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Chapter 1

INTRODUCTION

This monograph deals with contemporary approaches to the problem of
optimum shock and vibration isolation design. Isolation devices act to reduce the
unwanted effects of shock and vibration disturbances on critical elements of a
mechanical system. The problem of optimum design has to do with the selection
of isolators that cause an index of the system performance to be optimized; that
is, to take on a value either less or greater than that associated with other can-
didate isolators. In addition, the optimum design usually must satisfy constraints
which are imposed on other aspects of the system response and the parameters
which describe the isolators.

The essential elements of the optimum design problem, in addition to a descrip-
tion of the system kinematics and dynamics, are threefold; namely,

e The performance index

® The design constraints

® The shock or vibration excitation.

These aspects are considered in Chapters 2 and 3, followed by a general formu-
Jation of the optimum design problem in Chapter 4. Solution methods depend
on the nature of the input excitation, i.e., whether deterministic or random and,
for the former, whether a discrete shock pulse or a periodic vibration, Particular
solution methods and results for these different excitation forms are covered in
the remaining four chapters of the monograph. An annotated bibliography is
included, as well as a glossary and an appendix dealing with a linear program-
ming formulation for a class of shock isolation systems.

Though the notion of optimization is implicit in the design process, optimiza-
tion as a formalized approach to engineeriio design is a relatively new concept.
The engineer’s function always has been to produce a final design that is better
in some way than possible alternatives. However, it is in the selection of a quan-
titative measure of performance, i.c., an index whose numerical value serves to
rank otherwise acceptable candidate designs, that an optimam design is dis-
tinguished from a conventional, or merely acceptable, design.

It is important to keep in mind that the sense of the optimization is totally
dependent upon the choice of performance index and that, with respect to this
index, what is termed the optimum is simply a system whose performance is better
(or at least no worse) than that of the candidate designs with which it has been
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compared. Thus, it cannot be said that some as-yet-unthought-of design is not
betrer than the optimum; or that a better measure of optimization cannot be
found.

While reliance on a performance index as the basis for the optimization seems
unavoidable, limitations to the generality of the optimization, as a consequence
of comparison with a limited class of alternatives, can be surmounted. The op-
timization techniques of modern control theory, when applied to synthesis in the
time or frequency domain, make it possible to establish bounds on the perform-
ance index for all admissible candidate isolator concepts. In the time domain,
this approach, termed time-optimal synthesis, amounts to describing the way in
which an isolation system would have to respond for the performance index to
take on the least possible value consistent with the constraints; however, it says
nothing of what the isolator element ought to be from a device-oriented point of
view to achieve this optimum performance. Still, this is valuable information to
the designer; information he almost never otherwise possesses. While the litera-
ture on optimum control theory is extensive, there is extremely little with
directed application to mechanical system design. Within these limits, we have
attempted to be comprehensive in treating this newer approach to design optimi-
zation. Chapter 5 deals with applications to shock isolation systems. More
limited results for vibration isolation under harmonic excitation are presented in
Chapter 7, and for random excitation in Chapter 8.

After establishing optimum performance bounds, the designer is still faced
with the problem of selecting specific isolator concepts to achieve the desired
performance characteristics. We do not address this problem from a hardware
point of view; that is simply not the focus of this monograph. Rather, it is as-
sumed that candidate isolator concepts have been selected by some means and
that there remains the problem of identifying the open design parameters (e.g.,
spring constants, damping rates) so that the resulting system performance is op-
timum. Here optimum refers to the performance achievable by the particular
class of isolator elements under consideration. The difference between this opti-
mum and the above-mentioned optimum performance bound represents the
margin for improvement in system performance which theoretically can be
achieved with an isolator concept. It is this ability to evaluate the extent to
which an optimum design can be improved that the designer seldom, if ever,
learns from conventional optimization methods, and we give it great emphuasis in
the monograph.

We term the problem of identifying the optimum set of parameters for an
otherwise specified isolator concept that of design-parameter synthesis. Cast in
discrete numerical terms, this is recognized as a problem in mathematical pro-
gramming for which various methods of solution are available. The applicability
of these methods generally depends on the analytical form of the system equa-
tions, performance index, and constraints. The more conventional approach,
termed direct synthesis, employs numerical search techniques. We establish the
problem formulation and point out the complications which result with increasing
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dimension of the system, but do not deal directly with methods of solu-
tion. For specific solution techniques, the reader is referred to an extensive
literature.

Another method, termed indirect synthesis, makes use of the results of the
ideal isolator response characteristics determined in conjunction with the opti-
mum performance bounds. This is a newer mecthod, and, while the results re-
ported so far appear very promising, the extent of its applicability remains to be
tstablished. However, in view of the potential computational advantages of this
approach over the direct method, we have included it in the monograph. Both
methods are presented in Chapter 6 for shock isolation systems; application to
vibrution isolation systems under harmonic and random excitation is discussed in
Chapters 7 and 8, respectively. Chapter 6 also includes material on the sensi-
tivity of optimum shock isolator designs to uncertainties in the input excitations.

System design includes system analysis as a subset. For shock and vibration
isolation systems of any complexity, the analysis involves the solution of sets of
ditferential equations, which for practical reasons must be approached by numeri-
cal means. Thus, ous treatiment of the design process is very definitely oriented
toward computational methods requiring large digital computers. The limitations
of the available literature for the most part necessitate the use of simple examples
which cither possess closed-form analytical solutions or are not particularly de-
manding on the computational methods. This is unfortunate, since the dimen-
sion of the computational problem usually determines the practicality of the
method of solution. Despite the lack of convincing examples, however, we have
tricd to emphasize methods whose applicability extends to the larger, real-world
systems.



Chapter 2

OPTIMIZATION CRITERIA

By optimization criteria we refer to both the performance index, which is the
basis for ranking competing designs, and constraints, which serve to restrict the
designs from which the optimum is selected. A smple example will il-
lustrate the significance of these criteria. Figure 2.1 shows a single-degrec-of-
freedom (SDF) isolator system consisting of a parallel spring and damper inter-
posed between the package (rigid mass) and the (massless) base structure. The
base is subjected to a prescribed shock pulse. Let us assume that the rattlespace
(i.c., the maximum displacement of the package relative to the base) is to be as
small as possible, but under no circumstances can the peak acceleration experi-
enced by the package exceed a certain amount. In this case, we would select
rattlespace as the performance index and treat the peak transmitted acceleration
as the response constraint, In comparing isolators with different spring rates and
damping coefTicients, only those that satisfy the acceleration bound would be
considered acceptable designs, and among those the one requiring the least rattle-
space would be the optinum.

-,§ - :

fln)

NN

Fig. 2.1. An optimum isolator design
problem.
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This example points up the significance of the constraints. Were it not for the
restriction placed on the acceleration of the package, the rattlespace could be re-
duced to zero by using an extremely stiff spring. Then, however, the package
would experience the same peak acceleration as contained in the input shock.
The restricted nature of this sort of optimum design problem also is suggested,
since finding the best linear spring-dashpot isolator tells the designer nothing
concerning the further reductions in rattlespace that might result from the use
of u nonlincar spring.  Also. the optimum choice of spring and damper might
be considerably different for another shock input or for another choice of per-
formance index.

