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FOREWORD

This book is intended for those concerned with analyses of mechanical
shock data. The central intent is to extract information useful for con-
sidering system response to the measured transient acting as an exci-
tation. Although the book is not aimed at telling the reader what data
analysis approach should be applied in specific instances, it does provide
helpful information in this regard.

Presented are mathematical bases for the commonly employed
Fourier and shock spectrum methods, as well as current techniques
for their implementation by analog and digital means. A discussion of
analysis errors is also included. Other approaches presented briefly are
statistical averaging over an ensemble of events arising from a random
transient process, decomposition of a transient in terms of orthogonal
polynomials or exponentials, and certain extensions of the fundamental
shock spectrum concept.

The material presented can be found scattered throughout the litera-
ture; however, its collection and organization within this book should
prove to be most helpful to novices and practitioners alike.

SHELDON RUBIN
The Aerospuce Corporation

El Segundo, California
26 February 1970
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PREFACE

The mechanical shock field has long presented one of the most
perplexing challenges to the engineering profession. The intensity of
the input from the shock environment, even though it may exist for but
a brief period of time, causes it to be of particular concern. The effects of
explosive overpressures on men, equipment, and structures; the effects
of earthquakes on structures; the effects of an automobile crash on its
occupants; and the effects of dropping delicate equipment on the floor;
all of these are examples of the many situations where the shock
environment represents a clear hazard.

Because the solution of shock problems is so important to many appli-
cation areas, we feel privileged to have been given this opportunity
to make a contribution toward easing the solution of shock problems.
To solve any specific sheck problem, a number of technical disciplines
are required. These disciplines include data acquisition, data analysis,
data evaluation, design, fabrication, and testing. The attention of our
efforts in this bocx 1> focused solely on the data analysis discipline.

The one idea that we hope will be most firmly conveyed to the reader
is our strong conviction about the manner in which a data analysis
technique should be selected. We believe that the technique employed
to analyze any particular shock problem should be selected on its ability
to provide a satisfactory solution. An analysis technique should not be
selected just because “it was always used in the past” or because it is
convenient to perform. The merits of the technique in providing the
desired soluticn should be the primary selection criterion—tempered
by economic and time considerations, naturally.

The manner in which this book should be read is dependent on the
reader’s background. For the reader new to the field, it is recommended
that the chapters be read in numerical sequence. For those readers
already familiar with the field, it is recommended that they skip
Chapters 2 and 38 on a first reading, as these deal only with the basic
mathematical techniques. Chapters 2 and 3 should serve only as a
refresher and as a reference for these readers.

This book was prepared under the generous sponsorship of the Shock
and Vibration Information Center at the Naval Research Laboratory.
We wish to thank Dr. W, W. Mutch and Mr. H. C. Pusey for the oppor-
tunity and support required to complete this work.

We would like to acknowledge the helpful comments of many of our
associates, and the numerous typists who prepared the manuscript.
In particular, we are grateful for the editorial suggestions of Dr. J. S.
Bendat and the drafting support of Kazimierz Niewiec.

RONALD D. KELLY
GEORGE RICHMAN
Los Angeles, California
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Chapter 1

INTRODUCTION

This monograph is strictly concerned with the analysis of transients
as applied to mechar.cal systems. Throughout this text, the particular
type of transient concerned is called a shock. To properly lay the ground-
work for the subjects to be covered in later chapters, it is first necessary
to discuss data types in general and then the distinguishing character-
istics of shock data.

1.1 Data Types

As a general rule, the most accurate method for determining the
properties of a physical phenomenon consists of directly measuring
these properties and then carefully analyzing the measurements to
determine the underlying relationships. This is the basis of the scientific
method. Any other approach requires that at least portions of the
phenomenon be modeled, and this modeling typically requires simplify-
ing assumptions. The errors inherent in these assumptions are almost
always greater than the errors involved in measuring the character-
istics.

Any observed data may be categorized broadly as either deterministic
or nondeterministic in nature. Deterministic data are those which can
be described accurately by some explicit mathematical relationship.
That is, any future value may be predicted solely from knowledge of
the present value.

As an example of this type of data, consider a series of observations
of the motion of a point located on the perimeter of a rotating wheel
as shown in Fig. 1.1. It may be shown that the vertical component of
the motion of this point is deseribed by the mathematical relationship

x{t) = r[sin (wt+0) + 1], (1.1)

where r is the radius of the wheel, w is its angular velocity, and O is the
initial angular displacement of the point from the horizontal. Data
taken from such a system are deterministic because of the explicit
relationship defined by Eq. (1.1).

o 2




2 SHOCK DATA ANALYSIS
2r
2(t)
—_— r
t
T T, 0
(a) (b)

Fig. 1.1 An example of deterministic data; (a) rotating wheel,
(b) vertical motion of a point (x) on the wheel.

In practice, many physical phenomena are deterministic in nature.
The motion of a satellite in orbit and the temperature of water as heat
is applied are two more examples of deterministic data.

Nondeterministic data, as ... name implies, are those observations
which cannot be described by an explicit mathematical relationship.
Instead, the only meaningful statements which can be made about
these data are statistical or probabilistic in nature. That is, while it
is not possible to predict future values of the data exactly, it is possible
to impose bounds upon these future cbservations with some specified
degree of confidence. Such data are often termed rawndom, although to
use this name properly a rather elaborate set of mathematical condi-
tions must he passed by the data. Practically speaking, the terms
random and nondeterministic are used interchangeably.

As an example of a random phenomenon, cousider the acoustic noise
of a jet aircraft. This noise will vary randomly because of the complex
turbulence caused by the meeting of high-velocity exhaust gases from
the jet engine with the atmosphere.

The classification of data into random and deterministic categories
is open to question in that observations taken of physical phenomena
are almost never truly one or the other. Instead, deterministic data
usually contain a random component due to measurement errors,
environmental effects, ete., or what may appear to be random data
may actually be deterministic data whose causal relationships are so
complex as to be unknown at this time. Atmospheric conditions as
measured in terms of pressure or temperature are examples of deter-
ministic phenomena which are usually considered random for practical
purposes because of the overwhelming difficulties encountered in
explicitly defining the causal relationship.

A time histo:y may be defined as a series of observations of a phe-
nomenon taken over a specified time interval. A single time history
is called a sample function, and the collection of all sample functions
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INTRODUCTION 3

for the phenomenon is called a process. All random processes may be
further classified into stationa.y and nonstationary categories. In
simple terms, a random process is stationary if its moments are in-
variant with time. For practical applications, this concept of station-
arity is frequently restricted to satisfying the condition that only the
first two moments, namely the mean and variance, are time-invariant.
If these moments change with time, the random process is non-
stationary. It should be noted that stationarity requirements as defined
here are based upon ensemble averages. However, if the time average
of a sample function of a stationary process is identical to the ensemble
average taken over the entire process, then the process is said to be
ergodic. Frequently, in practical applications, ergodicity is assumed if
the data are stationary because it is often difficult to acquire more than
a few sample functions from the process being studied and, os a result,
ensemble averages cannot be taken. As examples of stationary and
nonstationary ergodic processes, consider the sample functions shown
in Fig. 1.2. The nonstationary character of Fig. 1.2b is visually apparent,
but in many instances nonstationarities are difficult to detect.

x (1)

(o) t

x{t)

(b) t

Fig. 1.2, Sample functions (a) stationary
process, (b) nonstationary process.

The types of data to be discussed in this monograph may be classified
as either deterministic or nonstationary random. When the problem is
one of analyzing repeatable shocks, such as might be produced by some
shock-testing machines, then the data are deterministic. However, most
shocks caused by natural environments, such as those due to the acci-
dental dropping of a component, or the pyrotechnic shock caused when
explosive bolts are fired on a space vehicle, are nonstationary random
phenomena because of the variability between sample functions.

Y
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1.2 Trausient Data

The practical definition of what constitutes transient data presents
a problem. Considered from a mathematical point of view, all physical
processes are transient. True sine waves, ramp functions, etc., are
mathematical abstractions rather than observable physical phe-
nomena. For example, even the output of an oscillator will not always
be a sinusoid of the same frequency and amplitude. From an engineer-
ing point of view, there are many physical processes that can be con-
sidered sufficiently stationary so that the mathematical abstractions
can be used to obtain solutions to practical problems. If the above
oscillator is tuned to a frequency of 1000 Hz and maintains a reasonably
stable frequency and amplitude for an hour, its output is normally
considered to be a pure sinusoid.

It'is much easier to define what is not a transient than to define
what is a transient. A few cases are clearly transients: the single-
pulse category, for example. The acceleration time history of an item
dropped on the floor clearly falls into the transient category. However,
consider the time period during which the amplitude of the above
oscillator is being changed. Is this a transient condition? Again, from
the mathematical viewpoint, it is transient behavior, but from a prac-
tical viewpoint there are cases where stationary analysis techniques
can be used. This is desirable when possible because stationary analysis
procedures are generally much simpler than transient analys.. vro-
cedures. The key to classification usually lies in the rate of change of
the input conditions relative to the system to which the input is applied.
Suppose that the output of the above oscillator is fed to a second order
filter resonant at 160 Hz. Let the amplitude be changed linearly by some
factor 4 in a time period 7. If vis 10 min, the output at any time during
this period can be accurately predicted. It will be a sine wave of the
same frequency as the input, and its magnitude will vary linearly with
time by the same factor A. If, on the other hand, the change in level
occurs in 1 msee, transient analysis techniques must be used to predict
the output during the change and shortly thereafter. (For a solution
to this problem see Section 5.2). Thus, the classification of a particular
time history as transient or not depends on how the system of interest
responds to this time history. Are the transient response equations
necessary to adequately describe the response, or can they be ignored
and only the steady state equations be used?

Mechanical shocks are usually of great interest in the design and
operation of physical systems because the instantaneous input levels
are frequently an order of magnitude or more higher than the steady
state inputs. Examples of several transient time histories are shown
in Figs. 1.3 through 1.7. These time histories arve from an earthquake,
an impaet in & railroad car, a torpedo hitting the water, a pyrotechnic
shock, and a nuclear explosion, respectively.

[ S
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INTRODUCTION 7

Note that in all of these, the instantaneous values attain tremen-
dously high levels for that system. Thus, the shock environment is an
extremely important one that must be considered in the design of .
many physical systems. ‘

1.3 Transient Analysis

In the context of this monograph, the underlying common denomi-
nator of transient analyses is the determination of the damage
potential of a shock upon a physical system. Analyses are concerned
either with the design of the system to survive the shock environment
or with the attenuation of the shock input to the system by means of
packaging or attenuation devices.

“Survival” of a shock excitation can have two entirely different
meanings: 3

® The system exhibits no permanent damage after the shock, or

@ The system exhibits no degradation of performance either during

or after the shock. l
As an example of the first definition, consider a radio which has been
accidentally dropped on the floor. Whether the radio plays properlv
during the drop is of no concern. In fact, even if the tuning and volume
controls have to be readjusted after the drop, it is of no concern as
long as the radio is not permanently damaged by the fall and plays
properly afterward.

As an example of the second definition, consider the launching of a
guided missile. If the shock from the ignition of the rocket motor causes
even a brief malfunction of the missile guidance or control system, the
missile will lose its inertial reference and miss its target. Note that in
this case permanent damage to the system is not required in order to
fail the second definition of survival.

The design of a system to withstand its shock environment requires
the definition of this environment with reasonable accuracy because
survival is not the only design factor. For «xample, weight and size
are also frequently important and, unfortunutely, usually inversely
related to the shock resistance of a system. The strength of a system is
usually weight-dependent, while the packagings of the system to reduce
shock input is usually size-dependent. However, in many applications, [
size and weight must be minimized —for example, in space applications
where small weight increases require large increases in booster per-
formance. Thus, the system must be able to withstand the shock en-
vironment but cannot have a large safety factor because of the weight
restriction. This requires an accurate definition of the environment.

In addition to the shocks encountered by a system in its service
environment, it may have to undergo testing in the laboratory. These
tests will normally include both design verification and proof of work-
manship. The former is usually & more severe test where the system
is subjected to an environment intended to be at least as severe as
the service environment the system is to withstand. Until recently,
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however, the time histories of the design verification shocks bore little
resemblance to those enciuntered during service. Rather, they were
based upon duplicating the damaging etfects of the environment.
Recently, some effort has been expended on developing the capability
to reproduce measured shock time histories as laboratory test
excitations.

The specific problem discussed in this monograph is that of analyzing
excitation data acquired in time history form. The emphasis is on the
reduction of these data to extract those parameters which can be used
to solve the engineering problem being studied while rejecting the
unimportant parameters that tend to obscure the solution.

Because the failure of a system is directly related to its response
to its shock environment, the emphasis in shock analysis has been
placed primarily on determining this response. This has been performed
either by decomposing the time history into simpler mathematical func-
tions in order to facilitate the computation of the system response,
or by determining the failure-related parameters in the response of
an estimated model of the system to the shock time history.

Unfortunately, all the mechanisms by which shocks cause failures in
physical systems are not well understood. It is commonly assumed that
a system can fail either because of a single, extremely high, response
amplitude or because of fatigue damage accumulated over many
response cycles. The latter failure can oceur during a single shock or
after exposure to multiple shocks. The first failvre mechanism is usually
referred 10 as the single highest peak criterion, and the parameter to be
determined from the time history is the peak response of the system.
The second mechanism is based on a fatigue failure criterion, and the
parameters of importance are the number and amplitude of the stress
reversals indicated by the relative marima and minima of the system
response.

While it is poussible to determine the required parameters directly
from the shock time history under certain simplifying assumptions,
a majority of the techniques used to date perform the analysis in the
frequency domain. Analysis in this domain is usually termed spectral
decomposition. The advantages of spectral procedures are manyfold.
First of all, physical systems may be modeled most easily and accurately
in this domain. Many structural models, for example, consist of a set
of simple second order oscillators connected in a manner which simu-
lates the various components of the particular structure. Such a model
is shown in Fig. 1.8. Each oscillator has its own oscillatory or resonant
frequency which is dependent upon the size, shape, and material of
the component it is simulating. Since each oscillator will be excited
primarily by energy at its resonant frequency, the knowledge of the
frequency content of the shock provides the key to the determination
of the system response to the shock. Because of these reasons, spectral
decomposition techniaues will receive primary consideration in this
monograph.

.
b
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Fig. 1.8. Structural model composed of simple
second order systems.

1.4 Organization of the Monograph

The remaining chapters of this monograph are divided into two
primary subjects. The next three chapters contain basic background
material i introduce the subject of shock analysis. The fundamental
mathematical techniques required to solve transient problems are
discussed in Chapter 2; these include differential equations, Fourier
transforms and Laplace transforms. In Chapter 3, techniques for
determining the response of linear systems to transient inputs are
described. In Chapter 4, spectral decomposition is defined and discussed.
Particular emphasis is placed on the two forms of spectral decomposi-
tion most commonly used to solve shock problems—Fourier spectra
and shock spectra. These two decompositions are defined and compared
from an applications point of view.

The last three chapters contain discussions of advanced special
analog and digital material on techniques for analyzing shock data.
Some of this material is not available elsewhere. Chapter 5 describes
analog techniques for computing Fourier and shock spectra. It also
presents practical formulas for estimating error magnitudes associated
with these analyses. Chapter 6 presents similar material on digital
techniques tor analyzing shock data. Chapter 7 covers methods other
than the Fourier and shock spectra analysis techniques. A bread range
of techniques, from simple single number analyses up to complicated
random transient analyses, is described.

356-558 OL - 71 - 2
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Chapter 2
BASIC MATHEMATICAL PROCEDURES

2.1 Differential Equations

Physical systems may be analyzed in several ways. The most obvious
approach is to determine the differential equations describing the
operation of the system and then to solve these equations by some
analytic procedure. To attain this goal, the system must be relatively
simple, since solutions can be obtained by classical techniques only
for limited cases.

Simple systems usually give rise to linear, nth order differential
equations. The coefficients of the differential equation describe system
parameters which are usually invariant with time. The order of the
system it equal to twice the number of degrees of freedom available
to the response motion, where each degree of freedom is defined as the
ability to move along or about an axis.

An example of the simple physical system is the second order,
mechanical system shown in Fig. 2.1.

Fi
! ¥

é Fig. 2.1. A second order mechanical system.
i Kyt
A /.23232;2;/

The system consists of a mass m connected to an immovable founda-
tion by a spring and a dashpot. The spring is linear and has a coefficient
k. The viscous damping coeflicient of the dashpot is ¢. If the system is
excited by a force F(t) applied to the mass, the differential equation
describing the response motion of the mass may be derived by specify-

ing that the sum of all the forces acting on the mass be identically zero. -

The forces consist of

Fi(t) = spring force
F(t) = damping force

11
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12 SHOCK DATA ANALYSIS

F(t) =inertial force
F (1) = exciting force,
and the equation of motion is

F’-(t)+F(‘(t)+Fl"(t) '*’F(t) =0, (21)

The quantity y(t) is defined as the inertial motion of the mass. Then

%g=inertial velocity of the mass,

and
diy_ . : .
-;E'! = inertial acceleration of the mass.

Expressions for the forces in terims of y (f), %Itl’ and %fi may be obtained.
They are

Fi(ty==ky(t) (2.2)

v~ Ay s
Fdt)y= e 2.3)

F.(t)y=—m f(.ll_t.’!_ (2.4)

Equation (2.1) may now be rewritten as

I"(t)—ky(t)—c%*;l—m%%-'f=0 (2.52)
or
:»z%}«'_»f+c‘;’#+ky(f)=lv'm. (2.5b)

A closed-form solution for y(t} can now be obtained. The complete
solution consists of the sum of the general solution to the homogeneous

equation

m dt-'ﬂtllf“’“) 0 (2.6)

and a particular solution of the differential equation itself.

Since the equation is of second order, two solutions exist for the
homogenecous equation. The general solution consists of their sum.
A solution of the form y=e* is assumed. Then

Ay _\u Y yen
71? AeM, di Azg M,
Equation (2.6) may be rewritten as
mAReM 4 cAeM 1 LeM =0, 2.7

.
T e = e et et e

et




BASIC MATHEMATICAL PROCEDURES 13

Removing the common factor e, a quadratic equation in A is obtained.

mA? ek + k=0, 2.8)
The two roots of this equation are determined by means of the quadratic
formula
_=—c+ Vei—dmk _=—c—=Vci—dmk
M= 2m ’ A= 2m ) 2.9)

The general solution to the homogeneous equation is then
Y (t) = cieMt + ¢ e, (2.10)

where ¢, and ¢; are constants of integration.
The particular solution to the diffevential equation may be determined
by assuming a complex periodic form for the exciting force, i.e.,

F(t)=qaer, 2.11)
and then predicting a response motion of a similar nature,
y(t)=ber, 2.12)
Equation (2.5b) may he rewritten as
mjiwibert + cjwbe s + fhe st = qert. (2.13a)
After removing the common factor e,
—mwtb + jewb + kb=a (2.13b)
or
b et jeat b 2.14)
Equation (2.14) may also be written as

b= aae -4, (2.19)
where

5= (% sin ! cwea. 2.17)

The complete solution is then
gib) = e M e pae My qaeiest- b (2.18)
Solving low order differential equations by classical procedures is not

difficult. However, as the system becomes nmore complex, more degrees
of freedom are required to describe its motion. This gives rise to higher

.y




14 SHOCK DATA ANALYSIS

order equations whose solutions require considerable effort. As a result,
other procedures are usually employed.

2.2 Operational Calculus

The solution of differential equations by classical techniques can be
quite laborious and time-consuming. In this section several more con-
venient methods for solving certain types of differential equations are
discussed. All of these discussions are restricted to the linear, constant-
coefficient class of equations. The first of these operational calculus
techniques was developed by Heaviside [6]. All of the other solution
techniques that will be covered in this section are variations of this
fundamental technique.

In the Heaviside method, all of the derivatives in the differential equa-
tions are replaced by a linear operator p. As an example, consider the
following equation of a system with an input a(f) and an output y(¢):

d my d Mmely d:l‘
a'_dt"' +a_---———dt",_l + ... +a,,.m+a,,,,..r

bigan o T e Yo o 219)

This is rewritten as

Alplxtr=B[ply), (2.20)
where
{1[])]:(111)"'+(lgp"'"* e PP ey
Bpl=bpr+bspr-t+ ...+ bup+baay

_d oA dr
P=qp P T PPEge e

If x(¢) and y{t) and all of their devivatives are equal to zero at time zero
then the solution for the system output at any time greater than zero
for some input x(¢} is given by the following equation:

—_.“ ) N DID
y(:)«JUBlp]m). (2.21)

This solution for n>m is calculated by the Heaviside expansion
theorem. For example, let the input be complex periodie and equal to
I Then
AlJw) 2 Ap,)erd
) =Xy 5o+ Y - 4 ; 2,22
y " BUw) = A= Jw)BT(p,)’ (2.22)
where

pr=the roots of the equation, B{p]=0,*

*These roots ure not repeated and are not zero.

st
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B’ (pr) =the derivative of the polynomial B[p] evaluated at the
rth root.

If the input is 2., cos wt, the real part of Eq. (2.22) is the solution and,
similarly, if the input is .. Sin w¢, the imaginary part of this equation
is the solution. If the input is x,,, timeas a unit step function, the solution
is given by Eq. (2.22) with all the o’s set equal to zero.

Integral Transforms

A more con, enient approach to the solution of this category of equa-
tions is through the use of linear integral transforms. A linear integral
transform of a function x(¢) is given by

Tlx(8))] =f” K(t, wya(t)dt, ©2.23)

where

T{x(t)] = an integral transform of x(¢),
K(t,u) =a kernel; some particular function of both ¢t and .

The linearity statement on the transform means that the transform of
a sum of two functions is equal to the sum of the two separate trans-
forms and that the transform of a function multiplied by a constant is
equal to the same constant multiplied by the transform of the function.
Expressed in equation form, this is

’1‘[('|.l'|(t) + (‘_-.A'»_-(() ] = l[-l'](t)] + C_'T[J'."t)], (2-24)

where ¢, and ¢; are constants. The great value of linear integral trans-
formations is that with certain kernels the transforms of many forms
of ordinary differential equations reduce to algebraic equations. This
reduces the problem of solving: the differential equation to one of deter-
mining the roots of an algebraic equation and then taking an inverse
transform of this solution.

2.3 Fourier I'ransforms
It in Eq. (2.23), the kernel is made equal to e #, the lower limit a is

set to — =, and the upper limit b is set to + =, then the result is known as
the Fourier transform

Fleth} =X f o eitydt, (2.25)

where Flxtti] = X () = the Fourier transform of x (1. Thus the function
has been transformed from the time domain to the frequency domain.
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Fourier transformation techniques are applied to the solution of differ-
ential equations by rewriting Eq. (2.19) as

Ali2=f1X (N =BLi2=f1Y (), (2.26)
where
Alj2af]l=a(2af)m + @ 2mfHm=1+ . ..+ aw(J2mf) + s

BUj2mf) = bi(i2wf)n+ 0, (J2mf)n =1+ . o .+ bu(J27F) + by

The transform of y(t) as a function of the transform of x(t) is found as
follows:
. 4 [i27f] -, ,
Y(f) =SHEELL y (p), (2.27

To obtain the solution in the time domain, an integral transformation
is made of Eq. (2.27). In this transformation from the frequency to the
time domain, the kernel is ¢2272, Notice that this kernel differs from that
of the Fourier transform, Eq. (2.25), only in the sign of the power of
the exponential. This transformation is known as the inverse Fourier
transformation:

FAY@l=yi= f o (2.28)

where F-![Y (/)] =the inverse Fourier transform.
As an example of a Fourier transform, consider the time function
shown in Fig. 2.2,

AMPLITUDE OF X(1t)

|

A

i Fig. 2.2. A boxcar time lunction.

A
2

TIME, t ~— =

This time function can be described by

.

-

A -5ty
a{t) - - =
0 elsewhere.

The Fourier tran-form of this time function is

L2 1% —_— » - g Lo
XN ZI Ae mmdt= w—" (c- R G 1k )
1

w? J2xy

S e s L o et it bt 7w
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By use of Euler’s formula, sin a= (e’*—e %) /(27), this equation can be
rearranged into the more convenient form of

X(f)=(ATy) [%@] (2.29)

The magnitude of this (sin «)/x function is shown in Fig. 2.3. Since the
transform is entirely real, the phase factor [tan-! (Im/Re)] will be zero

for all frequencies.

MAGNITUDE OF X(f)

AT,
\.//\ AN
i I~ | |
.z.s.;.z\/.i 1\'/1;1_:':
A T T T % % % %
L]
FREQUENCY

Iig. 2.3. A boxcar frequency function.

As a second example, consider the time function shown in Fig. 2.4,

A
{
Fig. 2.4. Time function, 1
initial-peak sawtooth.
° T, '
TIME
n‘l 1_(”“") 05t57‘0
x(t)= [ ] (2.30)
0 elsewhere.
The Fourier transform is found as follows:
s Te ¢
.\u)=f A1) e s 2.31)
L] u
_dAT [(sin®mfTo) | jemer _
—-——27‘_”.“[( R ) te ey x].

The magnitude of this function is shown in Fig. 2.5, and the phase
factor in Fig. 2.6.




=4

18

SHOCK DATA ANALYSIS

MAGNITUDE OF X{f)

6(f)

a6
04

02

-+|=a —
~A[r - —

; ; : ;
.3 .2 -4 3
T T T o T
FREQUENCY, f
Fig. 2.5. Frequency function, initial-peak sawtooth.
002 004 006 Q08 QIG 012 Qi+ 016 018 020 Q22 024 0%

PN

Fig. 2.6. Phase factor, initiel-peak sawtooth.
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Now consider the inverse transform of the above two frequency
functions First,

2(0)= [ (ary) [S2LRIT | gremy. (2.32)

Since e¢jr=cos x+j sin x, the equation can be rearranged;

x(t)g;l( f » sin }’m cos 2aftdf +j f - Si“}’ﬂ"’ sin 27rfzdf). (2.33)

Since the first term of the above equation is an even function
{f(—x)=f(x)] and the second term is an odd function [f(—x)=—f(x)],
further simplification is possible and yields
w(t) =24 f *sinaflo oo omprdf. 2.34)
T Jo f

One further manipulation is required. Let u=|t|. Then, since
cos |« |=cosx, the equation becomes

x(t)=-‘-2_‘£1—fxﬂl—1—fz—ﬂ—°cos 2mfu dt
T Jo

u < Tof2 (2.35)

B

=24
1o u>Tof2

or

(2.36)

(t) = 24 Itl<Tol2,0l"—To/2< t<To/2
TV 1> Tee

Thus, the original boxcar time function shown in Fig. 2.2 is obtained.
The inverse transform of the frequency function for the second
example is calculated as

_* (AT [ (sin mfTo\ ,  _juprer — =
o (] () cormr e

This is expanded to

2(8) = AT j“ ( ;sin 770 f cos 7Tof cos 2mtf  sin® wTof cos 2mtf
2(7]’7‘0): - j‘: f:
- 7o c}s 2nutf _sin 7T I'cos};rTof sin 2xtf’ 2.38)

+j sin?® nT;{:sin 21rtf+ 7T sf;\ 27rtl’) df.

v —— et e e =

o il

.
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By dropping all the odd terms, doubling the value of the even terms,
and integrating these over only half the range, the equsation simplifies
to the following:

2(t)= AT, J’°° (sin'—’ wTof cos 2mtf _sin 27Ty f sin 2wtf
(7T0)? ) - f* 2f* (2.39)
+ wTo s}l? 2wtf df.

The solution for this integral can be found in Ref. 7. The complete
solution (inverse transform) is

A(l—-—-—) 0<t<To

x(t)= 0 To<t, (2.40)

which is the original time function.

In Ref. 8, p. 93, an analogy is drawn between a table of logarithms
and a table of integral transforms. The purpose of the logarithmic
type of transform is to simplify the arithmetical operations of multi-
plication and division. Thus the primary properties of this transforma-
tion are the following.

ley]=rlx]+7[y)
tlefy)=7[x] =y}
7len) = nrlx],
where 7[ ]=the logarithmic transform.

A simple table of logarithmic transform pairs is shown in Table 2.1,

TABLE 2.1. SIMPLE TABLE OF LOGARITHMS

Original Number, x| Logarithmic Transform, +[.x)

1 0
10 1
100 2

Suppose that the multiplication 1010 is to be performed;
7[10-10]=.-[l()]+1[10]=-l+1:2. (2..41)

To get back to the numerieal value, an inverse transformation is made
simply by using the table;
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7-1[2} =100. (2.42)
(Obviously, these simple multiplications can be carried out faster in
a direct manner than by transformation. However, as the functions
become more complicated, the transform solution becomes much faster
than the direct solution. The same is true of integral transformations.)

From the two examples in this section, a simple Fourier transform
table can be constructed (see Table 2.2). Hence, any time that the
solution to the differential equations in the frequency domain is of the
(sin x)/x form, the solution in the time domain can be found from the
Fourier transform tables to be a boxcar function in the time domain.
More extensive tables of Fourier transforms can be found in Refs. 9
and 10.

TABLE 2.2. SIMPLE TABLE OF FOURIER TRANSFORMS

x(t), Inverse Transform X(f), Direct Transform
A, "'7_-%" st < +% AT [-——Sl:f?‘{?u]

0, elsewhere

a1t cp T JATo [(sin wfTo omey
A (1 T"); Ost=s 70 —_271'/7'., [('—?‘.—“—-) (e ! ]T) 1
0, elsewhere

Alternate Forms of the Fourier Transform

Fourier transforms are commonly defined in a number of forms.
When using tables of Fourier transform pairs, care must be exercised
to be sure of the exszct definition of the Fourier transform tabulated
in that particular table. First, there can be a difference in the scale
factor and/or argument of the transforms. In this text, the transform
has been defined over f'to avoid constants in either the direct orinverse
transform. This definition is

=
X = J x(t)e et
and

xi) = f " X()erndf,

Other common forms are defined below, where different subscripts are
used on the Fourier transforms to contrast the various definitions:

L

I
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Form 1
X\ (@) =f°° @ (t)e -Jotdt
(w=21f)
B(0)=5= f " Xi(@)erdo
Form 2
Xa(w) =% f .: x(t)e~otdt
() = J' ® Xa(w)edo
Form 8

Xa(w) =ﬁ J‘_z x(t)e-Jetdt

() =-\712—Tr f_: Xa(w) e do.

Second, since the kernel of the transformation is a complex exponen-
tial, it can be expanded by Euler’s formula into cosine and sine com-
ponents;

X =f ) x(t) cos 27rftdt-jf i} x(t) sin 2z ftdt
and
2(t)= f * X(f) cos 2mftdf+j f * X(f) sin 2aftd.

Frequently, tables wili list the Fourier cosine and sine transforms
separately from the complex exponential Fourier transforms;

X,(f)=jx x(t) cos 2mftdt

and
X,Lf)=J‘“ x2(t) sin 2mstdt,

where
Xe(f) = the Fourier cosine transform

X.(f) = the Fourier sine transform.
Also, some tables define one-sided Fourier cosine and sine transforms;
.\'.-.(f)=f‘ x(t) cos 2xstdt
0

and
XulN)= f: x(t) sin 2mftdt,

\ e o
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If the equations are either even or odd functions, then the latter types
of transforms are particularly useful:

For even functions

X()=2Xa(f)

For odd functions
X(f)=—2iXa(f)

In general

X(N)=Xa(f) +Xa(=f) =§[Xa () =Xa (=N].

Conditions for the Transform to Exist

Up to this point, nothing has been said about restrictions on the
function to be transformed ip order that its Fourier transform exist.
The reason for this is that almost all physical functions, and certainly
practical shock time histories, will satisfy these conditions. Generally,
it is only with analytical examples that these conditions cannot be met.
The formal conditions are known as the Dirichlet’s Conditions and are
quoted below from Ref. 11.*

“A function f(«) will be said to satisfy Dirichlet’s Conditions in an

interval (a, b) in which it is defined, when it is subject to one of the

two following conditions:

(i) f(x) is bounded in (a, b), and the interval can be broken up into

a finite number of open partial intervals, in each of which f(x)
is monotonic,

(ii) f(x) has a finite number of points of infinite discontinuities in
the interval. When arbitrary small neighborhoods of these
points are excluded, f(x) is bounded in the remainder of the
interval, and this can be broken up into a finite number of open
partial intervals, in each of which f{x) is monotonic. Further,

the infinite integral

f_:f(.r)dx

is to be absolutely convergent.”

Special Properties of Fourier Transforms

Since Fourier transforms have been investigated extensively, much
is known about their special properties. These properties can be used
to good advantage in simplifying analyses. Many of these properties
are tabulated in Table 2.3.

*Reprinted by permission of Dover Publieations, Inc.

o
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TABLE 2.3. SPECIAL PROPERTIES OF FOURIER TRANSFORMS

Fourier Transform,

Property Function, x(t) X0
Linearity ax (t) +by(t) aX(f)+bY(f)
Convolution f  xe=ny(ndr | X() Y ()
Multiplication (t) - y(6) f " X(F=NY (M)A

N dx ;
Derivative T JemfX(f)
Integral J'l a(v)dr ‘}—(—f—) s J#0

-= 2af
Derivative in the Fre- . dX
quency Domain j2mex(t) df
Integral in the Fre- _x() J'f X()dA
quency Domain J2mt -
Contrac_t;ion in the Time 2(t/a) lalX (af)
Domain
Contraction in the _ LB x(bt) XU/1b)
Frequency Domain
'I‘ranslu.tion in the Time x(t—a) e X (f)
Domain
Translation in the ety (f) X(f—0b)

Frequency Domain

Area Under the Curve

f‘ £(Hdt=X(0)

j T X(df=x(0)

Energy

J" fe(d) P dt

] .; RYVATR

Delta Function in the
Time Domain

z(t) =8(t)

X(H=1

e S
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TABLE 2.3. SPECIAL PROPERTIES OF FOURIER TRANSFORMS~Con.

