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Abstract 

We crmsidur the cqullibrlum statistical mechanics of classical 

fluids in v/hich the potential energy Is decomposable Into repulsive 

pair interact ions. A generalized cluster expansion is derived relating 

the Ihcnuodyru-jmic and structural properties of sucli systems to those 

of thn  hard sphere fluid. The expansion is ordered by a softness 

parameter £ which is essentially the range of intermolecular distances 

in v/hich the difTcrencc between the Mayer f functions for the repulsive 

potential rind an appropriate reference hard sphere potential is non- 

zero.  The first (lo./cst order) approximation generated by the expan- 

sion equates the free energy and y(r) for the fluid to the respective 

functions appropriate to a system of hard spheres with diameter d. 

Here y( r) = g( r) exp[-»ßu(r)l, where g(r) and u( r) denote the radial 

distribution function and repulsive pair potential respectively. A 

prescription is given for choosing a temperature and density dependent 

diciretor d of the reference hard sphere fluid so that the first approxi- 

mation for the free energy contains errors of order §* only, and the 

corrections to the first approximation for g(r) are of order £*. 

The method is used to calculate the properties of a fluid whose'Inter- 

molecular potential varies as r" . The repulsive potential that produces 

the repulsive forces in the Lennard-Jones potential Is also studied. 

Since the properties of the hard sphere fluid are known from the re- 

sults of computer calculations and conveniently summarized by analytic 

equations, the application of the first approximation Is numerically 

very simple. With this approximation, the results obtained for both 

model systems agree closely with those obtained by Monte Carlo cal- 

culations. 



1.    Introduction 

At least stnco the tin» of van der Waals «ntl Maxwell,  the hard 

sphere or "biUiard ball" model has been thought to represent many 

of the e&scnllal features of realistic intcrmolccular repulsive forces 

in equilibrium and non-equilibrium phenomena.    As a result, much effort 

has been devoted to understanding thn properties of hard sphere fluids. 

The Pcrcus-Ycvick equation    for hard spheres has been solved exactly,1 

giving convenient and accurate information about the equation of state 

and pair distribution function at  law densities.     The scaled particle 

theory3  is of comparable accuracy for the thermodynamic properties. 

To extend our knuMledge to higher densities,  Monte Carlo and molecular 

dynamics computer calculations have been performe'd,*"6    Recently,  analytic 

expressions for the equilibrium properties have been presented    which 

accurately sur.imartze the results of the computer calculations 

at moderate and high densities and which have the proper functional 

format low density.'    In addition,  molecular dynamics calculations have 

shown that hard spheres exhibit a first order phase transition,7 

which is similar In many respects to the liquid-solid transition of 

real fluids.'«9 

The hard sphere model  Is obviously an idealization, and  the purpose 

of this paper Is to discuss, within the context of equilibrium statistical 

mechanics,  the relationship between this idealized model and  the 

smoothly varying repulsive forces found  in real  fluids.    The usual 

method for doing this Is   a perturbation theory of some type, and several 

authors have developed theories to relate hard sphere data   to the properties 

of fluids with other repulsive potentials.    Rowllnson considered  fluids whose 

repulsive Intermolecular potential varied as the inverse n-th power of 
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the iiucrmolucular r.cporotion.,0    Ho expondod the thermodynamlc proper- 

ties In powers or 1/n,  the lowest order result corresponding to n»« which 

Is equivalent to the herd sphere potential.    Barker and Henderson   * have 

shown how to gcnuralize the Rowllnson method to apply to a wide class 

of repul&lve potentials Mr).     In this generalized Rowllnson method 

a tcmperiiturc-dcpcndcnt herd sphere diameter is calculated according 

to 

dR=J(l-e     R )dr 
o 

and the pressure end free energy are set equal to those of the associated 

hard sphere fluid with the same temperature and density and with a 

diameter d .    Recently,  Darker and Henderson have modified this basic 

approach by dividing the repulsive potential  into two parts at seme 

radius rs-n. The contribution to the thermodynamlc properties from 

the portion r<M is calculated by the generalized Rowllnson method 

while that from the portion r>|i Is given by the first term of the 

high temperature expansion.    Finally,  the parameter |i Is chosen to 

minimize the excess free energy per particle as given by this combination 

of methods. 

In our recent discussion of the equilibrlurr structure of dense 

simple liquids'1, we Introduced a new method to relate both the thermo- 

dynamlc properties and the equilibrium structure of a general repulsive 

system to those of a hard sphere system.  We presented physical and 

heuristic arguments to Justify the procedure.    In this paper we show 

that the appro«Imation method is In fact the first step In a rigorous 

and systematic procedure.    In Sec.   II we Introduce and analyze the 
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thoory, which is boscd on a gnnernlimotion of the familiar Mayer cluster 

theory. In Sec. Ill wo demonstrate the accuracy of our method for the 

thermodynamlc properties of two systems composed of "soft sphere" 

particles. The first system is a fluid in which the intermolecular 

potential is inversely proportional to the twelfth power of the inter- 

molecular scporotion (the r'12 potential).  In the second system, the 

potential is chosen to have the same repulsive forces as those of the 

Lennard-Joncs potential. In both cases, the results obtained compare 

favorably with those found by Monte Carlo calculations. The paper is 

concluded in Sec. IV with a discussion of our method for relating hard 

sphere and soft sphere fluids. 
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JJj III   C>Q 

A coiivcnlictiol laalol for • liquid Is o ilas»leal syttom of N Intor- 

octiiitj portlclcs tn u volunKi V,  for which the- total potential energy, U, 

Is «issurv.-d to be u sum of pair energies which dop«ncl only on the scalar 

disitihccs Ictwccrt particles 

N 
U *  I   uCr.j)    . 