While the specific choice of the optimization criteria depends on the design
situation, it is usefu! 1o set forth some general functional forms that will be em-
ployed throughout the monograph.

2.1 Performance Index

Our primary assumption is that a single index of system performance can be
sclected as the basis for optimization, However, as will be discussed, this is not
an overly restrictive assumption. The performance index, which we will denote
by . may be a function of the system response variables (as in the preceding
example) or of the isolator design variables, or of both. The latter situation
would be encountered when the performance index is related to such measures
of system effectiveness as cost, maintainability, or reliability, all of which depend
in a complicated way on the details of specific isolator concepts and configura-
tions. Such a performance index poses no particular problems so far as the syn-
thesis problem is concerned. However, the ability to establish theoretical limits
to the performance index without prior zhoice of isolator configuration requires
that the index be expressible only in terms of system response quantities. For
this reason, we will consider only such forms for .

Deterministic Forms

The optimum design problem for shock isolation systems (Chapters 5 and 6)
and harmonic vibration isolation systems (Chapter 7) is presented from a deter-
ministic point of view. Here the performance index is selected as the maximum
absolute value of some response quantity with respect to time.t The response
quantity is denoted by /1, and the performance index then is

¥ = max|hl. 2.1
t

FThe notation and usage within this section agrees with that of Chapters 5 and 6, unless
otherwise indicated. Although Chapter 7 also deals with a deterministic problem, time
does not play the same role and there is an adjustment in the functional form for y.



OPTIMIZATION CRITERIA 7

The quantity /i may be a displacement, velocity, acceleration, stress, or some com-
bination of these, and is found from the solution of the system equations of
motion.

An extended form of Eq. (2.1) results when ¢ is defined to be the largest of
several related peak response quantities. For example, it may be desired to
minimize the largest of the stresses occurring at three locations in the system. If
we denote stresses at these points by oy, g,, and o3, then we may write the
performance index as

Y = max [maxlol {, maxlo, |, maxlog l} e
! t !

Therefore, a more general form of Eq. (2.1) is

Y = max max|/hil; s=1,2,...,8, (2.2)

N {

where we select the largest among S response quantities, kg, for the performance
index. This form also is applicable when the position of the maximum value of
f1is unknown in advance.

Equation (2.2), of course, requires that the quantities /iy be of comparable
type. Reference 1 considers a performance index involving different response
quantities. With reference to the example system of Fig. 2.1, the index is

Y = max)z| + p maxjx|. (2.3)
t t

Here, Z is the acceleration of the package mass, x the relative displacement, and
the constant p a weighting factor. For large values of p, the performance index
favors rattlespace, while for small values of p, the preference is for peak accelera-
tion.

Another form of performance index is the integral of a response quantity over
some time period of interest. Thus,

fa
Y = J H(h)dt, (2.4)
)

where H is a known function, c.g., H{#t) = h?. This type of performance index is
common in control theory applications and is related to the forms considered by
classical analytical optimization techniques (i.e., calculus of variations). While
the solution techniques to be presented are equally applicable to the integral
performance index, we do not specifically deal with this form, as physical moti-
vation seems lacking for isolation system applications. It might be noted that the
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integral form reduces t~ the maximum value form in the following limiting situa-
tion [2]:
7 lip
Y = lim |hlPdr | . (2.5)

As Ref. 3 shows, even small values of p can yield results close to those found with
the max{/i(¢)| criterion.
t

It is possible to introduce a supplementary performance index at a time when
the primary index has been satisfied, since, subsequently, the response may not
be unique. For example, in the single degree-of-freedom (SDF) example system,
the isolator force teajectory which minimizes Y may have any value at sufficiently
late times for which min ¥ is not exceeded. To identify a particular isolator
force trajectory, it may be required to bring the mass to rest in minimum time,
this latter condition serving as the supplementary performance index. This ap-
proach is discussed in Ref. 4 and 5. The relative merits of various performance
indices are studied in Ref. 1.

Statistical Forms

Statistical forms of the performance index are considered in Chapter 8 with
application to random vibration isolation. Each of the deterministic forms has
its probabilistic counterpart. For example, the response quantity /i can be con-
sidered as the expected value of an appropriate random response variable or com-
bination of such variables, and a performance index such as Eq. (2.1) is then
meaningful.  Also, the performance can be based on the probability of not ex-
ceeding the maximum value of a response function, as in Ref. 6.

Reference 1 considers a form based on expected mean square values which is
somewhat analogous to Eq. (2.3). Herc

Y = E[22] + pE[x?],

where the E[ ] refer to expected mean square responses for the SDF system of
Fig. 2.1, the input being a random vibration. As before, p is a constant weighting
factor. A related form of the performance index is considered in Ref. 7 as

_ .2 2
Yy =i, topxg.

Here, 2, and xg are values of the random variables Z and x such that the proba-
bility of |2} <zg and |x| <xg is equal to a prescribed level.
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2.2 Constraints

The constraint functions serve to restrict the system response or limit the
choice of isola.or parameters as required by design considerations. We make a
distinction between two types of constraints: (a) response constraints, which in-
volve the system response variables, and (b) parameter constraints, which involve
the design parameters associated with particular isolator element configurations.
Both types of constraint functions will be denoted by the symbol Cy, the sub-
script indicating that there are k= 1,2, .. ., K of these.

Response Constraints

Response constraints are limitations enforced on such physical response quan-
tities as stress, displacement, and acceleration. In the SDF example discussed, the
single constraint was imposed on the peak accelerations of the package. If we
denote the maximum allowable acceleration by A, then this constraint may be
written

max [Z] < A,
{

or equivalently,
-4 <Zi<A4.

In all instances, the response constraints that we consider may be written as
two-sided inequalities, as in this example. Therefore, the general expression for
the K| response constraints is

ck<c < k=1,2,..,K,. (2.6)

For deterministic systems, the bounding values C,f‘, CkU may be constants or
functions of time. In the preceding example, K| = 1, C; = %, and C¥ = -4,
ClU = A. For random vibration isolation, the response constraints may be in
terms of expected values for which Eq. (2.6) still applies. Or. the constraints
could require the probability of some response quantity exceeding a specified
level to be less than a fixed value.

Parameter Constraints

Parameter constraints refer to limitations on the design parameters describing
a particular isolator concept or configuration. In the linear spring-dashpot isola-
tor element (Fig. 2.1), we would require both the spring rate & and damping coef-
ficient ¢ to be positive numbers. This could be expressed as
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k=20, c¢c=0.

Strict inequality forms would be used if the possibility of omitting either the
spring or the damper from consideration were to be avoided. If, in addition, it
was desired that the isolator element be overdamped, then the constraint
¢ > 2\/km would be added.

