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ABSTRACT

An automated general purpose system for analysis is
presented. This system, identified by the acronym " MAGIC II"
for Matrix Analysis via Generative and Interpretive Computations,
si an extennion of structural analysis capability available in

the initial MAGIC System. MAGIC provides a powerful framework
for implementation of the finite element analysis technology and
provi des diversified capability for displacement, stress, vibration
and stability analyses.

The matrix displacement method of analysis based upon
finite element idealization is employed throughout. Ten versatile
finite elements are incorporated in the finite element library.
These are frame, shear panel, triangular cross-section ring,
trapezoidal cross-section ring (and core), toroidal thin shell
ring (and shell cap), quadrilateral thin shell and triangular thin
shell elements. Additional elements include a frame element,
quadrilateral plate and triangular plate elements which can be
used for both stress and stability analysis. The finite elements
listed include matrices for stiffness, mass, incremental stiffness,
prestrain load, thermal load, distributed mechanical load and stress.

The MAGIC II System for structural analysis is presented
as an integral part of the overall design cycle. Considerations in

this regard include, among other things, preprinted input data forms,
automated data generation, data confirmation features, restart
options, automated output data reduction and readable output displays.

Documentation of the MAGIC I-' System is presented in
three parts; namely, Volume I: Engin .r's Manual, Volume II: User's
Manual and Volume III: Programmer's Manual. The subject document,

Volume I (Engineer's Manuai - Addendum) is an extension of the
primary technical document. Included are the theoretical develop-
ments for the additional finite elements included in the MAGIC II

System as well as a discussion of newly added computational procedures.
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SECTION I

INTRODUCTION

The MAGIC II Systems for Structural Analysis is a logical

ext.,mtiori of the original MAGIC System reported in References 1,

? and 3. All capabilities available from the original MAGIC System

nave been tetained. Extension of the program capability is primarily

in the following areas.

(a) The implementation of four additional finite element

representations and their associated element matrices.

(b) The improvement of output displays to facilitate

ease of interpretation by the User.

(c) The provision of an "Agendum Library" to accommodate

the following classes of analyses.

(1) Statics

(2) Statics with Condensation

(3) Statics with Prescribed Displacements

(4) Stability

(5) Dynamics (Modes and Frequencies)

(6) Dynamics (with Condensation)

(d) The addition of an out-of-core eigenvalue routine

for the nonsymmetric matrices based on the power method
"on the order of" 3000 x 3000.

(e) The addition of improved and expanded error diagnostics.

(f) The addition of a prescribed displacement option to

accommodate more than one load condition per execution.

(g) The addition of the capability to accept either

rectangular, cylindrical or spherical coordinates as

input data.

(h) The addition of miscellaneous arithmetic modules to

the System to support the computational procedures.

1



(i) The addition of a new assembly module to increase

the permissible assembled system matrix size.

Documentation of the MAGIC II System for structural analysis

is presented in three volumes. The subject volume (Volume I) is an

addendum to theprimary technical report documented in Reference 1.

Separate supplementary volumes are provided to facilitate

utilization of the MAGIC II System. Volume II, the User's ManualQ),

includes detailed specifications for the preparation of input data,

along with illustrative examples. Volume III, the Programmer's

Manual (5), presents information on the organization of the MAGIC II

System as well as its operational characteristics.

It is to be noted that this addendum is to be used in

conjunction with the original technical report (Reference 1) in

order to utilize the MAGIC II System effectively.

Section II presents a discussion of additional analysis

and programming technology which has been incorporated into the

MAGIC II System. New computational procedures and expanded

size characteristics are emphasized.

A general theoretical description of the additional

finite element representations (and element matrices) included in

the MAGIC II System is given in Section III. These elements are

as follows:

(a) Trapezoidal Cross-Section Ring (Core)

(b) Quadrilateral Plate

(c) Triangular Plate

(d) Incremental Frame

Section IV presents a discussion of the computational

procedures available in the MAGIC II System. Included are procedures

for Statics, Statics with Condensation, Statics with Prescribed

Displacements, Stability, Dynamics (Modes and Frequencies) and

Dynamics with Condensation. Additional procedures are outlined for

Static and Dynamic Substructuring.

2



"n body of this technical report is concluded with a

general retrospective discussion in Section V. Limitations of

tht 'AWGIC 11 System are discussed and guidelines for utilization

are presented.

3



SECTION II

ADDITIONAL ANALYSIS AND PROGRAMMING TECHNOLOGY

A. ANALYSIS TECHNOLOGY

The MAGTC IF System incorporates the ten finite elements

shown in Figures I1.l and 11.2 . The six finite elements shown

in Figure II.1 were available in the original MAGIC System and

are discussed in detail in Reference 1. The four additional finite

elements shown in Figure II.2 are described in detail in Section IV.

The set of matrices embodied in each element representation

determines the type of analyses which can be performed. In the

MAGIC II System, a complete element representation is taken to

include matrices for stiffness, incremental stiffness, pressure

load, prestrain load, thermal load, stress, and mass. Moreover,

provision has been made for additional element matrices such as

consistent damping matrices.

The types of analyses available with the MAGIC II System

are as follows:

(a) Statics

(b) Statics (With Condensation)

(c) Statics With Prescribed Displacements

(d) Stability

(e) Dynamics (Modes and Frequencies)

(f) Dynamics (With Condensation)

In addition many user variations of the above computational
procedures are available with the System. This is possible due

to the powerful matrix abstraction capability available from the

MAGIC II System. A complete description of the computational
procedures listed above along with example problems which demonstrate

their use is provided in Volume II of this report (User's Manual).

I4
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B. PROGRAMMING TECHNOLOGY

In this section additional programming technology available

with the MAGIC II System is discussed. Volume III of this

report (Programmer's Manual) is suggested for complete documenta-

tion on program technology.

[. General Description

The general arrangement of the MAGIC II digital computer

program system is shown in Figure 11.3 . The supervisory program

consists of the FORMAT control and two monitors; the Preprocessor

Monitor, and the Execution Monitor. The main program controls

the normal two phase operation by delegating control, in turn,

to the two monitors.

The preprocessor Monitor directs the processing of card

input data describing the machine configuration, the problem

specification, the abstraction instruction sequence and the matrix

data.

A standard, modified standard, or totally new machine

configuration may be defined for each MAGIC II case.

General output format and labeling information, and identify-

ing names of the master input and output data sets (tapes) con-

stitute the problem specification data.

The matrix and pseudo-matrix operations are input in the
required sequence of execution in the abstraction instruction

sequence. Abstraction instructions are submitted in free form on

standard Fortran coding sheets for punched card reproduction.

Card input matrix data are specified on a standard form.

Matrices may be of order 3000x3000, and may contain up to 6000

randomly ordered, single precision real elements (with 32K core

storage unit).

7
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For the general case, preprocessing involves straightforward

sequential processing of data by each of the modules under the

Preprocessor Monitor. Special preprocessing can be specified by

proper use of the control cards described in the User's Manual.

The final preprocessor operation is to pre-plan the data

storage allocation through the problem and to record this program

of the "complete problem solution logic" for use by the Execution

Monitor.

The standard matrix operational modules provide for ma~rix

addition, subtraction, multiplication, and transpose multiplication,

with optional concurrent scaling, and for matrix scalar multiplication,

transposition, adjoining, dejoining, and inversion. Modules

for the solution of simultaneous equations by elimination and iterative

techniques complete the basic standard matrix operation capability

of the system.

The pseudo-matrix operational modules provide for the element

by element multiplication of two matrices of identical order, the

elements of a matrix to be raised to a scalar power, the extraction

of the algebraic maximum and minimum elements of the rows or columns

of a matrix (i.e., the envelope of a matrix), the diagonalization of

a row or column matrix, the generating of null and identity matrices,

and the renaming of a matrix. Included in the classification of

pseudo-matrix operational modules is the "Structure Cutter" subroutine

which generates a well conditioned solution of "n" linear

simultaneous equations in "m" unknowns by Jordanian elimination

(where n t m).

Matrices produced as the results of standard and pseudo-matrix

operations may be as large as 3000x3000 with no restriction on

population density. Storage of matrix data is by column sort, and

when individual column population density is less than 50 percent,

storage is in compressed format. In compressed format, each non-

zero element and its corresponding row location are sequentially

stored, and zero elements are omitted. Where feasible, the sub-

routines operate directly on the compressed data.

9



MAGIC IT includes two subroutines for the calculation of

eigenvalues. The first subroutine calculates the specified number

of eigenvalues, beginning with the largest, and tie corresponding

eigenvalues of a matrix, whose maximum order is limited by the

worlking core storage availaole to the subroutine. Typically, with

a 32K storage unit, the matrix may be as large as 160 x 160.

This subroutine is written for a real symmetric matrices only. The

:econd subroutine also calculates the specified number of eigenvalues

and eigenvectors beginning with the largest eigenvector. However,

the real eigenmatrix carn be symmetric or nonsyrmetric and the only

limit on its order is the amount of working storage available to the

MAGIC System.

Up to nine special operational subroutines can be coded by the

user and added to the system. The fourth user coded module is the

structural generative system of MAGIC and is described in detail

in the User's Manual.

The sequence of operation is controlled by simple abstraction

instructions prepared by the User, keypunched, and read directly

by the machine. C.,mments may be included in the abstraction in-

struction sequence for explanation of the results.

Limited logic is available in the form of a conditional trans-

fer. A matrix may be tested for nullity and, if true, control will

be transferred forward to a specified abstraction instruction in

the sequence. Conditional transfer is limited to a "skip ahead"

in the abstraction instruction sequence.

Matrices can be printed in a standard form, with small number

suppression and row-column labeling. The matrix elements are

printed as floating point numbers with optional exponent.

The normal printed output for a MAGIC II case includes a

listing produced by the preprocessor. The listing unconditionally

includes all control and specification data together with the complete

abstraction instruction sequence. The listing will also include

matrix input data, special input data, and the machine generated
"complete problem solution logic" if the approriate options are

chosen in the control data.

10



II. Structural Abstraction Instructions

In designing the MAGIC II System for Structural Analysis,

provision was made for accommodating new abstraction instructicns

peculiar to the .USER04. module. In keeping with the philosophy of

generating a highly flexible USER oriented system, specialized

instructions were designed for items such as element stress and

force determination, element assembly and print controls. These

additional USER options provide output capabilities of the MAGIC II

System, consistent with input requirements.

The following abstraction instructions, .STRESS., .FORCE.,

.ASSEM., .EPRINT., and .GPRINT. are to be used in conjunction with

the .USER04. abstraction instruction.

To compute the net element stress matrix and generate

optional engineering print of apparent element stresses, element

applied stresses and net element stresses use the .STRESS.

abstraction instruction.

To compute the net element force matrix and generate

optional engineering print of apparent element forces, element

applied forces and net element forces use the .FORCE. abstraction

instruction.

To assemble the element stiffness matrices, element mass

matrices, element incremental matrices and element thermal load

matrices as output by the .USER04. instruction use the .ASSEM.

abstraction instruction.

To generate engineering printout of the net element stresses

or net element forces use the .EPRINT. abstraction instruction.

To generate engineering printout of reactions, displacements,

eigenvalues and eigenvectors, and user matrices use the .GPRINT.

abstraction instruction.

A complete discussion of the above listed instructions along

with a detailed explanation of their proper usage is presented

in Section II.B.f of the User's Manual.

11



III. Size Characteristics

The size characteristics of the MAGIC II System are

twofold: first, there are the size characteristics of the program

itself and second, those associated with the problem solving

capability. Considering the former, the MAGIC II System contains

356 subroutines (approximately 38000 FORTRAN IV source cards)

logically designed into 43 overlay links on an IBM 360/65

using 45600 words of storage. The overlay design reflects the

optimum use of available storage, yet maintains respectable

execution efficiency.

The MAGIC II System offers large scale capability with nc

penalties to small applications due to the fact that out of core

operations are not utilized unless the magnitude of the application

requires them.

The scale of the analysis capability provided via the MAGIC

II System can be characterized as "on the order of" 3000 displacement

degrees-of-freedom using 45600 words of storage on an IBM 360/65

digital computer. Other relevant maximum size characteristics

are 3000 discrete elements and 1000 gridpoints. Matrices which

are card input may be of order 3000 x 3000 and contain up to

6000 single-precision real non-zero elements.

The MAGIC II System needs a minimum of eight external storage

units to operate, distributed into the following functions: one unit

assigned as Instruction storage for the Execution Monitor, one unit

assigned as a Master Input Unit, one unit assigned as a Master

Output Unit, and five units assigned as Input/Output Utility Units.

Every effort should be made to make the most external storage units

possible available, since any increase in the available storage units

increases execution efficiency.

12



SECTION III

ADDITIONAL FINITE ELEMENT REPRESENTATIONS

A. INTRODUCTION

The MAGIC II System incorporates ten finite element

representations. Six of these elements, namely, frame, shear

panel, triangular cross-section ring, toroidal thin shell ring,

quadrilateral thin shell and triangular thin shell were

available in the initial MAGIC System and are described in

detail in Reference 1.

Four additional elements, namely, trapezoidal cross-section

ring (core), quadrilateral plate, triangular plate and incremental

frame have been incorporated into MAGIC II. A complete element

representation is taken to include matrices for stiffness,

stress, incremental stiffness, pressure load, prestrain load,

thermal load and mass.

In the following sections, each of the element representations

along with associated element matrices are discussed in detail.

13



B. TRAPEZOIDAL CROSS-SECTION RING (CORE)

I. Irtroduction

The formulation of the trapezoidal cross-section ring

discrete element described herein, if dervied from, and is

mathematically consistent with, the formulation described

in Reference 6.

The trapezoidal cross-section ring discrete element, shown

in Fig.Irl.l,provides a powerful tool for the analysis of thick

walled and solid axisymmetric structures of finite length. It

may be used alone or if the problem dictates a highly irregular

grid work, it may be combined with the well known triangular ring

discrete element (7) to form the assembly of any axisymmetric

structure taking into account:

1. arbitrary variations in geometry

2. axial variation in orientation of material axes
of orthotropy

3. radial and axial variations in material properties

4. any axisymmetric loading system which can include
pressure, and temperature, and degradation of
material properties due to temperature.

For the analysis of solid structures, a core discrete element (8)

has been developed to be used in conjunction with the trapezoidal

or triangular cross-section discrete element. This core element

(Fig.III.2)is a specilization of the trapezoidal cross-section

ring element.

The discrete element technique was first applied to the

analysis of axisymmetric solids by Clough and Rashid (9 ) and

later the formulation of the traingular cross-section ring was

extended by Wilson-O) to include non-axisymmetric loading. This develo,

* ment deals with the axisymmetric case but includes orthotropic

material properties. The integration of the strain-energy over

the volume of the ring is effected analytically, and finally

pre-strain, and pressure load vectors as well as a consistent mass

matrix are included. Thus the following element representation is

14
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formulated to include algebraic expressions for the following

matrices

1. Stiffness , [K]

2. Stress , IS]

3. Consistent Mass , [M)

4. Pressure Load , {Fp }

5. Thermal Load , {FT }

6. Gravity Load , {FG }

7. Centrifugal Force , {CG }G
The above matrices arise as coefficient matrices in the

generalized form of the Lagrange Equations for the element. The

generalized form of the Lagrange equation appropriate for the

complete element representation listed above is given by,

Sl+ d 110421 =0
r Si

qr = generalized displacement

r = generalized velocity

01 = total potential energy

02 = kinetic energy

17



I I Assumed Displacement Functions

A structural element is mathematically discretized into a

finite number of degrees of freedom by the assumption of

displacement function mode shapes. The displacement modes

employed for the trapezoidal ring may be written as:

u(r,e,z) = a, + a2r + c3Z + a4rz (2.1)

w(r,e,z) = a, + 8$r + 83z + 84rz (2.2)

It is to be noted that the assumed displacement functions are

interelement continuous when the elements employed are

rectangular. The coefficients a and 8 which appear in the

assumed displacement functions will be referred to as field

coordinate displacement degrees of freedom. The transformation

from field coordinates to grid point displacement degrees of

freedom (i) is effected by writing:

ui(rez) = a + a r + C z + a riz (2.3)

Hence

{a} = [h]{u} (2.4)

also

wi(rieizi) = 81+ 82ri + 3zi + $4riz (2.5)

Then

{8} = [h]{w) (2.6)

Upon combination of (2.4) and (2.6) we have

{y} = [H]{q} (2.7)

18



where

{Y) T ~ 2 = La ai 23 133, C1 1B2 3 4j (2.8)

{q}T = Lui, Wi, U 2 , W2, Ua, W3# U., w4_j (2.9)

A special case arises when the trapezoidal ring is to be

used as a core element. For this (see Figure 111.2)

ri = r4 r 0 and U, = u4= 0. This causes the quantities

a, and a3 in the assumed displacement mode to be equal to

zero, which causes the [H] matrix to be modified. This

modified matrix is designated [-i] for the core element

specialization.

19



I II Potential Fergy

The total potential energy is derived in this section as the

sur: of the strain energy and external work contributions.

The procedure followed is exactly the same as that detailed

ir, Reference 1. The desired

form of the potential energy is as follows:

u = f[LFJ[E]v - LeJ[E]{ei}]dV (3.1)

V

22



lV i'1 etf~ i.Static Matrices

4.1 Introduction

In order to effect the discretization of the element,

the assumed displacement modes must be introduced into the

potential energy function. Substitution of the total potential

energy function into the Lagrange equation yields the element

matrices with respect to grid point displacement degrees of

freedom. An exception is the element stress matrix which is

derived from the strain-displacement and stress-strain

relationships.

4.2 Stiffness Matrix

The energy contribution to the linear elastic

stiffness is

VP Lej[E){F-)dV (41.2.1)

The strains can be expressed in terms of the generalized

coordinates using Equations (2.1), (2.2), and the fact

that { }T Lur, u/r, wz, +Wr

Then

{c} = [D]{y} (4.2.2)

where

0 1 0 Z 0 0 0 0
z

1/r 1 Z 0 0 0 0[D] r (4.2.3)

0 0 0 0 0 0 1 r

0 0 1 r 0 1 0 Z

Since

LeJ = LYJEJ,] (4. L. 4,

21



We have upon substitution into (14.2.1)

(D= 12f LdY [DP] E[DI{y~dV (4.2.5)
V

For the elemental volume of the ring element in cylindrical

coordinates we have:

dV = 2irrdrdz (4.2.6)

Substituting back into the strain energy equation we can now

write:

=D 1/2 2TL if[D]TEE][Dldrdz{yl (4.2.7)
r z

All of the integrals in Equations (4.2.7) are of the form

rpq q frzdrdz (4.2.8)

r z

It is now desirable to see how the integration is carried out

over the trapezoidal cross-section.

z,W

© Z3 Z 4

CO r =a + bz r =c + dz

0

U)

x Z= Z2

r,u

a i-(r4-r1)z1  r4-rla i-%Z4-Zl Z*.-Z

c =r2 _ (r3-r2 )Z 2  d -r3-r2

Z3-Z2 Z3 -Z2
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For the trapezoid the integration takes the rorm:

Z4 c+dz

I =ff rPzqdrdz C4.2.9)
pq )

z, a+bz

For the case with the side r = c + dz parallel to the axis of

symmetry (the Z axis) we have:

Z4 C
Ipq =ff rP zq drdz (4.2.10)

a+bz

For the case with the side r = a + bz parallel to the axis of

symmetry we have:

Z4 c+dz

pq =fa rPz drdz (4.2.11)

And finally for the rectangle, the integration takes the form:

I rPz qdrdz (4.2.12)

z, a

For the case where r= c + dz t c and

r =a + bz - a

a test is made in the computer and we have the following

Let

d rjr4

23L I



If rl-r4 < C (prescribed)

d

Then

r= d and r4 = d

By the same token

Let L
d' _ r2+r3

dt - 2

If
r2-r3 < (prescribed)

d'
Then

r2 = d' and r3 = d'

Equation (4.2.7) can now be rewritten as:

.K 
= 1/2 LyJ [K]{y} (4.2.13)

where [K] is shown on Page 10 of Reference 6.

