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The purpose of this research Is to develop anp 
analyze a gradient-descent surface-searching al- 
gorithm for automatically adjusting (adapting) the 
parameters of a linear tapped-delay-llne array 
processor In order to Improve Its performance In 
an unknown changing environment. The tracking 
ability of this algorithm is dcmoiSftrated when the 
characteristics of the nonstatlonarlty are such 
that the optimum parameter sequence can be modeled 
as a first-order Markov process with a known trans- 
ition function. A worst-case analysis of the 
algorithm Is presented for three types of non- 
statlonarltles when the above model for the non- 
statlonarlty Is not applicable. 

The techniques developed In analyzing the 
above algorithm provide a powerful approach lor tl^e 
further study of gradient-descent algorithms used 
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unknown, nonstatlooary surfaces. Among the most con- 
sequences are: 

l) the removal of the usual assumption that the 
data be Jointly Gaussian; 

11) the development of a new convergence thecrem 
for a dynamic stochastic approximation algorithm, 
thereby extending a branch of stochastic approxlmi tlon 
theory to the analysis of adaptive processors In i on- 
stationary statistics; 

111) the enlargement of the class of problems for 
which stochastic approximation algorithms, adaptive 
estimation algorithms, and the Kalman-Bucy theory [can 
be compared. 

Also presented In an appendix Is a procedure 
for automatically adjusting the convergence fac- 
tor. Some experimental results are presented. 
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PART I 

^ e problem considered in this report is to find the vector of weights   W   minimizing 

E([d(t) - WTX(t)]2)    subject to linear equality constraints on W, where X(t) is a 
vector of random variables measured at time    t   and    d(t)    is a randan variable related 
to X(t).    This is a classical problem in linear estimation theory,  except that the 
statistics of the random variables are assumed unknown and must be learned through ob- 
servations.    A computationally simple procedure, called the Constrained Least-Mean- 
Squares algorithm,  is proposed for processing the observations and is shown to con- 
verge  to the optimal linear processor. The algorithm is useful    in real-time 
modeling,  filtering, and estimation,  particularly in cases where the optimal time- 
vnrylng linear processor (e.g., Kaiman filter) cannot be used because of computational 
complexity or lack of necessary Information about the system.    Special attention is 
given to real-time processing ot data from an array of sensors, and it is shown that 
the Constrained Least-Mean-Squares algorithm permits implementation of an array pro- 
cessor that requires very little a priori statistical information. 

PART II 
KfL the classical design of processors for sensor arrays whose purpose is signal de- 
\ectlon and estimation, a receiver Is optimized on the basis of the a priori knowledge 
of the statistics of its input signals.    However,  when the a priori knowledge Is not 
available,   the re ceiver's performance can still be improved by performing measurements 
on its  input signals and incorporating this new Information into its design.    Such re- 
ceivers are called adaptive. (contd.  on back) 
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L FOREWORD 

This Is a Final Report under Contract R0OO24-69-C-143O, covering 

a period of research frcin 27 June 1969 to 30 April 1970. The  report 

consists of two parts: 

Part I, by 0. L. Frost, III, Is based on his Ph.D. thesis. The 

principal contribution Is a new adaptive algorithm for minimizing mean- 

square-error In an adaptive processor which simultaneously subjects the 

weight-vector components to a linear equality constraint. When applied 

to adaptive .-rays, this algorithm allows one to obtain precise control 

of the array frequency response and gain level In the "look direction" 

while minimizing mean-square-error. Frost's algorithm is probably the 

best yet devised for adaptive arrays. 

Part II, by James Edward Brown, III, is based on his Ph.D. thesis. 

This work Is highly theoretical and presents a framework for mathemati- 

cal analysis of adaptive processors when subjected to changing (non- 
7 

stationary) signal and noise fields. For various adaptive algorithms, 

rate of convergence and variance of the weight vectors are analyzed. 

This work Is general, and applicable to a wide variety of adaptive 

signal processors. 

PART II 

© 1970 

by 

James Edward Brown,   III 

I 
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PART I. 

ADAPTIVE LEAST SQUARES OPTIMIZATION 
SUBJECT TO LINEAR EQUALITY CONSTRAINTS 

by 

Otis Lamont Frost, III 

ABSTRACT 

The problem considered In this report is to find the vector of 

weights W minimizing E([d(t) - WTX(t)l2} subject to linear equality 

constraints on W, where X(t) Is a vector of random variables 

measured at time t and d(t) is a random variable related to X(t). 

This Is a classical problem in linear estimation theory, except that 

the statistics of the random variables are assumed unknown and must be 

learned through observations. A computationally simple procedure, 

called the Constrained Least-Mean-Squares algorithm, is proposed for 

processing the observations and is shown to converge to the optimal 

linear processor. 

The algorithm Is useful in real-time modeling, filtering, and 

estimation, particularly in cases where the optimal time-varying linear 

processor (e.g., Kaiman filter) cannot be used because of computational 

complexity or lack of necessary information about the system. Special 

attention is given to real-time processing of data from em array of sensors, 

and it is shown that the Constrained Least-Mean-Squares algorithm permits 

implementation of an array processor that requires very little a priori 

statistical information. 

ill SEL-71-001+ 
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I.  INTRODUCTION 

This paper presents a simple algorithm for minimizing 

a quadratic cost criterion subject to linear equality 

constraints. The technique, called the "Constrained-Least- 

Mean Squares" or "Constrained IMS" algorithm Is an Iterative, 

stochastic gradient-descent algorithm with low memory 

requirements.  Computationally, it is simple enough that for 

a variety of practical problems it can be implemented in 

real time on a small general-purpose computer. 

The algorithm is applicable to problems in least squares 

filtering, estimation, modeling, and others which may 

properly be viewed as linear-constrained quadratic optimi- 

zation problems. Specific examples treated in the paper 

include real-time minimum-variance unbiased estimation, 

consistent modeling that includes known linear constraints 

on the model parameters, and real-time processing of data 

from an array of antennas or other sensors. The constrained 

least-mean-squares approach is particularly interesting in 

the estimation and array processing applications because 

it requires very little a priori information for implementation. 

The rate of convergence of the algorithm is studied and 

its steady-state performance is compared with the optimum. 

A gain constant is shown to control a tradeoff between fastest 

convergence rate and best steady-state performance.  By 

suitable choice of gain the steady^state performance of the 

algorithm can be made arbitrarily close to the performance 

-1- 
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of the optimum least-squares filter. 

Previous work on unconstrained least-squares array 

processing was done by Griffiths [12]; his method requires 

knowledge of second-order signal statistics. Widrow, 

et al. [30] proposed a variable-criterion optimization 

procedure involving the use of a known training signal; 

this was a direct application of the original work on adaptive 

filters done by Widrow and Hoff [29].  Griffiths also 

proposed a constrained least-mean-squares processor not 

requiring a priori knowledge of the signal statistics [11]; 

a new derivation of this processor, given in Appendix A, 

shows that it may be considered as putting "soft" constraints 

on the processor via the quadratic penalty function method. 

"Hard" (i.e., exactly)-constrained iterative optimi- 

zation was studied by Rosen [23] for the deterministic case. 

Lacoss [14] and Booker [1] studied "hard"-constrained 

stochastic optimization in the array processing context. 

All three authors used "gradient projection" techniques; 

Rosen and Booker correctly indicate that gradient projection 

methods are susceptible to cumulative roundoff errors and 

are not suitable for long runs without an additional error- 

correction procedure.  The Constrained IMS algorithm is 

designed to avoid error accumulation while maintaing a 

"hard" constraint; as a result, it is able to operate con- 

tinually in order to track an environment that may be slowly 

time-varying.  Discussion of gradient-projection methods and 

  -                 ' ■ I1IIM«   --^~~~. ■   -,..————^. 
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a comparison of the error-correcting properties of the two 

algorithms is given in Section VII. 

In the following section,  the general constrained 

least-mean-squares problem is formulated as a theorem and 

the optimal solution is derived under the assumption that 

all the relevant statistics of the problem are known. 

Several corollaries applying to interesting special cases 

are drawn.    The optimal solution is seen to be computationally 

difficult,  requiring a number of matrix multiplications and 

inversions.     In Section III,   the computationally simple 

Constrained IMS algorithm is derived that converges to the 

optimal solution while learning the statistics of the problem. 

This algorithm and studies of its properties is the principal 

result of this thesis.     Special forms of the general algorithm 

are used to solve particular problems.    Remaining sections 

are concerned with geometrical interpretation of the algorithm, 

its performance,   applications,  and computer simulations. 

- - ■ ■ —   ■   i      - - 
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II.     CONSTRAINED  LEAST-MEAN-SQUARES OPTIMIZATION 

A. Notation 

In this paper a vector is taken to be a column vector. 