The parameter constraints usually will be expressed as one-sided inequalities of
the form

G =20, k=12,..,K,. 2.7)
However, two-sided inequalities may occur, as, for example, when a spring rate

is required to lie between prescribed values. Also included is the situation where
a design parameter must assume only discrete prescribed values.



Chapter 3

SHOCK AND VIBRATION ENVIRONMENTS

Mechanical systems must be designed to function adequately in a wide range
of dynamic environments. These environments are normally classified as shock
orvibration, depending on the duration of the disturbance. Shock is said to occur
when the system is acted upon by a “sharp,” aperiodic disturbance lasting a
relatively short period of time. Vibration, in contrast, is characterized by an os-
cillatory disturbance extending over a relatively long period of time.

The sources of shock and vibration environments are numerous and difficult
to categorize [8]. We make no attempt to do so here, but rather concern our-
selves with the mathematical representations of these environments which are
necessary to formulate the optimum design problem. The assignment of specific
numerical waveforms or equivalent parametric representations as related to a
particular service environment is beyond the scope of the morograph.

Our characterization of shock environment will be entirely deterministic,
whereas both deterministic and statistical forms are considered for vibration en-
vironments. These environments, or input disturbances, may be expressed in
terms of force, displacement, velocity, or acceleration. Even for deterministic
forms, the design problem is formulated so as to allow uncertainty in the inputs.

3.1 Shock Environment

Input Waveform Description

In the simplest case, it is assumed that the shock pulse, denoted by f(¢),is a
known function of time over a prescribed interval, 7o <7< 1;. This may be de-
scribed analytically or in discrete digital form. A number of such input wave-
forms may be specified at different points in the system, in which case their
relative time phasing is also known.

A more complicated, but more real-world, situation is where the possibility
of different waveforms must be considered. We term this a inultiple-input speci-
fication and assume that any one of a finite number of prescribed waveforms
Lo@=12 .., L) is equally likely to occur at each input point of the
system.
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Figure 3.1a shows a family of three (L = 3} acceleration pulses that might be
prescribed as shock inputs. Multiple inputs represent the usual situation in de-
sign, optimum or otherwise, and require that all permutations be considered.
The problem is not quite so direct, however, in the determination of optimum
performance bounds, as is discussed in Chapter 5.

Input Class Description

Another means of introducing uncertainty into the specification of the shock
environment while maintaining a deterministic representation is to describe a
class of inputs that contains an infinite number of waveforms, any of which is
cqually likely to occur. The class may be described by a time-varying band about
a nominal acceleration waveform, as suggested in Fig. 3.1b, or bounds unrelated
to waveform may be prescribed (Fig. 3.1¢). An additional requirement may be
imposed as, for example, that some function of the waveform averaged over
time be given or bounded (Fig. 3.1¢). In fact, a fixed set of rules for describing
a class need not be stated, and no particular concern need be held for a con-
venient mathematical description of the class. This is a fairly natural way of
describing the environment, as it recognizes what is known and what is not. Of
course, special solution techniques are required if the number of individual wave-
furms is unlimited.

Input Shock Spectra

The shock spectrum, which portrays the maximum response (i.c., displace-
ment, velocity, and acceleration) of an SDF linear-mass-spring system (usually
undamped) to the input waveform over a range of frequencies, conventionally is
utilized as a characterization of the shock input. Since this information retains
nothing of the time details of the input, and it is not possible to infer these from
the spectral plot, we do not consider this form of input representation.

3.2 Vibration Environment

Harmonic Inputs

Harmonic vibration environments generally are represented as time-varying
quantitics in the form of Fourier series. The solution methods and results pre-
sented in Chapter 7 are limited to simple harmonic inputs; i.e., waveforms of
either sine or cosine form, e.g., f(¢) = f,,; sin wt. It is possible to represent un-
certainties of harmonic waveforms in terms of frequency and amplitude
(w vs f,,,) bounds (Fig. 3.2) and otherwise parallel the preceding description of
shock pulses. Reference 9 is suggested for a general discussion of periodic
waveforms.



INFUT BASE
ACCELERATION, fit]

INFUT BASE
ACCELERATION, 1in

fm—

SHOCK AND VIBRATION ENVIRONMENTS

THREE POSSIBLE WAVEFORMS

[=]

TIME, 1

(a) Multiple input

f{1) MAY BE ANY SINGLE-VALUED WAVEFORM
LYING WITHIN THE BOUNDS SHOWN

TIME, !
(b Input class

— f(1} MAY BE ANY SINGLE-VALUED WAVEFORM
WITHIN THE BOUNDS SHOWN FOR WHICH

t
I' Simar = F,

uh F PRESCRIBED.
£
ole-
- Z //f -
11 =0 !E 11

TIME, 1

(¢) Input class

I'ig. 3.1. Descriptions of shock pulses,



14 OPTIMUM SHOCK AND VIBRATION ISOLATION

ADMISSIBLE HARMONIC INPUTS
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Fig. 3.2, Frequency-amplitude spectrum for harmonic
disturbances.

Random Inputs

By random inputs we refer to aperiodic waveforms whose magnitudes are
random variables. A narrow-band random disturbance resembles a harmonic in-
put in that 1t possesses a principal frequency component, but differs in that its
magnitude varies randomly. In contrast, no dominant frequency component can
be identified for a wide-band random disturbance. A spectral representation of
the random input is sufficient for the optimum design of linear isolator
systems as presented in Chapter 8. Hence, we will review this concept
briefly.

We denote the random input by f(r) and assume that it is a stationary
random function of time . The autocorrelation function R(r) is defined

to be
R(r) = E[f(nf(r+7)], (3.1)

where E| | denotes expected value, or ensemble average, For the class of f(1)
under consideration, R(7) is computed as
_—
R(7) = lim 5= | f(0f(t +7)dr. 3.2)
T oo -T Lr

Then the spectral density S is defined as

S = -21? J‘ R(7) exp (—iAr)dT. (3.3)



SPECTRAL DENSITY, Stx) Q) (FTZ/(RAD/FT ]

SHOCK AND VIBRATION ENVIRONMENTS

WAVELENGTH (ft)

o' 500 200 100 50 20 10 5 2
] 1 =
- 3
. RUNWAY -
-2
10 = -
- 3
C ]
- J
- RAILROAD B
WELDED
RAIL
1073 N cow _
,: FASTURE o
o 5\ 3
i 4 ]
1ILF.B.|FI HIGHWAY
-4
10 = -
o “ 3
- T, -
o ERY ~
GOOD
B * HIGHWAY -
on
-5
10 = __‘
- N
ol bbb
00l 004 0.l 0.4 1.0 4 10

FREQUENCY, £ (RAD/FT)

Fig. 3.3. Spectral densities of various terrains.
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Observe that S(A) is the Fourier transform of the autocorrelation function. The
transform parameter A is identified with the frequency content of the
disturbance.

