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FOREWORD

The work reported herein concerns the cushion pressure
characteristics for the Air Cushion Landing System under the
conditions of stiff-operation, and was performed under United States
Air Force Crntract No. AF 33(615)-69-C-1001 (Project 1369), with

The OChio State University Research Foundation, Columbus, Okio.

The content of this part of the report deals with the
theoretical calculations. The second part of the report will be
concerned with the experimental verification of the theory developed
herein. This phase of the work was carried out from July 1969

through June 1970 and the report was released by the author November

1970.

This report has been reviewed and is approved
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KENNEKLY f. DIGGES

Chief, Machanical Branch
Vehicle F3uipment Division
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ABSTRACT

This report studies the performance characterictics
of the air-cushioned landing and take-off system for aircraft
during its stiff-operation mode. Stiff-operation is obtained
during the early stage of the take-off period or the later
stage of landing. Its chief feature 1s that the pneumatic
supply chamber of bleed air 1s in almost parallel configura-
tion with the ground. The supply air flows vertically down
through the bleed holes and 1s then deflected outward.

This part of the report contains the theoretical
treatment of the problem. The results are in the form of
a cushion pressure ratio in terms of the supply (trunk)
pressure. Analysls was performed based on incompressible
viscous theory. The second part of the report to be
published shortly will detall the experimental results in

comparison with theory.
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SYMBOLS

area of orirfices/total area of seal

pressure gradient parameter, see eguation 9a
coefficients of C, see equation 22

coefficient of discharge for orifice

clearance above ground

seal length, see Figure 1

pressure

ambient, cushion-space and trunk pressures psia
Reynolds number (vw H/v)

velocity along x-axis (parallel to the ground)
average veloclty of u, (vwx/H)

velocity along y-axis (perpendicular to the ground)
injection or suction velocity

coordinates in Figure 2

non-dimensional y-coordinate (y/H)

kinematic viscosity

dynamlc viscosity

density

(1/VER,)

boundary layer thickness

non-dimensional boundary layer thickness (&/H)

temporary coefficients, see equation (15), (16)
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I INTRODUCTION

The alr-cushioned landing system for ailrcraft 1s
based on a simple fluid dynamic phenomenon - the momentum
principle. It has the all important advantage of being
able tc operate over terrains other than paved runways or
over water. Furthermcre, it obvliates the complicated
retractable gear system.

The constructlon conslsts of a retractable
pneumatic bag shaped in & toroldal manner and fasteaed to
the fuselage. The pneumatic ag made from rubber-like
elastic material is provided with air bleed-holes and can
be Inflated by a low-pressure high-volume air source.
During operational periods, i.e., takeoff or landing, the
inflated bag forms a seal between the suppcrting base area
of the alrcraft and the ground. In this manner, a cushion
space 1s formed. The pressurlzed air 1s forced through the
distribution holes and is deflected, because of the symmetry
in geometry to form a peripheral ground jet. The outward
momentum of the ground Jet creates a posltive ailr pressure
in the cushion space or the base region. It is this
posltive pressure that supports the aircraft weight during
takeoff or landing operation. Figure 1 depicts the
schematics of such a system together with the current

nomenclature.
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While the practicality of such a landing system
has been amply demonstrated in successful flight tests
by the Bell Aerosystems program, further research, testing
and gathering of engineering data are required in order
to obtain more precise information for the optimum design
of such a system for various modes ~f operatlor.. Some
of the obvious modes of operations may be mentioned: viz,
during landing operation the attitude of the alrcraft may
necessitate a landing with a fixed pitch angle or a fixed
roll angle. The cushion seal is no longer of a uniform
height around the periphery. This mode of operation may
considerably alter the fluid dynamic behavior near the base
region and hence the maneuverablility of the alrcraft.
Alternatively the ground jet distribution may be influenced
by a crosswind which again may change the handling character-
istics of the alrcraft in question. Aside from these
factors it is to be noted that the locations, spacings and
sizes of the bleed-holes have not yet been optimized
although some preliminary work was reported by Earl in the
report by Lell [1]*. PFurthermore, it was observed that the
pneumatic bag experienced some breathing-mode vibrations
during its inflation stage which is indicative of the

complexities of the mechanics of deformation of such a

®Numbers in brackets are reference numbers.
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toroldal elastlc enclosure. The exact shape of the cushion
bag under pressure may be of importance in that the cushion
pressure distribution in the base area may be greatly
influenced by the deformed shape. Similarly, a number of
design considerations dealing with the controlled bleed-
flow distribution in various portions of the pneumatic bag
may be mentioned. The controlled distribution may be
accomplished by compartmentalizing the pneumatic bag; each
compartment having its own pressure. Thils scheme can be
accomplished by a proper valving and ducting and can be
used to control and direct the alrcraft attitude. The
preceding-mentioned phenomena are noted herein to indicate
the need for further studies and refinements and will be
more fully elaborated upon in a later report.

