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FOREWORD

The work reported herein concerns the cushion pressure

characteristics for the Air Cushion Landing System under the

conditions of stiff-operation, and was performed under United States

Air Force Onntract No. AF 33(615)-69-c-lool (Project 1369), with

The Ohio State University Research Foundation, Columbus, Ohio.

The content of this part of the report deals with the

theoretical calculations. The second part of the report will be

concerned with the experimental verification of the theory developed

herein. This phase of the work was carried out from July 1969

through June 1970 and the report was released by the author November

1970.

This report has been reviewed and is approved

ENN' l f.DIGE
Chief, Miechanical Branch
Vehicle f'qiipment Division
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ABSTRACT

This report studies the performance characteristics

of the air-cushioned landing and take-off system for aircraft

during its stiff-operation mode. Stiff-operation is obtained

during the early stage of the take-off period or the later

stage of landing. Its chief feature is that the pneumatic

supply chamber of bleed air is in almost parallel conftizira-

tion with the ground. The supply air flows vertically down

through the bleed holes and is then deflected outward.

This part of the report contains the theoretical

treatment of the problem. The results are in the form of

a cushion pressure ratio in terms of the supply (trunk)

pressure. Analysis was performed based on incompressible

viscous theory. The second part of the report to be

published shortly will detail the experimental results in

comparison with theory.
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SYMBOLS

Ar area of orifices/total area of seal

C pressure gradient parameter, see equation 9a

CoC1 ... coefficients of C, see equation 22

Cd coefficient of discharge for orifice

H clearance above ground

L seal length, see Figure 1

p pressure

pa,*Pc3p t  ambient, cushion-space and trunk pressures psia

Re Reynolds number (v H/v)IN
u velocity along x-axis (parallel to the ground)

ua average velocity of u, (vwx/H)

v velocity along y-axis (perpendicular to the ground)

vw  injection or suction velocity

x,y coordinates in Figure 2

non-dimensional y-coordinate (y/H)

v kinematic viscosity

dynamic viscosity

density

6 boundary layer thickness

znon-dimensional boundary layer thickness (6/H)

y,8,r temporary coefficieats, see equation (15), (16)

viii



I
I INTRODUCTION

The air-cu~hioned landing system for aircraft is

based on a simple fluid dynamic phenomenon - the momentum

principle. It has the all important advantage of being

able to operate over terrains other than paved runways or

over water. Furthermore, it obviates the complicated

retractable gear system.

The construction consists of a retractable

pneumatic bag shaped in a toroidal manner and fastened to

the fuselage. The pneumatic ag made from rubber-like

elastic mRterial is provided with air bleed-holes and can

be inflated by a low-pressure high-volume air source.

During operational periods, i.e., takeoff or landing, the

inflated bag forms a seal between the supporting base area

of the aircraft and the ground. In this manner, a cushion

space is formed. The pressurized air is forced through the

distribution holes and is deflected, because of the symmetry

in geometry to form a peripheral ground jet. The outward

momentum of the ground Jet creates a positive air pressure

in the cushion space or the base region. It is this

positive pressure that supports the aircraft weight during

takeoff or landing operation. Figure 1 depicts the

schematics of such a system together with the current

nomenclature.

1
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While the practicality of such a landing system

has been amply demonstrated in successful flight tests

by the Bell Aerosystems program, further research, testing

and gathering of engineering data are required in order

to obtain more precise information for the optimum design

j of such a system for various modes Nf operatior,. Some

of the obvious modes of operations may be mentioned: viz.

during landing operation the attitude of the aircraft may

necessitate a landing with a fixed pitch angle or a fixed

roll angle. The cushion seal is no longer of a uniform

height around the periphery. This mode of operation may

considerably alter the fluid dynamic behavior near the base

region and hence the maneuverability of the aircraft.

