
AFFDL-TR-71-1

VOLUME III

SMAGIC I: AN AUTOMATED GENERAL PURPOSE
SYSTEM FOR STRUCTURAL ANALYSIS

tVOLUME III: PROGRAMMER'S MANUAL

A. MICHAEL GALLO

BELL AEROSPACE COMPANY

TECHNICAL REPORT AFFDL-TR-71-1, VOLUME III

MAY 1971

This docmn ha enaovdfpblic ree D D Can sae ihtd, disrbu tio wlt,,d f-rr n C

NATIOHALU TEH0CAAIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATITERSON AIR FORCE BASE, OHIO

NATION~ALTCHNICAL
INFORMATION SERVICE

Sprinofield, Va. 22151

This Document Contains

Missing Page/s That Are

Unavailable In The

Original Document

BEST
AVAILABLE COPY

NOTICE

When Government drawings, specifications, or other dataare used for any purpose other than in connection with a

definitely related Government procurement operation, the
United States Government thereby incurs no responsibility nor
any obligation whatsoever; and the fact that the government
may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data, is not to be
regarded by implication or otherwise as in any manner
licensing the holder or any other person or corporation, or
conveying any rights or permission to manufacture, use or
sell any patented invention that may in any way be related
thereto.

E WI 0Mi

SSUITSUAALW M 1

'IM1. AVAIL as/or

Copies of this report should not be returned unless
return is required by security considerations, contractiual
obligations, or notice on a specific document.

400 - un 1971 - CO0S - 43-71.745

~ I UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security cassiicat~oA *I title. body of absacnt and indexing arthlon rnuxte on.ni d when the nvaeb2Irpor oflilahsdild)

I OIRIiNATIN S ACTIVITY (corporte author.) 2 CO1TSCPT ASPCT

UNCLASS IFIED

BuffaloL New York _____________NIA

3REPORT TITLE

MAGIC II - An Automated General Purpose System for Structural Analysis

Volume III - Programmer's Manual

4. DESCRIPTIVE NOTES (Tyvpe ot report and inclusive dotes)

9. AUTHOR(S) fLast narme. first name. initial)

A. Michael Gallo

Q~. REPORT OAT2 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

- May 19 7 1' -361__ _ _ _ _ _ 5 - iNone _ _ _ _

I;e. CONTRACT OR GRANT No. Sa. ORIGINATOR'S REPORT NUMSER(S)

F33615-69-C-1241 AFFDL-TR-71-l, Vol. III
41. PROJECT NO.

1467__ _

c. TASK NO. Sb. OTHER AllPORT NO(S) (Any other nuirbe,. dial maiy be asslied

146702 j None
d. ________

10. AVAIL ANILITY/LIMITATION NgTICES

This document has been approved for public release and sale; its
distribution is unlimited.

11. SUPPLEMENTARY NCTI!S j12.POIISORNG MIIAY ACTIVITY

None !Air Force Flight Dynamics Laboratory
'Research & Technology Division

WrgtPt--rgm ARR OH 453

#13 IE AAZ

An automated general purpose system for analysis is presented. This system,
identified by the acronym "MAGIC IV" for Matrix Analysis via Generative and
Interpretive Computations, is an exctension of structural analysis capability

4 . available in the initial MAGIC System. MAGIC provides a powerful framework
for implevientatior of the finite element analysis technology and provides
diversified capability for displacement, stress, vibration and stability analyses

The matrix displacement method of analysis based upon finite element idealization
is employed throughout. Ten versatile finite elements are incorporated In the
i~.nite element libraryr. These are frame, shear panel, triangular cross-section
ring, trapezoidal cross-section ring (and core), toroidal thin shell ring (and
shell cap), quadrilateral thin shell and triangular thin shell elements. Addi-

' tional elements include a frame element, quadrilateral plate and triangular plate
elements which can be used for both stress and stability analysis. The finite
elements listed include matrices for~ stiffness, mass, incremental stiffness,
prestrain load, thermal load, distributed mechanical load and stress.

Documentation of the MAGIC System is presented in three parts; namely, Volume 1:
Enatineer's Manual, Volume II: User's Manual and Volume III: Programmer's Manual
The subject Volume, Volume III, is designed to facilitate implementation, opera-
tion, modification and extension of the MAGIC System.

DD I JAN 64
1 4 7 3 UNCLASSIFIED

Security Classification

UNCLASSIFIED
Security Classification - _ _-_ _-

KEY LINK A LINK J LINK4,KEYw~o WORD - -- -o. r].-E --

ROLC WT -ROLE w r ROLr wTr

1. Structural analysis
2. Matrix methods
3. Matrix abstraction
4. Digital computer methods

INSTRUCTIONS
1. ORIGINATING ACTIVITY: Enter the name and address imposed by security classification, using standard statements
of the contractor, subcontractor. grsntee, Department of De- such a0:
fense activity or other organization (corporate author) Issuing (1) "Qualified requesters may obtain copies of this
the report. rffort from DDC."
2a. REPORT SECURTY CLASSIFICATION: Enter the over- (2) "Foreign announcement and dissemination of this
all security classification of the report. Inm;cate whether
"Restricted Data" is included. Marking is to be i report by DDC i. ,iot authorized."
ance with appropriate security regulations. (3) "U. S. Govenment agencies may obtain copies of

this report directly from DDC. Other qualified DDC
'h. GROUP: Automatic downgrading is specified in DaD Di- users shall request throughrective 5200.10 and Armed Forces Industrial Manual. Enter
tle group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 'as author- (4) "U. S. military agencies may obtain copies of this
ized. report directly from DDC Other qualified users
3. REPORT" TITLE: Enter the complete report title in all shall re",uest through
capital letters. Titles in all cases should be unclassIfted.
If a meaningful title cannot be selected without clssifica-
tion, show title classification in all capitals In parenthesis (S) "All distribution of this report is controlled. Qual-
immediately following the title. ified DDC utoers shall request through
4. DESCRIPTIVE NOTEb: If appropriate, enter the type of -"

report, e.g., interim, progress, summary, annual, or fi.tit . If the report has been furnished to the Office of TechnicalGive the inclusive dates when a specific reporting period 1 Services, Department of Commerce, for sale to the public, indi-covered. cat& this fact and enter the price, if known.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on IL SUPPLEMENTARY NOTES: Use for additional explana-
or in the report. Entes last name, first name, middle initial, tory notes.
If :ilitary, show rank and branch of service. The name of
the principal .:%thor is an absolute mininum requirement. 12. SPONS. LAG MILITARY ACTIVITY: Enter the name of

the departmental project office or laboratory sponsoring (pay6. REPORT DAT7. Enter the date of the report as day. ing for) the research and development. Include address.month, year. or month, year. If more than one date appe3rr
on the report, use date of publication. 13. ABSTRACT: Enter an abstrct giving a brief and factual

summary of the document ;iidicative of th- report, even though
7a. TOTAL NUMBER OF PAGES: The total page count it may also appear elsewhere in the boay of the technical re-should follow normal pagination procedures, Le., enter the port. If additional ,;)ace is required, a continuat.on sheet shall
number of pages containing information. be attached.
7b. NUMEJER OF REFERENCES: Enter the total number of It is highly desirable that the abstroct of classified report-
references cited in the report, be unclassified. Each paragraph of the abstract shall end witt,
go. CONTRACT OR GRANT NUMBER: If appropriate, enter an indication of the military security classification of the in-
the applicable namber of the contract or grant under which formation in the paragraph, represented as (TS). (S). (C), or (U).
the report was written. There is no limitation on the length of the abstract. How-
8b, 8c, & Sd. PROJECT NUMBER: Enter the appropriate ever, the suggested length in from 150 to 225 words.
military department identification, such ss project number, 1
subp.ojct number, system numbers, task number, etc. 14. KEY V-RDS: Key words are technically meningfus terms

9a.ORIINAOR' REORTNUMSR(): nte th ofi- or short r - *a that charcterize a repoqt ad may be used as
9n, ORIGINATOR'S REPORT NUMBER(S): Enter the offi- index enaties for cataloging the report. Key words must be
cll report number by which the document will be identified iselected so that no security classification is required. Identi-
and controlled by the originating activity. This number must fiers, such as equipment model designation, trade name, militarybe unique to this report. project code name, geogisphic !ocation. may be used as key
9b. OTHER REPORT NUMBER(S): If the report has been words but will be followed by an indication of technics con-
assigred any other report numbers (either by the originator text. The assignment of links, rites, and weights is optional.
or by the sponsor), Plas' enter this number(s).

10. AVAILABILITY/LIMITATiON NOTICES: Enter any lim.wCASFE

itatiun:' on further dissemnination of the report, other than those
UNCLASSIFIED

AFLC-WPAFB-JUL 66 3M Security Classification

MAGIC II: AN AUTOMATED GENERAL PURPOSE
SYSTEM FOR STRUCTURAL ANALYSIS

VOLUME III: PROGRAMMER'S MANUAL

A. MICHAEL GALLO

BELL AEROSPACE COMPANY

4 ,

:12

FOREWORD

This report was prepared by Textron's Bell Aerospace
Company (BAC), Buffalo, New York, under USAF Contract No.
F-33615-69-C-1241. The contract was initiated under Project
No. 1467, "Structural Analysis Methods", Task No. 146702,
"rhermal Elastic Analysis Methods". The program was adm: !s-
tered by the Air Force Dynamics Laboratory (AFFDL), Air Force
Systems Corn-and, Wright-Patterson Air Force Base, Ohio 45433
under the ctznizance of Mr. G.E. Maddux, AFFDL Program Manager.
The Progral was carried out by the Structural Systems
Departinent 3ell Aerospace Company, during the period
2 December 1)6 8 thru 2 December 1970 under the direction of
Hr. Stephen Jordan, Program Manager.

This report, "MAGIC II: An Automated General Purpose
System for Structural Analysis" is published in three volumes,
"Volume I: Engin er's Manual",t Volume II: User's Manual", and
"Volume III: Progi'ammer's Manual". The manuscript for
Volume III was released by the author in January 1971 for
publication.

The author wishes to thank Miss Beverly Dale for her
contribution to the development of the MAGIC System, and
to acknowledge the assistance of the following personnel:
M. Morgante, S. Skalski, A. Rhoades and W. Luberacki.

This technical report has been revised and is approved.

FRANC.IS. K R.

Chief, Theoretical Mechanics Branch
Structures Division

ABSTRACT

An automated general purpose system for analysis is
presented. This system, identified by the acronyn "MAGIC II"
for "Matrix Analysis via Generative and Interpretive Computa-
tions," provides a flexible framework for implementation of
the finite element analysis technology. Powerful capabilities
for displacement, stress and stability analyses are included
in the subject MAGIC II System for structural analysis.

The matrix displacement method of analysis based upon
finite element idealization is employed throughout. Ten
versatile finite elements are incorporated in the finite
element library. These are: frame, shear panel, triangular
cross-section ring, toroidal thin shell ring, quadrilateral
thin shell, triangular thin shell, teapezodial ring, trian-
gular plate, incremental frame and quadrilateral plate elements.
These finite element representations include matrices for
stiffness, consistent mass, incremental stiffness, thermal
stress, thermal load, distributed mechanical load, and
stresses.

The MAGIC II System for structural analysis is presented
as an integral part of the overall: design cycle. Considera-
tions in this regard include, among other things, preprinted
input forms, automated data generation, data confirmation
features, restart options, automated output data reduction
and readable output displays.

Documentation of the MAGIC II System is presented in
three parts; namely, Volume I: Engineer's Manual, Volume II:
User's Manual and Volume III: Programmer's Manual. The
subject Volume, Volume III, is designed to facilitate
implementation, operation, modification, and extension of
the MAGIC II System.

iI

TABLE OF CONTENTS

Section Page No.

I INTRODUCTION 1

II COORDINATION OF STRUCTURAL GENERATIVE SYSTEM
WITH FORMAT II 3

A. Detailea Analysis of .USER04. Instruction 3

1. Input and Output Matrix Position
Functions 3

2. Suppression Option 5

B. Use of FORMAT II Data Sets 6

1. Master Input and Master Output Use for
Material Library 6

2. Instruction Input Data Sets 6

3. Instruction Output Data Sets 7

4. Scratch Data Sets 7

III ORGANIZATION OF STRUCTURAL GENERATIVE SYSTEM 9

A. Basic Logic Flow 9

B. Input Phase Logic Flow 9

1. Report Form Input 9

2. Interpreted Input I

C. Element Matrices Generation Phase Logic
Flow i

D. Output Phase Logic Flow 12

1. Organization of Output Matrices . . . 12

2. Sequence of Output Matrices 17

iv

Ci

TABLE OF CONTENTS, Continued

Section Page No.

IV OPERATIONAL CONSIDERATIONS 20

A. Implementation 20

I. Direct Machine Control 20

2. SUBSYS Control 20

APPENDICES

I Overlay Structure 21

II Logical Flow Charts 40

iII List of Structural System Subroutine
Functions 48

IV List of Subroutine Functions of Modules Added
to the FORMAT II System 64

V Revisions to FORMAT System Decks 67

VI MAGIC Error Messages 76

VII Examples of Static and Stability Instruction
Sequences 104

VIII Subroutine Documentation 107

IX Direct Machine Control Implementation
Document 475

X SUBSYS Control Documentation 500

XI Documentation for Element Insertion Into the
MAGIC System 530

REFERENCES 559

v

This Document Contains

Missing Page/s That Are

Unavailable In The

Original Document

o (Z C-

BEST
AVAILABLE COPY

SECTION I

INTRODUCTION

A Structural Generative System has been developed and
inserted into FORMAT II (Reference 2) for the purpose of
generating structural matrices for use by FORMAT II. The
insertion of a Structural Generator into FORMAT I resulted
in a computer program retaining ease of implementation and
use, yet offering diversified capabilities.

Machine compatibility has been retained by the complete
use of FORTRAN IV in the development of the structural Genera-
tive System. The absence of machine or assembler language
from every portion of the program eliminates the problems
of mach.ne dependency and implementation difficulty.

Input to the Structural Generative System is accomplished
by filling in preprinted structural engineering oriented
input sheets. The combination of these sheets and the normal
matrix abstraction instructions of FORMAT II allows minimal
training for use of the program, thus decreasing the
possibility of input errors.

The program is capable of restart at any point in the
abstraction instruction sequence stipulated at the discretion
of the User. Input data, intermediate results, final results
or any matrix whatsoever may be automatically saved, by use
of the proper instruction, ana used as a starting point or
new input to subsequent applications on continuing or
independent pr.ojects.

The MAGIC System consists of a total of 355 subroutines of
which 199 form the Structural Generative System. The 355 sub-
routines can be logically designed into an overlay structure
which reflects the optimum use of available storage in relation

to the longest link so that the program will maintain respectable
execution efficiency. The Structural Generative System requires
a minimum of 13,000 decimal words of work storage which is assigned
to an unlabeled common block. A minimum of eight external storage
units available to the FORMAT II System are required for use of
the Structural Generative System, including at least one assigned
to the Master Input FORMAT function, one assigned to the Master
Output FORMAT function, and four assigned to the Utility FORMAT
function. The other two units are necessary for intermediate
matrix results and for an instruction data set. The MAGIC System
needs 36,030 decimal words of internal storage to execute on an
IBM 360/65 using a 43 link OVERLAY structure (not considering
internal core necessary for I/O buffers and OS system routines).
Using the three level OVERLAY of CDC, the MAGIC System can execute
using 34,698 decomal (103,612 octal) words of internal storage
on the CDC 6400, not considering internal storage for I/O buffers
and SCOPE system routines necessary to execute the OVERLAY program.

1

The MAGIC System has been implemented on the IBM 360/65
under direct machine control, but some installations may not
be able to execute MAGIC under direct machine control. This
was the case when the MAGIC I System was implemented on the
IBM 7090.

The number of subroutines contained in the FORMAT II
program necessitated the use of SUBSYS, a software package
developed by Westinghouse, which improved the loading
capabilities of IBSYS on the IBM 7090/94. In addition to
allowing the program to be loaded, SUBSYS allowed the program
overlay tape to be saved, thereby improving execution time.
Programs may be stacked on this overlay tape. Taking advantage
of this fact, FORMAT II with the Structural Generative System
insertion, was actually three programs executed automatIcall
with no intervention by IBSYS. The first program consisted
of the FORMAT II Preprocessor, the second consisted of the
FORMAT II Execution Monitor and the third contained the
Structural Generative System. Although the Structural
Generative System was actually a separate program when
operating under SUBSYS control on the IBM 7090/94, it is
activated and controlled as a normal User Module under the
FORMAT II System. Explicitly, the Structural Generative System
is the fourth User Module (USER014) available under FORMAT II.

2

SECTION II

COORDINATION OF STRUCTURAL GENERATIVE SYSTEM WITH FORMAT II

A. DETAILED ANALYSIS OF USER04 INSTRUCTION

1. Input and Output Matrix Position Functions

The Structural Generative System may have as many
as fifteen actual output matrices and require as many as
four actual input matrices. The basic form of the USER04
instruction may be represented as follows:

OMPI, OMP2, OMP3, OMP4, OMP5, OMP6, OMP7, OMP8,
OMP9, OMPl0,OMPII, OMPI2, OMPl3, OMP14, OMP15 =
IMP1, IMP2, IMP3, IMP4 .USERo4. ;

where OMP is read as output matrix position and IMP as input
matrix position. All matrix positions, whether input or
output, must be present. They may contain matrix names or
be blank, but there must be nineteen matrix positions re-
presented by the appropriate number of commas. Blank matrix
positions are discussed in the next section. The output matrix
positions, if nonblank, will contain the following matrices
upon exit from the Structural Generative System:

OMPI - copy of input structure data deck
OMP2 - revised material library
OMP3 - interpreted input (structure input

data as stored after being read
and interpreted)

OMP4 - external system grid point loads
and load scalar matrix

OMP5 - transformation matrix fo? applica-
tion of boundary conditions

OMP6 - transformation matrix for assembly
of element matrices

OMP7 - element stiffness matrices stored
as one matrix

OMP8 - element generated load matrices
stored as one matrix

OMP9 - element stress matrices stored as
one matrix

OMPlO - element thermal stress matrices
stored as one matrix

OMPl - element incremental stiffness
matrices stored as one matrix

3

OMP12 element mass matrices stored as
one matrix

OMP13 - structural system constants stored
as one matrix

OMP1I4 - element matrices in compressed
format stored as one matrix

OMP15 - prescribed displacement matrix

The input matrix positions, if nonblank must contain
the following matrices:

IMP1 structure data deck (this would be
a previously generated matrix saved
in OMP1)

IMP2 interpreted input (this would be a
previously generated matrix saved
in OMP3 used for restart)

IMP3 existing material library (this
would be a previously generated
matrix saved in OMP2)

IMP4 displacement or stress matrix to
be used for stability analyses
(the stress matrix must have been
generated by the structural abstraction
instruction .STRESS.)

It should be noted that the following matrix positions
are called matrices only in the sense that all input and output
entities are considered matrices by FORMAT II - OMPI, IMP2,
OMP3, OMPI4, IMPI, IMP2 and IMP3.

It is important to note that OMP14 is mutually
exclusive with OMP6, OMP7, OMP8, OMP9, OMPI0, OMPll, and OMPl2.
In order to retain compatability with the MAGIC I system and
eliminate redundant execution time, the following rules must
be observed.

(a) If OMP1I1 is suppressed then OMP6, OMP7, OMP8,

OMP9, OMPIO, OMPI1, and OMP12 will be generated according to
their definition in Part A.1 of Section II. If this is the
case then it is assumed the user is using MAGIC I abstraction
instructions to solve his problem.

(b) If OMPI4 is not suppressed then OMP7, OMP8,
OMP9, OMPIO, OMPll and OMP12 will serve only as indicators
to the .USER011. instructicn for generation or non-generation
of their respective element matrices. Since no matrices will
be generated in OMP6 through OMP12 (if OMP14 is not suppressed)
they should never be referenced in subsequent abstraction
instructions.

4I

2. Suppression Option

Incorporated into the Structural Generative System
is an option t- suppress the generation and output of' any of
the output matrices and also to indicate the absence of any
of the input matrices. This option is indicated to the
Structural Generative System by the absence of a matrix name
in the desired position in the .USER04. instruction. A matrix
name is considered to be absent if the matrix position con-
tains all blanks or the character length of the name is zero.
For example, an instruction of the form: ,,INTINP, LOADS, TR,
TA, KEL, FEL, SEL, SZALEL,,,,, = ,,MATLBI,.USER04.; would
cause suppression of the copy of the data deck, the revised
material library, the element incremental stiffness matrices,
the element mass matrices, the structural system constant
matrix, the compressed element matrix and the prescribed
displacement matrix. The instruction also indicates that
there is no Input data deck on tape, (directing the Structural
Generative System to read data from cards), no interpreted data
on tape and no Jnput displacements or stresses. It should be
noted that certain sections of the data deck are necessary for
the generation of each of the output matrices and that error
checking is done to determine if the required sections are
present. A table of th6 required data sections for generation
of each matrix appears in the User's Manual. Accordingly,
error checking is invoked for the input matrix positions to
determine if ambiguous or conflicting input indications have
been made.

j Internally, the logic flow of the suppression option
is controlled by inserting key characters for suppressed
matrices. Upon detection of a suppressed matrix by Subroutine
INST, a matrix name of the form ////XX is inserted into that
matrix position. The four slashes are inserted for recognition
by the Structural Generative System of a suppressed matrix
and the last two positions may each contain the digits 0-9
assigned sequentially starting from 00 for each suppressed
matrix encountered. The last two positions in the inserted
name for suppressed matrices ensure that each suppressed matrix
name will be unique, thereby eliminating inconsistencies in
the FORMAT II Preprocessor.

t 5

Suppressed input matrices, i.e. those occurring to
the right of the equal sign in the input .USER04. abstraction
instruction, are recorded on NDATA, the data set reserved for
card input matrices, as null matrices to satisfy FORMAT II
Preprocessor input matrix existence requirements. This
operation is accomplished by subroutine MATSUP.

B. USE OF FORMAT II DATA SETS

1. Master Input and Master Output Use for Material Library

References to the Material Library are indicated by
output matrix position two and input matrix position three in
the .USER04. abstraction instruction. Retention of a newly
generated or revised Material Library is governed solely by
use of the SAVE abstraction instruction at the discretion of
the User. If retention is desired, the matrix name in output
matrix position two must appear in a SAVE abstraction instruction,
in which case it will be placed on a Master Output tape. If
a non-blank matrix name appears in input matrix position three,
the Master Input Tape will be searched for that name.

Usage and generation of the Material Library is
controlled by the three legal combinations of suppression of
output matrix position two and input matrix position three.
If the matrix name in output matrix position two is non-blank,
but input matrix position three is suppressed, a new Material
Library will be generated and used. If both involved matrix
positions are non-blank, the old Material Library will be
located on the Master Input tape, will be revised, stored as
the matrix named in the specified output position, and then
this revised Material Library will be used. If output matrix
position two is suppressed and input matrix position three is
non-blank, then the named input Material Library will be used:
Suppression of both involved matrix positions results in an

error condition.

Since the material library is stored under a matrix
name on Master Output tapes, and also, therefore Master Input
tapes, any other matrices may also be saved on the same tape,
including other Material Libraries.

2. Instruction Input Data Sets

An instructiorn input data set is an external storage
unit that conta'ns at least one of the non-blank matrices
named in input matrix positions one, two, three or four in

6

the .USER04. abstraction instruction. The Structural Genera-
tive System qonforms to all the rules of FORMAT II with
regard to use of instruction input data sets. All searching,
reading, and rewinding is accomplished by use of the FORMAT II
data set handling subroutines EUTL1-EUTL9. No attempt is ever
made to write on an instruction input data set.

3. Instruction Output Data Sets

An instruction output data set is an external storage
unit which has been designated by the FORMAT II Preprocessor
to contain at least one of the non-blank matrices in output
matrix positions one to fifteen in the .USER04. abstraction
instruction. The Structural Generative System conforms to
all rules of FORMAT II with regard to instruction output data
sets by using the FORMAT II data set handling subroutines
EUTLl-EUTL9 to write all matrix headers, matrix trailers,
data set trailers and end of files on instruction output data
sets. All matrices are stored by column in the required record
format. No attempt is ever made by the Structural Generative
System to rewind an instruction output data set.

4. Scratch Data Sets

Scratch data sets are external storage units that have
been assigned by the FORMAT II System to the Structural Genera-
tive System to be used as temporary storage areas. There are
no reading, writing or rewinding rules imposed on scratch data
sets by the FORMAT II System. The required four scratch data
sets are assigned to the following functions by the Structural
Generative System:

SCRATCH DATA SET 1 - 1st use - external storage areas
for report form input preprocessor

2nd use - contain structure
control 'information including
system orders, boundary conditions
and system print operations

SCRATCH DATA SET 2 1st use - contain temporary
copy of direct input structure
data deck

2nd use - contain generated
element matrices in compact
form

7

SCRATCH DATA SET 3 ist use - contain temporary
copy of actual input deck

2nd use - contain element
input data after reading and
interpretation

SCRATCH DATA SET 4 1st use - external storage
area for report form input
preprocessor

2nd use - contain input
loads matrix

3rd use - contain input dis-
placements or input stresses,
i!' any

-"

1]~

8l

SECTION III

ORGANIZATION OF STRUCTURAL GENERATIVE SYSTEM

A. BASIC LOGIC FLOW

The Structural Generative System has three basic phases
of operational flow; the input phase, the element matrices
generation phase, and the output phase. The input phase consists
of reading, interpreting and storing the information contained
in the structure data deck. From the stored input, the
element matrices selected are generated in the second phase.
Phase three outputs all non-suppressed matrices indicated by the
.USER04. abstraction instruction in output matrix position
six through twelve, if output matrix position fourteen has1been suppressed, or outputs only output matrix position
fourteen if it was non-suppressed. Output matrix positions

j one through five and thirteen and fifteen are generated
directly from the input structure data deck and for this
reason are actually output during the first or input phase.
Subroutine US04 controls the three logical phases by directly
controlling subrouting US04A which controls the input phase
and USO4B which controls the generation and output phases.
Normally, the basic logical flow of the Structural Generative
System would be sequentially through the three phases, however,
by use of the suppression option, it is possible to completely
skip a given phase. The actual logic flow of' the system is
created by subroutine LOGFLO as determined by the .USER04.
abstraction instruction. For example, if the .USER04.
instruction was written such that only the boundary conditions
had changed and the remainder of the necessary matrices were
saved from a previous application as indicated by the suppression
option, subroutine LOGFLO would eliminate the second and
third phases.

B. INPUT PHASE LOGIC FLOW

The logic flow of the input phase is determined by the
type of input encountered. The two types of input are report
form input and interpreted input.

1. Report Form Input

The location of the input data deck is determined by
examining IMP1 of the input .USER04. abstraction instruction.
if this input position was blank, then the data deck is assumed
to be on NPIT, the system input unit. If IMP1 contained a

9

F.

non-blank matrix name, then the input data deck exists as a
matrix and the original card form deck is reconstructed by
subroutine INDECK.

Report Form Input is a highly flexible, engineering
oriented type of input for the Structural Generative System.
From a programming viewpoint, report form input allows ease
of use by the Analyst and by translation allows logical
readability by the program.

Encountering a report form Input deck causes the input
phase to pass control to the Report Form Input Preprocessor.
Basically, the report form input preprocessor translates the
flexible report form input deck into a sophisticated direct
input deck. Translation is accomplished by two steps con-
trolled by subroutine REFORM.

The first step is to read and store the report form
input deck. This step is accomplished by subroutine PHASE1
with support by subroutines LATCH and FORMIN. PHASE1 controls
all storage, both internal core storage and external storage
on scratch data sets one and four. LATCH performs label
matching tests to determine the various sections of input and
FORMIN reads all table form input, sections; non-table form
input sections are read directly in PHASE1.

The second step in processing a report form input deck
is to merge the data stored by the first step into a direct
data deck. These two operations are performed by subroutine
PHASE2 supported by subroutine OPEN. The information stored
by the first step is merged into a compact direct data deck
by PHASE2 and output on scratch data set two. The OPEN sub-
routine aids PHASE2 by locating, in any order designated by
PHASE2 the input sections stored on scratch data sets one and/or
four. At this point, a complete direct data input deck is
resident on scratch data set two and control returns to US04A.
Once a direct data deck is resident on scratch data set two,
reading, interpreting and storage is controlled by subroutine
INPUT with each input section handled as indicated by the
following table:

INPUT SECTION SUBROUTINE INTERPRETED STORAGE

Title (TITLE) INPUT None
System Control (SYSTEM) INPUT Scratch data set 1
Grid Points (COORD) INPUT Scratch data set 3
Boundary Conditions (BOUND) BOUNT Scratch data set 3
Element Definitions (ELEM) ELEM Scratch data set 3
Grid Point Loads (LOADS) FGRLDS Scratch data set 4
Grid Point Axes (GRAXES) FRED Scratch data set 3
Material Library Requests (MATER) FMAT Master Output data set
Grid Point Temperatures (TEMP) INPUT Scratch data set 3
Grid Point Pressures (PRESS) INPUT Scratch data set 3
Prescribed Displacements (PDISP) BOUND Scratch data set 3

10

If output matrix position one was non-blank, then a
copy of the actual input data deck is also written on the
instruction output data set specified by the FORMAT II System
by subroutine COPYLK.

2. Interpreted Input

After the data deck has been read and interpreted
under control of subroutine INPUT, all pertinent data exists
on scratch data sets one and three. If output matrix position
three in the .USER04. abstraction instruction is non-blank,
then the contents of scratch data sets one and three are output
under that matrix name onto the instruction output data set
specified by the FORMAT II System by subroutine OUTINT. lf
this "matrix" is saved and input at input matrix position two
in the .USER04. instruction, the Structural Generative System
is capable of restart at the second or element generation
phase, thereby eliminating a repeat of the input phase. This

feature is recommended for usage on large applications where
the procedure would be to run the data deck, stop after
interpreting and storing the data, check for input errors,
and if no errors are present restart at the element generation
phase.

Before exiting from the input phase, subroutine CHEK
is called to perform input error cross-checking. While
determining the logical flow at the Structural Generative System,
subroutine LOGFLO also recorded the input sections required to
generate the requested output matrices. If any of the required
input sections have not been processed, then execution will be
terminated after the input phase.

C. ELEMENT MATRICES GENERATION PHASE LCGIC FLOW

The second phase of operation of the Structural Generative
System consists of generation of the element matrices.

If input matrix position two of the input .USER04. abstrac-
tion instruction is non-blank, then subroutine ININT is called
to reconstruct the data on scratch data sets one and three from
the input matrix.

If input matrix position four of the input .USER04.
abstraction instruction is non-blank, then subroutine DEFLEX
is called to store the input displacements or stresses (which
ever was input) on scratch data set four.

21i

At this pof.nt all the necessary data is located on zcratch
data sets one and three, placed there by either phase one or
restart using input matrix position two of the .USER04.
abstraction instruction. Basic control of the second phase is
accomplished by subroutine FELEM under subroutine US04B. FELEM
reads scratch data set one to obtain system control information
and sets suppression controls to eliminate generation of
undesired element matrices by calling subroutine SQUISH. Scratch
data set three contains the necessary input for each element,
one set of element input per record. Fox, each element, sub-
routine ELPLUG reads an element input record, selects the proper
element to calculate the matrices and then writes the generated
matrices on scratch data set two in compact form.

Prior to being written upon scratch data set two, the
element matrices are temporarily stored in the blank common
work area. Also, all work areas that are needed by the
specific element are allocated from the blank common work
area. For these reasons, the Structural Generative System
requires a blank common work area of at least 13,000 words
of internal core storage.

Imbedded into the Element Matrices Generation Phase, at
strategic locations, are utility nackages accessible by the
specific elements which require their capabilities. Integra-
tion packages and small scale matrix operation packages are
examples of utility sections commnonly accessible to the neces-
sary elements. The exact locations of these packages are
indicated by the Structural System Overlay Chart (Appendix I).
Overlay to each element has been avoided wherever possible
to reduce execution process time. However, an area of
approximately 1000 locations between the longest link and
the origin of the common area has been kept clear to allow
for future substantial alterations to be made without re-
designing the complete overlay structure.

D. OUTPUT PHASE LOGIC FLOW

1. Organization of Output Matrices

All output entities from the Structural Generative
System are written following the rules of the FORMAT II System.
Each output entity is written as a matrix, consisting of a
matrix header, matrix column records and a matrix trailer.
The following list exhibits the contents, interpretation of
matrix header information (number of rows, number of columns)

and interpretation of matrix column records for each output'
position in the .USER04. abstraction instruction.

1.2

/I

a. Output Matrix Position One (OMPI)

Contents - Copy of card input data deck
Number of rows - Set to eighty (80)
Number of dolumns - Number of cards in data deck
Column records - One data card per column record,

one card column per row

b. Output Matrix Position Two (OMP2)

Contents - Material library
Number of rows - 306 (maximum number of words

possible for one material
entry)

Number of columns - Number of material tables inlibrary plus one

Column records - One material table per
column record

c. Output Matrix Position Three (OMP3)

Contents - Interpreted input
Number of rows - Set to number of words in

maximum record created
Number of columns - Number of elements plus four
Column records - One element input block per

record

d. Output Matrix Position Four (OMP4)

Contents - External system grid point
loads

Number of rows - Number of degrees of freedom
in total system plus 1

Number of columns - Number of load conditions
Column records - The first word is the external

load scalar followed by one load
condition per column record
(use .DEJO:N. to obtain the

load scalar).

e. Output Matrix Position Five (OMP5)

Contents - Transformation matrix for
application of boundary
conditions

Number of rows - Number of degrees of freedom
in total system

Number of columns - Number of degrees of freedom
in total system

13

Column records - (1) for desired degrees of
freedom - contain a one
in the assigned reduced
degree of freedom row

(2) for undesired degrees of
freedom - column record
is omitted (null column)

f. Output Matrix Position Six (OMP6)

Contents - Transformation matrix for
assembly of element matrices

Number of rows - Number of degrees of freedom
in total system

Number of columns - Summation of element degrees
of freedom

Column records - Contain a one in the assigned
degree of freedom row for that
summed element degree of
freedom

g. Output Matrix Position Seven (OMP7)

Contents - Element stiffness matrices
Number of rows - Summation of element degrees

of freedom
Number of columns - Summation of element degrees

of freedom
Column records - Each record contains a column

of an element stiffness matrix

h. Output Matrix Position Eight (OMP8)

Contents - Element applied load matrices
Number of rows - Summation of element degrees

of freedom
Number of columns - One
Column record - Contains all element applied

load matrices

i. Output Matrix Position Nine (OMP9)

Contents - Element stress matrices
Number of rows - Summation of element stress

point and component orders
Number of columns - Summation of element degrees

of freedom
Column records - Each record contains a column

of an element stress matrix

14

j. Output Matrix Position Ten (OMP10)

Contents - Element thermal stress
matrices

Number of rows - Summation of element stress
point and component orders

Number of columns - One
Column record - Contains all element thermal

stress matrices

k. Output Matrix Position Eleven (OMPll)

Contents - Element incremental
stiffness matrix

Number of rows - Summation of element
degrees of freedom

Number of columns - Summation of element
degrees of freedom

Column records - Each record contains a

column of an element incre-
mental stiffness matrix

1. Output Matrix Position Twelve (OMP12)

Contents - Element mass matrices
Number of rows - Summation of element

degrees of freedom
Number of columns - Summation of element

degrees of freedom
Column records - Each record ccntains a

column of an element mass
matrix

m. Output Matrix Position Thirteen (OMPI3)

Contents - System constants
Number of rows - Twenty-seven
Number of columns - One
Column record - Ninteen structural system

constants (for use outside
of the .USER04. module)

The following is a description of the variables
in this matrix:

Word 1 - Number of directions allowed
Word 2 - Number of types of movement allowed
Word 3 - Number of reference points (highest

reference node in element connections)
Word 4 - Order of' the reduced system (number

of l's plus 2 1s)Word 5 - Number of bounded degree, of freedom
(number of 0's)

15

Word 6 - Number of unknown degrees of
freedom (number of l's)

Word 7 - Number of known degrees of
freedom (number of 2's)

Word 8 - Number of O's plus l's
Word 9 - Element type code, equal to zero

if word 1=3, equal to one otherwise
Word 10 - Order of the total system
Word 11 - Number of elements
Word 12 - Number of load conditions
Word 13 - Word 20 - Reserved for future

expansion
Word 21 - Number of eigenvalues requested
Word 22 - Eigenvalue/vector convergence

criteria
Word 23 - Maximum number of iterations
Word 24 - Control for iteration debug print
Word 25 - First normalizing element for

print
Word 26 - Second normalizing element for

print
Word 27 - Control for guess vector iteration

start

n. Output Matrix Position Fourteen (OMP1 4)

Contents - Element matrices in com-
pressed form

Number of rows - Varies depending on problem
Number of columns - One column for each element
Column records - Each record contains all

element matrices generated
by .USER04. instruction in
compressed form (to be used
by structural modules out-
side of .USER04.)

o. Output Matrix Position Fifteen (OMP15)

Contents - Prescribed displacements
Number of rows - Number of degrees of freedom

in system
Number of columns - Number of load conditions
Column records - One prescribed displacement

condition per column record

16

It should be noted that OMPI, OMP2, or OMP3 and OMP14
are not actually matrices and, therefore, should never be
referenced as input to an algebraic matrix operation. OMP7,
OMP9, OMP11 and 0MP12 are formed by placing the element matrices
into the output matrix subh that the main diagonal of the
element matrix coincides with the nefxt available main diagonal
positions in the output matrix. For example, if the first
two element stiffness matrices represented 48 element degrees
of freedom each (such as 8 element defining points with 6
degrees of freedom each) then the first would be located in
rows one to 48 and column one to 48 in the output matrix and
the second would be placed into rows 49 to 96 and columns 49
to 96. Output matrices in these positions are almost always
written in FORMAT II compressed column format due to the
inherent sparseness of non-zero matrix elements.

OMP8 and OMP10 are formed by placing each element
matrix, which is a column matrix, into the succeeding available
row positions in the output matrix.

2. Sequence of Output Matrices

Output matrix positions one to five, thirteen and
fifteen are output sequentially in numerical order by the
Structural Generative System. Since these seven matrices are

generated directly from data contained in the input deck, they
are output, if non-blank, as part of phase one or input phase
operations. Specifically, these seven output matrices are
placed into the FORMAT II system by the following subroutines
in phase one:

OMPI - Subroutine COPYDK
OMP2 - Subroutine FMAT
OMP3 - Subroutine OUTINT
OMP4 - Subroutine FLOADS
OMP5 - Subroutine FTR
OMP13 - Subroutine TSYS
OMP15 - Subroutine PDISP

Either output matrix positions six through twelve or output
matrix position fourteen is released into the FORMAT II System
during phase three of the Structural Generative System. Out-
put of matrices six through twelve is controlled by subroutine
OUTMAT using utility subroutines US461, US462 and US463. In
contrast to output of the first seven matrices, which is achieved
consecutively, output of matrices six through twelve will

17

usually occur concurrently. Output matrix position fourteen
is released to the FORMAT System by subroutine ELMAT. Since
output matrix fourteen is mutually exclusive with output
matrice six through twelve only one of the above subroutines
OUTMAT or ELMAT is activated.

Operational flow in the output phase of matrices six
through twelve, if output matrix fourteen is suppressed,
consists of extracting the compacted element matrices from
scratch data set two and releasing them to the F.ORMAT II
System in the required form. Due to the fact that more than
one output matrix may have been assigned to the same instruction
output data set by the FORMAT II System, direct output at
matrix generation time (phase two) is impossible, thus
necessitating the use of scratch data set two. However, at
output time, the optimum procedure is determined by subroutine
OUTMAT to achieve multiple matrix output per pass of scratch
data set two. The procedure involves determining which matrices
may be output during the same pass of scratch data set two by
(a) comparing the assigned instruction output data set number,
and (b) type of matrix being output. Output matrix positions
eight and ten, if non-blank, are always output on the first
pass. Output matrix positions six, seven, nine, eleven, and
twelve may require from one to five passes of scratch data
set two, recognizing the best and worst possible cases. in
general, OUTMAT may only output one matrix per pass on a given
instruction output data set with the exception of output matrix
positions eight and ten which are always output on the first
pass regardless of their instruction output data set numbers.

For example, given the following instruction output
data set assignments by the FORMAT II System (all output
matrix p6sitions referenced are non-blank):

Format Assigned Instruction

Output Matrix Position Output Data Set

6 4
7 8
8 3
9 3

10 8
11 4
12 3

18

OUTMAT would release all the requested matrices (6-12) to
the FORMAT II System in two passes of scratch data set two
as indicated below.

PASS 1 - 6, 7, 8, 9, 10
PASS 2 - 11, 12

Output Matrix Positions 6, 7 and 9 may be output concurrently
on pass one since they are to be located on different data
sets. Positions eight and ten will always be output on pass
one. Since positions 11 and 12 are to be located on different
data sets, they may be output on the same pass.

If a matrix is less than 50% dense, the compressed
column record format is invoked.

19
.

SECTION IV

OPERATIONAL CONDITIONS

A. IMPLEMENTATION

1. Direct Machine Control

Under direct machine control the only changes required
for implementation on any system are contained in one deck,
subroutine MRES. The implementation operations involved are
explained in detail in Appendix IX. In general, the infor-
mation which must be supplied consists of defining system
parameters; such as system input unit, system output unit,
size of blank common work area, and limiting size of matrix
capability; and assigning FORMAT II System functions to the
available external storage units.

Under direct machine control the Structural Genera-
tive System has been inserted as a normal user module with
the same origin and accessibility as any other user module.

Operation of the Structural Generative System requires
the common area to be at least 1300010 storages and the number

of external storage units to be at least eight. Both of these
facts must be inserted into MRES at implementation time.

2. SUBSYS Control

Implementation upon an IBM 7 09 0/9 4 requires an improve-

ment of the lQading capabilities of IBSYS. The software
package selected is SUBSYS, developed by Westinghous Corpora-
tion. A software package was selected in deference to multiple
passes at IBJOB due to the inflexibilities of IBLDR under
IBJOB. For example, IBLDR requires the use of at least three
tape drives to load each portion, thereby removing units from
use by FORMAT II. Also, data would be inserted in the middle
of program deck and printed output would be interspersed with
IBJOB Processor Output. The most decisive advantage, however,
was the saving of load time under SUBS S. Normal load time
under IBLDR for the complete program is approximately eight
minutes on a 7090, whereas under SUBSYS control the program is
placed into core and execution started with a load time of
fifteen to twenty seconds. A more detailed discussion of
SUBSYS is given in Appendix X.

20

APPENDIX I

OVERLAY STRUCTURE

The Overlay structure is divided into two sections.
The first section Js the revised FORMAT II Overlay
Structure (Reference 2) and the se-cond section is the
Structural System Overlay structure.

21

0 0

0

0 E-4 04

2-i22

0

V)
0

00

00
00

00

0~c H C~jC j C

00000 0

0

r I -IH HHr

0 HV rC-j 0) r0..o r'

2: W E-f E-1 E-E EE- *:

"4 04 r4

t VH

N NMO0 CJCo MCY or-- X \o ,

23 - - - FIE1E4&

I /))r)V

I;. z= :z:

0 ~-0 C

I -4 W E- a)) W

rx4

0~

Vz4 ~ C C1E)~8

0 4.)

00400 0
ris~.E- W 14 E- 00 ciz(D - :E- -:E--:9-

LL

0

0

2 m 000Q00 H

0
H

1k4 0 0

r-

0

LC

HO ~ rqCJ M r\ \.~o C- 00C7 0
W LE4 00000000H

c2 0' Z l E-4 Q -4 Me) Ca) M

W~N M L<C 0E-

WrZ4 woo ~ HO44F

27

z 0

fl-4 E-4

-1:4 0

EA<0

C W HH

cr'.o

E- 0

wH

1-4~a H0/H C)

HH
0 E-4

0 0 C.) (

H E-) -
U) :D) 7- x r9

C-),

0

28)

I/

0

40

cCl)

V V

H0

0 :D(4 -

02 E-4 E-4

~z~z
l) -i .i1 w~ 0

C')4 0l Ci CD i

(-'a4
x~~ E-4O

0 C- ~ C :Z - CCMMi-iE:0E

W ~ 0m

COOV

m-

F-I

E-
H4PL

H- -

<~ x
H ~ Lii

IOLZ
H hM

a:: 14

Wy7- E-t

w w0E

E-4
H7 7

~ * 0

14L~
HOD

00

Er H H

-4 Hn El 0

H~ E-4O fr-~ HH

CYNH

H: :Z: w H/)

C-) H 1-3 t, N1 W
Z4 = w -

4- 1

II 31

Cil

EE-4

0 01

0

HE-4 r-)
00 i0

c',

L4H

00M 0H

Er'rZ

H

32

z
W E"

H 4rz4 (4

zz

E-4 4

HH

caz

ji~~L CrI iI5

C~2 H

33c

0H

N E4

C/)

4 Ci4

HH

4 L4

04 P:4

E- H

H C21

Or4H ~ 0

-4~E-4

0L HH

(14

34-

pE-1

2CO

E-4

P4H

Ha CoIr-q5 -

P-44

Cfl,

CCOO

E-4

IL LL

pE-4

EE-4E-EE-4
H

0

E-1 E-4 E-1/2EA4

8O 00 aP

E-4 a4 E-1

NC qE-4 EA E-4 E-4 E-4

E Pff

A 36

zz

E-1,

Hc 00

-1

C9,

P4 lkI-I

73

E-1

HETI

H.z

.44

1-4

/ 38

E-

H- :DMX 4

'-4ot- w a

C')

Cf),

39

APPENDIX II

LOGICAL FLOWCHARTS

A. STRUCTURAL GENERATIVE SYSTEM LOGIC FLOW

EXEQ
FORMAT Ii CALL TO

.USER04. MODULE

US 0

CONTROL .USER04. MODULE

LOGFLO

DETERMINE LOGICAL PATH FROM
\EXAMINATION OF .USER04. INSTRUCTION

IE
ANY OF OUTPUT

SMATRIX POSITIONS

NO ONE THROUGH FIVE ORNO , THIRTEEN AND FIFTEEN NON-
B1 LANK IN THE USER04./

USO4A

CONTROL INPUT PHASE

B

~40

B

ARE
ANY OF OUTPUT

MATRIX POSITIONS

SIX THROUGH TWELVE OR N
FOURTEEN NON-BLANK IN THE

USERCLI. INSTRUCTION?

SYES

US04IB

(CONTROL GENERATION

(FORM T IS S

AND OUTPUT PHAS3ES

C

RETURN TO
FORMAT II SYSTEM

4I1

B. INPUT PHASE LOGIC FLOW

B

US04A EA

CONTROL INPUT PHASE

YES POSITION 1

READ DATA DECK
FROM SYSTEM
INPTJT UNIT NO

(NPIT)

ECNSRUT DATA DECK

FROM INPUT MATRIX/

- i\ EXTRACT STRUCTURAL SYSTEM

'PARAMETERS FROM DATA DECK

/OUTPUT MATRIX YES
<.POSITION I -

P,,BLANK?

NO

42

COPYDK

OUTPUT STRUCTURAL DATA
DECK AS A MATRIX

CONTROL INPUT"DATA PROCESSING \

EXIT
FROM INPUT NO

CTUDUE TO 'MATER'
~CONTINUE

INPUT DATA L
PROCESSING

NINPUT

II

$ i YES
FMAT

T ROESSLATEPRIA LBRARYPT E
~IP AAUSING PHS1SLTHFIN

_ PH-ASE2, AND OPEN
SET INDICATOR N

TO IGNORE
CALL TOE

US04IB 1, NO OF PROBLEM DSRD

~~END CARD)

'YES

43

3

CHEK

PERFORM INPUT CROSS CHECKING/

is)

OUTPUT MATRIX
POSITION 3 BLANK OR

YES

YES INPUT INSUFFICIENT FOR

OUTINT

TPUT INTERPRETED INPUT
AS A MATRIX

LOADS MATRIX

POSITION 5 BLANK ORYE

YE INPUT INSUFFICIENT
FOR

GENERATION OF OUTPUT
MATRIX 14?

BNO

I is BLI I
II

B6 B5

\OTPUT BOUNDARY CONDITION/
TRANSFORMATION MATRIX/

OUTPUT MATRIX YES

'a NO

TSYS

OUTPUT STRUCTURAL
SYSTEM CONSTANTS MATRIX

UTPUT PRESRIBE

DISPET MATRIX

15

zN

C. GENERATION AND OUTPUT PHASE LOGIC FLOW

CC

S04

- INPUT MATRIX ___YS

POSITION 1

".BLANK?

NO

Ot IINTD3AEENSO

STRESSINPUO VITMTRX1

" T

$1 4,

14O OUTPUT MATRIX
POSITION ill

<IBLAN K?

YES

UTMAT

OUTPUT GEN4ERATED ELEMENT
MATRICES USING US46i,

JS62AND us463

OUTPUT GENIERATED ELEMENT

>IATRICES IN4 COMPRESSED FOR

RETURN CON4TROL
TO US04

J

I
APPENDIX III

LIST OF STRUCTURAL SYSTEM SUBROUTINE FUNCTIONS

Section Page No.

A Control and Utility Subroutines 49

B Quadrilateral Thin She!! Ei:ment
Subroutines 53

C Frame and Incremental Frame Element
Subroutines 55

D Triangular Plate and Quadrilateral Plate
Element Subroutines 56

E Triangular Thin S1.ell Element
Subroutines 57

F Triangular Cross Section Ring Element
Subroutines...... 59

G Toroidal Ring Element Subroutines . . . 61

H Quadrilateral Shear Panel Element
Subroutines 62

Trapezodial Ring Element Subroutines . . 63

44

APPENDIX III

LIST OF STRUCTURAL SYSTEM SUBROUTINE FUNCTIONS

A. CONTROL AND UTIL]ITY SUBROUTINES

US04 Control three phases of operation of
.USER04. module

NTEST Examine matrix name for suppression code
REC1 Perform writing and reading of tape records

for interpreted element input

LOGFLO Determine logical path for .USER04.
module

US04A Control first priase (input phase) of
operation of .USER04. module

INDECK Create data deck from input deck matrix

CONTRL Select scratch tape unit for copying
structural data deck, extracting structural
system information in the process

COPYDK Create input deck matrix from data deck

INPUT Master control subroutine for reading and
storing of structural input data

FRED Generate grid point axes transformation
matrices

BOUND Read and store boundary constraints

ELEM Read and store element input data

MATCH Compare a material name to an entry name
in the material library

LAG interpolate material properties with respect
to temperature

FGRLDS Read and store grid point load conditions

and load scalars

FMAT Generate, revise and/or display material
library information

49

SHIFT Manipulate material library internal
storage area

REFORM Control report form input preprocessing

PHASEI Read and store report form input data deck

LATCH Compare an input label to list of legal
input labels

FORMIN Read and store report form table input

PHASE2 Merge data stored by PHASE! into logical
sequence for INPUT

OPEN Control scratch tape manipulations for
report form input

PDISP Output prescribed displacements as a
FORMAT matrix

CHEK Perform input cross checking

OUTINT Output interpreted input as a matrix

FLOADS Output grid point load conditions and load
scalars as Format matrix

FTR Output boundary constraints as a Format
matrix

TSYS Output structural system constants as a
Format matrix

US04B Control second and third phases (element
matrix generation and output) of operation
of .USER04. module

ININ4T Create interpreted input from a matrix

DEPLEX Sort and store input displacements

FELEM Control generation of element matrices

SQUISH Set non-generation indicators for suppressed
matrices

ELPLUG Allocate work storage for elements, read
inteppreted element input, select proper
element and store element matrices on
scratch tape in compact form

50

REC3 Perform writing of tape records for element
control data

REC4 Perform compact writing of tape records for
generated element matrices

MINV Perform in-core matrix inversion

AXTRA2 Apply grid point axes transformaticn

MAB Perform in--core matrix multiplication

MSB Perform in-core matrix multiplication wherefirst matrix is symmetric

BCB Perform in-core matrix triple product of the

form TTKT where K is symmetric

MATB Perform in-core matrix multiplication of the

form ATB

SYMPRT Print symmetrically stored matrix

LOC Compute single subscript index given double
subscript indices

ELTEST Compare input element control information
to required element control information

MPRD Perform generalized in-core matrix
multiplication

TPRD Perform generalized in-core matrix transpose
multiplication

POOF Expands element matrices to displacement
degrees of freedom

MSTR Change storage arrangement of a matrix

AXTRAl Apply grid point axes transformations

AXTRA3 Apply grid point axes transformations

ELPRT Print generated element matrices

OUTMAT Output generated element matrices as
Format matrices

51

US461 Write a matrix column record in compressed

format

US462 Generate each elements contribution to the

assembly transformation matrix

US463 Generate full column from symmetrically
stored matrix

ELMAT Output compressed element matrices as a
format matrix

AI Controls calculation procedures of triangular
integration package

BINT Perform integration by expansion of binomial
theorem

AK Calculate slope of line between two points
of a triangle

AM Calculate intercept of line between two

points of a triangle

IFAC Calculate n factoru!L for a given n

FJAB Perform defined integration

F6219 Perform defined integration

F6211 Perform defined integration

AJ Perform defined integration

%OEF Calculate binomial coefficients

F89 Perform defined integration

FF100 Perform defined integration

52

B. QUADRILATERAL THIN SHELL ELEMENT SUBROUTINES

PLUG1 Master control

CC21 Form intermediate stiffness matrix by
summation

MABC Perform in-core matrix triple product
multiplication

NEWFT Calculate revised thermal load formulation

CDELPQ Calculate coordinate integrals

CHDEL1 ,.range coordinate integrals in storage

PIPRTA Print results of coordinate and material
properties calculations

CKI1 Control generation of membrane stiffness
matrix

CT11 Generate membrance stiffness transformation
sub-matrix

MATI60 Invert 8 x 8 matrix in-core

CTOGM Generate membrane transformation matrix for
transformation from oblique to geometric
coordinates

CTGRM Generate membrane transformation matrix for
transformation from geometric to reference
system coordinates

CCl Generate membrane stiffness sub-matrices

CMMASS Generate membrance contribution to element
mass matrix

CSTM Generate membrane contribution to element
stress matrix

CDM Generate membrance displacement derivative
matrix for element stress matrix control

CFMTS Control generation of membrance contribution
to element thermal stress and element thermal
load matrices

53

CFMV Generate membrane thermal load matrix

PRTI Print membrane and flexure transformation
matrices and contribution to element
stiffness, stress, thermal stress, thermal
load and pressure

CK22 Control generation of flexure stiffness
matrix

CTGB Generate flexure transformatitn sub-matrix

MATI70 Invert 16 x 16 matrix in-core

CTOGB Generate flexure transformation matrix for
transformation from oblique to reference
system coordinates

CTGRB Generate flexure transformation matrix for
transformation from geometric to reference
system coordinates

CC2 Generate flexure stiffness sub-matrices

CFP Control generation of element pressure load
matrix

CFPB Generate intermediate element pressure load
matrix

CSTF Generate flexure contribution to elcment
stress matrix

CDF Generate flexure displacement derivative
matrix for element stress matr'ix

CDFX Generate flexure displacement partial with
respect to X derivative matrix for element
stress matrix

CDFY Generate flexure displacement partial with
respect to Y derivative matrix for element
stress matrix

CFFTS Control generation of flexure contribution
to element thermal stress and thermal load
matrices

CFFV Generate flexure contribution to element
thermal load matrix

CFMASS Generate flexure contribution to element
mass matrix

54

0. FRAME AND INCR.MENTAL FRAME ELEMENT SUBROUTINES

G-r,rate transformation matrix for
transformation from geometric to reference

CTCQ Generate transformation matrlx for trans-
formation from material to geometric axes

CECC Evaiuate effect of eccentricities

INCRE Generate element incremental stiffness
matrix

P7PRT Print transformation matrices and inter-
mediate calculations

PLUG7 Master control, generation of frame element
matrices

PLUG22 Master control, generation of incremental
frame matrices

FINP22 Generate element incremental matrix for

the incremental frame element

55

D. TRIANGULAR PLATE AND QUADRILATERAL PLATE ELEMENT SUBROUTINES

DIRCOS To evaluate the direction cosines given any
three points that define a plane

BCB!2 To evaluate a triple product matrix where
all matric'es are square

KOBLIQ To perform a transformation on the e)ement
stiffness matrix AKEL (TRANT*AKEL*TRAO)

P1718M Initialize element properties from the
material table for membrane properties with
flexural data only for PLUG17 and PLUG18

SELQ To transform the stress matrix generated by
PLUG17 and PLUG18 to the stress system required
(generally local)

FTELQ To transform the element thermal load matrix
into global or oblique system

PLUG17 Master control for the generation of
triangular plate element matrices

PLUG18 Master control for the generation of
quadrilateral plate element matrices

TR18ST From transformation matrices for the stress
and thermal stress matrices

FBMP1P To evaluate the B matrix for the quadrilateral
plate elements, out of plane

56

E. TRIANGULAR THIN SHELL ELEMENT SUBROUTINES

PLUG2 Master Control

ASSY2 Assemble membrane and flexure stiffness
sub-matrices

DCD Perform in-core matrix multiplication of
the form TST where T is a diagonal matrix and
S is a symmetric matrix

DTAPR Process coordinate data

PFMASS Calculate the flexural contribution to the
mass matrix

PMMASS Calculate the membrane contribution to the
mass matrix

MATPR Generate material properties matrices

NEWFT1 Calculate revised thermal matrices

PTBM Generate membrane transformation matrix
for transformation from oblique to geometric
coordinate systems

PTMGS Generate membrane transformation matrix for
transformation from geometric to reference
system coordinates

DPQINT Calculate coordinate integrals

PKM Generate membrane contribution to element
stiffness matrix

PSTM Generate membrane contribution to element
stress matrix

PFMTS Generate membrane contribution to element
thermal load and thermal stress matrices

PFMV1 Generate intermediate membrane thermal load
matrix

APRT Print membrane and flexure transformation
matrices and contributions to element
stiffness, stress, thermal stress, thermal
load and pressure load matrices

57

I-

PTFGS Generate flexure transformation matrix
for transformation from geometric to
reference system coordinates

PKF Generate flexure contribution to element

stiffness matrices

CCB Perform in-core matrix triple product of

the form TTKT where K is symmetric and
accuracy criteria is imposed

PFP Generate element pressure load matrix

PFFTS Generate flexure contribution to element
thermal stress and thermal load matrices

PFFVl Generate intermediate flexure thermal
load matrix

PSTF Generate flexure contribution to element
stress matrix

PTBF Generate flexure transformation matrix for
trnasformation from oblique to geometric
coordinate systems

EPRT Print final element matrices

PLAS2D Non-functional

PNC1NE Non-functional

PNGINE Non-functional

58

F. TRIANGULAR CROSS SECTION RING ELEMENT SUBROUTINES

PLUG6 Master control

EXPCOL Expand column matrix to six degrees of
freedom per point

EXPSIX Expand symmetric matrix to six degrees of
freedom per point

TRAIC Generate coordinate transformation matrices

and integrals

TESTJ Impose accuracy criteria upon integrals

TRCPRT Print coordinate t:ansformation matrices
and integrals

.RAIE Generate material properties matrices

TIEPRT Print material properties matrices

TRAIK Generate element stiffness matrix

TIKPRT Print element stiffness matrix

TRAIFP Generate element pressure load matrix

TFPPRT Print element pressure load matrix

TRAIFT Generate element tharmal load matrix

TFTPRT Print element thermal load matrix

TRAIS Generate element stress matrix

TISPRT Print element stress matrix

TRAITS Generate element thermal stress matrix

TTSPRT Print element thermal stress matrix

TRAIM Generate element mass matrix

TIMPRT Print element mass matrix

TRAIFS Generate element pre-strain load ma'rix

TFSPRT Print element pre-5train load matrix

59

TRAIST Generate element pre-stress load
matrix

TSTPRT Print element pre-streSS load matrix

PL6PRT Print all element matrices generated

60

G. TOROIDAL RING ELEMENT SUBROUTINES

PLUG5 Master control, generate element stiffness,
thermal load, pressure load, stress and
thermal stress matrices

ROMBER Perform integration by Romberg Method

F4 Evaluate a defined fanction for ROMBER

F5 Evaluate a defined function for ROMBER

F6 Evaluate a defirpd function for ROMBER

BMATRX Generate coordinate transformation matrix

DMATRX Generate material properties matrix

GAMMAT Generate material transformation matrix

FCURL Generate intermediate thermal load matrix

PLMX Generate intermediate pi.essure load matrix

SCRLM Generate intermediate stress matrix

SOLVE Solve for element stress coefficients

QUADI Performs integration using numerical
quadrature methods

PRINT5 Print generated element matrices

H. QUADRILATERAL SHEAR PANEL ELEMENT SUBROUTINES

PLUG14 Master control, generate element stiffness,
stress and mass matrices

MULTF Performs in-core specialized matrix
multiplication

P1IPRT Prints intermediate calculations and
generated element matrices

62

I. TRAPEZODIAL RING ELEMENT SUBROUT1ES

PLUG8 Master control for the generation of
trapezodial ring element matrices

SUBI Solves the integral Hl=
drdz

for values of Q = 0, 1 and 2 for a trapezoid

ZMRD Perform double precision multiplication of
two matrices (C = A * B)

Z'LD Perform double precision multiplicat-on of

two matrices (C = AT * B)

KMPY Multiply, in double precision, each elemenit
of a matrix by a scalar to form a resultant
matrix

ERIC Compute the pressure load vector for the
trapezodial ring

P8MASS Generate element mass matrix for the
trapezodial ring

63

APPENDIX IV

LIST OF SUBROUTINE FUNCTIONS OF MODULES
ADDED TO THE FORMAT II SYSTEM

ASSEM Control routine for assembling element
matrices using the .ASSEM. abstraction
instructions

ASSEMC Assemble thermal load element matrices

ASSEMS Assemble element stiffness, element mass
and element incremental matrices

COLMRD Utility subroutine to uncompress a column
of a matrix in dynamic storage

COLREP Generate a rectangular matrix by repeating
the input column the specified number of
times using the .COLREP. abstraction
instruction

DECODE Generate a copy of a Format matrix on a

scratch tape in full format

DEJNC Perform column partitioning of a matrix

DEJNR Perform row partitioning of a matrix

DEJOIN Control routine for matrix partitioning
using the .DEJOIN. abstraction instruction

DISPLI Printing routine used by GPRINT

DISPPR Controls printing of displacements from

GPRINT

EIG Main iteration routine of .EIGENl. module

EIGB Controls iteration routine EIG

EIGI Controls routine for calculating eigenvalues
and eigenvectors using the .EIGEN1.
abstraction instruction

EIGPPR Controls printing of eigenvalues and

vectors

64

ELREAD Routine to decode the compressed element
matrix output by the .USER04. module

EPRINT Controls printing of element stresses and
forces when using the .EPRINT. abstraction
instruction

FORCE Control routine to calculate element force
when using the .FORCE. abstraction instruction

FORCE1 Routine to set up dynamic storage and
control calculation of element forces for
each element

FORCE2 Calculates element force

FREEUP Routine to return work storage to available
use

GPRINT Control routine to print reactions,
displacement, eigenvalues and eigenvectors
when using the .GPRINT. abstraction
instruction

GPRNT1 Controls storage and correct print transfers
for .GPRINT.

IDENTC Generates an identity matrix when using the
.IDENTC. abstraction instruction

IDENT Generates an identity matrix when using the
.IDENTR. abstraction instruction

INST04 Instruction analyzer for the .GPRINT.
instruction

INST05 rstruction analyzer for the .EPRINT.
instruction

INST43 Instruction analyzer for the .DEJOIN.
instruction

INST60 Instruction analyzer for the .STRESS. and
.FORCE. instructions

MATPRT Controls printing of a user matrix when
using .GPRINT.

55

MATSUP Insert suppressed input matritx names into
the Format system

NULL Generates a null matrix using the .NULL.
abstraction instruction

REACTP Controls printing of reactions when using

.GPRINT.

REGE2 Utility routine used by EIGI

STRESS Control routine to calculate element stresses
when using the .STRESS. abstraction instruction

STRES1 Routine to set up dynamic storage and
control calculation of element stresses
for each element

STRES2 Calculates element stresses

STRPRT Prints element stresses and forces

TSUM Generates a tape summary of matrices on a
specified logical unit

66

APPENDIX V

REVISIONS TO FORMAT SYSTEM DECKS

Subroutine Name: PREP

Purpose of Revision: Provide the cabability for suppressing
input matrices in an abstraction instruction

Method: Fortran statement number 200 was changed to
initialize the variable NUMSUP to zero. NUMSUP was added
to the calling sequence to subroutine INST and upon return
will contain the number of input suppressed matrices located
during compilation of the input abstraction instructions.
If NUMSUP is non-zero upon return from INST, then subroutine
MATSUP is called to introduce the input suppressed matrices
into the Format system.

67

Subroutine Name: EUTL4

Purpose of Revision: To retain the second word in the matrix
header when copying a matrix. Thus the KODE word in the
matrix header will not be changed to zero when copying a
matrix.

Method: After EUTL3 finds the matrix to be copied, a back-
space is issued to read the KODE word of the matrix header.
This KODE is transferred to the matrix header of the new
matrix.

68

Subroutine Name: EUTL5

Purpose of Revision: To insure that the second word in the
matrix header is given the value assigned by the user in the
calling argument of EUTL5 to the variable KODE.

Method: When writing the matrix header write the variable
KODE from the argument list as the second word of the header.

69

Subroutine Name: INST

Purpose of Revision: Provide distinct names for suppressed
matrices and record the number of input suppressed matrices
encountered while compiling the abstraction instructions.

Method: The variable NUMSUP was added to the calling sequence
of INST and inserted into the calling sequence for INST90 to
record the number of input suppressed matrices located. The
variable KOUNT was initialized in INST as zero and inserted
in the calling sequence to INSTgO to be used as a counter to
ensure the generatIon of unique suppressed matrix names.

70

Subroutine Name: INST90

Purpose of Revision: Introduce unqiue matrix names into the
Format system for both output and input suppressed matrices
for the .USERXX. form input abstraction instruction.

Method: The variables KOUNT and NUMSUP were added to thecalling sequence for subroutine INST90, KOUNT to indicate

the next unique suppressed matrix name and NUMSUP to record
the number of input suppressed matrices encountered. Whether
input or output, a suppressed matrix is located and a name
assigned to it by the same procedure. All blanks have been
removed from the input instruction by subroutine PUTL1. The
instruction is scanned, first the output side, then the input
side. Whenever a matrix position has length zero, i.e. the
matrix name was blank, the suppressed name is created by
inserting four slashes for the first four characters and
adding one to KOUNT and inserting that value as the last two
characters. The sign of the matrix is set to plus. If the
suppressed matrix was an input matrix, i.e. was encountered
on the right sign of the equal sign, then NUMSUP is incremented
by one.

71

Subroutine Name: MATR

Purpose of Revision: Provide the capability of placing
card input matrices on tLe same data set as input suppressed
matrices, if necessary.

Method: if card input matrices are present then subroutine
MATR is called to place these matrices on NDATA, the data
set selected by the Format pre-processor for that purpose.
However, if input suppressed matrices were present then they
already exist on NDATA at the time that MATR is called. There-
fore MATR had to be revised to check NUMD, the variable
indicating zhe number of matrices already on NDATA, before
recording card input matrices on NDATA. If NUMD is zero
then NDATA is rewound and a data set header written and the
card input matrices recorded. If NUMD is non-zero, then
NDATA is searched until the data set trailer is located, then
backspaced over the data set trailer and then the card input
matrices are recorded.

72

Subroutine Name: ALOC

Purpose of Revision: Pass the value of IPRINT, the Format
system print control, to subroutine ALOC4 for transmittal
when operating under SUBSYS control.

Method: The variable IPRINT was added to the calling
sequence for ALOC and inserted into the call statement to
ALOC4.

73

Subroutine Name: ALOC31

Purpose of Revision: Indicate to the Format system the
number of scratch data sets .'equired to execute the .USERo4.
instruction.

Method: The variable MINSCR(94) was set equal to four.

74

Subroutine Name: ALOC4

Purpose of Revision: Store on the instruction data set,
NINST, the necessary data for re-initialization of program
constants for operation under Subsys control.

Method: When proceeding from program to program under
Subsys control, the necessary system parameters must be
reset at the start of each program. The values of the
parameters are obtained as follows: NPIT, the system input
unit, NPOT, the system output unit, KONST, the maximum
matrix size capability and NWORK, the number of available
work storages are obtained via the COMMON statement in
ALOC4. The value of IPRINT is received through the calling
sequence of ALOC4. These five system parameters, NPIT,
NPOT, KONST, NWORK and IPRINT, are added as extra words to
the return instruction recorded on NINST.