I 
When usinci the ennontcel ensemble, the central problem for this modal It 

to determine ho..* the excess Helmholtz free energy depends on the potential 

u.    Wc let 

' ~    KJ        ,J 

1 

p e N/V Is tlie thermodynamlc particle density, 9*    is BoUzmonn't con- 

stant, k, times the temperature, T, andqpfr) » axpC-Pu(r)]  '» ^ usual 
y 

Boltzroann factor for the pair potential u.    Hie notation r   denotes the 

positions of the N particles, and AA is the excess Helmholtz fro« energy 

(compared with an Ideal gas at the same temperature, density and volume). 

From £((p,ß:$)   we can calculate the pressure, entropy, and other therm»* 

dynamic properties by straightforward differentiations with respect to 

p end 0.    Also,  the radial distribution function, g(r), can be deter- 

mined by functional differentiation with respect toqp(r): 

(pV2) g(x) *<pir) (6Ö(p.ß^)/6«p(#r))# 
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for tlio prosont purposes,  it It »«re convenient to deel not with g(r) directly 

but rether with y(r), which Is defined ot 

y(r:p,p::p) " •putr'9(r;D,8;(e). 

Thus, we heve 

y(r) - (?/?») (Ö^/Mi)) • (2.5) 

Note thet y(r) is a more slowly varying function of r than Is g. (In fact, 

even for hard spfire potentials, y(r) Is finite and continuous for all r, as can be 

seen from an inspuctton of its virial series or from the fact that It is 

equivalent to the poir distribution function of cavities In a hard sphere 

fluid. •») 

For soft sphere particles which have continuous, positive and purely 

repulsive potentials, the function 9 (r) Is Indicated schematically in Figure 

la. (in the following discussion, the subscript s always denotes a quantity 

for a soft sphere fluid.) The function rises smoothly from zero at small 

distances (where wo assuno u Is extremely large) to unity at large distances. 

For comparison, the p. function for hard spheres with diameter d Is shown In 

Figure lb. (We denote all quantities for a hard sphere fluid with a sub- 

script d.) If the continuous potential of interest is harshly repulsive, the 

9t function Is very similar to the ty function, and since u depends only on 

9, MS might expect that the thermodynamic properties and y(r) for 

a harshly repulsive potential might be quite similar to the corresponding 

quantities for hard spheres, provided that the diameter d Is chosen properly. 

For a reasonable choice of d, 9t(r) -94(1*) Is effectively non-zero only for 

a small range of values of r  (See Figure 1c.). If thet range is |d, then ( 

Is a dlmonslonless peremeter which Is a measure of the softness of the potential. 



Thn l.inior T •*• the softur Is the potential, and only for hard spheres Is 

r, eqUiil to zero. Wo will now develop on expression for^ in powers of this 

softno&s por«*.inctcr. To do this we need to know how ^changes when qp Is changed. 

In (jenorol, if y(r) is chonciod from one function to another (I.e. If 

q>(r) is chonovd fron^oCr) to cv(r) '* Av{0)» t'»e resulting change In It can 

bo expressed in terms of a functional Taylor series: 

H'i'i'^^^Mx') 

♦ ... (t4) 

Those functlonul dorlvatlvos can be evaluated In several ways (see Appendix 

A). The first dbrivatlve Is given In Eq. (2.3). The second derivative Is 

»Äl^' 0,v"^,'~,(~,,■•:,8<-,,~,, *r•',y•(r••, J•<,><J,) 
4 (»V«) V'Jdr'e^.-r) »(£„-£'> y,(r„) y,(rM) J,(0{r4) 

(2,5) 

(*)      (0 
where 6^ Is the three dimensional 01 roe delta function, and Jo  and Jo 

or« certain correlotlon functions (see Appendix A). The subscript zero 

indicates that the correlation functions are those for the fluid In which 

SPs<po* (The p and g dependence of the correlation functions In Eq. (2.5) 

should be understood even though It Is not Indicated explicitly.) 

When (2.3) and (2.5) and higher functional derivatives are substituted 

into (2.4)t we obtein a formally exact infinite series for ft. If <p« Is 

chosen to bo 1, i.e. uo * 0 which corresponds to an ideal gas, this series 

becomes the usuol vlrlal expansion. In this ease ^p(r) Is the Mayer f 

function, e""u*r' -I, and the first functional derlvettve term becomes the 

familiar second vlrlal coefficient contribution, since ye ■ 1 for an Ideal 



gas. The second fuiKtionol derivative term vanishes because J^ ' and J^ ' 

arc a-oro for an Ideal gas. Higher funcllonol derivatives give the remain- 

ing terms of the vlrlal series. 

To discuss soft spheres, however, i/o will use this expansion with the 

choice (po r- Pj and ^ = 5p$ - «Pd. The resulting equation Is simplified if 

we define 

Bd(0 - yd(r)[cps(r) -od(r)]. 