The superscript T denotes transpose. The expected value 

of a quantity    fQ)    is denoted by EfQ)  or Q .     The matrix of 

correlations between two vectors of random variables, 
T A    and    B  ,   is written    E[AB  )  « R--  ;  the vector of corre- 

lations between a vector    X    and a  scalar    d    is written 

Efxd)  « Rj^,   .     A vector of zeros of arbitrary dimension is 

9    and the matrix of zeros  is     0 

B. The General  Problem and Optimal Solution 

There are  two purposes  for this  section.    The  first is to 

define the general constrained  least-mean-squares problem and 

derive the optimal solution.    This  solution could be obtained 

directly if one knew the problem statistics beforehand.     It 

will be shown  later that the Constrained IMS algorithm converges 

to this solution and can be used when the problem statistics 

are unknown.   The second purpose  is  to  show that several  inte- 

resting and  important problems can be put in the  framework of 

the general constrained  IMS  problem and therefore are  solvable 

by the algorithm. 

Let    X    be a vector of    n    observed data points, 

X   ■ (XwX-, . .. ,x  ) , that are drawn  from a distribution with 

E(XX  ) = R^Q, •    Let    d    be a  random variable correlated with    X 

by an r>-dimensional correlation vector    Rj.,   .     In this  section 

-4- 
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Rj^    and    1^^    are assumed known.     Let    W    be an n-dimensional 

vector of weightings that will be applied to    X    to estimate 

d  .     Let the estimate of    d   be 

Y = WTX  # (2.1) 

and the error between    d    and the estimate be 

e = d-y  . (2.2) 

The constrained least-mean-squares optimization problem is 

to find the weight vector WA that minimizes the expected 

squared error in the estimate, 

Efe2)  = EfTd-y]2)  - E[d-WTX]2) (2.3) 

subject to certain linear equality constraints on   W  . 

The reason for placing constraints on    W   was suggested 

in the introduction and will be made clear in the applications. 

In general,    m    linear equality constraints   (with    n >m)  are 

placed on   W    of the form 

cTw =  fi ,    i = l,2,...#m# (2.4) 

where each c.  is an r>-dimensional vector and each f.  is a 

scalar constant. This is a set of m simultaneous equations 

which the n components of W must satisfy, but since m < n, 

the equations do not completely determine or totally constrain 

W . Therefore W can be optimized, to minimize a mean square 

error, subset to the linear constraint (2.4).  It is well 

T known that by requiring W to satisfy c .W = f.  for any 

single i restricts W to lie in an (n-1)-dimensional hyp^r- 

plane.  Similarly, it is shown in Section IV that constraining 
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W to satisfy the m equations of (2.4) restricts W to 

an (r>-m)-dimensional plane if the vectors c.  are linearly 

independent.  To express the constraints in matrix notation 

define 

^     m    » 

t      f. 

c •  C ä • • • c ±       z m 
Af2 

^n 

(2.5) 

The constraint matrix C is (nxm) with n>m .  It will 

be assumed that the constraint vectors c.  are linearly 

independent so that by the definition of rank as the number 

of linearly independent columns of a matrix,  C has full 

rank equal to m . The constraints (2.4) are now written 

T C W ■ ^ (2.6) 

The problem is summarized and the solution is given in the 

form of a  theorem. 

Theorem 1.      (Constrained  Linear  Least-Mean-Squares Optimi- 

zation)     Let    d    be a random variable and    X    be an 

n-dimensional vector of random variables with known 

correlation matrices 

+ Other names  for an  "r-dimensional plane" are "linear variety" 

and  "Linear manifold". 
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EfXXT) « R^    (nxn) 

E{Xd)  - R^    (nxl) 

and Rj-. positive-definite.  The optimum constrained 

least-mean-squares weight vector solving 

minimize E([d-WTX]2) 
T (2.7) 

subject to  C W = J 

where C is an (nxm) matrix (n >m) of full rank and 

5    is an m-vector, is 

w* ■ t1-^c(cT^c^lcTlIÄd+Isäc(cTR^c^l3F•(2•8, 

The optimum constrained linear least-mean-squares estimate 

of d is y = wjx . 

Proof of Theorem 1. 

The proof uses the method of Lagrange multipliers, 

which is basic to the later development of the major algorithm 

and another proof.  A geometrical interpretation of Lagrange 

multipliers expressed in the context of this work is pre- 

sented in Appendix E. 

The cost function is J(W) = E[[d-WTX]2} 

= E(d2} - 2 E(WTXd) + E{WTXXTW} 

- Efd2) - 2WTRxd + W
TRXXW . (2.9) 

auMM _ . .-.   ...    ...  , . ,.,,.._-«■—■— 
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Including a  factor of  ^ to  simplify later arithmetic,   adjoin 

the constraint function to  the cost  function by a 

m-dimensionai  vector of undetermined Lagrange multipliers    X : 

H(W)  =  ljJ(W)   +  AT(CTW-5) 

=   l5[Ed2- 2WTRxd + WTRxxW]   +   XT(CTW-gF)   .      (2.10) 

The necessary conditions  for optimality are 

V^CW)  = 9  . (2.11) 

and 

CTW - 5   . (2.12) 

Taking  the gradient of   (2.10) with respect to    W 

^(W)   « -R^ + R^W^+CX « e (2.13) 

and  solving  for the optimal weight vector 

W*  - Äd -  ^   ' (2-14) 

where R!-. exists because R^-. was assumed positive 

definite.  Since W# must satisfy the constraint (2.12) 

CV - If - C^R^ - CTR^CX (2.15) 

and   from   (2.15)     ^     is   found  to be 

A  *   IcTRXXC,'1[cTBXXRXd "^ '    * (2-16) 

T - 1    - 1 
It  is  shown  in Appendix C that the existence of     [C R^C] 

follows   from the  facts  that    R^    is  positive definite and 

-- -   — -  ■--    ' ._^_^^M. 
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C has full rank.  Substituting the last expression for the 

Lagrange multipliers into the expression for w^ (2.14) 

the result follows. 

This completes the proof of Theorem 1. 

C. Special Cases 

A well-known special case of Theorem 1 is the uncon- 

strained least-squares problem. 

Corollary 1.1. (Least-Mean-Square Error—Wiener) The 

optimum set of weights WA solving the problem 

defined by Theorem 1 without constraints, i.e.. 

minimize E f [d - WTX] 2) (2.17) 

with 

is 

E(XXT) = R^ 

E{Xd)  - R^ 

}**1 -  RXXRXd (2.18) 

And the best unconstrained estimate of d is 

y-H^x . 
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Proof of Corollary 1.1. 

Let the constraint matrix    C    vanish in Theorem 1. 

See especially Eq.   (2.14)  of the proof. 

This completes the proof of Corollary 1.1. 

A second well-known problem that can be  formulated as 

a special case of Theorem 1  is the distortionless least-mean- 

squares estimation problem that was solved by Gauss. 

Corollary 1.2.     (Least-Mean-Squares Distortionless 

Estimate— Gauss,  Markov)    Let the data vector    X 

be of the form 

X » CB + N   , (2.19) 

where C is a known (nxm) matrix of rank m, and B is an 

T unknown m-dimensional vector with B = b,b„...b . 
L 1~2 m, 

B may be a vector of random variables with unknown 

mean (so Efß] = B) , or it may be a vector of unknown 

parameters, in which case EI'B) =B = B .  N is an 

unknown n-dimensional vector of random variables 

considered as noise.  B and N are uncorrelated, with 

EfBBT) » RBB (mxm) 

E(N)  » 0 (nxl) 

E(NNT) = R^ (n x n) 

E{BN
T
} = 0 (mxn) , 

and ILJJ, is positive definite. 

■   - — mmam M 
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B-bi 

in_ 

N 

CB =>0= WJ 

11 

Fig. 2.1. The estimation problem of Corollary 1.2. Thick 
lines indicate vector-valued quantities, w is 
chosen so that y is an estimate of the ith 
component of B , b. . 

B 

N 

JL 
wJ 

o 

T W N 

(A) 

(B) 

m J 

Fig. 2.2. Manipulation of the flow charts from Fig. 2.1 
yields (A). Constraining WTC = y yields (B), 
showing that the constraint puts a unity transfer 
function on b.  and that y = b. + W N . 
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Thus 

^oc - CRBBC    + ^m 

The problem is to make a  linear  least-squares estimate 
T of    bj , say   y-w x#  that is unbiased   (see Pig.   2.1). 

We wish the estimate of    b.     to be corrupted only by 

the minimum amount of zero-mean noise.    The optimum 

weight vector solving the problem 

minimize    E ((b. - 1fTX] 2) 

subj ect to    E (WTX - bi) «0 (2.20) 

is 

where 

w*2 " ^f0^!"15 

-•-ith position 

(2.21) 

(2.22) 

0J. 

T 
and the best unbiased estimate of    b.    is    y=W# X  . 

1 2 

Proof of Corollary 1.2. 

The problem   (2.20)  is put into the  form of the problem 
T solved by Theorem 1.    Observe that    b^^  = 5 B  .     Using    (2.19) 

X = CB + N  ,   and the  fact that    N    is  zero mean, we have 

E(WTX-b.)   = E{WTCB + WTN-Hi)   =  E{WTCB-Ei)   . 