The present study described in thils report 1is,
however, concerned with a particular mode of operation
known as the stiff-operatiocn which takes place when the
pneumatic bag is very close to the ground. The alr seal
formed becomes a long (in the air flow direction) passage

with very small height (clearance to the ground). Figure 1

shows the schematics of the various major components comprising

the air-cushion system. For the stiff-operation mode, the

bleed air is directed along the small passage outward

leaving the cushion space rel:tively undisturbed. Consequently,

the fluld dynamic behavior can be very well simulated by

j
i
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assuming the cushion space to be a stationary area and the

two alr passages can be brought together as shown 1in Flgure
2 in which the ground i1s replaced by a solid plane on the
x-axls and the source of alr injection 1s replaced by a
porovs plate at a fixed distance H above the ground. The
plate has a length of 2L. The injJected alr is divided
along the y-axis. The pressure at either end of the

porous plate is taken to be atmospheric. The objective of
the present study 1is to analyze the pressure along the
passage. Since at x = 0 along the y-axis the flow 1s zero
due to symmetry, hence the pressure there shall be taken

as the pressure in the cushion space which 1s assumed to
have no motion. The injection of air is to take place with
a uniform rate independent of x. The latter assumption
will be removed later in this report. A subsequent report
will discuss and ana“yze the fluid dyaamics when the former
assumption 1s removed, i.e. there 1s 1induced motion of the

air in the cushion space.

IT. ANALYSIS

Employing the assumption of an incompressible
fluid model and two-dimensional flow tne equations of motion

and of continuity are-

2
uu, + VU, = ~p,/0 + V¥ u (1)
- - A 2
uv, + vV, py/p + Vv (2)
u, + vy = 0 (3)
5




The boundary conditions assoclated with the

preceding equations are:

u=va=20 y = 0 (lba)
u=0 y = H {4b)
Vo=V, y = H (4¢c)

III. UNIFORM INJECTION CASE

Since the flow in the passage 1s caused by the
injection at the upper boundary the flow velocity in the
x-directi n must be linearly proportional to x, the distance
from the line of symmetry, for a constant rate of injection,
il,e. v= Ve at y = H. Consequently, the stream function

¥ can be written as:

Y=V X F(y) (5)
where y = y/H

ve-v. F (6)

u = (v x/H) F' (7

3 ubstitution of the above relations into equations (1)
and (2) ylelds:
F'2 - FP" = ~(H%p,/ovix) = F'''/Re (8)
FF' = -(H p /pv2) - 2"/Re (9)
where Re = (H v /v)
Equation (9) states that py is independent of x;
hence p, 1s independent of y. In equation (8) the first
term on the right-hand side is, therefore, independent of

y and can be regarded as a conatant, or
6
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~(H2 p_/ovix) = C (9a)
the principal equation concerned in this report is then
F'2 «FF" = C + F' "/Re (10)
the boundary conditions are
#(0) = F'(0) = F'(1) =1 ~F(1) = 0 (11)
In equation (10) the Reynolds number is a parameter
to be arbitrarily specified and there are four boundary
conditions in (11) for the third-order equation. The constant
C analogous to an eigen-value in a linear differential
equation is to be determined as well. Its value 1is, of
course, dependent on the Reynolds number.

Low Reynolds Number Case

For very low Reynolds numbers the inertia terms
on the left-hand side of equation (1) can be ignored
since they are of the second-order nature and the equation
reduces to
F't' = -C Re (12)
with a solution
F = (273 - 35°) (C Re/12) (13)
which satisfied the first three boundary conditions of
(11) and the last condition is fulfilled by
C = 12/Re (1%)
The velocity profile from § = 0 vo §y = 1 is
given by

P' = y (1-y) (C Re/2) (15a)
which is symmetrical about the mid-channel position y = 1/2

-~

[}
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thus exhlbiting no convective effect from the injection
side y = 1.

The velocity profiles for very low Reynolds number
are graphically shown in ‘igures 3, 4, ... for increasing
values of the Reynolds nuiiber. The profiles exhibit
symmetry about the mldpoint of the flow channel, char-
acterizing the absence cf the inertia effect. The pressure
distribution along the channel is solely caused by the
frictional effect and can be calculated directly from

equations (9a) and (14). Equating these two equations,

2 24) =C =

-H px/(p vw X) C = 12/(v H/v)
Denoting the atmospheric pressure by Pys the pressure
distribution is obtainea as

= 3 2 _ 2

(p-py) = (6u v /H) (L° - x?)
The maximum pressure occurs at the mid-channel x = 0
where the velocity 1s zero. In an approximace sense it is
also the pressure in the cushion space. Denoting 't by Peos
the value 1is