Alternatively the ground Jet distribution may be influenced

by a crosswind which again may change the handling character-

istics of the aircraft in question. Aside from these

factors it is to be noted that the locations, spacings and

sizes of the bleed-holes have not yet been optimized

although some preliminary work was reported by Earl in the

report by sell [1l0. Furthermore, it was observed that the

pneumatic bag experienced some breathing-mode vibrations

during its inflation stage which is indicative of the

complexities of the mechanics of deformation of such a

*Numbers in brackets are reference numbers.
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toroidal elastic enclosure. The exact shape of the cushion

bag under pressure may be of importance in that the cushion

pressure distribution in the base area may be greatly

influenced by the deformed shape. Similarly, a number of

design considerations dealing with the controlled bleed-

flow distribution in various portions of the pneumatic bag

may be mentioned. The controlled distribution may be

accomplished by compartmentalizing the pneumatic bag; each

compartment having its own pressure. This scheme can be

accomplished by a proper valving and ducting and can be

used to control and direct the aircraft attitude. The

preceding-mentioned phenomena are noted herein to indicate

the need for further studies and refinements and will be

more fully elaborated upon in a later report.

The present study described in this report is,

however, concerned with a particulax mode of operation

known as the stiff-operation which takes place when the

pneumatic bag is very close to the ground. The air seal

formed becomes a long (in the air flow direction) passage

with very small height (clearance to the ground). Figure I

shows the schematics of the various major components comprising

the air-cushion system. For the stiff-operation mode, the

bleed air is directed along the small passage outward

leaving the cushion space relctively undistu-bed. Consequently,

the fluid dynamic behavior can be very well simulated by

4



F
assuming the cushion space to be a stationary area and the

two air passages can be brought together as shown in Figure

2 in which the ground is replaced by a solid plane on the

x-axis and the source of air injection is replaced by a

porovs plate at a fixed distance H above the ground. The

plate has a length of 2L. The injected air is divi'ded

along the y-axis. The pressure at either end of the

porous plate is taken to be atmospheric. The objective of

the present study is to analyze the pressure along the

passage. Since at x a 0 along the y-axis the flow is zero

due to symmetry, hence the pressure there shall be taken

as the pressure in the cushion space which is assumed to

have no motion. The injection of air is to take place with

a uniform rate independent of x. The latter assumption

will be removed later in this report. A subsequent report

will discuss and ana'ze the fluid dyaamics when the former

assumption is removed, i.e. there is induced motion of the

air in the cushion space.

II. ANALYSIS

Employing the assumption of an incompressible

fluid model and two-dimensional flow tne equations of motion

and of continuity are,

uu A +vuy -px/p + vV2u (I)

uvx + vv M - /P + VV2v (2)

u + vy - 0 (3)

5



'I
The boundary conditions associated with the

preceding equations are:

u W v = 0 y = 0 (4a)

u - 0 y = H (4b)

III. UNIFORM INJECTION CASE

Since the flow in the passage is caused by the

injection at the upper boundary the flow velocity in the

x-directi.n must be linearly proportional to x, the distance

from the line of symmetry, for a constant rate of injection,

i.e. v - -vw at y - H. Consequently, the stream function

Y can be written as:
v w x F(Y) (5)

where y - y/H

V - -VW F (6)
U a (Vwx/H) F' (7)

Substitution of the above relations into equations (1)

and (2) yields:

- F?" - -(H2p /Pv2x) F'''/Re (8)

FF' * -(H py/Pv 2 ) - 9"/Re (9)

where Re - (H vw/v)

Equation (9) states that p is independent of x;

hence px 1I independent of y. In equation (8) the first

term on the right-hand side is, therefore, independent of

y and can be regarded as a constant, or

6



(jH2 px/pV2X) C (9a)

the principal eruation concerned In this report 14 then

F'2 -FF" * C + F' "/Re (10)

the boundary conditions are

?(0) - F'(0) - F'(l) = 1 -F(l) - 0 (11)

In equation (10) the Reynolds number is a parameter

to be arbitrarily specified and there are four boundary

conditions in (11) for the third-order equation. The constant

C analogous to an eigen-value in a linear differential

equation is to be determined as well. Its value is, of

course, dependent on the Reynolds nimber.

Low Reynolds Number Case

For very low Reynolds numbers the inertia terms

on the left-hand side of equation (1) can be ignored

since they are of the second-order nature and the equation

reduces to

F"' -C Re (12)

with a solution

F - 2 3 - 2 ) (C Re/12) (13)

which satisfied the first three boundary conditions of

(11) and the last condition is fulfilled by

C - 12/Re (14)

The velocity profile from Y - 0 to 1 1 is

given by

F' y (l-y) (C Re/2) (14a)

which Is symmetrical about the mid-channel position j - 1/2

7I



thus exhibiting no convective effect from the injection

side = 1.