Introducing the transformation to gridpoint displacement degrees

of freedom we have:

{y} = [H]{q} (2.7)

LyJ = Lqj[HI T  (4.2.14)

Then (4.2.13) becomes

1K= i/2Lqj[H] T[K][H]{q} (4.2.15)

Upon taking the first variation with respect to the displauements,

we obtain the element stiffness matrix referenced to grid point

displacement degrees of freedom

[K] = [H]T [][H] (4.2.16)

24



For the special case of the core element, the

element stiffness matrix referenced to grid point displacement

degrees of freedom is obtained as follows:

[K]* = [H]T[K][i] (4.2.17)

4.3 Pressure Load Matrix

The pressure load matrix will be developed in the

following manner: The pressure load due to pressure normal to

the sides between node points (1) and (4), and (2) and (3) will

be developed first and then the axial pressure load (the pressure

normal to the sides connecting nodes (1) and (2) and (3) and (4)

will be developed next. These will then be combined so that

radial and axial pressures may be input for each node point of

the trapezoidal element (See Fig .III.lfor node point numbering).

4.3.1 Radial Pressure

Assume a linear normal pressure distribution on the

boundary between node points (1) and (4). This assumption leads

to the requirement of numbering the node points in counterclock-

wise order.

Let

p = p1 + e + fz (4.3.1.1)

where

(4.3.1.2)
f P4P

Z4-ZI

The external work done by the pressure on the

displacements is

W = f pru + pzw)dA (4.3.1.3)

A

25



or Z4

W 2nr, (pru + pnw)dZ (4.3.1.4)
r

Pr pcosa and pz =psina (4.3.1.5)

Z4

W 2n f (pcosa(u) + psina(w) )dZ (4.3.1.6)

z1

Let

= cos = 4 1 1

LI = sina = rl-r4

= [(ri-r) + (z4-zl):] (4.3.1.7)

m, p P,- z Pz 4 -Pl)

nI = (Z4-Z 17

Then

Z 4

W 2nr X u(a+bz,z) + Liw(a+bz,z)[mi+nxz]dz (4.3.1.8)

Zl

where

u(a+bz,z) = al + c2(a+bz) + a3z + a 4(a+bz)z (4.3.1.9)

w(a+bz,z) = al + 82(a+bz) + 3 Z + 84 (a+bz)z (4.3.1.10)

For the side of the trapezoid connecting node points (2) and
(3) the same procedure is followed exactly. The total work

can be written as:

S W (J= 1,2, ...,8) (4.3.1.11)J

W = LYJ[Qp I{M} (4.3.1.12)
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where

LYJ = ( X (3xX S 0 10 4

LMJ = LmI i, nl nlij (4.3.1.13)

Recalling that

{y} = [H]{ql (2.7)

then

LYJ = LqJ[H]T (4.2.14)

Then

W = [qJ[H]T [Q ]{M} (4.3.1.14)
p

The vector {M} can be written in the following manner:

m +(- 0 0 -(Z P1

S 0 1+( ) ( Z ) 0 P2z4 -z1 . z4-z1
(4.3.1.15)

nI Z4-Z 0 0 (z-z P3

ni 0 Z4 Zi Z4 Z 0 P

or

{M) [h ] {p} (4.3.1.16)

Equation (4.3.1.14) can now be written as

W = LqJ[H]T[Q ][h ]{p} (4.3.1.17)
Pp

where the radial pressure load vector is {Fp} and has the

following form

{Fp} = [f]TQ p][h p]{p} (4.3.1.18)
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4.3.2 Axial Pressure

Assume a linear normal pressure distribution on

the boundary between node points (1) and (2)
t t t ,P' = P1 - (P 2-PL)rI + (P2-)r (4.3.2.1)

r2-ril r2-rl

Let

MI P I ( 2 I I(2 )( 4 3 2 2= P1 ~ ri(4.3.2.2)

P2-Pr2-ri

Then

p = (m + n r) (4.3.2.3)

The external work done by the pressure on the

displacement is:

W (Pru + pzw)dA (4.3.2.4)

For the case of axial pressure; pr 0

Therefore

W = f (pzw)dA (4.3.2.5)

A
r 2n

A Hf rdedr (4.3.2.6)
r 0

rj

A f 2w f rdr (43.27)
r i



Substituting into Equation (4.3.2.5) the following result is

obtained:
r2

W 2w f r(pzw)dr (4.3.2.8)

ri

For the side of the trapezoid connecting node points (3) and

(4) the same procedure is followed as for node points (1) and

(2). The total work can then be written as:

W (i = 1)2,3,4) (4.3.2.9)

W = [Qp]{M) (4.3.2.10)

p

LOJ = L0 ps 03 p$4]
t  t , 1  (4.3.2.11)LMJ = Lm:, , mii', nI x nii J

and

2 2 2 2 3 3 3 3
1/2(r'2-rl) 1/2(r 4-r3) l/3(r2-rl) l/3(r 4-r3)

S33 3 3i/3(r2-ri) 1/3(4-r3) i/4(r2-r,) 1/4(r4-r3)

IQ] 222 (4.3.2.12)
p zl/2(r 2 -r2) z4/2(r2-r2) z4/3(r3-r3) z4/3(r3-r )

3 3 3 3 4 4 4 4 )
zi/3(r2-ri) z4/3(r4 -r 3 ) zl/4(r 2-r1 ) z4/4(r 4-r3)

It is known that

{0} = [h]{w}
(2.6)

LOJ = LwJ[h]T

Substituting into Equation (4.3.2.10) we obtain

V Lwj[h] TQ]{ 1M (4.3.2.13)
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The vector {M } can be written in the following manner:

-r r 2 -r0

mi 0 + r r
r4T -r 3  P2

(4.3.2.14)
n 0 0 P3r2-rl r2-r,

ni 0 0 p
r4-r 3  r 4 -r 3

or

{M ) = [hp]{p,} (4.3.2.15)

p

Equation (4.3.2.13) can now be written as

T

W = LwJ [h] T[Qp[h']{p'} (4.3.2.16)
p p

{Fp} = [h] [Q ][hp]{p 1 (4.3.2.17)
p p p

4.3.3 Combining Radial and Axial Pressure Loads

In this section we will combine the radial and axial

pressure load vectors so that it is possible to input one radial

and one axial pressure value for each node point of an element.

From Section 4.3.1 recall the following equation

{M} =[hp]{p} 0-43.1.16)
p

and from Section 4.3.2 we have

{M } [hp]{p'} (4.3.2.14)
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Combining (4.3.1.16)and (4.3.2.14) the following is obtained,

where [H is defined as [HP] on Page 15 of Reference 7.
p

{M*) [H*]{p*} (4.3.3.1)

p

In the same manner from Equation (4.3.1.12)

W = LYJ [Q p]{M} (4.3.1.12)

and from Equation (4.3.2.10) (the axial contribution)

W L J[Qp]{M} (4.3.2.10)
p

Combination of the [Qp] and [Qp] matrices yields the

matrix Q *] which is defined as [QP] on Page 12 of
p

Reference 7.

The final pressure load vector can now be expressed by the

following:

{F;}= [H] T[Q;[H;]{p * }  (4.3.3.2)
p p p

For the special case of the core element (Figure 2),

the pressure load vector is of the following form:

{F} []T[Q; [H*]{p*} ( 4 .3.3. 3 )

4.4 Prestrain Load Vector

The prestrain load vector is constructed assuming

uniform distribution of prestrain across the element. The

prestrain contribution to the total potential energy is:

=, fLEJ[E]{c,}dV (4.4.1)

V
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where

{€} = [D]{y} (4.4.2)

and [D] is defined by Equat.on (4.2.3)

From Lquation (2.7) we have,

{y} = [H]{q} (2.7)

Therefore Equation (4.4.1) becomes

E fLYJ[D]T[E]{ 1.}dV (4.4.3)

V
We also know that

dV = 2nrdrdz

(D = LyJ27 ff [D]Trdrdz[E]{€ i } (4.4.4)
r z

Let

[D] = 2T/f[Dlrdrdz (4.4.5)

We know that, rz

0 r 0 rz 0 0 0 0

1 r z rz 0 0 0 0r[D] = (4.4.6)

0 0 0 0 0 0 r r2

0 0 r r2  0 r 0 rz
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IAnd from our previously defined notation:

f frPz q drdz = Ipq

rz

We have the following

0 110 0 I11 0 0 0 0

o 1 0 101 I1 0 0 0 0

[D] = 2i 0 0 0 0 0 0 110 120

o 0 11o 120 0 1io 0 I1

Substituting back into Equation (4.4.4) we have:

= LYJ [D T[E]{e i }  (4.4.8)

Recalling that

{y}T = qj[H]T (4.2.14)

and transforming to grid point displacement coordinate we

have:

T ~T

E = LqJ [H] [D] [E]{eiJ (4.4.9)

Substituting into the Lagrange Equation and taking the first

variation with respect to the displacements, we obtain the
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prestrain load vector:

{Fa } = [H]T T[E]{Ei } (4.4.1o)

and for the special case of the core element, we obtain,

T!
{F } = [H]T[D][E]{e I (4.4.11)

where

{FE} T = LF~r, F~z,, Fr r, FEz 2, F~r 3, Fez 3, Fr , Fz 4 j (4.4.12)

and

{6}T = cir S ezC O (4.4.13)

4.5 Thermal Load Vector

The thermal load vector is a special case of the

prestrain load vector. The temperature distribution function

employed for the trapezoidal cross-s-ection ring is assumed as

follows:

T(r, 0, z) k, + k 2r + k 3 z + k'rz (4.5.1)

or

{T} = [g.]{k} '(4.5.2)
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where [g] has the folluwing form.

1 r z rz
II

r z rz
i r z rz

1 r z rz

The prestrain load vector contribution to the total

potential energy'may be written as follows:.

I 1
fLE= . [EEi dV (4.5.,4)

V

From our, previous notation we know the following:

{e}T = Lyj[D]T (4.2.4).

{y} ' = [H-]{g}' (2.7)

dV = 2frdrdz

The initial strainvector can be written as,

I!!

JT = TLar, a6, z, oi = (T&. (4.5.5)
1 3

F!
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Upon substitution into Equation (4.5.4) obtain

= 21tLqj[H]Tff [DTE]{T&rdrdz (4-5.6)

r z

Rewrite [E]{T&} as [Ea]{T}

where the coefficients of thermal expansion have been

multiplied into the [E] matrix.

Equation (4.5.6) now becomes,

4 = 2ff qJH] Tff r[D]T[Ec']{T}drdz (4.5.7)

r z

From Equation (4.5.2) we know that

{T} = [g]{k} (4.5.2)

Oe = 2TTLqj[HJTJJ r[D]T[E'][g]drdz{k} (4.5.8)

r z

Define f r[D] T[E][g]drdz as [Q]

r z

Then Equation (4.5.8) becomes

0 = 2rLqJ[H] T[Q]{k} (4.5.9)
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The {k} vector can be written in terms of the grid point

temperatures in tne following manner

{K} = [h]{T'} (4.5.10)

where

{K} = Lk, k 2 , k 3, k 4 J (4.5.11)

{T'} = L(T 1 -To), (T 2-To), (T3-To), (T4-To)_j (4.5.12)

To Equilibrium Temperature Of Structure

1 ri Z1  rizi

. r 2  Z 2  r 2 Z 2

[h] -  = (4.5.13)
1 r3 Z3 r3z3

i r4  z4  r4z4

and [h] has the following form:

r2 Z4 (r3-r 4 ) -rlz 4 (r3 -r4 ) r4 z1 (r2-r1 ) -r 3zI(r 2-r1 )

-z.(r3-r4 ) Z4 (r3 -r,,) -zi(r2-rl) zi(r 2-ri)

j[h]i- 1 514A -r 2 (r3 -r4) rl(r3-r4) -r4(r 2-r1 ) r3(r 2-ri)

(r3-r4) -(r3-r4) (r2-rl) -(r 2-r,)

~37
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where

A = (r2-rl)(r3-r 4 )(Z4 -zl)

Substitution into Equation (4.5.9) yields,

rD= 2T[qj[H]T[Q][h]{T ' }  (4.5 .15 )

Substituting into the Lagrange Equation and taking the first

variation with respect to the displacements, the thermal load

vector is obtained:

{FTI = 2r[H] T[Ql[h]{T'} (4.5.16)

For the special case of the core element the thermal load

vector is of the following form:

T
{FT } = 2r[H] [Q][h]{T'} (4.5.17)

4.6 Gravity Load And Centrifugal Force Vectors

The work done by the acceleration of gravity on the

aisplacements can be written as:

Work = f pGwdV (4.6.1)
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where

dV = 2ffrdzfr

G = Acceleration of gravity

p = Mass density of the material

in question

w = Assumed displacement mode

shape in the z direction.

Work = 2npG ff( ir + 0 2r
2 + $3rz + a4r2z)drdz (4.6.2)

rz

As before denote

Ir zqdrdz as Ipq (4.2.8)

rz

Work = Lai3, 3 04_j 2rpG I

120 (4.6.3)

Ii

121

Rewriting the work equation with respect to all the

, field coordinate degrees of freedom we obtain

39

F



[Work =Lai1 02, (a3  (s4 01, 02, $3, 04_ 21rpG 0

0

0

Iho

120

Ii

121

or

Work =L-YJ (F G) (4.6.5)

L{F G L, a2, 09 , 110, 120, 12, 83, (4..6

Remembering that

{yl =[HJ{ql (2.7)

=Y Lqj [H] T (14.2.J14)

Work = Lqj [H]IT {P G} (4.6.7)

Upon taking the first variation of the Work

Equation with respect to {q} . the Gravity Load Vector

{F G} is obtained

{F G I= [H]{G1 (4.6.8)
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The Centrifugal Force Vector is determined as follows:

The external work done by the centrifugal force on the displacement

can be written as follows:

Work = f pW 2rudV (4.6.9)

V

where

dV = 2nrdzdr

= Natural frequency (rad/sec.)

p = Mass density

u = Assumed displacement mode

shape in the r direction.

Work = 2wpw 2  (u)r2dzdr (4.6.10)

A

Work = 2W2P f(cr2 + a2r 3 + acriz + carsz)dzdr (4.6.11)

A

Denote:

ffrPzqdzdr as pq (4.2.8)

r z
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W = 2r, pw2 Lot 10 2  a 3 O4 . 12,0

(4.6.12)
12, 1
T230

Rewrite the work equation with respect to the total

set of field coordinate degrees of freedom

W = 2vp 2 LcL, a2, a3, C4, (1 , 02, a33, aJ 12,0

13,0

12,1

13,1 (4.6.
1 3 )

0

0

0

0

W =[YJ {CGI (4.6.14)

where

(T = L(, 3i , ,e, (3, (33, (341
{Y) Lais(2a, a 4, Ct3s Ct401 4-

{CG }  = 2 TpW 2L12,0, 13,0, 12,1, 13,1, 0, 0, 0, 0,1 (4.6.15)

Substituting the appropriate transformations into

the work equation and taking the first variation with

respect to {q) we obtain the Centrifugal Force Vector {CG}.

{CGI = [H]T{CG} (4.6.16)
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4.7 Stress Matrix

The element stresses are given by the following:

{ = [E]{c} - [E]{i} (4.7.1)

Recall that

{e} = [D]{yl (4.2.2)

Cr 0 1 0 zi  0 0 0 0 {y}

h/r 17 1 i z 0 0 0 0

z 0 0 0 0 0 0 r
z ri

C rz 0 0 1 ri 0 1 0 z (4.7.2)

From the [D] matrix it is seen that the stress can be

evaluated at Nodes (1) through (4) (i.e. i = 1 - 4)

We also know that

{y} = [H]{q} (2.7)

Equation (4.7.1) can be wuitten in the following manner:

{e} = [E][D][H]{ql - [E]{a} (4.7.3)

And for the core element

{a} = [E][D]E[]{q} - [E]{&} (4.7.4)

43



Denote

or [[][] as [S] (4.7.5)
[E] [D] [H]

and the remaining stress contribution

[E]{&1 as {,4,} (4.7.6)

Equation (4.7.3) now becomes

{a} E SJ{ql -{'}(4.7.7)

where

{}T ((L2) ' 0(3) a(4~)2 G(aV9) J(4.7.8)
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V Kinetic Energy

It is assumed in writing the element kinetic energy that the

rotational energies are small compared with the translation

energies. The kinetic energy function then takes the following

form:

(D = m/2 rLi(m)J [I]{(m)}dV (5.1)
f
V

The assumed displacement modes are of the form

LJ = L , &J (5.2)

Therefore

or
I V

or-, {2 }d (5.3)

It is now profitable to examine the form of the assumed

dispalcement modes u and w

u(r,e,z) = al + a~r + a3z + a~rz (2.1)

w(r,e,z) = J1 + a 2 + $3Z + arz (2.2)
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Upon examination of the Kinetic Energy Function (Equation 5.4)

it is seen that all terms are of the form:

(a+br+cz+drz) (e+fr+gz+hrz) which may be written as

La, b, c, dj 1 r z rz e

r r 2  rz r 2 z f

z rz z rz2  g

2 2 22
rz r2z rz r2z

2  h

For the element of volume we can write

dV = 27rrdrdz (4.2.6)

Upon multiplying r into the above matrix we obtain the matrix

which is to be integrated over the volume

2 2
r r rz r z

2 3 23
r r r z r

3

(5.6)
rz r

2
z rz

2  
r z

r 2z r 3z r
2
z

2  r3 z
2

Recalling from Equation (4.2.8) that

Ipq ff Pzqdrdz (4.2.8)

rz

The kinetic energy function can now be assembled in matrix

form as:

$2 = 1/2 OYJ [M]{y} (5.7)
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F' I

Recalling that

{y}' [H]{q} (2.7)

and

and

T[HIT (5.9)! ~~~{Y}T =, [HT5.'

Then
Tf

2 = I/21-qj[H] [MJ[H]{q} 10)

Substitution into the Lagrange. Equation and

differentiating once with :respect to time yields the

consistent mass matrix.

|T

[M] = [H]T[M][H] I (5.11)

For the special case of the core element the consistent mass

I' matrix is given as follows:

[MA = [MiT[Y] (5.12)
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LIST OF SYMBOLS

{C }  Centrifugal Force Vector

[D] Strain Displacement Coupling Matrix

[E] Material Properties Matrix

{F p Pressure Load Vector

{FT) Thermal Load Vector.