2
P, = Py ® 6u v, L /H3

This equation may be used either to calculate the cuchion

pressure or the injection velocity Vo

Arbitrary Reynolds Number Case

Studies similar to the present problem have been

undertaken by & number of investigators although for different




applications from that contemplated in the present case.
Yuan and Finkelstein [2] studied the problem of flow in a
circular tube with porous wall. The resulting equation
governing the velocity distribution is quite similar to
(10) and (11). Their method consists of solving for the
stream function in an ascending serles of Re for small
Reynolds number or series of (1/Re) for large Reynolds
numbers. Because of the series method cf solution a large

number of terms are required for accurate evaluation of

the velocity profiles. Conszquently, Morduchow [3] devisead
an integral method modeled after the K. in-Pohlhausen
method to solve the problem posed in [2]. The method is

well known to be reliable only when it can be shown to

agree with some known exact solutions. A more rigorous
treatment of the similar problem hLas recently been ziven

by White et al [4]. The last-mentioned work solved the
problem by an infinite series in terms of the physical
coordinates. The method 1is conceptually exact but 1s tedious
to execute.

In the present study the method ~f solution of
equations (1C0) and (11) are made exact both soncaptually
and numerically. The execution of the solution turns out
to be quite simple. In the first place equations (10) sand
(11) constitute a two fixed-point boundary value protlem

with an associated =2igen-value. The "eigen-value" C in




equation (10) t-~gether with the arvitrary parameter Re

appears to be complicated; bdbut In reallty they simplify

the problem as can be seen as follows:

Let Fif)=p J(y¥) {15a)
n= vy

Equation {10) becones

82 v2(£'2 - ££M) = C + gy3 £"'/Re
Putting pe 72 = = 373/Re the fecllowing resulta:
g = cl/H/pel/? (16a)
y = /Y pet/? (16b)
and the equotion for f now reade
£12 o pem = 1 4+ M (17)
which turns out to be the well-known Falkner-Skan equation.
However, the boundary conditions are:
£(0) = £'(0) = 0
f(cl/u Rel/?) - Rel/2 Cl/ll
£1(c1/% Rel/2) « o (18)
Now the behavior oi the function f subject to the first
twe boundary conditions of (18) 1s well known. For f£"{(0)
> 1.2326, f' increase from zero monotonically. For
£"(0) < 1.2326, the graph of f' ~ n exhibits a maximum
with f' < 1 and the f'~curve crosses the n-value. Taking
advantage of these known properties, equation {17) with
(18) as its boundary conditions may be solved by assuming

an arbitrary value of £"(0) between 0 and 1.2326.
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Table I

Summary of Numerical Results, Uniform Injectlon Case

£1(0) c Re F"(0) P (1) (c/c#)t
.100 90000 .13333x10"3 6.0000 -6.000 1.0000
.200 5624.0  .0021345 6.0000 -5.999 1.0000
.300 1110.1 .01083 6.0050 -5.9914 1.0021
.1oo 350.59  .034456 6.0157 -5.981 1.0066
.500 143.02  .085284 6.0389 -5.954 1.0165
.600 68. 46 .18143 6.0829 -5.903 1.0351
. 700 36.497  .35121 6.1602 -5.616 1.0683
. 800 20.975  .64428 6.2934  -5.672 1.1261
. 850 16.235 .B6480 6.3932 -5.569 1.1700
.900 12.762 1.1618 6.5271 -5..438 1.2298
.950 10.023  1.5727 6.7111 -5.270 1.3136
1.000 7.9601 7.1656 6.9738 -5.051 1.4365
1.050 6.3491  3.0815 7.3724  -4.762 1.6304
1.100 5.0723 4.6732 8.0407 -4.375 -
1.120 4.6405 5.6978 8.4533  -4.1814 -
1.140 4.2430  7.1594 9.0176 -3.970 -
1.160 3.8777 9.4212 2.8370 -3.732 -
1.180 3.5363 13.403 11.140 -3.472 -
1.190 3.3725 16.80C 12.138  -3.324 -
1.200 3.2100 22.281 13.584  -3.1930 -
1.205 3.1280 26.514 14,594  -3.114 -
1.210 3.0448  32.621 51.928 -3.036 0.9886
1.215 2.9577  12.196 17.800 -2.953 0.9898
1.216 2.9400  44.803 18.274 -2.936 0.9902
1.217 2.921 47,743 18.792 -2.918 0.9904
1.218 2.9033 51.086 19.362 -2.900 0.9908
1.219 2.884& 54,920 19.995 -2.882 0.9910
1.220 2.8655 59.361 20.702 -2.863 0.9916
1.222 2.8260 70.754 22.4o4  -2.821 0.9925
1.224 2.7843  B7.:36 24.670 -2.783 0.9936
1.226 2.7392  114.21 27.900 -2.739 0.9948
1.228 2.6890 16L.25 33.048 -2.689 0.9961
1.230 2.6293 291.28 43.345 -2.629 0.9976
1.231 2.5920 U74.31 54,767 -2.592 0.9986
1.232 2.54315  1277.3 88.628 -2.5kz 0.9993
1.1322 2.5272 1933.1 108.59 -2.527 0.9995
1.2323 2.5188  2602.0 125.68 -2.519 0.9997
1.2324 2.2087 3980.8 155.0u =2.509 9.9398
* 232587 e/l

