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FOREWORD

This report was prepared by Textron's Bell Aerospace
Company (BAC), Buffalo, New York under USAF Contract No.
F—33616-69-0-1241. This contract is an extension of previous
work initiated under Project No. 1467, " Structural Analysis
Methods" , Task No. 146702, " Thermal Elastic Analysis Methods"
The program was administered by the Air Force Flight Dynamics
Laboratory (AFFDL), under the cognizance of Mr. G. E. Maddux,
AFFDL Program Manager. The program was carried out by the
Structural Systen: Department, Bell Aerospace Company during the
period 2 December 1968 to 2 December 1970 under the directicn of
Mr. Stephen Jor< ., BAC Program Manager.

This repert, ' MAGIC II: An Automated General Purpose
System for Structural Analysis™ , is published in three volumes,
" yolume I: Engineer's Manuzl" ,"Volume II: User's Manual' ,
and " Volume III: Programmer's Manual" . The manuscript for
Volume I was vreleased by the author in January 1971 for publi-
cation as an AFFDL Tec, nical Report.

The author wishes to express appreciation to colleagues
in the Advanced Structural Design Technology Section of the
Structural Systems Department for their individually significant,
and collectively indispensible, contributions to this effort.

The author wishes to express appreciation also to
Mr. A. M. Gallo, Miss Beverly J. Lale and Mr. Mark Morgante for
the expert computer programming that transformed the analytical
development into a practical working tool.

This technical report has been reviewed and is approved.
~
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FRANCIS J. JA i~ JR.
Chief, Theoretical Mechanics Branch
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ABSTRACT

An automated general purpose system for analysis is
presented. This system, identified by the acronym " MAGIC TII*®
for Matrix Analysis via Generative and Interpretive Computations,
is an extension of structural analysis capability available in
the initial MAGTC System. MAGIC provides a powerful rramework
for implementation of the finite element analysis technology and
provides diversified capability for displacement, stress, vibration
and stability analyses.

The matrix displacement method of analysis based upon
finite element idealization is employed throughout. Ten versatile
finite elements are incorporated in the Tinite element library.
These are frame, shear panel, triangular cross-section ring,
trapezoidal cross-section ring (and core), toroidal thin shell
ring (and shell cap), quadrilateral thin shell and triangular thin
shell elements. Additional elements include a frame element,
quadrilateral plate and triangular plate elements which can be
used for both stress and stability analysis. The finite elements
listed include matrices for stiffness, mass, incremertal stiffness,
rrestrain load, thermal load, distributed mechanical. load and stress.

The MAGIC II System for structural analysis is presented
as an integral part of the overall design cycle. Considerations in
this regard include, among other things, preprinted input data forms,
avtomated data generation, data confirmation features, restart
options, automated output data reduction and readable output displays.

Documentation of the MAGIC I~ System is presented in
three parts; namely, Volume I: BEngin er's Manual, Volume II: User's
Manual and Volume III: Programmer's Manual. The subject document,
Volume I (Engineer's Manual - Addendum) is an extension of the
primary technical document. Included are the theoretical develop-
ments for the additional finite elements included in the MAGIC II
System as well as a discussion of newly added computational procedures.

ii
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SECTION I

INTRODUCTION

The MAGIC II Systems for Structural Analysis is a logical
ext.ntion of the original MAGIC System reported in References 1,
? and 3. All capabilities available from the original MAGIC System

nave been :etained. Extension of the program capability is primarily
in the following areas,.

(a) The implementation of four additional finite element
representations and their associated element matrices.

(b) The

improvement of output displays to facilitate

ease of interpretation by the User.

(¢) The
the
(1)
(2)
(3)
()
(5)
(6)
(@) The
for

1" on

(e) The
(f) The

provision of an "Agendum Library" to accommodate
following classes of analyses.

Statics

Statics with Condensation

Statics with Prescribed Displacements

Stability

Dynamics (Modes and Frequencies)

Dynamics (with Condensation)

addition of an out-of-core eigenvalue routine
the nonsymmetric matrices based on the power method
the order of" 3000 x 3000.

addition of improved and expanded error diagnostics.

addition of a prescribed displacement option to

accommodate more than one load condition per execution.

(g) The addition of the capability to accept either

rectangular, cylindrical or spherical coordinates as
input data.

(h) The addition of miscellaneous arithmetic modules to
the System to support the computational procedures.



(i) 7The addition of a new assembly module to increase
the permissible assembled system matrix size.

Documentation of the MAGIC II System for structural analysis
is presented in three volumes. The subject volume (Volume I) is an
addendum to theprimary technical report documented in Reference 1.
Separate supplementary volumes are provided to facilitate
utilization of the MAGIC II System. Volume II, the User's Manual(u),
includes detailed specifications for the preparation of input data,
along with illustrative examples. Volume III, the Programmer's
Manual (5), presents information on the organization of the MAGIC II
System as well as its operational characieristics.

It is to be noted that this addendum is to be used in
conjunction with the original technical report (Reference 1) in
order to utilize the MAGIC II System effectively.

Section II presents a discussion of additional analysis
and programming technology which has been incorpcrated into the
MAGIC II System. New computational procedures and expanded
size characteristics are emphasized.

A general theoretical description of the additional
finite element representations (and element matrices) included in
the MAGIC II System is given in Section III. These elements are
as follows:

(a) Trapezoidal Cross-Section Ring (Core)

(b) Quadrilateral Plate

(c) Triangular Plate

(d) 1Incremental Frame

Section IV presents a discussion of the computational
procedures available in the MAGIC II System. 1Included are procedures
for Statics, Statics with Condensation, Statics with Prescribed
Displacements, Stability, Dynamics (Modes and Frequencies) and
Dynamics with Condensation. Additional procedures are outlined for
Static and Dynamic Substructuring.
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"ne body of this technical report is concluded with a
general retrospective discussion in Section V. Limitations of

T

the “MAGLC 11 System are discussed and guidelines for utilization
are presented.
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SECTION II

ADDITIONAL ANALYSIS AND PROGRAMMING TECHNOLOGY

A, ANALYSIS TECHNOT0OGY

The MAGTC Il System incorporates the ten finite elements
shown in Figures I1.1 and II.2 . The six finite elements shown
in Figure II.1 were available in the original MAGIC System and
are discussed in detail in Reference 1. The four additional finite
elements shown in Figure II.2 are described in detail in Section IV. '

The set of matrices embodied in each element representation
determines the type of analyses which can be performed. 1In the
MAGIC II System, a complete element representation is taken to
include matrices for stiffness, incremental stiffness, pressure
load, prestrain load, thermal load, stress, and mass. Moreover,
provision has been made for additional element matrices such as
consistent damping matrices.

The types of analyses available with the MAGIC II System
are as follows:
(a) Statics
(b) Statics (With Condensation) !
(c) Statics With Prescribed Displacements
(d) Stability
(e) Dynamics (Modes and Frequencies)
(f) Dynamics (With Condensation)

In addition many user variations of the above computational
procedures are available with the System. This is possible due
to the powerful matrix abstraction capability available from the
MAGIC II System. A complete description of the computational
procedures listed above along with example problems which demonstrate
their use is provided in Volume II of this report (User's Manual).
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B. PROGRAMMING TECHNOLOGY

In this section additional programming technology available
with the MAGIC II System is discussed., Volume III of this
report (Programmer's Manual) is suggested for complete documenta-
tion on program technology.

[. General Description

The general arrangement of the MAGIC II digital computer
program system is shown in Figure 17,3 . The supervisory program
consists of the FORMAT control and two monitors; the Preprocessor
Monitor, and the Execution Monitor. The main program controls
the normal twc phase operation by delegating control, in turn,
to the two monitors.

The preprocessor Monitor directs the processing of card
input data describing the machine configuration, the problem
specification, the abstraction instruction sequence and the matrix
data.

A standard, modified standard, or totally new machine
configuration may be defined for each MAGIC II case.

General output format and labeling information, and identify-
ing names of the master input and output data sets (tapes) con-
stitute the problem specification data.

The matrix and pseudo-matrix operations are input in the
reguired sequence of execution in the abstraction instruction
sequence. Abstraction instructions are submitted in free form on
standard Fortran coding sheets for punched card reproduction.

Card input matrix data are specified on a standard form,
Matrices may be of order 3000x3000, and may contain up to 6000
randomly ordered, single precision real elements (with 32K core
storage unit).
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For the general case, preprocessing involves straightforward
sequential processing of data by each of the modules under the
Preprocessor Monitor. Special preprocessing can be specified by
proper use of the control cards described in the User's Manual,

SOl UM A SO VT

: E The final preprocessor operation is to pre-plan the data
storage allocation through the problem and to record this program
of the "complete problem solution logic" for use by the Execution
Monitor,

The standard matrix operational modules provide for mairix
addition, subtraction, multiplication, and transpose multiplication,
with optional concurrent scaling, and for matrix scalar multiplication,
transposition, adjoining, dejoining, and inversion. Modules
for the solution of simultaneous equations by elimination and iterative
: techniques complete the basic standard matrix operation capability
] of the system,

1 The pseudo-matrix operational modules provide for the element

G by element multiplicaticn of two matrices of identical order, the

. elements of a matrix to be raised to a scalar power, the extraction
of the algebraic maximum and minimum elements of the rows or columns
of a matrix (i.e., the envelope of a matrix), the diagonalization of
a row or column matrix, the generating of null and identity matrices,
and the renaming of a matrix. Included in the classification of
pseudo-matrix operational modules is the "Structure Cutter" subroutine
which generates a well conditioned solution of "n" linear
simultaneous equations in "m" unknowns by Jordanian elimination
(where n € m).

Matrices produced as the results of standard and pseudo-matrix
/ operations may be as large as 3000x3000 with no restriction on
g population density. Storage of matrix data is by column sort, and
¢ when individual column population density is less than 50 percent,
1 storage is in compressed format. In compressed format, each non-
g zero element and its corresponding row location are sequentially
_ stored, and zero elements are omitted. Where feasible, the sub-
routines operate directly on the compressed data.

9
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MAGIC IT includes two subroutines for the calculation of
eigenvalues. The first subroutine calculates the specified number
of eigenvalues, beginning with the largest, and the corresponding
eigenvalues of a matrix, whose maximum order is limited by the
working core storage availanle to the subroutine. Typically, with
a 32K storage unit, the matrix may be as large as 160 x 160.

This subroutine is written for a real symmetric matrices only. The
second subroutine also calculates the specified number of eigenvalues
and eigenvectors beginning with the largest eigenvector. However,
the real eigenmatrix can be symmetric or nonsymmetric and the only
limit on its order is the amount of working storage available to the
MAGIC System,

Up to nine special operational subroutines can be coded by the
user and added to the system. The fourth user coded module is the
structural generative system of MAGIC and is described in detail
in the User's Manual.

The sequence of operation is controlled by simple abstraction
instructions prepared by the User, keypunched, and read directly
by the machine. Cormments may be included in the abstraction in-
struction sequence for explanation of the results.

Limited logic is available in the form of a conditional trans-
fer. A matrix may be tested for nullity and, if true, control will
be transferred forward to a specified abstraction instrucﬁion in
the sequence. Conditional transfer is limited to a "skip ahead"
in the abstraction instruction sequence.

Matrices can be printed in a standard form, with small number
suppression and row-column labeling., The matrix elements are
printed as floating point numbers with optional exponent.

The normal printed output for a MAGIC II case includes a
listing produced by the preprocessor. The listing unconditionally

includes all control and specification data together with the complete

abstraction instruction sequence, The listing will also include
matrix input data, special input data, and the machine generated
"complete problem solution logic" if the approriate options are
chosen in the control data.

10
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IT, Structural Abstraction Instructions

In designing the MAGIC II System for Structural Analysis,
provision was made for accommodating new abstraction instructicns
peculiar to the .USERO4. module. In keeping with the philosophy of
generating a highly flexible USER oriented system, specialized
instructions were designed for items such as element stress and
force determination, element assembly and print controls. These
additional USER options provide output capabilities of the MAGIC II
System, consistent with input requirements.

The following abstraction instructions, .STRESS., .FORCE.,
.ASSEM,, .EPRINT., and .GPRINT. are to be used in conjunction with
the ,USEROM. abstraction instruction.

To compute the net element stress matrix and generate
optional engineering print of apparent element stresses, element
applied stresses and net element stresses use the ,.STRESS.
abstraction instruction.

To ccmpute the net element force matrix and generate
optional engineering print of apparent element forces, element

applied forces and net element forces use the .FORCE. abstraction
instiruction.

To assemble the element stiffness matrices, element mass
matrices, element incremental matrices and element thermal load
matrices as output by the .USERO4, instruction use the .ASSEM.
abstraction instruction.

To generate engineering printout of the net element stresses
or net element forces use the .EPRINT. abstraction instruction.

To generate engineering printout of reactions, displacements,
eigenvalues and eigenvectors, and user matrices use the .GPRINT.
abstraction instruction.

A complete discussion of the above listed instructions along
with a detailed explanation of their proper usage is presented
in Section II.B.f of the User's Manual,
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ITI. Size Characteristics

The size characteristics of the MAGIC II System are
twofold: first, there are the size characteristics of the program
itself and second, those associated with the problem solving
capability. Considering the former, the MAGIC II System contains
356 subroutines (approximately 38000 FORTRAN IV source carde)
logically designed into 43 overlay links on an IBM 360/65
using 45600 words of storage. The overlay design reflects the
optimum use of available storage, yet maintains respectable
execution efficiency.

The MAGIC II System offers large scale capability with nc
penalties to small applications due to the fact that out of core
operations are not utilized unless the magnitude of the application
requires them,

The scale of the analysis capability provided via the MAGIC
II System can be characterized as "on the order of" 3000 displacement
degrees-of-freedom using 45600 words of storage on an IBM 360/65
digital computer. Other relevant maximum size characteristics
are 3000 discrete elements and 1000 gridpoints. Matrices which
are card input may be of order 3000 x 3000 and contain up to
6000 single-precision real non-zero elements.

The MAGIC II System needs a minimum of eight external storage
units to operate, distributed into the following functions: one unit
assigned as Instruction storage for the Execution Monitor, one unit
assigned as a Master Input Unit, one unit assigned as a Master
Output Unit, and five units assigned as Input/Output Utility Units.
Every effort should be made to make the most external storage units
possible available, since any increase in the available storage units
increases execution efficiency.

12




SECTION III

ADDITIONAL FINITE ELEMENT REPRESENTATIONS

A, INTRADUCTION

The MAGIC II System incorporates ten finite element
representations. Six of these elements, namely, frame, shear
panel, triangular cross-section ring, toroidal thin shell ring,
quadrilateral thin shell and triangular thin shell were
available in the initial MAGIC System and are described in
detail in Reference 1.

Four additional elements, namely, trapezoidal cross-section
ring (core), quadrilateral plate, triangular plate and incremental
frame have been incorporated into MAGIC II. A complete element
representation is taken to include matrices for stiffness,
stress, incremental stiffness, pressure load, prestrain load,
thermal load and mass.

In the following sections, each of the element representations
along with associated element matrices are discussed in detail.
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B. TRAPEZOIDAL CROSS-SECTION RING (CORE)

I. Tntroduction

The formulation of the trapezoidal cross-section ring
discrete element described herein, 1f dervied from, and is
mathematically consistent with, the formulation described
in Reference 6.

The trapezoidal cross-section ring discrete element, shown
in Fig.111.1, provides a powerful tool for the analysis of thick
walled and solid axisymmetric structures of finite length., It
may be used alone or 1if the problem dictates a highly irregular
grid work, it may be combined with the well known triangular ring
discrete element (7) to form the assembly of any axisymmetric
structure taking into account:

1. arbitrary varlations in geometry

2. axial variation in orientation of material axes
of orthotropy

3. radial and axlial variations in material propertiles
4, any axisymmetric loading system which can include
pressure, and temperature, and degradation of
material properties due to temperature.
For the analysis of solid structures, a core dlscrete element (8)
has been developed to be used in ccnjunction with the trapezoidal
or triangular cross-section discrete element. This core &lement
(Fig.III,z)is a specilization of the trapezoidal cross-section
ring element.

The discrete element technique was first applied to the
analysis of axisymmetric solids by Clough and Rashid(g) and
later the formulation of the traingular cross-section ring was
extended by Wilson®0) to include non-axisymmetric loading. This develoj
ment  deals with the axisymmetric case but includes orthotropic
material properties. The integration of the strain-energy over
the volume of the ring is effected analytlically, and finally
pre-strain, and pressure load vectors as well as a consistent mass
matrix are included. Thus the following element representation is

14
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FIGURE III.1 TRAPEZOIDAL CROSS-SECTION RING DISCRETE ELEMENT
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formulated to include algebralc expressions for the following

matrices ll);
1. Stiffness , L[KJ]
2. Stress » [S]

3. Consistent Mass , [M]
il

. Pressure Load » {Fp}
5. Thermal Load s {FT}
6. Gravity Load s {FG}

7. Centrifugal Force , {CG}

The above matrices arise as coefficient matrices in the
generalized form of the Lagrange Equations for the element.
generalized form of the Lagrange equation appropriate for the
complete element representation listed above is given by,

60, 8§02

R A v B

r
q, = generalized displacement
ér = generalized velocity
¢, = total potential energy
23 = kinetic energy

17
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[ Assumed Displacement Functions

% F Y

A structural element 1is mathematically discretlized into a
finite number of degrees of freedom by the assumption of
displacement function mode shapes. The displacement modes
3 employed for the trapezoidal ring may be written as:

oy + oazr + o032 + oyrz (2.1)

u(r,6,2z)

E w(r,6,z) By + Br + B3z + Buyrz (2.2)

It is to be noted that the assumed displacement functions are
: interelement continuous when the elements employed are
rectangular. The coefficlents a and B which appear in the
assumed displacement functions will be referred to as fileld

coordinate displacement degrees of freedom. The transformation
from field coordinates to grid point displacement degrees of
freedom (ui) is effected by writing:

ui(rieizi) = o +or, + oz, + arz, (2.3)
Hence
{a} = [hi{u} (2.4)
also
wi(ry042,) = B + Bry + 82z +8 7Tz, (2.5)
Then
{8} = [hl{w} (2.6)

Upon combination of (2.4) and (2.6) we have

{y} = [HMa} (2.7)
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where

{Y}T Lals G2, Q3, Qy, Bl’ BZ’ BS’ B'O_] (208)

{q}T I_U.l, Wi, U2, W2, U3, W3, Us, w:.__l (2.9)

A speclal case arises when the trapezoidal ring is to be
used as a core element. For this (see FigureIII,z)
ry Ery 0 and u; 2 uy = 0., This causes the quantities
ay and o3 1iIn the assumed displacement mode to be equal to
zero, which causes the [H] matrix to be modified. This
modified matrix is designated [H] for the core element

specialization.
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111 Potential Energy

The total potential energy 1s derived in this section as the
sum of the strain energy and external work contributions.

The procedure followed is exactly the same as that detalled
in Reference 1. The desired
form of the potential energy 1s as follows:

U = % f[]_e_l (El{e} - LeJ[E]{ei}]dV (3.1)
\'
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TV Wlem=nl Static Matrices

.1 Introduction

In order to effect the discretization of the element,
the assumed displacement modes must be introduced into the
potential energy function. Substitution of the total potential
energy function into the Lagrange equation yields the element
matrices with respect to grid point displacement degrees of
freedom. An exception is the element stress matrix which is
derived from the strain-displacement and stress-strain
relationships.

4,2 Stiffness Matrix

The energy contribution to the linear elastic
stiffness is

° = %—jLeJ[E]{e}dV (4.2.1)
A
: The strains can be expressed in terms of the generalized
’ coordinates using Equations (2.1), (2.2), and the fact
that {e}T = Lp s X/ry, W gs UptW, |
E’ Then
i {e} = [Dl{y} (4.2.2)
3 where _
0 1 0 Z 0 0 0 0
1/r 1 2 2z o o o o
(D1 = (4.2.3)
: 0 0 0 0 0 0 1 r
g 0 0 1 r 0 1 0 pA
Since
» Lel = LyJlL]® (U,2.4,
3

t o
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We have upon substitution into (%.2.1)

o = 172 [ Lvi (ITEIDIyIa
\)

For the elemental volume of the ring element in cylindrical
coordinates we have:

dV = 2mrdrdz

Substituting back into the strain energy equation we can now
write:

o, = 1/2 2nly)| [r[DI[EI[DIdrdz{y}
r z

All of the integrals in Equations (4.,2.7) are of the form

I = P23 rdz
pq _/J(r Z*dr
r 2z

It is now desirable to see how the integration is carried out
over the trapezoidal cross~section.