{FG} Gravity Load Vector

(F e} Prestrain Load Vector

[H] Transformation Matrix

1H"] Transformation Matrix

[I] Identity Matrix

[K] Stiffeness Matrix

[M] Mass Matrix

[S] Stress Matrix

T Temperature

U Strain Energy Density

W Work

[g] Transformation Matrix

[h] Transformation Matrix

m Mass Coefficient

P External Pressure

{q) Displacement vector referenced to grid
points

r Radius, System Coordinates

({A) Thermal Stress Vector
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LIST OF SYMBOLS (continued)

u Element displacement, r direction

w Element displacement, z direction

z Axial Coordinate

a Field Coordinate Displacement Degrees of
Freedom Corresponding to displacement in
u direction.

Coefficient of Thermal Expansion

Field Coordinate Displacement Degrees of
Freedom Corresponding to displacement in
w direction.

CStrain

{Y} Vector of Combined a and 0 field
coordinates

K Field coordinate Degrees of Freedom for
temperature distribution function

v Possion's Ratio

a Stress Component

w Natural Circular Frequency (rad/sec.)

P Mass Density

OP Potential Energy Function

OK Kinetic Energy Function
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C. QUADRILATERAL PLATE ELEMENT

I. Introduction

The formulation of the quadrilateral plate d1.screte element

described is derived from and is mathematically consistent with,

the formulation described in Reference 12. Tne addition of this

particular element serves to add additional capability in the

analysis of shell structures, particularly when instability analyses

are to be performend.

A detailed derivation is presented for the force displacement

properties of an orthotropi3 quadrilateral thin plate element

exhibiting membrane and benuing behavior. Included in these

relationships are terms for stitLness, stress, thermal stress, and

incremental stiffness.

For the quadrilateral plate element, orthotropic material

mechanical properties are defined by four parameters: Ex , E y-,x y' xy
and Gxy where4xy is the Poisson's ratio of the

contraction in the y direction to extension in the x direction

due to a tensile stress in the x direction. There i; another

Poisson's ratio yx  similarly defined, which is related to the

other material properties through the identify ExA x = EyAy.

Since, in general none of the sides of an elenent will correspond

to a principal axis of orthotropy, all relationships are derived

for an arbitrary orientation of the element in an x-y plane in which

the x and y axes are parallel to the principal orthogonal directions

of the material.

Techniques for deriving the desired force-displacement

relationships are described. The derivations make use of the matrix

statement of Castigliano's Theorem. As shown in Reference 13, this

leads to the stiffness matrix being defined as the product of three

matrices, each containing simple terms.
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I

II. Development of Lnear Elastic Membrane Stiffness Matrix

For the quadrilateral plate element, shown in Figure III-3,

the stresses are assumed to be given by

--x = a1 + a 2y

-y= a 3 +ax (III-l)

~xy = a 5

This assumed stress pattern was adopted in Reference 13 by Turner,

et al, in the derivation of the stiffnpss matrix for an isotropic

rectangular plate. Equations (III-1) satisfy the equilibrium

requirements of a differential element and can be operated upon

to yield compatible displacements. The complete element, in

attachment to other elements of the system, does not satisfy

equilibrium and compatibility at all points along the juncture

line however. Evidence (Reference 5) from plane stress analyses has

shown that the consequence of these shortcomings is a stiffer

idealization, but not as stiff as would'be obtained with use of

the linear edge displacement assumptions proposed in Reference 6.

The matrix statement of Castigliano's Theorem, applicable

to the derivation of the quadrilateral element force-displacement

properties is written as

T1
[K] : [B_1 T [CJ [B] (111-2)

where [K] is the desired matrix of element stiffness coefficients.
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To obtain the matrix [I], we first establish the strains

for an orthotropic material in accordance with Hooke'3 Law and

considering the possibility of initial strains as follows:

1 i

y - V7 y -,"yxq ) + y (111-3)

- xy i

Xxy -- + xxy

i i i
where 6x ' , y and 4rxy are the initial strains.

The constants, a, in the assumed stress pattern are

introduced into the strain expressions by substituting

Equations (III-1) into the above equations to yield

= A i ( al-~ ~A- a1.x +a2 J +
Ex = xey a3) -xy +x

Ly : +i [ a3 _/yx a1 ) - yx "2y + a4x] +y

5 -y a5  i (111-4)yx5 + jrx y
Gxy
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dv Utilizing the basic relationships that x = x and

-37- - C Y , it is possible to determine the linear displacements

of the quadrilateral by integrating the strain expressions

tEq. il-4) with respect to the appropriate variable. Thus,

A,,e~ef dxax i

=a--,ey w- a~ 2 + a~y + x= x3 2 2Yx + fl(y ) ] x

(111-5)

v = ydy

i [(a 3  xal) Y yx a2Y a4 xy f2 (x)
= Y 3- 2 ++E y

The functions of integration, fl(y) and f2 (x), can be evaluated

from the shear strain definition xy= +!+

Substituting Eqs. III-4 and -5 into this shear strain definition

gives

a i a2x I d fl(Y) a4 y i d f2 (x)

G + Y = x MX- s -- + Y-+ E- a-+ -xy + +
xy x y y(III-6)

To separate the variables, Eq. 111-6 is rearranged as follows

1 d fl(y) a 4y I d f(x) a2x a

X dy y y

The functions f,(y) and f2 (x) can now be determined by letting each

side of Eq. III-6a equal the constant a6  and integrating to

yield Ex
E x  yx

fl(y) = - a + a6Y + a7  (III-7)

f2(x)= - a2  -+ _a - a6x a8 Yxyx
xy
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Substituting Eqs. 111-7 into Eqs. I-5 and evaluating the

resulting expressions at the corner points 1, 2, 3 and 4 of

Figure 1 produces the relationship for the corner displacements

as shown as Eq. III-8 in Fig. III-4. The square matrix, including

the coefficient 1 , on the right side of Eq. 111-8 is the[B] matrix

To develop the LCA matrix we first need the expression for

strain energy for orthotropic plane stress. In term of stress,

this can be written as

U 2 2
h {( x + a..- -" 0- C r + , , dx dy (111-9)

y y~x

Substituting the assumed stress iunctions, Eqs. III-1, into the

energy equation and expanding produces

(a )++ 2 (a 3  + a3 ax + a 4 x
(a7 1  +2 1 a 2 ay 2 22-

x y
2,Ayx a5a+2 +a dA (III-lO)

-E ( a 3 + aa4x + a2 a3Y + a2a4 xy) d

The derivatives of the strain energy with respect to the constants
al, a2, ........ a8 are:

aU hx Aa + Iya 2 - E 4yx Aa3 - Eyx y Ixa4
da 1  x yx ya

U hr 2 E x Ex 7
a - [ Iyal + Iy a2 - y I Ya 3 Y_ x Ixya4J

Ja 2 x Y

U _ h [Ex (-AxAal -Ayxra 2 + Aa + Ia) (IrI-l)
a3 x y

JU h E4 (;Ixl -ayxIxya2 + Ixa + Ix a4)
a4  x LY2
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U h ]EA a--

5 
(II-l Cont.)

u _ . du 0
aa6  a 7  J a 8

where A = fdA

ij r ij
And Ixy = A x y dA

From the above we have

-U A Iy A(XA cxyIx 0 0 0 0 al

h 12 ;xy y EX 0 00 0 a2

Oa 2  *y y xy ly xyxy 02

E IxU - Ex 1  0 0 0 0 a3

----U ;-*xy Ix '7'xyIxy Exy Ix  Ex 1ix 0 0 0 0 a 4

du a0 0- EA 0 0

U 0 0 0 0 2 0 0 0 0 a

AlL 0 0 0 0 0~ 0 0 0 a5

on th ih steMti C X

'II

Utiizinu 0 0 o 0 0 0 0 o0jfa8,
0 a7

(III-12)

h
The square, symmetric matrix, including the coefficient rxx
on the right is the Matrix X

Utilizing Matrix [BI from Eq. III-8 and Matrix LCjfrom

Eq. 111-12, the element stiffness matrix, (K] , is obtained from

Eq. 111-2. 57



III. Geometric Properties

In the development of Matrix [c] in the previous section,

a group of I iyj terms resulted from integrating the energy
x y

expression. These terms are of the form

i =Jx i YJ dy dx =JA xiyJ dA (111-13)

and therefore are analogous to area moment relationships.

In explicitly formulating the Ixi J  terms it was con-
Y

venient to use previously determined I j J terms with reference

to the ?- f coordinates (see Fig. 111-3) and transform these

to the x-y coordinate system. The coordinate transformation from

the x-y system into the ;-f coordinates for any given point is

expressed by:

[Cos 0 sin0 Jx3 (111-14)
-sin n cos @I Yl

where 0 is the'angle, bett*een the x and axes and is defined by

Q tan-1  X2
Y2

Alternatively the coordinate transformation from the system

to x-y system is given by

1x [cos -sin (iii-14a)

As an example of the determination of I i J 's in

terms of I iJ's consider the first moment of the area about the

y axis, Ix For this moment

Ix =fA x dA

= J (71cos 9 - §sin 9 ) dA (111-15)

= cos 9 f dA - sin Of dA

= cosO - I sin G
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All the other I i Js are determined by a similar procedure

and are stated as follows:

Ix 2  14 12 cos2 - 21, cos 0 sin 0 + 1 2  sin20

Iy =I 1 sin G + Ig cos @
(III-15a)

T 2= I 2 sin2 +21g sing cos 0 + I52 cos 2G

xy (£92 2 I 2 ) sin 9 cos 0 + I4q (cos2 - sin2)

The area and moment properties about the ;' and

axes were determined by direct integration within the proper limits

to yield the following expressions

A =f dA 1 [ 4 + 0?3-1l ) ( 53+f) -(3- V 3]

I (fO3 - 3Il) (q3+q4) + f 3 2 (R3+ 2)J

Ik = l 0 [ 4 3-f 3 k) 32 + 43 4+ '2) +'32 (32 +43 2 +12)]

If = 4 4 4  + (%34) (f3+ fA + f 4 (3_2) f3 (I-16)

I 2 4 " + (3-+) (f2 f24 (-3+f4) ( ?3_/2) C3]

2 4 4

1(3- 4 ) i4
7X [3 ~4 + 2 2

+ 8 (f 3-f4) ( 3 2 + +?42) A~? C4.3J4)

(3 -4 )

+6 (f'~4 3 '~) (~3 -hl J4) -37)32 (2 ~ 3 +(.43 -44)
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IV. Development of Initial Force Terms

The initial force terms are derived from a consideration

of the element corner forces. From Castigliano's Theorem, the

corner forces are expressed by

[F3 = [ t s of in (1en-17)

Noting that the matrix W is the set of influence coeffi-

cients in the direct relationship between the constants a and

the displacements t'(= u, v), it follows that

I j = [B-I3T (111-18)

Also the vector d a has already been determined in Equ. 111-12,

Sect. III-A, as --aJ = [C] al . Thus, we can rewrite

Eq. 111-17 as

IF] = [B-1IT [CJ [a] (111-19)

The initial strains are introduced into the force

expression by first solving Eq. 111-8 for fa) thusly

ga=yi Bl + - [Y + x (III-8a)

and substituting this relationship into Eq. 111-19 to give

rF= [Bl1] T - [B-1 l]T (Cj [B [Ex'x

(I11-20)

The first term on the right hand side of Eq. 111-20 represents

the corner forces due to displacement, i.e., the forces required

to induce the deformations u and v elastically. The second term
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yields the initial forces, F FI}. Thus

[F£ [1 [] LBI - + i. £ (111-21)
I Y Y + )

Since from Eq. 111-2 [K] [B-l T [C [BJ -, the initial forces

are simply the product of the usual element stiffness matrix and

the column of node point initial displacements. Hence

-- 0

ix C ix2x

Fxi ix3x

Il' 1 0

FyC yiy2 + x 2

Y i Gy i Y + 4yX i x 3

ii

F ~y4 + x

Y41  y xy

For the case of a change in the termperature of the

quadrilateral element equal to T, the initial strains are given by

Cx' = C,, T
x x

= cX T (111-23)y y

(rxy
i = 0

where -<x  and c(y are the coefficients of thermal expansion

in the x and y directions respectively.
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V. Stress Equations

The stress equations are derived by first evaluating the

assumed stress functions, Eqs. III-1, at corners 1, 2, 3 and 4.

This procedure yields the following relationship for the corner

stresses:

-x 1 0 0 0 0 0 0 0

-x6  1 Y2  0 0 0 0 0 0

-x 1 Y3  0 0 0 0 0 0 aI

a-x4 1 Y4  0 0 0 0 0 0 a2

/F 0 0 0 0 1 0 0 0 a S
Sxyl 3

TX20 0 0 0 1 0 0 0 a 4

xY3  -o o 0 0 1 0 0 0 a5  (111-24)

txy4  0 0 0 0 1 0 0 0 a6

Yl0 0 1 0 0 0 a

02 0 1 0 0 8 )

0 0 1 x 0 0 0 0

y 0 0 1 x3  0 0 0 0

In a more concise manner Eq. 111-24 may be written as

[D] [a (III-24a)

By substituting Eq. iii-8a from Sect. III-C into Eq. III-24a,

the stresses may be written in terms of the displacements and initial

strains. This substitution yields

IrxY [D] [B]-I- DVI"D LBI-y i y (II-5

y v Y Y + (111-25)
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The first term on the right hand side of Eq. 111-25 corresponds

to the displacement stressest1J , wh
4 le the second term represents

the initial stresses, Lexy = ] [B] - , the displacement stresses are

given by1"

O-xi
c 31

Cv-x 
42

- 4 ~ ' 3

LSxyj (111-26)

'xyi "&4

-yl 3

-y

a- i

3

CrY
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Similarly the initial stresses are

-xi

x3 0

0- x i x i X2

2 2

+ xy I  x

Yi y Y3 3

Y3x

xyl

'C i o
x' 3=[xi (111-27)

yI2x+  x

I IIx

ci i € Y +f x..
I. I x

°y41 l4+x

Sy 3 4
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VI. Development of Linear Elastic Stiffness Matrix (Bending)

The orientation of this element in the X-Y plane and the corner

forces and moments are shown in Fig..II5. As before, the principal
directions of orthotropy must be parallel to the X and Y axes

In deriving the linear elastic stiffness matrix the displace-

ments in the direction normal to the plate midplane are assumed to

be representable as

w =a 1 x
3 + a2 x

2 +ax a6Y + ax3y + a 8x 2y

+ a9 xy + a10 xy
3 + a1 1xy

2 + a1 2  (V-l)

where a, ..... a1 2 are constants. Since twelve force-displacement

equations are to be derived (three degrees of freedom - Ox' GYP w -

at each corner point), twelve independent parameters appear in the

assumed displacement function. Secondly, all possible single terms or

products to the third degree are included; the resulting polynomial

is "geometrically symmetric", e.g., corresponding to the a8x y term

there is the a1 1xy2 term. Finally, Equation (1) satisfies the

differential equation of equilibrium.

To obtain the desired stiffness matrix, the following matrix

product is effected:

([B ] _l) T [cf) [B] -1 [Kf (V-2)

To formulate the matrix [B] , we first establish the slopes ex and 9y

from the deflection function (Equation V-l) by

Qx - 3y 2a4 + 2ya5 + a6 + x3 a7 + x 2 a8 + xa9  (V-3)
dy

+ 3xy a10 + 2xyall

y = w  =-3x2a 1 - 2xa 2 - a 3  3xya 7 - 2xya 8 - ya 9--y3alO - y2 all 
(V-4)
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Figure 111-5 Quadrilateral Plate Flexural Element
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The slopes and the deflection, w, at the four corners

of the quadrilateral are evaluated to yield the relationships shown as

Equation (V-5) in Figure (V- 2 ). The square matrix on the right

hand side of Equation V 5 is the [Bjmatrix.

The [Cf] matrix is determined by first considering the

flexural strain energy. In terms of the out-of-plane deflection

w, the strain energy is given byU hff[ Ex ( ) V6
22

E Ze + E Ial2w) d 2 w G 2w+ EX y XY x + -xy (aw dx dy

where:

M = 1 - .,.4exy .,4,yx  (V-7)

and [Cf] is shown in Figure 111-7.
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By calculating the inidicated partial derivatives of w from

Equation V-1, and substituting into Eq. V-6, the following expression

for the energy in terms of the constants, a, is obtained

Ua2 [(36x 2a + 24xa a + 72x ya a + 24zyaoa 8

+ 24xyaa + 8ya + 36x 2y-

+24x y
2 a8 a8 + 4y y2a 8 2)

Ey 36y 2a42 + 2ya4a5 + 72xy
2 a4a10

+ 24xya4 a1 1 + 4a52 + 24xya5a10 + 8xa5all

+ 36x 2 y 2 a 1 0
2 + 24x2 ya 0 al + 4x 2 )

+ 9/x y ( 36xyala4 + 12ya2 a4 + 36xy2a 4a 7
Yx

+ 12y2 a 4 a 8 + 12xala5 + 4a 2 a 5 + 12xya5a7

y a5 8 + 36x 2ya1 a1 0 + 12xya2 a1 0 + 36x2y2a a10

+ 12xy2a8al0 + 12x2 a 1 a 1 1 + 4xa2a11 + 12x 2ya 7 a1 1

+ 4xya8all)

+ 4Gxy M ( 9x 4a7 2 + 12x
3a 7a8 

+ 6x 2a7 a9
Ex

+ 18x2 y 2a 7 a 1 0 + 12x 2ya 7 a 1 1 + 4 xa 8  + ixa 8 a 9

+ 12xy2 a 8 al 0 + 8xya8a1l + a9
2 + 6y2 a9 a1 0 + 4ya9a11

4i 2 3 2 2~
+ 9y'a1 0  + 12y al0 all + 

4 y a 1 1  dx dy (V-8)

Next, the strain energy is differentiated with respect to each of

the constants, al, ..... a12 . For example, the derivative with

respect to a, is

dTe 12h3{J'I (36x a 1 + l2xa 2 + 36x ya 7 + l2xy a 8 )_ + 2.' + + 1x

2Axy E 18xya4 + 6xa5 + 18x2ya10

+ 6x2all)1 dx dy (V-9)
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Letting if x dx dy Ix, or, in the general form letting

ffIxiY dx dy = , Eq. V-9 is rewritten as

diOUF  Ex h3 22
a 12M 36 Ix a1 + 12 Ixa 2 + 36 ix y a + 12 Ixya8

x (36 xa4 + 12 ixa + 36 ix2ya10

+ 12 Ix2a11) (V-10)

The development of all Ixi J  terms will be presented in detail
xy

in Section C.
Three of the dgrivatives are zero; namely,

dUF dUF _ UF
a 3  a 6  a al2

In matrix notation the twelve partial derivatives of the energy

with respect to the constants may be expressed as

UF a

a 1

[Cf 1

UF a
a12  1

The square, symmetric matrix Cf is given in Figure 111-7.