1o% 45 the asymptotic value of C as Re+ 0 or Re+ = given
respectively by equations (14) and (u0).
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With £(0) = £'(0) = 0, straightforward integration of the
equation will bring f' to zero at, say, n = o at which the
value of f is, say, D. In view of the last two conditions
of (18, 1t 1is obvious that

cl/8 Rel/2 ng

Rel/Z/Cl/h D
and, of course,

¢ = (n/D)?

Re = noD

(19a,b)

The only inconvenience in the above scheme is that the
Reynolds number 1s the outpy. 't instead of being an input

and may, therefore, be a little awkward. It goes without
saying that f"(0) = 1.2326 corresponds to Re = =, The value
of C is shown later to approach *2/4, 1In short, for each
value of f"(0) assumed there results the following: Reynolds
number, the pressure gradient parameter C, the velocity
profile F' and the transverse pressure profile as supplied
by equation (9). The resulis of these calculations are
shown in Table 1 where the values of F"(0) and F"(1) are
proportional to the shear stresses on the lower wall and

the upper wall where the injection takes place. The re-
ducticn of the shear on the injection side is, of course,
expected. Of interest are, however, the asymptotic value

of the pressure parameter C and the shear on the injection

side. Of equal significance is the fact that at Reynolds
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numbers larger than 20 there is a rough relationship
expressed by
F1(0)~ Rel/2

This relationship and tb. :radually steep. velocity gradient
for increasing Reynolds number c¢n the solid wall as shown
in Figures 15 to 19 suggest the exlstence of a thin boundary
layer near the solid wall, i.e. the ground.

The pressure gradient parameter C defined in
equation (9a) is plotted in Figure 20. It is clear that
at the lower end of the Reynolds number scale the asymptotic
formula C = 12/Re holds whereas at the high end the C-value
tends to be a constant which is shown in the next sectioen
to be uz/u. The utilization of the C-values lies in their
relation to the pressure distribution along the flow

channel to be discussed later.

Asymptotically Large Reynolds Numbers Case

In common with the concept of the boundary layer
theory the term F"'/Re in equation (10) is dropped and the
resulting equation will be. treated as the first-order
external (to the boundary layer) solution. The resulting
equation

P'2 - FP" = C (20)
has tu.o solutions, i.e.

F=¢V/C§

3l
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and

F = A cosy Ve/(a” +12) + B siny v/ (a2 + B2)

The frist solution is, of course, a member of
the second by letting A = 0 and B + =+ This cholce of
A and B leading to a flat profile for F' is aot consistent
with the results of the numerical solution and 1s hence
rejected. Now in the second solution there are three
arbitrary constants which are to be determined bty satisfying
only three conditions® of (11). Since on the surface
¥ = 0 there is a vtoundary layer which 1s to be the soiution
of a boundary layer equation the conditions F'(0) = 0 is,
therefore, dropped, the resulting solution 1s

F = sin §V/C (21)

whereVC = n/2. The value of C appears to approach
(ng/h) in Table I. This soluticn (external) gives F'(0) =
v/2 and is, therefore, not valid near § = 0. In order
to coastruct a sequence of solutions in an orderly manner
equation (10) is solved by the following expansion in the

external region:

cl/b . cg/“ [1+ C, e+ Cy ? ; ] (22)
‘C0 - 12/13 ande = 1//Re {(23)
F o= F(§) + P (3) + ¢ F,(3) (24)

¥The problem treated by White et al [4] is the one in which
all their four conditions can be satisfied by three arbicrary
constants.
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After the usual procedure there results:

FI2-FF" =g {25)
o (o 2 o) 0
' t - LU - 1 = .
’ 2F ) Fl FoFl P Fy ucl ¢, (2€)
- 2 . : 2
éj F)' + 2F) Fy - FoF," = FoF] = F 35 = C (4C,+6C;) +Fg' (27)
ai".

i In the boundary layer region, 1.e. in the vicinity
of § = 0 the boundary la er coordinate n, = Ci/u y/e is

used and expand the function F as

: 2
F = ecl/ [foxno) +e £lng) + &0 (n ) + ...]