Now if we require    C^W»?   then 
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E(W1X-bi) = ECf
iB-¥i) = 0 (2.23) 

and the constraint of (2.20) is satisfied.  This is reasonable 

since the constraint applies a unit transfer function to bi 

(see Fig. 2.2). 
T Further, with the constraint C W = y  in force 

y s wTX = WTCB + WTN = b. + WTI and the cost function becomes 

Eft^-y]2} = E(b2) - 2E(b.y) + Efy2) 

= E(b?) -   2E[bi(bi+WTN)}  + E{y2) 

- E{y2) -   E{b?)   . (2.24) 

Because   E(bi)    is a constant,   the weight vector that mini- 
2 2 9 mizes    E{y  )    also minimizes    E{y )-E(bf)   ,   so the problem 

(2.20)  reduces to 

minimize    E{y2)  =E{[WTX]2) 

subject to    CTW =5     , (2.25) 

where    C     is defined  in   (2.19),   and   7   in   (2.22).     This is 

a special case of the problem of Theorem 1 with    d = 0  . 

Since    d = 0  ,   ECxd^I^, =e    and so the  first term of   (2.8) 

vanishes and the optimal solution becomes the second term. 

This completes the proof of Corollary 1.2. 

In some cases the unbiased estimator may not be the 

most desirable.    Suppose that   (as in the array-processing 

problem discussed later)  B    is  the sum of two vectors 

B =   .* + A , (2.26) 
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N 

^■^—> c =^y==> WJ 

Fig. 2.3.  B is a given structure for Corollary 1.3. 
B  is the sum of signals S     plus noise A 
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where ^ and A are m-dimensional vectors of random variables 

which may be statistically correlated. I    is to be thought 

of as a vector of "signals", one of which we wish to estimate 

say s. . A is to be considered as a vector of additive 

noise. Note that A and N are both "noise" vectors of 

different dimension (see Fig. 2.3). 

Since the "unbiased estimator" of Corollary 1.2 forms 

an estimate of t. , which is equal to s.  plus a. , it 

may not be satisfactory as an estimator of s. alone. 

Another approach is to recall from Corollary 1.2 that 

by suitable choice of the constraints a vector 7 can bo 

applied directly to B . Therefore a "filter" vector ? 

(which may be different from (2.22)) may be designed to use 

the correlation among the components of 4 and the (hopefully 

different) correlations among the components of A , so that 

when  3 is applied to B it may enhance s.  in the output 

and discriminate against A . This is exactly analogous to 

the use of a filter in the frequency domain to pass signals 

and discriminate against noises. 

In the following, it is assumed that  5 is a vector 

chosen by the user. The best choice of 5 is a topic with 

which we do not wish to gfit deeply involved.  An example of 

a choice of 5  is given in Example 3, Section VI.  If the 

T 
weight vector W is constrained to satisfy C W= y , then 

the output is 

y . WTX • WTCB + WTN = 5TB + WTN ,       (2.27) 

and output power is 

- 
■■ 
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E{y ) - s Rß^ + w^w (2.28) 

Because B and N are uncorrelated there is no cross term 

and so long as W satisfies the constraint any permissible 

variation in W affects only the power of the noise in the 

output.  Thus the "degrees of freedom" of W not constrained 

T 
by C W«? may be used to minimize the excess noise power in 

the estimate of s. . 

With the preceding motivation, the problem is set up 

as a special case of Theorem 1. 

Corollary 1.3.  (Least-Mean-Squares Filtered Estimate) 

Let X be a known n-dimensional vector oZ  observations 

of the form 

X « CB + N f 

where    C    is a known    (nxm)   matrix with   (n >m). 

B    and    N    are unknown vectors of random variables 

with dimensions    m    and    n    respectively.     Let    B    be 

of the  form 

B ^ + A , 

where A    and A are m-dimensional vectors of random 

variables. We wish to form an estimate of the i 

element of <* , s. . 

- -■ . i ■ i    —- - ■MMMUaaA. MBM 
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E{N)        =  9 

E{NNT)   » R^ 

E(BNT) - 0 

E(XXT)  - Rxx  . 

Let    5   be a given m-dimensional  filter vector.     The 

least-mean-squares  filtered estimator is the weight 

vector solving the problem 

minimize    E{y2)  m Ef[WTX]2) 
m (2.29) 

subject to    C W = 5 

and is 

W*     ^ ^^^"S (2.30) 
«3 

The best i-filtered estimate of    s.     is    y«W^ X  . .T 
* 
3 

Proof of Corollary 1.3. 

Proof follows directly from Theorem 1, with d=0 and hence 

R^j ■ 9   . The fact that y = wj X is an estimate for s. 

follows from the above discussion. 

This completes the Proof of Corollary 1.3. 

Remark:  If 9   is chosen as in (2.22) (one unit entry and 

the rest zeros) the solution is the same as the solution 

of Corollary 1.2. 

-**. - ■■ - — ■ 

- --    ~ ■ — 
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III.  THE ADAPTIVE ALGORITHM 

A.  The Unknown Statistics Problem 

Suppose now that the correlation matrices IL-. and 

R^, required by Theorem 1 are not known a  priori.  Instead 

a sequence of observation vectors  fx(0),X(l),... ,x (k),... ] 

is presented, each vector drawn independently from a quasi- 

stationary ergodic distribution with autocorrelation R™ . 

A sequence of random variables  [d (0),d (1), .. .,d (k), ...} 

which are related to the X's by an unknown correlation 

vector Rg. is also presented. We wish to minimize the 

constrained mean square error of the problem of Theorem 1. 

An obvious solution is to make estimates of the unknown 

correlation matrices from observations, e.g.. 

R^OO «aR^Oc-D + (l-a)X(k-l)xx(k-1) , 

and 

^d00 =aRxd0c~1) + (l-a)X(k- l)d(k-1) , 

0 < a < 1 , 

and insert these estimates into the expression for the 

optimal weight vector given by Theorem 1, Eq. (2.8). 

Inspection of (2.8) shows that because of the number of 

matrix multiplications and inversions involved, a great deal 

of computation is required at each iteration by this approach, 

ultimately limiting the rate at which estimates can be made 

and the dimensionality of a system of given cost.  See 

Appendix F for an example of the performance of this approach. 

-18- 
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The next section describes a computationally simple 

procedure (the Constrained-IMS algorithm) that converges to 

the weight vector W# that solves the problem posed by 

Theorem 1 without prior knowledge of the correlation matrix 

R^ . Further, if d (k)  is available for training, or is 

not required fcr the solution (as in Corollaries 1.2 and 1.3) 

then the algorithm does not require knowledge of R^., . 

B. Derivation 

The Constrained-IMS algorithm is based on a constrained 

gradient descent, satisfying C W « f  at all times while 

iterating to find a weight vector minimizing the cost function 

J(W) - ^{[dOc)-WTX(k)]2) = ^[Ed2- 2WTRxd + W
TRxxW] . 

For motivation of the derivation, temporarily suppose 

that R^y    and R.., 'are known. As in the proof of Theorem 1, 

form the function H(W) by adjoining the constraint to the 

cost function by a m-dimensional vector of Lagrange multi- 

pliers X : 

H(W) = -|[Ed2- 2WTRxd + W
TRxxW] +A

T[CTW-y] .    (3.1) 

As in Theorem 1, we wish to find a weight vector W^ such 

that the gradient of H at W^  is Q    and W^ satisfies 

T C W = 5 .  The gradient descent is initialized by choosing 

a weight vector W(0)  that satisfies the constraint. 

  ■ 
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The gradient of H with respect to W is 

V,-Rxx*-,S(d + c* ' (3.2) 

At each  iteration the weight vector is moved in the direction 

of the negative gradient.     (Note:    a move in the direction 

of the positive gradient tends to increase a cost  function.) 

The  length of the step is proportional to the magnitude of 

the gradient and scaled by a gain factor    M.   .    At the k 

iteration the next weight vector would be 

WQc+l)   »WOO- HV^OO 

W(k)-u[RxxW0c)- Rxd + CA(lc)] (3.3) 

The constrained gradient     (R^WOO - R^ + CA (k)]     is the 

unconstrained gradient 

7wJ-RXXW^)-RXd   ' (3.4) 

plus the term C* (10 .  As noted in Appendix E and later in 

Section IV, the vector cMk) is orthogonal to the constraint, 

By proper choice of ^ (k)  the component of the unconstrained 

gradient normal to the constraint (and hence deviating from 

it) can be exactly cancelled.  Thus the Lagrange multipliers 

are chosen by requiring W(k+1) to satisfy the constraint 

'♦ - CTW : 

3 - cTw(k+i) = cTw(k)- UC^R^WOO +^cTRxd- HC CMk) 
(3.5) 

----- -      ._  . .^ .___ u ~__ 
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and solving for the Lagrange multipliers for the k 

iteration, 

AOc) = (c^rV^woo-^c^r CTW(k)- (^O'V^ » 

(3.6) 

where it is shown in Appendix C that the existence of 

T -1 
(C C)   follows from the fact that C has full rank. 