Fourier Transform,

Property Function, x(t) X0
Delta Function in the _ _
Frequency Domain 2(t) =1 X(fy=8(/)
X(fy=X*(-N,

where *=com-
plex conjugate.

Real-Time Function x(t) =Real Re[X/f)
=Re[X(~f)]
Im[X()]
=—Im[X(-f)]
Even Time Function x(t)y=x(—t) X(f)=2',;nx(t) cos 2mftdt
0dd Time Function x(ty==—x(—1t) X(f)=-12rx(t) sin 27 fidt
Complex Conjugate yl{t) =x*(t) Y()=X*(—1)

f“ F*(Oy(t)dt= j X OY(df
Parseval’s Theorem Ji! () y)dt= j‘ XE=NYNHdf

-®x

[ eovia= | [ xiuee

Finite Fourier Transforms

In the basic definition of the Fourier transform given by Eq. (2.25),
the limits of integration are infinite. In practice, a finite representation
of the function is always obtained. The physical record has some start-
ing point that is usually designated as time zero and an end point that
will be designated as time 7. Thus the Fourier transform of a physical
data record is written as

X(H= f " ett)e mmt, (2.43)

where X(f) = the estimate of the Fourier transform of the function x(t)
based on a physical record of finite duration.

To use the results previously developed in this chapter, the time
base will be defined slightly differently. Specifically, time zero will be

356-558 OL -1 .3
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defined to be exactly in the middle of the record. Thus, the finite Fourier
transform is rewritten as

~ T2 .
X(H= f St (2.44)

If the physical function is of finite duration equal to or less than T and
is completely contained in the time interval from —T/2 to +7T/2, no
distortion of the true Fourier transform will occur. However, if the
true physical function is not completely contained in the interval T,
the finite transform will be a distorted version of the true Fourier trans-
form. It then becomes necessary to be able to determine the relation
between the error in the transform and the time interval T. By knowing
this relationship, it is possible to select the proper duration for the
required accuracy in the transform when that option is available. Or,
when constrained to a fixed time interval, the accuracy of the finite
transform can be estimated. The distortion of the true transform can
be evaluated as follows.

The finite transform can be written as the infinite transform of a
product of functions where one of the functions is the boxcar function
y(t) between = T/2 and +T/2;

«‘:’(f)=f_! x(H)y (e »7dt, (2.45)
where
1 =TR st<s+T2
yt)y= (2.46)
0 elsewhere.

From the table of properties of Fourier transforms, it is noted that the
transform of a product of time functions is the convolution of the
individual transforms of the pair. Therefore,

X\n= f T X(f= DY) (2.47)

From Eq. (2.29), Y(A)=sin (wAT)/(zAT). It is through this transform
that the dependence of the time duration occuvs. .X(f) is the true
Fourier transform and is obtained over an infinite interval; hence,
it is independent of 7" The transforms for two different record lengths
are compared in Fig. 2.7. Note that the side lobes have about the same
maximum values, but that the main lobe of the longer duration boxear
function has a greater value and is narrower than the shorter duration
function.

The way the finite duration distorts the Fourier transform can be
examined by graphically evaluating the convolution integral. These
steps are shown below. In Fig. 2.8, part (a) shows the true Fourier trans-
form of some function xi¢). In part (b), the transform is rotated about
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1zinl

Fig. 2.7. Fourier transforms of boxcar functions
of durations T, and T:.

X(t) Xt

{a) (b}
X{t=1) Y
?
(c) (d)
X(4,=1) ¥t

ad
Amuf XU1,=0) ¥(1I 4t = XUt

L

() (t)

Fig. 2.8. Graphical evaluation of a convolution integral.

ahounik.
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f=0 to obtain the transform X(—f). In part (c), the rotated transform
is translated to the right by an amount fo so that the original transform
value at fo now falls at f=0. By performing this rotation and trans-
formation, the first function X(fo—f) in the above convolution has
been obtained. Part (d) shows the Fourier transform Y (f) of the boxear
function associated with the finite record length 7. In part (e) of this
figure, the product of the transforms shown in parts (¢) and (d) is plotted.
The area under this product curve is then equal to the value of the
convolution integral evaluated at f,. This is also equal to the finite
transform at frequency fo. In part (f), this value of the finite transform
is plotted as a point at frequency f,. The difference between this point
and the true value of the transform at f; is the inaccuracy caused by
taking the transform over the finite time interval T.

Values of the finite transform at frectency points other than f, are
evaluated by substituting each new trequency point in place of 7 in
the convolution integral. For example,

2= [ Xth=ny (s (2.48)

This operation must be repeated for all the frequency points to be
determined in the finite transform.
Fourier Series

Fourier analysis techniques are also used to describe periodic data
that are not just simple sinusoids. Assume an arbitrary signal x(¢)
that repeats itself exactly every T seconds:

2()=x(t+T)=0(t+2T)....

This time history can be described in terms of the infinite Fourier series,

*‘“’=%.?§,‘?’(%)¢”’"""r. n=1,23,... (2.49)
where
T 2
e(;—‘)= f x(he . (2.50)
rz2

The resemblance of this discrete spectral quantity to the direct
Fourier transform in Eq. (2.25) and to the finite direct Fourier trans-
form of Eq. (2.44) is clear. Note the argument of the spectral quantity.
These spectral values occur only at integer values of the frequency 1/T.
This frequency is called the fundamental, and n/7 is its nth harmonic.

The relationship between the Fourier series 1n Eq. (2.49) and the
inverse transform of Eq. (2.28) is not so simple. In fact, the formal proof
of this relationship is complicated. Heuristically, the relaticnship can
be demonstrated by taking the limits on (1/7) and (»/T) asboth T'and n

sttty et st = -

P
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approach infinity. As T becomes infinite, 1/T becomes an increment in
a continuous variable;

lim (L) -d
Tl_r’nmk T) f
Likewise, the limit of n/T must be taken so that

ITILn("'T‘) ~f

Then the summation will become the following integration:

tim[F 3 #(3)e )= [ x(nenmay (2.51)

n=sx
o R® =00

In many texts, the spectral function is defined slightly differently;

=1 p(n)=L[™ ~hemi
D,.—T&”(T) L j_mx(t)e 7 dt, 2.52)

and in terms of the time function,

()= 3 Dt 2.53)

R

Notice that the only difference is that the division by the record
length occurs in the computation of the spectral function instead of
in the computation of the time function.

As with the Fourier integral transformation, there are a number of
different forms of the Fourier series. The other two most common forms
are derived below from the complex exponential series. The spectral
function is

D..=-1-:f” x(t)c"’midt=7l-;f” x{t) cos 2t B dt
7 -re 1 T2 1

—jlf” c(t) sin 27t Bt =y —jbu. (2.54)
T) g, ¥ sin2at pdt = =jbn 2

The time history, usually written in terms of positive frequency com-
ponents, is

() =a,+2 i (a,. cos 2t %‘;+ b, sin 2t 17%)

_l T2
= Tf«r.: x(t)dt

a..=-l-f” x(t) cos 2t Rt
T)-m T

b =l-f”’ 2(t) sin 20t 2 gt (2.55)
"= - T dt. .

T s st o . mars
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This is the Fourier series in terms of the sines and cosines of the har-
monics. The coefficients a, and b, are real, whereas D, is a complex
quantity.

By using the trigonometric identity

acos z+bsinx= Vai+bcos (z—¢), (2.56)

the series can be obtained in terms of an amplitude value and a phase
shift at each harmonie. Thus,

)=a+2 3 o2t L+ ¢, ] 2.57
x(t)=a ";[cncos(n-T d)) 2.57)
where
e = Vai+ bi (2.582)
T
¢ =tan .L_ln] (2.58b)

In Fig. 2.9a, a discrete Fourier spectrum is plotted in terms of real and
imaginary values. In part (b), it is plotted in terms of a modulus and
phase.

REAL AMODULUS
+|
ap ¢n ’
| [ I |
] 2 ] 2
A 2 T T
= f f e
IMAGINARY PHASE
+ +
"] " l
\ 2 ° 0 2
¥ 3 | l r $ |
- -

(a) (b)

Fig. 2.9. Discrete Fourier transforms; (a) real and
imaginary presentation, (b) modulus and phase
presentation.

The primary value of the Fourier series is that it simplifies the
calculations for the response of linear systems with complicated, but
periodic, input functions. At each frequency contained in the input,
the response is calculated by simple steady state (for sinusoidal inputs)
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techniques. This consists of simply scaling the magnitude and shifting
the phase of the component of the input at that frequency. The response
is calculated independently at each frequency. Then all the responses
are summed vectorially to compute the total response.

2.4 Laplace Transforms

All of the preceding discussions have been devoted to Fourier trans-
forms, as they are the most common ones used in the analysis of shock
data. However, there are many occasions when Laplace transformation
results in a simpler solution to certain problems. From Eq. (2.23), the
equation of a linear integral transform is

T{x(t)]= f " K(t, w)x(t)dt. (2.59)

If e-# is used as the kernel function, the lower limit a is set to 0, and
the upper limit b is set to infinity, the transform is known as the Laplace
transform

()] =X(s)= f:c“‘x(t)dt, (2.60)

where
L{x()]=X(s) =the Laplace transform. (2.61)

Notice that the differences between the Laplace and Fourier transforms
are in (a) the lower limit and (b) the argument of the exponential kernel.
The argument of the Laplace transformation kernel is a complex

variable
s=o-+j2xaf. (2.62)

Thus this kernel is a damped version of the Fourier keriel (or, perhaps
more properly, the Fourier kernel is the undamped portion of the
Laplace kernel):

e = e 9! 2t == e ol . e ‘.‘ﬂ_ﬂ. (2-63)
The inverse Laplace transform is

4 ‘lx(s)]=x(t)=5l;j- T X(syerds; ou<e, (2.64)
- ¢ g%

where

2 Mx(s))=the inverse Laplace transform

o,=the minimum value of “damping” that will
make the inverse transform converge.

As with the Fourier transferms, a table of transform pairs can be used
instead of performing the actual integrations. For tables, see Refs. 8
and 10.

iR S —
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The primary advantages of the Laplace transform over the Fourier
transform are
® The Laplace integral converges for a large class of functions for
which the Fourier integral is divergent, and
@ Initial conditions can be introduced directly into the integral.
For example, consider the simple step function shown in Fig. 2.10.
Strictly speaking, this function does not converge;

f *a(tydt= f: (1)dt. (2.65)

Therefore, its Fourier transform should not exist. The existence of the
Fourier transform of this unit step function is usuaily “justified” by
finding the transform of a decaying exponential that starts at time zero
(see Fig. 2.11);

=" 0=t (2.66)
X = .
0 0=t

X =f " e-ate s
1]

=I1 e (av).‘xf)ldt
]

= 1 -
a+j2af’

(2.67)

Then the limit is taken as a=— 0 (¢ =1) and the Fourier transform
of the step function is defined as 1/(j2=f).

AMPLITUDE

Fig. 2.10. Unit step function.
— i e

TIME

Fig. 2.11. Deeaying exponential functions.
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This type of justification is not needed for the Laplace transform
because the real part of the exponential kernel forces the transform
to converge. The transform is found simply;

X(s) =J‘I u(t)e-stdt

[\}

=fx e stdt
1]

=1 (2.68)

8

By rewriting Eq. (2.68) as follows

[}

X(S)=fx.l‘(t)(""‘ cos 2mftdt —jf‘.l‘(f)(’_'" sin 2w ftdt, (2.69)
[\

1t can more easily be seen that the Laplace transform kernel consists
of damped trigonometric terms, whereas the Fourier transform kernel
consists of undamped trigonometric terms. It is this damping that
permits the convergence of Laplace transforms for some functions
whose Fourier transforms diverge.

As previously stated, the second major advantage of the Laplace
transform over the Fourier transrorm is the ease with which initial
conditions are introduced. To show this, the Laplace transforms of the
derivative and the integral of a function must be found;

de@®))_ [=dx) o "
" [ T, . ar e dt. (2.70)
The solution to the above integral can be found by integrating by parts,
(
J udv=uv—-j vdu. (2.71)

Let u=e * and dv= [de(t)/dt}dt. Then diu=--s¢ *dt and r=x(¢), and

4 [-—d’:}(,““c ".r(t)]‘+f‘xu)sc wlt:-.r(O)+sf‘.r(!)c “dt

== 2(0) + sX(s). (2.72)

Thus, the Laplace transform of a derivative of a function is equal to
the Laplace transform of the function multiplied by the complex fre-
quency value s, and from this product is subtracted the initial value of
the function. (Care must be exercised to be sure that the initial value
used, if it is not single valued, is the one obtained by approaching time
zero from the right.) Transforms of higher order derivatives are found
in the same manner;

nanns
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s [(l?;}(:t)] $:X(s)—s ‘(0)—(lil(t0)
and o
Jdrat ' l('-”x(O)
s [( (Ilt(:, )]ﬁg“\(e)“z st )[(‘?IT‘T—'_’_]

-1

The Laplace transform of the integral of a function can be found from
the above properties of differentiation. Let

y(t)zj.l'(t)(lt, Yis)= ~/ [ J’.r(t)(lt},

and (2.74)
- dy(t) :(l[fa‘(t)(ltl
BT dt )
Therefore the transform of x(f) is
NXis) =sY(s) - y(0). (2.75)
The transform of the integral is found simply by rearranging;
Yis) = ‘\;(S) u(9)
/ ”.rmdr] M), f e, (2.76)

In words, the Laplace transform of the integral of a function is equal
to the Laplace transform of the function plus the value of the integral
at time zero, the quantity divided by the complex frequency variable s.
(Again, the integral must be evaluated by approaching time zero from
the right.) Higher order integrals are found by the following formula:

" j fn(O)dl
qumnu J S { AR ] @77
l

Since the transforms of derivatives and integrals of functions involve
initial conditions, the mechanism is available for ente~ing these initial
conditions directly into the transforms of differential or integro-
differential equations.*

As an example, eonsider the differential equation

dx(t)

o o) 0 (2.78)

with initial conditions of [dx(0)] dt =0 and £(0)- 1,

*Integrodifferential equations contain both integrals and denvatives.
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Transforms are taken of the differential equation
| El) 4 #12(0) = 210]

[s-’X(s) —s2:(0) —-dld#] +[X(s)]=0

s X(s)+X(s)—s—0=0

tnitial conditions

si+1
From a table of transform pairs, the inverse transform is found:

()= 7/ '[X(s)]= /" [;:_:_;i-]=cos t. (2.80)




Chapter 3
RESPONSE OF LINEAR SYSTEMS

Since th~ roal of any transient measurement is to examine the re-
sponse of some system, this chapter will examine various methods for
determining the response of systems. The systems discussed are re-
stricted to ideal linear systems. Methods for calculating the response
in the time domain, the frequency domain, and the complex frequency
domain are described. In addition, methods for computing the overall
response of systems connected in tandem are explained.

3.1 Definitions

The analysis p‘rocedures"to\be described in the following sections of
this chapter assume that the physical system under consideration is
‘linear, that its fundamental properties do not change with time, and
that there is a single.input to and a single output from the system. Such
sy stem is usnally termed an ideal system, or in more specific terms, it
is called a smg]e input, single output, constant-parameter, linear
Sy stem.

The term linearity denotes two basic characterlshcs of the response
of the system:

® The tesponse is additive, and

. ® The response is homogeneous.
The first of these characteristics implies that the response of the system
to the sum of several excitations is equal to the sum of the system re-
sponses obtained when each excitation is applied individually. This is
shown-in Fig. 3.1a. The.excitations, or inputs, are designated by «’s,
- and the respanses, or outplits, are desuznated by ¢'s.

Homogéneity means tnat the response of the system to the product of
some constant and the excitation is equal to the product of this same
constant and the response generated by the excitation.alone. The homo-
geneity requirement is depicted in Fig. 3.1b and the total linearity re-
quirement is shown in Fig. 3.1c.

The constant-parameter requirement means that the integrodiffer—

ential equations relating the output of the system to its input must be
of the constant-parameter type, The single input and output require-

37
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x(t) y, (1)
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Fig. 3.1, Linearity definition; (a) additive
rule, (b) homogeneity, (c) linearity.

ments simply require that there must be only one input to and only one
output from the system.

With actual physical systems, these restrictions are never met exactly.
There are no truly ideal systems. In fact, no practical system can truly
meet any of the requirements of the ideal system. There are no systems
that are linear over the entire possible range of input levels. Neither
are there any physical systems that are truly invariant with time. In
fact, there are no physical systems with only a single input and only a
single output.

However, the single input, single output, constant-parameter, linear
system assumption is valid for a vast number of physical systems. The
key element is that this model for the system must allow the calculation
of the response within the required degree of accuracy. In other words,
the response need not be exactly perfect—-only accurate to the degree
that matches its engineering application.

It is important to keep in mind that, for the physical system to be
modeled by the ideal system, the deviations from the stated require-
ments must be minor, not intentional. For example, an amplifier that
deviates by =1 percent from linearity over its rated output range would
meet the linearity requirement, but a squaring circuit would definitely
violate the linearity requirement. Slow, temperature-related drifts
in the damping of a transducer would not preclude the use of an ideal
system model for short-duration measurements. However, a frequency

P SN - SN
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modulation circuit, where the reactance of a tuned circuit is varied in
proportion to the input level, definitely violates the constant-param-
eter requirement. Noise on the input of an amplifier can be neglected
if the signal level is much higher than the noise level. However, the
vibration response of a circuit board, connected mechanically to the
structure at four points and having an acoustic coupling, definitely
violates the single input requirement. Heat dissipated by an amplifier
is usually a minor deviation from the single output requirement, but a
fluid reservoir having several output pipes would be a major deviation.

3.2 Response Calculations in the Timme Domain

Assuming that the system does qualify as a simple linear system,
the response can be calculated in either the time or frequency domain.
The time domain calculation will be discussed first. The output is ex-
pressed as a function of the input and the characteristics of the system
by a convolution equation;

y(t)=ff x(v)h(t—7)dr or f x(t=7)h(s)dr. (3.1a), (3.1b)

where
y(t) =the output
x(t)=the input
h(t)=the weighting, or unit impulse response, function.

The weighting function is the time response (output) of a system to a
delta function input (an infinite amplitude, zero duration, unit area
pulse). Figure 3.2 illustrates the measurement of the weighting func-
tion. The output of the system is by definition the weighting function
when the input is a delta function.

l(':[
INPUT ouTPuT ——
——— c—wremeeed  SYSTEM  per—

aln) y(1) h
| yit) !
o -t

TIME —— TIME —=== TIME  ———e

Fig.3.2. Ilustration of the weighting function.

In practice, there are three methods used to measure the weighting
function directly:

1. A high-level pulse, whose duration is short compared to the period
of the upper cutoff frequency of the system, is applied.

2. A step function input is applied and the output of the system is
differentiated.
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3. A random noise input whose speetral density is flat is applied, and

the crosscorrelation function between the input and output is computed.
The input spectrum should include the system passband, and in fact
contain frequencies much higher than the upper cutoff frequency of the
system.
The first two methods frequently suffer from signai-to-noise problems.
The amplitude of the input pulse must be restricted if the system is to
operate in its linear range; hence, the output is frequently very small.
By applying a step function, a larger output level can be obtained from
the system; however, noise in the differentiation may result in very
little if any signal-to-noise ratio improvement after the output is dif-
ferentiated. The last method is usually the most practical. The manner
in which the crosscorrelation function yields the weighting function
will be demonstrated. The crosscorrelation function is defined as
follows:

R(7) = lim —;—,jn (O y(t+7)dt, 3.2)
T 1.2

where

R.y(7) = the crosscorrelation function at a delay value of 7
x(t) =the input to the system
u(t) = the output of the system.

The output can be expressed in terms of the convolution of the input
and the weighting function. From Eq. (3.1),

1/(!+.-)=Ju hQOx(t+7—u)du,

Now

R,y(7)= lim %J” x(t) [ f g h(u)x(t+7-u)] dt. 3.3)

Tesx 12

Changing the order of integration yields

* T2
R,,(r)=f huw) [lim l—f .z'(t).r(l+r—u;(1t]du. 3.D)
x 12

T3 ,1‘
Note that

Iim ,l;f” rihaett+r—w)dt= Rt =), 3.5)
Tex T J 12

where

R (7 =u)=the autocorrelation function of the input at a delay value
of (r~u)
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R.ry("'):'[:x RO R pp(7—u)du. (3.6)

If the input signal is white noise, its autocorrelation function is a delta
function

R 2(7)=8(7).

Hence,
Ra(1t)= fj h()d(r—u)du, 3.7

where 8(7—u) is the delta function at « =7, Then
R.ru("') =h(7)- (38)

The weighting function also describes two important properties of
the system. First, the weighting function can be used to determine
whether the system is stable. For the system to be stable, the integral
of the weighting function over infinite limits must be finite;

f’ h(7)dr < =. 3.9)

For the system to be physically realizable, it must respond only to
previously applied inputs. It cannot anticipate inputs to be applied in
the future. This means that the weighting function must be zero when
its argument has negative values. In equation form,

h(t)=0, fort < 0. (3.10)

The weighting function can be thought of as a window through which
the input is viewed. If, for example, the weighting function is a simple
boxcar function of duration 7', the output is the integral of the input
from the time the output is desired, back T' seconds. Each value in this
interval is weighted equally, and values of the input applied more than
T seconds previously do not influence the output. If the weighting func-
tion is an exponential, values of the input that have just occurred con-
tribute more heavily to the output than values that have previously
occurred. Theoretically, all past inputs contribute to the output, but for
practical purposes, there is some value of time for which the weighting
function has decayved to such a small value that inputs applied prior to
that time contribute negligibly to the output.

A graphical method of performing the convolution was illustrated
in Chapter 2 in the section titled, “Finite Fourier Transforms.” Gen-
erally, this integral is difficult to evaluate.

356-558 OL - 71 - 4
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Fig.3.3. AnRC low-pass filter.

As an example of the calculation of the weighting function of a simple
linear system, consider the RC low-pass filter in Fig. 3.3. The sum of
the voltage rises equals the sum of the voltage drops;

en(t)=i(t)R +éf 1()dre. (3.11)

For convenience, convert from current to charge; q(t) =[ i(t)dt. Then

q(t)
C
and (3.12)

en(t) =q)R +

anlt) =T

Assume that e, (f) is a unit step function where ¢,,(t) =1. Then

dy =% (1—q/C)dt

a1 (3.13)
1—ql(‘=ﬁdt'
Let u=1-¢/C and du=—(1/C)dq. Eq. (3.13) becomes
:—(ﬁgl=% dt
=In 11=K-}(1t+l.~
~In (l—q/(‘)=(k%)t+k
l—t]IC=c-(i‘%'A)
(1=C[l-—c (h'""‘)] (3.14)

Canlt) =(1/C= 1 "'(.” (,T(‘.’K)
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Since e,y (t) at t=0 is zero, k=0. Thus,

-4
eou(t)=1—e #C, (3.15)

To obtain the unit impulse response h(t), the response to the step
function must be differentiated. This yields the result

R(t) =iLe%ithin=_ (e‘ ,ﬁ) (—%) = (%) ¢ i, (3.16)

3.2 Response Calculations in the Frequency Domain

By restricting the linear system to being stable and physically realiz-
able, it is possible to relate the output of the system to its input in the
frequency domain by means of the frequency response function

Y(NH=XWH(), (3.17)

where
Y (f) =the Fourier transform of the output

X(f) =the Fourier transform of the input

H(f) =the frequency response function. Note that it is also the
Fourier transform of the weighting function.

By working in the frequency domain, the difficult convolution operation
is replaced by a simple multiplication operation. Also of significant
importance is the fact that what happens at one frequency is independ-
ent of what happens at any other frequency. For example, suppose the
response has been calculated for a certain input, and the magnitude
of the response at some frequency f, is the only response parameter of
interest. If a new signal is added to the input, the level of the response
at fu will not change as long as the new signal does not contain energy
at frequency fo.

The frequency response function is a complex quantity. Figure 3.4

shows two ways in which it can be displayed. Part (a) shows the real

and imaginary components and part (b) shows the rodulus, called gain
factor, and the phase factor. The latter presentation is more common.

There are three methods commonly employed to measure the fre-
quency response function of a system. In the first method, a sine wave
is applied to the input of the system. Because of the restrictions placed
on the system, the output must be a sine wave at the same frequency.
Thus the frequency response function at that frequency is simply the
ratio of the output to the input (gain factor) and the nhase shift between
the output and the input (phase factor). By varying the frequency of the
sine wave and repeating the ratio and phase shift measurements, the
entire frequency response function can be measured.

ey

L o
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Fig. 3.4. Frequency response function.

The second method consists of applying a transient to the system and
measuring the Fourier transforms of both the input transient and the
response of the system;

_Yin
H(f)= XN (3.18)

The third method consists of applying a random noise signal with a
flat spectral density over the frequency range of the system. Then the
cross-spectral density between the input and output of the system is
computed. The cross-spectral density function is defined by

Grlf)= Inm \ 5 \‘(I)) ). (3.19)

where
G ry(f) =the cross spectral density function
X*(f)=the complex conjugate of X(r).

Combining Eqs. (3.17) and (3.19) yields
Gryf) = hm T' COXOH ). (3.20)
Since the definition of the ordinary spectral density function is

Gartf)=lim Lxs(nX(f 2
(1= lim L X (X, (3.21)

oy
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where G -.(f) =the ordinary spectral density function,Eq. (3.20) becomes
Go(f) =G r(NH(S). (3.22)

Since the spectral density function of the input is a constant over the
passband of the system,

H(f) =_’AJ—(~Q (3.23)

where
k=the spectral density of the input.

Of the three methods, the first is the easiest and most accurate to
implement, although it may be the most time-consuming.

To illustrate the frequency response function application, the fre-
guency response function of the simple mechanical oscillator in Fig. 3.5
will be found, and then its response to a particular time history will be
calculated.

F(t)

Fig.3.5. Simple mechanical oscillator. S B

From Nexton’s second law it is known that the sum of the forces
applied to the mass, including its inertial force, must be zero. Thus the
equation of motion can be written

F(t) —))z%%{l—('ﬂ(ll—(:—)—lcy(t)=(), (3.24)

where
F(t)=the force applied to the mass
m = the mass
k=the spring constant
¢ = the damping constant

y(t)=the displacement of the mass (the base is fixed).

Let the frequency response function relating the displacement of
the mass to the applied force be calculated. Since the solution is purely
analytical, a simplification can be employed. If the input force is made
a delta function, the displacement output will be the weighting function.

<

s

Nace,
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The Fourier transform of the displacement output will be the desired
frequency response function.
The Fourier transform of Eq. (3.24) when F'(t) is a delta function is

1—m[— CafH ()] —c[j2nfH ()] —k[H(H]=0. (3.25)
Since
F(s)] =1

Fly)] =H({)

P[0 < jensri ()
RETTOR PN
P[—-‘—-—dt_, ]- 2=f)H ). (3.26)

Solving Eq. (3.25) for H (f) gives

- 1
) = r=mrmm5omre

The gain and phase factors are frequently normalized as follows:

. (ifk)
H =
DI V= (IR + 2T T

$f) =tan -[1—2_4-(-{’7’/5—))—] @.27)

where

{= 2\2‘_—'}7== the critical damping ratio

f..=§3_-r Vik/m = the undamped natural frequency.

To use the frequency response function, the Fourier transform is
taken of the input;

Fle@®)}=XWN. (3.28)

This is multiplied by the frequency response function to yield the
Fourier transform of the output;

YA =XOH(N. 3.29)

If the time history of the output is desired, then the inverse Fourier
transform is taken of the output;

FY O )=y). (3.30)
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3.4 Response Calculations in the Complex Frequency Domain

The Laplace transform quantity similar to the frequency response
function is the transfer function. It is the Laplace transform of the
weighting function

H(s)= j hiyesdt, 3.31)

where
H(s) =the transfer function.

Its use is quite analogous to the use of the frequency response function.
The response of a system in the complex frequency domain can be found
simply by the product of the Laplace transform of the input and the
transfer function,

Y (s)=X(s)H (s). (3.32)

The response time history can then be calculated by taking the inverse
Laplace transform of the response,

y()y=7Y(9)]. (3.33)

In fact, if the primary goal is to determine the response time history of
a system rather than its spectral composition, the use of Laplace
transforms is preferable to the use of Fourier transforms.

The operations that must be performed to calculate the response
time history are quite straightforward. The most difficult part comes
in arranging the output in a form that simplifies the inverse trans-
formation. Because the output will normally consist of the ratio of
polynomials

o N(s)
} (‘S)"D(s)‘ (3.34)
where
N (s)=the polynomial in the numerator of Y(s)
D (s) =the polynomial in the denominator of Y (s),

this step consists of dividing the numerator by the denominatorin order
to express the output in terms of the quotient and a remainder;

Y(s)=N, (s) +%i(‘—f)l : (3.35)

where

D(s) a proper fraction.

Next, the remainder is expanded in a partial fraction series. To factor
the denominator, its roots must be found. (Roots are the values of s
that satisfy the equation D (s) =0.) In general, this is the most difficult
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operation involved in the solution. For an explanation of various root
solving methods, see Ref. 12. The roots of the denominator are called
poles. They are the complex frequency values that cause the transform
of the output to be infinite. (The values of frequency that satisfy the
equation N (s) ==0 are known as zeros. They cause the value of the trans-
form of the output to be zero at these frequencies.)

Assume that the output is expressed in the following manner:

Y(s) st oash . L st

sitdast +. .+ dis +d (3.36)
First, the division is performed;
Y(s)=tost? aayust i+ L +a.s+au+%3(ss)' 3.37)

Next, the roots of the denominator are found. This permits the denomi-
nator to be factored;

D)=—=r)s—r:) ... (s—n), (3.38)

where », =the jth root.
Then the remainder is written as a series of partial fractions,

Na(s) _ b b, b,
D) Gor) G- tE=my

(3.39)

The next step is to find the values of the coefficients b,, b., etc. To do this,
the partial fraction expansion must be separated into two parts, one
containing nonrepeated roots and the other containing repeated roots.

Nots) b, b: by }
Di(s) _{(s—)'l)+(s—)2)+' ) '+(s—r.,)
nonrepeated roots
b _b.r__] 4
! {(s—)7,)"+. ’ '+(s—r,)' (3.40)

repeated roots

The techniques for finding the coeflicients differ for repeated and non-

repeated roots. First consider any nonrepeated root r.. If the entire

proper fraction is multiplied by the factor {s — .}, then the value of b,
an be found by taking the limit as s approaches r,;

. . ‘\'_(s))}z . [hs:;r.)b. (s—=r)b;
hm{(.s :.)(-—-—-—-—D(s) lim o) FeTm te b+ .

T s ofe

+ (s—r.)b, +(s-r,)lu._+ +(s—,-r)b! ]=b,, 3.41)

(s=—r)  (s=r) 7T T s

I SENSN
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This technique essentially consists of dropping the factor containing the
root under investigation from the denominator and then evaluating
the remaining terms at the frequency equal to the root.

For example,

JV;(S) (? -+ l) L)_+ b_» + b:l
D(s) s(s=38)(s+2) s (¢—3) (s +2)

_ vg)]=. [ (s+1) ) i1
bi= ‘323[1)() | =9+ |~ 3@ 6
T —3)Na(s) (s+1) ]__ B+ 4

”-’“'3"3[ D(s) ]‘ m[s(s+2),‘3(3+2)‘15
(+2)No) i [8+D ]__—-2+1 _—-1
I"‘?’.‘I‘.[ D(s) ]‘3"3‘..[s(s—3) 3=2-3)"10

.\'-(s)___lﬂ; 415 110
D(s) s T(5=-3) (5+2) (3.42)

Another method of evaluating the coefficients of nenrepeated linear
factors can be derived from Eq. (3.41);

: (8=~ )\ (5) (‘ 4) : A7
hm[ D) ]—hm[ D) ]hm (N:(D]. (3.43)

5 ar, 3 er, s er,

The first term in the above product is indeterminate (0/0). To evaluate
this term, I'Hospital’s rule is used;

NEE ) {dts —r)]/ds . 1 1
lim [~—’——~'] =lim [ ] =lim [ ]= . (3.44)
PIRY 4 LAY ) LEEY #
- D(s) .t [(11 (\)]/(1\ t ’('L[I)(.\')} il'[l)()',)]
ds ds

And since lim {N:(s)} =N (1),

b, =lim

Xar,

[(s—r. ).\.-(s)]: Ne(r) (3.45)

Dis) d Y
e (Do)

In words, the coeflicient of a nonrepeated factor is the quotient of the
numerator of the entire proper fraction evaluated at the root associated
with the factor divided by the derivative of the denominator of the en-
tire proper fraction, evaluated at the same root.

(3

Ty
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Consider the previous example:

Na(s) _ (s+1) =_b_._+ b, + by
D(s) s(s=3)(s+2) s (s—38) (s+2)

L [D(s))=(s=3) (s+2) +5(s—3) + (s +2)

by = Nz(O) _ 1 —_.];

" d "3 F2)+0+0 6
SIDO]

b= N:(3) _ 3+1 _4
%[0(3)] B-3)(3+2)+ () (8-3)+3(3+2) 15

Na(—2)

b;= = .

*Td
- [P(=2)]

= -241 _____1.
T (=2=3)(m2+2)+ (=2)(-2-3)+(-2)(=2+2) " 10

(3.46)

To evaluate repeated factors, a different method must be used. Con-
sider the term b,/[(s—1,))*) in Eq. (3.47). This term must be further
expanded in a partial fraction series,

b __ o (] (S
(s=nr) (s—r,~)+(s-—r,)z+' : '+(s—r,)' 3.47)

To find the value of the coefficient ¢, c., ete., associated with a repeated
root, the entire proper fraction must be multiplied by the repeated
factor (s—n)y;

._'.IV_-S:___ & o e Y- 3 — e Y02 _.l_ﬁ__.
(s—nr) D(5) als=n)t+cis—nr)2+. . . teet+(s—n) [(s—r,)

b,
2 .+ by bn + b. 1 )m]- (3_48)

+
(s—r;) (8—ry) (s~=rd* (s—r ,

+

By letting s approach »n,

. f{s=r)Nis)]_ 2 40}
lim [——75-(;)———]4,. (3.49)

1y,

To find the (r—i)th coeflicient, the bracketed quantity in the above
equation is differentiated i times with respect to frequency. Then
this quantity is divided by i factorial and is evaluated at a frequency
of r;
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o el 0

i 4% [(s—=n)'Na(s) _1_)
c“‘*‘f‘-’f} dsﬁ[ D) ](2!