This function Is shavn in Figure Id. As can bo seen, it is natural to call 

this the "blip" function. Then Fq. (2.4) can be expressed as 

Ö(D.P:«P$) '-i2(o,B;*d)H (pV2)JdrBd(r) 

+ (ps/2V)rd#r
8Bd(rl2)Bd(rl3)Jd

(s)(#r
5) 

4 (pV8V)rdr*Bd(r,t)Bd(r5<)Jd(*)(r*) (2.6) 

+ ... 

The subsequent terms contain three or more factors of B.(r) (or qp (r) -qpd(r)) 

which Is non-zero only for a small range of values of r (namely, 

for |r-d| < cd). Hence we might expect that the contribution of the nth 

functional derivative term Is of order %n.    We have not yet chosen d however. 

It Is reasonable to choose d such that 

JdX yd(Orcp$(r) - «pd(r)) « Jdr Bd(r) = 0. (2.7) 

This choice causes the first functional derivative term (which Is apparently 

of order % and hence Is potentially the largest term) to vanish identically. 

This Is Indeed a felicitous choice for d, since it makes the second derivative 

terms, which nominally appear to be of order £', actually become of order §4 

(see Appendix B). Indeed It can be shown that all the subsequent 

terms are of order 5* or higher order. Thus we have the result that 
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C2(P.P;;-S) - ß(p.PUf»d) U •• o(^)] (2.8) 

when d ts chosen to satisfy Eq.   (2.7).    Equation (2. C) provides a direct 

connection between the thermodynamic properties of hard spheres and soft 

spheres.     The associated hard sphere diameter is density and temperature 

dependent,   f«nd (es will be seen below)  has the physically reasonable property 

that d decreases as the temperature or the density is increased. 

The snme,'bl5p function" expansion can be used to obtain an expression 

for y (r) using Eqc.   (2.6) and (2.3). 

y(r;cps)   =y(r;<pd)   [l<{2p/V)Sär3Hni'r)06irn)jW(rs) 

4 (p,/2V)/d#r*6(nrOBd(rS4)Jd
(4,(ir

4) •• ...J   . 

In general It is not possible to choose d such that the first functional 

derivative correction term for y vanishes Identically for all r. This 

first correction appears to be of order §. However, If we use the same 

value of d as wo chose above for the free energy series, it can be shown 

(see Appendix B) that this term Is actually of order ?' for all r. Indeed 

all subsequent terms are of order 5* or smaller. Thus we have 

yf(r) -yd(r) fl +0(5a)l (2.9) 

9$(r) ^ e-ßus(r) yd(r) [1 +0(5')) (2.9») 

This equation gives a relationship between the structure of a soft sphere 

fluid and that of a hard sphere fluid. 

Equations (2.8) and (2.9*), together with (2.7), provide convenient 

approximate expressions for the excess Helmholtz free energy and pair 

correlation function of a fluid with a repulsive Intermolecular potential. 

To apply these formulas It Is necessary to have Information about the excess 

Helmholtz free energy and y(r) for the hard sphere fluid. Fortunately, 



Vcrlet and Wels6 hove presented nnalytlc expressions for these functions 

which accurately summarize the results of computer calculations on hard- 

sphere systems. 

In previous work by the present authors concerning the effect of 

repulsive forces on the structure of the Lennard-Joncs fluid, gqs. 

(2.R) and (2.9), without the correction terms, and (2.7) were postulated 

(on the basis of sonic intuitive arguments) to be the relationships between 

hard sphere iind soft sphere fluids.  It is now seen thot these postulates 

arc really the leading terms in systorrictlc expansions in powers of the 

softness of the potential.  It can also be seen that the thennodynamic re- 

lationship (2. 8) is inherently more accurnU: than the structural one (2,9). 

One might expect the former to be accurate even for quite soft potentials 

since the first correction Is of fourth order in tKa softness. 

When the excess energy and excess pressure are obtained by differen- 

tiating the lowest order result for the free energy, Eq. (2.8), the errors 

are of order 5*. If these excess quantities ore calculated from the 

radial distribution function using the energy and vi/ial equations, 

ßAE/N- (ßp/2)fdr g(r) u(r) , (2.10) 

ßAp/p = -(ßD/6) f d£ g(r) r (du(r)/dr) , (2.11) 

the errors in each will be of the same order as the errors in g, namely 

£' If the lowest order g is used and ;s if the next approximation is used. 

It can be shown however that the ratio of the excess energy to the excess 

pressure Is the seme for both approximations for g and Is the same as the 

ratio obtained when the energy and pressure are calculated from the lowest 

approximation to the free energy. Since this latter ratio has error 

only of order §*, It follows that the ratio of excess energy to excess 

pressure calculated from either of the two lowest order approximations 

for g Is more accurate than the Individual values. 
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The blip function expansion v/as developed specifically to apply to 

dense fluids.    However,  It  Is easily shown that the theory Is exact In 

the Unit of low density.    The correct second vlrlal coefficient  Is 

obtained from Eq. (2.0), and the correct g( r)   is obtained from Eq. 

(2.9').    As a necessary corollary of this  It follows that tha numerical 

value of o correction of given order  In r, depends on the density and 

may be significant at high density although negligible at  low density. 

In the next section we examine the numerical predictions of the 

theory. 