Inserting the Lagrange multipliers of (3.6) into the iter- 

ative equation (3.3) we have 

w(k+i) =w(k)- nfi-cfArV] [RxxWO^-RxdJ + c(cTc)"1[5-cTw{k)] 
(3.7) 

The algorithm may be rewritten,   defining the n-dimensional 

vector 

F = C(CTC)"1y (3.8) 

W(k+1)   -   [I-C(CTCr   CT] [W(k) - HR^WOO +^1^]  +P.    (3.9) 

Equation (3.9) is a deterministic gradient-descent 

algorithm that converges to the optimal weight vector W+ 

of Theorem 1 for a suitably small choice of the gain [x 

(proof given in Section VI). However, it requires knowledge 

of the correlation matrices IL-. and R^., , which in this 

study are assumed unavailable _a priori.  But recall 

Rxx=EDc(k)X
T(k))  and R^ = Efx (k)d (k)} , so an easily- 

available and simple approximation for R   at the k 

iteration is the outer product of the observation vector 

with itself: X(k)X (k) ;  likewise if d(k)  is available 
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a simple approximation  for    R^    at the Xth iteration   is 

XOOdfk)   .        This  substitution gives the  stochastic algorithm 

woc+i) - (i-c(cTcr cT] [WOO- ux(iOxT0Ow(k) +nx(ic)d(k)] + F . 
(3.10) 

T which can be simplified using    yOO «X   (lc)WOc)    and 

eOO «dOO - y (TO    to 

woc+l)  - [l-CCC^rVHwOO+ne0c)X0O]+F .       (3.11) 

Equation (3.11) is the Constrained-IMS algorithm.  It 

is a stochastic gradient-descent algorithm satisfying the 

constraint that CTW0c)-5 at all times (check: CTW(k+l)«y). 

At each iteration it requires only the observations X(k) 

(and d(k)  if required). No a priori Xnowledge of R™ 

or Ry,    is needed.  The most comples operation is the multi- 

plication of a constant matrix times a vector, which is a 

substantial savings over the matrix multiplications and 

inversions required (either explicitly or implicitly) by a 

direct implementation of the optimal equations. 

The algorithm was derived heuristicslly.  Its convergence 

to the optimum, rate of convergence, and steady-state 

As mentioned previously, better, but more complex, e»ti- 
1        T 

mates for R^. are available, such as ^TT2X(i)X (i) . 

See Saradis, ,et al. [24] for use of this estimate in another 

algorithm; and Mantey and Griffiths [18] for a closely 

related estimate.  For discussion and use of simpler 

estimates, see Moschner [20], Lender [15], and Nuttall [21] . 

The use of X(k)X (k) here is a compromise between algorithm 

complexity and performance and may be changed if desired. 

- *mmm - ■    ■   
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performance are shown in Section V. The next section 

develops the theory of constrained gradient descent from a 

geometrical viewpoint. 

Kirm 
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IV.  A GEOMETRICAL VIEW OF THE ALGORITHM 

A geometrical interpretation of the Constrained-IMS 

algorithm (3.11) is now given.  Results will be found that 

permit an easier and more intuitive derivation of the 

properties of the algorithm than would otherwise be possible. 

Readers interested in applications may skip to Section VI. 

We start from basic definitions. 

Definition (Subspace)  Let a and ß be real scalar numbers, 

A nonempty subset S of a vector space is called a 

subspace if every vector of the form av + ßW is in S 

whenever V and W are both in S . 

Since a subspace must contain at least one element W , 

it roust also include the zero vector 9    because 0 -Vf = e   . 

Thus every subspace includes the origin. 

Let Z be the set of all n-dimensional weight vectors 

satisfying the homogeneous form of the constraint equation 

T 
C W = e . 

2 ^  (W : CTW = 0)     . (4.1) 

Then we have 

Geometrical  Property  1.     The set    2 = {W : C W = 9)    defined 

by the homogeneous  form of the constraint equation 

is a  subspace. 

-24- 
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Proof of Geometrical Prcpertv 1. 

Let V and Z be vectors in 2 They must satisfy 

T T the equations c V = 0  and C Z = 0 .  Therefore for any 

constants   a and ß ,  the vector Y=av + ßZ also 

T satisfies C 7 = 0 ,   so the set £ is a subspace. 

This completes the proof of Geometrical Property 1. 

Definition (Linear Variety) A linear variety is a trans- 

lation of a subspace. 

A linear variety L may be expressed by the set equation 

L = S + U , where S is a subspace and U is any vector in 

the linear variety.  The linear variety L is said to be 

parallel to the subspace S . 

Fig. 4.1.  A linear variety and its subspace. 

Let r be the set cf all weight vectors W satisfying 

the constraint C W= ? . 

r = (w : cTw = y) . (4.2) 

■ - ■ - - - - ■ "- ■ -^ - -n1 — i < -' —'— --'— 
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This definition leads to 

Geometrical Property 2. The set r ■ {W : C w ■ 5 ) defined 

by the constraint equation is a linear variety parallel 

to the subs pace Z . 

Proof of Geometrical Property 2. 

We must show that a vector W is in r if and only 

if it can be written as the sum o^ a vector in Z and a 

translation vector. 

(IF) Let the translation vector U be in r and Z. 

T T 
be any vector xn Z   .  Then C U«? and C Z«9 .  Thus 

W = Z + U satisfies  CTW»CT(Z + U)» 5F , so if U is in 

r the sum of any vector in 2 and U is in r . 

(ONLY IF) Now suppose a vector W in f satisfied 

T C W = ? but could not be written as the sum of U and a 

vector in 2 .  Then it follows that the vector W- U could 

T 
not be written as a vector in 2 .  But C (W- U) « SF-J =0 

so w- u is in 2 .  Contradiction. 

This completes the proof of Geometrical Property 2. 

Geometrical Property 3.  The shortest vector from the 

origin to the linear variety r is the vector 

T -1 F = C(C C) $  ,  which is orthogonal to r . 

Proof of Geometrical Property 3. 

2   T 
We want to find the vector W minimizing  ||w|| =W W 

T while satisfying c W='i . Use the method of Lagrange 

  --        -   - f.. in im  ■ --■   ■■...—      . ,,.^-^-^w.',.^—| ^aa,. 
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multipliers. Form the function H(W) by adjoining the 

constraint to the cost criterion: 

H(W) =-j[WTW] + XT(CTW-y) . 

L necessary condition for optimality is 

V^ = W+CA  = 9   , 

or 

w = -ex . 

Requiring W to satisfy the constraint 

CTW = y 

we have 

Solving for A 

-CTCA =5 

m _i 
A = - (^C)  5 , 

and inserting this into the expression for W above 

W = CCC^C)"1? . 

This is the vector P appearing in the algorithm (3.11) 

and defined in (3.8). As a check that F is in r note 

that CTF - C^Ci^cf1*  = 5 . 

We wish to show F is orthogonal to r .  Vectors 

parallel to the linear variety itself are the vectors of 

the parallel subspace 2 .  Any vector Z in 2 

- 
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is orthogonal to F = C(CTC)  5 since Z satisfies CTZ»9 

and so the inner product F Z » y (C C)  CTZ ■ 0 . 

This completes the proof of Geometrical Property 3. 

Note from the above proof that any vector of the form 

CT , where > is an ro-vector, ie orthogonal to the constraint 

variety r . 

Geometrical properties 1-3 are illustrated in Fig. 4.2. 

The (nxn) matrix appearing between brackets in the 

algorithm (3.11) has an interesting geometrical interpretation, 

Call the matrix P . 

A       T  — 1 T 
P » I-C(C1C) ■LC1 . (4.3) 

The following definition appears in Luerberger [16]: 

Definition.  Let a vector W have a unique representation 

as the sum of two vectors, one from subspace Z and 

the other from the subspace Zx  perpendicular to £ . 

Thus let W =» W,, + Wx , where W,, e 2, ,  W^ € Zj. .  The 

operator 9    defined by  yw^Wj,  is called the 

projection operator onto Z . 

In other words, a projection operator acts as an 

identity operator on components in Z and as a zero operator 

on components in Z^ . 

Geometrical Property 4.  P is a projection operator 

onto Z . 

jfc.    - -—.—**■ 
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■ccrtr'f 

A.{wiCTw«y} 

X-(w!CTw-ö} 

Fig. 4.2.    The linear variety and subspace defined 
by the constraint. 

Z« {w:CTW«ö} 

Fig.  4.3.     P    projects vectors onto    2 
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Proof of Geometrical Property 4. 

Any weight vector    W    can be represented as 

W ■   (W- Bf)  + Bf . 

The vector     W =  [l-C(CTcr1CT]W    is in    2    since 

CT(PW)   » ^[l-CC^cfVlW »   [CT-CT]W = 9   .     The vector 

(W- PW)  = C(C C)" C W    is in    2X   .    This is true because by 
T definition of    2    for all vectors    Z€2  ,     C Z«0   j   then 

every vector    Z    in    2    is orthogonal to     (W- PW)     since 

ZTC (CTC)" Vw = 9T (CTC)' Vw * 9   .     Therefore we may make the 

identifications:     (W- PW) = Wx € 2j.   ;     W^Wj,  €2   ;  and 

W = Wj, + W^  ,     where    W,,      and    Wx     satisfy the terms of the 

definition.     By the second  identification,     P    is  the 

projection operator onto    2   . 