T 1 = X0 R ST

s=ry

The computation of these coefficients of the partial fractions expansion
is, in fact, the computation of the residues at each pole as stated in com-
plex variable theory, Ref. 13.

As an example of these computations, consider the equation

N;(s) _ 1 _ b c Cs ¢
Dis) " GFHG-2F G+ -2 G- o2 @D
From Eq. (3.51),
. 1 . 1 T 1 -1
b=jim{+9) [ gz} = tim [ ) =) -
(8.52)

From Eq. (3.51),

o=t {2 [amema] =i [ =[5 0o

From Eq. (3.51),

e A 1 s —1 =1 =1
c:=lim = [(s+3)]"',‘5‘=‘ [(s+3)-']‘[(2+3)-']* 5

ws

=1'm-"i[———1—]=u[ 2 ]—[ 2 ]=—2— (5554)
Y PE (PO T Ik ] PETC I INEE TY T S
Therefore,

Nl(s)=1[l25+ Y5 125 + 2/125
D(s) (s+3) (s~2) (s—2) (s—=2)3

{3.55)

The examples have employed real values for the roots, but complex
values work equally well.

Now that the equation representing the system output has been ex-
panded, the next and final step consists of taking the inverse transform.

S
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Because a linear transformation is being used, the total inverse trans-
form is equal to the sum of the individual inverse transforms.

The inverse transformation of terms containing nonnegative powers
of s results in impulses for time functions (see Ref. 8, p. 2566). The inverse
transform of a constant is that constant times a delta function at
time t=0;

L k] =k8(t). (3.56)

The inverse transform of s is a unit doublet impulse at time zero.
Higher order powers of s yield higher order impulses. For more infor-
mation, see Ref. 8.

The proper fraction terms are much more common. The inverse
transform of a nonrepeated factor is

b
(s—=nm)

P [ ]=b,er«, 357

and the inverse transform of a repeated factor is

. b o (44 Cy [4 ]
! — =< s e
e R [ = =
— Cql? c, tvt ]
en [c.+c;t+————(3_l) !+ e +__(1'-—1)!
Lot
=en'y =11 (note that 0!1=1), (3.58)
i1 :
m y
Fig. 3.6. Seismic system of r
an accelerometer. J
CT  k X

An example will be worked to illustrate the use of the transform
technique to determine a response time history. The seismic system
of a typical accelerometer is shown in Fig. 3.6. The accelerometer
provides a voltage output that is proportional to force in the spring
element. This force is in turn proportional to che difference in dis-
placement of the mass and the base of the transducer. The transfer
function between the acceleration of the base and the displacement of
mass relative to the base can be found by first writing the equation
of motion;

oy
ingping:
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-G [ D]y —a)=0, @59
where
x(t) =the displacement of the base of the accelerometer

¥ (t) =the displacement of the mass of the accelerometer.
Separating the variables,

dyt) dy®)
e YT

da (t)

==s - fy(t) =c ——~+ka(t). (3.60)

Then the Laplace transforms are taken of both sides of the equation,
m[s2Y (s) —sy(0)=y(0)] +c[sY (s) —y0)) +AY (0)=c[sX (s) —2(0)] + kX (s)
ms2Y(s) +csY(s) +kY (s) =csX (s) + kX (s) =X (0)+msy(0)+my (0)+cy (0)

Yis)= (cs+lx)[X(s)] m[y(O)—f-g](O)]+cL/(0)-.v(O)]
ms2+cs +k ms?+es+k

(3.61)

Pl e CS +l\' » . s ey s |
Y(s)= [‘—_—_ms=+cs +k]‘\ (s), if the initial conditions are all zero.

The transfer function desired is the one for a relative displacement
output and a base acceleration input. This is

Lly)y=xt)]_Y(s)=X(s)
H(s)= _{{ [a([)]] s (s) (3.62)

di:

again assuming that the seismic system in the accelerometer is initially
at rest.

Substituting Eq. (3.62) into Eq. (3.61), the transfer function of the
accelerometer is found as follows:

cs +A rred) — Vi
)= (Tm) L) - )
i $:X(s)
H(s) =——t—, (3.63)
¢ k
§et—8
m m
or, as commonly normalized,
e 3.6+
’1(h)~s‘+2§w,,s+w;'.' (3.64)
where
{*-) A =the fraction of critical damping of the seismic system in
m

the accelerometer

- — e ——
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wn=Vk[{m=the undamped natural frequency in radians per second of
the seismic system in the accelerometer.

To depart for a moment from the original goal of this example, the
frequency response function of the accelerometer will be examined.
Since in practice the frequency response function of the accelerometer
would be measured with undamped sinusoids, it is legitimate to exam-
ine the transfer function along the line s=j2nf. Substituting j2=f
for s in Eq. (3.64) yields

~1
— (Cnf )2+ 20wn (Cnf ) + w2

HQCxf)= (3.69)

The magnitude (gain factor) and phase shift (phase factor) of this
function are plotted in Fig. 3.7 for various fractions of critical damping.

100
s Ty TS \;'o
150°}
10 | 120°F
o
HIN $t0° ; - 1
014 60" “
30°t R
{e0
004 bk b b badal deeieddiasid AU 0' / i i A
ool ol 10 10 [ ' 2 3 4 s
FREQUENCY FREQUENCY
(o) (b)

Fig. 8.7. The frequency response function of an accelerometer;
(@) gain factor, (b) phase factor.

Returning to the original purpose of the example, we will calculate
the output of the accelerometer. A step function input will be assumed;

x(t) =u(t)=unit step function. (3.66)

The output V (s) is the product of the transform of the input and the
transfer function

_/[u(t)]=l-

8
Vis)= (.:fl-) (8‘ +2§w,.b + w-) 8.67)

[ S
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To find the output in the time domain, the inverse Laplace transform of
the above equation must be calculated. As a first step in the inversion,
the poles of the denominator are calculated;

D(s)=(s) (8* + 2{wns + w}) =0. (3.68)

The quantity s=0 is a ruot of the first factor, so the first pole v, is equal
to zero. The poles associated with the second factur can be found from
the formula for finding the roots of a quadratic + - 1aation, ax?+bx +c.

The discriminant is
—bxVbhi—4auc
2a

&Xr=

and the roots are

”U2=(x)n(—§+ Vc?'_l)

3.69
va=wu(—{— VvV —-1). ©69

The output can now be expressed in the following partial fraction series
expression:

_b bs ba
V) = TG+ VESD Tsman— - ve=n: @10

The values of the numerators are calculated next. These are

bi=lim [sV ()] =2

n

b.=lim [aV ()], where a=wn(—{+ VE=T)

- 1
T 20— VE-T+ 1)

b‘,=‘li‘x‘1i1 [BV(s)], where B=wa(—{~ V{*—1)

_ 1
T VE—1+ =1 (3.71)

The inverse transform is found from Eq. (3.70);

l'(l) = l)l('""f' b:(,’ ral-4 b:x(’r"

-1 1 TR =
B R S T

1 L wat={— V=1t .
P VE-I+ -1 (3.72)

L

w VT L cwNTET & )
vm=L{1_c—z~x[“ (1+ggg) e = T -y “
w? 3 .

L

Y
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Since { <1 for practical accelerometers, only this case will be solved;

v(t) =z,13{1—e -;w.t[<ew~w‘-?e+23 -Jw.\rl.—m)
(i) (£ )
=wi [1“(\6/1_‘”?) sin (0. VT=Ft-+4) (3.73)
where
$=tan-! [__1§__C_] o

This response is plotted in Fig. 3.8 for several damping ratios. Notice
that the output of the accelerometer is not a faithful representation of
the actual acceleration. The response oscillates in an exponentially
decaying manner about the true step level. As the damping increases,
the oscillations decay at a faster rate.
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Fig. 3.8. Accelerometer outputs for a
step acceleration input.

Response values expressed as Fourier transforms of causal functions
(x(¢)=0 for t <0) can be converted to Laplace transforms if this step
helps to perform the inversion from a frequency function to a time
function.

If the Fourier transform is an analytic function of frequency and the
Laplace transform exists for the real part of the complex frequency
equal to or greater than zero, the Laplace transform is found simply by
replacing the real frequency variable £ by the quantity s/(j2%) (see
Ref. 14, p. 173);

PO S - A
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L(s)=F Q—%_—), Re[s]=0, (3.75)

where F (f) =the Fourier transform.

The restriction on the function existing for zero and positive real
values basically means that all poles must be to the left of the jw axis
in the s plane.

If the Fourier transform is not available as an analytical functicon,
the Laplace transform can be calculated by convolving the Fourier
transform of the data and the frequency function 1/(oc+j27f). (This
convolution results from expressing the Laplace transform as the
Fourier transform of the product of the data and a term containing the
unit step function multiplied by e¢-. The unit step function forces the
integral to exist over positive time only, and the ¢-?* term changes the
kernel of the transformation from a real frequency variable to a complex
frequency variable. The Fourier transform of the produect of two time
functions is the convolution of the separate Fourier transforms. The
Fourier transform of e~ multiplied by step function yields the
1o+ j2nf) term.)

Thus,

F(u)

Ls)= e

du Re[s] =0. (8.76)

For causal time functions only, the real (Re(f)) or the imaginary (I m(f))
portion of the Fourier transform is required [14];

£ (s)=4ds J i .1_3_"1.’1.) du, Re{s] =0
4]‘“’""“’ de, Re[s]=0. 3.77)

3.5 Cascaded Linear Systems

When simple linear systems are conngcted in tandem as shown in
Fig. 3.9, the overall frequency response function is the product of the
individual frequency response functions as long as the systems do not
load each other;

Ho(fy=H(f)-H.\f) - Hy( ), (3.78)

wheve H(f) = the overall frequency response function.
In terms of the gain and phase factors,

[H () |
o1(f)

|Hi () |- LHAO |- [ Ha(D
0 + 0.0 + 0:0)-

(3.79)

356.558 OL -7 - 8

I
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X — HE —| | Hi0) }—-— H{f) i)
SYSTEM | SYSTEM 2 SYSTEM 3
X(f)—— H{)  f—Yif)

Fig. 3.9. Unloaded simple linear systems

in tandem.
Lo L) I{f) 6
£,(f) H,(f) E,(f) E(f) H,(f) E(f)

Fig. 3.10. Linear systems in tandem.

If the input of one system loads the output of the system to which
it is connected, a different approach must be taken to determine the
overall frequency response function. For example, consider the two
linear systems shown in Fig. 3.10.

The output of each system can be related in matrix form to its input
by means of four pole parameters (see Ref. 15, p. 143);

E| A|B| Ez E3 ‘Asz EJ
= and = , (3.80)
I C\D, I, I |C~:Dz I
where
A=-Z—'-'-=-'!3
Zxn Un Zy Zy
Z]1=
B=@=L Zn Zn
Zn Yn
Zn =Z._' (3.81)
c==l
Zn Yu Y Y2
i yl=
D=@=M Yz Y
'121 Yn
Y =Uhe

y.,=-l—'-=the input admittance. This is measured when the output
“' of the network is short circuited.

y=g=—-l{:.3-=the output admittance. This is measured when the input
of the network is short circuited.

[

o
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L . . ..
y|z=-—E=the reciprocal of the transfer impedance. This is measured
when the input of the network is short circuited.

Zn =%= the input impedance. This is measured with the output open
circuited.

Z22=—%=the output impedance. This is measured with the input
open circuited.

Z .z=—%=the reciprocal of the transfer admittance. The subscripts
on the 4, B, C, and D parameters in Eq. (3.80) refer to the
two different systems of Fig. 3.10. This is measured with the
input open circuited.

Considering one system only, the input is related to the output by the
following equations:

E|=A|E-g +Bllz
and (3.82)
I| =C|E,z +D|12.

If the system is not loaded, /. =0. Defining the frequency response func-
tion as the ratio of the output voltage to the input voltage, we have

() =§;~‘(%=§-l- (3.83)

Now, if the two systems in the preceding figure are connected in tandem,
E.=FE; and I =1;. Therefore, the input to output relation is

E,
1,

A|B|
GD,

:‘L'B-_'
C:D:

E;
1,

: (3.84)

This provides a convenient matrix notation for relating any number of
systems connected in tandem. For any given system,

E,
I

A.B,
CiD,

AxB,
CuDn |

E'.’n
I‘:n

(3.85)

From Eq. (3.84), an overall frequency response function for two systems
can be calculated between the output voltage of the second system and
the input voltage of the first system when they are connected in tandem;

E,
I

(A4 +B,Cs) (AB:+B,\D:)
(Cd:+D,C:) (C\B:+D,D:)

Ey
1

(3.86)
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Since no load is permitted on the second system, I,=0 and the overall
frequency function Hr(f) is the ratio of Ei(f) to E\(f);

B _ 1
B =5 (A4 +B:C: (3.87)

From Eq. (3.87), 4, and A: are the reciprocals of the frequency re-
sponse functions of systems 1 and 2, respectively. Thus, it can be seen
in the general case that to obtain the overall frequency response fune-
tion when the systems are connected in tandem requires knowledge of
the transfer impedance B, of the first system and of the transfer ad-
mittance C. of the second system, in addition to the individual frequency
response functions.




Chapter 4
SPECTRAL METHODS

4.1 Spectral Decomposition

The decomposition of a time history is its representation by a combi-
nation of simple mathematical functions which can be more easily
interpreted by the analyst. Spectral decomposition is used to denote
those representations that are functions of frequency. As such, they are
the most widely used procedures for the analysis of shock data. The two
most common forms of spectral decomposition used in shock data analy-
sis are the Fourier spectrum and the shock spectrum. These two meth-
ods are discussed in this chapter.

The popularity of spectral decomposition techniques is based on two
primary factors. First, these techniques characterize the data in forms
that are related to quantities familiar to all engineers. Steady state
impedance values can be used to describe systems. The input and output
of any system are described in terms of their frequency content. In
the simplest context, these techniques can be thought of as examining
a shock to determine if it contains significant inputs at frequencies that
are likely to be potentially damaging. Generally, the response of a
structure at resonant frequencies will predominate in the total re-
sponse. Therefore, the content of the shock at these resonant fre-
Juencies is of primary concern.

The second factor in favor of spectral techniques is the independence
of each frequency component from all others. Thus, it is possible to
examine each component separately, ignoring the rest of the spectrum.
This allows the computation of the system response to a shock at any
specified frequency, provided only that the energy content of the shock
and the frequency response function of the system are known at that
frequency. For example, to compute the Fourier response spectrum of a
linear system at 100 Hz, only the values of the input Fourier spectrum

and the frequency response function at 100 Hz must be known (Fig. (4.1)).

This independence in the frequency domain greatly simplifies anal-
yses. By conmiparison, the calculation of a response in the time domain
at some time ¢, is dependent not only on the value of the excitation at
that time but on all previous values of the excitation (see Section 3.2,
Eq. (3.1)). Finite frequency windows used in actual analyses may cause

61
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Fig. 4.1. Evaluation of the Fourier spectrum of a response at 100 Hz;
(a) input Fourier spectrum, (b) frequency response function, (¢) response
function spectrum.

some dependence between closely spaced spectral components; however,
this dependence is minor compared with that of the time domain.

The Fourier spectrum and the shock spectrum differ significantly.
Fourier analysis consists of decomposing a time history in terms of
trigonometric functions. The magnitude and phase of each trig-
onometric term needed to reconstruct the time history are plotted as a
function of frequency. Shock spectrum analysis consists of determin-
ing the peak response values of a set of simple, second order, mechanical

o
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oscillators to the shock excitation. This peak response is plotted as a
function of the undamped natural frequency of the simple oscillators.

Selection between the Fourier and the shock spectral methods of
spectral decomposition should be based on the application of the data.
Fourier analysis can be used tc describe input data, response data, or,
if the input and response are measured simultanecusly, it ~an be used
to describe the frequency response function of the system. Given any
two of the above items, the third can be determined. Typically, the inpui
time history and frequency response function are known, and the re-
sponse time history is to be determined.

The original, and still the primary, application of shock spectral anal-
ysis is to predict peak response levels from input measurements. It
is used instead of the Fourier spectrum to predict response levels
wherever the frequency response function of the system can be rea-
sonably represented by a simple second order oscillator and when it
is not necessary to compute the response in detail. Note that it can only
be used with input measurements.

The details of Fourier and shock spectrum analyses are discussed in
the following two sections.

4.2 The Fourier Spectrum

The Fourier spectrum is simply the finite, Fourier transform of a
time history. This corresponds to evaluating Eq. (4d.1a) where the time
history x(t) is multiplied by the Fourier kernel, a complex exponential
containing both the frequency and time variables, and then integrating
this product over the record length;

X(H= j:i x(t)e 1medt, (4.1a)

Alternatively, the kernel may be expanded so that Eq. (4.1a) may be
rewritten as
oo 1 . e .
X ==J‘ . ..r(l) cos 2mftdt —j j, ,.r(t) sin 2af tdt. (4.1b)
The latter equation shows how the Fourier spectrum can be considered
as a decomposition of the time history in terms of sinusoidal and co-
sinusoidal components.

The Fourier spectrum can be displayed either as real and imaginary
functions of frequency or, by means of a complex coordinate transfor-
mation, in terms of a modulus ¢ \d phase angle. The real function corre-
sponds to the first integral in Eq. (4.1b), while the imaginary function
is the second integral. The Fourier spectrum is expressed in terms of
modulus and phase simply as

X =IX(e »0, (4.2)

ehemardl,

ygring:
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where
X(H=VRe! X(HT+1Im? [X()] “.3)
0(f) = tan- [%’;—%gl)] @.4)

Examples of both types of Fourier spectra are shown in Figs. 4.2 and
4.3.

Re {X{f)

AN N
VAV /\-\/\/

FREQUENCY,f FREQUENCY, f

Fig. 4.2. Fourier spectrum, real and imaginary presentation.
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o
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Fig. 4.3. Fourier spectrum, medulus and phase presentation.

In order to apply Fourier spectrum techniques, the finite Fourier
transform of the time history must exist. Necessary and sufficient con-
ditions for the eristence of the Fourier transform are discussed in
Section 2.3.

An important aspect of the Fourier spectrum is that each of the
frequency components is independent of all the others. This is due to
the orthogonelity of the sine and cosine functions. Strictly speaking,
the compone'.«s will be independent only for infinite record lengths. In
this case, the Fourier spectrum is a continuous function of frequency.
However, as was shown in Section 2.3, truncating the time history in
effect multiplies it by a boxcar weighting function. This is eguivalent
to convolving the true Fourier spectrum with a sin x/x window. Since
the window has finite bandwidth, the finite Fourier spectrum may be
thought of as a line spectrum, where the components are spaced at
frequency intervals corresponding to the sin x/x window as
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Y(f)=Tlsin wfTIwfT],

where T is the record length of the time history. From this equation,
the half-power points of the main lobe occur at f==0.442/T with re-
spect to the spectral component over which the sin x/x function is
centered. The main lobe zero crossings orcur at f==1/T. Utilizing the
half-power bandwidth of the sin x/x window as an indication of the
frequency spacing of finite spectral components implies that these com-
ponents occur every 0.884/T Hz. The rule of thumb generally used is

Af=1T, 4.5)

where Af is the frequency interval.

Spectral components may be calculated at finer spacings, but it is
important to realize that such components are simply interpolated
values obtainable from the frue components by means of a sin x/x
interpolation function. Figure 4.4 indicates the spacing of the sin «/x
windows when a Af of 1/T is used.

o
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T

2
[M ()]

V\\

Fig. 4.4. Spectral windows for 1/T spacing.

For transient data, the maximum record length is defined by the time
required for the signal amplitude to decay completely. Extending the
record length beyond this point does not reduce the spacing between
the spectral components required to completely define the spectrum.

The Fourier spectrum may be computed for either the excitation or
the response time history. When dealing with shock data, the difficulties
inherent in measuring the response of the system under service condi-
tions frequently limit the analysis to that of the excitation time history.
In general, the Fourier spectrum of the shock input is used, along with
available knowledge of the frequency response function of the system
subjected to the shock, in order to obtain an indication of the system
response. Since this response is calculated in the frequency domain,
the inverse Fourier transformation operation will produce the response
time history of the system. This operation is

| o
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yo=[" B X(Pernds (4.6)

where H(f) is the frequency response function of the system. If the
response of a system is to be computed from the excitation, certain
requirements are also placed on the system. Basically, it must conform
to the ideal linear systemwr. The system must be stable, physically real-
izable, and describable by constant-parameter differential equations.
Finally, the system must be excited by only one input and must produce
only one response. In practice, only the stability and physical realiza-
bility can be perfectly met. All physical systems will deviate somewhat
from the other requirements. The engineering problem boils down to
assuring that these deviations are minor if the Fouri‘er techniques are
to be used. Low-level noise, slight nonlinearities, and slow parameter
drifts usually can be tolerated. However, they degrade the accuracy of
the computations.

Minimal use has been made of Fourier spectrum procedures in the
specification of shock tests. However, it is possible to generate a single
excitation via Fourier techniques that in some manner represents the
service environment of a system as defined by a set of excitation time
histories. This is because the average spectrum of a set of time histories
is equal to the Fourier spectrum of the average time history. This may
be seen from the following relations.

Given a set of time histories x,, i=1, . . ., m, then the average time
history #(t) is defined by

#h=1 ‘2. olt). @n

The Fourier transform of x(t) is then
X =fx x(t)e »ndi, 4.8

Replacing ¥(t) in Eq. (4.8) by the expression in Eq. (4.7), we have

X =f i [)—1" '2"1 J‘.(t)] e »ehidt, 4.9)

Reordering the integral and summation yields

f(f)=—1 2" [ f‘ xilt)e 7 'dl]. 4.10)

m &

which is simply another way of writing

T=1

w

X, (4.11)
i-1
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Therefore, the procedure required to determine an estimate of the
average frequency content of a transient is quite simple.

For the test of providing some degree of confidence that it produces
responses in excess of those caused by the average service environment,
the average Fourier spectrum must be increased by some safety factor.
Note that if the frequency response function of the system is known,
then there is no need to compute an average spectrum. Instead, the
responses may be calculated for each measured shock, and the most
severe response detected. The shock causing this response may then
be used as the test specification.

Determining meaningful safety factors is an area requiring con-
siderable future investigation. The usual approach taken is to estimate
the probability density funection of the process and also to compute its
standard deviation. The required test environment may then be defined
as

Y(f)=X(f)+ks(f), 4.12)
where
st() === XN =X 4.13)
i=1

m=—1

and k is the number of standard deviations required to ensure that a
large majority of the probable service environments are encompassed.
The scale factor & must be obtained from the estimated probability
density function. Unfortunately, since the Fourier spectrum is complex,
it is difficult to perform the test specification generation as defined by
Eqgs. (4.12) and (4.13). Other conceivable approaches which consider
the two components of the Fourier spectrum independently are

® Enveloping the moduli of the measured siocks and utilizing the
average phase factor, and

® Adjusting the average modulus upward by the product of a scale
factor and the standard deviation of the spectrum and utilizing
the average phase factor.

One other approach is to compute the test specification in the time
domain and then calculate its Fourier spectrum. This can be done by
calculating the average time history (which is equivalent to computing
the average Fourier spectrum) and the time-varying standard devia-
tion. Then the test specification time history is just

p)y=x(t) +ks(t), (4.14)

where y(t) is the specification time history, x (t) is the average time
history, s(¢) is the standard deviation, and & is the scale factor.

The last method appears to be the most attractive because the cal-
culations are performed with real variables. Alsy, if the shock can be
considered to be primarily deterministic, s(¢) is an indication of the
extraneous “noise” in the measurements.

e o
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Presently, a majority of the testing procedures based on the Fourier
spectrum are concerned with the duplication of measured time histories
[16]. The decomposition of the time history is performed by a filtering
process in conjunction with the equalization of the test equipment.
In effect, the equalization procedure divides the Wourier spectrum of
the time history by the frequency response function of the test equip-
ment. This guarantees that the excitation produced by the test equip-
ment subjects the test specimen to an environment which closely
approximates the measured excitation.

4.3 The Shock Spectrum

The shock spectrum is a method originated by Biot [17] as a rmeans
for estimating the damaging effects of seismic shocks upon buildings
and has since been used in analyzing shocks which have been applied
to a linear system.

When an acceleration is applied to the base of a stmple mechanieal
oscillator of the type shown in Fig. 4.5 the equation or motion of the
mass m is as follows:

—my Y= k[ulty =33 0. 4.1

The first term is the inertial force opposing motion. The second term
is the force due to the compression of the spring.

m Yy
Fig.4.5. Base-excited simple
k x m “~hanical oscillator.

In this system, failure will occur if the stress in the spring exceeds
some fixed value. Typically, this may be the yield strength if permanent
deformation is the failure criterion, or ultimate strength if rupture of
the spring is the failure criterion. The stress in the spring clement is
the second term in Eq. (4.15). By rearranging this equation as

ny (Y =~k[ytt) —wt) )
(4.16)
==~ LkE),

where £(0) = y(t) —c(¢) = relative digplacement, it can be seen that for
any shock the stress can be determined in either of two ways.
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First, the displacement of the mass of the system relative to the base
of the system can be calculated and then scaled by the spring constant
to determine the stress. Second, the absolute acceleration of the mass
of the system can be determined and then scaled by the mass of the
system to yield the stress in the spring.

Furthermore, since the stress level is being compared to some fixed
value that equates to failure, only the peak value of stress needs to be
determined. If the calculated maximum value of stress from a given
shock is below the failure criterion value, the system will survive and
vice versa, if the calculated value exceeds the criterion value, the sys-
tem will fail when exposed to the given shock.

In this manner Biot developed a simple method for evaluating the
damage potential of very complicated shock time histories on struc-
tures. The restrictions on application of this technique are as follows:

1. Peak stress in the spring element is indicative of failure.

2. The entire system can reasonably be represented by the simple
mechanical oscillator of Fig. 4.5. (Actually, the concept has been ex-
tended to include a viscous damping elenient between the mass and the
base of the system, as discussed later in this chapter. The co.cept has
also been extended to cover certain systems more complicated than the
above one. This discussion is in Chapter 7.)

3. The shock spectr an of the excitation exists. (The necessary condi-
tions for the existence of a shock spectrum have not been derived;
however, sufficient conditions should be met by any continuous signal
of finite energy and duration.)

The shock spzetrum is defined as the maximum response ~f a set of
linear second order systems to the shock recorded as a function of the
natural frequency of these systems. This corresponds to playing the
shock time history through a series of systems whose frequency re-
sponse functions are of the type shown in Fig. 4.6 and plotting the peak
response of each system. Figure 4.7 is a typical shock spectrum.

To use the shock spectrum for failure analysis, the following four
pieces of information are required:

1. The undamped natural frequency of the system

2. The minimum stress level which will cause failure

3. The mass of the system

4. The cross-sectional area to which the shock is applied.

As an example, suppose that a system with a natural frequency of
100 Hz, a maximum allowable stress level of 5000 lb/sq in., a mass of
5 Ib-sec¥/ft, and a surface area of 2 sqin. is to be exposed to the transient
that produced the above shock spectrum. The peak acceleration re-
sponse is read from the shock spectrum at 100 Hz. This is 10 g’s. The
maximum stress is then the product of the peak acceleration and the
system’s mass divided by the surface area,

10 (£'s) X 32.2 (ftisec?~g) ¥ 5 (16-sec/ft}/2 (in.*)= 805 (Ibfin.?).

et
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Fig. 4.6. The frequency response function

of a simple mechanical oscillator.
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Since this is below the allowable stress level, the systera will not fail
when exposed to this shock.

The definition of the shock spectrum is actually much broader than
it appears at first glance. To reduce the ambiguities in this definition,
the clarification of several items is required. These items are

® Type of excitation

@ Type of response

@ Point of excitation application

@ Type of spectrum

© Damping.

Each of these will now be discussed in turn.

Type of Excitation

The excitation may consist either of a force or a motion applied to
the system. Motion may be measured in terms of deflection, velocity,
or acceleration imparted to the system by the shock. In most cases, an
accelerometer is used to transduce the excitation so that most shock
spectrum procedures assume acceleration inputs.

Type of Response

The next item concerns the type of response required. Two difterent

types of classification are necessary here. First of all, the response of

the mass of the system may be referenced relative either to the base
of the system or to some fixed point in space. The first of these is termed
relative motion, while the second is absolute. A second classification
concerns the type of response motion. This motion may be defired in
terms of its deflection, velocity, or acceleration. The combination of
these two classifications leads to six different responses which fit the
shock spectrum definition. These are

Relative deflection £(¢)

. Relative velocity £(t)

. Relative acceleration £(t)
. Absolute deflection y(t)

. Absolute velocity y(t)

6. Absolute acceleration p(¢).

O

In actual practice, two other responses are also used. The first of these
is the pseudovelocity V' (t) defined by

V) =2nf.£(1)., .17

where /. is the natural frequency of the system. The pseudovelocity is
identical with the relative velocity when the system response is a pure
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sinusoid. This is true only for the residual response of an undamped
single degree-of-freedom system. In general, the two will be in close
agreement, with the pseudovelocity lower at low frequencies and higher
at high frequencies than the true relative velocity because of its fre-
quency dependence.

The other response is called the equivalent static acceleration A.(t),
which corresponds to the true absolute acceleration only for an un-
damped system. It is defined by

Ay =2zfLV () =47 fRE(L). 4.18)

Because of its frequency dependence, it also will tend to be lower at
low frequencies than the true absolute acceleration. However, it will
be in good agreement with the true absolute acceleration for high
frequencies.

Since these two quantities are easily derived from the relative de-
flection, they are often presented simultaneously with £,,.(f) as a
function of frequency by means of a four-coordinate nomographic grid
as shown in Fig. 4.8. The two respense motions most often used in shock
spectrum analysis are relative deflection and absolute acceleration.
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Fig. 4.8. A four-coordinate shock spectrum
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Point of Excitation Application

The next consideration is the part of the system to be excited. The
excitation may be applied either to the base as shown in Fig. 4.9a or
directly to the mass as shown in Fig 4.9b. The decision as to the applica-
tion point should be made by modeling the physical system being ana-
lyzed. The base-excited system is the one chosen in most cases.

y(t) yit)

| |
x(]t) %

/g
(o) (b}

Fig. 4.9. Base-input (a) and mass-input (b) versions of the
simple mechanical oscillator.
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Fig. 4.10. Response maxima

Type of Spectrum

The next item to be clarified is the type of speetrum. At least seven
different types of spectra are presently in use. These values for one
frequency are illustrated in the response time history shown in Fig.
4.10. They may be classified by the polarity of the peak response and its
time of occurrence. The maximar spectrum consists of the maximum
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absolute response recorded as a function of the systen: aatural fre-
quency. The maximum positive spectrum contains only the maximum
positive response excursions, while the maximum negative spectrum
contains only the maximum negative excursions. The primary spectrum
is made up of the maximum absolute responses during the excitation,
while the residual spectrum contains the peak response ozcurring after
the excitation has completely decayed. Primary positive, primary nega-
tive, residual positive, and residual negative spectra are also used.
Their definitions are obvious and follow from their names. Note that
the maximax spectrum envelopes all of the other types and as a result
is the one most often used. However, the selection of the proper type
should be governed by the application of the specirum.

Damping Considerations

Finally, the shock spectrum may be damped or undamped. The
classical definition of the method assumed no damping because the in-
tent was to obtain a conservative estimate of the damage potential of
the shock. Since it is usually quite difficult to determine the true damp-
ing of the system (in fact, the damping will vary with the particular
mode of the system which has been excited by the shock) present pro-
cedures consist of calculating the shock response at several different
critical damping ratio values in the range 0 to 0.1 (from undamped to
10 percent of critical damping).

The primary purpose for including damping is to reduce the over-
conservatism of shock spectral analyses, particularly with shocks that
contain strong oscillatory components. The effects of including damp-
ing are to negate the exact equivalence between

1. The inertial force and the spring force

2. The relative velocity and the pseudovelocity

3. The absolute acceleration and the equivalent static acceleration.

When damping is included as shown in Fig. 4.11, the equation of mo-
tion is

—mj(t) —cEW)—kE()=0. 4.19)

Thus the stress (spring force) is equal to the sum of the inertial and the
damping forces.

y(t)

|

? Fig. 4.11. A simple mechanical
oscillator with damping.
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Pseudovelocity and equivalent static acceleration are no longer equal
to the true relative velocity and absolute acceleration because the
true relative displacement is no longer sinusoidal, so that integration
and double integration do not correspond to multiplication by 2xf,
and (27f.)?, respectively. Damping also causes the relative displace-
ment response to decay from the pure sine wave of the undamped case.

Two Basic Types of Shock Spectra

Further discussions of the shock spectrum will be limited to the two
basie types in widest use. These are

1. The maximax spectrum derived from a base-excited system with
absolute acceleration input and relative deflection response

2. The maximax spectrum derived from a base-excited system with
absolute acceleration input and absolute acceleration response.
For the first case, the differential equation of the system is written in
terms of £(f) =y (¢) —x(¢):

E(t) + 2Lwad (t) + wiE(t) =— & (1). (4.20)
where w,=2mfy, { is the critical viscous damping ratio, and %(¢) is the
absolute acceleration of the excitation. The general solution is

&(t) = &oe~trf cos w,.t+——£—2 sin wqt + & e~tent sin wat

Vi-¢ w

L f " p(r)e~ett=9sin wa(t—7)dr.  (4.21)
@q Jo

where &= £(to) and &,=£(to) are the system’s relative deflection and
velocity just prior to the shock and wyis the damped natural frequency
defined by

wa=w, V1=, (4.22)

Note that for zero initial conditions,
)=~ 1 f‘ x(7)e-wtt= gin wa(t —71)d7. (4.23)
Wy Jo

This may be recognized as the convolution of %(¢) with the unit impulse
response of the single degree-of-freedem system. This convolution is
called the Duhamel or superposition integral.