1/4 2
- eC_ [ro +e(Cyf #ry) + €7 (f#C 0 4Cof ) ...] (28)
l--l/2[0+ t ¢ Y)Y 4+ ]
F'(y) C0 fo e(clro fl) “oa (28a)
The composite function fog fl, «.., are determined by:
frrm £12 - £opr -1 (29)

" 2
r;'+forg - 2fif) 4 fo f, = ~HCy - 2Cyf fR+ 2C, 1€ - Cfgt (30)

It 1s to be nc.ed that equation (29) although the
E | same form as equation (17) is in reality differsnt in that
the former is the boundary-layer equation subjected to the
;i; standard two-point boundary-value prodblem whereas the latter
'k is valigd for the entire channel and constitutes an eigen-

' B value problem. Beginning with (25) one has

P, = 8in JU; y (31)

where the parameter C, is taken to be N/2 in ordcr to

satisfy the condition F(1) = 1, hence

33




e, = 72/l (32)

Near the solid wall § = 0 equation (31, gives a finite
velocity Fé(o) = (g/2). This is to be remedied by allowing
a boundary layer to exist near y = 0 of the thickness¢ in
which the veloecity F' is to vary from 0 to (NI/2) at the
edge of the toundary layer E. This behavier iz to be

y =0

«

provided by the filrst term fo in the expansion near
as shown in equaticn {28). The governing equation (29)
for fo is, therefore, subjected tc the boundary -onditions

1747
° §/e) = 1

Ty

fo(O) = 0, fé(O) = (0; and fé(C

At asymptotically large ' . nolds number, l.e. € +0, the
last condition is replaced by fg(w) = 1. The solution to

equation (29) with these boundary conditions is, of course,

the Falkner-Skan function with f"(0) = 1.2326 and the value

of fo at large arguments 1is asymptotlcally given by

f =n - 0.65
o} o)

This composite nature of the function F comprised of
equation (31) in the main bulk of the ~hannel and the
Falkner-Skan velocity distribution near the solid wall

is 1llustrated in Figure 21. In the boundary layer region
y =5 the dashed curve e C;/ud fo/d§ = Clgz fé replaces Fé.
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The function F itself 1n this region is replac<ed by ¢ Ci/u f.

o}
However, this replacement i.e. ¢ Cg/u

fo does not match
the external stream function at the "junctlon"™ y = 5. The

disparity i3 given by

1/4 1/4

= s - iy
AF Fo (8) e Cg fo (cO §/¢)

Under the condition of §+ 0 and E/e*w the disparity is

obtalned ss

oF = VG 8- ¢ ci/M [clﬂ' §/¢ - 0.65] = 0.65 ¢ o/¥
(o] o] [e) o]

Physically this quantity represents the transverse dispiace-

ment veloclty due to the boundary layer near the so0lid wall.
The mismatch of the stream function F at y = §

13 now to be corrected iIn the outer reglon of eFl, the

second term of equation (24), such that the value of ¥

1s equal to that of ¢ Cé/u

¢}

+ ¢F £, at 7 = &. This is

1
tantamount to the depression of the F-value, to be accompli-
shed by eFl‘ by an amount equal to AF., Consequently, the

sonditions of F1 are:

03 F1(1) = 05 and F,(§) = -0.65 ci’"

Fl(l)

For small § the last condition is replaced by

1/4
F1(0) = -0.65 C, (33)

The =olution of eguation (26) with the first two boundary

condlitions is
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Rl(§) = -2c, [(1—3?)\/0O cos }\/co] (34)
and for (33) to hold onre has:

/4

c, = 0.65/(2c."") (35)

1
Now the process repeats itself i.e. F1(§) gives a slip
velocity at y = 0 as

¢ F1(0) = 0.65 ci/“ e (36)

which to be connected by the second term in the inner

expansion of equation (28), i.e.,

12 o v 4 1] = 0.65 ¢**
e [clfO + fl] 0.65 ¢/ ¢

at Nt . Hence, the houndary condition of £ at n+= is

1

simply fi( ) = C The other two conditions are, of

x
course, fi(O) = 0 and fl(O) = 0 and the solution fl

satisfying equation {(30) turns out to be
= f
fl C1 o fo (37)

The outer stream function and the inner stream function

at y = differ by

- 1/4
i = frg (B ¢ e P = oM e (o) e [or0 (o) + £ ()]
= 0.65° c2/2

which 1s used to determine the boundary condition for F2

at y = 5, l.e.