The velocity profiles for very low Reynolds number

are graphically shown in Oigures 3, 4, ... for increasing

values of the Reynolds nuniber. The profiles exhibit

acterizing the absence of the inertia effect. The pressure

distribution along the channel is solely caused by the

frictional effect and can be calculated directly from

equations (9a) and (14). Equating these two equations,

-H2Px/(p v2 x) = C - 12/(vwH/v)w

Denoting the atmospheric pressure by pa' the pressure

distribution is obtainea as

(p-pa) = (61 vw/H 3 ) (L2 - x2 )

The maximum pressure occurs at the mid-channel x - 0

where the velocity is zero. In an approximaLe sense it is

also the pressure in the cushion space. Denoting It by pc I
the value is

Pc - Pa a 61 vw L
2 /H3

This equation may be used either to calculate the cushion

pressure or the injection velocity vw.

Avbitrary Reynolds Number Case

Studies similar to the present problem have been

undertaken by a number of investigators although for different

8



applications from that contemplated in the present case.

Yuan and Finkelstein [2] steadied the problem of flow in a

circular tube with porous will. The resulting equation

governing the velocity distribution is quite similar to

(10) and (11). Their method consists of solving for the

stream function in an ascending series of Re for small

Reynolds number or series of (1/Re) for large Reynolds

number-s. Because of the series method of solution a large

number of terms are required for accurate evaluation of

the velocity profiles. Consequently, Morduchow [3] devised

an integral method modeled after the K, in-Pohlhausen

method to solve the problem posed in [2]. The method is

well known to be reliable only when it can be shown to

agree with some known exact solutions. A more rigorous

treatment of the similar problem has recently been given

by White et al [4]. The last-mentioned work solved the

problem by an infinite series in terms of the physical

coordinates. The method is conceptually exact but is tedious

to execute.

In the present study the method -f solution of

equations (10) and (1i) are made exact both ,oncsptually

and numerically. The execution of the solution turns out

to be quite simple. In the first place equations (10) &nd

(11) constitute a two fixed-point boundary value problem

with an associated eigen-value. The "eigen-value" C in

9



equation (10) tngether with the arbitrary parameter Re

appears to be complicated; but in reality they simplify

the problem as can be 3een as follows:

Let F()Y i(y (15a)

Equation (10) becomes

02 y ff") = C + y3 fT"'/Fe

Putting 0" y 2  C * y3/Re the following results:

6 = CI1 /ReI/2  (16a)

a ci14 He1/2  (16b)

and the equation for f now reads

f,2 ff,, = 1 + fil (17)

which turns out to be the well-known Falkner-Skan equation.

However, the boundary conditions are: j
f(o) - f,(o) - 0

f(C1l4 Rell2) - Rel 2 C1'

f'(CI/4 Re1/ 2) ,0 (18)

Now the behavior oe the function f subject to the first

two boundary conditions of (18) is well known. Por f"(0)

1.2326, f' increase from zero monotonically. For

f"(0) < 1,2326, the graph of f' ~ n exhibits a maximum

with f' < 1 and the f'-curve crosses the n-value. Taking

advantage of these known properties, equation (17) with

(18) as its boundary conditions rmay be solved by assuming

an arbitrary value of f"(0) between 0 and 1.2326.

10
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Table I

Summary of Numerical Results, Uniform Injection Case

f"(0) C Re F"1(0) F"(1) (C/C*)

.100 90000 .13333xi0 3  6.0000 -6.000 Io0000

.200 5624.0 .0021345 6.0000 -5.999 1.0000

.300 1110.1 .01083 6.0050 -5.994 1.0021

.400 350.59 .034456 6.0157 -5.981 1.0066

.500 143.02 .085284 6.0389 -5.954 1.0165

.600 68.46 .18143 6.0829 -5.903 1.0351

.700 36.497 .35124 6.1602 -5.816 1,0683

.800 20.975 .64428 6.2934 -5.672 1.1261

.850 16.235 .86480 6.3932 -5.569 1.1700

.900 12.702 1.1618 6.527. -5.438 1.2298

.950 10.023 1.5727 6.7111 -5.270 1.3136
1.000 7.9601 7.1656 6.9738 -5.051 1.4365

1.030 6.3491 3.0815 7.3724 -4.762 1.6304
1.100 5.0723 4.6732 8,0407 -4.375
1.120 4.6405 5.6978 8.4533 -4.184
1.140 4.2430 7.1594 9.0176 -3.970
1.160 3.8777 9.4212 9.8370 -3.732
1.180 3.5363 13.403 11.140 -3.472
1.190 3.3725 16.800 12.138 -3.314
1.200 3.2100 22.28). 13.584 -3.190
1.205 3.1280 26.514 14.594 -3.114 --