75

i

APPENDIX VI

MAGIC ERROR MESSAGES

The following is a list of all MAGIC error messages.
The list is divided into three sections. The first section
contains all Format error messages (Reference 2) and is
divided into two parts, the preprocessor error message,
and the execution error message. The second section contains
error messages from all arithmetic and non-arithmetic modules
developed to be used in conjunction with the structural
generative module. The third section contains error messages
generated by the structural generative system itself, which
is the .USER04. module. If each section the error messages
are in alphabetic order. The error message codes are
significant in that the first six characters identify che
subroutine from which the error message eminates. The
occurrence of **** in the error message indicates that
additional descriptive information will be supplied.

7

SECTION 1. FORMAT ERROR MESSAGES

ALOC01 INSUFFICIENT STORAGE FOR ALLOCATION

The number of words of working storage available to the
allocator is less than the minimum required for complete
allocation of this Job. This condition can be remedied by
reducing the number of abstraction instructions.

ALOC02 INVALID NO. OF MASTER INPUT/OUTPUT DATA SETS SPECIFIED

The number of master input data sets and/6r master output
data sets specified on "INPUT TAPE" or "OUTPUT TAPE" cards is
greater than the number of master input and/or master output
data sets defined in rhe machine resources area as being
available to FORMAT II. This condition can be remedied by
reducing the number of "INPUT TAPE" and/or "OUTPUT TAPE"
cards.

ALOC03 INSUFFICIENT UTILITY DATA SETS FOR ALLOCATION

The number of data sets with the FORMAT II system function
IOUTIL is less than the minimum number required by the FORMAT
II Preprocessor during the preprocessing phase. This condition
can be remedied by reducing the number of "INPUT TAPE" or
"OUTPUT TAPE" cards used in this Job or by modifying the machine
resources area. (i.e., define additional data sets with the
FORMAT II syste.ma function IOUTIL.

ALOC04 MASTER OUTPUT DATA SET '***** SPECIFIED IN SAVE
INSTRUCTION NOT DEFINED

A "SAVE" instruction in the abstraction instruction sequence
refers. to a master outp.'c data set name which has not been
defined on an "OUTPUT TAPE" card. This condition can be remedied
by including the appropriate "OUTPUT TAPE" card in the Job.

ALOC05 MASTER INPUT DATA SET ****** HAS NOT BEEN MOUNTED

The FORMAT II allocator has not been able to locate a master
input data set which has been specified on an "INPUT TAPE" card.
This condition is usually caused by mounting the correct master
input data set on the wrong unit or by misspelling the name of
a properly mounted data set on the "INPUT TAPE" card.

77

ALCC06 MATRIX * IS NON-EXISTENT

A matrix, which appears in the abstraction instruction
sequence and which hasr not been created in the abstraction
instruction sequence prior to its use, has not been card input
and does not appear Qn any master input data set. This con-
dition can be remedied by inputting the required matrix.

ALOC07 DUPLICATE MATRICES ****** IN MATRIX DATA

Two or more matrices with the same name have been card
input. This condition can be remedied by ensuring that all
card input matrices have unique names.

ALOC08 CREATED MATRIX ****** IS CARD INPUT

A matrix which is created in the abstraction instruction
sequence has trie same name as'a matrix which is card input.
This condition can be remedied by removing the matrix in
question from the card input matrix data.

ALOC09 SUBSCRIPS OF *** ** EXCEED DIMENSIONS OF MATRIX

The indices of a scalar element to be extracted from a
matrix are larger than the dimensions of that matrix. This
condition can be remedied by changing the indices of the scalar
element specified in the abstraction instruction sequence.

ALOC10 DUPLICATE MATRICES CREATED -- NAME *

A matrix in the abstraction instruction sequence appears
more than once on the left side of an equal sign. This condition
can be remedied by ensuring that all matrix names, which appear
on the left side of an equal sign in the abstraction instructionsequence, have unique names.

ALOCI MATRIX ****** IS USED MORE THAN ONCE IN INSTRUCTION *

The matrix names appearing in the indicated instruction
in the abstraction instruction sequence do not have unique
names. This condition can be remedied by ensuring that all

-. matrix names appearing in a given abstraction instruction have
unique names.

ALOCI2 CREATED MATRIX ****** HAS BEEN INPUT

A matrix which appears on the left side of an equal sign
in the abstraction instruction sequence has the same name as
a required input matrix. This condition can be remedied by
either changing the name of the required input matrix or by
changing the name of the matrix which appears on the left side
of the equal sign.

78

ALOCI3 MATRICES CREATED IN INSTRUCTION * NEVER REFERENCED

The indicated abstraction instruction in the abstraction
instruction sequence Sreates matrices, none of which are
referenced in subsequent abstraction instructions. This con-
dition can be remedied by removing the indicated abstraction
instructions from the abstraction instruction sequence.

ALOC14 DUPLICATE STATEMENT NUMBERS *****

Duplicate statement numbers occur in the abstraction
instruction sequence. This condition can be remedied by
ensuring that each statement number occuring in the abstraction
instruction sequence is unique.

ALOC15 GO TO DESTINATION ****** IS MISSING OR OCCURS BEFORE
IF TEST

An abstraction instruction "IF" in the abstraction
instruction sequence conditionally transfers to a non-existent
statement number cr transfers to a statement nu:nber on an
abstraction instruction which is sequentially earlier than
the "IF" abstraction instruction in auestiov. This condition
can be remedied by ensuring that all "IF" abstraction instr.uctions
conditionally transfer to a statement number which occurs
sequentially after the "IF" abstraction instruction.

ALOC16 NON CONFORm!ABLE MATRICES IN INSTRUCTION ***

Two matrices occur in the indicated abstraction instruction
in the abstraction instruction whose dimensions are such that
the matrix operation in the indicated abstraction instruction
is not defined.

EXEQ01 THE FORMAT SYSTEM IS UNABLE TO LOCATE MATRIX *

This message signifies a malfunction of the user-coded
subroutine which creates the specified matrix.

EXEQ02 CONFORMABILITY ERROR 1- INSTRUCTION CREATING MATRIX *

The matrices involved on the right side of the equals
sign in the instruction creating the specified matrix are
unconformable.

79

a i

EXEQ03 MATRIX *"'m' IS SINGULAR

The matrix is singular in a "Solution of Equations"
routine, i.e., in "STRCUT," "SEQEL" or "INVERS."

EXEQ04 AN ERROR HAS OCCURRED IN THE USER ** MODULE

An error recognized by the indicated user-coded subroutine
has occurred. This will usually be associated with incorrect
definition of the special data for use by thesubroutine.

EXEQ05 AN IMPROPER UPDATE HAS BEEN MADE TO THE FORMAT SYSTEM -
EXECUTION TERMINATED

A new permanent module has not been properly incorporated.
The FORMAT II systems analyst should be contacted if this error
message occurs.

EXEQ05 AN ERROR HAS OCCURRED IN A USER-CODED MODULE, ERROR
HAS BEEN WRITTEN BY MODULE

An error has occurred in a non-Format module. The
specific error has been written by the subrbutine in which
the error was found.

EUTL3 THE SYSTEM IS UNABLE TO LOCATE A MATRIX. A TAPE SUMMARY
OF LOGICAL UNIT **** WILL FOLLOW

The Format system is unable to locate a matrix. A tape
summary of the data set on which the matrix should have been
is printed out. The name of the matrix will appear in the
next error mebz ge.

INST01 ILLEGAL OPTION SPECIFIED ON $INSTRUCTION CARD

An option other than "SOURCE" or "NOSOURCE" has been
specified on the "$INSTRUCTION" card or a valid option starts
before card column 16 in the "$INSTRUCTION" card.

INST02 INVALID STATEMENT NUMBER SPECIFIED

The statement number which is specified in card columns
1-5 of the abstraction instructicn'preceding this error message
is composed of characters which are not all numeric.

INST03 INVALID CHARACTER IN COLUMN 6

Card column 6 of the abstractio-t instruction preceding
this error message contains a character other than a blank or zero.

80

INST04 UNRECOGNIZABLE OPERATION CODE

The operation specified in the abstraction instruction
preceding this error message is not contained in the FORMAT
II library of valid operations.

INSTO SYNTAX ERROR IN - GPRINT - INSTRUCTION

INST04 ILLEGAL NEGATIVE INPUT VALUE FOR SUPPRESSION OF MATRIX
ELEMENTS, ABSOLUTE VALUE TAKEN

The effective zero value for suppression of element
print in the GPRINT instruction must be positive.

INST04 INVALID SPECIFICATION OF INPUT MATRICES

An incorrect number of input matrices has been specified
in the GPRINT instruction.

INST04 ILLEGAL SPECIFICATION OF COLUMN HEADERS

Incorrect syntax in GPRINT when written column headers.

INST05 SYNTAX ERROR IN - IF - INSTRUCTION

The abstraction instruction "IF" which precedes this error
message contains an unrecognizable field.

INSTO5 SYNTAX ERROR IN - EPRINT - INSTRUCTION

INST05 INVALID PRINT CONTROL

The print control in the EPRINT instruction was incorrectly

specified.

INST05 ILLEGAL NEGATIVE INPUT VALUE FOR SUPPRESSION OF MATRIX
ELEMENTS, ABSOLUTE VALUE TAKEN

The effective zero value for suppression of element print
in the EPRINT INSTRUCTION must be position.

INST05 ILLEGAL SUPPRESSION OF PARAMETER

The code indicating either stress or force matrices to
be printed has been omitted.

81

INST06 SYNTAX ERROR IN - PRINT - INSTRUCTION

The abstraction instruction "PRINT" which precedes this
error message contain, an unrecognizable field.

INST07 SYNTAX ERROR IN - SAVE - INSTRUCTION

The abstraction instruction "SAVE" which precedes this
error message contains an unrecognizable field.

INST08 OPERATION CODE NOT INCLOSFD BY PERIODS

The operation code in the abstraction instruction preceding
this error message is not inclosed by periods.

INST09 SYNTAX ERROR IN ARITHMETIC INSTRUCTION

The arithmetic abstractibn instruction preceiing this
error message contains an unrecognizable field.

INST10 THIS INSTRU,,'IONi IS NOT AVAILABLE

An incomplete r'dification to the instruction cu.d procersor
area has been made. The FORMAT II systems analyst should be
notified immediately.

INST43 INVALID SPECIFICATIO. OF PARAMETERS

A syntax error has occurred in the DEJOIN instruction.

INST43 - INVALID INDEX SPECIFIED

Parameter specifying row or column dejoin is illegal.

INST43 INVALID MATRIX NAME

The DEJOIN instruction contains one invalid matrix
name.

MATR01 UNRECOGNIZABLE OPTIONS ON $MATRIX CARD STANDARD OPTIONS
USED WARNING ONLY

An option other than "LIST", "NOLIST", "PRINT" or "NOPRINT"
has been specified on the "$MATRIX" card or a valid option
starts before column 16 on the "$MATRIX" card.

82

MATR02 CARD FOLLOWING $MATRIX CONTROL CARD IS NOT A HEADER
CARD OR HAS - H - MISSING IN COLUMN 1

The first card following the "$MATRIX" card must be the
header card of the first card input matrix. All data up to
the first header card will be ignored.

MATR03 NAME ON DATA CARD IS DIFFERENT FROM NAME ON HEADER
CARD. THIS MATRIX WILL BE IGNORED

The matrix header card and all associated matrix data must
have the same name in card columns 67-72.

MATR04 ROW AND/OR COLUMN VALUE EXCEED MATRIX SIZE, IS NEGATIVE
OR IS ZERO AND VALUE IS NONZERO. THIS MATRIX WILL BE
IGNORED.

An element specified in the matrix card input data is out-
side the dimensions of the matrix, of which it is supposed to
be an element.

MATR05 MATRIX EXEEDS ALLOTTED STORAGE. THIS MATRIX WILL BE
IGNORED.

The number of words of working storage available to the
iatrix card reader module is less than the number of words
necessary to contain all the nonzero elements in one of the
card input matrices. The number of words of working storage
required for a given matrix is approximately three (3) times
the number of nonzero elements in the matrix. This condition
can be remedied by decreasing the number of nonzero elements
in the card input matrix.

MATh06 DUPLICATE I-J VALUES ENCOUNTERED. THIS MATRIX WILT0 BE
IGNORED. I = ** * J = ****

Two or more values have been specified for the same matrix
element in the matrix card input data. This condition can be
remedied by ensuring that each matrix element has a unique set
of I - J values.

MATR07 I VALUE ON HEADER CARD EXCEEDS ALLOTTED SIZE OR IS LESS
THAN OR EQUAL TO ZERO. THIS MATRIX WILL BE IGNORED.

The number of rows specified in the header carl of a card
input matrix is greatc- than the maximum number of rows permitted
in a matrix which is processed by the FORMAT II system, or is
less than or equal to zero. This condition can be remedied by
reducing the dZmensions of the card input matrix.

83

MATRO8 J VALUE ON HEADER CARD EXCEEDS ALLOTTED SIZE 6; IS LESS
THAN OR EQUAL TO ZERO. THIS MATRIX WILL BE IGNORED.

The number of columns specified in the header card of a
card input matrix is greater than the maximum number of columns
permitted in a matrix which is processed by the FORMAT II system,
or is less than or equal to zero. This condition can be remedied
by reducing the cimensions of the matrix.

MATR09 FIRST CHARACTER OF MATRIX NAME ON HEADER MUST BE
ALPHABETIC. THIS MATRIX WTLL BE IGNORED.

The matrix name which is to be given to a set of matrix
cara input data and which is punched in card column 67-72 of
the header card and all associated data cards must follow the
rules for valid matrix names as defined for the FORMAT II
system. The ril,'e which applies in this case is that the first
character of a matrix name must be alphabetic.

MATR10 ILLEGAL CARD ENCOUNTERED. FOLLOWING CARDS IGNORED UNTIL
ANOTHER - 3 - CONTROL CARD IS FOUND.

A card has been encountered in the matrix card input data
which has an illegal character punched in ckrd column 1. The
only valid characters which may appear in card column 1 are "H",
"E", and blank.

MATRll CARD FOLLOWING E CARD IS NOT A $ CONTROL CARD - WARNING
ONLY.

In a valid FORMAT II deck setup the only cards which may
follow the "E" card which is the last card in the matrix card
input data, are the "$SPECIAL" card and the "$END" card.

MRES01 FIRST CARD IS NOT A - $ - CONTROL CARD

The first card of all FORMAT II Jobs must be a "$MAGIC"
or a "$FORMAT" card.

MRES02 FIRST - $ - CONTROL CARD IS NOT A $MAGIC CARD. ALLOCATION
SUPPRESSED

The first card of all FORMAT II Jobs must be a "$MAGIC"
or a "$FORMAT" card.

84

MRES03 UNRECOGNIZABLE OPTION ON - $MAGIC CARD STANDARD
OPTION ASSUMED

An option other than "NEW", "STANDARD" (or blank) or
"CHANGE" has been specified on the "$MAGIC" card or a valid
option starts before column 16 on the "$MAGIC" card.

MRESo TLLEGAL CARD FOR - CHANGE - OPTION - ALLOCATION
SUPPRESSED

The "DELETE" card and the "UPDATE" card are the only
valid machine resources data cards which are valid when the
"CHANGE" option has been specified on the "$FORMAT" card. The
"SETUP" card is the only valid machine resources data card
which is valid when the "NEW" option has been specified on
the "$FORMAT" card.

MRES05 THE SYSTEM INPUT DATA SET OR OUTPUT DATA SET HAS BEEN
SPECIFIED AS A FORMAT II SYSTEM FUNCTION

Two Fortran logical data sets which must not be specified
on "UPDATE", "DELETE", or "SETUP" cards are the system input
data set and the system output data set.

MRES06 DUPLICATE DATA SETS SPECIFIED - ALLOCATION SUPPRESSED

A Fortran logical data set has been specified more than
once on "SETUP" or "UPDATE" cardp.

MRES07 INVALID " VALUE DETECTED ALLOCATION SUPPRESSED

An invalid field has been specified on an "UPDATE" or
"SETUP" card. The valid fields are as follows. The first
field must contain the logical data set number (an integer).
The second field a valid FORMAT II system function (e.g.,
"MASTRI", "MASTRO", or "IOUTIL"). The third field must

contain the physical device containing the data set. The
valid specifications in the field are "TAPE", "DISK", "DRUM",
or "CELL". The fourth field must contain the logical channel
designation. This consists of a letter A to H. The fifth
field must contain the capacity of the data set in basic
machine units (e.g., bytes, etc.). This field must be an
integer number. The error message indicates which of the five
fields is in error.

MRES08 INCORRECT SETUP OR UPDATE CARD ALLOCATION SUPPRESSED

A missing field has been detected on a "SETUP" or "UPDATE"
card.

85

MRES09 INSUFFICIENT I/O UTILITY DATA SETS - ALLOCATION
SUPPRESSED

A minimum number of Fortran logical data sets available
to FORMAT II must have the FORMAT II system function of "IOUTIL".
The FORMAT II preprocessor selects several of the data sets with
this function for scratch data sets during preprocessing. This
condition can be remedied by specifying additional data sets on
"SETUP" or "UPDATE" cards with the FORMAT II system function
"IOUTIL".

MRESI0 ILLEGAL DEVICE SPECIFIED FOR MASTER INPUT DATA SET

The only valid device types which may be specified for a
FORMAT II data set whose system function is "MASTRI" are
"TAPE" and "DISK". A "SETUP" or "UPDATE" card is the source
of the error.

MRES11 ILLEGAL DEVICE SPEC:FIED FOR MASTER OUTPUT DATA SET

The only valid device types which may be specified for a
FORMAT II data set whose system function is "MASTRO" are
"TAPE" and "DISK". A "SETUP" or "UPDATE" card is the source
of the error.

PREP01 INVALID CO:TROL CARD OR INCORRECT DECK SETUP

The FORMAT II preprocessor has encountered a control card
which is unrecognizable or which is valid but does not occur
in its proper place. Recommended corrective action is to check
the spelling of all control cards and check the deck set up.

PREP02 NOT A - $ - CONTROL CARD. CARD IGNORED

When an invalid control card is encountered or incorrect
deck setup is recognized, the preprocessor searches for the
next "" control card.

PREP03 PREPROCESSING TERMINATED EXECUTION HALTED

Whenever a serious error occurs the preprocessing is
terminated and a "NOGO" condition is established.

PROB01 UNRECOGNIZABLE OPTION ON - $RUN - CARD. STANDARD
OPTION USED.

An option other than "GO", "NOGO", "LOGIC" or "NOLOGIC"
has been specified on the "$RUN" card or a valid option starts
before column 16 in the "$RUN" card.

86

PROB02 CONTRADICTORY EXECUTION OPTIONS - ALLOCATION SUPPRESSED

The options "GO" and "NOGO" have been specified on the
"$RUN" card.

PROB03 CONTRADICTORY LGOIC OPTIONS - ALLOCATION SUPPRESSED

The options "LOGIC" and "NOLOGIC" have been specified on
the "$RUN" card.

PROBO MISSING LEFT PARENTHESIS - ALLOCATION SUPPRESSED

A problem specification data card has a missing left
parenthesis.

PROB05 UNRECOGNIZABLE CARD

A problem specification data card is unrecognizable. The
valid problem specification data cards are the "ANALYSIS" card,
the "PROBLEM" card, the 'PAGE SIZE" card, the "INPUT TAPE" card,
and the "OUTPUT TAPE" card.

PROB06 MISSING COMA ON MASTER I/O TAPE CARD - ALLOCATION
SUPPRESSED

There is a missing field on an "INPUT TAPE" card or on
an "OUTPUT TAPE" card in the problem specification data.

PROB07 ILLEGAL MASTER I/O DATA SET NAME - ALLOCATION SUPPRESSED

The master input or master output data set name which has
been specified on "INPUT TAPE" card or on "OUTPUT TAPE" card
in the problem specification data is invalid. Master Input/Output
data set names follow the same rules as matrix names. In
particular, the name must be 1-6 characters long and the first
character must be alphabetic.

PROB08 ILLEGAL INTEGER ON MASTER I/O TAPE CARD

The second field of an "INPUT TAPE" or "OUTPUT TAPE" card
in the problem specification data is not an integer number.

PROB09 ILLEGAL PAGE SIZE - ALLOCATION SUPPRESSED

An invalid page size has been specified on the "PAGE SIZE"
card in the problem specification data. The valid page sizes
are :Ill * 8", "8 * 11" and "114 * 11".

87

t

PROB1O MASTER INPUT OR OUTPUT DATA SET USED PREVIOUSLY

All master input and output data set names as specified on
"INPUT TAPE" and "OUTPUT TAPE" cards in the problem specification
data must be unique.

PROB1I INVALID SIZE SPECIFIED ON SIZE CARD

An integer number must be specified in the only field of
the "SIZE" card.

188

SECTION 2. MISCELLANEOUS ARITHMETIC MODULE ERROR MESSAGE

ASSEM The order of the assembled - unredu, ed system,
NSYS a * the maximum size system can
only = D.O.F.

The variable KONST in subroutine MRES must be
updated to allow the user to assemble a system
with NSYS degrees of freedom.

ASSEMC Element number *****, generated a LISTEL value
of *****, while NSYS = *****.

If this error occurs see the MAGIC system analyst.

ASSEMS Must update the dimension of the list and format
arrays to allow for ***** degrees of freedom.

The dimension of two arrays in subroutine ASSE*IS
must be updated to assemble more degrees of freedom
than allowed. If this error occurs see the
MAGIC system analyst.

COLREP Input matrix ****** exceeds allowable size
IMAX =

The number of rows of the input matrix exceeds
the value of KONST. IMAX is the number of rows
in the input matrix.

DEJNC The partition number = * is greater than
or equal to the column dimension = * of the
input matrix.

An invalid column partition number has been
specified in the DEJOIN instruction 1 < JPART < ICOL.

DEJNR The partition number = #****, is greater than or
equal to the row dimension = * of the input
matrix.

An invalid row partition number has been specified

in the DEJOIN instruction 1 < JPART < IROW.

DEJOIN - Invalid partition number -

The matrix partition number must be greater
than one.

89

EPRINT Unable to execute the EPRINT module. The work
array is not long enough for execution.

The variable NWORK in subroutine MRES must be
updated for more work storage.

EPRINT The element info:7mation is for element number
- go to next element.

Unable to print out stresses or forces for this
element, continue execution. If this error
occurs contact the MAGIC system analyst

EPRINT The number of elements in the input matrices
are not the same.

If this error occurs contact the MAGIC system
analyst.

EPRINT Printing for element type *****, are not available,
proceeding to next element.

The EPRINT module has not been undated to handle
this element type. Contact the MAGIC system
analyst.

FORCE1 Unable to execute the force module. The work
array contains ******** words, and ********
words are needed to process the maximum element.

There is not enough work storage to calculate
the forces for all elements. The variable
NWORK must be updated in subroutine MRES.

FORCE2 - Forces for element type *****, are not available,
proceeding to next element.

The FORCE module has not been updated to handle
this element type. The MAGIC system analyst should
be contacted if this error occurs.

FREEUP The number of matrices to be kept was input as
MATOUT - the number of non-zero elements
of MAT =

If this error should occur contact the MAGIC
system analyst.

GPRNT1 The row dimension of TR(transformation matrix
for application of boundary conditions) = ******.
The number of columns of TR = , This
should equal row dimension.

An incorrect matrix was input in the .GPRINT.
instruction.

90

GPRNT1 The analyst has asked for ***** eigenvalues to
be printed. Subroutine GPRINT allows a maximum
of ***** values to be printed - see a program
analyst to correct this error.

Subroutine GPRINT must be updated to allow
more eigenvalues to be printed.

GPRNT1 - Error while processing matrix *

An error' has occurred in the GPRINT instructlon
while processing matrix named.

GPRNT1 - The matrix to be printed has ****** rows while
TR indicates that it should have ****** rows.

The input matrix to be printed is incorrect or the
input transformation matrix is incorrect.

GPRNT1 - Eigenvector matrix has ***** eigenvectors,
while the eigenvalue matrix has ***** eigenvalues.

The eigenvector and eigenvalue matrices input
into the GPRINT instruction are not compatable.

STRES1 Unable to execute the STRESS module. The work
array contains ******** words, and ******** words
are needed to process the maximum element.

There is not enough work storage to calculate
the stresses for all elements. The variable
NWORK must be updated in subroutine MRES.

STRES2 Stresses for element type *****, are not available
proceeding to next element.

The STRESS module has not been updated to handle
this element type. The MAGIC system analyst should
be contacted if this error message occurs.

91

SECTION 3. .USER04. ERROR MESSAGES

CHEK - Input section **** has not been found. This
input section is required for generation of
the foilowing matrices.

The named matrices cannot be generated due to
the omission of the specified input section.

CONTRL - System information card missing. Cannot allocate
storage.

All input data decks must have SYSTEM section
to allocate storage for processing of input.

CONTRL - System iriform&tion card missing. Cannot
allocate storage.

The SYSTEM card is missing from the report
form input deck.

CONTRL - $END card encountered while Ieading .USER04.
input, indicating absence of end or check card.
Check card will be inserted.

END or CHECK card missing from report form input
deck.

DEFLEX - .USER04. Module unable to locate matrix *

The system is unable to locate a matrix.

DEFLEX - Matrix ****** does not qualify as an input
displacement matrix for the .USER04. module.
Dimensions are ***** by ** and should be
***** by *****.

The input displacement met..ix used to calculate
incrementals is of the 14rong order.

DEPLEX - Matrix *' does not qualify as an input
displacement or stress matrix.

The input matrix used to calculate incrementals
is of the wrong order. If the matrix was a
stress matrix then it must have been generated
using the .STRESS. abstraction instruction.

92

ELEM Element control error in subroutine ELEM.
Element number ***** calls plug number ***.
Plug number should be greater than zero.
Execution terminated.

All element type code numbers are greater than
zero. Proper element type cannot be selected.

ELEM Element control error in subroutine ELEM. Element
number ***** has material. number ******. Material
identification must be different from zero.
Execution terminated.

Self-explanatory.

ELEM Element control error in subroutine ELEM. Element
number ***** has number of grid points =
Number of grid points must be greater than zero
and no greatee than eight. Execution terminated.

Self explanatory.

ELPLUG Element input error No. *. Plug No. *. Element
No. *

Error number 1 - incorrect plug number
(element type code)

Error number 2 - incorrect number of element
.defining points

Error number 3 - incorrect value for extra element
input indicator

Error number 4 - incorrect matrix orders for element
(number of degrees of freedom per
point incorrect)

ELEM Element control error in subroutine ELEM. Element
number ***** has number of input points =
Number of input points must be position.
Execution terminated.

Self-explanatory.

ELEM Input error in subroutine ELEM. Element node
point is negative or zero in element number *

No element defining point number may be negative
and only mid-points may be zero.

93

ELEM Input error in subroutine ELEM, after inter-
polation value of Young's Modulus equals
+,****** + ** in material number *
******i**~*a*******. Value should be

greater than 1.0. Execution terminated.

Self-explanatory.

ELEM Input error in subroutine ELEM, after inter-
polation Poisson value equals +.****E
+ ** in material number **** *
Value should be greater than -1.0 and less than
1..0. Execution terminated.

Se.'f-explanatory.

ELEM Input error in subroutine ELEM, after inter-
*polation thermal coefficient values equals

+.* *******E +-* in material number ******,

*********************** Value should be
greater than -1.0 and less than 1.0. Execution
terminated.

Self-explanatory.

ELEM Input error in subroutine ELEM, after inter-
polation rigidity value equals + .********E
+ ** in material number *********
Value should be greater than 1.0. Execution
terminated.

Self-explanatory.

ELEM Input error in subroutine ELE4. Mass density
value equals + . XXXXXXXXE + ** in material
number ****, ********************** Value
should be greater than zero. Execution terminated.

Self-explanatory.

ELEM Input error in subroutine ELEM. Value of
IP = ***, value of IPRE = *** for element number
one. Request to repeat data from element previous
to first element is illogical. Execution
terminated.

IP and IPRE cannot be negative for first
element.

94

ELEM Input error in subroutine ELEM. Element number
****** is defined by :?ode points for which no
coordinates have been input. Calculation of
material temperature impossible. E.ecution
terminated.

Self explanatory.

ELEM Cannot locate material library.

The system cannot locate the material library
matrix.

ELEM Material error in subroutine ELEM. Material
number ****** was not located on material
tape. Execution terminated.

The specified material number was not available
in the material library.

ELPLUG Element input error no. ****, Plug No. *
and Element ic. *

An error has occurred in generation of scecified
element.
Error Ho. = Plug number (element type) incorrect
Error No. = 2 Number of nodes incorrect
Error No. = 3 Number of input element cards incorrect.

FMAT Input error in subroutine F:.!AT. Material
number * *********************
Number of material temperature points is *.
Number of plastic temperature points is *.
Number of temperature pcints in either case
cannot exceed 9. Execution terminated.

Self explanatory.

FMAT Input error in Subroutine FMAT. Mass density
value equals +******** + ** in material number

, *~*******V****** alue should
be non-negative. Execution terminated.

Self-explanatory.

FMAT Input error in subroutine FMAT. Poisson value
equals + . + ** in material number
*******-********************* Value should

be greater than -1.0 and less than 1.0.
Execution terminated.

Self-explanatory.

95

r

FMAT Input error in subroutine FMAT. Rigidity value
equals + . ********E + ** in material number
******,",mimwam***i,,***I. Value should
be greater than 1.0. Execution terminated.

Self-explanatory.

FMAT a Input error in subroutine FMAT. Thermal
coefficient value equals + .********E + *
in material number ****** *
Value should be greater than -1.0 and less than
1.0. Execution te-'minated.

Self-explanatory.

FMAT Input error in subroutine FMAT. Value of
Young's modulus equals + .********E 4 **
in material number *** , *******************
Value should be greater than 1.0.

Self-explanatory.

FMAT Error message from subroutine FMAT. Attempt
to delete material number ****** using lock
code **. incorrect lock codp, request ignored.

Self-explanatory.

FMAT Error message from subroutine FMAT. Attempt to
delete material that was not on material tape.
Material number * Material identification
is It ************** Input code is **.
Request ignored.

Self-explanatory.

FMAT Error wessage from subroutine FMAT. Attempt to
revise material number ****** using lock code **.
Input lock code does not match tape lock code
for this material. Revisions or deletions not
allowed without proper lock code. Execution
terminated.

Self-explanatory.

FMAT Error message from subroutine FMAT. Additions
requested exceed capacity of material tape.
Maximum number of materials cannot exceed **.

Self-explanatory.

96

I

FMAT Error message from subroutine FMAT. Request
for print of material that was not on tape.
Material number " Material identiflcation
is *f*,*******I***M,,**,. Input code is
m, Request ignored.

Self-explanatory.

FMAT Error message from subroutine FMAT. Unrecognizable
data input code. Legal codes are PI, PO, I.
0, P, OUT, ALL, SEE, SUM. Material number

** Material identification is
S*f********************* Input code is .
Execution terminated.

Self-explanatory.

FMAT Error message from subroutine FMAT. Number
of requests received is zero.

Number of requests must not be zero. Value of
zero indicates improper operation of program.

FMAT Error message from subroutine FMAT. Attempt tc
input plastic data only for material which was
not on tape. Material number * Material
identification is *
Input code is **. Request ignored.

Usage of an input code of "P" requires that the
material to be revised already exists in the
material library.

FMAT New material tape not generated. All revisions
and/or deletions requested by this case have
been ignored.

Due to a previous error, generation of a new
material library has been abandoned. Execution
will be terminated.

FORMIN Unexpected label card read - point .

Input section label card encountered while
reading table form input. Point reflects entry
now being processed.

PORMIN Repeat for first pckat ignored.

Repeat option on table forms of report form
input cannot be used for first value entered.

97

I

FRED There is a mistake in the coordinates for this

transformation, we will calculate the remaining

in spite of this.

An error has occurred in generating a grid point
axes transformation matrix. Execution will
continue.

F6211 The integral of (LN(AJ-B*X)/X) DX is not allowed

for A+B*X=Q. A = +,**I***E + **

B = + .*******E + Cr, X = + .****I*E + **

Natural log of zero is undefined.

INDECK - .USER04. input matrix ****** is not a valid
deck (word count error).

The specified matrix does not qualify as a
valid interpreted input deck.

INDECK - .USER04. input matrix ****** is not a valid deck
(compression error).

The specified matrix does not qualify as a valid
interpreted input deck.

INPUT Input error, number of directions of grid points
not equal to number of directions of transformation
matrix. Execution terminated.

Order of grid point axes transformation matrices
must be equal to three.

INPUT - Input error, number of reference points input
exceeds ****.

Program cannot accommodate more than the given
number of input points.

INPUT Label card error *****.

Input card read should have been label card.
Execution will be terminated.

LOGFLO Logical input error - matrix ****** cannot be
generated by .USER04. module due to suppression
of fourth input matrix. Execution phase suppressed.
Input processing continuing.

The incremental matrices cannot be generated
because the input displacement or stress matrix
has been suppressed.

98

PDISP Input section * matrix not generated due
to prescribed displacement conditions ,NE. 1
and .LT. Load conditions input.

The Prescribed Displacement matrix has not been
generated because of an illegal combination of
external load conditions and prescribed displace-
ment conditions.

PHASE1 Unexpected blank label card encountered.

Card read should have contained an input section
label. Input processor will attempt to continue.

PHASE1 No option has been selected for request number
•** of material library.

Self-explanatory.

PHASE1 More than one option has been selected for
request number *** of material library. Only
the first selection will be retained.

Self-explanatory.

PHASE1 Maximum number of load conditions allowed is

100. This problem contains

Self-explanatory.

PHASEl Load condition *** sub-label is incorrect.
Program cannot distinguish between load conditions.

Load condition sub-label in report form input
is in error.

PHASE1 Illegal MODAL card encountered. Card will be
ignored.

A MODAL card has been four:A while reading an
input section for which -no !ODAL card has been
defined.

PHASE1 Due to previously encountered error condition
this section is being skippedl. Program will
flush data deck until next recognizable input
section is encountered.

99

PHASE1 Unrecognizable input section.

Input section label has been read which is
undefined in input processor.

PHASE1 - Due to above error message this section will
be omitted and check card inserted..

Self-explanatory.

PHASE2 - Number of entries read for this section, ,
does not agree with number that was to be read,
'***. Actual number read will be used.

Self-explanatory.

PHASE2 - This section has either been omitted or flushed
by phase one error. In either case this section
is considered'critical and execution will not
be allowed.

Self-explanatory.

PHASE2 - Due to the omission of this .,ection the following
sections may be ignored - ** *** *;*** ...

The final processing of certain sections requires
data from other sections which by omission or
other input error are not present.

PHASE2 - This section is to be merged with ****** and
****** for which values have been assigned by
both for point number *****. Two values cannot
be assigned to the same point. Neither value
will be used.

Self-explanatory.

PHASE2 - This section is to be merged with ****** and
***** for which modal cards have been encountered

for both. Two values cannot be assigned to the
same point. Both modal cards will be ignored.

Self-explanatory.

?HASE2 - Number of elements read ***** is greater than

9999. Number of elements will be set at 9999.

Self explanatory, execution will be suppressed,

100

PHASE2 No end or check card has been tound. Check
card will be inserted, suppressing execution.

Self-explanatory.

PHASE2 Due to above error condition check card will
be inserted. Execution will be suppressed.

Self-explanatory.

PHASE2 Internal tape error has occurred. Processing
abandoned.

Report form input preprocessor cannot retrieve
information stored on a scratch data set.

PLUGI Value of sin (alpha) is zero - run terminated.

Element defining points are in error for
Quadrilateral Thin Shell Element.

PLUG5 For I = XX and N = XX integral does not converge.

No convergence has been obtaslned for the given
integral calculated by the Romberg technique
in the Toroidal Ring Element.

PLUG5 Maximum number of iterations reached in Romberg
integration routine.

Convergence was :'ot obtained in 15 iterations
for an integral In the toroidal thin shell element.
Processing will continue, using 15 iteration
result.

PRINT5 Toroidal ring element with coordinates
R1 a + . ********E + **, R2 + .*#******E + *,
Z1 a T .***M**f**E +-, Z2 + +.****** + 1*
is nof diagonally -ominant and should be Tubdivided.

Element stiffness matrices must be diagonally
dominant.

P7PRT PLUG7 error - third point to define plane was
not given - input error.

Three element defining points are required for
the frame element, the third supplying definition
of the plane.

I11

TRAIC Subroutine MINV has determined array GAMABQ
to be singular, execution terminated by
subroutine TRAIC.

Transformation matrix to system coordinates in
triangular cross-section ring element cannot be
inverted, usually because three element defining
points do not define a triangle.

US04A Available scratch data sets **** is less than
the required 4.

The .USER04. module requires at least four
scratch data sets. The addition of more data
sets is required by the program%

US04A Input routine, core storage required m
exceeds that available w**** to displacement
method matrix generator.

Blank common work area is not large enough for
processing input.

US04A Report routine core storage required
exceeds that available *NI to displacement
method matrix generator.

Blank common work area is not large enough for
processing report form input data.

US04A Grid point loads matrix storage required *
exceeds that available ****** to displacement
method matrix generator.

Blank common work area is not large enough for
generation of grid point loads matrix.

US04A Reduction of transformation matrixes storage
****** exceeds that available to displacement
method matrix generator.

Blank common work area is not large enough for
generation of reduction transformation matrix.

US04A Element generation core storage required ******
exceeds that available ****** to displacement
method matrix generator.

Blank common work area is not large enough for
generation of element matrices.

102

US04A Assembly Vransformation matrix size *

exceeds limit ****** of MAGIC system.

Self-explanatory.

US04A Grid point load matrix size ****** exceeds
limit ****** ;f MAGIC system.

Self-explanatory.

US04A Reduction transformation matrix size *
exceeds limit ****** of MAGIC system.

Self-explanatory.

US04A Stiffness matrix size * exceeds limit of
MAGIC system.

Self-explanatory.

US04A Stress matrix size * exceeds limit *
of MAGIC system.

Self-explanatory.

USO4A Number elements size * exceeds l.mit *
of MAGIC system.

Self-explanatory.

USO4A Output matrix * will be a duplicate of
input matrix * *.

The user is saving the interpreted input deck
when he already has an interpreted input matrix.

US04B Element sort routine core storage required *
exceeds that available ****** to displacement
method matrix generator.

Blank common work area is not large enough for
output of generated matrices.

103

APPENDIX VII

EXAMPLE STATIC AND STABILITY INSTRUCTION SEQUENCES

A. STATICS ANALYSIS INSTRUCTION SEQUENCE

1 7 Columns

C GENERATE ELEMENT MATRICES
C

,MAT,,XLDTR,,KEL,FTEL,SEL,STEL,,,SC,EM,=,,,.USERo4.
C
C --- ASSEMBLE ELEMENT STIFFNESS MATRICES
C

KELA = EM.ASSEM.SC,(1)
C
C --- ASSEMBLE ELEMENT APPLIED LOAD MATRICES
C

FTELA = EM.ASSEM.SC,(4)
C
C --- REDUCE ASSEMBLED STIFFNESS MATRIX
C

KO, KNO = KELA .DEJOIN. (SC(5,1),l)
KCO, STIFF = KNO .DEJOIN. (SC(5,1),0)
PRINT(FORCE,DISP,,) STIFF

C
EXTRACT LOAD SCALAR AND APPLY TO ELEMENT LOADS

C
LSCALE,LOADS = XLD .DEJOIN . (,)
FTELS = FTELA .MULT. LSCALE

C
C --- TRANSFORM EXTERNAL LOADS TO 0-1-2 ASSEMBLED
C --- SYSTEM AND FORM TOTAL LOAD COLUMNS
C

LOADO = TR .MULT. LOADS
TLOAD = LOADO .ADD. FTELS
TL,TLOADR = TLOAD . DEJOIN. (SC(5,1),I.

c
C --- SOLVE FOR DISPLACEMENTS
C

104

XX - STIFF.SEQEL.TLOADR
TRQ,TR12 = TR.DEJOIN.(SC(5,I),l)
X =TR12.TMULT.XX
XO =TR.M ULT.X

C
C -- SOLVE AND PRINT ELEMENT STRESSES AND FORCES
C

STRESP = EM, XO,.STRESS. (14,)

g FORCE? = EM, XO,.FORCE. (4i,)

C --- SOLVE FOR SY'STEM REACTIONS
C

REACTS = KELA.MULT.XO
REACTP = REACTS.SIJBT-TLOAD

C
C -- PRINT ELEMENT APPLIED LOADS, EXTERNAL LOADS,
C -- DISPLACEMENTS AND REACTIONS IN ENGINEERING FORMAT
C

GPRINT(4 ...FX.FY.FZ.MX.MY.MZ,SC,TR) FTELA
GPRINT(4 ...FX.I1Y.FZ.MX.MY.MZ,SC,) LOADS
GPRINT(2,,,U.V.W.THETAX.THETAY.THETAZ,SC,) X
GPRINT(l ... X.FY.FZ.MX.MY.MZ,SC,TR) REACT?

B. STABILITY ANALYSIS INSTRUCTION SEQUENCE

C -- GENERATE ELEMENT MATRICES
,MAT,INT4P,LXD,TR, ,KEL,FTEL,SEL,STEL, ...SC,EM,=,,, .USERO14.

C
C -- ASSEMBLE ELEMENT STIFFNESS AND ELEMENT LOAD MATRICES
C

KELA =EM.ASSEM.SC.(l)

FTELA =EM.ASSEM.S,(1)

C
C -- REDUCE ASSEMBLED STIFFNESS MATRIX

KO,KNO = KELA.DEJOIN.(SC(5,1),l)
KCO,STIFF = KNO.DEJOIN. (SC(5,1),0)
PRINT(FORCE,DISP.,:)STIFF

C
C -- EXTRACT LOAD SCALARS AND APPLY TO ELEMENT LOADS
C

LSCALE,LOADS = XLD.DEJOIN.(1,1)
FTELS =FTELA.MULT.LSCALE

105

C
C -- SOLVE FOR TOTAL LOADS

LOADO =TR.MULT.LOADS
TLOAD =LOADO.ADD.FTELS
TL,TLOADR = TLOAD.D)EJOIN.(SC(5,1),I)

C
C -- CREATE FLEXIBILITY MATRIX
C

FLEX = STIFF.INVERS.
PRINT(DISP,FORCE, ,)FLEX

C
C SOLVE FOR DISPLACEMENTS

XR = FLEX.MULT.TLOADR
TRO,TR12 = TR.DEJOIN.(SC(5,1),l)
X =TR12.TMULT.XR
XO =TR.MULT.X

C
C SOLVE FOR ELEMENT STRESSES
C

STRESS = EM,XO.STRESS. (4,)
C
C -- GENERATE ELEMENT INCREMENTAL STIFFNESS MATRIX
C

= INTP,,STRESS.USERo1 4.-
C
C -- ASSEMBLE AND REDUCE INCREMENTAL MATRICES

C INCRA =EL.ASSEM.SC,(3)
IO,INO =INCRA.DEJOIN.(SC(5,1),l)
ICO,INCR = INO.DEJOIN.(SC(5,1),Q)
PRINT(,, ,)INCR

C
C -- CREATE EIGEN MATRIX
C

EIG = FLEX.MULT.INCR
PRINT(,,)EIG

C
C -- CALCULATE AND PRINT E-VALUES AND E-VECTORS
C

EVA:DUE,EVECTR,, = EIG,.EIGENl.(5,,,)
GPRINT(3,.... SC,TR12-)EVECTR,EVALUE

C -- PRINT ELEMENT APPLIED LOADS, EXTERNAL LOADS, AND
C -- DISPLACEMENTS IN ENGINEERING FORM
C

GPRINT(4 ...FX.Ff.FZ.MX.MY.MZ,SC,TR) FTELA
GPRINT(~4 ...FX.FY.FZ.MX.MY.MZ.SC,) LOADS
GPRINT(2 ...U.V.W.THETAX.TiIETAY.THETAZ,SC,) X

106

APPENDIX VIII

SUBROUTINE DOCUMENTATION

Subroutine Laz__ _L-

AGENDM..........................113

AJ..........................328
AK..........................322
AM...........................323
APT.......................355
ASSEM........................140
ASSEM 142
ASSEMS........................1113
ASSY2........................337
AXTRAl.........................46o
AXTRA2. 250
AXTRA3 462

BCB12 . 4 4
BINT 321
BMATRX 413
BOUND I.. 133
COB....... 360
cci..........................280
002.......... 297
0021................ 264

CDF..... 302
CDFX..... 303
CDFY.. 304
0DM........................284
CEC..... 316
CFFTS 305
CFFV.. 307
CPMASS. 308
CFMTS 285
CFMV. 287
CFP 298
CFPB. 299
CHiDEIJ1. 270
CHE 227
CK11.... 273
CK22..... 289
CMMASS. 281
COEF... 329

107I

Subroutine Pae No

COLMRD I 1641
COLREP. 13~4
CON'rRL. 185
COPYDK. 186
CSTF 300
CSrM 282
CTCQ........... 315
CTGB.........................292
CTGRB 296
CTGRM 279
OTOGB 295
OTOOM 278
CTS...........................3141
CT11.........................276
DCD..........................338
DECODE. 168
DEFLE:Y. 237
DEJNC................... 139
DEJNR 138
DEJOIN. 136
DIRCOS. 441
DISPL 173
DISPPR. 170
DMATRX 414
DpQINT 347
DTAPR. 340
EIG.................. 132
EIGB............ 131
E1GPPR. 171
E21GI.........................127
ELEM............................ 19
ELMAT. 473
ELPLUG. 2413
ELPiT 4614
ELREAD. 160
ELTEST 259
EPRINT. 157
EPRT................... 370
ERIC 436
EXPCOL. 377
EXPSIX 378
FBMP18...... 455
FCURLJ. 416
FELEM 6............... 239
FF300...........o.....................331
FGRLDS. 202
FINP22 158

108

Subroutine Page No.

FJAB.........................325
FLOADS. 230
FNAT..........................204
FORCE 151
FORCE!i . ,.. 153
FORCE2 . 0.. 155

FORM N 219
FRED..........................191
F BEEUP. 162
F'rELQ 448
FTR..........................231

F .,. 408
F5 409

F5 410
F~6211 . .. 6.. 327
F6219 326
F89... 330
GAMMAT 415
GIPRI1Nr. 165
GPRNT1. 166
IDNTIC 126
IDNTIR 125
IFAC 324
I NCRE 311
I NDECK 1814
ININT 235
INPUT 187
INST014.114.
INST05. 116
INST143. 118
INST60. 120
KMPY 435
KOBLIQ. 445
LAG..........................201
LATCH 218
LOC..........................258
LOGFLO. 179
MVAB... 252
MABC 265
MATB.........................256
M4ATICH 199

MAT16o... 277
MAT170. 2914
MATPR. 3141
MATPRT o. 172
MATSUP. 122
IV 249

MPRD. 317

109

Subroutine Page No.

.. 253
MSTR . 405
MULTF 423
NEWT 267
NEWFTI 343
NTEST i76
N ULL 135
OPEN 226
O Ur T Nt... 228
OUTMAT 466
PDISP 224
PFFTS 365
PFV1 367
PEMASS 336
PFMTS 352
PFMV1 3514
P7PP 362
PHASE. 213
PHA"E2 221
PKF . 358
PKM... 348
PLAS2D 371
PLMX 417
PLUG1 260
PLUG14 4. 1121
PLUG17 437
PLUG18 450
PLUG2 332
PLUG22 456
PLUG5 1101
PLUG6. 373
PLUG7 309
PLUGO 426
PL6PRT 400
P M A 'S . 335
P'C INE 368
P:.Gi.E 369
POOF 424
PRliT5 420
PRT1.I 288
PSTF 363
- , .. . 350

PT,-;.F 372
PThM..... 345

PTMG 346
PIPRTlA 271
P1..RT 425.

446.'"E1

* ~ P8 *A:......................................1429
QUADT......................................1411

110

Subroutine PLqfle No.

REACTP . 69
RECi . 17
REC3 2416
RECI . 2117
REFORM . 211
REGE42 . 129
ROMBER . 1107
SCRI,M .
SELQ . 447
ShIFT 210
SOLVE 41
SQUISII. 21
STRESS
STRES! 17
STRES2 19
STRPRT159
SUBINT 431
SYMPRT *. 257
TESTJ 930
TFPPIRT 387
TFSPRT /7

TF PR . #
TFTPRT 33

TJ T
TIEPRT '
TIKPRT................................. ,

TISPRT .TISPRT................................. 3)
TPRD 3

TRAIC 9
TRAI.E
TRAIFT.....P 8
TRAIFS........................3 ,

TRAIFT
TRAIK 3
TRAIM 39
TRAIS 390
TRAIST
TRAITS 399
TRCPRT
TRSST 5
TSTPRT 399TSUM I. 121"
TSY:3 . 232
TTSPRT . J-93

US.04 1711
USO4A 3US 0 B . 2 33

113

Subroutine Page-No.

US4161 69
us1162. 471~
US4163. 472
ZMRD................... 33
ZTRsD

112

i. Subrcutine Name: AGENDM

2. Purpose: To locate in the Agendum library the abstraction
instructions specified by the user on the $1NSTRUCT1ON control
card in MAGIC.

3. Equations and Procedures: The name of the desired Agendum
on the $INSTRUCTION card is passed to AGENDM by 1NST. The
specified name is compared against all available agendum
names in the TYPE array. If the specified option is a valid
name then the agendum library is searched until the correct
abstraction irstruction sequence is found, if it is not found
an error occurs. If it is found then N'IT is redefined to be
NSETA and control is passed to INST.

4I. Input Arguments:

OPTION - agendum name on $INSTRUCION cardLENOP - length of agendum name on $INSTRUCTION card

NPIT - logical unit number defining system card reader
NSETA - logical unit number defining data set of

agendum library
WORK - work storage

5. Output Arguments: None

6. Error Returns:

ERROR - TRUE, if the option specified on the $INSTRUCTION
card is unavailable or unrecognizable.

7. Calling Sequence:

AGENDM(OPTION,LENOP,NPIT,NSETA,WORK,ERROR)

8. Input Tapes:

NSETA - agendum library

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

Total storage required is 4D4 1 6 Bytes.

12. Subroutine User: INST

13. Subroutine Required: PUTL2

14. Remarks: MAGIC

113

1. Subroutine Name: INST04

2. Purpose: Tn analyze the GPRINT instruction which is of
the form:

GPRINT(NPRT,EZERO,RCWL,COL1.COL2.COL3. COL12,
TSYS,TR)XXl,XX2

3. Equations and Procedures: This subroutine uses the same
procedure as all the other MAGIC special instruction analyzers.
The card image with blanks suppressed and starting one column
to the right of the first (is broken in 3 groups. The first
group is checked for the 3 fields defined by scalars.

Field Checked For

Scalar
Scalar
Scalar

Next a check is made for the 12 column labels. These labels
are positional and may be suppressed. After the labels have
been determined, the third group is checked for matrix names.
Two, three, or four matrices may be specified depending on use.

Field Checked for

end of labels , Matrix Name
) Matrix Name

Matrix Name

A-blank Matrix Name

Each field is checked in turn and detection of an error
results in an error return. If Lhe card image for the
instruction is syntactically correct, information required
for execution is written on tape. Control in returned to
I NST.

4. input Arguments:

;PREP output tape number
;;OPC - opcodp of instruction (04)
:STNO - statement number of instrucuion
CARL - card image (starting in column to right of

first (, blanks supnresged)
- number of non-blank characters on card

114

5. Output Arguments:

NUMIN,1 - number of input matrices
ERROR - error cortrol

6. Error Returns: Logical variable ERROR is set to .TRUE.
if an error is detected and control returns to INST. Additional
diagncstics are printed for illegal values of parameters,
invalid specification of matrices and illegal specification
of column headers.

'1. Calling Sequence:

Call INST04(IPREPNOPC,INSTNO,CARD,NONBLK,NUMIN,ERROR)

5. Input Tapes: None

9. Output Tapes: NPREP

10. Scratch Tapes: None

11. Storage Required:

SYMBOL(3)
TYMBOL(4)
DH 816 byte

12. Subroutine User: INST

13. Subroutine Required: INSTFP, PUTL3. PUTL4

1;1. Remarks: This is a special instruction analyzer.

115

1. Subroutine Name: INST05

2. Purpose: To analyze the EPRINT instruction which is of
the form:

EPRINT(N,EZERO,NAMINI)NAMIN2

3. Equations and Procedures: This subroutine uses the same
procedure as all the other MAGIC instruction analyzers. The
card image with blanks suppressed and starting one column
to the right of the first (is broken into 4 fields as
defineA within successive delimiters.

Field Defined By Checked For

(,Integer Scalar
Real Scalar

) Matrix Name
) A-blank Matrix Name

Each field is examined and checked in turn. Detection of
an error results in an error return. If the card image for
the instruction is syntactically correct, infornation required
for execution is written on tape and control is returned
to INST.

4. Input Arguments:

NPREP - output tape number
NOPC - opcode of instruction (05)
INSTNO - statement number of instruction
CARD - card image (starting in column to right of

first (, blanks suppressed)
NONBLK - number of non-blank cbaracters on card.

5. Output Arguments:

NUMIN number of input matrices
ERROR - error control

6. Error Returns: The logical variable ERROR is set to .TRUE.
if an error is detected and control retuns to INST. Additional
diagnostics and warnings are printed for invalid values of
parameters and illegal suppression of parameters.

7. Calling SequencA:

Call INSi05 (NPREP ,NOPC, INSTNO ,CARD,NOIIBLK,NUMIN ,ERROR)

8. input Tapes: None

9. Outputt Tapes: NPREP

116

t' , l 1 I I I I I l

10. Scratch Tapes: None

11. Storage Required:

SYMBOL(4)

Total Storage is 6D81 6 Bytes.

12. Subroutine User: INST

13. Subroutine Required:

INSTFP
PUTL3
PUTL4

14. Remarks- This is a special instruction analyzer.

117

1. Subroutine Name: INST43

2. Purpose: To analyze the .DEJOIN. instruction.

Al,A2 = B.DEJOIN.(C(I,J),KODE)
Al,A2 = B.DEJOiN.(K,KODE)

3. Equations and Procedures: This subroutine usez the same
procedure as all the other analyzers in MAGIC. The card
image with blanks sup.'essed and starting in column 7 is
broken into 6 fields as defined within successive delimiters.

Field Defined By Checked For

Column 7 Matrix Name
, Matrix Name

Matrix Name
o o Not Checked
o (Not Checked
() Checked For Matrix Name

and 3 Scalars or 2 Scalars

Each field is examined and checked in turn. Detection of
an error results in an error return. If the card image for
the instruction is symtactically correct, information
required for execution of the instruction is written on tape
and control is returned to INST.

4. Input Arguments:

NPREP - output tape number
IiOPC - opcode of instruction (43)
ISTI-O - statement number of instruction
CARD - card image (starting in column 7, blanks suppressed)
NONBLK - number of non-blank characters in card

5. Output Arguments:

NUMOT - number of output matrices
NUMIN - number of input matrices
NUMSC - number of scalars
ERROR - error control

6. Error Returns: Logical variable ERROR i[set to .TRUE.
if an error is detected in this routine and a return is made
to INST. Additional mezssages are printed out for invalid
matrix naines and invalid indices.

7. Calling Sequence:

Call II1ST43(NPREPIIOPCISTNO ,CARD,NNBLK,NUMOT,NUMIN,NUMSC,
ERROR'

i ii8

1 8. Input Tapes: None

9. Output Tapes: NPREP

1 10. Scratch Tapes: None

11. Storage Required:

MATRIX(7,4)
SYMBOL(6)
INDEX(3)
Total Storage is A581 6 Bytes.

12. Subroutine Usf-r: INST

13. Subroutine Required: PUTL3, PUTL4

114. Remarks: This is an arithmetic type instruction analyzer.

119

1. Subroutine Name: INST60

2. Purpose: To analyze instructions of the form

(+)NAI4OUT = +NAMIN1, +NAMIN2.CPCODE.(NPRT,EZERO)

.FORCE. and .STRESS. are presently of this form.

3. Equations and Procedures: The subroutine uses the same
procedure as all other analyzers in MAGIC. The card image
.with blanks suppressed, and starting at column 7 is broken
into 7 fields as defined inside successive delimiters.

Field Checked For

Column 7 - Matrix Name
-- ,Matrix Name

Matrix Name
* Not Checked

* Not Checked
, Integer
) Real Number

Each field is examined and checked in turn. Detection of
an error results in an error return. If the card image for
the instruction is syntactically correct, information required
for execution is written on tape. Control is returned to
INST.

4. Input Arguments:

NPREP - output tape number
NOPC - opcode of instruction (61 or 62)
ISTNO - statement number on instruction
CARD - card image (starcing in column 7, blanks suppressed)
NONBLK - number of non-blank characters in card

5. Output Arguments:
NUMOT - number of output matrices
NUMIN - number of input matrices

NUMSC - number of scalars
ERROR - error control

6. Error Returns: Logical variable ERROR is set to .TRUE. if
an error is detected in this routine and control returns to
INST. Additional messages print.ed out for illegal values of
scalars NPRT and EZERO.

120

7. Calling Sequence:

Call INST60(NPREP,NOPC,ISTNOCARD,NONBLK,NUMOTNUMIN,NUMSC,
ERROR)

8. Input Tapes: None

9. Output Tapes: NPREP

10. Scratch Tapes: None

11. Storage Required:

MATRIX(7,3)
SYMBOL(7)

Total Storage is 7A4 16 Bytes.

12. Subroutine User: INST

13. Subroutine Required:

PUTL3
PUTL4
INSTFP

14. Remarks: This is an arithmetic type instruction analyzer.

121

Pt

1. Subroutine Name: MATSUP

2. Purpose: Insert suppressed input matrix names into the
Format System

3. Equations and Procedures: Scratch unit NPREP is backspaced
to the beginning of the instruction section.. If scratch
unit NDATA already contains matrices then it is positioned
at the data set trailer; otherwise it is rewound and a data
set header written upon it. Each instruction record is then
read to determine if the ,,p-code is capable of containing
input suppressed matrices Es indicated in the array LEGAL.

*If the operation is capable of containing suppressed input
matrices then the input matrix names are checked to see if
they contain a slash in the first position. If this is
the case the suppression name is entered as a nall matri"
on NDATA. NDATA is then returned to the first suppressed
matrix name and re-read so that each added matrix on NDATA
is reccrded on NPREP after the instructions. Control is
then returned to the calling program.

4 . Input Arguments:

NUNID : Number of matrices or MDATA
NUMSUP : Number of suppressed input matrices to be

added to NDATA
NDATA : Logical unit containing card input matrices
NPREP : Logical unit containing preprocessor data
NUMI : Number of instructions on NPREP
IWORK : Work storage area

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

(NUMD, NUMSUP, NDATA, NPREP, NUMI, IWORK)

8. Input Tapes:

NDATA : contains card input matrices, if present
NPREP : contains input abstraction instructions in

coded form

9. Output Tapes:

NDATA : will contain suppressed input matrices
NPREP : will contain suppressed input matrix names

122

10. Scratch Tapes: None

11. Storage Required: Total storage is 74016 F.1tes.

12, Subroutine Useri PREP

13. Subroutines Required: None

].1. Remarks: None

123

1. Subroutine Name: TSUM

2. Purpose: To generate a summary of th . matrices on a
format tape if EUTL3 cannot find a matrix on the specified
tape.

3. Equations and Procedures: The data set header and modifier
are printed out. Then each matrix header is printed c.4t
giving the matrix name, the sign of the matrix and the row
and column dimension of the matrix. A record count is also
provided so the number of columns in a matrix can be
calculated.

4. Input Arguments:

NSET = The logical unit number of the format tape
to be summarized

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: TSUM(NSET)

8. Input Tapes: NSET

9. Output Tapes: None

10. Scratch Tapes: None

l1. Storage Requirea Total Storage required is 56016 Bytes.

12. Subroutine User: EUTL3

13. Subroutine Required: None

14. Remarks: None

124

1. Subroutine Name: IDNTR

2. Purpose: To form an id-ntity matrix of the same order as
the row dimension of the input matrix.

3. Equations and Procedures: The input matrix is located by
EUTL3 and an identity matrix is formed. The order of the
identity matrix is the same as the row dimension of the
input matrix.

4. Input Arguments:

NUMOT - the number of output mo. rices
OUTPUT - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
INPUT - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
SCALAR - array containing the input scalars
IERROR - error return code o
NWORKR - the number of words of available work storage
WORKR - working storage array

5. Output Arguments: None

6. Error Returns: IERROR = 11, if the input matrix cannot
be found.

7. Calling Sequence:

IDNTR(NUMOT,GUTPUT,IOSPECNUMIN,INPUTINSPECNUMSR,ISSPEC,
NUMSC,SCALAR,IERROR,NWORKRWORKR)

8. Input Tapes: INSPEC

9. Output Tapes: IOSPEC

10. Scratch Tapes: None

11. Storage Required Total Storage required is 50E 1 6 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required: EUTL3, EUTL5, EUTL6

14. Remarks: A - B.IDENTR.

125

1. Subroutine Name: IDNTC

2. Purpose: To form an identity "atrix of the same order
as the column dimension of the input matrix.

3. Equations and Procedures: The input matrix is located
by EUTL3 and an identity matrix is generated. The)rder
of the identity matrix is the sane as the column dime: :'.on
of the input matrix.

14. input Arguments:

IIUMOT - the number of output matrices
OUTPUT - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
iiUMIII - the number of input matrices
INPUT - array containing the names of the input matrices
I.SPEC - array containing input data set numbers
11UMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
4UMSC - the number of input scalars

SCALAR - array containing the input scalars
IERROR - error, return code
HWORKR - the number of words of available work storage
W 0:KR - working storage array

5. Output Arguments: Hone

6. Error Return: IERROR = 11, if the input matrix cannot be
foun..

7. Calling Sequence:

IDHTC (NUMOT, OUTPUT, IOSPEC , NUrIN, IN PUT, IIiSPEC , NUMSR, ISSPEC,
NiUMSC, SCALAR, IERROR, iiWORKR, WORKR)

8. Input Tapes: INSPEC

9. Output Tapes: IOSPEC

i0. Scratch Tapes: Nore

11. Storage Required: Total Storage required is 5016 Bytes.

12. Subroutine User: EXEQ

13. 2uoroutine Required: EUTL3, EUTL5, EUTL6

15. Remarks: A = B.IDEi;TC.

126

1. Subroutine Name: EIG1

2. Purpose: To create dynamic storage for eigenvalue
and eigenvector calculations and locate input matrix.

3. Equations and Procedures:

1) 'ynamic storage is allocated.
2) RLGE2 Is called to transfer matrix to scratch tape.
3) EIGb is called to iteration on a matrix.
4) Storage required is 5 vectors of equal length

(order of matrix).
5) IP the NWORK storage is too small for this, an

error message is printea out.
6) If the eigenmatrix cannot be located, another error

message is written.

4.* lnput Arguments:

NMOUT - the number of output matricer
NAMOT - array containing the names of the output

matrices
IODS - array containing output data set numbers
NMIN - the number of input matrices
INPT - array containing the names of the input

matrices
INSP - array containing input data set numbers
NSCR - the number of scratch data sets
ISSP - array containing scratch data set numbers
NMSCL - the number of input scalars
NAMSC - array containing the input scalars
ERR - - error return code
NWKR - the number of words of available work storage
WKR - working storage array

5. Output Arguments: ERR

6. Error Returns:

ERR = true if input matrix can't be found
= true if not enough storage to calculate eigenvalue

and vector.

7. Calling Sequence:

Call EIG1(NMOUT,'IAMOT,IODS,NMIN,INPT,INSP,NSCR,ISSP,
NMSCL,NAMSC,ERR,NWKR,WKR)

8. Input Tapes: INSP

9. Output Tapes: IODS, NPOT

127

10. Scratch Tapes: ISSP (4I scratch tapes needed)

11. Storage Required:

Total Storage Required is A3Cl6 Bytes.

12. Subroutine User: EXEQ

13. Subroutines Required:

REGE2
EIGB
EUTL3

14i. Remarks:

128

1. Subroutine Name: REGE2

2. Purpose: This routine takes compressed (Format) Eigen-
matrix and transfers it (exponded) to a scratch data set.
Storage on the scratdh data set is optimized by placing
as many columns into a record (which has NLEFT words
max) as possible.

3. Equations and Procedures:

1) Compute number of columns/NLEFT record m NCR:
maximum NCOL records.

2) Compute number of columns in last record = NPR
3) Compute total number of i-ecords = NR

a) Number of full records NFR
b) Number of columns in last record NRR

4) Read comprpssed matrix from 113 expand column
using EUTL9. Provide for suppressed column.

5) Take care of full records first.
6) Next write final clean.-up record containing

remaining matrix columns.

4. Input Arguments:

112 - data set to which eigcn-matrix is transferred
113 - data set with compressed (Format) eigen-matrix
ARRAY - work storage
DARRAY - work storag,
NCOL - order of' matrix
NR - total number of records on scratch data se.
NLEFT - maximum record length

5. Ovtput Arguments: None

6. Error Returns: None

7. Calling Sequence:

Call REGE2(I12,13,ARRAY,DARRAYNCOI.,NR,NLEFT)

8. Input Tapes: 113 contains original format compressed
eigenmatrix.

9. Output Tanes: 112 contains expanded eigenmatri , each
record is up to "NLEFT" words and contains an integer
number of matrix columns/record.

10. Scratch Tapes: None

11. Storage Required:

Total Storage required is 6DL41 6 Bytes.

1239

12. Subroutine User:

EIG1

13. Subroutine Required:

EUTL9

14I. Remarks:

L30

1. Subroutine Name: EIGB

2. Purpose: Control iteration routine EIG. Writes

eigenvalue, eigenvector matrices on tape.

3. Equations and Procedures:

1) Write out controls used in iteration:
NE - number of eigenvalues requested Defaults are
IFLAG - row or column iteration NOIT = 500
NOIT - number of iterations per CRIT = .001

criteria update
CRIT - convergence criteria

2) Locate and expand input vecotrs using EUTL3
3) Call routine EIG
4) Print out frequency in CPS and radians/se- arid

the normalized eigenvector
5) If output vecotrs are requested write them on anoutput tape when vectors are written.

4. Input Arguments: See calling sequence.

5. Output Arguments: None

6. Error Returns:

7. Calling Sequence:

Call EIGB(NE,IBEG,IEND,WKR(N1),WKR(N5),WKR(N3),WKR(N4),
WKR(N2),NMDBNEIGLNEIGV,NAMOT,NMOUT,WKR(N3),
WKR(N4),NSAVE,INVEC,INPTNMIN,ERR,IFLAG,NOIT,
NRIT,NVECT,NR,NLEFT)

8. Input Tapes:

'9. Output Tapes: NSAVE, MVECT, NPOT, NEIGL, 0

10. Scratch Tapes: NSKRAT

11. Strrage Required:

Total Storage required is 18B21 6 Bytes.

12. Subroutine User: EIGI

13. Subroutines Required: EUTL3, EIG, EUTL5, EUTL6

lb. Remarks:

131

1. Subroutine Name: EIG

2. Purpose: This routine computes only one eigenvalue and

vector for eath call from EIGB.

3. Equations and Procedures:

1) Power method iteration with hotteling deflation to
remove dominant root.

2) Iterate on column vector, get vector and value.
3) If another value is desired, iterate on row vector

and value.
4) Use row and column vectors to deflate matrix.
5) Use deflate matrix when iterating for next column

vector
6) If the convergence must be updated (CRITZ = CRITZ+CRIT)
7) Return to routine EIGB.

4. input Arguments:

N - order of characteristic matrix
IPRINT - = 0 no iteration print; = 1 print iterations
NEIG - = always = 1
CRIT - convergence criteria
NOIT - number of iterations
IBEG - location (unit) of col (characteristic)

vector matrix
IBEND - unit on which deflated matrix is placed

5. Output Arguments:

ROOTS - returned eigenvalue
XIN - returned eigenvector
NERR - error indicator = 0 no error;=l col do not converge
ICOUNT - = 1 if value converged =2 row does not converge
IFLAG - = both input and output =3 row rbot # col root

=4 machine or input error
= 0 go directly to col

iteration
= 1 continue row iteration

indicates row iteration
failed previously and
criteria has been increased

6. Error' Returns:

NERR = 1 no error; = 2 eigencols do not converge;
=3 eigenrows do not converge; = 4 row root not equal to
col. root; = 5 no nonzero element in (col); - 6 no non-
zero element in row; = 7 scalar product of row and column
vectors = zero.