Z,W
i
g Z3 = 2z
£
e ® ©)
:
% r =a + bz r =c¢ + dz
o
o
(/)]
o
te] C) 21 = 22 C)
<g
ISR g
Py-r) YPy=I")
= - (22022 . = A=l
a ri \ u—Zl) ! s b Zy=21
_ r3-r2 . = DI3=I2
cC = r; (23_22)22 H d Zoo%,

22
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(4,2.7)

(4.2.8)
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For the trapezoid the integration takes the form:

24 otdz
I = rPz%drdz (4.2.9)
pq z1 atbz

For the case with the side r = ¢ + dz parallel to the axis of
symmetry (the 7 axis) we have:

Zy C

" 3 Ipg =[f rPz%radz (4.2.10)

1 A
3 1 a+bz

1 For the case with the side r = a + bz parallel toc the axis of
symmetry we have:

\ §

E 24 c+dz

- = P q

¢ Ipq ff r¥Yz4drdz (4.2.11)
Z1 a

And finally for the rectangle, the integration takes the form:

. 2y ¢
T =[f rPz%%rdz ‘ (4.2.12)
2, a

TR T Y

B3 For the case where r ¢c +dz - ¢ and

: r=a+bz-+a
f a test is made in the computer and we have the following
; Let ' '

i d = Ti4ry;

T T

= Xin

SN U L)

T
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If
ri-ry
d

< € (prescribed)

Then
ry =d and ry = d

By the same token

Let b . ratrs
2
If
Izlzzi < ¢ (prescribed)
d'
Then

Equation (4.2.7) can now be rewritten as:
o = 1/2 Lyl [K1{y} (4.2.13)

where [K] 1is shown on Page 10 of Reference 6.

Introducing the transformation to gridpoint displacement degrees
of freedom we have:

v} = [HMQ (2.7)
Ly} = Llajiul® (4.2.14)
Then (4.2.13) becomes
¢ = 1/21a)(H)7[RICHI{q) (4.2.15)

Upon taking the first variation with respect to the displacements,
we obtain the element stiffness matrix referenced to grid point
displacement degrees of freedom
(K] = C(HIT[RICH) (4.2.16)
24
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For the special case of the core element, the
eiement stiffness matrix referenced to grid point displacement
degrees of freedom is obtained as follows:

2 (x1* = [E1TrkICA) (4.2.17)

4.3 Pressure Load Matrix

T R IT

The pressure load matrix will be developed in the
following manner: The pressure load due to pressure normal to
the sides between node points (1) and (4), and (2) and (3) will
be developed first and then the axial pressure load (the pressure
normal to the sides connecting nodes (1) and (2) and (3) and (4)
will be developed next. These will then bte combinred so that
radial and axial pressures may be input for each node point of
the trapezoidal element (See Fig .III.l for node point numbering).

Artoac i aas

LYY

4.3.1 Radial Pressure

1 Assume a linear normal pressure distribution on the
boundary between node points (1) and (4). This assumption leads

f to the requirement of numbering the node points in counterclock-
wise order.

c

Let
P = p1 +e+ fz (4.3.1.1)

where

(4.3.1.2)

f = &-.E.l_

Zy=21

The ex*ernal work done by the pressure on the
displacements is
W = f (pru+pzw)dA (4.3.1.3)
A
25
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or Zy
W = 2mr Jf (pru + pzw)dZ (4.3.1.4)
Z1
: p, = pcosa and p, = psina (4.3.1.5)
3 Z4
- W = 27 ‘[ (pcosa(u) + psina(w) )dZ (4.3.1.6)
? z
£ Let
A\; = cosa = Zy=2)
I
_ . _  P1eDPy
3 LI = sina = -—E-
3 I
2 1 l‘ .
? b o= [rera)? + (24-21)207 (4.3.1.7)
: m. = - ede(py-p1)
3 I P1 = Lz P

=
|

‘ - (puw=-p1)
A I Zy=21

Then
5 "
‘ W o= 2 j AIu(a+bz,z) + LIw(a+bz,z)[mI+nIz]dz (4.3.1.8)
E where
3
] v(a+bz,z) = a1 + az2(at+bz) + azz + oy(at+tbz)z (4.3.1.9)
y
E w(a+bz,z) = B8 + B2(a+bz) + Baz + Bu(a+bz)z (4.3.1.10)

For the side of the trapezoid connecting node points (2) and
(3) the same procedure is followed exactly. The total work
can be written as:

W= § Wy (J = 1,2, ...,8) (4.3.1.11)

W o= LyJ[Qp]{M} (4.3.1.12)
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where

Lyd = |lor,02,03,04,81,B2,B3,84 ]
M) = Impmppnpnpo |
Recalling that
{y} = [HN{q}
then
. _ T
Lyl = LaJ[H]
Then
W= LaJiH1TIQ, 1(m
The vector {M} can be written in the following manner:
Z 21
< mII$ 0 1+(Z|.~Zl.) -(ZQ-ZI) 0 <p2
1 1
N1 -(Zu-ZI) 0 0 (Zq—Zl) P3
1 1
N1y 0 T Z =21 (Zq-Zl) 0 Py
\ ) | N\
or
M = h
{mM} [ p]{p}
Equation (4,3.1.14) can now be written as
_ T
W = LallH]"[Q_1[h_I1{p}
p p
where the radial pressure load vector is {FP} and has the
following form
(F.} = [#1%[Q 1In_1{p)
p p p
27

(4,3.1.13)

(2.7)
(4.2.14)

(4.3.1.14)

Y (4.3.1.15)

(4.3.1.16)

(4.3.1.17)

(4.3.1.18)
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4,3.2 Axilal Pressure

Assume a linear normal pressure distribution on
the boundary between node points (1) and (2)

t 1 | ]
1
' = - 22‘21 2-=pP1 .
p P (Pz-r1)r1 + (g;:%;)r
Let
] _ ] r, 1 1
my = p1 - (o) (P2-p1)
] 1
n. = P2=pP1
I Tor=r)
Then
t ? 1
p = (mI + n; r)

The external work done by the pressure on the
displacement is:

W = A[ (pru + pzw)dA

For the case of axlal pressure; P, =0

Therefore
W = [ (pzw)dA
A
I’J 2'"
A =f rdfdr
r1 Q
ot
A = 27 rdr
Ty

(4.3.2.1)

(4.3.2.2)

(4,3.2.3)

(4.3.2.4)

(4.3.2.5)

(4.3.2.6)

(4.3.2.7)
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Substituting into Equation (4.3.2.5) the following result is
obtained:

r,
W= 21rfr(pzw)dr (4.3.2.8)
ri
For the side of the trapezoid connecting node points (3) and
(4) the same procedure is followed as for node points (1) and
(2). The total work can then be written as:
W= g Wys (§J = 1,2,3,4) (4.3.2.9)
Wo= 8 [Q;]{M'} (4.3.2.10)
LBJ = LBI,BZ’BS,BMJ
(4.3.2.11)
\ ] 1 4 ]
LM.J = LmIa mII’ nI’ nII-l
and
1/2(r3-r3) 1/2(ra-r3) 1/3(ri-ri) 1/3(re-r3)
1/3(rs=ri) 1/3(rs-r3) 1/U(rs-ry) 1/4(re-r3)
t
[Q.1 = 2n (4.3.2.12)
p 21/2(r3-r1) z4/2(re-r3) z4/3(ri-rl) z./3(ri-r})
21/3(r2-r1) z4/3(re-r3; z:/4(rs-r}) z,/4(re-r})
It is known that
{g} = [h]{w}
(2.6)
Led = Lwltndt
Substituting into Equation (4.3.2.10) we obtain
T t ]
= Lwlln] [Q 1{r } (4.3.2.13)
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The vector {M } can be written in the following manner:
oY . ] miaR
SR 55 U S5 W !
My 1+ rp=r, r,-r, 0 0 P1
]
1 LXa. . _F3 !
% mII 0 0 l+ I’,,-I's I‘.,—I‘a pz
{ )= 4 > (4.3.2.1h)
2 n. - 1 0 0 :
3 I =Ty =1 Ps
é ' 1 1
v 1
; \ nII 0 0 - I‘.,-I'a I'.'-r'3 p“
1 or
4 1 ' '
' M} = [hp]{p } (4.3.2.15)

Equation (4.3.2.13) can now be written as

W Lwl [h]T[Q;][hI;]{p'} (4.3.2.16)

' T ' ' o
{Fp} (hl [Qp][hp]{p } (4.3.2.17)

4.3.3 Combining Radial and Axial Pressure Loads

In this section we will combine the radial and axial
pressure load vectors so that it 1s possible to input one radial
and one axial pressure value for each node point of an element.
From Section U4,3.1 recall the following equation

M} = [hp]{p} (4.3.1.16)
and from Section 4,3,2 we have

'} = [h;)]{p'} (4.3.2.14)
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Combining (4.3.1.16)and (4.3.2.14) the following 1is obtained,
¥
where [Hp] is defined ds [HP] on Page 15 of Reference 7.

w*y = [H;J{p*} (4.3.3.1)

4 In the same manner from Equation (4.3.1.12)

(LT e

W = LNJ[Qp]{M} (4.3.1.12)

and from Equation (4.3.2.,10) (the axzial contribution)

o o ong = ¥4 Lo e

W

LBJ[Q;J(m'} (4.3.2.10)

Combinatiog of the [QP] and [Q;] matrices yields the
matrix [Qp] which is defined as [QP] on Page 12 of
Reference 7.

The final pressure load vector can now be expressed by the
following:

LI T ¥ .
{Fp} = [H] [Qp][Hp]{p ¥ (4.3.3.2)

For the special case of the core element (Figure 2),
the pressure load vector is of the following form:

- JUUNE, NEE S S

b,y Prestrain Load Vector

The prestrain load vector is constructed assuming
uniform distribution of prestrain across the element. The
prestrain contribution to the total potential energy is:

o, = [ LedtElie Jav (4.4.1)
A

31
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where

and

[D]{y}

is defined by Equation (4,2.3)
From ktquation (2.7) we have,

[(H]{q}

Therefore Equation (4.4.1) becomes

We also know that

Let

We know that,

o, = [Lumi"teie Jav
V'

2mrdrdz

LyJ2en ff [D]Trdrdz[E]{si}

r e

21rff[D]rdrdz

r z

rz

re

32
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(b.4.2)

(2.7)

(u.u03)

(4.4.4)

(4.4.5)

(4.4.6)
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And from our previously defined notation:

p,a -

r drd = T
ji/. z drdz paq
r gz

We have the following

—
0 I 0 In 0

Igo Ti0o Iox In 0

[D] = 2

0 0 0 0 0
0 0 Iy0 T20 0

I

L LT

By AN

Substituting back into Equation (4.U4.4) we have:

[ =
€

Recalling that

{Y}T =

and transforming to grid point displacement coordinate we

have:

@e =

Substituting into the Lagrange Equation and taking the first
variation with respect to the displacements, we obtain the

33
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(4.4.7)

(4.4.8)

(4.2.14)
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prestrain load vector:

(F,} = [H)TCDITLEDE,) | (4.4.10)
and for the special case of the core element,-ﬁe obtain,
(F.} = (MT0BIENMe, | (4.4.11)

where .

T —_— ’
{F_}" = |Per,, Fez,, Fer,, Fez,, Fer,, Fez,, Fer,, Fez%_J(M.M.IZ)

and f. ’

{ei}T = |e,rs e'i'e, €.z, 0 : (4.4.13)

' '

4.5 Thermal Load Vector

¥

The thermal load vector is a special case of the
prestrain load vector. The temperature distribupion function
employed for the trapezoidal cross-section ring is assumed as

1

follows:
, )
T(r, 0, z) = k; + kor + kiz + Kuyrz (4.5.1)

or

{T} = [glk} (4.5.2)

34
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}

e - ! 1)
' 1 r Z rz ' '
[g] = 1 r oz - (4.5.3)
1 r z rz
- i ,

The prestrain load vector contribution to the total
potential energy ‘may be written as follows:

o, = jlﬁJ[E]{e;}dv , (5.4
v

' : ! . .
From our previous notation we know the following:

) . . ¢ l

. ) (e}t = imd? _ . (4.2.4)
| v} o= [Hg) | (2.7)
Qv = ‘

2rrdrdz

The initial strain vector can be written as,

¥

! 1

te;}" = tla,, ag, a0 01 = (13) L (h.5.5)

i 1
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Upon substitution into Equation (4.5.4) obtain
0, = 2nLqJ[H]T[[ (017 [2]{Ta}rdrdz (4.5.6)
r 2
Rewrite [E]{Ta} as [E*J{T}

where the coefficients of thermal expansion have been
multiplied into the [E] matrix.

Equation (4.5.8) now becomes,

0 = 21r|_qJ[H]Tff r[DIT[E*I{T}drdz (4.5.7)
r Z

Frcm Equation (4.5.2) we know that

{r} = [glik} (4.5.2)
o = ZﬂLQJ[H]T[j r[DIT[E*][gldrdz{k} (4.5.8)
r 2z
Define .]’J[r[D]T[Ea][g]drdz as  [Q]
r 4

Then Equation (4.5.8) becomes

¢ = 2nlaJ(H]"[Q]{K) (4.5.9)
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The {k} vector can be written in terms of the grid point

temperatures in the following manner

{«} = [hl}{T'}

where
(«}T = Lki, k2, ks, k|
{T'} = L(T1-To), (T2-To), {T3-To), (T4-To)_|
To = Equilibrium Temperature Cf Structure

1 T

- 1 I's
[h]7? =

1 r;

1 Yy,

and [h] has the following form:

2

22

ria)

222

ra3zs

ryZy

s

z1(rz2-ry1)
r3{rz-ri)

-(r ,-ry)

r224(rs-ry) -r12,(rsz-ry) ryz,(r-r;) -rs;z;(r-r,)
-2y (ra-ry) 24(rs-ry) -z1(rz2-r;)
(n] = 3
H=r2(r3-ry) ri(ri-ry) -ry(ra2-ry)
(ra-ry) -(ri~-ry) (r2-r1)
37

(4.5.10)

(4.5.11)

(4,5.12)

(4.5.13)

(4.5.14)




where
A = (r2-r1)(ra-ry)(z4-2z1)
Substitution into Equation (4.5.9) yields,

o_ = 2nlal(HIT[Q3[nI{T"}) (4.5.15)

Substituting into the Lagrange Equation and taking the first
variation with respect to the displacements, the thermal load
vector is obtained:

(Fg) = 2n[H1T[QI[hI{T"} (4.5.16)

For the special case of the core element the thermal load
vector is of the following form:

{Fp} = 2n[H1T(QICn1{T") (4.5.17)

L.6 Gravity Load And Centrifugal Force Vectors

The work done by the acceleration of gravity on the
aisplacements can be written as:

Work = prde (4.6.1)
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where

%r dv = 2mrdzcr
§° G = Acceleration of gravity
: p = Mass density of the material

in question

w = Assumed displacement mode

Lol

shape in the 2z direction.

Work = 2anJ(j}er + Bar? + Bsrz + Bur2z)drdz (4.6.2)
Z

r

¥ As before denote

: P,94p4
f ffr zdrdz as Ipq (4.2.8)
r Z
[y
. Work = | Bi, B2, B, Bu_| 27pG I1o
¥ I20
E ) (4.6.3)
! In
;E Ia
‘ N/

Rewriting the work equation with respzct to all the
field coordinate degrees of rreedom we obtain
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Work = | o1, @z, a3, aw, B1, Bz, B3, Bu| 2mpG 0

I
I

\ 121

or

Work = LvyJ {ﬁG}

| &1, @2, a3, a4, B1, B2, B3, Bu |

L]

{FG} { 0, 0, 0, 0, Troy I20, In, I21_}

Remembering that

{y} = [B]{q}
1t = Lal 1t
Work = LaJ [HIT(F;)

Upon taking the first variation of the Work
Equation with respeet to {q} , the Gravity Load Vector
{FG} is obtained

= Tex
{FG} = [H){F;}

o)

(4.6.4)

(4.6.5)

(4.6.6)

(2.7)

(4,2.14)

(4.6.7)

(4.6.8)
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The Centrifugal Force Vector 1s determined as follows:
The external work done by the centrifugal force on the displacement
can be written as follows:

Work =[ pw?rudv (4.6.9)
A
where
dv = 27mrdzdr
w = Natural frequency (rad/sec.)
p = Mass density
u = Assumed displacement mode
shape in the r direction.
r
Work = 2mpw? j (u)r2dzdr (4,6.10)
A
Work = 2nwzp‘I}a1r2 + ozr? + asr?z + a,rdz)dzdr (4.6.11)
A
Denote:
p_,q I (4.2.8)
ffr z*dzdr as Pq
r z

b3
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4 \
W = 2ﬁpw2|_al @2 G3 O] I250

I3%
) (4.6.12)

I2’1

I3,l

/

Rewrite the work equation with respect to the total
set of fleld coordinate degrees of freedom

W = 2“9““2 Lal, a2, a3, au, B1, B2, B3, B"..I Ias0
I3,

I24,

Is,
{ P ) (4.6.13)

W = [_yJ_{CG} (4.6.14)
where
T _
{Y} = Lal’ a2, O3, Ay, Bl, BZ’ 83, B'O_I
()T = 2mpwTa,e, Is,0, Tz,1, Ta,n, 0, 0, 0, 0, ] (4.6.15)
Substituting the appropriate transformations into
the work equation and taking the first variation with

respect to {q} we obtain the Centrifugal Force Vector {CG}.

(cg) = [HIT{E,) (4.6.16)

G
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h,7 Stress Matrix

The element stresses are given by the fcllowing:

{o} = [El{e} - [E]{a} (4.7.1)
Recall that
{e} = [DI{vy} (4.2.2)
(ar\ [ o 1 O z; 0 0 0 o | {y}
2y
€g l/ri 1 = 23 0 O 0 0
— i
( ) =
€, 0 0 0 0 0 0 1 ry
\erZ) B 0 0 1 r, 0 1 0 Zi__ (4.7.2)

From the [D] matrix it is seen that the stress can be
evaluated at Necdes (1) through (4) (i.e. i = 1-5
We also know that

{v} = [H1{q} (2.7)

Equation (4.7.1) can be written in the following manner:
{c} = [EI[DI[H]{q} - [E]{a} (4.7.3)
And for the core element

{c} = [EJ[DI[A1{q} - [E3{a} (4,7.4)

AR

AW LY
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Denote

(EJIDI[H]
or as [S] (%.7.5)
[EJ[D][H]

and the remaining stress contribution
(El{a} as {«} (4.7.6)
Equation (4.7.3) now becomes
{c} = [Sl{q} -~ {4} (4.7.7)

where

T _
o} = [ 9¢,ys 9(,)2 %(4)* O(4)* %(ave) (4.7.8)

Ly
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\ Kinetic Energy

It is assumed in writing the element kinetic energy that the
rotational energies are small compared with the translation
energies. The kinetic energy function then takes the following
form:

% = m/2 fLé(m)J [11{4(m)}av (5.1)
vV

The assumed displacement modes are of the form

Lad = Lu, wl (5.2)
Therefore
0, = m/2f|_ﬁ, w111 ] s
L[ av (5.3)
\' w
or
®; = 1/2 f (M u? + Ma2w?)dv (5.4)

A

It is now profitable to examine the form of the assumed
dispalcement modes u and w

ay + O2r + 03Z + aurz (2.1)

u(r,6,z)

w(r,0,z) Bi + B2 + B3z + Burz (2.2)
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Upon examination of the Kinetic Energy Function (Equation 5.4)
it is seen that all terms are of the form: ‘

(a+br+cz+drz) (e+fr+gz+hrz) which may be written as

o -— [
l_a, b, ¢, d] 1 r A re | e
r r? rz . prlgz { f
(5.5)
z rz z2 rz :
rz riz rz? r2z? h
— N/
For the element of volume we can write
dv = 2wrdrdz . (4.2.6)

Upon multiplying »r into the above matrix we obtain the matrix
which is to be integrated over the volume '

o

—
r r? | rz r?z ,
r? r? riz r3z
T (5.6)
rz riz rz? rz?
2 3 2,2 3,2
| rlz riz rz r’z? ]
Recalling from Equation (4.,2.8) that
I = rPz%rdz (4.2.8)
pq .
rz
The kinetic energy function can now be assembled in matrix
form as:
62 = 1/2 | vJ [Ml{y} (5.7)

46




AR o it

Goceatd

(oM ket £

[ Fasss

1

Recalling that

{v} = ([Hl{qg}
and , | .
¥k = [ENQ)
and- |
CORMETI 0k
Theﬁ |
%, = 1/2i-éJ[H]T[171],£H]{é}'

Substitution into the Lagrange Equation and

diffqrentia%ing once with:resbecf'to time yields the

consistent mass matreix.