1.210 3.0444 32.621 51.928 -3.036 0.9886
1.215 2.9577 42.196 17.800 -2.953 0.9898
1.216 2.9400 44.803 18.274 - .936 0.9902
1.217 2.9217 47.743 18.792 -2.918 0.9904
1.218 2.9033 51.086 19.362 -2.900 0.9908
1.219 2.8846 54.920 19.995 -2.882 0.9910
1.220 2.8655 59.361 20.702 -2.863 0.9916
1.222 2.8260 70.754 22.404 -2.824 0.9925
1.224 2.7843 87."36 24.670 -2.783 0.9936
1.226 2.7393 114.21 27.900 -2.739 0.9948
1.228 2.6890 164.25 33.048 -2.689 0.9961
1.230 2.6293 291.28 43.345 -2.629 0.9976
1.231 2.5920 474.31 54.767 -2.592 0.9986
1.232 2.5415 1277.3 88.628 -2.542 0.9993
1.1322 2.5272 1933.1 108.59 -2-527 0.9995
1.2323 2.5188 2602.0 125.68 -2.519 0.9997
1.2324 2.5087 3980.8 155.0- -2.509 0.9998

232587 2/4

is the asymptotic value of C as Re- 0 or Re- given
respectively by equations (14) and (40).
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With f(O) - f'(O) a 0, straightforward integration of the

equation will bring f' to zero at, say, n = no at which the

value of f is, say, D. In view of the last two conditions

of (18; it is obvious that

ClIl Rel/ 2 . no
Rel/2/ClI/l - D

and, of course,

(19a,b)

Re - D

The only inconvenience in the above scheme is that the

Reynolds number is the outp, t instead of being an inp :t

and may, therefore, be a little awkward. It goes without

saying that f"(0) - 1.2326 corresponds to Re - - The value

of C is shown later to approach v2/I. In short, for each

value of f"(O) assumed there results the following: Reynolds

number, the pressure gradient parameter C, the velocity

profile F' and the transverse pressure profile as supplied

by equation (9). The results of these calculations are

shown in Table 1 where the values of F"(0) and F"(1) are

proportional to the shear- stresses on the lower wall and

the upper wall where the injection takes place. The re-

duction of the shear on the injection side is, of course,

expected. Of interest are, however, the asymptotic value

of the pressure parameter C and the shear on the injection

side. Of equal significance is the fact that at Reynolds

30



numbers larger than 20 there is a rough relationship

expressed by

F"(0)
~ Rel/2

This relationship and th Iradually steep. velocity gradient

for increasing Reynolds number cn the solid wall as shown

in Figures 15 to 19 suggest the existence of a thin boundary

layer near the solid wall, i.e. the ground.

The pressure gradient parameter C defined in

equation (9a) is plotted in Figure 20. It is clear that

at the lower end of the Reynolds number scale the asymptotic

formula C - 12/Re holds whereas at the high end the C-value

tends to be a constant which is shown in the next section

to be w2/4. The utilization of the C-values lies in their

relation to the pressure distribution along the flow

channel to be discussed later.

Asymptotically Large Reynolds Numbers Case

In common with the concept of the boundary layer

theory the term F"'I/Re in equation (10) is dropped and the

resulting equation will be treated as the first-order

external (to the boundary layer) solution. The resulting

equation

,- F2 " C (20)

has ti.o solutions, i.e.
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and

F A cos y + L?) + B s'n y jC/(2 + B2)