132

EF

7. Calling Sequence:

Call EIG(N,IPRINTNEIG,ROOTS,XIN,NERR,CRIT,NOIT,ICOJJNT,
IBEG,IEND,A,XISIMINXINP,NMDB,XIP,XIMINP,NE,
TPLAGNUMRNLEFT,NOFF,NTR

8. Inpu es:

9. Outpu 2apes:

10. Scratch Tapes:

IBEG - initial (A) matrix location
IEND - location of swept (A) matrix after 1 eigenvalue

is found. This unit then becomes the input for
calculating the next eigenvalue and IBEG will
receive the resulting swept matrix.

11. Storage Required:

Total Storage required is 1B06 1 6 Bytes.

12. Subroutine User: EIGB

13. Subroutines Required: None

14. Remarks:

133

1. Subroutine Name: COLREP

2. Purpose: To generate a matrix by repeating the first
input column matrix K number of times where K is the column
dimension of the second input matrix.

3. Equations and Procedures: The second input matrix is
located and its column dimension, NCOL, is noted. The
first input matrix is located and stored in core and '.ts
row dimension, IROW, is noted. A matrix header for che
output matrix of order IROW by NCOL is written. 1ne input
column is repeated NCOL times and the matrix trailer for
the output matrix is written.

4. Input Arguments:

NUMOT - the number of output matrices
NAMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
NAMIN - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC -. the number of input scalars
SCALAR - array containing the input scalars
IERROR - error return code
NWORK - the number of words of available work storage
WORK - working storage array

5. Output Arguments: IERROR - error flag.

6. Error Returns:

IERROR = 11, if first input matrix can't be found

= 12, if second input matrix can't be found
= 21, if output matrix can't be generated

7. Calling Sequence:

COLREP (NUMOT , NAMIO, IOSPEC, NUMIN, NAMIN, INSPEC , NUMSR, ISSPEC,
NUMSC, SCALAR, IERROR, NWORK,WORK)

8. Input Tapes: .NSPEC

9. Output Tapes: IOSPEC

10. Scratch Tapest None

11. Storage Required: Total Storage required is 64416 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required: EUTL3, EUTL5, EUTL6

14. Remarks: A F.COLREP.C i

134

1. Subroutine Name: NULL

2. Purpose: To generate a null matrix of order n x m.

3. Equations and Procedures: The first input matrix is
located and the row dimension of this matrix is saved in
KROW. The second input matrix is located and the column
dimension of this matrix is saved in KCOL. Then a matrix
header and trailer is written. The dimension of the out-
put matrix is KROW x KCOL.

4. Input Arguments:

NUMOT - the number of output matrices
NAMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of inp t matrices
NAMIN - array containing the names of the input matrices
INSPEC - array containing input data jet numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
SCALAR - array containing the input scalars
IERROR - error return code
NWORK - the number of words of available work storege
WORK - working storage array

5. Output Arguments: IERROR - error flag

6. Error Returns:

IERROR = 11, if first input matrix can't be found

= 12, if second input matrix can't be found

7. Calling Sequence:

NULL(NUMOT ,NAMIO,IOSPEC, IUMIlI,IIAMIN,II:SPEC, IUMSR,ISSPEC,
NUMSC,SCALAR,IERROR,NWORK,WORK)

8. Input Tapes: INSPEC

9. Output Tapes: IOSPEC

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 4BAA1 6 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required: EUTL3, EUTL5, EUTL6
14. Remarks: A = B.IIULL.C

135

i. Subroutine Name: DEJOIN

2. Purpose: This routine is the controlling routine to
provide matrix column or row partitioning.

Equations and Procedures: First, the input and output
data sets are defined. Next a check is made to determine
if the input data set is the same as either output data
set. If either or both of the output data sets are the
same, the output data set is redefined as a unique scratch
data set. Now a test is made to determine if the partition
number was input or if it must be found. If it was not
input then EUTL7 extracts the partitioning scalar. Now a
test of whether a column or a row DEJOIN is desired is
performed. If it is a column DEJOIN, subroutine DEJNC
is called. If it is a row DEJOIN, subroutine DEJNR is
called. If either or both output data sets are different
from the originally allocated output data sets, a copy of
the output data set is made onto the originally allocated
data set by a call to EUTL4.

4. Input Arguments:

NUMOT - the number of output matrices
NAMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
NAMIN - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
ISCALE - array containing the input scalars
IERROR - error return code
NWORK - the number of wnrds of available work storage
WORK - working storage array

5. Output Arguments: IERROR - error flag

6. Error Returns: An error condition occurs when a matrix
cannot be located, the subscripts used to extract the
partition number exceed the dimension limit, or when the
partition number is invalid.

7. Calling Sequence:

DEJOIN (NUMOT,IiAMIO, IOSPEC,NUMI1N, NAMIN, INSPEC,NUMSR, ISSPEC,
NUMSC,ISCALEIERROR,IIWORK,WORK)

8. Input Tapes: One or twc input data sets in the INSPEC
array.

136

9. Output Tapes: Two output data sets in the IOSPEC array.

10. Scratch Tapes: Two scratch data sets in the ISSPEC array.

11. Storage Required: Total Storage required is 91816 Bytes.

12. Subroutine User: FXEQ

13. Subroutine Required:

EUTL1
EUTL3
EUTL7
DEJNC
DEJNR
EUTL4

14. Remarks: A,B C.DEJOIN.(d,e)

137

I

1. Subroutine Name: DEJNR

2. Purpose: This routine row partitions a matrix at a
specified row.

3. Equations and Procedures: First the partition number
is tested against the row dimension of the matrix to be
partitioned if it is greater than the number of rows an
error occurs. If it is less than or equal to the row
dimension then the input matrix A is partioned to form
two output matrices Cl on C2.

A(MXN) - Cl(J-l x n), C2(ri-J+l x n) where 1 < J < m

4. Input -guments:

NAME - the names of the output matrices
NSET - the data set number of the input matrix to be

partitioned
NSET1 - the data set number of the first output matrix
NSET2 - the data set number of the second output matrix
JPART - the row number at which the input matrix is to

be partitioned
IROW - the row dimension of the input matrix
ICOL - the column dimension of the input matrix
NWORK - the number of words of available working storage
WORK - working storage array
ERROR - error flag.

5. Output Arguments: ERROR

6. Error Returns: An error condition occurs when JPART
is greater than the row dimension of the input matrix.

7. Calling Sequence:

DEJNR(NAME,NSETNSET1,NSET2,JPART,IROW,ICOL,NWORK,WORK,
ERROR)

8. Input Tapes: NSET

9. Output Tapes: NSETI, NSET2

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 5F6 1 6 Bytes.

12. Subroutine User: DEJOIN

13. Subroutine Required: EUTL5, EUTL9, EUTL8, EUTL6

14. Remarks: None

138

1. Subroutine Name: DEJNC

2. Purpose: This routine column partitions a matrix at a
specified column.

3. Equations and Procedures: First the partition number is
tested against the column dimension of the matrix to be
partitioned. If it is greater than the number of columns
an error occurs. If it is less than or equal to the column
dimension the input matrix A is partitioned to form two
output matrices Cl and C2.

A(MXh) = CI(M x J-l), C2(m x n-J+l) where 1 < J < n

4. Input Arguments:

NAME - the names of the output matrices
NSET - the data set number of the input matrix to

be partitioneC
NSET1 - the data set number of the first output matrix
NSET2 - the data set number of the second. output macrix
JPART - the column number at which the input matrix is

to be partitioned
IROW - the row dimension of the input matrix
ICOL - the column dimension of the input matrix
I1WORK - the number of words of available working storage
WORK - working storage array
ERROR - error flag

5. Output Arguments: ERROR

6. Error Returns: An error condition occurs when JPART is
greater nan the column dimension of the input matrix.

7. Calling Sequence:

DEJNC (NAME,1NSET,NSET1,NSET2 ,JPART,IROW,ICOL NWORK ,WORK,

ERROR)

8. Input Tapes: 1SET

9. Output Tapes: NSET1, NSET2

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 63816 Bytes.

12. Subroutine User: DEJOIN

13. Subroutine Required: EUTL5, EUTL6

14. Remarks: None

139

1 Subroutine Name: ASSEM

2. Purpose: To assemble the element matrices generated
by the USER04 module.

3. Equations and Procedures: The matrix containing the system
constants is found to generate the value NSYS. The assembled
matrices will be of orcier NSYS, that is, they will not be
reduced. Next, the variable ITYPE is tested to see what
type of matrices are to be assembled. Depending on the
value of ITYPE control is transferred to either ASSEMC or
ASSEMS to assemble and write the matrices

ITYPE = 1, for element stiffness assembly
= 2, for element mass assembly
= 3, for element incremental assembly
= 4, for element applied load assembly.

4. Input Arguments:

INUMOT - the number of output matrices
NAMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
NAMIN - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
ISCALE - array containing the input scalars
IERROR - error return code
NWORK - the number of words of available work storage
WORK - working storage array

5. Output Arguments: None

6. Error Returns:

IERROR = 21, if the matrix containing the system constants
can't be fcund

= 15, if there is not enough wurk storage for the
assembled matrix

7. Calling :equence:

ASSEM(NUMOT,NAMIO,IOSPEC,UMIN,NA4IN,IIISPEC,1JIMSR,ISSPEC,
NUMSC,ISCALE,IERROR,NWORK,WORK)

8. Input Tapes: The data set numbers are contained in the
INSPEC array.

140

9. Output Tapes: The data set numbers are contained in
the IOSPEC array.

10. Scratch Tapes: The data set numbers are contained in
the ISSPEC array. Thi s module uses at most two scratch
tapes.

11. Storage Required: Total Storage required is 72C6 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required:

EUTL3
ASSEMC
ASSEMS

14. Remarks: A - B.ASSEM.C,(d)

143.

1 Subroutine Name: ASSEMC

2. Purpose: To assemble the element applied loau column.'.

3. Equations and Procedures: The tape containing the ele-:.nt
matrices is read and tle LISTEL and FTEL arrays are stored for
each element. Using the LISTEL array the FTEL arrays is
assembled into a master applied load array. This process
is repeated for each element.

11. Input Arguments:

ISETI - data set on which the input element matrices
are stored

ISET2 - data set number of output matrix
iIAME1 - array containing na..e of matrix on NSET1
NAME2 ar-ay containing name of matrix on NSETL
NSYS - order of assembled matrix
LISTEL - storage for the LISTEL array
FTEL - storage for the element applied loads ari:ay
FCOL - storage for the assembled FTEL
NWORK - number of words of' work storage
WORK - work storage
IERROR - (rror return

5. Output Arguments: None

6. Error Returns:

IERROR = 11, if the input matrix can't be found
= 15, if a value of LISTEL is greater than NSYS

7. Calling Sequence:

ASSEMC (NSET1, NAME1, NSET2,NiAME2, NSYS, LISTEL,FTEL,FCOL,
NWORK,WORK, IERROR)

8. Input Tapes: 11SET1

9. Output Tapes: NSET2

10. Scratch Tapes: None

11. Storage Required: Totai Storage required is 67816 Bytes.

12. Subroutine User: ASSEM

13. Subroutine Required: EUTL3, EUTL5, EUTL6

14. Remarks: None

142

1. Subroutine Name: ASSEMS

2. Purpose: To assemble the element stiffness, element mass

or element incremental matrices as generated by the USER04
module.

3. Equations and Procedures: The matrix containing the izput
element matrices is found and depending on what type of
matrices are to be assembled a different read statement 13
initiated. The LISTEL array and element matrix is then
stored in core. Then using LIST processing techniques the
element matrix is assembled in core. Only non-zero values
are considered. If all non-zero values can't fit in core
then the values in core are written on tape .ntil more
elements are assembled in core. These non-Lo-3 values are
then merged with the ones on tape to produce the output
assembled matrix.

4. Input ArgLments:

NSET1 - data set number of tape containing element matrices
NAMIN - array containing namre of matrix on 11SETi
NSET2 - data set num-er of output matrix
NAMOUT - array containing name of output matrix
NS1 - scrdtch tape 1
NS2 - scratch tape 2
NSYS - order of assembled matrix
NCORE - number of available words of core storage
ITYPE - indicates type of matrices to be assembled
ICOLPT - storage needed for assembly
VALUE - storage needed for assembly
IERROR - error flag

5. Output Arguments: Nlone

6. Error Returns:

IERROR = 11, if the input matrix on NIET! cannot be found

7. Calling Sequence:

ASSEMS (NSET1, NAMIN,HSET2, AMO UT,US!, lS2, i.S S, UCORE,ITYPE,
ICOLPT ,VALUE, IERROR)

8. Input Tapes: NSET1

9. Output Tapes: 1ISET2

10. Scratch Tapes: HS1, NS2

if 43

11. Storage Required Total Storage required is 2924 16 Bytes.

12. Subroutine User: ASSEM

13. Subroutine Required:

EUTL3
EUTL5
EUTL6

14. Remarks: For a more detailed documentation see the
source listing os subroutine ASSEMS.

144

1. Subroutine Name: STRESS

2. Purpose: This is the control routine for computing the
net element stress matrix. It also controls the optional
engineering print of apparent element stresses, element
applied stresses and net element stresses.

3. Equations and Procedures: This module first tests the
allocation of the input and output matrices. If both input
matrices are on the same data set, but not on the data set
to contain the output matrix, then one of these input matrices
is copied onto a scratch data set. If both input matrices
are on the same data set as the output matrix, then each
input matrix is located and copied onto a scratch data set.
When this has been completed both input matrices are
positioned and the matrix header for the output matrix is
written.

Pointers are next set up indicating positions in the work
area for arrays needed to compute the stresses.

Subroutine STRES1 is called to read element data and
displacements contained in the input matrices.

4. Input Arguments:

NUMOT - the number of output matrices
NAMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
NAMIN array containing the names of the input matrices
INSPEC - array c6ntaining input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
SCALAR - array containing the input scalars
IERROR - error return code
NWORK - the number of words of available work storage
WORK - working storage array

5. Output Arguments: IERROR

6. Error Returns:

IERROR a 11 or 21, if either the first or second input matrix
can't be found by EUTL3

7. Calling Sequence:

STRESS(NUMOT,NAMIO,IOSPEC,NUMIN,NAMIN,INSPEC, NUMSR,ISSPEC,NUMSC,
SCALAR,IERROR,NWORKWORK)

8. Input Tapes: INSPEC

9. Output Tapes: IOSPEC

145

10. Scratch Tapes: ISSPEC

11. Storage Required Total Storage required is 70416 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required:

EUTL1
EUTL3
EUTL4
EUTL5
STRESI

14. Remarks: C A,B.STRESS.(d,e)

146

1. Subroutine Name: STRESI

2. Purpose: This routine reads element data and displacements,
calls STRES2 to calculate the stresses, then writes the net
element stresses for each element.

3. Equations and Procedures: A test is first made to see if
enough work space is available to process all elements
successfuilly. Then for each element this module:

(a) Reads a column of the input matrix containing element
data on NSET1.

(b) Compresses this column, keeping only the element data
necessary to calculate the stress.

(c) Calls STRES2 to calculate the stresses and print
them out.

(d) Writes the calculated net element stresses on the
output data set. One column is written for each
element, such that each column contains net stresses
for each load condition.

4. Input Arguments:

NELEM - the number of elements
NLOAD - the number of load conditions
NMDB - the order of the displacement array
MAXEL - the length of work storage needed to process

the maximum size element
NL48 - NLOAD*48
HSET1 - the data set number of the input matrix con-

taining element data
NSET2 - the data set number of the input matrix con-

taining the displacements
NSET3 - the data set number of the output matrix
NAME - the name of the matrix on i.SET2
SCALAR - an array containing the input scalars
MAT - a work array local to STRESI
IPM - a work array local to STRESI
STRESN - work storage for the net element stresses
NWORK - the number of words of-available working storage

WORK - working storage array
IERROR - error return

5. Output Arguments: IERROR - error return

6. Error Returns:

IERROR = 15, if not enough work storage to process all
elements.

147

7. Calling Sequencet

STRES1(NELEM,NLOADNMDB,MAXELNL48,NSET,NSET2,NSET3,
NAME,SCALAR,MAT,IPM,STRESN ,NWORK,WORKIERROR)

8. Input Tapes: NSET1, NSET2

9. Output Tapes: NSET3

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 75A16 Bytes.

12. Subroutine User: STRESS

13. Subroutine Required:

ELREAD
FREEUP
STRES2

14. Remarks: None

148

-o
l8

1. Subroutine Name: STRES2

2. Purpose: This routine -alculates the net elemen stresses
for each load condition. Then calls STRPRT to print the
apparent, applied end net element stresses.

3. Equations and Procedures: A test is first made to see
if the displacements for all load conditions can fit in
core. If they can, then they are read into core. If the
displacements for all load conditions do not fit into core
then the displacements for each load condition are read
into core one at a time. For each load condition the net
element stresses are calculated and depending on the cption
specified the apparent, applied or net stresses are printed
for each element.

4. Input Arguments:

IEL - the element number
IPL - the element type (new plug number)
NMDB - the order of the displacement array
NLOAD - the number of load conditions
NRSEL - the order of the element stress array
NORD - the order of the LISTEL array
NNO - the order of the NODES array
NSET2 - the data set number of the displacement matrix
INCORE - a logical variable indicating in all displacements

are INCORE
FIRST - a logical variable
NAME - the name of the matrix on NSET2
SCALAR - an array containing the input scalars
LISTEL - a decoding array to go from reduced degrees

of freedom to system degrees of freedom
SEL - the element stress matrix
SZALEL - applied element stress matrix
NODES - an array containing the element node points
STRESN - net element stress matrix
NWORK - the number of words of available working storage
DISPL - the displacement array
IERROR - error return

5. Output Arguments: STRESN, IERROR

6. Error Returns:

IERROR = 21, if EUTL3 can't find the displacement matrix

149

7. Calling Sequence:

STRES2(IEL,IPL,NMOB,NLOAD,NRSEL,NORD,NNO,NSET2,INCOREFIRST,
NAME,SCALAR,NSC,LISTEL,NODES,SEL,SZALEL,STRESNNWORK,
DISPL,IERROF)

8. input Tapes: NSET2

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 117A1 6 Bytes.

12. Subroutine User: STRES1

13. Subroutine Required:

COLMRD
EUTL3
STRPRT

14. Remarks: None

150

1. Subroutine Name: FORCE

2. Purpose: This is the control routine for computing thenet element force matrix. It also controls the optional

engineering print of apparent element forces, element
applied forces and net element forces.

3. Equations and Procedures: This module first test the
allocation of the input and output matrices. If both input
matrices are on the same data set, but not on the data set
to contain the output matrix, then one of these input matrices
is copied onto a scratch data set. If both input matrices
are on the same data set as the output matrix, then each
input matrix is located and copied onto a scratch data set.
When this has been completed both input matrices are
positioned and the matrix header for the output matrix is
written.

Pointers are next set up to indicating positions in the
work area for arrays needed to compute the forces.

Subroutine FORCE1 is called to read element data and
displacements contained in the input matrices

4. Input Arguments:

NUMOT - the number of output matrices
N4AMOT - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
NAMIN - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
SCALAR - array containing the input scalars
IERROR - error return code
NWORK - the number of words of available work storage
WORK - working storage array

5. Output Arguments: IERROR

6. Error Returns:

IERROR = 11 or 21, if either the first or second input
matrix can't be found by EUTL3

7. Calling Sequence:

FORCE(NUMOT,NAMOT,IOSPEC,NUMIN,NAMIN,INSPEC,NjMSR,ISSPEC,
NUMSC,SCPLAR,IERROR, NWORK,WORK)

151

8. Input Tapes: INSPEC

9. Output Tapes: IOSPEC

10. Scratch Tapes: ISSPEC
11. Storage Required: Total Storage requMrvd is 704 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required:

EUTLI
EUTL3
EUTL4
EUTL5
FORCE1

14. Remarks: C =A,B.FORCE.(,e)

152

1. Subroutine Name: FORCEI

2. Purpose: This routine reads element data arid displacements,
calls FORCE2 to calculate the stresses, then writes'the
net element forces for each element.

3. Equations and Procedures: A test is first made to see
1 if enough work space is available to process all elements

successfully. Then for each element this module:

(a) Reads a column of the input matrix containing element
data on NSET1.

(b) Compresses this column, keeping only the element data
necessary to calculate the forces.

(c) Calls FORCE2 to calculate the forces and print them
d)out.

(d) Writes the calculated net element forces on the
output data set. One column is written for each
element, such that each column contains net stresses
for each load condition.

4. Input Arguments:

NELEM - the number of elements
NLOAD - the number of load conditions
NMDB - the order of the displacement array
MAXEL - the length of work storage needed to process

the maximum size element
NL48 - NLOAD*48
;SET1 - the data set number of the input matrix

containing element data
NSE1T2 - the data set number of the input matrix

containing the displacements
NSET3 - the data set number of the output matrix
NAME - the name of the matrix on NSET2
SCALAR - an array containing the input scalars
MAT - a work array local to FORCE).
IPM - a work array local to FORCE1l
FORCEN - work storage for the net element forces
NWORK - the number of words of available working storage
WORK - working storage array
IERROR - error return

5. Output Arguments: IEREOR - error return

6. Error Returns:

IERROR - 15, if not enough work storage to process all
elements

7. Calling Sequence:

FORCE1(NELEM, NLOAD,NMDB,MAXEL,NL48,NSET 1, NSET2,NSET3,NAME,
SCALAR,MAT,IPMFORCEN,NWORK,WORKIERROR)

153

8. Input Tapes: NOET1, NSET2

9. Output Tapes: NSET3

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 756,6 Bytes.

12. Subroutine 14jser: FORCE

13. Subroutine Required:

ELIREAD
FREEUP
FORCE2

14. Remarks: None

15

1. Subroutine Name: FORCE2

2. Purpose: This routine calculates the net element forces
for each load condition. Then calls STRPRT to print the
apparent, applied and net element forces.

3. Equations and Procedures: A test is first made to see
if the displacements for all load conditions can fit in
core. If they can, then they are read into core. If the
displacements for all load conditions do not fit into core
then the displacements for each load condition are read
into core one at a time. For each load condition the net
element forces are calculated and depending on the option
specified the apparent, applied or net forces are printed
for each element.

4. Input Arguments:

IEL - the element number
IPL - the element type (new plug numoer)
NMDB - the order of the displacement array
NLOAD - the number of load conditions
HOINK - the order of the element stiffness array
NORD - the order of the LISTEL array
NNO - the order of the nodes array
NSET2 - the data set number of the displacement matrix
INCORE - a logical variable indicating if all displace-

ments are in core
FIRST - a logical variable
NAME - the name of the matrix on NSET2
SCALAR - an array containing the input scalars
NSC - an array containing the number of stress

components for each element type
LISTEL - a decoding array to go from reduced degrees

of freedom to system degrees of freedom
AKEL - the element stiffness array
FTEL - an array containing element applied force
NODES - an array c.ntaining the element node point
FORCEN - net element force matrix
IIWORK - the number of words of available working storage
DISPL - the displacement array
IERROR - error return

5. Output Arguments: FORCEN, IERROR

6. Error Returns:

IERROR = 21, if EUTL3 can't find the displacement matrix

155

7. Calling Sequence:

FORCE2(IEL,IPL,NMDB,NLOAD,NOINK,NORD,NNO,NSET2,INCORE,
FIRST,NAME,SCALARNSC,LISTEL,AKEL,FTEL,NODES,
FORCEN,NWORK,DISPL,IERROR)

8. Input Tapes: NSET2

9. Output lapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 10CA 1 6 Bytes.

12. Subroutine User: FORCE1

13. Subroutine Required:

CULMRD
EUTL3
STRPRT

14. Remarks: None

15

156

1. Subroutine Name: EPRINT

2. Purpose: To print out the net element forces or net
element stresses calculated by the FORCE or STRESS modules.

3. Equations dnd Procedures: This module first tests the
allocation of the input matrices. If both input matrices
are on the same data set, then the first input matrix is
copied onto a scratch data set.

The input matrices are found and tested for compatability
and the first input matrix is copied if necessary.

The matrix containing element information is read a column
at a time as is the matrix containing the net element stress
or forces. Then the input print control is tested in order
to write out the correct heading for either the forces or
stresses. Subrcutine STRPRT is called for each load
condition to print out the values in the second input matrix.

4. Input Arguments:

NUMOT - the number of output matrices
NAMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices

NAMIN - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
SCALAR - array containing the input scalars
IERROR - error return code
NWORK - the number of words of available work storage
WORK - working storage array

5. Output Arguments: IERROR - error return.

6. Error Returns:

IERROR a 11 if EUTL3 can't find first input matrix
= 12 if EUTL3 can't find second input matrix.

7. Calling Sequence:

EPRINT(NUMOT,NAMIO,IOSPEC,NUMIN,NAMININSPEC,NUMSRISSPEC,
NUMSC,SCALAR,IERROR, NWORK,WORK)

8. Input Tapes: INSPEC

9. Output Tapes: None

157

10. Scratch Tapes: This routine uses at most oae scratch
tape.

11. Storage Required: Total Storage required is 1D2816 Bytes.

12. Subroutine Uzer: EXEQ

13. Subroutines Required:

EUTL3
ELREAD
FREEUP
STRPRT

14. Remarks: EPRINT(a,b,c)D

158

1. Subroutine Name: STRPRT

2. Purpose: To write on the system output data set the

values calculated by the FORCES and STRESS modules.

3. Equations and Procedures:

(a) Test the input variable IFMT to write out the correct
heading for the element type beinv processed.

(b) Calculate the number of stress or force points to
be printed.

(c) If ABS(STRESS(I)) < EZERO then STRESS(I)=0.0.
(d) Write out the values in array STRESS accoraing to

the input format.

Input Argumentst

IFMT - indicates element type and either, stress or,
force print

EZERO - suppression value
NRSEL - length of STRESS array
FMT - format used in printer
NSC - number of force or stress component
STRESS - input array containing force or' stres::

to be printed

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

STRPRT(IFMT,EZERONRSEL,FMT,NSC,STRESS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage reiuired is E20 16 Bytes.

12. Subroutine User: STRES2, FORCE2, EPRINT

13. Subroutine Required: None

14. Remarks: None

159

1. Subroutine Name: ELREAD

2. Purpose: This routine reads one column of the matrix
which contains el.ement information and puts that column
in working storage and returns element variables.

3. Equations and Procedures: Reads one column of the input

matrix which contains:

IEL,IPL,
NORD,(LISTEL(I),I=1,NORD),
NOINK,(AKEL(I),I=l,NOINK),
NORD,(FTEL(I),I=l,NORD),
NNO,(NODES(I),I=l,NNO),
NSEL,(SEL(I),I=l,NSEL),
NRSEL,(SZALEL(I),I=I,NRSEL),
NOINK,(ANEL(I),I=I,NOINK),

NMASS,(AMASS(I),:=l,NMASS)

Then decodes and returns the variables

IEl,.,T,NORD,NOINK,NNO,NSEL,NRSEL and NMASS

where

LISTEL - contains boundary condition information
AKEL - is the element stiffness matrix
FTEL - is the applied load matrix
NODES - contains the grid points defining the element
SEL - is the element stress array
SZALEL - is the thermal stress array
ANEL - is the incremental stiffness array
AMASS - is the element mass matrix

Input Arguments:

NSET - data set number of input matrix
WORK - working storage into which element data is read
NWORK - number of words available in the work array
IEL - the element number
IPL - the element type (plug number)
NORD - the order of the LISTEL and FTEL arrays
NOINK - the order of the AKEL and ANEL arrays
NNO - the order of the nodes array
NSEL - the order of the SEL array
NRSEL - the order of the SZALEL array
NMASS - the order of the AMASS array

5. Output Arguments:

NLEFT - the number of work remaining in the work array
NEXT - the next useable position in the wcrk array

160

6. Error Returns: None

7. Calling Sequence:

ELREAD(NSET,WORK,NWORk,NLEFTNEXT,IEL,IPL,NORDNOINK,NNO,
NSEL,NRSEL,NMASS)

8. Input Tapes: NSET

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 434 16 Bytes.

12. Subroutine User: STRES1, FORCE1

13. Subroutine Required: None

14. Remarks: None

161

I

1. Subroutine Name: "REEUP

2' Purpose: This routine is used to compress the work
array by compressing out unwanted matrices and freeing
up more storage used after a call to ELREAD.

3. Equations and Procedures: This routine will only com-
presss an array containing submatrices which are preceeded
by tne length of the submatrix.

The number of non-zero elements of' MAT is tested against
NAT. If they aren't equal then an error occurs.

The work array is then compressed by searching for those
submatrices to be saved as indicated by a non-zero position
in the MAT array. When a submitrix to be kept is found it
is moved up in the work array and its initial position in
the work array is kept track of in the IPM array.

The space taken up by submatrices not wanted is now freed-up
for use by someone else.

4. Input Arguments:

WORK - the input matrix to be compressed up
ISTART - the position of the dimension of the first

submatrix in the work array
iPWORK - the position in the work array at which the

submatrices are to be moved up to
MATOUT - an integer indicating the number of submatrices

to be kept, should equal the number of non-zero
elements in the MAT array

NICAT - the length of the MAT and IPM arrays
MAT - If MAT(I) is non-zero then the sub-matrix

in the Ith position will be kept, if
MAT(I)=0 then that submatrix will be compressed
out.

5. Output Arguments:

WORK - the cleaned-up inpi array
IPM - contains the initial position of the saved

submatrix in the cleaned-up work array
NEXT - the next useable position in the work array
IERROR - error return

6. Error Returns:

IERROR = 15, if there is an input error

162

7. Calling Sequence:

FREEUP(WORKISTART,IPWORKMATOUT,NMAT,MATIPM,NEXT,IERROR)

8. Input Tape: None

9. Output Tape: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 4B416 Bytes.

12. Subroutine User: STRES1, FORCE!

13. Subroutine Required: None

14. Remarks: None

163

1. Subroutine Name: COLMRD

2. Purpose: This routine is a utility routine used to
i'ead a column and uncompress it if necessary. Used
when storing more than one column in the work array.

3. Equations and Procedures: One column of the input data
set is read and EUTL9 is called to uncompress the column
if necessary.

4. Input Arguments:

WORK - working storage array, used to input and
output the column read

NSET - the data set number of the matrix to be
read

LENGTH - the length of storage available to EUTL9

5. Output Arguments: WORK

6. Error Returns: None

7. Calling Sequence:

COIMRD(WORK,NSET,LENGTH)

8. Input Tapes: NSET

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 1DA 1 6 Bytes.

12. Subroutine User: STRES2, FORCE2

13. Subroutine Required:

EUTL9

14. Remarks: None

164

1. Subroutine Name: GPRINT

2. Purpose: This is the control routine for engineering
printout of grid point data of reaztions, displacements
and eigenvectors. It can also be used for printout of
user matrices.

3. Equations and Procedures: Index pointer indicating the
initial position in the work array are calculated to make
use of dynamics storage allocation.

Subroutine GPRINTl is called to process input matrices.

4. Input Arguments:

NUMOT - the numb4r of output matrices
NAMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
NAMIN - array containing the names of the input matrices
:NSPzC - array containing input data set numbers
hUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
SCALAR - array containing the input scalars
NWORK - the number of words of available work storage
WORK - working storage array

5. Output Arguments: IERROR

6. Error Returns: None

7. Calling Sequence:

GPRINT(NUMOT,NAMIO,IOSPEC,NUMIN,NAMIN,INSPEC,NUMSR,ISSPEC,
NUMSC,SCALAR,IERROR,NWORK,WORK)

8. Input Tapes: INISPEC

9. Output Tapes: IOSPEC

10. Scratch Tapes: ISSPEC - one scratch tape required

11. Storage Required: Total Storage required is 3C816 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required: GFRINTl

14. Remarks: GPRINT(a,b,c,Cl.C2.C3.C4.C5.C6.C7.C8.C9.ClO.Cll.CI2,
D,E,F)G,H

165

1. Subroutine Name: GPRNTl

2. Purpose: This routine processes the input matrices and
calls the appropriate subroutines to print either reactions,
displacements, eigenvalues and eigenvectors or the user
input matrix.

3. Equations and Procedures: The input matrices are all
found and processed as they are found. If an input matrix
can't be found then IERROR is set to indicate which matrix
could not be found. Processing is terminated.

(a) Process first tnput matrix -
This matrix contains system constants:

NDIR - the number of directions
NDEG - the number of types of degrees of freedom
NREF - the number of reference points

These are used to calculate the number of degrees of
freedom in the system

NSDOF = NDIK*NDEG*NREF

(b) Process second input matrix -
This is the transformation matrix for application of
boundary conditions from which the LIST array can be
calculated. If this matrix is suppressed then generate
a dummy lVst array.

(c) Process third and fourth input matrix -
This matrix is either the reaction, displacement, eigen-
vector or user matrix to be printed in eigineering
format. if it is the eigenvector matrix then the fourth
input matrix is the eigenvector matrix. Depending on
the input scalar KPRT control is transferred to the
section which decodes one of the above matrices for
constants. Then the matrix is stored in a scratch tape
and control transfera to the subroutine which prints
out the matrix.

4. Input Arguments:

NUMOT - the number of output matrices
NAMIO - the names of the outpu. matrices
IOSPEC - an array containing output data set information
NUMIN - the number of input matrices
NAMIN - the names of the input matrices
INSPEC - an array containing input data set information
NUMSR - the number of scratch data sets available
ISSPEC - an array containing scratch data set information

166

4. input Arguments, Contd.

NUMSC - the number of input scalars

SCALAR - an array containing the input scalar
MAGEIG - maximum number of eigenvalues that can be asked for
LIST - array used for boundary condition information.

Decoding list to go from reduced degrees of
freedom to total degree of freedom.

DISPL - working storage for third input matrix
EIGVAL - array to contain eigenvector
NWORK - number of words of available working storage
WORK - working storage array

5. Output Arguments: IERROR

6. Error Returns:

IERROR = 15, user type error
= 10*K+l, where K is the position of the input matrix

not found.

7. Calling Sequence:

GPRNT1(NUMOT,NAM1O,IOSPEC,NUMIN,NAMIN,INSPEC,NUMSR,ISSPEC,

NUMSC,SCALAR,IERROR,MAXEIG,LIST,DISPL,EIGVAL,NWORK,
WORK)

8. Input Tapes: INSPEC

9. Output Tapes: IOSPEC

10. Scratch Tapes: ISSPEC

11. Storage Required: Total Storage required is 100016 Bytes.

12. Subroutine User: GPRINT

13. Subroutine Required:

EUTL3 DISPPR
EUTL9 EIGPPR
DECODE MATPRT
REACTP

14. Remarks: None

167

1. Subroutine Name: DECJDE

2. Purpose: This routine will decode a format matrix and
put it out in the form of full column records with no headers
or trailers.

3. Equations and Procedures: Read each column into a work
array and test to see if it should be uncompressed. Also
keep count of th-.e number of columns read in case there are
any missing columns. A missing column indicates that all
row elements are zero so regenerate the zero column. If
;.n error occurs then call TSUM to give a tape summary of the
input data set.

4. Input Arguments:

NSET - the data set number of the FORMAT matrix
NSETS - the data set number of the tape on which the

decoded matrix will go
IROW - row dimension of input matrix
ICOL - column dimension of input matrix
WORK - work array of order IROW

5. Output Arguments: JERROR - error flag

6. Error Returns:

JERROR = 0, no error
JERROR = 0, error

7. Calling Sequence:

DECODE(NSET,NSETS,IROW,ICOL,WORK,JERROR)

8. Input Tapes: NSET

9. Output Tapes: NSETS

30. Scratch Tapes: None

i1. Storage Required: Total Storage required is 3F8 1 6 Bytes.

12. Subroutine User: GPRNT1

13. Subroutine Required:

EUTL9
TSUM

14. Remarks: None

168

1. Subroutine Name: REACTP

2. Purpose: This routine controls the printing of reaction.

3. Equations and Procedures: Subroutine DISPLI is called to
print out reactions for each load condition.

4. Input Arguments:

NREF - number of reference points
NDIR - number of directions
NDEG - number of types of degrees of freedom
NLOAD - number of load conditions
NMDB - number of degrees of freedom in a reduced system
NSETS - data set number of reaction matrix
LIST - decoding list to go from reduced degrees of

freedom to total degrees of freedom
REACT - array containing reactions
EZERO - effective zero for suppression
ROW - row label
COLMS - array of column labels
KPRT - code denotes reaction print
NWORK - number of words available in vorking storage
WORK - working storage

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

REACTP(NREF,NDIR,NDEG,NLOAD,NMDB,NSETS ,LIST,REACT,EZERO,
ROW,COLMS,KPRT,NWORK,WORK)

8. Input Tapes: NSETS

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage Req Alred is 32216 Bytes.

12. Subroutine User: GPRNT1

13. Subroutine Required: DJSPLl

14. Remarks: None

169

1. Subroutine Name: DISPPR

2. Purpose: This routine controls the printing of th
displacements.

3. Equations and Procedures: Subroutine DISPL1 is called
to print out displacements for each load condition.

I 4. Input Arguments:

NREF - number of reference points

NDIR - number of directions
NDEG - number of types of degrees of freedom
NLOAD - number of load conditions
NMDB - number of degrees of freedom in reduced system
NSETS - data set number of displacement matrix
LIST - array for boundary conditions. Decoding list

to go from reduced degrees of freedom to total
degrees of freedom.

DISPL - array containing displacements
EZERO - effective zero for suppression
ROW - row label
COLMS - array of column labels
KPRT - code denoting displacement print
NWORK - number of words of available working storage
WORK - working storage

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

DISPPR(NREF,NDIX,NDEG,NLOAD,NMDB,NSETSLIST,DISPL,EZERO,
ROW,COLMS,KPRT,NWORK,WORK)

8. Input Tapes: NSETS

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 32216 Bytes.

12. Subroutine User: GPRNT1

13. Subroutine Required: DISPL1

14. Remarks: None

1.70

1. Subroutine Name: EIGPPR

2. Purpose: This routine controls the printing of eigenvalues
and eigenvectors.

3. Equations and Procedures: Subroutine DISPLI is called to
print out eigenvalues and eigenvector for each eigenvalue.

4. Input Arguments:

NREF - number of reference points
NDIR - number of directions
HDEG - number of types of degrees of freedom
!EVAL - number of eigenvalues
11MDB - length of eigenvector array
NSETS - data set number of eigenvector matrix
LIST - decoding list to go from reduced degrees of

freedom to total degrees of freedom
DISPL - array containing eigenvector
EIGVAL - array containing eigenvalues
EZERO - effective zero for suppression
ROW - row label
COLMS - array of column labels
KPRT - code denoting eigenprint
NWORK - number of words available in working storage
WORK - working storage

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

EIGPPR(NIREF,NDIR,NDEG,NEVAL,IJMDB,IISETS,LIST.DISPL,EIGVAL,
EZERO,ROW,COLMS,KPRT,1NWORK,WORK)

8. Input Tapes: NSETS

9. Output Tapes: Hone

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 344 16 Bytes.

12. Subroutine User: GPRNT1

13. Subroutine Required: DISPL1

141. Remarks: No. l

171

1. SuDroutine Name: MATPRT

2. Purpose: This routine controls the printing of the USER
matrix.

3. Equations and Procedures: Subroutine DISPL1 is called

to print each column of the user matrix.

4. Input Arguments:

NREF - number of reference points
NDIR - number of directions
NDEG - number of types of degrees of freedom
NLOAD - number of columns
NMDB - length of rows
NSETS - data sec number of USER matrices
LIST - decoding list to go from reduced degrees of

freedom to total degrees of freedom
DISPL - array containing user matrices
EZERO - effective zero for suppression
NAME - name of input matrix
ROW - row label
COLMS - array containing column label
KPRT - code denoting user matrix print
NWORK - number of words available in working storage
WORK - working storage

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

MATPRT(NREF,NDIR,NDEG, LOAD,NMDB,NSETS,LIST,DISPL,EZERO,
NAME,ROW,COLMS,KPRT,NWORK,WORK)

8. Input Tapes: NSETS

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 36616 Bytes.

12. Subroutine User: GFRNT1

13. Subroutine Required: DISPLI

14|. aemarks: None

172

1. Subroutine Name: DISPLI

2. Purpose: To print reactions, displacements, eigenvectors,
user matrices, and calculate and print eigenvalues ahd frequency.

3. Equations and Procedures: The value of KPRT is tested to
see if the eigenvalue frequency must be calculated and to
write out correct heading then the input matrix is decoded
and printed out.

4. Input Arguments:

NMDB - number of degrees of freedom in reduced system
EZERO - effective zero suppression code
DISPL - input matrix to be printed
LIST - decoding list to go from reduced degrees of

freedom to total degrees of freedom
NREF - number of reference points
NDEG - number of types of degrees of freedom
NLOAD - load condition number
ROW - row label
TITLE - column label
KPRT - code indicating types of print
EXTRA - contains name of input matrix or eigenvalues
DISP - working storage

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

DISPL1(NMDB,EZERO,DISPL,LIST,NREF,NDIR,NDEG,NLOAD,ROW,TITLE,
KPRT,EXTRA ,DISP)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 9C616 Bytes.

12. Subroutine User: REACTP, DISPPR, EIGPPR, MATPRT

13. Subroutine Required: None

14. Remarks: None

A 173
*1

1. Subroutine N-ne: USO4

2. Purpose: Control operation of the structural generative
system (USEROII module)

_j. Equations and Procedures: The error indicator, ERROR, is
Lnitially set to .FALSE.. Subroutine USO4A is then called
to control the input operations. Subrout-ine USO4B is called
to control the ule-ment matri.x generation and output phases.
If -an error has occurred in the input phase then the call
to USOhB is skipped. All information recelved from the
Format Monitor Ls relayed to USOIIA and USOhB.

Input Argmients:

NUMOT: Number of output matrices
NAMOUT: Array containing output rnatri.x names
TosPlC: Unit specificati.ons for output matrices

NUMIN: Nmiber of' input matrices
NAMIN: Array containing input matrix names
INSPEC: Unit specifications for input matrices
NUIvSR: Nuliber of available scratch units
ISSPEC: Scratch unit specifications
HUMSC: Number of scalars
SCALAR: Array contai.ning scal. rs
NWORKR: Number of available storages in blank common work

area
WORK: Work storage area
IPRINT: System print control

5. Output Argument:

EEROR: Error condi tion 'indicator

). Error Returns: If error has occurred in USO4A or USO4B
then ERROR will be .TRUE. upon return to the calling program.

7. Calling Sequence:

CALl US04 (NUMOT, iTAMOUT, IOSPEC, NUMIN, NAMIN, INSPEC,
HIUMSR., ISSPEC, ,INUSC, SCALAR, ERROR, NWORKR, WORK, IPRINT)

8. "rput Tapes: Nione
k). Output Tan e: ione

10. Scratch Tapes: None

11. Storage Required: Total storage required is 2C16 Bytes.

I.-. Subroutine User: SEXEQ

174

13. Subroutines Required:

uso4A
uso4B

14 . Remarks: None

I 175

1. Subr tine Name: NTEST

2. Purpose: To determine if output matrix is to be generated
by US04

3. Equations and Procedures: The first position in the output
name is compared to a slash (/). If this first character is
a slash then the matrix is not to be calculated. If the first
character is not a slash then the matrix will be calculated
and output.

4. Input Arguments: NAME - array containing output matrix name

5. Output Arguments: KODE - control code
if K0DE equals zero then matrix is

calculated
if K0DE equals one then matrix is

not calculated

6. Error Returns: None

7. Calling Sequence: Call NTEST (NAME, K0DE)
8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 15616 Bytes.

12. Subroutine User: USO4A, USO4B

13. Subroutines Required: None

14. Remarks: None

176

1. Subroutine Name: RECI

2. Purpose: Write or read element input tape record

3. Equations and Procedures: The decision to write or read the
tape record is determined by examing the input variable
IOPT in the following manner:

If IOPT> 2 then the tape record will be written

2~ If IOPT < 1 then the tape record will be read

4. Input Arguments: (when IOPT 2)

IOPT : Reac/write indicator
K : Involved unit number
NIl : Number of words in tape record, excluding NIl
IPL : Element type number (plug number)
X : " X" coordinates of element definition points
Y : " Y" coordinates of element definition points
Z : " Z" coordinates of element definition points
T : Temperatures at element definition points
P : Pressures at element definition points
NLIST : Total aegrees of freedom in element
LISTEL : Boundary condition information list
NNO : Number of element defining points
NODES : Grid point numbers of element defining points
IP : Extra element input and matrix repeat indicator
DISPEL Input displacements for element degrees of freedom
PCOLEL : External loads for element degrees of freedom
LISTDL : Not used
IG : Maximum number of element defining points
NEL : Element number
GPAXEL : Grid point ax s transformation matrices for element

defining points
NUMMAT : Length of MAT array
MAT :Array containing interpolated material properties
NUNEPS : Length of EPSIO array
EPSIO : Pre-strain load vector
NUMSO : Length of SO array
SO : Pre-stress load vector
EXTRA : Extra element input

5. Output Arguments: (when IOPT l)

With the exception of IOPT and K, which are always input
arguments, all of the above input arguments are output
arguments when IOPT 1.

6. Error Returns: None

17?

k!

7. Calling Sequence: (IOPT, K, NIl, IPL, X, Y, Z, T, P,
NLIST, LISTEL, NNO, NODES, IP, DISPEL, PCOLEL, LISTDL,
IG, NEL, GPAXEL, NUMMAT, MAT, NUMEPS, EPSIO, HUMSO, SO,
EXTRA)

8. Input Tapes: When IOPT <1 the input tape nwunl r is the
variable K.

i. Output tapes: When IOPT >2 the output tape number is the
variable K.

10. Scratch Tapes: None

ii. Storage Required: Total storage required is Cl1416 "Bytes.

12. Subroutine User: ELEM, ELPLUG

13. Subroutines Required: None

14. Rern.'.rks: None

178

1. Subroutine Name: LOGFLO

2. Purpose: Set logical execution controls for USER04
module

3. Equations and Procedures: APHASE, BPHASE and ERROR are
initially set to .FALSE. All positions in MASTER are set
to zero. If any of the first five output matrix positions
are non-blank then APHASE is set to .TRUE. If any of the
last seven output matrix positions is non-blank then BPHASE
is set to .TRUE. MASTER is then filled by packing in the
output matrix position number the requires that input
section. At present there are six possible required input
sections indicated in MASTER:

MASTER () - System control input indicator
MASTER 2 - Grid point coordinates input

indicator
MASTER (3 - Boundary condition input indicator
M ASTER 4 - Element definition input indicator
MASTER 5 - Grid point loads input indicator
MASTER 6 - Material library input indicator

It. Input Arguments:

NUMOT : Number of output matrices
NAMOUT : Array containing output matrix names
NUMIN : Number of input matrices
NAMIN : Array containing input matrix names
APHASE : Logical variable indicating necessity to

execute subroutine US04A
BPHASE : Logical variable indicating necessity to

execute subroutine US0O4B
NUMAST : Length of MASTER
MASTER : Array indicating required input sections

5. Output Arguments:

ERROR : Logical variable indicating error condition

6. Error Returns: If output matrix position eleven is non-
blank and input matrix position four is blank, then ERROR
is set to .TRUE.

7. Calling Sequence:

(NUMOT, NAMOUT, NUMIN, NAMIN, APHASE, BPHASE, NUMAST,

MASTER, ERROR)

8. Input Tapes: None

179

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Requ.tred: Total storage required is 78616 Bytes.

12. Subroutine User: US04

13. Subroutines Required: None

111. Remarks: None

1

180

1. Subroutine Name: US04A

2. Purpose: Control input phase operations of structural
system (USER04 module)

3. Equations and Procedures: Input, output and scrat.-h units
supplied by the Format Monitor are assigned to their
respective functions. Subroutine CONTRL is called to copy
the entire structurcal data input onto a scratch tape, extract-
ing structural system information in the process. From this
point, subroutine INPUT controls the selection of all other
subroutines which process input (see INPUT). The function
of USO4A is to partition the blank common work storage area
and select the proper subcoutine for the following opera-
tions: If material library requests are present then sub-
routine FMAT is called, if report form input processing is
required then subroutine REFORM is called, if generation of
the loads matrix is not suppressed then subroutine FLOADS is
called and finoLly if tne boundary condition transformation
matrix is not suppressed then FTR is called.

4. Input Arguments:

NUMOT: Number of output matrices (12)
NAMOUT: Array containing output matrix names
IOSPEC: Unit specifications for output matrices
NUMIN: Number of input matrices (4)
NAMIN: Array containing input matrix names
INSPEC: Unit specifications for input matrices
NUMSR: Number of available scratch units
ISSPEC: Scratch unit specifications
NUMSC: Number of scalars (0)
SCALAR: Array containing scalars
NWORKR: Nurber of avail.abl.e work storages in blank common

area (WOR}K)
WORK: Work storage area
IPRINT: System print control

5. Output Arguments:

ERROR: Err)r condition indicator
KNMD: Array containing structural system control

information
KNMD (1) - NSYS - Total number of degrees of freedom in

application
KNMD (2) - NL - Number of lo.d conditions
KNN (3) - NTMDB - Number of degrees of freedom after

application of boundary conditions
KNMD (i - NNORD- Summation of element degrees of freedom
KNMD 5 - NE.EM- Nunber of elements
KN=D 6 - NNRSEL-Summation of element stress orders
KNMD 7 - NTD - Number cf degrees of freedom per point
KNMD 8 - NRSELM-Maximum element stress order
KN 9 - NORDM- Maximua element degrees of freedom
KNMD(10 - NOINM-Maximum number of storages required

for an element stiffn.-ss mat-rix

181

6. Error Returns: If at any time the number of required work
storages exceeds NWORKR or a generated matrix will have a
dimension greater than KONST (matrix size limitation), the
appropriate message will be written, ERROR set to .TRUE.
and control returned to the calling program.

7. Calling Sequence:

CALL USO4A (NUMOT, NAMOUT, IOSPEC, NUMIN, NAMIN, INSPEC,
NUMSR, ISSPEC, NUMSC, SCALAR, ERROR, NI)RKR, WOPRK, IPRINT,
KNMD)

8. Input Tapes:

ITAPEI - INSPEC (1,1) - Unit containing input structure
data deck

ITAPE2 - INSPEC (1,2) - Unit containing interpreted input
ITAPE3 - INSPEC (i,'-) - Unit containing existing material

library
ITAPE4 - INSPEC (1,11) - Unit containing input displacements

9. Output Tapes:

JTAPEI - IOSPEC (1,1) - Unit which will contain copy of
input structure data deck

JTAPE2 - IOSPEC (1,2) - Unit which will contain revised
or new material library

JTAPE3 - IOSPEC (1,3) - Unit which will contain inter-
preted input

JTAPE4 - IOSPEC (1,4) - Unit which will contain grid
point loads matrix

JTAPE5 - IOSPEC (1,5) - Unit which will contain boundary
condition application transforma-
tion matrix

JTAPE6 - IOSPEC (1,6) - Unit which will contain assembly
transformation matrix

JTAPE7 - IOSPEC (1,7) - Unit which will contain element
stiffness matrices

JTAPE8 - IOSPEC (1,8) - Unit which will contain element
load matrices

JTAPE9 - IOSPEC (1,9) - Unit which will contain element
stress matrices

JTAP1O - IOSPEC (1,10) - Unit which will contain element
thermal stress matrices

JTAPll - IOSPEC (1,11) - Unit which will contain element
incremental stiffness matrices

JTAP12 - IOSPEC (1,12) - Unit which will contain element
mass matrices

182

10. Scratch Tapes:

NTAPE1 - ISSPEC (1,1) - External storage area for report
form input preprocessor and later
will contain structaral control
information

NTAPE2 - ISSPEC (1,2) - Contain temporary copy of trans-
lated input data deck and later
contain generated element matrices
in compact form

NTAPE3 - ISSPEC (1,3) - Contain temporary copy of actual
input deck and later contain
interpreted element input data

NTAPE4 - ISSPEC (1,4) - External storage area for report
form input preprocessor and later
contain input load conditions

11. Storage Required: Total storage required is 1CCA 1 6 Bytes.

12. Subroutine User: US04

13. Subroutines Required:

CONTRL
INPUT
FMAT
REFORM
NTEST
FLOADS
FTR

14. Remarks: None

183

1. Subroutine Name: IND'ECK

2. Purpose: Translate input matrix containing a data deck
into a BCD input deck

3. Equations and Procedures: The matrix is located by
utilizing subroutine EUTL3. Each column of the matrix
contains one input card divided into eighty rows. Each
column is read in binary from the unit specified in
INSFEC(l) and written on NOUT by an 8A. format. The
number of colurans, as contained in the matrix header, is
actually the number of cards in the data deck.

4. Input Arguments:

NAMIN : Array containing input matrix name
INSPEC : Array containing unit specification for

input matrix
NOUT : Logical unit reserved for output data deck
CARD : Work storage

5. Output Arguments:

IER : Logical variable indicating error condition

6. Error Returns: For each column of the input matrix, the
compression code must be zero and the number of words must
be eighty. If either condition is not satisfied then the
matrix does not qualify as an input deck matrix and IER
will be set to .TRUE..

7. Calling Sequence:

(NAMIN, INSPEC, NOUT, CARD, IER)

8. Input Tapes:

INSPEC(l) : unit containing input data deck matrix

9. Output Tapes:

NOUT : unit which will contain B1D data deck

10. Scratch Tapes: Non.3

11. Storage Required: Total storage required is 56E 16 Bytes.

12. Subroutine User: USOIIA

13. Subroutines Required: EUTL3

]I. Remarks: None

1811

1. Subroutine Name: CONTRL

2. Purpose: Generate BCD tape from system input tape data
arid read constants needed by US04 for dynamic storage
and matrix sizes.

3. Procedure: The input data is read in BCD format of 12
words/card. A scanning of the data is made for certain
card types.

a. REPORT card - defines NBCD to be NTAPE3
b. SYSTEM card - defines NBCD to be NTAPE2
c. CHECK card - end of file of NBCD
d. END card - end of file placed on NBCD
e. SYSTEM card - NREF, NREFP, NTD, NL, NELEM

are read to allocate storage

4. Input Arguments: NTAPE2 - tape stoage number for defining
IIBCD

NTAPE3 - tape storage number for defining
NBCD

NPIT - system input tape number

5. Output Arguments:

NBCD : tape unit number on which data is stored
NREF : number of reference points on system
NREFP : number of reference points in grid point table
NTD : number of degrees of freedom per point
NL : number of grid point load conditions
NELEM : number of elements

6. Error Returns: None

7. Calling Sequence: CALL CONTRL (NREF, NREFP, NTD, NL, NELEM,
NTAPE2, NPIT, NBCD, NTAPE3)

8. Input Tapes: NPIT - Input data tape

9. Output Tapes: NBCD - Output BCD tape

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 7DA 1 6 Bytes.

12. Subroutine User: USO4A

13. Subroutines Required: None

14. Remarks: None

185

1. Subroutine Name: COPYDK

2. Purpose: Output a data deck in matrix form

3. Equations and Procedures: A matrix header is written
in which the number of rows is set to eighty and the
number of columns is set equal to the number of cards in
the data deck. Each card of the data deck.is read from
NINPUT j.n 80A1 format and then written on the unit
specified in IOSPEC(l) in a binary matrix column record
containing eighty words. Tne process continues until an
END, CHECK or $END card is encountered. Finally the
matrix trailer is written and control is returned to the
calling program.

4. Inout Arguments:

NA4OUT : Array containing output matrix name
IOSPEC : Array containing unit specifications for

the output matrix
CARD : Work storage
NINPUT : Unit containing data deck
JMAX : Number of cards in data deck

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

(NAMOUT, IOSPEC, CARD, NINPUT, JMAX)

8. input Tapes:

NINPUT : unit containing input data deck

9. Output Tapes:

IOSPEC(l): unit which will contain output data deck matrix

1.O. Scratch Tapes: None

1.1. Storage Required: Total storage required is 4C4 1 6 Bytes.

12. Subroutine User: USO4A

13. Subroutines Required:

EUTL5
EUTL6

*4 . Remarks: None,

186

'I

i. Subroutine Name: INPUT

2. Purpose: Process directly or control processing of all
structural input data.

3. Equations and Procedures: The input variable IN designates
the Fortran logical unit number containing a direct label
card input deck. If the input deck was actually direct it
was copied onto IN by subroutine CONTRL. If report form
input was used then the report form input preprocessor
placed the generated direct label card .input deck on IN.

The logic in INPUT is to read a label card and branch to
the appropriate section to process the indicated data.
The available label sections and the action taken upon
encountering each is indicated in the follo,:ing list.

Input Section
Label Action Taken

TIT1E Title cards are read and printed on system
output unit in INPUT

PRINT Not used, the data card is flushed through

NREF Processed directly in INPUT, data eventually
stored on scratch tape (NTAPE1)

GRID Processed directly in INPUT, data eventually
stored on scratch tape (NTAPE3)

BOUND Processed by direct call to subrout.ine BOUND,
data stored on scratch tapes (NTAPE1 and
NTAPE3)

ELEM Processed by direct call to subroutine ELEM,
data stored or scratch tape (NTAPE3)

LOADS Processed by direct call to subroutine FGRLDS
data stored on scratch tape (NTAPE4)

END Processed directly in INPUT, terminates input
processing

TRANS Processed directly in INPUT, data eventually
stored on scratch tape (NTAPE3)

GRAXES Processed by direct call to subroutine FRED,
data eventually stored on scratch tape (NTAPE3)

MATER Processed by setting input/output variable
ITRACE equal to number of requests and return-
ing to USO4A where ITRACE will be tested caus-
ing subroutine FMAT to be called; after the
MATER section is processed USO4A will again
call INPUT

187

TZERO: Processed directly in INPUT, eventually stored

on scratch tape (NTAPE3)

CHECK: Processed directly in INPUT, terminates input
processing for a case but does not execute
data

REPORT: Processed by setting input/output variable
IN to the value of NTAPE2 and returning to
USO4A where IN will be tested causing sub-
routine REFORM to be called.; after report
form input processing is completed USO4A
will again call INPUT

SYSTEM: Processed directly in INPUT

Ij. Input Arguments:

NTAPEl: Scratch unit number
NTAPE2: Scratch unit number
NTAPE3: Scratch unit number
NTAPE4: Scratch unit number
ITAPEl: Existing material library unit number
JTAPEl: Revised or new material library unit number
NREFPl: Not used
NSYS: Total degrees of freedom in application

(adjustable dimension)
I: Data deck unit number
IPRINT: System print control
NPITl: Scratch input control for report form input
ITRACE: Material library residence indicator
NAMIN: Existing material library matrix name
INSPEC: Existing material library unit number
NAMOUT: Revised or new material library name
IOSPEC: Revised or new material library unit number
NRF: Number of total reference points in applica-

tion (must be equal to highest point number)
X,Y,Z: Storage allocated for coordinate data
T: Storage allocated for grid point temperatures
p: Storage allocated for grid point pressures
TGRA: Storage allocated for grid point axes trans-

formation matrices
IZR: Not used
LIST: Storage. allocated for boundary conditions
DISPL: Stor:age allocated for input displacements
LNOD. Not used
NZEL: Not used
PCOL: Storage allocated for grid point loads

188

5. Output Arguments:

ICALC: Execution indicator

if END card read, ICALC is set to 1 and USOIA
will relinquish control to USO4B for
matrix generation

if CHECK card read, ICALC is set to zero and
subroutine USO4A will. set controls to
return to the Format Monitor (execution
of data is suppressed)

ITRACE: Material request indicator

if ITRACE is not equal to zero upon exit from
INPUT then USO4A will call FMAT

IN: Report form input preprocessor indicator

if IN is equal to NTAPE2 upon exit from INPUT
then USO4A will call REFORM

6. Error Returns: If any errors are detected then INPUT will
set ERROR to .TRUE. and return.

7. Calling Sequence:

CALL INPUT (X, Y, Z, T, P, TGRA, IZR, LIST, DISPL, LNOD,
NZEL, PCOL, ITRACE, .ICALC, NTAPE1, NTAPE2, NTAPE3, NTAPEI4,
ITAPE1, JTAPE1, NREFP1, NSYS, IN, IPRINT, NMD, NPIT1, ERROR,
NAMIN, INSPEC, NAMOUT, IOSPEC, NRF)

8. Input Tape:

ITAPE1 - Contains existing material library
JTAPE1 - Contains revised or new material library

9. Output Tap;es: None

10. Scratch Tapes:

NTAPE1 - Temporary storage for structure control informa-
tion including system orders, boundary conditions
and system print operations

NTAPE2 - Scratch unit used when rewriting NTAPE3 for
grid point axes data storage

NTAPE3 - Storage for interpreted element input

NTAPE4 - Storage for input grid point load conditions

189

11. Storage Requi.red: Total storage required is 306216 Bytes.

12. Subroutine User: USO4A

13. Subroutines Required:

BOUND
ELEM
FGRLDS
FRED

REC)

1.1. Remarks: None

190

1. Subroutine Name: FRED

2. Purpose: To compute transformation matrices when input
for GRAXES is encountered.

3. Equations and Procedures:

vI =[r] {v}

%wI

where (1) u, v, w, are the displacements in the global
x, y, z system

(2) u', v,, w' are the displacements in the new
x,, y', '' system

(3) M contains the direction cosines

4. Input Arguments:

X :X coordinates of plane defined by 3 pts.
Y :Y coordinates of plane defined by 3 Uts.
Z :Z coordinates of plane defined by 3 pts.

KID :See Remarks
L :Point 1 of Plane
M :Point 2 of PlaneN :Poi.nt 3 of Plane

5. Output Arguments: TRANSC - transformation matrix [T]

6. Error Returns:

1) If points 1 and 2 have same coordinates, no plane defined.
2) If point 3 lies on the line connecting points. 1 and 2,

there is no plane defined.

7. Calling Sequence:

CALL FRED (X, Y, Z, TRANSC, KID, L, M, N)

6. Input Tapes: None

9. Output Tapes: Hone

10. Scratch Tapes: Ncne

11. Storage Required: X(i), Y(l), Z(1); TRANSC (3,3)

12. Subroutine User: INPUT

13. Subrotitines Required: None

191

14. Remarks:

1. Since 3 points define a plane, KID may be

a 0 when the ist 2 points define the x' axis
1 when the 1st 2 points define the y' axis

c 2 when the ist 2 points define the z' axis

The direction cosines are first computed for points 1 and
2 defining the x' axis. If KID is 0, then the direction
cosines are icarranged to give the respective notation
described above.

2. In spite of error returns indicated, analysis does
not terminate.

192

1. Subroutine Name: BOUND

2. Purpose: Read and process boundary condition data afid input
displacement data

3. Equations and Procedures: The boundary conditions are read
for each point input and the data is stored in the array
LIST to be later written on scratch tape NTAPEI by sub-
routine INPUT. Omitted points are constrained for all
degrees of freedom. Only linconstrained degrees of freedom
are stored ;n LIST, giving LIST a length equal to the actual
degrees of freedom for which solution will be obtained
(NMDB). For each degree of freedom for which a solution
is desired, its appropriate total system degree of freedom
location, which is ?.TD*(IN-I)+L, where NTD is the number of
degrees vf freedom per point, IN is the point number and L
is the subject degree of freedom for that point number, is
placed in the next available position in LIST. The same
procedure is followeO for input displacements, which are
stored in DISPL.

4. Input Arguments:

IVEC - Not used
NDIR,NDEG - Product equals NTD, number of degrees of

freedom per point
NREF - Total number of points referenced in application
NREF4 - Number of points for which boundary conditions

have been input
IN . Input unit containing boundary condition data
NSYS - Total number of degrees of freedom in application

5. Output Arguments:

NMDB - Number of degrees of freedom for which solutions
are desired

NMDB2 - Number of degrees of freedom for which dis-
placements have been input

LIST - Array containing degree of freedom numbers for
which solutions are to be obtained and dis-
placements have been input

DISPL - Array containing input displacements

6. Error Returns: None

7. Calling Sequence:

CALL BOUND (IVEC, NDIR, NDEG, NREF, NMDB, NMDB2, LIST, DISPL,
NREF4, IN, NSYS)

8. Input Tape:

IN - Unit containing boundary condition and input displacement
data

193

9. Output Tapes: None

A 0. Scratch Tapes: None

1i. Storage Required: Total storage required is 7FA1 6 Bytes.

12. Subroutine User: INPUT

13. Subroutines Required: None

11. Remarks: None

194

y. Subrout pune Naie: I nEM

2. Purpose: Process element input data (input section ETEM)

3. Equations and Procedurest Processing of element input

data begins by reading the element definition input for an
element and checking the values for errors an riconsisten-
cies. Error messages for subroutine ELEM are exhibited in
Appendix III. The information read is then printed on the
system output unit. If no errors have been detected then
the element defin'tion input is merged with the required
system input. Sp.colfically, the following operations are
per!'ormed for each volement to assimilate the required in-
forpiation for geni-i'ation of element matrices:

the coordinatr , temperatures and pressures are
extracted and stored for each of the element defini-
tion node points;

the grid point axes transformation matrices are
initialized as identity matrices and stored for each
of the element definition node points;

the interpolation temperature for material properties
is read or calculated dependent upon input, the
material library is searched to locate the requested
material, the interpolation is performed and the
results stored;

the element generation print control is stored;

the boundary conditions for the degrees of freedom
referenced by the ele.7ent defining node points are
extracted from the system boundary condition list
and stored;

the input displacements, if any, for the degrees of
freedom referenced by the element defining node points
are extracted from the system input displacement list
and stored;

the pre-strains and pre-stresses, if input, are read
and stored;

the extra element input data, if any, is read and stored
and finally, subroutine REC1-iz called to place all
of the above interpretated element data on scratch tape
NTAPE3 (see RECI).

4. Input Arguments:

NELEM: Number of elen-n' ts
X,Y, Z: Arrays containing coordinates of system grid

points
0 Arrays containing temperatures and pressures

respectively for system grid points
IVEC: Not used
LIST: Array containing boundary condition informa-

tion for system grid points
NMDB2: Number of entries in array LIST
NDIR,NDEG: Product equals number of degrees of freedom

per grid point
IG: Maximum number of element defining points

possible for an element
NMDB: Number of system degrees of freedom for which

solutions are desired
DISPL: Array containing input displacements
LNOD: Not used
GPAXEL: Work storage reserved for grid point axes

transformation matrices
NUTAPE: Logical variable indicating that new or

revised material library has been generated
TZERO: Base temperature for application
NUMSEQ: Material library sequence number
XEL,YEL, Work storage reserved for extracting coordinates
ZEL: for element definition node points
TEL, PEL: Work storage reserved for extracting tempera-

tures and pressures for element definition
node points

LISTEL: Work storage for extracting boundary condi-
tion information for element definition node
points

NODES: Array containing element definition node point
rtmibers

DISPEL: Work storage reserved for extracting input
displacements for element definition node
points

PCOLEL: Not used
MAT: Work storage reserved for interpolated material

properties, element print control, mass density
and TZERO

EPSIO: Work storage reserved for pre-strain load
vector

SO: Work storage reserved for pre-stress load
vector

EXTRA: Work storage area reserved for extra element
input

IN: Element data input unit number
NREFP: Number of input system grid points
ITAPEl: Existing material library unit number
JTAPE: Not used

196

JTAPEl: New or revised material library unit number
NTAPE3: Scratch unit number
NAMIN: Name of existing material library
INSPEC: Same as ITAPE3
NAMOUT: Namp of new or revised material library
IOSPEC: Same as JTAPE1

5. Output Argitents:

IFLAG: Error indicator
NNORD: Summation of element degrees of freedom
NNRSEL: Summation of element stress orders
NORDM: Maximum element degrees of freedom for this

application
NOINKM: Maximum number of storages for element stiff-

ness matrix for this application
NRSELM: Maximum element stress order for this application

6. Error Returns: If an error is encountered then IFLAG is
set to minus one and control is returned to the calling
program.

7. Calling Sequence:

CALL ELEM (NELF4, X, Y, Z, T, P, IVEC, LIST, NMDB2, NDIR,
NDEG, IG, NMDB, DISPL, LNOD, GPAXEL, NUTAPE, TZERO, IFLAG,
NUMSEQ, XEL, YEL. ZEL, TEL, PEL, LISTEL, NODES, DISPEL,
PCOLEL, MAT, EPSIO, SO, EXTRA, IN, NREFP, NNORD, NNRSEL,
NORDM, NOINKM, NRSELM, ITAPE1, JTAPE, JTAPE1, NTAPE3,
NAMIN., INSPEC, NAMOUT, IOSPEC)

8. Input Tape:

IN - Contains element input data

9. Output Tapes:

NTAPE3 - Contains interpreted element input

10. Scratch Tapes: None

11. Storage Required: Total storage required is 4D78 1 6 Bytes.

12. Subroutine User: INPUT

13. Subroutines Required:

MATCH
EUI3
LAG
REC1

197

14. Remarks: In calculating the interpolated material proper-
ties, if the requested material and the interpolation tem-
perature of the present ilement being processed are the same
as the previous element then the results calculated for the
previous element are used and no searching or interpolation
is done; if the requested material is in core but the inter-
polation temperature is different then just the searching
is eliminated.