Ml = C[HIT[MI(H]

For thelspecial case of the core element the consistent mass

matrix is given as follows:

u* = tRToEacH)

hr

i

(2.7)
(5.8)
(5.9)

(5.10)

(5.11)

(5.12)
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{c,}
(ol
(E]
(Fp)
{Fo)
{Fg}
(F,}
(H]
(]
(1]
(k]
[M]
[(s]

igl
[h]

{q}
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LIST OF SYMBOLS

Centrifugal Force Vector
Strain Displacement Coupling Matrix
Materlal Properties Matrix
Pressure Load Vector
Thermal Load Vector,
Gravity Load Vector
Prestrain Load Vector
Transformation Matrix
Transformation Matrix
Identity Matrix

Stiffeness Matrix

Mass Matrix

Stress Matrix

Temperature

Strain Energy Density

Work

Transformaticn Matrix
Transformation Matrix

Mass Coefficient

External Pressure

Displacement vector referenced to grid
points

Radius, System Coordinates

Thermal Stress Vector
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LIST OF SYMBOLS (continued)

Element displacement, r direction
Element displacement, z direction

Axial Coordinate

Fleld Coordinate Displacement Degrees of
Freedom Corresponding to displacement in
u direction.

Coefficient of Thermal Expansion

Flield Coordinate Displacement Degrees of
Freedom Corresponding to displacement in
w direction.

Strain

Vector of Combined o and B8 field
coordinates

Field coordinate Degrees of Freedom for
temperature distribution function

Possion's Ratio

Stress Component

Natural Circular Frequency (rad/sec.)
Mass Density

Pctential Energy Function

Kinetlic Energy Function
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C. QUADRILATERAL PLATE ELEMENT
I. Introduction

The formulation of the quadrilateral plate discrete element
described is derived from and is mathematically consistent with,
the formulation described in Reference 12. Tne addition of this
particular element serves to add additional capability in the
analysis of shell structures, particularly when instability analyses
are to be performend.

A detailed derivation is presented for the force displacement
properties of an orthotropi: quadrilateral thin plate element
exhibiting membrane and benuing behavior. Included in these
relationships are terms for stitfness, stress, thermal stress, and
incremental stiffness,

For the quadrilateral plate elemznt, orthotropic material
mechanical properties are defined by four parameters: Ex’ Ey”‘?y
cnd  Gyy where %, is the Poisson's ratio of the
contraction in the y direction to extension in the x direction
due to a tensile stress in the x direction. There is another
Poisson's ratio "°yx similarly defined, which is related to the
other material properties through the identify Ex"§x = Eyréﬁy.
Since, in general, none of the sides of an elenent will correspond
to a principal axis of orthotropy, all relationships are derived
for an arbitrary orientation of the element in an x-y plane in which

the x and y axes are parallel to the principal orthogonal directions
of the material.

Techniques for deriving the desired force-displacement
relationships are described. The derivations make use of the matrix
statement of Castigiiano's Theorem. As shown in Reference 13, this
leads to the stiffness matrix being defined as the product of three
matrices, each containing simple terms.
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II. Development of f[inear Elastic Membrane Stiffness Matrix

For the quadrilateral plate element, shown in Figure III-3,
the stresses are gssumed to be given by

o = 8 + a5y
oy, = a3t agx (III-1)
Txy = 3

This assumed stress pattern was adopted in Reference 13 by Turner,
et al, in the derivation of the stiffness matrix for an isotropic
rectangular plate. Equations (III-1) satisfy the equilibrium
requirements of a differential element and can be operated upon
to yield compatible displacements. The complete element, in
attachment to other elements of the system, does not satisfy
equilibrium and compatibility at all points along the juncture
line however. Evidence (Reference 5) from plane stress analyses has
shown that the consequence of these shortcomings is a stiffer
idealization, but not as stiff as would be obtained with use of
the linear edge displacement assumptions proposed in Reference 6.

The matrix statement of Castigliano's Theorem, applicable
to the derivation of the quadrilateral element force-displacement
properties is written as

(<] = [ [c] (] (111-2)

where [K] is the desired matrix of element stiffness coefficients.
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To obtain the matrix [B] , We first establish the strains
for an orthotropic material in accordance with Hooke's lLaw and
considering the possibility of initial strains as follows:

1 i
Ex = E (% ~#xy oy )
N ) +e III-3)
€y * B Yy i %x €y (
Tx 1
= y_
&xy ny + ’xy
i i i
where € X 3 E,'y and xxy are the initial strains.

The constants, a, in the assumed stress pattern are
introduced into the strain expressions by substituting
Equations (III-1) into the above equations to yield

1 € 1
€x = o [( 8- Ay a3) Ay 8% + a2y] +€
i
_ 1
gy = Ey— [( a3-/eyx al) Ay 2Y + aux] +€y
a i (I1I-4)
= 5
Yy = - + ,xy
Xy
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Utilizing the basic relationships that —‘?jﬁf- = € x and
-g-———-; = ey , it is possible to determine the linear displacements

of the quadrilateral by integrating the strain expressions
{BEq. ITI-4) with respect to the appropriate variable. Thus,

/“:jéx ax

i
+ a8 yx + fl(y)] +€, x

(III-5)

2
,((xy a ux

1
= E;c— [(al-/«xya3) X - >

L=
5
a
2
29
33

=|€
v J ydy )
1 Ayx a2y2 J € i
= E;r- [(8’3"«yxal) y -~ —Sm——— taxy + f2(x) +E, ¥

The functions of integraticn, f,(y) and £,5(x), can be evaluated

from the shear strain definition rxy = -3? + .g.;_.

4 Substituting Eqs. III-4 and -5 into this shear strain definition
gives

ag .Y 1_ a,x . 2 d £,(y) . ayy L 2 d f5(x)
Tx‘y’ Xy ‘E;c_ E;‘ — dy E;,—' £~ dx

(I1I-6)
To separate the variables, Eq. III-6 is rearrangéd as follows

1 4 5,(¥) ay 1 9 (%) a X a

— = —g— — Gi. g . I 6a)
> + = - + - - IIT-6a
By dy y y x X Xy Xy (

The functions f,(y) and f2(x) can now be determined by letting each
side of Eq. III-6a equal the constant 86 and integrating to
yield Ex
: ] E, 2

1(¥) = - E; 8y, —5 + 8y +a, (III-7)

E E i
£,(x) = - Ff' a, §-+ G::—y- agx - E:V-C agx + ag + E, rxyx
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Substituting Eqs. III-7 into Egs. III-5 and evaluating the

resulting expressions at the corner points 1, 2, 3 and 4 of

Figure 1 produces the relationship for the corner displacements

as shown as Eq. III-8 in Fig. III-4. The square matrix, including
the coefficient 1_, on the right side of Eq. III-8 is the (8] matrix

X
To develop the [C] matrix we first need the expression for

strain energy for orthotropic plane stress. In terms of stress,
this can be written as

2 2 2

v=2 X LTy L i SENPSP + sy dx dy (III-9)

=7 T T B x 'y Yoo y
x \'g Ey Xy

Cubstituting the assumed stress tunctions, Eqs. III-1l, into the
energy equation and expanding produces

n 1 2 22 1 2 22
U=5 E-):(al1 +2a1a2y+a2y)+E;(a3 +2a3aux+a4x)

A 2

24 a
- YX (aja, + a.a;Xx + 8, a8y + a8, xy) + 5] dA  (III-10)
B 173 7 1k 2 73 274 Cry

The derivatives of the strain energy with respect to the constants
al, a2, o000 000 a8 are:

Ju h [ Aa. + Ex Ex ]
= Ia, - A Aa. - O A -1
Jal E 17 y2 " E yx 37 Ep Txy Txh
du h [ e E, E, “I
= Ia, +I_a, - ~A4 1 a, - I_.&a
da, B [V1TyTeT Ep Txy®s TE; x tayth
[ E III-11
a) u = %_ ’E§ ( "‘franl -ﬂnyyaa + Aa3 + Ixall)] ( )
a X y
3 -
-
U h Ex ( 2
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Ju _ h [ExA a ]
d G 5
%5 * i (III-11 Cont.)
ou_ _ du _ du_ _
aa aaT 38,8

where A = _[dA

iJ iJ
and I xy = Xy dA
A
From the above we have
”~ — oy
auw ) Y
To A Iy Py Ayt 0 0O 0 oOoffa
1
du I I 2 s T ze T o o o olfa
daz Y y Xy °y Xy xy 2
) U Ex E
A e W A X 0 O O Oj}}la
33.3 xyA Xy'y E; E; I, 3
E
p.< E 2
( VAR . Ay Tx Hyley B Ix X1 o 0 0o ofla,
(1} T; :
du 0 0 0 0 EA o0 o0 o ag
09.5 ny
U 0 0 0 0 0 0 o0 olfs
d
%
du 0 0 0 0 0 0O 0 0]fag
2
87
5%9_ 0 0 0 0 o o o ol|]ag
L%} L -
(III-12)
The square, symmetric matrix, including the coefficient Er-l »
on the right is the Matrix [c] . x

Utilizing Matrix [B] from Eq. ITI-8 and Matrix [c]from
Eq. III-12, the element stiffness matrix, [K] , 18 obtained from
Eq. III'2. 57
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III. Geometric Properties

In the development of Matrix [C] in the previous sectlon,

a group of I, ‘j terms resulted from integrating the energy

expression. These terms are of the form
i _H.i.Jd _ iJ .
Iy -jjx yY dy dx —fA x7yY dA (IIX-13)

and therefore are analogous to area moment relationships.

In explicitly formulating the I 1yJ terms it was con-

venient to use previously determined I;lig.- J terms with reference
to the - § coordinates (see Fig. III-3) and transform these

to the x-y coordinate system. The coordinate transformation from .
the x-y system into the 7[—§' coordinates for any given point is
expressed by:

77] _| cose sine X (ITI-14)
§J -sin @ cos © y

where 6 is the- angle‘betueen the x and b axes and 1is defined by

X
0= taln'l 2
Yo
Alternatively the coordinate transformation from the system
to x-y system is given by
X -jcos & -sin @ }Z (III-lua)
y sin © cos O §

As an example of the determination of I iyj 's in
terms of I n g J's consider the first moment 5f the area about the
y axis, I . For this moment

I, =fA x dA
= J(}zcoso - §sin 0 ) dA

(III-15)
cosefde - s1n9f§dA

I)Z cos © -~ I§ sin ©
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All the other Ixiy'j's are determined by a similar procedure

E and are stated as follows:
Ix2 = Ize cos29 - 2I;2§ cos @ sin @ + I§2 sin29
I, =1, 8in© + I cos ©
E y % , s . (III-15a)
: ) 2 2

T = <
4 Iy I71 sin@ + 21;1€ sin6 cos 6 + Ig cos O

_ 2 2 2 2

3 Ixy = (17( - I¢”) sin @ cos © + I’z’f (cos™@ - sin”9)

The area and moment properties about the 74 and §
axes were determined by direct integration within the proper limits
to yield the following expressions

a=fan =} [mySy + (- M) (53¢ - (237 5]

; IQ = %‘ [ (§l|ﬁ3 ‘§3’14) (?3"‘?4) +§3}12 (?3""12 )]
I =13 [ €ul3-§3h) Q32 3+ 83l (57 % +7122)]
Ig =—¢ [ E37m + (5 ) (557 536, + 64 - U520 §5°] (III-16)

1= 3 [0+ Bl (6% D) (56 - (Wyh) 85 ]

R "
Imp= % 38,292, 3 (§3-5 3
2= = [36°n VR Pk
'f . SOy (757 4B 1®) (Suly S
] (R3 -t )

: 6 (£ %)2 -
P{ + 4?3(‘52 l‘;;u) (75 ) () {.32 (375 %2)]
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IV. Development of Initial Force Terms

The initial force terms are derlved from a consideration
of the element corner forces. From Castigliano's Theorem, the
corner forces are expressed by

13- 42144}

Noting that the matrix [:gggg] 1s the set of influence coeffi-
cients in the direct relationship between the constants a and
the displacements d (= u, v), it follows that

[—33;] = [3‘1]T (I1I-18)

Also the vector v } has already been determined in Equ. III-12,

Sect, III-A, as {{5—-] = [C] {a} . Thus, we can rewrite

Eq. III-17 as

{ F} = [B-l] ' [c] {a] (I1I-19)

The initial strains are introduced into the force
expression by first solving Eq. III-8 for {a} thusly

{a}= [B] - {3} - [s] 7 {ﬁeﬁ; +)'xy1 x} (11I-8a)

and substituting this relationship into Eq. III-19 to give
- - - €
(] =B 1T 12 (- L) D B 2 {6 )
(711-20)

The first term on the right hand side of E¢g. III-20 represents
the corner forces due to displacement, i.e., the forces required
to induce the deformations u and v elastically. The second term
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yields the initial forces, i} Thus

[ } [ -] [c][s]™ géxi y o+ Iyt x} (III-21)

T
since from Bq. 111-2 [k] = [B™Y] " [c] [B] 2, the initial forces
are simply the product of the usual element stiffness matrix and
the column of rode point initial displacements. Hence

Pte

r
P 11 r 0 )
X
1
i i
sz G.x X2
1 i
F € *x
X x 73
3
1 ¢ i
F X
. U s BT O 2
‘ X } = ‘ (I11-22)
F 0
1
i i i
Fy2 Gy Yo + J;y X,
i i .
Fy3 Gy ¥3 + ny x3
i i
F y + X
Yy Gy y rxy 4
“ o’ L J

For the case of a change in the termperature of the
quadrilateral element equal to T, the initial strains are given by

1 _
€x = o(x T
y y
1 .
Y., = O
Xy

where x and dy are the coefficients of thermal expansion
in the x and y directions respectively.
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V. Stress Equations

The stress equations are derived by first evaluating the
assumed stress functions, Eqs. III-1, at corners 1, 2, 3 and 4.
This procedure yields the following relationship for the corner

stresses:
' G_xl\ 1 o 0o 0 o0 ©o0 ©0 o
0‘x6 1 Yo O 0 0 0 0
E o
x3 1l y3 o 0 o 0 o o a,
crku 1l Yy 0 0 0 0 0 0 a,
/V
éxyl 0 0 0] 0 1 0 0 0 a3
7 0 0 0 0 1 0 0 0 a
(2 o
7 =10 0 0 0 1 0 0 o a (III-24)
Xy3 5
'f;yu 0 0 0 0 1 0 0 0 a¢
0 0 1l 0 0 0 o) 0 a
d"yl 7
o) 0 1l X 0 0 0 o} a
7z 2 L8
0 o) 1 X 0 0 0 0
d-Y3 3
G—VM/ | O 0 1l xy O 0 0 Q_
\
In a more concise manner Eq. III-24 may be written as
Tx
/v —_ -
Cay b = [D] {a} (I11-24a)
Ty

By substituting Eq. III-8a from Sect. III-C into Eq. III-24a,
the stresses may be written in terms of the displacements and initial
strains. This substitution yields

ol - BB (LI

-y Xy (II1-25)
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The first term on the right hand side of Eq. III-25 corresponds
to the displacement stresses{dl} , wh*le the second term represents
the initial stresses,[o’ i},

Letting [Sxy] = [D] [B]°:L , the displacement stresses are

given by
[ &, i\
-1
- i
Xp , 1
i
O-x3 /“l
o, 1
Xy Ao
T i
XYy /“3
T 1 g A (III-26)
‘ xy2 /“u
i i
ny3 ‘ ” >
,Z’ i
Xy), ’1/'2
i
Ty 3
i
a-yz L/"Iu
i J
O"y3
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Similarly the initial stresses are
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VI. Development of Linear Elastic Stiffness Matrix (Bending)

The orientation of this element in the X-Y plane and the corner
forces and moments are shown in Fig.TII-5 As before, *he principal
directions of orthotropy must be parallel to the X and Y axes

In deriving the linear elastic stiffness matrix the displace-
ments in the direction normal to the plate midplane are assumed to
be representable as

W= a1x3 + a2x2 + a3x + a4y3 + a5y2 + agy + a7x3y + a8x2y

3 2
+ 8gRY + 810Xy + 814Xy + 8y, (V-1)

where al,.......ala are constants. Since twelve force-displacement

equations are to be derived (three degrees of freedom - Ox, Oy, w -

at each corner point), twelve independent parameters appear in the
assumed displacement function. Secondly, all possible single terms or
products to the third degree are included; the resulting polynomial

is "geometrically symmetric', e.g., corresponding to the asxgy term

there 1s the allxy2 term. Finally, Equation (1) satisfies the
differential equation of equilibrium.

To obtain the desired stiffness matrix, the following matrix
product is effected:

(G1%) " [ ] - [xd (v-2)

To formulate the matrix!jB] s we first establish the slopes ex and Oy

from the deflection function (Equation V-1) by

o, = -{%ﬁ? 3y2au + 2ya5 + ac + x3a7 + x2a8 + xag (V-3)
+ 3xy2alo -+ 2xya11
- 0w _ a2 - - 3x? - -
Gy ) x 3X3a1 2x:2 ag 3x yar 2xyag ya9
= ¥8 -Ye, (V-4)
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- - . Typical Force System
Points 1-4

Figure III-5 Quadrilateral Plate Flexural Element
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The slopes and the deflection, w, at the four corners
of the quadrilateral are evaluated to yield the relationships shown as
Equation (V-5) in Figure (V- 2 ). The square matrix on the right
hand side of Equation V 5 is the [ B]matrix.

The [ Cf] metrix is determined by first considering the
flexural strain energy. In terms of the out-of-plane deflection
w, the strain energy is given by

> \? 2 V¥
y. = 1,3 Bx [9° w s Oy [ (V-6)
r- 2 I2M- axz 2N
y
2
. By Ayx t Eiy/"xy A2,\ [ 223 . S'_x_. 22, ax dy
12M d x° J y2 3 3;53
where:
M = 1l - /«xy /ayx (V-7)
and [Cf] is shown in Figure III-T7.
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By calculating the inidicated partial derivatives of w from
Equation V-1, and substituting into Eq. V-6, the following expression
for the energy in terms of the constants, a, 1s obtained
Exn3 2 2 2
Up = =mp [(36x a," + 24xala2 + 72x yay 8o + 24xyala8
+4a22 + 24xya2a7 + 8ya298 + 36x2y?a72

+2lx y2a8a8 + 4y2a82)

E
+ E%‘ ( 36y2a42 + 24ya4a5 + 72xy2a4a10
+ 24xyaua11 + 4a52 + 24xya5alo + 8xa5all

2

2 2 2
+ 36x y 8,9 + olx ya0817 + hx a4 )

By ( - 2
+ 2/?y 7r—' 36xyalau + 12yan8) + 36xy aya,
+ 12y ayag + 12xa1a5 + 4a2a5 + 12xys.5a7

2 2.2
+ 4ya5a8 + 36x ya,8,4 + 12xyasa,, + 36x“y a8y

2 2 2
+ 12xy“aga,, + 12x7a,8,) + hxaeall + 12x yaneyy
+ uxyagall)
EEZQLE{__ ( 9xua72
Ex

3 2
+ + 12x a,8g + 6% a7a9

2.2 2 2 2
+ 18x“y 8l + 12x yage g + hx ag” + 4xa8a9

+ 12xy2a8alo + 8xya8a1l + a92 + 6y2a9a10 + uyagall

I
+ 9y'a102 + 12y3a10a1l + hyzallé).] dx dy (V-8)

Next, the strain energy is differentiated with respect to each of
the constants, 1,.....a12. For example, the derivative with
respect to ay is
L X a + 12xa + 36x ya + 12xy a
LN 8

+ 2’“xy E—-—- (18xyau + 6xa.5 + 18x° Yaq0

+ 6x all) dx dy (V-9)
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Letting ﬂ x dx dy = Ix, or, in the general form letting

lrxiyj dx dy = 1.2 9, Eq. V-9 1s rewritten as

XYy
d Up E, b 2 2
T—ai— = 1o [36 Ix a.l + 12 Ixa2 + 36 Ix ya7 + 12 Ixyas
E

y : 2
+/‘xy E; (36 Ixyah + 12 Ixa5 + 36 I, ya..m

2
+12 I %8,) (V-10)

The development of all IxiyJ terms will be presented in detail

in Section C.
Three of the J»rivatives are zero; namely,
aU 9U ou
F = —-3-————-F = T—-F = o

In matrix notation the twelve partial derivatives of the energy
with respect to the constants may be expressed as

(UF a

1
ay

ﬂ . =[Cf] .
.U L]
aF 810

\. 212

The square, symmetric matrix (Cf]is given in Figure ITI-T.