An application of these concepts is considered in Chapter 8 with respect to
the measured profiles of roadways and track systems which constitute the vibra-
tion input to ground vehicles. The height of the road «. t==ck above some datum
is denoted by f and assumed to be a stationary random function of istance x.
Then the autocorrelation function and spectral density can be evaluate 1 in spatial
rather than temporal terms in exactly the above manner. In place of the time
frequency A, there is the spatial frequency € in units of radians per length. If
a vehicle moves across the profile with constant speed V, the relationships x = Vt
and A= V& hold, and

VSi)(A) = Spp)(82). (3.4)

Here we have used subscripts to distinguish between the time and space spectral
densities.  Equation (3.3) is used to compute Sp;(N), and the expression for

Sf(-\/(Q) is
Sl = 5 | Re)exp i (3.5)

On the basis of measured spectra for highways, runways, test tracks, and even
acow pasture [10-13], it is suggested that $(£2) can be approximated over « wide
range of frequencies by

Siee)(2) = €272,

where ¢; and ¢, are positive constants. Representative measurements are sum-
marized in Fig. 3.3, from which we observe that ¢, = 2. If Sg(2) = c,Q_2,
then the spectral density for the profile slopes f'(x) will be constant, as will
Syy(N) evaluated for the velocities f(1). A random process whose spectral den-
sity is constant is said to be white noise, which implies a wide-band disturbance.
To the extent that the design optimization procedure can be carried out for a
spectral characterization of the profile, this means that the input involves only
a single independent parameter. Reference 14 deals at length with this model of
the environment.



Chapter 4

OPTIMUM ISOLATOR DESIGN FORMULATION

By combining the optimization criteria and the shock and vibration environ-
ment information with the system dynamics, we can develop a general problem
statement for optimum isolator design. We strive to emphasize the generality of
the formulation despite the fact that, for the most part, only rather simple sys-
tems have been solved to date. Two formulations of the general synthesis prob-
lem are presented. One, optimum design-parameter svnthesis, sclects the opti-
mum isolator from among a preselected class of isolators as well as the minimum
performance index for this class; the other, termed time-optimal synthesis, estab-
lishes the absolute minimum for the performance index but does not describe
the optimum isolator in hardware-oriented terms. Finally, we consider a de-
scription of the optimum performance characteristics applicable to either prob-
lem formulation. Methods of solution are dealt with in subsequent chapters.

4.1 Optimum Design-Parameter Synthesis
General Isolation System

In hardware terms, an isolator is a device interposed between elements of a
structural dynamic system?t to reduce to tolerable levels transmitted effects of
the external shock or vibration environment for designated system elements.
Among isolators that acceptably achieve this function, the optimum isolator is
the one that causes an index of the system performance to take on its minimum
value. By design-parameter synthesis we refer to the selection of the optimum
isolator from among a preselected class of candidate isolators that differ only in
the numerical values of certain open parameters,

The design synthesis process requires that a mathematical model for the physi-
cal system, including the candidate isolator devices, be postulated. This is the
starting point for our consideration. In the most general case we assume that
this model can be described qualitatively as a multiple-isolator, multiple-degree-
of-freedom (MDF) system and, quantitatively, by a system of nonlinear ordinary
or partial differential equaiions.

+No limitation in generality is implicd; the dynamic system may be composed of structural,
mechanical, hydraulic elements, etc., or combinations of these.

17
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Such a general dynamical system is shown schematically in. Fig. 4.1. Two
types of elements are considered; structural elements and isolator elements.
There may be any number of each; in particular, we admit the possibility that M
structural elements and J isolator elements are interconnected in an arbitrary
fashion. A structural element may represent a discrete mass point, a rigid body
of distributed mass, or a flexible structure such as a framework or a shell. The
isolator elements, similarly, can represent either simple mechanisms without mass
or models of more complicated devices. In general, the structural elements con-
stitute the prescribed portions of the system (i.c., the base structure and the
clements to be isolated) and the isolator elements are to be chosen in accordance
with the design objectives.

i1 1S0L ATOR
ELEMENT
=
gt Mo TyPICAL
AL CLEARANCE
N CONSTRAINT
Fig. 4.1, Multiple-degree-of-freedom system,
The notation used is as follows:
z,; m=1,2, ..., Mare ihe position vectors that define the initial configura-

tion of the mth structural element in some convenient local coordinate
system.

w, (2, 1):n=1,2, ..., Nare the generalized coordinates, i.e., any kinemati-
cally acceptable choice of position vectors that define the state of the mth
structural element over the entire time range of interest. Usually these will
define points on cach element relative to its initial configuration.

u; =1, 2,...,J are the forces (moments) in the jth isolator element. In gen-
eral, cach force (moment) is a three-component vector. The functional
dependence of the w; will be considered later.

folzpm, ,¢=1,2,...,L arc the input disturbances applied at various positions
in the system. These may be in the form of distributed or concentrated
forces (moments) or prescribed motions of the system supports. Later this
notation will be expanded to distinguish between several input positions
and the possible occurrence of more than one input  a given position.
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The positions of the mass particles composing the mth structural element is
governed by a set of differential equations of the form

LWz, D) = G,,(u-,fg); n=12,..,N 4.1)

W,,(Z,,,, tO) = WI?

4.2
% (Z t ) = \‘VO ( )
ot ms 0 n:

Here, £, represents a second-order differential operator (ordinary or partial)
and G,, is a function countaining only the isolator forces and the input disturb-
ances. Equation (4.2) represents the initial conditions. An appropriate set of
boundary conditions also must be prescribed,

The mathematical description of the isolator forces has an important bearing
on the problems that can be solved. From the design point of view we limit our
considerations to so-called passive isolators; i.e., isolators for which the force ex-
pression u; depends explicitly on the change in an associated displacement, veloc-
ity, or both. Assume that the jth isolator connects the m and m-1 structural
clements, and that the position - :ctors of the attachment points are denoted by
W, (z,,, 1) and wy(z,.;, t). We define the relative displacement of the jth
isolator to be

-\','(f) =q [wn(lnw 0, Wylz, 1. 0], 4.3)

where ¢ is the appropriate kinematic function. A passive isolator is one for
which the force magnitude can be expressed in the form

lll' = ll]'(,\',-, .Xl) (44)

Design-parameter synthesis involves selecting an appropriate set of parameters
that describe the isolator element in question. We will consider that there are
R; such parameters associated with the jth isolator and denote them by «,.

/
Then, a more explicit form of Eq. (4.4) is

o= s Y. Y =) i .
uj u,(x,,.\,,a,,.). r=1,2.. .,R/. 4.5)
The difference in notatior is best emphasized by example. If the isolatorj =1
consists of a linear spring-dashpot element, as shown in Fig. 2.1, the simplest ¢x-

pression for the force is uy = kx,; + ¢x, where & is the spring rate and ¢ the
damping coefficient. If k and ¢ arc known values, then we use Eq. (4.4) with

uy = ulxy, x,) = kxy; + exg.
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If, however, our problem is to select optimum values of k and ¢, these would be
unknowns in the design problem and we would use Eq. (4.5) with

Ry =2, a, =k and a, =c.