The term superposition is descriptive of the fact that the excitation
may be viewed as a series of impulses of duration Ar as shown in Fig.
4.12, and the total system response consists of the superimposed re-
sponses to these impulses.

e e 3
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x(t)

Fig. 4.12. Lxcitation viewed as a series
of impulses.

—f p-aT T
The differential equation for the absolute acceleration response is
written in terms of the absolute deflection y(¢).
P() + 2Lway{t) + wiy(t) = 2Lwax(t) + wix(t). (4.24)
The solution, in terms of the absolute acceleration (), is just

P =2 [ytt) — 2()) ~wily(t) ~x(t)] (4.25)

or
P8 =—2lené(t) — it (D), {4.26)

where £(t) may be obtained by differentiating Eq. (4.21). This yields

E(t) =— Lotwne ~i@nt gin wqt + Eye ~ ot (cos wgt — 3 sin wqt )

._.C.

-J“l x(7)e-topte=7) [ coS walf—7)— \/_I—C;?bin wd(l-r)] dr. (4.27)

For zero initial conditions,

1
E(t)=—f xr(r)e sontt 1 egs it~ 7)dr

t

+- rlp)e-tentt-D gin @yt —7) d7 (4.28)

ﬁ - C'. 0
or
t
£ =..J‘“ x{r)e tvntt- P cos wylt—7) dr ~ Lwa,élL). (4.29)
In the usual case where the system is at rest prior to the shock,

y(t) = 20wy f'.i‘(r)c"“"“ 1 eos well —7)d7+ (20— D wiE(t).  (4.30)

Techniques for implementing these equations on analog and digital
equipment are discussed in Chapters 5 and 6.
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Relationships Between Shock and Fourier Spectra

Although the shock spectrum and Fourier spectrum are completely
different concepts, there exists a relationship between them. The modu-
lus of the Fourier spectrum is identical to the residual, undamped shock
spectrum when it is computed in terms of pseudovelocity. This fact
is pointed out in Ref. 18. In Ref. 19 this approach is used to compute
both the shock spectrum and the Fourier spectrum in one operation.
This relationship can be seen by examining Eqgs. (4.23) and (4.29). The
response at the instant of shock termination (assuming zero initial
conditions) is

£(t) =—(~i— "o (5) sin walt=7)dr. (4.31)

n Jo

The velocity response is

&) =-J-" 2{7) cos wu(t =77 (4.32)

Expanding the sin w.(t —7) and cos w.(f—7), and then expressing
(1) in terms of its Fourier spectrum at the natural frequency of the
system result in

W, &) = [Re X(w,)] sin wul + [Im Y(w,) ] cos wat 4.33)
and
&y ={Re Ntwa) } cos i = [Im X(wa)] sin wut. (4.34)

Since the system is undamped, the residual respoase will be a sine
wave with &) and £t as initial conditions. The maximum value of
this residual response is just the amplitude of this sine wave, which
may be expressed as

(€ = \EXUED + 7}’»’ (4.35)

Substituting the relationships of Eqgs. (4.33) and (4.34) into Eq. (4.35
vields

@ l€ N~ N [Re N(w) 7+ [T Ntwa) )¢ (4.36)

Since the left side of Eq. (1.36) is just the residual shock spectrum at
frequency . expressed in terms of pseudovelocity, and the right side
is the modulus of the Fourier spectrum at the same frequency, it
follows that

Ve = W) | “.37

-
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Applications of Shock Spectrum Analysis

The major advantages of shock spectrum analysis over other tech-
niques are that neither the detailed frequency response function nor
the detailed time history of the system’s response to the shock need
be known. In many instances it is either difficult or inconvenient to
measure these quantities. In some cases, just the effect of mounting a
transducer on the system for the purpose of measuring its response
is sufficient to change that response significantly.

The shock spectrum is used to determine whether a system car. sur-
vive a shock environment, to design the system to survive shock en-
vironments, and to specify shock tests. The use of the shock spectrum
to derive shock test specifications has several advantages. First, since
the shock spectrum contains more information about the shock than
just its peak value, it is a more accurate test than the simple tests such
as dropping the system from a given height onto a specified surface.
In particular, it provides much greater repeatability. Second, since the
test is derived from measurements of the actual service environment,
it more closely simulates the damaging effects of the service environ-
ment than the simple tests, even those with simple repeatable pulse
shapes. Third, it has generally been accepted that, since a conservative
test is desired, a specification can be created by simply enveloping
all the measured shock spectra of a particular shock environment.
This is attractive because of its simplicity.

Cn the other hand, there are several disadvantages to using the
shock spectrum to develop shock test specifications. First, there is
no unique relationship between a shock spectrum and a time history,
as there is with a Fourier spectrum. Many time histories can produce
tha same shock spectrum. This fact has been used to implement some
shock testing with vibration test equipment [20}. Exponentially decay-
ing sinusoids have been summed to provide test inputs, and sinusoidal
sweeps, with the amplitude programmed as a function of frequency,
have also been used as shock test inputs. I both cases, the response
spectrum is duplicated.

This many-to-one relationship between the excitation and the shock
spectrum is also the cause of considerable sontroversy over the validity
of the shock spectrum as a measure of damage potentiai. It has been
argued that it is not possible to determine true damage potential in
this manner with any degree of certainty because each of the various
exciting pulses which could produce a given shock spectrum will have a
different damage potential associated with it. This is highly dependent
on the failure mechanism in the system. If the single highest peak
criterion applies to the system failure mode, then duplication of the
response spectrum is adequate. However, many systems fail in different
manners, For example, if the primary failure mode is from fatigue, then
any testing method that causes more cycles of high-level responses
than the actusl environment will be an overly conservative test,

»
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A second disadvantage of the present use of shock spectra for specifi-
cation purposes is that the enveloping of peak values, while easy to
implement, also probably results in quite conservative tests. A more
realistic approach would be to treat a group of shock spectra from the
same nominal environment as random data. Then by ensemble averag-
ing, the mean spectrum and its variance could be computed. The test
specification could then be based on the mean increased by the product
of some factor and the standard deviation of the group of shock spectra.
When combining spectra, care must be taken to assure that the spectra
are equivalent. For example, if there have been changes in the system
between measurements, it may be necessary to modify some of the time
histories (see Section 3.5) and to recompute the shock spectra before
combining. See Ref. 21.

A third problem is the difficulty in determining the accuracy of the
shock spectrum, since implicit in the derivation is the assumption that
the physical system being tested may be approximated by a single
degree-cf-freedom system. Regardless of these difficulties, the shock
spectrum is employed extensively in the analysis of shock data.

In recent years, the shock spectrum concept has been extended to
multiple degree-of-freedom system, nonlinear systems, etc. These
extensions are discussed in Chapter 7.




Chapter 5

ANALOG TECHNIQUES FOR ANALYZING
SHOCK DATA

Analog equipment used for the analysis of shock data can be sep-
arated into two categories. These are the special purpose and the
general purpose equipment categories. Special purpose equipment is
that designed primarily for the analysis of transient data, while the
general purpose equipment, of course, has many other applications.

Fach enqnipment category ean be furiher divided into two subgroups.
These subgroups designate the underlying manner in which the equip-
ment operates. The equipment in these two subgroups are known either
as mathematical-Qr physical analog computers.

This chapter describes the basic operating principles of each of these
analog computation techniques and in particular their application to
the analysis of shock data.

5.1 Electrical Analogs
l , ,

At the present state of the art, dynamic physical quantities are
normally measured by a transducer that has an electrical output. The
electrical output from the measurement system is almost always a
voltage. This voltage will hear a known relationship to the physical
quantity of interest.

Since data are normally acquired as a voltape, it is reasonable that
the equipment used to analyze the data work directly on_a voltage
signal. There ‘are, of course, many other advantages to working on the
‘electrical signal:Interestingly encugh, some of the early shock analyzers
were mechanical [1, 22]. The first was a torsional pendulum whose
resonant frequency was varied by changing the position of the weight
on the pendulum. The sccond consisted of a bank of reed gages tuned
to different frequencies. The maximum response of each reed was
measured to obtain the shock spectrum, Galvanometers have also been
used to form an electromechanical shock analyzer [23]. In this chapter,
only purely electrical analyzers will be considered.

As noted before, analog computing circuits are of two varieties. In
the mathematical analog variety, the equipment implements the mathe-
matical operations required to solve the problem. General purpose
analog computers of this type are known as electronic differential

. 81 :
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analyzers. Analog computers of the physical analog variety are usually
known as passive analog computers.

Electronic Differential Analyzers

The usual application of electronic differential analyzers is to the
solution of differential equations. The mathematical operations that
are most convenient to implement on the computer are

® Addition

® Integration

® Sign change (polarity change), and

® Scale factoring (multiplication by a constant).

These operations are generally adequate to solve linear, constant-
coefficient differential equations.

Implementation of nonlinear operations, including multiplication
and division by time-varying quantities, can be accomplished although
over a more restricted range and usually with less accuracy than the
2bove-list ed functions. Differentiation is implemented only when there
is no alternative route for solving the problem (the differentiaticn
operation causes noise and instability problems).

The manner in which the mathematical analog computer operates
is as follows:

1. The highest order derivative is found as a function of all of the
other parameters in the system equation.

2. A voltage proportional to this highest order derivative is assumed
to exist. It is integi1ated an appropriate number of times to obtain all
of the other terms in the equation, except the input term.

3. These other terms and the input term are added together (with the
appropriate signs and scale factors) to form the voltage proportional
to the highest order derivative.

4. The voltage corresponding to the output term of interest is read
out.

As an illustration of the use of an electronic differential analyzer,
the circuit will be developed to solve for the absolute acceleration of
the mass of a simple mechanical oscillator when a base acceleration is
applied.

The mechanical system is shown in Fig. 5.1.

Fig. 5.1. .Jase-exated simple
mechanical oscillator.
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The motion of this system is described by

= §(t) = 2Lwn[§(t) —£() ] — wily (t) —x(¢)]=0, GRY;

where

x(t) =the displacement of the base

%(t) =the velocity of the base

#(t) =the acceleration of the base

y(t) =the displacement of the inertial mass
¥ (t) = the velocity of the inertial mass

y (t) =the acceleration of the inertial mass

C

2Vikm

=the fraction of critical damping
of the mechanical oscillator

W= \/;E=the undamped natural frequency
of the mechanical oscillator.

The highest order derivative is found as follows:
¥ () =2Lwa[x () =g ()] + wi[x(t) = p(D)]. (5.2)

A voltage equal to the acceleration of *he mass is assumed to exist, and
itis integrated once to obtain the velocity of the mass. Then this velocity
is integrated to obtain the displacement of the mass. The input is a
voltage representing base acceleration. This must be integrated once
to obtain the base velocity term on the right-hand side of Eq. (5.2),
and a second time to obtain the base displacement term. The two terms
are subtracted as are the displacement terms. The velocity difference
term is multiplied by the constant 2{w, and then these two factors are
summed to yield the acceleration of the mass. The schematic diagram
for an analog computing circuit to solve Eq. (56.1) is shown in Fig. 5.2.
Each integrating and summing amplifier has 180° of phase shift so that
there is a polarity change between their inputs and outputs,
The symbols used in Fig. 5.2 are as follows:

a = integrator with gain of amount (a)

> =summing amplifier with gain of amount (a)

The circuit of Fig. 5.2 is not optimum. 1t is primarily intended to illus-
trate the method of creating the analog circuit. One method of simplify-
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2(w,,[x(1)-y(t)]+
w? [x(l)-y(t)]='y(t)

jt) ]>)'l(ﬂy(t) Syl Wiy -x(1)

x(l)] - imtf'_
nd

INPUT

—_—

QUTPUT

28w, (y(0=%(1)]

x(t) Zc/wy

Fig. 5.2. Analog computer circuit for determining the mass acceleration
response of a simple mechanical oscillator to a base acceleration input (for
explanation of symbols, see p. 83).

ing the preceding circuit to reduce the total number of integrators and
summing amplifiers needed is to assume that a voltage proportional
to the relative acceleration of the mass is available. Let

£Wt)y=y(t) —x(t)=the acceleration of the inertial mass of the sim-
pl> mechanical oscillator relative to the base

é(1)=y(t)-.r(!)=the velocity of the inertial mass of the simple
mechanical oscillator relative to the base

EWt) =y (t) —x(t) =the displacement of the inertial mass of the sim-
ple mechanical oscillator relative to the base.

The circuit as simplified is shown in Fig. 5.3.

0 cwa él1) wp€(t) €)= ~wh€lt) = 2¢wo é(t) - x(1)
H> ' EP >| =y(1)= &) + (1)
OUTPUT

2tw (1)

x(t)

INPUT

Fig. 5.3. Rearranged circuit for the analog of a simple mechanical oscillator

Two integrators and three summing amplifiers thus perform the same
operation as four integrators and four summing amplifiers. The nega-
tive of the mass acceleration is obtained by the circuit of Fig. 5.3.

it
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Usually, the correct polarity can be restored by the appropriate con-
nection of the plotting device. If not, an additional unity gain summing
amplifier is required to resolve the polarity.

If certain restrictions on the minimum damping are permissible, the
circuit can be further reduced to that shown in Fig. 5.4 [24].

AAANA

1L

[AY
MW ?
€in :I:- ?oui

Fig. 5.4. Single-amplifier analog circuit of a damped
mechanical oscillator.

Passive Analog Computers

Passive analog computers are primarily intended for the solution of
probiems involving the response of physical systems because their
operation is based on the similarity of the equations describing the
behavior of electrical elements and physical elements. A passive elec-
trical circuit is formed that simulates the physical system. The differ-
ential equations describing the performance of the electrical system
must be proportional to the differential equations describing the per-
formance of the physical system. The primary computing elements in
passive analog computers are resistors, capacitors, and inductors
(transformers, operational amplifiers, and function generators are also
required for many problems).

Passive analog computers are particularly well suited to the solution
of problems involving the response of discrete and distributed struc-
tures. This results from the similarity between Newton’s laws describ-
ing the behavior of the structure and Kirchoff’s laws describing the
behavior of the circuit. There are two different electrical analogies,
and chey are based on the two different laws of Kirchoff. These are

1. The amount of current flowing out of a point (node) in a circuit is
equal to the amount of current flowing into the point.

2. The difference of electrical potential between any two points in
a circuit is independent of the path used to measur: it. (This is more
commonly stated as the sum of voltage drops in a closed loop is equal
to the sum of the voltage rises in the loop.)

Kirchofl’s first law is the basis for the nodal analogy. The sum of all
the currents injected into a node is equal to the sum of all the nodal
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admittances multiplied by the potential difference of tle node. The
currents in singie, passive-element nodes are as follows.

Resistor Time Domain Frequency Domain
€ in
ik(t)=el(t)_e-’.(t) In(f)=El(f)—E-’.gl')
R R R
€
Capacitor
"’T i =cell=eBl ) 2 jarC B () ~ Ea)
C
e;J
Inductor

e u c oy [ [ez) —ex(n) Yt o _E)—E ()
ll(()— L Il(f)_ jZTTfL
L
€

The loop analogy is based on Kirchoff’s second law. The sum of the
applied voltages in a loop is equal to the sum of the loop impedance
multiplied by the net loop current through each impedance. The voltage
across a single passive element is found as follows.

Resistor Time Domain Frequency Domain

) R e,,(t)=[i|(t)—i:(t)]R Eu(f)=[ll(f)"'1=m]R
€n

TR

Capacitor

) e | eam=[" L o =HE=k

€1(l)=1;

dlait) 2t Ey () = 2nfLIL) = 1)
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To illustrate the application of the passive electrical analogies to
the solution of practical problems, again consider the base-acceleration-
excited, simple mechanical oscillator. The equation of movion (see Fig.
5.1) is

mjjte(y—a)+k(y—2x)=0. (5.3)

It will again be convenient to express this equation in terms of the
motion of the mass relative to the base [£(t) =y (t) —x(1)],

mé+ctE+kéE=—mg. (5.4)
Or, in terms <f Laplace transforms,

s*mZ(s) +scZ(s)+khkZ(s)=s'mX(3). (5.5)

Nodal Analogy

First, the nodal electrical analogy will be considered. If currents in
the electrical analog are made proportional to mechanical forces, the
appropriate electrical equation is

sCEus) +E88)  Buls) _p () (5.6)

This equation yields the circuit of Fig. 5.5.

e Sl » @

Fig. 5.5. Nodal analogy of a simple
mechanical oscillator.

The comparison of the mechanical and electrical systems is helped if
Eq. (5.5) is rewritten in terms of the relative velocity:

v(t)=y(t) —x(t) =the relative velocity of the mass to the base

V(s) =sZ(s) =the Laplace transform of the relative velocity

KV (3)

8

smV{(s) +¢eV(8) + =gsmX(s). .7

Ty
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A comparison of Egs. (5.6) and (5.7) shows the following relation:
V(s), or v(t) (relative velocity) ~ Eo(s), or eo(t) (voltage)

smV (s) (mertial force) ~ sCFEy(s) (current through the capacitor)

E‘ 3
¢V (s) (damping force) ~ '};s) (current through the resistor)
'V . E( .
I\S_(s) (spring force) ~ S,;s) (current through the inductor)

—sm*X (s) (input “force”) ~ I,(s) (input current).
From the above comparison these additional relations can be derived;
m (mass) ~ C (capacitance)

. 1 . .
¢ (damping constant) ~ % (reciprocal of resistance=conductance)

. 1 . .
k (spring constant) ~ = (reciprocal of inductance).

To summarize, the nodal analog of the base-acceleration-excited,
simple mechanical oscillator is formed by selecting a capacitor pro-
portional to the mass of the oscillator, a resistor that is proportional
to the reciprocal of the damping constant of the oscillator, and an
inductor that is proportional to the reciprocal of the spring constant
of the oscillator. These three electrical elements are connected in
parallel as shown in Fig. 5.5. An input current is applied that is propor-
tional to the base acceleration scaled by a factor of minus one times
the mass of the oscillator.

The desired output was stated as the acceleration of the mass. This
acceleration is proportional to the difference between the current in
the capacitor and the input current, scaled by a factor equal to the
mass of the oscillator. As shown below, it also equals the product of
—1/m and the sum of the currents in the resistor and the inductor;

P =E) +a(t)
My =mEU) +mait) - i) =io(t) =—ixlt) =i, (t). (5.8)

Because current is proportional to force and voltage is proportional
to velocity, the nodal analogy is sometimes known as the force-current,
velocity-voltage analogy.

Loop Analogy

Next, consider the loop analogy. In this case, the appropriate elec-
trical equation is
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10(3)

Eo(s)=sLIo(s) +RIs(s) + sC

(5.9

which describes the circuit shown in Fig. 5.6.

e (1) i eqlt) —]

080000 MWV
L R

@ c == elc(t)

iolt) l

Fig. 5.6. Loop analogy of a simple
mechanical oscillator.

A comparison of the equations describing the mechanical system,
Eq. (6.7), and the electrical system, Eq. (5.9), reveals the following re-
lations:

smV(s) (inertial force) ~ sLI(s) (voltage across the inductor)
eV (s) (damping force) ~ RI(s) (voltage across the resistor)

R
KV (s) (spring force) ~ %(2—,1 (voltage across the capacitor)

V(s) (relative velocity) ~ I(s) (loop current)

m (mass) ~ L (inductance)

¢ (damping constant) ~ R (resistance)
k (sprirg con: tant) ~?1; (reciprocal of capacitance)

—ms*X(s) (input “force”) ~ Euv(s) (input voltage).

To summarize, the loop analogy of the base-acceleration-excited,
simple mechanical oscillator is formed by selecting an inductor pro-
portional to the mass of the oscillator, a resistor proportional to the
damping coefficient, and a capacitor that is proportional to the recipro-
cal of the spring constant. These electrical elements are then connected
in series as shown in Fig. 5.6. An input veltage is applied that is pro-
portional to the base acceleration scaled by a factor equal to the mass
of the mechanical oscillator.

Again, the desired output is the absclute acceleration of the mass.
This acceleration is proportional to the sum of the input voltage and the
voltage across the inductor, scaled by a factor proportional to the mass.

356-558 OL - 71 - 7

o s g e s




v 3

90 SHOCK DATA ANALYSIS

As shown below, it is also equal to the product of —1/m and the sum of
the voltage across the resistor and capacitor;

y=E+%
my=mé +ma

eout(t) =e€L(t) +eo(t) =—er(t) —ec(t). (5.10)

Because the voltages are proportional to force and the loop current is
proportional to the velocity, this loop analogy is sometimes known as
the force-voltage, velocity-current analogy.

The choice of a nodal or a loop analogy depends on the specific appli-
cation of interest, as each analogy has its specific advantages and
disadvantages. The nodal analogy has the advantage of being topo-
logically similar to the mechanical system. In many cases, the analog
of the mechanical system can be created just by replacing masses by
capacitors, etc. On the other hand, the loop analogy has an advantage
in that the parameters of interest are usually voltages, whereas they
are usually described by currents in the nodal analogy. This is an ad-
vantage because it is easier to measure voltages without disturbing the
circuit than it is to measure currents.

5.2 Computation of Fourier Spectra

Analog instruments that are used to compute Fourier transforms
are divided into a number of different categories. One division is that
of parallel vs swept analysis. Parallel analyzers compute all the spectral
values of interest simultaneously. They perform a true real-time analy-
sis. Swept analyzers compute only one spectral value at a time. The
swept analyzers are divided into groups depending on the manner in
which the frequency of the spectral computation is changed. In one
type, this frequency is stepped and, in the other type, the frequency is
continuously varied. (In both types, the frequency must be changed
slowly to prevent error.) The performance of a swept type of Fourier
analysis requires that the data to be analyzed must be periodic. Data
that are not naturally periodic (such as single pulse data) are forced to
appear periodic to the analyzer. This artificial periodicity is usually
created by recording the data on a continuous loop of magnetic tape.
This forces the data to be periodic with a fundamental frequency
equal to the reciprocal of the duration of a tape loop. The parallel
analyzer has an obvious speed advantage and price disadvantage
(for equal-quality analyses). Analyzers may also be divided into those
which directly implement the mathematical equations describing the
Fourier transform and those which employ bandpass filters.

g
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Mathematical Equation Implementation

The direct mathematical equation implemented is the trigonometric
version of the Fourier transform as related in Eq. (5.11),

X(f)=f" 2(t) cos %ftdt—jf" x(t) sin 2mftdt.  (5.11)
The block diagram of an analyzer based on the above equation is shown
in Fig. 5.7. This circuit computes the real and imaginary parts of the
Fourier transform at one frequency. To obtain the entire spectrum
either the circuit must be duplicated (parailel analysis) or the frequency
of the oscillator must be changed. Typical plots from this type of
analyzer are shown in Fig. 5.8.

OSCILLATOR

X ' (2 PHASE)

sin 2w ft

Fig. 5.7. Block diagram of an analog Fourier analyzer
(direct mathematical model).

*

refx(n)

-

1m{x(1)

FREQUENCY, {

FREQUENCY, f

Fig. 5.8. Typical plots of the real and imaginary portions
of a Fourier spectrum.

Sometimes it is more convenient to express the Fourier transform in
terms of its modulus and phase factor. The block diagram of the cir-
cuitry used to obtain these values from the re ! and imaginary values
is shown in Fig. 5.9, and the quantities are described math. matically
in Eq. (5.12);

XN =VRe[X(N]+Im* X)) (5.12a)
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SQUARE
Re x(£)) o——r SUM l-—— rooT  olx(nl

Im [x(0)] oy SQUARE

L - ARC
-
- TANGENT 6

Fig. 5.9. Basic block diagram for converting real and
imaginary forms of Fourier transforms to modulus and

phase spectra.
o Im{X (O]
0-(f)=—tan {Rc[X(f)] } (5.12b)

These values can be plotted either in cartesian form as shown in Fig.
5.10 or in polar form as shown in Fig, 5.11.

This type of analyzer works quite well; however, as in any practical
analysis, there are certain sources of error that must be kept in mind.
The first requirement is that the oscillators must be keyed to start at
exactly the same time as the transient. Any phase shift between the
start of the transient and the 0° value of the sinusoids will be reflected
directly in the phase factor. The modulus will not be affected by this
error source. However, if real and imaginary values are plotted instead
of modulus and phase values, both will be in error. In fact, there will
be cross-coupling between the real and imaginary portions of the true
Fourier transform.

To further illustrate this error, the Fourier transform of a cosine
wave will be computed over N integral cycles. Assume that the sinus-
oidal generators are free-running and that the oscillators are shifted
in phase by 6, degrees when the cosine wave is started. The relative
timing is shown in Fig. 5.12.

The equations required to ind the Fourier transform are as follows:

\ fo
X(fo) = f ! cos (27 ut) cos (2 /o + @) dt

N
- f ’ cos (2w ful) sin (27 /ol + o) dt

“

_€0s (—0) N .sin (=0s) N

2 to 2 fn (5.13a)
MeAf)=VReX(f) ]+ [ X(fw)] = ;}," (5.13b)
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IX(f)I +90
8,1 _ '
. 0 .
o -90
FREQUENCY, f FREQUENCY, §

Fig. 5.10. Typical plot of the modulus and phase factors of Fourier spectra.

Im
» . .
M L ]
L]
. .
Re
Fig. 5.11. Typical polar plot of a teos
Fourier spectrum. * .
.
£ ]
SINE
GENERATOR
COSINE

GENERATOR DATA

TIME

Fig. 5.12. Timing diagram.
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b Im|X![o!|]=
0:(f) =—tan l[Re[X(f.,)] 0. (5.13¢)

When 6,=0, the correct value, X(f) =2ivﬁ, is obtained.

The cross-coupling in the real and imaginary values, when this phase
error exists, can be illustrated as follows:

Re'[X(f))=Mcos8' =M cos (§+a) (5.14a)
Im'[X(f)]=Msin '=M sin (§+«), (5.14b)
where

Re'[X(f)] =the indicated real portion of the Fourier transform

Im'[{X(f)] =the indicated imaginary portion of the Fourier trans-
form

a=the phase error

Re'[X(f)]=M (cos 0 cos a+cos 0 sin q) (5.15a)
=Re[X(f}] cos a=Im[X(f)] sin a
Im'[X(f)]=M (sin 0 cos a+cos 0 sin a) (5.15b)

=Im[X ()] cos a+Re[X ()] sin a,

where

Re[X(f)] =the true real portion of the Fourier transform
Im[X(f)] =the true imaginary portion of the Fourier transform.

This source of error prevents the use of continuous-frequency sweep
analyses with this type of analyzer. The circuits must be duplicated
or the frequency of the oscillators must be stepped—exercising care
that zero phase angle corresponds to the start of the transient at each
frequency.

A second source of error with this type of analyzer is harmonic dis-
tortion in the electronic circuits. The largest contributors to this type
of error are generally the multiplier circuits, although care must be
exercised to insure that the oscillators do not have significant energy
at frequencies other than the fundamental one. The ability of the
multiplying circuitry to perform a true multiplication will generally
be the iimiting element.

Estimating the magnitude of this type of error is quite difficult, as
the error depends not only on imperfections in the hardware but also
on the shape of the Fourier transform. As an example, assume that the
oscillators have some higher order, odd harmonic components. Then
the actual Fourjer transform computed by the instrument is as follows:
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X"(f) =f01x(t) (cos 2mfot + 4, cos 6mfot + Az cos 107fot+. . .) dt

—j J; T 2(t) (sin 2mfot + A, sin Gafot +As sin 10mfat+ . . ) dt
= X(fo) +AX (3fo) + X Bo) + . . (5.16)
where

Xn(fy) =the value of the Fourier transform displayed at the output
of the analyzer

A, =the relative magnitude of the nth harmonie of the oscillator
to the fundamental.

An examination of Eq. (5.16) shows that the displayed value of the
Fourier transform contains the true value, plus scaled values of
the Fourier transform at odd multiples of f;. When the value of the
true Fourier transform is much larger at a distortion frequency (for
example =t 3f; in the above example) than the value of the true Fourier
transform at the aralysis frequency (f, in the above example), the dis-
played value can be grossly in error for what would appear to be small
values of harmonic distortion. If, in the above example, the value of the
true Fourier iransform at 3f, was 100 times larger than the value of
the true Fourier transform at f;, and 4, had a value of 0.01 (1-percent
distortion at this frequency) then the indicated value of the Fourier
transform at f, would be twice the true value.

Bandpass Filter Implementation

The second type of analog Fourier analyzer utilizes narrow band-
pass filters followed by detectors as shown in Fig. 5.13.

NARROW

x(1) o——! BANDPASS ——{;tscrlrlsa}———{lnrscnaron }.—omm

FILTER

Fig. 5.13. Block diagram of an analog Fourier analyzer
(bandpass filter model).

For periodic data, the principle on which they operate is fairly easy to
visualize. Only one spectral component is allowed to pass through the
filter at a time. All other spectral components are removed from the out-
put of the filter. In Fig. 5.14 the dotted line symbolizes an ideal bandpass
filter centered at frequency fo. The output of the filter will be a sine wave
with an rms value of M, (assuming unity gain in the filter passband).

Since the output signal is a sine wave, many types of detectors can
be employed to detect its rms value. True rms detectors, peak detectors,
or mean absolute value detectors (as shown in Fig. 5.13) are commonly
used. Any of these detectors is perfectly acceptable as long as the
appropriate calibration factor is accounted for in the final results. The
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[xt)]
M, | |
\ ‘ : Fig. 5.14. Spectrum of a periodic
l ' function.
. Ll

FREQUENCY ————W

calibration factor is the ratio of the sine wave characteristic measured
to the rms value of a sine wave. For a peak value ineasurement the
calibration factor is 0.707. (Ems/Epeax=0.707 for a sine wave.) For a
mean absolute value measurement (ordinary AC voltmeter) the
calibration factor is 1.11. (Eme/Emean=1.11 for a sine wave.)

With an actual filter instead of the idealized one previously assumed,
the output will have some contributions from all spectral components
of the input, as shown in Fig. 5.15.

[x(6)]
or
Mif) Mi - " l l ‘ l l (a)
f
FREQUENCY ——o
HI
W)
(b)
‘I
FREQUENCY ——
HN| Mo
H, M, (¢)

I .IlHI“lll.
fi

FREQUENCY

Fig. 515, The effect of a nomdeal filter on Fourier
analysis; (a) modulus of the input, ‘b filter gaun factor,
) spectral contnbutions (medult) to the filter output.
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Thus it is important that the filter have a steep rolloff rate, so that it
strongly attenuates all but one spectral component. The total input
of a pericdic signal can be represented as follows:

£(t)=S M, cos (2af,+0,). (5.17)

-0

At each speciral frequency, the amplitude of the cosine wave is multi-
plied by the gain of the filter at that frequency, and the phase of the
cosine wave is shifted by the amount of phase shift through the filter
at that same frequency. Thus the output of the filter is

y(ty= S HM, cos (2nf,+0,+ ) (5.18)

0

where
H,=the gain of the filter at the ith frequency
¢, = the phase shift through the filter at the ith frequency.

Calculating the rms value of the filter output yields

\/ S HA (5.19)

(]

The indicated value of the modulus of the Fourier component at f,
is the mean square value normalized by the gain of the filter at f;

My= \"”/ \/2 ( ) M3 (5.20)

The measured value will differ from the true value. The difference, or
error term is defined in the following equation:

H,
My=My_ [VE () ] -

=TT AT

NS G Ve s () ) -

Using the binomial expansion,

cona Sl eg @) G e

This expression is generally quite diflicult to evaluate, since the true
spectrum must be known. However, Eq. (5.21) does demonstrate the
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need for the bandpass filter in the an: lyzr ¢ to have very low gain for all
spectral components except the one au cne center frequency of the filter.

Periodic Data Considerations

Frequently, complicated data are artificially made periodic, such as
by recording the transient on magnetic tape, forming the tape into a
continuous loop, and then recirculating the loop many times for single-
filter, scanned analysis. In this case there is likely to be a number of
spectral components within the passband of the filter used for analysis.
The output indicated by the analyzer at the center frequency will be
the sum of all the spectral components over the passband. In this
manner a discrete measurement approximating the true continuous
spectrum of the transient is obtained. (By discrete measurement, it
is meant that a single point is obtained for each center frequency
setting of the filter.)

As an example, consider the terminal-peak sawtooth pulse shown in
Fig. 5.16a. The amplitude spectrum of this pulse is shown in Fig. 5.16b.
If the data are made periodic by connecting the end of the transient to
its beginning, the time history will appear as shown in Fig. 5.16¢. In this
case, the continuous spectrum is estimated by discrete points separated
in frequency by the reciprocal of the duration of the transient. For
example, if the sawtooth pulse in the preceding figure has a duration
of 10 msec, spectral components will be 100 Hz apart.

Frequently, it is impossible to make a single pulse repetitive by splic-
ing the end of the transient to its beginning. Practical considerations,
such as the minimum loop length that the tape recorder can handle,
or the desire to blank out tape splice noise are examples of such factors,
In this case, the time history resembles the example shown in part e of
Fig. 5.16. The duration of the transient is still 7',, but it is now repeated
once every T, seconds. When the transient is made periodic in this
manner, the spectrum consists of discrete values spaced (1/7,) Hz apart.
For example, the same 10-msec transient might be recorded on a loop
of magnetic tape that recirculates completely ence every 2 sec. Then
the spectral spacing would be 1/2 Hz. Note that the magnitude of any
spectral component is equal to the value of the continuous spe~*rum of
the nonrepeated transient evaluated at that particular frequency.