The [B]and [Cf] matrices can now be used to determine the
flexural stiffness matrix, [ Kf] , for the quadrilateral plate

element from Eq. V-2. Clearly, the operation [ B'l] ' [Cf] [B] “14g

too complicated to allow for an explicit formulation of the[ Kf]
matrix. It is intended that the formulations of the[B] and [Cf]
matrices be stored in the computer for use each time a stiffness
matrix is to be evaluated. Unfortunately, it has been found that
for certain geometric proportions the[B] matrix will be singular.
A means Jcr predicting this singularity and circumventing it is
discussed in Section X. 71
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VII. Development ¢f the Incremental Stiffness Matrix

The incremental stiffness matrix>[n] is derived through
application of the matrix triple product

([BJ ’1) ' [c ] [B] 1 . [a] (V-12)

The [B] matrix is the same as that which has peen discussed
above, The [ C j matrix is defined in a similar manner as before,
but not the appropriate "energy" integral is

%J] [ N, (%) ° + Ny(%-;) : + 2N (g—:) -g—;i) dx dy (V-13)

In developing the (Cn) matrix, it is assumed that the inplane

forces Nys Ny and ny are constant chroughout the element. Since

the normal inplane stresses, o°_ and o, are actually not constant

X y
(see Chapter III), the inplane forces are taken as the average of
the edge forces occurring at the four corner points of the
quadrilateral plate element. Thus

Ty to5 +op +
Nx=( X) Xy “Xg d)'cu
L
gy toy tog  tag
N=(yl Y2 y3 yb,)
y
The shear stress ‘T;y is constant throughout the element so that
ny = ny h

It is convenient to divide the energy expression, Equation
V-13, into its three components as follows:

nx + Uny + Unxy
2 2
N, ff (-3—;-) dx dy + 3 Nyﬂ'(%;-:) ax ay + N f f@—; -g-;-) dx dy

(V-13a)

u =10
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We now consider each energy component separately and obtain a
[Cn ] matrix corresponding to each component (j = x, y or xy).
J

By differentinting the assumed deflection function (Equation V-1)
and substituting the derivatives into Eq. V-13a, we obtain an
expression for each energy component as follows:

o h 2 3 2 4 3

U, = » Nx1[[9x a;” + 12x7a 8, + 6x 8,85 + 18x yaja, + 12x~ya,ag
2 2.3 2.2 2. 2

+ 6x ya 8g + 6x°y a8, + 6x“y“a,8,, + hx ay" + 4xa2a3

3 2 3 2
+ 12x yaga, + 8x yaseg + 4xya2a9 + bxy a8, + Lxy 8584

2 2 3 2
+ag" + 6x yagas + uxya3a8 + 2ya3a9 + 2y 83814 + 2y a8y,

y 2 2 3.2 2.2 2.4 2.3
+ 9x'y ap” + 12x°y agag + 6x%y as8g + 6x°y 80810 + 6x“y 8,819

2“82 + 4xy2a8a9 + uxyuasalo + 4xy3a8a11 + y2a92

n 3 6. 2. ,.5 ueJ
+ 2y a9a10 + 2y agal1 +Y¥ 80 + 2y 810871 + Y 813 dx dy

(V-14)

+ uxay

Uny = % Nylr[éyuaua + 12y3a4a5 + 6y2aua6 + 6x3y2a4a7 + 6x2y2aua8
+ 6xy2aua9 + 18xyuaualo + 12xy3a4a11 + l&yaas2 + 4ya5a6
+ 4x3ya5a7 + uxzya5a8 + 4xya5a9 + 12xy3a5a10 + 8xy2a5a11
+ 362 + 2x3a6a7 + 2x236a8 + 2xa6a9 + 6xy2a6a10 + 4xy36a11
+ x6a72 + 2x5a7a8 + zxua7a9 + 6xuy2a7a10 + hxuya7all + xuae2
+ 2x3a8a9 + 6x3y2a8a10 + 4x3ya8a11 + x2a92 + 6x2y2a9alo

2 o4 2 2 3 2 2 2]
+ 4x yaghyg + 9x“y 8,4" + 12x°y~8,48,; + L4x“y G dx dy

10711
(V-15)
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n = xxjr- 9x y a au + 6xy a au + 3y a3au + 9x y‘aua

+ 6xy ayag + 3y aua9 + 3y5a4alo + 3y4auall + 6x° ya,ag

+ hxya2a5 + 2ya3a5 + 6x° y‘a5a7 + hxy agag + 2y2a5a9

4 3

2
+ 2y a5a10 + 2y a5a11 + 3x a,8c + 2xa2a6 + a3a6

+ 3x2ya6a7 + 2xya6a8 + ya6a9 + y3a6alo + y2a6all
+ 3x5a1a7 + 2x4a2a7 + x3a3a7 + 3x5ya72 + 3xuala8

+ 2x3a2a8 + x2a3a8 + quya7a8 + 2x3ya82 + 3x3a1a9

+ 2x2a2a9 + Xagag + 4x3ya7a9 + 3x2ya8a9 + xya92

3.2 2.2 3,3
+ 9x“yTa,8,, + 6x°y 88,4 + 3xy a8y, + 10x°y an8y o

3a8a10 + 4xy3a9alo + 3xy5a102 + 6x3ya1a11

2 3.2 2.2
+ Ux ya 8y, + 2xya3a11 + Tx7y 8,8y + 5x“y“aga,

+7XY

+ 3xyagay, + sxy“aloan + 2xy a112] dx ay 9(V-16)

Next the [Cn matrices are developed by taking the derivatives
J

of the respective energy component with respect to the constants,
a. For example in deriving the[cn :) matrix, the differentiation
X

of U with respect tv a,, is
n, 1
QU
Ne = [_18x a, + 12 x3a2 + 6x° a3 + 18x4ya7 + 12x3ya8
Jay 2,3,

80 *+ 6x° y 11 ] dx dy

a, + 3Ix2a3 + QIxuya7+61x3ya8

+ 6x° yag + 6x“y

[ 9Ixua1 + 6I 3

2 3 22,
+ 31, a9 + 31x v 210 + 31, y 11] (V-17)
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As noted previously, the I 13 terms are developed in Section C.

Y

All the other derivatives are calculated similarly and

lead to the following expressions

.

U, 8
X = C
Jd a, [ nx]

1
815
U 8
Dy ¥ = c, X
212

s
<
n

)Un I'C ‘1
75| [ ™

The matrices [C ] R [C ] R and[c
nx ny

and -10 respectively.

Since[c ] =[C ]+ [C
n n, ny

stiffness matrix may be stated as

(1 = [+ ([en

X

~—

-

(V-18)

are shown in Figs. III-8, -9

+|C , the.incremental
nxy

] ] a1 o

5




NI AR L

PRI B AN, TN

Xy
JNANETE IVHNXETL TVHEIVIIHAVAD HOd XIHLVW ﬁ b 8-II1 FYNOIL

%

G % <
3 u r—and N L B¢ U1
m. . — A:mhvﬂmb+ Cep + .ns.by
A ) o 0 0 0 ) ) ) ) 0 ) )
P 0 ol M ' s T 3 o o 0 o1 s I S
; : B
. P £ A Ax £x A A A x
: o 1 1 1 12 1€ 0 0 o 1 12 1€
S s 9 " n ne £ 3 €2
A . 0 e e e s IR S ) 0 0 £ £xpe i 3 ®
m ;
, A 0 m»num ..?Hm m»num m»mx? 2 €19 o o 0 e »«xﬁ. Ax19
% Hx..._ - Hu..ou
; < o ke a»muum R ) m»axa 0 0 ) £ Xre 19 K56
Y .
w o 0 0 0 0 0 0o 0 o 0 o 0
4 o 0 0 0 0 0 0 0 0 0 0 0
/ 0 0 0 ) ) 0 0 0 0 o 0 )
° o1 1 A S i 0 0 0 v *z ke
o Name mauum fxyp amx:_ »mxS o 0 0 *12 mn? muS
£ x £ x R x K x A x ® x x
0 e 13 ¢t rae S IE <19 16 0 0 0 SIE <19 i 3

LA

d

o
v
v
H
&
H
$
m..wm\
23
A
5
1
'
>
v\
)
2
<
M«w
mw
W

il

Py




B BT N AR RS PO TR U A AN T T T

AV

NN

TSR W

eR%

¥

CRTFE LT TR

2T

SERBI4

TIROE

INGYETE TVHNXA1E TVEIIVIINAVAD ¥od

£
XTUIVW m. :o”_ 6-I11 FUNOLd

SOy ey 2

Al £
q = N 00N
A:hlb+ Yot Shot d»\v
— -
o 0 0 0 0 0 0 0 0 o o 0
£ x A x L x L x £ x Ax Ax £Kx
o JStm  NNis g = P o 12 12 S 19 o o 0
0 m»mxS ...nmxam m»«xum N»mxum m»:uun m.?um n»xuw :»num 0 o o
o »mme mmmxum 21 eI anH Xr ) m»xum o 0 0
0 »muum mamxum 1 oI P 2T »«nmm m»«uHm 0 o 0 =
o Az «»axnm e P o B A e 0 0
[4] - [%]
) £xro m»uam *1 21 an v 412 amnm o ) o
o L1 m.ﬂnw Axps »munm »mnum L1z N»S m»S 0 o o
o m»naw %me N?Hm m»wxum wamnnm m»um maS :aum 0 o o
o o 0 0 o o 0 0 o 0 o o
o o ) 0 0 0 0 0 0 0 0 o
0 0 0 0 0 0 0 0 o o 0 0
— -
e s L B e e e O S s S L N D s S B G R "

e N W




v.
.
:
¥
k
i
:
‘.v
: £,
; INGNATE IVHNXE1S TYHILYIINAVAD HOL XIHIVH of.ﬁ FUNOTS
>
b3 -
i u 2 =y eseun
% [ ]
w -
R 0 ) 0 ) 0 0 o 0 0 0 0 0 .
o Ax Ax Ax £ x £x £ A £ Ax £x £ x
¢ E o € y 18 2 I€ 2218 gl 21 €12 3 12 2 In ¢ 19
1’3
i Rx £x Ax £x £ x R £ A &x £ x £ x
w . 0 P ¢ 19 g I P R el y 12 S goIe P9 2¢ 16
3 £x Ax Ax £ x £ x A A A x x x o
: o 2 IE ¢ 12 2 IE ¢ In 1 2 12 ¢ I€ 1 2 12 ¢ I€ o
¥
¥ . £ x A x £ x L x A x Ax £x Kx x X b's
4 ] mmum mmg mam g It anm 12 z In g 19 21l ¢ 12 :Hm
) LA x K x R x £ x R x L x R x L x X x. x
0 e € g 10t ¢ In § 15 ¢ 19 i R ¢ €216 el w12 ¢ IE
3 £
{ o S ' Ay Axra e 0 0 ° v X1z i3 Tnz.._ = q.!o”—
g
3 £ A Iy £x £ x £ Ax A x
‘ 0 ¢ 12 g 2 12 i TR ¢ o 0 0 12 T4 2 19
td
: 0 ..aum m»Hm mmum m»xnw mamxmm 0 o o N»Hm Naxmm m»mxnm
: ; 0 Axr2 e 3 *1 o1 1 v fre 1€ 0 0 0
m £ x £ x X x x x £x Ax
o 2 In 2z 19 2 12 ¢ 12 y 12 12 I 2 19 o 0 )

! £ x £ x x x x x R X £ x

” o ¢ 19 mmum mHm aHm mam mHm 2 19 NNHm o] 0 oL

I — -

T S W

S8 R Sl

-~




A AR S KO AT S it L7 e TERNY
7 NTTTRY AL T g4

704

e T B T

VIII. Ceometric Properties
The derivation of the I.1 9 terms in the [ e ] and[C ]
Xy f nj

matrices are presented in this section. These terms depend ocnly on
the geometry of the element and are defined as

ij _ i R I |
Ixy —foy dx dy -ny dA

Since the terms I-;Iig‘j R whereqis an axis coincident
with one side of the quadrilateral (See Figure III-3) had previously
been obtained by direct integration, it was convenient to express

the moments, IxiyJ » In terms of the already known IQigJ 's,

The transformation to the 7-5 coordinates from the x-y
coordinates is:

—

'}Z cos © sin © X
= (V-19)
3 -sin © cos © | y
and alternately

X cos O -sin © | 7?

= (V-20)
y sin @ cos 9 | 3

where:
Yo X2

sin 0 = ————e—e cos O =

V.2 2 Ve 2 2
Xy + Vo Xo Vo

To illustrate the derivation of the Ixiy‘j's consider
2

the second moment of area about the y axis, Ix . By definition

Ix2 =fx2dA
=f(7zcos @ - & sin 9)2dA

=j (}Izcosze -2X€sinecos 6 +§ 2 sin® @) dA
(V-21)

= Ip2cos2 6 - 2T, sin© cos 6 + Ic2 sin2 o
n Vi3 §
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This procedure was used to determine all the Ixiyj's in terms

of the I%gj's. The Iqigj have been derived elsewhere.

The area, A, of the quadrilateral can be directly
determined by adding and subtracting triangles and trapezoids.
In both coordinate systems the area is given by
A = % ( Xg¥3 + x3y4 - Xp¥3 - X3¥p )

1 (v-22)
2

A = (7063 th364 -7y 53 )
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IX. Development of Corner Thermal Moments

Although the corner thermal moments can be formulated
through the use of Castigliano's First Theorem (a procedure
consistent with the derivation of the[Kf] and [n] matrices), it
is considerably simpler, and probably sufficiently accurate, to
obtain the thermal moments by pro-rating the distributed edge
moments to the corners. This direct approach was used here and
is described in the following.

For the case of a temperature variation through the thick-
ness of the plate element, the thermal moments per unit length
at any point i is given by

r.fi
. 2
Mt = ;‘Y-(l "y AT EdE
X Ay Ayx) _h
2 (V-23)
B (1 + (3
mt' o x ( /%Q T 4TEdE
y (1 ./‘(xy/qyx)J n
-]

where §' is a thickness coordinate measured positively in the
positive z direction from the neutral axis of the cross-section.

In deriving the corner thermal moments, it is assumed
that the distributed thermal moments are constant throughout the
element and equal to the arithmetic average of the moments at
the four corners of the quadrilateral. Thus

"l 1w = Mo +m )
= 3
X I X, X 1 X3 Xy
, , (V-24)
B A S
y ' Yo Y3 Yy
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These average moments are distributed around the edges of the
quadrilateral element as shown in the following sketch:

111

N
7

y

M ' 1 '
y +M M

- y X

- 27\, - h
1 /
z

M

< p'e

+M

The distributed thermal moments are concentrated ('"lumped")
at the corners of the element by assigning one-half of the total
moment along an edge to each corner bounding the edge. For
example, the corner thermal moments at Corner 1 are obtained by

+ X + X /
Tk - g gyt O | A
Mxl = My 2 M 7 =3 My (%o - xy)
' (v-25)
ﬁ 0(' = M a(‘ y’-l» + Md‘ Y2 _ ; M =3 \
y, vy 2 y 7 =z My (Y -y
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The corner thermal forces de“ are zero so that the thermal moments

and forces are expressed in matrix notation as

 _ N '
A o
Mxl (Mx (xz-xu)\
[
- -
sz Mx x3
- !
Mx;‘ M (0y-xp)
- dl
MX)_I_J\ "Mx x3
- '
Myd Myd (yQ"Y)*)
1] =1 (V-26)
- -2 ! )
{ My2 < My y3
- 0“
My3 M (Yy-Yp)
— = 9y
MYu My V3
P 0
!
. X
1'22 0
<A
Fz3 l 0
&
qu 0
\ J L }
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By differentiating the assumed displacement function (Eq. V-1),
the following derivatives are obtained
3z = 6alx + 28, + 6a7xy + 2agy

v-28
6a4y + 2a5 + 6aloxy + 28,,X ( )

7

3a7x2 + 2a8x + a9 + 3a10y2 + 2a11y

Q-
E
]

Substituting Eqs. V-28 into Eq. V-27, and evaluating
the expressions at the centroidal coordinates ( x, y) yields
the following matrix equation for the moments and forces:

r Mxl\ ral A
M 1 a,

( Miyl L [g] * - (V-29)
Qx I

(4 ) %12

The [g_] matrix is shown in Fig. 111-11.

The column of assumed constants, {ai} in Eq. V-29 1is
eliminated by solving for {ailin Eq. V-5, giving

(’al (;x

* -1
‘ i [B] ‘ey (V-5a)
%12 S
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And then substituting this expression into Eq. V-29 to yield

0
71 QXI
( Mx x2
0
M 1l x3
y 0
% Mo 1 Xy
Xy =1 o
a ~[&][e] gyl (V-30)
X ‘ v,
\Qy 9y3
950‘L
w1
Wo
w3
Wy

To account for the presence of thermal moments, Equation
V-30 is modified as follows:

1
1 :
M, :
Mxyl = [s] | % - {s"‘z (V-31)
°y
Q, J1
Q.y Qyu
"
i /

Where [SJ = [g][B] -1 and {S‘*} , the column of thermal
moments and forces, is given by

P,
n
b
St
n
o O O
‘43 %g

(v-32)
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In Eq. V-32, Mi‘ and My°‘ are the average distributed thermal

moments defined by Equation V-24,
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X. Criterion for the Singularity of the [B] Matrix

Under certain geometric conditions the»[B] matrix may be
singular. When this is the case there is no alternative but to
revise the analytical model so as to define an element of different
geometric proportions. It is, of course, undesirable to permit
a complete analysis before the singularity is recognized. Hence,
the following criterion for assessing singularity or ill-condi-
tioning has been developed; it can be applied by means of hand
computation before the analysis is performed or incorporated
as a check in the routine for the computation of the element
force-displacement relationships.

The derived criterion is actually the result of an attempt
to develop an explicit inverse of the [B] matrix. By appropriate
rearrangement of rows and columns and through partitioning it can
be demonstrated that the singularity of the complete matrix
depends on the singularity of a certain 3 x 3 matrix, This 3 x 3
matrix is also too complicated to permit its explicit inversion.
Its determinant can be formulated, however, and it may be recalled
that a criterion for singularity is whether or not the determinant
is zero., The algebraic statement of the determinant in question,
D, is

D = 7]33643 (clﬁu+0233+c3¢92 +Cuﬂ+05)

where: o
17 (¢ -1) (r'l)

c, = 2V (5x-2) +F3¥-1) + (1-2=) +4P(1 +¥P)(1-7)}

co = (r-1) [ 3r -2«¥ (ra1) - 64272+uPy (@ +r+1)J
73 (1-241) + 28 -1

= 27 (1-¥) k[ ¥ (1-4V) +1-+]

v 2 (1-x )2 (9 -1) (V-33)

_ 73 . N £y A ran
. R 6 - §3 28 73

Q
I

88




B MY R D TR DN TR .W%ﬁw;ﬁa%‘zﬂﬁi&awmw«.\‘.mmﬂf;w\cwzio‘mmW.mk\.&«.':%Wir:-'-f&‘i'-‘*‘w*»** TR ATE
$

i

.

B R woace

Thus, if D = 0, the [B] matrix will be singular., Equally
important is the case where [B] is nearly singular (i.e., the
terms in the adjoint of the 3 x 3 matrix are very large in
comparison to the determinant), since this will also produce a
meaningless inverse for the!:B] matrix, A suggested criterion for
this condition is the ratio of the first diagonal element of the
1 adjoint to the determinant, D. Experience has indicated that
if this ratlio is less than about 100, then it is reasonahle to
expect a satisfactory inverse for the [B] matrix, The first
diagonal element, designated All’ can be determined by

L mat B7 73536 - 207 1360 (s - 1) (32 - 27

i +375° 7y §5°6)° - 27,° 7 §3u§42) (23 =24) (275 - 374)
v, e 60 12030 E56,° - 67, nany £5 61

+ 93 E58,° - 132,070 626, 1t 6355
EOEIABAIR R Y Ak BRI Y Ay N NS
YAV TR IEEY Ky BRI

4, 2 . 4 3 b, 4 ;
+4?2 73 ‘;33543 “&24§34"\u +y23”4€3 gl-l (V'ju)




D. TRIANGULAR PLATE ELEMENT
I. Introduction

The formulation of the triangular plate discrete element
described, is derived from and mathematically consistent with, the
formulation described in Reference 12. The addition of this
particular element, as a companion element to the quadrilateral
plate described previously, serves to compliment the additional
capability available for the analysis of shell structures
particularly when instability analyses are to be performed.