III.     Numorlcol  Results 

A.     Inverse Twelfth Power Potential 

Recent Monte Carlo calculations for a "soft sphere" fluid with an 

Inverse twelfth power pair  Interaction potential 

u(r)   -- ^o/r)'2 (3.1) 

provide »ccunito thermodynomlc date with v/hlch to compare our theory. 

This potential Is sufficiently "soft" that It provides a severe test 

of the accuracy of our method. 

There is no temperature-independent characteristic length in an 

Inverse paver potential. As a result, the excess thermodynamic func- 

tions have simple scaling properties. For example, for the potential 

In Eq. (3.1) it can be shown that ßM/N (» -u/p) Is a function only 

of the single variable (ßc)''* pa3. This scaling law has two immediate 

consequences. From the thcrmodynamlc equations 

ßAp/p = - p(|j(Ä/p)) (3.2) 

and 

PAE/N = - ß (|ß (tf/P)) (3.3) 
ß 

it follows that ßAp/p and ßAE/N are also functions of (ße)'^* po5 only 

and are related by 

ßAp/p = 4 ßAE/N . (3.4) 

An analogous scaling law holds for the radial distribution function 

g(r:ß»p) •nd y(r;0ip). These functions actually depend on only two 
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liidepencliMil variables, a scaled  length which is r/oCßc)1'" tmd the 

slncilo theriTiodynnmlc vorlable (ßc)1'*  pa5;  i.e. 

fi(r;M) = G (r/otßc)'/'2;    (ßc)1/* po5) (3.5) 

where G Is u universal function for the r"'2 potential. 

As a result of these scalings laws, Monte Carlo calculations for 

this potentiell need 'JC performed for only one temperature. The thermo- 

dynamic propurties and the radial distribution functions along one Isotherm 

con be used to obtain the results for any other temperature and density. 

The sealing laws hold for the exact thermodynamlc properties and 

pair correlation function.  The results of an approximate theory might 

not obey these relationships. The Rowllnson theory, for example, does 

not obey the scaling laws.  For the blip function expansion, however, 

It can be shu.n that each of the terms In the series for ßM/N satisfies 

the scaling law exactly, I.e. Is a function only of (ße)1'* po5, pro- 

vided that the hard sphere diameter d Is chosen according to Eq. (2.7). 

Furthermore, each term In the blip function expansion for y satisfies 

the scaling law Implied by Eq. (3.5). 

We now compare the results of the theory with Monte Carlo cal- 

culations and other theoretical methods. We will use only the leading 

term In the blip function expansion for both the free energy, Eq. (2.8), 

and y(r), Eq. (2.9).        The computational procedure Is very 

simple. Along one Isotherm, Eq. (2.7) Is solved at a number of 

densities to give the associated hard sphere diameter d(ß,p). (See 

Appendix C for a discussion of the hard sphere Information that Is 

needed for this calculation.) At each density the excess free energy 

of the associated hard sphere system Is calculated, and by Eq. (2.8) 

this Is equal to the excess free energy of the soft spheres under 
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contiMuvitloti.    The cwnpresslbl 1 tty foctor,  ßp/p,   Is obtained  from 

Eq,  (3.2).    Note that since d  Is a (decreasing)   function of the density, 

the pressure of the soft spheres is not simply equal  to that of the 

associated hard sphere system.     Instead we have 

The sccoi,-!  term In square br««ckuts  lasers   the  pressure. 

In Tcible I, we compare Ihc results of our theory with the Monte 

Carlo colculotIons,' *»'5  the  theory of Rcwlinson'0 (üS generellzcd by 

Barker anil KenJerscj»1 *)t and  the varlatlonal  theory of Darker and 

Hendersou''D on the   Isotherm fc - I.     Those  theories are briefly de- 

scribed above  In Section I. 

It can be seen that  the Rcwllnson method gives reasonably accurate 

free cnercjies and pressures at  lower densities,  but  It breaks down at 

high dent.Ity,    This  is to be expected from a theory which attempts 

to deicrlbi! soft  sphc-res with a densi ty-.ind«pendcnt effective hard 

sphere diameter.    The Barker-Hcivlerson varlatlonal method allows the 

hard sphere diameter to be density dependent and hence gives consistently 

better results over a range of density (except for  low densities where 

apparently the varlatlonal method  fails to give  the correct second 

vlrlal coefficient).    The results of the blip function expansion are 

better still.    They ore exact  in the  limit of  lav density.    The free 

energy values (over the entire density range  Indicated)  and  the pressures 

(except for the highest density) are all within a percent of the Monte 

Carlo values. 



13- 

Thus v/c con conclude that Eqs, (2.8) ami (2.7) provide a very 

accurate rehitionshfp between the thermoclynamtc properties of hard 

spheres and soft spheres with Inverse twelfth power repulsions. 

Since Monte Carlo pair correlation functions have not been pub- 

lished  for this potential we cannot test the structural  relationship, 

Eq.   (2.9'), directly.    V/e can provide an indirect test,  however,  by 

using (2.91)  to calculate virlal pressures according to (2.11).    The 

virial pressure results are not expected to bo as accurate as the free 

energy pressures in Table lb,  since the latter have errors of order 

5* end the former have errors of order §*.    It can be seen from Table II 

that the virial pressures are accurate at low densities but are in 

error by as much as 12j& at the highest density.    . 