The [B]and [Cf] matrices can now be used to determine the

flexural stiffness matrix, LKfJ ,for the quadrilateral plate

element from Eq. V-2. Clearly, the operation[ B- 1]  [Cf][B] -'is

too complicated to allow for an explicit formulation of the( Kf

matrix. It is intended that the formulations of the[B] and [Cf ]
matrices be stored in the computer for use each time a stiffness

matrix is to be evaluated. Unfortunately, it has been found that

for certain geometric proportions the[ BI matrix will be singular.

* A means -cr predicting this singularity and circumventing it is

discussed in Section X. 71



VII. Development of the Incremental Stiffness Matrix

The incremental stiffness matrix [nj is derived through

application of the matrix triple product

([B]-I)T [C,] [B]- = [n] (V-12)

The [B] matrix is the same as that which has been discussed

above. The [ Cn matrix is defined in a similar manner as before,

but not the appropriate "energy" integral is

1n w dx dy (V-13)
Us = f Nx (T_2 + NY yy2 + 2Nxy(_ (y ddy g-3

In developing the (Cn) matrix, it is assumed that the inplane

forces NX, Ny and Nxy are constant throughout the element. Since

the normal inplane stresses, o-x and 0-y are actually not constant

(see Chapter III), the inplane forces are taken as the average of

the edge forces occurring at the four corner points of the
S quadrilateral plate element. Thus

Nx - x2 +6x3 +Ox4 h
4

N _ _ _ _ _ __2

(l7 4 3 a4) h

The shear stress is constant throughout the element so that
xy xyNxy = xY h

It is convenient to divide the energy expression, Equation

V-13, into its three components as follows:
Un Unx + Un +UxU U +Un + UUn

xy

1 dx dy + y dx dy + N dxdy

(V-13a)
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g s .

We now consider each energy component separately and obtain a

(Cn ] matrix corresponding to each component (J = x, y or xy).

By.differentiating the assumed deflection function (Equation V-I)

and substituting the derivatives into Eq. V-13a, we obtain an

expression for each energy component as follows:

Unx = lNI9x4a1 2 + 12x3ala2 + 6x2a 1 a 3 + 18x4Ya1a 7 + !2x3yala 8

+ 6x 2yaa 9 + 6x y3aa 0 + 6x2 y 2ala + 4x2a22 + 4xa2a3

+ 12x3ya2a7 + 8x2ya2a8 + 4xya2a9 + 4xy3a 2a10 + 4xy2a2a11

+2 6xyaa + + 2yaa + 2y a3a + 2y2a a
+ 2 at 2 + 22 +a 3x2 2 xa3a 03 1

+ 9x 4y2a72 + 12xy2aa 8 + 6x2y2a7 a 9 + 6xa2yAaa 10 + 6x2 y3a a1

+ 4x2y2a 8  + 4xy2a8 a9 + 4xy 4a 8 alO + 4xy3a 8 a1l + y2 a 9 2

+ 2 yaa1 + 2y 3 a + ya 2 + 1yaa + 4y2 7 d dy9 ~~ 1aa 1 1  y 1 0  2a 1 0 1 1  y a 1 1  x

(V-14)

+ Nyfa[ 2xyaa + 12y3a4a + 6y2 a4 a6 + 6x3y2aa + 6x2y2a4a 8

+ 6xy 2a 4 a + 18xy4 a 4 a1 0 + 2a y3aa 1 1 + 4y2 a 2 + 4yaa1

+ 4x3 aa 9  + 4x2yaa8  + 4xya a + 12xy3 a9a + 8xy 2 aa 11

+ a6
2 + 2x a6 a1. + 2x a6 a 8 + 2xa6 a 9 + 6xy a6 a1 0 + 4xya6 a1 1

+ a225 1 a42 42
+xa7 + xa 7 a 8 + 2a7 a9 + 6xya 7 a 1 + 4x 4 ya 7 all + xa 8

+ 2x 3 aa9+ 6x 3 y2 a8a 1+ xy,8al+ 2a 2 + 6x 2y agal

+ 4x2ya 9 a + 9x2y 4a1O2 + l2x2 y 3alOall + 4x2y2all2J dx dy

a (V-15)
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y Nx y a1 a 4 + 6xy a2a4 + 3y a3a4 + 9x y a4 a7
=ny Nxy f 9x Y a a + 6x 2 22

3 3 5 4 2+ 6xy a 4 a8 + 3y a4 a9 + 3y a4 alO + 3y a4a1 1 + 6x ya1 a5

+ 4xya2a5 + 2ya 3a5 + 6x
2y2 a5 a7 + 4xy

2 a5 a8 + 2y
2 a5a9

+ 2y 4a5 a10 + 2y3aa5a1 + 3x2ala6 + 2xa2 a6 + a3 a6

+ 3x2ya6 a7 + 2xya6 a8 + ya6 a9 + y3a6 alO + y2a6 all

+ 3x5ala7 + 2x4a2a7 + x3aa7 + 3x5ya72 + 3x4ala8

+ 2x3a2a8 + x2a3a8 + 5x4ya7a8 + 2x3ya82 + 3x 3a1a9

+ 2x2a2a9 + xa3a9 + 4x3ya a + aa9 + xya92

+ 9x3y2 aa10 + 6x2y2a2a10 + 3xy 2a3a10 + lOx3 y3a7aO

+ 7x2y3a8alO + 4xy3agalO + 3xy5a 12 + 6x3yalall

+ 4x 2 xya2 11  + 7X3y2a7a + 5x2y2a8all

+ 3xy2 a9alI + 5xy4 a10a11 + 2xy3a1 12] dx dy 9(V-16)

Next the [C n I matrices are developed by taking the derivatives

of the respective energy component with respect to the constants,

a. For example in deriving the[ CnJ matrix, the differentiation

of Unx with respect tv al , is

Unx N [ 18x4a1 + 12 x3a2  + 6x
2 a3 + i8x

4 ya7 + 12x
3ya8

S1 2 + 6x 2 ya9 + 6x2y3a1 0 + 6x2y2a 1 1 1 dx dy

= Nx  [9Ix4a, + 6Ix 3a2 + 3Ix2a3 + 9Ix 4y_+rI6Ix3ya8

+ 31x2y a9 + 31 x2y3al + 31x2y2a (V-17)
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As noted previously, the terms are developed in Section C.

All the other derivatives are calculated similarly and

lead to the following expressions

FdU?, = u a 123

n al2}

The matrices [Cn X] [Cny] , and[Cnxy ] are shown in Figs. I1-8, -9

and -10 respectively.

Since [ CI= [c',j + [Cny1  + [Cnxy] , the.incremental

stiffness matrix may be stated as

[n] = [B-J ([Cnx + [Cny1 + [Cnxy]) [B] -1 (V-12a)
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VIII. Geometric Properties

The derivation of the Ix y  terms in the [CJ andICn ]

matrices are presented in this section. These terms depend only on

the geometry of the element and are defined as

I i f x i y J  dx dy =fxiy j  dA

Since the terms I f , where is an axis coincident

with one side of the quadrilateral (See Figure 111-3) had previously

been obtained by direct integration, it was convenient to express

the moments, Ixi j  in terms of the already known I i ~j s

The transformation to the J-f coordinates from the x-y

coordinates is:

f9 [co s  sin x (V-19)

~ -sino 9 Cos 0 J
and alternately

x I= Icos 9  -sin @ (V-20)

y snO 9 Cos 9

where:

sin 9 = Cos 9 =

2 + y2 22

To illustrate the derivation of the IxiyJ s consider

the second moment of area about the y axis, Ix. By definition

Ix2  =f x2 dA

=f( cos 0 - gsin0) 2

=f (j 2 cos 2  - 2 4Fsin 9 cos 0 + g 2 sin 2 0) dA

I 2 cos2 9 - 21,g sin 0 cos 0 + IS2 s2 in-
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This procedure was used to determine all the Ix s in terms

of the I, 's. The Ii have been derived elsewhere.

The area, A, of the quadrilateral can be directly

determined by adding and subtracting triangles and trapezoids.

In both coordinate systems the area is given by

A i 3 xY 3 + x 3 y4 - x4Y3 - x3 y 2 )
(V-22)
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IX. Development of Corner Thermal Moments

Although the corner thermal moments can be formulated

through the use of Castigliano's First Theorem (a procedurerimatrices), it
consistent with the derivation of the[Kf] and [n] arcsi
is considerably simpler, and probably sufficiently accurate, to

obtain the thermal moments by pro-rating the distributed edge

moments to the corners. This direct approach was used here and

is described in the following.

For the case of a temperature variation through the thick-
ness of the plate element, the thermal moments per unit length

at any point i is given by h
M, , E (1 +,+-Wxy) |2x (- 44 W) h

(V-23)

f h

where is a thickness coordinate measured positively in the
positive z direction from the neutral axis of the cross-section.

In deriving the corner thermal moments, it is assumed
that the distributed thermal moments are constant throughout the

element and equal to the arithmetic average of the moments at

the four corners of the quadrilateral. Thus

- ~. (MIj + "( M0  + M
1 2 3 x4

M 148 C % A (V-24)
My +. (Mf M G+ MO + M~
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These average moments are distributed around the edges of the

quadrilateral element as shown in the following sketch:

--M '

-M y C+My CA, MO
y X

4 h

I I I f H1+M;(

The distr.buted thermal moments are concentrated ("lumped")

at the corners of the element by assigning one-half of the total

moment along an edge to each corner bounding the edge. For

example, the corner thermal moments at Corner 1 are obtained by

A X,-. CA.I -x4 1 C M I (x

M - = M&4 Y4 CI Y2 (V-25)

Sy+M -- My (y 2 - y)
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The corner thermal forces F z are zero so that the thermal momentsz

and forces are expressed in matrix notation as

Mx1 Mx (x2-x4)
I

x2  Mx 3

I

My My (Y4-x2)

z3

- eA I

x 4  x3

P1 1 0

Fz 3 0

Fz 0

z4
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By differentiating the assumed displacement function (Eq. V-I),

the following derivatives are obtained

xa = 6alx + 2a2 + 6axy + 2a 8 y

2w  (V-28)
W = 6a4y + 2a5 + 6aloxy + 2allx

2w = 3a 2x + 2a8x + a9 + 3a y + 2allY
dx~y

Substituting Eqs. V-28 into Eq. V-27, and evaluating
the expressions at the centroidal coordinates ( x, y) yields

the following matrix equation for the moments and forces:

a1
Mxla

M iy = [g I(V-29)

a1

Mx a

a 2

The [g] matrix is shown in Fig. 11-1

The column of assumed constants, lail in Eq. V-29 is
eliminated by solving for [ai in Eq. V-5. giving

,a12 .
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And then substituting this expression into Eq. V-29 to yield

Oxi

x w 2

Qw3

wl

lx Ox

MI 1 Q xl

1I

W2

w3
w4

To account for the presence of thermal moments, Equation

V-30 is modified as follows:

MY. 

1

=~ 1s "1 x4  - si (V-31)

Where [S] = [g][BJ -1 and Is .J, the column of thermal

moments and forces, is given by

Mx

o 86

0

0 (V-32)



In Eq. V-32, MxA and CAI are the average distributed thermal

moments defined by Equation V-24.
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X. Criterion for the Singularity of the [B] Matrix

Under certain geometric conditions the [B] matrix may be

singular. When this is the case there is no alternative but to

revise the analytical model so as to define an element of different

geometric proportions. It is, of course, undesirable to permit

a complete analysis before the singularity is recognized. Hence,

the following criterion for assessing singularity or ill-condi-

tioning has been developed; it can be applied by means of hand

computation before the analysis is performed or incorporated
as a check in the routine for the computation of the element
force-displacement relationships.

The derived criterion is actually the result of an attempt

to develop an explicit inverse of the [B] matrix. By appropriate

rearrangement of rows and columns and through partitioning it can

be demonstrated that the singularity of the complete matrix

depends on the singularity of a certain 3 x 3 matrix. This 3 x 3

matrix is also too complicated to permit its explicit inversion.

Its determinant can be formulated, however, and it may be recalled

that a criterion for singularity is whether or not the determinant

is zero. The algebraic statement of the determinant in question,

D, is

D = 33 43 (ClIq4 + C23 3 2 C3 + C6 + C5)

where: 2

2C..y _4= (+r2) 1-1
c2 = 2Ir(5-2) +r 2 ( 1-i) + (1-2-) +,2(1 +_ 2 li-r))

c3 = (r-1) [ 3r -2-4r(r+l) - 6cQ2 r 2 +4. 2 y(r 2 +r+l)J

+r, (1-2o(r) + 2ov -1

C4 = 2 (1-r) (1-4r) + loKj
C5 = 7y 2 (i-o( K) ( ,-1) (V-33)

3 43
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Thus, if D 0 0, the LB] matrix will be singular. Equally

important is the case where [B) is nearly singular (i.e., the

terms in the adjoint of the 3 x 3 matrix are very large in

comparison to the determinant), since this will also produce a

meaningless inverse for the [B] matrix. A suggested criterion for

this condition is the ratio of the first diagonal element of the

adjoint to the determinant, D. Experience has indicated that

if this ratio is less than about 100, then it is reasonable to

expect a satisfactory inverse for the [B] matrix. The first

diagonal element, designated All, can be determined by

All = (3 232 3 134 - 2 23 3 32 4)(3 - ) (3 3 - 21/72)
I3 F3 4 ,4 3I

+(2 3 43 3 2) (- 33 4 4'i) (2 2 - 34)

+ 9 2 44733 5 - 12 23 33 E,-3 4 5 - 6 224 34 F3 ' 5

+ 9 7234324 4 5 - 132 432 3 244 + 22 4§3 3 4 5

- 2 23 k 3- 4 5% %- 16 4 3 3 f 32

'-4 92 3;4F '3 44

+ 4 2 4 3 2-T3 3 "r 3 _ 2 4- "4N 4 + 4 3  ,4 3 4 (V-34)

3 84 24 3 *;4 (
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D. TRIANGULAR PLATE ELEMENT

I. Introduction

The formulation of the triangular plate discrete element

described, is derived from and mathematically consistent with, the

formulation described in Reference 12. The addition of this

particular element, as a companion element to the quadrilateral

plate described previously, serves to compliment the additional

capability available for the analysis of shell structures

particularly when instability analyses are to be performed.

A detailed derivation is presented for the force-displacement

properties of an orthotropic triangular thin plate element

exhibiting membr&ne and bending behavior. Included in these

relationships are terms for stiffness, stress, thermal stress and

incremental stiffness.

g
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II. Development of Linear Elastic Membrane Stiffness Matrix

A matrix statement of Castigliano's first theorem, Part I,

applicable to the derivation of discrete element force-displacement

properties may be written as follows:

I1K] = [&l]j T [C] [B]-' (11-1)

where [K3 is the desired matrix of element stiffness coefficients,

LB] is a matrix in which the rows are the coefficients of

equations for the corner point displacements in terms of the

constants of the assumed displacement pattern, and the rows of [C]

are the coefficients of these same constants in equations which

represent the derivatives of the strain energy (expressed as

functions of the constants of the assumed behavior function) with

respect to the respective constants.

For the triangular plate element, we assume linear

displacements, i.e.,

u = a1 + a2 x + a3 y (11-2)

v = a4 + a 5 x + a 6y (11-3)

where a1, .... a6 are the constants in these assumed functions.

Eqs. 11-2 and 11-3 can be evaluated at corner points 1, 2,

and 3 (see sketch below) to yield the following relationships:

F
y, v Y3

Fx Fx 3 ,
1 tF

9 2

,> Fx 2

Fxl - , ,, x, u
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01
u1  1 0 0 0 0 0 al
u2  1 2 Y2 0 0 0 a2

u 3 x3  Y3 0 0 0 aS
vI  0 0 0 1 0 0 a4  (II - )
v 2  0 0 0 1 x2  Y2  a5 5
v3  0 0 0 1 x3  Y3  a6

where the square matrix on the right side is the [B] matrix,
whose inverse is:

(x2 y3 - x3y2 ) 0 0 0 0 0

-Y3-2 Y3 -Y2 0 0 0

[B]-l_ 1
x2Y3 -x3Y2  x 3-2 -x3 x2 0 0 0

0 0 0 (x2y3-x3y2) 0 0

0 0 0 -Y3-2 Y3 -Y2

0 0 0 x3_ -xIo x

o 0X3-2 D~ 2

where y 3 2 = Y3-y2 and x3 2 X 3-x2 .  (11-5)

To develop the [C] matrix we first need the expression

for strain energy for orthotropic plane stress. This can be

wirtten, in terms of strain as:
U = h C [ Ex  (i+' x) Ex i

u I (J x -x ) I- (Ex+,xe) - (J.+y6)M Exex

1 4I +144xy)+ (C i) Y-Cy (Ey +1,xy C x) M ,i- E yi

xy xy - dA (11-6)

where M 1 -;xy --,yx

and Cxi, Eyi and x are initial strains. The strains are

obtained from the strain displacement expressions as:
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u a

S 3- a2  (1-7)

&ya (I-8)

u 3 5+ a ("I-9)
IY , + 3

so that, upon expansion and substitution of Eqs. 11-7, -8 and -9

Eq. 11-6 becomes

U M= x 6Ex [ a22 +yx a6 2 a2-a 6 -G (1 a 4

ia + '1 )ia + 1 a2 ( 2j

2 2 X)(x+,qy~-ya-yiXxya2 -(1 +,dexy) 6 y a6+( ,x6 yi

+ GxM a32 + 2a a +a2 2(a+ a5 +X rl dAxy L 3  3 55 35) xY xyj~

(II-6a)

The derivatives of which, with respect to the constants a, .... a6, are

d U0 (II-1a)

UIha A44yx
2= hf- Ex 2 +Iyxa6 - x -

i  2 ]

, . • ('I-10b) .

JUh U aa i'SGxyM (a + a -xy A (II-10c).

U 0 (II-lOd)

U h

u M (a + a A , (II-l1Oe)

I I i'

-- - ESY ." -'Oxy 2 - 6y (F +x yA

*11 * I I
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Setting aside all terms which involve initial strains

(these will be treated in Section II-B), we have

0 0 0 0 0 0 a

U0 E 0 0 0 .4yEx a
-F2 x yxx 2

LU 0 0 GxM 0 GxM 0 a
j Yxy 3a 3

U 0 0 0 0 0 a4
hA

0 0 G M 0 G M 0 a5
5 xxy10)

)U0 A E 0 0 0 E~a
- X6 -° L x x oY oyx6

The square matrix on the right is the matrix [C] . Utilizing

[B] -1 from Eq. 11-5 and the definition of [C] from Equation II-10

in E(. II-1 and performing the indicated operations results in

the element stiffness relationships shown on the next page.
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III. Development of Initial Force Terms

In the case of initial strains (e.g., thermal strains,

previously accumulated in elastic strains, and large deflecticn

strains) it is necessary to determine the forces corresponding

to the initial strains.

