We will use only the leading
term in the blip function expension for both the free energy, Eq, (2.8),
and y(r), Eq. (2.9). The computational procedure is very
simple, Along one isotherm, Eq., (2.7) is solved at & number of
densitics to give the associated hard sphere diameter d(B,p). (See
Appendix C for a discussion of the hard sphere information that is
nceded for this calculation,) At each density the excess free energy
of the associated hard sphere system is calculated, and by Eq, (2,8)

this is equal to the excess frec energy of the soft spheres undef
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considuration, The compressibility foctor, Ep/p, is obtained from
Eq. (3.2). Note that since d is a (decrcasing) function of the density,
the pressure of the soft sphercs is not simply equal to that of the

associated hard sphere system, Instcad wc have
BAP al
porsp = (—2) [14 % (5 ]sc»(-;‘) (3.6)

The sccoir! term in square brackets lowers the pressure,

In Table I, we comparc the results of our thcory with the lonte
Carlo calculations,'4» '3 the theory of Rounlinson'® (us generalized by
Barker and Henderscn'®), and the varistionz! theory of Barker and
Henderson''® on the Tsotherm gc=1, Thesec theorics are briefly de-
scribed sbove in Scction 1,

It con be seen that the Rowlinson methed gives rcasonsbly accurate
frec crnergles and pressures at lower densities, but It breaks down at
‘high density, This is to be expected fron @ theory which attempts
to describe soft spheres with o density=independent effective hard
sphere diomcter, The Barker-Henxlerson variational method allows the
hard spherrc diameter to be dencity dependent and hence gives consistently
better results over a range of density (except for low densities where
apparently the varlational method fails to give the correct second
virial cocfficicnt), The results of the blip function expansion are
better still, Thcy are exact in the limit of low density, The free
energy values (over the entire density range Indicated) end the pressures
(except for the highest density) arc all within a percent of the Monte

Carlo values,



Thus we con conclude that Eqs, (2.8) and (2,7) provide a very
accurate relationship between the thermodynamic properties of hard
spheres and soft spheres with inverse twelfth power repulsions,

Sincc Monte Carlo palr correlation functions have not been pub-
lished for this potential we cannot test the structural relatlionship,
Eq. (2.9'), dircctly, Ve can provide an indirect test, however, by
using (2,9') to calculate virial pressurcs according to (2,11), The
virlal pressure results are not expected to be as accurate as the free
encrgy pressures In Table Ib, since the latter have errors of order
£¢ end the former have crrors of order £2, It can be seen from Table II
that the virisl pressures are accurate at low densities but are In
error by as much as 127 at the highest density, .

In summary, Eq. (2.8) for the free encrgy of a soft sphere fluid Is
very occurate for the inverse twelfth power potential, but Eq, (2,9')
for the radial distribution function Is very accurate only at low
densitlies for this soft & potential, For a harder potential both
cquations are more accurate, as we shall see In the following portion

of this section,



B. The Potential Which has the Same Repulsive Forces as the Lennard-Jones
Potentlal

In an earlier discussion of the role of repulsive forces In deter-
mining Viquid structure,'? we considered a fluid whose Intermolecular
potential was purely repulsive and had exactly the same repulsive inter-
molecular force as the Lennard-Jones potential wL(r). For this fluid,

the palr Interaction is

u (F) =w(r) + ¢ rs2/0

=0 r>2V/6 ¢

where -¢ Is the depth of wL(r) at its minimum value, The potentials
" and VAL have exactly the same repulsive forces but the latter has
no attractive forces, For the purpose of this paper, VaL is of Interest
because it is purely repulsive and because Monte Carlo calculations
of its structure and thzrmodynamic properties have beer performed, '’
The Monte Carlo values of the pressure and excess internal energy
are shown in Table III, where they are compared with results cbtained
from Eq. (2.8), together with (3.3) and (3,4). This provides a test
of the thermodynamic relationship between soft and hard spheres,
The pressures predicted by the generallized Rowlinson method are also
shown, At high densities the latter differ from the Monte Carlo values
by about 6%,
The blip function free energy pressures (Eqs, (2.8) and (3.6))

agree with the Monte Carlo results to within a percent for all temperatures

and densities considered, The difference is of the same size as the
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errors of the Monte Carlo calculations and of the hard sphere data that

1  The cxcess cnergles are also

arc nceded for the present calculations,
very accurate, Thus we conclude that Eq. (2.8) Is a very accurate
thermodynamic relationship between hard spheres and soft spheres with
this potential,