The discussion of the performance index and constraints in Chapter 2 did not
refer to a functional representation for these quantities. We are now in a posi-
tion to do su. It is usually convenient to indicate an explicit dependence on the
force function w; since, in one form or another, these are the problem unknowns.
Thus, in general the performance index, Eq. (2.2), is written

Y = max maxiig(r, uply; s = 1,2,...,8, (4.6)
5 1

where, it will be recalled, the largest of S comparable response quantities, 4, is
selected to be the index.
The response constraints, Eq. (2.6), arc written as

CEN < Culrup) < G5 k= 1,2, K. (4.7
The possibility of constant bounds to the constraint function, i.c., C',!‘, CkU 5
constant, is included as a special case.
Parameter constraints, Eq. (2.7), can be written as

Cila,) 2 0; Kk =1,....K; (4.8)

P

or

Ol <alg) <y k=1,...K; (4.9)

The mathematical statement of the optimum isolation design problem can now
be stated as follows, We are given a dynamical system comprising A structural
clements and J isolator elements. Coordinate systems are defined, in terms of
which all of the isolator force functions, Eq. (4.5), arc known, However, the
numerical values of the design parameters a;, remain to be determined: there are
R; of these for each of the J isolators. The input disturbances are known as to
position of application, waveform, and relative time phasing. Thus, the equations
of motion (Eq. (4.1)), initial conditions (Eq. (4.2)), and appropriate boundary
conditions are known.}

1This problem statement includes the case of multiple inputs to the extent that Eq. (4.1)
must be solved repetitively for each waveform.
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Compuarable functions of the system response, /iy, are selected as the basis for
the performance index. These are to be evaluated from the solution to the equa-
tions of motion. If the maximum value of /1, /15, . . ., hg over the time range of
interest is established, then the largest of these maxima is identified as the per-
formance index ¢ in accordance with Eq. (4.6).

A number K| of constraint functions are prescribed in terms of the response
quantities, Eq. (4.7), and other constraints involving the unknown design param-
eters, Eq. (4.8) and (4.9), also are prescribed; there are K5 + K3 of the latter,

The optimum design synthesis problem requires that we find the design param-
eters a;, such that W is minimized and all constraint functions are satisfied. We
emphasize again that by referring to this as the problem of design-parameter
synthesis, we imply a preselection of isolator devices and are seeking to identify
the best chowe among the admissible design parameters. This formulation is
expanded in Caapters 5 and 6 to include the situation where the inputs are of a
class description comprising an infinite number of wavetorms.  Example |
shows how this formulation may be applied.

4.2 Time-Optimal Synthesis

General Isolation System

An alternate formulation of the optimum design problemy leads to a lower
bound value of the performance index for any type of isolutor consistent with
the constraints. This differs from the previous design parameter synthesis formu-
fation in that no a priori assumption is made regarding the functional form of the
isolator force in terms of the relative state variables: i.e.. the form of Eq. (4.4)
or (4.5) is unknown. Instead, we consider the isolator force to be an explicit
function of time u (¢), which we will synthesize in the time domain (for each
value of j) so as to minimize the performance index and satisfy the constraints.
We term this process time-optimal syathesis,  The resulting value of the per-
formance index is the best that can be accomplished for any isolator regardiess
of the hardware device utilized. The description of the isolator is provided by the
optimum «;(¢). This is not the usual device-oriented description, but rather a
description of the manner in which the optimum device responds.

The problem formulation for time-optimal sy nthesis follows exactly as before
except that the unknowns, instead of being the design parameters a;,, are now
the isolator force functions ;(¢). Of course, the solution techniques are entirely
different,

Quasi-Linear Isolation Systems

It is plausible to suppose that the solution methods are simplified when the
governing equations are linear, and indeed that is the case. Linearity requires
that the equations of motion, Eq. (4.1). be lincar in the dependent variables.
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When viewed as the problem of design-parameter synthesis (Section 4.1) this
in turn requires that the isolator force functions, Eq. (4.4), depend linearly on the
relative state variables. This is a severe lirnitation on the type of isolator device
that may be considered and, hence, linear systems, when they imply linear isola-
tors, are of limited practical value, From the standpoint of time-optimal syn-
thesis, however, linearity merely requires that the equations of motion
involve u; lincarly but does not restrict the form of Eq. (4.4). In other words,
the isolators need not exhibit linear force (moment)-displacement or -velocity
characteristics, although in all other respects the system is linear. Such systems
are termed quasi-linear.

In summary, then, a quasi-linear system is one for which, in Eq. (4.1), the
L, are lincar differential operators und the G, are lincar functions of the u;
and fy. The system considered in Example 1 is lincar in all respects and, of
course, is quasi-lincar as well.  However, if the lincar spring-dashpot isola-
tor were replaiced by a nonlinear device, the system would still be quasi-
lincar.

The condition of quasi-hnearity permits application of superposition to the
solution to the equations of motion. [f, in addition, the response functions
hg(1, uj) and response constraints Cy (¢, ) involve the u; linearly, superposition
may be used to construct these quantities as well. Thus, in general, we may
write

J .
hr, u/) = hgotr) + Z j R.v/(t —7) ll,-(T)d[
j=1 o
and (4.10)
v' t
Crlt, ) = Cyolr) + Z J R;; (1 —7) = uf7)dr.
=1 Yo

Here, Ry; and Ry; are the appropriate responses to a unit force (momen.; tnput
at the attachment points of the jth isolator element. The vector notation serves
to emphasize that, generally, a component of R exists for each component of
u;, and the R-u notation signifies a dot-product summation over the respective
components of each vector. The terms /li;o(#) and Cyo(¢) are the responses to
the L inputs f (¢). These contain the appropiiate homogeneous solutions should
the problem be stated with nonzero initial conditions. In the case of multiple
inputs, Jigo(#) and Cyo(r) are separate functions for each of the prescribed com-
binations of waveforms.

We illustrate time-optimal synthesis in Example 2. The system is the same
roadway vehicle considered in Example 1, except that here the isolator is of un-
specified configuration,
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4.3 Optimum Performance Characteristics
Single Input Waveform

Either design formulation, i.e., design-parameter synthesis or time-optimal
synthesis, yields essentially two types of information: (a) the description of the
optimum isolator and (b) the least value of the performance index consisten:
with the constraints. In design-parameter synthesis, the optimum isolators are
described by the sets of parameters a;‘; (asterisks are used to indicate optimum
values), whereas in the time-optimal synthesis they are described by their force
trajectories u,-*(t). In the first instance, ¥* is a minimum only with respect to
the preselected candidate isolators under consideration, and there may be
other isolators for which ¢* is smaller; in the seccond, ¥ * is an absolute minimum
and no isolator can be found for which the system performance index takes
on a lesser value. Thus, either formulation provides useful information, the
more so whether a hardware-oriented description of the isolator or a lower
bound to the performance index is of most interest. Here, we focus on the latter
consideration.