In summary, Eq.  (2.8)  for the free energy of a soft sphere fluid  is 

very accurate for the  Inverse twelfth power potential, but Eq,  (2.9') 

for the radial distribution function is very accurate only at low 

densities for this soft a potential.    For a harder potential both 

equations are more accurate,  as v/e shall see in the following portion 

of this section. 
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B. The Potential Which has the Same Repulsive Forces as the Lennard-Jones 

Potential 

In an earlier discussion of the role of repulsive forces In deter- 

mining liquid structure,'2 we considered a fluid whose Intermolecular 

potential was purely repulsive and had exactly the same repulsive Inter- 

molecular force as the Lennard-Jones potential w,(r). For this fluid, 

the pair Interaction Is 

v(r) =wi(r) +€   r^'/6<' 

r>2,/6o 

whe re -c is the depth of w.(r) at Its minimum value. The potentials 

w. and uRL have exactly the same repulsive forces but the latter has 

no attractive forces. For the purpose of this paper, uR, is of interest 

because It Is purely repulsive and because Monte Carlo calculations 

of Its structure and th^rmodynamlc properties have beer, performed.'»" 

The Honte Carlo values of the pressure and excess internal energy 

are shown in Table III, where they are compared with results obtained 

from Eq. (2.8), together with (3.3) and (3.A). This provides a test 

of the thermodynamlc relationship between soft and hard spheres. 

The pressures predicted by the generalized Rowlinson method are also 

shown. At high densities the latter differ from the Honte Carlo values 

by about 6£. 

The blip function free energy pressures (Eqs. (2.8) and (3.6)) 

agree with the Honte Carlo results to within a percent for all temperatures 

and densities considered. The difference Is of the same size as the 
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errors of the Monte Carlo calculations and of tho hard sphere data that 

arc needed for the present calculations.1*    The excess energies are also 

very accurate.    Thus we conclude that Eq. (2.8)   Is a very accurate 

thcrmodynamlc relationship between hard spheres and soft spheres with 

this potential. 

To test the structural relationship, Eq.  (2.9i)l  the pressure 

and energy can be calculated from Eqs. (2.11)  and (2.10).    The ratults 

are shown in Table IV.    The maximum difference between the blip function 

expansion and Monte Carlo results Is 2$t. 

We can provide a more direct test of the structural relationship 

In the Lennard-Jones repulsion system because Barker and Henderson 

have obtained Monte Carlo values for g(r),"    The comparison It shown 

In Figure ? for the first peak In the pair correlation function for one 

temperature and density.    The major noticeable differences between 

the Monte Carlo and blip function expansion results are that the peak 

heights differ by Sj» and the depths of the minimum near r"1.SO differ 

by about .05.   At other parts of the curve,  the difference Is at most 

.03.    (A part of this difference can be explained by the Inherent 

errors of the Monte Carlo method.11)    This represents remarkably close 

agreement and provides a very strong confirmation of the structural 

relationship (2.9*) between soft   and hard spheres for this hard a 

repulsive potential. 

In summary,  for this potential, which Is much harder than the 

Inverse twelfth power repulsion, Eqs. (2.8) and (2.9,)t together with 

(2.7), are very accurate equations for the thermodynamlc and structural 

properties of the fluid. 
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C.    Romarks 

t.    A limitation of th« method.    This method relies on knowledge 

of the equation of state and pair correlation function of the hard 

sphere fluid.    Since herd spheres undergo a phase transition to a 

sol Id-like phase when pdsM.93,  this provides an upper limit on the 

densities at which the method es we have described It can be applied. 

However, at higher densities we cen at least obtain the thermodynamlc 

properties by e verlatlonal procedure similar to that of Barker and 

Henderson,',b except using the blip function method rather than the 

generallted Rowllnson method to treat the hard sphere aspects of the 

calculation.    Real liquids of course have attractive as well as 

repulsive forces, and the present considerations are only the start- 

ing point for more complete descriptions of liquids.    At high den- 

sities, real liquids as well es herd sphere liquids solidify, and 

so the density limitations of the present method are not Important. 

II.   Density and temperature dependence of the herd sphere 

diameter.    The crucial link between herd   and soft sphere fluids Is 

provided by Eq. (2.7) which tells how to choose the associated herd 

sphere diameter for e soft potentlel.    Numerlcel solution of this 

equation shows that the diameter depends on density end tempereture 

In e physically reasonable way (see Tebles II end IV end Fig. 2 of Ref.  12). 

As the temperature Is Increesed (et constant density), the diameter decreases. 