198

1. Subroutine Name: MATCH

2. Purpose: Compare a material nmber and its interpolauion
temperature to the material number and interpolation temper-
ature last referenced in order to determine if a search of
the material library tape and/or interpolation is necessary.

3. Equations and Procedures: The material number, TAG1, is
compared to the material number now residing in core; NSAVE1.
If they do not match, then they are tested again to see if
they differ only by an asterisk in the first position. If
they still do not match then control is returned to the calling
program at the statement following the CALL MATCH statement.
If a match was obtained while testing for an asterisk then
STAR is set to TRUE. Once a match has been obtained for the
material number, the following procedure is followed:

If IELEM equals one then control is returned to the
statement number replacing the first asterisk since
interpolation must be done for the first element.
If IELEM is not one then a check is made to see if
a search of the material library was in progress to
find this material number. If this is the case then
control is returned to the calling program at the
statement number replacing the first asterisk since
this material table has just been place in core
and interpolation will be necessary. If a search

was not in progress then TEMP is compared to SAVTEM.
If they are equal then interpolaticn of the material
table has already been calculated and control is
returned to the calling program at the statement
number replacing the second asterisk. If TEMP
does not equal SAVTEM then control returns through
the first asterisk in order to perform the inter-
polation.

4. Input Arguments:

TAG1 : Material number desired
NSAVE1 : Material number now residing in core
TEMP : Interpolation temperature desired
SAVTEM : Last interpolation temperature processed
NDIFF : Constant used to determine if asterisk is

present in material number
IELEM : Element number
SEARCH : Logical variable indicating if a search of the

material library is in progress

: Non-standard returns to calling program
(See 7. Calling Sequence)

199

5. Output Arguments:

STAR : Logical variable indicating presence of asterisk
in material number.

Error Returns: None

7. Calling Sequence: CALL MATCH (TAG1, NSAVE1, TEMP, SAVTEM,
NDIFF, STAR, IELEM, SEARCH, *,*)

Where the asterisks are statement numbers, preceded by a
dollar sign ($), that MATCH will return control to in the
calling program. Control will pass to the statement number
replacing the first asterisk if TAG1 matches NSAVE1 but
TEMP does not match SAVTEM (i.e. the material is the same
but the interpolation temperatures differ). Control will
pass to the statement number replacing the second asterisk
if TAG1 matches NSAVE1 and TEMP matches SAVTEM (i.e. che
material is the same as the last material referenced and
the interpolation temperatures are also the same). If
TAG1 does not match NSAVE1 then control is returned to the
calling program at the statement following the CALL MATCH
statement.

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storagts required is 2FE 16 Bytes.

12. Subroutine User: ELEM

13. Subroutines Required: None

14. Remarks: None

200

1. Subroutine Name: LAG

2. Purpose: Linear interpolation routine for materil properties

3. Equations and Procedures:

ZAPX X (I) Y(I-1) - X (I-l' Y (I) + (()Y (I,-
ZAPX-X(I) - X (I-l)

4. Input: P - temperature at which material properties %ill

be interpolated
K - number of pairs of coordinates
X - X coordinate
Y - Y coordinate

5. Output; ZAPX - value of the material property being
interpolated

6. Error Returns: None

7. Calling Sequence: CALL LAG (P, ZAPX, K, X, Y)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: Total St.orage required is 2F21 6 Bytes.

12. Subroutine User: £LEM

13. Subroutines Required: None

14. Remarks: If there is only one X-Y pair, ZAPX will be set
equal to Y.

201

1. Subroutine Name: FGRLDS

2. Purpose: Read and print grid point loads data

3. Equations and Procedures: System input is read from NTAPE4
and includes LIST which is an array con t-:ning row numbers of
degrees of freedom which are to be retained in the reduced
load column. Grid point loads are read for each input point
and printed. If grid point axis transformations are present,
this transformation is applied. The assembled PC0L is stored
on tape NTAPE4, followed by the reduced PC$L. This process
is repeated for each load condition.

4. Input Arguments:

NL :Number of grid point load conditions
TGRA :Grid point axes transformation matrices
N0GPA :Number of grid point axes transformations
LIST :Reduction array
IT :System input tape number
NTAPEl:Input tape number
NTAPE4:Output tape number

5. Output Arguments: PC0L - Loads Coltumn

6. Error Returns: None

7. Calling Sequence:

CALL FGRLDS (NL, TGRA, N0GPA, LIST, IT, PCOL, NTAPE1,
NTAPE4, NSYS)

8. Input Tapes: NTAPE1 o Record 1 - not used

-Record 2 - NMDBl, NMDB, LIST

9. Output Tapes: NTAPE4: Record . - Nl, NMDBl, NMDB

Record 2 - PCOL (assembled)

Record 3 - PCOL (reduced)

Repeat Record 2 and 3 for each
load condition

10. Scratch Tapes: None

11. Storage Required: LIST (NSYS)
EL0AD (2)
PCOL (NSYS)

ISAVE 3-
TGRA (3, 3, NREPP)

202

12. Subroutine User: INPUT

13. Subroutines Required: None

14 ematrks: None

203

1. Subroutine Name: FMAT

2. Purpose:

a Generate material library tape
Update material library tape
Print material library information

3. Equations and Procedures:

Subroutine FMAT operates in three distinct phases.

First, a test is made on NM. If NM is positive, then
it assumed that this is an update run and the original
material library is read into PROPER from ITAPE1. Each
table in the library is placed in PROPER in a block of
length NT$T, where NT0T is computed as the necessary
storage needed. If NM is zero, it is considered an error
condition and a message is printed and control is returned
to the calling program. If NM is negative, then it is
assumed that this is a generation of a new material library
tape and the section which reads the original material
library tape is skipped.

The second phase consists of processing the requests. The
requests are controlled by an input code read into location
D. The legal input codes are:

(1) I : add or revise isotropic material

(2) 0 : add or revise orthotropic material table

(3) PI : add or revise plastic isotropic material table

(4) P0 : add or revise plastic orthotropic material table

(5) P : add plastic section to existing material table

(6) OUT : delete material table with correct lock code

(7) ALL : print entire material library

(8) OE : print material table
(9) PUM : print summary of material library

(10) /*/ : print lock code for material table

(11) ZAP : delete material table regardless of lock code

204

If NM was negative, then the only allowable codes areI,O,PI and PO and the requests are processed and placed
into the array PROPER-starting from the beginning and
endig at NTL. If NM was positive, then the material

number is checked against the materials in PROPER to see
if it already existed in the original library. If no

match is obtained, then the material is added at the next
open block in PROPER and NT0L is updated accordingly.
If a match occurred, then the revised table will be placed
in same position as the original table. If the locations
for the material is greater or lesser than before, the
remaining contents of PROPER, i.e. those tables after theone in question, are shifted down or up respectively.

If the request is of the type that will alter or delete
the original table, then the ioc', code (TAG2) must match
the lock code of the original taole, otherwise an error
condition is encountered and control returns to the
calling program. Once it has been decided where the
table is to be placed, then the table is read into PROPER
by material temperature points and plastic temperature
points. The material properties are as follows:

E - Young's Modulus
- Poisson's Ratio
- Coefficients of Thermal Expansion

G - Rigidity Modulus

For an input code of I or PI only E,) , and ot are read
and G is computed from E/2(1+9) for each material tempera-
ture point. For an input code of 0 or PO, then Ex, Ey,
Ez, $ xy, 0 yz, - zx, * x, 0 y, ' z, Gx Gyz and Gzx are
read for each material temperature poin. ±r the input
code contains a P, then for each plastic temperature point
the following data is read:

N - exponent of stress-strain function assumption
K - scalar of stress-strain function assumption
X - nondimensionalizing factor fory - II I,

S - I, I,
R -

205

The procedure for input codes 6-11 is as follows:

OUT - If the material is not located in PROPER, then a
message is printed to this effect and the request
is ignored. If the material is located and the
lock codes do net match, then a message is printed
and the request ignored. If the material is
located and the lock codes match, then the deletion
occurs when the remaining contents of PR$PER are
merely shifted up over the deleted material.

ALL - A flag (WRTALL) is set for phase three and control
passes to the next request.

SEE - If the material is not located, a message is
printe4 and the request ignored. If the material
is located, the table is printed and control
passes to the next request.

SUM - All t-e tables in PROPER are scanned and the
following information is printed for each table:

Material Number (TAG1)
Material Identification (MIDENT)
Analysis Capability (derived from I,0, PIP0)
Number of Material Temperature Points (NPl)
Number of Plastic Temperature Points (NP2)
Temperature Range of Material Table
Temperature Range of Plastic Table

- If the material is located, the lock code is
printed. If the material is not located, the
request is ignored.

ZAP - If the material is not located, the request is
ignored. If the material is located, it is
deleted regardless of lock code.

Phase two ends when all of the requests have been processed.

Phase three consists of writing the new or updated material
library on JTAPE1 and printing the entire tape if it has
been requested. Writing of the tape and a print of the
entire material library, if requested, are done in a parallel
processing manner; i.e., a table is written on tape and then
printed, if requested. ?ither process may be done separately
or together depending upon the requests received. Finally,
if a tape has been writte., a summary is printed.

206

I1. Input Argttments:

NM : Number of Requests
MATTAP : Code Controlling Selection of I.nput and Out; ut

Tapes
IN : Input Tape Unit
TABMAT : Material Properties Work Storage Area
TABPLA : Plastic Prooerties Work Storage Area
FR0PER : Material Lilrary Work Storage Area
NW$RK : Number of Available Work Storages
ITAPEI : Input Material Library Tape Unit
JTAPEI : Output Material Library Tape Unit
NAM$UT : Array Containing Output Material Library Name
NAMIN : Array Containing Input Material Library Name

5. Output Arguments:

MATTAP : Code signifying error condition has been
encountered, if MATTAP > 0, then no error
has been encountered, if MATTAP < 0, then error
condition exists.

6. Error Returns:

Message Action Taken

(1) Value of Young's Modulus (E).:S 1.0 RETURN
2 Value of Poisson's Ratio < -1.0 or

> 1.0 RETURN
(3) Value of thermal expansion coefficient

o)<-1.0 or:> 1.0 RETURN
4 Value of Rigidity Modulus (G) .: 1.0 RETURN
5 Value of mass density is negative RETURN
6 Lock codes do not match for revision RETURN
7 Lock codes do not match for deletion IGNORE REQUEST
8 Capacity of material library exceeded RETURN
9 Number of material or plastic

temperature points> 9 RETURN
(10) Attempt to delete nonexistent material IGNORE REQUEST
(11 Attempt to input plastic data only for

nonexistent material IGNORE REQUEST
12) Unrecognizable input code RETURN
13 Request to print nonexistent material IGNORE REQUEST
(14) Number of requests is zero RETURN

207

7. Calling Sequence:

Call FMAT (NM, MATTAP, IN, TABMAT, TABPLA, PROPER, NW0RK,
ITAPEI, JTAPE1, NAM$UT, NAMIN)

8. Input Tapes
9. Output Tapes

Input and output tapes are identical with respect to
information contained and record format. Records are
as follows from the matrix header to the matrix trailer:

Format Matrix Header Record

Record rvmber 1 - IC0L, K0DE, IW0RDS, NUMTAB, NUMSEQ

Rer-rwaci, ..')ers 2 to NUMTAB+1 - ICOL, K$DE, IWORDS, NT0T,
D, TAG1, TAG2, NPI, NP2,
DENSTY, MIDENT, ((TABMAT
(I,J), J=l, NMAT),
I=I, NPl) ((TABPLA(I,J),
J=l, NPLA), I=I,NP2)

Format Matrix Trailer Record

where ICOL : Dummy Variable
K$DE : Dummy Variable
IW0RDS : Number of Words Remaining in Record
NUMTAB : Number of Material Tables in Library
NUMSEQ : Sequence Number of Library
NT0T : Total Number of Words in the Specific

Table
D : Input Code
TAG1 : Material Number
TAG2 : Lcck Code
NP1 : Number of Material Temperature Points
NP2 : Number uf Plastic Temperature Points
DENSTY : Mass Density
MIDENT : Material Identification (Short

Description or Name)
TABMAT : Material Properties Table
NMAT : Number of Material Properties per

Temperature Point + 1
TABPLA : Plastic Properties Table
NPLA : Number of Plas7tic Properties per

Temperature Point + 1

10. Scratch Tapes: None

208

11. Storage Required:

C0M(lO), MIDENT(4), G(16), HEADER(20), TAG1(6), NFIXlA(6),
Total Storage required is 4EB816 Bytes. FLIA(6)

12. Subroutine User: US04A

13. Subroutines Required: SHIFT

14. Remarks:

Whenever new or updated material tape is written, all
changes and/or additions and a summary cf. the output tape
are printed.

209

1. Subroutine Name: SHIFT

2. Purpose: Given a one-dimensional array, this routine can
relocate a block of data, within the array.

3. Equations and Procedures: The routine computes the size
of the block to be shifted. It checks the direction of
shift, and initializes the shift constants, finally
performing the shift.

4. Input Arguments:

PROPER : Array in which shifting is to occur
IFROM : Initial subscript of block to be shifted
ITO : Final subscript of block to be shifted
ISIZE : Size of shift
NDIR : Direction of shift

5. Output Arguments:

IERROR : Er'ror return

6. Error Returns: If the size of the block to be shifted
is computed to be negative (IFROM ITO) IERROR is set
equal to 1 (one).

7. Calling Sequence:

SIPIFT (ILiOPER, IFROM, ITO, ISIZE, NDIR, IERROR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 2B616 Bytes.

12. Subroutine User: FMAT

13. Subroutines Required: None

114. Remarks: None

210

1. Subroutine Name: REFO-1

2. Purpose: Control generation of BCD input tape from Report
Form Input Sheets

3. Equations & Procedures: Storage is allocated for all vari-
ables needed by PHASE1 and PHASE2 combined. All valid
input section names are stored by a data statement .n array
NAMES. Temporary tape storage for input sections which
must be merged are assigned to scratch tapes NTAPE1 and
NTAPE2. Subroutine PHASE1 is entered to read and store all
data. Subroutine PHASE2 is entered to merge and output on
INTAPE the data that was read in PHASE1. If a dump has
been requested then the contents of INTAPE are printed on
the system output unit. Control is then returned to the
calling program.

i. Input Arguments:

INTAPE: Tape unit number on which BCD input data
is to be generated

NTAPE1,NTAPE2: Scratch tape unit numbers

IN: Input tape unit number

NRFP,NSS,NRF: Adjustable dimension variables

COORD: Storage area reserved for grid point
coordinates

'I Storage area reserve for grid point
temperatures

P: Storage area reserved for grid point
pressures

IBOUND: Storage area reserved for grid point
boundary conditionb

5. Output Arguments:

ERROR: logical variable indicating error condition.

6. Error Returns:If an error has occurred in PHASE1 or PHASE2
then ERROR is set to .TRUE..

7. Calling Sequence:

CALL REFORM (INTAPE, NTAPE1, NTAPE2, IN, NRFP, NSS, NRF,
COORD, T, P, IBOUND, ERROR)

8. Input Tapes:

IN - Scratch tape containing card images of data deck

211

9. Output Tapes:

INTAPE - BCD tepe containing sorted data generated for sub-
routine INPUT

l0. Scratch Tapes:

NTAPE1 - Temporary storage for grid point axes input, initial
displacement input and element definition input

NTAPE2 - Temporary storage area for griC point loads input, pre-
scribed displacement input and special element input

11. Storage Required: Total storage required is 2B88 1 6 Bytes.

12. Subroutine User: USO4A

13. Subroutines Required:

PHASE1
PHASE2

14. Remarks: None

212

1. Subroutine Name: PHASE1

2. Purpose: Read, sort and store temporarily, all report form
input data.

3. Equations & Procedures: First, all core storage areas are
initialized with either blanks or zeroes. The following
core storage areas are initialized with blanks: IBOUND,
COORD, BM, LM, INM, PRM, EM and ERRMOD. The following core
storage areas are initialized with zeroes: P, T, MEMORY,

11 and PM.

Reading of input is controlled entirely by label cards for
each input section. Correlation between label codes and
input sections is as follows.

Code lnput Section

T.".TLE Title cards
COOR) Grid point coordinates
TEMP Grid point temperatures
PR13S', Grid point pressures
BOVLa.) Grid point boundary conditions
MATE1% Materisi library requests
LOADS Grid point external loads
GRAXES Gri point axes (matrices generated)
TRANS Grid point axes (matrices input)
INITA Grid point initial displacements
PRDISP Grid point prescribed displacements
ELEM Element definition data
EXTERN Special element data
INPUT Master input control
PRINT Print controls
CALC Calculation controls
END End card
CHECK Check card
SYSTEM System control information

After initialization, the data may be read from Ifi. The
only restriction placed upon order of input sections is that
SYSTEM may only be preceded by TI11E, MATER and/or INPUT.

The procedure for a typical input section is as follows:

(1) Subroutine LATCH is called to determine the identity
of the input section,

(2) Control is transferred to the corresponding section

of PHASE1 that will read and store the data. This
step is accomplished either directly in PHASE1 itself
or by a call to FORMIN.

213

(3) Data storing for a section terminates upon reading of
a section label card which differs from the section
being read.

Upon reading a CHECK or END card, PHASEl returns control to
the calling program.

4. Input Arguments:

NAMES: Array containing valid .input section labels

INTAPE: Tape unit number on which BCD input data is to
be generated

LOCATE: Array containing tape unit numbers locating
temporary tape storage for input sections. For
each entry in NAMES there is a corresponding
entry in LOCATE pointing to a temporary storage
area. If the entry in LOCATE is a zero then
storage is in core. if the entry is non-zero
then storage is on the tape number indicated.

NUMCAL: Number of possible solution techniques

NUMNAM: Number of valid input section labels

ICASE: Case number

NDIR: Number of directions per grid point

NEND: Last word of every input section placed on tape

IN: Input tape unit number

NRFP: Adjustable dimensions for COORD, T and P

NRF: Adjustable dimensio.n for IBOUND

DINFO: Not used

5. Output Arguments:

COORD: Array containing grid point coordinates

T: Array containing grid point temperatures

P: Array containing -grid point pressures

MEMORY: Array containing indicators which record input
sections that have been encountered during
processing of data

IBOUND: Array containing grid point boundary conditions

TM: Array containing grid point temperature modal
values

PM: Array ccntaining grid point pressure modal valuts

214

BM: Array containing grid point boundary condition
modal values

SM: Array containing grid point load modal values

for each load condition

INM: Grid point initial displacement modal values

PRM: Grid point prescribed displacement modal values

EM: Special element input modal values

NLOAD: Array containing number of points in each load
condition

NINITA: Array containing numbers of points in each
initial displacement condi.tion

NPRDIS: Array containing number of points in each
prescribed displacement condition

ICALC: Array containing solution procedures desired

NREF: Number of system referenced grid points

NREFP: Number of input grid points

NTD: Number of degrees of freedom per grid point

NL: Number of load conditions

NID: Number of initial displacement conditions

NPD: Number of prescribed displacement conditions

NAXEI Number of grid point axes systems

NELEM: Number of elements

NM: Number of request- of the material library tape

NREF4: Number of input boundary condition grid points

TZERO: System reference temperature

NREF4C: Number of boundary condition points read by
PHASE1

NREFPC: Number of Yrid points read by PHASEl

NELEMC: Number of elements read by PHASE1

NGRAXC: Number of grid Point axes systems read by
PHASE1

NTRANC: Number of grid point axes transformation matrices
read by PHASE1

ERROR: Error indicator

DUMPT: Debug dump indicator

215

6. Error Returns:

Message: Action Taken:

Unexpected blank label Flush to next recognizable
card encountered, label card and insert check

card.

No option has been selected Flush to next recognizable
for request number xxx of label card and insert check
material library, card.

More than one option has been Retain first selection
selected for request number encountered.
xxx of material library.

Maximum number of load con- Flush to next recognizable
ditions allowed is 100. label card and insert check
This problem contains xxx. card.

Load condition xxx sub-label Flusn to next recognizable
is incorrect. Program can- label card and insert check
not distinguish between load card.
cohditions.

Illegal modal card en- Self-explanatory
countered. Card will be
ignored.

Due to previously encountered Self-explanatory
error condition this section
is being skipped. Program
will flush data deck until
next recognizable section
is encountered.

Unrecognizable input Plush to next recognizable
section. label card and insert check

card.

Due to above error message Self-explanatory
this section will be omitted
and check card inserted.

7. Calling Sequence:

CALL PHASE1 (COORD, T, P, MEMORY, IBOUND, NAMES, 114, PMj
BM, SM, INM, PRM, EM, NLOAD, NINITA, NPRDIS, ICALC, NREF,
NREFP, NTD, NL, NID, NPD, NAXES, NEEJEM, NM, NREF4, TZERO,
INTAPE, LOCATE, NUMCAL, NUMNAM,. ICASE, NDIR, NEND, NREF1{C,
NREFPC, NELEMC, NGRAXC, NTRANC, IN, NRFP, NRF, ERROR,
DUMPT, DINFO)

8. input Tapes:

IN - BCD tape containing card images of data deck

216

9. Output Tapes:

NTAPE1 Temporary storage for grid point axes input,
initial displacement input, and element
definitio input

NTAPE2 Temporary storage for grid point loads input,
prescribed displacement input and special
element input

INTAPE TITLE, MATER, PRINT sections a.'e output if
they were present.

10. Scratch Tapes: None

11. Storage Required: Total storage required is 3F6E 16 Bytes.

12. Subroutine User: REFORM

13. Subroutines Required:

LATCH
FORMIN

14. Remarks: None

217

1. Subroutine Name: LATCH

2. Purpose: Compare a six character name to the recognizable
list of input section names for Report Form Input.

3. Equations and Procedures: The six character name LABEL is
compared to each of the legal input section names (array
NAMES). If a match is found then LEADER is set to the
position number in NAMES which contained the matching name.
If no match is found then LEADER is set equai to one plus the
number of legal section names.

4. Input Arguments:

LABEL - name to be matched
NUMNAM - number of valid input section names
NAMES - array containing valid input section names

5. Output Arguments:

LEADER - position number in NAMES of input section name which
matches LABEL

If no match was found then LEADER is set equal to

NUMNAM + 1

6. Error Returns: None

7. Calling Sequence: CALL LATCH (LABEL, LEADER, NUMNAM, NAMES)

8. liput Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

Ii. Storage Required: Total Storage required is 1BA1 6 Bytes.

12. Subroutine User: PHASE1

13. Subroutines Required: None

14. Remarks: None

218

1. Subroutine Name: FORMIN

2. Purpose: Read and store on tape or in core all table
form input to Phase One of Report Form Input Preprocessor.

3. Equations and Procedures: The decision to store data on
tape or in core is determined by examining the input
variable NTAPE. If NTAPE is less than or equal to zero
then the data is stored in core, otherwise the data is
storea on the unit specified by NTAPE. Any modal values
read are always sto-ed in core.

It. Input Arguments:

LEADER : Index number referring to input section being
processed

MEMORY : Not used
NAMES : Array containing legal input section labels
NTAPE : Storage indicator, if#O then NTAPE contains

unit number for external storage
AMODAL : Storage reserved for modal values read, if any
MODAL : Modal card label
NUMBER : Number of input values to be read per card
REPEAT : Logical variable indicating legality of repeat

option
FMT1-5 : Input formats
MSG1-3 : Error message formats
WARN : Error message warning flag
FATAL : Error message fatal flag
NCARD : Number of input cards per table entry
CORE : Core storage area if data is to remain in core
NR, NC : Adjustable dimensions of CORE
LABSUB : Sub-label for multiple condition input sections
IN : Unit number containing input data

5. Output Arguments:

LABEL : Input section label encountered which was
different from input section label now being
processed

KOUNT : Number of input table entries read
NERROR : Error indicator
NCOND : Condition number for encountered sub-label
SCALAR : Constant for encountered sub-label

219

6. Error Returns: Error conditions are indicated in NERROR
as follows:

If NERROR equals zero, then no error has occurred
If NERROR is less than zero, then a sub-label has been
encountered
If NERROR is greater than zero, then a fatal error haL
occurred and an appropriate message will be printed

7. Calling Sequence: Call FORMIN

(LEADER, MEMORY, NAMES, LABEL, KOUNT, NTAPE, AMODAL, MODAL,
NUMBER, REPEAT, FMT1, FMT2, FMT3, FMT4, FMT5, MSGl,
MSG2, MSG3, WARN, FATAL, NERROR, NCARD, CORE, NR, NC,
LABSUB, NCOND, SCALAR, IN)

8. Input Tape: IN contains input data

9. Output Tape:. If NTAPE is greater than zero then it will
contain the stored input, otherwise there is no output
tape.

10. Scratch Tapes: None

11. Storage Required: Total storage required is C74 16 Bytes.

12. Subroutine User: PHASEI

13. Subroutines Required: None

14. RemE rks: None

220

1. Subroutine Name: PHASE2

2. Purpose: Merge, order and output form input data stored
by PHASE1.

3. Equations and Procedures: The input sections stored by
PHASE1 are detected by examining the array MEMORY. The
exact procedure. is to check the MEMORY array in the order
required for output and ii the MEMORY value for that sec-
tion is greater than zero then output that section's stored
data; otherwise continue to the next section. The order
in which the stored input sections are output, if present,
and the sections that they are to be merged with is as
follows:

Input Section Generated from Report Form Input Sections

NREF SYSTEM
TZERO SYSTEM
GRID COORD, TEMP, PRESS
BOUNDS BOUND, CALC, INITA. PRDISP
ELEM ELEM, EXTERN
TRANS TRANS
GRAXES GRAXES
LOADS LOADS
END END
CHECK CHECK

4. Input Arguments:

COORD : Array containing system grid point
coordinates

T : Array containing grid point temperatures
P : Array containing grid point pressures
MEMORY : Array indicating report form input

sections read
IBOTJND : Array containing grid point boundary con-

ditions
NAMES : Array containing legal report form input

section names
TM : Array containing modal values for grid

point temperatures
PM : Array containing modal values for grid

point pressures
BM : Array containing modal values for grid

point boundary conditions
SM : Array containing modal values for grid

point load conditions
INM : Array containing modal values for initially

displaced grid points
PRM : Array containing modal values for pre-

scribed displaced grid points

221

EM Array containing modal 'values for special
Aelement input

"INLOAD : Number of loaded grid points per load
condition

NINITA : Number of initial displacement conditions
NPRDIS : Number of prescribed displacement con-

ditions
ICALC : Array containing solution bodes
NREF : Number of grid points in system
NREFP : Number of input grid points
NTD : Number of degrees of freedom per grid

point
NL : Number of load conditions
NID : Number of initially displaced grid points
NPD : Number of prescribed displaced grid

points
NAXES : Number of grid point axes transformation

systems
NELEM : Number of elements
NM : Number of requests of material library
NREF4 : Number of input boundary condition points
TZERO : System base temperature
INTAPE : Unit on which processed output is to be

written
LOCATE : Array indication storage location of input

sections
NUMCAL : Number of solution codes
NJMNAM : Number of legal report form input section

labels
ICASE : Not used
NDIR : Number of directiohs per grid point
NEND : Not used
NREF4C : Number of input boundary condition points

actually read
NREFPC : Number of input grid points actually read
NELEMC : Number of input elements actually read
NGRAXC Number of input grid point axes systems

actually read (transformation matrices
generated)

NTRANC : Number of input grid point axes systems
actually read (transformation matrices
input)

TN : Not used
NRFP : Not used
NRF : Adjustable dimension for COORD, T, P, and

IBOUND

5. Output Argument:

ERROR : Logical variable indicating

222

6. Error Returns: Error messages are indicated in Appendix.
If an error occurs logical variable ERROR is set to TRUE
and control is returned to the calling program.

7. Calling Sequence: Call PHASE2

(COORD, T, P, MEMORY, IBOUND, NAMES, TM, PM, BM, SM, INM,
PRM, EM, NLOAD, NINITA, NPRDIS, ICALC, NREF, NREFP, NTD,
NL, NID, NPD, NAXES, NELEM, NM, NREF4, TZERO, INTAPE,
LOCATE, NUMCAL, WJMNAM, ICASE, NDIR, NEND, NREF4C, NREFPC,
NELEMC, NGPAXC, NTRJNC, IN, NRFP, NRF, ERROR)

8. Input Tapes: The arvay LOCATE contains the unit number,

if any, on which data was stored by subrountine PIIASE1.

9. Output Tape: INTAPE contains processed output.

10. Scratch Tapes: None

11. Storage Required: Total storage required is 40721b Bytes.

12. Subroutine User: REFORM

13. Subroutine Required: OPEN

14. Remarks: None

223

I. Subroutine Name: PDISP

2. Purpose: Generate pre3cribed displacement :.,atrix if
required.

3. Equations and Procedures:

A. Check if matrix name is suppressed, if it is then
return (no matrix is output).

B. Check if NPDC+l and NPDC-NL print error message and return.
C. Use EUTL5 to write ,abrix header.
D. If MODAL array is blank insert zeros, if not insert

MODAL values into displacement column.
E. Loop on number of grid points for which values were

gJwv.i, inserting them into the displacement column.
F. CeAnpress column each time, using EUTLS, and write it out.
G. If column compresses to zero skip write out.
H. Do (D) to (G) for each prescribed displacement condition.
I. At end use EUTL6 to wri'te natrix trailer.

4. Input Arguments:

NREF - number of system g °id points
NTD - number of degrees ;f freedom/point (NDEG*NDIR)
NL - number of external load conditions input
PRM - array of modal values/condition
NPROIS - number of input points/condition
IODISP - output logical unit number of matrix
NAMDIS - name of output matrix array (7 elements long)
NPDC - number of prescribed displacement conditions input
DISP - (array area used by IBOUND array used in PHASE2-

now used to store displacement column)
KTAPE - tape logical unit number used for displacement input

5. Output Arguments: ERROR - logical variable true if error

return is used.

6. Error Returns: lf NPDC+l and NPDC<NL.

7. Calling Sequence:

Call PDISP(NREF,NTD,NL,PRM,NPRDIS,NPDC,IODISP,NAMDIS,DISP,
KTAPEERROR)

8. Input Tapes: KTAPE - See Item 4.

9. Output Tapes: NPOT - standard print out unit; IODISP - See Item 4.

10. Scratch Tapes: None

224

11. Storage Required: Total Storage required is 7DE 6 Bytes.

12. Subroutine User: PHASE2

13. Subroutine Required:

EUTL5
ETITL6
EUTL8

14. Remarks: None

22

I225

,, i

1. Subroutine Name: OPEN

2. Purpose; Select a unit and thpn locate the requested
input section on that unit

3. Equations and Procedures: The correct rnit number is
extracted from the array LOCAME. The v-nit is then searched
for the requested input section. Searching starts from the
present position of the unit and allcws the end -.f the
unit's extent to be reached twice before the search is
abandoned.

It. Input Arguments:

LEADER : Identification number of input section
being processed

NAMES : Array containing valid labels
LOCATE : Array containing corresponding logical

units for valid labels
* Non-standard return for error condition

5. Output Arguments:

NTAPE : Unit containing requested input section

6. Error Returns: If the requested input section is not
located on the selected unit the non-standard return
is used.

7. Calling Sequence: Call OPEN

(LEADER, NAMES, LOCATE, NTAPE, $XXXXX) where XXXXX
is the statement number to which control is returned
in the calling program if an error occurs.

8. Input Tapes: The array LOCATE contains the logical unit
numbers which may be input tapes.

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 24A 16 Bytes.

12. Subroutine User: PHASE2

13. S,:!routines Required: None

111. Remarks: None

226

1. Subroutine Name: CHEK

2. Purpose: Perform input/output cross-checking for
USER04 module

3. Equations and Procedures: The required input sections
for the selected output matrices are indicated in the
array MASTER (see subroutine LOGFLO). The actual input
sections Drocessed are indicated in the array ICONT.
The logical array, GO, is set according to the informa-
tion in MASTER as compared with ICONT. If an output
matrix requires an input section that is not present
then a message is printed giving the matrix name and
corresponding positton in the GO array is set to .FALSE.

4. Input Arguments:

NAMOUT : Array containing output matrix names
NUMOT : Number of output matrices
NAMIN : Array containing input matrix names
NUMIN : Number of input matrices
MASTER : Array indicating required input sections
NUMAST : Length of MASTER
ICONT : Array indicating processed input sections
NCONT : Length of ICONT

5. Output Arguments:

GO : Array indicating input requirements have
been satisfied, one position for each
possible output matrix

6. Error Returns: None

7. Calling Sequence:

(NAMOUT, NUMOT, NAMIN, NUMIN, MASTER, NUMAST, ICONT,
NCONT, GO)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 59A 1 6 Bytes.

12. Subroutine User: USO4A

13. Subroutines Required: NTEST

li. Remarks: None

227

1. Subroutine Name: OUTINT

2. Purpose: Output interpreted input data as a matrix

3. Equations and Procedures: After proce',sing the input
data deck, all necessary information is stored in three
areas. System control information is stored in the array
KNNU and in the first two records on scratch unit NTAPE1.
Element generation data is stored on scratch unit NTAPE3.
All of this data is output as a matrix, the first column
containing KNMD, the second and third columns containing
the first two records from NTAPE, the fourth column
containing two words (number of elements, NELEM, and
grid point axes indicator) and the last 2*NELEM columns
containing the input element generation data.

4. Input Arguments:

NAMOUT : Array containing output matrix name
IOSPEC : Array containing unit specifications for

output matrix
NTAPE1 : Unit containing system control information
NTAPE3 : Unit containing element generation data
KNMD : Array 2ontaining system control information
NUMK : Length of KNMD
IWORK : Work storage area

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

(NAMOUT, IOSPEC, NTAPE1, NTAPE3, KNMD, NIUMK, IWORK)

8. Input Tapes:

NTAPE1 : Unit containing system control information
NTAPE3 : Unit containing element generation data

9. Output Tapes:

IOSPEC(l): Unit which will contain interpreted input
data matrix

10. Scratch Tapes: None

11. Storage Required: Total storage required is 6DE1 6 Bytes.

12. Subroutine User: USO4A

228

13. Subroutine Required:

EUTL5
EUTL6

i14. Remarks: None

1 229

1. Subroutine Name: FLOADS

2. Purpose: To generate a matrix of external grid point
loads which is acceptable to Format.

3. Equations and Procedures: A grid point load matrix, PrOL,
is read from NTAPE4 for each load condition. It is then
converted into compressed format and stored on tape I0SPEC.

The matrix dimensions are NSYS x NL, where NSYS is the
size of the total assembled load column and NL is the
number of grid point load conditions.

1t. Input Arguments:

NSYS - Size of total assembled load column
NAMOUT- Array containing output matrix name for load

matrix
IOSPEC- Output tape unit number for loads matrix
NTAPE4- Input tape unit number containing loads matrix
PCOL - Core storage area for loads matrix

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: CALL FL0ADS (NSYS, NAM0UT, IOSPEC,
NTAPE4, PC0L)

8. Input Tapes: NTAPE4

9. Output Tapes: IOSPEC

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 34A 16 Bytes.

12. Subroutine User - USO4A

13. Subroutines Required - None

14. Remarks: None

230

1. Subroutine Name: FTR

2. Purpose: To generate a matrix which will transform
another matrix from full system coordinates to "reduced"
system, i.e. boundary condition constrained.

3. Equations and Procedures: The matrix TR is of order
NPvDB X NSYS such that if J = LIST (I), then the element
TR (I, J) = 1.0. LIST contains the row numbers of the
full system which a:re to be retained in the reduced
matrix. Only fixed bounds are reduced out as indicated
by KODE = 0 in input data bounds.

Each column is generated and stored on tape as defined
by FORMAT. Each column record consists of: J, 1, 2, 1.0,
where J = LIST (i).

4. Input Arguments: NMDB - order of reduced matrixNSYS - order of full system

NAM0UT - matrix name of TR
IOSPEC - matrix output tape for TR

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

CALL FTR (NSYS, LIST, NTAPE1, NAMJT, ISPEC)

8. Input Tape: NTAPE1

Record #1 COM1 (not required)

Record .#2 NMDB1, NMDB, (LIST (I), l=l, NMDB)

9. Output Tapes: IOSPEC - Format Output Tape Number

10. Scratch Tapes: None

ll. Storage Required: Total Storage required is 3 4 81 6 Bytes.

12. Subroutine User: USOfA

13. Subroutines Required: None

14. Remarks: None

23

1. Subroutine Name: TSYS

2. Purpose: To output as a format matrix system constants
needed outside of the USER04 module.

3. Equations and Procedures: The array NMD containing
system constants generated in the input phase of the USER04
module is passed to subroutine TSYS by subroutine USER04A.
These constants are then converted to floating point
variables and output as a column matrix to the format
system.

The constants that are output are as follows in their
respective order:

NDIR - number of directions
NDEG - number of types of degrees of freedom
NREF - highest reference node in element connections
NMDB - the order of the reduced system = NMDB1+NMDB2
NMDBO - the number of zero btundary conditions
NMDB1 - the number of ones
NMDB2 - the number of twos
NMDBO1 - the number of zeros plus ones
NMDB12 - the number of ones plus twos
NTYPE - code for element degrees of freedom

NTYPE - 0 for 3 types of D.O,F.
NTYPE a 1 for 1 or 2 types of D.O.F.

NSYS - the total number of system degrees of freedom
equals NDIR*NDEU*NREF

NELEM - the number of elements in the analyses
NL - the number of external load conditions in the

analysis

4. Input Arguments:

NMD - array of system constants
NAMOUT - array containing the name of the format matrix
NSET - logical unit number matrix is to b,. written on
NREF - highest reference node in elein.-rt cornections

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: TSYS(NMD,NAMOUT,NSET,NREF)

8. Input Tapes: None

9. Output Tapes: NSET

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 48216 Bytes.

12. Subroutine User: US04A

13. Subroutine Required: EUTL5, EUTL6

14. Remarks: Note that these constants have been converted to
floatin% point numbers.

232

1. Subroutine Name: USO4B

2. Purpose: Control Phase Two and Phase Three operations
(element matrix generation and element matrix output,
respectively).

3. Equations and Procedures: System control information
is extracted from the array KNMD. Scratch units are
assigned from the array ISSPEC. If input displacements
are present then subroutine DEFLEX is called to record
the input displacements on scratch unit NTAPE4. If the
interpreted input matrix position is non-blank then
subroutine ININT is called to generate input tapes NTAPE1
and NTAPE3. Subroutine FELEM is called to control the
generation of the element matrices. And, finally, sub-
routine OUTMAT is called to place the generated matrices
into the Format System.

4. Input Arguments:

NUMOT : Number of output matrices
NAMOUT : Array containing names of output matrices
IOSPEC : Array containing unit specifications

for output matrices
NUMIN : Number of input matrices
NAMIN : Array containing names of input matrices
INSPEC : Array containing unit specification for

input matrices
NUMSR : Number of available scratch units
ISSPEC : Array containing scratch unit specifications
NUMSC : Number of scalars
SCALAR : Array containing scalars
NWORKR : Number of available storages in work area
WORK : Work area
IPRINT : System print control
KNMD : System control information
MASTER : Array containing input/output cross-checkling

codes
NUMAST : Length of MASTER
IUMK : Length of KNMD

5. Output Arguments:

ERROR : Logical variable indicating error condition

6. Error Return: If an error is detected in element matrix
generation or in element matrix output then ERROR is set
to TRUE and control is returned to the calling program.

233

7. Calling Sequence: Call USO4B

(NUMOT, NAMOUT, IOSPEC, NUMIN, NAMIN, INSPEC, NUMSR,
ISSPEC, NUMSC, SCALAR, vRROR, NWORKR, WORK, IPRINT,
KNMD, MASTER, NUMAST, NrUMK)

8. Input Tapes:

NTAPE1 : Contains system control information
NTAPE3 : Contains interpreted element input

9. Output Tapes:

IOSPEC(1,6) : Reserved for assembly transformation
matrix

IOSPEC(1,7 ! Reservad for element stiffness matrices
IOSPEC 1,8 : Reserved for element load matrices
IOSPEC 1,9 : Reserved for element stress matrices
IOSPEC(1,10) : Reserved for element thermal stress

matricez
IOSPEC(1,11) : Reserved for element incremental

stiffness matrices
IOSPEC(I,12) : Reserved for element mass matrices

10. Scratch Tape-

NTAPE2 : Contains element generated matrices
in compact form

NTAPE4 : Contains input displacements, if
present

11. Storage Required: Total storage required is 7D8 16 Bytes.

12. Subroutine User: USO4

13. Subroutines Required:

NTEST
ININT
DEFLEX
FELEM
CUTMAT

14. Remarks: None

234

1. Subroutine Name: ININT

2. Purpose: Restore data from interpreted input matrix

3. Equations and Procedures: Subroutine EUTL3 is called
to locate the input matrix. The first column of the
matrix contains system control information and is read
into KNM4D. Columns two and three contain further system
information and are recorded as the first two records
on NTAPE1. Column four and all succeeding columns contain
element generation input data and are recorded on NTAPE3.

4. Input Arguments:

NAMIN : Array containing input matrix name
INSPEC : Array containing unit specifications

for input matrix
NTAPE1 : Unit reserved for system control information
NTAPE3 : Unit reserved for element generation input data
KNMD : Array reserved for system control information
IWORK : Work storage area
NUMK : Length of KNIMD

5. Output Arguments:

IER : Logical variable indicating error condition

6. Frror Returns: If the input matrix cannot be located, or
a word count error occurs for columns one or four, or the
matrix trailer record is encountered unexpectedly, then
IER is set to .TRUE..

7. Calling Soquence:

(NAMIN, INSPEC, NTAPE1, NTAPE3, KNMD, IWORK, NUMK, IER)

8. Input Tapes:

INSPEC(l) : Unit containing interpreted input matrix

9. Output Tapes:

NTAPE1 : Unit reserved for system control information
NTAPE3 : Unit reserved for element generation input

data

10. Scratch Tapes: ione

11. Stcrage Required: Total storage required is 91216 Bytes.

235

12. Subroutine User: USo4B

13. Subroutines Required: EUTL3

14,. Remarks: None

236

1. Subroutine Name: DEFLEX

2. Purpose: Sort input displacement matrix into separate
element input sections

3. Equations and Procedures: The input displacements for
the system are read into the IWORK array and restored
at the end of the IWORK array. For each element, the
following procedure is invoked: the element generation
input data is read from scratch unit NTAPE3; the array
containing the element definition points is extracted;
the input displacements corresponding to these points
are selected from the system input displacements and
written on scratch unit NTAPE4.

4. Input Arguments:

NSYS : Total degrees of freedom in system
NAMIN : Array containing input matrix name
INSPEC : Array containing unit specifications

for input matrix
NTAPE : Unit containing element generation input
NTAPE4 : Unit reserved for element input displacements
IWORK : Work storage area
NWORK : Length of IWORK
MAXNI1 : Maximum length of record on NTAPE3

5. Output Arguments:

IER : Logical variable indicating error condition

6. Error Returns: If the input matrix cannot be found,
or its dimensions are not NSYS by one or IWORK does not
contain sufficient storage locations then IER is set
to .TRUE..

7. Calling Sequence;

(NSYS. NAMIN INSPEC, NTAPE3, NTAPE4, IWORK, NWORKR,
MAXNIl, IER5

8. Input Tapes:

NTAPEV3 : Unit containing element generation input data

INSPEC(l): Unit containing system input displacement matrix

9. Output Tapes:

h'APE4 : Unit reserved for element input displacements

237

10. Scratch Tapes: None

11. Storage Required: Total storage required is AD4I Bytes.

12. Subroutine User: USO4B

13. Subroutines Required:

EUTL3
EUTL9

14. Remarks: None

238

1. Subroutine Name: FELEM

2. Purpose: Set element matrix generation controls and
initiate matrix generation.

3. Equations and Procedures: Logical unit definitions are
assigned to their structural system functions. An array,
IWORK, is reserved for storage of generation controls
and system information. The generation controls are
determined by examining the output matrix names and the
system information is retrieved from unit NTAPE1. Sub-
routine SQUISH is called to compute matrix suppression
controls. The number of elements is read from unit NTAPE3
and subroutine ELPLUG, which selects the correct element
type, is called for each element.

4. Input Arguments:

KP : Not used
NTAPE1 : Logical unit containing system control

information
NTAPE2 : Logical unit reserved for generated element

matrices
NTPE3 : Logical unit containing interpreted element

input
NORDM : Maximum element degrees of freedom
NRSELM : Maximum element stress order
NOINKM : Maximum storage required for element stiffness

matrix
NIAM : Maximum storage required for element matrix

record on NTAPE2
NTAPE4 : Logical unit containing input displacements,

if present

5. Output Arguments:

ERROR : Logical variable indicating error condition

6. Error Returns: If an error occurs in generation of element
matrices then ERROR is set to .TRUE. and control is
returned to the calling program.

7. Calling Sequence: Call FELEM

(KP, NTAPE1, NTAPE2, NTAPE3, NORDM, NRSELTM, NOINKM,
NIAM, ERROR, NTAPE4)

8. Input Tapes:

NTAPEI : Contains system control informatio.
NTAPE3 : Contains interpreted element input

1239
t

9. Output Tapes:

NTAPE2 : Reserved for compact storage of element
generated matrices

10, Scratch Tapes: None

11. Storage Required: Total storage required is 5D816 Byteas.

12. Subroutine User: USO4B

13. Subroutines Required: ELPLUG, SQUISH

14. Remarks: None

240

1. Subroutine Name: SQUISH

2. Purpose: Set matrix suppression codes for element
generation phase

3. Equations and Procedures: The indicators are initially
set to zero, signifying suppression is desired. Sub-
routine NTEST is called to examine the output matrix
names for supprebsion selections. For each non-suppressed
matrix position encountered the corresponding indicator
is reset to one.

4. Input Arguments:

NAMOUT : Array containing matrix names
NUMOT : Number of output matrices

5. Output Arguments:

KK : Suppression indicator for element stiffness
matrices

KF : Suppression indicator for element load matrices
KS : Suppression indicator for element stress

matrices
KN : Suppression indicator for element incremental

stiffness matrices
KM : Suppression indicator for element mass matrices
KDS : Suppression indicator for element structural

damping matrices
KDV : Suppression indicator for element viscous

damping matri .es
KTS : Suppression indicator for element thermal

stress matrices

6. Error Returns; None

7. Calling Sequence:

(NAMOUT, KK, KF, KS, KN, KM, KDS, KDV, KTS, NUMOT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

F 241

11. Storage Required: Total storage required is 3DE 1 6 Bytes.

12. Subroutine User: FELEM

13. Subroutines Required: NTEST

14. Remarks: None

242

1. Subroutine Name: ELPLUG

2. Purpose: Select proper element type to generate
requested element matrices.

3. Equations and Procedures: Subroutine REC1 is called
to obtain the interpreted element input. If input dis-
placements were present then the values are retrieved
from unit NTAPE4. Included in the interpreted element
input is the element type coCe number (plug number).
From this data the proper plug subroutine is called and
the reqbested element matrices are generated. If the plug
number is five, six or fourteen the grid point axes
transformations are then applied. If the plug number
was one, two or seven then grid point axes transform-
ations were applied inside the plug. Subroutines REC3
and REC4 are called to write as external units element
control data and the generated element matrices,
respectively. Finally, if an element matrix print has
been requested then subroutine ELPRT is called to
perform the printing.

There is only one exception to the above procedure.
If the option to repeat element matrices has been
selected (IP = -2), then the plug subroutine is bypassed
and element matrices from the previous element are
writ;ten again by REC3 and RECb.

4. Input Arguments: The input arguments contained in JWORK
are:

JWORK(l)-IEL : Element generation sequence
number (IEL = 1,2,3, . . . , NELEM)

JWORK(2)-ITAPE : Indicator controlling writing of
matrices on external unit

JWORK(3)-KK : Element stiffness matrix suppression
control

JWORK(4)-KF : Element load matrix suppression
control

JWORK(5)-KS : Element stress matrix suppression
control

JWORK(6)-KM : Element mass matrix suppression
control

JWORK(T)-KDS : Not used
JWORK(8)-KDV : Not used
jWORK 9)-KN : Element incremental stiffness matrix

suppression control
JWORK(II)-NMDB : Not used
JWORK 12)-NDIR : Number of di-ections per grid point
JWORK(13) -NDEG : Number of solution degrees of

freedom per grid point
JWORK(14)-ICONT : Grid point axes transformation

indicator

243

JWORK(15)-NTAPE2 : Unit number reserved for generated
element matrices

JWORK(16)-NTAPE3 : Unit number containing interpreted
element input

JWORK (18) -ILP : Internal element type code
JWORK (19) -IPL : Input element type code
JWORK (20) -NTAPE4 : Unit number containing input dis-

placement, if present
JWORK(21)-INDISP : Variable indicating presence of

input displacements

Other input arguments are:

NUMOT : Number of output matrices
NAMOUT : Array containing output matrices names

5. Output Arguments: Input and output arguments are contained
in the array JWORK. The output arguments contained in
JWORK are:

JWORK(10)-NORD : Element degrees of freedom
JWORK(17)-NIAM : Maximum number of storages required

to write a record on unit NTAPE2
JWORK(20)-NERR : Returning error code,

if NERR is zero then no error has
occurred,
if NERR is one then element type code
number is incorrect,
if NERR is two then the number of
element defining points is incorrect,
if NERR is three then the special
element input is incorrect, and
if NERR is four then the number of
element degrees of freedom is
incorrect.

6. Error Returns: If NERROR is not zero upon return from
ELPLUG, then an error has occurred.

7. Calling Sequence: Call ELPLUG (JWORK, NUMOT, NAMOUT)

8. Input Tape:

NTAPE3 : Unit containing interpreted element
input

9. Output Tape:

NTAPE2 : Unit reserved for generated element
matrices

10. Scratch Tapes: None

244

ii. Storage Required: Total storage required is 1B301 6. Bytes.
12, Subroutine User: FELEM

13. Subroutines Required:

REC1
PLUGI
PLUG2
PLUG5
PLUc6
PLUG7
PLUG14
AXTRA3
AXTRA2
AXTRAlREC

ELPRT

14. Remarks: Storage for the generated element matrices
and work areas required by ELPLUG is allocated by equiv-
alencing into the blank common work area starting at
location 1001 and extending to location 6000. Work storage
for the various element types is allocated by equivalencing
into the blank common work area at location 6001.

245

1. Subroutine Name: REC3

2. Purpose: Write or read element control information tape
records.

3. Equations and Procedures: The decision to read or write
the record is determined by examining the input variable
IOPT in the following manner:

if IOPT s 1 the record is read
if IOPT Zt 2 the record is written

4. Input Arguments: (if IOPT;2)

IOPT: Read/write indicator
K: Fortran logical unit number
N13: Number of words in record (excluding N13)
JEL : Element number
IPL: Element type code number (plug number)
NLIST: Element order (number of degrees of freedom

per point * number of points)
LISTEL: Vector containing boundary condition information

for element
NIA: Not used (set equal to one)
IAKEL: Not used

5. Output Arguments: (if IOPT 1)

Given the proper value of IOPT, all of the above input
arguments will be output arguments with the exception of
IOPT and K, which are always input arguments.

6. Error Returns: None

7. Calling Sequence:

CALL REC3 (IOPT, K, N13, JEL, IPL, NLIST, LISTEL, NIA, AKEL)

8. Input Tape: If IOPT:5I, then K is an input tape.

9. Output Tape: If IOPT 2, then K is an output tape.

10. Scratch Tape: None

11. Storage Required: Total storage required is 36816 Bytes.

12. Subroutine User: ELPLUG

13. Subroutines Required: None

14. Remarks: None

246

1. Subroutine Name: REC4

2. Purpose: Read or write generated element matrices records.

3. Equations and Procedures: 'The decision to read or write
the record is determined b.v examining the input variable
IOPT in the following manner:

if IOPT_<1 then a record is read

if IOPT_:2 then a record is written

4. Input Arguments: (when IOPT22)

IOPT: Read/write indicator

K: Fortran logical unit number

NOINK: Number of storages required for stiffness and
incremental stiffness matrices

AKELT: Element stiffness matrix
NORD: Number of storages required for element loads

matrix

FTEL: Element loads matrix

NNO: Number of element defining points (node points)

NODES: Grid point numbers defining element

NSEL: Number of storages required for element stress
matrix

NRSEL: Number of rows in element stress and thermal
stress matrices, also number of storages required
for element thermal stress matrix

SEL: Element stress matrix

SZALEL: Element thermal stress matrix

ANEL: Element incremental stiffness matrix

FNEL: Not used

NMASS: Number of storages required for element mass
matrix

AMASS: Element mass matrix

NDMPV: Number of storages required for element viscous
damping matrix

DAMPV: Element viscous damping matrix

NDMPS: Number of storages required for element structural
damping matrix

DAMPS: Element structural damping matrix

247

5. Output Arguments: (when IOPT -l)

NI4 - number of words contained in record (excluding NI4)
All of to above input arguments are output arguments given
the correct value of IOPT except for IOPT and K which are
always input arguments.

6. Error Returns: None

7. Calling Sequence:

CALL REC4 (IOPT, K, NI4, NOINK, AKELT, NORD, FTEL, NNO,
NODES, NSEL, NRSEL, SEL, SZALEL, ANEL, FNEL, NMASS, AMASS,
NDMPV, DAMPV, NDMPS, DAMPS)

8. Input Tape: If IOPT:I then K is an input unit.

9. Output Tape. if IOPT _2 then K is an output unit.

10. Scratch Tapes: None

11. Storage Required: Total storage required is 85016 Bytes.

12. Subroutine User: ELPLUG

13. Subroutines Required: None

14. Remarks: None

248

(

1. Subroutine name: MINV

2. Purpose: Invert a matrix.

3. Equations and Procedures: The standard Gauss-Jordan Method
is used in which the inverted matrix is stored back on itself.

4. Input Arguments:

A: Matrix to be inverted

N: Order of matrix

D: Determinant of matrix

L: Work vector of length N

M: Work vector of length N

5. Output Arguments: A - Contains the inverted matrix

6. Error Returns: If D = 0, matrix is singular.

7. Calling Sequence: CALL MINV (A, N, D, L, M)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 81816 Bytes.

12. Subroutine User: TRAIC, NEWFT, PLUG1, PTBM, PTBF, MATPR, NEWFT1

13. Subroutines Required: None

14. Remarks: None

i

249

1. Subroutine Name: AXTRA2

2. Purpose: Apply grid point axes transformation by post-
multiplication using either the actual transformaticn
matrix or its transpose.

3. Equations and Procedures:

I OUil1 L1 [rGp or [MOUrj [MII PA 'r

where: MI] is the input element matrix,

r -~ is the element grid point axes trans-
LEPAJ formation matrix,

[Mour is the output transformed element matrix,

-OUrr is stored in the same location asM1 i,_A therefore,

the input element matrix is lost once the multiplication
has been effected. Advantage is taken, during multiplica-
tion, of the fact that [GPAj is structured as a set of

(3 x 3) or (2 x 2) matrices with main diagonal positions
lying on the main diagonal of [rPA].

4. Input Arguments:

GPAXEL : Element grid point axes transformation matrix,[rpG

SEL : Input element matrix [M
NROW : Number of rows in SEEL
NNO : Number of element node points
NDEG : Number of degrees of freedom
NDIR : Number of directions
IPL : Element plug number
ITRAN : Control code, if ITRAN = 0, then ou' = N 1i LGp

if ITRAN = 1, thenLo f, ~P~

5. Output Arguments:

SEL : Output transformed element matrix,[MOUT

6. Error Returns: None

7. Calling Sequence:

CALL AXTRA2 (GPAXEL, SEL,. NROW, NNO, NDEG, NDIR, IPL, ITRAN)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

250

11. Storag Required: Total Storage required is 4D6 16 Bytes.

ROW (3)
ISAVE (3)

12. SubroA'Jine User: ELPLUG, PLUG7, PILUG2, CK22, CK11

13. Subroutine Required: None

14. Remarks: The output matrix is stored in the input matrix
storage. Grid point axes transformation is not applied
to the rotation terms at the mid-points of the quadri-
lateral thin shell and the triangulair thin shell elements.

251

1. Subroutine Name: MAB

2. Purpose: To evaluate the matrix product A * B = AN

3. Equations & Procedures:

AN A * 3
nm = nj ;m

4. Input Arguments:

A: Elements of Al matrix
B: Elements cf[BI matrix
N: Number of rows in [A] matrix
L: Number of columns/rows in [A] [B]matrix
M: Number of columns in B]matrix
Nl,Ml: Dimension of [AI matrix
N2,M2: Dimension of (Bi matrix

5. Output Arguments:

AN: The matrix product

6. Error Returns: None

7. Calling Sequence: CALL MAB (AB,AN,N,L,M,N1,M1,N2,M2)

3. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total. Storage required is 2F61 6 Bytes.

B 1
AN(l)

12. Subroutine User: Used by many subroutines within the MAGIC

program

13. Subroutines Required: None

14. Remarks: None

252

1. Subroutine Name: MSB

2. Purpose: To evaluate the matrix product of' a s,,ymmetric-
bottom half matrix and a rectangular matrix

3. Equations & Procedures:

ANnm = Sne Bem

4. Input Arguments:

S: Elements of LSJ matrix (symmetric)
B: Elements of B] matrix
N: Number of rows in the[S], and [Al matrices (order)
M: Number of columns in the and[AN] matrices (order)
NI and Ml: Dimensions of the [B] and[AN] matrices

5. Output Arguments: AN: Matrix product

6. Error Returns: None

7. Calling Sequence: CALL MSB (S,B,AN,N,M,N1,M1)

8. Input Tapes: None

9. Output Tapqs: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 31216 ytes.

B(1)
S(1)
AN(i)

12. Subroutine User: Used by various subroutines within the
MAGIC Program.

13. Sub-outines Required: None

14. Remarks: S] is of the form

S2 1 $2 2

SN1 1 SN12 "" SN2 Ni

253

1. .Tubroutine Name: RCR

2. P urpose: To evaluate the triple product of he transpose of
i matrix A, a symnmetric matrix S and thL A matrix.

2. Equations and Procedures:

ANm Z AT AS (See remark 1)nm n n mn nn nm

I.. Tnput Arguments:

A: The elements of the [A] matrix
SYM: Tho elements of the [S] matrix (symmetric-bottom half)
NDMD: Dimensions of a matrix
N,M: Order of A matrix
Ni: Number of rows to be deleted in multiplication
SCAL: Scalar quantity
TASSY: (see remark 2)

. Output Arguments:

AN: Elements of the matrix AN which is the final product

6. Error Returns: None

7. ralling Sequence:

CALf, BC (A, SYM, AN, RD, MD, N, M, Nl, SCAL, IASSY)

q. Tnput Tapes,: None

9. Output Tapes: None

10. Scratch Tapes: None

ii. Storage Required: Total Storage required is 54216 Bytes.

12. .Subroutine User: Varicus routines ,ithin MAGIC

13. Subroutines Required: None

14. Remarks:

I. Tn the summati,rn,, the n's must be replaced by dummy
subscripts, running from 1 to n. The dummy must be used
(ie. n n) to ensure proper summing.

j=1 r=1

254

2. IASSY controls the summation procedure.

If IASSY = 1, AN will be the sum of the calculated AN
and all previous calculations of AN.
If IASSY = 0, AN will be the triple product for
this calculation.

255

1. Subroutine Name: MATB

2. Purpose: Subroutine to evaluate the matrix product of
A transpose and B.

3. Equations and Procedures:

ANnm E AT * Be en em

where

AT is the trans,,ose of Aen ne
4. Input Arguments:

A: elements of [A] matrix

A: elements of [B] matrix

N: number of rows in [A] matrix (order)

L: number of coluns in [A] matrix (order)

M: number of rows in [B] matrix (order)

Nl,Ml: dimension of [A] matrix

N2,M2: dimension of [B] matrix

5. Output Arguments:

AN: elements of matrix product

6. Error Returns: None

7. Calling Sequence: CALL MATB (A, B, AN, N; L, M, Ni, Ml,
N2, M2)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage i.equired is 30616 Bytes.

12. Subroutine User: Various subroutines in MAGIC

1.3. Subroutines Required: None

14. Remarks: None

256

1. Subroutine Name: SYMPRT

2. Purpose: To print a symmetric matrix as output

3. Equations and Procedures: Not Applicable

4. Input Arguments:

SYM: Elements of the sVmmetric matrix
Nl: Matrix identification number
N2: Dimension of matrix

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: CALL SYMPRT (SYM, Nl, N2)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 27016 Bytes.

12. Subroutine User: Various subroutines in MAGIC System

13. Subroutines Required: None

14. Remarks: None

257

1. Subroutine Name: LOC

2. Purpose: Compute a vector subscript f-r an element in a
matrix of specified storage mode

3. Equations and Procedures: The routine determines the type
of matrix and computes the subscript accordingly.

4. Input Arguments:

I: Row number of element

.1: Column number of element

N: Number of rows in matrix

M: Number of columns in matrix

MS: Storage i,.ide of matrix

3 General

I Symiietric (Upper Half)

2 Diagonal

5. Output Arguments: IR - Resultant vector subscript

6. Error Returns: None

7. Calling Sequence: CALL L0C (I, J, IR, N, M, MS)

B. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 29816 Bytes.

12. Subroutine User: MPRD, TPRD, AXTRA3

13. Subroutines Required: None

1 11: Remarks: None

258

1. Subroutine Name: ELTEST

2. Purpose: Check on input variables (p2.ug number, number of
nodes, order of matrix), for a specific element.

3. Equations & Procedures: Logical "IF" statement is used to
check equivalence of variables with predefined program con-
stants.

4. Input: IPL & IPLl - plug number & check constant
NNO & NNO1 - number of nodes & check constant
NORD & NORDI - order of matrix & check constant

5. Output: NERR (error return)

6. Error Returns: NERR = 0 No error
NERR = 1 Plug number incorrectNERR = 2 Number of nodes incorrect

NERR = 4 Order of Aatrix incorrect

7. Calling Sequence: CALL ELTEST (IPL, IPL, NNO, NNO1, IP,
IP, NORD, NORD1, NERR)

8. Input Tapes: None

9. Output Tapes: Hone

10. Scratch Tapes: None

11. Storage: Total storage required is 27A1 6 Bytes.

12. Subroutine User: All plugs

13. Subroutines required: None

14. Remarks: None

259

1. Subroutine Name: PLUG1

2. Purpose: To formulate the element matrices for a quadri-
lateral plate

3. Equations and Procedures: The following sequence of op-
erations are necessary in order to obtain the element
matrices. Equations are found in Volume I.

A. The material and geometric properties are obtained from
MAT and EXTRA respectively.

B. From the Appendix of reference 1, the corner points
defining the element are redefined to local oblique
system by TRAOBQ. Provision is made to also account
for differeni; .,aterial axis orientation (due to ortho-
tropy) or for a specific input stress direction.

C. The following operations are performed as formulated in
the appropriate equations:

() Call NEWFT to form matrices necessary for
thermal loadings,

(2) Call CDELPQ to determine integrals of each zone
of the quadrilateral,

(3) The material property matrix dependent upon the
stress-strain input of EXTRA (4) is coded as EM,

(4) The strain, stress and displacement transformations
are coded as TES, TESS and TW respectively,

(5) Compute [EG] = [TE$]T [EM] [TE$],
(6) Store transpose of[TE$$] into[T$AVE] ,[T$AVE]is

then stored back into[TE$$] and inverted,
(7) If print option eauals -1, call PIPRTA for print

of intermediate computations,
(8) Initialize the thermal load, pressure, thermal

stress, stress and mass matrices to zero.

D. Membrane computations are performed in the following
manner:

1. Call CKII to formulate.the [K21S] element stiff-
ness matrix in global system,

2. Formulate the transformation from local to global
system by forming the product [TAOM] [TOGM] [TGM] =

ITMS],

26o

3. Equations and Procedures: Continued

(3) If mass matrix is requested then
a. Call C4ASS to form the membrane mass matrix

in local systems (CMM),
b. The mass matrix is then transfcrmed to global

systems as [AMASS] = [TGSM]T [CMM] [TGSMJ.

(4) ~If stress and/or f rce matrices are requested then
a. Call C$TM to formulate the membrane stress

matrix [S3 ,
b. Call CFMTS to formulate the membrane thermal

force and stress matrices.

(5) If print controls equal -1, call PRT1 to print
out intermediate matrices.

E. Flexural computations are then performed in the
following manner:

(1) Call CK22 to add the flexural contributions to
the stiffness matrix [K21S] ,

(2) Apply transformation to global system by perform-
ing [TFMJ = [TGAMB][TOGB][TGRB],

(3) If stress and/or force matrices are requested then
a. If input pressure not equal to 0, call CFP

to formulate the pressure matrix,
b. The flexural co,tributions to the stress

matrix are formulated by calling C$TF,
c. If flexural input temperature not equal to

zero, calls CFFTS to formulate the thermal
force and stress matrices.

(4) If mass is requested then
a. Call CFMASS to form the membrane mass matrix

in local system LCMF],
b. The mass matrix is transformed to global sys-

tem as [AMASS] = [TGFS]T [CMF] [TGFS]

(5) Again if the print option is -1, intermediate
element computatiou printout is obtained from PRT1.

261

4. Input Arguments:

IPL : Plug number
N&O : Number of nodes (8)
XCYC,ZC : Coordinates of element node points
TEL : Temperature array of element n'>de points
PEL : Pressures at element node poi us
NN : Nuiber of nodes
NL : Node point numbers
KK, KN : Control for computation of matrices (see remarks)
GPAXEL : Grid point axes transformations
MAT : Array containing material properties
EXTRA : Array containing geometric properties

5. Output Arguments:

K21S : Stiffness matrix
FTEL : Element force matrix
S : Stress matrix
SZALEL : Thermal stress matrix
AMASS : Mass matrix for dynamic analysis

6. Error Returns:

a. Stnndard error returns by ELPLUG (NERR)
b. Sin o = 0 indicates coordinate input data error

7. Calling Sequence:

CALL PLUG1 (IP'. NNO, XC, YC, ZC, TEL, PEL, QS, IP, NORD,
NERR, NOINK, K21S, AN1, FTEL, S, SZALEL, AMASS, DAMPV,
DAMPS. NRSEL, NN, NL, NMASS, NDMFV, NDMPS, NSEL, KK, KF, K8,
KTS, KM, KDS, KDV, KN, TUSEL, EPSLON, SIGZER, MAT, EXTRA,
GPAXEL, NDIR, NDEG, ICONT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 291616 Bytez.

12. Subroutine User: ELPLUG

262

13. Subroutines Required:

ELTEST CST4
NEWFr CFMTS
CDELPQ PRT1
MINV CK22
BCB CFP
CKl1 CSTF
MABC CFFTS
CO4ASS CFMASS

14. Remarks:

The following Is a list Gf control indicators for PLUG1.
For all indicatrrs shown a value of one will cause the
operation to be performed and a value of zero will
cause the operation to be skipped.

LT1 - compute membrane contributions
LT2 - compute flexural contributions
KK - compute element stiffness matrix
KF - compute element force matrix

(thermal and/or pressure)
K8 - compute element stress matrix
KTS - compute element thermal stress matrix
KM - compute element mass matrix
KDS - not used
KDV - not used
KN - compute element incremental stiffness matrix

263

I

1. Subroutine Name: CC21

2. Purpose: To assemble a submatrix into an assembled matrix

3. Equations and Procedures: None

4. Input Argiunents:

K : Control on positioning of elements for assembly
NI : Constants from PLUG
C : elements of input matrix

5. Output Arguments:

C21 - elements of the expanded matrix

6. Error Returns: None

7. Calling Sequence: CALL (K, NI, C, C21)

8. Input Tapes: None

9. Output: None

10. Scratch Tapes: None

11. Storage Required: NI(8,10), C(1), C21(105) and total
storage is (145)10

12. Subroutine User: CKl1

13. Subroutines Required: None

14. Remarks: None

264

1. Subroutine Name: MABC

2. Purpose: To evaluate the triple product of
N] = [A] [B] [C]

3. Equations and Procedures:

a. Each row of the [A] matrix is mulbiplied by the corres-
ponding column of the [B] matrix and stored in the

[AM] matrix by column.

b. Then each row of the [AM] matrix is multiplied by the
correspunding column of the [C] matrix and the final
product stored in the [AN] matrix by column.

4. Input Arguments,

A: elements of [Al matrix
B: elements of [Bj matrix
C: elements of [C] matrix
AM: working storage
N: number of rows in [A] matrix (order)
L: number of rows in [B matrix (order)
K: number of rows in [CJ matrix (order)
M: number of columns in matrix(order)
Nl, Ml: dimension of A matrix
N2, M2: dimension of LAI matrix
N3, M3 : diipension of 1ci matrix

5. Output Arguments:

AN: Elements of triple product matrix

6. Error Returns: None

7. Calling Sequence:

(A, B, C, AN, AM, N, I,, K, M, Ni, Ml, N2, M2, N3, M3)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 40A 16 Bytes.