If the filter bandwidth used is greater than /T, as is usually the case,
then more than one spectral component will occur within its passband.
The indicated output of the analyzer will then be just the average
value of these spectral components as weighted by the filter’s fre-
quency response function. An error between the indicated value and the
true value at the center frequency of the filter is possible, even when
assuming an idealized rectangular bandpass filter shape. Consider
the three spectral values in Fig. 5.17 as being a portion of an overall
spectrum bandpassed through an idealized filter created at frequency
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IM(£)] - - AVERAGE AND INDICATED
‘ ----- TRUE VALUE
o} fO
FREQUENCY

Fig. 5.17. Error in spectral measurement due to
finite filter bandwidth.

Jfo. The true modulus at £, is lower than the average value of the three
spectral components.
The magnitude of this error can be estimated (as shown in Ref. 25), as

E(fo) =3¢ |, 5.22)

where
B =the bandwidth of the filter

|3 (f) |=the second derivative of the modulus of the
Fourier spectrum with respect to frequency
evaluated at f,.

It should be neted that there will be no error when the spectrum varies
linearly over the filter bandpass. Also, since the error formula results
from dropping higher order terms in a Taylor series expansion, its
value in estimating the magnitude of the error diminishes rapidly when
the spectrum is not monotonic inside the filter passband.

Scan Rate Considerations

There is another potential source of error in analog Fourier analyzers
employing a single continuously scanned bandpass filter. This orror
occurs when the single filter is scanned too rapidly. Rapid scanning
causes the effective frequency response function of the filter to differ
drastically from its static (unscanned) state.

The effect of rapid scanning of a filter is shown in Fig. 5.18.

The most prominent distortions of the scanned filter characteristics
are a decrease in the peak response and thé shifting of the peak
response frequency in the scanning direction (increasing frequency
scan in the figure). Kharkevich [26] presents the following formula for
estimating the magnitude of the scanned filter errors (a second order
filter is assumed):

Peal: Response

= Eiz?'« (5.23)
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[Hee)]
€p
|
- SCANNED
/N /
’ \\ a /
1 | N STATIC
0

FREQUENCY

Fig. 5.18. Guu.. .actors of a filter
(static and scanned).

¢,=the fractional error in the peak response

A=the scan rate in Hz/sec=>+

Af
T

B =the bandwidth of the filter.

Frequency Shift

where

4

Cy="5a

wB?¥

¢,= the frequency shift errorin Hz.
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5.24)

Three different techniques are used in this type of analyzer to perform
the bandpass filtering technique. The first technique is direct filtering.
The analyzer employs a separate filter for each frequency to be ana-.
lyzed. The filter has a center frequency equal to the desired analysis
frequency and has the desired bandwidth. Figure 5.19 a and b illustrate
the spectrum and direct filtering. The dotted line in part (b) represents
the filter frequenc; response. The second filtering technique is hetero-
dyne filtering. In this technique, the data amplitude modulates a high
frequency sinusoidal carrier signal. Since suppressed carrier modula-
tion is normally employed, the data can be considered as multiplying the
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carrier signal. The resultant signal es(t) is given by the following
equation:

eo(t) =(data) X (carrier)
= (|Mo| + 1M} cos @ufie+6)+. . .
-+ |My] cos (2mnfit+0n)) (4 cos 2wf.t). (5.25a)

This can be expanded as follows:

eo(t)=A{|Mo| cos Zxft + 'M"cos 2w (fetfi)t+ O] +. . .

2
(M} [ M
2

+ cos [27(fe +fu)t +6.] + 5 cos [2a(fe—fi)t—0:]+. . .

+ l 11'2111 | oS [277(,f¢‘ ‘—_fn)t -— 0"] }, (5.25b)

This resultant signal has the original spectrum folded about the carrier
frequency. To perform the filtering, a filter with a high center frequency
is used. Either the sum or difference frequency can be filtered. Part
(c) of Fig. 5.19 shows the filter operating on the difference frequency
spectrum.

There are two reasons for using the heterodyne filtering method.
First, very sharp bandpass filters can be realized at these frequencies
by using quartz or magnetostrictive filters. Second, a single filter can
effectively be stepped or scanned through the data simply by changir 3
the frequency of the carrier signal, and the characteristics of the filter
aeed not be changed. When the frequency of the carrier is changed, a
new portion of the difference frequency spectrum falls within the pass-
band of the filter in part (c). In actuality, the data frequency spectrum
is scanned past the filter rather than the filter being scanned past
the data.

The third technique is called homodyne filtering. This technique
is quite similar to heterodyne filtering. However, in this technique, the
data signal is multiplied by a carrier signal having a frequency equal
to the frequency at which the spectrum is to be analyzed. The multi-
plication again results in sum and difference frequency spectra. How-
ever, the center frequency of the analysis filter now corresponds to a
difference frequency of zero. Thus, the filter actually used is a low-pass
filter; and since the negative frequency difference components have
their energy folded around zero into the positive frequency region,
the actual filter need only have half of the desired bandwidth. Part (d)
of Fig. 5.19 shows a low-pass filter of B/2 Hz bandwidth effectively
performing a bandpass filtering of the data spectrum at f, and with
bandpass B Hz.

As with the heterodyne filter, the data can be moved past a single
filter by changing the frequency of the carrier. Use of the low-pass
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Fig. 5.19. Filtering techniques; (a) basic spectrum, (b} direct filtering,
(c) heterodyne filtering, (d) homodyne filtering.
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filter removes a source of error, frequency drift, from the filter but
not from the carrier signal generator. There is one other factor that
must be corrected for in homodyne filtering. That is the relative phasing
between the data signal and the carrier signal. Examining a single
spectral component in the product signal, it is found that the resultant
difference frequency is a de value whose amplitude is proportional to
the amplitude of the spectral component multiplied by the cosine of the
phase difference between the spectral component and the carrier
frequency;

eolt) =1 M (fo) | cos (2mfut +00)] cos (2mfut + 0,)
=u1"(2‘/'},—)‘1 [cos (0o~ 0.)]. (5.26)

This value can range anywhere from zero to the cor.ect value of
[Mfa) 1/2. (Only the absolute value of the cosine is of importance, as
polarity is lost in the detector.)

This problem could be approached by synchronizing the carrier
oscillator; however, this would preclude the use of continuous secanning.
Instead, the data are multiplied by both the sine and cosine of the
analysis frequency as shown in Fig. 5.20. Each multiplier signal is
passed through a separate low-pass filter. For a single spectral com-
ponent, this yields the difference frequency signals of [|M(fu) | /2]
cos (w— 0.} and [ |M (fo) 1/2] sin (8o— 0,) in the upper and lower channels,
respectively.

o LOWPASS
maren ] S b s |-
,T FILTER |

cos(2mit«6,)
t
- A, —I
ATA
oDATA | ' CARRIER | 3 SQUARE| _OUTPUT
OSCILLATOR ROOT
\.‘. T -—J

i

sin(2rit+ 8, {

t

I

- .e Muuwusl -l LOWPASS r—- c{soume .
e | FrTeR

Fig 520 Practical homodyne filtermy.

The output is computed by - jquaring each filter output, adding the
squared values, and then taking the square root of the output;

[ ) : i ) :
Out.put'-\ i—‘m‘;'ﬂhcosmu—u.)] +[L“—"¢'3L’ sin(u,.--u,)]
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= l I‘I(Zﬂ)! ‘\/COS"’ (0"__ 0(‘) +sin2 (04) — 0()
_ l/"(zf“) I (5.27

Thus, the output is equal to the correct value of the spectrum at fre-
quency fu. (The factor of two is accounted for in the calibration.)

When the filter passband enclosed only one spectral component, it
was noted that a true rms, mean absolute value, or peak detector could
be used, since the output waveform from the filter is a single sinusoid,
and the mean absolute value and peak value of a sinusoid are readily
converted to.a true rms reading by applying a simple calibration con-
stant. When there are two or more spectral components enclosed by
the passband of the analyzer, a true rms detector must be employed.
Peak and mean absolute value detectors will give erroneous readings
of the rms value.

To illustrate this fact, consider the simple example of a sine wave and
its second harmonic, with no initial phase shift. The rms value is found
as follows:

2=

T 12
3 %[j (sin 2zft +k sin 4=/t )"‘lt] ‘ (5.28a)

Let T =74, since the signal is periodic every quarter of a cycle of the
fundamental frequency;

\‘W=[4j‘f’

o

' (sin? 2aft +2k sin 27t sin d=ft +k *sin? 4.-._:'1)(11] H

N1 +E:

=5 (5.28b)
The mean absolute value is found as follows:
1Ki=4 f I'sin 2mft +k sin 4zft | dt. (5.292)

Again the samwe upper limit can be used, and since both signals are
positive out to T=174, the absolute value can be dropped;

. [ D)
|X1=ar f (sin 2mft +k sin dmft) dt=2(1+k).  (5.20b)
(U i“

If the mean absolute value could be used in place of the true rms value,
then the ratio of the true rms to it would be a fixed calibration constant;

)”"

\T’i N N (L +4R2)

1X)

=eonstant. (5.3

{ e [£4

(1+k)

1

356-558 OL - 11 - 8
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Since this ratio is a function of k, the mean absolute value detector
cannot be calibrated in terms of the true rms value. (The ratio is also a
funection of any phase angle between the spectral components.)

RC Averaging Techniques

Not all analog Fourier analyzers employing bandpass filters use true
integrators. In fact, the majority use RC averaging in piace of true
integration. This is legitimate, as long as certain precautions are
observed in the use of the RC averager, because the integrator is being
used to compute a time-averaged value. This operation is essentially
that of low-pass filtering. The dc voltage on the output of the detector
is the quantity of interest. Figure 5.21a shows the block diagram of a
true integrator and an RC averager. Part (b) shows the gain factor of
these two circuits. The RC averager is the simplest low-pass filter avail-
able. It also gives a fairly good approximation to the true integrator,
since the envelopes of both gain factors are proportional to 1/f at high
frequencies.

The precaution to be observed in using an RC averager to replace
the true itegrator can be studied by examining Fig. 5.21c and d. Part
(c) compares the weighting functions of the two circuits. By use of these
weighting functions and the convolution integral, the response of each
circuit can be computed. When an input is applied, a step in the mean
square value occurs at the output of the filter (and also out of the
squaring circuit). When this step is applied to the integrator, its outp .t
responds by building up linearly with time. Thus, the input can be
determined at any time ¢, simply by multiplying the output of the
integrator by (T/t,).

With the RC averager, the output gets closer to the product of 1/RC
and the input as the averaging time increases. The idea is to make the
exponential factor in the output negligibie. To do this, {,/RC should be
a large number. The percentage of ervor in the output of an RC aver-
ager, as a function of the ratio of the analysis time ¢, to the time con-
stant RC in the averager, is shown in Fig. 5.22. At small error values
(less than 10 percent), the error in a1 cms value is about 1/2 the error
in the mean square value, for a given (7' RC) ratio.

It should also be noted that RC averaging must be used if the band-
pass filter is to be continuously scanned through the frequency range.
When this is the case, a second restriction is placed on the maximum
scan rate. (This first is given by Eqs. (5.23) and (6.24).) This restriction
is that the scan rate must be slow enough to let the RC averager
accurately track changes in the spectrum. The exact value of the scan
rate is a function of the error that can be tolerated from this source.
In general, the scan rate will be in the following range:

"‘"skﬁ—‘f, (5.31)
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Fig. 5.21. Comparison of true integration and RC averaging.
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Fig. 5.22. Error in the mean square value as a function of the averaging time.

where
B =the bandwidth of the filter

A= the scan rate.

Fiiter Operation on Transients

Filter-type analog analyzers can be used to compute the Fourier
amplitude spectrum without making the transient periodie, if they are
of the parallel-filter type. With this type of system, all portions of the
frequency range are analyzed simultaneously. When used in this
manner, their operation differs somewhat from use on periodic data.

To demonstrate the operation of bandpass filters on a single transient,
the time domain response of an idealized, undamped filter will first be
calculated. This caleulation is performed by means of the convolution
integral [26];

t
y(l)zf Mt - 2)ds, (5.32)
0
For the undamped filter, the weighting function is
() = sin 2nfur, (5.33)
where fu=the center frequency of the filter. Then
14
ytl):f 2(7) sin 2504 ~ 2afuwr)dr

1 [
= (sin 2mfut )f w{r) cos 2mfurds — (cos 21.'}2,“[ «(7) sin 2mfunds  (5.34)
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y(t)=Re [X(fo)] sin 2mft —I'm [X(fo)] cos 2mfut. (5.35)

Thus, the output of the filter contains both the real and imaginary parts
of the Fourier transform. To utilize this information, the rms value of
the output is computed;

Vil = /-Yl:fry-’(t)dt

= \/—;—. ’."T [Re [X(fo)] sin 2mfot —Im [X (fu)] cos 2mfut J*dt.

Assume that the transient is terminated, let T=7,/4, and evaluate

V= VRe (N(fo ] +1m? [X o)) = | X (o) | (5.36)

Thus, the rms value of the output is equal to the Fourier amplitude
spectrum at f,. Note that the rms output will be a function of time
(running spectrum) until the transient terminates. After this point,
the rms output will be constant because of the idealized filter.

The same approach can be used to calculate the response of a practical
bandpass filter. The weighting function of a bandpass filter with center
frequency fu will have the form

h(7) =g(7) sin 2nfur, (5.37)

where ¢(7) is some arbitrary function describing the filter character-
istics. The output of the filter is calculated as befere,

1
y) =f r(7)gt =7y sin (2afot — 2afur)d T
¢
=sin 2zt f 2 (7)g(t —7) cos 2aturds — cos 2mfol
LU
1
XJ £{7)g (t —7) sin 2xfurdr. (5.38)
A comparison of Egs. (5.38) and (5.35) reveals a great deal of similarity,
the difference being the factor g(7) inside the integrals. If these inte-
grals are designated as

Rem[ X)) and Im™(X(f0)]. (5.3

the equation becomes

y () = Re= [N ()] sin 2mput = Im [ X(f0)] cos 2mfut, (5.40)
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and the rms value is
T 2o
V‘l’3=[% fo y*(t)dt]l =|X(fo) I™. (5.41)

This measured spectral value differs from the true value at fo. The
amount by which this measured value deviates from the true value
depends on the quantity g (7). If g(r) coes not change significantly
over the analysis time interval, the measured value will not differ
greatly from the true value. In very genera! terms, the shorter the
duration of the transient and the narrower the bandwidth of the
filter, the less the error will be.

5.3 Analog Shock Spectrum Anzlysis

As with analog Fourier analyzers, analog shock spectrum analyzers
can be separated into several classifications. The first grouping is
into parallel or scanned single value categories. With the parallel
anulyzers, the values of the shock spectrum at all frequencies of in-
terest are obtained simultaneously. With the scanned type of analyzer,
the shock spectrum value is obtained at a single frequency, the fre-
quency of the analyzer is stepped, the transient input is repeated,
and the value of the shock spectrum is computed at this new frequency.
It should be noted that scanning must be performed by stepping rather
than by a continuous sweep for this type of analysis.

The other major grouping of shock spectrum analyzers is the separa-
tion into either active or passive analog categories. The active analog
shock spectrum computer solves the differential equation

dp(t) [du(t)__d.r(t)] . _ -
o +2lwn TR +wiy(t)—x(t)]=0.

Active Analog Shock Spectrum Computers

The basic block diagram of an active (direct mathematical model)
analog shock spectrum computer was shown in Fig. 5.3. This basic dia-
gram is repeated in Fig. 5.283, with the gains allocated in a better manner
and with block diagrams of supplementary functions added.

Prior to the application of the input transient, the outputs of the
integrators are clamped to zero. This minimizes the noise in the com-
puting circuitry and is necessary, since zero initial conditions are
required in the computations. When the input transient is applied, the
timing circuit starts the integrators operating. In addition, this timing
circuit governs the time period during which the output of the comput-
ing circuitry is connected to the detection circuitry. For measurement
of the primary shock spectrum, the output of the computing circuitry
is connected to the detectors at or before the start of the input transient.

S
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Figure 5.23. Block diagram of an active analog shock spectrum computer.

It is disconn:cted in exact coincidence with the end of the input tran-
sient, In this way, the measurement is restricted so that the only peaks
measured are those occurring during the time interval of the input
transient.

For measurement of the residual spectrum, this timing circuit keeps
the output from the computing circuit disconnected from the detectors
until the end of the input transient. Then, in cvincidence with the end
of the transient, it connects the output of the computing circuit to the
detectors. In this way, the measurement time interval is restricted so
that the only peaks measured are those occurring after the termination
of the input transient.

Since the basic definition of the shock spectrum is the “peak” response
of a second order linear system, true peak detectors must be used.
Quasi-peak detectors as found in some voltmeters are unsuitable for
shock spectrum measurements. A peak, or maximum, is defined as a
value of the response whose first time derivative is zero and whose
second time derivative is negative. However, peak detectors used in
shock spectrum computers do not bother about computing these deriva-
tives, since the exact time of occurrence of the peak is of no concern,
(The timing circuits control the data flow and thus handle the primary,
residual, or composite spectrum timing.) Peak detectors vsed in analog
shock spectrum analyzers si'aply measure the highest voltage of a
preselected polarity that is applied to their input. The circuit diagram
of a simple peak detector is shown in Fig. 5.24.

The charge on the capacitor is bled off by closing the switch. Then the
switch is opened for operation. A positive voltage causes the diode to
cunduct and the charge to be stored on the capacitor. This charge biases
the diode so that it will not conduct again until the voltage on the input
is greater than the voltage on the capacitor. In this manner, it measures
and stores the maximum positive voltage applied to the input.
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Fig. 5.24. Circuit of a simple peak detector.
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This circuit contains two primary sources of error. First, the diode
has a finite forward resistance and second, there is a finite shunt
resistance across the capacitor. The finite (zero is desired) forward
resistance of the diode limits the frequency response of the detector.
The frequency response function (assuming conduction of the diode)
is approximately that of a simple first order, low-pass filter. The magni-
tude of the frequency response function can be calculated from

1
— 5.42
T+ (2afR, () (6.42)

(N =
\

wheve R, = the forward resistance of the diode.

For example, if & 1-percent error can be tolerated at a frequency of
10,000 Hz, then H(10,000) = 0.99. The maximum capacitance value :
terms of the forward resistance is found from Eq. (5.42);

. 2.25

( ;-—I-l;I*XlO .

The fimte (infinite is desired) shunt resistance across the capacitor
causes the charge to bleed oft the capacitor. This eauses a droop in the
voltage stored on the capacitor as shown in Fig. 5.25, The shunt resist-
ance is the parallel combination of the back resistance of the diode, e
parasitic shunt resistance of the capacitor, and the input resistance of
the device used to read out the stored voltage. The droop can be
caleulated from

colt) — 1 —e¢ Thet (3.43)

where
cotf) -the fractional error from charge being bled off’ the capacitor

R, - the shunt resistance across the capacitor (parallel combination
of the diode back resistance, capacitor shunt resistance, and
following input resistance).

For example, calculate the capacitance required in terms of the shunt
resistance across the capacitor to keep the droop to -percent over a 1-
min time interval;
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Fig. 5,25 Holding capacitor voltage droop.
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The requirements of Eqs. (5.42) and (5.43) are in direct conflict. The first
requirement dictates that the capacitance should be small to minimize the
high-frequency rolloff, and the second requirement dictates that the
capacitance should be large to prevent the charge from being drained
off rapidly. In practice, these requirements limit the range of the capacitor
and are reflected as stringent restrictions on the forward resistance of the
diode and the total shunt resistance of the ciretit across the capacitor.

Generally, this type of shock spectrum computer can be adjusted to
have “zero” damping. This adjustment is made by setting the circuit gain
so that the response of the computer to a step-function input does not
deeay or build up vver sume reasonably large number of eyeles of oseilla-
tion. Frequently, this adjustment must be performed individually for each
frequency point, since minor differences in the gain have a marked eftfect
near the zero damping point.

Passive Analog Shock Spectrum Computers
gy B .
I'he second type of shock spectrum computer is based on passive analog

computer techniques. The basic block diagram of a passive analog shock
spectrum computer was shown in Fig. 5.6. This is the direct electrieal
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analog of the simple base-excited, second order mechanical oscillator. A
loop analogy is normally used, since voltage measuring instruments gen-
erally disturb the analogy less than current measuring instruments
(parasitics from the measuring devices). In Fig. 5.26, the basic bloek dia-
gram is redrawn and supplementary functions are added. In addition to
the basic computing elements, L, Ry, and C, two additional elements are
in the computing loop. These are a “negative resistor” and resistor R,.
The latter is simply added to damp out oscillations after the measurement
period. The timing control shorts out this resistor when computations
start. The negative resistance is included to permit zero damping (or
nearly zero damping). Its purpose is to offset the finite resistance in the
wiring, the inductor, and the input amplifier stage.

E

QQLQQQ l R NEGATIVE POSITIVE
¢ Lj PEAK
NWWWA
RESISTANCE DETECTOR
eO(') NEGATIVE
PEAK
R' DETECTOR

L

V\XJ
! TIMING CONTROLS

Fig. 5.26. Block diagram of a passive analog shock spectrum computer.

To illustrate the operation of the negative resistance, the basic
computing loop is redrawn in Fig. 5.27. The resistor R, is omitted sin :2
it plays a supplemental role, and the resistor R, has been added. The
resistor R represents wiring, inductor, and the input amplifier's output
resistance—series parasitic resistance in the loou. The loop equation,
in the frequency domain, is

Es)=QIL+QNR~QUIAR +Q(LIR+QNIC+Q(NRy.  (5.44)

The current in the loop causes a voltage drop across the input resistor
of the amplifier R,, and this voltage drop is amplified by the amplifier
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Fig. 5.27. Loop with negative resistance,

tc give a voltage rise. Since the input voltage to the amplifier is QR),
the output voltage is A(QR;), where 4 is the gain of the amplifier.
Note that this is a voltage rise rather than a voltage drop. Rewriting
Eq. (5.44) gives

E.()=QN[R:= (A-DR]+QNL+Q(IRa+Q(NIC. (5.45)

By adjusting (A—1)R;=R; the parasitic resistances are eliminated
and nearly zero damping can be obtained if Ry4is set to zero.

It should be noted that the amplifier is floating from ground as
shown in Fig. 5.26. This requirement is quite crucial to the operation
of this analogy.

Some versions of passive analog shock spectrum computers do not
employ negative resistance elements. The primary reason is economic.
They, of course, cannot be used to compute undamped shock spectra.
Their minimum damping value is }Jimited primarily by the finite resist-
ance of the inductors. Generally, these computers do not contain timing
circuits either.

There are two primary sources of errors in passive analog shock
spectrum computers. These are (a) parasitics in the inductors and
(b) circuit loading by the readout device.

Inductor Parasitic Errors

There are three primary parasitics in inductors. The first is finite
dissipation. This is reflected as a resistor in series with the inductor.
The dissipation results from three sources:

1. Finite resistance of the wire used in the windings of the inductor,

2. Core losses, and

3. Eddy currents.

This parasitic can be eliminated by the negative resistance approach
if the negative resistor is included in the input and inauctance leg.

The second parasitic effect is the nonlinearity of the inductance with
current. This can be examined by a simplified analysis of the voltage
developed across an inductor;
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) =L % (5.46)

dP
el(t)=N a (5.47)

where

L =inductance
N =number of turns in the inductor
¢ =flux

%= temporal flux density.

The flux can also be deseribed in terms of its spatial flux density
B. In a uriform magnetic field,

b=B -4, (5.48)

where A =the area of the field.

Similarly, the spatial flux density can be described in terms of the
physical properties of the inductor and the current through the
inductor. For a solenoid,

Ni
B=u—(—=p}1, (5.49)
where
u=the permeability of the magnetic circuit
¢ =the length of the solenoid
H=the magnetizing force.

By combining Eqs. (5.47), (5.48), and (5.19), we have

oA di

e {t)=puN T, (56.50)
By equating Eqs. (5.46) and (5.50) «nd solving for the inductance, the
following result is obtained:

L=pd G.51)

Thus, the inductance is a function of the permeability of the magnetic
path. The extent of the nonlinearity of the inductor depends on the
B vs H curves of the material in the magnetic path. From Eq. (5.49),

B
K=

A typical B vs H curve for a ferromugnetic material is shown in Fig.
5.28. Even a cursory examination of this curve points out the great
need for care in selecting the core material of the inductors to be used

in computing circuits.
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Fig. 5.28. B vs S curve of a ferromagnetic metal.

The third parasitic effect in inductors is shunt capacitance between
the windings. One way of examining the error from this shunt capaci-
tance is to treat the inductance as being frequency-dependent. The
inductor, including shunt capacitance (., is shown in PFig, 5.29. The
total impedance X;(f) of the inductor is found in the following manner:

- i
(27 /L) (jZn/'C\ )

(J2wfL) + (1—2}1’?—* )

Xi(H=

127l _

N £ U LA K 50
T—(2m ) L.C. (5.52)
If it is desired to consider the element as primarily an inductor, cor-
rupted by the interwinding capacitance, the effective inductance L' is

_XNh 1 ) .
==t (1 ~@an: L. (5.53)

or )
=1, [——————*1 Y VTTRE ] .

where j,=the frequency at which the inductor resonates solely from
the shunt capacitance of the windings.

Fig. 5.29. Inductor showing '
shunt capacitances.
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Ideally, all inductors should be used well below the frequency at which
they resonate. While this frequency dependence is totally disastrous in
some cases, it is not too bad for shock spectrum computers as long as
the resonant frequency of the entire analog circuit is well below the
resonant frequency of the inductor alone. This is because the current
through the inductor will primarily be at a single frequency. The main
problem with the shunt capacitance of the inductor is that it lowers
the effective inductance in the inductor.

Loop Loading Errors
The second primary error source in passive analog shock spectrum
computers is the loading of the loop circuitry by the readout circuitry.

To evaluate the error caused by this loading, the basic loop is redrawn
in Fig. 5.30.

= |
38 EI

Fig. 5.30. Basic loop with readout loading.

By solving the loop equations in the above figure, the transfer func-
tion between the output and input voltages is found to be

[Eu(s )] = R -+ l/(‘s - 54)
Ev(5) hoses (Lo + R+ 1/Cs) + (RIS FLICSIZ, ©.

The transfer function of the loop without readout loading (£, =) is

[Eu!-\'! 1\’+ IICS

El(s)]u".mf s+R+1Cs (5.55)

A comparison of these two equations shows that the result of the load-
ing is to introduce the second term into the denominator, This term
must be small in comparison to the first term in the denominator if
loading is not to introduce significant error. This leads to the following
inequality:

(’-‘L—}——”ﬁ-) < Ls+R+1(C) (5.56)
o 1

Since this circuit will operate principally at the resonant frequency of
the primary loop, Eq. (5.56) can be evaluated at this frequency to de-
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termine the primary error. In addition, the magnitudes are the only
quantities of interest because of the specific application (a) basically
single-frequency operation, and (b) shock spectral analysis does not
retain phase information). Under these conditions, Eq. (5.56) evaluated
at fu,=1/2=VLC) yields

V (L/C23+R2L/C
o

Thus, the magnitude of the load impedance must be quite high at the
resonant frequency of the primary loop, as R is always small. If a single
readout device is used to read out all frequencies, its impedance must
satisfy the requirements of Eq. (5.57) over this entire frequency range.

Other than the error sources just described, there are several other
sources of error common to all electronic circuits. The stability of the
resonant frequency and damping ratios of the loop depends on the drift
characteristics of the elements and the environment in which they are
used. Noise is also added to the signal by the electronics. With rea-
sonably careful design, these errors will be minor.

(6.57)



Chapter 6

DIGITAL TECHNIQUES FOR ANALYZING
SHOCK DATA

6.1 Digitization of Transient Data

In performing any data analysis digitally, it is first necessary to
acquire discrete samples of the data. In most engineering applications,
the phenomenon being observed is continuous and the observations are
usually recorded in a continuous manner on some medium such as mag-
netic tape. The continuous data must then be sampled to provide the
discrete values required for dxg’ltal analysis. This sampling process
is called digitization.

Digitization consists of two completely independent processes. The
first of these is defined as quantization and is the procedure whereby
one of a discréte set of aviilable numerical values is assigned to the
amplitude of the signal being digitized. An example of this is shown in
Fig. 6.1. At any point in time, the signal in the example will attain one of
the infinitely many values of amplitude possible in the range (0, 4).
- Since only a discrete subset of amplitude values is available to the
‘quantizing process, say values 0, 1, 2, 3, 4, a decision must be made as
to the value 'assigned. The normal approach is simply to assign the
closest level available to the true amplitude. As an example, the true
value-at time #, of the example is approximately 3.8. It would be assigned

a value of 4. This selection proced'u_re introduces an error knowii as

_ quantizing error. If the quantizer is working properly, this error will
{ ‘have a zero-mean, uniform probability distribution with a standard
. deviation of \/EAx, where Az is the increment between successive
quantizing lévels.

Since most’ quantlzmg devices produce binary outputs so as to be
computer-compatible, it is sufficient to define the number of available
quantizing levels by specifying the number of binary digits (bits) used.
If n is the number of bits available, then there will be 2" quantizing

. levels. Similarly,

[
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.

Fig. 6.1 Quantization of a continuous signal.

where 4 is the amplitude of the signal corresponding to the maximum
quantizing level. In most digitizing systems, at least eight and as many
as 15 bits ~re used so that the quantizing error is insiguificant. How-
ever, care should be taken to utilize as much of the dynamic range of
the quantizing system as possible so as to keep the quantizing error
at a minimum.

The second process involved in digitization is called sampling. Here,
one is concerned with the rate at which samples of the data are taken.
Digitizing systems will usually supply samples at equally spaced inter-
vals of time. The sampling frequency f; is then

1
f‘z-A-t‘ (6.2)

where At is the time interval. As explained by the sampling theorem
{27), only frequency components in the range (0, f,/2) may be detected
in the sampled data. All frequency components greater than f;/2 are
folded back or aliased into the acceptable range, as shown in Fig. 6.2:

. ALIASED G(f)

TRUE 6t Fig. 6.2. Aliasing error due to insufficient

sampling rate.

o~
.

1572 1

Because of the aliasing problem, great care must be taken to see
that very little energy exists in the continuous signal beyond the alias-
ing or Nyquist frequency before digitizing. This is probably the reason
for the various rules of thumb specifying the sampling frequency to be
used as either five or ten times the highest frequency known to be con-
tained by the data.
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The only meaningful way of determining a reasonable sampling fre-
quency is to define the band-limiting properties of the data acquisition
system. Since all systems have some upper limits on the frequencies
they will pass, it is possible to specify an appropriate sampling fre-
quency at twice this highest frequency. Unfortunately, in many prac-
tical applications it is not feasible to sample at the very high rates
usually required.

If this is the case, then the data frequency content should be re-
duced prior to digitizing. The standard method used consists of playing
the data through an analog low-pass filter, called an anti-aliasing filter,
whose actual passband allows the retention of only the meaningful fre-
quency components while attenuating the high-frequency noise. This
procedure may not be effective when dealing with transient data be-
cause the filter will produce its own transient response as an output
when a transient is supplied as the input. This transient response may
have characteristics quite dissimilar from the original data and will
tend to ring at the filter’s resonant frequency. Also, nonlinear effects
can occur. Because of these problems, one must be willing to live with a
certain amount of aliasing when performing digital analyses of shock
data. The engineer performing this type of analysis should be aware
of these potential problem areas and should be prepared to utilize his
judgment when confronted with them.

6.2 Classical Digital Fourier Transform Methods

The discrete, finite Fourier transform is defined by

N (kA=A T e rmsns, ©.3)

i 0
This is simply the discrete analog of Eq. (2.44), where the continuous
variables ¢ and f have been replaced by iAt and kAf. The natural fre-

quency spacing for the complete Fourier transform, when all possible
independent estimates are calculated, is

S

Af= Nai (6.4)
so that 1. is defined by
T - : T8

=k '\"".\’.\t k=0,1,2, ... N/2. (6.5)

Equation (6.3) may then be rewritten as

MY 7

Xi=at Y xe ¥V, k=0,1,... N2 (6.6)

i-o
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Before the advent of fast Fourier transform (FFT) methods, two ap-
proaches were used to evaluate Eq. (6.6).

The first and simplest method used was to evaluate the defining
equation. By Euler’s formula,

=Ry 2wk . . 2mik
e =¢0Ss —N’——J sin —-NL-» 6.7
so that
Xi=Cr—jQy, 6.8
where
Ci=4t 3 x, cos 22 (6.92)
-0
AR | sl
Qu=at 3" x, sin 22, (6.9b)

0

A computer programmer unfamiliar with this type of analysis would
proceed to evaluate Eq. (6.9) exactly as written. This would require the
calculation of N sines and cosines, the formation of 2NV products, and
the summation of these products for cach complex value of the Fourier
transform. Performed in this manner, the computer time for the com-
plete Fourier transform, ignoring all overhead items such as input-
output and initialization, is equal to (N42) (T'.c + Ta), where T, is the
time needed to calculate one value of either the sine or cosine and T,
is the time required to perform one multiplication and one addition.
On an IBM 7094 computer, the running time for a reasonable machine
language routine would be on the order of 271N x 10 " sec. For rea-
sonable record lengths (1,000 <.V = 10,000), this procedure requires
from 5 min to 7-1/2 hr to evaluate.