This reflects the physical fact that at higher temperetures the Inter- 

moleculer configurations of high potentlel energy become more prob- 

able, end these configurations correspond to smaller Intermoleculer 

seperetlons.   Also, as the density Is Increesed et constant temper- 

ature, the diameter decreases.    This reflects the physical fact that 
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at higher densities the pressure Is greater and the molecules are squeezed 

closer and closer together. 
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IV. Conclusion 

The purpose of this paper Is to present and Justify a certain way of 

relating the hard sphere fluid model to more realistic soft sphere repulsive 

potentials in the equilibrium statistical mechanics of fluids.  We have shown 

that the Helmholtz free energy and the function y(r) = e^ ^ ' g(r) for a 

soft sphere fluid are approximately the same as the corresponding quantities 

for a hard sphere fluid at the same density, provided that the hard core 

diameter Is chosen properly. A prescription is given  for calculating this 

diameter which has the physically reasonable property of being a decreasing 

function of temperature and density. These results are derived from well de- 

fined expansions of the Helmholtz free en-:rgy and y(r) in powers of a 

parameter which Is a measure of the softness of the repulsive potential or, 

In other words, the extent to which the potential differs from the hard 

sphere model potential. Calculations based on this theory are not computa- 

tionally difficult.  They  require detailed but available knowledge of the 

equilibrium properties of hard sphere fluids. The theory becomes exact In 

the limit of low density, but the results remain useful and accurate up to 

quite high densities, depending on the softness of the potential. The upper 

limit to the density at which the calculations can be performed is determined 

by the highest density at which we have accurate hard sphere radial distri- 

bution functions. This density Is approximately that at which the hard 

sphere system undergoes Its phase transition. 

In this paper we have restricted our attention to Intermolecular poten- 

tials which are positive and repulsive. In real fluids, however, the 

Intermolecular forces are attractive for some ranges of Intermolecular separa- 

tions. Nevertheless, at high densities (and at high temperatures for all 

densities) the structure of a fluid Is dominated by the repulsive forces," 

and so an accurate theory of repulsive forces can provide a foundation for 

an equilibrium theory of liquids.'*•* 
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Appendlx A: Evoluotion of Functional Derivatives of yu 

The functional derivatives of^fwlth respect to cpC^) can be evaluated In 

at least two ways. One way Is to express U in terms of the configuration In- 

tegral 0 (Eq. (2.1)) and take the functional derivative for finite V.  The 

result can bo expressed in terms of reduced correlation functions In the can- 

onical ensemble for a finite volume.  Then the thcrmodynamic limit can be taken. 

For second and higher derivatives, this method is tedious because In the can- 

onical ensemble the Ursel 1 cluster functions do not approach zero as the posi- 

tion coordinates are separated, but rather there are extra 1/V components to 

these functions. 

A somewhat easier method Is to begin with the thermodynamlc limit vlrtal 

(cluster) series for ML. The functional derivatives of this infinite series are 

relatively easy to calculate, and the resulting infinite series can be expressed 

In terms of correlation functions with the aid of diagrammatic manipulations 

and the product theorem for generating functions of classes of diagrams. " 

By using this latter procedure, Eq. (2.5) is straightforwardly obtained. 

The function J^3)(£3) Is defined as 

m=o 

where J^ '(H™3;«») Is the sum of contributions from all distinct labeled graphs 

with 3 root points at ri.rtii"», and m field points at r4l..,.r^- such that: mm      m,      mm mm «Mirfc? 

(a) at most one Mayer f bond (se~*,u-1) connects each pair of points, (b) no 

f bond connects points 1 and 2, (c) no f bond connects 1 and 3, (d) the dia- 

gram becomes a star (multiply connected) If fu and fl9 are added, (e) the 

diagram does not become disconnected If points 1 and 2 are removed; and (f) 

the diagram does not become disconnected If points 1 and 3 are removed.  It 

can be shown that this Is precisely the series for the function on the right 

hand tide of the following equation 
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(»), 

I 

JCXI') = h(rI5) + 9(r!5) [^JZWlW.,)    -'1     <*•') 

where h(r) - g(r) -I, and g^3' is the three particle correlation function. 

This final expression now contains no reference to diagrams.  (The same 

result can also be obtained by the first method described In this Appendix.) 

If one makes the Kirkwood superposition aporoxlmatlon,'0 we would have simply 

J(5)(r5) =h(r23). (A. 2) 

Similarly the function ./^(K4) Is 

m=o 
where the Integrand Is the sum of contributions from all distinct labeled 

graphs with 4 root points (1,2,3,4) and m field points (5, ..., IIH-4) such that: 

(a) at most on« f bond connects each pair of points, (b) no f bond connects 1 and 2 

(c) no f bond connects 3 and 4, (d) the diagram becomes a star If fit •n<* ^«4 

are added,  (e) the diagram does not become disconnected If points 1 and 2 

are removed, and (f) the diagram does not becoire disconnected If points 3 and 

4 are removed. An expression for j(4) In terms of four, three, and two 

particle distribution functions can also be obtained. If, In addition, we make 

the superposition approximation, we have 

j(4)(r*) « h(r,,)h(ra4) + h(r,4)h(r2,) 4 h(rl,)h(rl,)h(rt4) 

+ h(r,,)h(rl4)h(rM) + h(r,,)h(r(4)h(rt,) 

+ hd-uWr,,)!^,*) + h(r,,)h(r,4)h(rtJ)h(rl4).  (A.3) 

This result can also be obtained by using the diagrammatic expansion 

for J   and summing only those graphs which are consistent with the 

superposition approximation. to 
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Appcndix B: Estimating the %  Dependence of Various Integrals 

The effective hard core diameter d Is chosen according to Eq. (2.7). 

As a result of this choice, many Integrals are automatically of higher 

order In § than one might ordinarily expect.  In this Appendix we discuss the 

reason for this. 