265

12. Subroutine User: general subroutine used by many other
subroutines

13. Subroutines Required: None

14. Remarks: Standard matrix multiplication routine; but
caution must b3 exercised when the dimensions and orders
of input and output matrices are different

266

1. Subroutine Name: NEWFT

2. Purpose: Generate membrane and flexural thermal loads
for quadrilateral thin shell in local coordinates

3. Equatiuns and Procedures:

LBCT= [F -1 [CT)
BM1 = [BCTJ {TEMM}
F [BC9 TEMF)

where [F9 and [CT] are geometric matrices of local

coordinates

{TEMM} = {TEL (I,1)} membrane temperatures

{TEMF} = {TEL (I,2)]- flexural temperatures

4. Input Arguments:

DELTM : Average membrane temperature
DELTF : Average flexure temperature
TEL : Temperature erray of element
RIB : Local X coordinate of node 1
R2B : " y of node 2
R B X of nodeM Y " of node
IPRINT : Print option
TZ : Initial membrane temperature

5. Output Arguments:

BMT : Membrane the-mal load in local coordinates
BFT : Flexural thermal load in local coordinates

6. Error Returns: None

7. Calling Sequence:

(DELTM, DELTF, TEL, RIB, R2B, R3B, R4B, BMT, BFT, IPRINT,
TZ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

267

11. Storage Required:

F(3,3), BCT(3s4)j CT(3,II), BMT(4,91) BFT(4,1), TEMM(4)s
TEMP (4), TEL(?.2,12), RJ.B(1)q R2B(S R3I) RB1

Total Storage is (227io)*

12. Subroutine User: PIDGJ.

13. Subroutines required: MINV, MAB

14. Remarks: a. if print option equals -1,, intermediate
computations are printed out.

b. The membrane or flexural contribution is
by passed if the respective thicocness is 0.

268

1. Subroutine Name: CDELPQ

2. Purpose: To compute the integrals from equations in
documentation for PLUGI in Volume I.

3. Equations and Procedures:

DELPQJ = Cx Y where p = 0,1,2.3,4i J ~ q = . 11i,2,, 4
j 1, 2 ..3,4
C =constant

4. Input Arguments:

AJ - x distance from centroid to respective node point

BJ - y distance from centroid to respective node point

5. Output Arguments:

DELPQ - table of integrals for the 4 zones of the quadri-
lateral

6. Error Returns: None

7. Calling Sequence:

Call CDELPQ (AJ, BJ, DELPQ)

8. Input Tapes: None

9. Ottput Tapes: None

10. Scratch Tapes: None

11. Storage Required:

DELPQ (4,5,5)

Total Storage is (241)10.

12. Subroutine User: PLUG1

13. Subroutines Required: CHDEL1

14. Remarks: None

269

1. Subroutine Name: CHDEL1

2. Purpose: To rearrange the integrals generated by CDELPQ

3. Equations and Procedures: None

4. Input Arguments: DELPQ - integrals generated by CDELPQ

5: Output Arguments: DELPQ - rearranged integrals

6. Error Returns: None

7. Calling Sequence: CALL CHDELD1 (DELPQ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: DELPQ (4,5,5)

Total Storage is (70)10.

12. Subroutine User: CDE1;PQ

13. Subroutines Required: None

14. Remarks: None

270

1. SubrcYttine Name: PIPRTA

2. Purpose: Print variables generated by PLUG1, if IPRINT
equals -1.

3. Equations and Procedures: Not applicable

4. Input Arguments:

EX, EY : Youngs modulus in X and Y directions
respectively

MUXY Poisson's Ratio
GXY * Shear modulus
GA14A : Material angle
ALPHAX, ALPHAY : Thermal coefficients of expansion in

X and Y directions
TF,TM : Flexural and membrane thickness
RZB : Vector normal to plane of quadrilateral

element
R24 : deviatLon of local coordinates between

points 2 and 4 of the quadrilateral
LAMDA : Coefficient of normal vector so that

element lies in a plane
R24BP : Sum of the inplane vector and normal

vector
THETA : Angle for calculating centroid of element
E : Column vector colinear with local

geometric X, Y and Z system
TPRIME : Transformation matrix
NL . Node point numbers
SINAL, COSAL : Sine and cosine of oblique coordinat',

system
SINA, COSA : Sine and cosine for stress angles
SING, C0SG : Sine and cosine of material angle
EM : Coefficient matrix utilizing Hook's Law
ALPHM : Matrix containing coefficients of thermal

expansion
COORDL : local coordinates
DELPQ : table of integrals for the 4 zones of the

quadrilateral
ALPHG : Dummy
EG : E matrix transformed
TES : Strain transformation matrix
TW : Displacement function transformaticn

matrix

5. Output Arguments: None

6. Error Returns: None

271

7. Calling Sequence:

CALL PJPRTA (EX, EY, MUXY, GXY, GAMMA, ALPHAX, ALPHAY,
TF, TM, RZB, R24B, LAMDA, R24BP, ROB,
THETA, E, TPRIME, NL, OINAL, COSAL, SINA,
COSA, SING, C0SG, EM, ALPHM, C00RDL, DELFQ,
ALPHG, EG, TES, TW)

8. Input Tapes: None

9. Output Tapes: None

'0. Scratch Tapes: None

11. Storage Required: Total Storage required is D38 16 Bytes.

12. Subroutine User: PLUG1

13. Subroutines Required: None

14. Remarks: None

272

1. Subroutine Name: CK11

2. Purpose: To generate the membrane stiffness for PLUG!,
quadrilateral thin shell element

3. Equations ax(:-.dures: The following sequence of
operations ta lace to formulate the membrane stiffness
matrix:

(1) Call CT11 to formulate the membrane displacement
coordinate transformation as TAO.

(2% Call i4ATI60 to invert the above matrix.
Call CTOGM to form the transformation from oblique to
geometric coordinates as TOGM.

(4) Generate the transformation matrix from geometric to
reference system coordinates (TGRM) by calling CTGRM.

(5) If grid point axes transformations to another system
other than global are to formulated, call AXTRA2 to
generate the new TGRM matrix.

(6) Generate the displacement function transformation as TU.
(7) Call BCB to form the product

[U]T LEG] []TU = CEO]

This matrix is then multiplied by the constant T x SINA
and renamed the JPQ matrix.

(8) Generate the I3mbrane stiffness (C matrix) by calling
CC1. The C matrix is then expanded by CC21 and C21.

(9 The transformation matrix TAO is expanded as TAOM.
(10 Call BCB to form the following products:

(a) [KI1O] = [TAOM] T li (TAOMJ

(b) EKllG] = [TOGM] TT ll OGMJ
(c) [K21S] = [TGRM] T ViiG [TGRMJ
The final product,[K21J is the desired membr'ne
stiffness matrix.

4. Input Arguments:

NDIR : Number of directions of movement for each
grid point, control needed for AXTRA2

NDEG : Number of degrees of freedom for each grid
point, control needed for AXTRA2

ICONT : Control set equal to 1 if grid point axes
transformations are required from. input data

GPAXEL : The grid point axis transformation matrix
NNO : Number of grid points (8) describing the element
NL : Array containing the grid point numbers
EEZ : :.nput on element data card for eccentricity
AJ, BJ : Local X and Y coordinates of the element

273

SINA, COSA : Sine and cosine of the angle defined by the
diagonals of the element between grid points
1 and 2

TPRIME : Transformation matrix
IPRINT : Print option
T : Membrane thickness
LT1 : Control set equal to 1 when membrane thicKness

is not zero
EG : Material properties matrix
DELPQ : Table of integrals
NI : Array for assembly purposes

5. Output Artuments:

K21S : Membrane stiffness matrix
EO : Material properties matrix

TAO
TAOM : Transformation matrices defined in item 3 above
TOGM
TGRM
KllO
K11G
Cll : Intermediate matrices formed and defined in
JPQ item 3 above.
C21

6. Error Returns: None

7. Calling Sequence:

CALL CKll, (K21S, NDIR, NDEG, ICONT, GPAXEL, NNO, NL, EEZ,
AJ, BJ, SINA, COSA, TPRIME, IPRINT, T, NI, LT1, EG,
DELPQ, TAO, TAOM, TOGM, TGRM, KilO, KllG, Cll, JPQ,
C21, TU, EO, TF$, TMS, C)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

NL (8), GPAXEL (3, 3, 12), AJ (1), BJ (1), TAO (8, 8),
TPRIME (3,3) EG (10), EQ (10), C (55), C21 (105), N1 (8,
10), 1U (3, 4), KI!O (136), K11G (210), Cl (105), TAOM
(16, 16). TOGM (16, 20), TGRM (20, 48 JPQ (10), TGRA
(16, 48), DELPQ (4 5, 5), TFS (16, 48), TMS (16, 48)
Total Storage is (464)10.

274

12. Subroutine.User: PLUG1

13. Subroutines Required:

CT11 CTOGM AXTRA2 ccl
MAT16o CTGRM BCB CC21

14.I Remarks: None

275

1. Subroutine Name: CT11

2. Purpose: To formulate the membrane displacement coordinate
transformation as[TA0]

3. Equations and Procedures: The formulation is given in the
documentation for PLUG1 in Volume I.

4. Input Arguments:

AJ : Local X coordinates
BJ : Local Y covrdinates
IPRINT : Print indicator

5. Output Arguments:

TAO : Transformation matrix

6. Error Returns: None

7. Calling Sequence: CALL CTll (AJ, BJ, TA0, IPRINT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Zorage Required: AJ (1), BJ (1), TA (8,8)
Total Storage is (227)10.

12. Subroutine User: CK1

13. Subroutines Required: None

14. Remarks: If IPRINT equals -1, the TAO matrix is printed,

276

1. Subroutine Name: MAT160

2. Purpose: Invert the TA matrix

3. Equations and Procedures: None

4. Input Arguments: N - order of matrix to be inverted

A - to be inverted

5. Output Arguments: ISING - error messageq
DETR - value of determinant
A - contains elements of the inverted

matrix

6. Error Returns: ISING = 0 No error
ISING = 1 Singular matrix

7. Calling Sequence:

Call MATI6o(N. A, ISING, DETR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: Total Storage required is 6441 6 Bytes.

12. Subroutine User: CKll

13. Subroutines Required: None

14. Remarks: None

277

1. Subroutine Name: CT0GM

2. Purpose: To formulate the transformation matrix from
oblique to geometric coordinates

3. Equations and Procedures: See writeup for PLUG1

4. Input Arguments:

COSA : Cosine and sine of the angie defined by the
SINA diagonals of the element between grid points

1 and 2

5. Output 'rguments:

TOGM : ransformation matrix

6. Error Returns: None

7. Calling Sequence:

CALL CTOGM (COSA, $INA, T0GM)

8. Input tapes: None

9. Output tapes: None

10. Scratch Tapes: None

11. Storage Required:

T0GM (16,20)
Total Storage (67)10.

12. Subroutine User: CKll

13. Subroutines Required: None

14. Remarks: None

278

1. Subroutine Name: CTGRM

2. Purpose: Formulate the transformation from geometric to
reference system coordinates

3. Equations and Procedures: See writeup of PLUG1,

4. Input Arguments:

NL : Node point numbers
EEZ : Eccentricity factor

TRIME : Transformation matrix to be expanded

5. Output Arguments:

TGRM : Transformation matrix

6. Error Returns: None

7. Calling Sequence:

CALL CTGRM (NL, EEZ, TPRIME, TGRM)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage Required:

NL (1), TPRIME (3,3), TGRM (20,48),
Total Storage is (275) 10"

12. Subroutine User: CK11

13. Subroutines Required: None

14. Remarks: None

279

1. Subroutine Name: CCI

2. Purpose: Generate the bottom half of the membrane
contribution to the element stiffness matrix for the
quadrilateral element

3. Equations and Procedures: Contained in documentation
for quadrilateral element in Volume I.

4. Input Arguments:

KI : Control for appropriate computation
JPQ : Matrix containing material properties
DELPQ : Table of integrals

5. Output Arguments:

C : Membrane contribution to stiffness matrix

6. Error Returns: None

7. Calling Sequence: CALL CCl (KI, JPQ, DELPQ, C)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

DELPQ (4,5,5), C 55),JPQ(10
Total Storage is 666)10o

12. Subroutine User: CK11

13. Subroutines Required: None

14. Remarks: None

280

1. Subroutine Name: CMMASS

2. Purpose: Generate the membrane contribution to the
mass matrix in local coordinates

3. Equations and Procedures: Oontained in documentation
for the quadrilateral element in Volume I

4. Input Arguments:

T : Membrane thickness
DO0 : Area of each zone of quadrilateral
SINA : Sine of angle defined by points 1 and 2 and

the diagonal of the quadrilateral
DENS : Density of the plate material

5o Output Arguments:

AMS : Membrane mass contribution

6. Error Returns: None

7. Calling Sequence: CALL CMMASS (T, DOO, SINA, DENS, AMS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 2CA 1 6 Bytes.

12. Subroutine User: PLUG1

13. Subroutines Required: None

14. Remarks: None

281

1. Subroutine Name: CSTM

2. Purpose: Evaluate the membrane stress matrix in local
coordinates for the quarilateral element

3. Equations and Procedures: The following sequence of opera-
tions is performed:

(1) Call CDM to formulate the membrane displacement
derivative matrix as [DFM].

(2) Call MAB to form AMI = [DFM] ETMSJ
4 Call MSB to form [AM5] = LTU A

Call MAB to form rAM5] = (TES]
Multiply [AM5,y the thickness and store in appro-
priate location of the stress matrix.

4. Input Arguments:

RlBR2B
R3B -Local coordinates

R4B)
TU : Displacement function transformation
EG : Material properties matrix
TES : Strain displacement matrix
T : Membrane thickness
TMS : Transformation matrix to system coordinates

5. Output Arguments:

S : Stress matrix in system coordinates.

6. Error Returns: None

7, Calling Sequence:

CALL C$TM (RlB, R2B, R3B, R4B, TU, EG, TE$, T, S, TFS,
TMS, DFM, AM4, AM5, AM6)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

AM4 (4 48), DFM (4 16, TU(3 4) EG (10), TES (3,3N,
s (4o,48), A5 (3,4 ,AM6 (,481, TFS (16,48), TMS (16,48),
Total Storage is (176)10.

282

12. Subroutine User: PLUGI

13. Subroutines Required: MAB, MSB

14. Remarks: None

283

1. Subroutine Name: CDM

2. Purpose: To evaluate membrane displacement derivative
matrix for the 4 zones of the quadrilateral

3. Equations and Procedures:

See Writeup on PLUG 1 for equations

4. Input Arguments:

IZ - constant for zone to be evaluated

RIB, R2B, R3B, R4B - local coordinates of element

5. Output Arguments:

DFM - membrane displacement displacement matrix

6. Error returns: None

7. Calling Sequence:

Call CDM (IZ, RlB, R2B, RBB, R4B, DFM)

8. Input Tapes: None

9. Output Tapes: Wone

10. Scratch tapes: Non,:

11. Storage required:

RlB (1), R2B (1), R3B (1), R4B (1), DFM (4, 16)
Total Storage is (257)10

12. Subroutine User: CST',

13. Subroutines Required: None

14. Remarks: None

284

1. Subroutine Name: CFMTS

2. Purpose: To evaluate the membrane thermal load and thermal
stress matrices

3. Equations and Procedures:

(1) The thermal load is computed as follows:

{AM1 - [EM] {ALPHM}

(A:21 [TES]T IAM1
(IT} - [TU] TAM)

then
(IT) T(SINA)JITI te

Call CFM to formulate the thermal load FPB then

{FT} = [TMS] T I FPB}

(2) The thermal stress matrix is computed as follows:

AM = DELTM (T) {AM2}
!U= } E (TESS] jAM2)

The SZI24 array is assembled into %ZALEL.,

4. Input Arguments:

EM : Material properties matrix
ALPHM : Coefficients of thermal expansion
TEO : Strain transformation matrix
TU : Displacement function transformation
T : Membrane plate thickness
OINA : Sine of angle determined by the intersection of

diagonals and grid points 1 and 2
DELPQ : Table of integrals for the 4 zones of the quadri-

lateral
BMT : Transformation matrix
DELTM : Membrane temperature
TE% • Stress transformation
TM% : Transformation to global system
WK1 : Array containing DELPQ

5. Output Arguments:

SZALEL : Thermal stress matrix
FT : Thermal load matrix
AM.

:AM Working arrays

FPB

285

6. Error Results: None

7. Calling Sequence: (EM, ALPHM, TES, TU, T, SINA DELPQ,
BMT, DELTM, TESS, SZALEL, FT, TFS, TMS, FPB, AM4 , AM7,
WKl)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

ii. Storage: EM (1), ALPHM (1), TES (3,3), TU (3,4), FPB (161,
IT (4), DELPQ (4,5,5), FT (1), AMI (3), AM2 (3), AM4 (4,43),
AN" (2,48, %ZLM (3), %ZALEL (1', TE%% (3,3), TFO' (16,48),
"TM' (16,45), WK1 (100)
Total Storages is (195)i0

12. Subroutine User: PLUG1

13. Subroutines Required: MAB, MATB, CFMF

14. Remarks: None

286

1. Subroutine Name: CFMV

2. Purpose: To generate the membrane thermal load matrix
in local coordinates

3. Equations and Procedures: Formulations are given in the
documentation on the quadrilateral element in Volume I.

4. Input Arguments:

DELC, : Table of integrals for 4 zones of quadrilateral
DELPQ
IT : Thermal vector
BMT : Transformation matrix

5. Output Arguments:

FPB1 : Thermal vector

6. Error Returns: None

7. Calling Sequence:

CALL CFMV (DELC, FPB1, IT, BMT, DELPQ)
8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: DELC (4,5,5), FPB1 (16), IT (4), BMT (4), FPB (16),
DELPQ (4,5,5)
Total Storage is (310)10 -

12. Subroutine User: CFMTS

13. Subroutines Required: None

14. Remarks: None

287

7.. Subroutine Name: PRTI

2. Purpose: If IPRINT equals -1, intermediate matrices

generated are printed out

3. Equations and Procedures: not applicable

4. Input Argument:

LT - Control on either membrane or flexural output

TU, TAO, TGAMB, T0GBM, TGRBM - transformation matrices

FP, FT, CM, EO, IJPQ, C21, K210, K21G- intermediate

element matrices

KK - Control for dynamics print

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

CALL PRT (LT, TU, EO, IJPQ, C21, K210, K21G, TAO,

TGAMB, TOGEM, TGRBM, KM, CM, FP, FT)

8. Inpu tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage: EO(lO), IJPQ(lO), C21(105), K210(136),

K21G(210(, TA0(8,8), TU(3,4), TGAMB(16,16),

T0GBM(16,20), TGRB4(20,48), CM(l), FP(l), ET(l)

Total Storage is (538)10

12. Subroutine User: PLUG 1

13. Subroutine Required: SYMPRT

14. Remarks: Matrices above defined in other writeups.

288

1. Subroutine Name: CK22

2. Purpose: Formulate the flexural stiffness matrix in
local coordinates.

3. Equation and Procedures:

(1) The following operations take place to formulate the
transfer motion matrices

(a) Calls CTGB to evaluate the transformation tc
geometric cocrdinrtes as TGAMB

b Inverts TGAMB
Calls CT0GB to formulate the transformation from
oblique to geometric coordinates as T0GB

(d) Calls CTGRB to formulate the transformation from
geometric to reference system coordinates as

~TGRBM

(e) If grid point axes transformations are used, call
AXTRA2 to revise the flexural transformation TGRB.

(2) The flexural stiffness is then obtained by:

a Formulating the rigidity as IPQ

Evaluating t he[C]matrix for each zone by calling
CC2

(c) Assembling. the (C] matrix for each zone into C21 by
calling CC21.

(d) Forming the following products:

[K220] = [TGAMB] T [C22JETGAMB]

[K22G] = [TGB]T [K220][T0GB]
B1 21$] = [TCRB] T [K 2 2G]T GR B]Where CK21l is the desired flexural stiffness-matrix

I4. input Arguments:

K215 : Input Stiffness matrix from membrane contribution
IA$ Y : control to add membrane plus flexural stiffnessNL : Node points of eleme-nt

NDIR : Number of directions
NDEG : Number of degrees of movement
ICONT : Control on grid point axis transformations
GPAXEL : Grid point axis transformations
NNO : Number of node points being transformed
AJ;BJ : Local coordinates

289

TMS
TF$
AMATT : Transformation matrices
TRAOBQ
TGN
TPRIME
$INA Sine and cosine of angle defined by intersection
COSA of diagonals and points 1 and 2
LT2 : Control on flexural computation
EG : Modified materials property matrix
T : Flexural plate thickness
NI : Array for assembly purposes
DELPQ : Table of integrals for 4 zones of quadrilateral

5. Output Arguments

K21$: Flexural contribution to stiffness matrix
TGAMB
TOGB :Transformation matrices
TGRBM

C
Eo
K220
K226 : Intermediate matrices
C22

IPQ)
C21

6. Error Returns: None

7. Calling Sequence:

CALL CK22 (K21S, IASSY, NL, NDIR NDEG, IC0NT, GPAXEL,
NNO, AJ, BJ, AMAT, TRA$BQ, $INA, COSA, TGN, TPRIME,
LT2, TW, EG, T, NI, DELPQ, TGAMB, T0GB, TGRB,
K220, K22G, C22, IPQ, C21, TGRMB, EO, TF$, TMS, C)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage:

AJ (1), BJ(1), AMAT (3,4), TRA0BQ (3,3), TGN (4,2,2),
TPRIME (3,3), TW (3,3), EG (10), EQ (10), NI (8, 10),
DELPQ (4,5,51, TGAMB (16,16), C (28), C21 (105),
TGRBM (20, 48) K220 (136), K22G (210), C22 (105)
T0GB (16,20), TGRB (20, 4A), IPQ (10), TF$ (16, 48)
TM$ (16, 48)

290

Total Storage is (269) 10-

12. Subroutine user: PLUG!

13. Subroutines required are:

CTGB, IATI70, CT0GB, CTGRB, AXTRA2, BCB, CC2, CC21.

14. Remarks:

All formulations are giv~en in the report for the
quadrilateral thin shell element.

291

1. Subroutine Name: CTGB

2. Purpose: To foiaulate the flexural, transformat.on matrix
frcm local to geometric coordinates.

3. Equations and Procedures:

(1) The TGB matrix is formulated from local coordinates
2) Using elements from AMAT, the lengths of the sides

of each zone are computed and assembled in the TGN
matrix

(3) The TON matrix is evaluated for the 4 zones by first
,toring [TRAOBQ] into [TOG] and then solving 0N] =

(4) The TGB matrix is then evaluated for the 4 zones as
[TGB] = [TON](WX) + [TON] {WYJ
Where (WXandiWY)are arrays of local coordinate values
for the respective zones.

4. Input Variables:

AJ, BJ : Local coordinates
AMAT : Transformation to local coordinates
TRA0BQ : Transformation from local to oblique coordinates

5. Output Variables

TGAMB I
TGB : Transformation matrices
TGN

6. Error Returns: None

7. Calling Sequence:

CALL CTGB (AJ, BJ, AMAT, TRA0BQ, TGAMB, TGB, TGN)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage:

TON (4,2,2), TGB (16, 16), TOG (2,2), XD (4), YD (4),
WX (16), WY (16), L. (4), TGAMB (16, 16), AJ (1), BJ (1),
AMAT (3,4), TGN (4,2,2), TRAOBQ (,3)
Total storage is (681)100

12. Subroutine User: CK22

292

13. Subroutines Called: None

14. Remarks:

All formulations are given in the report on the
quadrilateral thin shell element.

293

1. Subroutine Name: MAT170

2. Purpose: To invert the[TGAMB]matrix

3. Equations: standard inverse technique where inverted
matrix is stored back on top of itself.

4. Input Arguments:

N - order of matrix = 16
A - matrix to be inverted

5. Output Arguments

A - inverted matrix
I$ING - error return
DETR - value of determinant

6. Error Return:

IF I$ING = 1, singular matrix

7. Calling Sequence: CALL MATI70 (N, A, I$ING, DETR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. StorAe:

Total Storage required is 66416 Bytes.

12. Subroutine User: CK22

13. Subroutines Required: None

14. Remarks: None

294

1. Subroutine Name: CTGB

2, Purpose: formulate the flexural transformation matrix
from oblique to geometric coordinates

3. Equations and procedures: The formulation is given in the

report on the quadrilateral plate

4. Input Arguments:

SINA, COSA - sine and cosine of the angle defined by the
diagonals and points 1 and 2
TGN - Transformation matrix

5. Output Arguments:

T0GB - the required transformation matrix

6. Error Returns: None

7. Calling Sequence:

CALL CT$GB (SINA, COSA, TGN, TOGB)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: TGN(4,2,2), T$GB(16 2 0)
Total Storage is (70)1 0

12. Subroutine User: CK22

13. Subroutines Required: None

14. Remarks: None

295

1. Subroutine Name: CTGRB

2. 'Purpose: formulate the flexural transformation matrix

from geometric to reference system coordinates.

3. Equations and Procedures:

(1) Elements of the TPRIME matrix are first assembled into
their respective positions

(2) If any midpoints ars suDDressed, the contribution of
the midpoints is redistributed to the respective
corner points

4. Input Arguments:

NL - node point numbers
TGN - transformation matrix for midpoints
TPRIME - transformation matrix to local coordinates

5. Output Arguments:

TG B, TGRBM - transformation from geometric to reference

system coordinates

6. Error Returns: None

7. Calling Sequence:

CALL CTGRB(NL, TGN, TPRIME, TGRBM, TGRB)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: NL(1), TGN(4,2,2), AI(4), BI(4), TPRIME(3,3)
TGRB(20,48), TGRBM(20,48)
Total storage is (345)1 0

12. Subroutine User: CK22

13. Subroutines Required: None

14. Remarks: Formulation is given in report on Quadrilateral
Plate

296

i.Subroutine Name: CC2

2. 1urpose: Form for the. 4 zones of the quadrilateral the
flexural contributions to an intermediate matrix C.

3. Equations and Procedures: The formulation is given in
report on quadrilateral thin shell element.

4. Input Arguments:

K Control on zone contribution
IPQ : Rigidity matrix
DELPQ : Table of integrals for tha 4 zones of the quadri-

lateral

5. Output Arguments:

C : Elements of the intermediate matrix

6. Error Returns: None

7. Calling Sequence:

CALL CC2 (K, IPQ, DELPQ, C)

83. input tapes: None

9. Output tapes: None

10. Scratch Tapes: None

11. Storage:

Total Storage required is 5B616 Bytes.

12. Subroutine User: CK22

13. Subroutine Required: None

14. Remarks: None

297

1. Subroutine Name: CFP

2. Purpose: Formulate the pressure load for the quadrilat-
eral plate in reference system coordinates

3. Equations and Procedures:

Call CFPB to generate the pressure load vector in refer-
ence system coordinates as FPB as defined by

[FP) = [TF$] T {FPB}

4. Input Arguments:

DELPQ : Table of integrals for the 4 zones of the
quadrilateral

P : Pressures at node points
SINA : Sine of angle defined by intersection of

diagonals end points 1 and 2 of the element
TFB : Flexural transformation matrix

5. Output Arguments:

FP : Pressure load vector in reference system
coordinatls

FPB : Pressure load in local system.

6. Error Returns: None

7. Calling Sequence:

Call CFP (DELPQ, P, $INA, FP, TFS, TMS, FPB)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage:

DELPQ (4,5,5), FP (4,8), FPB (16), TFB (16,48), TMS (16,48)
Total Storage is (57)10.

12. Subroutine User: CK22

13. Sutroutine Required: CFPB, MATB

14. Remarks: The formulation is given in the documentation
on the quadrilateral element in Volume I.

298

1. Subroutine Name: CFPB

2. Purpose: Formulate the pressure load in local coordinates
for the quadrilateral thin shell element.

3. Equations and Procedures: Formulation is given in the

repoi't on the quadrilateral thin shell element.

4. Input Arguments:

DELPQ : Table of intergrals for the 4 zones of the element
P : Pressure value.
SINA : Sine of angle defined by intersection of diagonals

and points 1 and 2 of the element

5. Output Arguments:

FPB : Pressure load in local coordinates

6. Error Returns: None

7. Calling Sequence:

CALL CFPB (DELPQ, P, SINA, FPB)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11, Storage:

DELPQ (4,5,5), FPB (16)
Total Storage is (227)10.

12. Subroutine User: CFP

13. Subroutines required: None

14. Remarks: None

299

r

1. Subroutine Name: CSTF

2. Purpose: To evaluate the flexural contribution to
the stress matrix in reference system coordinates for the
quadrilateral element.

3. Equations and Procedures:

(1) Call CDF to evaluate the membrane displacement
derivative matrix DFM.

(2) Perform the following operations:

(a) AM = £DFM] LTFS]
(b) AMI = [TW] AM5]

CAM5 = [EG I LM6I
AM 1 = [TE (AM5]

The AM6 matrix is then assembled into the stress matrix
S.

(3) Call CDX to evaluate the flexural derivatives matrix
DFM.

(4) After generating the G matrix, perform the following:

a ' [Wa C DFM] [TF$]
bc) [AMa = TW)I [AM51
c= [EG) IAM63
d [AMbJ = G [AM5J

(5) Evaluate another G matrix and call CDFX and CDFY
to formuiate the flexural derivate matrix DFM.

(6) Perform the following operations:

(UkM53 [DFM] [TR$][AMQ [TPW]AMS]

c[AM51 =LEG) LAM61
d AMI =] [AM5I

The AM7 and AM8 matrices are then assembled into the
stress matrix S.

4. Input Arguments:

T :Flexural thickness
TW
TF Transformation matrices
TM$

EG : Material properties matrix

300

A,

. . . .-I-" "" •• • • • u

RIB
R2B
R3B (:Local coordinates

R4B)
COSA, :Sine and cosine of angle defined by the intersection
SINA of the diagonals and points 1 and 2 of the element

5. Output Arguments:

S :Stress matrix
AM5

AM6 :Intermediate matrices
AM7
AM8

6. Error Returns: None

7. Calling Sequence:

CALL C$TF (T, TW, EG, TES, RIB, R2B. R3B R4B, COSA, SINA,
S, TFS, TMS, DFM, AM5, AM6, AM7, AMA)

8. Input tapes: None

9. Output tapes: None

10. Scratch Tales: None

11. Storage Required:

RIB (3), R2B (3), R3B (3), R4B (3), DFM 4, 16), TW (3 3),
EG (10), TES (3,3), S 40, 48),,A., 4(8), AM6 (3, 46),
AM7 (2, 48), AMA (2, 4), G (2, 3), TF (16, 48), TMS
(16, 45.
Total Storage is (6)1 0 .

12. Subroutine User: PLUG1

13. Subroutines Required:

MAB, MSB, CDF, CDFX, CDFY

14. Remarks:

The formulations are given in the documentation on the
quadrilateral element.

301

1. Subroutine Name: CDF

2. Purpose: To evaluate the flexure derivative matrices for
the 4 zones of the quadrilateral element

3. Equations and Procedures: Formu.ation is given in the
documentation on the quadrilateral element.

4. Input Arguments:

IZ : Control on zone computation
RIB
R2B : Local coordinates
R 3D
R4B

/

3. Output Arguments:

DFM : Flexural derivative matrix

6. Error Returns: None

7. Calling Sequence:

CALL CDF (IZ, RlB, R2B, R3B, R4B, DFM)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None -_,

11. Storage Required:

RlB (1), R2B (1), R3B (1), R4B (1), DFM (4, 16)
Total storage is (271)10.

12. Subroutine User: CSTF

13. Subroutines required: None

14. Remarks: None

302

1. Subroutine Name: CDFX

2. Purpose: To evaluate the partial derivatives with respect
to x of the flexural displacement matrix for the 4 zones
of the quadrilateral element

3. Equations and Procedures: Formulation is given in the
documentation on the quadrilateral element.

4. Input Arguments:

ITE : Control on constant (Tl)
IZ : Control on zone computation
C0SA,: Sine and cosine of angle defined by the intersection
SINA of the diagonals and points 1 and 2 of the element.

5. Output Arguments:

DFM : Flexural derivative matrix

6. Error returns: None

7. Calling Sequence:

CALL CDFX (ITE, COSA, SINA, IZ, DFM)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage Required: DFM (4, 16)
Total Storage is (176)10

12. Subroutine User: CSTF

13. Subroutines required: None

14. Remarks: None

303

1. Subroutine Name: CDFY

2. Purpose: To evaluate the partial derivatives with respect
to y of the flexural displacement derivative matrix for the
4 zones of the quadrilateral element

3. Equations and Procedures: Formulation is given in the
documentation on the quadrilateral element

4. Input Arguments:

IZ : Control on zone computation
SINA : Sine of angle defined by the intersection of the

diagonals and points 1 and 2 of the element

5. Output Ar-1uments:

DFM : Flexural derivative matrix

6. Error Returns: None

7. Calling Sequence:

CALL CDFY (IZ, SINA, DFM)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage Required: Total Storage required is 2E8 16 Bytes.

12. Subroutine 1er: CSTF

13. Subroutines required: None

14. Remarks: None

304

1. Subroutine Name: CFFTS

2. Purpose: To evaluate the flexural contribution to tne

thermal load and stress matrices for the quadrilateral element.

3. Equation and Procedures:

(1) The thermal stress is obtained by:

(a) JAM11 = (EM] (ALPHMj

(b) JAM2} = [TEjT AM1}

c (TJ = EE AM2)
d AM2) = 4 {AM21 where C4 is a flexural constant

(e [SZLF} = DESS] {AM2)
SZLF is assembled into the thermal stress matrix
SZALEL.

(2) The thermal load is obtained by:

a Define a flexural constant C3,

Call CFFV to formulate the thermal load in local
system coordinates as {FPB1,

(d) Transform the thermal load to reference system

coordinates as [AM3 = [TFS] T (FPBJ,
{AM3) is assembled into the thermal load matrix
FT.

4. Input Arguments:

EM : Material properties matrix
ALPHM : Thermal coefficient matrix
TMS
TE$
TW
TE :Transformation matrices

BMT
TF$
DELTF : Flexural temperature
T : Flexural thickness
SINA : Sine of angle defined by intersection of diagonals

and points 1 and 2 of the element
DELPQ : Table of integrals for the 4 zones

5. Output Arguments:

SZALEL : Thermal stress matrix
FT : Thermal load matrix
FPB \
AM3 : Intermediate matrices
WKI

305

6. Error Returns: None

7. Calling Sequence:

CALL CFFTS (EM, ALPHM, TES, TW, DELTF, T, TESS. SINA,
DELPQ, BMT, SZALEL, FT, TFS, TMS, FPB, AM3, WK1)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

EM (10), ALPHM (3), TES (3,3),TW (3,3), DELPQ (4,5,5).
FT 48), FPB (16) JT (3), BMT (3,1), SZLF (3), SZALEL (1),
TESS (3,3) AM3 (8), AM1 (3), AM2 (3), TFS (16, 48),TMS (16, 46), WKI.(100)

Total Storage is (222)10.

12. Subroutine User: PLUG1

13. Subroutines Required: MAB, CFFV, MATB

14. Remarks: Formulation is given in documentation on the
quadrilateral element in Volume I.

306

1. Subroutine Name: CFFV

2. Purpose: To evaluate the flexural thermal load matrix in
local system coordinates for the quadrilateral element

3. Equations and Procedures: Formulation is given in the
report on the quadrilateral element in Volume I

4. Input Arguments:

DELC, :Table of integrals for the 4 zones of the quad-
DELPQ rilateral
JT :Flexural rigidity
BMT :Transformation matrix

5. Output Arguments:

FPB1 :Flexural load matrix in local coordinates

6. Error Results: None

7. Calling Sequence:

CALL CFFV (DELC, FPBl, JT, BMT, DELPQ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

DELC (4,5,5), DELPQ (4,5,5) FPB1 (16), JT (4), B.T (4),
FPB (16)
Total Storage is (365)10.

12. Subroutine User: CFFTS

13. Subroutines Required: None

14. Remarks: None

307

1. Subroutine Name: CFMASS

2. Purpose: Evaluate the flexural mass matrix in local
system coordinates for the quadrilateral thin shell element

3. Equations and Procedures: Formulation is given in report
on the quadrilateral thin shell element.

4. Input Arguments:

T : Flexural thickness
D00 : Area array of the 4 zones of the quadrilateral
SINA : Sine of angle defined by intersection of the

diagonals and points 1 and 2 of the element
DENS : Density of element material

5. Output Arguments:

AMS : Elements of the mass matrix in local coordinate
system

6. Error Returned: None

7. Calling Sequence:

CALL CFMA$$ (T, DO0, SINA, DENS, AMS)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage Required:

Total Storage required is 23A 1 6 Bytes.

12. Subroutine User: PLUG1

13. Subroutines Required: None

14. Remarks: None

308

1. Subroutine Name: PLUG7

2. Purpose: To formulate the element matrices for a frame
element

3. Equations and Procedures: The following sequence of
operations take place:

1) Plug constants are set and checked against plug input

2) Data is processed for:
a) grid points
b) element data such as area, inertia, etc.

(3) The length for the element and the direction cosines
are determined and stored in TPRIME.

(4) Call CTS and CTCQ to formulate transformation matrices
TS and TCQ. The eccentity of the element is taken into
account by calling CECC and modifing the TS matrix.

(5) The transformation to systems coordinates is per-
formed as ETCQS] = [TCQ rTS] and if grid point axes
transformations are necessary, [TCQS] is modifiea.

(6) The matrix [KS] is evaluated and then pre and post
multiplied by [TCQS] to form the stiffness matrix as

[K$EL].
(7) Dependent on the type of analysis, the incremental

and mass matrices may be computed.
8 The thermal load is -et equal to zero.

The stiffness matrix is rearranged into the stress
matrix and the thermal stress matrix set equal to zero.

(10) If the print option is not equal to 0 calls P7PRT
to print out intermediate computations.

4. Input Arguments:

IPL : Plug number
NN : Number of nodes
NNO jxc
YC : Element coordinates
ZC

TEL : Temperature array
PEL : Pressure array
QS : Initial displacements
N0RD : Order of stiffness matrix
NERR : Error return
KK
KFK8KM : Controls on element matrices to be competed

ET
KVM
KN

f 309

E' Prestress and prestrain values

MAT : Material properties array
EXTRA :Element geometric properties
GPAXEL : Grid point axis transformations
NDIR 1 : Number of directions hnd degree control for
NDEG grid point axis transformation
IC0NT : Control on grid point axis

5. Output Arguments:

KSEL : Stiffness matrix
GT : Gradient
FTEL : Thermal load matrix
SEL : Stress matrix
SZALEL : Thermal stress matrix
AMASS : Mass Matrix
DAMPV }
DAMPS : Viscous and Structural Damping Matrices

NRSEL : Number of rows in stress matrix
NL : Node point numbers
N0INK
NMASS Number of elements in the stiffness, mass, viscous
NDMPV : damping, structural damping and stress matrices
N DMP$

6. Error Returns: If third node point is riot present, then exit.
Standard tests on plug constants.

7. Calling Sequence:

CALL PLUG7 (IPL, NNO, XC, YC, ZC, TEL, PEL, QS, IP, NORD,
NERR, N0INK, K$EL, AN1, FTEL, SEL, SZALEL, AMASS,
DAMPV, DAMPS, NRSEL, NN, NL, NMASS, NDMPV, NDMPS,
NSEL, KK, KF, K8, KM, ET, KVM, KN, IUSEL, EPSIO, SO,
MAT, EXTRA, GPAXEL, NDIR, NDEG, IC0NT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 16A6 16 Bytes.

12. Subroutine User: ELPLUG

13. Subroutines Required: ELTEST, CTCQ, MAB, AXTRA2, CECC,
BCB, MSB, MATB, PTPRT, CTS, INCIE

14. Remarks: Formulations are given in report on Frame Element.

310

]. Subroutine Name: INCRE

2. Purpose: To evaluate the incremental matrix for the frame
element.

3. Equations and Procedures: Formulation is given in report
on Frame Element.

4. Input Argumnents:

cONIC0N2 : Constants set equal to 1.0

j, : Physical properties of element

C : Input displacement matrix
TCQS : Trar sformat-on matrix

5. Output Arguments:

AN1 : Element incremental stiffness matrix transformed to
reference system coordinates.

AI
CI
N : Intermediate matrices
AN2
AN3

6. Error Returns: None

7. Calling Sequence:

CALL INCRE (C0N1, C0N2, L, Jl, AN1, AN, C, TCQS, N, AN3,
AI, CI)

8. Input Tapes: Fone

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

AN1 (171), AN2 (78) N (78), AN3 (78), Al (3,5), C (l),
TCQS (12,12), Cf (18)

J2. Subroutine User: PLUG7

13. Subroutines Required: BCB

14. Remarks: None

311

1. Subroutine Name: P7PRT

2. Purpose: To print out intermediate computations and
matrices from the frame element

3. Equations and Procedures: Not applicable.

4. Input Arguments:

NERR : Error test
GRI
GR4 : Gradient terms
GRTPHIl
PHI : Energy terms

AMMAS : Mass Matrix
EX
G
A
AJ1
J1 : Material and geometric properties
L
AIY
AIZ
EE!
ET : Control on element matrix computation
RN
R1
R2 : Intermediate computations
R3
RM
TPRIME
TCQ : Transformation matrices
TCQS

ANI t Incremental matrices
AN2 I
KS : Stiffness matrix
C : Intermediate displacement matrix
IPRINT : Print option

5. Output Arguments: Not applicable

6. Error Returns: If node point 3 equal to zero, then exit.

7. Calling Sequence:

CALL P7PRT (NERR, GR1, GR4, PHI1, PH14, AMMAS, G, A, AJ1,
L, AIY, AIZ, RN, R1, R2, R3, AJ, TPRIME, KS, TCQ,
TS, TCQS, C, QS, AN2, AN1, RM, EX, EEl, PRINT, AN1
ET)

312

8. input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage Required:

GR (1), GR4 (1), AMAS (1), RN (1), RM (1), Rl (1), R2 (1),
R3 (1), AJ TPRIME (3,3), KS (1), TCQ (12,12), TS
(1, C AN2 (1), AN1 (1), TCQS (12,12),
GRT (i. Total storage is (687)10.

12. Subroutine User: PLUG7

13. Subroutines Required: SYMPRT

14. Remarks: None

313

1. Subroutine Name: CTS

2. Purpose: To evaluate the transformation matrix from local
to referenced system coordinates for the frame element

3. Equations and Procedures: Formulation is given in
documentation on frame element.

4. Input Arguments:

TPRIME : Local coordinates transformation matrix

5. Output Arguments:

TS : Required transformation matrix

6. Error Returns: None

7. Calling Sequence: CALL CTS (EEl,. EE2, TS, TPRIME)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage Required: TS (12,12), TPRIME (3,3)
Total Storage is (105)10.

12. Subroutine User: PLUG7

1.3. Subroutines Required: None

14. Remarks: EEl, EE2 - Dummy arguments

314

1. Subroutine Name: CTCQ
2. Purpose: To formulate the transformation matrix to local

system coordinates for the frame element

3. Equations and Procedures: Formulations are given in

documentation on Frame Element.

4. Input Arguments:

TGQ : Elements of input transformation
L2
L2
L3 : Length, Length squared, etc.
L4
L5

5. Output Arguments:

TCQ : Required transformation matrix

6. Error Returns: None

7. Calling Sequence: CALL CTCQ (TCQ, L, L2, L3, L4, L5)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage required: Total Storage required is 2FC 1 6 Bytes.

i2. Subroutine User: PLUG7

3.3. Subroutines Required: None

14. Remarks: None

315

1. Subroutine Name: CECC

2. Purpose: To compute modifications to the transformation
matrix to account for eccentricity for the frame element

3. Computations And Procedures: Formulation is given in
documentation on Frame Element.

4. Input Arguments:

EE2 }: Eccentricity matrices

TS : Transformation matrix to be modified

5. Output Arguments:

TS : Modified transformation matrix

6. Error Returns: None

7. Calling Sequence: CALL CECC (EEl, EE2, TS)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage required: TS (12,12), EEl (3), EE2 (3)
Total Storage is (146)1d

12. Subroutine User: PLUG7

13. Subroutines Required: None

14. Remarks: None

316

1. Subroutine Name: MPRD

2. Purpose: Multiply two.matrices to form a resultant matrix

3. Equations and Procedures:

[R] = [A] [B]

4. Input Arguments

A: First input matrix

B: Second input matrix

N: Number of rows in A matrix

L: Number of columns in B

MSA: Control on storage mode of A See Remarks

MSB: Control on storage mode of B /

5. Output Arguments: R - Resultant matrix

6. Error Returns: None

7. Calling Sequence: CALL MPRD (A, B, R, N, M, MSA, MSB, L)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 3EA1 6 Bytes.

12. Subroutine User: Utility subroutine

13. Subroutines Required: L0C

14. Remarks:

Storage Control of A and B matrix (MSA and MSB)

0 - General
1 - Symmetric (upper half)
2 - Diagonal

317

I. Subroutine Name: TPRD

2. Purpose: Trnnspo-e a matrix and postmultiply by anoth.r
to form a r(ultant matrix.

3. Equations and Procedures

[R] [A] T [B]

A is not actually transposed. Instead, elements in matrix
A are taken column-wise rather than row-wise for riultipli-
cation by R.

4. Input Arguments

A: First input matrix

R: Second input matrix

N: Number of rows in A and B

M: lumber of columns in A and rows in 2

L: Number of columns in B and rows in R

MSA: Control of storage mode of A See Remarks

MSB: Control of storage mode of B)

5. Output Ai-guments: R - Resultant matrix

6. Error Returns: None

7. Calling Sequence: CALL TPRD (A, B, R, N, M, MSA, MSB, L)

8. Input Tapes: None

9. Output 'rapes: None

]0. Scratch Tapes: None

!:1. Storage Required: Tota. Storage requi.red is 3EA1 6 Bytes.

12, Subroutine User: Utility subroutine

13. Subroutines Required: LOC

!4. Remarks

Storage Control of A and B Matrix (MSA and MSB)

0 - General
1 - Symnetric (upper half by columfns)
2 - Diagonal

318

1. Subroutine Name: AI (Function)

2. Purpose: Control operation of the triangular
integration package.

3. Equations and Procedures: The integration package will
calculate the value of a double definite integral of
the form

Izmn

ffrPzqdz dr

Zkl

Tbe procedure is to call a series of function subprograms
dependent upon the values of p and q. The variables in
the above integral are represented by the following
program variables, which are defined in the input
arguments section below:

Integral Variable Corresponding Program Variable

r R
z z
p IP
q IQ
i I

I mk K

1 L
m M
n N

4. Input Arguments:

I : r coordinate subscript of i th element
defining point

J : z coordinate subscript of j th element
defining point

K, L : Slope of eleinent line passing through the
element defining point Zkl

M, N : Slope of element line passing through element
defining point zmn

IP : Exponent of r coordinate
IQ : Exponent of z coordinate

319

R : Array containing r coordinates of element
defining points

Z : Array containing z coordinates of element
defining points

5. Output Argument:

AI(Function) : Result of performing the indicated
integration

6. Error Return: None

7. Calling Sequence:

AI(I, J, K, L, M, N, IP, IQ, R, Z)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

ii. Storage Required: Total storage required is 9FE1 6 Bytes.

12. Subroutine User: TRAIC, DPQINT

13. Subroutines Required:

AM
AK
BINT
F89
FF100
FJAB
F6219
F6211

14. Remarks: None

320

1. Subroutine Name: BINT

2. Purpose: Perform integration
r

riJ r V(a+br)' dr

3. Equations and Procedures:

Expand rV(a+br)w by binomial theorem

and integrate term by term.

)4. Input Arguments: I, J, A, B, IV, IW, R, Z

5. Output Arguments: BINT

6. Err.or Returns: None

7. Calling Sequence: BINT(I, J, A, B, IV, IW, R, Z)

B. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 35E 1 6 Bytes.

12. Subroutine User: AI

13. Subroutines Required: COEF, AJ

14. Remarks: None

L321

"I 1. Subroutine name: AK

2, Purpose: Generate slope of line between two points of a~triangle

T '.-,uatlons and Procedures:

AK = [Z (J) - Z (I)] /R (J) - R (I)]

I. Input Arguments: I, J, R, Z

5. Output Arguments: AK

6. Error Returns: None

7. Calling Sequence: AK'I, J, R, Z)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: N3ne

11. Storage Required: Total storage required is 18C16 Bytes.

12. Subroutine User: Al

13. Subroutines Require : None

14. Remarks: None

322

1. Subroutine N AM

2. Purpose: Get,,rate 'ntercept of line between two points of
triangle.

3. Equations and Procedure-:

AM = [()I - R)ZJ] [R(J) -R(1)]

4. Input Arguments: I, 3, R.7

5. Output Arguments: AM

6. Error Returns: None

7. Calling sequence: AM (I, J, R, Z)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 1.9816 Bytes.

1?. Subroutine User: AI

13. Subroutines Required: None

14. Remarks: None

323

1. Subroutine Name: IFAC

2. Purpose: Compute N factorial

3. Equations and Procedures: N! = IFAC = n(n-1)(n-2). . . (1)

4. Input Arguments: N

5. Output' Arguments: IFAC

6. Error Returns: None

7. Calling Sequence: IFAC(N)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 17616 Bytes.

12. Subroutine User: FF100
F89

13. Subroutines Required: None

14. Remarks: None

324

1. Subroutine Name: FJAB (function)

2. Purpose: To generate

f [x m-1/(a + bx)]dx

3. Equations and Procedures:

F = (xm log (a+bx))/m] - [(b/m)f(xn/(a-bx)n) dx]

evaluated at x = x (I)

4 Input Arguments: I, A, B, M, N, X

5. Output Argument: FJAB

6. Error Returns: None

7. Calling Sequence: FJAB (I, A, B, M, N, X)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 28616 Bytes.

12. Subroutine User: AI

13. Subroutines Required: F89

14. Remarks: None

325

1. Subroutine Name: F6219 (function)

2. Purpose: To generate integral of

(log (a + bx) / (xm +)) dx

3. Equation and Procedures:

F = (- log (a + bx) / (mxm)) + (f(b/(m(a + bx) xm)) ax

evaluated at x = X(I)

4. Input Arguments: I, A, B, M, N, X

5. Output Arguments: F6219

6. Error Returns: None

7. Calling Sequence: Function F6219 (I, A, B, M, N, X)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 28616 Bytes.

12. Subroutine User: AI

13. Subroutines Required: FF100

14. Remarks: None

326

1. Subroutine Name: F6211

2. Purpose: To generate

f [(log (A+ BX)/X] dx
3. Equations and Procedures:

2 2! BX B2 X2

F =lor (A) log (X) + -
A 4A2

evaluated at X = X (I)

4. Input Arguments: I, A, B, X

5. Output Arguments: F6211

6. Error Returns: None

7. Calling Sequence: Function F6211 (I, A, B, X)

. Input Tapes: None

9. Output Tapes: None

10. Scrat h Tapes: None

11. Storage Required: Total storage required is 49C16 Bytes.

12. Subioutine User: AI

13. Subroutines Required: None

14. Remarks: None

327

1. Subroutine Name: AJ (function)

2. Purpose: Generates

for M + 1 > 0 [R(J)M - R(I)M] / (M+l)

for M +1 = 0 log [R(J)/R(I)]

3. Equations and Procedures: None

4. Input Arguments: I, J, R, M

5. Output Arguments: AJ

6. Error Returns: None

7. Calling Sequence: Function AF(I, J, R, M)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

1I. Storage Required: Total storage required is 26216 Bytes.

12. Subroutine User: BINT

13. Subroutines Reuired: None

14. Remarks: None

328

1. Suoroutine Name: COEF

2. Purpose: Generate binomial coefficient

3. Equations and Procedures:

COEF (n) = n1r =nCr r7 (n -r) l"

(the combination of n items taken r times)

4. Input Arguments: N,R

5. Output Arguments: COEF

6. Error Returns. None

7. Calling Sequence: COEF (N,R)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

l. Storage Required: Total storage required is 1FO1 6 Bytes.

12. Subroutine User: BINT

13. Subroutines Required: None

14. Remarks: None

329

1. Subroutine Name: F89 (Function)

2. urpoze: To generate integral

f (wxm/(a+bx)n) dx

3. Eauations and Procedures:

1F89= bml__ m ml (-a)SXm -n - s+ l

bml S=O (m-s) Is! (m-n-s+l)

where X = a+bx

evaluated at x

4. Input Arguments: I, A, B, M, N, X

5. Output Arguments: P89

6. Error Returns: None

7. Calling Sequence: F89 (I, A, B, M, N, X)

S. Input Tapes: None

O. Output Tapes : None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 476 1 6 Bytes.

12. Subroutine User: AI

13. Subroutines Required: IFAC

11. Remarks: None

330

1. Subroutine Name: FF100 (function)

2. Purpose: generate

f(Ii(xmxn)) dx

where X = a + bx

3. Equations and Procedures:

MOO - 1 m + n - 2 (m + n - 2)! Xm-S-l(-b) s
as = 0 mslx-s-1-

a L S (m+n-s-2)!s! (m-s-1)xm's~

evaluated at xi

4. Input Arguments: I, A, B, M, N, X

5. Output Arguments: FF100

6. Error Returns: None

7. Calling Sequence: FF100 (I, A, B, M, N, X)

.. Input Tapes: None

). Output Tapes: None

10. Scratch Tapes: None

1l. Storage Required: Total storage required is 4E816 Bytes.

.2. Subroutine User: F6219

13. Subroutines Required: IFAC

14. Remarks: None

331

1. Subroutine Jame: PLUG2

2. Purpose: Control generttion of element matrices for the
triangular thin ihell element.

3. Equations and Procedures:

a) Call subroutine ELTEST to verify input control values.
b) Call subroutine DTAPR to calculate r '-element coordinates

and boundaries.
c) Call subroutine MATPR to Penerate material properties

matrices.
d) Call subroutine NEWFT1 to apply revised thermal load

formulation, if necessary.
e) Call subroutine PTBM to generate sub-element to local

geometric coordinate system transformation matrix.
f) Call subroutine PTMGS to generate local geometric

coordinates to reference system coordinates transformation
matrix.

g) Call subroutine MAB to combine trz.nsformation matrices
generated in (e) :tnd (M) above into one matrix that will
apply transformaticn from sub-element to reference system
coordinates.

h) If grid point axes are to be applied then call subroutine
AXTRA2 to appropriately modify final transformation matrix
generated in (g) above.

i) Call subroutine DPQINT to evaluate the integrals over
the :hree sub-elements.

J) Call subroutine PKM to generate the membrane contribution
to the element stiffness matrix.

k) Call subroutine PMMASS to generate membrane contributions
to element mass matrix.

I) Call subroutine PSTM to generate the membrane contribution
to the element stress matrix.

m) Call subroutine PFMTS to generate membrane contribution
to element thermal load and thermal stress matrices.

n) If requested, call subroutine APRT to print intermediate
results.

o) The flexural contribut'ns to the element matrices are
then generated with the following flexure subroutines
performing the same function as their membrane counterparts.

PTBF is the flexural counterpart to PTBM
PTFGS of" " " PTMGS
PKF " it "i It PKM
PFMASS it" " " PMMASS
PSTF t " " it PSTM
PFFTS it" " " PFMTS

p) Call subroutine PFP to generate element pressure load
matrix.

q) Call subroutines PNCI and PNG1 to generate element
incremental stiffness matrix (non-functional).

r) Call subroutine PLAS2 to generate plasticity premultipliers
(non-functional).

332

~4. Input Arguments:

IPL - internal element identification number (2)
NNO - number of element defining points (6)
XC - cooldinates of element defining points
YC
zC
TTL - temperatures at element defining point
PEL - pressures at element defining points
QS - input displacements at element defining points

(not used)
IP - not used
NORD - total element degrees of freedom (36)
NOINK - number of storages required for element

stiffness matrix (NORD * (NORD + 1)/2)
NN - not used
NL - e,. xy containing grid point numbers of element

defining points
KK - suppression control for element stiffness matrix
KF - suppression control for element thermal and

pressure load matrices
K8 - suppression contro. for element stress matrix
KTS - suppression control for element thermal stress

matrix
KM - suppression control for element mass matrix
FN - not used
KVM - not used
KN - r.uppression control fcr element incremental

stiffness matrix
IUSEL - not used
EPSLON - input pre-strains (not used)
SIGZER - input pre-stresses (not used)
MAT - input temperature interpolated material properties
EXTRA - special element input
GPAXEL - grid point axes transformation matrices
NDIR - number of directions of element defining points (3)
NDEG - number of solution degrees of freedom

(2 - translation and rotation)
ICONT grid point axes indicator

5. Output Arguments:

NERR - error indicator
AK - element stiffness matrix
ANEL - element incremental stiffness matrix
FTEL - element thermal and pressure load matrix
S - element stress matrix
SZALEL - element therma4 stress matrix
AMASS - element mass matrix

333

,. Cutput Arguments (Contd):

DA14PV - element viscous dAmping matrix
DAMPS - element structural damping matrix
"R 1;EL - number of rows in element stress and thermal

stress matrices
NMASS number of storages required for element mass

matrix
HDMPV number of storages required for element

viscous damping matrix
NDMPS number of storages required for element

structural damping matrix
;SEL - number- of' storages required for element

stress matrix

6. Error Returns:

If no error, then NERR is set to zero
If TPL X 2, then NERR is set to one
If NNO / 6, then NERR is set to two
If NORD 36, then NERR is set to four

7. Calling Sequence;

Call PLUG2(IPL,MNOXYYCZC,TTL,PEL,QS,IP,NORD,NERR,NOINK,
AK, ANEL , FTEL, S, SZALEL,AMASS, DAMPV,DAMPS, NRSEL, NN)
N4L, NMASS,NDMPV,NDMPS,NSEL,KK,KF,K8,KTSKMFNKVM,
KN,IUSEL,EPSLON,SIGZER,MAT,EXTRA,GPAXEL,NDIR,NDEG,
ICONT)

8. input Tapes: None

9. Output Tapes: 4None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 2A78 16 Bytes.

12. Subroutine User: ELPLUG

13. Subroutines Required:

ELTEST, DTAPR, MATPR, NEWFT1PTBM, PTMGS, MAB, AXTRA2,
DPQINT, MINV, PKM, PSTM, PFMTS, APRT, PTBF, PTFGS, PKF,
PFe, PSTF, PFFTS. PNC1, PNG1, EPRT, PLAS2, PFMASS, PMMASS

14. Remarks: None

334

i. Subroutine Hame: PMMAJS

2. Purpose: To calculate the membrane contributions to the
mass matrix for the triangular thin plate element.

3. Equations and Procedures: The weight of the element is
calculated to be the area x thickness x density. This is
then distributed equally to the 3 corner points.

11. Input Arguments:

T = thickness of element
DOO = area of triangle
DEHS = density of element's material

5. Output Arguments: AMS = lecal mass matrix

6. Error Returns: None

'. Calling Sequence: Call FMMA3S (T,DOO,SINA,DENS,AMS)

8. Input Tapes: None

9. Otvtput Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 22216 Bytes.

12. Subroutine User: PLUG2

13. Subroutine Required: None

14. Remarks: None

335

1. Subroutine Name: PFMASS

2. Purpose: To calculate the flexural contribution to the
mass matrix for the triangular thin plate element.

3. Equations and Procedures: The weight of the element is

calculated to be the area x thickness x density. This is
then distributed equally to the three corner points.

41. Input Arguments:

T = thickness of element
DOO = area of triaigle
DENS = density of element's material

5. Output Arguments: AMS - local membrane mass matrix

6. Error Return: None

7. Calling Sequence: Call PFMASS (T,DOO,SINA,DENS,AMS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required- Total Storage required iz 4AP. 6 Bytes.

12. Subroutine User: PLUG2

13. Subroutine Required: None

14. Remarks: None

336

1. Subroutine Name: ASSY2

2. Purpose: Assemble membrane and flexure contributions
into element stiffness matrix for triangular thin shell
element

3. Equations and Procedures: 'The elements of the Cl matrix
are summed into the C2 matrix as directed by the input
array IASY.

4. Input Arguments:

C1 : Array containing input elements to be
assembled

IASY : Array cont"ining assembly instructions
N1 : Order of C1

5. Output Arguments:

C2 : Assembled matrix

6. Error Returns: None

7. Calling Sequence:

(C2, C1, IASY, Ni)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 29616 Bytes.

12. Subroutine User:

PKM
PKF

13. Subrout nes Required: None

14. Remarks: None

337

1. Subroutine Name: DCD

P.rpo;e: To evaluate the triple matrix product of a
diagonal matrix D, a symmetric matrix S. and cMhe diagonal
matrix D.

3. Equations and Procedures:

AN Z Z 1n x S x D (See remarks)nn n n nn nrn nn

I.. Tnput Arguments:

SYM: Elements of symmetric matrix IS_
D: Elements of a diagonal matrix[L]
N: Order of [Sland [D] matrices

9. Output Arguments:

AN: Elemnents of matrix product

6. Error Returns: Nont

7. Calling Sequence:

CALL DCD (SYM, D, AN, N)

q. Input Tapes: None

C. Output Tapes: None

10. Scratch Tapes: None

11. Storage Rpnul ,oo 1

Total Storage required is 30A 1 6 Bytes.

12. Subroutine User: PKF, PKM

13. 'Subroutines Pequired: None

338

]~-. Remarks: .The summations occur over
1.1o *. , o 1II ci C) .*

0 22 . 82 1 S2 2 0 20

0oT n2

All redundaut multiplications (i.e. those where zero eI
inonts exist in the D matrix and those where the upper
elements of the S matrix would be considered) are dispensed
within the program and only signif'icant multiplications
take place.

339

1. Subroutine Name: DTAPR

2. lPueooe : ;v aLc Lhree sub-elements and tran:'fornmation
matrix from system to local coordinates

3. Equations and Procedures: The sub-element coordinates
are calculated from the system coordinates by generating
a trarsformation matrix and applying it to the system
coordinates array.

it. Input Arguments:

Rl,R2,R3 : Reference system coordinates
El,E2,E3,E : Arrays containing coordinate differences
R12,RI1 : Work storage

COORDS : ReCerence system coordinates

5. Output Arguments:

RO : Origin of sub-elements coordinate system
RLI.RL2,RL3 : Local sub-elements coordinates
TGS : Transformation from reference system to

local sub-element coordinates matrix
COORDL : Local sub-elements coordinates

6. Error Returns: None

7. Calling Sequence:

(RI, R2, R3, RL1, RL2, RL3, El, E2, E3, E, TGS, RO,
1R12, R13, COORDS, COORDL)

8p. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

I. Storage Required: Total storage required is 6EA1 6 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: MAB

111. Remarks: None

340

1. Subroutine Name: MATPR

2. Purpose: (,erierat.e material propertle i,:.
for triangular thin shell element

3. Equations and Procedures: The material. propertie.:
matrix, EM, is generated dependent upon the formulation
option selected; plane stress, plane sti'ain or normat.
The matrix angle and stress angle is determined by
examining the extra element defining points. The
material properties matrix is then oriented to the
desired material angle and the stress angle transforma-
tion matrix is generated.

)1. Tnput Arguments:

NL : Array containing grid point numbers
of element defining points

XC,YC,ZC : Arrays containing reference system
coordinates for element defining points

EX,EY,EZ : Young's Moduli
GXY : Rigidity Modulus
VXY,VZX,VYZ : Poisson's Ratios
ALPHAX,ALPHAY : Coefficients of thermal expansion
GAMXY : Material. angle
T : Thickness
EXGRID : Array containing coordinate differences

for stress angle definition points
EXGRDL Array containing coordinate di leren -e.

for material angle definition points
ALPHAM : Not used
ALIPHAG : Not used
TGS : Transformation matrix from reference

system to sub-element coordinates
IST : Plane strain, stress control
RI.R2,R3 : Not used
ROB : Origin of sub-element coordinate system
RL1,RL2,RL3 : Local sub-element coordinates
EES : Work storage
NEXGR : Work storage
AMAT : Local sub-element coordinates
L,M : Work storage

5. Output Arguments:

EM : Material properties matrix
EG : Transformed material prope.ties matrix

(oriented to material ang?.e)
TES : Material angle transformation matrix
TESS : Stress angle transformation matrix

341

.+

6. Error Returns: None

7. Calling Sequcnee:

(NL, XC, YC, ZC, EX, EY, GXY, VXY, EZ, VZX, VYZ,
ALPHAX, ALPHAY, GAMXY, T, EM, EG, EXGRID, EXCHD,
ALPHM, ALPHG, TGS, IST, RI, R2, R3, ROB,.RLI, RL2,
RL3, EES, TES, TESS, NEXGR, AMAT, L,M)

8. Input Tapes: None

9. Output Tapes. None

10. Scratch Tapes: None

11. Storage Required: Total storage required is BEE16 Pytes.

12. Subroutine User: PLUG2

13. Subroutines Required:

MINV
MAB
BCB

14. Remarks: None

342

1. Subroutine IPame: NEWFT1

2. Purpose: Generate membrane and flexura] t.1,i :i,,.. "]oacl]:
for triangular thin shell element in local c .cidinates

3. Equations rocedures:

BCT = * CT
BMT = BCT * TEMM
BFT .BCT v. TEMF

where P and CT are geometric matrices of loca) ,:oordinates,
and TEH1I and TE4F are membrane and flexure temperatures,
respectively, at the element defining points.

.4* Input Arguments:

DELTM : Average membrane temperature
DELTF : Average flexure temperature
RLI,RL2,RL3 : Local coordinates
TZ : T for structure
F,BCT,CT : Wrk storage
TEL : Temperatures at element defining points
TEMM,TEMF,L,M : Work storage

5. Output Arguments:

BMT : Membrane thermal load in local
coordinates

BFT : Flexure thermal load in local
coordinates

6. Error Returns: None

7. Calling Sequence:

(DELTM, DELTF, RLI, RL2, RL3, TZ, BMT, BFT, F, BCT,
CT, TEL, TEM14, TEMF, L, M)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required il 51616 Bytes.

12. Subroutine User: PLUG2

343

13. Subroutine Required:

MINI
MAB

111. Remarks: None

344

1. Subroutine Name: PTBM

2, Purpose: Generate membrane transformation niatvIx
from sub-element to geometric coordinate system

3. Equations and Procedures: The transformation matrix
is generated directly from sub-,lement coordinate
values and inversion.

4. Input Arguments:

TGSM : Not used
RL1,RL2,RL3 : Sub-element coordinates
L,M : Work storage

5. Output Argument:

TBM : Sub-element to geometric coordinate
system membrane transformation matrix

6. Error Returns: None

7. Calling Sequence:

(TBM, TGSM RLI, RL2, RL3, L, M)

8. Input Tapes: None.

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 49A 16 Bytes.

12. Subroutine User: PLIJG2

13. Subroutines Required: MINV

14. Remarks: None

345

1. Subroutine Name: PTMGS

2. Purpose: Generate geometric to reference cw 'dinate
system membrane transformation matrix

3. Equations and Procedures: The transformation matrix is
generated by utilizing the TGS matrix. The effect of
eccentricities and mid-point suppression is also
reflected in the generation of th TGSM matrix.

IL. Input Arguments:

NL : Array containing element defining
grid point numbers

EEZ : Eccentricity
TBM : Not used
TGS : Reference system to sub-element

transfornation matrix

5. Output Arguments:

TGSM : Geometric to reference coordinate system
membrane transformation matrix

6. Error Returns: None

7. Calling Sequence:

(NL, EEZ, TBM, TGSM, TGS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

1. Storage Required: Total storage required is 47816 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: None

ll. Remarks: None

346

1. Subroutine Name: DPQINT

2. Purpose: Generate integrals over the throe sIb-
elements of a triangular thin shell element

3. Equations and Procedures: The integrals are calculated
by using the triangular integration package controlled
by the function subprogram AI. The output values of
the integrals are placed in the array DELPQ.