Each value of ¥ is associated with a prescribed input disturbance and fixed
constraints. If the numerical values of the constraints are changed and the solu-
tion is repeated for the same input, another value of * is determined. In this
manner, a relationship (i.e., sequence of values) between Y* and the constraints
may be established.  This relationship is termed the optimum performance
characteristic of the system under consideration and is symbolically represented
by ¢*(Cy). Generally, for K constraints, y*(Cy) is a hypersurface of K + 1
dimension; only in the case of one constraint, where Y *(Cy) is a plane curve,
can this function be portrayed by simple graphic means.

Consider an example of an SDF system where the performance index is se-
lected as the displacement of the mass relative to its base and the absolute
acceleration of the mass is constrained. This is illustrated in Fig. 4.2 {or the
design-parameter synthesis problem and in Fig. 4.3 for the time-optimal synthesis
problem. Thus, we seek to minimize

¥ = maxix|
t

for

maxjz] < A4
I3

and some prescribed f(r). The curves in Fig. 4.4 suggest the relationship that
might be found between Y* and A for various levels of the acceleration con-
straint A. The two curves are identified as the time-optimal and design-parameter
solutions; the former provides the smaller values of ¥* {or the same A4,
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Fig. 4.2. An SDF system for design-parameter

A y synthesis formulation.
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% J Fig. 4.3, An SDF system for time-optimal
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Consider a point on the time-optimal solution, say Point 1 in Fig. 4.4,
corresponding to the constraint level 4. For this constiaint level, x[/T is the
smallest value of the rattlespace that can be achieved with any isolator. Also,
3, corresponding to Point 2 on the design-parameter solution, is the smallest
rattlespace that can be achieved with a lincar spring-dashpot isolator. The dif-
ference Y3 ~ YT represents the improvement in performance over this linear
isolator which theoretically is possible; of course, this recult alone says nothing
of what the ideal optimum isolator should be.

Each point along either of the two curves corresponds to a different isolator.
That is, every point lying on the design-parameter solution corresponds to a dif-
ferent pair of parameter values (k*, ¢*), whereas every point on the time-
optimal solution implies a different u*(¢). For example, the intercept of the
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Fig. 4.4. Optimum performance characteristics.

time-optimal solution corresponds to the limiting cases of no isolator (4 =0,
v* = max| (1)), or a rigid isolator (4 = max]f(¢)l, ¢* = 0).
t {

Each choice of isolator type leads to a different optimum performance char-
acteristic, whereas a unique solution exists to the time-optimal solution. For
this reasorn, we term the latter solution the limiting performance characteristic
to distinguish it from the design-parameter solution.

A somewhat different application of the optimum performance data is pro-
vided by the design situation in which we want an isolator that yields a maxi-
mum acceleration A and requires the rattlespace D. The combination of values
(A, D)is termed a design point and can be plotted in relationship to the optimum
performance characteristics. For example, if the design point corresponds to
Point 3 in Fig. 4.4, it is immediately recognized that no isolator can be found to
meet these requirements, since the region below the limiting performance charac-
teristic is not physically attainable. Without this information, the designer
would soon discover the inadequacy of a linear spring-dashpot isolator but might
never appreciate the hopelessness of his search, If the design point were to cor-
respond to Point 4 in the figure, he knows that the lincar isolator is inadequate
but that conceivably some other isolator can be found to perform as desired.
Point 5 corresponds to specifications which can be improved upon even by an
optimum linear isolator,

There is reciprocity in the optimum performance characteristic relating to an
interchange between the performance index and a constraint. Thus, the curves
in Fig. 4.4 were described as the least rattlespace obtainable for a given

10r a constant-force isolator, u = mg.
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acceleration constraint. In each instance the same optimum performance charac-
teristic would result if the problem were posed as that of finding the least possible
maximum accelrration consistent with a prescrived rattlespace constraint {15].
It seems plausible that this should be the case for a multiple-constraint problem
when the performance index is interchanged with any one of the response

constraints.

Multiple Inputs

11 the input disturbance is prescribed as a finite numbered family of wave-
forms, optimum performance characteristics can be obtained separately for cach
of the inputs (Fig. 4.4). The tower and upper bounds to these curves (for either
Crrmulation) represent, respectively, the most and least favorable performance
characteristics associated with the family of inputs. Correspondingly, the partic-
ular waveforms that produce these bounding curves constitute “best” and *“worst™
disturbances among the preseribed family.  The applications of these results
depend on the circumstances of the problem and, in any event, are similar to the
applications described for the single-input characteristic. The solution for the
ume-optimal formulation described in Chapter 6 is somewhat more involved than

suggested here.

Input Class

When the input disturbance is described as a class comprising an infinite
number of equally probable wavetorms, the concept of a best and worst disturb-
ance still pertains, but these bounds cannot be found by enumeration. The
solution to this problem is discussed in Chapter 6. Bounds to the optimum per-
formance characteristics associated with these extreme disturbances are estab-
lished us for the multiple input case.

Example |

GENERAL ISOLATION SYSTEM PROBLEM:
DESIGN-PARAMETER SYNTHESIS

fsolation System

We will consider the isolation system relating to a ground vehicle which encounters a
discrete bump in an otherwise perfectly smooth roadway. The system involves three struc-
tural clements, a single isolator element, and one input, The primary vehicle structure,
including wheel and axie, is modeled as a rigid housing. The vehicie moves with constant hori-
zontal velocity I and, upon encountering the bump, follows its profile v exactly. The pack-
age to be isolated is represented by a rigid mass m and is connected through an isolator
clement 1) to the center of a flexible beam located within the vehicle. The isolator is a
lincar spring-dashpot device (see figure) modeled as being massless, ie., u) = kx| + c,\"l.
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We want to select the spring rate & and damping coefficient ¢ so that the peak aceelera-
tion experienced by the package is minimized. We also require that neither the beam nor
the package deflect so far as to contact any portion of the surrounding vehicle structure,
Finally, we limit consideration to values of & between &L and £U and require that the system
be overdamped. The performance index and constraints are written in the following manner,

Performance Index

The performance index is the maximum acceleration of the package mass, Thus, the
aceeleration wy is the single response function of interest; /iy =/ and § = 1, According to
Eq. (4.6).,

v o= maxji,l
{

Response Constraints

There are two response constraints (K = 2), one, say, ¢, which avoids bottoming of
the beam, and the other, Cy, which avoids bottoming of the package. Thus, ¢ is a con-
dition on wy, and Cy may be prescribed in terms of the relative displacement of the solator
terminals v . Thus, with reference to Lg. (4.7),

Cytry = wyil, 1)

with
(,ll = ay; C,U =1y
and
Colt) = x (1) = walt) — wtl, 1) - vi)
with

2 {
c'zl = ajy; Czj = 44.

where @ 3 and a4 are prescribed dimensions (not shown in the figure).
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Parameter Constraints

There are two parameter constraints, one requiring the spring rate to be within pre-
scribed values (K3 = 1, Eq. (4.9)) and the other ensuring that the package mass is over-
damped (K5 = 1, Eq. (4.8)), These may be written

C3tk,¢) = ¢ —2vkm 20
and
Catky = k,
with
A R

We must now express the state variables w and w, and the acceleration iy as explicit
functions of time and the two design parameters & and ¢, In the notation of Eq. (4.5),

g, X0 k) = kxy + exy.
The desired expressions result from the solution of the equations of motion which requires
that the input f (¢) be specified. This problem is considered further in Example 2.
Example 2
GENERAL ISOLATION SYSTEM PROBLEM; TIME -OPTIMAL SYNTHESIS

We will consider a vehicle traversing a bump in the roadway as shown.