It is possible to speed up this procedure by calculating the sines and
cosines recursively. This may be done by using the following formulas:

sin(0) =0
sin (Af) = sin \f (obtained from sine subroutine)
sin (M+1)Af=(2 cos AN sin MAf—sin (M -1 Af (6.100)
cos (0) =1
cos (/) = cos At (obtained from cosine subroutine)
¢os (M -+ 1) Af = (2 cos Af) cos MAf ~cos (M —1) &S, (6.10b)

The values of sinAf and cos Af must be caleulated by means of an
approximation, as is done in most sine-cosine subroutines. However,
each additional pair of sines and cosines requires only two multiply-add
operations. The running time on an IBM 7094 computer of a machine
language routine incorporating the recursion formulas would be on the
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order of 60 N*X10-¢ sec. For record lengths of 1000 <N =<10,000, the
running time is approximately 1 <7 <100 min,

A procedure first derived by Goertzel [28] is reported to be the most
efficient of the pre-FFT methods. This method requires the generation
of an auxiliary variable U as follows:

Uo=0
U|=.‘C\~1
U,=(2cos ZE) Uiy = Uit i=2,3,...,N-1
= Ar i-1 =2 TL Ny LT, 0y v oy . (6.11)

Then,

Co=At (cos %—(,i) Usor= Userb 0

(5.12)

Qk=.3t(sin 2—;,5) Uw., k=0,1,... N2

When this procedure is used and the sines and cosines are generated
recursively, a machine language program written for the IBM 7094
will take approximately 20 N2X 10-% sec of computer time. Again, for
reasonable record length (1000 < N < 10,000) the computer time will be
in the neighborhood of 20 sec to 33 min. While this is a saving of a factor
of three in computer time over the previous method, note that the run-
ning time is still of the order N2 For large volumes of data, computer
times of this order are generally unacceptable. The end result has
been that very little transient data have been analyzed in this manner.
Instead, transients have usually been analyzed either by inspection
of the excitation itself or by shock spectrum analysis.

6.3 Fast Fourier Transform Methods

In 1965, a paper by Cooley and Tukey [29]) was published describing
a “new” method for calculating Fourier series or Fourier transforms.
The basis for this method has since been traced back to at least 1928,
Recently, considerable work en this subject has appeared in print
[30~-33], and two major versions of the algorithm have been defined.
These are presently termed the Cooley-Tukey (C-T) algorithm and the
Sande-Tukey (S-T) algorithm,

The advantages of the FFT are twofold. The number of actual arith-
metic operations is reduced drastically, causing increuses in speed of
several orders of magnitude for reasonable record lengths. Also, be-
cause of the fewer operations performed, truncation and roundoff errors
are reduced, producing a more accurate result.
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The major restriction on the use of the FFT method is that the num-
ber of samples N be a highly composite number. That is

N=ry 113, o« *Tm,

where 7y is 2 non-unity factor of N. The number of complex multiply-add
operations required by the FFT method is proportional to N2, instead
of N2 In particular, for N=2¢ the number of operations is approxi-
mately 2Np.

In essence, the FFT algorithms are methods for factoring the Fourier
transform of order N into a series of transforms, each of which is of
order 7. This can be seen more easily from the following example:

The Fourier transform of x(t) is defined by

N ~2mik =
X(k)= At \21 x.e—Lr—, k=0,1, ... N/2. (6.13)

1=0

A change in notation is appropriate here. Let

=
W=e¢ ‘. (6.14)
Then

Xy=At'S w. (6.15)

=0
If N=A - B, then the two indices { and & may be rewritten
i=(b+aB), time index
k= (c+dA), frequency index, (6.16)
where
a,c=0,1,...,A-1
b,d=0,1... B—1,

Substituting these indices into Eq. (6.15) produces

Xie+dA)= BSI ‘2" x(b+aB )"I(bﬂm)(rod.n’ (6.17)

b~0 a-0

where the At scale factor has been omitted to simplify the equation.
Expanding the exponents of ¥, the following is olktained:

Hl(b caldle-di) = “Vbr “thl 1 ”hu‘ﬁ “hld 1Y (6.18)
Also,

ReadAl

Wadtb=¢ "0 =[e 1] ad=1, (6.19)
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because a and d are both integers and e~7 raised to any integer power
is unity. Eq. (6.17) can now be rewritten as
B—1

X(e+da)="S {th'[ww S w(b+aB) Weer ] } (6.20)

b=0 az0

The inner summation is recognizable as a discrete Fourier transform
of the decimated data sequence x(b-+aB) whose length is N/B =A.
Simplify the notation and let

up(a)=x(b+aB), «=0,1,.. ,A-1;b=0,1,...,B—-1. (6.21)
Define

Use)=S wi@Wes,  b=0,1,..,B~1. (6.22)

a-0
B of these A-length transforms must be calculated. Define
ve(d) =Us(c) Wee, (6.23)

Then Eq. (6.20) may be rewritten as

B

]
.\’(c+dA)=2 ve(b) Wody d=0,1,...,B—-1¢=0,1,. .. A-1,
b 0
(6.24)

which is nothing more than A Fourier transforms, each of length B.
Therefore, the original Fourier transform has been broken down into
two stages:

® Computation of B Fourier transforms of length A

® Computation of A Fourier transforms of length B.
The number of complex multiply~add operations required is as follows:

AB:+B -Al=AB (A+B). (6.25)

While N may be composed of any factors, either prime or nonprinie,
the most efficient factors are either 2 or 4. This is because the inter-
mediate transforms will be of length 2 or 4 and the exponentials re-
quired for such transforms will have values of +1 and —1 or +1, +},
—1, —Jj. This allows the replacement of complex multiplizations by com-
plex additions and subtractions, which makes for additional time
savings. Also, the programming becomes somewhat simpler when all
the factors of .\ are identical.

The algorithms as described in the literature define a recursive ap-
proach in the calculation of the intermediate transform values. In
effect, the recursion process is a simple method for calculating the
(i + 1)st intermediate transform from the ith.
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The description of the recursion equations to follow will be restricted
to the power-of-two versions only. First, the time and frequency indices
i and k& must be written in binary notation, as

i= ip~12p—l =+ ip_22p-2+1'p_32p—3 R i0= (ip-], o oay 'io) (6.26)
and
k = kp—lzp-l+kp—22p-2+kp-32p-3 .. + k0= (kp-], . v ey ko),

where each component of i and k& can take on only the values 0 or 1.
These indices are usually written in a positional form with the powers
of two omitted as shown by the extreme right-hand sides of the defini-
tions. As will be seen, the binary indices correspond to the actual com-
puter memory addresses of the data samples being processed.

The describing equation for the Fourier transform may now be writ-
ten in a manner analogous to Eq. (6.17) as

Xkpors kpzs - o o k)= D N o S @l dpesy + e )W (6,20

fos1 ;=0 i3=0 o1 ”

Expanding the complex exponential W* as before allows the factoring
of integral powers of e-s¢7, This can be seen most clearly by considering
the product of only the k, - index with the complete i index:

W’\( “lpopipa 'u’.___w’\( It ST UL S U
Whe-1tUp-ctpar e ) (6.28)
The first term on the right-hand side of Eq. (6.28) now contains only

integral powers of the complex exponential, since the product of %,
and each of the 1 indices is of the form 2s+¥;

Jimik Jimik grmbe M
~ e .
Wih=o N =p 2 =z 2 =e-pm' (6.29)

Equation (6.27) may now be rewritten in recursive form. Consider the
innermost sum performed over i, ,=0, L. Using the notation /A, to
denote the ¢ th intermediate transform, the innermost sum may be

written as

1
Al (l\'u. ip i i;, 3 l.,..q, < ey iu) = }: -!'(il- The o s l.u) ”“o'y 1 (630)
-9

The next stage in the recursion is obtained from the first by

4"_-(,\'0. I\'h ip B» i;l TR io) = 2 .‘ll(,\'u. ip Y l-p Sy e s ey l‘of ”’“l"u”}:—!
po2® L.31)
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and in general,

1
Ac(lo, bry o ooy Reary Tpeary o v oy To)= 2 Aealho, by .,

p-g=0

1\.[—2) il'—() LR i")W”\(“l’kf‘.‘H 'ko)il"l- (6-32)

The pth application of this recursion produces the required Fourier
transform. However, the index of the transform is in reverse order,
going from the least significant to the most significant digit instead of
vice-versa. Thus, the Fourier transform values must be rearranged
before the process is completed. This rearrangement is termed a bit

reversal.
This version of the FFT is the C-T algorithm. The S-T algorithm is

similar, but the roles of ti.e two indices in the exponents are inter-
changed. The relation for the S-T algorithm is

1
.‘1‘,(1\‘0, l\'l, .oy l\'(—l, ipq-l, .« ey lo)= 2 A(_x(ko, }\‘1, ey I\'(-_;,
i, =0
o o)Wttt pepre -l (6,33

Ip—gy + »

The forms of these algorithms which are actually used for program-
ming are given below.

a. The C-T algorithm
Al (l\.Op I\.l, ey kl - 0) i}l'(*lv o . ey i0)=[Al —l(kol LI kl ~2 oy i}l-l—-l» e ey i(\)

+ A atko kay v ke Ly 1y )W Rzt R (6.34)

.'1,(’\'u, l\'|, “hey '\'(~.‘, 1, l',r-(-l, s e ey iu)

= [."(-](l\'u. '\'., e ey l\‘(-uz, 0, l.,,.(.q, « e ay io)

-.'I(-I(I\'u. l\'l, o« 0. ,I\'(—_’, 1, I.p—(-l, .« v lu)]”’ U\(,Z, 'k""l""‘l.
b. The S-T algorithm:
.“, (,l'u. ,\'1. «eey ,\'{—2, 0, l‘p—(‘l. « 0wy l.u)
:[.'1(4”\'».,\'1,. .. ,’\'/ ;O,i;-—(ﬂ,. . ,iu)
+.‘!1 ‘l(,\.lh I\'l. T e ey k(—z, 1, l-‘,—,v—l, o s ey iu)]”“"‘ e rtre 2 "‘N\’“l
(6.35)
.‘l( (I\'u, I\'|| Y ’\‘I~.’. l, ilrl—lp CRCINY ill)
= (.’l(—l(l"u, I\'l, « ey ,u'.v—_’, 0, l.p-(—!. « ey l‘n)
‘.‘l(~l(ku, ’\.lr « s ay 'u'{ - l, I‘p~(~l- . ’ i")]“”"‘ e~1ip e 2 BILYE 1,

s,

— e p—
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The formulas given above show the simple patterns which may be
implemented in the programming. Two values of the intermediate
transform are calculated at one time. These two values differ in index
.y a factor of two in the (p—¢)th position. If the original data were
stored in consecutive computer memory locations, then the pair of inter-
mediate transforms will appear in locations 277 apart. Also, the two
values are almost identical; one is a function of the sum of two pre-
vious values, while the other is the difference of these values. Because
of these patterns, the implementation of an FTT algorithm is almost
trivial,

Another item of interest is the fact that only 2N sines and cosines
are required rather than the N? values required by earlier methods.
Because of this reduced number, it is practical to calculate each sine
and cosine independently rather than recursively. This reduces the
computational error, since roundoff and truncation errors usually
begin to show up in the later stages of recursive sine-cosine generation
techniques.

The final procedure required in most versions of the FFT is the bit
reversal to unscramble the final transforms. The reversed index may
be computed in one of two ways:

1. By maintaining a counter in which the increment is added to the
most significant digit rather than the least, as is usual. This presents
a few difficulties in the handling of carries, since the carry must be
to the right rather than to the left.

2. In a recursive manner, from the preceding value of the reversed-
bit index. To accomplish this,

(a) Search the leading digits of the preceding index for a zero. Set all
leading nonzero bits to zero.

(b) Set the first zero bit to a one. All other less significant bits maintain
their previous values.

The bit reversal can just as easily be implemented prior to transfor-
mation. The identical process may be used to scramble the time series
before the FFT algorithm is applied. The results of the transformation
will then occur in the correct ovder.

Several other facets of the FI'T are of major interest. Since the
procedure transforms a complex sequence of data, it is necessary to
fill in the imaginary part of a time history with zeros. However, if trans-
forms of several data sequences are required, pairs of transforms may
be obtained simultaneously by forming a complex time series composed
of two real time series as follows:

Given

x=r(iAt), y=paat),
then form

n=a+jgy, =01, ..., N=-1, (6.36)
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The Fourier transform of z is obtained in the usual manner and then
unscrambled to produce the two transforms

X, = Zy, +2Zﬁ\< -4
and 6.37)

y, =228 k=01, ... N2

Limitations in FFT Methods

The basic limitations of the FFT method are twofold. First, the num-
ber of samples must be a highly composite number and, for most pres-
ently programmed versions of the FF'T, a power of two. This limitation
can be overcome simply by either truncating the time history at some
convenient point or by adding zero values until the required record
length is obtained. In either case, no appreciable effects on the resultant
transform will be apparent. The padding with zeros will simply intro-
duce some additional values of the transform. These will not be statis-
tically independent, as are those values calculated at the natural
frequencies. In fact, adding zeros to the time history is a good interpola-
tion procedure, since it corresponds to the error-free (sin x)/x interpo-
lator defined by Shannon’s sampling theorem [27}.

The second limitation of the method is that the entire data sequence
must normally be available before the transformation can be per-
formed. Since the transform is performed in place with the intermediate
values being placed on top of preceding values, the number of samples
which may be processed is limited by the size of the computer memory.
With binary computers, sample sizes of approximately 1/4 the computer
memory capacity may be processed. This is because binary computers
have memory sizes equal to some power of two. Since the FFT is a com-
plex transformation, two memory locations are required for each
sample of the time series, so that for N=2r, 271 actual locations are
needed. If 27 is greater than 1/4 of the total computer memory, then it
would have to be equal to at least 1/2 of the total memory, so that 2¢-1
(the number of memory locations required) would be equal to or greater
than the total memory.

However, by a very simple procedure it is possible to compute trans-
forms of record lengths twice the size of the normal maximum. The
technique is as follows:

1. Sort the data samples into two subsets, one containing the even-
indexed points and the other the odd-indexed points.

2. Perform the FFT on each subset.

3. Combine the resultant transforms to produce the double-length

transforms.
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In equation form, this process is the following:

AL =>Xn
(6.38)
b;.=.l?_'”|, l'=0, 1, ey N"‘l; k=0, 1, e ey N/2_1
A= aorye
=0
(6.39)
Vi2-1
B,= E bp (W), k=0,1,... N/2—-1
=Y
Xi=Ay+ BVt
(6.40)

Xk»\,_:=AI\_BAIV", /\'=0, 1, [ N/2—1

This procedure may be repeated to allow successive doubling of the
number of data points indefinitely. To implement this technique
efficiently, the computer used should have some random-access
auxiliary memory such as a disk or drum for intermediate storage.

6.4 Shock Spectrum Anaiysis Methods

Shock spectra are calculated digitally in a manner similar to the
analog procedures discussed earlier. The 1esponse histories of a series
of single degree-of-freedom systems to the given excitation are calcu-
lated at specified natural frequencies and damning ratios. The peaks of
these response histories are detected and recorded as a function of their
natural frequencies and damping ratios to produce the shock spectrum.

However, the various procedures used in calculating the response
histories and detacting response peaks are quite different from the
analog techniques. The response history computations in present use
consist of

1. Direct numerical integration of the Duhamel integral

2. Recursive integration of the Duhamel integral

3. Convolutional filtering by means of the single degree-of-freedom
system unit impulse response

4. Recursive filtering procedures.

All of these techniques are discussed in detail in following sections.

Digital peak detection is an area of some interest and is a major
source of error. Since the response history is sampled rather than con-
tinuous, the probability of observing thc¢ actual maximum is remote.
Interpolation schemes of various types are in use to perform the peak
detection and evaluation. A more complete discussion of this problem
appears later in this chapter.
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6.5 Response History Computation via Integration

The initial procedure implemented digitally for computing the re-
sponse history of a single degree-of-freedom system was the numerical
integration of the Duhamel or superposition integral. As described in
Chapter 4, this procedure involves the convolution of the exciting func-
tion with the unit impulse response of a single degree-of-freedom
system. In describing this procedure, the foundation-excited form of the
system will be used. The differential equation of the motion of the mass
as derived in Chapter 4, Eq. (4.24), is then just

y(t) + QCwn[I/(t) _l(t)] +wi';[l/ (t) —l(t)] = 0’ (6-41)
with a general solution of

sin wt.:) +-§:—'— e ~wnt gin wqt
d

E(t) = Eqe ~tunt (cos wqt +\/ £

t
L [ i()e-wuttn sin wa(t =n)dr.  (6.42)
Wd Jo

where £ and &, are the initial relative displacement and velocity,
respectively. If the initial conditions are zero, as they usually are in
practice, then the equation to be solved is simply

Et)=-— w_l-g_": x{7)e nlt= sin wa(t —7)dr. (6.43)

A similar equation may be derived for the relative velocity é(¢);

sin wq(t—7) ] dr. (6.44)
V11—

i
£t) =—J. .i"(.')e“‘“"”"’[cos wg(t—7y—
N "
which may be rewritten

Et) =-flj(7)e'{W..“”’cos wglt = 7)dr ~ Lwa (). (6.45)
Also,
£t) =~f'.x-<=)wu¢-'<~w—"[L’\f;l__ sin wa(t —7) — 2 cos w.,(r-f)]df. (6.46)

>

Similarly, this equation may be rewritten in terms of £(¢).

E{t ) =2(w.f'.5'(r)e“‘"~“ Deos wylt = )d7+w el —1)E(L).  (6.47)
o

In any case, it may be seen that the solution of these equations requires
the integration of a damped sinusoid or cosinusoid multiplied by the
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time history of the excitation. The direct translation of these equations
into the digital domain requires only the replacement of the continuous
variable x () by the discrete x,=x(iAt) and of the integral by a sum-
mation. The discrete form of Eq. (6.43) may now be written as

gr=--2L g e-tondtti-nsin [wadt (i— )] (6.48)

®a

The accuracy of the numerical integration performed in this manner
may leave much to be desired. In essence, the continuous excitation
£(t) is replaced by a series of rectangles of width At as shown in Fig. 6.3.
If the ratio of the sampling frequency f; to the highest frequency
component contained in the excitation f; is sufficiently large, say = 20,
then this integration procedure will produce negligible error in the
response history. llowever, such sampling frequencies increase the
computer time drastically.

x(1)

{ w——

Fig. 6.3. Numerical integration of
an excitation time history.

As an example, consider a complex shock pulse containing frequency
components of interest in the range 0 to 10 kHz. If this pulse is sampled
at 20 times the highest frequency, the sampling frequency will be
200,000 samples/sec. Typical shock pulses will usually take 10 to 100
msec (0.01 to 0.1 sec) to decay. This means that as many as 20,000 data
samples might be required to define the excitation. A reasonable esti-
mate for the time required to calculate one integration step on the IBM
7094 is 540 usec. With an average of 20,000/2= 10,009 integration steps
required for each value of the response history, this means that 5.4
gec of computer time will be expended. Considering the number of
values of the response history to be calculated (typically 5 to 10 times
per cycle of the resonant frequency) and the number of natural fre-
quencies usually required to give reasonable resolution to the shock
spectrum, it is obvious that the computer time required is prohibitive.
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Techniques for speeding this computation have been implemented in
past computer programs. These include the following:

1. Recursive generation of the exponential sines and cosines. Since
the values of the excitation x(t) are normally available at equal incre-
ments of time At it is necessary to compute only initial values of the
exponential sines and cosines e —tn! sin wgt and e ~%n! cos wat and similar
values for the inerement At; e-ten3 sin wqAt and e ~tendt cos wqAt. Recur-
sive relations based on the formulas for the sines and cosines of the
difference of two angles and for the difference of two exponents can be
used;

sin [wa(t,— At)]=sin wd,-1=sin wdt, c0s wadt — cos wqt, sin weAt (6.49)
COS Wgt -1 = COS wat, COS wedt + Sin wqt, Sin weAl (6.50)
e-{wnli-1= e'(wnllelwn-\' (6.51)

Combining these formulas yields

e-tonti-18in w g iy = (e-tontiglondt) (sin wyt, COS weAt — oS wyt, Sin wylt)
= (elon3t cos wyAt) (e~tnli sin wyt,)

— (etendt gin axqAt) (e~tent coS wyti). 6.52)

The first of the two factors in each term is simply the incremental value
of the exponential sine or cosine, while the second factor is the preced-
ing value of the exponential sine or cosine. Done in this manner, only
four multiplies and two adds are required to generate each term of the
single degree-of-freedom, unit-impulse response function.

2. Limiting the number of response points calculated. If only the
maximax or maximum positive and maximum negative shock spectra
are to be calculated, it is sufficient to compute the response histories
over only a few cycles of the frequencies of interest. This is because
the peak response usually occurs within 2 or 3 response cycles of the
peak excitation. To implement this limitation procedure, it is only
necessary to specify *he record length to be used in the computations
as some number of periods of the natural frequencies requived.

3. Limiting the number of values per response period. Another
limitation which can be made is to specify the maximum number of
response values required per cycle of the resonant frequency. It is not
usually necessary to maintain more than 8 to 10 response samples
per cycle to obtain accurate estimates of the response peaks. This
limitation is especially effective in reducing computer time in a broad-
band analysis. Because of the high-frequency data content, high
sampling rates are required. If a response were to be calculated for
each sample of the excitation, many more values of the response than
necessary would be computed for the lower and middle frequency range.
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6.6 Response History Computation via Recursion Formulas

Another procedure similar to the direct integration of the Duhamel
integral, as described in the preceding section, but much more efficient
is a recursion due to O’Hara [34]. A variant of this method is also
reported by Gertel [19].

This technique utilizes Eqgs. (6.43) and (6.45) which define the relative
deflection and relative velocity of a single degree-of-freedom system as
a function of the initial relative displacement and velocity and also
of the convolution of the excitation with the system response function.
It is easily seen that if the relative displacement and velocity are known
at some timet,, where t, is later than the time of initiation of the shock,
then these values could be used as new initial values in determining
the response time history. Therefore, if the Duhamel integral can be
integrated properly over some time interval, then the response values
&(ty) and £(t)) computed in this way can be used as new starting values
to continue the solution process.

In general, the exciting function is available at equally spaced inter-
vals of time. While the equal spacing is not a requirement in the recur-
sion, it does simplify both the notation and the programming of the
method.

Consider an acceleration record as shown in Fig. 6.4 in which discrete
samples are taken at the equally spaced points t;. The determination of
the response values ¢ and é, resolves itself into one of numerically
integrating the Duhamel integral over the intervals

(to, t|), (t], t:), « v (th tl\'l), e (tn—l,t").

To perform this numerical integration, it is necessary to determine an
analytic expression which approximates the quantity to be integrated.
This boils down to approximating the exciting function by some simple
form, since the remainder of the integrand is simply a sine or cosine.

A good approximation in most cases is that of a parabola such that

E=dot Wty + @itk 6.53)

where the coefficients «, a,, and a: may be determined from the samples
of the excitation in the vicinity of ¢. In particular, by utilizing finite
difference methods, the parabolic approximation may be written as

.i"¢=.i'.+—'§+—2—- :\_lz_:\—l (6.54)

Sit, S,*_,(tf t.)'

Si= o — X% (first forward difference)

St ,=8i—Siai =k, =20+ k-, (second forward difference).
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Fig. 6.4. Digrtized acceleration record.

Utilizing the parabolic approximation of Eq. (6.54) for the exciting
function, an explicit solution of the Duhamel integral is obtained:

G
f x(r)e -t Dgin we(t —7)dr
h

=:$ [ 1- c—(u,.-u(cos WAt + sin w.;.\t)]
Wy \ ...{.‘
-S > * — ) e - S gi
-—‘?[1—4—" (1= ot cos wedf) — LT 2E)C “uoin f""-"]
Wi Wt waAt
S f A [20-48) 24) e
2 [ @t ( Wi wat) 1T cos wadl)
(L2, MO Y et sin wat]  ©59)
4 2
(ALY, wiAt? \1-0¢

In a similar manner, an explicit solution for the cosine integral
may be obtained. If these substitutions are made in the discrete forms
of Egs. (4.21) and (4.27), the resultant equations may be used recur-

356-558 OL - 71 - 10
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sively to obtain the (k+1)st values of the relative responses from the
kth values;

&or=Bi&u+ Bog, + Baxy + BiSi+ BoSE_, (6.56)
£sto Bugy + Bugy + Bubs+ BuSi+ BuSE.,» ©.57)
where
B, = o-tor (cos walt+ \/1ZT; sin w,,At) (6.58)
=22 i wadt (6.59)
d
B';=l,(1‘81) (660)
w}
=28 e apy (1 =20%) et sin wdAf] .
B*_w'.:[l Y, (1 = et cos wqit) Y (6.61)
R S S | S 2_(_1‘_45_)___35_] — o-lndt ,
B"’_—m{ Y, [ e Y, (1—e €os wqdt)
. [1 —op N 20(3 —4;'-’)] e -tendgin (:MAt } (6.62)
wndt WAL VI=¢
Bs=—waB; (6.63)
_e {wn 31 _ é .

B:= on {cos weAt v’l_l?sm walrt) (6.64)
By=— f—; (6.65)
— Ig| - 1 "
By="hsr (6.66)

S Ty Y (U0 SN (4 ) —e W
B 20’5{0)“/_\‘ (w,At+w§At2 (1—e v 3 cos wgdt)

[20-20) ¢ ]e*”n-\'sinwd:&l} 6.6T)
GAE wdt] T vieg

This method has significant advantages over the numerical integra-
tion technique presented in the preceding section. First of all, computer
running time is drastically reduced. The computation required to
produce the relative deflection and velocity responses at each digitized
point of the excitation consists of ten multiply-adds or approximately
210 usec on the IBM 7094.
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Another advantage is that both the real and the imaginary parts of
the Fourier transform may be calculated from ¢ and £ when the damping
ratio has been set to zero. This can be seen by a reexamination of
Eq. (4.21) for {=0;

E(t) =£y cos wit +fT° sin wut —-al'- fl 2(7) sin w,(t ~7)dt. {6.68)
H n [V}

If ¢o=£0=0 and the trigonometric substitution
sin (@ —b)=sina cos b—cosa sin b

is made, then
wné(t) ==—sin w,t f‘ ¥(7) oS wurdr + cOS wyt fl 2(7) sin wyrd7. (6.69)
V] 1)
Taking the derivative of Eq. (6.69) yields

£(t)=—cos w,.tf’ x(7) ¢os w7t —sin wd f

[ [}

" (7) sin wadr. (6.70)
)

If £(t) and £(t) are known for a particular time t =T, it is now possible
to solve Eqs. (6.69) and (6.70) simultaneously to obtain the finite Fourier
transform of the exciting function over the time range t =0, T'p. To
obtain the complete range Fourier transform, it is necessary to set
T» equal to or greater than the time at which #(t) decays to zero.
Therefore,

T .
f " #(1) cos wrdr=—E(Tp) cos v wi&(Th) sin w,To (6.71)

and
™
f J.(T) Sin W, TdT = wr|§(7‘l)) Ccos (0!07‘“_ E(TI)) Sin (lluTlh (6.72)

Or, in simplified notation,
R(«’{F(wu) } ="wn§(7'n) cos wn'l'n"fé(Tn) sin w.I'n
In{F ()} = w.&(Ty) cos wTn—ET) sin w.Tn. (6.73)
A possible drawback of this method is the assumption that the para-
bolic approximation utilized is a good fit to the excitation data. If

this assumption is to hold, a sampling frequency significantly greater
than that specified by the sampling theorem is required.
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The error introduced by this method can be seen by comparing the
parabolic fits and the actual excitation as shown in Fig. 6.5, when the
sampling frequency used approximates two samples per period of
the highest data frequency.

w—-= TRUE ACCELERATION
~ =~ = PARABOLIC APPROXIMATION

ACCELERATION

TIME

Fig. 6.5. Parabolic approximations to true acceleration for
low relative sampling rate.

6.7 Response History Computation via Filtering

Undoubtedly, the fastest method for computing the response time
history of a single degree-of-freedom system is by means of digital
filters. A filter may be defined in general terms as a process which
operates on a time history and changes the characteristics of that
history in some specified manner. The filters to be discussed here
are all of a linear nature and as such correspond to the linear systems
described in Chapter 3.

There are several ways in which a linear filter may be defined. Prob-
ably the most basic definition is through the combination of the fre-
quency response function and its inverse Fourier transform, the unit
impulse response function. That is, if a filter is specified by its freauency
response function H(f), then its unit impulse response function is
defined by
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h(t) = f " H(fermdy. (6.74)

With .(¢) known, it is possible to generate the response of the physical
system for any given input x(t) by convolving it with h(¢);

t
y(t)=fn hin)a(t ~7)dr. (6.75)
Nonrecursive Filters

In open-loop or nonrecursive digital filtering, this process is con-
verted to the discrete form and automated. As an example, consider
the base-excited, single degree-of-freedom system with absolute ac-
celeration for both excitation and response. The discrete frequency
response function is

1+ 22¢ Afit

"/=()vlv-.., . Y e
L= (CAfIf)2 + 320 Mt M.  (6.76)

H,=H(+Af)=

The inverse transform is computed from

. S 1+ )20 Af/fu J2me AnAt
he=h (S0 = M3 T30+ 20 ST ¢

i=0,1,2, ... M, 6.77)

where M\Af=f, the Nyquist frequency. Note that the unit impulse
response function is truncated at some finite point M.\, The filter
weights caleulated trom Eq. (6.77) have the form

afuidt s s () fis \ T=T+t .w:é:-)
)= e o T iy (237, V=g +tan ,
! \1—§:¢ sn Lt £ H TERE
1=0,1,2,...,\M. (6.78)

The response of the system may then be calculated from the discrete
form of the convolution integral,

M
yo= ALY R (6.79)

i-0

While this procedure is straightforward, it has a major drawback,
For lightly damped systems, the unit impulse response decays slowly.
This means that many filter weights must be used in order to maintain
reasonable accuracy. In fact, it is quite likely that 50 to 100 weights

[ S
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must be used when the sampling frequency 1/At is less than 1/5 the
natural frequency of the system. The computer time required to per-
form such an analysis quickly becomes exorbitant. The filter may also
become unstable because of a computer problem known as underflow,
where the products of some of the smaller weights with the values of
the excitation are so small as to be lost out of the arithmetic register
during the summation process.

Recursive Filters

A type of filter which minimizes both of these problems is known
as a recursive or feedback filter. This type of filter utilizes past values
of the response as well as past and present values of the excitation in
calculating the present response value. The form of this type of filter is

M,

"l
yk=2 axxk—|+2 I)(Uk ¢ (6.80)

t o ¢ -1

Again, the basic procedure in utilizing such a filter requires the deriva-
tion of the filter weights a, and b,. Equation (6.89) may be rewritten

M, My

U AR LR (6.81)

¢ - ]
Taking Fourier transforms of both sioes of the equation, we have

., M
)'(_/')[1— S obe ""'"“] =X\f) j e, (6.82)

-1 Lo

The frequency response function of the filter is then

M,
ue -t

Y

-0
= T . (6.83)
X 1~ E b, e yins, At

=1

Hify=

As can be seen, both the numerator and denominator of the right-hand
side of Eq. t6.83) are polynomials in exp [ —j27/At]. In order to define
the frequency response function, it is only necessary to determine the
roots of these polynomials. A simplification of notation from digital
control theory may be used at this point to make the polynomials more
apparent;

r=e FEL A

B U AN Oy
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v,

2 aiz"!

H(f) =—=— . (6.84)
1- E b((z‘(
=1

This procedure and the associated operations used in solving for the
polynomial roots are usually termed z-transform theory. These roots
are called either zeros or poles, depending on whether they are roots
of the numerator or denominator. The important point to note about
this form of the frequency response function is that the polynomial
coefficients are exactly the filter weights required in order to perform
the recursive filtering operation in the time domain. These coefficients
are usually determined in one of two ways:
® By knowing the filter frequency response function and rewriting
it in terms of polynomials in exp [~j2nfAt].
® By knowing the values of the zeros and poles of the filter frequency
response function and expanding them to produce the required
coefficients.
An example of each procedure will be shown as applied to different
forms of the single degree-of-freedom system.
The first example is due to Lane [35] and utilizes the acceleration
excitation—acceleration response version of the base-excited system.
Again, the differential equation of this system is

mj+cy+ ky=cr+ kux, (6.85)

with a frequency response function

NI A s N
HUY = T=5+ LT (6.86)

By making the substitutions
s = )27 f, wn= 21t

the filter transfer function in terms of the Laplace transform variable
s is obtained;

2lwns + wi
83+ 2was + wd’

H(s)= (6.87)

The z-transform of H(s) may then be computed from the relationship

A >
Hi=z(Hw)=3 Al 1L (6.88)
i~1

B'(s) 1=z-te-#

where His) = A(s8)/B(8), s, is the ith pole of H(s), and B'(s) is the first
derivative of B(s).
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Rewriting Eq. (6.87) in light of Eq. (6.88) produces the relationship

He = S e | 689
where
°=%
d={wn
g=w, V1=,

By means of algebraic manipulations, Eq. (6.89) may be rewritten as

2d+{ :Zde-d-“[(f—(_/-.—(—l) sin gAt —cos gAt ]} Fa

Hiz)y= 1+ (—2e4% cos gAt)z-1+ (e-243¢)2-1 6.90)
or
H(my =yl ©6.91)
where
Po=2{wn=4w{fnAt (6.92)

—Dr2
P1=4waAtetwgdt [ )—g—l*\-/—l:-zh-;— sin (w,AtV1—{2) —cos w,AtV1— ;2]

&

= dmlfulte- 27U, [ L1228 Gin 2afuldVI= ) = cos 2a il VI= T ]

v
/

NI (6.93)

G =2¢ “neos waAtV =2
= Qe UM cos 2mfRAtV ] =2 (6.94)
== (’""(“'u"" = L"""Uu"'. (6.95)

A scale factor of At is usually included in the nonrecursive weights
pe 2nd p, to normalize them with vespect to the sampling rate. The
filter is applied as desceribed in Eq. (6.96):

\ .
nm=Y =pes ot Y, (6.96)
-0 Py

As can be seen, the entire procedure requires only four multiplications
and four additions in order to generate one response value. For reason-
able record lengths (1000 = N < 10,000), this filtering process requires
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less than 2 sec of IBM 7094 time per response history when input-
output time is ignored.