4. Input Arguments:

RL1,RL2,RL3 : Sub-element coordinates
R,Z,TEVP : Work storage

5. Output Arguments:

DELPQ : Array ccntaining integral values

6. Error Returns: None

7. Calling Sequence:

(DELPQ, RL1, RL2, RL3, R: Z, TEMP)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tppes: None

11. Storage Required: Total storage required is 7AC 16 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: AI (Function)

.4. Remarks: None

347

V

1. Subroutine Name: PKM

2. Purpose: Generate membrane contribution to triangular
thin shell element stiffness matrix

3. Equations and Procedures: The membrance contribution
to the element stiffness matrix is formed by generating
sub-elemeat stiffness matrices, essembling them into a
work area and then transforming from the work area to
the reference coordinate system.

h. Input Arguments:

AXl : Work storage
DELPQ : Sub-element integrals
EM : Material properties matrix
EG : Material Droperties matrix oriented

to material angle
TMS : Sub-element to reference coordinate

system transformation matrix
TFS : Not used
IASEM : Array containing assembly parameters
AD : Work storage
CM : Work storage
AIJ : Work storage
IPRT : Element print control
EX : Not used
EY : Not used
GXY : Not used
VXY : Not used
ALHAX : Not used
ALPHAY : Not used
GAMXY : Not used
T : Membrane thickness

5. Output Argument:

AK : Membrane contribution to element
stiffness matrix

6. Error Returns: None

7. Calling Sequence:

(AK, AK1, DELPQ, EM, EG, TMS, TFS, IASEM, AD, CM, AIJ,
IPRT, EX, EYf, GXY, VXY, ALPHAX, ALPHAY, GAMXY, T)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

348

11. Storage Required: Total storage required is 74616 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required:

SYMPRT
DCD
ASSY2
BCB

14. Remarks: None

349

1. Sibroutine Name: PSTM

2. Purpose: Generate membrane contribution to element
stress matrix for the triangular thin shell element

3. Equations and Procedures: The membrane contributions
to the element stress matrix are generated'by first
forming the stress values in local coordinates, then
transforming to reference system coordinates and
finally applying the stress angle transformation.

4. Input Arguments:

RL : Sub-element coordinates
RL2
RL3
TMS : Sub-element to reference coordinate system

transformation matrix
TFS : Not used
EM : Not used
EG : Naterial properties matrix oriented to

material angle
SN : Work storage
AM1 : Work storage
AM2 : Work storage
TES : Stress angle transformation matrix
EX : Not used
EY : Not used
GXY : Not used
VXY : Not used
ALPHAX : Not used
ALPHAY : Not used
GAMXY : Not used
T : Membrane thickness
R : Work storage
U : Work storage
X : Work storage
Y : Work storage

5. Output Arguments:

S : Membrane contribution to element
stress matrix

6. Error Returns: None

350

7. Calling Sequence:

(S, RL1, RL2, RL3, TMS, TFS, EM, EG, SN, AM1, AM2,
TES, EX, EY, GXY, VXY, ALPHAX, ALPHAY, GAMXY, T, R,
U, X, Y)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 61C 16 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required:

MAB
MSB
MATB

1i). Remarks: None

351

1. Subroutine Name: PFPvTS

2. Purpose: Generate membrane thermal load and membrane
therm.al stress matrices for the triangular thin shell
element

3. Equations and Procedures: Subroutine PFMV1 is called
to generate the thermal load matrix in geometric
coordinates from BMT. This matrix is then transformed
to reference system coord.nates by TMS. The thermal
stress matrix is generated and the stress angle applied
by TESS.

4. Input Arguments:

DELTM : Average membrane temperature
TES : Materia.l angle transformation matrix
TESS : Stress angle transformation matrix
BMT : Membrane thermal load contribution

in sub-element coordinate system
EM : Not used
EG : Material properties matrix oriented to

material angle
TMS : Sub-element to reference coordinate

system transformation matrix
TFS : Not used
EX : Not used
EY : Not used
GXY : Not used
VXY : Not used
FMV : Work storage
ALPHAX, : Coefficients of thermal expansion
ALPHAY
GAMXY : Not used
T : Membrane thickness
TO : Not used
TI : Not used
FME : Work storage
EMI : Work storage
EM1 : Work storage
SZLM : Work storage
SZLMI : Work storage
WRK : Work storage
DELPQ : Array containing sub-element

integral values

5. Output Arguments:

iT : Membrane contribution to element
thermal load matrix

SZALEL : Membrane contribution to element
thermal stress matrix

352

6. Error Returns: None

7. Calling Sequence:

(FT, DELTM, SZALEL, TES, TESS, BMT, EM, EG, TMS, TFS,
EX, EY, GXY, VXY, FMV, ALHAX, ALPHAY, GAMXY, T, TO,
TI, FME, EMI, EMI, SZLM, SZLM1, WRK, DRLPQ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 60D16 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required:

PFMV1
MAB
MATB
MSB

J14. Remarks: None

353

$

1. Subroutine Name: PFMV1

2. Purpose: Generate membrane contribution to element
thermal load matrix in local coordinates

3. Equations and Procedures: The integral values across
the sub-elements are re-arranged. The membrane contri-
bution for each sub-element is generated in FMV by
direct formulation as a function of the integral values
and the material properties matrix. The sub-element
matrices are placed in FMV1 and pre-multipled by BMT.

4. Input Arguments:

DELC : Array containing sub-element integral values
EG : Material properties matrix oriented to

material angle
BMT : Array containing revised formulation for

membrane thermal load matrix in local
coordinates

FMV : Work storage
T : Membrane thickness

5. Output Arguments:

FMV1 : Membrane thermal load matrix in local
coordinates

DELPQ : Re-arranged sub-element integral values

6. Error Returns: None

7. Calling Sequence:

(FMV1, DELC, EG, BMT, FMV, DELPQ, T)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 76616 Bytes.

12. Subroutine User: PFMTS

13. Subroutines Required: None

14. Remarks: None

354

1. Subroutine Name: APRT

2. Purpose: Provide print of intermediate triangular
thin shell element computations

3. Equations and Procedures: None

4. Input Arguments:

LT : Membrane/flexure indicator
LT1 : Not used
LT2 : Not used
DELPQ : Array containing sub-element integral

values
RL1, : Sub-element coordinates
RL2,
RL3
R1, : Reference system element coordinates
R2,R3
RO : Origin of sub-element coordinate system
El, : Sub-element coordinate differences
E2,
E3,
E
TGS : Sub--element to geometric coordinates

transformation matrix
TBF : Flexure sub-element to geometric system

coordinates transformation matrix
TGSF : Flexure geometric to reference system

coordinates transformation matrix
TMS : Membrane sub-element to reference system

coordinates transformation matrix
TFS : Flexure sub-element to reference system

coordinates transformation matrix
EM : Material properties matrix
EG : Material properties matrix oriented to

material angle
TES : Material angle transformation matrix
TBM : Membrane sub-element to geometric

coordinates transformation matrix
TGSM : Membrane geometric to reference system

coordinates transformation matrix

5. Output Arguments: Nonc

6. Error Returns: None

355

7. Calling Sequence:

(LT, LTl, LT2, DELPQ, RLI, RL2, RL3, RI, R2, R3, RO,
El, E2, E3, E, TGS, TBF, TGSF, TMS, TFS, EM, EG,
TES, TBM, TGSM)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is B2C 16 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: None

14. Remarks: None

356

1. Subroutine Name: PTFGS

2. Purpose: Generate flexure geometric to reference
system coordinates transformation matrix

3. Equations and Procedures: The flexure geometric to
reference system coordinates transformation matrix is
generated from the TGS matrix and the sub-element
coordinates. The effect of mid-point suppress
contained in this transformation matrix suppression.

4. Input Arguments:

NL : Array containing element definition
grid point numbers

TGS : Sub-element to geometric transformation
matrix

TBF : Not used
XD, : Work storage
YD,
L,

AI,
BI
AMAT : Array containing sub-element coordinates

5. Output Arguments:

TGSF : Flexure geometric to reference system
coordinates transformation matrix

6. Error Returns: None

7. Calling Sequence:

(NL, TGS, TBF, TGSF, XD, YD, L, AI, BI, AMAT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 58216 Bytes.

12. Subroutine User: PIUG2

13. Subroutines Required: None

14. Remarks: None

357

1. Subroutine Name: PKF

2. Purpose: Generate the flexure contribution to the

triangular thin shell element stiffness matrix

3. Equations and Procedures: The sub-element flexure
contributions are generated and assembled into a
work area. A transformation is then applied to the
reference coordinate system.

4. Input Arguments:

IASSY : Control indicating flexure contribution
will supplement membrane contribution or
flexure contribution alone is requested

DELPQ : Array containing sub-element integrals
EM : Not used
EG : Material properties matrix oriented

to material angle
TMS : Not ased
TFS : Flexure sub-element to system reference

coordinates transformation matrix
IASEM : Work storage for assembly control array
AD : Work storage
CM : Work storage
AIJ : Work storage
EX : Not used
EY : Not used
GXY : Not used
VXY : Not used
ALPHAX : Not used
ALPHAY : Not used
GAMXY : Not used
T : Flexure thickness
IPRT : Intermediate results print control
AKI : Work storage
ROW : Work storage
ROWN : Work storage

5. Output Argument:

AK : Flexure contribution to element
stiffness matrix

6. Error Returns: None

358

7. Calling Sequence:

(AK, IASSY, DELPQ, EM, EG, TMS, TFS, IASEM, AD, CM,
AIJ, EX, EY, GXY, VXY, ALPHAX, ALPHAY, GAMXY, T,
IPRT, AKI, ROW, ROWN)

8. Input Tapes: None

9. Output Tapes: None

1C. Scratch Tapes: None

11. Storage Required: Total storage required is 77216 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required:

DCD
ASSY2
CCB

14: Remarks: None

359

1. Subroutine Name: CCB

2. Purpose: Perform triple product multiplication, ATSA,
where S is a symmetric matrix stored lower half by rows

3. Equations and Procedures: A row of the intermediete
matrix product ATS is generated at a time. From the
product of this row and A, a row of the final triple
product is generated.

Options are present for scalar multiplication of the
triple product, summing the triple product into an
existing matrix, and deleting upper rows of the matrices
from the operation.

4. Input Arguments:

A : First input matrix, doubly dimensioned in
calling program

SYM : Second input matrix, symmetric, singly sub-
scripted, stored lower half by rows

ND,MD : Dimensioned size of A
N,M : Actual size of A
Nl : Number of upper rows to be deleted in the

operation
SCAL : Scalar multiplier
IASSY : Sum option indicator
ROW,ROWN: Work storage

5. Output Argument:

AN : Triple product of ATSA, symmetric, singly
subscripted, stored lower half by rows.

6. Error Returns: None

7. Calling Sequence:

(A, SYM, AN, ND, MD, N, M, NI, SCAL, IASSY, ROW, ROWN)
8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 5B61 6 Bytes.

12. Subroutine User: PLUG2

360

13. Subroutines Required: None

14. Remarks: None

361

1. Subroutine Name: PFP

2. Purpose: Generate element pressure load matrix for
the triangular thin shell element

3. Equations and Procedures: The element pressure load
matrix is generated in local coordinates and then
transformed to reference system coordinates.

4. Input Arguments:

TMS : Not used
TFS : Flexure sub-element to reference system

transformation matrix
DELPQ : Array containing sub-element integral values
P : Pressures at element definition points
FPB : Work storage

5. Output Arguments:

FP : Element pressure load matrix

6. Error Returns: None

7. Calling Sequence:

(FP, TMS, TFS, DELPQ, P, FP13)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

Total storage required is 2A21, bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: MATB

14. Remarks: None

362

1. Subroutine Name: PSTF

2. Purpose: Generate flexure contribution to element
stress matrix for the triangular thin shell element

3. Equations and Procedures: The sub-element stress
matrices are generated and assembled into one matrix.
This matrix is then transformed to reference system
coordinates and the stress angle is applied.

4. Input Arguments:

RL
RL2 : Sub-element coordinates
RL3
TMS : Not used
TFS : Flexure sub-element to reference system

coordinates transformation matrix
EM : Not used
EG : Material properties matrix, oriented the

material wngle
SNM : Work storage
TES : Stress angle transformation matrix
EX : Not used
EY Not used
GXY : Not used
VXY : Not used
ALPHAX : Not used
ALPHAY : Not used
GAMXY : Not used
T : Flexure thickness
R : Not used
U : Not used
X : Work storage
Y : Work storage
AM1 : Work storage
M2 : Work storage
AM3 : Work storage
AM4 : Work storage
G : Work storage

5. Output Argument:

S : Flexure contribution to element stress matrix

6. Error Returns: None

7. Calling Sequence:

(S, RLI, RL2, RL3, 04S, TFS, EM, EG, SNM, TES, EX, EY,
GXY, VXY, ALPHAX, ALPHAY, GAMXY, T, R, U, X, Y, AM1.
AM2, AM3, Am4, G)

363

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is BD4i6 Bytes.

12. Subroutine User: PLUG'

13. Subroutines Required:

MAB
MSB
MTB

14. Remarks: None

364

1. Subroutine Name: PFFTS

2. Purpose: Generate flexure contribution to element
Thermal load and thermal stress matrices for the
triangular thin shell element

3. Eanations and Procedures: The flexure contribution to
the element thermal load matrix in local coordinates is
generated by calling subroutine PFFV1. The material
angle transformation is applied and the transformation
from local to reference system coordinates is performed.

The flexure contribution to the element thermal stress
matrix is generated and transformed to the selected
stress angle.

14. Input Arguments:

DELTF : Average flexural temperature
TES : Material angle transformation matrix
TESS : Stress angle transformation matrix
BFT : Flexural thermal load formulation revision
EM : Not used
EG : Material properties matrix, oriented to

material angle
T4S : Not used
TFS : Flexure sub-element to reference system

coordinates transformation matrix
EX : Not used
EY : Not used
GXY : Not used
VXY : Not used
FFV : Not used
ALPHAX : Not used
ALPHAY : Not used
GAMXY : Not used
T : Flexure thickness
TO : Not used
TI : Not used
EFI : Work storage
FFE : Work storage
FF : Work storage
SZLF : Work storage
SZLF1 : Work storage
EF1 : Work storage
WRK : Work storage
DELPQ : Array containing sub-element integrals

365

5. Output Arguments:

FT : Flexure contribution to element thermal
load matrix

SZALEL : Flexure contribution to element thermal
stress matrix

6. Error Returns: None

7. Calling Sequence:

(FT, DELTP, SZALEL, TES, TESS, BFT, EM, EG, TMS,
TFS, EX, EY, GXY, VXY, FFV, ALPHAY, ALPHAY, GA.-NY,
T; TO, TI, EFI, FFE, FF, SZLF, SZLF1, EF1, WRK,
DELPQ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 65616 Bytes.

12. Subroutine User: PLUG2

13. Subroutine Required: PFFV1

PFFV1
MAB
14ATB
MSB

14. Remarks: None

366

1. Subroutine Name: PFFV1

2. Purpose: Generate flexure contribution to element
thermal load matrix Ln local coordinates

3. Equations and Procedures: The array containing the
subelement integral values is re-arranged. The sub-
element thermal load matrices are generated from the
integral values and the material properties matrix.
The sub-element thermal load matrices are assembled
into one matrix and then multiplied by BFT to apply
the revised thermal load formulation.

11. Input Arguments:

DELC : Array containing sub-element integral
values

EG : Material properties matrix, oriented to
material angle

BFT : Array containing revised thermal load
formulation

FFV : Work storage

5. Output Arguments:

FF11 : Flexure contribution to element thermal
load matrix in local coo dinates

DELPQ : Array containing re-arranged sub-element
integral values

6. Error Returns: None

7. Calling Sequence:

(FFVI, DELC, EG, BFT, FFV, DELPQ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 9A01 6 Bytes.

12. Subroutine User: PFFTS

13. Subroutine Required: None

11. Remarks: None

I 367

1. Subroutine Name: PNC1

2. Purpose: Non-functional

3. Equations and Procedures: None

i. Input Arguments: None

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: None

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is F61 6 Bytes.

12. Subroutine User: PLUG2

13. Subroutine Required: None

lit. Remarks: None

368

1. Subroutine Name: PNGl

2. Parpose: Non-functional

3. Equations and Procedures: None

4. Input Arguments: None

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: None

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is F6 1 6 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: None

14. Remarks: None

369

1. Subroutine Name: EPRT

2. Purpose: Print generated triangular thin shell
element matrices

3. Equations and Procedures: None

4 . Input Arguments:

AK : F~nal element stiffness matrix
S : Fiial element stress matrix
ANEL : Noz--functional
FN : Non-functional
FT : Final element thermal load matrix
FP : Final element pressure load matrix
SZALEL : Final element thermal stress matrix

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

(AK, S, ANEL, FN, FT, FP, SZALEL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 4F0 16 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: None.

111. Remarks: None

370

1. Subvoutine Name: PLAS2D

2. Purpose: Non-functional

3. Equations and Procedures: None

4t. Input Arguments: None

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: None

8. Input Tapes: None

9. Output Tapes: None

10. Scratch 'rapes: None

11. Storage Required: Total storage required is F61 6 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: None

1I. Remarks: None

371

1. Subroutine Name: PTBF

2. Purpose: Generate flexure sub-element to geometric
axes transformation matrix

3. Equations and Procedures: The inverse of the desired
matrix is generated by direct assignment into a work
area. Inversion is performed to obtain the final
transformation matrix.

4. Input Arguments:

TGSF : Not used
RL1
RL2 : Sub-element coordinates
RL3
IPRT : Intermediate element print indicator
L : Work storage
M : Work storage
U : Work storage
TI : Work storage
B : Work storage
BFF : Work storage
BFO : Work storage

5. Output Arguments: None

TBF : Flexure sub-element to geometric
transformation matrix

6. Error Returns: None

7. Calling Sequence:

(TBF, TGSF, RL1, RL2, RL3, IPRT, L, M, U, TI,
B, BFF, BFO)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is CCC 1 6 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required:

MAB
MINV

14. Remarks: None

372

1. Subroutine Name: PLUG 6

2. Purpose: To form the element matrices for a triangular
cross section ring discrete element with applications
towards the analysis of thick walled and solid axisym-
metric structures of finite length. It may be used to
form the assembly of any axisymmetric structure taking
into account:

I 1 Arbitrary axial variations in geometry
Axial variation in orientation of material axes of
orthotropy

S3) Radial and axial variations in materiel properties
Any axisymmetric loading systems including pressure,
prestrain, prestress, and temperature

The complete discreta element representation, consists of
the algebraic expressions for the following matrices:

(1) Stiffness
2 Pressure load

Thermal load
4 Pre-strain load
5 Sre-stress load
6 Stress

7 Mass
8 Structural damping

Viscous damping

3. Equations and Procedures: The development of the complete
element representation arises from the Laprangian (varia--
tional) equation

)i + i)2 + d ____ d

q r q r dt q r

where

qv = r generalized displacement coordinates

4l = total potential energy

42 = structural damping dissipation energy

3= viscous
= kinetic energy

The subsequent development of the element matrices is then
provided in algebraic form to the coded progrsm, which
follows the format:

373

(1) The input data, used in forming the matrices, is
processed and organized for computation.

(2) By subroutine TRATC: the coordinate transformation
matrices, and the table of integrals is formed. In
routine TRAIE, the material properties matrices are
formed.

(3) Using tne above mentioned matrices and integrals,
the program then generates, the stiffness,

pressure load, thermal load, stress, pre-strain,
pre-stress, mass, structural damping, and viscous
damping matrices, and the stress, thermal stress,
pre-strain, pre-stress, pre-strain load, and pre-
stress load vectors.

(4) After each significant matrix, vector, etc., is
formed, the program prints out the desired results.

Input Arguments:

IPL : Plug number
NN0 : Number of node points
XC : X - coordinates of nodes points
YC : Y - coordinates of node points
9C :Z - coordinates of node points
TEL : Temperatures at the node points
PEL : Pressures at the node points
Q$EL : Input displacements of the node points
IP : Number of extra cards
NORD : Order of element stiffness matrix
NR$EL : Number of rows in the stress matrix
INO : Number of nodes
N0DORD : Node point numbers
KK : Code for computation of element stiffness matrix
KF : Code for computation of element thermal load
K$: Code for computation of element stress matrix
KM : Code for computation of element mass matrix
KD$: Code for computation of structural damping matrix
KDV : Code for computation of viscous damping matrix
KN : Code for computation of incremental damping matrix
IU$EL : Dummy
EP$L0N : Pre-strain load vector
$IGZER : Pre-9tress load vector
MAT : Material properties matrix
EXTRA : Extra information (angles, etc.)
NDIR : Number of directions of movement per grid point
NDEG : Number of types of movement allowed per grid point
ICNT : Code for use of grid point axes

374

5. Output Arguments:

NERR : Error return
NOINK : Number of elements in lower half matrices
AKELXP : Stiffness matrix
ANEL : Incremental stiffness matrix
FTXP : Thermal load + pressure load matrix
TRXP : Stress matrix
T$:Thermal stress matrix
XMA$XP : Mass matrix
DAMPV : Viscous damping matrix
DAMP$: Structural damping matrix
NSEL : Number of elements in stress matrix
NMA$$: Number of elements in mass matrix
NP$L : Number of elements in viscous damping matrix
NP$ $: Number of elements in structural damping matrix
GPAXEL : Grid point axes transformation

6. Error Returns

NERR = 0 No Error
= 1 Plug Number Incorrect
- 2 Number of Nodes Incorrect
- 3 Number of Input Points Incorrect

i t Order of Matrix (nord) Incorrect

7. Culling Sequence:

(IPL, NN0, XC, YC, ZC, TEL, PEL, Q$EL, IP, NRD, NERR, N0INK,
AKELXP, ANEL, FTXP, TRXP, T$, XMA$XP, DAMPV, DAMP$,
NR$EL, IN0, N0D0RD, NMA$$, NP$L, NP$$, NEL, KK, KF, K,
KM, KD$, KDV, KN, IU$EL, EPLN, $IGZER, MAT, EXTRA,
GPAXEL, NDIR, NDEG, ICoNT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

i!. Storage :

GAMABQ 6,6) DELINT (12) DCURL(446) EM(1) E(10) TE (4,4)
AKEL(2 6F$6) F P$T(6 P LN(6 IGZER(6) EXTRA(1)
ALFBAR,) FT(6 STRESS(4;6 T$ (4) XMA$ (21) D$M(4)
D$(21) DV(21) AKELXP (45) XMA$XP (45) D$XP(45) DVXP(45)
XC(3) YC(3)6) ANE () P)YC(3) NODORD (3) X 3). LMAT (6,4)PEn (6) Q$EL(6) ANEL(6) T EMP2(6,6) IU$EL (6] LISTP(6)
TEL (12,3 El (4,4) DAMP$ 6) DAMPV(6) A(9,6) B(4,6)ALI$Tp 6) FTXP(9 $''$P4,9) PLXP (9,4 P$$

MAT(l) AKEL1 (6,6 AKEL2 6,6) AMCURL 21) TEMP (6)
TEMPI (4) XMA$$1 (6,6) TMG (2,2) AMCURL (21) AMBAR (2,2)
DZERO (6,4)

375

12. Subroutine User: ELPLUG

13. Subroutines Required:

ELTE$qT. TRAIE TRAMK TRAIFP TFTPRT

TRIPTTAMT$R XCO TR
TIEPRTTIKPRT TFPPRT TRAI$ T$R

TIMPRT TRAI$T PL6PRT TRCPRT TPRD
EXP$IX TRAIFT TI$PRT MPRD TAF
T$TPRT

14. Remarks: None

376

1. Subroutine Name: EXPC0L

2. Purpose: To generate a matrix [B] , given a specific
input matrix [A , for Plug 6.

The purpose of this operation is to impose the conditions
that flexure terms "v" are zero.

Equations and Procedures: ThP matrix terms are formed by
direct assignment.

4. Input Arguments: [A] : Input Matrix

5. Output Arguments: [B] : Output Matrix

6. Error Returns: None

7. Calling r;.uence: (A, B)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 16616 Bytes.

12. Subroutine User: PLUG 6

13. Subroutines Required: None

14. Remarks: None

4

1_ 377

1. Subroutine Name: EXP$IX

2. Purpose: To generate a symmetric matrix [B]
given a specific input symmetric matrix [A] , for
Plug 6. The purpose of this operation is to impose the
condition that flexure terms ,v,, are zero.

3. Equations and Procedures: The matrix terms are formed

by direct assignment.

4. Input Arguments: [A] : Input Matrix

5. Output Arguments: [B] : Output Matrix

6. Error Returns: None

7. Calling Sequence: (A, B)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

ii. Storage Required: Total Storage required is 20616 Bytes.

12. Subroutine User: Plug 6

13. Subroutines Required: None

14. Remarks: None

378

1. Subroutine Name: TRAIC

2. Purpose: To generate coordinate transformation matrices
for triangular ring which vary with coordinates and
generate integrals for future use.

Equations and Procedures: The coordinate matrix [GAMABQ]
is formed by algebraic assignment. The table of inte-
grals, DELINT, is formed by algebraic methods using the
function subprogram AI.

4. Input Arguments: R,Z: Coordinates of node points

WIPR: Print control

5. Output Arguments:

GAMABQ: Coordinate matrix
DELINT: Table of integrals
DCURL: Matrix transformation
ISING: Error return code

6. Error Returns: If GAMABQ cannot be generated due to
singular matrix then ISING is set to one.

7. Calling Sequence: (R, Z, GAMABQ, DELINT, DCURL, ISING,
WIPR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: R(3), Z(3), GAMABQ (6,6), DELINT (12),
DCURL (4,6), LL(6), MM(6)

12. Subroutine User: PLUG6

13. Subroutines Required: MINV, AI, TESTJ, TRCPRT

14. Remarks: None

379

1. Subroutine Name: TESTJ

2. Purpose: To check DELINT (PLUG6) for any negative or
incorrect integrals; If any errors are noted, the
integrals are recomputed by an approximation method.

3. Equations and Procedures: The checks are performed by
logical if statements. The integral approximation is

ffxPzQ d x dZ V RP A

where

1

A X 1 [X1 (Z2-z 3) + x2 (z3 -zl) + x3 (zl-z2)]

4. Input Arguments: DELINT (I) value of the I th integral
X: X coordinates
Z: Z coordinates
WIPR: print control

5. Output Arguments: DELINT (I): recomputed integral

6. Error Returns: None

7. Calling Sequence: CALL TESTJ (DELINT, X, Z, WIPR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

DELINT (12), DLINT (12), X (1), Z (1), XO (3), ZO (3),
DELTAX (1), DELTAZ (1), XHAT (1), ZHAT (1)

12. Subroutine User: TRAIC

13. Subroutine Required: None

14. Remarks: If the test necessltates recomputation, the new
integral values will be stored in the old locations, thus
destroying the originals.

380

1. Subroutine Name: TRCPRT

2. Purpose: To print elements formed in TRAIC

3. Equations and Procedures: None

4. Input Arguments:

GAMABQ: coordinate matrix
DELINT: tab.e of integrals
DCURL : matrix of integrals

5. Output Arguments: None

b. Error Returns: None

7. Calling Sequence: (GAMABQ, DELINT, DCURL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 32016 Bytes.

12. Subroutine User: PLUG6

13. Subroutine Required: None

14. Remarks: None

381

1. Subroutine Name: TRAIE

2. Purpose: To senerate the transformed matrix of elastic
constants

3. Equations and Procedures: The routine

a) Generates the transformation matrix
b Generates the elastic constants matrix
c Generates the transformed elastic constant matrix

4. Input Arguments:

ER, ETHETA, EZ : Moduli of elasticity (Young's)
VR0, V0Z, VZR : Poissons ratio
GRZ : Modulus of rigidi.ty
GAM : Angle between material axes and

element axes
El : Work storage

5. Output Arguments:

TEO : Transformation matrix
EM : Elastic constants matrix
E : Transformed elastic constant matrix

6. Error Returns: None

7. Calling Sequence:

(ER, ETHETA, EZ, VRO, Vgr, VZR, GRZ, GAM, TEO, EM, E,
El, WIPR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 60216 Bytes.

12. Subroutine User: PLUG6

13. Subroutines Required: MPRD, TPRD

I4. Remarks; None

382

1. Subroutine Name: TIEPRT

2. Purpose.: To print matrices formed in TRAIE

3. Equations and Procedures: None

4. Input Arguments: TE0 : Transformation matrix
EM : Elastic constant matrix
E : Transformed elastic constant matrix

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: (TEO, EM, E)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

ii. Storage Required: Total Storage required is 29416 Bytes.

12. Subroutine User: PLUG6

13. Subroutines Required: None

14. Remarks: None

383

1. Subroutine Name: TRAIK

2. Purposez Generate stiffness matrix for triangular ring

3. Equations and Procedures: The program uses the table of
integrals to form the first intermediate matrix. This
matrix is then transformed to form the final stiffness
matrix.

4. Input Arguments:

GAMABQ: Transformation matrix
E : Transformed elastic constant matrix
DELINT: Table of integrals
WIPR : Print control
AKEL1, AKEL2, ACURL: Work storage

5. Output Arguments: AKEL : Stiffness matrix

6. Error Returnz: None

7. Calling Sequence: (GAMABQ, E, DELINT, AKEL, WIPR, AKEL1,
AKEL2, ACURL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

GAMAPj (6,6), E(lO),DELINT (12),AKEL (21),AKELl (6,6),
AKEL2 (6,6), ACURL(21)

12. Subroutine User: PLUG6

13. Subroutines Required: TPRD, MPRD

14. Remarks: None

384

1. Subroutine Name: TIKPRT

2. Purpose: To display matrices generated in TRAIK

3. Equations and Procedures: None

4. Input Arguments: AKEL : Stiffness matrix
ACURL : Intermediate stiffness matrix

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: (AKEL, ACURL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required iz IE81 6 Bytes.

12. Subroutine User: PLUG6

13. Subr-,utines Required: None

14. Remarks: None

385

1

I. Subroutine Name: TRAIFP

2. Purpose: To generate the pressure load vector for
triangular ring.

3. Equations and Procedures: The program

1.) Generates necessary constants
2.) Generates pressure load vector (non-transformed)
3.) Transforms pressure load vector

4. Input Arguments:

R,Z: Coordinates of node points
P: Node point pressures
GAMABQ: Coordinate transformation matrix
WIPR: Print control

5. Output Arguments:

FCURLP: Non-transformed pressure load vector
FP: Transformed pressure load vector

6. Error Returns: None

7. Calling Sequence:

(B, Z, P, GAMABQ, FP, WIPR, FCURLP)

8. Inpat Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

I. Storage Recuired: R3'),Z(3),P(3),GAMABQ(6,6),FP(6),
P (3), FCURLP(6), DELTA \6)

12. Subroutine User: PLUG6

13. Subroutines Required: TPRD

14. Remarks: None

,386

1. Subroutine Name: TFPPRT

2. Purpose: T- display the non-transformee and transformed
pressure load vectors.

3. Equations: None

4,. Input arguments:

FP: transformed pressure load vector
FCURLP: non-transformed pressure load vector

5. Output arguments: None

6. Error returns: None

7. Calling sequence: (FP, FCURLP)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: Total Storage required is 1E8 16 Bytes

12. Subroutine User: PLUG6

13. Subroutines required: None

14. Remarks: None

387

1. Subroutine Name: TRAIFT

2. Purpose: To izenerate a thermal load vector for a triangular
ring element

3. Equations & Procedures: The input matrices are manipulated
by matrix algebra to form the thermal load vector.

4. Input arguments:

ALFBAR: vector of coefficients of linear thermal expan-
sion

TMTZRO: base temperature
GAMABQ: transformation matrix
DCURL: matrix containing integral values
E: transformed elastic constant matrix
WIPR: print control

5. Output arguments:

FT: thermal load vector

6. Error returns: None

7. Calling sequence:

(ALFBAR, TMTZRO, GAMABQ, DCURL, E, FT, WIPR)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

.1. Storage: .ALFBAR(4), GAMABQ(6,6), DCURL(4,6), E(10), FT(6),
TEMPI (4), TEMP2 (6), SAVE(4)

.o Subroutine User: PLUG6

13. Subroutines Used: MPRD, TPRD

14. Remarks: None

388

1. Subroutine Name: TFTPRT

2. Purpose: To display thermal load vector for tziangular

ring element

3. Equations' None

4. Input arguments:

FT: thermal load vector
ALFBAR: coefficients of linear expansion
TMTZR$: base temperature

5. Output arguments: None

6. Error Returns: None

7. Calling Sequence: (FT, ALFBAR, TMTZRO)

8. Input Tapes: None

9, Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 25C 1 6 Bytes.

12. Subroutine User: PLUG6

13. Subroutines Used: None

l'4. Remarks: None

389

1. Subroutine Name: TRAI$

2. Purpose: To generate the stress matrix for triangular
ring element

3. Equations and Procedures: Given input constants, an
intermediate matrix is formed, which is then multiplied
by the system matrices to form the final matrix

4. Input Arguments:

R, Z: coordinates of node points
GAMABQ: coordinate transformation matrix
E: elastic constant matrix
WIPR: print control
DZER@: work space
TEMP: node point temperatures

5. Output Arguments: TRES: stress matrix

6. Error returns: None

7. Calling sequence: (R, Z, GAMABQ, E, STRESS, WIPR, DZERO,
TEMP)

. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: R(3) Z(3 , GAMABQ(6,6), E(lO), STRESS(4,6), DZER(4.,6),
TEMP(4,6)

12. Subroutine User: PLUG6

13. Subroutines Used: MP3D

1 4. Remarks: None

390

1. Subroutine Name: TI$PRT

2. Purpose: To display the stress matrix for a triangular
ring element

3. Equations: None

k . input Arguments:

STRE$$: stress matrix

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: (STRE$$)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: Total Storage required is 1FC1 6 Bytes.

12. Subroutine User: PLUG6

13. Subroutines Used: None

111. Remarks: None

391

I,

1. Subroutine Name: TRAIT$

2. Pt:.rpose: To generate thermal stress vector for a
triangular ring element

3. Equations and Procedures: The input matrices are combined,

using .aatrix algebra, to form the thermal stress vector.

In. put Arguments:

E: elastic constant matrix
ALFBAR: linear thermal expansion coefficients
TMTZRO: base temperature
WIPR: print control

5. Output Arguments:

T$: thermal stress matrix

6. Error Returns: None

7. Calling Sequence: (E, ALFBAR, TMTZRO, T$, WIPR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

I. Storage:

E(10), ALFBAR(4), T$ (4), SAVE(4)

12. Subr-outine User: PLUG6

13. Subroutines Used: MPRD

i. Remarks: None

392

1. Subroutine Name: TT$PRT

2. Purpose: to display the thermal stress vector of a
triangular ring element

3. Equati:rns: None
4. Input Arguments:

T$: thermal stress vector

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: (T$)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: Total Storage required is 1CO1 6 Bytes

12. Subroutinc User: PLUG6

13. Subroutines Used: None

14. Remarks: None

393

1. Subroutine Name: TRAIM

2. Purpose: To generate a mass matrix for a triangular ring
element

3. Equations and Procedures: The program

Forms a transformation matrix [TMG]
Generates a matrix [M] which is a function of the
mass coefficients.

(3) Generates a matrix LMJ which is a function of [74]
and the table of integrals.

(4) Gnerates the mass matrix [M] which is a function of
?4J and the transformation matrix [GAMABQ]

[M]= (GAMABQ] T [n] [GAMABQ]

I. Input Arguments:

AMASSI, AMASS2: mass coefficients
GAM: angle between material axes and element axes
GAMABQ: coordinate transformation matrix
DELINT: table of integrals
WIPR: print control
XMASS1, TEMP, AMCRUL, TEMPI, AMBAR: storage
TMG: transformation matrix

5. Output Arguments:

XMASS: mass matrix

6. Error Return: None

7. Calling Sequence:

(AMASS1, AMASS2, GAM, GAMABQ, DELINT, XMA$$, W4IPR, XMASS1,
TEMP, TMG, AMCURL, TEMP1, AMBAR)

. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage:
AMASS (2), GAMABQ (6,6), DELINT (12),
XMASS (21),XMASSl (6,6), TEMP(6,6),TMG(2,2),AMBAR(2,2),
TEMPI (:,2), AMCURL(21)

12. Subroutine User: PLUG6

13. Subroutines Used: TPRD, MPRD

111. Remarks: None

394

1. Subroutine Name: TIMPRT

2. Purpose: To display the mass matrix of a triangular ring
Lelement

3. Equations: None

I. 'npu$ Arguments:

XMASS: mass matrix
AMCURL: intermediate mass matrix

5. Output Arguments: None

6. Error Returns: None

7. Calling Seqkience: (XMA$$, AMCURL)

2. Output Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage:

Total Storage required is 1E8 1 6 Bytes.

12. Subroutine User: PLUG6

13. Subroutines Used: None

111. Remarks: None

395

1. Subroutine Name: TRAIF$

2. Purpose : To generate pre-strain load vector for a
triangular ring element.

3. Equations and Procedures: The routine uses the inputed
matrices and combines these to form the pre-strain load
vector.

4. Input Arguments:

EPSL0N: Input pre-strain values
GAMA13Q: Transformation matrix
DCURL: Integral matrix
E: Elastic constant matrix
WIPR: Print control
TEMP: Dummy storage
TEk P1,
TEMP2: Dummy storage
P$LMAT: Dummy storage

5. Output Arguments:

F.: Pre-strain load vector

6. Error Returns: None

7. Calling Sequence:

(EP$L0N, GAMABQ, DCURL, E, F$, WIPR, TEMP, TEMP1, TEMP2,

P$LATp)

9. Onput Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

EPSLON(4),GAMABQ (6,6 DCURL (4,6),E(lO),FS(6),TEMP(l),
TEMPI(),TEMP2(6, 4),PSLMAT(6,4)

12. Subroutine User: PLUG6

13. Subroutines Required: MPRD, TPRD

14. Remarks: None

396

1. Subroutine Name: TF$PRT

2. Purpose: Display pre-strain load vector for triangular
ring

3. Equations: None

4. Input arguments: F$: pre-strain load vector

5. Output arguments: None

6. Error returns: None

7. Calling sequence: (F$)

8. Input tapes: None

9. Output Tapes: None

10. Scratch tapes: None

11. Storage required: Total Storage required is 1CO 1 6 Bytes.

12. Subroutine user: PLUG6

13. Subroutines required: None

14. Remarks: None

397

1. Subroutine Name: TRAI$T

2. Purpose: To generate the pre-strss load vector for a
triangular ring element

3. Equations & Procedures: The input matrices are combined

by matrix manipulations to form the pre-stress load vector.

4. Input arguments:

$IGZER: column of pre-stresses
GAMABQ: transformation matrix
DCURL. Integral value matrix
WIPR: print control

5. Output arguments:

F$T: pre-stress load vector

6. Error Returns: None

7. Calling sequence:

($IGZER, GAMABQ, DCURL, F$T, WIPR)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage Required:

$IGZER(4),GAMABQ(6,6), DCIJRLQ4,6), F$T(6), TEMP(6)

12. Subroutine User: PLUG6

13. Subroutines required: TPRD

14. Remarks: None

398

1. Subroutine Name: T$TPRT

2. Purpose: Disply pre-stress load vector for triangular
ring element

[I. Equations: None

4. Input arguments: F$T

5. Output arguments: None

(. Error returns: None

7. 2alling Seouence: (F$T)

q. Input tapes: None

q. Output tapes: None

10. Scratch tapes: None

11. Storage: Total Storage required is 1C016 Bytes.

12. Subroutine User: PLUG6

13. Subroutines used: None

111. Remarks: None

399

1. Subroutine Name: PL6PRT

2. Purpose: To display structural damping, viscous damping,
pre-strain and pre-stress matrices for a triangular ring
element

3. Equations: None

4. Input Arguments:

D$XP: structural damping verctor
T)VXP: viscous matrix
El: pre-stress multiplier matrix
P$LMAT: pre-strain multiplier matrix

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: (D$XP, DVXP, El, P$LMAT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: D$XP(45), DVXP(45), El(4,4), P$LMAT(4,4)

12. Subroutine User: PLUG6

13. Subroutines Used: None

14. Remarks: None

400

1. Subroutine Name: PLUG 5

2. Purpose: To form the element matrices for a doubly curved
ring (toroidal ring) discrete element. This ring configura-
tion, defined by an arbitrary section of revolution of a
complete right circular toroidal shell, enables smoothly
continuous idealization of general axisymmetric thin shell
problems.

Thj matrices which are formed are:

1 Stiffness matrix
2 Stress matrix
3 Thermal load matrix + pressure load matrix
4) Thermal stress matrix

3. Equations and Procedures: There are two cases treated for
this type of element. They are:

(1) The angles of the interior and exterior membranes are
not equal (Toroidal section)

(2) The angles of the interior and exterior membranes are
equal. (Conic section).

In the sacond case, the interior angle is increased by a
factor of .50° so that they can be treated as in case one.
A special case arises for the degenerate situation where
the two angles equal 900 . In this case a different path
is followed.

A variational (Lagrangian) approach is taken in formulating
the discrete element representation. On account of this, it
has been found necessary to use numerical integration
techniques, namely the Romberg technique and the numerical
quadrature technique.

The sequence of procedures is as follows:

(1) The first general part of the routine processes input
information, forming constants to be used in calcula-
tions. Also, several constants are extracted from
the inputed material and extra matrices.

(2) After testing as to the relative values of the membrane
angles (i.e. equal or not), the program selects the
correct path to take in forming the integrals used in
later calculations. Either the Romberg or Numerical
Quadrature methods are used to evaluate the integrals.

(3) Using the integrals and the program constants, the
program forms several intermediate element matrices.

401

() By se'eral matrix operations (multiplications,

transformations, etc.), the stiffness matrix, AKEL,
is formed.

(5) In like manners, the program :'orms the thermal load
(FTEL) matrix, the pressure load (FPEL) matrix, the
combined thermal and pressure load (TPEL) matrix, the
stress ($EL) matrix, and the thermal stress (T$EL)
matrix.

(6) Ater a ol the calculations are completed, the program

calls a sutroutine to print all the matrices.

4. Input Arguments:

IPL: Plug Number
NN0: Number of node points
R: X - coordinates of nodes
Y: Y - coordinates of nodes
Z" Z - coordinates of nodes
TEMP: Node point temperatures
P: Node point pressures
Q$: Node point i puted displacements
IP: Number of extra cards
KK: Code for computation of element stiffness matrix
KF: Code for computation of element thermal load
K$: Code for computation of element stress matrix
KM: Code for computation of element mass matrix
KN: Code for computation of element incremental matrix
KD$: Code for computation of element structural damping
KDV: Code for computation of element viscous damping
NORD: Order of element stiffness matrix
MAT: Material properties table
EXTRA: Specific element information
NDIR: Number of directions for each grid point
NDEG: Number of types of movement allowed
IU$EL: Dummy
EP$LON: Pre-strain load vector
$0: Pre-stresses
INN0: Number of nodes
ICONT: Code for use of grid point axes
NR: Number of rows in stress matrix
NODE$: Node point numbers

402

Output Arguments:

NE.R1: Error returnI' NOINK: Number of' elements in lower half' matrices
AKE!L: Stif'fness matrix
AWLL: Incremental matrix
TPEL: Thermal load + pressure load matrix
$EL: Stress ma;;rix
T$1EL: Thermal stress matrix
AMA$$: mass matrix
DAMPV: Viscous damping matrix
DAMP$: Structural damping matrix
N$EL: Number of' elements in stress matrix

NMA$$: Number of' elements in mass matrix
NDAMPV: Number of' elements in viscous damping matrix

GPAXL: riJpoint axes trar. ?ormation matrix

6. Ero_ etrs

NERR 0 No error
1 Plug number incorrect
2 Number of' nodes incorrect

=3 Number of' input points incorrect
=4 Order of' matrix (nord) incorrect

17. ualling Sequence:

(IPL, NN$, R, Y, Z2 TEMP, P., Q$,. IP, N0RD,. NFRRi, N$INK,
AKEL, ANEL, TPEL, $EL.. T$EL, AMA$$,p DAMPV,. DAMP$, NR,
INfl0, NODE$, NMAJ$$ NDMPV, NDMP~, NEL, KI, KF, K, KM,
KD$, 1(DV, KN, IU$ EL,* EP$L%,N, $0 MAT,, EXTRA, GPAXEL,
NDIR, NDEG, ICNT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11 Storage Requiied:

T1(21) W(10.,18) Wi (18,18) R(2) Y(2) 9(2) P(2) TEMP (12,3
NOD$(1W (18,18) W3 (18,18) TAKEL (18,18) AKEL(11)
1AMM (018) XI (6,12) YI(6,12) X(6) B(l0118) D(lo,10)
FTEL (18,1) GAM (10,18) FMEO (10,2) FME1 (10,2) PFEQ (10,2)
FFEl (10.2) E(2,2) AIk(2,2) AJK (2.,2) ETO (2.,1) ETl(2,l)
ALTO (2,1) ALTi (2,1l) V1 (18,2) V12 (18,2) V3 (18,1) '14(18,1)
V15 (18,1) V6 (16.1) FPEL (18) FPCQ (1041) TPEL (18) $EL
(15,18) XXI (3) EXTRA(1) $CURL (15P10) T$SEL (15) TEl (2,1l)
rE2 (2,1) EM1 (2,1) EM2 (2,1) EPLN (1) $0 (1) MAT(1)

403

12. Subroutine User: ELPLUG

13. Subroutines Required

F4, F5, F6, ELTE$T, MPRD, GAMMAT, $CRLM, BMATRX, TPRD,
FCURL, $0LVE, DMATRX, M$TR, PLMX, FRINT5

14. Remar1ks: None

404

1. Subroutine Name: M$TR

2. Purpose: To change the storage mode of a matrix.

3. Equations and Procedures: MSTR will perform the operation
on the right when MSA and MSR are equal to

MSA MSR PROCEDURE

0 0 [A] is moved to [R]

0 1 The upper triangle elements of a general matrix
are used to form a symmetric matrix

0 2 The diagonal element of a general matrix are used
to form a diagonal matrix

1 0 A symmetric matrix is expanded to form a
general matrix

1 1 [A] is moved to [R]

1 2 The diagonal elements of a symmetric matrix are
used to form a diagonal matrix

2 0 A diagonal matrix is expanded to form a general
matrix

2 1 A diagonal matrix is expanded to form a symmetric
matrix

2 2 [A] is moved to [R]

The codes for MA and M (R stand for

0 General matrix form
1 Symmetric matrix form
2 Diagonal matrix for.n

4. Input Arguments:

[A] Input matrix

N Number of rows and columns in[A] and [R]

MOA Code designating storage mode of [A)

MOR Code designating s-t.orage mode of [R]

405

5. Output Arguments:

[R] : Output matrix.

6. Error Returns: None

7. Calling Sequence: (A, R, N, M, A, M % R)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Require'. Total Storage required is 29C16 Bytes.

12. Subroutine User: PLUG 5

13. Subroutines Required: L OC

14. Remarks: Matrix[A]may not be in the same storage as [R].

406

f

1. Subroutine Name: R0MBER

2. Purpose: To integrate f (x) from x = a to x = b.

3. Eqaations and Procedures: The precision of large numbers
in terms of number of significant digits and the accuracy
of small numbers in terms of number of significant digits
is measured. The subroutine terminates when either of
these conditions is met.

4. Input Arguments:

A: Lower limit
B: Upper limit
NOSIG: Number of correct significant digits

(not more than 7)
NUM: maximum number of halvings of (a,b)

to be made (not more than 99)
KODE: controls the form of the print-out
FUNCT: function of X - F4, F5, F6
X: variable of integration

5. Output Arguments:

ITDONE: number of iterations
FINTG: value of the integral
PRECIS: actual number of significant digits

attained

6. Error Returns: None

7. Calling Sequence: (A, B, N$SIG, PRECIS, NUM, ITDNE,
FINTG, KODE, FUNCT, X)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

Total Storage required is 74216 Bytes.

12. Subroutine User: PLUG5

13. Subroutines Required: FUNCT

14. Remarks: None

407

1. Subroutine Name: F4

2. Purpose: To set up a function to be used by RVMBER
in the computation of ig, one of the six
basic integrals used in PLUG5.

3. Equations and Procedures:

F4 = (XI) X6-1 SIN2 (Xl,) /DEN

where

DEN = X3 - X2 X5 + X2 X5 COS (X1)+ X2 X4 SIN (X1)

1 . Input Argument: X: array containing integration arguments

5. Output Arguments: Fk: functional value

6. Errrr Returns: None

7. Calling Sequence: F4 (x)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None
ii. Storage Required: Total Storage required is 25616 Bytes.

12. Subroutine User: R0MBER

13. Subroutines Required: SIN, COS

14. Remarks: Hone

0
I 40o8

1. Subroutine Name: F5

2. Purpose: To set ;p a function t3 b. used by R$MBER in
the computation of.i g, one of thc six basinoneof he si baicintegrals
used in PLUG 5.

3. Equations and Procedures:

= 2 sin (xl) cos(xl)/DEN

where
DEN = x3- x£ x5 + x2 x5 cos (X1) + x2 x4 sin (X2)

4. Input Arguments:

X: array containing integration arguments

5. Output Arguments: F5 - functional value

6. Error Returnst None

7. Calling Sequence: F5(X)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 28216 Bytes.

12. Subroutine User: R0MBER

13. Subroutines Required: SIN, Cos

14. Remarks: None

409

1. Subroutine Name: F6

2. Purpose: To set up a function to be used by ROM13ER

in the computation of ig, one of the six basic integrals

used in PLUG5

3. Equations and Procedures:

F6 = CONST • Cos (X,)/T)EN

where

DEN x 3-x2x5 + x2x5 Cos (xl) -x 2 xj sin (xL)

CONST= { =6
(x 1 6--1,x 6 1

4. Input Arguments:

X: array containing integration arguments

5. Output Arguments:

F6: functional value

6. Error Returns: None

7. Calling Sequence: F6(X)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Stoolige Required Total Storage required is 25616 Bytes.

12. Subroutine User: R$MBER

13. Subroutines Required: None

14. Remarks: None

410

1. Subroutine Name: QUADI

2. Purnose: To evaluate integrals by an enclosed quadrature
formula

3. Equations and Procedures:

Given the integrals of the form

f r + cos 1 d
0

when it is true that

s cos o!

r 1

it follows that m 1 m-1
sJ+l 1 l l) s cosOcSJ2J -% --- m=l j+m r I

where T,, is the error term.
4n

r.he formula converges when

En 1 j m(s cosok) m-- j+m+l r

1.. Input Arguments:

R': Change in coordinates (distancNe)
S: Upper bound of integration
N: Number of integral (N = j + 1)
-CTRM: Criteria for convergence C.TRM = S Cos

r 1

5. •Output Arguiments:

XI: Value of approximation

6. Error Returns: If the quadrature doesn't converge after
1000 iterations, the program terminates.

7. Calling Sequence:

CALL QUADI (RI, 3, N, CTRM, XI)

411

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 3C8 16 Bytes.

12. Subroutine User: PLUG5

13. Subroutines Required: None

14. Remarks: None

4

4I12

1. Subroutine Name: BMATRX

2. Purpose: To generate a matrix B , given specific input,
for PLUG5

3. Equations and Proceduras: The routine forms the terms of
the matrix by dir' -4 ,,signment

4. Tnput Argi .ents :

S: Variable used to form terms of matrix

5. Output Argument-'

B: completed transformation matrix

6. Error Returns: None

7. Calling Sequence: (B

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Requireu. Total Storage required is 39816 Bytes.

12. Subroutine User: PLUG5

13. Subroutines Required: None

14. Remarks: Typical Element

1(6, ,. :-i.0/2.0 * s * S * S)

413

1. Subroutine Name: DMATRIX

2. Purpose: To generate a matrix [I] , for Plug 5, given
specific input.

3. Equations and Procedures: The routine forms the terms of

the matrix by direct algebraic assignment

I. input Arguments:

V
C
CA
CA2 :All variables used to form
VA the terms
DM
DB

YI

5. Output Arguments:

Completed Matrix

6. Error Returns: None

7. Calling Sequence

(D, V, C, CA, CA2, VA, DM, DB, YI)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is BA61 6 Bytes.

12. Subroutine User: Plug 5

J.3. Subroutines Required: None

14. Remarks: Typical Element

D(3,2) = DB * (2.*V*YI(4, 1) - 2.* YI(6,2) + D(4,1))

414

1. Subroutine Name: GAMMAT

2. Purpose: To generate a matrix [GAMM], given another matrix

3. Equations and Procedures: The routine rearranges the rows
of the input matrix to form the output matrix.

4. Input Arguments:

B: Input Matrix

5. Output Arguments:

GLMM: Output Matrix

6. Error Returns: None

7. Calling Sequence: (GAMM, B)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 1AA 1 6 Bytes.

12. Subroutine User: PLUG5

13. Subroutines Required: None

14. Remarks:

Typical Element GAMM (4, 3) = B (10, 3)

415

1. Subroutine Name: FCURL

2. Purpose: To generate 4 matrices, [FMEO] ,[FME1] , [FFE$]
and [FFEl] , given specific input, for Plug 5

3. Equations and Procedures: The routine forms the terms
of the matrices by direct algebraic assignment.

4. Input Arguments:

YTi variables used to form
SA~ che terms of the matrices.LAMI1

5. Output Arguments:

FME1
FFE • output matrices
FFE1

6. Error Returns: None

7. Callit? Sequence: (FMEO, FME1, FFE$, FFE1, YI, $, LAM1)

8. Input Tapes: None

9. Output Tapes: gone

10. Scratch Tapes: None

11. Storage Required:

FMEO(IO,2), FFE@0(IO,2), FMEI1(10,2), FFEI(!.0,2),. fI.(6,12)

12. Subroutine User: PLUG5

13. Subroutines Required: None

14. Remarks: Typical Element

FME1(4,2) = $1 * YI(4,5)

416

1. Subroutine Name: PLMX

2. Purpose: to generate 4 matrix EFPCQ], given specific
inpjut for Plug 5.

3. Equations and Procedures: The routine forms the terms of

the matrix by direct algebraic assignment.

4. Input Arguments:

Y1
C$NOmI Variables used to form
CON$T2 the terms of the matrix
P1

5.. Output Arguments:

FPCQ Output Matrix

6. Error Returns: None

7. Calling Sequence: (FPCQ, YI, C0NTl, COKT2, P1)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

Total Storage required is 22816 Bytes.

12. Subroutine User

PLUG 5

13. Subroutines Requiredi None

14. Remarks: Typical Element

FPCQ (6,1) = CONT. * (PI * YI (1,2) - CON$T2 * Yi(l,3))

417

1. Subroutine Name: SCRLM

2. Purpose: To generate a matrix [$CURL] , given specific
input, for PLUG5

3. Equations and Procedures: This routine forms the terms
of the matrix by direct algebraic assignment.

4. Input Arguments:

XXI:
E:
H: Variables used to form the terms of the matrix
CONT:
RP:
ALFI:
RI:
IAM1:

5. Output Arguments:

SCURL: output element stress me.trix

6. Error Returns: None

7. Calling Sequence:

($CURL, XXI, E, H, CONT, RP, ALFI, Rl, LAMl)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

I!. Storage Required:

Total Storage required is 9F816 Bytes.

12. Subroutine User: PLUG5

13. Subroutines Required: None

14. Remarks:

Typical Element

$CURL(4,8) = $CURL(4,6) * 3.0 * XX2 - E(1,2) * 6.0 * XXI

418

1. Subroutine Name: $0LVE

2. Purpose: To solve for lambdas as functions of XI.

i.e. A = f (XI)

3. Equations and Procedures: The routine uses algebraic
techniques to arrive at a solution.

eg.) XI

LAM2 = Cos (Al + -=)
RI-RP* (SIN (AI) + SIN 1A1 + X

where Al, RI, RP are constants

LAM3 and LAM4 are similar

4. Input Arguments: A].
Rl :Variables used for calculation
RP of the lambdas

XI)

5. Output Arguments: LAM2

LAM32 Output valuesLAM4

6. Error Returns: None

7. Calling Sequence: (Al, RI, RP, XI, LAM2, LAM3, LAM4, CONT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 33416 Bytes.

12. Subroutine User: PLUG 5

13. Subroutines Required: None

14. Remarks: None

419

1. Subroutine Name: PRINT5

2. Purpose: To print, as output, the intermediate matrices
and single valued variables, generated in Plug 5.

3. Equations and Procedures: The routine contains the proper
write and f'ormat statements.

4. Input Arguments: All the variables to be printed.
(See calling sequence)

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: (C, DM, DB, PHIB, RP, $, BB, RT, P$Il,
P$12, C$l, $INl, XI, YI, B, D, W, Wl, H, ALF2, ALFI, W3,
Rl, R2, i, Zj2, EP, ET, VPT, AXI, ABETA, TlI, Tl, T2I,
T20, LAM1, AIK, AJK, ET, ETl, ALTO, ALT1, E, FME0, FME1,
FFE, FFEl, FTEL, P1, P2, CON$T1, C0NST2, FPCQ, FPEL,
$CURL)

w8. Input Tapes: None

9. output Tapes: None

10. Scratch Tapes: None

11. Storage Required: W(lO,18), Wl(18, 18), XI(6,12), YI(6,121
B(lO,18 D(lO,O.l0 FTEL(18,) FME0 (10,2" FME(10,2,FFE0@(IO,2 FFE1(1O,2 E(2,2 AIK(22 AJK(221 Q T(2,1
ETI(2.,ll ALT0(2, i j ALTl(2.,11 FPEL(18), FPCQ(IO, 1), W(18,18)

$CURL(15, 10)

12. Subroutine User: PLUG 5

13. Subroutines Required: None

1. Remarks: None

420

1. Subroutine Name: PLUG 14

2. Purpose: To compute the element stiffness, stress and
diagonal mass matrix.

3. Equations and Procedures: The routine first generates the
transformation matrix, PH, a-id prints it out (using P14PRT)
if option is in effect. It then calculates the stress matrix
depending on input code YJ / 2. It now calculates the stiff-
ness ma,.rix, transforms 't to system coordinates using MULTF,
and expands it using P$0F. If KI = 2, the routine will then
calculate the lumped mass matrix and expand it using P00F.

4. Input Arguments:

IPL: Plug Number (must equal 14)
NNO: Number of node points (must equal 4)
X,Y,Z: Three vectors of length four each having the X,Y,Z

coordinates of the 4 node points.
NORD: Order of stiffness and mass matrix (must equal 24)
KI: Selective calculation code
MAT: Material properties array

MAT 2) = E - Young's Modulus
MAT 5) = u - Poisson Ratio
MAT (22 = DENSM - mass density
MAT (23 = CONT- print control

EXTRA: Extra input array (EXTRA (1) = T = thickness)

5. Output Arguments:

NERR: Error return code
N$INK: Number of elements in symmetric stiffness matrix

(equals 300)
AKELXP: Singly sabscripted array of element stiffness matrix

(symmetric lower half by rows)
SELXP: Singly subscripted array of element stress matrix

of size 1 x 24
AMASS: Singly subscripted array of element mass matrix

(symmetric lower half by rows)
NRSEL: Number of rows in stress matrix (equals 1)
NMASS: Number of elements in symmetric mass matrix (equals

300)
NSELXP: Number of elements in stress matrix (equals 24)
TSELXP: Thermal stress vector of length 1 is set to zero.
TPELXP: Applied l6ad vector of length 24 is set to zero.

6. Error Returns: If NERR / 0 then error was detected in input
arguments. (Sea ELPLUG)

7. Calling Sequence:

(IPL, NNO, X,Y,Z, TEMP, P, QS, IP, NORD, NINK, AKELXP, ANEL,
TPELXP, SELXP, TSELXP, AMASS, NDMPV, NDMPS, NSELXP, KI, KF,
KS, KM, KDS, KDV, KN, IUSEL, EPSI0, So, MAT, EXTRA, GPAXEL,
NDIR, NDEG, IC0NT)

421

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11: Storage Required: 505 decimal locations of work storage used
from unlabeled common block.

12: Subroutine User: ELPLUG

13: Subroutines Required:

ELTEST, P14PRT, MULTF, POOF

14: Remarks: All arguments in calling sequence not defined were
not used in subroutine.

422

1. Subroutine Name: MULTF

2. Purpose: To preform the matrix multiplication B tvanspose
times A times B, where A is a symmetric matrix and B is a
rectangular matrix.

3. Equations and Procedures:

C = B (transpose) * A * B

The routine first generates the product of a row of B
transpose times each column of A and stores this in a
temporary storage V. It then multiplies V times the appro-
priate columns of B to generate the corresponding row of C.

4. Input Arguments:

A : The symmetric input matrix doubly dimensioned 8x8

with only symmetric lower half needed.

NA: Order of A must be less than 9.

B: The rectangular input matrix doubly dimensioned
8x12 with size NA x NBC

NBC: Number of columns of B (less than 12)

A work storage vector of length NA.

5. Output Arguments:

C: The results of the multiplication, doubly dimensioned
12xl2 with only symmetric lower half returned. Size
is NBC x NBC.

6. Error Returns: None

7. Calling Sequence:

(A, NA, B, NBC, V, C)
8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 35016 Bytes.

12. Subroutine User: PLUG 14

13. Subroutines Require: None

14. Remarks: None

423

1. Subroutine Name: POOF

2. Purpose: Expand element stiffness matrix (icwer symmetric
by rows or upper symmetric by col) and element thermal
load vector and add the components into the expanded matrix
and vector in their appropriate positions.

3. Procedure: Using the decoding vector determine the locations
of the components of the element stiffness matrix in the
new expanded (assembled stiffness) matrix and add these
old element components into their new positions. The same
procedure is used for the thermal load vector.

4. Input Arguments:

LIST - decoding vector consisting of NORD components
the subscript of each component gives the old
(element) row or column and the component
itself gives the row or column in the new
expanded matrix.

NORD - order of old element stiffness matrix (AKEL)
also length of old thermal load vector (FTEL).

AKEL - old element stiffness matrix [upper symmetric
by cols .

FTEL - old thermal load vector.

5. Output Arguments:

AK - expanded stiffness matrix [upper symmetric
by cols]

FCOL - expanded thermal load vector.

6. Error Returns: None

7. Calling Sequence:

(LIST,NORDAKEL,FTEL,AA,FCOrj)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 30016 Bytes.

12. Subroutine Users: PLUG8

13. Subroutines Required: None

14. Remarks: None

424

1. Subroutine Name: P14PRT

2. Purpose: To print out on the system output unit the 4ari-
ables in the input argument list.

3. Equations and Procedures:

4. Input Arguments:

D12: variable printed out and labled L12
D15 : " " if " " L15
D35: t " " if L35
ALX: f" " i LAMX
.ALY: it it LAMYSALZ: it "I"" t LAMZ

PX: " " i PSIX
PY: " " PSIY
Pz: " " PSIZ
XP4: it i it xP4
YP4: " " " " YP4
PH: An 8 x 12 matrix printed out and labled ELEMENT

TRPNSFORMATION MATRIX

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

(DI2, D15, D35, ALX, ALY, ALZ, PX, PY, PZ, XP4, YP4, PH)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage reqired is 41816 Bytes.

12. Subroutine User: PLUG 14

13. Subroutines Required: None

14. Remarks: None

425

1. Subroutine Name: PLUG8

2. Purpose: Generate element matrices for the trapezoidal
ring element.

3. Equations and Procedures:

a) Call subroutine ELTEST to verify input control values.
b) Initialize material properties, node point pressures,

geometric constants and integration constants.
c) Call subroutine SUBINT to calculate other integrals.
d) Define transformation matrix to transform to displacement

degrees of freedom.
e) Generate mechanical property matrix, thermal coefficient

matrix, stiffness matrix and thermal load matrix.
f) Call subroutine POOF to calculate pressure load vector.
g) Call subroutine ERIC to inflate stiffness matrix and

element thermal load vector.
h) Generate stress matrix and thermal stress.
i) Call P8MASS to generate element mass matrices.
J) Print debug print if requested.

4. Input Arguments:

IFL - internal element identification number (8)
NNO - number of element defining points (4)
XC - coordinates of element defining points
YC - coordinates of element defining points
ZC - coordinates of element defining points
TPS - temperatures at element defining points
PVP - pressures at element defining points
QS - input displacements at element defining points

(not used)
IP - not used
NORD - total element degrees of freedom (12)
K1 - number of storages required for element stiffness

matrix (NORD*(NORD + 1)/2)
INNO - not used
NL - array containing grid point numbers of element

defining points
KK - suppression control for element stiffness matrix
KAF - suppression control for element thermal and

pressure load matrices
KS - suppression control for element stress matrix
KTS - suppression control for element thermal stress matrix
KAM - suppression contrcl for element mass matrix
KDS - suppression control for structural damping matrix
KDV - suppression control for structural viscous matrix
KSN - suppression control for element incremental

stiffness matrix
IUMEL - not used
EPSIO - input pre-strains

426

4. Input Arguments, Contd:

SO - input pre-stresses
MAT - input temperature interpolated material properties
EXTRA - special element input
GPAXEL - grid point axes transformation matrices (not used)
NDIR - number c' directions of element defining

points (3)
NDEG - number of solution degrees of freedom

(1-translatioi)
ICONT - grid points axes indicator

5. Output Arguments:

NERR - error indicator
2K - element stiffness matrix
ANEL3 - element incremental stiffness matrix
XT - element thermal and pressure load matrix
SEL - element stress matrix
SZALEL - element thermal stress matrix
AMASS - element mass matrix
DAMPV - element viscous damping matrix
DAMPS - element structural damping matrix
NRSEL - number of rows in element stress and thermal

stress matrices
NMASS - number of storage required for element mass matrix
NDMPV - number of storages required for element viscous

damping matrix
NDMPS - number of storages required for element

structural damping matrix
NSEL - number of storages reqAired for element stress

matrix

6. Error Returns:

If no error, then NERR is set to zero
If IPL 0 28, then NERR is set to one
If NNO 9 4, then NERR is set to two
If NORD M 12, then NERR is set to four.

7. Calling Sequence:

Call PLUG8(IPL,NNO,XC,YC,ZC,TPS,PVP,QS,IPNORD,NERi,KI,ZK,
ANEL3,XT,SEL,SZALEL,AMASS,DAMPV,DAMPS,NRSEL,INNO,
NL,EPSIO,SO,MAT,EXTRA,GPAXEL,NDIR,NDEG,ICONT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 588E16 Bytes.

427

12. Subroutv.ne User: ELPLUG

13. Subroutl.nes Required:

ELTESTSYMPRT ,LOC ,ELTESTMPRD ,TPRDMSTRsSUBINT ,ZIRD ,ZTRD,

KMPY ,ERIC ,POOF ,P8I4ASS

141. Remarks: None

428

1. Subroutine Name: P8MASS

2. Purpose: To generate element mass matrix for PLUGa.

3. Equations and Procedures: The (8x8) reduced mass matrix
AMEL3 is formed in terms of the integration constants.
Then the transformation to displacement degrees of freedom
is performed. The matrix is then expanded to order
(NORDxNORD) by subroutine POOF.

4. Input Arguments:

DENSM - element mass density vector (first element)
HH - transformation to disp'acement degrees of

freedom
NORD - order of mass matrix (= 12)
NMASS - number of elements in mass matrix (= 78)
I10 - 132 - integration constants for rectangular cross

section ring
CHH - working storage (64)
SH - working storage (64)
LIST - code list for transforming system reduced

degrees of freedom to system expanded degrees
of freedom

AMASS - work storage (36)

5. Output Arguments:

AMASS - resultant mass matrix (symmetric 12 x 12)
AMEL3 - order 8 MASS matrix before transformation

and expansion to order 12

6. Error Returns: None

7. Calling Sequence:

Call P8MASS(DENSM,HH,AMASENORDNMASS,I10,IIIII2,I20,I21,
122,I30,I31,132,CHHSHAMEL3,LIST,AMASS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

Total Storage required is 6C2 Bytes.
16

429

12. Subroutine User: PLUG8

13. Subroutines Required:

MPRD
TPRD
MSTR
POOF

14. Remarks: None

430

i. Subroutine Name: SUBINT

2. Purpuse: Solve integral used in integration constants
for PLUG8 element matrix definitions.

Equations and Procedures:

IQ

H r DR DZ

Solve for H giren R, Z and Q for values of 0, 1 and 2. The
R and Z values are coordinates of a trapezoid area. The area
is divided into two triangles (A and B). The centroid and
area of each triangle is found

(RA' ZA, RB, ZB) (AA, AB)

H (AA ZA Q (AB ZBQ)

A
B -

RA RB

H = HA + HB

4.* Input Arguments:

R - variable (aouble precision) array
Z - variable (double precision) array
Q - integer (exponent)

5. Output Arguments:

H - value of integral (double precision)

6. Error Returns: None

7. Calling Sequence:

Call SUBINT(R,Z,QH)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 2A6 1 6 Bytes.

431

12. Subroutine User: PLUG8

13. Subroutines Required: None

14. Remarks: R, Z and H must be double precision in
calling program.

4

432

1. Subroutine Name: ZMRD

2. Purpose: Multiply two matrices to form a resultant
matrix. (This is a modification of MPRD to include double
precision.)

3. Equations and Procedures:

K ~ER> £EA3

4. Input Arguments:

A - first input matrix (double precision)
B - second input matrix (single precision)
N - number of rows in A matrix
M - number of rows in B matrix
L - number of columns in B
MSA - control on storage mode of A See remarks
MSB - control on storage mode of B

5. Output Arguments:

R - resultant matrix (double precision)

6. Error Returns: None

7. Calling Sequence:

Call ZMRD(A,B,R,N,MMSA,MSB,L)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 3FEI6 Bytes.