This completes the proof of Geometrical Property 4. 

The geometrical interpretation of    P    is  shown in 

Fig.  4.3. 

The algorithm   (3.11)  may be rewritten in terms of the 

projection operator: 

W{X+1)  = P[w(k)  +  ^e0OX0O]+F   . (4.4) 

It should be mentioned that the vector -eOc)X(X) is an 

estimate of the unconstrained gradient V J .  The uncon- w 

strained gradient, given in (3.4), is RxXW^"Rxd * 

Replacing R^ by X(k)XT0O and Rxd by X(k)d(k) 

results in X(k)XT (k)W(k) - X (k)d (k) «-e (k)X(k) , where 
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e(k)=dOO-X OOW(k) . The algorithm is now considered 

as a whole. 

The algorithm attempts to minimize the cost function 

E{[dOO - WTX0O]2) by iterating to the optimal weight 

vector W# along the constraint.  Figure 4.4 shows the 

position of a hypothetical adaptive weight vector at iteration 

k and the position of the optimal weight vector. 

CONTOURS OF. ,  - , ., 
CONSTANT E{|d-WTX]1} 

A«{w:CTW«5} 

Fig. 4.4.  Position of the adaptive weight vector W(k) at the 

iteration and the optimal constrained weight k 

vector W. 

W, = [ I - R^C {CTR^C)" VR^ + F^C (CV^C)" \ . 

■ ■ -■ •   -      ■ 11     !■■■■- I I  
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The operation of the Constrained-I24S algorithm (4.4) 

is shown in Fig. 4.5.  In this example, the unconstrained 

negative gradient estimate eOOx(k)  is scaled by ^ and 

added to the current weight vector. The resulting vector 

is projected onto the subspace Z ,   producing a vector 

parallel to the constraint variety A . This vector is 

translated out to the constrtint surface by adding it to 

F , forming the new weight vector W(k+1)  satisfying the 

constraint. 

W(k)+^t(k)X(k) 

p[w(k)^t{ii)X(k) 

Fig. 4.5.  Operation of the Constrained-I24S algorithm. 

W(k+1) = P[W(10+ne0OX0O] + F . 

It is now shown that any difference vector between two 

vectors satisfying the constraint must lie in Z (see Fig. 

4.6).  An identity that will be useful in the next section 

is given. 
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Fig. 4.6.  The difference between two vectors satisfying 
the constraint is in the subspace Z  . 

L          ■  — ^_ 
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Geometrical Property 5.     Let    W,    and    W2    be in    r    and let 

their difference be    V«W,-W2   .     Then    V    is in the 

subs pace    Z    and    PV = V  . 

Proof of Geometrical   Property 5. 

Since   V1    and    W2    are in    r ,     CTv» C^ - CTw2 »5-5 = 9 , 

so    V    is in    Z   .    By definition of a projection operator, 

if    VeZ    then    PV«V  .    Algebraically, 

PV= [I- C(CTC)"lCT]V » V + e  - V  . 

This completes the proof of Geometrical Property 5. 

Note also that    P    is  symmetric and idempotent,   i.e.. 

and 

PT « P , (4.5) 

P2 - P  . (4.6) 

These are verified by carrying out the operations. The 

idempotence relation (4.6) for a matrix that is, in general, 

neither the zero nor the identity operator is interesting 

because it is impossible in the scalar case.  It is a result 

of the fact (not proven here) that P has only zero and 

unity eigenvalues. 

  - -J- -   - -       1— — ■——' 



V.  PERFORMANCE 

In Part A of this section it is shown that the mean 

adaptive Constrained-IMS weight vector converges to the optimal 

constrained weight vectc; of Theorem 1. Rates of convert 

gence along the eigenvectors of the matrix PRvyP are given. 

In part B it is shown that the difference in steady-state 

performance between the algorithm and the optimal estimator 

can be made arbitrarily small by decreasing the adaptive 

gain constant M- . 

A. Convergence in Mean to the Optimum and Rate of Convergence 

The algorithm (4.4) is repeated here in a more convenient 

formt 

W(lc+1) = P[W0O- MX(k)XT0OW0O+ M.X(10d(k)]+F .  (5.1) 

Note that the weight vector WOO is a function of W(0) , 

{X0c-l),X(k-2),...,X(0)) and [d (k-l)#d (k-2),.. .,d (0)) . 

It was assumed at the beginning of Section III that the 

observation vectors X are independent, so XQc) is inde- 

pendent of WQc) . Taking the expected value of both sides 

of (5.1) we have an iterative equation in the mean value of 

the Constrained-IMS weight vector 

EW(k+l) = P[EW(k)- M-RxxEW(k) + ^^1 +F .      (5.2) 

This is believed to be an overly-restrictive assumption but 

greatly simplifies the analysis. For a special case of the 

algorithm (no constraints), Daniell [6] has shown e-convergence 

assuming that the X's are only asymptotically independent. 

-35- 
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Convergence of the mean is easily established using 

identities for expressing P and 1^,  in terms of the 

optimal weight vector: 

F = [I- P]W# , (5.3) 

«xd = PRxxw* ' (5-4) 

both of which are verified directly using   (2.4),   (4.3),   and 

(3.8).     Let    VQc+l)     be the difference between the mean 

adaptive weight vector at iteration    k+1    and the optimal 

weight vector: 

VOc+1) ^ EWOc+1) - W#   . (5.5) 

From   (5.2)-(5.5)   an equation  for the difference process 

may be constructed: 

VQc+l)   =   P[EW0c) - ^R^EWQc) + M-PRJQJW^] + [I- P]WW-W# 

»   PV(k)- ^PR^VOO   . (5.6) 

T Using PV= (VP) «V  from Geometrical Property 5 and (4.5) 

obtain 

V(k+1) - [I- ^PR^PjVOc) 

=  [I- UPRxxP]k+1V(0)   . (5.7) 

The matrix    PRvv1*    is the correlation matrix of projected 

observations,   i.e.,   E[ (PX) (PX)T)   .     The non-zero eigenvalues 

of this matrix are extremely important in determining both 

--■-■• 
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the convergence rate of the algorithm and its steady-state 

performance relative to the optimum. The matrix being 

(nxn) and symmetric is diagonalizable into n orthogonal 

eigenvectors. It is shown in Appendix C that m of the 

eigenvectors of PR^P lie entirely outside the subspace 

2 and have zero eigenvalues; the other (nr-m) eigenvectors 

lie entirely within 2 and have strictly non-zero eigen- 

values.  All of the "action" is in the subspace 2 . 

Call the (n-m) non-zero eigenvalues of PRvvP 

o. ,i=l,2,..., (n-m) , and call the n (non-zero) eigenvalues 

of R^ Ai,i=i/2#. ..fn . To get a feeling for 

the relationship between the o's and the A's , it is 

proven in Appendix C that the non-zero eigenvalues of 

PRyyP all fall between the largest and smallest eigen- 

values of Ryj. , that is, for 1 Ji i <  (n-m) 

mm < o   < o. < o   < A   .        (5.8) — mm — i-a max— max '        v-».«/ 

where the subscripts min and max denote respectively 

the smallest and largest members of a set. 

Since V(0)  is the difference between two vectors 

satisfying the constraint (5.5), from Geometrical Property 5 

V(0)  lies entirely within the subspace 2 and may 

therefore be expressed as a linear combination of eigen- 

vectors of PRyvP corresponding to non^zero eigenvalues. 

If V(0)  is equal to an eigenvector of PR^P , e.  with 

eigenvalue o. then 

Mnu ! ■    -^ 
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voc+i) = [i- ^PRxxP]1""*"^ 

Td-I 
=  [1- ^1       ei   . (5.9) 

Thus the convergence along any eigenvector of PRwP is 

geometric with geometric ratio [1- n.o.] and associated 

time constant 

^--lAnd-M<71)Sl/Poi  , (5.10) 

where the approximation is valid for    M-o. « 1  .     It is clear 

then that if    M-    is chosen so that 

then the euclidean norm of the difference vector is bounded 

between two ever-decreasing geometric progressions 

[l-MOmax]k+1||v(0)||^   ||V(k+l)|i^   [l-MC^^IIVWH 
(5.12) 

and the expected value of the weight vector converges to the 

optimum with time constants given by (5.10) if the initial 

difference is finite. 

We emphasize that convergence of the mean shown here 

is 

lim  llEWOO - Wj|   = 0  . (5.13) 

-   -  , ..—  imllm il  IIIMIiniMMl—a^       I I i nn »i     Mimgm^im^m 
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B.     Steady-state Performance Compared to Optimum 

In this subsection the performance of the  Constrained-IMS 

algorithm is compared with the optimum of Theorem 1 after 

ijransients have become negligible. 