With assumed displacement patterns (Eq. 11-2 and -3) the

strain energy is expressed in terms of the constants I a] and the

initial strains as shown in Eq. II-6a. The differentiation of

Eq. II-6a with respect to the individual constants { al

Eqs. II-0a - 1Of, results in

wU [ [a1-[u 1 (11-12)

where U- represents the initial strain terms which were set

aside in forming Eq. II-10, and is given by

Ui 0 0 0

ui  yxEx07 1 +- ,4yx Ex _.y 0

'~i0 0 GyM Eiha y

U 0 0 0 Mi-a xy

ui  rxyi
0 0 GM xy

Uji AxyEy

U -XYE (l +4xyE Oa

(11-13)
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The corner forces on the element are obtained by multiply-

ing Eq. 11-13 by a] [ ] T  which results iningEq I-1 b = B TT 
a_]U

JF} = [B-i] [C] fal - [B - 1]

The first term on the right siae of Eq. 11-14 yields the

corner forces due to displacement, i.e., the forces which would be

required to induce the corner deformations, u and v, elastically.

The second term represents the initial forces, [Fij. Thus

FiJ [B-] T  JU} (11-15)

Utilizing [B-Eq. -5, -- ) from Equation 11-13

and performing the product yields the following expression for

the initial forces:

A-Ex
x~~ YE~ ~313-2 GxyMx 3-2

F i yx
Fx2 Ex(l+ =) Y3 x2  y 3  -GxyMx 3  i

x

F x  _ _Ex(_+_O_ E x _ _ GxX3 hA )Y Y 2y i

(x2y3 -x3y2 M
y yx 3 2  Ey )x 3 - 2  Gxy4y 3 2  i

2 , xy

F i EA xyG
y2 - 2 - x3 -EY(l+ -_')X G M.3

E x ,txy)F3 eX E y(1+ 2 -G2 ~ XYM2

(11-16)
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For thermal strain situations, letting T represent the

average temperature change of the element, the initial strains

are defined by

£ i XT

y =OyT
i

'xy =0

where c< and 4K are the thermal coefficients of expansion
y

in the x and y directions respectively. For the usual case of

CAx= CK y = c , the initial forces given by Eq. 11-16 simplify

to the following /

-Y 3 -2

Y3

-Y2

IF. =  hAEx(I +.-4'x).A T  (+1xy )  E
F-Y (1+,-yx) -x x3-2 (II-16a)

(x 2 Y3 - x3y2 ) M x

(i"yx) x

(98-X) Ex
I Y y x xW-  x2
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IV. Stress Equations

The equations for the stresses in terms of the corner
point displacements and initial strains will be derived in this

section. In Section II-A, it was noted that the strains in the

triangular plate element are constant (Eqs. 11-7, -8 and -9).

This results in constant stresses which can be expressed by

the following:

I -x "  ["2 "i , -x

xy Sxy 3 - ji (11-18)
I yi

ayy

13

The first term on the right side of Eq. 11-18 represents the
stresses corresponding to the corner displacements and the second

term denotes the initial stresses.

To develop the[Sxyl matrix and initial stresses, the
relationships between stresses and strains will be formulated

in accordance with Hooke's Law. For an orthotropic material

the strains are expressed by

x E-- (O-x -- "xy O) + Fx1
y - 4 ('w -rx c) + Cf (11-19)

Oxy i
xy Gy xy

Solving Eq. 11-19 for the stresses give

Ex Ex
x: w- (Cx+-' xe) - -.- x +A'x i)
E 

y y+,Zxy
6yx-- y ( +-xy ex) (11-20)

'x =Gxy rxy- Gxy x'xy
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The first terms on the right hand side of Equations 11-20

give the displacement stresses. By replacing the strains in

these terms by Eq. 11-7, -8 and -9, the displacementstresses

can be expressed in terms of the constants in the assumed dis-

placement functions by the following

- 0 1 0 0 0 a

xG M Gyx M a2

y 0 0 0 ox 0 a3
0- A 0 0A y a

x 5

a6

(11-21)

Next the corner point displacements, u and v, are

introduced into Eq. 11-21 by utilizing, from Sect. II-A, the

relationship

(al = [B]1  [v (ii-4a)

So that Eq. 11-21 may be written as

x E -1 u 2
-y [D] [B] u3 (11-22)

i V2<r y  12

v 3

where [D] represents the rectangular matrix on the right hand

side of Eq. 11-21 and [B] -1 is defined in Eq. 11-5. By

explicitly forming the product of these two matrices as

indicated, Eq. 11-22 can be written as

0[Sxy] f (II-22a)
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where -Y3-2 Y3 -Y2

= G -GMx GM
IS x (x2y3 _ x3y2)M --2 --

-. rxY3-2 -- yx y 3 --Ixy2
(I1-23)

4yx 3-2 -lyx 3 'yxX 2

-GM y32 GM y3 -GM Y

x3- 2  x 3  
-  2

x x x x

The initial stresses are now determined from the second
terms on the right hand side of Eq. I1-20. The consideration of

these terms gives

a-xi 1 0 yx
Ex Gy

=x yi 0 GM 0 : (11-24)

oxx
-ZJ-x /,yj 0x (HY4yi x ox -  ey

(The minus sign is not included in the terms of Eq. 11-24 since it

already has been incorporated in the stress formulation of Eq. 11-18.)

As noted in Section II-B, for thermal conditionsexi = xT;

yi = 0<yT and ax = 0. Then, for the case wherec x =, y=

the thermal stresses are given byl 1
= Ex(l )0 (11-25)

y M (l+,,xy) Ey-(i* +yx) Ex
IOI



V. Development of Linear Elastic Stiffness Matrix (Bending)

The fc-ce-displacement properties of an orthotropic

triangular plate element in bending, subjected to known midplane

forces, are derived in this section. The element is pictured

in Figure 111-12. As in previous chapters, the stiffness matrix

is derived by application of Castigliano's Theorem. In the case

of plates in flexure subjected to midplane forces, however, the

stiffness matrix UKz] is composed of two parts, i.e.,

[K] =I[f + [n]] (Vl

where

[Kf] is the stiffness matrix for flexure alone.

[n] is the stiffness matrix associated with the influence

on flexure of known midplane forces.

The present section is concerned with the derivation of the [KfJ

matrix; the Ln] matrix is developed in the next section.
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Figure 11-12 Triangular Plate Flexural Element
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As shown in Section III-A.3 of *Reference 12 thie [Kf matrix
can be defined as:

TI

[Kf [Bl [cf] [B] -1  (IV-2)

where, as in previous sections [B]J is a mat rix in which-the
rows are the coefficients of equations for the corner point
displacements in terms of the constants of the assumed displace-

* ment pattern, and the rows of IICfJ are the coefficients of
these same constants in equations which represent the derivatives

of the strain energy (expressed as function of the constants

of the assumed behavior function) with respect to the

respective constants.

The following assumed displacement function will be

utilized as the basis for this derivation.

w a 1 + a 2 x+ a 3y2 + a4y+ ax 2 +(aIVX3-37)3

+ a 8xy + a 9 xy

where i a are constants.
9

The angular displacements (slopes) of the plate are given by:
- w +s+y2ox = 2a3 y 

+ a4 
+ 3a +a 8x 2a9xy (IV-4)

S -a 2 -2a5x - 6x a 8 y a (IV-5)

lo4



Evaluation o f Eqs. 'IV-3, 4 and 5 at the corner points
yields:.,

C C Ca0dC

Cm C C m Cu l
CmCm

>31Cu Cum*Cm
0' CM Co (YC)C 0 Cu Co)

P\i CuJ, I

Cu~C Co u o

0 CM Cm C Y 0 0 0 Cu C\

Cu CUi CMo CY
0 Cu .C 0 Q 0 0 Cu C

Cro Co

OI C'J CUu'

0' 0 0. 0 x x 0 CuJ Co)
*Coj Co X x

C CoC j CY
0 0 0l 0 0 10 0 Cu1 C

H H 0 0 0 0

H- H- r1_ *Cu C
0 0 0 I 0 X x

020<0 __0 _ H-

GD CD QD CD1 Q CD X X: 3
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The square matrix on the right hand side of Eq. IV-6 is,

by definition, the [B] matrix.

To dev'.lop the ICf] matrix, it is first necessary to

express the flexural strain energy (Uf) for orthotropic plates,

in terms of the displacements: (See Ref.12)

U 7 2k~~ + D (2__) + (Dx _-yx + y -4yx)
2 w 2 2w + D W 7 dx dy (IV-7)

3 3
Exh Eyh

where Dx = l2(1-/ xy/,"yx) Dy .12 (l-ey 'jx)

3
D = xyh

Dxy =

By the differentiation of Eq. IV-3 and the substitution of the

partial derivatives into Eq. IV-7, the following expression for

the strain energy in terms of the constants of the displacement

function is obtained:

Uf = L Dx (4a 5 2+ 24 a5a6x + 36 a6 x2) + Dy (4a32

+ 5a72y2 + 4a72 x2 + 24a 3a 7 y+ 24a7a9 + 8a3a9x) (IV-8)

+ 2/yx D (4a a + 12aaTY + 4aax + 12aaxyx X 3 5 5 ( 59 3a6

+ 36a6 a7xy + 12a6a9x ) + 2Dxy (a82 + 4a8a9y + 4a92y2)] dA
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Next, the strain energy, Eq. IV-8, is differentiated with

respect to each of the constants, a1, ...... a For example:

duf - duf = =

while

a3_ 1 Dy (8a 3 + 24aTy + 8a9 x) dA

3 W (IV-9)

+1,Yx DA fA (4a5 + 12a6x) dA

= DAa 3 + 12 DyIya 7 + 4DyIxa 9 + 4 ,yxDxAa 5

+ 12 D I a
Y x x a6

whereUA = fA dA; Iy = A = dA

In matrix form, these partial derivatives can be stated as:

a,
- [c] I(IV-10)

Uf a9

The [Cf] matrix is shown on the following page.

The area, A, and the Ixi j  terms in the [Cf] matrix

are discussed and defined in Section C - Geometric Properties.
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VI. Development of Incremental Stiffness Matrix

The [n] matrix can also be derived through application of

Castigliano's First Theorem, Part I (See Reference 12). The procedure

is represented by the relationship

[n] = [Bl] T C (IV-II)

The strain energy expression to be employed in the formulation

of the [Cn] matrix is:

Un- 1 f x  Nw + + 2 xy xy

S(iv-12)

Where Nx, NY and Nx are the known midplane forces, these forces

will have been evaluated by performance of an independent midplane

displacement analysis, wherein the element is assumed to sustain

constant midplane stresses (- = al, O = a2 'Vx = a3). Since

Nx = hc x , NY = hcr and N = h , the midplane forces are also

constant by taking note of this consideration, utilizing the displacement

function of Eq. IV-2, and performing the operations indicated by

Eq. IV-12, one obtained: Un= Unx + Uny + Unxy

Unx  f Nx d --) 2  N

= dA = - Aa2 + 4Ixa2 a5 + 6Ix 2a2 a6

+ 21ya 2 a 8 + 21y 2 a 2 a 9 + 4Ix 2a5 2 + 121 x3 a5a6 + 41 xya5a8

2_42 2
+ Ixy2a 5a9 + 91x4a62 + 6Ix2ya6a8 + 6x2y2a6a9 + Iy a8

+ 21y3 a8a9 + Iy4 a9
2  (IV-13a)
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y 4) a2 + 41ya 3a4 + l21 3 a 3 a7

2 2 2a+ 41xya3 a8 + 81xy a3a 9 + A42- 6y a 4 7 + 21xa4a 8

+ 4Ixa4a9 + 91 y4a72 + 61xy2 a 7a8 + 12Ixy3a7a9 + Ix2a82

+1 4Ix2ya8 a9 +L41x22a (IV-13b)

Unxy =f Nxy Jw w dA N [2ya 2 a 3 + 4xy3a5 + 6I2a 3 a 6

+ 2Y2a 3 a 8 + 2Iy3a3a 9 + Aa 2a 4  xa 5 + 31 xa 4a 6

Ia4a8 + I 2a4a9 + 3Iy a2a7 + xyaa 7 + 9I aa
xy 5 6a7

+ 3 8 + 31 4 a a + Ia 2 a8 + 21x2aa + 31 3a a
Y 7 8 3 y 7 9 x 8 5a8 + 6 68

+ I1 a 82+ 21 ya 2a 9+1 x 2 a5a 9+ 61xaa + 31x 2a8a9

+ 21 xy3a92 (IV-13c)

Considering each of the energy components separately, the

partial derivatives of the energy with respect to the constants

may be stated as follows:

x 
(1a I1

[Cn] (IV-14a)

SUnn

x

ny

a 99

1101

ja 1  
(IV-14b)

0nya
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Unxy

r1 (Iv-14c)

nCn

aa 9

The three [Cn] matrices are shown on the following pages. The
Ixi J terms appearing in these matrices are defined in the
following section - Geometric Properties.

The C[n] matrix in Eq. IV-16 equals the sum of the
three[Cn] matrices of Eqs. iV-14a, 14b and 14c. Hence, the
incremental stiffness matrix Ln] is experssed as:

[In] - LB111 ([Bnx] + [Cny] + [Cnxj) [B]-1 (IV-lla)

, IC



CM

HH

Cuj Cu)
x

CH C

H H

C~Cu Cfl

>) x x
0~~ ~ ~ 0000000 H H

CuM
Cu CM

H H H 0> 0 003 0
cyt Cli M -

CMu
Cu1 Cli

H H OH F- 00 00 0

0 0 000 0 0 00 0 0 H H 0

el C

U 0u
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SCu)

H XH >

CCl,

H HY H

Cuj

0 0 Cu x xA 0i

Cuj

0 H H-
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Cuj

o H H H
Cki Cl) H~

0 0 0 0 0 0X
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VII. Geometric Properties

The ICf] and [C,] matrices contain a group of Ix i y J  terms

resulting from integration of the energy expressions. These

terms are defined as:

Ix y j =Ixfy j  dx dy = A x y J  dA (IV-15)

Thus, they are simply geometric properties of the element. Many

of them are well known section properties.

In explicitly formulating the I xi y terms it was convenient

to use previously determired I i j terms with reference to the
4- coordinates, as shown in the following sketch, and transform
these to the x-y system.

The coordinate transformation from the x-y system into the .- 4

coordinates for any given point is

Cos= L -sin @ co s : P.? (IV-16)

where sin 2= 23 Cos - 2

Alternatively the coordinate transformation from the 4- system

to the x-y system is given by

fX = [Cos Q -sin 9 (IV-16a)

yj sin Q cos @
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As an example of the determination of the Ix y in

terms of the I; i 's consider the first moment of the area

about the y axis, Ix . For this moment

I xA dAIx =fA xd

= I(,cos - sin 9) dA

= cos Qf dA -sin Gf 9 dA
(IV-17)

I = cos -I sin Q

All the remaining I xi yj's are determined by a similar procedure.

A listing of the necessary Ix y j' is given on Fig. III-13.

The area, A, and moment properties about the 1' and - axes

were determined by direct integration within the proper limits

to yield the expressions shown on Fig. III-14.

1
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* I I

VIII. Development of Corner Thermal Moments.
Reference 14 has established a procedure for the.derivation

of thermal forces that is consistent with the proced4res employed

in deriving the [Kf] and [n] matrices, i.e., a procedure based

on Castigliano's First Theorem. It is simpler and appears equally

accurate, however, to derive the thermal forces by means of. the

scheme to be described in the following.

In developing the corner thermal moments,. the average distri-

buted thermal moments Not (about the x axis) and' My (about
the y axis) are taken as constant throughout the element. The

"lumped" corner thermal moments are based upon these aVerage

moments. The average moments are defined as the arithmetic

average of the distributed moments at the. three cornersoof the

triangular element. Thus

+ + Mx

3 .(Iv-18)

and My + My + My

y 3
I I

where M and M ' are the distributed moments at the cornersxi Yi

due to the temperature gradient, through the thickness of.the

plate. These distributed corner moments are defined as:_h

E( ,+A -,& ) hy 1- - (iv-19)

, Ex  (1+A x) h h

Y( ;'.xy--.yx f h

is a thickness coordinate measurod positively in the positive z

direction from the neutral axis of the plate.
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It is assumed that the average thermal moments are distributed

around the edges ,of an arbitrary triangle as shown below:

I y

y 
-

CAx

The distributed thermal moments are concentrated at the cornersof the triangle by,assignir' one half of the 'total moment along

a side to each of the corners bounding the side. For example:
x X

2' x2  (X xxI  -- MX - - - Mx " - M; ,  ( 2 - 3)

(IV-20)Iand M M Y 3 : Y2 _13

The thermal corner forces FzcA are zero. so that the thermal moments

and forces are expressed 'in matrix notation by'
M . (x2-x3)I Mx Mx x3

M x, 
(IV '21 )

Mx.Q x 2

7~

y2  M y

Yl yo' (Y2-Y3)
M!

Y2 My ,

F Z. 0

F d  0

Fz7 0
' I17 \ J2



IX. Development of Stress Resultant Bending and Twisting
Moments and Vertical Shear Forces

It appears most efficient, from the standpoint of practical

interpretation, to express the "stresses" as moments and shears

per unit length. Hence, the bending moments, Mx  and My, the

twisting moment M.y' and the shear forces, Qx and Qy, shown iii

the sketch can each be calculated during an analysis. They are to

be computed at the centroid of the element. The stresses, which

are dependent upon the construction details of the cross-section,

can then be hand calculated from the moments and shear forces.