12. Subroutine User: PLUG8

13. Subroutines Required: LOC

14. Remarks:

1. General subroutine.
2. Storage control of A and B matrix

0 - General
1 - Symmetric (upper half)
2 - Diagonal

3. A and R must be double precision in calling program.

433

I
1. Subroutine Name: ZTRD

2. Purpose: Transpose a matrix and post multiply by
another to form a resultant matrix.

This routine -s a modification of TPRD to include
double precision.

3. Equations and Procedures:

[R] = [A] T [B]

[A] is not actually transpoced.

4. Input ArgumentL:

A - first input matrix (single precision)
B - second input matrix (6ouble precision)
N - number of rows in A and B
M - number of columns in A and rows in R
L - number of columns in B and rows in R
MSA - control of storage mode of A See remarks
MSB - control of storage mode of B

5. Output Arguments:

R - resultant matrix

6. Error Returns: None

7. Calling Sequence:

Call ZTRD(A,B,R,N,M,MSA,MSBL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 40616 Bytes.

12. Subroutine User: PLUG8

13. Subroutines Required: LOC

14. Remarks:

1. General subroutine.
2. Storage control of A and B matrix

0 - General
1. - Symmetric (upper half)
2 - Diagonal

3. B must be double precision in calling program.

434

1. Subroutine Name: KMPY

2. Purpose: Multiply each element of a matrix by a scalar
to form a resultant matrlx.

3. Equations and Procedures: This subroutine multiplies
each element in the input matrix A, by a scalar C and
places the result in R. Soubroutine LOC calculates the
vector length IT of the resultant vector R.

4. Input Arguments:

A - name of input matrix
C - scalar multiplier
N - number of rows in matrix A
M - number of columns in matrix A
MS - storage mode of matrix A

- 0 General
- 1 Symmetric
- 2 Diagonal

5. Output Arguments:

R - name of output matrix
N,M,MS - defined above, refer to the R matrix also.

6. Error Returns: None

7. Calling Sequence:

Call KMPY(A,C,R,N,M,MS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 1F816 Bytes.

12. Subroutine User: PLUG8

13. Subroutine Required: LOC

14. Remarks: Good comments are available in the subroutine
listing.

1435

1. Subroutine Name: ERIC

2. Purpose: Compute pressure load vector (FP)

3. Equations and Procedures:

FP = SCAL [HHJ [QP] [HP] l

50 Multiply ITH col of HH * QP to get WORK(8) vector
Multiply WORK * HP to get WORK2(8) vector
Multiply WORK2 * PV * SCAL to get FP(I)
Update I and go to 50

4. Input Arguments:

HH - EQ. 2.10
QP - EQ. 4.3.1.27 (less 21)
HP - EQ. 4.3.1.29
PV - EQ. 4.3.1.29
SCAL - 2H See 4.3.1.27

5. Output Arguments:

FP - pressure load vector

6. Error Returns: None

7. Calling Sequence:

(HH, QP, HP, PV, FP, SCAL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 36C 1 6 Bytes

12. Subroutine User: PLUG8

13. Subroutines Required: None

14. Remarks: Equation are given in "Formulation and Evaluation
of a Trapezoidal Cross Section-Ring Discrete Element",
R. h. Mallett, S. Jordan, November, 1966.

436

i. Subroutine Name: PLUG17

2. Purpose: (1) To generate both membrane and flexural. element
matrices of a triangular thir. plate, (2) If applicable,
generate incremental matrices for instability.

3. Equations and Procedures:

A. Formulation of Equation - The formulation for any
computations involved in evaluating the element matrices
will be found in references (1) and (2). (See Remarks
section of this report.) Modifications were, however,
necessary to make the notation compatable with 3648
procedures and applications. The formulations and coding
are not necessarily in the same sequence or labeling.

B. Initial Computations -

1. Constants have to be set for:
a) Ii' the element matrices are to be computed,

LAMDA(I) = 1 where
I = 1, for membrane stiffness and stress
I = 2, for flexural stiffness and stress
I = 3, for membrane thermal load and stress
I = 4, for flexural thermal load and stress.

b) The incrementals will not be computed:
INCREM = 0 since ICONT = 0.

2. Material properties and element data from MAT and
EXTRA array noting that if either membrane or flexure
thickness is zero, the appropriate LAMDA above is
reset to zero;

3. According to reference (2), transformation matrices
have to be formulated with the appropriate direction
cosines.
a) From cylinder coordinates to local coordinates

{x£} = [TZc {x o } (1)

b) From cylinder coordinates to oblique coordinates

fxo} = [oT.1 (Xc} (2)

where {x} are the local x, y, z coordinates
{x } are the cylinder x, y, 3 coordinates
{xo } are some other orthogonal X' Y' Z' coordinates

[Tt j [To] contain the respective direction cosines.

Since the element displacements are in local
coordinates, combining equations (1) and (2) yields

x = [Toc]T{xo} = [TTOBQ] (xo (3)

437

3. Equations and Procedures (Contd.):

4. Transformation of the above cited displacements,
xlx 2,x3,yl,etc. into 3648 notation xlylZlx 2,etc.

will result in the formulation of

(xlx 2 ,x3 ,etc) = [T1718] {xlylZl,etc} (4)

C. Flexural Computations - (All equations cited are in
Reference 1).
1. Using equation IV-6, the [B] matrix is formulated.

However, it should be noted that the SEL array is
used to relabel the displacements as W, ex and 6y4 eyy

(instead of ex , ey, W).

2. Using equations IV-15, 16, and 17, the geometric
properties of the element are first defined in local
ard then in global coordinates. These are shown as
Figures IV-3 and IV-2 respectively.

3. If the incrementals are to be computed (Nx, Ny N xy)

the following sequence of operations take place:
a) Using equation IV-14, the respective [V] matrices

are formulated.
b) The respective incremental is formulated according

to equation IV-11 and then transferred to 3648
notation by [T1718J.

4. The remaining element matrices are then formulated
according to the respective equations cited:
a) Stiffness - Equations IV-2, 6 and 10
b) Stress - Equation IV-24
c) Thermal Load - Equation IV-21
d) Thermal Stress - Equation IV-26

D. Membrane Computactons - (All equations cited are in
Reference 1). The following membrane matrices are then
formulated according to the respective equation cited:
a) Element - Equations 11-1, 5 and 11
b) Stress - Equation 11-16
c) Thermal Stress - Equation 11-25
d) Thermal Load - Equation I1-22

E. Remaining Operations - The element stiffness, stress
and thermal load matrices are then transformed first to
global and then to 3648 notation.

438

4. Input Arguments:

NCEI - number of node points
ZELCYELC,ZELC - X, Y and Z coordinates
TEL,PEL - temperature and pressure array
NORD - order of element stiffness matrix
NCEI - node point numbers
GPAXEL -, grid point axes transformation for elemenft
KN - control for instability (if set = 1, incrmentals

computed)
ICONT - control of grid point axes transformation
MAT - material properties array
EXTRA - element properties array

5. Output Arguments:

NOINK - number of elements in stiffness matrix
AKELX - elements 3f stiffness matri. (symmetric -

bottom half)
FTELX - elements of thermal load matrix
SELX - elements of stress matrix
PTEL - elements of thermal st-ness matrix
NRSEL - number of rows in stress matrix (5)
NSEL - number of elements in stress matrix (90)

6. Error Returns:

(a) NERR - standard plug checks from ELTEST
(b) If points (1) and (2) have same coordinates call EXIT

(c) If B- 1 is singular - call EXIT.

7. Calling Sequence:

Call PLUG17(IPL,NCE1,XELC,YELC,ZELC,TEL,PEL,QSEL,IPNORD,NERR,
NOINKAKELX,ANELX1,FTELXSELX,PTEL,AMASS,DAMPV,
DAMPS,NRSELNNO,NCEI,NMASS,NDMPV,NDMPS,NSEL,KK,
KFKS,KM,KDS,KDV,KN,IUSEL,EPSIO,SO,MAT,EXTRA,
GPAXEL,NDIR,NDEG,ICONT)

8. Input Tapes:)one

9. Output Tapes: None

10. Scratch Tapes: None

4 3 9

11. Storage Requir-d:

a) Variables b) Definition

T1718 (24,24) Transformation matrix to 3648 notation
TTOBL (3,12) Transformation matrix from local to

global or oblique coordinates
SEL (17,24) - Working area and stress matrix
ANELX (300) 1 Incremental matrices in Cylinder
ANELY (300) Notation
ANELXY*(300)
ANELEX (300,3) Incremental matrices for Instability

in 3648 notation

12. Subroutine User: ELPLUG

13. Subroutines Required:

DIRCOS BCB
BCB12 MATB
FTELQ MAB
SELQ KOBLIQ

14. Remarks:

a) Controls are reset in programs to compute everything but
the incrementals. Initial test phase had KN = 1 to check
these computations.

b) Plug not tested out if either the flexural or membrane
thickness is zero (certain portions of plug will be bypassed
as LAMDA is set = 0).

c) Thermal load will probably have to be roderived as 2nd
input TEMP is thermal moments Mx and not the thermal
gradient as prescribed for flexural elements (PLUGS 1
and 2).

d) References:

(1) Bell Report No. D2114-95005, "Derivation of the
Force - Displacement Properties of Triangular and
Quadrilateral Orthotropic Plates in Plane Stress
and Bending" - Gallagher, Huff - dated Jan. 1964.

(2) Bell Report No. D2114-95008, "Detailed Description
Computer Program for Stiffened Cylinder Analysis"
Gallagher, Huff, Dale - dated Jan. 1964.

440

141

1. Subroutine Name: DIRCOS

2. Purpose: To evaluate the'direction cosines given any 3
points that define a plane.

3. Equations and Procedures: Subscripts 1, 2 and 3 refer to
the 3 points of the plane. Dropping a perpendicular from
point 3 to the line connecting 1 and 2 results in point a.
The following computations are done in order to determine
the direction cosines.

2 2 2 2
112 (x2 - Xl) + (y2 - y) + (z2 - zl)

12 3 + (Y3 Yl)2+ (z - 213 '3 ''3l3 2

2 - 2+ , - .2+ 2
123 = (xy3 - x2) + (Y3 - Y2") + (z3 z2)

lla (i 2 + 1213 _ 1)121

x2-1 I Y2-Yl Az2-z 1

ll2 12 12

Xa Xl + xx 1la

a= y la

za = + + z lla

12 (x 2 (y2
§a3 3 a + (Y3 Ya) 3 a

441

I
3. Equations and Procedures,(Contd.):

x -x -a Y z3a'-33 3
x 1a3 1 a3 z la3

vx X y z z y

y z x x z

v z =A x = A Vx

4. Input Arguments%

XEL1,YELI,ZEL1 - X, Y, Z coordinates of plane

5. Output Arguments:

XLAMDI
YLAMD1
ZLAMD1
XPSIl - direction cosines.
zPSIl
XNUI
YNUI
ZNUI
ALI21 - distance between point 1 and 2 of the plane.

6. Error Returns: None

7. Calling Sequence:

Call DIRCOS(XEL1,YELl,ZEL1,XLAMDL,YLAMD1,ZLAMD1 ,XPSI1,YPSI1,
XNV1,YNU1,ZNU1,ALI21)

8. Input Tapes*, None

9. Output Tapes: None

10. Scratch Tapes: None

442

11. Storage Required: Total Storage required is 57616 Bytes.

12. Subroutine User: PLUG17, PLUGI

13. Subroutines Required: None

14. Remarks: None

443

1. Subroutine Name: BCB12

2. Purpose: To evaluate a triple product matrix where all
matrices are square.

3. Equations and Procedures: Dependent upon an input
variable (ISIN2) when ISIN2 = 5.

AKEL = CA - 1 - T L-C7 CA - 17

when ISIN2 = 11

AKEL = CA_7 T L-C CA-

where A now contains elements of A- 1 .

4. Input Arguments:

A - matrix to be inverted or the inverted matrix
C - symmetric matrix bottom half
NOR2 - order of matrices
JNLl - dummy - set equal to 1
IKELW - print option
JEL! - dummy - set equal to 1
ISIN2 - input code for above
NECI - node points
SUBTIl - title of matrix
SUBTI2 - type of element
NCE2 - number of grid points

5. Output Arguments:

AKEL - results of the above triple product.

6. Error Returns: If A is singular - print out error and EXIT.

7. Calling Sequence:

Call BCB12(A,C,NOR2,JNLI,IKELW JELIJSIN2,AKEL,NCE2,NCEl,
SUBTI1,SUBTI2)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 120816 Bytes.

12. Subroutine User: PLUG17, PLUG18

13. Subroutines Requireu: None - has a built in inverse routine.

14. Remarks: Note that maximum size of matrix is only 12.

444

1. Subroutine Name: KOBLIQ

2. Purpose: To evaluate

(TTOBL)T (AKEL) (TTOBL)

3. Equations and Procedures: TTOBL is a compressed trans-
formation matrix (3,12) that is labeled u, v, w for each
node point. Since AKEL is labeled ul, u2, u3 , etc., the

appropriate manipulation is done in this routine to do the
above product.

4. Input Arguments:

NI - order of matrices
TTOBL - transformation matrix of element
AKEL - element stiffness matrix
SUBTII, SUBTI2 - labeling of printout
IKELW - print option
C - working storage
NAl - number of nodes defining element
NAI - node points
ROW - working storage

5. Output Arguments:

AKEL - element stiffness matrix

6. Error Return: None

7. Calling Sequence:

Call KOBLIQ(NI,TTOBL,AKEL,SUBTI1,SUBTI2,IKELWC,NA1,NAIROW)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is AF016 Bytes.

12. Subroutine User: PLUG17, PLUG18

13. Subroutine Required: None

14. Remarks: Note that dimension for ROW dictates size of

multiplication.

445

1. Subroutine Name: P1718M

2. Purpose: Initialize element properties from the material
table for membrane properties with flexural data only from
PLUG 17 and PLUG 18.

3. Equations and Procedures:

EXEL = MAT(14)
EYEL = MAT(15)
BETA = EXEL/EYEL
XYMU = MAT(16)
ALFAEL = MAT(17)
GXYEL = MAT(18)

4. Input Arguments: MAT

5. Output Arguments:

EXEL
BETA
XYMU
GXYEL
ALFAEL

6. Error Return: None

7. Calling Sequence:

P1718M(MATEXELBETAXYMJ,GXYELALFAEL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 001 6 Bytes.

12. Subroutine User: PLUG 17 ; PLUG 18

13. Subroutine Required: None

14. Remarks: None

446

1. Subroutine Name: SELQ

2. ?urpose: To transform the stress matrix (generated by
PLUG17 and PLUG18) to the stress system required -
generally local).

3. Equations and Procedures:

[S]TRANS = IS] ITTOB]

where [S] is the stress matrix generated by 17 and/or 18.
[TTOBL] is the transformation matrix from global to local
or global to oblique.

14. Input Arguments:

NORD6 - number of columns in stress matrix
TTOBL - transformation matrix
IKELW - print option
A - element stress matrix
NRSEL - number of rows in stress matrix1 ROW - working storage

1 5. Output Arguments:

A - stress matrix transformed to local system

6. Error Returns: None

7. Calling Sequence:

Call SELQ(NORD6,TTOBL,IKELW,A,NRSEL,ROW)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 66416 Bytes.

j12. Subroutine User: PLUG17, PLUG18

13. Subroutines Required: None

1 14. Remarks:

1. 12 elements at one time (membrane or flexure) are put4into the working area (ROW).
2. Note again the labeling of:

(a) TTOBL = Ul, Vl, wl, etc.

(b) SEL a u1 , u2, u3 , u 4 , etc.

447

1. Subroutine Name: FTELQ

Purpose: To transform the element thermal (local) load
into global or oblique system.

3. Equations and Procedures:

c t
(P1Q E TTOBL]T {p 1 1x {ele }

where TTOBL is the transformation matrix.

RFee is the element local thermal load

{F} is the transformed load
x

4. Input Arguments:

NORD6 - size of the load vector
TTOBL - transformation matrix
IKELW - print option
THMOEL - local thermal load
ROW - working storage

5. Output Arguments:

THMOEL - transformed thermal load

6. Error Returns: None

7. Calling Sequence:

Call FTELQ(NORD6,TTOBLIKELWTHMOEL,ROW)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 56C 16 Bytes.

12. Subroutine User; PLU0I7,.PLUG18

448

13. Subroutines Required: None

14. Remarks:

1. Note that dimension of ROW(12) indicates 12 elements
at a time transformed (membrane or flexure).

2. Note labeling of:

(a) [TTOBQ - F F PFl etc.Xi Yl 1,

(b) (Ft - F F2, F, etc.ele - x

I

1. Subroutine Name: PLUG18

2. Purpose: (1) To generate both membrane and flexural element
matrices of a quadrilateral thin plate, (2) If applicable,
generate incremental matrices for instability.

3. Equations and Procedures:

A. Formulation of Equation - The formulation for any
computations involved in evaluating the element matrices
will be found in references (1) and (2). (See Remarks
Section of this report.) Modifications were, however,
necessary to make the notation compatable with 3648
procedures and applications. The formulations and coding
are not necessarily in the same sequence or labeling.

B. Initial Computations -

1. Constants have to be set for:
a) If the element matrices are to be computed,

LAMBA(I) a 1 where
I = 1, for membrane stiffness and stress
I = 2, for flexural stiffness and stress
i f 3, for membrane thermal load and stress
I = 4, for flexural thermal load and stress.

b) The incrementals will not be computed
INCREM = 0 since ICONT = 0.

2. Material properties and element data from MAT and
EXTRA array noting that if either membrane or flexure
thickness is zero, the appropriate LAMDA above is
reset to zero.

3. According to reference (2), transformation matrices
have to be formulated with the appropriate direction
cosines.
a) From cylinder coordinates to local coordinates

{x I = [T] {x o } (1)

b) From cylinder coordinates to oblique cocrdinates

(xo} = [Toc' (xo) (2)

where (x Z are the local x, y, z coordinates
{x } are the cylinder x, y, z coordinates
{xc0 are some other orthogonal X' Y' Z' coordinate

[T9c] [Toc] contain the respective direction cosines.

Since the element displacements are in local
coordinates, combining equations (1) and (2) yields

{x [IT0 [TTOBL] U (3)

450

3. Equations and Procedures (Contd):

4. Transformation of the above cited displacements
xlx 2 ,x3,yletc. into 3648 notation xl,yl,zl,x 2 ,etc.

will result in the formulation of

ixl,x 2 ,x3 ,etc} = [TIIS] {xlylZlx 2 ,etc} (4)

C. Flexural Computations - (All equations cited are inReference i):
1. Using equation V-5, the (B) matrix is formulated.

However, it should be noted that the SEL array is
used to relabel the displacements as W, 8x and 0y

(instead of 6, y, W).

2. Using equations V-19, and 21, the geometric properties
of the element are first defined in local and then in
global coordinates. These are shown as Figures V-8
and V-7 respectively.

3. If the incrementals are to be computed (N., NY$ Nxy)
the following sequence of operations take place:
a) Using equation V-il, the respective (C) matrices

are formulated.
b) The respective incremental is formulated according

to equation V-12 and then transferred to 3648
notation by (T1718).

4. The remaining element matrices are then formulated
according to the respective equations cited:
a) Stiffness - Equations V-2, 3rd and 5
b) Stress - Equations V-9 and 30
c) Thermal Load - Equations -26d) Thermal Stress - Equation V-32

D. Membrane Computations - (All equations cited are in
Reference 1). The following membrane matrices are then
formulated according to the respective equation cited:
a) Element - Equations 111-2, 8 and 12
b) Stress - Equation 111-26
c) Thermal Stress - Equation 111-25
d) Thermal Load - Equation 111-22

E. Remaining Operations - (1) The element stiffness, stress
and thermal load matrices are then transformed first to
global and then to 3648 notation, (2) The stress matrix
is now expanded to be consistent with 3648 applications by
(TI8ST).

451

4. Input Arguments:

NCE1 - number of node points
XELC,YELC,ZELC - X, Y and Z coordinates
TEL,PEL - temperature and pressure array
NORD - order of element stiffness matrix
NCEI - node point numbers
GPAXEL - grid point axes transformation for element
KN - control for Instability (If set = 1, Incrementals

Computed)
ICONT - control of grid point axes transformations
MAT - material properties array
EXTRA - element properties array

5. Output Arguments:

NOINK - number of elements in stiffness matrix
AKELK - elements of stiffness matrix (symmetric -

bottom half)
FTELK - elements of thermal load matrix
SELKP - elements of stress matrix
PTELK - elements of thermal stress matrix
NRSEL - number of rows in stress matrix (40)
NSEL - number of elements in stress matrix (900)

6. Error Returns:

(a) NERR - standard plug checks from ELTEST
(b) If points (1) and (2) have same coordinates call EXIT

(c) If B- 1 is singular - call EXIT

7. Calling Sequence:

Call PLUG18(IPLNCE1,XELC,YELC,ZELC,TELPELQSEL,IP,IORD,
NERR,NOINKAKELX,ANELXI,FTELX,SELKP,PTELK,AMASS,
DAMPV,DAMPS, IRSEL,NNO,NCEINMASS,NDMPV,NDMPS,NSEL,
KK,KF,KS,KM,KDS,KDV,KN,IUSEL,EPSIC,SOMATEXTRA,
GPAXEL,NDIR,NDEGICONT)

8. Input Tapes: None

9 8. Output Tapes: None

10. Scratch Tapes: None

452

11. Storage Required:

a) Variables b) Definitions

T1718 (24,24) - Transformation matrix to 3648
notation

TTOBL (3,12) -- Transformation matrix from local
to global or oblique coordinates

SEL(17,24) - Working area and stress matrix
ANELX (300) Incremental matrices in cylinder
ANELY (300) J notation
ANELXY (300)
ANELEX (300,3) - Incremental matrices for Instability

in 3648 notation

F 12. Subroutine User: ELPLUG

13. Subroutines Required:

DIRE", BCB
BCB12 MATB
FTELQ MAB
SELQ
KOBLIQ

14. Remarks:

a) Cbntrols are reset in programs to compute everything
but the incrementals. Initial test phase had KN = 1 to
check these computations.

b) Plug not tested out if either the flexural or membrane
thickness is zero (certain portions of plug will be
bypassed as LAMDA is set = 0).

c) Thermal load will probably have to be rederived as 2nd
input TEMP is thermal moments Mx and not the thermal
gradient as prescribed for flexural elements (PLUGS 1
and 2).

d) References:
(1) Bell Report No. D2114-950U5, "Derivation of the

Force - Displacement Properties of Triangular
and Quadrilateral Orthotropic Plates in Plane
Stress and Bending" - Gallagher, Huff - dated
Jan. 1964.

(2) Bell Report No. D2114-95008, "Detailed Description -

Computer Program for Stiffened Cylinder Analysis" -

Gallagher, Huff, Dale - dated Jan. 1964.

453

1. Subroutine Name: TR18ST

2. Purpose: To form transformation for stress and thermal
stress matrices to u, v, w notation

3. Equations and Prccedures: See element write-up for

defined transformations.

4. Input Arguments:

NODE - element nodes

5. Output Arguments:

T1718
T78ST - transformation matrices

6. Error Returns: None

7. Calling Sequence:

Call TRI8ST(NODE,T1718,Tl8ST)

8. Irnput Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 35216 Bytes.

12. Subroutine User: PLUG18

13. Subroutine Required: None

14. Remarks: None

454

1. Subroutine Name: FBMP18

2. Purpose: To evaluate B matrix for quadrilateral plate

elements; out of plane.

3. Equations and Procedures: See element write-up for
definition of B matrix generation.

4. Input Arguments:

XEL - X coordinates
YEL - Y coordinates

5. Output Arguments:

B - output matrix

6. Error Returns: None

7. Calling Sequence:

Call FBMP18(XEL,YEL,B)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: Noue
11. Storage Required: Total Storage required is 39A16 Bytes.

).2. Subroutine User: PLUG18

13. Subroutine Required: None

15. Remarks: NOne

455

1. Subroutine Name: PLUG22

2, Purpose: Element matrix generation for the incremental

frame element.

3. Equations and Procedures: None

4. Input Arguments:

IPL - plug number
NNO - number of node points
XC - X-coordinates of nodes points
YC - Y-coordinates of node points
ZC - Z-coordinates of node points
TEL - temperatures at the node points
PEL - pressures at the node points
QS - input displacements of the node points
IP - number of extra cards
NORD - order of element stiffness matrix
NRSEL - number of rows in the stress matrix
NN - number of nodes
NL - node point numbers
KK - code for computation of element stiffness matrix
KF - code for computation of element thermal load
K8 - r'ode for computation of element stress matrix
KM - code for computation of element mass matrix
KTS - ccde for computation of element thermal stress matrix
ET - code for computation of structural damping matrix
KVM - code for computation of viscous damping matrix
KN - code for computation of incremental damping matrix
IUSEL - dummy
EPS - pre-strain load vector
SO - pre-stress load vector
MAT - material properties matrix
EXTRA - extra information (angles, etc.)
NDIR - number of directions of movement.per grid point
NDEG - number of types of movement allowed per grid Doint
ICONT - code for use of grid ooint axes

5. Output Arguments:

NERR - error return
NOINK - number of elements in lower half matrices
KSEL - stiffness matrix
CNX - incremental stiffness matrix
FTEL - thermal load + pressure load matrix
SEL - stress matrix

4

456

5. Output Arguments (Contd):

SZALEL - therma- stress matrix
AMASS - mass matrix
DAMPV - visco.us damping matrix
DAMPS - structural damping matrix
NSEL - number of elements in stress matrix
NMASS - number of elements in mass matrix
NDMPV - number of elements in viscous damping matrix
NDMPS - number of elements in structural damping matrix
OPAXEL - grid point axes transformation

6. Error Returns:

NERR = 0 no errov
= 1 plug number incorrect
= 2 number of nodes incorrect
= 3 number of input points incorrect
= 4 order of matrix (NORD) incorrect

7. Calling Sequence:

Call PLUG22(IPL,NNO,XCYC,ZC,TEL,PELQSsIPNORD,NERR,NOINK,
KSEL,CNXFTEL,SEL,SZALEL,AMASS,DAMPV,DAMPS,NRSEL,
NNNLNMASSNDMPVNDMPS,NSEL,KK,KF,K8,KM,KTS,ET,
KVMKN,IUSELEPSIOSOMATEXTRAGPAXEL,NDIRNDEG,
ICONT)

8. Input. Tapes: None

9. Output Tapes: None
10. Scratch Tapes: None

11. Storage Required: Total Storage required is 3FCC 16 Bytes.

12. Subroutine User: ELPLUG

13. Subroutines Required:

ELTEST, CTS, CTCQ, CECC, MAB, AXTRA2,SYMPRT, BCB, MATB, MSB,
FINP22,SQRT

14. Remarks: None

457

I

i. Subroutine Name: FINP22

2. Purpose: To form the incremental matrix for the incremental
frame element.

3. Equations and Procedures:

AIN(lO) = (L)*A
AIN(10) = (L2)*A
AIN(15) = (4*L3,/3)*A
AIN(19) = (L3)*A
AIN(2U) = (3*L4/2)*A
AIN(21) = (9*L5/5)*A
AIN(36) = (L)*A
AIN(44) = (L2)*A
AIN(45) = (4*L3/3)*A
AIN(53) = (L3)*A
AIN(54) - (3*L4/2)*A
AIN(55) = (9*L5/5)*A
All other values of AIN are zero

4. Input Arguments:

L X 2 + y2 + Z2

Ll = l/L

L2 = L2

L3 = L3

L4 = L
4

L5 = L5

PRINT = print control
A = area of member (A)

5. Output Arguments:

AIN - incremental matrix

6. Error Return: None

7. Calling Sequence:

Call FINP22(L,L2,L3,L4,L5,AIN,PRINT,A)

8. Input Tapes: None

9. Output Tapes: None

10. Sci-atch Tapes: None

: 458

11. Storage Required: Total Storage required is 3EC 1 6 Bytes.

12. Subroutine User: PLUG22

13. Subroutine Required: None

I 14. Remarks: None

4

4 59

F2
L

1. Subroutine Name: AXTRA1

2. Purpose: Apply grid point axes transformation by pre-multi-
plication using either the actual transformation matrix or
its transpose.

3. Equations and Procedures:

MOUT = [rPG [MIN] or [MOUT] [r'Pk [MIN]

where [MIN is the input element matrix,

[.p is the element grid point axes transformation
matrix,

Ii, OU is the output transformed element matrix.

[MOU is stored in the same location as MIN] , therefore

the input element matrix is lost once the multiplication has
been effected. Advantage is taken, during multiplication,
of the fact that rp is structured as a set of (3 x 3) or

(2 x 2) matrices with main diagonal positions lying on the
main diagonal of[GPAj.

4. Input Arguments:

GPAXEL : Element grid point axes transformation matrix,[rPA]
QSEL : Input element matrix, MT
NCOL : Number of columns in S
NNO : Number of element node points
NDEG : Number of degrees of freedom
NDIR : Number of directions
ITRAN : Control code, if ITRAN = 4 then or =[FGPA I

if ITRAN = 3 then [MOU = [PTPI

5. Output Arguments:

QSEL : Output transformed element matrix, [MOUTI

6. Error Returns: Pone

7. Calling Sequence:

CALL AXTRAl (GPAXEL, QSEL, NCOL, NNO, NDEG, NDIR, ITRAN)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

460

ii. Storage Required: Total Storage required is 41E16 Bytes.

COL (3)

ISAVE (3)

12. Subroutine User: ELPLUG

13. Subroutines Required: None

14. Remarks: The output matrix is stored in the input matrix
storage.

461

1. Subroutine Name: AXTRA3

2. Purpose: Apply grid point axes transformation by triple
proeuct multiplication.

3. Equat:ons and Procedures:

[AN] [FGPA]T* [SYM] [PA]

where

[rGPAI is the element grid point axes transformation
matrix

[SYM] is symmetric input element matrix

[AN] is symmetric output transformed element matrix

The triple product is obtained by compiting a row of the
intermediate product of [FbPA] T *YM] and then
multiplying this intermediate row with [rGPA to obtain
a row in [AN] . Advantage is taken during multiplic-
ation, of the facts that [SYM] and LAN] are symmetric
and also that [FGPA] is structured as a set of (3x3) or
(2x?) matrices with main diagonal elements lying on the
main diagonal of [PA]

4. Input Arguments:

GPAXEL : Element grid point axes transformation motrix,
[rGPA]

SYM : Input element matrix, symmetric, singly sub-
cripted, stored lower half by rows, [SYM]

NCOL : Number of columns in SYM (also number of rows
in SYM)

NNO : Number of element node points
NDEG : Number of degrees of freedom
NDIR : Number of directions

5. Output Arguments:

AN : Output Uransformed element matrix, symmetric,
singly subscripted, stcred lower half by rows,

[A N]

6. Error Returns: None

462

7. Calling Sequence: Call AXTRA3

(GPAXEL, SYM, AN, NCOL, NNO, NDEG, ADIR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage:

ROW(48)
Total Storage = 5178 = 33510.

12. Subroutine User: ELPLUG

13. Subroutines Required: LOC

11. Remarks:

SYM .ust be stored lower half by rows,
AN will be stored lower half by rows.

Internal intermediate storage in variable ROW is
dimensioned 48. If the order of [SYM] is greater
than 48, an appropriate increase must be made i',
this intermediate storage.

463

i. Soroutine Name: ELPRT

2. Purpose: Print generated element matrices.

3. Equations and Procedures: Non-suppressed matrices are
printed, complete with titles.

4I. Input Arguments:

NOINX - Number of storages in element stiffness,
incremental stiffness and mass matrices

AKEL - Array containing element stiffness matrix
NORD - Number of element degrees of freedom
FTEL - Vector containing element load matrix
NNO - Number of element defining points
NODES - Array containing element defining grid point

numbers
NSEL - Number of storages in element stress matrix
NRSEL - Element stress order
SEL - Array containing element stress matrix
SZALEL - Vector containing element thermal stress matrix
ANEL - Array containing element incremental stiffness

matrix
INEL - Element number
NMASS - Number of storages in element mass matrix
AMASS - Array containing element mass matrix
NDMPV - Not used
DAMPV - Not used
NDMPS - Not used
DAMPS - Not used
ILP - Element type code number
NUMOT - Number of output matrices
NAMOUT - Array containing output matrix names

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

CALL ELPRT (NOINK,AKEL,NORD,FTELNN0,NODES,NSEL,NRSEL,SEL,
SZALEL,ANEL,INELNMASS,AMASS,NDMPV,DAMPV,NDMPS,
DAMPS,ILPNUMOTNAMOUT)

8. Input Tapes: None

9. Output Tapes: None

l 464

10. Scratch Tapes: None

1. Storage Required:

Total Storage required is AC 1 6 Bytes.

12. Subroutine User: ELPLUG

13. Subroutines Required: None

141. Remarks: None

465

1. Subroutine Name: OUTMAT

2. Purpose: Sort element matrices on scratch tape and
output to Format 1Execution Monitor in an optimal manner

3. Equations and Procedures: First the array controlling
the selection and order of output of the matrices (1KNOW)
is formed. The IKNOW array will contain the pass number
on which each computed output matrix will be written on
an output tape. Correspondence between the IKNOW array
and the output matrices is as follows:

IKNOW(6) : Transformation assembly matrix (TA)
!KNOWt7) : Master element stiffness matrix (KEL)
IKNOW(8) : Master element applied load matrix (FTEL)
IKNOW(9) : Master element stress matrix (SEL)
IKNOW (10) : Master element thermal stress matrix

(SZALEL)
IKNOW(ll) : Master element incremental matrix (N)
IKYOw(12) : Master element mass matrix (M)

For each output matrix except the element applied load and
thermal stress matrices the following procedure takes place:

a.. If the matrix has not been calculated, as determined
by a slash in its position in the NAMOUT array, its
position in the IKNOW array is set equal to zero.

b. If the matrix has been calculated, then its correspond-
ing output tape number is obtained from the IOSPEC
array and a search is done from the beginning of the
IOSPEC array to this matrice's position, counting the
number of times this tape number has been encountered.
This final count is the pass number on which this
matrix will be written and is placed into the matrix's
corresponding position in the IKNOW array.

After the IKNOW array has been formed it is searched for
the greatest number. This number will be the number of
passes required to output all of the computed matrices.

On each pass the following procedure is used. The scratch
tape containing the element matrices is rewound. This
tape consists of two records per element. The first record
contains element definition data, the second contains the
matrices for that element. The second record is read into
a dynamic storage area and interpreted by locating key
numbers that appeared in the record. A loop is entered
from one to NELEM. The contents of the IKNOW array are

466

compared to the pass number. When a match is found the
corresponding matrix is written on its output tape. Before
writing the first element's contribution on its output
tape, the appropriate matrix header is written. In most
cases the matrices will be output in compressed format.
However, in small applications when the maximum element
order (NORDM) or the maximum element stress order
(NRSELM) is greater than one-half the sum of the element
orders (NORSUM) or the element stress orders (NRSSUM),
respectively, then the matrices will be output in
uncompressed format. A count is maintained in IR and IC
for each output matrix in order to place each element's
contribution in the correct position in the output matrix.
At the end of the pass the appropriate matrix trailer and
data set trailer labels are written. The TA matrix is a
special case in that it is generated from the element
definition data and then placed on its output tape. For
output of the elemen; applied load and element thermal
stress matrices the following procedure is invoked.
During the first pass of the tape, if they were not
suppressed, the element applied load and thermal stress
matrices were stored in the blank common work area.
Following the first pass these two matrices are output
in either compressed or uncompressed format, dependent
upon the same criteria as all other matrices.

4. Input Arguments:

NUMOT : Number of output matrices
NAMOUT : Names of output matrices
IOSPEC : Unit information regarding output matrices
NTAP3 : Scratch tape containing system information
NTAP4 : Scratch tape containing element matrices
NSYS : System order
NTD : Number of degrees of freedom per grid point
NORSUM : Summation of element orders
NRSSUM : Summation of element stress rows
NELEM : Number o1 elements
NWORKR : Number of working storages available
WORK : Common work area
NORDM : Max-mum element order
NRSELM : Maximum element stress order

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

CALL USJ6O(NUMOT, NAMOUT, IOSPEC, NTAP3, NTAP4, NSYS,
NTD, NORSUM, NRSSUM, NELEM, NWOPKR, WORK, N$RDM, NROELM)

461

8. Input Tapes:

NTAP3 : Contains system information
NTAP4 : Contains element matrices in compact form

9. Output Tapes: Output tape units are supplied by the
Format Execution Monitor; matrice3 are output by columns
in compressed format. Appropriate matrix header and
trailer labels are written. An output matrix consists of
all the element matrices of that type placed such that
their main diagonal positions lie on the main diagonal
of the output matrix in succeeding positions.

10. Scratch Tapes: None

11. Storage Required:

Total Storage required is 136E 16 Bytes.

12. Subroutine User: US04B

13. Subroutines Required:

US461
us462
USI'63

14. Remarks: None

468

1. Subroutine Name: US461

2. Purpose: Write a column of an output matrix in uncom-
pressed or compressed format.

3. Equations and Procedures: If KODE is zero, the IWORK
array has NSUM zeros placed into it. Then, starting at
ISTART, NROW's of ISTORE are placed into the correspond-
.ng positions in IWORK. The variable NUM = NSUM is the
ramber of words from IWORK that will be written on tape.
*f' KODE is one, each element of ISTORE is compared to
zero. If it is zero, it is ignored. If the element is
not zero, then it is placed in the IWORK array in the
first unused position and th next positicn in IWORK is
filled by the row number in ,he output matrix of the
non-zero element. The row number is corrected by ISTART
in order to place the contribution in the correct row of
the output matrix. NUM is a counter used to record the
number of non-zero numbers found and the number of words
that will be written from IWORK (NUM = 2* number of non-
zero elements in ISTORE).

It. Input Arguments:

ISTORE : Matrix column to be written
ICOL : Column number of ISTORE in matrix
ISTART : Starting row number in output matrix
NROW : Number of rows in ISTORE
NTAPE : Output tape number
IWORK : Work area for compression of ISTORE
NODE : Determines whether matrix is to be put

into compressed form
NSUDM : Sum of element orders

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: Call Us461

(ISTORE, ICCL, ISTART, NROW, NTAPE, IWORK, KODE. NSUM)

8. Input Tapes: None

9. Output Tape: NTAPE

Record format is ICOL, KODE, NUM, (IWORK(I), I=1, NUM)
where ICOL is column number, RODE equals one or zero,
NUM is nuimber of words remaining in record and IWORK is
the compressed or uncompressed version of ISTORE. Each
record then contains NUM + 3 words.

469

10. Scratch Tapes: None

11. Storage Required: Total storage requ.red is 3E0 16 Bytes.

12. Subroutiae User: US460

13. Subroutines Reouired: None

14. Remarks: None

470

1. Subroutine Name: US462

2. Purpose: Create a list which defines the location of the
contributions of an element to the assembly transformation
matrix.

3. Equations and Procedures: The degrees of freedom for each
node point, with respect to the system of grid points, are
calculated and placed in LIST. LIST is therefore of length
NNO*NTD. The formula for determining this location is:
LIST(K) = (NODES(I) - l)*NTD + L

where K = 1, 2, ..., NNO*NTD
I = 1, 2, ... , NNO
L = 1, 2, ... , NTD

It. Input Arguments:

NNO - number of element node points
NODES - array containing element node point numbers
NTD - number of degrees of freedom per grid point

5. Output Arguments:

LIST - array containing row number in TA matrix for each
degree of freedom for each element node point.

6. Error Returns: none

7. Calling Sequence: CALL US462 (NNO, NODES, NTD, LIST)

8. Input Tapes: none

9. Output Tapes: none

10. Scratch Tapes: none

11. Storage Required: total storage re.quired is 1FO 16 Bytes.

12, Subroutine User: US460

13. Subroutines Required: none

14. Remarks: none

471

1.. Subroutine Name: US463

2. Purpose: Obtain full column from symmetrically stored matrix

3. Equations and Procedures: For a symnetr'ic matrix column is
equivalent to row. The corresponding row; to ICOL i,. locatad
and the elements of that row up to and including the diagonal
element are placed in the first and succeeding position of
COL. If ICOL was the last colur.? of the matrix the process
is ccmplete and control is returned to the calling program.
If ICOL was not the last column then each element in the

ICOL position of the remaining rows is placed into COL and
control is returned to the calling program.

1. Input Arguments:

SYM symmetric matrix stored lower half by rows, singly sub-
scripted

N order of SYM
ICOL Column number of SYM desired

5. Output Arguments:

COL - full column number ICOL

C. Error Returns: none

7. Calling Sequence: CAL US463 (SYM, N, ICOL, OL)

8. Input rapes: none

9. Output Tapes: none

10. Scratch Tapes: none

11. Storage Required: Total storage required is 29A1 6 Bytes.

12. Subroutine User: us46o

13. Subroutines Requieed: none

L4. Remarks: none

472

1. Subroutine Name: ELMAT

2. Purpose: To output as a format matrix elemert matrices
in compressed form to be used by structural modules outs1ie
of the USER04 module.

3. Equations and Procedures: The tape containing the
information generated by subroutines RKE3 and RE04 is read
and then merged to form one record on the output tape for
each element. The record written for each element is as
follows:

JCOL,KODENUM,IEL,IPL,NORD,(LISTEL(I),I=I,NORD)
NOINK, (AKEL(I),I=l,NOINK)
NORD,(FTEL(I),Iul,NORD)
NNO, (NODES(I) ,I=I,NNO)
NSEL,(SEL(I),I-l,NSEL)
NRSEL,(SZALEL(I) ,I=l,NRSEL)
NOINK,(ANEL(I),I=l,NOINK)
NMASS,(AMASS(I),I=l,NMASS)

where,
JCOL - is the column number
KODE - is equal to 0 to indicate non-compression
NUM - is the number of words remaining in the record

NUM=2*NOINK+2*NORD+NNO+NSEL+NRSEL+NMASS+10
IEL - is the element number
IPL - is the element type (plug number)
LISTEL - a list array used to reorder the system degrees

of freedom of length NORD
AKEL - the element stiffness matrix of length NOINK
FTEL - the element thermal load matrix of' length NORD
NODES - an array containing the reference points for

the element of length NNO
SEL - the element str-ess matrix of order NSEL
SZALEL - the element thermal stress matrix of order NRSEL
ANEL - the element incremental matrix of order NOINK
AMASS - the element mass matrix of order NMASS

4. Input Arguments:

NELEM - number of elements in analysis
MAXELM - length of maximum element record
NAME - array containing name of output matrix
NSET - data bet number of output matrix
NTAPE - data set number of input element tape
NWORK - number of words of work storage available
MAT - work storage for reading NTAPE element data

5. Output Arguments: None

473

6. Error Returns: None

7. Calling Sequence:

ELMAT(NELEM,MAXEL1VANAME,NSET,NTAPE,NWORK,MAT)

8. Input Tapes: NTAPE

9. Output Tape: NSET

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 6F2 16 Bytes.

12. Subroutine User: US04B

13. Subroutine Required:

EUTL5
EUTL6

14. Remarks: None

474

APPENDIX IX

DIRECT MACHINE C'IITROL IMPLEMENTATION DOCUMENT

This documentation is primarily intended for the

programmer analyst or systems analyst responsible for the
initial implementing and subsequent maintenance of the
system.

There are five sections in this document. Special
program considerations are presented in Section I (Reference
2). Included in this section is a description of interna3
data storage, external or peripheral data storage, and
programming specifications followed. Section II deals with
the operational considerations of the program. Included in
this section is a discussion of the procedure to be followed
in an initial implementation of the program at an installation.
Data set assignments and storage limitations are discussed,
and some special control cards are described (Reference 2).
Section III describes how new agendum level abstraction
instructions may be added to the MAGIC system. Section IV
contains a catalogued procedure used for initial implementation
of the MAGIC System. Section V contains a preprinted form
to be used in reporting any problems with the implementation
or running of the MAGIC program.

475

TABLE OF CONTENTS

Section Page No.

I SPECIAL PROGRAMMING CONSIDERATIONS 478

A. Internal Data Stopage. 478

1. Common Storage 478

2. Storage of Alphameric Information. . 478

3. Matrlx Names . . * 0 478

4. Data Set Names 479

5. Compression Scheme 479

B. Data Set Formats 480

1. Data Set Header Record 6 480

2. Data Set Trailer Record 480

3. Matrix Header Record 480

4. Matrix Trailer Record 481

5. Matrix Column Record 481

C. Programming Standards 481

1I OPERATIONAL CONSIDERATIONS 483

A. Format II Data Set Philosophy 483

B. Storage Limitations 486

C. Initial Implementation 487

D. Machine Resource Data Card 489

476

Section PaL No.

III AGENDUM LEIEL ABSTRACTION INSTRUCTIONS 4. . 92

A. Introduction 492

B. Modifications to Subroutine AGENDM . . . 492

C. Setting up the Agendum Library 493

1. Agendum Control Cards 493

2. Example of an Agendum Library 493

3. Example of Agendum Usage 494

IV MAGIC CATALOGUED PROCEDURE 495

V. MAGIC II TEST RUN REPORT FORM 497

MAGIC II TEST RUN REPORT FORM
(Trouble Supplement Sheet) 499

477

SECTION I

SPECIAL PROGRAMMING CONSIDERATIONS

A. INTERNAL DATA STORAGE

1. Common Storage

There are only four variables which remain in blank
common at all times. These four variables are initialized
when the machine resources module is compiled. The four
variables are stcred in the first four words of blank common
and are defined az follows: (1) the first word contains an
integer which is the logical number of the system input data
set, (2) the second word contains an integer which is the
logical number of the system output data set, (3) the third
word contains an integer which is the order of the largest
matrix permitted in the system. (4) the fourth word contains
the number of words remaining in blank common (i.e., from word
fivE to the end). The remaining portion of blank common,
whose length is specified in word number four, is used by all
FORMAT II routines as working storage.

2. Storage of Alphameric Information

All alphameric information (e.g., matrix names) is
stored one character per word. Consistency is retained by
reading all alphameric data into storage with an "Al" format
and by compiling all alphameric data into storage using DATA
statements with an "1l" format.

3. Matrix Names

The names of all matrices processed by the program
are one (1) to six (6) characters in length. The first character
of a matrix name Trust be alphabetic. The matrix names are
stored one character per word. A seventh word is addended to
the six words which contain the characters constituting the
matrix name. Thie last word contains a plus (+) or minus (-)
integer one (1). The sign of the seventh word indicates the
sign of the matrix, (i.e., plus or minus). (Note: The
characters in words two (2) through six (6) may be blank.)

478

4. Data Set Names

Tihe names of master input and maste- output d~ta
sets follow the same rules as matrix inames; .jith one exception.
The seventh word of the date set name does iot neceorarily
contain an integer oi;e (1). Instead it contains an integer
which is specified by the user of the prog.'am when the particular
data set was created. If the data set is neither a master input
data set nor a master output data set, the daa set name con"Istnof six (6) blank characters followed by an integer zero (G).

5. Compression Scheme

The columns of all matrices are stored in one of two
formats, full or compressed.

If the number of zero elements j.n the column is greater
than fifty percent, the column is stored in compressed format.
When a column is compressed, it is stox d as follows:

V
I
V
I

V
I

SThe V's are the non-zero values in the column and are
floatiig point numbers. The I's are the row numbers of each of
the V's and are stored as integers. The row number of any given
value is denoted by the integer immediately following the value
in storage.

If the number of non-zero elements is not greater than
fifty percent, the column is stored in full format. When a
column is full, it is stored as follows:

V
V
V

V

The V's are the zero and non-zero elements of the
column and are floating point numbers.

479

B. DATA SET FORMATS

1. Data Set Header Record

The first logical record on all data sets which are
processed by the program is called a data set header. The
data set header is ten words long. The first word contains
an integer number which is minus ten (-10). This word indicates
that the record is a data set header. The second word contains
an integer zero (0). This word has no significance in a data
set header. The third word contains an integer seven (7).
This word indicates the number of words remaining in the logical
record. The remaining seven words contain an alphameric data
set name if the data set is either a master input or master
output data set, or contain seven (7) zeros (0) if the data
set is not a master input or master output data set.

2. Data Set Trailer Record

The last logical record on all data sets which are
processed by the program is called a data set trailer. The
data set trailer is four (4) words long. The first word
contains an integer which is minus twenty (-20). This word
indicates that the record is a data set trailer. The second
word contains an integer zero (0). This word has no signi-
ficance in a data set trailer. The third word contains an
integer one (1). This word indicates the number of words
remaining in the logical record. The fourth word conta.ins an
integer zero (0). This word has no significance in a data
set trailer.

3. Matrix Header Record

The first logical record in all matrices which reside
on data sets which are processed by the program is called a
matrix header. The matrix header is twelve (12) words long.
The first word contains an integer which is minus one (-1).
This word indicates that the record is a matrix header. The
second word contains an integer zero (0). This word has no
significance in a matrix header. The thtrd word contains an
integer nine (9). This word indicates the number of words,
remaining in the logical record. The next seven (7) words
contain the characters which comprise the ma5."ix name. The
last two words contain integer numbers which are the number
of rows and the number of' columns, respectively, In the
matrix.

460

4. Matrix Trailer Record

The last record in all matrices which reside on data
sets which are processed by the program is called a matrix
trailer. The matrix trailer is four (4) words long. The first
word contains an integer minus two (-2). This word indicates
that the record is a matrix trailer. The second word contains
an integer zero (0). This word has no significance in a matrix
trailer. The third word contains an integer one (1). This
word indicates the number of words remaining in the logical
record. The f"urth word contains an integer zero (0). This
word has no significazice in a matrix trailer.

5. Matrix Column Records

The logical records between the matrix header record
end the matrix trailer record contain the columns of the matrix,
one column per logical record. The column records are variable
in length. The length depends on the number of rows in the
matrix and the number of non-zero elements in the column. The
first word cf column record contains an integer which is the
column number. The second word contains an integer which is
either zero (0) or one (1). A zero (0) indicates that the column
is full. A one (1) indicates that the column is compressed.
The third word contains an integer which indicates the number
of words remaining in the logical record. Words four (4) to
the end contain the matrix column elements either in full or
compressed form. If a column does not contain any non-zero
ilerents, a corresponding column is omitted from the data set.

C. PROGRAMMING STANDARDS

In the design and coding of the FORMAT II system every
effort was made to keep the system machine independent. With
this consideration in mind, the following rules were developed
and obeyed.

a. The FORMAT II system is written entirely in FORTRAN IV.

b. No advantage was taken of the peculiarities in the
FORTRAN IV language.

c. All variables are implicitly typed with the exception
of logical variables which cannot b& implicitly
typed.

481

d. "EQUIVALENCE" statements were used only when they
were absolutely necessary.

e. No on-line conmunication with the computer operator
is performed.

f. Blank common is used as working storage by all
routines. The size of blank common is compiled
Into one control section (MRES) and.is made available
to all routines by being stored in the fourth word
of blank common. Thus by recompiling only one
control section (MRES), the entire system is able
to take advantage of additional core storage which
may have been made available.

g. All references to FORTRAN logical data sets are
variable. The numbers of all the FORTRAN logical
data sets available to the FORMAT II system are
compiled into one control section (MRES) and subse-
quently made available to all routines. These data
set numbers may be changed by recompilation of one
control section (MRES) or via the input data.

i. All alphameric information is stored one character
per word, thus no adcantage of word size was taken.

i. No advantage of the bit configuration of any
character was taken.

1j. The FORMAT II system is extremely modular making
additions and modifications as simple as ossible.

k. In general, very straight forward and conservative
coding practices were followed.

482

SECTION II

OPERATIONAL CONSIDERATIONS

A. FORMAT I DAI T PHILOSOPHY

The FORMAT II system is designed to make extensive use
of the input/output configuration of a given installation.
Since the philosophy of Format has been to keep the system
completely machine independent All references to input/output
devices is in terms of logical data sets. The FORMAT II data
set philosophy is described in the following pages. The main
topics covered are the manner in which an installation's
standard FORTRAN data set configuration is communicated to
the FORMAT II system, the minimum data sef requirements of
the FORMAT II system, and the method of selection of data
sets for use as FORMAT II system utilities.

A logical data set in the FORMAT II system can take on
one to four Format system functions. The data may be a master
input data set; that is, one which contains matrices wnicb
are required in the execution of the user's problem. The
data set may be a master output data set; that is, one which
is to contain matrices generated by the user's problem and which
is to be saved at the end of the problem execution. rhe data
set may be an input/output utility data set; that is, one
which may be used by the FORMAT II system during both pre-
processing and execution as intermediate storage. Finally
the data set may be the i struction data set. The only function
of this data set is to contain the executable format instructions
as generated during the preprocessing phase of a given run.
This instruction data set is subsequently read during the
execution phase .f the same run. In addition to the four
previously mentioned FORMAT system functions, there are two
logical data set n:Ambers which correspond to the system input
unit and system output unit of the operating system monitoring
execution of the FS.RMAT II system. These two data sets are
used by the FORMAT II system exclusively for reading cards on
or off-line ar.A for printing on or off-line. Note that this
allows batch processing.

There are two ways in which an installation's standard
FORTRAN logical data sets are made available to the FORMAT II
system. One of the two ways is by recompiling subroutine
MRES. This subroutine must have compiled into it the logical

483

data set number corresponding to the system input unit and
the logical data set number corresponding to the system output
unit. The subroutine may have compiled into it information
about some or all of the installation's standard FORTRAN
logical data sets. This information consists of the five
following quantities for each data set: (1) the logical data
set number; (2) the FORMAT II system function of the data
set; (3) the device with which the data set is associated,
(e.g., tape); (4) the logical channel to which the device is
attached, (e.g., A); (5) the capacity of the data set in basic
machine units, (e.g., 5000 words). (A capacity of zero (0)
indicates infinite capacity.) The second way the installation's
four standard FORTRAN logical data sets may be made available
to the FORMAT II system is by the use of the "NEW" option on
the $MAGIC card and a SETUP card for each of the standard
data sets. The "NEW" option has the effect of zeroing out
all the data set information which has been compiled into the
subroutine, with the exception of the logical data set number
of the system input unit and the system output unit. Each
SETUP card has the effect of re-establishing the five quantities
which are associated with each data set.

Once the installation's standard configuration has been
compiled into the subroutine MRES, temporary modifications
may be made by the use of the "CHANGE" option on the $MAGIC
card and a DELETE card or UPDATE card, depending on the
particular modification to be made. The "CHANGE" option
indicates that the DELETE or UPDATE cards follow the $MAGIC
card. The DELETE card has the effect of zeroing out all
information associated with the specified data set. The UP-
DATE card has the effect of changing any or all the information
associated with an existing data set, that is a data set
whose associated information has been compiled into subroutine
MRES: or has the effect of making an additional data setp
available to the FORMAT II system if the data aet did not
exist, that is, if the data set information associated with
the specified data set has not been compiled into subroutine
MRFS.

There are several errors which will result from improper
specification of logical data set information in the FORMAT II
system. The most serious of the errors-are those which the
FORMAT II system, by virtue of its machine independence, can-
not detect and from which it cannot recover. These errors
are: (1) having specified an intvalid logical data set number
for either the system input unit or the system output unit in
the compiled soubroutine MRES; (2) having specified the
number of a logical data set as a FORMAT II system function

484

which is not in binary mode or which is not defined as one of
the installation's standard FORTRAN logical data sets. These
incorrect specifications may result from the use of d "SETUP"
or "UPDATE" card, or improper use of subroutine MRES during
compilation. There are other errors whJch result from invalid
specification of logical data set information, which are
internal to the FORMAT II system and hence, can be detected
by the FORMAT II system. These errors are: (1) specifying a
logical data set as a FORMAT II system function, when the
.!ata set is the system input or output unit; (2) specifying
duplicate data set numbers on two different SETUP cards; (3)
specifying a device type other than tape or disk for a data
set whose function is master input or master output; (4) not
specifying a sufficient number of data sets as being available
to the FORMAT II system. Item number 11 in the list of errors
will be clarified in the following pages.

The FORMAT II system requires that a certain number of
logical data sets be available for use as system utilities
during the preprocessing phase and execution phase. The function
and method of selection of all required utilities is described
below. The first data set selected by the preprocessor is
the data set which is to contain the executable Format
instructions. Since this data set is a FORMAT II system func-
tion, it may have been established at the time all the system
functions were established. However, if no data set available
to Format has been given this system function, the preprocessor
selects for this function one of tha data sets that has the
FORMAT II system function input/output utiliy. The next data
set selected is used as a communication medium between the pre-
processor modules. The preprocessor selects a data set which
system function is input/output utility. This data set is
set outside to contain any matrices which may be card input.
During the allocation phase a fourth data set is selected for
temporary use by the allocator. This data set is also selected
from the FORMAT II input/output utilities. If no matrices
have been card input it is possible that the data set selected
by the allocator coincides with the data set which was to
contain the card input matrices. In general, the preprocessor
can function with a minimum of three (3) data sets if each
one has the FORMAT II system function of input/output utility.
If card input matrices exist in the user's problem, four (4)
FORMAT II input/output utilities must exist.

The minimum data set requirements for the execution phase
are determined during allocation. The user's problem is
analyzed and the required number of master input and master
output data sets is determined. Specific data sets are selected

485

from those whose FORMAT II system function is either master
input or master output. If any data sets, whose system function
is master input or master output, have not been selected for
the user's problem, its system function is changed from master
input or master output to input/output utility.

Associated with each valid abstraction instruction is an
arithmetic module which is under control of the execution
monitor. Each of these arithmetic modules requires a certain
number of scratch data sets in addition to the data sets
containing the matrices which are input to the instruction or
created by the instruction. As a result, the allocator scans
the user's abstraction instructions and determines the number
of scratch data sets required by each associated arithmetic
module. The maximum of these numbers is then ascertained and
this number of data sets is set aside for future use as scratch
data sets. These data sets are selected from the data sets
whose FORMAT II system function is input/output utility. At
this point the matrices occurring Jn the user's problem are
allocated to the remaining data sets whose system function is
input/output utility.

There are many errors which will occur when the minimum
requirements of the FORMAT II system are not met. All of these
errors are detectable by the FORMAT II system. When one occurs
the appropriate error message is written. The most common
error which occurs is not having enough input/output utilities
availatle to the preprocessor at the time of the selection of
an intermediate data set. When this condition arises, the error
message which is written on the system output unit indicates
the intermediate data set which the preprocessor has been
unable to select. The condition can be corrected by specifying
more data sets with the FORMAT II system function cf input/out-
put utility. An error condition also results when the user's
problem requires more master input data sets than exist with
the FORMAT II system function of master input. The error
occurs also for an insufficient numbcr of master output data
sets.

B. STORAGE LIMITATIONS

The FORMAT II system is very flexible in its utilization
of working storage, in that all subroutines use blank -common
as working storage and in that the allocation of blank comon
storage is all dynamic. The length of blank common is
initialized in the COMMON statement in subroutine MRES. The
size of blank common is bounded above only by the amount of

486

core storage available at a given installation. For large
matrix problems it is desirable to have blank common as large
as possible, since the FORMAT Ii system utilizes E2. of -,he
available blank common storage. The lower bound of Lhe jAze
of blank common is determined by one of two things: (1) the size
of a particular FORMAT II case, or (2) 708 words, whichever
is greater. The size of a FORMAT II case is a function oi
such quantities as, the number of abstraction instructions,
the size of the matrices in the system, the number of ratrices
in the system, etc. Since the allocation of blank common
storage is all dynamic and is a function of the size of the
user's problem, it is very difficult to calculate the exact
number of words of blank common required. However a few
guide lines will be given. In subroutine MRES a variable
named KONST is initialized. This variable is the order of the
largest matrix which the FORMAT II system will process. The
size of blank common working storage (i.e., the WORK array)
must be at least four and one half times the value of the
variable KONST. Since the FORMAT II system is designed to
handle matrices of order up to 2000, the usual value of KONST
is 2000 and the mininum size of blank common working storage
is 9000 words.

C. INITIAL IMPLEMENTATION

The following is a discussion of the procedure a system
analyst should go through in initially implementing the
FORMAT II sysem at his installation. There are several para-
meters which define the basic machine configuration which must
be set. All these parameters are contained in subroutine MRES
and are defined as follows:

a) NPIT is the FORTRAN logical data set number of the
system input data set.

b) NPOT is the FORTRAN logical data set ntmber of the
scstem out)ut data set.

a) NAGEND is the FORTRAN logical data set iLumbe, if the
data set which contains the agendum level abstraction
instructions. If your installation does not make use
of the AGENDUM capabilities set this variable to zero.

d) KONST is the order of the largest matrix which the
FORMAT II system will process.

e) NWORK is the length of the table WORK. This length
is the size of blank common less four. NWORK must
be at least four and one half times KONST.

487

f) KONFIG is a table which describes all the FORTRAN
logical data sets which are available for use by the

cthe FORMAT II system. In the KONFIG table there
are five entries for each of the available data sets.
The first entry is the FORTRAN logical data set
number of an available data set. Each of these
data sets must be in binary mode. The second entry
in the KONFIG table is the FORMAT II system function
which the data set will have. At present there are
four FORMAT II system functions, master input data
set, master output data set, utility data set, and
instructi'n data set. A master input data set is
one which nay be mounted prior to a FORMAT II execution
and whici may contain previously generated iratrices.
A code o .wo (2) is entered in KONFIG for this type
of data be.. A master output data set is one which
may be saved at the end of a FORMAT II execution and
which may contain matrices which are generated during
a FORMAT II execution. A code of three (3) is entered
in KONFIG for this type of data set. A master out-
put data set m., be used in a later FORMAT II execution
as a master input data set. A utility data set is one
which is used by the FORMAT II system as scratch
storage. A code of one (1) is entered in KONFIG for
this type of data set. The instruction data set is
the data set in the information interface between
the preprocessor monitor and the execution monitor.
A code of four (4) is entered in KONFIG for this type
of data set. The third entry in the KONFIG table for
a data set is a code for the type of device which
contains the data set. The codes are one (1), two (2),
three (3), and four (4) indicating a device type of
tape, disk, drum, and a data cell, respectively. The
fourth entry in the KONFIG table is a code for the
logical channel to which each device is attached.
The codes are one (1) through ten (10) indicating
logical channels A through J respectively. The fifth
and final. entry in the KONFIG table is the capacity
in basic machine units (e.g., words) of the data set.
A zero (0) indicates that the data set is assumed to
be infinite in capacity. At present this characteristic
is non-functional.

g) One final variable must be initialized in subroutine
MRES. This variablP is NUMR which is the number of
data sets defined in the KONFIG table.

488

In assigning FORMAT II systems functions to the available
data sets, the following rules must be followed: (1) The data
set number of all available data sets (i.e., NPIT, NPOT, and
all data sets defined in the KONFIG) must be unique. (2) All
data sets defined in the KONFIG table must be available through
the Fortran system and must be in binary mode. (3) Only one
data set may be given the FORMAT II system function of the
instruction data set. If the FORMAT II system function of
instruction data set is not specified for any data set, one
is selected from the utility data sets. (4) At least five
(5) utility data sets must be specified exclusive of that
which may be selected as an instruction data set. (5) Any
number of master input or master output data sets may be specified.

This concludes the initialization procedure in subroutines
MRES. The only other area the systems analys; need be concerned
wlth is the overlay structure of the FORMAT 1' system. The
overlay structure on a subroutine basis is illustrated in
Section III.

D. MACHINE RESOURCE DATA CARD

To assist the FORMAT systems analyst in initially
implementing the FORMAT system or in temporarily modifying
the existing logical machine configuration, several machine
resources.data cards are available. These cards are (1) the
SETUP card, (2) the UPDATE card, and (3) the DELETE card.
These cards are used in conjunction with the options on the
$FORMAT card. The $MAGIC card defines the begJnning of a
FORMAT case. The options define the machine resources to be
used during the running of the case. The form of the card is:

1 16

$MAGIC STANDARD
NEW
CHANGE

Where the options are:

STANDARD - the standard machine configuration will be
used for this run.

NEW - a totally new machine configuration is to

be entered for this run using SETUP cards.

CHANGE - a change to the standard machine configuration
is to be made for this run using either
UPDATE or DELETE cards.

489

The machine resources data cards are defined as follows:

(1) SETUP cards are required if the NEW option has been
specified on the $MAGIC card. This set of cards defines a
new and temporary machine configuration. The form of the
card is:

7
SETUP (n, unction, device, channel, capacity)

where the arguments are:

n -the logical data set number

fCunction-the FORMAT II system function to be assigned
to this data set. This argument may be
MASTRI indicating master input data set,
MASTRO indicating master output data set,
IOUTIL indicating intermediate utility data
set, or INSTRN indicating the instruction
data set.

device -the type of external storage device that the
logical data set is to reside upon. This
argument may be TAPE, DISK, DRUM, or CELL.

channel -the channel to which the device is attached.
This argument is an alphabetic characte o
from A thru J.

capacity-the capacity of the logical data set in
basic machine units (e.g., words). A zero
indicates an infinite capacity.

(2) The UPDATE card is used if the change option has been
specified on the $MAGIC card. This card defines changes or
additions to the standard machine configuration. The form of
the card is:

7
UPDATE (n, function, device, channel, capacity)

Where the argumonts are identical to those defined for the
SETUP card.

490

(3) The DELETE card is used if the change option has
been spectified on the $MAGIC card. This card deletes a
data set from the standard machine configuration. The form
of the card is:

7

DELEU'E (n)

Where the argument is:

n - che logical data set number of the data
set to be deleted.

The machine resources data cards immediately follow the
$MAGIC card in the deck setup. For more information on the
machine resources data cards refer to subroutines MRES, MRES1,
MRESll, MRES2.

491

SECTION III

AGENDUM LEVEL ABSTRACTION INSTRUCTIONS

A. INTRODbCTION

An Agendum Level abstraction capability has been incor-
porated into the MAGIC System. The abstraction instructions
for any type of analysis will be automatic&!ly generated for
the user when he specifies the corresponding option on the
$INSTRUCTION card. The Agendum library is expandable and tne
addition of more abstraction instruCtion sequences (Agendum)
only requires the updating of subroutine AGENDM, and of course
the Agendum library itself. The use of an Agendum in no way
restricts the user because he can include in his input deck
his own abstractions to be merged with the selected Agendum.

B. MODIFICATIONS TO SUBROUTINE AGENDM

Subroutine AGENDM controls th. selection from the Agendum
library of the abstraction instruction sequence requested on
the $INSTRUCTION card. At present, this subroutine has the
capability to select four Agendum; STATICS, STATICS2, DYNAMICS,
dnd STABILITY. In order to add more options the following
variables and arrays will have to be modified:

a) TYPE is the matrix which contains the names of
the abstraction sequences in the agendum library.
Increase the dimensions of this matrix and add the
new Agendum names via DATA statements.

b) LTYPE is an array which contains the length of each
Agendum name in the TYPE array. Increase the
dimension of this array and add the lengths of the
new Agendum names via the DATA statement in sequential
order corresponding to the names in the TYPE array.

c) ?iTYPE is the variable which defines the number of
available Agendum in the library. Increase this
variable to the number of names in the TYPE array.

492

C. SETTING UP THE AGENDUM LIBRARY

In subroutine MRES the variable NAGEND defined the FORTRAN
logical unit number of the data set which contains the Agendum
level abstraction instructions. Subroutine AGENDM expects the
abstraction instructions in the library to have the same charac-
teristics as card images, eighty (80) byte records.

1. Agendum Control Cards

Each sequence of Abstraction instructions must be
proceeded by a control card which contains a name corresponding
to a name in the TYPE array in subroutine AGENDM. For example,
if the name STATICS appeared in the TYPE array then the
abstraction instructions corresponding to the statics analysis
would have to be proceeded by the control card $STATICS, the
$ begins in card column 1 and there are no blanks allowed
in the control card.

The last card signifying the end of all agendum is
the $$END control card.

2. Examples of an Agendum Library

CCl

$STATICS

f Statics abstraction instruction
$DYNAMICS

I Dynamics abstraction instruction

$STABILITY

I Stability abstraction instruction

$4&ND (end of agendum library)

493

I ,

3. Examples of Agendum Usage

CCI CC7 CC16

(a) $MAGIC
$RUN GO
$INSTRUCTION STATICS
$SPECIAL

[Report Form Input Deck for .USER04. Instruction]

$END

(b) $MAGIC
$RUN

INPUT TAPE(OLD,1969)
OUTPUT TAPE(MAG,1970)

$INSTRUCTION DYNAMICS
A=DYNAM.ADD.LMASS
SAVE(MAG)DYNAMLMASS,A

$SPECIAL

[Report Form Input Deck for .USER04. Instruction]

$END

494

SECTION IV

MAGIC CATALOGUED PROCEDURE

The MAGIC program can be execut~ed using a catalogued
procedure. For example, if the executable load module is
stored in the technical library under the program name
XY5630, the following catalogued procedure can be used for
initial implementation.