^^Jk To allow the Constrained-IMS algorithm to operate in 

quail-stationary   (i.e.,   slowly time-varying)   environments, 

the adaptive gain    u,    remains constant during the application 

of the algorithm.      (In stochastic approximation schemes the 

gain is usually »llowed to go to zero as time passes.)    As 

a result of continually adapting,   the weight vector has a 

non-zero variance about its optimal value.    In a stationary 

noise field,   the effect of variations about the optimum 

weight vector  is to  add a  slight additional cost in excess 

of that achievable by the optimum.      (See Brown   [2]   for 

results on time-varying noise fields.) 

The excess cost normalized by the optimum cost  level 

is a dimensionless quantity called  "misadjustment"  by 

Widrow  [28]   and is  a measure of how closely the algorithm's 

performance achieves the optimal performance.     Steady-state 

misadjustment is 

K?SH -[opt^l^lter] M(H)  = lim i= at tjlmg  k   J 1^ J 
k-0 f"      Cost of 

I Optimal Filter I 
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For the constrained  least-mean-squares  problem of Theorem 1 

the steady-state misadjustment is 

E[[d0c)-WT0c)X0c)]2)    -    Ef[d(k)-wjx(lc)]2} 
M(n)  =  lim =      (5.14) 

k-O E[[d(Tc)-w;x(lc)]z) 

Under the assumptions that d(k)    and the components of 

X{k) are jointly Gaussian-distributed and independent from 

observation to observation it is possible to calculate very 

tight bounds on M(M.) by a method due to Moschner [20] . 

For an adaptive gain constant satisfying 

1 
0 < H <   , (5 .15 ) 

0max+(1/2)Tr(PRXXP) 

it is shown in Appendix B that steady-state misadjustment 

may be bounded by 

Tr(PRVYP)                ^      Tr(PR^P) 
Ü  ££ ^ M(^) < ■= **«  
2 1-^Tr(pRxxp) + 2cW        2 ^^^««Scx^^^max1 

(5.16) 

M(kL)  can be made arbitrarily close to zero by suitably 

small choice of gain constant M. ; this means that the steady- 

state performance of the Constrained-I/1S algorithm can be 

made arbitrarily close to the optimum.  From (5.10) it is 

seen that such cost performance is obtained at the expense 

of increased convergence time. 

 '- —  



VI.  APPLICATIONS 

In this section adaptive solutions are given to the 

problems defined in Theorem 1 and its corollaries. At the 

same time the performance of each adaptive algorithm is 

given.  The important application to array processing is the 

main example of this section. 

The results of the preceding section are summarized 

in a companion theorem to Theorem 1: 

Theorem 2. (Adaptive Constrained Least-Mean-Squares Optimi- 

zation)  Let  {d(k))  be a sequence of random variables 

and  (XOO) be a sequence of n-dimensional data vectors 

of observed random variables.  Each vector X(k)  is 

assumed to be produced independently by an unknown 

ergodic source with unknown correlation matrices 

E{X(k)XT(k)} = R^ 

E{X(k)d(k))  = Rj^ 

(nx n) 

(nxl) 

and Ry^ positive definite.  The algorithm 

where 

and 

W(k+1) = P[W(k)+ne(k)X(k)] +F , 

T  —IT p= [i- cc^c) "V] , 

F = c(cTcr1 y , 

C^WCO) = 5  , 

-41- 

(6.1) 

mm^mmmmmmam --       "        ~ ■      Hkll   I I   -      ^ -■  -*-■■. ■     ''* 
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e(k) = d(k)-W1(k)X(k) , 

converges in the mean to the optimum weight vector W^ 

solving the constrained LMS problem defined in 

Theorem 1; 

minimize E{ [ (d (k) - WTX(X)] 2) 

subject to CTW = *   , 
(6.2) 

if 

0 < n < 
Gmax+3Tr(pRXXP) 

Further, 

(6.3) 

i)   the convergence time constant of the difference 

between    EW(lc)     and    W#    along the i       eigen- 

vector of    PRyyP    is 

-1 
i  " ln(l-no,)   "  1/Uai (6.4) 

where o.  is the eigenvalue corresponding to 

the i  eigenvector of PRvvP • 

ii) Under the additional assumption that variables 

d(k) and Xfk) are jointly Gaussian 

distributed, the steady-state misadjustment of 

the adaptive solution can be bounded by (5.16). 

Proof of Theorem 2. (See Sectxon V) 

This completes the proof of Theorem 2. 

- -- 
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Example 1. (Consistent Modeling) 

A single-input, single-output system is to be modeled 

with a tapped-delay-line filter.  It is known that the system's 

steady-state response to a unit step-function input is a 

particular number a , and this feature is to be incorporated 

into the model. 

u(t) 

UNKNOWN 
SYSTEM 

'I  n "ti-i*» 

wihWabWjt) 

TOL     FILTER 

d(t) 

ri 

y(t)«WTX (t) 

t(t) 

Fig. 6.1.  Tapped-delay-line filter modeling a system. 

Let the input to the system and model be a random 

variable u (t) .  The model is a tapped-delay-line filter 

with n tap points and a delay of £ seconds between each 

tap.  Inputs pass down the tapped-delay-line (TDL) filter. 

Let the states at each tap point be denoted x^ (t),i=l, 2, .. . ,n 

  ■■■  -- -  
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Thus the first state is equal to the input,  x.Ct) =u(t) , 

the second state is equal to the input delayed by A seconds, 

x2(t) »u(t-A) , and so forth.  The output y(t)  of the 

TDL filter is a weighted sum of the states.  Let the weight 

on the i  state be w.  and form the n-dimensional vectors 

T T 
of weights W » (wlfw ,—,w )  and states X (t) = 

(x1 (t),x2 (t),.. .,xn(t)) .  The output of the TDL filter at 

T 
time  t  is then y(t)«W X(t) .  The desired output of 

the model is the output of the unknown system d(t) .  The 

error is the difference between the desired output and the 

actual output:  e (t) = d (t) - y (t) . 

The constraint is now included.  If the systems are given 

a unit step input (i.e., u(t) = 1), then after nA seconds 

the TDL filter will be in steady state, with XT(t) =1T = 

(1,1,...,!) .  Thus the constraint that the steady-state 

response of the TDL filter be a a  is equivalent to requiring 

iTW = a . (6.5) 

The consistent modeling problem is therefore 

2 
minimize E[e (t)) 

T (6.6) 
subject to _1 W = a . 

To apply the Constrained IMS  algorithm, the state vector and 
4.-1. 

error are sampled at intervals of T seconds-  At the k 

sampling instant the state vector is X(kT)  and the error is 

e(kT) .  The time between samples T is made large enough 

- — .1 .■■. i ■ 
— 
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so that X(kT) is essentially independent of X(jT) for 

j ^k . (As noted in Section V this is not believed to be 

absolutely necessary). The algorithm is therefore 

where 

W(k+1) = P[W(lc)+pLe(kT)XOcT)] +a 

P = I-i(lTir1lT = 1--^ 11T # 

(6.7) 

and the weight vector is assumed to be constant for t in 

kT^ t < (k+l)T . 

A practical matter arises here.  It may be difficult 

to calculate the permissible upper bound on [i    given by 

(6.3)# especially if the autocorrelation matrix R^ is 

not known. An easily measured quantity guaranteed to be 

no higher than the permissible upper bound is 

^0 = 3    ' 
iT^Rxx) (6.8) 

That is, if p. is chosen to satisfy 

0 < M- < |i 0 ' (6.9) 

then it is guaranteed to satisfy (6.3). Observe that [xQ 

can be calculated directly and easily from observations 

T since Tr (R^) =E[X (k)X(k)J , the sum of the powers of the 

states. 
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A special  case of the algorithm given in rheorem 2  is 

the celebrated  WIS algorithm.     The  following is a companion 

to Corollary 1.1. 

Corollary 2.1.      (Adaptive Least-Mean-Squares Optimization — 

Widrow and Hoff)     Let the sequences     (d(lc)} , {X(k)} 

and their   (unknown)   correlation matrices be defined as 

in Theorem 2.     The algorithm 

W(k+1)  = WQc)+M.e0OX0c) (6.10) 

where 

eOO  = d(k)-wT0OX0O   . 

converges  in the mean to the optimum weight vector 

WA1     solving the unconstrained least-mean-squares 

optimization problem defined in Corollary 1.1: 

minimize    E[a   (It))   , (6.11) 

if 

0 < u <  1   . (6.12) 
\iax+I Tr(RXX) 

Further, 

i) the convergence time constant of the difference 

between EW(k) and W#1 along the i 

eigenvector of K^y    is 

Ti " ind"-^) = l^i r^... ; = 1/^A: . (6.13) 
i 
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where X.  is the eigenvalue corresponding to 

the i  eigenvector of R^. . 

ii) Under the additional assumption that variables 

d (k) and x(lc) are jointly Gaussian distributed, 

the steady state misadjustment of the adaptive 

solution can be bounded by 

it 
2 

Tr PW 
1-2fTr(RXX)+2W 

^ M(|X) <^ 
Tr "W 

y. l-^[Tr(Rxx)+2Amax] 

(6.14) 

Proof of Corollary 2.1. 