A detailed derivation is presented for the force-displacement
properties of an orthotropic triangular thin plate element
exhibiting membrane and bending behavior. 1Included in these
relationships are terms for stiffness, stress, thermal stress and
incremental stiffness.
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II. Development of Linear Elastic Membrane Stiffness Matrix

A matrix statement of Castigliano's first theorem, Part I,
applicable to the derivation of discrete element force-displacement
properties may be written as follows:

[x] =[sY ! [c] [=]* (II-1)

where [K} is the desired matrix of element stiffness coefficients,
{B] i1s a matrix in which the rows are the coefficients of
equations for the corner point displacements in terms of the
constants of the assumed displacement pattern, and the rows of [C]
are the coefficients of these same constants in equations which
represent the derivatives of the strain energy (expressed as
functions of the constants of the assumed behavior function) with
respect to the respective constants.

For the triangular plate element, we assume linear
displacements, i.e.,

u = a; +a,x + a3y (1I1-2)
Vo= ay +agX +agy (II-3)

where Bys sees a6 are the constants in these assumed functions.

Egs. II-2 and II-3 can be evaluated at corner points 1, 2,
and 3 (see sketch below) to yield the following relationships:
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ul\ 1 0 0 0 0 0 8,

Uy 1l X5 Yo 0 0 0 ay

u3 = 1 x3 y3 0 0 0 { a3 |

vy | 0 0 0 1 0 0 &y | (11-b)
Vo 0 0 0 1 X5 Yo 5

v 0] 0] 0 1 X y ag

where the square matrix on the right side is the [ B] matrix,
whose inverse 1is:

(x2y3 - x3y2) 0 0 ) 0 0
~¥3.2 Y3 -¥o 0 0 Y
B] - 2y3-x3y2 X3_o ~Xg X, 0 0 0
0 0 0 (x2y3-x3y2) 0] 0]
0 0 0 “¥3_2 Y3 =¥o
L_. 0 0 0 X3 0 -X- X,
( IZS)

where y3_2 = y3-y2 and x,i_2 = x3-x2.

To develop the»[C] matrix we first need the expression
for strain energy for orthotropic plane stress. This can be
wirtten, in terms of strain as:

E
U = % JA { (& - Cxi) [M?S (€x *4x €y) - (1 +/(VX) €x}
E 1l +
+ (€y- €y1) ["%‘” (Ey +/qu €X) - ( /«Mx ) Eyey
Oy (F gy - yxyi)zj dA (11-6)

where M =1 Hy “x

and €xi, Eyi and );yi are initial strains, The strains are

obtained from the strain displacement expressions as:
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Q
=
"

X -33(- 8.2 (II"T)

€, = % = a (II-8)
_ du Iv _

Yxy= 32 ¥ 37 T ¥3*% (11-9)

so that, upon expansion and substitution of Eqs. II-7, -8 and -9
Eq. II-6 becomes

U = m—f{ /‘( a6 G 26 yXG-(1+/"er)
6.x &y *+ (1 +’“yx) (€ ' 2] + Ey [a6 +’“xya2a6

i i
- €l tag - € uay - (L4 )€ Tag + (14 ) (€ 12

2 2
+ Gy M [a3 + 2a8; + ag -28.3+a.5)3’xy + Oyt ]} dA
(I11-64)

The derivatives of which, with respect to the constants 8y....8c, are

‘5)'%‘1' = 0 (II-102)
JU  _ h i Ayx .4 1
}aa I {Ex [aQ +/‘(yxa6 -€x - = (Cx .+€y )]}A
R ! (II-10b)
3 - —-M-h [G M (ag + 85 -7 1)]:4\. ' (EI-iOc).
Ta3 Xy 3 5 Xy : |
'3‘%; = 0 D L ' ~ (II-104)
: - | i o ' :
'J—‘J 25 = 3‘ [Gx,{r M (ag+ag.- 4.7 A ~ (I1-10e)
QU _ i i | G
,366 - { [a6 a Gy Ql(ex +€y )]} A, ;
. : ' (II'lOf)
: , '
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Setting aside all terms which involve initial strains
(these will be treated in Section II-B), we have

-

\ QU - -

oU

5 0 E_ 0 0 0 4E a,

U

3 a3 0 0 nyM 0 nyM 0] a3
; U 0 0 0 0 0 0 8,
| e
P a U !
l‘ 75 0 0 G M O G M O a5 |(r1-
; ; 10)
4 U
3 A E
3

The square matrix on the right is the matrix EC] . Utilizing

[ﬁ] -1 from Eq. II-5 and the definition of'[C] from Equation II-10
in B,. II-1 and performing the indicated operations results in
the element stiffness relationships shown on the next page.
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III, Development of Initial Force Terms

In the case of initial strains (e.g., thermal strains,
previously accumulated in elastic sirains, and large deflecticn
strains) it is necessary to determine the forces corresponding
to the initial strains.

With assumed displacement patterns (Eq. II-2 and -3) the
strain energy 1is expressed in terms of the constants {'a} and the
initial strains as shown in Eq. II-6a. The differentiation of
Eq. II-6a with respect to the individual constants { a}

Eqs. II-10a - 10f, results in

JU ] {} {dU } (II-12)

i
where AL represents the initial strain terms which were set
d a

aside in forming Eq. II-10, and is given by

Era ™ ; o

_%%gg ’ 1 +ff3§5 Ey fﬁ@ﬁi&_ 0

_32_; | ) J}MA_ 0 0 Gy M ( éxi
{}%% 0 0 0 1 Gyi
%1?% 0 0 Gy M k’xyi
S I SN

(II-13)




The corner forces on the element are obtained by multiply-

ing Eq. II-13 by [ Jda ] = [B -] T which results in

T T an
S R TS IS B Py T = s
The first term on the right siae of Eq. II-14 yields the

corner forces due to displacement, i.e., the forces which would be
required to induce the corner deformations, u and v, elastically.

The second term represents the initial forces, {Fi}. Thus
T
i
{Fi}= [B‘l] {—33-27-} (1I-15)

a] T J ut
Utilizing [B ] from Eq. II-5, oy from Equation II-13

and performing the product yields the following expression for
the initial forces:

i I g 1 ] ]
(Fxl B3, Y3, "xy'x3
p, 1 ’ -E (1+" 4% yy, :-:E}-g/&-yg Gxy¥x,
3 hA
Fyli (XY 3-X3Y5 )M By v X3 o Ey(1+%‘x_y)x3_2 -nyMy3_2
Fyzi "Ey/“xy x3 -Ey(1+ ':?X)x3 nyMy3
KFy; / El:;& %2 B (1) x, “Gxylly,
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For thermal strain situations, letting T represent the
average temperature change of the element, the initial strains
are defined by

i

€x = KT )
y "(yT

Fay = ©

where A and 0<y are the thermal coefficients of expansion

in the x and y directions respectively. TFor the usual case of
A = a<y =of , the initial forces given by Eq. II-16 simplify

X
to the following pu
V3.2 \
Y3 )
-y2
. (14 .4 E
hAE_(1 + 4 _ )X T . Xy
A ¢
zF }: X JX T, ‘ELX *3.2 (II-16a)
- (x2y3 - x3y2) M
~(1+/(xy) Ey xq
P4
(1+ Xy Ey .
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IV, Stress Equations

The equations'for the stresses in terms of the corner
point displacements and initial strains will be derived in this
section. 1In Section II-A, it was noted that the strains in the
triangular plate element are constent (Egs. 1I-7, -8 and -9).
This results in constant stresses which can be expressed by
the following:

o ! 1
Ao x
[Sxy] A3 - /C;( i (II-18)
~ y
i
Ay oy
3

The first term on the right side of Eq. II-18 represents the
stresses corresponding to the corner displacements and the second
term denotes the initial stresses.

To develop the[sxy] matrix and initial stresses, the
relationships between stresses and strains will be formulated
in accordance with Hooke's Law. For an orthotropic material
the strains are expressed by

_ 1 i
ex - E, (o7 - A&y d':'),) + €y
_ 1 - i
€y = T (ay X o) +G (I1-19)
y
f& i
a’ = _—_X..... + a’
Xy ny Xy
Solving Eq. II-19 for the stresses give
g, = x (€, + E,) - " €14« €
X M x "&x y M ( X yx“-y )
Ey Ey i
Jdy = H (Ey Ay €) - ™ (6 Ay é"x ) (I1-20)
o i
ny B ny Jr Xy ny J Xy
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The first terms on the right hand side of Equations II-20
give the displacement stresses. By replacing the strains in
these terms by Eq. II-7, -8 and -9, the displacement'stresses
can be expressed in terms of the constants in the assumed dis-
placement functions by the following

o ! ) 0 1 0 0 0 ,ayx-' ::
~ ol G, M Gy M .
Lt D A R
oyt | 0 Ay 0 0 0 B [ o
86

(II-21)

Next the corner point displacements, u and v, are
introduced into Eq. II-21 by utilizing, from Sect. II-A, the
relationship

{a} = [}3].1 {t} (II-4a)

So that BEq. II-21 may be written as

i u
O‘X ul
Vo nd Ex "1 2
gl = 9 [D] [B] ug (11-22)
i V1
L Ty Vo
V3

wherel:D] represents the rectangular matrix on the right hand
side of Eq. II-21 and [B] ™' 1s defined in Eq. II-5. By
explicitly forming the product of these two matrices as
indicated, Eq. 1I-22 can be written as

- Lo 1]
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where [ -y3_2 y3 -¥,
[Sxy] T T, ?xx3y2)M GX%ZXQ_Q :%}M{ E %>MT 2
| Y32 A3 gx¥2
(II-23)
Ayx*3-2 A3 Ae ]
1%% Y3-2 %}% vs i%‘- '

The initial stresses are now determined from the second
terms on the right hand side of Eq. II-20, The consideration of
these terms gives

- oy

a‘xi 1 0 /«yx .1
E
~o1y = X 0 G oM 0 X
(A Y
* " " E Fog [ (11-24)

G’yl A% 0 y

- X -J eyi

(The minus sign is not included in the terms of Eq. II-2l4 since it
already has been incorporated in the stress formulation of Eq. II-18.)
As noted in Section II-B, for thermal conditionsexi =o«xT;

€1 -4 T and ¥ 1= 0. Then, for the case whereet, =of_ = o
y y Xy X y 1]
the thermal stresses are given by
oy 1 0\
O E (1 h¢§x)o€2 0 (11-25)
M (
ot +
Ty (1+~.) B
(T +"3rx5 E )
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3 V. Development of Linear Elastic Stiffness Matrix (Bending)

The fc-ce-displacement properties of an orthotropic
triangular plate element in bending, subjected to known midplane
forces, are derived 1n this section. The element is pictured
in Figure III-12. As in previous chapters, the stiffness matrix
is derived by apnlication of Castigliano's Theorem. In the case
of plates in flexure subjected to midplane forces, however, the
stiffness matrix:[Kz] is composed of two parts, i.e.,

[Kz] = [[Kf] + [n]] (IV-1)

P T P T TP A T Rr

where
[Kf] is the stiffness matrix for flexure alone.

[n] is the stiffness matrix associated with the influence
on flexure of known midplane forces.

The present section is concerned with the derivation of the [Kf]

matrix; the [n] matrix is developed in the next section.
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Figure IIT -12 Triangular Plate Flexural Element
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As shown in Section III-A.3 of Reference 12 the [Kf] matrix
can be defined as:

] - e b1 .' s

where, as in previous sections [B] is & matrix 1n:which‘the .

rows are the coefficients of equations for the corner point )

displacements in terms of the constants of the assumed displace«

ment pattern, and the rows of [C ] are the coefficients of

these same constants in equations which represent the derivatives

of the strain energy (expressed as functions of the constants

of the assumed behavior function) with respect to the

respective constants. ' !
The following assumed displacement function will be:

utilized as the basis for this derivation.

- 2 2 .. 3 3
W= oap ey +ayt +ayy +agx” +agx d+ any’ |
+ agXy + a9xy2 (Iv-3)

where al,......ag are constants.

The angular displacements (slopes) of the plate are given by:

o, = f}% = 2a3y +ay + 3a7¥2 +Za8x + 2a9xy " (IV—MX
Oy = -%%% = -a, -2a5x - 3a6x2 < agy - a9y2 (IV-S?

]
!
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The square matrix on the right hand side of Eq. IV-6 is,
by definition, the [B] matrix.

To develop the [Cf] matrix, it is first necessary to
express the flexural strain energy (Uf) for orthotropic plates,
in terms of the displacements: (See Ref.12)

2 2
1 J 2w 2w
Ue = 5 [Dx (——-z-—ax + Dy J—Ty + (D, Ay + Dy /‘tyx)

J % ° J 2w d % °
(’Z)T> (.()_7> + 2D 5 y) dx dy  (IV-T)
3

X N
Exh Eyh
where Dy = jo.AxyAyx) 3 Dy = 12(2- A4 Ax)
' 3
o _ uxyh
Xy

By the differentiation of Eq. IV-3 and the substitution of the
partial derivatives into Eg. IV-7, the following expression for

the strain energy in terms of the constants of the displacement
function is obtained:

2 2.2 2
Up = %;f; [ D, (4a5 + 24 agagX + 36 ag"x") + Dy, (lla3

. 2 2 2 2
+ Pa,“y" + 4a7 x° + 24a3a7y + 2&a7a9 + 8a3a9x) (1V-8)
+ 2/‘&XDX (Ma3a5 + 12aga,y + ha5a9x + 12ajasx
2
+ 36a6a7xy + 12a6a9x ) + 2ny (a82 + ha8a9y + 4a92y2)] dA

106




P T T O

Next, the strain energy, Eq. IV-8, is differentiated with

respect to each of the constants, 815 seeonn a9. For example:
dUeg _ dUe - ¢Up _ o
TE TR TR

while
0 Ug

/
.

D, 8a., + 2lha,y + 8Ba.x) dA

+/‘§x D, 'J; (lta5 + 12a6x) dA

+ 4 «__D_Aa

4DyAa3 + 12 D I a., + 4Dnya9 yxPxAes

yy T

+ 12,/§xDxIxa6

where A = [A dA; Iy = fAydA; I, = fodA

In matrix form, these partial derivatives can be stated as:

PR (4

< = [cJ{ ' (1V-10)

3l&. a9
L 9% N

The [Cf] matrix is shown on the following page.
The area, A, and the IxiyJ terms in the [Cf] matrix

are discussed and defined in Section C - Geometric Properties.
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VI. Development of Incremental Stiffness Matrix

The [n] matrix can also be derived through application of
Castigliano's First Theorem, Part I (See Reference12). The procedure
is represented by the relationship

[n] = [B'l] ! [cn] [6] ** (IV-11)

The strain energy expression to be employed in the formulation
of the [Cn] matrix is:

- 2 2
U = 3 J; [Nx (g—)‘z—) + Ny(%) + 2N -J—T"}‘;‘);]dzx
(IV-12)
Where Nx’ Ny and ny are the known midplane forces, these forces
will have been evaluated by performance of an independent midplane
displacement analysis, wherein the element is assumed to sustain

= = 7~ = ;
constant midplane stresses (0, = a;, a‘y = a,, ny = a3). Since

N,=ho , N =ho and N = hfxy, the midplane forces are also

b y y y
constant by taking note of this consideration, utilizing the displacement
function of Eq. IV-2, and performing the operations indicated by

Eq. IV-12, one obtained: U =1U + U + U
? n n, ny nxy

2 N
= 1 oW - X 2 2
Unx = ?'J; N, (%ri%) dA = —5 [ Aay” + hlxa2a5 + 6Ix a,8¢

2 2 2 3
+ 2Iya2a8 + EIy aea9 + MIX a5 + 12T 258 + l&IxyaSa8
2 L 2 2 2 2 2 2
+ quy a5a9 + 9Ix ac” + 6Ix ya6a8 + 6Ix v a6a9 + Iy ag
3 2
+ QIy agag + Iyua9 (IV-13a)
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2 N
1 ‘ ( Iw _ ‘ 2 2 3
Un = 3 N Ny -31£> dA = —Ez—— 41y ag" + uIya3au + 12Iy as8,

+ 41 a ag + 8Ixy2a3a9 + Aau2 - 6Iy2aua7 + QIxauaS

Xy 3
2 2 < 3 2 2
+ hlxyauag + 9IYua7 + 6Ixy asag + *2Ixy ag8g + I, ag
2 22 2 <
+ 4T, y288g * b1, v 89 (IV-13b)

_ dwow 3 2
Unxy —f ny I35 dA = ny [2Iyaaa.3 + 4Ixya3a5 + 6Ix ya3a6
+ 21y2a3a8 + 2Iy3a3a9 + Aa2a4 + 2Ixaua5 + 3Ix2a4a6

2 2 2 22
+ Iya4a8 + Iy a4a9 + 3Iy agls + 6Ixy a5a7 + 9T, y a6a7

+ 3Iy3a7a8 + 3Iyua7a9 + Ixa2a8 + 2Ix2a5a8 + 3Ix3a6a8

2 2 3 2
+ Ixya8 + eIxya2a9 + AIX ya5a9 + 6Ix ya6a9 + 3Ixy a8a9

3, 2
+ 2Ixy ag (IV-13c)

Considering each of the energy components separately, the
partial derivatives of the energy with respect to the constants
may be stated as follows:

d Unx a1
Zal ¢
. - . (IV-14a)
= [ C, ] .
] X J o
d bnx L 49
. 0 49
( 3Uny \ al'\
- :
{ e . . : (IV-14b)
>0 [ ny] :
ny .ég
k d ag —J 110




Xy 1
E b |
. \
! { ' (IV-1ke)
= C ¢
ou. [ n"y] '
V]
nxy ) Ka9
d3g
The three [Cn] matrices are shown on the following pages. The
IxiyJ terms appearing in these matrices are defined in the

following section - Geometric Properties.
The [Cn] matrix in Eq. IV-16 equals the sum of the

three[cn] matrices of Eqs. IV-1lha, 14b and 1llc. Hence, the
incremental stiffness matrix [n] is experssed as:

[n] = {B- ]T ([cnx] + [cny] + [cnxy] [2] - (IV-11a)
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VII. Geometric Properties

The [Cf] and [Cn] matrices contain a group of Ix:"yJ terms

resulting from integration of the erergy expressions. These
terms are defined as:

i i3 _ i .
Iy yj =/xy dx dy = J;\ xy:j da (1V-15)

Thus, they are simply geometric properties of the element., Many
of them are well known section properties.

i3

In explicitly formulating the I y° terms it was convenient

to use previously determired I? lg‘ J  terms with reference to the
72—5 coordinates, as shown in the following sketch, and transform
: these to the x-y system.

Y
L 3 a7
—! 6 >X

The coordinate transformaticn from the x-y system into the 7-$
coordinates for any given point is

{ - cos © sin © X (IV-16)
€ -sin © cos 9 y
I2 X2
where sin @ = H cOos @ = =
Xo + Y5 {;‘-2 + Yo

Alternatively the coordinate transformation from the }Z—-é‘ system
to the x-y system is given by

-,

X cos @ -sin © )? (IV-168)

y sin @ cos © E
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As an example of the determination of the ];xj'yJ 's in

terms of the I;Ii J 's consider the first moment of the area

[RGARLa Ok b B g Rt L1

about the y axis, Ix’ For this moment

3 I. = f x dA

5 x

f(?cose- € sin @) dA
cos gfbdA-sinejf dA

177 cos 0 - Ig sin ©

i

e

(IV-17)

AL AT O

g Yy

: All the remaining I iy‘]'s are determined by a similar procedure.
; A listing of the necessary I iyJ's is given on Fig.T111-13,

The area, A, and moment properties about the % and § axes
were determined by direct integration within the proper limits
to yield the expressions shown on Fig. III-14.
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VIII. Development of Corner Thermal Moments .

Reference 14 has established a procedure for xhe-dérivaﬁion
of thermal forces that is consistent with the procedures employed
in deriving the [Kf] and [nJ matrices, i,e., a procedure based oo
on Castigliano's First Theorem, It is simpler and appears equally
E accurate, however, to derive the thermal forces by means of. the

scheme to be described in the following. o

In developing the corner thermal moments, the average distri-
buted thermal moments Mi‘ (about the x axis) and' M&o* . (about
the y axis) are taken as constant throughout the element. The
"lumped" corner thermal moments are based upon these average
moments. The average moments are defined as the arithmetic
average of the distributed moments at the three coiners=of the
triangular element. Thug ' '

T e ey

WA Mxy  + sz"" + My ™
* 3 (1V-18)
and wt o My + My Ik My.3"
y 3 : o ' _ !
where Mx;*‘ and My;“' are the distributed moments &t %he corners

due to the temperature gradient, through the thickness of.the
plate. These distributed corner moments are defined as: ,

h .
[} E 'l'+/‘r) . y
w = o G Z A1 € af
i (1 -y ) -5 (1V-19)
h
M 4 = o T £ d
-7

£ 1is a thickness cocordinate measurcd positively in the positive z
direction from the neutral axis of the plate.
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It is assumed that‘the average thérmal moments are distributéd
around the edges .of an arbitrary triangle as shown

'

l

i . y ‘o(’
N -Mx
' []
; A
-M;\’ M
— : >
) N : ’8
INREERENEEIR

below:

ATy M

0“

e
—He— h
'
3 M

~T X

The distributed thermal moments are concentrated at the corners
of the triéngle by assignir o@e bzlf of the total moment‘along
a side to each of the corners bounding the side. For example:

: ' .