The frist solution is, of course, a member of

the second by letting A = 0 and B -. This choice of

A and B lepding to a flat profile for F' is not consistent

with the results of the numerical solution and is hence

rejected. Now in the second solution there are three

arbitrary constants which are to be determined by satisfying

only three conditiois* of (11). Since on the surface

Y - 0 there is a boundary layer which is to be the solution

of a boundary layer equation the conditions F'(0) - 0 is,

therefore, dropped, the resulting solution is

F - sin YvT- (2])

whereV-C= w/2. The value of C appears to approach

(V2/4) in Table I. This solutizn (external) gives F'(0)

w/2 and is, therefore, not valid near y - 0. In order

to construct a sequence of solutions in an orderly manner

equation (10) is solved by the following expansion in the

external region:

Cl- 4 . c / 4 [1+ C1 , + C2  2 . (22)
02c

22
FoF0(Y) + EF I () + C 2FP2 (Y) (24)

*The problem treated by White et al [4] is the one in which
all their four conditions can be satisfied by three arblki-ary
constants.
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After the usual procedure there results:

F'2 - F F " C (25)
o 00 0

2F' F' - F F" Fi F" F 1 4C C (26)
0 1 0 1 o

F 1  + 2F' Ft - F - C- - (4C2+6C2 +F"(27)
1o2 ;1F0  1 F 1F 2j C0(4 2 6 1  0F'(7

In the boundary layer region, i.e. in the vicinity

of - 0 the boundary la-er coordinate no C!/ 4 Y/F is0

used and expand the function F as

F c1 c /  fo ) + ( f(no) + C2f.(no) + "]

c 1/4 f + C(Clfo+fl) + C2 (f2+Cff C f + ... (28)

F'(y) .01l/2 t + e(C f + V) + .(28a)

0 fo 1 0 1
The composite function fo0 fl, are determined by:

f,,, f,2  _ f " - 1 (29)

-0 0 0 0

ftlfft-2f'f' + ftt f -4C f#2 _ C~f'(001 f f" 2C fillfo0)

It is to be noced that equation (29) although the

same form as equation (17) is in reality different in that

the former is the boundary-layer equation subjected to the

standard two-point boundary-value problem whereas the latter

is valid for tne entire channel and constitutes an eigen-

value problem. Beginning with (25) one has

o - sin 'o y (31)
0 0

where the parameter Co is taken to be H/2 in ordcr to

satisfy the condition F(l) a 1, hence
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R2/4 (32)

0

Nedr the solid vall 0 equation (31J gives a finite

velocity F'(0) - (H/2). This is to be remedied by alowing
0

a boundary layer to exist near y = 0 of th thickness-8 in

which the velocity F' is to vary from 0 to (R/2) at the

edge of the boundary layer 6. This behavinr is to be

provided by the first term f in the expansion near y - 0'0

as shown in equaticn (28). The governing equation (29)

for fo is, therefore, subjected to the boundary !onditions

f () -0; '(0) - 0; and f 1(Cl 1610 ) 1
fo0) 0 fo

At asymptotically large nolds number, i.e. c -*0, the

last condition is replaced by fo(-) - 1. The solution to

equation (29) with these boundary conditions is, of course,

the Falkner-Skan function with f"(0) - 1.2326 and the value

of f at large arguments is asymptotically given by0

f = - 0.65
0 0

This composite nature of the f'unction F comprised of

equation (31) in the main bulk of the !hannel and the

Falkner-Skan velocity distribution near the solid wall

is illustrated in Figure 21. In the boundary layer region

y the dashed curve C Cl/ 4d f /dY - CI/2 f' replaces F'.
0 0 0 0 0
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!/4
The function F itself in this region is replaced by C Co f"

001/14 fde o a
However, this replacement i.e. c f does not match

00

the external stream function at the "Junction" y = 6. The

disparity i given by

C1/4 f (C/4 /
0 0 o o

Under the condition of 6- 0 and 6/c-w the disparity is

obtained as

- IF a- e C1/4 C1/ 4 6/c - 0.651 = 0.65 £ CI/4
0 0 0J 0

Physically this quantity represents the transverse displace-

ment velocity due to the boundary layer near the solid wall.