F,(0) = -0.652/2
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The function F, from equation (27) 1is found to be

2

Fo(§) = ~(Cy n2/2) [(1—5) sin (§/2)] + (1/2) [ucl -
202 - 3Ci] (l’;)cos(ﬂ§/2) - (“/2)005(5/2)8(“y/2)
(n/2)

[cos z(sin z - z cos z)/sin3z] dz + (a/4)
[sin(n§/2)-(n§/2)cos(n/z)] [(cot(wy/2)/sin(w§/2))+1og
tan{ﬁ§/hﬂ (38)

2
The condition of F2(0) = -0,65 /2 is used to determine the

coefficient C, as

2
5 T2
2CH = 201 - 3Ci + (0.65 /7)) + S [cos z (sin 2 ~ z cos 2)
0
/sinBZ] dz
or
C. = 0.4337 (39)

2

Up to the second order of € , the pressure-gradient constant
C may be expressed as

C= (42/45)(1 + 1.0373 ¢ + 2.1682 ¢° ...) (40)

and the shear stresses at ¥y = 0 and § 1l are glven by the

followlng asymptotic formulas

F"(p) = (Ci”“/s ) [1 +2C) e+ ...] (41)
F'(1) = (n2/b) [1 - o e+ 0(ed) ¥ ] (42)
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The pressure differential across the channel 1s given

directly as

= 2
(p§'1 - py-o) = - pvw/-? (43)

The pressure gradient C, the shear stresses F"(0) and F"(1)
and other pertinent quantitlies are shown in Table 1.

Figure (20) shows the variation of C vs. the
inJection Reynolds number. From an engineering calculation

viewpolint the pressure distribution is glven by

p = [ov22] @ - Pym? 4+ p, (44)
where Py is the amblent pressure aind the use of this relation
implies that the pressure difference across the channel

width as given by equation (43) is negligible. At x = 0,

the peak pressure is given by equation (4%4) with
= 2 2 12
p, -~ P, =C [pvw/z] (L°/H<) (45)
where p, now denotes the cushion pressure. It 1s not

possible or meaningful in the present case to construct

the pressure parameter

(p, = P )/(py = py)
where Py is the total pressure in the trunk. The reason
is that the injectlon rate, 1.e., the rate of air flow
through the trunk distribution~holes 1s a constant 1s only

true at the choked condition. However, 1f one tentatively

places the total (trunk) pressure as
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2
pt=pc+l/‘?pvW

then the pressure coefficlient
2 e 2 /152
(=P, )/ (py-p,) = C(LZ/E7)/ [1 4+ cr2/md)] ... (46)

which 1is seen to be dependent on the Reynolds unumber.
Under the almost contact conditlion between the ground and
the trunk L2/H2 +» . and the pressure coefflicient becomes

one.

IV. VARIABIE-~INJECTION FLOW CASE

The analysis presented in Sectlon III is valid
when the rate of the bleed air-flow through the distribution
holes along the cushion seal is uniform. 1In practice this
is only true when the trunk pressure 1s at a very high
pressure in the order of 50 to 100 psilg so that the flow
through the orifices is at a choked condition. Since this
extreme condition is rarely encountered, it is, therefore,
desirable to have a method available to account for the
variable flow case so that more realistic cushion pressure
can be estimated.

From a practical conslderstion the distribution
of the bleed flow from the pneumatic trunk 1s affected by
(1) the flow resistance across the "orifices," i.e. the
orifice coefficient and (2) the pressure :distribution in
the flow channel. Thus the distribution of the bleed flow
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along the channel cannot be determined until the pressure
variation in the channel is known; the latter is in turn
dependent upon the flow distribution or accumulation from
the bleed-side of the wall. Whille it is possible to
analyze +the interactlon as discussed above from a more
exact fluld dynamic viewpoint 1t 1is more expedient to
employ the concept of local similarity in treating the
present problem,

The local simlilarity rule as applied to the
channel flow problem i1s interpreted ac follows: referring
to Figure 2 the local pressure gradient px 1s determined
by a local pressure gradlent coefficlent C which is in
turn determined by the local Reynolds number (va/v). The
velocity distribution (u/uy) i1s also determined by the
local value of the Reynolds number. Mathematically this

1s expressed by
_ X
u=F'(y) S (vw/H)dx (47)
o}
voE v F(y) (48)

Equations (47) and (48) reduce to equations (6) and (7)
when Vi 1s a constant.
Substitution of equations (47) and (48) into

equation (1) there results

F' - FF" = - [H2px/pvwd%] + (v/Hv,)F"! (49)
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The first term on The LHS 1s now a function of x. This is
becaure the Reynolds number (va/v) is x-dependent in (49)
but not so in equation (8) for the uniform injection case.
In the prescnt case the present gradient term in the brackets
of equation (49) is only dependent on (va/v). The fact
that this 1s a practically acceptable procedure i1s justified
on the basis that the average value of the convective terms
on the LHS of equation (49) 1is nearly a constant. The
pressure gradient Py is dependent upon the friction resistance
on the wall Aenoted by F"' in equation (49) and upon the ‘
momenium lncrease. The momentum increase is partly dependent
upon the accumulated flow and partly upon the shape of the
velocity distribution in the channel. Consequently, the
integrated value fromy = 0 to y = 1 of the convective
terms of the LHS represents the influence of the shape
factor or

Sl (F'2 - FF") @§ = 2 sl F'2ay

°© o
From Re = 0 to Re =« this shape factor changes from 1..9
to (w2/8). Since this change is minor and this variation
1s included in the local similarity rule the procedure 1is,

therefore, valid.