The second example to be discussed is due to Otnes [36). This filter
utilizes the acceleration excitation-relative displacement response
version of the base-excited system. The differential equation is

E+20oné+ 02E=E(1). (6.97)
The required frequency response function relates ¢ to x(t);

1
0l —w?) +j(2lwwa) (6.98)

H(f)=(

Note that this function has only two poles and no zeros. Therefore, an
appropriate form for the recursive filter is

Li=ax+ i ha&n -t (6.99)

=1

To determine the values of the filter coefficients, if is necessary to
express H(f) in the form

H(f)=———. (6.100)

1- 2 bie-0msidt
=1

This can best be done by determining the poles of Eq. (6.98), replacing
them by their discrete forms, and then taking their products to produce
the required polynomial. The poles of this system are complex and, in
fact, are conjugates. If one of the poies is defined as A, then

.'\|=a+j[3

V= AT = (6.101)

The coeflicients a and 8 specify the placement of the poles in the complex
plane and are usually denoted as functions of the natural circular
frequency w. and damping ratio {;

a=—{Atwy= = 27{ALf,
JB=JMVT—Dwn=j2adt VI=3fn, (6.102)
where wx is the system undamped natural frequency in radians and f,

is the same frequency in hertzes. The two poles of the system are
therefore

[ Y WY
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Ar=32m0tVI= Cf~ 2mlALf,

(6.103)
=27Atfu(jV1~-2 =)
and
A= AF==27Atfo(JVI—[2+0). (6.104)

The denominator of the frequency response function may now be
defined as a polynomial in exp [—j2mAt] as follows:

PUf) = [1~ (A, -527730] [1 — glAy-s2msa0 ]
= [1—e-J27f3¢ g2afidt(GVIZ 0= D] [1 — e-227/M g=2afu (VT = {3+ )]
= [1—e-j2nf31 g=27Y (g =120fAVI= [t 4 @i2nfidVI=(?)
+ et g-amif, At)
=1=e 27U [2 cos (2mfalt VI—[2) e-27Und!]
o+ @=HTUBL ((e—4nlfar), (6.105)

The coefficients of the feedback terms in the digital filter are simply
the polynomial coefficients

by=2e-2"Undt cos (2mfnAt V1~{2) (6.106)

by=—g-17Und, (6.107)

The coefficient of the nonrecursive term is simply a multiplicative
constant and may be determined by noting that at f=0 the modulus
squared of the frequency response function must equal 1/(1674f}).

Therefore, from Eq. (6.102)

) a?
o7 (=5 =b0)" (6.108)
or
— 1 - bl - b-z
a=lTas (6.109)

This version of the single degree-of-freedom filter is slightly faster
to compute than the preceding example in that only three multiplica-
tions and three additions are required per response value. It should
be noted, however, that it is not possible to obtain the absolute accelera-
tion response with this filter. Instead, the equivalent static acceleration
must be used as the response parameter.

6.8 Peak Detection Methods

One of the major problems associated with the determination of a
shock spectrum is to define accurately the peak response from the
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available samples of the response time history. As will be noted in the
next section, selecting the observed maximum as an estimate of the
true peak leads to bias errors, especially at the higher frequencies.
Aside from the brute-force solution of increasing the sampling fre-
quency of the response history to the point where the bias error is
reduced to an acceptable level, the only other procedure for bias error
minimization avai.able requires the use of an interpolation formula.

Interpolation may be thought of as the determination of some well-
defined analytic function which approximates the sampled data to some
desired degree of accuracy. This analytic function may then be used
to aetermine required values which have not originally been provided.

A reasonable procedure to follow when defining the type of interpo-
lation function is to examine the process used to generate the sampled
time history. In the case of the response of a single degree-of-freedom
system, it is obvious that a sinusoid would be an appropriate interpo-
lator. Unfortunately, the use of trigonometric functions for peak
detection presents problems.

Determining the peak response consists of twe separate and dis-
tinet operations. The first of these is to locate in time the relative
maxima and minima of the response history. The second operation is
the evaluation of these maxima and minima.

The usual procedure followed is to evaluate the coefficients of the
interpolating function by utilizing a set of the sampled response values
and solving the resultant linear equations. When this approach is
attempted with trigonometric functions, the equations generated are
transcendental in nature and cannot be solved explicitly for the
required coefficients.

Instead of using a sinusoid as the interpolating function, it is usually
sufficient to use a series expansion for the sine or cosine. This immedi-
ately givesrise to polynomial interpolation. Postulating an interpolating
polynomial yields

A
=3 ad (6.112)
-0

Then M+ 1 samples of the response history are required to uniquely
define the polynomial coeflicients. The coetlicients may be obtained by
simultaneously solving the set of equations

1]
I'L=Z(h(;\) l\.=1I2I3" . .,&‘l“)‘l, (6'113)
[ ]

where 1 is the sampled response for the «,'s. It is ncw possible to utilize
this polynomial to both detect and evaluate all relative maxima and
minima of the response history. By differentiating the interpolating
polynomial and setting the derivative to zero, the times of relative
extrema can be detected. As an example, consider the decaying sinusoid
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Y(t)=Ae ¢ sin (2-nft+¢). (6.114)

For A=27, a=0.25, f=1 Hz, and é=/6, the following sampled time
history is obtained:

t y
0 13.500
0.125 25.272
0.25 21.924
0.375 6.372
0.5 —11.907
0.625 —22.275
0.75 —19.359

The true absolute maximum will oceur at t=0.167 and will have a value

of 26.433.
Utilizing the first three samples of the time history allows the deriva-
tion of a second degree polynomial. This polynomial has the form

y=—483.84¢2+ 154.656¢ +13.5. (6.115)
By taking the first derivative and setting it to zero,

—96.768¢, +154.656 =0 (6.116)
or
te =0.1591,

The value of the relative maximum may now be determined by solving
the interpolating polynomial at ¢=0.1597.

f1x=—483.84 (0.1597)2 + 154,656 (1597) +~ 13.5 (6.117)

or
ye=25.861.

It is possible to obtain another estimate of the same extremum simply
by utilizing the three samples starting with the second value and per-
forming the same procedure.

For this particular example, an error reduction of 40 percent over the
simple selection of the observed maximum was obtained. Usual error
reduction will be in the neighborhood of 20 to 30 percent.

The degree of the interpolation polynomial is effectively limited to
five because of the need to solve explicitly the first derivative of the in-
terpolator, and it is not possible to produce a general closed-form solu-
tion for equations greater than fourth degree.
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A basic procedure for implementing this interpolator is what is
termed a moving arc. The polynomial is applied to a set of samples,
and any extreme points in the range of the samples are evaluated. Then
the polynomial is shifted one sample and again evaluated. This proce-
dure is continued until all possible sets of samples have been analyzed.
As each extreme point is determined, it is compared with the previous
point and only the largest value is retained.

For equally spaced samples and quadratic interpolation, the explicit
formulas are as follows.

Giver: three samples of the response history ro, 11, and »; taken at
times to, to+ At and to+2At; then

do=1" __to()‘:"‘?'o)+ (tot+ Ab) (12 —20, + 7o)
0="70 AL (to+ 240) (to+ AL) + D00+ BAL (6.118)
_7'1—7'0_ (7'3—27'1)(2t0+At)
O TR T tol(fe T 2A0) (fo+ At) + Dto+ BAT] (6.119)
_ ra=2ri+ry
2= T {te T 2A0) (fo+ AD) + 20y~ BAI) (6.120)
2—& ¢
te=—3t (6.121)
Yr= o+ ity +astd. (6.122)

Another procedure which may be used consists of somehow detecting
the intervals containing the extreme points and then interpolating for
enough additional samples in these intervals to guarantee the required
accuracy. Lane [35] suggests the use of an integrating filter to detect
the interval containing the peak response and then the use of a
seventh-degree polynomial interpolator.

If the data are properly band-limited, it would appear that the so-
called (sin )/ function is a more appropriate interpolating function.
It may be shown {27] that if a time history has no frequency components
above 1/2At, then the continuous time history may be obtained from
the sampled values by

sin [(w/A) ¢ =430 ] } (6.123)

U‘”‘LE‘””"*‘”{ (=130 ((=FAD)

Note that the summation limits are infinite. In the normal situation,
these limits cover the available record length, but it is possible to
truncate the series at approximately 20 terms without appreciable
error.
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6.9 Error Analysis

The error involved in performing a digital shock spectrum analysis
may be categorized as

1. Error due to sampled excitation,
2. Error inherent in solution technique, or
3. Error due to sampled response.

The first of these classifications is basically concerned with the
aliasing problem. Since anti-aliasing analog filters can have undesirable
characteristics when the filter cutoff frequency is near the frequencies
of interest, it is suggested that, if possible, the cutoff frequency be set
to at least twice the highest frequency of interest. The excitation should
then be sampled at two times this highest frequency to avoid aliasing,
Digital low-pass filters may then be used on the digitized data to per-
form the band-limiting operation, and the data may be decimated to a
more reasonable sampling frequency.

The second category is concerned with the errors in the technique
used to calculate the response histories. Two different problem areas
are involved here. The first of these is simply the error due to sampling
the system impulse response function instead of using the continuous
function. This is usually unimportant by comparison with the other
errors. The other error source occurs in both the numerical integration
and the recursion techniques. In each case, the assumption is made
that the excitation may be well approximated by a series of straight-line
segments. The effect of this assumption is to bias the response history,
usually in a downward direction. This bias effect becomes more pro-
nounced as the excitation sampling rate is reduced and the straight
lines do a poorer job of fitting the data. This error is more noticeable
at the low frequencies where the response is highly velocity-dependent,
but the bias will occur at all frequencies.

Procedures for minimizing this type of error consist of

1. Increasing the sampling frequency ta the point where the line
segments do a good job of fitting the data (usually a minimum of 10
samples/eycle of the highest data frequency), or

2. Using a nonlinear fit to the sampled data.

Intuitively, it would appear that a sine approximation to the sampled
data would be best, but the use of a transcendental function increases
the complexity of the procedure considerably. A compromise between
ease of programming and error reduction would be to use a quadratic
to only fit the data. This would introduce a second difference term (4%¢)
into the recursion formula and would cause a similar change in the
numerical integration procedure.

The third error category is concerned with the difficulty in determin-
ing the true response peak from the sampled response time history.
The simplest peak-detection technique is to search the response history
samples for the maximum value and assume that this maximum is the
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Fig. 6.6. Sampled response bias error.

true peak. As can be seen from Fig. 6.6, this inevitably leads to a bias
error.

In fact, as has been pointed out by Lane [{35], the true peak response
may not even be in the vicinity of the observed peak. The methods for
reducing this type of error consist of either increasing the sampling
rate of the response or utilizing an interpolation formula. These pro-
cedures were discussed in Section 6.8.

Error estimates for interpolation procedures vary drastically with
the interpolating function, so no discussion of this subject will be pre-
sented. However, it is possible to provide estimates of the bias error
due to selecting the peak sampled response as an estimate of the true
peak.

If one considers the response to be a sinusoid, which it is for zero
damping, then it is possible to bound the error incurred by accepting
the observed maximum as the true peak. The greatest error occurs
when the true peak lies halfway between two samples of the response.
This can be seen from Fig. 6.7.

fMA)(IMUM

,LBlAS ERROR

Fig. 6.7. Maximum bias error.

Define M as the ratio of the sampling frequency to the response
frequency;
M=:;—f'.

r

Then the maximum percentage error is

_ e
c(%)-lOO(l cos M).
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Fig. 6.8. Maximum percentage error.

A plot of this error bound appears in Fig. 6.8. This bound tends to be
quite conservative. IFor example, at 2 samples/cycle, the error bound is
100 percent.

A more reasonable estimate of the error may be obtained from a prob-
abilistic approach. Again, assume that the response curve is a sinusoid,

x(t)=4 sin 2nft+ ). (6.125)

where ¢ is the phase angle (assumed to be random) and A is the required
peak amplitude. The observed sequence is x;, where

xri=x(IAt) = A sin (2w f At + ¢). (6.126)
The expected value of the observed peak A will be
Ar 2

E[xi] =.-§_1tj cos 2mf tdt

32

=_1.,[—‘f1—_sin 21rj'rt]“2 6.127)
At 27Tjr -ar2 )

_ . sin wfAt

=4 r;m .

In other words, the bias is what is commonly termed a (sin x)/x curve
as shown in Fig. 6.9. The percentage expected error is
sin ‘ﬂ'fr'—\t) .
> = —t—em || 6.12
e(%) 100(1 e (6.128)
with the maximum of approximately 36 percent occurring at half the
sampling frequency.
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100}
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ERROR 50

36%
/

i/,
Fig. 6.9. Expected percentage error.

The 5-percent expected error point occurs approximately at a sampling
frequency equal to six times the resonant frequency. This sampling re-
quirement is considerably less stringent than the 10 sample/cycle re-
quirement imposed by the error bound described earlier for a maximum
error of 5 percent.
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Chapter 7
MISCELLANEOUS TECHNIQUES

The majority of the preceding text has been devoted to describing
two specific methods for analyzing shock data: the Fourier and shock
spectral analyses. The reason for this is that these two methods are
by far the most commonly employed techniques for reducing shock
data. In this chapter, other techniques that have been used are
described. ‘

7.1 Nonspéctral- Techniques

The p_i‘ocess of data reduction is that of condensing a quantity of
data until only the important properties remain, or, in some cases,
rearranging the information contained in the data so that the impor-

' tant properties are more apparent. The key to the type of data reduction
that should be‘employed is the word “important” in the above sentence.
This is a subjective measurement. For engineering work, important
praperties should be interpreted as meaning those properties that can
be profitably used to arrive at a solution to the engineering problem
under investigation. Since the goal of data reduction is to assist in the

_solution of some specific problem, the data reduction technique that
should be employed is the one that is most profitable (where profita-
bility is based on a criterion or set of criteria, such as minimum cost,
minimum time to solution, etc.). Sometimes when solutions cannot be
obtained from a single form of data reduction, a second type will pro-

“duce enough additjonal information to solve the problem. Nonspectral
analysis techniques are those analysis techniques whose results are
not functions of frequency. In this section five different types of non-
spectral analyses are discussed. These are single-number, velocity-
cdhange, time-function decomposition, waveform integration, and

~ phase-plane analysis techniques.

.

Sihgle-Numher Analyses

The simplest data reduction that can be used is to condense a compli-
“cated time history to a single number. For example, consider the
acceleration time history of a mechanical shock shown in Fig. 7.1.
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AMPLITUDE

TIME

Fig. 7.1. Shock acceleration time history.

Examples of single amplitude values that could be used are the highest
positive peak G,, the highest negative peak G, and the maximum
peak-to-peak (G, + G) acceleration. Examples of single duration meas-
urements that can be used are the time to the first zero crossing (7)),
the time to the second zero crossing (7;), and in this case the total time
duration of the pulse (z;+ 7).

Whether any of these simple measurements are sufficient to solve
a problem or are of absolutely no value depends on the details of the
specific problem. Clearly, when the pulse shape is fixed and only its
amplitude and/or duration varies from shock to shock, any one of the
above amplitude and/or duration measurements can be used to compare
the shocks. Perhaps the complete Fourier spectrum is defined by the
first shock; then, the ratio of the amplitude of successive shocks can
be used to scale the amplitude of the Fourier spectrum. Similarly, the
duration ratio can be used to scale the frequency.

These single properties can occasionally be used where suflicient
empirical correlation exists between them and the performance of the
system. However, there is a tacit requirement that these shocks all be
of approximately the same wave shape. The response of most mechan-
ical systems to two 10-g peak-te-peak transients will be drastically
different if one is basically a single pulse with a 1-sec duration, and the
other is a damped oscillatory type of pulse with & l-msec overall
duration.

Simple amplitude and duration measurements can sometimes be
combined with some knowledge of the physical system to estimate
responses. For example, if it is known that the durations of the pulses
(T, and T: in Fig. 7.1) are quite long compared to the period of the
first resonant frequency of the physical system, then the peak response
of the system will be essentinlly equal to the peak of the input. The
system sees the input almost as though it were a static input, and the
output response will look very much like the input.

If the shock is primarily a single pulse of one polarity and the dura-
tion is quite short compared to the period of the highest frequency
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passed by the physical system, these simple amplitude and duration
parameters can be used to predict the response of the system. In this
case, the time history on the output of the system will be very similar
to the weighting function of the physical system. The output response
can be estimated by multiplying the weighting function of the system
by the area under the input shock pulse.

Velocity Change Analyses

This leads to another relatively simple form of data reduction. That
is a measure of the velocity change caused by the shock. The velocity
change is a measure of the energy imparted by the shock. The physical
system is assumed to be an undamped simple mechanical oscillator;
it will oscillate continuously after the shock is removed. As the mass
of the system oscillates, there is an interchange of energy from kinetic
to potential energy. At the instant when the mass is at the position of
rest (zero relative displacement in the mechanical oscillator), the
velocity is at a maximum and all the energy is kinetic energy. As the
mass passes this position, some of the kinetic energy is transferred to
potential energy. At the point where the relative velocity of the mass
reaches zero, the mass attains its maximum deflection and all of the
energy is potential energy.

The energy imparted by the shock if the system is initially at rest is

E=(}) mAVz, (7.1)
where

E =the energy
m=the mass of the physical system
AV = the change in velocity caused by the shock.

Since conservation of energy is assumed, the sum of the instantaneous
kinetic and potential energies will equal the total energy imparted;

K.E.(hH+P E.()=E (7.2)
) me )+ () ke (= 1) mave,
where

K. E. (1) = the instantaneous kinetic energy
P. E. (t) = the instantaneous potential energy
k =the spring constant of the physical system

The maximum acceleration response can be found as follows:
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(7.3)

m

From Eq. (7.2), the maximum deflection can be found when the poten-
tial energy is a maximum and the kinetic energy is zero;

(3) ka?

max
Zmax = AV / EI\?_

Combining this result and Eq. (7.3) yields the maximum acceleration;

= (}) mav?
(7.4)

Uy = AV\/ 7’;’-2= N

where

f«=the undamped natural frequency of the physical system.

m=A,—A.

Thus to estimate the maximum acceleration response of a structure,
the change in velocity is calculated and this is multiplied by 2« times
the natural frequency of the mechanical system.

Since all maximax shock spectra do not increase linearly with fre-
quency, it is easy to see that this velocity change analysis does not
apply to all shocks. This technique should only be used when the period
of the natural frequency of the physical system is long compared to
the duration of the shock. Basically, the method assumes a step change
in velocity, and as the frequency of the physical system increases
relative to the duration of the shock, the actual details of the waveform
assume more importance.

Time Function Decomposition

Another approach employed to analyze the response of physical sys-
tems to shocks consists of decomposing the time history into one or
several simple time functions. This process is fairly well defined for a
clear-cut transient such as the N-wave associated with sonic-boom
measurements. In Fig. 7.2a an N-wave is replotted from Ref. 37. This
shock time history can be synthesized by combining four simple func-
tions. These are a positive step function of amplitude A at time zero, a
linear segment starting at time zero and having slope (A:—A)/T, a
positive step function of amplitude A. at time 7T, and a linear segment
starting at time T and having a slope that is the negative of the pre-
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vious linear segment. This synthesized time history is described in Eq.
(7.6) and Fig. 7.2b;

tl_'—[h

x(t) = u(t)A.-*-——T—t-*-u(t—T)(A_--%-

il—"—"—-) (7.6)

T

where
u(t) =the unit step function.

This synthesized time history is then used as a forcing function,
or input, to the equations used to describe the response of the system.

The accuracy of this technique is primarily deper.dent on two factors.
The first factor is the complexity of the shock time history. The more
complicated the time history, the harder it is to fit simple mathematical
functions to it, and obviously, the less accurate the model of the input
will be. Figure 7.3 compares the N-wave of Fig. 7.2 to two other N-wave
measurements utilizing the same aircraft [37]). For all three of these
time histories one might use the synthesized input of q. (7.6). While
this leads to a reasonably accurate description of the time history
in Fig. 7.3a, it will have insufficient high-frequency content for the
time history of Fig. 7.3b, and excessive high-frequency content for the
time history in Fig. 7.3c.



mams a0 o

160 SHOCK DATA ANALYSIS

(a)

(b) )

\/ " Fig. 7.3. Typical sonar boom time
histories.

(¢} /\
—~_

The second factor is the relation of the shock duration to the lowest
resonant frequency in the physical system. The shorter the duration
of the shock reiative to the period of this first resonant frequency, the
less accurate this approach becomes. Factors such as the exact phasing
between simple components become quite critical. However, this method
can lead to more accurate response calculations than the simple tech-
niques previously described in this chapter.

Waveform Integration

Another relatively simple nonspectral data reduction technique
that is used [38] is integration and double integration of the time
history. The basic idea of this technique is to rearrange the information
contained in the original data so that the important properties are
more clearly visible. Both integration and double integration are
low-pass filtering operations, so that the low frequency information is
emphasized and the high frequency information deemphasized. Inte-
gration is a 1/f low-pass operation, and double integration is a 1/f*
low-pass operation. These particular forms of low-pass filtering are
such that the filtered signals have physical significance. Starting with
an acceleration time history, integration yields a velocit:" time history
and double integration vields a displacement time history.

Figure 7.4 is reproduced from Ref. 38. In this figure an acceleration
time history, its integral, and its double integral are compared. The
velocity time history proved to be the most valuable in this case, as the
increasing amplitude oscillations in the velocity record revealed the
presence of two coupled modes, very closely spaced in frequency, in
the structure.

P’hase Plane Analyses
Given the time history of the input and a knowledge of the system,

the output of the system can be calculated by convolving the input
and the weighting function of the system as described in Chapter 3.

e -
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100ms

Fig. 7.4. Integration and double integration of an acceleration time history.

One graphical method of evaluating the convolution integral was
illustrated in Chapter 2. Another method for graphically computing
the time history response of second order mechanical systems is the
phase-plane method [39, 40].

This method consists of approximating the input time history by
a series of contiguous step functions, projecting this approximation
onto the phase plane to form a phase-plane trajectory, and then pro-
Jjecting back from the phase-plane trajectory to form the output time
history.

A phase plane is a plot of the displacement of a system as a function
of its velocity divided by the undamped resonant frequency of the
system. Figure 7.5 is the phase-plane plot of an undamped sec ad order
system responding to a step in base displacement of amplitude x..
Assuming that the system has zero initial conditions, the step in base
displacement causes the locus of the systeni response to trace a circle
of radius equal to the amount of the step around the point (x =,
VI(2=f) =0). The time required to make one complete revolution is
o= 1/fu. The output, the absolute displacement of the mass of the
seismic system [y(8)}, is found by projecting the moving point on the
circle horizontally as a function of timc. This yields the sine function

-

shown in Fig. 7.5.

AMPLITUDE
]

. - —= TIME

----- INPUT
RESPONSE

Fig. 7.5. Phase-plane trajectory (undamped second order system).
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Fig. 7.6. Phase-plane plot; four-step function approximation of the input.

The absolute displacement response of the mass for a base displace-
ment input is illustrated in Fig. 7.6. In this case, a time history is shown
approximated by four step functions, at t=0, T, T';, and T’;. Assuming
that the system is initially at rest, the first step function causcs the
phase-plane trajectory to rotate in a circle about (z,, 9) with radius ;.
In time T, it has rotated through an angle of 2=f,T,. This is point
P,. At that time, the second step function causes the trajectory torotate
in a circle about the point (2, 0). The radius is determined by the dis-
tance from (x., 0) and P,. At time (T',+ T,), the trajectory has moved
about this new circle an angle of 27 f.T; to point P,. At that time, the
third step funetion causes the trajectory to move in a circle about the
point (x3, 0) with a radius equal to the distance between that point and
.. The trajectory moves along this new circle through an angle of
2nfa T3 to point P;. At time (T, + T:+ T), the fourth step function oc-
curs, chis is the final one and is about zero. At that time, the trajectory
moves onto a circle centered about (0, 0) with a radius equal to the dis-
tance from 0 to P;. It will continue to rotate on that circle indefinitely.
The solid lines show the complete trajectory. The time history of the
displacement response is obtained by projecting the amplitude y of
the trajectory horizontally as a function of time. Likewise the velocity,
scaled by 27/, can be obtained by projecting the time history of the
trajectory vertically.

This technique and a modification of it called the phase-plane delta
method can also be used to calculate graphically the response of non-
linear systems. While the accuracy obtainable with these methods
does not compare with that of more complex analytical procedures,
it is a very convenient method of manual analysis

7.2 Analysis of Random Transients

Up to this point, all of the analysis methods have assumed that a
single measurement is adequate to describe the shock. In this sense,
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the shocks considecred are deterministic. The equation describing this
shock applies to all other measurements of the same shock. In fact, all
shock processes in nature are nonstationary random transients. An
electronic oscillator does not oscillate at the same frequency and
amplitude for all time. However, there are an enormous number of
cases where the assumption of stationarity and even that of a determin-
istic form are completely justified from a practical point of view—
the above oscillator, for instance.

Similarly, there are cases where the only justifiable form is that of
a nonstationary random transient process. An example of this is the
shock imparted to an aircraft when landing. The velocity of the air-
craft, its attitude, the runway surface conditions, the ground winds, the
weight of the aircraft at landing, and several other factors combine to
determine each individual shock. Since all of these factors are variables,
it is only reasonable to expect that the shock time histories from a
number of landings would vary widely even if the measurements were
restricted to a single aireraft and a single measuring location on that
aircraft. Analyzing these data by any of the previously described
methods results in wide variations of the data reduction results from
landing to landing. This is highly undesirable since it greatly compli-
cates, and in some cases, may even negate the application of the data
reduction results to the solution of a problem

A mathematically correct way to approach the problem is to collect
a large number of records of the shock time histories and then perform
ensemble averaging on the data. Ensemble averaging consists of sam-
pling each record at the same instant of time from a starting time in
each record (for example, the instant of touchdown could be used for
t=0 in the above case) and computing the statistical properties at that
time. The time histories should be sampled at some sufficiently close
separation, and the ensemble averaging should be performed at each
time sample to obtain the statistical properties. Then, the joint statis-
ti:al properties between values of this single process at different times
should be calculated.

The exact statisticul properties that must be measured for practical
applications depens: on two factors: the application of the results and
the composition of the data. For shock problems, the applications have
generally been those of determining the energy in the response of a
structure or of sfetermining the maximum response value caused by
the shock. Wher: the data have a Gaussian distribution, only the mean
and variance nced be computed completely to describe the first order
(at a single instance of time) properties. (However, this is a unique
situation.)

Time-Varying Mean Square Value

The time-varying mean square value of the response can be used as
a measure of the damage potential of a shock, since the mean square
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value is related to the energy. If a linear, constant-parameter system
is assumed, the response can be calculated from the input by the con-
volution integral

t
y(t) =f x(r)h(t—1)dr. W)
The squared value of the response is

Zl”(l‘)=J;‘ x(-r)h(t—f)dfj;‘x(u)h(t—u)du

t [t (7.8)
=J;f () (u)h(t—7)h(t—u) dr du.
0

The mean square value is computed by taking the mathematical ex-
pectation of the square of the response value;

\l';;(t)=E[fljlx(r)x(u)h(t—r)h(t-—u)dr du ]

0o Jo

t (7.9)

=j j Re(r, whit—=n)h(t—uw)dr du,
o Jo

where
R (7. w)=E[x(7)x(u)] =the nonstationary autocorrelation function.

Thus, the time-varying, mean square value of the response of a
linear system can be calculated from an arbitrary nonstationary input
if the weighting function of the system and the nonstationary auto-
correlation function of the input are known. Thus, the data reduction
problem becomes one of determining the autocorrelation function
of the input. This is a rather complicated data reduction technique.
To compute the nonstationary autocorrelation function, the value of
cach record at time ¢, and ¢, must be measured. These values are multi-
plied to form a product for each record. Then an ensemble average of
the products must be computed. This average is computed by summing
all these products and dividing by the number of products. This is
shown in Eq. (7.10) and Fig. 7.7:

\
Retti, ta=lim 3 S rilt) wl). (7.10)
Vex t g

where
i=the record number.

In practice, the limiting operation is dropped in Eq. (7.10), so that an
estimate, rather than the true value of the autocorrelation, is found.
The value of N must be large if the true value is to have a high prob-
ability of being reasonably close to the estimate. (Methods of
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Fig. 7.7. An ensemble of shock time histories.

determining the variance of nonstationary, mean square value esti-
mates are discussed in Ref. 25 pp. 346, 347.) The data reduction operation
consists of defining a surface such as that shown in Fig. 7.8. Generally,
the surface will start at ¢, and t,=0 and stop at ¢, and t,=T (where
TI'=the duration of the shock). One model of a specific type of non-
stationarity has been used to fit certain nonstationary data. This model
is composed of the product of two separable signals, one integrable and
one an arbitrary random signal. {In practice, the first signal is usually
assumed deterministic and the second signal a stationary, ergodic,
random signal.) The model is

sy =) By,
where

Att) = the integrable signal
B(t)=the random signal.
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Ryt1,)

Fig. 7.8. Plot of a nonstationary autocorrelation function.

This simplifies the nonstationary autocorrelation function;

R:(ty, )=E[x(t))x(t) )= 1A ()AL E[B()B(t,)]

=A(t)A)RE(t, L)
= A(t))A(t.)Ry(7), when B(t) is assumed stationary and er-
godic (7 is the time separation, (t2—t,)). (7.11)

The time-varying, mean square response of a simple second order
mechanical oscillator has been calculated for inputs with the above
type of separable nonstationarity. See Refs. 41 and 42. These references
examine the response of the mechanical oscillator to nonstationary
signals that are the product of a deterministic function and a stationary
random signal having a Gaussian distribution. The deterministic funec-
tions considered were

® A step function

® A boxcar (rectangular) function

@ A decaying exponential function.

The random signals considered were
® White noise
@ Bandpass filtered noise characterized by an exponential cosine
autocorrelation function.
Numerous graphs are presented to depict the variation in the time-
varying, mean square response with

® The resonant frequency of the mechanical system

® The critical damping ratio of the mechanical system

® The center frequency of the random signal

® The bandwidth of the random signal.
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These references also demonstrated that, for correlated noise, the time-

varying, mean square response can exceed its stationary response.

Generalized Spectral Density Function

The time-varying, mean square value can also be calculated from
frequency domain information. The Fourier transform of the output
of a simple linear system is the product of the Fourier transform of
the input and the frequency response function of the system

Yi(N=H(NX(),

where

Y:(f)=the Fourier transform of the system response for the ith shock
H(f) =the frequency response function of the system
X (f) =the Fourier transform of the ith shock.

The time history of the response to the ith shock is the inverse trans-
form of the Fourier spectrum of that response

yit)y=F-1[Y(f)]

and

yit) ={F{Y.(]} (7.12)

The mean square value of the response at some time ¢, can be deter-
mined by taking an ensemble average of the responses at that time
(the asterisks denote complex conjugates);

‘l'f,(fl) = E[U."(tl)]
=E[{F '[YUN]}]

=B U H (J')XM‘)eJ-'"""‘f}.]

=E f T H)XP (e rmndf, f : H(f..)x.u;w-'w-df.-], (7.13)

‘l'i(l|)=E

[ = x
[ [ #r B XX e wagdr] (1.14)
Since integration is a linear operation and the input transforms are

the only random variables, the expectation operator can be brought
inside the integral as shown below:
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‘Vz}(tn)’—‘ff ff H*(f) H(f) E[X*(f1) X(f) ] e TO df dfs. (7.15)

The quantity E[X*(f\) X(f:)] is known as the generalized spectral
density fun=tion ([25], p. 352). This generalized spectral density function
is the double Fourier transform of the nonstationary autocorrelation
function,

E[X*(f) X(f)]=S:(f1,f2)= J:x J:: R(t,, t2)erm =t dt dt,. (7.16)

The integration in Eq. (7.15) can be slightly simplified by making
a change of variables. Let the nonstationary autocorrelation function
be defined as follows:

R (t\, t2)=R:(7, t), (7.17)
where
ty+t
.-=t_,—t.andt='—2——'-

The generalizec spectral density function becomes
S:(f, g)=J”c J-x R (7, t)e-2ur+90dzdt (7.18)

and the time varying response becomes (because r=0 for a mean square
value)

“’i‘”#x f H*(fYH(9)S:(f, g)e-mudfdy. (7.19)

Instantaneous Power Spectral Density Function

Another nonstationary spectral approach that has been used is the
instantaneous power spectra [43]. The instantaneous power spectrum
is a single Fourier transform of the nonstationary autocorreiation
function;

SAL ) :f‘ Rz, tye 2ds, (7.20)

x

The time-varying, mean square value is the integral of the instanta-
neous power spectra over all frequencies,

‘l,il(t)=jil S.r(.,; t)dj‘. (7.21)
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The total energy up to time ¢, is found as follows:
3] % . .
Beo=[" [7 sus vt (7.22)

The time-varying and time-averaged power spectra sometimes used
for nonstationary vibration analysis [25, 44), are not very satisfactory
for computing the time-varying mean square responses of systems to
shock inputs because the results of these techniques become highly
dependent on the analog filters employed when the signals are transient.

Peak Response Values

A description of the peak response of a system to “random transients”
must be stated in probabilistic terms. Generally, the probability of ex-
ceeding some amplitude in some fixed period of time is an item of prime
interest. Analytical techniqucs have not yet been developed to provide
a general solution to this problem from input data. However, there have
been a few cases studied analytically [45, 46]. There have also been a
few cases studied empirically [47-49].

In all of these studies, the system considered is a simple, second order
mechanical osecillator, and the input is assumed to be white noise
multiplied by some simple time function. Typical results from Ref.
48 are reproduced in Figs, 7.9, 7.10, and 7.11 for deterministic time
functions of a step function, a boxcar function of duration Ar. and
half-sine function of duration 2A7. The gnantity 5 is the ratio of the
maximum instantaneous value to the rms value of the stationary
noise. This peak-to-rms value is plotted against dimensionless time
quantities. The undamped natural frequency of the simple oscillator
is fu. The ratio of the undamped natural frequency to the half-power
bandwidth of the oscillator is the value Q. Both T and Ar are time
values. The former is the elapsed time for observing the system re-
sponse to white noise. The latter is the effective time duration of the
pulsed excitation,

7.3 Other Decompositions

Although decomposition of a time history has traditionally been
performed in terms of trigonometric functions, there is no reason
why expansions cannot be expressed by other mathematical functions.
In particular, two approaches which have been used are

o Expansion in terms of orthogonal polynomials

© Expansion in terms of exponentials,

Each of these methods will be discussed in turn.