The mismatch of the stream function F at y =

is now to be corrected in the outer region of eF1 , the

second term of equation (24), such that the value of F0

+eF 1 is equal to that of C C 4 f at 6. This is
1 Thi isl

tantamount to the depression of the F-value, to be accompli-

shed by cFl, by an amount equal to AF. Consequently, the

conditions of F1 are:

1/1
F(1) = 0; F 1(l) = 0; and F,(i) = -0.65 

C1/ 4

For small 6 the last condition is replaced by

FI(0) = -0.65 C 1 4  (33)

The solution of equation (26) with the first two boundary

conditions is

35



F (y) -2C, [Ci- V" Cos y(34)I

and for (33) to hold one has: 1

C= 0.65/(2CO/4) (35)

Now the process repeats itself i.e. Fl(Y) gives a slip

velocity at y = 0 as

1/4
F(0) = 0.65 C (36)

1 0

which to be connected by the second term in the inner

expansion of equation (28), i.e.,

C c" ~cf, + f{] 0.65

at n Hence, the boundary condition of f at n-- iso 1

simply fl( ) = . The other two conditions are, of

course, f'(0) = 0 and f (0) = 0 and the solution f
1 1 1

satisfying equation (30) turns out to be

fl = Cl no f '  (37)

The outer stream function and the inner stream function

at y : differ by

AF I 0o 6 + £ F (0)1 E£ o 114 f [Cl f [ o0r + f ( )
= 0.652 €2/2

which is used to determine the boundary condition for F2

at = 6, i.e.

F (0) = -0.652/2
2
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The function F2 from equation (27) is found to be

F2(y) = -(C 1  2/2) (- ) sin (y/2)] + (,/2) [4C-

21C 2  3C 2 (1-y)cos(r /2) - T/)oyj

(w/2)

[cos z(sin z - z cos z)/sin3z] dz + (w/4)

[sln(ffy/2)-(wy/2)cos(%/2)] [(cot(wy/2)/sin(7r/2))+log

tan ( ,/, i (38)

The condition of F2 (0) = -0.65 2/2 is used to determine the

coefficient C as

2

2 2C 1 - 3C2 + (0.652/70 + cos z (sin z - z cos z)
1

/sin 3 z] dz

or

C = 0.4337 (39)

2

Up to the second order of ' , the pressure-gradient constant

C may be expressed as

2 , , 2
C= ( 1 i)(1 + 1.0373 E + 2.1682 2 ... (40)

and the shear stresses at y = 0 and y = 1 are given by the

following asymptotic formulas

o= (C3/ ) [I + 2CI C + (41)

F"(1) = (Tr2/4) [1 - 4C1  + O( 3 ) + ...] (42)
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The pressure differential across the channel is given

directly as

(p -p )= PV2 (43)

The pressure gradient C, the shear stresses F"(O) and F"(1)

and other pertinent quantities are shown in Table 1.

Figure (20) shows the variation of C vs. the

injection Reynolds number. From an engineering calculation

viewpoint the pressure distribution is given by

p - C Epv2/2] (L2 - x2)/H2 + pa (44)

where p is the ambient pressure aond the use of this relation~a

implies that the pressure difference across the channel

width as given by equation (43) is negligible. At x = 0,

the peak pressure is given by equation (44) with

pc - Va = [v ](L 2/H2) (45)

where Pc now denotes the cushion pressure. It is not

possible or meaningful in the present case to construct

the pressure parameter

(Pc - Pa )/Pt Pa )

where Pt is the total pressure in the trunk. The reason

is that the injection rate, i.e., the rate of air flow

through the trunk distribution-holes is a constant is only

true at the choked condition. However, if one tentatively

places the total (trunk) pressure as
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2
Pt = P + 1/2 p v w

then the pressure coefficient

(PC-pa)/(pt-Pa)= C(L2 /H2 )V [i + C(L2/H2] ... (46)

which is seen to be dependent on the Reynolds xumber.

Under the almost contact condition between the ground and

the trunk L2/H2 , and the pressure coefficient becomes

one.

IV. VARIABLE-INJECTION FLOW CASE

The analysis presented in Section III is valid

when the rate of the bleed air-flow through the distribution

holes along the cushion seal is uniform. In practice this

is only true when the trunk pressure is at a very high

pressure in the order of 50 to 100 psig so that the flow

through the orifices is at a choked condition. Since this

extreme condition is rarely encountered, it ii, therefore,

desirable to have a method available to account for the

variable flow case so that more realistic cushion pressure

can be estimated.