Computation Procedure

With the pressure gradient parameter C defined 1in
Table I for various local Reynolds number, the pressure

gradient can be written as 41




_Additionally, appropriate coefficients of discharge for

X
dp - PV So Vu dx

c (50
dx

g2
For flow with appreclable variations 1in density, it should

be inside the integral.

It 1s assumed that the following data are known

in advance:

L = length of channel, ft
H = ground clearance. ft
v = air kinematic visco ity, ftz/sec
pt * trunk pressure, psfa
p, = amblent pressure, psfa (2116.8 psfa or

14.7 psia)

flow through the distribution holes must be known. The

procedure 1s essentially a cut-and-trial method. It

e Sl b 1t 8 e e e ety R

begins with an assumed value of the pressure at x = o which
is below the trunk pressure and above the ambient pressure.

For illustration let the bleed flow be determined

from the simple orifice formula:

v, = [ca 4, VIR PI70] (51)

where Ar is the ratio of the orifice area to the seal area.

For example if the orifices are placed 3 inches apart

(center-to-center) on a square-pitch basis and the crifice

b2
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diameter 1s 2 Inches, then A, = [ 22/u] /32 = n/9. Equation
{(51) gives the value of vw at x = 0 which defines the
Reynolds number (va/v) at x = 0. From Table I the pressure
gradient parameter C 1s obtalned. Since the pressure
gradient itself 1s zero at x = 0, the pressure at x = A

may be calculated as
2,02y ,2, .
P (x=4) ® P (x=0) ~ (oVwC/H ) ac/2 (52)

The next step 1s now to compute v, at x = 4 by means of

w
equation (51) and to compute the pressure gradient from
equation (50) after Tab“e I is used to obtain C. 1In this
way the pressure at progressively large x can be numerically
cvaluated until at x = L the claculated pressure must match
the ambient pressure. If the calculated pressure is higher
than the ambient pressure then the assumed pressure at
X = 0 1s too large and a lcwer value must be tried.

A large number of computer runs were performed.
The general ranges of the parameters were as follows: trunk
pressure variei from 0.5 to 6.0 psig at 1.0 psi interval;
the C(fr (coefficlent of discharge times the area ratio)
varied from 0.003 to 0.27 at 0.C03 interval; the ground
clearance height H varied from 0.04 to 0.16 ft at 0.04 ft

interval anc the clearance-length ratic (H/L) varied from

0.05 to 1.0 .t 0.05 interval,
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Flgures 2l«a,b,c, contain the ty _.cal pressure
varlation along the channeleseal for an (H/L) ratio of
0.05, 0.10, and 0.15 respectively. The abscissa 1s the
dimensionless distance (x/L) from the cushion-space and L
1s the length of the channel«seal. The ordinate shows the
non-dlimensional local pressure ratio (P“Pc)/(Pt”Pa)' The
parameters are the values of the C4A,,. For large values of
CdAr the pressure distribution i1s within the flow channel
almost constant indicating the phenomenon that air injection
takes place only near the =2xit (ambient) side. It is
significant to call attention to tne fact that these non-
dimensional pressure distribution is virtually independent
0" the trunk pressure at least from 0.5 to 6.0 psig and the
ground clearance H from 0.04 to 0.15 ft. Over these ranges
of the above-cited parameters the curves are identical and
indistingulishable from one another. Numerical dilfferences
however do exist but only 1in the third significant digit.

Each curve in Figures 21-a,b,c, was used to obtailn
the average pressure within the channel seal. Thls averaged
pressure when multiplied by the area of the seal glves
additional 1ift to the vehlcle whick may be of an appreciable
magnitude. The parameter shown on the ordinate of Figure
22-a,b, s (5av-Pa)/(Pc~Pa) with the cushicn gage pressure

as the reference; Pav is the average channel rress:ure.
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It 1s to be noted that Flgures 22-a, and b are for two different
vrunk pressures of 6,0 and 2.0 psig and these two figurecs
virtually duplicates each other,

From the pressure distribution llke thcse in
Figure 21-a, the value at (X/L) = 0 is the cushion pressure
ratio based on the assumpc-ion of nc¢ alr moicsture in the
cuchion-air space. Thils cushion pressure ratlo then depends
on (H/L) and the Cs\p-value. For example at H/L = .05 and
CAp = .03, .0U5.,. the cushion pressure ratios are 0.549,
0.73C,... The latter values are tabulated in Table II and
riotted in Figures 23-a,b, for the trunk pressure of 6.0
~sig and 2.0 psig. These two figures are almost ldentical
‘ndicat._ng its Insencitivity to the trunk pressure. The
last two figures are particulary important in that the overall
nerformance of the cushion-1ift can be directly obtained.
As an i{llustration, consider the example:

1runk pressure = 4.0 psig

Cushlon-~spoce area = 200 sq. ft.