C— V = CONSTANT HORIZONTAL
RIGID MASS Pt V25L°C2'TY
{STRUCTURE 1) | 1= dy/di% BASE INPUT
ACCELERATION

RIGID HOUSING
(STRUCTURE-3)

,ISOLATOR, vy

u ,) ~eEaw, LENGTH=2L,
J/ MASS =mp

7 Y / (STRUCTURE-2)

! y = y(t) DEFINES THE
TRACK IRREGULARITY
WHERE t = d/V

x
L 42

be._
X =y

FRONT VIEW

SHE VIEW

This is the same dynamic system as in Example 1, except that we are concerned with
the details of the isolator but consider 1 to be an unknown function of time u 1), The
performance index and response constraint are the same as in Example 1, except that each
is viewed as a function of 1y as well as ¢,
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Performance Index

¢ = maxjiv,].
'

Response Constraint

Cl(,' lll) 8 H'l([.,!)

with
(,l =4y, (‘,U =1y
and
Colr, wg) = X () = wa() = wil, 1) =)
with

WL U
(2 = ajs (,2(' = ay.

Parameter constraints do not enter into the time-optimal synthesis problem. Because of
the relatively more simple form of the equations of motion for this formulation, we will
carry out some of the details for arbitrary f{(¢) avoided in Example 1.

In establishing the equations of motion, the isolator force wy (1) is treated as an external
force for the system element on which it acts.  Using conventional thin-beam theory, we
tfind the cquations of motion to be

e,

L = 1;/(7:? + p%%‘lz'l = w6y = L) o)
L, =m %2%;—2 = -uy).
subject to the initial conditions
witz,0) = 9—“—%;]—‘@ =0
wa(0) = f(0); ‘3‘, = f10)

and the boundary conditions

02w (0,0) _ 8Zw (2L, 1)
ds 2 a:ﬁ

w0, = wi2L, 1) =

In these equations, £7 is the stiffness of the beam, p its mass per unit length, my = 2Lp its
total mass, and m is the package mass. The isolator force u(¢), concentrated at midspan,
is represented in terms of the Dirac delta function 6(z| — L). .

These equations are in the form of Ly. (4.1). The system is quasi-linear, since the
operators Ly and L are linear in the state variables wy and wy and the functions ¢y and
G are linear in uy and f;. The response and constraint tunctionsare linear in these variables
also and will be evaluated in terms of ) and f using the superposition forms of Lq. (4.10).
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We begin by determining the response of the beam and the package mass to a unit force
&(1) applicd at the isolator attachment points.  Using the notation of Eq. (4.10), we can
verify that Ry and R kj &re given by

Ryu-7) = \.t"lz(t-T)

Wil = 1) k=1
/\’]\-,(I-T) =

wolr=7) = witl, 1-1) k = 2,

where

(> o)
' _ 2 =2 =7 Py
will.n = nTesin (n=s2)

n=1.3.5

. _ =
woll) = T

o(t)

\.\";(I) = - .
c ",

The responses to the input £t figg and Cr g in Py, (4.10), are found to be

/l]() =0

(n-1)/2

R ¥ -3 o G
Ciptt) = ~— HOf(r) sin nzsul- 7)d7r

mid

Z -1

Y0 n=1.30dd

Cagptt) = v(0) + 20 - Ciolt) = v()

Finally, the response and constraint functions are

{
/l[(f. Ill) = —“—l(——)
m
X
Citouy) = Crpw) +J will, = th()dr
0

~t
(‘2(1, uy) = (.'20([) + J IW’z(! -7)- \\'I](L, t- T)]ll ,(T)dT.
0



Chapter 5

LIMITING PERFORMANCE CHARACTERISTICS
OF SHOCTK ISOLATION SYSTEMS

We consider in this chapter methods for determining the lower bound 1o the
minimum performance index of a general shock isolation system without regard
to any particular type of isolator element. The relationship between the bound
and the constraint values is wevmed the limiting performance characteristic of the
system (Chapter 4). We assume that the overall system is specified except for
one or more isolator elements and that the input is known either in terms of
specific waveforms (one or more) or by the description of a class of wavelorms.
Although explicit forms are provided only for rattlespace and peak acceleration
criteria, the methods of solution are not limited to these choices.

5.1 Completely Described Environment

5.1.1 Single-Degree-of-Freedom Systems
Peak Acceleration and Rattlespace Criteria

Problem Formulation-The simplest SDF system to be studied is shown in
Fig. 5.1. Regardless of the type of isolator element (e.g., spring or dashpot)
under consideration, for our purposes we assume that the net force across the
isolator is an unknown function of time wu(t).t The equation of motion for the
rigid mass is

mz + u(ty =0 (5.1)
with the kinematic condition
z(1) = x(1) + f(0) (E2)

in the interval of interest, 7y < 1 <1y Appropriate initial conditions on z and z
at t =t are specified. Unless otherwise indicated, we assume that the mass starts
from rest at £y =0 so that ’

+This is a nonrestrictive assumption insofar as the actual type of isolator employed. In par-
ticular, this formulation retains all interaction effccts of the isolator on other portions of
the system,
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Fig. 5.1. Generic SDF system.
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z(0) = z(0) = 0. (5.3)

Inasmuch as w(r) represents the net force on the mass, arrangements more com-
plicated than those shown in Fig. 5.1 are included. For example, in Fig. 5.2
the mass is acted upon by an external force f(¢) and supported by two isolators
in parallel; the force across one being expressed in terms of the relative state
variables ug(x, x) and in the other by a function of time u,(f). The quantity
u(t) in Eq. (5.1) in this case has the form

u(r) =y (1) + uplx, x) = f1(1),

as shown in Fig. 5.2,

Although the dynamic programming solution is unrestricted as to choice of
performance index and constraint, the other methods considered require that
these criteria be linear forms of the state variables. For the present, therefore,
we shall treat linear forms and, in particular, choose the peak acceleration of the
mass and the rattlespace as performance criteria. That is, either one may be the
performance index, and the other the constraint. The absolute-value forms of
these criteria are not, strictly speaking, linear but, for our purposes, we may ac-
cept them as such. The two optimization problems to be considered are,
therefore

Problem 1

Performance Index: Peak Acceleration

Y = max|z]; min y=y* = A (5.4)
t
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Fig. 5.2.  An SDF system cquivalent to the generic
sy stem.