From a practical consideration the distribution

of the bleed flow from the pneumatic trunk is affected by

(1) the flow resistance across the "orifices," i.e. the

orifice coefficient and (2) the pressure listribution in

the flow channel. Thus the distribution of the bleed flow
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along the channel cannot be determined until the pressure

variation in the channel is known; the latter is in turn

dependent upon the flow distribution or accumulation from

the bleed-side of the wall. While it is possible to

analyze the interaction as discussed above from a more

exact fluid dynamic viewpoint it is more expedient to

employ the concept of local similarity in treating the

present problem.

The local similarity rule as applied to the

channel flow problem is interpreted a- follows referring

to Figure 2 the local pressure gradient p is determinedx
by a local pressure gradient coefficient C which is in

turn determined by the local Reynolds number (vwH/v). The

velocity distribution (u/ua) is also determined by the

local value of the Reynolds number. Mathematically this

is expressed by

u = F'(j) (vw/H)dx (47)
0

V = -V F(Y) (48)

Equations (47) and (48) reduce to equations (6) and (7)

when vw is a constant.

Substitution of equations (47) and (48) into

equation (1) there results

p,2 2W i
0FF" [ - x/pvwdx] + (v/Hv (49)
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The first term on the LHS is now a function of x. This is

becauZe the Reynolds number (vwH/v) is x-dependent in (49)

but not so in equation (8) for the uniform injection case.

In the present case the present gradient term in the brackets

of equation (49) is only dependent on (Hv w/v). The fact

+,hat this is a practically acceptable procedure is justified

on the basis that the average value of the convective terms

on the LHS of equation (49) is nearly a constant. The

pressure gradient px is dependent upon the friction resistance

on the wall Menoted by F"' in equation (49) and upon the

momentam increase. The momentum increase is partly dependent

upon the accumulated flow and partly upon he shape of the

velocity distribution in the channel. Consequently, the

integrated value from y - 0 to y = 1 of the convective

terms of the LHS represents the influence of the shape

factor or

(F'2 - FF") dy - 2 F'2d5

From Re = 0 to Re =- this shape factor changes from 1.29

to (W 2/8). Since this change is minor and this variation

is incluled in the local similarity rule the procedure is,

therefore, valid.

Computation Procedure

With the pressure gradient parameter C defined in

Table I for various local Reynolds number, the pressure

gradient can be written as 41



PVw Io vw dX
0 C

dxH 2

For flow with appreciabe variations in density, it should

be inside the integral.

It is assumed that the following data are known

in advance:

L - length of channel, ft

H - ground clearance. ft

- air kinematic visco ity, ft2/sec

Pt P trunk pressure, psfa

p ambient pressure, psfa (2116.8 psfa or

14.7 psia)

Additionally, appropriate coefficients of discharge for

flow through the distribution holes must be known. The

pro.edure is essentially a cut-and-trial method. It

begins with an assumed value of the pressure at x a o which

is below the trunk pressure and above the ambient pressure.

For illustration let the bleed flow be determined

from the simple orifice formula:

Vw d Ar"2go(P_-p)/p1 (51)

where Ar is the ratio of the orifice area to the Real area.

For example if the orifices are placed 3 inches apart

(center-to-center) on a square-pitch basis and the orifice
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diameter Is 2 inches, then Ar 22/4] /3 2 = f/9. Equation

(51) gives the value of v at x = 0 which defines thew

Reynolds number (v wH/) at x = 0. From Table I the pressure

gradient parameter C is obtained. Since the pressure

gradient itself is zero at x =0, the pressure at x = A

may be calculated as

P (x=A) 0 P (xmO) - (Pv 2 C/H2) A2/2 (52)

The next step is now to compute vw at x = A by means of

equation (51) and to compute the pressure gradient from

equation (50N after Table I is used to obtain C. In this

way the pressure at progressively large x can be numerically

evaluated until at x = L the claculated pressure must match

the ambient pressure. If the calculated pressure is higher

than the ambient pressure then the assumed pressure at

x - 0 is too large and a lower value must be tried.

A large number of computer runs were performed.