356-558 OL - 71 - 12
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Fig. 7.9. Experimental resuits for the peak-to-rms response of the mechanical oscillator

excited by stationary white noise (8 vs f.T).
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Fig. 7.10. Ratio of peak-to-rms response of the mechanical osallator
B vs the dimensionless time parameter T* for stationary and pulsed

random excitation, rectangular envelope, Q = 50.




MISCELLANEOUS TECHNIQUES 171

i T T T T

3 PM(}S) *.95 4

. o v - —
- —
———
——

f =159¢ps Q=50
A STATIONARY RESULTS
O NONSTATIONARY RESULTS

HALF~SINE ENVELOPE

1 1} )
° t 2 3 4 5

T t,47/Q

Fig. 7.11. Ratio of the peak-to-rms response of the mechanical oscillator
vs the dimensionless time parameter T* for stationary and pulsed random
excitation, haif-sine envelope, Q = 50.

Orthogonal Polynomials

Orthogonal functions are closed sets of functions for which the
following relationship holds:

0,m#n

A.m=n, (7.23)

b
f tbm(x)tbn(x)d:r={
a
where the ¢(x) are orthogonal over the interval (a, b). In particular,
if all A= 1, the functions are said to be orthonormal.
Examples of orthogonal functions are the sines and cosines used in
Fourier analysis. This can be seen from the following relationships:

f " sin ke sin /.rd.r=[ 0, k= (7.24)
" mhk=¢
. 0,k #¢
f cos kx cos ¢ xdr =[ mhk=¢ #0 (7.25)
" 2. k=¢=0.

The decomposition of a time history in terms of orthogonal polynomials
is stated by

T . - A, s
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\
a(t) = y(t) =3 Ch(2), (7.26)
@

where y(t) is an approximation to x(t),

c‘=f w(t) ()2 () dt, 7.27)

and w(t) is some weighting function.

The advantages in using orthogonal polynomial expansions are
twofold. First of all, for the interval specified and a given degree,
this type of expansion approximates the measured time history with
the minimum mean square error. In other words, for some degree M,
the expression

fb w(t) [x(t) —y(t)])dt

is minimized when

y(t) =3 Cabi(t). (7.28)

10

The other advantage in using orthogonal expansions is that each
of the functions ¢i(t) is independent of all others. Because of this
independence, the response of a linear system may be determined indi-
vidually for each component and then summed to define the total
response. Also, to add more components to the expansion, one need
only compute the required additional terms without recalculating all
lower order terms.

While there are many different types of orthogonal polynomials
which can be used, two appear particularly appropriate for transient
analysis pecause of their exponential weighting functions and infinite
orthogonality intervals.

The first type is the LaGuerre polynomial. In this case

wit)=e (7.29)
and the polynomial is defined by
Il
Li(t) = e 7 (tie ), (7.30)

The C; used in the approximation may be determined from the
relationship

C.=ﬁfo‘ e “rx(t)La(t)dt. (7.3D

«r_
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Then "
z(t) zZC.L.(t). (7.32)

i=0

LaGuerre expansions have been investigated for certain types of
transients by Quazi [50]. He concluded that, at least for two analytical
time histories, the LaGuerre method required fewer terms than Fourier
expansions for the same accuracy.

The second type of polynomial is orthogonal over the doubly infinite
interval (—=«, %), In this case, the polynomial is known as a Hermitian
polynomial. The weighting function is

w(t)=e 2, (7.33)

and the polynomial is defined by
Hi(t) =~ (&) "1™ ditl‘ (e~"), (7.34)

The coefficients of the expansion are obtained from
= ___(Y__ * -a3e
Cimgem Le CH(t)w(t)dt, (7.35)
and the expansion of x(¢) in terms of H;({) is
v
x(t) =2CiHi(t). (7.36)
o

Further investigation is needed to determine the utility of these
methods as applied to shock data.

Exponential Expansion

When analyzing data which decay with time, a natural approach is
to assume that the excitation can be approximated by an exponential
series of the form

x(t) ~ aye? + e+ L L+ Gt (7.37)
or, equivalently
(8 ~ daph + sl oL L+ aap, (7.38)
where
B et

Note that if b,= jg,, then the expansion becomes

x(8) =~ qeBi+azet+ | |+ e, (7.39)
where
erBt=cos Bl +J sin St (7.40)
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This is the equivalent of fitting a Fourier series to the data at the
frequencies Bi. B:. . . . Bu. The important item to realize is that, in
general, both sets of coefficients (the a’s and the b/’s) are unknown
and must be obtained from the excitation time history. A procedure
for determining these coefficients is described by Hildebrand [51] and
is called Prony’s method. The method is digital in nature, so it will be
assumed that the excitation has been digitized to produce samples at
some constant time increment. Therefore,

x,=2x(iAt), i=0,1,2,... N.

Equation (7.38) indicates that the solution for the &,’s is linear; however,
the u's are definitely nonlinear. Since it is difficult to determine non-
linear coefficients by normal methods, the equivalent of a transfor-
mation of variables must be made. This is performed by defining the
i as roots of an algebraic equation

M=ttt — a2 L L~ = o =0, (7.41)

s0 that the left-hand side of the equation is identical to (u—pm)
(~m2) . .. (u—un). It is now necessary to determine the values of the
a;. This can be accomplished by solving the set of n linear equations

ALn- + 0yt . . L= Xp

%yt Qxn-y . L QT Bpat

X2t Qa¥am-3+ . . .t Qny®n-1 = Xon-1e (7.42)

Equation (7.42) as shown assumes that N=2n. If N > 2n, the system is
overdetermined and must be solved by least squares procedures. In
any case, the o's are used in conjunction with Eq. (7.41) in order to de-
termine the u's. This determination will usually require some iterative
root-finding, especially if n is greater than four.

Since the defining Eq. (7.38) is linear in the a/s, it is now only neces-
sary to solve the following set of linear equations simultaneously
to complete the procedure:

Gttt . TAT X
Qpy+ Qepez . -'*'(ln}l.n=x.
YT S FYTE L N o TR

(o FYTE e AYT A SR N TL L R (7.43)




>

NEPRP - -

oy
Tty

MISCELLANEOUS TECHNIQUES 175

Again, as with the solution of Eq. (7.42) for the ai's, this set may be
solved uniquely for N=n or by least squares procedures for N >n.

If the transient to be analyzed is assumed to be a set of damped sinus-
oids and cosinusoids at varying frequencies, then Eq. (7.37) may be
written as

w(t) =Aev sin wy,t+ A7 cos wgt+. . .+ 4,07 sin wgt, (7.44)

where the vy, are the damping factors, the 4; are the amplitudes, and
the wq, are the damped frequencies. Equation (7.37) may be solved by
Prony’s method to obtain the i, the 4, and wq;. To calculate the damping
ratios {, and the undamped natural frequencies w,,, it is only necessary
to rewrite Eq. (7.37) as

x(t)=A,e~vont sin (wnt VI—8) + Aze-%mt cos (wnt VI=3) + . . .

+ de-%ont sin (wnt V1—3), (7.45)
where

-
sin (cos) wat

Wy =V (t)('}"‘l" ‘yf (7.46)

S / S

Ay

While this method does provide an analytic expression for the excita-
tion, it suffers from two basic problems. The first problem occurs because
it is possible for several different sets of coefficients to provide equally
gocd results as far as approximating the time history is concerned,
espacially if the signal is corrupted by noise. Because of the nonlinearity
of the approximation, small changes in the data can cause significant
changes in the coefficients. The second problem is that it is difficult to
determine the number of exponentials which best approximates a given
excitation. Since this must be known prior to the analysis, it is necessary
that the engineer have a good estimate of the number of significant
components contained in the excitation before utilizing this procedure.

7.4 Extensions of the Basic Shock Spectrum Concept

The basic shock spectrum concept requires that the physical system
whose response is being computed must be accurately represented by
a second order linear oscillator. It further requires that only the maxi-
mum response value of this system need be measured. This simple
concept has been applied to a number of systems that do not meet the
above requirement. It has been used to analyze the response of certain
nonlinear systems, certain multiple degree-of-freedom systems (the
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second order mechanical oscillator is frequently called a single degree-
of-freedom system), and collisions between two second order systems.
In addition, the peak probability density function of the second order
system has been computed to study the cumulative fatigue damage
potential of shocks. These variations of the fundamental shock spec-
trum concept are described in this section.

Special Normalization

Crede [52] proposes that the shock spectrum should be normalized
by dividing the maximum acceleration response by the product of the
velocity change of the shock and the undamped natural frequency
of the second order mechanical oscillator. The advantage claimed is
that it makes the spectrum relatively insensitive to the shape of the
shock. It does this by dividing the normal shock spectra by frequency,
so that the low frequency portion is emphasized and the high frequnecy
portion deemphasized. Since most shock spectra differ more at high
frequencies than at low, this reduces these differences. Normalizing
by the velocity change causes the low frequency asymptote to be unity.
This ean be seen from Eq. (7.5), where the shock svectrum, for a step
change in velocity, is given by

U = AV 27 £,

Therefore,
C, — amn\(zﬂ‘j‘l ) =
aVenf, ’

at low frequencies where the response is not as sensitive to v aveform
details. Figure 7.12 shows the spectra of several classical pulses of
duration T, renormalized in this 1 anner. Since the resultant spectra
are relatively similar, a single enrve  an be used in conjunction with the
velocity change te predict the peak response. Techniques for applying

this spectra are discussed in Ref. 53.

Analysis of Multiple Degree-of-Freedum Systems

The use of shock spectrum procedures in the determination of the
response of complex structures to a shock is fraught with controversy.
For the shock spectrum to have real meaning in terms of stresses or
loads geanerated in a multiple degree-of-freedom system, the response
must be limited primarily to one mode. Such a situation can cceur only
if the exciting force contains significant energy in the vicinity of only
one of the system modal frequencies. Unfortunately, many transients
are broadband in nat*'re, containing energy spread over a considerable
frequency range. This usually causes excitation of several system
modes simultaneously. As a result, the true system 12sponse will con-
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Fig. 7.12. Shock spectrum as normalized by Crede.

sist of the algebraic sum of the responses of each of the excited modes.
The above statement assumes that no loading or feedback exists in the
system.

The shock spectrum is inherently a single degree-of-freedom concept.
Furthermore, it contains information concerning only the peak response
amplitude at each of the specified system natural frequencies. No
information as to the time of occurrence of each of the peak responses
is maintained. Finally, the entire set of response peaks making up the
shock spectrum is computed for the same damping factor, whereas in
the usual multiple degree-¢f-freedom system, each system mode has a
different damping factor associated with it. Because of all these reasons,
meaningful estimates of the true system response may be obtained if
the system responds in one and only one mode.

For any multiple degree-of-freedom system, the response to an ex-
citation may be written as

R(t)= 2 ""‘b“”fol hy(t=7) f(7)d7, (7.48)
1

n
where

¢ is the nth system modal vector
ax is the modal participation constant for mode n
h.(7) is the unit impulse response function for mode n
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f(7) is the exciting force
N is the number of system modes.

When the response is primarily in one mode (mode m), Eq. (7.48) reduces
to

R(t) = ¢ J: hun(t—7) f(7)dr. (7.49)

If the value of the undamped maximum shock spectrum at the fre-
quency corresponding to the mth system mode is defined as qu, max, then

Gm. max = Max [ J’ol hm(t_'r)f(f)d'r] (7.50)
=0
and, finally,
max [R(t) | = 6. s (T.51)

In this manner the maximum response may be obtained.

In certain isolated cases where the response parameter of interest
depends strongly on only one response mode, it may be possible toignore
the responses of other system modes and to consider the system as re-
sponding only in this mode. As an example of this, consider the following
system as described by Cronin [54].

iy
A

®

1

Fig. 7.13. Simply supported beam excited
by a symmetrically applied force.

A simply supported beam of length ¢ is excited by a force f(t) as shown
in Fig. 7.13. The required response parameter is the deflection or the
midpoint of the beam. The symmetry of the excitation implies that only
the odd system modes will be excited. Furthermore, the modal participa-
tion constants will be proportional to 1/n?, where n is the mode number.
Therefore, for n > 1,

am < 1/9a,,

implying that all modes other than the first are unimportant so that
the required response is basically a function of only the first mode, and
from Eq. (7.51),
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max [R(t) ] = ¢4 - G many (1.52)
t=0

where ¢ is some constant of proportionality.

If the system responds in several modes, it is possible to obtain an
upper bound on the true response, provided that knowledge of all
excited system modes is available. This bound was derived initially by
Biot [1], and by Biot and Bisplinghoff [55] in the following form:

N
maole;Is E Iaﬂl'ld’(;")"qn-max) (7.53)
> &=

where R; is the response of the ith mass. While this bound gives reason-
able results for earthquakes and other transients with relatively long
decay times, it is overly conservative for the single pulse type of shock
often encountered. The accuracy of the bound also deteriorates as the
number of participating modes increases. For this reason, it is best to
restrict the number of modes used in computing the bound to only those
providing significant responses.

A less conservative bound has been obtained by Fung and Barton [56]
for the specific case where the rise time of the shock pulse is large
when compared with the half-period of the lowest system mode. In this
case, all the excited system modes will follow the excitation very closely.
As a result, the peak response of all modes will occur at about the same
time as the peak of the exciting pulse. Furthermore, they will all re-
spond in the same direction. Tt.e bound is then simply

max R < 2 W B Qu, mane (7.54)

(=0 ney

It should be evident from the above discussion that only gross in-
formation concerning the system resronses of complex structures may
be obtained by shock spectrum procedures. For a more accurate anal-
ysis, it is necessary to determine the phase relationships between the
various modal responses. If all the responding modes are known, Eq.
(7.48) may be utilized to obtain the required response time history.
However, in many cases it is easier to perform the analysis in the
frequency domain. In this manner, the convolution is reduced to a
multiplication by the various modal frequency response functions.
The response time historyis then obtained by taking the inverse Fourier
transform of the resultant weighted transform of the excitation.

In summary, shock spectrum techniques may be used only to obtain
conservative bounds for the system response of a cc:aplex structure
which is responding in more than one mode. For this type of system,
Fourier spectrum techniques will generally provide much more ac-
curate results.
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Three-Dimensional Shock Spectrum

The three-dimensional shock spectrum is a method for deriving
fatigue damage information from a shock which does not cause cata-
strophic failure. For example, consider the effects of carrier landing
shocks upon the landing gear of an aircraft. In general, it is the cuwuiu-
lative fatiguing effects of many such shocks which eventually cause
the failure of the landing gear rather than a single peak situation such
as those normally analyzed by direct shock spectrum methods.

Fatigue damage analysis is usually performed by means of S-N
curves and the Miner linear rule. An S-N curve shows the typical
relation between the stress level S and the number of cycles of stress
reversal (at the stress level S) required to cause failure of the system.
The Miner linear rule utilizes this curve in determining fatigue failure
when stress reversals at differing maximum stress levels occur. For
example, a system is subjected to n, cycles at a maximum stress level of
S\, n2 cycles at a level of S, ete. As shown in Fig. 7.14, then, the system
may be expected to fail if

My N2 Na

Nm =
;v;-*-m"}'m'{" PN +Nm>1, (7.55)

where the N; are the numbers of cycles required for failure at the
stress 'ovels S,. To perform cumulative-fatigue failure analysis, one
must determine the number of stress reversals as a function of the
stress levels attained. The three-dimensional shock spectrum provides
this information.

MAXIMUM STRESS (S)
NUMBER OF EXCEEDANCES

Syt~ SRR Ny
NUMBER OF CYCLES TO FAILURE (N) PEAK RESPONSE
Fig. 7 14. Typical S-N curve. Fig. 7.15. Peak response histogram.

Consider the response time histories obtained when computing the
shock spectrum. If all the relative maxima are detected instead of just
the maximum value, then a histogram or bar chart showing the number
of maxima exceeding various response levels may be drawn. An ex-
ample of such a histogram is shown in Fig. 7.15. This histogram pro-
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vides the information needed in determining fatigue damage by Eq.
(7.55) for one natural frequency only. If the histograms corresponding
to all natural frequencies of interest are computed and a three-dimen-
sional plot of peak response versus the number of exceedances and
the natural frequency is drawn, then it would appear as in Fig. 7.16.
The result is a surface usually denoted as the response surface. Its
intersection with the natural frequency plane of the peak response
corresponds to the normal shock spectrum of the system.

RESPONSE AMPLITUDE

Fig. 7.16. Three-dimensional shock spectrum.
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The response surface is of more qualitative than quantitative in-
terest, since it is difficult to determine visually the number of stress
reversals at various stress levels. Because of this, the individual histo-
grams are used instead of the three-dimensional surface.

This procedure suffers from the same problem as all the response
spectrum techniques in that no information is available as to the true
system response but only the response of the assumed simple second
order system model for the system. Nevertheless, the three-dimensional
shock spectrum is a useful concept because it makes it possible to define
a laboratory shock test whose fatigue characteristics are similar to the
environmental shock. This procedure is detailed in Ref. 57.

The Proximity Spectrum

The proximity spectrum is a recent development due to Schell {58] for
extending the shock spectrum concept to certain types of damage or
failure which cannot be assessed by the usual shock spectrum pro-
cedures. This method provides an evaluation of the damage potential of
a shock on equipment where the primary cause cf failure is tne inter-
action of internal components rather than the fatiguing of the system.

Two basic types of equipment are prone to this type of failm.. In
mechanical systems, the failure is due to increased contact between
components. This is evidenced usually by friction or collision between
various parts of the system. in electromagnetic systems, a change in
the proximity of components may ¢ause changes in dielectric strength,
loss of insulation resistance, and variations in magnetic or electrostatic
field strengths.

If an item of equipment can be approximated by the model shown in
Fig. 7.17, then the proximity spectrum may provide valuable insight in
its capability to withstand shock. Note that the model consists of a pair
of single degree-of-freedom systems mounted on a common base.
Each system is independent of the other, with different masses, spring
constants, and viscous damping coeflicients. As a result, when a shock
motion is applied to the left side of the base, each system will respond
differently, causing the distance between the two masses to vary as a
function of time. The distance [J is composed of a static component [J,,
and a dynamic component A(?), which is the difference between the dy-
namic displacements of the two masses. In equation terms,

D(t)y= Dy + A1), (7.

-3
[
<
~

where
Alt)=w{t) ~— i (8).

The A(t) function is also called the proximity criterion. Although the
entire time history of A is of value in determining the damage potential
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Fig. 7.17. System model for proximity spectrum.

of a shock, the extreme values of A contain the most important informa-
tion. By calculating these extrema for varying ratios of the two natural
frequencies f; and f;, a spectrum similar to the shock spectrum is ob-
tained. This is the proximity spectrum.

To compute the proximity time history A(#), the equations of motion
of the two masses must be solved simultaneously. These equations are

may ey —u) +k(ar—u)=0

and 1.57

Mads+ (k2= it) + ky(x:=— 1) =0,
Define the relative displacements of the two masses m, and . by
Sh=xi—u and &=ux,—u. (7.58)
Then Eq. (7.57) becomes

'"|S| oot C|8| + }\'|8= - nhll‘(l)

and (7.59)

Mbs+ €8s+ hpd =~ mt(t).

Replacing the m, k, and ¢ terms by their equivalents in terms of the
natural circular frequency (w.) and the damping factor produces

8, + 2Lwi by + w8 =— u(t)

(7.60)
8:+ 2 wn,d: + wa B =— (L),
or
&=_mnf&_g§
w3, Wy,
(7.61)
5= L)+ 20
wi, Wy,
since

.\=.l'.)".l'|=(1’;"“)"(4’1""")=8:“6|. (7.62)
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Then

w(t)+8 _w(t)+8
H o},

A(t)y=

S5
: +2¢ (wn, mn)' (7.63)

Note that, throughout the derivation of Eq. (7.63), it has been assumed
that both systems have identical damping factors. Schell [59] feels
that it is sufficient to perform the analysis in this manner, utilizing
values of 0.005 and 0.1 for .

The results are usually presented in a normalized manner with
the ordinate of the plot being Amax or —Amin divided by Ep72, where
7 is the duration of the shock pulse and E, is the peak amplitude of the
excitation. The normalized abscissa is simply 7f:, and a family of curves
for different values of 7f; is plotted on each graph. Figure 7.18 shows
the proximity spectrum for a terminal-peak sawtooth pulse. For this
particular case, the negative and ponsitive spectra are identical, but
in general this relationship will not hold true.

Figure 7.19 [58] indicates the proxiinity spectrum of a square wave
pulse. For values of 7f; below 0.9, the spectra are quite simple. Above
0.9, they exhibit peaks and valleys and sudden trend reversals. Schell
states that these reversals are due to the fact that the extrema oc-
curring during the initial pulse and those occurring during the residual
period display opposite trends. Therefore, a crossover point exists at
which the extrema obtained from the initial period become greater
or less than those obtained from the residual period. Since only the
largest and smallest of these extrema are utilized in the proximity
spectrum regardless of their time of occurrence, a sudden trend reversal
occurs in the curve at this changeover point.

Schell [58] gives proximity spectra for a considerable number of theo-
retical pulse shapes, but the concept is too new to have been utilized
on measured shock pulses and real systems. As a result, it is not pos-
sible to estimate its eventual uge at this time.

Nonlinear Shock Spectra

One of the fundamental assumptions in shock spectral analysis is
that the physical system can be represented by a lirear second order
system. There are no truly linear systems. The practieal problem usually
becomes one of assuring that the deviations from linearity are suffi-
ciently slight so that the shock spectrum technique can be validly used.
However, there are cases where the system is cleaily nonlinear, and
deviations from linearity are major rather then minor. Several of the
basic concepts of the shock spectrum have been applied to analyze
severa! types of nonlinearities. The basic concepts retained are that the
maximum response of a second order system is indicative of the damage
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Fig. 7.18  Undamped proximity spectrum of a terminal-peak
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Fig 7.19  Undamped prox: :v spectrum of a square-wave
excitation function.

potential of the shock, and that dynamic responses can be converted to
statie values.

The nonlinear shock spectrum is obtained by replacing one of the
linear elements with a nonlinear one, applying the excitation, and
computing the maximum response. Examples of the shock spectra
response to certain pulses of second order systems having hardening
and softening spring noniinearities are contained in Refs. 60 and 61,
Ref. 62 considers the strain hardening dead zone and bilinear stiffness
nonlinearities.
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Constant, usually denoting amplitude or area
Equivalent static acceleration time history
Constant

Fourier series cosine coefficient, or modal participation
constant

Bandwidth in hertzes or spatial flux density
Constant

Fourier series sine coefficient
Capacitance

Real part of the discrete Fourier transform
Viscous damping coefficient

Fourier series modulus

Distance

Normalized Fourier series

Static distance

Energy

Mathematical expectation

Fourier transformofe(t)

Expected error (percentage)
Voltage time history

Fourier transform

Inverse Fourier transform
Exciting or input force time history
Damping force time history

Spring force time history

Inertial force time history
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Frequency in hertzes

Exciting force time history

Undamped natural frequency in hertzes
Response frequency in hertzes

Sampling rate in samples/sec

Spectral density function

Cross spectral density function
Gravitational constant

Function of the term in the parentheses
Magnetic force

Frequency response function

Gain factor (Fourier transform of h(t))
Transfer function (Laplace transform of h(t))
Z-transform of h(t)

Gain factor at the ith frequency

Unit impulse response or weighting function
Discrete unit impulse response function
Fourier transform of i(t)

Imaginary part of a complex quantity
Constant

Curvrent time history

Imaginary number (\ =1 )

Kernel

Kinetic energy

Constant, usually denoting spring constant
Inductance

Laplace transform

Inverse Laplace transform

Length

Constant, usually denoting the ratio of sampling fre-
quency to response freqency

Mass
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Constant denoting an integer number, the number of
turns in an inductor, or the number of samples in a record
Constant

Linear operator

Nonrecursive filter weights

Potential energy

Fourier transform of q(t)

Imaginary part of the discrete Fourier transform
Charge time history

Recursive filter weights

Resistance

Vector response time history

Real part of complex quantity

Nonstationary autocorrelation function

Crosscorrelation function

Radius

Roots of an equation

Generalized spectral density function
Instantaneous power spectral density function
Laplace transform variable or sample standard deviation
Spectral standard deviation

Temporal standard deviation

Linear integral transform

Record length

Time; independent variable of time history
Unit step function

Pseudo velocity time history

Laplace transform of relative velocity

. —J27
Complex exponential (c N )
N

Mean absolute value

Fourier transform of x(t)
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Modulus of a Fourier transform
Estimate of a Fourier transform
Measured value of a Fourier transform
Average Fourier transform

Fourier cosine transform

Fourier sine transform

One-sided Fourier cosine transform

One-sided Fourier sine transZorm

Discrete Fourier transform

Fourier series

Laplace transform of x(t)

Input, or excitation, time history J
Average time history

Discrete time series

Fourier transfc ‘m of y(t)

Laplace trans/ orm of y(¢)

Output, or response, time history
Input admittance

Reciprocal of the transfer impedance
Output admittance

Impedance

Z-transform

Laplace transform of £(¢)

Input impedance

Reciprocal of the transfer admittance

Output impedance H
z-transform variable
Constant

Constant

Proximity criterion
Frequency interval

Time interval ‘
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Velocity change
Quantizing increment
Delta function

Peak response error
Frequency shift error
Critical damping ratio
Phase angle

Phase angle of a Fourier transform, or the system phase
factor

Phase factor at the ith frequency

Pole of frequency response function
Scan rate in Hz/sec, or frequency
Permeability

Roots of an algebraic equation

Relative displacement time history
Relative velocity time history

Relative acceleration time history

Real part of Laplace-transform variable
Time delay

Logarithmic transform

Phase shift

Orthogonal function

Fourier series phase shift

System phase shift at the ith frequency
System nth modal vector

Flux

Mean square value

Root mean square value

Frequency in radfsec

Damped natural frequency in rad/sec
Undamped natural frequency in radfsec

Complex conjugate

A - ——
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Absolute motion
acceleration, 71
deflection, 71
velocity, 71
Acceleration
absolute, 71
equivalent static, 72
relative, 71
Accumulated fatigue damage, 8
Aliasing, 122
Analog
analysis, 81
computation of Fourier spectra,
90
computation of shock spectra,
110, 113
differential analyzers, 82
electrical, 81
passive computers, 85
peak detection, 111
Analogy
loop, 88
nodal, 87
Analysis techniques
annlog Fourier spectra, 90
annlog shocek speetra, 110, 113
digital Fourier spectra, 123, 125
digital shock spectra, 133, 136,
140
exponential expansion, 173
generalized spectral density
function, 167
instantanecus power spectral
density function, 168
multi-degree-of-freedom shock
spectra, 170
nonlinear shock spectrum, 184

nonstationary autocorrelation
function, 166
orthogonal polynomials, 171
peak response value, 169
phase plane, 160
proximity spectrum, 182
random transients, 162
single number, 155
specially normalized shock
spectrum, 176
three-dimensional shock
spectrum, 180
time-varying mean square
value, 163
time-varying mean value, 66
velocity change, 157
waveform integration, 160
Applications of shock spectra,
78
Autocorrelation
function, 41
nonstationary, 166
Average
Fourier spectrum, 47
time varying, 66
Bandpass filtering, 95, 101
direct, 101
heterodyne, 10)
homodyne, 102
transient response, 108
Barton, 3. 1., [56] 179
Biot, M. A., {11179, [17] 68,
[65] 179
Bisplingoff, R. L., [55] 179
Boxear function, 16, 26, 64
Cascaded linear systems, 57
Complex frequency, 47
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Convolution, 26, 39
Cooley, J. W., [29] 125
Cosine transform, 22
Crede, C. E., [52] 176
Cronin, D. L., [54] 178
Crosscorrelation function, 40
Cross spectral density, 44
Damage potential, 7
Damped shock spectrum, 74
Data
types, 1
transient, 4
Decomposition
spectral, 8, 61
time function, 158
Deflection,
absolute, 71
relative, 71
Deterministic data, 1
Differential analyzers, 82
Digital analysis, 121
classical Fourier transform
methods, 123
fast Fourier transforms, 125
limitations in FFT methods, 131
peak detection methods, 146
shock spectrum via
convolution, 133
shock spectrum via filtering,
140
shock spectrum via recursion
formulas, 136
Digital filters
nonrecursive, 141
resursive, 142
Digitization, 121
Direct bandpass filtering, 101
Dirichlet’s Conditions, 23
Duhamel integral, 75, 133, 136
Electrical analogs, 81
Electrical differential analyzer,
82
Ensemble averaging, 163
Ergodic, definition of, 3
Equation, roots, 14, 48
Error eriteria
anzlog Fourier analysis
detection, 105

finite filter bandwidth, 97, 108
RC averaging, 106
scan rate, 100
analog shock spectra
inductor parasitics, 115
loop loading, 118
peak detection, 112
digital
input sampling, 150
peak detection, 148
quantization, 121
response sampling, 150
solution techniques, 150
Equivalent static acceleration, 72
Euler’s formula, 17, 124
Exponential expansion, 173
Fast Fourier transform, 125
Cooley-Tukey algorithm, 125,
129
limitations, 131
Sande-Tukey algorithm, 125,
129
Fatigue
failure criterion, 8
analysis, 180
Finite filter bandwidth error, 87,
108
Finite Fourier transforms, 25
Four-coordinate nomograph, 72
IFour pole parameters, 58
Fourier series
alternate forms, 29
deiinition, 28
Fourier spectrum
analog computation, 90
average, 67
definition, 63
relation to shock spectrum, 77
Fourier tran=forms
alternate forms, 21
cosine transform, 22
finite transform, 25
one-sided trousforms, 22
relation to Laplace
transforms, 56
sine transform, 22
special properties, 23
definition, 15. 21
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inverse transform, 16
kernel, 16
Fraction of critical damping, 53
Frequency, complex, 47
Frequency domain response
calculations, 43
Frequency response function, 43
Frequency sampling, 122
Frequency windows, 61
Fung, Y. C., [66] 179
Gain factor, 43
Generalized spectral density
function, 167
Gertel, M., [19] 136
Goertzel, G. [28] 125
Goertzel's method, 125
Heaviside, 0., [6] 14
Heaviside expansion, 14
Hermitian polynomials, 173
Heterodyne filtering, 101
Hildebrand, F. B., [57] 174
Homodyne filtering, 102
Homogeneity, 37
Ideal system, 37
Inductor parasitic errors, 115
Initial peak sawtooth, 17
Instantanecous power spectral
density function, 168
Integral differential equations, 34
Integral transforms, 15
Interpolation, 147
Inverse transform
Fourier, 16
Laplace, 31
Kernel
Fourier, 16
Laplace, 31
Kharkevich, A, A, [26] 100
LaGuerrve polynomial, 172
Lane, D.W., [35) 143
Laplace transform
definition, 31
inverse transfurm, 31
kernel, 31
of a derivative, 33
of an integral, 34
relation to Fourier transform,
56

I’Hospital rule, 49
Linear
definition, 37
integral transforms, 15
operators, 14
Loop analogy, 88
Loop loading error, 118
Maximax shock spectrum, 73
Mean
Fourier spectra, 66
nonstationary, 66
time-varying, 66
Mean square value
nonstationary, 163
time-varying, 163
Miner iinear rule, 180
Multiple degree-of-freedom shock
spectra, 176
Nodal analogy, 87
Nondeterministic data, 1
Nonlinear shock spectrum, 184
Nonrecursive digital filters, 141
Nonstationary
autocorrelation function, 166
definition,
mean square value, 163
mean value, 66
Nyquist frequency, 122
O'Hara, G. J., [34] 136
Operational ealeulus, 14
Operators, 14
Ordinary spectral density function
definition, 14
Orthogonal polynomials, 171
Parallel analysis
Fourier, 90
shock spectrum, 110
Passive analog computers, 85
Peak detection
analog, 111
digital, 146
Peak response values, 169
Periodic data, 28, U8
Phase, 17
factor, 43
plane analyses, 160
Physical realizability, 41
Poles, 18, 147
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Primary shock spectrum, 74
Process, definition of, 3
Prony’s method, 174
Proximity spectrum, 182

‘Pseudovelocity, 71

Quantization
definition, 121
error, 121
Quazi, A. H., [50} 173
Random
definition, 2
transients, 162
RC averaging, 106
Recursive digital filters, 142
Relative motion
acceleration, 71
deflection, 71
velocity, 71
Residual shock spectrum, 74
Response
complex frequency domain
calculations, 47
frequency domain calculations,
43
time domain calculations, 39
Sampling
definition, 122
frequency, 122
Shannon's theorem, 122, 131
Scan rate considerations, 100, 106
Sehell, . 1., [58] 182, [59] 184
Second order mechanical system,
8,11
Shannon, C. k., [27] 131
Shoek, 1,41
survival, 7
Shock spectrum
analog computations, 110, 113
applications, 78
damped, 74
definition, 62, 68
digital computations, 133, 136,
140
maximax, 73
maximum positi~ : and
negative, 74
multiple degree of freedom, 176
nonlinear, 184

primary and residual, 74
proximity spectrum, 182
relation to Fourier spectrum,
(i
special normalization, 176
three-dimensional, 180
Sine transform, 22
(Sine x)/x function, 17
interpolation, 149
window, 64
Single highest peak damage
criterion, 8
Single number analysis, " 58
Spectral decomposition, 8, 61
Spectral window, 61, 64, 65
Stability, 41
Stationarity, 3
Superposition integral, 75, 133
Swept analysis
Fourier, 90
sean rate considerations, 100,
106
shock spectrum, 110
Three-dimensional shock
spectrum, 180
Time domain respor >
calculations, 39
Time function decomposition,
158
Time history, definition, 2
Time-varying
mean square value, 163
mean value, 66
Transfer function, 47
Transient
data, 4
response of filters, 108
Tukey, J. W., [29] 125
Unit impulse response function,
39
Velocity
absolute, 71
change analysis, 187
relative, 71
Wave integration, 160
Weighting function, 39
a-transforms, 143
Zeros, 18, 143
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