Constraint: Rattlespace

maxlx| < D; D prescribed.
{

Problem 2

Performance Index: Rattlespace

¥ = maxlxl; min ¢ = ¢* =D
t

Constraint: Peak Acceleration

max|z] < A; A prescribed,
t
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(5.5)

(5.6)

(5.7

These two problems are reciprocal in the sense that if, in Problem 1, the
minimum  for a rattlespace constraint D is found to be the peak acceleration
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A, then an acceleration constraint of magnitude A n Problem 2 will lead to the
mitnmum rattlespace D, (Note that this implies a single-valued relationship.)
Theretore, we need use only one of these two problems to consider methods of
solution. Tt is somewhat more convenient to select Problem 2, although on occa-
sion we will deal with Problem 1.

A complete statement of Problem 2 is as follows: Given a prescribed base
motion (/) and Egs. (5.1), (5.2), and (5.3), which relate the state variables and
the isolator force, find the torce w(r) such that the inequality (5.7) is satisfied
and the performance index ¢ defined in Eq. (5.6) takes on a minimum value,
Let

min Y = y* = min maxlx| = D. (5.8)

u r

Then the point (A, D) lies on the "miting performance characteristic as shown
in Fig. 5.3. The complete curve is found by repeated solutions for different
values of 4. For cach point (4, D), the associated optimum isolator force is de-
noted by w*(r). This information is required in the indirect synthesis methnd.

D RATTLESPACE, D/D’

NORMALIZ

|
0 |
NORMALIZED PEAK ACCELERATION, A/A

f

Fig, 5.3, Normalized form of limiting performance
characteristic.

The limiting performance characteristic (Fig. 5.3) is shown in normalized
form relative to the maximum displacement D and maximum acceleration Ay of
the input disturbance. In this form, the intercepts are the poinis (1, 0)and (0, )
which correspond to the extreme situation of a rigid connection and a constant-
force isolator, respectively. In other words, as the rattlespace constraint ap-
proaches zero, the optimum isolator will transmit an acceleration approaching
that of the base motion. Alternatively, as the rattlespace constraint approaches
the base displacement, the optimum isolator will transmit a vanishingly small
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acceleration.  While we are interested praciically in isolator performance be-
tween these limits, it may be noted that nonoptimum isolators easily can
exceed them. For example, a sufficiently stiff, but not rigid, linear spring will
transmit twice the peak base acceleration, whereas the mass could undergo an
excursion far in excess of the base displacement if a resonant condition
develops.

Analvtical Solutions—-The optimum isolation problem as we have posed it
belongs to the class of variational problems that traditionally is approached
analytically by the methods of the calculus of variations. The maximum-value
form of the performance index and constraint is not suited to this classical
method, however, Indeed, the calculus of variations can tell us nothing more
than thao the optimum isolator force 1*(r) is of the bang-bang type, i.c., picce-
wise constant in time [4, 16-18]. It can fead neither to a quantitative analytical
form for ¢*(¢) nor to the minimum value of the performance index, and thus will
not be considered further.

An analytical expression for the limiting performance characteristic can be
found by direct means for an impulsive loading. The impulse loading also is a
useful approximation to short-duration impacts, which are encountered fre-
quently. Here A, is not defined, but the impulse is given by

if..
lim | fiyde=fy = V. (5.9)
t0

J i)
This is equivalent to the base undergoing an initial velocity V. Thus, the dis-
placement increases linearly with time and Dy is unbounded.

For the statement of Problem 2, energy considerations |1] lead to the
relationship

AD = < V? (5.10)

o} —

for the limiting performance characteristic. This is a rectangular hyperbola and
is plotted in Fig. 5.4. Since neither Dynor Ay is defined, the nornmalized plot
cannot be used. The impulse case offers a convenient means of describing a use-
ful graphical solution technique. We continue with the umpulse loading case,
deriving Eq. (5.10) and describing the character of the ontimum isolator force
u*(t).

Graphical Solution—Assume for the moment that, on application of the
impulse, the isolator imparts the maximum allowable fcree to the mass. For
unit mass (/12 = 1), this force is equal in magnitude to the constraint value of ac-
celeration A and opposite in sign (Eq. (5.1)). The acceleration, velocity, and
displacement for both the mass and base are shown in Fig. 5.5. From Eq. (5.2),
Xt=z%— f or
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MINIMUM RATTLESPACE, D

ACCELERATION CONSTRAINT, A

Iig. 5.4. Limiting performance characteristic for impulse
loading, V.

t
x* = J (z'*—f")a't,

0
so that the relative displacement of the mass is numerically equal to the arca be-
tween the 2* and fcurves in Fig. 5.5. The time at which z* = fis denoted by ¢,.
We are seeking the minimum rattlespace consistent with the peak acceleration
constraint. From the geometry of Fig, 5.5, this is equivalent to finding the z*
curve whose slope does not exceed A in magnitude and for which the area be-
tween it and the f curve is a minimum. Up to ¢,, it is clear that |u(r)l = 4
accomplishes this, since (a) if, anywhere in the time interval 0 < ¢ < ¢, the
slope of the z* curve were less than A, a larger area would be cnclosed, and (b) if
asmaller area were enclosed, then the slope of the z* curve would have to exceed
A somewhere in the time interval. Moreover, beyond ¢, the relative displacement
must decrease and, since we are free to select any u(r) for t > ¢, the displace-

ment at ¢, becomes the minimum rattlespace requirement D. Thus,

V=4t ad D= W,

and

AD = ~V?,

1
2

which is the result previously obtained in Eq. (5.10j.
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Fig. 5.5. Base and optimum mass motions for impulsc loading.
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The graphical construction of Fig. 5.5 clearly suggests the nonunique character
of the optimum isolator force beyond the time 7y at which the base and mass
reach equal speeds. While this does not influence the determination of the limit-
ing performance characteristic, it is of consequence in the indirect synthesis
method. Here, additional requirements can be imposed to fully define the isolator
motion. It may be required, for example, that the mass return to its initial
position relative to the base at some later time. The optimunt motion in this
case is more restrictive, but still not unique. A particular solution of the bang-
bang type is shown in Fig. 5.6. The same result can be achieved, of course, with a
continuous acceleration curve,

The graphical solution can be applied to other inputs. Figure 5.7 illustrates
the procedure for an arbitrary base velocity f(6). Again the peak acceleration
cannot exceed A, and the rattiespace D is to be minimized. The stepwise pro-
cedure is as follows:

Step 1. Construct a line from the origin with slope equal to the peak accelera-
tion constraint . This is the z* trajectory, and its intersection with the f
curve at Point 1 determines 7,. The area between the f curve and the line
0l is equal to the relative displacement x* at ¢{. Since x*(¢;) = 2%(1,) -
£11) = 0, x* has a relative maximum at .

Step 2. Construct a line from Point 1 with slope —4. This is the continuation of
the Z# trajectory: its intersection with the f curve at Point 2 determines time
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