The moments and forces may be expressed in terms of the

deflected surface, as:

M -D (d 2w d 2w

x y 2~ ~ y J772

M1 
2 w +2

y Dx yx

D 2 w M (IV-22)
xy xy dx)y yx

d ( 2w + 2 w

x -- (D x -+7 Q 2 )
2 D

Q ( 2 w + 2w
y - 7 (D 7 + y y'-

where Dx , Dy and Dxy are defined below Eq. IV-7 and

DQ = Dx ,x + Dxy

By differentiating the assumed displacement function (Eq. IV-3),

the following derivatives are obtained
2w
2w = 2a 5 + 6a6 x

x L

2w2 

62

y2 3 6a 7 y+ 9 (IV-23)

2w = a 8 + 2 a9y
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Substituting Eqs. IV-23 into Eqs. IV-22 and evaluating

the expressions at the centroidal coordinates (x, Y), yields the

following matrix equation for the moments and forces:

Mx 1

M 2
Mxy [ Z (IV-2 4)

Qx

Qy a
y 9

where:
00 2D y 0 2.,Q"D 6xDy 6DY 0 2D yx

0 0 2D 0 2D 6D 6 D yxx .x x.x y xx

C 0 0 0 0 0 0 -Dxy -2D xy

0 0 0 0 0 6Dx 0 0 2DQ

0 0 0 0 0 0 6Dy 0 0

and (

9 (Y2 + Y3)

From Eq. IV-6 it is noted that:

a x2
Ox

3

=[B] -  Yl (IV-6a)9 Y2

0 Y3

w1
w2a w3
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so that Eq. IV-24 may be written as

:x1
x

@3

xy = [B
Qx 9Y2 ( IV-24a)

1- -. ,9Y3

w W1

w 2

w
3

which permits the Smoments and forces to be calculated from the

previously computee Asplacements. To account for the presence of

thermal moments, Eq. IV-211a is modified as follows:

@Xl

w2

X. 9

y
=O -S" (IV-25)

xy ILZJ y, (z

w3 1

w 
3
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Where [s4 [gz] [B] 1' and [ "jthe column of

thermal moments and forces, is given by:

z .y

S wk = (IV-26)

C

0

In Eq. IV-26, Mj and M.4 are the average distributed thermal

x 'K
moments defined by Equation IV-18.
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x I cos@- Ic sing
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Ix 2 = I 2 cos2@ - 2 1 cos @ sin @ + 12 sin

Ix 3 = I, , cos30 - 3I1 2 t sin @ cos2g + 3I 2 sin2@ cos 9

3sinS@
41 sin - cosIo + 61 sin2 9Cos 2

S-41 3 sinS@ Cos 0 + I 4 sin 4

IN I sing + I 5 -cos 9

1y2  I 2 sin 2 + 21 1 e sin 9 cos 9 + I g 2 Cos 2
4 4 3 2 2

4 inosin cos +1 2 sincos

Iy ~ sin 0 o@ + I~ (Cos 2 sn20

xy N I23
ly 4  I 4 sin4@ + I 3GsiS cos @ + 6I 9 ,2 2 sin2 @ c~s2G

+ -l~ sin cs@+I ot

Iy =(I4, 2 - I 2) si cs@+ I (s2@ si2)

Ix~y I Ssin 9 cos29-'- I (2 coS - 2 sin2@ Cos 9)

-I42 (2 sin 0 cos'Q - sin3G) + I 3 sin

I xy 2 1 3 sin2@ 9Cos 0 + I 2g, (2 sin 9 cos 2@ - sinS@)

31 2( 23

+ I 2 (o@S 2sin@ 9Co s 9) - I sin 9 cos 0

FIGURE 111-13 DEFILNITIO: :IF Ix i J's IN [C MATRICES
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I

2y 4 + I4) s3n2 C cos2 + 2 ( - ,3)

(sin Q cos3Q - sin3Q Cos 9) + I (Cos4 - 4 sin 2  Cos2@

+ sin 4 )

x3y (= - 3 1 2 e2) sin @ cos 3 Q + 3 (1 3  3

sin2@ Cos2@ + (3 122 - I.) 39 cos 9

I43 sin49 + I cosG4e3 4

Ixy 3 (1,74 - 31 2,2) sin 39 cos 9

+ 3 (1 3C - I ,3) s-in2 cos 2 o

+ (3I 22 - 1 44) sin 9 cos 39

1 34. sin4 9 + I7 C3 Cos 4

FIGURE EIa-13 (CONTINUED)
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124



E. FRAME ELEMENT

I. Introduction

The formulation of the additional frame discrete element

which has been incorporated into the MAGIC II System is

essentially identical to that described in the original MAGIC

Engineer's Manual (Reference 1). All element matrices available

to the original frame element are available to this frame as

well, i.e., Stiffness, Distributed Pressure, Thermal Load,

and Consistent Mass.

The addition of this element is primarily intended to

serve the purpose of providing a companion frame element to the

quadrilateral and triangular plate elements which have been

added to MAGIC II. The use of this element in conjunction with

the newly added quadrilateral and triangular plate elements

will provide a powerful capability for linear eigenvalue

stability analyses of stiffened shell structures.

II. Additional Element Matrices

As pointed out previously, all element matrices available

to the frame are described in detail in Reference 1. An

additional incremental stiffness matrix has been provided and is

presented here (References 14 and 15).

For the frame element (Fig. III-l5 linear polynomial axial

and torsional displacement mode shapes are constructed while a

cubic polynomial displacement mode shape is constructed for

flexure in each of the two principal planes of bending. The

above mentioned mode shapes are assumed to take the following form:

125



W() ygv

~~UI* 31V. y Plane

w I . I s-Y-7

I

I u, 8G

x g 9,'e

Crops Section

FIGURE 111-15 FRAME ELEMENT REPRESENTATION

126



u = a0 + a1x (2.1)

v b 0 + b1x + b2x2 + b3x3 (2.2)

w 0 + C1X + c2x2 + c3x3 (2.3)

9 d o + dlx (2.4)

The above mode shapes lead to a total of 12 undetermined

coefficients for the element which are chosen to correspond

to three translational and three rotational displacement degrees

of reedom at each end of the element. A transformation from

generalized coordinates to grid point displacement degrees of
freedom is effected by writing (at X = 0)

uI = a0

v 1 b0

W = c0  (2.5)

Ox(l) 0 0
Qy = -e

y(l) -Wx x= 0

z(l) Vx  = b
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i

and at X = L

u2  = a0 + a1L

v 2  =b 0 + bL + b2 L2 + b3 L3

w2 = c0 + c1L + c 2 L2 + c3L3  (2.6)

Qx2 = d0 +daL
9x(2) d0 +d1L

Qy(2 ) = W x = L (cl + 2c2L 
+ 3c3L )

Qz(2) : Vx Ix = L = (b1 + 2b2L + 3b 3 L2)

or (2.7)

where (2.8)

,jT = l L ,, w19  xl ,Q zl, U 2, V2 1 w2  x2' @Y21 Qz~j

and

= L ao, al, b0, b1, b 2, b 3' c0 , C1 c 2 ' c 3, do, a1J (2.9)

It is to be noted that the VI are referred to as field coor-

dinate displacement degrzes of freedom.

Upon analytical inversion of equation (2.7) we have the

desired relationship between the [6] and [J displacement vectors.

1E K (8 (2.10)
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The ,train-displacement relationships for the frame

element can be written in the following form:

= (ux + 1/2 v YVxx + 1/2 wx  - zw x) (2.11)

The total potential energy functional, j , which arises
in consequence of the strain relations of equation (2.11) is

Ux2 + --- vxx2 + EI wxx2) dx (2.12)

2

L + + w:)Jdx+ x (Vx2 + Wx) + Vx Wx -+ (Vx4 + w d

The first integral in Equation (2.12) consists of the well
known linear membrane and flexure terms respectively while the
second integral arises from the retention of the quadratic terms

in the strain-displacement relation.

In consideration of the non-linear portion of Equation (2.12)

it is noted that the first term is the non-linear membrane-flexure
coupling term. This contribution gives rise to terms which

adversely affect the element linear membrane and flexure stiffness
and is the term which will be considered.

If consideration is given to work done by midplane

loads during the displacement of the structure during lateral

loads, the following may be written for the first non-liiear

contribution of Equation (2.12)

px IL 2v 2 w 2)
= (x + Wx dx (2.13)

where Px is the axial stress resultant which is a known quantity.
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From the assumed displacement functions (Equations 2.2

and 2.3) differentiate and obtain:

v x 1 + 2b2x + 3b3x2  (2.14)

c X 2
wx = c+ 2c2 x + 3c3x2

substitution into Equation (2.13) and integrating obtain:

I'= x 2bl2L + 2b 1 b 2 L 2 + 2b1b3L3 + 4/3b 2
2L3

2 + 3b2b3L4 + 9/5 b3
2L5 + c1 2L + 2c1 c 2L

+ 2c1 c 3  + 4/3 c2 2L3 + 3c2c3 L4 +

9/5 c 3
2 L5  (2.15)

/

Upon taking the partial derivatives of -T with
respect to the coefficients b1 thru b3 and c1 thru c3, the

incremental stiffness matrix I] is obtained referenced to

field coordinate displacement degrees of freedom and is shown in

Equation (2.16).

J 30
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0 0

0 0

Cki

0 L*0 0 0

0 0 0 0

NO
0 0 0 0 0 0.4 .4

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

III
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Noting from Equation (2.10) that [6]r LI0(y/f
D~i] is obtained as follows:

LA'27- E ]TL/f<,] f/ fJ (2.17)

when L/li is referenced to grid point displacement

degrees of freedom.
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SECTION IV

COMPUTATIONAL PROCEDURES

A. Introduction

The MAGIC II System for Structural Analysis offers a

variety of computational procedures to the User. Among these

are the capability to perform static analyses, statics with

condensation, statics with prescribed displacements, stability,

dynamics (modes and frequencies) and dynamics with condensation.

The proper usage of these procedures in the context of performin~g

actual structural analyses is described in detail in Volume II

of this document (The User's Manual).

In addition, the powerful matrix abstraction capability

built into the MAGIC II System allows analyses to be performed which

require the use of Static and Dynamic Substructuring. In order

to clarify the operations involved utilizing these approaches,

a detailed presentation follows.

B. Static Substructuring

A primary attraction of the matrix methods of structural

analysis is that many significant problems can be solved with very

modest computer programs. In the simplest case, a capability to

generate and assemble a certain type of element stiffness matrix and

solve the resulting system stiffness equation is sufficient. On

the other hand, the automated analysis systems required to cope with

the large classes of structures in a practical design situation bear

little relation to the type of finite element computer program

mentioned above. Practical analysis tools must be implem~ented as

an integral part of the overall structural analysis and design

cycle.
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It is apparent from the size and complexity of many

structures that a great deal of data is involved. The detailed

design specification of the structure Js spread over numerous

drawings and through many documents. A realistic physical model

necessitates thousands of gridpoints and finite elements.

Translated into computer program input, related data items

include coordinates of all gridpoints, degree-of-freedom specifica-

tions of all gridpoints, onnection specifications for all finite

elements, etc. This volume of input data implies a need for many

hours of computer time for numerical solution. Finally, extensive

output inevitably results from such an analysis.

Effective management of the voluminous data associated

with structures of this type is usually the decisive consideration in

establishing the basic analysis process. For these reasons an

analysis can be undertaken by substructuring (References 16, 17).

In general, the substructuring process proceeds in four major

phases as outlined below.

Phase I is concerned with the individual substructures of

the total Structure. In the Phase I analysis, each substructure

is considered individually. Input data is prepared and calculation

is carried forward to determine matrix representations referenced

to the substructure interfaces.

Phase II considers the structure as a whole. The interface

stiffness matrices for the individual substructures are assembled

and the complete set of interface displacements is determined.

Based upon interface displacements obtained from Phase II

and auxillary information from the individual Phase I analysis,

Phase III completes the conventional finite element analysis. Each

substructure is considered in turn. Prediction of the primary

displacement variables is completed and secondary variables such as

forces and stresses are calculated.
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Phase IV is a nonintegral step designed to translate the

conventional Phase III results into a form desired by the stress

analyst for the determination of margins of s&fety.

1. Phase I

The matrix algebra of the Phase I analysis is deceptively

straight forward when reduced to the essential calculat.ons

relevant to the primary displacement variables and stripped of the

problematical data storage and retrieval steps inherent in the

computer program. The simplified symbolic statement of the process

is considered appropriate in the present context. Accepting this

viewpoint, the first step of the Phase I analysis process yields

potential energy expressions for the individual finite elements

given by,

PeLeJ[Ke) {O} L6,J {Fe} (2-1)

where

[K e  is the element stiffness matrix,

{6e l is the relevant gridpoint displacement vector, and

{Fe }  is the element total applied load vector.

These individual element potential energies are then assembled

to form a potential energy expression for the substructure under

consideration.

P 7 LSJ CK){61 - LU (F) (2-2)

where

[K] is the substructure stiffness matrix,

{61 is the substructure displacement vector, and

{F) is the total substructure applied load.
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The Phase I analysis is carried forward by rewriting the sub-

structure potential energy in partitioned form to reflect the

division between interior gridpoint degrees-of-freedom j
v.nd interface (boundary)gridpoint degrees-of-freedomfs i.e.,

LK J(2-3)
[ib Kbb J

Contributions to the potential energy which stem from the

interior gridpoints are complete while additional contributions

will be added in at the interface gridpoints upon assembly of the

substructures. Ad\.'%tage is taken of the completeness at the interior

points by solving for these displacements degrees-of-freedom in

terms of the interface degrees-of-freedom. The result is given by,

{6i} = Ki']-{Fi} - [Ki]-'[Klb]{6b) (2-4)

Backsubstitution of this relation into Equation 2-3 yields the

objective substructure potential energy expression referenced in

interface degrees-of-freedom, i.e.

bJ(6b} - L6Pb' (2-5)

where

(Kb) J 1 K ib](2)

(P I Fb _ {KT K -I F~ (2-7)

[Kb ]  is the substructure interface stiffness matrix,

{6 ) is the substructure interface displacement vector, and

{p b} is the substructure interface load vector.
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The individual substructure potential energy expressions of the

form defined in Eauation 2-5 are the basic Phase I analysis results

required to construct the governing stiffness equation for the

entire structure in the Phase II analysis process.

The foregoing statement of the Phase I analysis process

actually implies a complete general purpose computer program for

stress analysis plus the capability to form and store such items

as interface stiffness matrices on magnetic tape for subsequent

access. It is instructive to take the viewpoint of the structural

analyst and re-examine the Phase I analysis process as an applica-

tion of the MAGIC II Structural Analysis System.

By definition, Phase I proceeds against a number of sub-

structures of the total structure although inclusion of the

complete structure within a single substructure would yield a

conventional one-pass linear stress analysis. The reasons for

division of a structure into multiple substructures are many and

varied. Unnecessary breakdown into substructures is, of course,

inefficient.

A primary reason for substructuring stems from the fact that it

is efficient to confirm a large quantity of input data via subsets.

With substructuring, an analyst can forcus his attention upon a

limited region or component in specifying input data. This subset

of data can then be processed through data checking executions.

Such executions involve only the relatively small quantities of data

of current interest with the result that turn-around is rapid and

inexpensive.

Substructuring can also shorten the calendar time required

to confirm the input data for a large structure. The r(,ason for

this is that substructuring facilitates distribution of the input

data specification effort to a number of analysts for nearly independent

simultaneous preparation. It is worth mentioning that the automatic

generation of structural plots fro:,. the input data is an important

aid to the confirmation of input. Plots of the structural components

taken individually are desirable.
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The benefits of substructuring large scale structures

extend beyond the input data confirmation stage through execution.

The effective matrix banding may be improved by substructuring.

Long continuous executions are avoided. Numerous restart points

are automatically provided. Most important, the Phase I executions

are spread over the period of time required to complete the

specification of data for all the component substructures.

Executions in the succeeding phases may be similarly spread to

generate results paced by progress in evaluation.

Substructuring is particularly advantageous when localized

modifications in structure or applied loading arise subsequent to

the analysis. Such modifications can often be accommodated by

re-analysis of only those substructures affected.

Having discussed the motivation for and the scope of the

Phase I analysis, the following paragraphs focus upon the several

steps involved. Preprinted input forms are employed to simplify

the specification of input data. These forms are designed to

provide automatic internal generation of data whenever possible.

For example, repetitious data need only to be specified initially

followed by any exceptions. (See Volume II - User's Manual).

The first executions of the MAGIC II Analysis System are

undertaken to confirm the input data deck as discussed earlier.

The deck is read and the implied data is generated expliciZtly.

Consistency of the data is checked and all data items are stored

for execution restart and printed for further checking by the

analyst. In addition, a magnetic tape is generated for automatic

plotting of the finite element model.

Upon acceptance of the input data specification by the

analyst, the actual Phase I analysis is undertaken for the

substructure under consideration. This analysis is a complete

linear stress analysis of the substructure under the assumption

that the interface displacements are completely fixed. The output

obtained from this analysis provides further important confirmation

of the finite element model. Moreover, these results often provide

useful preliminary information about substructure behavior.
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In addition to the preliminary stress analysis results, the

Phase I analysis generates and stores the interface referenced

stiffness and applied load matrices as well as the other

information required in subsequent analysis phases.

2. Phase II

The Phase II analysis begins with the substructure interface

matrices from Phase I and carries the analysis process through

prediction of the interface displacement variables. Phase II is

the only part of the analysis process which deals with more than

one substructure at a time.

The substructure potential energy expressions (Equation

2-5) are the point of departure. Such an expression is known

for each substructure, e.g.

id~! [K- L{6WJ {P(J)1  j=1,2 . . . n (2-8)pb 2 Lb b b b

The interface displacements pertinent to each substructure [Cr \jI

are known as elements of the total list of interface displacements

fA] for the assembled structure. This relationship is

expressible mathematically by a Boolean transformation.

Symbolically,

{6rJ) [r(J)]{ A }  (2-9)
b a

Introduction of this transformation into the set of independent

interface displacement degrees-of-freedom for the total structure yields

00) = 1 LAJKJ{A} - LAJ{P ( J)} Jl,2, • • • (2-0)

pb (-0

where

[K(A) = r(j)IT [KJ) H] (Q)J (2-11)

W) rr(i) IT{PQ) (2-12)

PK )  L [ a  rb
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The substructure interface potential energy expressions of the

form of Equation 2-10 are added to obtain the compalete potential

energy for the structure, i.e.,

= 'LAJ [K]{A} - LAJ (P2P 7 (2-13)

where

[K] = E[K (J )]  (2-14)J

{P1 = {p(J )I (2-15)J

The formality of transforming to conformable substructure
matrices before assembly of the total structure matrices is
avoided in actual practice. Instead, a nonconformable sum is

effected to obtain Equation 2-13 directly from Equation 2-8.

The objective equation governing displacement of the
interface points follows immediately by executing the variation

vf the potential energy expression of Equation 2-13. The
result, retaining the symbolism of a single load condition,

is given by,

[K] (A) = P (2-16)

The total interface matrix [K] is a symmetric matrix which
is stored in banded form. Solution is effected by triangulari-

zation of the matrix and back substitution for the set of

interface displacement variables appropriate to each load
condition.
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I
3. Phase III

Phase III picks up the matrix descriptions of the indivi-

dual substructures generated in Phase I and the solution for the

interface displacements from Phase II and carries the analysis

process forward. Firstly, the relevant interface displace-

ments are extracted from the complete set (Equation 2-9). Then,

the interior displacements are calculated using Equation 2-4,

i.e.,

{6i d [K ii]-{Fi} - [Kii]-[Kib]{6 b1  (2-17)

With this result all the primary variables for a given sub-

structure are known and various secondary items are computed.

For exam~ple, stresses are available for each finite element in

the substructure via a relation of the form

{0} = [S]{6} - {.4,} (2-18)

where

is the element stress vector,

IS] is the element stress matrix, and

{.6} is the thermal stress correction vector.

Many useful additional items are calculated in Phase III

in the MAGIC II System. Included are: element forces, reactions

and force balance. Even so, this information falls short of that

desired for the margin of safety determinations. This gap

between the conventional finite element stress analysis results

and the information desired by the stress analyst necessitated

the extension of the automated analysis process to include a

Phase IV.
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4. Phase IV

Phase III was set up to compute the normal finite

element results for substructures specified by the stress

analyst. These results are stored on magnLcic tape as well

as printed. This magnetic tape furnishes the primary input

data for the Phase IV analysis. Phase IV is initiated either

following Phase III or after examination of the printed results

from Phase III at the discretion of the stress analyst.