The projection operator P of Theorem 2 goes to the 

identity when all constraints are removed. The vector F 

vanishes. 

This completes the proof of Corollary 2.1. 

Uses of linear least-squares algorithms are abundant 

and well-known so no examples will be given. 

The next corollary is a companion to Corollary 1.2. 

Corollary 2.2. (Adaptive Least-Mean-Squares Distortionless 

Estimate)  Let the sequences  [d(k)) , {XQc)} , and their 

(unki own) correlation matrices be defined as in 

Theorem 2. Further, let each X(k) be of the form 

«i i  '■ ' - - II-'  .,.,.      i ■ nii«^-»-^-.^—~.. 
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X(k) = CB(k) +N(k) , (6.15) 

where C is a known (nxro) matrix with n >m and (B(k)) 

is a sequence of unknown m-dimensional vectors.  Each 

B(k) may be a vector of random variables with unknown 

mean (so E{B} = B) , or it may be a vector of unknown 

parameters, in which case E(B} =B = B .  [N(k)} is a 

sequence of unknown n-dimensional zero-mean random 

vectors considered as noise.  B(k)  and N(k)  are 

assumed uncorrelated.  Let 

b^k) 

B(k ) = b2(k) 

bm(k> 

and 5 - 
0 
1 
0 

K-i  component .   (6.16) 

The algorithm 

W(k+1) = P[W(k) - ^y (k)X(k)] +F (6.17) 

where 

T  -IT 
P = [I- C(C C) ■Lc J 

T  -1 
F - C(C C) X3F 

C W(0) = S 

y(k) = WA (k)X(k) , 

converges in the mean to the optimum weight vector 

W solving the least-mean-squares distortionless 

estimation problem defined in Corollary 1.2: 

■ _ — '— MMMMMMMMB 
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minimize E [ [b. - WTX (k) ] 2 

-   T (6.18) 
subject to Ef (b. - W X(k)) = 0 , 

as long as |i satisfies condition (6.3) of Theorem 2. 

The convergence rates and misadjustment are the 

same as those of Eqs. (6.4) and (5.16) of Theorem 2. 

Proof of Corollary 2.2. 

It was shown in Corollary 1.2 that the problem (6.18) 

may be reformulated as 

minimize' E{[WTX(k)]2) 
T (6.19) 

subject to C W : 5 . 

This is just the problem of Theorem 2 with d(k) =0 . 

Accordingly in the Constrained-IMS algorithm (6.1),  dOO 

is set to zero and the corollary follows.  The requirements 

on |i and performance are unchanged. 

This completes the proof of Corollary 2.2. 

Example 2. (State Estimation under Uncertainty) 

A system is described by the equations 

B(k+1) = *B(k) +ru(k) 

X(k) = CB(k) +N(k) , 

(6.20) 

where C is a known (nxm) matrix with n>m . B(k)  is 

the state vector and U(k)  is the input vector. N(k)  is 

zero-mean measurement noise. The matrices <t> and r are 
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not known; the statistics of Ufk) and NOO are not known. 

We wish to estimate a component b.(k) of the state vector. 

The algorithm (6.17) converges to the best constant linear least 

squares unbiased estimator of a component of B(k) .  If 

an estimate of the entire vector is desired, m algorithms 

like (6.1) may be used, with the unit entry in a different 

place in each  :♦ vector. 

Note that the amount of knowledge required for an 

estimate of B(k) using the constrained IMS algorithm is 

a small fraction of that required by the Kaiman filter. 

(The Kaiman filter is the optimum unconstrained time-varying 

linear least-squares estimator for the state vector of the 

dynamic system (6.20), and requires that all system matrices 

and correlation matrices be known.) 

The next corollary is a companion to Corollary 1.3 . 

Corollary 2.3. (Adaptive Least-Mean-Squares Filtered Estimate) 

Let the sequence (d(k)) , (X(k)) , and their (unknown) 

correlation matrices be defined as in Theorem 2.  Let 

X(k) - CB(k) +N(k) , (6.21) 

B(k) and N(k) be vectors of random variables as in 

Corollary 1.3.  Further, let B(k) be written 

B(k) - 4(k) + A(k) , (6.22) 

where  MOO)  and {A(k))  are sequences of »-dimensional 

vectors of random variables. We wish to estimate the 

-  -      mi——m   n  !■■■ mm^m—' • -■■■-.-■ 
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i  component of  <«(k) , si(k) . A filter vector ? 

is given, which may be based on as much or as little 

information about the statistics of A(k)    and A(k) 

as is known. 

The algorithm 

where 

W{k+1) = P[W(k)-ny(k)X(k)] +F , 

T  -IT 
P « [I- C(C1C) ■Lc"1] 

F = c(cTc)"1y 

C'WCO) m y 

y(k) = w1(k)X(k) , 

(6.23) 

converges in the mean to the optimum weight vector W#_ 

solving the least-mean-squares filtering problem given 

in Corollary 1.3: 

minimize E{ ^ (k) - WTX(k)] 2 ) 

subject to CTW= 5 , 
(6.24) 

as long as M- satisfies condition (6.3) of Theorem 2. 

The convergence rates and misadjustment are the 

same as those of Eqs. (6.4) and (5.16) of Theorem 2. 

Proof of Corollary 2.3. 

In Corollary 1.3, it is shown that the problem (6.24) 

may be reformulated as 

-■ - 

■ - -  1— in i - in ■ i i i ^« i 
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minimize  E[[WTX(k)J2) 

subject to  CTW « :♦  . (6.25) 

As before, this is just the problem of Theorem 2 with 

d(k) =0 .  The results follow from Theorem 2. 

This completes the proof of Corollary 2.3. 

The next example is the major example of the paper, and 

is one of the main reasons for an interest in adaptive 

constrained least squares optimization:  It is shown in this 

example that adaptive constrained IMS  optimization makes 

possible the near-optimum processing of data from an array 

of antennas or other sensors with very little a priori 

information about the signals and noises involved.  In 

contrast, known adaptive processors converging to the optimal 

unconstrained least-mean-squares filter [12] require know- 

ledge of either the signal or noise statistics. 

Example 3. (The Array Processor) 

In most applications involving arrays of sensors — 

notably sonar, seismology, radio communication, and radio 

astronomy using antenna arrays— it is desirable to reduce 

antenna sensitivity to unwanted signals and noises while 

processing the signals of interest in real time.  For 

example, arrays of sonar hydrophones provide information 

about the undersea environment; it may be desirable to listen 

to signals coming from a particular direction and simul- 

taneously avoid hearing the noise of the sonar ship's own 

-- ■ i i 
—   —i-— —^. 
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machinery  and screws   [22] .     In geology,   sub-arrays of 

seismometers are being used  in  the large-aperture seismic 

array  in Montana   [4)   to  listen to seismic events;   such arrays 

must discriminate against  noises emanating  from surr'.unding 

ci'ties.     In radio communications using antenna arrays,   it 

is desirable to receive signals   fron one direction while 

ignoring the signals   from amateur radio operators  and other 

electromagnetic noises   [5].     Radio astronomers using antenna 

arrays want to  look  in one  part of the sky while discrimi- 

nating against other radiation sources impinging on antenna 

sidelobes   [25,   p.  33].     In all these applications,   it is 

desirable  to have a  processor that can discriminate against 

unwanted noises  in real time and that requires  a minimum of 

a  priori  information. 

An array processor  is  a  filter both  in  frequency and in 

space.    A typical processor configuration is shown in Fig. 

6.2.     The array has    K    sensors with a tapped delay line 

following  each sensor.     Bach line has    L    tap points and 

delays of    A    seconds between taps.     Signals and noises 

impinging on the array are converted  to voltages which pass 

down  the tapped delay lines and  the weighted sum of these 

voltages  is the output of  the  filter.    By proper choice 

of weights,   the array processor can discriminate against 

unwanted noises distributed both in  frequency and space. 

The   filter separates  desirable signals  from other noises, 

In  this example,   to be "desirable"  a signal must come  from 

attimmtmt^atttmtäma^mtmttimmikmmm 
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a particular chosen direction in space, called the "look 

direction". All signals coming from other directions, plus 

any measurement or amplifier noise, are termed "undesirable 

noise". But not all signals coming from the look direction 

are desirable; some noise comes from the look direction and 

is called "look direction noise". 

The signal is modeled as a zero-mean random process 

emanating from the look direction in the far field of the 

array.  It is assumed that the propagating medium is linear, 

non-dispersive, and that propagation times along the signal 

phase-front are well enough known that the array can be 

steered, electrically or mechanically, in the direction of 

the signal.  Sources in the look direction, i.e., desired 

signal and look direction noise, are assumed to be statis- 

tically uncorrelated with noises emanating from other 

directions.  (This rules out multipath.)  Finally, all the 

sensors are assumed to have identical characteristics (but 

are not necessarily omnidirectional). 

It should be mentioned that sonar and seismic signals 

are generally low frequency (audio or lower) and may be 

processed in real time using the adaptive algorithm imple- 

mented by present-day hardware [13].  In radio-frequency 

applications, however, the signals must first be demodulated. 