To test the structural relationship, Eq. (2.9'), the pressurc
and energy can be calculated from Eqs, (2.11) and (2,10), The rasults
are shown in Table IV, The maximum difference between the blip function
expansion and Monte Carlo results Is 2%,

We can provide a more direct test of tha structural ralationship
in the Lennard-Jones repulsion system becouse Barker and Hendarson
have obtaincd Monte Carlo values for g{r).'’ Tha comparison is shown
In Figure 2 for the first peak in the palr correlation function for one
temperature and density, The mejor noticeable differencas between
the Monte Carlo and blip function expansion rcsults ara that the peak
heights differ by 55 and the depths of the minimum near r=1,50 differ
by about .05, At othar parts of the curve, .the diffarance is at most
.03, (A part of this difference can be explained by the inherent
errors of the Monta Carlo method.'®) This represents remsrkably close
agraement and providas a very strong confirmation of the structural
relationship (2,9') betwean soft and hard spheres for this hard a
repulsive potential,

In summary, for this potential, which is much harder than the
inverse twalfth power repulsion, Eqs. (2.8) and (2.9'), together with
(2.7), are very accurate aquations for the thermodynamic and structural

properties of the fluid,
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C. Remorks

i. A Vimitetion of the mesthod. This mothod relles on knowledge
of the equation of stats end pair correlation function of the hard
sphere fluld. Since herd spheres undergo a phose transition to a
golid-1ike phase when pd®s~ .93, this provides an upper limit on the
densities et which the method as we have described It can be epplied,
However, at higher densities we cen at least obtain the thermodynamic
properties by e variations) procedure similar to thet of Barker end
lhndenon,"b except using the blip function method rether than the
generalized Rowlinson method to treet the hard sphere aspects of the
calculetion. Real liquids of course have ettrective es well es
repulsive forces, end the present considerations ere only the stert-
ing point for more complete descriptions of liquids, At high den-
sities, real liquids es well es herd sphere liquids solidify, end
30 the density limitetions of the present mathod ere not importent,

il. Density end tempereture dependence of the herd sphere
diamster. The crucie! 1ink between herd end soft gphor. fluids Is
provided by €q. (2.7) which tells how to choose the essoclieted hard
sphere diamster for ¢ soft potentiel, Numerical solution of this
equation shows thet the diemeter depends on density end tempereture
in ¢ physically reasonsble wey (ses Tebles Il end IV and Fig, 2 of Ref, 12),
As the tempereture is increased (et constent density), the diemeter decresses,
This reflects the physical fact thet et highar temperetures the inter-
moleculer conflgurailons of high potentie! ensrgy become more prob-
sble, end these configurations correspond to smaller intermoleculer
seperetions, Also, es the density Is Incressed et constent temper-

sture, the diemster decreeses. This reflects the physical fect thet



at higher densities the pressurc Is greater and the molecules are squeczed

clcser and closer together,
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1V, Conclusion

The purpose of this paper Is to present and justify a certain way of
relating the hard sphare fiuid model to more realistic soft sphere repuisive
potentials In the equilibrium statistical mechanics of flulds, We have shown

pu(r) g(r) for a

that the Heimhoitz free energy and the function y(r) = e
soft sphere fluid are approximately the same as the corresponding quantities
for @ hard sphere fluid at the same density, provided that the hard core
diameter Is chosen properiy, A prescription is given for calcuiating this
diameter which has the physically reasonable property of being a decreasing
function of temperature and dansity, These resuits are derived from well de-
fined expansions of the Helmholtz free er:rgy and y(r) in powers of a
parameter which is a measure of the softness of the repulsive potential or,
in other words, the extent to which the potential differs from the hard
sphere model potential. Calculations based on this thecory are not computa-
tionally difficult. They require detailed but available knowledge of the
equilibrium properties of hard sphere fluids., The theory becomes exact in
the 1imit of Yow density, but the results remain useful and accurate up to
quite high densities, depending on the softness of the potential. The upper
limit to the density at which the calculations can be perforﬁod Is determined
by the highest density at which we have accuratc hard sphere radial distri-
bution functions, This density is spproximately that at which the hard

sphere system undergoes Its phase transition,

In this paper we have restricted our attention to Intermolecular poten-
tials which are positive and repulsive, In real fluids, however, the
intermolecular forces are attractive for some ranges of intermolecular separa-
tions, Nevertheless, at high densities (and at high temperatures for all
densities) the structure of a fluid is dominated by the repulsive forces,'?
and s0 an accurate theory of repulsive forces can provide a foundation for

an equitibrium theory of liquids,'®»®
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Appendix A: Evaluation of Functional berivatives of {52