The general ranges of the parameters were as follows: trunk

pressure variel from 0.5 to 6.0 psig at 1.0 psi interval;

the CAr (coefficient of discharge times the area ratio)

varied from 0.003 to 0.27 at 0.003 interval; the ground

clearance height H varied from 0.04 to 0.16 ft at 0.04 ft

interval and the clearance-length ratio (H/L) varied from

0.05 to 1.0 -t 0.05 interval,
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Figures 21ab~c, contain the ty cal pressure

variation along the channel-seal for an (H/L) ratio of

0.05, 0.10, and 0.15 respectively. The abscissa is the

dimensionless distance (x/L) from the cushion-.space and L

is the length of the channel-.seal. The ordinate shows the
non-dimensional local pressure ratio (P-Pc)/(Pt-Pa) The

parameters are the values of the CdAr . For large values of

CdAr the pressure distribution is within the flow channel

almost constant indicating the phenomenon that air injection

takes place only near the exit (ambient) side. It is

significant to call attention to tne fact that these non-

dimensional pressure distribution is virtually independent

oo the trunk pressure at least from 0.5 to 6.0 psig and the

ground clearance H from 0.04 to 0.15 ft. Over these ranges

of the above-cited parameters the curves are identical and

indistinguishable from one another. Numerical differ'ences

however do exist but only in the third significant digit.

Each curve in Figures 21-a,b,c, was used to ottain

the average pressure within the channel seal. This averaged

pressure when multiplied by the area of the seal gives

additional lift to the vehicle which may be of an appreciable

magnitude. The parameter shown on the ordinate of Figure 7

22--a,b, is (Tav-Pa )/ c-P) with the cushion gage pressure

as the reference; P Is the average channel 7,ressure.
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It is to be noted that Figures 22-a, and b are for two different

urunk pressures of 6.0 and 2.0 psig and these two figures

virtually duplicates each other.

From the pressure distribution like those in

Figure 21-a, the value at (X/L) = 0 is the cushion pressure

ratio based on the assumption of no air moisture in the

cu-hion-air space. This cushion pressure ratio then depends

on (H/L) and the CdAr-value. For example at H/L = .05 and

Cdr J .03, .045... the cushion pressure ratios are 0.549,

0.790,.-. The latter values are tabulated in Table II and

plotted in Figures 23-a,b, for the trunk pressure of 6.0

psig and 2.0 psig. These two figures are almost 4dentical

,ndicat-ng its insensitivity to the trunk pressure. The

last two figures are particulary important in that the overall

performance of the cushion-lift can be directly obtained.

As an illustration, consiler the example:

runk pressure - 4.0 psig

Cushion-spce area - 200 sq. ft.

Channel-seal length - 1 ft.

Vehicle weight - 100,000 lb.

CdAr - .21

The last value can be estimated frc'm the geometrical spacing

of the bleed holes located in the cushion-bag. The coefficient

of discharge is usually in the range of 0.6 corre~punding tc)
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the orifice discharge coefficient. A more accurate estimate

will be reported in Part II of this reDort to be published

shortly.

From the preceding in, rmation it is possible to

calculate the necessary cushion pressure for take-off

operation.

PC = 100,000/(200 x 144) = 3.47 psig

The cushion pressure ratio is therefore (3.47/4.0) = 0.868.

From Figure 23a or 23b, the curve with QJAr = 0.21 gives a

value of (H/L) - 0.20. For L = 1 ft, the ground clearance

height H = 0.20 ft or 2.4 inches. Of course the information

in Figure 23 can be used to determine the proper CdAr if

H is to be specified. This specifies the proper spacings

of the bleed holes- and subsequently the rate of discharge

of bleed air.

A general computer program is attached in Appendix.

The computer program requires the following input values:

CdAr; trunk pressure, ambient pregsure, both in psia;

seal length in ft.; ground clearance H in ft; and the kinemati

viscosity of air (-0.00015 ft2 /sec), These data are to be

read by the computer program on a single punch data card

(format 6F10.2) for each configuration. After one run i

completed the program will read the next card which may

contain different parametric inputs for the next run. The

program continues in this manner until it reads a blank

card which must be attached next to the last data card.
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The output of the program foe each run consists

of two parts: the first part is a tabulation of the local

pressure ratio (PPa)/(Pt't-Pa), Vhe local injection velocity

(Prorated over the entire seal area) in ft per sec, the

local pressure gradient constant C, and the local Reynolds

number at about 39 stations of increasing (x /L) values where

x is the distance from the cushion-space. The second part

gives the average pressure (gage) in the seal area in its

ratio to the gage trunk pressure, the actual injection flow

rate in cfs per ft of depth of the cushion space.
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