‘%
M
X1

Mcﬂ =

.yl

and

i

- A

(5=
. 1 |-

!
A

My

X
2

2
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! .
The thermal corner forces F;* are zero.so

) X,
s "3
Mx 2

st I2

oM =

/
o
Mx x3 .

'
Mt
Mx X

nyj +=

1

>

"
MX

Ad
MY

(x5 - x3)

(y2 “y3)’

!

(IV-20)

that the thermal moments
and forces are expressed 'in matrix notation by

K;£A2x2‘x35\‘l

(Iv-21)
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IX. Development of Stress Resultant Bending and Twisting
Moments and Vertical Shear Forces

It appears most efficient, from the standpoint of practical
interpretation, to express the "stresses" as moments and shears

per unit length. Hence, the bending moments, Mx and My, the

twisting moment Mxy’ and the shear forces, Qx and Qy’ shown iu

the sketch can each be calculated during an analysis. They are to
be computed at the centroid of the element. The stresses, which
are dependent upon the construction details of the cross-section,
can then be hand calculated from the moments and shear forces.

The moments and forces may be expressed in terms of the
deflected surface, as:

2 2
' d “w d “w
My = - Dy (TT— *  y F)

y
2 2
1 d “w dw )
My— Dx (7’;’2_— +/uyx 'd_y'?—
Wl op O (1V-22)
xy TR 30y yx
_ J dzw dzw )
%=-7%x P gz * P 57 )
2 2
- . _Jd d w d “w
Y= 3y Pa gz * P 5T

where Dx’ Dy and ny are defined below Eq. IV-7 and

DQ,=Dx /‘er'l'ny

By differentiating the assumed displacement function (Eq. IV-3),
the following derivatives are obtained

(2]
J “w _
_;_;2__ = 2a5 + 6a6x
J = 2a. + 6a,y + 2a.x
'7{:FT'" 3 7 9 (IV-23)
d% =

LA ag + 2 a.y
8
Ixdy ’ 118




Substituting Eqs. IV-23 into Eqs. IV-22 and evaluating
the expressions at the centroidal coordinates (}-C, 3'1), yields the
following matrix equation for the moments and forces:

1)
! (o
My "2
M/ f _ -
| Yy [ = [gz] 4 (IV-24)
QX
Q a
\ ¥ ) L2
where: __ -
2 X 0 2D. X
0O O 2Dy 0 "J‘cyDy 6/}((yDyx 6D,y D y
8,)= - < =
[ z 0 0 24.D, 0 2D, 6D, x 6/§x J 0 24 xDyX
c 0 0 0 0 0 -ny -EDny
0 O 0 0 0 6Dx 0 0 2DQ
0O O 0 0 0 0 6Dy 0 0
and _ 1
X = 3 (x5 + x3)
- 1
y= 3 (3 +¥3)
From Eq. IV-6 it is noted that:
e
()
(?l 9x2
. Zx3
N [BJ‘I ﬁ 1 ( (IV-6a)
e
ﬂ - Yo
4
. wl
. 2
3 W
: & 9] L S J
E 119
4




so that Eq. IV-24 may be written as

- (9"1 \
M; \ gxe
) Ox
:L? = [gz] [B]'l Gyi » y
Q, B (IV-2l4a)
% ) :1'3
Wo
"3

which permits the nioments and forces to be calculated from the
previously computec .isplacements. To account for the presence of
thermal moments, Eg. IV-2la is modified as follows:

\
(9"1 1
fmo gx2
X
o
X
MY ) 3
{ M}gy» = [sz] vy % -[sz“} (IV-25)
QA gyz
%]
% Y3
\. "/ Wy
W
"3 )
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Where [s Z] - [gz] [_B]‘l and {sz""} the column of

thermal moments and forces, is given by:
!
A
Mx

el

{s ke } = oy (IV-26)

C
0

In Eq. IV-26, Mi“' and M;ﬁo are the average distributed thermal

moments defined by Equation IV-18.
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Ix = I” cos @ - Igsine
I 2 = I o 00829 - 21 cos ©s8in o + T o sin29
x 7 7¢ e
1 3 - I cos39 - 31 sin © 00329 + 3T sinze cos ©
X ?’3 7:2; ‘€2
- 1. . sinde
€ 3
¢ le‘L = I,y cosua - 4r sin @ cosJe + 61 sin29 cos®e
: 7 3¢ 722
-MI? 3sin39 cos 9+I§4 sinug
§
Iy = I,z sin9+Igcos e
I 2 = I sinze + 2T sin @ cos 8 + I cosae
y 32 7€ §2
I 3 = I sin39 + 31 sin29 cos © + 3I sin 6 00829
y 73 ST &2
+ I§ 3 cos3e
I 4 = I,y sinue + 41 3 sin39 cos © + 6T 5 o sin29 c0329
y 7 728 4 7€
+ 41 sin © cos”0 + I cos '@ '
2¢€3 &4
I = (I -I,,)sin®cos 6 +1I (00529 - sin29)
Xy h2 g2 43
2 - 2n . 3q 2
Ix%y 173sinecose I}_{ag (cos”6 - 2 sin“@ cos 0)
" Lo (2 sin @ cose - sin39) + I§ 3 sine cos 6
2] _ 2 3 2 3
Ixyc- = I?3sinecos9+172€ (2 sin @ cos“® - sin @)

+I 5 (cos39 2 s1n6 cos e) - Ig 3 sin 9 cos2e

2¢

FIGURE III-13 DEFIKITIOs OF Ixiyj's iv [ ¢] MATRICES
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y + I§ y) s1n6 cos

- I
2 73¢ " Tped
(sin © cos3e - sin3e cos 0) +I_, 5 (cosue - 4 sin®0 cos®e
7°¢

+ sinue)

1,3 = (I 5) sin @ cose + 3 (T

763" p36)

I;. L) sinde cos e

7t "3y,

$1n%0 cos®e + (31

472‘52 -
L 4

- I sine + I cos ©
2¢3 73¢

3 3
I = I - 3T sin”0 cos ©
(Tpu 7262

2.2 2
+ 3 (I I 63) sin"@ cos @

723¢

+ (3172g2 - 1;4) sin @ coso

%]

sinue + I 3 cosue

73¢ 7¢

-1

FIGURE ITI-13 (CONTIKUED)
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I?2= }'g §372 (7?32 7372 +722)
I3 % 537 (?32”?327/2*773?22*723)
Iyt = %6 £37; (7Z3u+733?2+732722+7/3 723+?2u)
Tg = & 7Sy
Iea™ = 772533
M
Tes = % 7253
Ten= 7= 7263
2
fpe = Ll (273472
I _ £3% 372 42 2.
pee” w373 24372 *72)
2
I,3c" €3j2 (4?33+373272+2?3?22+723)
I = 63372 (375 +75)
”4-2_ ?3 72
£337%2 2 2
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FIGURE III-14 DEFINITION CF I?[ i J's FOR TRIANGULAR ELEMENT
é
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E. FRAME ELEMENT
I. Introduction

The formulation of the additional frame discrete element
which has been incorporated into the MAGIC II System is
essentially identical to that described in the originai MAGIC
Engineer's Manual (Reference 1). All element matrices available
to the original frame element are available to this frame as
well, i.,e., Stiffness, Distributed Pressure, Thermsal Load,
and Consistent Mass,.

The addition of this element is primarily intended to
serve the purpose of providing a companion frame element to the
quadrilateral and triangular plate elements which have been
added to MAGIC II. The use of this element in conjunction with
the newly added quadrilateral and triangular plate elements
will provide a powerful capability for linear eigenvalue
stability analyses of stiffened shell structures,

IT. Additional Element Matrices

As pointed out previously, all element matrices available
to the frame are described in detail in Reference 1. An
additional incremental stiffness matrix has been provided and is
presented here (References 14 and 15).

For the frame element (Fig.III-15)linear polynomial axial
and torsional displacement mode shapes are constructed while a
cubic polynomial displacement mode shape is constructed for
flexure in each of the two principal planes of bending. The
above mentioned mode shapes are assumed to take the following form:
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u = &, +ax (2.1)

V = b+ DbyX +DbX" + baxS (2.2)
o 1 2 3 )

W o= c. o+ CX +C X2 + coXO (2.3)
0 1 2 3 ’

0 = dj +d;x (2.4)

The above mode shapes lead to a total of 12 undetermined
coefficients for the element which are chosen to correspond

to three translational and three rotational displacement degrees
of freedom at each end of the element. A transformation from
generalized coordinates to grid point displacement degrees of
freedom is effected by writing (at X = 0)

1 0
Vi1 = P
1.7 % (2.5)
%a1) = %
Qy(l) = W, v =0 = =
°2(1) = Vx x=0 Py
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and at X = L

u2 = ao + alL
- 2 3
Vo = by +b)L + byLS + bl
W = ¢, +c.L + ¢ L2 +cC L3
, 2 T FotT it T 2 3 (2.6)
f gx(z) = dy + 4L
_ _ 2
: Oy(2) = ¥ lx = = ~(cg + 2cL + 3cqL%)
- _ 2
O,(2) = Vx Ix _p = (by + 2oL + 36,17
or ) 5
[of) = E/:C:”’J [ } (2.7)
where 2.8
T (2.8)
[f} = Lug, vis W 0y, Oy12 ©z10 UYor Voo Wos 8455 Oyns 9, |

and
{K}T— b., by, by, b o a,a | (2
] = [ ags 2y bys by, by, bay gy 29,y C3, dg, 4y | (2.9)
It is to be noted that the {2?} are referred to as field coor-

dinate displacement degr:es of freedom.

Upon analytical inversion of equation (2.7) we have the
desired relationship between the {2{} and {)’

{ } B E/A;J’J [’P} (2.10)

displacement vectors.
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The strain-displacement relationships for the frame
element can be written in the following form:

2 2
€ = (u, + 1/2 Ve = ¥V, t 1/2 we"o-ozw (2.11)

The total potential energy functional, I , Which arises
in consequence of the strain relations of equation (2.11) is

L
2 2 2 n
I: J(.%A; u, +EIz Vex t EIy Wox ) dx (2.12)
-]

L
2 2 )
+‘o/ [.E.g . (v,” + wxz) + _E&\_ vx2 L _Eé\_ (vx4 + Wy )] dx

The first integral in Equation (2.12) consists of the well
known linear membrane and flexure terms respectively while the
second integral arises from the retention of the quadratic terms
in the strain-displacement relation.

In consideration of the non-linear portion of Equation (2.12)
it is noted that the first term is the non-linear membrane-flexure
coupling term. This contribution gives rise to terms which
adversely affect the element linear membrane and flexure stiffness
and is the term which will be considered.

If consideration is given to work done by midplane
loads during the displacement of the structure during lateral
loads, the following may be written for the first non-li.iear
contribution of Equation (2.12)

L
I’ . X [ (v.2 + w2 ax (2.13)
2 x x

where Px is the axial stress resultant which is a known quantity.
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From the assumed displacement functions (Equations 2.2
and 2.3) differentiate and obtain:

Vx

2
b, + 2b,x + 3b,x
1 2 3 (2.14)

2
c1 + 2c2x + 3c3x

Wx

substitution into Equation (2.13) and integrating obtain:

2 2 3 2.3
! 2
:ff Px bl L + 2blb L + 2b.b.L° + 4/3 b2 L

173
2 + 3b2b3L4 +9/5 by 22 4 ¢y 21 4 2c, ¢ L

+ 2clc3L3 + 4/3 022L3 + 302c3L4 +

9/5 c4°1” (2.15)

Upon taking the partlal derivatives of g with
respect to the coefficients b1 thru b3 and Ccq thru c3, the

incremental stiffness matrix [7b{7 is obtained referenced to
field coordinate displacement degreas of freedom and is shown in
Equation (2.16).




|

{or°e)

i O 0 0 0 0 0 e 0 0

_mqm\m 7 ¢1 0o o o o o0

lmmqm\: 1 0 0 0 0 0

_ 0 0 0 (0] 0
rqm\m JIE T 0
_mgm} T o

OTIlsmuwAg J 1 0
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Noting from Equation (2.10) that {/} s [/;/] [o[})

[V/1] 1s obtained as follows:

[N1] - E/}/JT[/V(’)] [/ 2] (2.17)

. when [/V_Z] is referenced to grid point displacement
degrees of freedom,
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SECTION IV

COMPUTATIONAL PROCEDURES

A, Introduction

The MAGIC II System for Structural Analysis offers a
variety of computational procedures toc the User. Among these
are the capability to perform static analyses, statics with
condensation, statics with prescribed displacements, stability,
dynamics (modes and frequencies) and dynamics with condensation.
The proper usage of these procedures in the context of performirg
actual structural analyses is described in detail in Volume II
of this document (The User's Manual).

In addition, the powerful matrix abstraction capability
built into the MAGIC II System allows analyses to be performed which
require the use of Static and Dynamic Substructuring. In order
to clarify the operations involved utilizing these approaches,

a detailed presentation follows.

B. Static Substructuring

A primary attraction of the matrix methods of structural
analysis is that many significant problems can be solved with very
modest computer programs. In the simplest case, a capability to
generate and assemble a certain type of element stiffness matrix and
solve the resulting system stiffness equation is sufficient. On
the otner hand, the automated analysis systems required to cope with
the large classes of structures in a practical design situation bear
little relation to the type of finite element computer program
mentioned above., Practical analysis tools must be implenented as
an integral part of the overall structural analysis and design
cycle.
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It is apparent from the size and complexity of many
structures that a great deal of data is involved. The detailed
design specification of the structure is spread over numerous
drawings and through many documents. A realistic physical model
necessitates thousands of gridpoints and finite elements.
Translated into computer program inpu*, related data items
include coordinates of all gridpoints, degree-of-freedom specifica-
tions of all gridpoints, connection specifications for all finite
elements, etc., This volume of input data implies a need for many
hours of computer time for numerical solution. Finally, extensive
output inevitably results from such an analysis.,

Effective management of the voluminous data associated
with structures of this type is usually the decisive consideration in
establishing the basic analysis process., For these reasons an
analysis can be undertaken by substructuring (References 16, 17).
In general, the substructuring process proceeds in four major
phases as outlined below.

Phase I is concerned with the individual substructures of
the total Structure. In the Phase T analysis, each substructure
is considered individually. Input data is prepared and calculation
is carried forward to determine matrix representétions referenced
to the substructure interfaces,

Phase II considears the structure as a whole. The interface
stiffness matrices for the individual substructures are assembled
and the complete set of interface displacements is determined.

Based upon interface displacements obtained from Phase II
and auxillary information from the individual Phase I analysis,
Phase III completes the conventional finite element analysis. Each
substructure is considered in turn. Prediction of the primary
displacement variables is completed and secondary variables such us
forcesand stresses are calculated.
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Phase IV is a nonintegral step designed to transiate the
conventional Phase III results into a form desired by the stress
analyst for the determination of margins of su«fety.

1. Phase I

The matrix algebra of the Phase I analysis is deceptively
straight forward when reduced to the essential calculat.nns
relevant to the primary displacement variables and stripped of the
problematical data storage and retrieval steps inherent in the
computer program, The simplified symbolic statement of the process
is considered appropriate in the present context. Accepting this
viewpoint, the first step of the Phase I analysis process yields
potential energy expressions for the individual finite elements
given by,

¢, = zls Ik (6.} - L6 ) (F,)

pe (2-1)
where

[Ke] is the element stiffness matrix,

{Se} is the relevant gridpoint displacement vectior, and

{F_} is the element total applied load vector.

These individual element potential energies are then assembled
to form a potential energy expression for the substructure under
consideration.

¢, = 3 L6J [KI{6} - LsJ {F) (2-2)
where
(K] is the substructure stiffness matrix,
{&} is the substructure displacement vector, and
{(F} is the total substructure applied lcad.
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The Phase I anglysis i1s carried forward by rewriting the sub-
structure potential energy in partitioned form to reflect the
division between interior gridpoint degrees-of-freedom [3}}

and interface (boundary)gridpoint degrees-of-freedom{)i} i.e.,

.1
O = 3 L8 s & lMKyy o Ky [85) - 18y 8] [Fy
(2-3)
T
l_hib » Kop| | % Fy

Contributions to the potential energy which stem from the
interior gridpoints are complete while additional contributions
will be added in at the interface gridpoints upon assembly of the
substructures. Adv:=utage is taken of the completeness at the interior
points by solving for these displacements degrees-of-freedom in
terms of the interface degrees-of-freedom. The result is given by,

(6,3 = IRy D7HFY = (K D7V 0K, 0E6,) (2-4)

Backsubstitution of this relation into Equation 2-3 yields the
objective substructure potential energy expression referenced in
interface degrees-of-freedom, i.e.

1
o = TL6,JIK, I8} - [, KP.}

(2-5)
where
= - T -1 -
(Kpd = [y = Kyp Kyp' Kyl (2-6)
- T, =1 oL
Py} = (R} - {K,, KT F,) (2-7)
(Kb] is the substructure interface stiffness matrix,
{5b} is the substructure interface displacement vector, and
{pb} is the substructure interface load vector.
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The individual substructure potential energy expressions of the
form defined in Eauation 2-5 are the basic Phase I analysis results
required to construct the governing stiffness equation for the
entire structure in the Phase II analysis process,

The foregoing statement of the Phase 1 analysis process
actually implies a complete general purpose computer program for
stress analysis plus the capability to form and store such items
as interface stiffness matrices on magnetic tape for subsequent
access, It is instructive to take the viewpoint of the structural
analyst and re-examine the Phase I analysis process as an applica-
tion of the MAGIC II Structural Analysis System,

By definition, Phase I proceeds against a number of sub-
structures of the total structure although inclusion of the
complete structure within a single substructure would yield a
conventional one-pass linear stress &nalysis. The reasons for
division of a structure into multiple substructures are many and
varied. Unnecessary breakdown into substructures 1is, f course,
inefficient.

A primary reason for substructuring stems from the fact that it
is efficient to confirm a large quantity of input data via subsets.
With substructuring, an analyst cen forcus his attention upon a '
limited region or component in specifying input data. This subset
of data can then be processed through data checking executions.

Such executions involve only the relatively small quantities of data
of current interest with the result that turn-around is rapid and
inexpensive.

Substructuring can also shorten the calendar time required
to confirm the input data for a large structure, The r¢ason for
this is that substructuring facilitates distribution of the input
data specification effort to a number of analysts for nearly independent
simultaneous preparation. It is worth mentioning that the automatic
generation of structural plots fro.. the input data is an important
aid to the confirmation of input. Plots of the structural components
taken individually are desirable,
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The benefits of substructuring large scale structures
extend beyond the input data confirmation stage through execution,
The effective matrix banding may be improved by substructuring.
Long continuous executions are avoided. Numerous restart points
are automatically provided. Most important, the Phase I executions
are spread over the period of time required to complete the
specification of data for all the component substructures.
Executions in the succeeding phases may be similarly spread to
generate results paced by progress in evaluation.

Substructuring is particularly advantageous when localized
modifications in structure or applied loading arise subsequent to
the analysis. Such modifications can often be accommodated by
re-analysis of only those substructures affected.

Having discussed the motivation for and the scope of the
Phase I analysis, the following paragraphs focus upon the several
steps involved. Preprinted input forms are employed to simplify
the specification of input data. These forms are designed to
provide automatic internal generation of data whenever possible.
For example, repetitious data need only to be specified initially
followed by any exceptions. (See Volume II - User's Manual).

The first executions of the MAGIC II Analysis System are
urdertaken to confirm the input data deck as discussed earlier.
The deck is read and the implied data is generated explicitly.
Consistency of the data is checked and all data items are stored
for execution restart and printed for further checking by the
analyst. In addition, a magnetic tape is generated for automatic
plotting of the finite element model.

Upon acceptance of the input data specification by the
analyst, the actual Phase I analysis is undertaken for the
substructure under consideration. This analysis is a complete
linear stress analysis of the substructure under the assumption
that the interface displacements are completely fixed. The ountput
obtained from this analysis provides further important confirmation
of the finite element model. Moreover, these results often provide
useful preliminary information about substructure behavior.
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In addition to the preliminary stress analysis results, the
Phase I analysis generates and stores the interface referenced
stiffness and applied load matrices as well as the other
information required in subsequent analysis phases.