The functional derivatives of dwlth respect to cp(.[_') can be evaluated in
at least two ways, One way Is to express CZIn terms of the configuration in-
tegral Q (Eq. (2.1)) and take the functional derivative for finite V. The
resul t can be cxpressed in terms of reduced corrclation functions in the can-
onical ensemblc for a finite volume. Then the thermodynamic 1imit can be taken.
For sccond and higher derivatives, this method is tedious because in the can-
onical ensemblc the Ursell cluster functions do not approcch zero as the posl-
tion coordinates are scparated, but rather therc arc extra 1/V components to
these functions,

A somevhat easier method is to begin with the thermodynamic limit virial
(cluster) series forlz. The functional derivatives of this infinite series are
rclatively easy to calculate, and the resulting infinite series can be expressed
in terms of correlation functions with the aid of diagrammatic manipulations
and the product theorem for generating functions of classes of diagrams. '’

By using this latter procedure, Eq. (2.5) is straightforwardly obtained,
The function J<3)<.':3) Is defined as

m=0

where J(')(:f"s;uo s the sum of contributions from all distinct labeled graphs
with 3 root points at Fiifa,rs, and m fleld points at Tareeorloes such that:

(a) at most one Mayer f bond (=e'au-ll connects each pair of points, (b) no

f bond connects points 1 and 2, (c) no f bond connects | and 3, (d) the dia-
gram becomes a star (multiply connected) if f,, and f,; are added, (e) the
diagram does not become disconnected if points | and 2 are removed; and (f)

the diagram does not become disconnected if points | and 3 ure removed, It

can be shown that this is precisely the series for the function on the right

hand side of the following equation



2=

IOUL) = hlras) + olrss) [9(":: gzi(u’;(fu) -‘] (A1)

where h(r) -~ g(r) =i, and g(’) is the three particie correlation function,
This final expression now contains no reference to diagrams, (The same
resuit can also be obtained by the first method described in this appendix,)

If one makes the Kirkwood superposition approximation,’® we would have simply

J(S)(Ls) = h(rys). (A. 2)

Simitarly the function J(‘)(:_") is

oM
2 wr .fd:'; voo d£m+lo J(‘)(rma,m)
m=0

where the integrand is the sum of contributions from all distinct 1abeled

graphs with 4 root points (1,2,3,4) and m field points (5, ..., mté) such that:
(a) at most one f bond connects each pair of points, (b) no f bond connects 1 and 2

(c) no f bond connects 3 and 4, (d) the diagram becomes a star \f f,, and fy,
are added. (e) the diagram does not become disconnacted if points | and 2

are removed, and (f) the diagram does not become disconnected 1f points 3 and
4 are removed, An expression for J4) in terms of four, thres, and two
particle distribution functions can also be obtained. If, In addition, we make

the superposition approximation, we have
O (rf) = h(rs)h(rae) + hlrya)h(ras) + h(ris)h(res)h(ry)
+ h(ris)h(ria)h(ree) + h(rys)h(ri)h(rys)
+ h(ry)h(ras)h(ras) + h(ris)h(ri)h(res)h(rd).  (A.3)

This result can also be obtained by using the dlagrammatic expansion

()

for J and summing only those graphs which are consistent with the

superposition approximation, *°



Appendix B: Estimating the E Dependence of Various Integrals

The effcctive hard core diometer d is chosen according to Eq. (2.7).
As a result of this choice, many integrals are automatically of higher
order in £ than one might ordinarily expect., 1In this Appendix we discuss the

reason for this,

By converting the integral in Eq. (2.7) into a one dimensional integral

we find
®

Iorldr Bd(r) = 0, : (8.1) '

Consider an integral of the following type

To ridr Bd(r) F(r;s) (8.2)

where F Is any smooth function of r and may depend on some other variabies,
denoted by s, which are held constant in the r Integration, Since Bg(r)
is effectively non-zero for |r-d| <& only, we might expect this integral

to be of first order In &, However, because of Eq, (B.1), we have

{ ridr Bd(r) F(ris) = j'or'dr Bd(r) [F(r;s) = F(d;s))

1f F(r;s) Is a slowly varying function of r (l.e., if F Is differentiable)
then the quantity In square brackets is of order £ and the Integral is of
order £, not &, |
To apply this rasuit let us now consider the integral containing
Jd(’) In the right hand side of Eq, (2.6), Fix gy and ry and consider doing
the £ Integration, The above result cannot be applied directly because
Jd(')(:") Is not a continuous function of |rys| at fixed L1y F3, and fixad direction

for ris (see Eqs. (A.1) and (A.2)). However, we first integrate ovar all
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the angles associated with ry,, holding |r,,l fixed. The discontinuities
arc smoothed out and now the integration over |r ;] gives a result of order
E?. The remaining integral over Lf.,, gives another factor of &2, Thus
the complete integral is of order £4.