The computations of Phase IV are designed to automatically

reduce the predicted behavior data for evaluation by the stress

analyst in terms of margins of safety. A typical computation of

this automatic reduction process is the consideration of tensile

yielding. This involves the interpolation of the allowable

stress from the appropriate temperature referenced table on
a magnetic tape file. Then, the equivalent stress is calculated

from the actual multi-axial stress state. This equivalent

stress state is interpreted via Von Mises yield criterion for

comparison with the allowable stress. Comparison is made

quantitatively in terms of a margin of safety. The results

of this comparison are printed with explicit labelling and
an asterisk (*) is employed to identify all negative margins

of safety. At the present time, Phase IV is a non-integral

part of the MAGIC II System.
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C. Dynamic Substructui.ng

The development of the concept of dynamic substructuring(1
8 ),

which includes means for reducing the number of degrees of freedom

in a structural dynamics system, is presented in this section.

Nine distinct phases ranging from discussion of finite element

building blocks in Phase 1 to computation of system modes and

frequencies in Phase 9 are defined.

The powerful matrix abstraction capability built into

the MAGIC II System makes possible the employment of the

computational procedure which is outlined below.

PHASE 1 - ENERGY FUNCTIONALS

The basic building blocks of the mathematical model for a

complete structural system are taken to be the finite element

energy functions. The potential energy functional for the

continuum of an individual finite element is discretized by the

construction of assumed modes in accord with the Ritz procedure (19)

Presuming an admissible assumed mode discretization of the kth

finite element of the form

{U(k)} [B k)]{() 1

The resulting algebraic expressions for the element energy functions

based on the concept of consistent matrices for stiffness [Ke]

applied loading IFe , damping [De] and mass [Me) may be cast

into matrix notation as follows:

a. Strain Energy

U 4 k)J [Kk (k)} (2)
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b. External Work

(k) = [e(k)] F(k)} (3)

c. Dissipation Energy

2 (] e (J[D I{ e(k)} (viscous damping) (4)

or

(k) =i e( I (k)] D (k 0 ' (structural damping) (5)
S 2T e sej 1  e kj

d. Kinetic Energy

(k = _1 8e(k)l [ (k)1 {t (k)} (6)

The equations governing dynamic response of a structural system are derivable
from such energy functions via a generalized Lagrange equation(20 . Total energy func-

tious for the complete structural system are required in this formulative process. Given

these,.the objective matrix equation is readily obtained as

[CM){ 8}1+E[Dv]J{ *}1+E[[K]J+ tDs)]{8b{ IF} (7)

Nine analysis phases trace the dynamic substructuring process from the basic finite ele-

ment energy functions, tbrough the construction of total energy functions for the complete

structural system, to a governing matrix equation of the form of Equation 7, which is

particularly well suited to dynamic response analyses.

Development toward the objective expressions of the several total energy

functions for the complete structural system is caried forward in each of the subsequent

analysis phases by the construction of a displacement coordinate transformation of the

form

I81}={7'+} + [r U ]Ija +1} (8)
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This transformation relation is employed to change the energy functions from expression

in terms of the generalized coordinates {8 } to expression in terms of a new set of

generalized coordirLtes

It is useful to illustrate the impact of such a transformation on a representative

energy form before proceeding. Beginning from an energy expression given by

[A (9)

Introduction of a transformation of the form of Equation 8 yields

(2) A+ i A 1  7-]{2. (a)

+ 1 +1 1[1+] T[A +1 (b) (10)

The first term (a) in this result can be associated with the reference level of

the energy and discarded. The second term (b) defines the modified nucleus matrix

occasioned by the coordinate transformation. Fintlly, the third term (c) defines a gen-

eralized work contribution that arises out of the coordinate transformation. Only the

second term is written explicitly in denoting such transformations in the text of subsequent

analysis phases, i.e.
1 (1

l= -L8 [I All] 8+l}II

where

[At+] [F+]T[A2] [r+I] (12)

The change in reference leveI and the contribution to the work energy are assumed. The

above explanation permits conciseness in subsequent steps without ambiguity.
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PHASE 2 - FINITE ELEMENT ASSEMBLY SUBSTRUCTURE LEVEL

This portion of the analysis concerns the assembly of the individual finite element

energy functions that comprise a typical substructure. The element gridpoint displacement

degrees of freedom 8 are assumed to be referenced to compatible referenceaxes.
Under this assumption the displacement set for the j substructure ) 1s

kth 18()

to that of its k element e(k) I through a Boolean transformation of the form

[r (k)]{a(i}j(3te e

Introduction of this coordinate transformation into Equation 2 yields the kt h element

strain energy with reference to the complete set of gridpoint displacement degrees of
A .th

freedom for the j substructure, i.e.

€ U=![s1(j)] [r,(k] T[ Ke(k)][r 1(k)] { 8 (k)} (14)

Summation over all of the finite elements yields the strain energy expression -for

the assembled substructure as

=1K(j)] { 8 1(j )  (15)

where

[K(j)] - [r(k) ] T [Ke(k)][ (k)] .(16)

All of the substructure energy forms are derived similarly by introduction of the coordinate

transformation of Equation 8. Explicit statement of the matrix algebra for each of the

energy functions is omitted to avoid needless repetition.

The consistent structural mass matrix of the finite element model usually requires

modification to incorporate nonstructural masses attached te the structure. Accordingly,

provision is made in this Phase 2 analysis to check and augment the substructure consistent

structural mass matrix.
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Displacements that are prescribed as functions of time can be eliminated as degrees

of freedom at this point and carried forward as generalized applied loads. The preparation

for this elimination is to rearrange the set of gridpoint displacements to exclude displace-

ments that are prescribed zero (fixed displacements) by setting corresponding matrix rows

and columns to zero and position those prescribed nonzero {3 lb} below the retained

degrees oi freedom {IS '.alL The conformably partitioned strain energy is given by

(U =2 LVBlaJ'V~J Pi KaaJ IKlab] l1aJ
- - -- - - - - . . (17)

[K lb] [bb] {8}J
The reduction occasioned by prescribed displacements is approached via the general

transformation of Equation 8. In the interest of uniformity, we write

fall} = {%}2+ [r 2 ]{f8 2} (18)

where

{18}= {f a} (19)

[r2] [{!1] (20)
(21)

Substitution of this prescribed displacement transformation into the energy form of

Equation 17 yields a modified quadratic form given by

4:0 a [K(22)

where

2I Irq 2 i L 21 IK2.]= iL2 ]1 [K1J [KlaJ " (2.)
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The associated contribution to the work arises as

0 W [a2 ]{P2} (24)

where

p [r ]T [K1] U [K (25)
{21 [2JTC 1 v21 Elab){BIl:1b

It should be noted that generality may be lost unnecessarily by invoking the pre-

scribed displacement reduction at this point. Generally, only relatively small reduction

in the order of the matrices of the problem Is realized. It is best to defer such speciali-

zations of the model as long as possible to preserve its generality. The procedure outlined

here to effect the prescribed displacement reduction is applicable at whatever stage the

reduction is carried out.

PHASE 3- CONDENSATION (SUBSTRUCTURE LEVEL)

This phase of the analysis process derives from the likelihood that the complete

set of gridpoint displacement degrees of freedom .{8 21 are not essential to the objective

structural dynamics analyses. For example, the gridpoints in the finite element model

may have been dictated by the natural breakdown of the structure into components, or the

intended use of the model for stress analyses.

The complete set of substructure gridpoint displacement degrees of freedom is

partitioned to reflect the division into essential I '2a and superfluous IS 2b8 subsets.

All degrees of freedom that reside on interfaces with adjacent substructures must be

regarded as essential to the proper interconnection of substructures. Partitioning of the

displacement set implies a corresponding partitioning of the total potential energy from

Phase 2 as

- (26)
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, , 1'

By definition, the o 2b are superfluous to the objective structural dynamics

analyses. This being the case, they are condensed from the model via the static principle
(21)

of potential energy . This principle yields a matrix equation governing static behavior,

*.e.

K [K

2a]I K2ab]J {2a} JP 2a}
[['~~] - -{8~ }~f2b}(27)

K 2 b] [K 2 bb] 2b P2

Solution of this relation for the superfious degrees of freedom in terms of the essential

degrees of freedom produces a condensing transformation relation of the form

f82} = Ir 1+ [r 3](8 3} (28)

where

{83} 1{82a} (29)

andJ

L ' 2 ] 2ab[r.... __}_ (30)

'~ 0 I (31)

Introducing the condensation transformation of Equation 28 into the energy functions fur-

nished from the Phase 2 analysis references these functions to essential degrees of

freedom. For example, application to the strain energy of Equation 22 yields

U 2 3 [K ]{ } (32)

where

[K J r T[K =[][rJK. (33)
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The other energy functions are similarly transformed to complete the Phase 3 analysis.

Generally, the order of the matrices can be substantially reduced by the introduction of

this condensation transformation.

PHASE 4 - MODE SYNTHESIS

At the outset of this Phase 4 analysis the displacement at any point in the substructure

is known in terms of the gridpoint displacement degrees of freedom { 31 These grid-

point displacement degrees-of-freedom arise naturally out of the finite element idealization

technique rather than by choice as those most appropriate to structural dynamics analyses.

Intuitively, the best substructure degrees -of-freedom for the objective analyses are those

associated with the natural vibration mode shapes of the substructures. Transformation

to such degrees-of-freedom is adopted as the immediate objective of this phase.

T he transformatio-a to substructure mode shape degrees-of-freedom is initiated by

partitioning the gridpoint displacement degrees-of-freedom into a subset associated with

the Interface gridpoints {.3a} and a subset associted with the Interior gridpoints {' b
where the former are necessarily retained to effect the interconnection of adjacent sub-

structures. Thib division into subsets yields a corresponding partitioning of the total

ptential energy, i.e.,

I- 1 4U [1.3a]' l83bIJ :_ 1 [3a}

PTb 3b

K3ab]T [K b]J ' 3bJJ
L i J4 (34)

S13a1LBbJ I {P 3al}

The subset of displacements at the interior gridpoints {8 3b} is taken to be made

up of a contribution due to interface displacements{ 8} and a contribution due to dis-

placement relative to the interface{ f, i.e.,

{J af I}}+{01}. (35)
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A dependence of interior displacement upon interface displacement is readily

derived from static considerations. The expression of this dependence follows by taking

the variation of the potential energy (Equation 34) and solving the resulting relation to

-obtain

{~i+ I I'4b + Nal{ (36)

where

[Yi]= [-[K 3bb]-l[K3 bjT] (37)

and

{rj ={[K 3 bb] _{P}}1 (38)

Definition of diiplacement relative to the interface, completes the expression of

contributions to the total displacement at a point in the interior of a substructure. These

displacement contributions { 8 are constructed of substructure vibration mode shapes.

The relation governing vibration of the substructure is drawn from the partitioned strain

energy of Equation 34 and the associated kinetic energy to obtain

[Kbb] {3b} w 2 M3 bb] {8 3 b} 39

The suppression of the interface displacements 8 was tacitly assumed in
the statement of Equation 39. Therefore, the{ 8 3b maybe interpreted as the f

of Equation 35 in this relation. Explicit expression is given to {8 f I in terms of

participation factors {8 g on vibration mode shapes by extracting eigenvectors from

Equation 39 and writing

{B f}I [Y f]{8g}*1 (40)

This result completes the development required to construct a transformation to

the final substructure degrees-of-freedom. The result is,
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_ _ ! --- L 1 (41)11 11 ["' ['] "
or symbolically,

{83}{?~)+ [4 ]{ 4 }.(42){ '31=-{"-4} + [r 4 11 '41,,
Introduction of this transformation Into the strain energy form of Equation 21 yields

1(43)

where

K 4 1= [r4 ]T[K3] [r 4 (44)

The other energy forms are correspondingly transformed. The results of this trans-

formation yield the component parts of a mathematical model for the substructure that

is ideally suited to combination with other substructures for structural dynamics analyses

of large scale systems.

PHASE 5 - SYSTEM ASSEMBLY

Mathematical models are prepared for all of the substructures by utili7ing the

procedures described in Phases 1 through 4. Assembly of these substructure models

to form a model for the complete structure is effected in this fifth phase.

The assembly of substructures into a complete structure proceeds in the same

manner as the assembly of finite elements into a substructure that was described in the

Phase 2 analysis. The degrees-of-freedom associated with gridpoints common to more

than one substructure are assumed to be referenced to compatible coordinate axis direc-

tions. This being the case, the displacement set for the complete structure is related to

that of its jth substructure through a Boolean transformation of the form

{84"' a } [r 5 (j ] fa 5 } . (45)
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Introduction of this displacement coordinate transformation into the strain energy function
.th

of the j substructure as stated in Equation 43 yields this energy with reference to the

f{a 5 },'i.e.,

LP 8 [r 01J) T [K4 0) [r. 50) ( (46)

Summation of these individual substructure strain energies yields a strain energy function

for the complete system as

[8 J[K(47)

where

[ K51 P [ 5(j)] [ K 4(j)] [r 5(j)] (48)
3

The other system level energy functions are similarly coustructed by application of the

transformations of Equation 45.

PHASE 6 - CONDENSATION (SYSTEM LEVEL)

The energy functions made available from Phase 5 are expressed in terms of the

selected substructure vibration mode shape degrees-of-freedom and degrees-of-freedom

common to substructure boundaries or interface. These latter degrees-of-freedom were

retained as essential through the preceeding analysis phases in order to permit the proper

interconnection of the substructures. The interconnection has been accomplished at this

point and the appropriateness of these degrees-of-freedom bears examination.

As in the case of the degrees-of-freedom associated with gridpoints interior to a

substructure, many interface degrees-of-freedom will exist in consequence of the natural

breakdown of the structure into finite elements. In fact, the degrees-of-freedom associated

with these interface gridpoints can comprise the major portion of the complete set. This

being the case, it is worthwhile to condense out those regarded as superfluous.

Proceeding as in the substructure related Phase 3 condensation, the complete set of

degrees-of-freedom is partitioned into essential { 5a} and superfluous {Sb} subsets.
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Projecting this partitioning forward into the strain energy of Equation 47 and including

the corresponding external work function yields the total potential energy as

P 2 5ai1, 18.']J [1K5aa I[5ab]if{85a}

[[8Kb] [85[] 'a)S
- jj~sa)' CPsb)

Given that the {85b} are superfluous to structural dynamics analyses, the

stationary principle of potential energy is invoked as a rational means of establishing a

functional dependence of these degrees-of-freedom upon the essential degrees-of-freedom.

The stationary conditions of the potential energy follow from Equation 49, i.e.,

* FK~a) _[K5ab]J1 85.a} Pr{ a)I K a a ,T I : f I L I =i A -5 Ib }( 0L[5ab] TI [K 
( 50

Solution of this relation for the superfluous degrees-of-freedom permits construc-

tion of the desired condensation transformation in the form

{5al} {r 6} + [r 6]16} (51)

where

{861 { }85a (52)

[r6 .. .o~ [ .[...r (53)
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Introducing the transform relation of Equation 51 into the energy functions furnished

from Phase 5 references these functions to the essential degrees-of-freedom { 6 61" For

example, the strain energy of Equation 47 is transformed to

(V 18 [ KJ{ f841 (55)

where

[K 61 = [r6IT[K ] [rj. (56)

The analysis phases up to this point have taken a set of substructures based on

finite element models and has evolved these models into a system model expressed in

terms of relatively few highly specialized degrees-of-freedom considered essential for

vibration and dynamic response analyses.

PHASE 7 - APPLICATION OF BOUNDARY CONDITIONS

Singularities may exist in the stiffness matrix associated with the set of energy

functions derived in Phase 6. These singularities may stem from having deferred the

application of certain boundary conditions in order to broaden the generality of the model.

Note that in Phase 2 provision was made to apply physical boundary conditions by striking

out rows and columns associated with displacements'prescribed as zero. If, however,

the application of boundary conditions was deferred, their introduction can be accomplished

by a transformation relation that simply suppresses the associated gridpoint displacement

degrees-of- freedom. Symbolically,

{ a61} [rj{18 71. (57)

Introduction of this transformation into the energy functions furnished from Phase 6,

yields the following

- K7] (58)
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where

[K] r [)T [K6 ][ 7  (59)

and 7 8 7 -is the vector { a61 with the bounded degrees-of-freedom excluded.

PHASE 8 - RIGID BODY MODE SWEEP

The singularities that are more difficult to deal with are those associated with

unrestrained response of the structure. These are accounted for in the following para-

graphs. First, a set of rigid body modes is constructed. Subsequent simplification is

realized if these are referenced to the center of gravity of the structure but this is not

essential. The statement of a set of rigid body modes is particularly simple for the type

of model developed because none of the degrees-of-freedom which are amplitude coefficients

of substructure vibration mode shapes participate in a rigid body motion. Only the rela-

tively few gridpoint displacement degrees-of-freedom that have been retained at the sub-

structure interfaces need be considered. The desired rigid body modes are easily formed

and are indicated symbolically herein as [ R ].

Excluding damping and excitation forces leaves only strain and kinetic energies

from which the matrix equation of motion can be readily extracted, i.e.,

LM7] {-7} + 7]{ ={o. (60)

Premultiplication of this result by the transpose of the rigid body mode matrix [R]

yields

[R] T [M7] {8.71 + [ R] T[K,] {87} = {01- (61)

This multiplication negates the second term and permits direct integration to obtain a

relation governing rigid body motion as

[R]T[M7] {'7} ={a} +{}t • (62)
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The rigid body motion of Equation 62 may be neglected ((a I= { , I= {O.) for

present purposes and the coefficient matrix written in partitioned form using a new

symbol for convenience, i.e.,

[[Ya)4 Yb]I 1 {} toi. (63)

The selection of the degrees-of-freedom for inclusion into { B 7b} is largely a

matter of convenience within the constraint that the [Y b] be square and nonsingular.

The order of [' b] is equal to the number of rigid body modes. Solution of Equation 63

for the { 7b} in terms of the { 7a} permits construction of the transformation sought

to extract the rigid body modes from the model furnished from Phase 7, i.e.,

{ 8 7}= [r. ]{88 1 (64)

where

{8.1} {B7a}

[ re] = - 101 -]:1-- (65)

This Phase 8 of the analysis process is completed by the introduction of the trans-

formation [ r 8] as defined in Equation 65.

The result for the strain energy function is

Ou [B [KJ 8] (66)

where

[ K81 = [r,]T [K 7 1 [r 81- (67)

All other energy functions transform correspondingly. Note that this phase can be

neglected if the physical boundary conditions in Phase 7 are such as to prevent rigid

body motion.
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PHASE 9 - SYSTEM VIBRATION MODES AND FREQUENCIES

The mathematical model has been brought to the point where undamped vibration

modes and frequencies can be determined. The order of this eigenvalue problem is

presumed to have been reduced to well within program capacity. The relevant governing

relation, derivable from the strain energy and kinetic energy, is given by

W2[M 8 ]{S.} K.I {8.}. (68)

This relation is rewritten in the form

[D] { 881 =.~ 81 (69)

j where

J=[ [K3[M8 ] (70)

to facilitate extraction of the mode shapes corresponding to the lowest natural frequencies.

These natural frequencies and mode shapes of vibration complete the characterization

required by some design specifications.