2. Phase II

The Phase II analysis begins with the substructure interface
matrices from Phase I and carries the analysis process through
prediction of the interface displacement variables. Phase II is
the only part of the analysis process which deals with more than
one substructure at a time.

The substructure potential energy expressions (Equation
2-5) are the point of departure. Such an expression is known
for each substructure, e.g.

°;(>%) = %I-G(JH[Ké")JNé”} - I.Gé“.l {PI()J)} j=1,2. . . n (2-8)

The interface displacements pertinent to each substructure {d}fj)}
are known as elements of the total list of interface displacements
{A} for the assembled structure. This relationship is
expressible mathematically by a Boolean transformation.

Symbolically,

(3)y . (3) ;
(8,77 = [r 9'1{a} (2-9)

Introduction of this transformation into the set of independent
interface displacement degrees-of-freedom for the total structure yields

q;;g) = g0 - e sa,2, L. Ln (2-10)
where
S I ¢ S RIS NTRE (2-11)
el o (T pla), (2-12)
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The substructure interface potential energy expressions of the
form of Equation 2-10 are added to obtain the complete potential
energy for the structure, i.e.,

_1
¢ = zla [K1{a} - (o] (P} (2-13)
where
(K] = §[K(J)] (2-14)
(P} = .‘;‘.{P(J)} (2-15)

The formality of transforming to conformable substructure
matrices before assembly of the total structure matrices is
avoided in actual practice. Instead, a nonconformable sum is
effected to obtain Equation 2-13 directiy from Equation 2-8.

The objective equation governing displacement of the
interface points follows immediately by executing the variation
cf the potential energy expression ¢«f Equation 2-13. The
result, retaining the symbolism of a single load condition,
is given by,

(k] {2} = {#} (2-16)

The total interface matrix [K] 1s a symmetric matrix which
is stored in tanded form. Solution is effected by triangulari-
zation of the matrix and back substitution for the set of
interface displacement variables appropriate to each load
condition,
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3. Phase III

Phase III picks up the matrix descriptions of the indivi-
dual substructures generated in Phase I and the solution for the
interface displacements from Phase II and carries the analysis
process forward, Firstly, the relevant interface dlsplace-
ments are extracted from the complete set (Equation 2-9). Then,
the interior displacements are calculated using Equation 2-4,
i.,e.,

{6,} = [K,I7MF} - [k, 17K, 8 (2-17)

With this result all the primary variables for a given sub-
structure are known and various secondary items are computed.
For exanple, stresses are available for each finite element in
the csubstructure via a relation of the form

o} = [s1{s} - {4} (2-18)
where
o} is the element stress vector,
[s] is the element stress matrix, and
{4} is the thermal stress correction vector,

Many useful additional items are calculated in Phase III
in the MAGIC II System. Included are: element forces, reactions
and force balance. Even so, this information falls short of that
desired for the margin of safety determinations. This gap
between the conventional finite element stress analysis results
and the information desired by the stress analyst necessitated
the extenslion of the automated analysis process to include a
Phases IV.

14

ST LU i oo




L, Phase IV

Phase IITI was set up to compute the normal finite
element results for substructures specified by the stress
analyst. These results are stored on magnetic tape as well
as printed. This magnetic tape furnishes the primary input
data for the Phase IV analysis. Phase IV is initlated either
following Phase III or after examination of the printed results
from Phase III at the discretion of the stress analyst.

The computations of Phase IV are designed to automatically
reduce the predicted behavior data for evaluation by the stress
analyst in terms of margins of safety. A typical computation of
this automatic reduction process is the consideration of tensile
yielding. This involves the interpolation of the allowable
stress from the appropriate temperature referenced table on
a magnetic tape file. Then, the equivalent stress is calculated
from the actual multi-axial stress state. This equivalent
stress state is interpreted via Von Mises yield criterion for
comparison with the allowable stress. Comparison is made
quantitatively in terms of a margin of safety. The results
of this comparison are printed with explicit labelling and
an asterisk (*) is employed to identify all negative margins
of safety. At the present time, Phase IV is a non-integral
part of the MAGIC II System.
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C. Dynamic Substructuiing

The development of the concept of dynamic substructuring(l8),

which includes means for reducing the number of degrees of freedom
in a structural dynamics system, is presented in this section.
Nine distinct phases ranging from discussion of finite element
building blocks in Phase 1 to computation of system modes and
frequencies in Phase 9 are defined.

The powerful matrix abstraction capability built into
the MAGIC II System makes possible the employment of the
computational procedure which is outlined below.

PHASE 1 - ENERGY FUNCTIONALS

The basic building blocks of the mathematical model for a
complete structural system are taken to be the finite element
energy functions. The potential energy functional for the
continuum of an individual finite element is discretized by the
construction of assumed modes in accord with the Ritz procedure (19).
Presuming an admissible assumed mode discretization of the kth
finite element of the form

() -[ )

The resulting algebraic expressions for the element energy functions
based on the concept of consistent matrices for stiffness [K ] ’

applied loading [F } , damping [D ] and mass [M ] may be cast
into matrix notation as follows:

a. Strain Energy

b =15 ) [ u«)]{sm} (2)
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b. External Work

o, M- 5%] {Fe(k)} &
c. Dissipation Energy

¢v(k) =-]é- l_é e(k)J [ Df:] { ée(k)} (viscous damping) (4)

or
i | k

& S“" -+ |_8 e‘k)J [ n;‘;’]{ Se‘ )} (structural damping) (5)

d. Kinetic Energy
. -I .
ky_1 1§ (k) (k) (k)
¢M T2 l-Se -‘[Me J{Se } ©)
The equationé governing dynamic response of a structural system are derivable

(20

from such energy functions via a generalized Lagrange equation =~ . Total energy func-

tious for the complete structural system are required in this formulative process. Given

these, .the objective matrix equation is readily obtained as

[u]{8}-[o,]{8}+ [[x] -+ [o.]]{3}-{~) «

Nine analysis phases trace the dynamic substructuring process from the basic finite ele-
ment energy functions, through the construction of total energy functions for the complete
structural system, to a governing matrix equation of the form of Equation 7, which is

particularly well suited to dynamic response analyses.

Development toward the objective expressions of the several total energy
functions for the complete structural system is carried forward in each of the subsequent

analysis phases by the construction of a displacement coordinate transformation of the

{81} ={7'£+1} ¥ [ r1+1 ]{ 8,€+1} (8)

form
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This transformation relation is employed to change the energy functions from expression
in terms of the generalized coordinates { 81} to expression in terms of a new set of

generalized coordinstes {8 41 } .

It is useful to illustrate the impact of such a transformation on a representative

energy form before proceeding. Beginning from an energy expression given by

o215, |[4,]{5,} ©)
Introduction of a transformation of the form of Equation 8 yields
@ P35, [ "m] {7-£+1} @ )

A ] Tl (5] B} © p

* lszuj [r:eu] ' [AI] {qu} ©

The first term (a) in this result can be associated with the reference level of

the energy and discarded. The second term (b) defines the modified nucleus matrix
occasioned by the coordinate transformation. Finally, the third term (c) defines a gen-
eralized work contribution that arises out of the coordinate transformation. Only the
second term is written explicitly in denoting such transformations in the text of subsequent

analysis phases, i.e.

0177 %[ 44]{%} an

where

[ Alﬂ] - [r'£+1] ' [A,e] [Ik+1] (12)

The change in reference leve! and the contribution to the work energy are assumed. The

above explanation permits conciseness in subsequent steps without ambiguity.
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PHASE 2 - FINITE ELEMENT ASSEMBLY SUBSTRUCTURE LEVEL

This portion of the analysis concerns the assembly of the individual finite element
energy functions that comprise a typical substructure. The element gridpoint displacement
degrees of freedom { 8 e} are assumed to be referenced to compatible reference axes.
Under this assumption the displacement set for the jth substructure{s 0) } is related
to that of its kth element{ 8e(k)} through a Boolean transformation of %he form

{Se(k)} - [F l(k)] { 5 1(j)}' (13)

Introduction of this coordinate transformation into Equation 2 yields the kth element
strain energy with reference to the complete set of gridpoint displacement degrees of

freedom for the jth substructure, i.e.

0,515 ) Tl ) 5,

Summation over all of the finite elements yields the strain energy expression for

the assembled substructure as

0,3, [] {3,)
where
[Kl(j)] =2|E [rl(k)] T[Ke(k)][l-. l(k)]. 6

All of the substructure energy forms are derived similarly by introduction of the coordinate
transformation of Equation 8. Explicit statement of the matrix algebra for each of the

energy functions is omitted to avoid needless repetition.

The consistent structural mass matrix of the finite element model usually requires
modification to incorporate nonstructural masses attached tc the structure. Accordingly,
provision is made in this Phaze 2 analysis to check and augment the substructure consistent

structural mass matrix.
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Displacements that are prescribed as functions of time can be eliminated as degrees
of freedom at this point and carried forward as generalized applied loads. The preparation
for this elimination is to rearrange the set of gridpoint displacements to exclude displace-
ments that are prescribed zero {fixed displacements) by setting corresponding matrix rows
and columns to zero and position those prescribed nonzero {8 } below the retained

degrees oi freedom {8 } The conformably partitioned strain energy is given by

02 [l 2] [ [] | ] |[(3)

_____ R D SRS an

[Klab] ' | [Klbb] L{ Slb}J

= l -

The reduction occasioned by prescribed displacements is approached via the generai

transformation of Equation 8. In the interest of uniformity, we write

{81}={72}*[P 2]{82} (18)

where

AN
[r‘ 2] i [‘QJ'] (20)

o (21)
(r}-{1sL}

Substitution of this prescribed displacement transformation into the energy form of

Equation 17 yields a modified quadratic form given by

®y-3(8, |[x,]{8,} @

,,_,
]

o

[SESE |
]

r " [x]ir, ] =[x,]. (22)
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The associated contribution to the work arises as

Py = [82]{ Pz} (24)

where

{Pz} - [rz]T[KJ {Tz} - [Klab]{slb}' (25)

It should be noted that generality may be lost unnecessarily by invoking the pre-
scribed displacement reduction at this point. Generally, only relatively small reduction

in the order of the matrices of the problem is realized. It is best to defer such speciali-

zations of the model a3 long as possible to preserve its generality. The procedure outlined

here to effect the prescribed displacement reduction is applicable at whatever stage the

reduction is carried out.
PHASE 3 - CONDENSATION (SUBSTRUCTURE LEVEL)

This phase of the aralysis process derives from the likelihood that the complete
set of gridpoint displacement degrees of freedom -{8 2} are not essential to the objective
structural dynamics analyses. For example, the gridpoints in the finite element model
may have been dictated by the natural breakdown of the structure into components, or the

intended use of the model for stress analyses.

The complete set of substructure gridpoint displacement degrees of freedom is
partitioned to reflect the division into essential {8‘ 23} and superfluous { 3 2b} subsets.
All degrees of freedom that reside on interfaces with adjacent substructures must be
regarded as essential to the proper interconnection of substructures. Partitioning of the

displacement set implies a corresponding partitioning of the total potential energy from

Phase 2 as _ o
I
¢ P =% usZaJ, l 82b J [KZaa] : [K2ab] \ 82a
—_—— e e | { -——— (26)
[KZab] T: [bib] P
=3 ' -

BRSNS
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By definition, the 1 P Zb} are superfluous to the objective structural dynamics
analyses. This being the case, they are condensed from the model via the static principle

of potential energyel). This principle yiclds a matrix equation governing static behavior,

( F
Ba}| |1l

[Kzaa] | [Kzab] _-__>-+___ . @7

| (o] 1] Ba)| |7

Solution of this relation for the superflous degrees of freedom in terms of the essential

Laeo

<

B 7]

A

degrees of freedom produces a condensing transformation relation of the form

{32}= {7-3}+[I‘3]{83} (28)

where

1) (2.

and

[r3]=-:---£_1.1___ (30)

{73}= ____{__ol__ ) (31)

Introducing the condensation transformation of Equation 28 into the energy functions fur-
nished from the Phase 2 analysis references these functions to esgential degrees of

freedom. For example, application to the strain energy of Equation 22 yields

5,-118 ][, )i3,)

[%:]=[Ta] "[% ][] 3)
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The other energy functions are similarly transformed to complete the Phase 3 analysis.
Generslly, the order of the matrices can be substantially reduced by the introduction of

this condensation transformation.
PHASE 4 - MODE SYNTHESIS

At the outset of this Phase 4 analysis the displacement at any point in the substructure
is known in terms of the gridpoint displacement degrees of freedom { . 3} . These grid-
point displacement degrees~of-freedom arise naturally out of the finite element idealization
technique rather than by choice as those most appropriate to structural dynamics analyses.
Intuitively, the best substructure degrees-of-freedom for the objective analyses are those
associated with the natural vibration mode shapes of the substructures. Transformation

to such degrees-of-freedom is adopted as the immediate objective of this phase.

'che transformatioa to substructure mode shape degrees-of-freedom is initiated by
partitioning the gridpoint displacement degrees-of-freedcm into a subset associated with
the interface gridpoints { . 3a} and a subset associated with the interior gridpeints {3 3b}
where the former are necessarily retained to effect the interconnection of adjacent sub-
structures. T'his division into subsets yields a corresponding partitioning of the total

]

potential energy, i.e.,
~ ' -

ook Baul 185 ] |[%o) %] | ({3}

[K3ab] " [Ksbb]J II{ 83}

B ACIRAC DEEY (G
[Pae] 1P o

The subset of displacements at the interior gridpoints { S } is taken to be made

N|o-

(34)

up of a contribution due to interface displacements{ 8 } and a contribution due to dis-
placement relative to the interface { S f} , i.e.,

{83b} - {sf}+{81}' (35)
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A dependence of interior displacement upon interface displacement is readily
derived from static considerations. The expression of this dependence follows Ly taking
the variation of the potential energy (Equation 34) and solving the resulting relation to

.obtain

{8 i} } {7'4b} ¥ [71] {839,} (36)

where

[7:]- [ [ab] ™ [ aun) T] (37)

and

{T4b} = {[ K3bb] B {Pab}} : (38)

Definition of displacement relative to the interface, completes the expression of
contributions to the total displacement at a point in the interior of a substructure. These
displacement contributions { .3 f} are constructed of substructure vibration mode shapes.
The relation governing vibration of the substructure is drawn from the partitioned strain

energy of Zquation 34 and the associated kinetic energy to obtain

[Ksbb ] {83b} -0’ [ M3bb] { ssb} : (39)

The suppression of the interface displacements {8 3a} was tacitly assumed in
the statement of Equation 39. Therefore, the{ 3 3b} may be interpreted as the { S f],
of Equation 35 in this relation. Explicit expression is given to {8 ¢ in terms of
participation factors { 3 g} on vibration mode shapes by extracting eigenvectors from

Equation 39 and writing

{8} [rc]{3} “

This result completes the development required to construct a transformation to

the final substructure degree:s-of-freedom. The result is,
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.{ff’i} _ io_}_ . [.I_].i.[c_).]_ iafa}. (a1)
' {83b} {’ib} [Yi]i[rf] {Sg}

{3} = {7} . J{&} (42)

Introduction of this transformation into the strain energy form of Equation 21 yields

°U=';'I.84J[K4]{84}’ (43)

where

CARARCIEh

The other energy forms are correspondingly transformed. The results of this trans-

i
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formation yield the component parts of a mathematical model for the substructure that
is ideally suited to combination with other substructures for structural dynamics analyses

of large scale systems,
PHASE 5 - SYSTEM ASSEMBLY

Mathematical models are prepared for all of the substructures by utilizing the
procedures described in Phases 1 through 4. Assembly of these substructure models

3 to form a model for the complete structure is effected in this fifth phase.

The assembly of substructures into a complete structure proceeds in the same
manner as the assembly of finite elements into a substructure that was described in the
Phase 2 analysis. The degrees-of-freedom associated with gridpoints common to more
than one substructure are assumed to be referenced to compatible coordinate axis direc-
tions. This being the case, the displacement set for the complete structure is related to

that of its jth substructure through a Boolean transformation of the form

(9}

"o
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Introduction of this displacement coordinate transformation into the strain energy function

of the j substructure as stated in Equation 43 yields this energy with reference to the

{8} c.
; ¢>U=-;-[85J[r 5""]T[x4‘”] [rs‘”]{ss}. (46)

Summation of these individual substructure strain energies yields a strain erergy function

for the complete system as

¢U=%l. J[ ]{8} (47)

where
[1]- £[r ][ 0][r 0],

The other system level energy functions are similarly constructed by application of the

transformations of Equation 45,
PHASE 6 - CONDENSATION (SYSTEM LEVEL)

The energy functions made available from Phase 5 are expressed in terms of the
selected substructure vibration mode shape degrees-of-freedom and degrees-of-freedom
common to substructure boundaries or interface. These latter degrees-of-freedom were
retained as essential through the preceeding analysis phases in order to permit the proper
interconnection of the substructures. The interconunection has been accoinplished at this

point and the appropriateness of these degrees-of-freedom bears examination.

As in the case of the degrees-of-freedom associated with gridpoints interior to a
substructure, many interface degrees-of-freedom will exist in consequence of the natural
breakdown of the structure into finite elements. In fact, the degrees-of-freedom associated
with these interface gridpoints can comprise the major portion of the complete set. This

being the case, it is worthwhile to condense sut those regarded as superfluous.

Proceeding as in the substructure related Phase 3 condensation, the complete set of

degrees-of-freedom is partitioned into essential { 85a} and superfluous { 8 Sb} subsets.
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Projecting this partitioning forward into the strain energy of Equation 47 and including

the corresponding external work function yields the total potential energy as

0o (B %0l [Tl led ][ £}

———— - -——— (49)

L[KSab] TE[Ksbb] { 85b}J
- 85a’ 5b £1‘)‘5% .
[SESTRL

Given that the { S Sb} are superfluous to structural dynamics analyses, the

-

stationary principle of potential energy is invoked as a rational means of establishing a
functional dependence of these degrees-of-freedom upon the essential degrees-of-freedom.,

The stationary conditions of the potential energy follow from Equation 49, i.e.,

e i[Ssu] | | {an} | {7 ] 5

[¥san) i'[KSbb] {850} {Ps}

Solution of this relation for the superfluous degrees-of-freedom permits construc-

tion of the desired condensation transformation in the form

{85} {;’6} + [T 6] {3} (51)

where

{8} {3} e
) T " [ “

sbb| | sab
i {o}
7o R BN v S (54)
(" [¥sb] 1 {Psn}
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Introducing the transform relation of Equation 51 into the energy functions furnished
from Phase 5 references these functions to the essential degrees-of-freedom { 8 6} . For

example, the strain energy of Equation 47 is transformed to

@y =% |.86.| [Ks] {86} (59)

where

[Ks] ) [1'6]T[x5] [Ps]‘ (56)

The analysis phases up to this point have taken & set of substructures based on
finite element models and has evolved these models into a system model expressed in
terms of relatively few highly specialized degrees-of-freedom considered essential for

vibration and dynamic response analyses.
PHASE 7 - APPLICATION OF BOUNDARY CONDITIONS

Singularities may exist in the stiffness matrix associated with the set of energy
functions derived in Phase 6. These singularities may stem from having deferred the
application of certain boundary conditions in order to broaden the generality of the model.
Note that in Phase 2 provision was made to apply physical boundary conditions by striking
out rows and columns associated with displacements'prescribed as zero. If, however,
the application of boundary conditions was Jdeferred, their introduction can be accomplished
by a transformation relation that simply suppresses the associated gridpoint displacement

degrees-of-freedom. Symbolically,
{8}-[r,]{s,}. 67

Introduction of this transformation into the energy functions furnished from Phase 6,

yields the following

@7z [81] [%] {1} @
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where

(%] = {72 =] [T:] )

and {8 7 } -i{s the vector {8 6} with the bounded degrees-of-freedom excluded.
PHASE 8 - RIGID BODY MODE SWEEP

The singularities that are more difficult to deal with are those associated with
unrestrained response of the structure. These are accounted for in the following para-
graphs. First, a set of rigid body modes is constructed. Subsequent simplification is
realized if these are referenced to the center of gravity of the structure but this is not

essential. The statement of a set of rigid body modes is particularly simple for the type

of model developed because none of the degrees-of-freedom which are amplitude coefficients

of substructure vibration mode shapes participate in a rigid body motion. Only the rela-
tively few gridpoint displacement degrees-of-freedom that have been retained at the sub-
structure interfaces need be considered. The desired rigid body modes are easily formed

and are indicated symbolically herein as [ R] .