By converting the integral in Eq. (2.7) Into a one dimensional Integral 

we find 

J r»dr Bd(r) = 0. (B. 1) 
o 

Consider an Integral of the following type 

f r'dr Bd(r) F(r;s) (B.2) 
o 

where F Is any smooth function of r and may depend on some other variables, 

denoted by s, which are held constant In the r Integration.    Since Bd(r) 

Is effectively non-zero for |r-d| < ?d only, we might expect this Integral 

to be of first order In ?.    However,  because of Eq.  (B. 1), we have 

J r'dr Bd(r) F(r;s) = jVdr Bd(r)lF(r;s) - F(d;$)) 
o o 

If F(r;«) Is a slowly varying function of r (I.e., If F It differentlable) 

then the quantity In square brackets Is of order £ and the Integral Is of 

order £*, not §. 

To apply this result let us now consider the Integral containing 

j (*) In the right hand side of Eq. (2.6). Fix j| and ^ and consider doing 

the rt Integration. The above result cannot be applied directly because 

Jd  (lS) ?s not • continuous function of Iritl at fixed n. fs. and fixed direction 
urn ' * tm        0*» 

for^rn (see Eqs. (A. 1) and (A.2)).    However, we first Integrate over all 
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the tingles associated with £12, holding \r\2\   fixed. The discontinuities 

arc smoothed out and now the Integration over |r|}l gives a result of order 

I*.     The remaining Integral over l^isj gives another factor of 5,• Thus 

the complete integral Is of order ?*. 

This method can be employed to verify all the statements given in the 

text concerning the § dependence of various integrals. 
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Appendix C:    InformatSon about the Hard Sphere Fluid 

To perform calculations using the present method,   it is necessary 

to knew the equation of state for hard  sphere fluids as well as the 

function yj(r). 

The equation of state which we use  is  the one suggested by 

Carnahan and Starling," 

where r| = npdVö and d  is the hard sphere diameter.     This formula 

summarizes the available molecular dynamics and Monte Carlo results 

within the statistical accuracy of these computer calculations.    By 

Integrating with respect to density,  the excess Heltnholtz free energy 

corresponding to this equation of state can be obtained: 

V' P »-^A-STO/CI-TI)» . 

The yAr)  function Is also needed for all values of r>d as well 

as for r slightly less than d,   I.e. Just Inside the hard core.    For 

r>dt yd(r) = SJCO» which can be obtained from Monte Carlo and mole- 

cular dynamics calculations.    We use the empirical formula of Verlet 

and Wels*, which expresses g. as the sum of two parts: 

V^r) ' ^(O " g^r) + 9,(r),    r>d    , (C.I) 

where g,(r)   Is simply related to the Wertheim-Theile' analytic solu- 

tion of the hard-sphere Percus-Yevlck equation1 and gt(r)   Is • small 

correction (also In convenient analytic form).    Vertat and Wels state 

that gd(r) obtained In this simple way differs from their Monte Carlo 

results by at most 0.03 and estimate the statistical enor to be approximately 

0.01.    To obtain y^ for r near d Inside the core, we assume we can 
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uso the same formula.  Inside the core, the Porcus-Yevlck y. Is known 

analytically, and the value of g» is obtained by extrapolation. We 

adopted the procedure of extrapolating the logarithm of g2 quadratieally 

Into the core. This procedure is clearly arbitrary; however, comparison 

of different extrapolation methods indicates that an error of at most 

a few parts in 10* are Introduced Into the calculated d by the arbi- 

trariness of the extrapolation.  For example, the values for d given 

In Table IV differ from those calculated by Verlet end Wels by a differ- 

ent extrapolation procedure by at most .0002. The error is so small 

because d depends on y. inside the core only for values of r which ere 

very close to d and any reasonably extrapolation procedure gives much 

the same results. This error makes a negligible difference for the 

thermodynamic properties calculated from the free energy. The extra- 

polation procedure can obviously have a small effect on the value of 

g(r) for r<d when it Is calculated from Eq. (2.91), especially for 

very soft potentials. This effect is minimized, however, by the ex- 

ponential factor which approaches zero rapidly as r Is decreased from 

d. Nevertheless, this small effect on g(r) could have en effect on 

the virlal pressure and energy calculated from Eqs. (2.11) and (2.10) 

because of the sensitivity of these equations to slight errors In g. 

We estimate that for the Inverse twelfth power potential, the virlal 

pressures might conteln an error of the order of at most 5jl et the 

highest density (and much less at lower densities), while for the much 

harder Lennerd-Jones repulsive potential, u«. , the error in the virlal 

pressure due to the uncertainty In the extrapolation Is negligible 

compared with errors erlslng from Inaccuracies In our gu(r) for r outside 

the core. These latter errors ere of the order of a percent." 
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Table la.    Reduced Excess Free Energy per Portlclo for a Fluid of 
Molecules Inturactiru) Through an Inverse Twelfth Power Repulsion   •- 
A Test of the Thermaiynamic Relationship between tlard-Sphere»and 
Soft-Spheres. 