This mcthod can be employed to verify all the statements given in the

text concerning the § dependence of various integrals,
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Appendix C: Information about the Hard Sphere Fluid

To perform calculations using the present method, it is necessary
to know the cquation of state for hard sphere fluids as well as the
function yd(r).

The equation ¢ state which we use Is thc one suggested by

Carnahan and Starling,?'
BRy/p = (V4m+n?-n’)/(1-0)° ,

where 1 = npd®/6 and d Is the hard sphere diameter, This formule
summarizes the available molecular dynamics and Monte Carlo results
withir the statistical accuracy of these computer calculations, By
Integrating with respect to density, the excess Helmholtz free energy

correspond ing to this equation of state can be obtained:

Qofo = -nts-3/1-0)" .

The yd(r) function is also needed for all values of r>d as well
as for r slightly less than d, i,e, jJust inside the hard core, For
r>d, yd(r) = gd(r), which can be obtained from Monte Carlo and mole-
cular dynamlés calculations, We use the empirical formula of Verlet

and Wels® which expresses 9y the sum of two parts:

Yo(r) = g4(r) = 0i(r) + ga(r), r2d , (c.0)

where g,(r) is simply related to the Wertheim-Theile? analytic solu-
tion of the hard-sphere Percus-Yevick equation' and gy(r) is a small
correction (also in convenient analytic form). Verlet and Weis state
that gd(r) obtained In this simple way differs from their Monte Carlo

results by at most 0.03 and estimate the statistical ertor to be approximately

0,01, To obtain Yg for r near d inside the core, we assume we can



use the same formula, Inside the core, the Porcus-Yevick Yy is known
analytically, and the value of g, Is obtained by extrapolation, We
adopted the procedure of extrapolating the logarithm of g, quedretically
into the core, This procedure is clearly arbitrary; however, comperison
of different cxtrapolation methods indicates that an error of et most

a few parts in 10* are introduced into the calculated d by the arbi-
trariness of the extrapolation, Ffor exemple, the values for d given

in Table IV differ from those calculated by Verlet end Weis by a differ-
ent extrapolation procedurc by at most ,0002, The error is so small
because d depcnds on Yq inside the core only for values of r which are
very close to d end any reasonably extrepoletion procedure gives much
the same results, This error makes e negligible difference for the
thermodynamic propertics celculeted from the free energy. The extra-
polation procedure can obviously have e small effect on the value of
g(r) for r<d when it is calculated from Eq, (2,9'), ~specially for

very soft potentials, This effect is minimized, however, by tha ex-
ponentiel factor which approaches zero rapidly es r Is decreased from

d. Nevertheless, this small effect on g(r) could heve en effect on

the virial pressure and energy calculeted from Eqs. (2.11) and (2,10)
beceuse of the sensitivity of these equations to slight errors In g,

We estimate that for tha inverse twelfth power potantial, the virie!
pressures might contain an error of the order of et most 5% et the
highest density (and much less at lower densities), while for the much
harder Lennard-Jones repulsive potential, UpL? tha error in the viriel
pressure due to the uncertainty in the extrapoletion is negligibla
compared with errors erising from inaccuracies in our q‘(r) for r outside

the core, These latter errors are of tha order of a percent.'®
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Teble lo., Reduced €xcoss Freo Cnergy per Particlo for a Fluid of »
Molecules Interacting Through an Inverse Twelfth Power Repulsion ==
A Test of the Thermadynamic Rclationship between Hard-Spheres and

Soft-Spheres.
- Q1o = Brn/N

b c d Barker-llenderson Generallzed
po’ Honte Carlo Monte Carlo This Work Variational Row!inson
L1414 .40 .40 .40 .39 .39
.2828 N N .9 .89 .09
L4243 1.53 1.53 1.54 1.54 1.54
« 5657 2.32 2.33 2.33 2.37 2.42
7071 3.33 3.34 3.34 3.43 3,68
. 8485 4,60 4,61 4,65 4.7 5, 58

L S aSSI——————
. These calculations are for the isotherm B¢ =1,

b, Reference 14,

c. Reference 15,

d. Calculated from Eqs. (2.8) and (2.7).