This phase of the analysis is extended here to carry the computations forward to

provide a basis for prediction of time dependent response. The eigenvectors of Phase 8

are collected together to form the columns of a modal matrix designated [ r9 j. Follow-

ing the normal mode approach to dynamics analysis, ()this matrix is employed to effect

a transformation to degrees-of-freede.m { bg } which are participation coefficients of the

natural mode shapes of the complete structure, i.e.,

( 8,1= [r 9] {894. (71)

This transformation completes the development of an optimum set of degrees-of-

freedom for use in the prediction of dynamic response. The associated final form of the

strain energy is derived by substitution into Equation 66 to obtain

U -1 [8 9 1[K9 ] {8 9  (72)
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where

[K9] =[r 9 ]T [K,] [r91j. (73)

At this point it is instructive to reconstruct the complete sequence of transforma-

tions that are applied to a typical finite element function to arrive at this final form.

Working backwards, the final system level quadratic forms stem from a three stage

transformation beyond the point of assembly of the substructures. In order, these are

condensation [ 6](Equation -53), sfigularity sweep ['](Equation 65) and normal

mode [1 9 ] (Equation 71) transformations. These yield a collective modification of the

system level stiffness matrix in going from the { 85) to the { 19} that is given by

[K9] = [r 9 ]T[r8 ]T[r 7]T[r 6 ]T[K.] [r 6 [r7] [ r.] [r] (74)

The contribution of each substructure to the initial system level stiffness matrix

[K ()] was, in turn, derived from transformations beyond the point of assembly of its

component finite elements. In order, these are prescribed displacement [ 1 2] (Equation

20), condensation [r 3] (Fquation 30), component modes [ r 4] (Equation 42) and

assembly [" 5 ] (Equation 45) transformations. These transformations yield a collective

modification of the substructure level stiffness matrix in going from the { I to the

{8,} that is given by

[K 5]= [r 5] T [r 4 ] T [r 3 ] T [r2]T [K1][r2] [ 3 ] [ 4 ] [r 5 ] (75)

Tracing the sequence of transformations to the fundamental finite element blocks is

completed by statement of the element assembly transformation [ r1] of Equation 13, i.e.

[K(J)] = [r 1(k)] T[K(k)] [r (h)] (76)

This recap of the dynamic substructuring procedure makes clear the con3iderable

computation involved. It also exhibits the highly systematic nature of the process.
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NOTATION

~ Rectangular matrix (Eq 1)

Column matrix (Eq 1)

I J Row matrix (Eq 2)

ZSummation operator (Eq 16)

{$e( 4 Finite element displacement functions (Eq 1)

[Be( Finite element assumed displacement mode shapes (Eq 1)

I Pe Gridpoint displacement coefficients of finite element assumed
displacement mode shapes (Eq 1)

DU Strain energy function (Eq 2)

External work function (Eq 3)

P Total potential energy function

[Ke] Finite element stiffness matrix (Eq 2)

F ej Finite element applied load vector (Eq 3)

Psuedo potential for viscous damping (Eq 4)

S Psuedo potential for structural damping (Eq 5)

i Unit imaginary number (Eq 7)

[Dve] Finite element viscous damping matrix (Eq 4)

[Dse] Finite element structural damping matrix (Eq 5)

M Finite element kinetic energy function (Eq 6)

Differentiation with respect to time (Eq 6)

[M] Mass matrix (Eq 6)

{8,} Gridpoint displacement coefficients referenced to a coordinate
system defined by the subscript . (Eq 8)

{.1+ J Gridpoint displacement coefficients referenced to a coordinate
system defined by the subscript .1+ 1 (Eq 8)

{Tt 4 1 Translational transformation which relates gridpoint displacement
+ coefficients referenced to a coordinate system defined by the

subscript .t to one defined by ,e+ 1
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[r + ] Rotational transformation which relates gridpoint displacemnt
1+ coefficients referenced to a coordinate system defined by the

subscript A to one defined by I + 1

j Substructure identification number (Eq 13)

k Finite element identification number within a substructure (Eq 1, 13)

T Matrix transpose operator (Eq 10)

{B ~ th
The complete set of gridpoint displacements of the j substructure
\-q 13)

[l(k)] Transformation relating the j to the displacement set of the kth

finite element (Eq 13)

{8Ib} The subset of substructure displacements that are prescribed (Eq 17)

lal The subset of substructure displacements that are essential degrees
of freedom (Eq 17)

0 W A contribution to the external work which arises from the prescribed
displacements (Eq 24)

12a The subset of substructure gridpoint displacement degrees of freedom

2 ,,l that is regarded as essential to structural dynamic aialyses (Eq 26)

2b The subset of substructure gridpoint displacement degrees of freedom

2b ~that is regarded as superfluous to structural dynamics analysis (Eq 26)

P 2aI Generalized loads corresponding to the { 82a} (Eq 26)
1 bI Generalized loads corresponding to the f 2b (Eq 26)

Rotational transformat,,n relating the complete set of substructure

3] gridpoint displacement degrees of freedom to the subset essential
to structural dynamics analyses (Eq 28)

{! 3 1 Translational transformation relating the complete set of substructure
gridpoint displacement degrees of freedom to the subset essential to
dynamics analyses (Eq 28)

K3 ] Substructure stiffness matrix referenced to the gridpoint displacement
K3 degrees of freedom essential to the structural dynamics analyses

(Eq 33)
{8 3bj , { 31 subset of displacements associated with gridpoints interior to a
U "subs ructure (Eq 34)

{D3al o subset of displacements associated with gridpoints on the interface
-;,bstructure (Eq 34)
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f8i Contribution to {83b} arising from displacements of the interface
gridpoints of a substructure (Eq 35)

*1f8 Contribution to {8 3b} arising from displacements relative to interface
gridpoints of a substructure (Eq 35)

i Transformation relating interface displacements to the displacements
i which these induce at (Eq 37) interior points.

{ 4 b}  Displacement contribution at interior points de- to applied loads at
interior points (Eq 38)

Modal matrix of substructure taken as constrained at the substructure
interfaces' (Eq 40)

~g Participation factors on substructure mode shapes

Rotational t.ansformation from essential gridpoint degrees of freedom
to the final set of substructure degrees of freedom (Eq 42)

--{T4 Translational transformation from essential gridpoint degrees of freei ,fn

to the final set of substructure degrees of freedom (Eq 42)

(41 Final set of substructure degrees of freedom (Eq 42)

[K4 ] Final form of substructure stiffness matrix for assembly intc complete~structure (Eq 44)

{85} Compiete set of degrees of freedom after assembly of the substructures
(Eq 45)

cr1 ]Transformation between finil substructure degrees of freedom and the
5 initial set of degrees of freedom for the assembled structure (Eq 45)

[K ] Stiffness matrix of complete structure referenced to the 85 }
15  (Eq 48)

5a ~} The subset of degrees of freedom, in 8 5  that is regarded as
a essential (Eq 49)

The subset of degrees of freedom in. that isiregarded as
?5bj ~superfluous (Eq 49) P5

The applied load vector corresponding to the degrees of freedom 85a
(Eq 49).

P5b} The applied load vector corresponding to the degrees of freedom { b}

rI 6 I Condensation transformation from the{8 5} degrees of freedom for the
IN total structure to the subset chosen as essential (Eq 53),

Contributions to superfluous degrees of freedom from the corresponding
applied loads (Eq 54)
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SECTION V

DISCUSSION AND CONCLUSIONS

A. DISCUSSION

Integrated general purpose analysis capabilities of the MAGIC II

System class signal a major advance in the state-of-the-art of automated

tools for analysis. The superior cost effectiveness of such systems

over conventional multiple special purpose program capabilities is

compelling.

This assertion of superior performance from large scale program

systems may well contradict conclusions drawn from experience.

Complexity and inefficiency have long been concomitant with large

size and versatility in computer programs. Indeed, the elimination

of these depreciating effects was prerequisite to realization of

the favorable cost effectiveness of the MAGIC II System.

Large size and versatility, without excessive complexity, are

assumed intrinsic to the MAGIC II Syst3m in subsequent paragraphs, as

attention is focused upon the relative efficiencies of integrated

general purpose analysis capabilities and multiple special purpose

computer program analysis capabilities. This is to presume the

pre-requisite elimination of the greater hindrance; namely, the

excessive complexity which choked off many early general purpose

program developments. This problematical complexity was encountered

when programs of simple organization grew to press upon the limits

of computer software and hardware capabilities. Extensions beyong

this point were accomplished by intricately coordinated multiple usage

of valuable names and locations, special program versions with omitted

features and other actions which accumulated to entangle the logic and

data storage until further modification became impractical.

In the face of this situation increasingly powerful analytical

models and solution methods were formulated and numerical imolemen-

tation demanded. And, as is often the case, sufficient pressure was

built up to bring about the technological advances needed in the

*computer technologies.
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kdvances were forthcoming in programming technology which

established the technical feasibility of a truly general purpose

computer program system. Advances in computer hardware insured the

economic feasibility as the technical feasibility was established

through a number of contributing developments. The collective

result of these latter developments is, in a word, "organization".

Among those organizational characteristics or features considered
essential are, the breakdown into single function modules, the

program library concept, the matrix interpretive system, machine

independency, etc.

It is appropriate to emphasize at this point, that the

MAGIC II System for structural analysis is more than a discrete

element computer program. It is, in one sense, a Problem Oriented

Language (POL) which enables various Analyst specified computa-

tional procedures. And, at the same time, it is designed with attendant

structural analysis practices evolved from applications experience.

These practices are discussed in detail in subsequent paragraphs.

The point of interest here is that the efficiency of the MAGIC II

System is an overall efficiency governed more by men than machines.

The more comprehensive the comparison, the greater the

advantage shown by the integrated general purpose analysis capabili-

ties over multiple special purpose program capabilitites. In nearly

all cases an equitable comparison must include consideration of

program development efforts since relevant technologies are

continuously advanced. On this basis the integrated approach

enjoys the greatest relative advantage. The integrated approach is

also superior to the multiple program approach when considering only

factors involved in utilization of operational capability. On the

other hand, shorter execution times are conceded to special purpose

programs without dispute, since execution efficiency is not essential

to the case for the greater overall efficiency of integrated analysis

capabilities.
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Attention is focused now on the impact of the integrated

general purpose computer program approach on the efficiency of

the many processes involved in maintenance and application of

responsive analysis tools in support of a broad struct-ral design

activity. Program maintenance efforts benefit from the highly

modularized organizational structure to an even greater extent

than the initial development effort.

In the initial development, functional modules are

established against the requirements of the alternative analysis

procedures taken collectively. And, since an extensive commonality

exists, multiple repetitious coding is avoided. This same

payoff is derived again as existing modules are retired in favor

of new modules which offer improved performance. The introduction

of a single improved module is reflected to advantage throughout

all pertinent analysis procedures of the computer program system.

The option exists to retain alternative modules for the same

function without sacrifice. This provides useful operational

flexibility and a convenient testbed for various candidate procedures.

Alternative procedures can be evaluated within the system without

disrupting its operational status.

The foregoing has dealt with maintenance of existing analysis

capability. Maintenance is also interpretable as generalization of,

and addition to, the overall analysis capability. Completely new

analyses can be implemented with the addition of only those functional

modules absent in the existing capability. For example, finite

element heat conduction analyses and the more efficient optimality

criteria based optimization methods are possible with relatively

minor modifications to the MAGIC II System.

The benefits derived from tha organization of a general purpose

computer program system in development,,maintenance, generalization

and extension are simultaneously important disadvantages associated

with multiple computer program analysis capabilities. The extensive
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commonality among analyses leads in this latter case to the

repeated development of coding to perform a given function. The

preparation of special versions of new modules and the introduction of

these into a multiplicity of computer programs is often not justified

and the overall capability is depreciated.

Another particularly important handicap borne by the separate

programs of a multiprogram capability is that these programs cannot

command, individually, the provision of many useful special features.

For example, useful options and diagnostics are usually omitted from

these special purpose program routines. Also, such programs frequently

encounter obstacles such as machine storage capacity which must be

avoided rather than surmounted in view of the limited applicability

of the program. Advancements in computer snftware and hardware are

further considerations of importance in the maintenance of an analysis

capability. These advancements place multiple program capabilities

in special peril. Those programs not being actively utilized at the

time of transition in software or hardware are easily overlooked and

in this way are lost from the overall analysis capability.

No single factor is mbre important in the provision of a

responsive analysis capability than documentation. Engineering

documentation must delineate analysis procedure, input data and

output data. Programming documentation must provide for operation

and modification of the program.

Consolidation of the analysis capability into a general purpose

program results in a corresponding favorable consolidation of

documentation. Not only is volume reduced but the total capability

is described uniformly as a whole. Small programs tend to be the

personal tool of the initiator. As a consequence, the documentation

prepared is generally inadequate to enable general usage. This

situation leads to extensive tutorial instruction to realize the

benefits of the program development. At the very lcast, multiple

program capabilities place the burden of assimilating the overall

analysis capability from the individual manuals upon the user.
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The foregoing has pointed out decisive advantages of general

purpose program systems in the context of development and

maintenance of analysis capability. The most compelling

advantages, however, are found in operation. The greater efficiency

of the MAGIC II System relative to multiprogram capabilities for

analysis stems in large mea3ure from the extent of the analysis

process which is covered. Time consuming, error prone, manual

transfers of data between special purpose or single step computer

programs are avoided. The integration of heat conduction and

thermal stress analysis within a single system can circumvent the

laborious preparation of temperature data. The integration of

stiffness and vibration analyses can similarly circumvent the

manual transfer oC stiffness and mass data. These eliminations of

manual effort yield reductions in calendar time which is often the

paramount consideration for contribution of analysis to design.

This is not to say that long continuous executions are desirable.

Execution interruptions enter importantly into proper utilization

of the MAGIC II System.

The MAGIC II System is designed to facilitate good structural

analysis practices in support of the overall structural design

process. Individual design organizations are best served by

structural analysis practices and program versions which are, to

some degree, distinct. On the other hand, the extensive commonality

which does exist among design organizations provides strong

motivation for reviewing the effective structural analysis practices

and supplemented program version which have evolved at Bell Aercspace

Company.

The structural analysis process begins with the idealization of

the structure into an assemblage of finite elements. This is a

multistep operation if the structure is first separated into sub-

structures. Generally, the separation into substructures is

governed by the physical interconnections of the major structural

components. The idealization into finite elements is governed by

variations in geometry, dimensions, material, applied loading and

boundary conditions.
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Preprinted input data forms are employed to simplify and thereby

improve the reliability of the input data specification. These

preprinted input forms associated with the MAGIC II System are an

important improvement over card image forms for frequent as well as

infrequent users since they incorporate automatic data generation

features. These built-in data generation features are supplemented

at Bell by auxiliary (not integrated into the MAGIC II System) data

generation programs. Some of these are employed routinely. Others

are extremely simple programs written for a single, problem

r3lated calculation. Such auxiliary programs are frequently employed

to advantage in the generation of gridpoint coordinates with
reference to the global rectangular coordinate axes, since expression
of these can require extensive tedious calculation. This gridpoint

coordinate data set should be interpreted here to include points

for specification of gridpoint axes transformations and stress and
material angles as well as points associated with degrees-of-

freedom.

The first MAGIC II System execution undertaken is to confirm
the assembled input data deck. This deck is read and the implied
data is given explicit definition. For example, material properties

are extracted from the Material Library and gridpoint axes trans-

formations are generated from the coordinate table. The completed

data set is examined in this preprocessing execution. All data

items are stored for execution restart and printed for further

checking by the analyst.

The preprocessing execution is supplemented at Bell to include

the generation of a magnetic tape which, in turn, generates a plot

of the structural model automatically. This plot enables efficient

and reliable confirmation of the two most problematical data items;

namely, the gridpoint positions and the finite element connection

arrangement. Eeyond this point the structure plot is a useful

identifying title sheet for the printed problem output.
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The next phase of the analysis process proceeds via a restart
through the generation of the structural matrices for stiffness,

stress, loads, assembly, boundary conditions, etc. Built-in

features control this matrix generation to selectively form only
those matrices required for the current analysis. Completion of

the matrix generation phase signals exit from the Structural System

Monitor. This is an interface point between matrix abstraction
instruction statement, and, therefore, a point for optional

interruption of the execution to examine the system level matrices.

This interruption is used only infrequently at Bell.

Calculation proceeds to the governing matrix equation and

thence to the solution for the displacement vectors for all load

conditions. For some problems execution may be terminated at this

point. For many other problems the validity of the analysis can be

assessed against these displacement results and an execution interrup-

tion is justified by the computational investment required for the

secondary results. Ideally, the deformed structure should be plotted

to facilitate interpretation of the predicted displacement behavior.

The analysis proceeds from the displacement solution, with or
without interruption, to calculation and print of the remainder of

the output data items; namely, reactions, forces, stresses, etc. This

is the conventional point of termination of finite element analyses.

However, a number of relatively simple auxiliary programs are used
to advantage at Bell to relieve the burden this output places on the

stress engineers. As in the case of the input data generation

auxiliary programs, some of the auxiliary output data reduction
programs are employed repeatedly and others are special to a single

problem. The functions of these programs include such things as

principal stress calculations and margin of safety determinations.

Auxiliary programs which do nothing but selectively print and label
output data items are also helpful for large problems.
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Several comments on the evaluation of output data are

warranted in concluding discussion of good structural analysis

practices. The examination of output by the Analyst should be

initiated under the presumption that an error exists with confidence

in the validity of the analysis accumulating as the examination

proceeds. Given a complete set of output, attention should first

be given to the gridpoint force balances and reactions. Assured that

no unintended reactions exist and that residuals are negligibly

small, the displacement states should be examined. If the general

deformed configuration does not expose any inconsistencies,

confirmation is completed by examination of the more extensive

presentation of force and stress data.

The foregoing discussion has focused upon development,

maintenance and utilization considerations important to the

favorable cost effectiveness of the present MAGIC Ii System

for structural analysis. Further evolution of this system

can be expected which will continue to improve its relative

advantage. Updated versions of the MAGIC II Syscem will be

compatible with all features developed in connection with prior

versions.

B. CONCLUSIONS

It is concluded that the IAGIC II System is a logical and

consistent extension of the original MAGIC System and that

additional capabilities realized with the System have met or

exceeded the requirements of Contract F 33615-69-C-1241. The

satisfactory achievement of the overall objectives is given

substantiation by a number of subsidiary conclusions. Specifically,

it is concluded that:

(1) The versatile finite element library enables effective

idealization of most linear structures.

(2) Cmputational procedures attendant to the MAGIC II System

enable the conduct of linear displacement and stress

'Analyses in the presence of general prestrain and thermal

loading as well as distributed and concentrated

mechanical loading. Additionally, vibration analyses can

be employed with or without the use of condensation techniques.
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(3) The stability analysis procedure provided in the MAGIC II

System enables the prediction of critical load levels for

general built-up shell structures.

(4) The preprinted input data forms facilitate the rapid and
reliable specification of problem data as evidenced by

their wide acceptance with the original MAGIC System.

(5) The output provided by the MAGIC II System is oriented

to the engineering user and facilitates clear and concise

interpretation of output parameters.

(6) The computer program organization of the MAGIC II System

is logical in design and is wel3 suited to generalization.
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