- tf/p = ßAA/N 

pos  1 Honte Carlo   Honte Carlo0 This Work0 
Barker-Henderson     Generalized 

Varialtonal Rowlinson 

.uu .40 .40 .40 .59 .59 

.2828 .91 .»1 .91 .89 .89 

.4245 1.55 1.55 1.54 1.54 1.54 

.5657 2.52 2.55 2.55 2.57 2.42 

.7071 5.55 5.54 5.54 5.45 3.68 

.8485 4.60 4.61 4.65 4.77 5.58 

a. These calculations are for the Isotherm ßcs1. 

b. Reference 14. 

c. Reference 15. 

d. Calculated from Eqs. (2.8) and (2.7). 
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Tablc lb. Pressure of a Fluid of Molecules Interacting Through an 
Inverse Twelfth Power Repulsion0 -- A Test of the Thermodynamlc 
Relationship Between Hard-Spheres and Soft-Spheres. 

ßp/p 

P0S Monte Carlo Monte Carlo6 This Workd 
Barker-Henderson 

Vartational 
Generalized 

Rowlin'son 

. UU 1.45 1.45 1.45 1.36 1.44 

.2828 2.12 2.1? 2.12 2.11 2.13 

.4243 3.10 3.12 3.12 3.18 3.25 

.5657 4.56 4.58 4.57 4.72 5.16 

.7071 6.64 6.66 6.71 6.93 8.57 

.8485 9.46 9.56 9.89 9.98 15.18 

a. These calculations are for the isotherm gc =1, 

b. Reference 14. 

c. Reference  15. 

d. Calculated from Eqs.  (2.8),  (2.7) and (3.2). 
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Tnble II.    Vlrlal  Prossure and Assoclntcd  Hard  Sphere Diameter of a 
Fluid of Molecules  Intrjractfng Through an Inverse Twelfth Power 
Repulsion'1 — A Test of the Structural Relationship Between Hard- 
Spheres and Soft-Spheres. 

ßp/p 

pos Monte Carlo This WorkC d/od 

. UU 1.45 M5 1.0663 

.2828 2.12 2.16 1.0614 

.4243 3.11 3.23 1.0552 

.5657 4.57 4.85 1.0477 

.7071 6.65 7.23 1.0390 

.8485 9.51 10.60 1.0295 

a. These calculations are for the Isotherm ßc-1. 

b. The average of the two Monte Carlo values (see Table lb). 

c. Calculated from Eqs. (2.9«), (2.7), and (2.11). 

d. The associated hard sphere diameter, In units of o, calculated 
from Eq. (2.7). 
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Tablo III.     Pressure and Reduced Excess  Internal Energy per Particle 
for a Fluid of Molecules Interacting Through the Repulsive Part of 
the Lennnrd-Joncs Potential — A Test of the Thermodynamtc Relation- 
ship between Hard-Spheres and Soft-Spheres. 

ßp/p ßäE/H 

Po3 Ttta Monte Carlo This Workc 
Generalized 

Rowlinson Monte Carlo This Workd 

.85 2.81 6.92 6.92 7.38 .84 .84 

.8A .75 10.23 10.33 10.99 .97 .98 

.65 1.35 4.89 4.94 5.06 .46 .46 

.40 1.35 2.53 2.54 2.55 .17 .18 

.85 .72 10.87 10.83 11.55 1.03 

.50 1.36 3.28 3.29 3.31 .27 

a. The reduced temperature, kT/e. 

b. The first four states are from Ref. 6 and the last two are from 
Ref.17. 

c. Calculated fron Eqs. (2.8), (2.7), and (3.2). 

d. Calculated from Eqs. (2.8), (2.7), and (3.3). 
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Table IV.    Virlal Pressure,  Reduced Excess Internal Energy Per Particle, 
and Associated Hard Sphere Diameter for a Fluid of Molecules Interacting 
Through the Repulsive Part of the Lennard-Jones Potential — A Test 
of the Structural Relationship between Soft-Spheres and Hard-Spheres. 

ßp/p ßAE/N 

pos l T#a Monte Carlo This Workc 1 Monte Carlo This Workd j  d/o* 

.85 2.81 6.92 7.04 .84 .86 .9699 

.84 .75 10.23 10.40 .97 .99 1.0224 

.65 1.35 4.89 4.99 .46 .47 1.0029 

.40 1.35 2.53 2.55 .17 .1.8 1.0048 

.85 .72 10.87 10.89 1.04 1.0237 

.50 j 1.36 3.28 3.31 

1 
.27 1.0039 

a,b.    See Footnotes of Table III. 

c. Calculated from Eft.  (2.9*), (2.7), and (2.11). 

d. Calculated from Eqs.  (2.9>), (2.7), and (2.10). 

e. The associated hard sphere diameter,   In units of o,  calculated from 
Eq.  (2.7). 
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Flquro Captions 

Figure 1.      Schematic plots of sonic functions considered  in the blip 
expansion: 

a. The exponential of ß times the negative of a soft 
sphere potential. 

b. The exponential of ß times the negative of a hard 
sphere potential. 

c. The difference between (a)  and (b)   showing the 
significance of the softness parameter g. 

d. The blip function,  B.(r).    According to Eq.  (2.7), 

the diameter d  is chosen to make the net areas 
under r* B.(r)  equal  to zero. 

Figure 2.      The radial distribution function for a dense fluid of 
molecules  interacting through the repulsive part of the 
Lennard-Jones potential -- A test of the structural relation- 
ship between hard-spheres and soft-spheres.    The density 
Is po3=.85.    The temperature  Is kT/cB.72.    The dots are 
the Monte Carlo results of Barker and Henderson,  Ref.   17. 
The smooth curve was calculated from Eqs. (2,9') and (2.7). 
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