Teble Ib, Pressurc of a Fluid of Molccules Interacting Through an
Inverse Twelfth Pouer Repulsion® -- A Test of the Thermodynamic
Relationship Between Hard-Sphercs and Soft-Spheres,

Bp/p

s b c J Barker-Henderscn  Genera |l ized
po Monte Carlo Monte Carlo This Work Variational Row!inson
AT 1.45 1,45 1,45 1.36 1,44
. 2828 2,12 2,12 2,12 2,11 2,13
L4243 3.10 3,12 3,12 3,18 3.25
. 5657 4,56 4,58 4,57 4,72 5.16
. 7071 6. 64 6,66 6.7 6.93 8,57
. 8485 9.46 9.56 9.89 9.98 15,18

a, These calculations are for the Isotherm g€ =1,
b. Reference 14,
c. Reference 15,

d. Calculated from Eqs. (2.8), (2.7) and (3.2).



Table II, Virial Pressurc and Associated Hard Sphere Diameter of &
Fluid of Molecules Interacting Through an Inverse Twelfth Power
Repulsion? -- A Test of the Structural Relationship Between Hard-
Spheres and Soft-Spheres,

Bp/p

po® Monte Carlo’ This Work® d/0°

RIAY] 1,45 1,45 1.0663
, 2828 2,12 2,16 1.0614
. 46243 3.11 3,23 1.0552
. 5657 4,57 4,85 1.0477
.7071 6.65 7.23 1.0390
. 8485 9,51 10, 60 1,0295

L _ 2 ——_____—_§Rx____ ¥

8, These calculations are for the isotherm pe =1,
b. The average of the two Monte Carlo values (see Table Ib),
c. Calculated from Eqs, (2.9'), (2.7), and (2,11),

d. The associated hard sphere diameter, in units of @, calculated
from Eq. (2.7).



Table 111,

«3]-

Pressure and Reduced Excess Internal Energy per Particle
for a Fluid of Molecules Interacting Through the Repulsive Part of
the Lennard-Jones Potential -~ A Test of the Thermodynamic Relation-
ship between Hard-Spheres and Soft-Spheres,

Bp/p BAE/N
Generalized
po’ e Monte Carlob This Work® Rowlinson Monte Carlob This wbrkd
.85 2,8} 6,92 6.92 7.38 .84 .84
.84 .15 10,23 10,33 10,99 .97 .98
.65 1.35 4,89 4,94 5.06 46 46
.40 1.35 2,53 2,54 2,55 A7 .18
.85 A 10,87 10,83 11,55 1,03
. 50 1,36 3.28 3,29 3.31 .27

a8, The reduced temperature, kT/e,

b. The first four states are from Ref, 6 and the last two are

Ref, 17,

c. Calculated from Eqs. (2.8), (2.7), and (3.2),
d. Calculated from Eqs. (2.8), (2.7), and (3.3).

from
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Table IV, Viria) Pressure, Reduced Excess Internal Energy Per Particle,
and Associated Hard Sphere Diameter for a Fluid of Molecules Interacting
Through the Repulsive Part of the Lennard-Jones Potential -- A Test
of the Structural Relationship between Soft-Spheres and Hard-Spheres,

BP/p BAE/N
po’ ™ Monte Car|oP This Work® Monte Carlob This WOrkd d/pe
.85 2.81 6.92 7.04 .84 .86 . 9699
. 84 o 15 10,23 10, 40 .97 .99 1,0224
.65 1.35 4,89 4,99 46 A7 1,0029
.40 1.35 2,53 2,55 17 .18 1,0048
.85 W12 10, 87 10, 89 1,04 1,0237
.50 1.36 3,28 3.31 .27 1,0039
a,b. See Footnotes of Table IIl.

c. Calculated from Eqs. (2.9'), (2.7), and (2.11),

d. Calculated from Eqs. (2.9'), (2.7), and (2.10).

e, The associated hard sphere dliameter, in units of g, calculated from

€q. (2.7).



Figure 1,

Figure 2,
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Figure Captions

Schematic plots of some functions considered in the blip
expansion:

a, The exponentiel of B times the negative of a soft
sphere potential,

b. The cxponential of B times the ncgative of a hard
sphere potential,

c. The difference between (a) and (b) showing the
significance of the softness parameter §,

d. The blip function, Bd(r). According to Eq, (2.7),

the diameter d is chosen to make the net areas
under r? B,(r) equal to zero,

The radial distribution function for a dense fluid of
molecules Interacting through the repulsive part of the
Lennard-Jones potential -- A test of the structural relation-
ship between hard-spheres and soft-spheres, The density

is po’ =,85 The temperature is kT/¢=,72, The dots are
the Monte Carlo results of Barker and Henderson, Ref, 17,

The smooth curve was calculated from Eqs. (2,9') and (2.7).
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