Channel-seal length = 1 ft.

Vehicle welght = 100,000 1b.

Cqhp = .21
The last value can be estimated from the geometrical spacing
of the bleed holes lccated in the cushion-tag. The coefficlient

of discharge 1is usually in the range of 0.6 corresponding to

s




the orifice discharge coefficlent. A more accuratée estimate
will be reported in Part II of this report to be published
shortly.

From the preceding in® rmation it 1s possible to
calculate the necessary cushion pressure for take-off
operation.

P, = 100,000/¢(200 x 144) = 3,47 psig
The cushlon pressure ratic is therefore (3.47/4.0) = 0.868,
From Figure 23a or 23b, the curve with QiAp = 0.2]1 glves a
value of (H/L) = 0.20. For L = 1 ft, the ground clearance
height H = 0.20 ft or 2.4 inches. Of course the informaticn
in Figure 23 can be used to determine the proper CdAr if ;:
H 1s to be specified. This specifles the proper spacings i
of the bleed holes- and subseguently *he rate of discharge f

of bleed air.

A general computer program is attached in Appendix.
The computer prougram requires the following input wvalues:
CdAr; trunk pressure, amblent pressure, both in psia;
seal length in ft.; ground clearaiice H 1n ft; and the kinematie
viscosity of air (=0.00015 ftz/sec)c These data are to be
read by the computer program on a single punch data card
(format 6F10.2) for each configuration. After one run is
compieted the program will read the next card which may i
contaln different parametric inputs for the next run. The .
program continues in this manner until 1t reads a blank |

card which must be attached next to the last data card.
46
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The output of the program for each run consists
of two parts: the first part i1s a tabulation of the lccal
pressure ratio (P’Pa)/(Pt“Pa)’ che local injection velocity
(Prorated over the entire seal area) in ft per sec, the
local pressure gradient constant C, and the local Reynolds
number at about 39 stations of increasing (x /L) values where
x 1s the distance from the cushion-space. The second part
gives the average pressure {(gage) in the seal area in its
ratio to the gage trunk pressure, the actual injection flow

rate in cfs per ft of depth of the cushion space.
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(P-Pa)/(Pt-Pa)

oL H/L =05

H=.04 — IS ft.
(Pt-Pa)= 0.5~ 6.0 psi

i ac

1
0 2 4
(x/L)

FIGURE 2'a. Pressure Variation Along Channel-Seal
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(P-Pa)/{Pit-Pa)

Cd Ar

;0'03\
H/L = 0.10

—  H=.04 — 15t
(Pt-Pa) = 0,5~ 6.0 psi

| | | 1
0 2 4 © .8 1.0

(X/L)
FIGURE 2! b. Pressure Variation Along Channel- Seal
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(P-Pa)/(Pt-Pa)

—

— 0.2}

———0.18

— H/L = .15
0.24 0.27 H = 0,4 - ol5 f'.

(Pt-Pa) = .5 ~—=86.0psi

o)

(X/L)
FIGURE 2lc. Pressure Variation Along Channel-Seal
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(Pseal - Pa)/(Pc- Pa)

Pt = (14.7 + 6) psia
Pa = 14.7 psia
H =004 — 0,15 ft

|

6 8

o

| (H/L)

FIGURE 22 a. Average Seal Pressure As A Function
Of Area Ratio And Ground-Cisarance
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(Pseal- Fa)/(Pc- Pa;

Pt = (14.7 +2) psia
- Pa = 14.7 psia ]
\ H =0.04 — 0.15 ft

R S N Y JOT A P P RS

0 % * \\
AN

NN
=

S—

/4N

(H/7L)

6 .8

o

FIGURE 22 b. average Seal Pressure As A Function

Of Area Ratio And Ground-Clearance
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(Pc-Pa)/(Pt-Pa)

N

s

Pt = (14.7 + 6.) psia
Pa = 14.7 psia
H=0.04 -— 0.5 ft

|

|

(H/7L)

FIGURE 23ag Cushion Pressure Ratios As A Function
Of Area-Ratio And Ground- Clearance
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(Pc-Pag)/.Pt-Pa)

Pt = (14.7 + 2.) psia

Pa = 14.7 psia 7
H=0.04 «— 0.I5 ft

| CaA,
o

o O@ R 7
. 9\\
N N

(H7L)

FIGURE 23b. Cushion Fressure Ratios As A Function
Of Area-Ratio And Ground - Clearance
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