Excluding damping and excitation forces leaves only strain and kinetic energies

from which the matrix equation of motion can be readily extracted, i.e.,

o] {8,} + [x,]{8,}-{o} (60)

Premultiplication of this result by the transpose of the rigid body mode matrix [R]
yields

17 (] {3, - ][] {32} - o),

This multiplication negates the second term and permits direct integration to obtain a

relation governing rigid body motion as

(11" [] 0} - o} +{e}
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The rigid body motion of Equation 62 may be neglected ({a} = {B } = {0}) for

present purposes and the coefficient matrix written in partitioned form using a new

symbol for convenience, i.e.,

{843} |
Ta j
[y],[y] ———= 3= {0} (63) '
a b { 87b} |
The selection of the degrees-of-freedom for inclusion into 4 & 7b} is largely a
matter of convenience within the constraint that the [ )'b] be square and nonsingular.
The order of [y b] is equal to the number of rigid body modes. Solution of Equation 63
for the {87b} in terms of the {87a} permits construction of the transformation sought

to extract the rigid body modes from the model furnished from Phase 7, i.e.,

{8} [Fe]{} e

where

[Tg] = |--=-=2r--- (65)
[y

This Phase 8 of the analysis process is completed by the introduction of the trans-

formation [ r ] as defined in Equation 65.

8

The result for the strain energy function is

<:’U";'lss.l[xs] {88} (66)

where

[KB] ) [PS]T[K7] [rs] . (67)

All other energy functions transform correspondingly. Note that this phase can be

neglected if the physical boundary conditions in Phase 7 are such as to prevent rigid

body motion,
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PHASE 9 - SYSTEM VIBRATION MODES AND FREQUENCIES

The mathematical model has been brought to the point where undamped vibration
modes and frequencies can be determined. The order of this eigenvalue problem is
presumed to have been reduced to well within program capacity. The relevant governing

relation, derivable from the strain energy and kinetic energy, is given by

w’ [Ms]{as} - [ %] {85}- (68)

This relation is rewritten in the form

[D]{ss}ziﬁ{sa} (69)

where

[o]-[ (][]

to facilitate extraction of the mode shapes corresponding to the lowest natural frequencies.
These natural frequencies and mode shapes of vibration complete the characterization

required by some design specifications.

This phase of the analysis is extended here to carry the computations forward to
provide a basis for prediction of time dependent response. The eigenvectors of Phase 8
are collected together to form the columns of a modal matrix designated [ I'g ] . Follow~
ing the normal mode approach to dynamics analysis, () this matrix is employed to effect
a transformation to degrees-of-freec .:m{ Y 9 } which are participation coefficients of the

natural mode shapes of the complete structure, i.e.,

{8, }-[r,] {5,}- )

This transformation completes the development of an optimum set of degrees-of-
freedom for use in the prediction of dynamic response. The associated final form of the

strain energy is derived by substitution into Equation 66 to obtain

¢U=%|.89.| [K9] {89} (72)
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where

[Ks] B [rs]T[KB] [rs]‘ (73)

At this point it is instructive to reconstruct the complete sequence of transforma-

tions that are applied to a typical finite element function to arrive at this finul form.

Working backwards, the final system level quadratic forms stem from a three stage
transformation beyond the peint of agsembly of the substructures. In order, these are
conden’sation [ r 6 ] (Equation 53), s’agularity sweep l r 8 ] (Equation 65) and normal
mode i r ] (Equation 71) transformations. These yield a collective modification of the

9
system level stiffness matrix in going from the { 85} to the {8 9} that is given by

OB AR AR AR AT A AR

The contribution of each substructure to the initial system level stiffness matrix

[ Ks(j)] was, in turn, derived from transformations beyond the point of assembly of its
component finite elements. In order, these are prescribed displacement [ r 2] (Equation
20), condensation [P 3] (Fguation 30), component modes [ r ] (Equation 42) and
assembly [l" ] (Equation 45) transformations. These transformations yield a collective
modification of the substructure level stiffness matrix in going from the {8 1} to the
{85} that is given by

CA R CARERHEAHARCA RN TR [CA LS e

Tracing the sequence of transformations to the fundamental finite element blocks is

corapleted by statement of the element agsembly transformation [ r 1 of Equation 13, i.e.

[xl‘i)] = Zk [rl(k)] T[Ke(k)] [r ®] -

This recap of the dynamic substructuring procedure makes clear the considerable

computation involved. It also exhibits the highly systematic nature of the process.
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NOTATION

Rectangular matrix (Eq 1)

Column matrix (Eq 1)

Row matrix (Eq 2)

Summation operator (Eq 16)

Finite element displacement functions (Eq 1)

Finite element assumed displacement mode shapes (Eq 1)

Gridpoint displacement coefficients of finite element assumed
displacement mode shapes (Eq 1)

Strain energy function (Eq 2)

External work function (Eq 3)

Total potential energy function

Finite element stiffness matrix (Eq 2)

Finite element applied load vector (Eq 3)
Psuedo potential for viscous damping (Eq 4)
Psuedo potential for structural damping (Eq 5)
Unit imaginary number (Eq 7)

Finite element viscous damping matrix (Eq 4)
Finite element structural damping matrix (Eq 5)
Finite element kinetic energy function (Eq 6)
Differentiation with respect tc time (Eq 6)
Mass matrix (Eq 6)

Gridpoint displacement coefficients referenced to a coordinate
system defined by the subscript £ (Eq 8)

Gridpoint displacement coefficients referenced to a coordinate
system defined by the subscript £+ 1 (Eq 8)

Translational transformation which relates gridpoint displacement

coefficients referenced to a coordinate system defined by the
subscript .Z to one defined by £+ 1
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Rotational transformation which relates gridpoint displacem~nt
coefficients referenced to a coordinate system defined by the
subscript £ to one defined by £+ 1

Substructure identification number (Eq 13)
Finite element identification number within a substructure (Eq 1, 13)

Matrix transpose operator (Eq 10)

The complete set of gridpoint displacements of the jth substructure
{Eq 13)

Transformation relating the {8 1} to the displacement set of the kth

finite element (Eq 13)
The subset of substructure displacements that are prescribed (Eq 17)

The subset of substructure displacements that are essential degrees
of freedom (Eq 17)

A contribution to the external work which arises from the prescribed
displacements (Eq 24)

The subset of substructure gridpoint displacement degrees of freedom
that is regarded as essential to structural dynamic azalyses (Eq 26)

The subset of substructure gridpoint visplacement degrees of freedom -
that is regarded as superfluous to structural dynamics analysis (Eq 26)

Generalized loads corresponding to the {SZa} (Eq 26)
Generalized loads corresponding to the 82b (Eq 26)

Rotational transfcrmati.n relating the complete set of substructure
gridpoint displacement degrees of freedom to the subset essential
to structural dynamics analyses (Eq 28)

Translational transformation relating the complete set of substructure
gridpoint displacement degrees of freedom to the subset essential to
dynamics analyses (Eq 28)

Substructure stiffness matrix referenced to the gridpoint displacement
degrees of freedom essential to the structural dynamics analyses
(Eq 33)

{8 1 subset of displacements associated with gridpoints interior to a
substructure (Eq 34)

{8 .s} subset of displacements associated with gridpoints on the interface
of a Pubstructure (Eq 34)
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Contribution to {8 3b} arising from displacements of the interface
gridpoints of a substructure (Eq 35)

Contribution to {3 3b} arising from displacements relative to interface
gridpoints of a substructure (Eq 35)

Transformation relating interface displacements to the displacements
which these induce at (Eq 37) interior points.

Displacement contribution at interior points due-to applied loads at
interior points (Eq 38)

Modal matrix of substructure taken as constrained at the substructure
interfaces {Eq 40)

Participation factors on substructure mode shapes

Rotational t.ansformation from essential gridpoint degrees of freedom
to the final set of substructure degrees of freedom (Eq 42)

Translational transformation from essential gridpoint degrees of freec..n
to the final set of substructure degrees of freedom (Eq 42)

Final set of substructure degrees of freedom (Eq 42)

Final form of substructure stiffness matrix for assembly intc complete
structure (Eq 44)

Compiete set of degrees of freedom after assembly of the substructures .
(Eq 45)

Transformation between final substructure degrees of freedom and the

initial sei of degrees of freedom for the assembled structure (Eq 45) !

Stiffness matrix of complete structure referenced to the {8 5}
(Eq 48) '

The subsét of degrees of freedom: in lS 5} that is regarded as
essential (Eq 49)

The subset of degrees of freedom in {8 5} that is: regarded as o '
superfluous (Eq 49) ' ’

The applied load vector corresponding to the degrees of freedom 8 } '
(Eq 49) o

The apohed load vector correspondmg to the degrees of freedom tssb} [
(Eq - 49)

Condensation transformation from the {8 } degrees of freedom for the
total structure to the subset chosen as esséntial (Eq 53) , '

Contributions to superfluous degrees of freedem from the corresponding '
applied loads (Eq 54)
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SECTION V

DISCUSSION AND CONCLUSIGNS

; A. DISCUSSION

Integrated general purpose analysis capabilities of the MAGIC II
System class signal a major advance in the state-of-the-art of automated

E tools for analysis. The superior cost effectiveness of such systems
5 over conventional multiple special purpose program capabilities is
3 compelling.

3 This assertion of superior performance from large scale program
systems may well contradict conclusions drawn from experience,

1 Complexity and inefficiency have long been concomitant with large

’ size and versatility i1 computer programs. Indeed, the elimination
of these depreciating effects was prerequisite to realization of

ihe favorable cost effectiveness of the MAGIC II System.

Large size and versatility, without excessive complexity, are
assumed intrinsic to the MAGIC II Systa2m in subsequent paragraphs, as
attention is focused upon the relative efficiencies of integrated
general purpose analysis capabilities and multiple special purpose
computer program analysis capabilities, This is to presume the
pre-requisite elimination of the greater hindrance; namely, the
excessive complexity which choked off many early general purpose
program developments. This problematical complexity was encountered
wien programs of simple organization grew to press uvpon the limits
of computer software and hardware capabilities. Extensions beyong
this point were accomplished by intricately coordinated multiple usage
of valuable names and locations, special program versions with omitted
features and other actions which accumulated to entangle the logic and
data storage until further modification became impractical.

In the face of this situation increasingly powerful analytical
models and solution methods were formulated and numerical implemen-
tation demanded. And, as is often the case, sufficient pressure was

built up to bring about the technological advances needed in the
computer technologies.
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Advances were forthcoming in programming techinology which
established the technical feasibility of a truly general purpose
computer program system., Advances in computer hardware insured the
ecoromic feasibility as the technical feasibility was established
through a number of contributing developments. The collective
result of these latter developments is, in a word, "organization'.
Among those organizational characteristics or features considered
essential are, the breakdown into single function modules, the
program library concept, the matrix interpretive system, machine
independency, etc.

It is appropriate to emphasize at this point, that the
MAGIC II System for structural analysis is more thzn a discrete
element computer program. It is, in one sense, a Problem Oriented
Language (POL) which enables various Analyst specified computa-
tional procedures. And, at the same time, it is designed with attendant
structural analysis practices evolved from applications experience.
These practices are discussed in detall in subsequent paragraphs.
The point of interest here is that the efficiency of the MAGIC II
System is an overall efficiency governed more by men than machines.

The more comprehensive the comparison, the greater the
advantage shown by the integrated general purpose analysis capabili-
ties over multiple special purpose program capabilitites. 1In nearly
all cases an equitable comparison must include consideration of
program development efforts since relevant technologies are
continuously advanced. On this basis the integrated approach
enjoys the greatest relaiive advantage. The integrated approach is
also superior to the multiple program approach when considering only
factors involved in utilization of operational capability. On the
other hand, shorter execution times are conceded to special purpose
programs without dispute, since execution efficiency is not essential
to the case for the greater overall efficiency of integrated analysis
capabilities.
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Attention is focused now on the impact of the integrated
general purpose computer program approach on the efficiency of
the many processes involved in maintenance and application of
responsive analysis tools in support of a broad structiral design
activity. Program maintenance efforts benefit from the highly
modularized organizational structure to an even greater extent
than the initial development effort.

In the initial development, functional modules are
established against the requirements of the alternative analysis
procedures taken collectively. And, since an extensive commonality
exists, multiple repetitious coding is avoided. This same
payoff is derived again as existing modules are retired in favor
of new modules which offer improved performance. The introduction
of a single improved module is reflected to advantage throughout
all pertinent analysis procedures of the computer program system.
The option exists to retain alternative modules for the same
function without sacrifice. This provides useful operational
flexibility and a convenient testbed for various candidate procedures,
Alternative procedures can be evaluated within the system without
disrupting its operational status.

The foregoing has dealt with maintenance of existing analysis
capability. Maintenance is also interpretable as generalization of,
and addition to, the overall analysis capability. Completely new
analyses can be implemented with the addition of only those functional
modules absent in the existing capability. For example, finite
element heat conduction analyses and the more efficient optimality
criteria based optimization methocds are possible with relatively
minor modifications to the MAGIC II System.

The benefits derived from th:2 organization of a general purpose
computer program system in development, maintenance, generalization
and extension are simultaneously important disadvantages associated
with multiple computer program analysis capabilities. The extensive
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commonality among analyses leads in this latter case to the

repeated development of coding to perform a given function. The
preparation of special versions of new modules and the introduction of
these into a multiplicity of computer programs is often not justified
and the overall capability is depreciated.

Another particularly important handicap borne by the separatie
programs of a multiprogram capability is that these programs cannot
command, individually, the provision of many useful special features.
For example, useful options and diagnostics are usuvally omitted from
these special purpose program routines. Also, such programs frequently
encounter obstacles such as machine storage capacity which must be
avoided rather than surmounted in view of the limited applicability
of the program. Advancements in computer snftware and hardware are
further considerations of importance in the maintenance of an analysis
capability. These advancements place multiple program capabilities
in special peril. Those programs not being actively utilized at the
time of transition in software or hardware are easily overlooked and
in this way are lost from the overall analjsis capability.

No single factor is @bre important in the provision of a
responsive analysis capability than documentation. Engineering
documentation must delineate analysis procedure, input data and
output data. Programming documentation wmust provide for operation
and modification of the program,

Consolidation of the analysis capability into a general purpose
program results in a corrasponding favorable consclidation of
documentation. Not only is volume reduced but the total capability
is described uniformly as a whole. Small programs tend to be the
personal tool of the initiator. As a consequence., the documentation
prepared is generally inadequate to enable generil usage. This
situation leads to extensive tutorial instruction io realize the
benefits of the program development. At the very lizst, multiple
program capabilities place the burden of assimilating the overall
analysis capability from the individual manuals upon thie usar.
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The foregoing has pointed out decisive advantages of general
purpose program systems in the context of development and
maintenance of analysis capability. The most compelling
: advantages, however, are found in operation. The greater efficiency
i of the MAGIC II System relative to multiprogram capabilities for
; analysis stems in large measure from the extent of the analysis
process which is covered. Time consuming, error prone, manual
E transfers of data between special purpose or single step computer
; programs are avoided., The integration of heat conduction and
é thermal stress analysis within a single system can circumvent the
laborious preparation of temperature data. The integration of
stiffness and vibration analyses can similarly circumvent the
manual transfer of stiffness and mass data. These eliminations of
manual effort yield reductions in calendar time which is often the
paramount consideration for contribution of analysis to design.
This is not to say that long continuous executions are desirable.
Execution interruptions enter importantly into proper utilization
of the MAGIC II System.

The MAGIC II System is designed to facilitate good structural
analysis practices in support of the overall structural design
process. Individual design organizations are best served by
structural analysis practices and program versions which are, to
some degree, distinct. On the other hand, the extensive commorality
which does exist among design organizations provides strong
motivation for reviewing the effective structural analysis practices

and supplemented program version which have evolved at Bell Aercspace
Company.

The structural analysis process begins with the idealization of
the structure into an assemblage of finite elements. This is a
multistep operation if the structure is first separated into sub-
structures. Generally, the separation into substructures is
governed by the physical interconnections of the major structural
compcnents. The idealization into finite elements is governed by
variations in geometry, dimensions, material, applied loading and
boundary conditions.
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Preprinted input data forms are employed to simplify and thereby
improve the reliability of the input data specification. These
preprinted input forms assoclated with the MAGIC II System are an
important improvement over card image forms for frequent ac well as
infrequent users since they incorporate automatvic data generation
features. These built-in data generation features are supplemented
at Bell by auxiliary (not integrated into the MAGIC II System) data
generation programs. Some of these are employed routinely. Others
are extremely simple programs written for a single, problem
related calculation. Such auxiliary programs are frequently employed
to advantage in the generation of gridpoint coordinates with
reference to the global rectangular coordinate axes, since expression
of these can require extensive tedious calculation. This gridpoint
coordinate data set should be interpreted here to include points
for specification of gridpoint axes transformations and stress and
material angles as well as points associated with degrees-of-

freedom,

The first MAGIC II System execution undertaken is to confirm
the assembled input data deck. This deck is read and the implied
data is given explicit definition. For example, material properties
are extracted from the Material Library and gridpoint axes trans-
formations are generated from the coordinate table. The completed
data set is examined in this preprocessing execution. All data
items are stored for execution restart and printed for further
checking by the analyst.

The preprocessing execution is supplemented at Bell to include
the generation of a magnetic tape which, in turn, generates a plot
of the structural model automatically. This plot enables efficient
and reliable confirmation of the two most problematical data items;
namely, the gridpoint positions and the finite element connection
arrangement. Eeyond this point the structure plot is a useful
identifying title sheet for the printed problem output.
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. The next phase of the analysis process proceeds via a restart
through the generation of the structural matrices for stiffness,
stress, loads, assembly, boundary conditions, etc., Built-in
features control this matrix generation to selectively form only
those matrices require¢ for the current analysis. Completion of
the matrix generation phase signals exit from the Structural System
Monitor. This is an interface point between matrix abstraction
instruction statement, and, therefore, a point for optional
interruption of the execution to examine the system level matrices.
This interruption is used only infrequently at Bell,.

Calculation proceeds to the governing matrix equation and
thence to the solution for the displacement vectors for all load
conditions. For some problems execution may be terminated at this
point. For many other problems the validity of the analysis can be
assessed against these displacement results and an execution interrup-
tion 1s justified by the computational investment required for the
secondary results. Ideally, the deformed structure should be plotted
to facilitate interpretation of the predicted displacement hehavior.

The analysis proceeds from the displacement solution, with or
without interruption, to calculation and print of the remainder of
the output data items; namely, reactions, forces, stresses, etc. This
is the conventional point of termination of finite element analyses.
However, a number of relatively simple auxiliary programs are used
to advantage at Bell to relieve the burden this output places on the
stress engineers. As in the case of the input data generation
auxiliary programs, some of the auxiliary output data reduction
programs are employed repeatedly and others are special to a single
problem, The functions of these programs include such things as
principal stress calculations and margin of safety determinations.
Auxiliary programs which do nothing but selectively print and label
output data items are also helpful for large problems,
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Several comments on the evaluation of output data are
warranted in concluding discussion of good structural analysis
practices., The examination of output by the Analyst should be
initiated under the presumption that an error exists with confidence
in the validity of the analysis accumulating as the examination
proceeds, Given a complete set of output, attention should first
be given to the gridpoint force balances and reactions. Assured that
no unintended reactions exist and that residuals are negligibly
small, the displacement states should be examined, If the general
deformed configuration does not expose any inconsistencies,
confirmation is completed by examination of the more extensive
presentation of force and stress data.

The foregoing discussion has focused upon development,
maintenance and utilization considerations important to the
favorable cost effectiveness of the present MAGIC II System
for structural analysis. Further evolution of this system
can be expected which will continue to improve its relative
advantage. Updated versions of the MAGIC II Syscem will be
compatible with all features developed in connection with prior

versions.

B. CONCLUSIONS

It is concluded that the MAGIC II System is a logical and
consistent extension of the original MAGIC System and that
additional capabilities realized with the System have met or
exceeded the requirements of Contract F 33615-69-C-1241. The
satisfactory achievement of the overall objectives is given
substantiation by a rumber of subsidiary conclusions. Specifically,
it is concluded that:

(1) The versatile finite element library enables effective
idealization of most linear structures.

(2) Computationsl procedures attendant tc the MAGIC II System
er.able the conduct of linear displacement and stress
qnalyses in the presence of general prestrain and thermal
loading as well as distributed and concentrated
mechanical loading. Additionally, vibration analyses can
be employed with or without the use of condensation techniques.
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(3)

(5)

(6)

The stability analysis procedure provided in the MAGIC II
System en&ables the prediction of critical load levels for
general built-up shell structures.

The preprinted input data forms facilitate the rapid and
reliable specification of problem data as evidenced by
their wide acceptance with the original MAGIC System.

The output provided by the MAGIC II System is oriented

to the engineering user and facilitates clear and concise
interpretation of output parameters.

The computer program organization of the MAGIC II System
is logical in design and is well csuited to generalization.
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