//MAGIC EXEC PGM=XY5630

//FT0lFO0l DD UNIT=SYSSQ,DISP=(NEW,DELETE),SPACE=(CYL,(5,4))

//FTO2FO0i DD DDNAME=INPUTl

//INPUTl DD UNIT=SYSSQDISP=(NEW,DELETE) ,SPACE=(CYL,(5,1))

//FTO3FO0l DD DDNAME=INPUT2

//INPUT2 DD UNIT=SYSSQDISP=(NEW,DELETE),SPACE=(CYL, (5 41))

//FTO11FOO1 DD DDNAME=OUTPUT

I/OUTPUT DD UNIT=SYSSQDISP=(NEWDELETE) ,SPACE=(CYL, (5,A))

//FTO5FO0l DD DDNAME=INPUT

//FT06FOO. DD SYSOUT=A

//FTO7FO0l DD SYSOUT=B

//FT08FO0l DD UNIT=SYSSQ,DISP=(NEW,DELETE),SPACE=(CYL(511))

//FTO9FOO1 DD UNIT=SYSSQ,DISP=(NEW,DELETE) ,SPACE=(CYL, (5,11))

//FT1OFO0l DD UNIT=SYSSQDISP=(NEW,DELETE) ,SPACEz(CYL, (5,11))

//FTllFO0l DD UNIT=SYSSQ,DISP=(NEW,DELETE) ,SPACE=(CYL, (5,11))
//FT2FOOI DD UNIT=SYSSQ,DISP=(NEW,DELETE) ,SPACE=(CYL, (5,11))

//FTl3FO0l DD UNIT=SYSSQ,DISP=(NEW,DELETE) ,SPACE=(CYL, (5,11))

//FT11FO1 DD UNIT=SYSSQDISP=(NEW,DELETE) ,SPACE=CCYL, (5,11))

//FT15FO0l DD UNIT=SYSSQ,DISF-z(NEW,DELETE) ,SPACE=(CYL, (5,11))
//FT16FO0l DD UNIT=SYSSQ,DISP=(NEW,DELETE),SPACE=(CYL,(5,11))

//FT7FOO1 DD UNI'r=syssQ,DIsP=(NEW,DELETE),sPACE=(CYL(511))

//SYSABEND DD SYSOUT=A

If the problem program required any input or output tapes
their definitions would be included into the procedure by
overriding the DDNAMES, INPUTls INPUT2, or OUTPUT. For example,
if one input tape and one output tape was required then the
job step that envoked the catalogued procedure would be:1'1195

I/JOB

//JOBLIB DD DSN=TECHNICL,DISP=SHR

//GO EXEC MAGIC
//MAGIC.INPUT1 DD (Tape definition)
//MAGIC.OUTPUT DD (Tape definition)

//MAGIC.INPUT DD *

MAGIC PROBLEM DECK

//

//END JOB

496

SECTION V

MAGIC II

TEST RUN REPORT

Program Name MAGIC II

Date of Run Report Number

Customer Name

Location

Machine Hours Used

Machine Configuration (include peripheral devices):

Type Operating System or Monitor Used (version, etc.):

(1) Objective of test run: (Discuss the routines or
tnstructions tested and expected results.)

497

(2) Test run was:

Satisfactory (go to Item 8)

Uns1 tsfactory (go to Item 3).

(3) Check major reason for unsatisfactory run:

Program design

Program error

Documentation error

User error

Machine failure

(4) Estimate of failure significance:

Critical (preventing further progress - go to
Item 5)

Significant (can continue but must be corrected
soon - go to Item 5)

Minor (go to Item 6).

(5) Attach trouble supplement sheets to provide a discussion
of run results.

(6) Has Development Team been notified of the problem prior
to this report (i.e., during test session, immediately
after, etc.)?

No (go to Item 8)

Yes -- by __ phone; _ . memo; both;

on (go to Item 8).
date

(7) What action has been taken by Development Team?

(8) Additional comments, if any:

Signature of Coordinator

498

MAGIC II - TEST RUN REPORT

(Trouble Supplement Sheet)

Program Name MAGIC II

Date of Run Report Number

Customer Name

Location

INSTRUCTIO' S: 1. Discuss run results, identify errors in
program and/or documentation, include
customer's comments or reactions, include
supporting information such as source
program, problem solution logic, memory
dumps, copies cf manual pages, etc.

2. Attach numbered and completed trouble
supplements to appropriate MAGIC II TEST
RUN REPORT, page l. When complete, send
one (1) copy to us and retain one (1)
copy.

DISCUSSION:

499

APPENDIX X

SUBSYS CONTROL DOCUMENTATION

Table of Contents

Section Page No.

I INTRODUCTION and EXAMPLES 502

II SUBSYS DOCUMENTATION 505

A. Introduction 505

B. Background 505

C. Instructi.ons for Use and Details on the
SUBSYS Package 507

D. Summary 511

III DETAILS ON LNKSTK 512

A. Introduction 512

B. LNKSTK Data Card Foin.at 512

C. Examples 514

D. Assembly Parameters 516

E. Error Messages. 516

F. Dump Feature 517

G. Restrictions 517

YV LNKSTK AS AN EXECUTABLE SUBSYSTEM 518

A. Introduction. 51b

B. Instructions for Making LNKSTK Itself
A Subsystem 518

500

Section Page No.

V DESCRIPTION OF THE MODIFIED .LOVRY WITH
CPYLKO 520

VI DESCRIPTION OF THE SEARCH ROUTINES 522

A. Introduction 522

B. Calling Sequence 522

C. Assembly Parameter 523

D. Error Message 523

VII SUBSYS SUBROUTINES 524

A. Introduction 524

B. SUBSYS Overlay Chart 525

C. List of SUBSYS Subroutine Functions . . 526

D. Subroutine Documentation for SUBSYS . . 527

501

APPENDIX X

SECTION I

A. INTRODUCTION

The SUBSYS package consists of four subroutines written
in MAP. The first subroutine, .LOVRY, is placed in the
program deck, thus replacing the normal .LOVRY that IBSYS
would have provided. The function of this altered .LOVRY
is to receive control after the program has been loaded and
to then copy the main link (LINK 0), which is now resident
is core storage, onto a specified tape unit. Entry is then
made into LNKSTK, the second SUBSYS subroutine, which will
perform the function of copying LINK 0 from the tape written
by .LOVRY onto another tape. Also, LNKSTK will place the
overlay load file generated in the IBLDR phase and place it
on the same tape as LINK 0. Upon completion of a LNKSTK
execution, the entire program will be on tape in absolute
load mode in two files; the first containing LINK 0 and the
second containing the overlay structure. At this point the
program may now be edited onto the System Library with the
aid of the third SUBSYS subroutine, COPYDK, in which case it
may be invoked by a $EXECUTE XXXXXX card, or the tape may be
saved in its two file per program form accessible by the
fourth SUBSYS subroutine, SEARCH. SEARCH has the capability
of locating any program on a SUBSYS generated program tape,
loading that program's LINK 0 into cord and then transferring
control to it.

Usage of a SUBSYS generated program tape is accomplished
by writing a FORTRAN load program that need contain only one
executable statement, CALL SEARCH (6HPROGNM). This will
cause SEARCH to locate the program, read the main link into
core and execute the main deck. The overlay is contained in
the next file and the modified .LOVRY, now resident in core
with the main link, will control the loading of the overlay
links. The modified .LOVRY will also substitute backspace
file com,,ands in place of rewind selections on the $ORIGIN
cards in order to keep inside of the overlay file on the SUBSYS
generated program tape.

A SUBSYS generated program tape may contain more than
one program, each being identified and located by the name
that was assigned to it by the User during tne LNKSTK phase.
Execution of each program is initiated by a call to SEARCH
supplying the program name.

502

FORMAT II, with the structural Generative System
insertion, is contained on one SUBSYS generated program
tape as three separate programs, named AFMTII, BFMTII and
USERO0I., which are, respectively, the FORMAT II Preprocessor,

the FORMAT II Execution Monitor and the Structural Generative
System. Sequence of usage of the three programs is indicated
on the following two lists, the first reflecting an applica-
tion in which the .USER04. module (Structural Generative
System) is accessed and the second reflecting an applicationin which the .USER04. module is not accessed.

B. EXAMPLES

1. .USER04. Module Accessed

The FORTRAN load program will cause the loading of --

(a) AFMTII, which upon completion of processing
the input will issue a call to SEARCH
to load -

(b) BFMTII, which upon encountering the .USER04.
instruction will issue a call to
SEARCH, to load -

(c) .USERo4.,which upon completion of matrix
generation will issue a call to SEARCH
to load -

(d) BFMTII, which upon completion of execution of
the input abstraction instructions will
call SEARCH to load -

(e) AFMTII, which will begin processing the next
input data deck, if any.

2. .USER04. Module Not Accessed

The FORTRAN load program will cause the loading of --

(a) AFMTII, which upon completion of processing
the input will issue a call to SEARCH
to load,

503

(b) BFMTII, which upon completion of execution of
the Lbstraction instructions will call
SEARCH to load -

(c) AFMTII, which will begin processing the next
input data deck, if any.

.USER04. and non-.USER04. data decks may be batched
together on.a single loading of the program.

Due to the fact that FORMAT II with the Structural
Generative System is actually three separate programs, the
necessary changes required for implementation on a given
system must be made in each program. The same information
must be supplied to subroutine MRES in AFMTII that was needed
for direct machine control. Main programs BFMTII and ,USERo4.
each have a subroutine RESET which must re-establish the size
of blank common.

The sequence of operations to generate a SUBSYS
program tape would be as follows:

1. IBSYS - start Job
2. IBJOB - load AFMTII
3. LNKSTK - place AFMTII on SUBSYS program tape
4. IBJOB - load BFMTII
5. LNKSTK - place BFMTII after AFMTII on

SUBSYS program tape
6. IBJOB - load ,USER04.
7. LNKSTK - place .USER04. after AFMTII and

BFMTII on SUBSYS program tape

It is extremely helpful, but not necessary, to the
above procedure that LNKSTK be placed into IBSYS as a sub-
system prior to executing the above procedure. Further
examples are given in Section II, SUBSYS Documentation.

504

SECTION II

SUBSYS DOCUMENTATION

A. IN'RODUCTION

The following section consists almost wholly of infor-
mation contained in the distributed documentation supplied
by SHARE regarding SUBSYS. Alterations have been made to
enable one version of SUBSYS to be compatible on a stand
alone 7 0 9 0/9 4 or on a Direct Couple System 7040/70 9 0 or
7044/7094.

Recognition for the bulk of the documentation is deserved
by Mr. David E. Bluett of Westinghouse Electric Corporation,
author of the original SUBSYS documentation.

This report describes a package of programs which will
operate upon any FORTRAN IV program in such a way as to
produce a program tape. The programs may be Overlay or
non-Overlay, and the program tape may contain any number of
such programs. The tape may then be used as a mounted program
library (similar to a CHAIN tape in FORTRAN II) or may be
edited directly onto the system tape to produce executable
subsystem(s) under IBSYS.

B. BACKGROUND

The need for a package such as SUBSYS arose out of a
desire to put some high-activity, high-load-time Overlay
codes somewhere within the framework of IBSYS to proincreased
accessibility and decreased load and peripneral times. An
attempt was first made to insert a large Overlay code into
IBLIB, with the intention of still going through IBLDi, but
eliminating the large object deck. This method of attack
ran into considerable troubles, the greatest of which was due
to the limited size of the Subroutine Name and Dependency
Tables when doing a Librarian edit. It became obvious that
the most desirable situatiun would be the ability to say:

$EXECUTE XXXXXX

any connection with IBJOB. Examination of the IBSYS manual

showed that a subsystem under IBSYS should be an absolute
assembly and obey certain rules. It seemed that a FORTRAN
program, operating under IBJOB, already obeyed these rules

505

more or less by definition, since IBJ0B is itself a subsystem.
The only problem seemed to be the conversion of the FORTRAN
code to an absolute assembly - a somewhat formidable task.
However, it soon became obvious that the main link of an
Overlay job (including all the Library) was itself an "absolute
assembly" once it was loaded, and that the link tape, once
written, was also in absolute scatter-loading format. The
problem was now reduced to three parts: (1) dimping out the
main link after it was loaded by BLDR, (21 modifying the
Overlay tape to correspond to proper subsystem rules, and (3)
combining these two entities into one, ready for editing onto
the system tape for use as a subsystem under IBSYS.

To solve part 1, a small program called CPYLKO (copy
Link 0) was written which receives control immediately after
exe,ution and merely writes the mal.n link out on tape. For
convenience, this program has been made part of .LOVRY, which
also had to be modified to properly control the new subsystems.

Parts 2 and 3 were solved by a separate program, LNKSTK
(Link Stack), which modifies and combines the main link (as
written by CPYLKO) and the Overlay tape (as written by IBLDR)
to form a two-file program tape.

Tests were performed, and it was proved that the output
tapes from LNKSTK could be edited onto the system tape and
successfully used as subsystems under IBSYS. Even though these
subsystems were placed on the system tape after IBJ0B and S0RT,
load time was reduced by about a factor of 4., and peripheral
time (for input) reduced to essentially zero. Card shuffling
errors in binary decks (a large source of lost runs) were
eliminated as was a large portion of the total job setup time.
.Since LNKSTK has the ability to pack all of the record. execu-
tion time was usually improved, except in the cases of excess-
ive link tape rewinding (.LY now must do a "backspace file"
instead of a "rewind") .

Once this part of the package was operational, it was
realized that the program tapes produced by LNKSTK could be
mounted and operate just as well by themselves as they did as
subsystems on the system tape. Since more than one complete
program may reside on the program tape, all that was needed was
a small loading routine to perform the functions of SYSLDR, with
the added feature of program selection. To provide this func-
tion, the SEARCH routine was written, and, in addition to sub-
system generation, the SUBSYS package now provided the long-
sought solution to the saving of Overlay tapes. It should be
noted that the ability to save Overlay tapes came about essent-
ially as a by-product of the process for subsystem generation.

506

C. INSTRUCTIONS FOR USE AND DETAILS ON THE SUBSYS PACKAGE

Assum:. that a User wishes to make a program tape from an
existing PORTRAN IV Overlay program. Whether this tape will
later be edited over as a subsjstem or merely used as a "chain"
tape is immaterial, since the technique for making the tape
is the same in either case.

The special deck for .LOVRY (with CPYLKO) is inserted
:omewhere in the main link of the program, and the job is sub-
mitted for running in the following way:

(1) Any desired combination of $ATTACH or $SWITCH cards
if needed.

(2) GO (and any other options desired or needed) on the
$IBJ0B card.

(3) Only one link tape specified on the $ORIGIN cards.

(4) The normal $ENTRY card (if any).

(5) No data (an end-of-file should immediately follow
the IDATA card).

The program will load (the Overlay tape being written
where directed by the $ORIGIN cards) and execute by transfer-
ring to the pre-execution initialization section (PREEX). The
first instruction in PREEX is TSX SYSIDR, 4, but a TTR to
CPYLKO has been origined at SYSIDR in thr IBSYS nucleus. The
OPYLKO section of .LOVRY is thus entered immediately via SYSIDR.

The main link will now be written out as one big record
on SYSCK2, If SYSCK2 is already the Overlay link tape, the
output tape must be changed by altering an assembly parameter
in CPYLKO. The size of the main link depends, of course on
the last location used by this link, and this location is cal-
culated in CPYLKO. The main link will be written from SYSL0C
through this last word, preceded by a few communication and
pointer words, and followed by an end-of-file. The output tape
from CPYLKO is left un-rewound, and control returns to IBSYS
via SYSRET. The cell SYSIDR in the nucleus has been altered
by PYLKO, so the next two cards in the deck (and the last twc
of this first phase of the job) must be:

$IBSYS

$RESTORE

The next phase of the process is the combination of the

507

output tape from CPYLKO with the Overlay tape to form the
final program tape. This combination is made by the Link
Stack program, which will normally be the next job on the
input tape. It is strongly suggested that LNKSTK (Link
Stack) itself be made a subsystem under IBSYS, since this
greatly simplifies the deck setup and eliminates the need
for protecting the Overlay tape during the loading of LNKSTK.
Instructions for making LNKSTK a subsystem are included as
Appendix VIII, and this description will proceed on the
assumption that this has been done.

After the $RESTORE card, the cards are as follows:

$JOB

$EXECUTE LNKSTK

(LNKSTK data card, giving name, tapes, and
options)

End-of-File card
Next may come either a return to the monitor

for signing off, a system tape edit, or a test
run on the new program tape using the SEARCH
routine.

Once LNKSTK is loaded, it will read its data card con-
taining the program name and the tape information required
(the data card format is detailed in Appendix VII), and perform
the following operations:

1. Rewind all pertinent units and read the main link
as written by CPYLKO.

2. Modify this link into proper scatter-loading format
and write it as one record on the specified output
tape, followed by an end-of-file.

3. Read the Overlay tape, modifying the link records
appropriately.

4. Write the modified links on the specified output tape,
followed by an end-of-file.

5. Print a map showing input and output record counts,
word count.s, etc.

6. Rewind all pertinent units and exit.

5o8

The program tape is written and ready for use. I.t may be
edited onto the system tape, loaded by means of the SEARCH pro-
gram or dismounted for later use.

As a summary by way of example, assume that it is desired
to make a program tape from a FORTRAN IV Overlay code called
TSTJ0B, edit this onto the system tape immediately following
IBJ0B, and then run a sample case. The deck set-up would be as
follows:

1 8 16

$IBSYS
J0B
EXECUTE IBJOB

$IBJ0B jobnam G0,MAP, etc.
$IBLDR DECK1

(start of decks for main link of program "TSTJ0B"
Compiles and/or assemblies may be done in this run).

ijIBLDR .LOVRY
(speciail deck of .LOVRY with CPYLKO included somewhere
in main link).

$0RIGIN (start of link 1)

(remainder of program)

$ENTRY card if normally included)
DATA

End-of-file card
$IBSYS
RESTORE
JOB

$EXECUTE LNKSTK
(Link Stack data card, explained in Appendix VII)

509

End-of-file card
$IBSY r;
, TB EDT

'EDIT MAP,M0DS
IPLACE TSTJ0B,2,i,2
'REMARK N0W IN NAME TABLE AS 2ND SUBSYSEEM, 2 FILES
"REMARK POSITION TAPE AFTER IBJ0B

FILE AFTER IBJOB
IREMARK DUP IN TSTJ0B FROM SYSxxx
IDUP ;YSxxxSYSUTl,2
REMARK ALL DONE

End-of-file card
$1B2 YS

I 1PAUSE SET UP NEW SYSTEM TAPE, etc.

• I iBSYS

$30B TSTJOB MAY NOW BE USED AS A SUBSYSTEM
IEXECUTE TSTJOB

(sample data deck for TSTJ0B)

End-of-file card

Obviously, any number of subsystems may be DUPed on in
one edit, providing the proper XPLACE. AFTER, and xDUP cards
are used. In the IBSYS edit, the unit SYSxxx will be the
lNKSTK output tape, which is one of the data card paraineters.

As an alternate possibility, assume the activity of TSTJ0B
is not sufficiently high to warrant it inclusion as a subsystem,
but that the load time is high enough to allow significant
savings from the use of a program tape. The user therefore
desires to make a program tape to be mounted on SYSLB2. It
should be noted that program tapes produced by LNKSTK can only
be mounted on one drive due to the changed structure of .LOVRY.
In other words,-f the program tape for TSTJ0B is made to run
on B5, then it must always run on B5. This so-called "running
link tape" is one of the parameters on the LNKSTK data card and
must be SYSLB2 for this version of SUBSYS. The following ex-
ample illustrates the use of the SEARCH routine in conjunction
with a program tape. The deck set-up is exactly the same as
before, up through and including the EOF after the LNKSTK data
card. The last three identical cards will be re-listed for
continuity.

1 8 16

$EXFCUTE LNKSTK

510

('Link Stack data card)

End-of-file card

:;EXECUTE IBJOB
:,; IBJ OB GO, MAP
:'IIBFTC CALL
C

CALL SEARCH (6HTSTJ0B)

.) OSTeP

END
';;DATA

(Samiple data deck for TSTJ0B)

End-of-file card

This example assumes that SEARCH has been placed on the
]'BJ0B library (IBLIB). If this is not the case, the binary
deck for SEARCH would follow the END card of the FORTRAN pro-
gram above. Note that the calling sequence to SEARCH is
similar to that used for CHAIN in FORTRAN II, except that the
tape to be searched is omitted since it is assumed to be SYSLB2.

Search finds the specified program on SYSLB2 by name and
scatter-loads it right on top of itself, leaving only enough
to execute a transfer to SY, TRA which will commence execution
of the desired program. The time saved when running with a
nounted program tape and using SEARCH is obviously most depend-
ent on the time used to hang the tape. The time taken to load
SEARCH and its calling routine and to find and load th.- program
is usually no more than .004 hours.

D. SUM4ARY

The SUBSYS package consisting of .LOVRY with CPYLKO..LNKSTK, and SEARCH can provide considerable savings in setup,
peripheral, and main-frame time when used with 7090, 7094,
70911/2 FORTRAN IV Overlay and non-Overlay codes.

Since no modifications are involved to IBSYS or IBJ$B,
SUBSYS should be more "version independent" than other packages
available which do involve syste, mods. SUBSYS has been tested
on both version 12 and version 13 installations. This is a
tape-oriented package, and its value to a disk-oriented user
is questionable. It is left to the disk user to make such an
evaluation.

511

SEC2ION III

DETAILS ON LNKSTK

A. INTRODUCTION

The information needed by LNKSTK to produce a program tape
is supplied by two sources: the communication words passed on
by CPYLKO, and the LNKSTK data card. The communication words
are obtained by LNKSTK when it reads the main link from tape,
and are described in Appendix IX.

B. LNKSTK DATA CARD FORMAT

Field Columns Contents

1 1- 6 The program name as it will appear in
the first record of the program and on
the $EXECUTE card or SEARCH argument,
The name must be BCD, 6 character max.,
left adjusted in the field with trailing
blanks if less than 6 characters. If
this program is to become a subsystem,
the name must be different from any
other system record name;

2 8 - 13 Input tape on which LNKSTK may expect to
find the main link as written by CPYLKO.
This unit must be specified as SYSxxx,
and would be SYSCK2 if running with the
distributed version of CPYLKO which uses
SYSCK2 for its output.

3 15 -20 Input tape containing the Overlay links
as written by IBLDR. This unit, which
must also be specified by its SYSUNI
name, is the tape presently containing
the Overlay links, regardless of what
SYSUNI it may have been (due to $ATTACH
and $SWITCH cards) when the program was
loaded. If this is not an Overlay job,
the word "N0LINK" must be inserted in
this field.

4 22 - 27 This field is another SYSUNI name which
specifies the "running link tape", or
the unit on which the program tape must
be mounted when running with the SEARCH
program and must be SYSLB2 for the dis-
tributed version of LNKSTK and SEARCH.

512

Field Columns Contents

if this is not an Overlay job. the word

"N0LINK" may be inserted in this field.
5 29 - 34 Output tape for LNKSTK, also a SYSUNI

name. This name may be the same as that
in Field 2, but may not be the same as
the Overlay link tape in Field 3. It
may be, but is not necessarily the same
as the "running link tape" in Field 4.

6 36 -39 If the record packing option is desired,
this field should contain the word
"PACK". If PACK is specified, all
records for each Overlay link (written
as 464 words by IBLDR) will be combined
to form one long record. The .LRECT
table generated by the loader is modif-
ied by LNKSq1h to reflect the new posi-
tions of the links on tape. So called
"remote sections" specified by $INCLUDE
cards cannot be handled by LNKSTK*. This
feature means that considerably less tape
is used for the link section of the pro-
gram, due to fewer record gaps. Link
loading is considerably faster, usually
resulting in an overall improvement in
execution time. If this option is not
specified, the records produced will be
465 words, a BCD name being added to each
record (standard system record format).
This option is meaningless for a non-
Overlay job.

7 41 - 45 Rewind options applying to the LNKSTK
(if Field output tape. Either RB and/or RA, in
6 was either order, may occupy this field, or
present) the field may be null.

* See Version 13 IBJ0B manual, C28-6389-O, page 413.

513

Field Columns Contents

7 36 - 40 To permit the stacking of more than
(if Field one program on the output tape, the
6 was rewinds are strictly controlled by
absent) these options. If RB (rewind before

writing this program) is specified,
LNKSTK will perform a rewind on the
output tape immediately before it
attempts to write the modified main
link. If RA (rewind after writing this
program) is specified, LNKSTK will
finish writing the last Overlay link,
write an E0F, and write a 3 word
trailer record containing the word
"ENDTPE". It will then rewind the
output tape. This trailer record will
cause the word ENDTPE, to scatter-load
into SYSFAZ, enabling the SEARCH rou-
tine to recognize the end of the pro-
gram tape. RB must be specified for
the first (or only) program to be put
on the output tape, while RA must be
specified for the last (or only) pro-
gram. If more than two programs are
to be stacked on the output tape, any
"middle" programs would have neither
option specified to insure that
no rewinds are performed.

All fields are separated by commas (or any other non-blank
delimiter). The remainder of the card after col. 45 is availa-
ble for comments. Fields 1 - 5 must be present in the columns
assigned, while the last two fields are optional.

C. EXAMPLES

col. 1
*

TSTJ0B, SYSCK2, SYSUT2, SYSLB2, SYSUT5, PACK, RB, RA
SIFT ,SYSCK2,SYSLB3, SYSLB2, SYSCK2, PACK
SMALJB, SYSCK2,N0LINK,N0LINKSYSLB2,RB
BIGJ0B, SYSUT3, SYSCK2,SYSLB2, SYSUT7, PACK,RA

The setup for stacking more than one program on the out-
put tape is merely an extension of' the case for one program.
The order of jobs in the deck would be similar to the follow-
ing:

514

First Program
LNKSTK run (with RB on the data card)
Second Program
LNKSTK run (with no rewind options)

nth Program)
nth LNKSTK run, no rewinds)

Last Program
LNKSTK run (with RA on the data card)

The output tape would, of course, be the same on all
these LNKSTK data cards, while the other options may be as
desired. Overlay and non-Overlay programs may be stacked on
the same tape. A double EOF will follow a non-Overlay pro-
gram, so that each program will be 2 files for the SEARCH
routine (see Appendix X). If the system rewinds the LNKSTK
output tape between jobs or job segments, these rewinds must
be circumvented if more than one program is to be stacked on
a given output tape.

In addition to writing the main link in scatter-load
format, TNKSTK provides entries for the following communica-
tion cells:

1. Location 2 - TTR .LXSTR

2. Location 108 - TTR .FPTRP

3. Location 2308* - A corrected skew-check mask.

It. SYSTRA - TTR PREEX (start of pre-execution
initialization)

5. SYSGET - "IBSXEC"

6. SYSFAZ - program name from data card

* A "feature" has been added in IBSYS Version 13 such that
any IOCP with a word count greater than 37777q which enters
SYSTCH causes the record to be treated as if it were re-
dundant. Entry 3 above corrects this, but is only done if
LNKSTK is assembled for Version 13. See "Assembly Para.-
meters".

515

7. SYSLOC - zero

8. .JLIN (line ctr.) - zero

9. SYSCUR - name of each record (main or Overlay
as it is loaded

The program name enters SYSFAZ and SYSCUR when the main
link is loaded, and the name remains in SYSFAZ throughout the
run. Each link record stores its name in SYSCUR as it is
loaded, so that the contents of SYSCUR will always represent
the last record read.

The link record name is a combination of the program name
and the link number if record packing is in effect, or the pro-
gram name, link number, and record number if packing is not in
effect.

Examples from "TSTJ0B":

Packing: TSTJ04 (Link 4)
No Packing: TST721 (Link 7, Record 21)

All the link and record numbers will be BCD. The link
will occupy 2 characters if it bec..nes greater than 9.

D. ASSEMBLY PARAMETERS

1. VRSION - assembled as 13 by a "SET". Pertains to
the existence of SYSUT5-SYSUT9 and to skew-mask
correction. See Appendix X, since the same para-
meter is contained in SEARCH to control 1-0 table
assembly.

2. UNIT - assembled as SYSCK2. This is the output
unit on which LNKSTK will dump itself if entered by
a $ENTRY CPYLNK card. It must therefore-be specified
as the input unit on the LNKSTK data card when pro-
ducing a program tape from LNKSTK itself (see
Appendix VIII).

E. ERROR MESSAGES

If any error is detected during a LNKSTK run, a message:

ERR0R IN LINK STACK AT RELATIVE LOC XXXXX OCTAL (SEE LISTING).
CANNOT PROCEED. is printed off-line. Examination of the
commeits on the listing will reveal the nature of the error.
The message:

ERROR IN LINK STACK. FLJSH ANY REMAINING PARTS OF THIS
JOB HIT START TO DUMP

OPERATOR ACTION PAUSE
is printed on-line. Depressing the START key will cause a core
dump via SYSDMP (AC, MQ, etc. are saved), but the operator is
responsible for fiushing the rest of the run.

516

F. DUMP FEATURE

If User modifications are made to LNKSTK, or if there
seems to be trouble during a LNKSTK run, it may be desirable
to obtain a core dump immediately after LNKSTK is through
with its processing. To provide this facilit', a feature has
been added to LYSTK such that the console entry keys are
examined before LNKST(returns to IBSYS via SYSRET. if any
prefix key (S, 1, or 2) or any combination of prefix keys is
down, LNKSTK will exit via SYSDMP rather than via SYSRET.

The operator must, of course, be informed that the key(s)
are to be set before the terminatiur, of the LNKSTK run.

G. RESTRICTIONS

The fact that LNKSTK cannot handle "remote" sections
specified on $1NCLUDE cards has already been mentioned, as
has the fact that only one link tape may be called for on the
$ORIGIN cards.

Other problems may arise from certain record size limita-
tions are imposed by SUBSYS and the systems which it must use.
LNKSTK has a buffer size of 2800010 words (665408), and this
represents the maximum size of any link record (the main link
would usually be the largest record, since it contains all
the library routines and possibly some named COMMON). When
running strictly from a program tape, the SEARCH routine can
load a record in excess of the LNKSTK maximum (actually 2824610
or 671268). However, things are not so simple when using the
system editor. At the time of this writing, no documentation
of any record size limitation has been found in either the
coding for EDITOR or the IBSYS manual, but examination of the
ac-tual 1-0 command in EDITOR shows the following limits:

IBSYS Ver. 12 (EDITOR Ver.5) - 246 0710 or 600378
IBSYS Ver. 13 (EDITOR Ver.6) - 2384010 or 564408

Analysis of a LOGIC or MAP will show whether a program is
within these limits. Insertion of one or two redundant $6RIGIN
cards in the main link is usually all that is needed to bring
the program back into line with LNKSTK and EDITOR.

In IBSYS Ver. 13, SYSLDR has been changed to check for
skew-errors by insisting that no bits enter bVt position 3, 19,
and 20 of any scatter load I0CP. This has been corrected by
the skew-mask described previously, which effectively allows
SYSLDR to load a record of any size. Regardless of the method
used, the practical size limit is still SYSEND-SYS0RG.

517

SECTION IV

LNKSTK AS AN EXECUTABLE SUBSYSTEM

A. INTRODUCTION

If LNKSTK is loaded from a binary deck, not only is the
deck setup for making a program tape somewhat more complicated,
but certain SYSUTx files (which might contain the Overlay
links) must be protected during the loading of LNKSTK. The
ideal situation is to have LNKSTK reside on the system tape as
an executable subsystem. This adds no appreciable "bulk" to
the system tape, since LNKSTK is only one file, consisting of
one 2200 word record, and the deck setup of:

TEXECUTE LNKSTK
(LNKSTK data card)

is certainly as compact and simple as could be desired.

B. INSTRUCTIONS FOR MAKING LNKSTK ITSELF A SUBSYSTEM

LNKSTK has its own built-in equivalent of CPYLKO, called
('PYLNK, which may be entered in the case where it is desired to
have LNKSTK operate on itself. Since this entry is not the
general case, it is not made automatically as it is in the
OPYLKO section of .LOVRY, but must be made by a $ENTRY card.
The deck setup to make a program tape from LNKSTK itself and
edit it over to the system tape immediately after IBJ0B is as
follows:

1 8 16

tIBSYS
1EXECUTE IBJOB

$IBJOB G0,MAP$IBLDR LNKSTK
(1NKSTK binary deck',

$DKEND LNKSTK
ENTRY C PYLNKDATA

518

1 8 16

data card: LNKSTK,SYSCK2,N0LINK.NOLINK,SYSCK23RB,RA
End-of-file card
$IBZY%3
;JOB

TIBEDT
-'EDIT MAP,M0DS
'PLACE LNKSTK,11,2

FILE xAFTER IBJ0B
xDUP SYSCK2,S3YSUT1,1

End-of-file card
$IBSYS

In this example, the $ENTRY card will cause LNKSTK to
write itself out on SYSCK2 (this tape is an assembly parameter
in LNKS'K) before transferring to its normal entry. It will
then read its data card and proceed as it would on any non-
Overlay job. Note the following on the data card:

1. The program name is specified as LNKSTK (similarly on
the kPLACE card), and this is the name that must be
specified on the $EXECUTE card when using the sub-
system.

2. The input tape for the main (and only) link is specif-
ied as SYSCK2.

3. The N0LINK feature is specified in place of the normal
link tape designations, signifying that this is not an
Overlay job.

4. SYSCK2 is also used for the output tape, illustrating
the fact that the output tape for LNKSTK may b(the
same as the main link onput tape.

5. The PACK option is not specified, since this would be
meaningless for a non-Overlay job.

6. Since this is the only program to be pot on the output
tape, both the RB (rewind before) and PA (rewind after)

The new system tape, containing LNKSTK as tho 2nd subsystem
under IBSYS, will be produced on whatever unit is attached as
SYSUTI.

519

SECTION V

DESCRIPTION OF THE MODIFIED .LOVRY WITH CPYLKO

The standard IBM routine .LOVRY, whose function is the
loading of Overlay links, has been somewhat modified for use
with the SUBSYS package. The largest change, of course, is
the addition of the CPYLKO routine, which is discussed else-
where in this write-up. Other changes are as follows:

1. The table of legal link tapes (UNITAB) has been
reduced to one location, since now only one link
tape is used, whether running as a subsystem or
as a program tape. All general references to
UNITAB (as a table) have been removed, and the
UNITAB index in the .LRECT table is no longer
examined. The single UNITAB cell in .LVRY is
now set by LNKSTK durin its processing of the
main link, the desired running" link tape being
specified on the LNKSTK data card. Since only
one link tape may now be used, certain codes which
have an extremely high activity of link loading
and link tape rewinding may run considerably longer
under this system, possibly enough to negate its
worth. This is s.mething that is best determined
empirically.

2. All disk and hypertape coding has been removed for
simplicity, since SUBSYS is a tape oriented package.

3. The IBSYS Version 13 Mod. which adds the skew error
check is not included, since this has not proved
to be troublesome in our installation. It may easily
be inserted by the User if desired.

It. The subsystem (or program tapes) are now two files,
the main link being one, and the Overlay links the
second. .LOVRY must then skip over the EOF after
the main link on the first entry and after each BSF.
BSF's now replace rewinds when a rewind is requested
by REW on the $ORIGIN card.

520

5. If the PACK option is specified on the LNKSTK
data card, all records for one Overlay link will
be packed into one long record, thereby reducing
the length of tape needed for the program and
shortening the time for link loading. How.rever,
the .LRECT table produced by the loader will no
longer reflect the correct record counts and tape
positions for each link. This table is automatical-
ly modified in LNKSTK to reflect the true "one
record per link" status of the link file on the
tape. No change to .L0VRY is involved here.

Aside from these changes, .LOVRY is essentially the
same. The number of words removed is about the same as the
number of words added by the addition of CPYLKO. In the
process of writing the main link from SYSLOC through its
last word, CPYLKO also passes on to LNKSTK:

1. The address of PREEX

2. The addresses of .LXSTR and .FPTRP

3. The address and length of the .LRECT table.

4. The address of UNITAB in .LOVRY.

All other information needed by LNKSTK is present on the
data card.

The length of the main link is calculated at execution
time in CPYLKO. A search is pelformed from SYSEND-lO00 back-
ward (towards location 0), looking for the iirst word that
is not an STR 0,,0. This is assumed to be the last word of
the main link. This is reliable as long as IBLDR performs
as it is supposed to in its final section, and this method
is certainly preferable to using an assembly parameter as
was formerly done.

The standard error message in .L0VRY is written on first
entry if the UCB's for the unit specified in UNITAB and SYSLB1
show both these units at load point.

521

SECTION VI

DESCRIPTION OF THE SEARCH ROUTINE

A. INTRODUCTION

The general function of the SEARCH routine has been
described earlier in this manual. The scatter-load and
redundancy-checking routine is origined at 720008 to prevent

it from being destroyed as a large main link is scatterload-
ing in. The initialization and table sections of the program
will be destroyed in this process, since they are needed only
once. The search for the program is dependent on the BCD name
supplied in the calling sequence. The program name from tape
will be scatter-loaded into SYSFAZ. When SYSFAZ becomes
non-zero, SEARCH compares its contents with the name from
the CALL. If they are the same, the scatter-load is allowed
to continue, and, if not redundant, control then passes to
the main link via SYSTRA. If the names are not the same,
the scatter-load is immediately terminated and 2 files are
skipped. The process is then repeated until either the
program is found or the word "ENDTPE" enters SYSFAZ, signify-
ing the end of the tape. If this trailer label is encountered,
an error message is printed and the program exits via SYSDMP.

B. CALLING SEQUENCE

In FORTRAN or MAP: CALL SEARCH (Argl)

where Argl is the program name as 6ixxxxxx

It is strongly suggested that SEARCH be edited onto the
IBJ$B library as soon as it has been reassembled for the
particular installation.

522

C. ASSEMBLY PARAMETERS

1. VRSION is assembled as 13 by a "SET", and represents
the version of IBSYS in use. It pertains only to
the existence of SYSUT5 - SYSUT9 and is used with
IFT's and IFF's to control the assembly of the I-0
tables.

2. BCDTAB - table of bVD SYSUNI names.

3. SYSTAB - table of SYSUNI indices.

4. RDSTAB - tables of read selects.

All of these I-0 tables must be examined and made
to conform to the installation I-0 configuration.

D. ERROR MESSAGES

Due to a number of possible causes such as illegal tape
designation, the word "ENDTPE" entering SYSFAZ, etc,, the
message:

PROGRAM 'XXXXXX' IS NOT ON SYSLB2 . . . SORRY
is prinzed on-line, followed by a dump. If the
arguments look all right, the cell SYSFAZ should be
examined.

If the main link record is still redundant after 10 tries,
the message:

REDUNDANCY READING SYSLB2 . . . SEARCH DISCONTINUED is
printed on-line, followed by a dump.

523

SECTION VII

SUBSYS SUBROUTINES

A. INTRODUCTION

The following is an example of how SUBSYS was imple-
mented. It describes the subroutines which were added to
the MAGIC System for SUBSYS control. The Overlay chart,
B, should replace Figure 1.7 in Appendix I for SUBSYS
control.

524

A0

C-C4

t--4

0 H.

0
P-) C.)C-)t

H A 0

0'0

0. 0

0

w ho 0 E-1
0 UE-4 14

0' C)/,r-
0 0 0

00

414

0
ffil

525

IH

C. LIST OF SuBSYS SUBROUTINE FUNCTIONS

.USER04. (Main deck) Control reset of system para-
meters, call SEXEQ and return control to
BFMTII

SRESET Reset system input unit, system output unit,
maximum matrix limit, size of work area,
print control and re-establish blank common
area

SEXEQ Read and interpret .USER04. instruction
and pass control to US04

526

D. SUBROUTINE DOCUMENTATION FOR SUBSYS

1. Subroutine Name: USER04 (Main Deck)

2. Purpose: Provide main deck control under SUBSYS
implementation

3. Equation and Procedures: Logical variable ERROR is set
to false. Subroutine SRESET is called to reset system
parameters. Subroutine SEXEQ is then called to execute
the .USERO4. abstraction instruction. SUBSYS subrouitine
SEARCH is then called to return to the BFMTII program.

4. Input Argument: None

5. Output Argument: None
6. Error Returns: if logical variable ERROR is found to be

true after performing subroutine SEXEQ, then an error

message to this effect is printed and continuation of
execution is attempted.

7. Calling Sequence: None

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage is 1208 (8010).

1.2. Subroutine User: None

13. Subroutines Required: SRESET
SEXEQ
SEARCH

14. Remarks: None

527

1. Subroutine Name: SRESET

P. Purpose: Reset system parameters under SUBSYS implemen-
tation

3. Equations and Procedures: There are seven system parameters
which must be reset due to operating under S'JBSYS. They
are:

(1) NPIT : System input unit number
2) NPOT : System output unit number
3) KONST : Maximum matrix order capability
k) NWORK : Number of storages in work area
5 IPRINT : Output print control
6) WORK : Dimensioned work storage area (to be in

blank common)
(7) NINST : Unit number containing instructions

NINST is defined to have a value of one.
NPIT, NPOT, KONST, NWORK and IPRINT are reset by reading
them from the return instruction on NINST. NINST is
searched until the return instruction is located, then
NINST is backspaced aid the return instruction is read
again, this time the required system parameters are read,
thus resetting their values. The worK storage area, WORK,
is allocated into blank common by a COMMON statement in
SRESET.

4. Input Arguments: None

5. Output Arguments:

NINST : Fortran logical unit number containing instructions
IPRINT : Output print control
NPO1 : System output unit number

6. Error Returns: None

7. Calling Sequence: (NINST, IPRINT, NPOl)

8. Input tape: NINST - Abstraction instruction input tape.

9. Output Tapes: None

10. Scratch Tape3: None

11. Storage Required: Total storage is 1638 (11510).

12. Subroutine User: USER04

13. Subroutines Required: None

14. Remarks: None

528

1. Subroutine Name: SEXEQ

2. Purpose: Extract and separate the required information from
the USERo4 instruction on the instruction tape

3. Equation and Procedure: The USER04 instruction is read
from the instruction tape into the common work storage
area. From information contained in the first six words
of the instruction record the succeeding data in the record
is separated into its component sectlons and placed into
the calling sequence to US04.

4. Input Arguments:

NINST : Instruction tape number
IPRINT : Output print control

5. Output Arguments:

ERROR : Error condition indicator

6. Error Returns: None

7. Calling Sequence: (NINST, IPRINT, ERROR)

8. Input Tape: NINST - Abstraction instruction tape

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage is 2178 (13610).

12. Subroutine User: USER04

13. Subroutine Required: US04

14. Remarks: None

529

APPENDIX XI

DOCUMENTATION FOR ELEMENT INSERTION

INTO THE MAGIC SYSTEM

530

TABLE OF CONTENTS

Section ae gf No.

I FINITE ELEMENT MATRIX SUBROUTINES DEFINITION
RULES 533

A. Subroutine Name 33

B. Purpose 33

C. Equations and Procedures.533

D. Input Arguments 535

E. Output Arguments. 537

F. Error Returns 538

G. Calling Sequence. 538

Hi. Storage 538

I]I. Subroutine User538
J. Subroutines Used. 538

II INSERTION OF FINITE ELEMENT MATRICES INTO
MAGIC 539

A. Revisions to .USER04I. MODULE. 5140

B. Revisions to the STRESS Module.......5141
C. Revisions to the FORCE Module 542

D. Revisions to the EPRINT Module 543

E. Revisions to OVERLAY. 5145

F. Plugs and Subroutine Changes 546

G.Checklist Tables for Use In Insertion 5147

531

Section Page No.

III REVISIONS TO ELEM AND FELEM 551

A. Revisions to FELEM 551

B. Revisions to ELEM 551

IV EQUIVALENCE OF LOCAL WORK AFRAYS 556

A. Work Array Equivalences for Plug
Subroutines 556

532

It

SECTION I

FINITE ELEMENT MATRIX SUBROUTINES DEFINITION RULES

A subroutine must be generated which msy be used by ELPLUG
in order to generate the element matrices required for finite
element analys.s in MAGIC. This module may be written and
checked out independent of MAGIC. The checked out routines may
then be added to MAGIC by following the "INSERTION OF FINITE
ELEMENT MATRICES INTO MAGIC", page 539.

For purposes of clarification, the standard subroutine
writeup format is used in describing the necessary rules.
This format is similar to the subroutine writeup format used
in the Volume III Programmer's Manual.

A. SUBROUTINE NAME

Any subroutine name may be chosen. Later, when the
module is inserted into MAGIC, the name may be changed to
satisfy ELPLUG rules.

B. PURPOSE

To generate the finite element matrices required to
generate statics, stress dynamics, or stability analysis, this
module must be suitable for insertion into MAGIC.

C. EQUATIONS AND PROCEDURES

1. Equations

a) Equations must satisfy the requirements and
assuimpions of displacement method finite
element analysis.

b) A.L± matrices mupt be generated with system
degrees of freedom ordered according to grid
point, that is: W v3w

etc. where uI = u for grid point 1, u2 = u

for grid point 2, etc.

533

c) The total number of degrees of freedom
= NORD = number of grid points x number of
degrees of freedom per point. For example,
if an element has u,v,w, 0 x, y z for each

grid point and has three grid points, then
NORD = 6 x 3 = 18.

2. Procedures

a) Element material properties, element grid point
data and geometric properties are supplied as
input thrcugh the argument list. The form of
this input is described under "INPUT ARGUMENTS".

b) Using matrix methods, all element matrices
must be generated in system coordinates. That
is, all transformations required must be per-
formed internal to the subroutine. A selection
of matrix computations must be supplied, based
on Input selection controls.

c) Output matrices are supplied to the MAGIC system
through the calling sequence, described under
"OUTPUT ARGUMENTS".

d) This module should be checked out independently
of MAGIC and then inserted into MAGIC, using
standard rules for insertion.

e) General Flow

INPUT described
in INPUT

ARGUMENTS
If KS=l, compute stress matrix
of order NRSEL x NORD

ERROR TEST (described
iE R RETURNS compute thermal stress

vector of order NRSEL x I

If KK=l, compute stiffness
matrix in AK of order -If KM=, compute mass matrix of
ORD*NORD in singly sub- order NORD x NORD in singly sub-scripted symmetric form scripted symmetric form j
If KF=I, compute thermal! Set up output controls:pressure load vector ofl NRSEL = no. stress pointsorder NORD*. v NOINK = NORD * (NORD+I)/2

A3 RETURN

.53

D. INPUT ARGUMENTS

1. Control Information

kil suppression controls should be tested for value
= 0 or 1. If the value = 0, do not compute the appropriate
matrix. If the value = 1, do compute the matrix.

IPL = Internal element identification number

KK = Suppression control for element stiffness
matrix

KF = Suppression control fo' element thermal
and pressure load matrices

KS = Suppression control for element stress
matrix

KTS = Suppression control for element thermal
stress matrix

KM = Suppression control for element mass matrix

KN = Suppression control for element incremental
stiffness matrix

2. Dimension Information

NNO = Number of grid points on element

NORD = Total number of degrees of freedom - order
of stiffness matrix

3. Gridpoint Coordinate Data

XC X coordinates of element gridpoints of
length NNO

YC = Y coordinates of element gri.points of
length NNO

ZC = Z coordinates of element gridpoints of
length NNO

535

MC T Grtd point temperatures for element of
length NNO

PC Grid point pressures for element of
length NNO

4. Material Property Input

These properties are input temperature interpolated
element related material properties stored in a one-dimensional
array: MAT. This array was generated in ELEM by computing the
effective element temperature and then interpolating the
material file tables for necessary values.

a) MAT Array - MAT(l) contains temperatures at

which variables will be interpolated:

i) Elastic Properties

MAT(2) Ex 1
MAT(3) Ey Young's Modulus

MAT(4) Ez

MAT(5) Yxy 1
MAT(6) yyz Poisson's Ratio

MAT(7) Yzx

MAT(8) ax
MAT(9) ay Thermal Coefficients

MAT(10) az of Expansion

MAT(II) Gxy

MAT(12) Gyz Shear-Modulus

MAT(13) Gzx

ii) MAT(14) - MAT(21) is reserved for future use.

iii)Other Parameters

MAT(22) Mass Density - DENSTY
MAT(23) Option for element print - WIPR
MAT(24) Initial temperature - TZERO

536

E. OUTPUT ARGUMENTS

All symmetric arrays are stored such that only the lower
half is stored by rows in single subscripted form.

1. Control Information

NERR = Error set control (described under ERROR
RETURNS).

2. Dimension Information

NOINK = Number of words in symmetric matrix
NORD x (NORD+I)/2

i NRSEL = Number of stress components = number
of rows in stress matrix

NSEL = Number of words in stress matrix
= NRSEL * NORD

NMASS = Number of words in mass matrix.

3. Output Element Matrices

a) Stiffness Matrix - AKEL = Singularly subscripted
array which represents storage of length
(NORD x (NORD+I))/2. Elements of lower half
of symmetric matrix of order NORD x NORD must
be stored in system coordinates. The corn-
putation of this matrix should be suppressed
if KK = 0.

b) If KF = 1, compute FTEL = thermal + pressure
element load matrix column of order NORD x 1.

c) If KS = 1, compute SEL = stress matrix of
order (NRSEL x NORD) where NRSEL = number of
stress components.

d) If KTS = 1, compute thermal stress matrix
= STEL = NRSEL x 1 matrix column.

e) If KM = 1, compute MASS matrix In same form as

stiffness matrix.

537

f) NOINK = number of storages for stiffness
matrix.

g) NRSEL = number of stress points on stress
matrix.

h) NMASS = number of storages for mass matrix,
if no mass matrix exists, set NMASS = 1.

4. EXTRA

EXTRA = a total of 5 input element properties is
possible as input to MAGIC. Element thicknesses or other
geometric properties are obtained from this array.

F. ERROR RETURNS

Set NERR = 0 if no error
Set NERR = 1 if finite element number (IPL) is incorrect
Set NERR = 2 if number of Nodes (NNO) is incorrect
Set NERR = 3 if order of matrix = NORD is inccrrect.

G. CALLING SEQUENCE

Call (Subroutine Name) (1PL,NNO,NORD,KKKF,KSKTS,KM,
KN,XC,YC,ZC,TC,PC,MATEXTRA,NOINK,NRSEL,NSEL,NMASS,
AKEL,FTEL,SEL,STEL,AMASS,NERR)

H. STORAGE

All singular subscript arrays should be dimensioned (1).
SEL must be dimensioned (NRSEL,NORD).

I. SUBROUTINE USER

ELPLUG must be updated to accept this routine. "INSERTION
OF FINITE ELEMENT MATRICES INTO MAGIC" should be consulted for
the chan~es necessary to ELPLUG and MAGIC.

J. SUBROUTINES USED

Any subroutines may be used and written for use in this
routine.

538

I
SECTION II

INSERTION OF FINITE ELEMENT MATRICES INTO MAGIC

As MAGIC is a General Purpose Structural Analysis Program,
certain sections can be considered as modules. Revisions to
the program is accomplished by insertion of new subroutines
or modules. This concept of inserting or "plugging" finite
element matrices into a program was originally a concept In
1956 of Turner of Boeing. Thus the term "plug" means
inserting different finite element equations into MAGIC.

Revisions to MAGIC Include the Following:

A. Revisions to .USER04. Module

B. Revisions to STRESS Module

C. Revisions to FORCE Module

D. Revisions to EPRINT Module

E. Revisions to OVERLAY of Program

F. Revisions to the Plug Subroutines Themselves.

539

A.. REVISIONS TO .USER04. MODULE

1. Subroutine ELEM

a) Revise the "Table of Contents" of elements,
if necessary. Consult current listing for
present form.

b) Refer to "REVISIONS TO ELEM AND FELEM" in
order to update the DATA and DIMENSION
statements for the arrays:

NUMOLD
IPLNO
NDSEL

c) Increase the value of NUMPLG by +1 for each
plug added.

2. Subroutine FELEM

a, Update the "Table of Contents" of elements,

if necessary. See Table I.

b) Revise the data statement for the NEWNUM
array, if necessary. Refer to "REVISIONS
TO ELEM AND FELEM", page 551.

3. Subroutine ELPLUG

a) Modify the computed GOTO statement so that
control passes to statement number MNOO when
IPL assumes the value MN. (NOTE: MN is the
one or two digit plug number.)

b) Insert the CALL PLUGMN with appropriate calling
sequence at statemeht number MNOO.

c) Insert instructions to bypass the grid point
axis transformation, if necessary. These
transformations must be skipped in all plugs
which handle grid.point axis transformation
inside the plug itself.

540

13. REVISIONS TO THE STRESS MODULE

1. subroutine STRES2

a) Increase the DIMENSION of the array PLUGS.
This array contains the plug number of all
the element types available to the MAGIC
system.

b) Update the variable NPLUGS. This variable
should be the same as the dimension of the
PLUGS array.

c) Add the new element type plug number to the
DATA statement which defines the PLUOS
array.

d) Update the GOTO statement which transfers
control to the WRITE statement which writes
the heading for the stresses of that particular
element type. The statement number to trans-
fer to is calculated by IPL*I000.

e) Add the WRITE statement with format number
IPL*1 000+l. Then define the following
variables:

i) NSC = the number of stress components
for this element

Ii) IFMT = the updated value of NPLUGS

iii) KFMT = 1,2,3,4 or n depending on the format
needed to write out the stress values.
The actual format will be discussed
in Section V.

') Add the statement GOTO 320.

g) The heading printed out for the stresses of this
element should conform to the format of all the
other headings.

541

C. REVISIONS TO THE FORCE MODULE

1. Subroutine FORCE2

a) Increase the DIMENSION of the array PLUGS.
This array contains the plug number of all
the element types available to the MAGIC
system.

b) Update the variable NPLUGS. This variable
should be the same as the dimension of the
PLUGS array.

c) Add the new element type plug number to the
DATA .,tate,.ent which defines the PLUGS array.

d) Update the GOTO statement which transfers
control to the WRITE statement which writes
the heading for the forces of that particular
element type. The statement number to trans-
fer to is calculated by IPL*I000.

e) Add the WRITE statement with format number
IPL*I000+I. Then define the following
variables:

i) NFC = the number of ccmponents of force
for this element

1i) IFMT = the updated value of NPLUGS*100
iii) KFMT = 1,2,3,4 or n depending on the

format needed to write out the
force values. The actual format
will be discussed in Section V.

f) Add the statement GOTO 320.

g) The heading printed out for the forces of this
element should conform to the format of all
other headings.

542

D. REVISION TO THE EPRINT MODULE

1. Subroutine EPRINT

a) Increase the DIMENSION of the array PLUGS.
This array contains the plug number of all

the element types available to the MAGIC
system.

b) Update the variable NPLUGS. This variable
should be the same as the dimension of the
PLUGS array.

c) Add the new element type plug number to the
DATA statement which defines the PLUGS array.

d) Update Ihe GOTO statement. which transfers
control to the WRITE statement which writes
the headings for the stresses or forces of
ti'a ; particular element. If IPRT=l, then
net element sti-Qssez are to be written. The
statement number to transfer to is calculated
by 600+IPL. If IPRT=2 Then net element
forces are to be written. The ,:e;tement
number to be transferred to is calculated by
700+IPL.

e) Add the WRITE statement with format number

800+IPL for stresses and 900+IPL for forces.

For both stresses and forces define the
variables:

i) NC = number of stress or force components
ii) IFMT = the updated value of NPLUGS for

stresses and for forces it equals
NPLUGS*100.

iii) KFMT = ',2,3,4 or n depending on the
format needed to write out the
stress and force values. The
actual format is discussed under
STRPRT revisions below.

f) Add the statement GOTO 200.

g) The headings to be printed should be exactly
the same as those written in subroutines STRES2
and FORCE2.

543

2. Subroutine STRPRT

Subroutine STRPRT is called by STRES2, FORC-2, and
EPRINT.

a) This routine contains the format statements
necessary to writa the stress or force values.
At present, there are four different formats
available, defined by FMTl, FMT2, FMT3 and FMT4.
The value of KFMT as defined in STRES2, FORCE2
and EPRINT will poi.nt to one of these formats.
If any of the presont formats are not applicable
for the printing oC the values of a new element
type then the following must be done.

i) Define a new format statement in a DATA
statement. Give it the name FMTn. Set
KFMT=n.

ii) DIMENSION this format.

iii) Update the GOTO statement which transfers
to the WRITE statement which uses the new
FORMAT FMTn. Calculate the statement
number by KFMT*100.

o) The column headings that are to be priated for
the new stresses and forces must also be added
to this routine. Update the GOTO statement
which transfers control to the corr-ect WRITE
statement. For stresses, the statement number
is IPL*1000 and the format number of the write
statement is IPL*1000+l. For forces the state-
ment number is IPL*1000+3 and the format number
is IPL*100+2.

c) The FORMAT statement which contains the headings
for the columns should follow a format similar
to those already included in the routine.

544

E. REVISIONS TO OVERLAY

The overlay will have to be revised whenever new sub-
routines are added to MAGIC. This overlay structure may be
a function of the particular version on a particular machine.
There is no standard procedure but a general guideline is
available: NEWPLUGS may be placed on new links which are on
the same level as existing plugs since only one plug will be
necessary in core at one time.

I 545

F. PLUGS AND SUBROUTINE CHANGES

1. Obtain listing of PLUG which has been written and
checked out by foilowing the rules under "Finite
Element Matrix Subroutine Definitions Rules",
page

2. Equivalence all working dimensions to WORK storage
by referring to "Equivalence of Local Work Areas
in MAGIC", page

3. Insevt this card immediatily after the subroutine
PLUGMN statement:

COMMON NPIT,$,KONSTDUMMY(7097),
Wuifl(NLAST)

When NLAST is defined as the last location of the
WORK storage array referenced in Item (2) above.

4. REPEAT(3) above for every subroutine used by PLUGMN.

546

G. CHECKLIST TABLES FOR USE IN INSERTION

This table contains all of the revisions listed. These
tables should be used in order to be sure that all steps have
been completed.

When revised item has been completed, write an X in the
space provided.

A. .USER04.

1. Subroutine ELEM

a. Revise the "Table of Contents"

(1) REVISED
(2) No Revision Necessary

b. Revise NUMOLD

(1) DATA Statement

(2) DIMENSION Statement

Revise IPLNO

(1) DATA Statement

(2) DIMENSION Statement

Revise NDSEL

(1) DATA Statement

(2) DIMENSION Statement

c. Increase NUMPLUG by +1

2. Subroutine FELEM

a. Table of Contents Revision

b. NEWNUM Array Revision

3. Subroutine ELPLUG

a. Computed GOTO Statement NO.

b. Call PLUGMN - Plug No.

c. Grid Point Axis Transformation

(1) Included Inside PLUG

(2) Not Included Inside PLUG

547

B. STRESS MODULE

1. Su'routine STRES2

a. Increase dimension of PLUGS

b. Update NPLUGS

c. Update PLUGS DATA Statement

d. Update GOTO Statement for'Element
Stress Headings

GOTO Statement No.

e. Add WRITE Statement

Redefine:

(1) NSC

(2) IFMT

(3) KFMT

f. Add statement GOTO 320
g. Insert Nei Heading for Stress Print

C. FORCE MODULE

1. Subroutine FOfCE2

a. Ihz:rease Dimension of PLUGS

b. Update NPLUGS

c. Update PLUGS DATA Statement

d. Update GOTO Statement for Element
Force Headings

GOTO Statement No.

e. Redefine:

(1) NFC

(2) IFMT

(3) KFMT
f. Add Statement GOTO 320

g. Insert New Heading for FORCE Print

548

D. EPRINT MODULE

1. Subroutine EPRINT

a. Increase Dimension of PLUGS

b. Update NPLUGS

c. Update PLUGS DATA Statement

d. Update GOTO Statements for Element
Stress and Force Headings

e. Add WRITE Statements

Redefine:

1,1) NC

(2) IFMT
(3) KFMT

f. Add Statement GOT 200

g. Insert Headings which are same as for
STRES2 and FORCE2

2. Subroutine STPRT

a. Define FMTn DATA Statement

Set KFMT-n

Dimension FMTn

Update GOTO Statement
GOTO (KFMT*l00) _

b. Update FORMAT and GOTO Statements
for Print of Column Headings

STRESSES:

Format No. (IPL*1 000+l)

GOTO (IPL'l000)

FORCES:

Format No. (IPLl000+2)

GOTO (IPL*1000+3)

549

E. REVISIONS TO OVERLAY

1. Revise OVERLAY of Program

F. PLUGS AND SUBROUTINE CHANGES

1. Set up and Checkout PLUG Subroutines

2. Equivalence WORK Storages

3. Insert: COMMON NPIT,O,KONST,DUMMY,WORK
in all Subroutines

550

SECTION III

REVISIONS TO ELEM AND FELEM

A. REVISIONS TO FELEM

1. Defining NEWNUM (contained in FELEM)

The logical grouping of elements selected for MAGIC
is shown in Table I. The "plug" numbers are shown in Table I
also. Using Table I as a reference, the MAGIC numbering
system is arranged in ascending order, inserting a zero for
an unidentified element. This results in data for a NEWNUM
array shown in Table II. Referring to Table I and Table II,
let i = plug number, J = MAGIC (NEWNUM). Then the array
NEWNUM is defined by: NEWNUM(J) = I. NUNUM only must be
revised if new group is added.

B. REVISIONS TO ELEM

1. Defining NUMOLD

At a given point in time, NUMOLD is shown in Table III.
It is'definedby the following: NUMOLD(I) = J. When I and A
above have the same meaning as in (A) above, NUMOLD must be
revised where a new plug is added.

2. Defining IPLNO

IPLNO represents the group number of existing MAGIC
elements and must be extended for any new element matrix set.
This array represents the NUMOLD array after zeros have been
deleted.

3. Defining NDSEL

NDSEL represents the number of stress points coded for
existing elements in MAGIC. This number is the one-actually
coded in the plug and corresponds to NRSEL described under
reference "Definition of Calling Sequence for ELEMENT Matrix
Subroutines."

551

For example, referring to Table I, if a sandwich
plate is to be added, I - 18, J - 28; that is, PLUG 18
representing group No. 28 is to be added. Suppose that only
5 stress points are considered for this element. Then the
revised statements and arrays are shown in Table III(A).

-552

TABLE I

TABLE OF CONTENTS FOR FELEM ELEMENT DESCRIPTION

I MA(NUMBER
PLUG (NEU) NODES DESCRIPTION OF ELEMENT

1 21 8 Quadri Lateral Shell

2 20 6 Triangular Shell

3 22 3 Triangular Plate of Constant Stress

4 23 4 Quadrilateral Plate of Constant
Stress

5 30 2 Torodial Ring

6 40 3 Triangular Ring

7 11 3 Frame

8 41 4 Trapezodial Ring

9 42 1 Core (Ring)

10 50 4 Tetrahedran

11 24 4 Shear Panel (Translation Only)

12 26 3 Sandwich Plate

13 51 6 Triangular Prism

14 25 4 Shear Panel (Translation and
Rotation)

15 10 2 Axial

16 12 3 Stiffener

17 27 3 Triangular Plate

18 28 4 Quadrilateral Plate

19 43 2 Truncated Cone

20 52 8 Rectangular Prism

22 13 - Incremental Frame

Example for the "Quadrilateral Plate":

I - Plug No. =18
J - Group No. = 28

553

TABLE II

NEWNUM DATA STATEMENT IN

SUBROUTINE FELEM

DIMENSION NEWNUM(5a)

DATA NEWNUM!

1 0,oj,Ov,0,,O,

2 15,7,16,22,0,0,0,0,,0

3 2,1,3$,11,114,12,17s18s0

14 50200,0,0,O,0O0

5 6,8,9,19,0,0,0,0,,

6 10q13,20,0,0,0,0,0,0,0/

554

TABLE IIIii DATA STATEMENTS IN SUBROUTINE ELEM

These tables represent MAGIC with the f'ollowing plug numbers:
l,2,14,5s6,14,17s!8

(a) DIMENSION AUMOLD (17)

DATA NUMOLD /21,20,OO,30,140,ll,Q,Q,

0, 0,0,0, 25 ,0,0,27/

(b) DIMENSION IPLNO (7)

DATA IPLNO /21,20,30,140111,C25,27/

() DIMENSION NDSEL (7)
DATA NDSEL /4o,,32,15.4,12,1,8/

NUMPLG =7

TABLE II1(a)

Represents NUMOLD, IPLNO and NDSEL af'ter addition of' quadri-
lateral plate (example):

(a) DIMENSION NUMOLD (16",

DATA NUMOLD /21,20$0oO,30,140,ll,0,0

0,0,0,0,25,0,0,27,28/

(b) DIMENSION IPLNO (8)

DATA IPLNJ0 /21,20,30,140,11,25,27,28/

(c) DIMENSION NDStL (%8)

DATA NDSE. /40,324l5,4,l2,1,8,5/

N1UMPLG *8

1 555

SECTION IV

EQUIVALENCE OF LOCAL WORK ARRAYS

The MAGIC System uses a large area of blank common to
store all temporary and work arrays for the ,USER04. module.
The array is set up in routine ELPLUG and modified in each
of the plugs. All local arrays used by subroutines called
by a plug may be defined in this large common area by an
equivalence statement in the plug. Thus no additional storage
is required after the common work array has been defined.

NWORK = the maximum number of WORK storages available
to the MAGIC System. The value of this parameter is set in
the MAGIC routine MRES.

NLAST = NWORK - 7096 = total number of work storages
available for equivalence of local arrays.

A. WORK ARRAY EQUIVALENCES FOR PLUG SUBROUTINES

1. Obtain "plug;' listing, with array map.

2. Check argument list of plug and determine dimensional
arrays which appear in argument list. These arrays
are not local to plug and therefore should not be
equivalenced.

3. Remaining arrays must now be equivalent to work
array in plug. All these arrays are local to
plug itself.

4. Check dimension statement and equivalence of all
these local arrays successively.

5. Now search through all array maps of subroutines
called by plug and place all arrays local to the
called subroutines (which are dimensioned 10 or
above) in the argument list. Equivalence these
arrays to the work array in the plug itself. Enter
the appropriate dimension statement in the plug.

6. Now check equivalence storage map and equivalence
the longest number of each equivalence group to
the next available location of WORK. Enter
dimension statements if necessary. Leave the
origlnal-equivalerice statements in.

556

7. See the following example where subroutines SUBi,
SUB2, SUB3 with local arrays Li, L2, LOC, EXTRA
are to be called by PLUOX. For this example
NWORK - 13000. NLAST a 1300 -7096 = 5900.

PLUGX (AMASS,STRSFTEL ,ETC.)

COMMON NPIT,NPOT,KONST,DUMMY(7097),WORK(59 1 4)
DIMENSION Ll(50)s L2(1420), LOC(l00), EXTRAC300)
EQUIVALENCE (WORK(l) ,Ll(l))

it (WORK(51) ,L2(l))
It (WORK(131) ,LOC(l))
it (WORK(23J.),EXTRA(l))
It (WORK(531), ------

CALL SUB1 (AMASSLl,L)
Arrays not used in PLUGX

Call SUB2 (STRESS,LOC) but which are local to
SUBl, SUB2, and SUB3.

CALL SUB3 (FTEL.,EXTRA; : They must be dimensioned
in PLUGX.

Search all subroutines called by PLUOX f'or local arrays and
put the dimension and equivalence in PALUGX to conserve

storage.

SUBROUTINE SUBl(AMAS9,Ll0L2s...)
DIMENSION AMASS(...),Ll(50)9L2(4,20)

Two work arrays used to
calculate MASS

k SUBROUTINE SUB2 (STRESSLOC,...)
DIMENSION STRESS(...),LOC(l6tU)

Work array used to
calculate STRESS

SUBROUTINE SUI-3 (FTELEXTRA,...)
DINENSION PTEL(. ...),EXTRA(300)

*'*Work array

COMMON WORK AREA FOR .USERO1I.

Y NPIT
~tj 1NPOT

KONST

DUMMY(997)

10004

SEL
L ISTOL Area reserved for

SZALELelement (pl~ug)

LITE generated matrices
common to all elements

ETC.

ANEL C)

7100

Work area available
to plugs

558

REFERENCES

1. DeSantis, Daniel, "MAGIC: An Automated General Purpose
System for Structural Analysis; Volume III:
Programmer's Manual," Report No. AFFDL-TR-68-56,
Volume III, Air Force Flight Dynamics Laboratory,
Wright-Patterson Air Force Base, Ohio, March 1968.

2. Cogan, J.P., "FORMAT II - Second Version of FORTRAN
Matrix Abstraction Technique; Volume II: Description
of Digital Computer Program," Report No. AFFDL-
TR-66-207, Volume II, Air Force Flight Dynamics
Laboratory, Wright-Patterson Air Force Base, Ohio,
December 1966.

559