As in Example 1, let the observations at each tap points 

at time t be denoted x^t) ,1=1,2,—,n .  In this case 

n=KL , the number of sensors times the number of taps per 

__ 
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sensor.  Lat the weight on the i  observation be w.  and 

T form the n-dimensional vectors of weights W » (w-.w-,...^ ) 

T 
and observations X (t) « (x. (t)#x2(t),.. .,xn(t)) .  The output 

T 
of the array processor at time t is then y(t) *W X(t) . 

Let the signals arriving "in the beam" (i.e., from the look 

direction) at time  t be denoted b(t) .  Because the 

array is steered toward the look direction, signals arriving 

"in the beam" enter each of the K tapped-delay lines 

simultaneously and parade in parallel down the lines (see 

Fig. 6.2).  All K taps on the first column of taps have 

the same beam component,  b(t) , and a different undesirable 

noise component T) . (t), i=l, .. .,K  from noises entering from 

other directions and amplifier noise; every tap on the 

second column of taps has the same beam component b(t- A) 

and a different noise component T] (t),i*K+l,.. .,2K. , and 

so forth. Forming the L-dimensional vector of beam signals 

on each column at time t ,  BT(t)»[b (t),b(t-A), .. .,b(t-(L-DA)] 

and the n-dimensional vector of undesirable noises on each 

tap at time t ,  NT(t)«["n1 (t),Ti2 (t), .. .,Tin (t)] it is seen 

from Fig. 6.2 that the vector of observations may be written 

X(t) = C B(t) +N(t) , (6.26) 

where 

- - ■ 
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TOTAL PROCESSOR« 

SIGNAL 

' 

EQUIVALENT  PROCESSOR i 
FOR SIGNAL ' 

SIGNAL 

txx 
1       I        L      ! 

Fig. 6.3  Equivalent processor for signals coming 
from the look direction. 

—  ■ - 
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C =  K 
T 
K 

i 0 

1 

•L 

0 

0 

0 

0     1, 

KL    (6.27) 

Due to the array steering it is particularly easy to 

specify the frequency response of the processor in the 

look direction, since all K taps in every vertical column 

of taps have identical beam components:  The processor output 

is formed by a weighted sum of the observations; therefore, 

as far as the beam signal is concerned, the total weighting 

it receives at each vertical column is the sum of the weights 

in that column (see Fig. 6.3).  For the beam signal, the 

multichannel processor could be replaced by a single-channel 

filter.  Each weight on the single-channel filter would be 

equal to the sum of weights on the corresponding column of 

the multichannel filter. 

Let the i weight on the beam-signal-equivalent filter 

in Fig. 6.3 be f. . Let the L-dimensional vector of filter 

weights be 

  -■- • ..  - - —  
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y = (6.28) 

Each weight f.  is the sum of the weights in the i  column 

of the multichannel processor.  Referring to the definition 

of C above, it is seen that this statement is equivalent to 

JF = C W . (6.29) 

5  determines the transfer function of the processor in 

ths look direction.     If,   for example. 

5     = iQ.0 0.1.0 0i   , (6.30) 

then all frequencies of signals arriving from the look 

direction in plane waves would be passed equally without 

attenuation   (flat frequency response).    Changing any of 

the zero components would result in a different impulse 

response and corresponding frequency shaping. 

Recall that in the beam signal    b(t)     there is a com- 

ponent of "desired signal"     s (t)     and an additive  "look 

direction noise"    a(t)   ,   i.e.,    b (t) = s (t) + a (t)   .     It  is 

assumed that from any ja priori information he might have 

about the frequency content of    s(t)    or    a (t) ,  the processor 

user specifies  the look direction frequency  response he 

wants in the form of the vector    5f   .     If he has no prior 

-—^—  ■   i -—     —    - -"-■- 
-■ ■ -   ■■-■- 

-■   ■ - ^ ^ ■      ■■■--,■ —— -- 
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information about tne desired signal then a  reasonable 

choice for     !f    is  the all-pass  filter   (6.30).     Notice that 

specifying the  look direction frequency response constrains 

only    L "degrees of  freedom"  of the    n    weights in    W  . 

The remaining "degrees of freedom"  are used by the processor 

to reduce the power of undesirable noises    N(t)    in the 

output.    Since the response to the beam signals is constrained 

and the undesirable noises are assumed uncorrelated with the 

beam signal, minimizing total processor output power is 

exactly the same as minimizing noise output power. 

The problem is 

minimize    E([WTX(t)J2) 
T (6.31) 

subject to    C W= ? 

and  the algorithm is   (6.22):    W(X+1) « PfWOc) - tiy OcT)X(kT] +F 

where    T    is the time between adaptations, made sufficiently 

large so that successive vectors    X    are essentially inde- 

pendent . 

In this case    P    is simple and sparse due to the 

simple form of the constraint matrix   (6.26).     The matrix 

multiplication by    P    is more simply regarded as a series of 

additions and scalar multiplications: 

--■■        — —■■■ ■' ■■-■ .-—>-«■—«^- i ■in m I--   - 
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(6.32) 

A computer simulation of the processor was made using a 

low-precision language (BASIC) on a small computer (the HP 

2116).  The processor had four sensors on a line spaced at 

A second intervals and had four taps per sensor (thus n=16). 

The environment had three point noise sources, and white noise 

added to each sensor.  Power of the beam signal was quite 

small in comparison to the power of interfering noises 

(see Table 6.1). The tap spacing defined a frequency of 

, -_. «ii.- 
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SOURCE POWER 
DIRECTION 
(0° IS NORMAL 
TO ARRAY) 

CENTER 
FREQUENCY 

(1.0 is 1/A) 
BANDWIDTH 

Beam Signal 0.1 0° 0.3 0.1 

Noise A 1.0 45° 0.2 0.05 

Noise B 1.0 60° 0.4 0.07 

White Noise 
(per tap) 

0.1 " * - 

Table 6.1.     Signals and noises in the simulation 

1.0   (i.e.#   f =1.0 is a frequency of    1/A Hz.).    In the  look 

direction,   foldover frequency for the processor response was 

1/2 A ,  or 0.5.    All signals were generated by a pseudo-random, 

pseudo-Gaussian generator and passed through a filter to 

give them the proper spatia;  and temporal correlations.    All 

temporal correlations were arranged to be identically zero 

for time differences greater than 25 A   .    The time between 

adaptations was  assumed greatex   than 58 A,   so successive 

samples of    X(kT)    were generated independently. 

The look direction filter was specified by the vector 

.fT «.1,-2.1.5,2.     which resulted in a  frequency characteristic 

shown in Fig.  6.4.    The signal and noise spectra are shown 

in Fig.  6.5 and their spatial position in Fig.  6,2. 

In this problem,  the eigenvalues    of   R^    ranged from 

0.111 to 8.355.     The upper permissible bound on the gain 

constant    \i    calculated by   (6.3) was   .074;  a value of 

M.= .01 was selected,  which, by   (5.16) would lead to a . 

misadjustment of between 15.2 and  17.0^. 

__ MM.—   
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Fig.  6.4.    Frequency response of the processor in the 
look direction. 
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Fig. 6.5.  Power spectral density of incoming signals 
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The processor was initialized with W(0) = F = C (CTC)  'f , 

and Fig. 6.6 shows performance as a function of time. The 

upper graph has three horizontal lines.  The lower line is 

the output power of the optimum weight vector. The closely- 

spaced upper two lines are upper and lower bounds for 

optimum output power plus misadjustment.  The mean value 

of the processor's output power falls somewhere between the 

upper and lower bounds. The difference between the initial 

and steady state power levels is the amount of undesirable 

noise power the processor has been able to remove from the 

output. 

Although the weight vector is, in theory, constrained 

T 
to satisfy C w(k) = fF at all times, very small deviations 

occur in an actual implementation due to quantization and 

computational errors. The lower graph in Fig. 6.6 shows 

the squared Euclidean distance between the weight vector 

and the constraint  ||c W(k)-y||  . An errors correcting 

feature of the Constrained-IMS algorithm prevents the 

deviations from the constraint from growing. 

 -.-           ........r  
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A last corollary deals with the deterministic constrained 

least  squares problem. 

Corollary 2.4.   (Gradient-descent.  Deterministic Constrained 

Least Squares)     Let    R^    be a known   (nxn) matrix 

and    R^    be a known rv-vector.    The algorithm 

V7(k+1)   -   P[W(k)- HR^WOO ■•■HR^] +F (6.33) 

where 
T     -1  T p « [i- c^c) •Lc1] 

T     -1 
F « C(C1C)   Xf 

CTW(0)   -f    . 

converges deterministically to the solution NA of 

the problem 

T     T 
minimize  [a - 2W R^. + W KrJ*) 

subject to CTW « y , (6.34) 

where a    is any finite constant, as long as M. 

satisfies (6.3).  The convergence time along eigen- 

vectors of PRvyP i3 given by (6.4) and there is no 

steady-state misadjustment. 

Proof of Corollary 2.4. 

This algorithm is the same as the recursive relation 

(5.2) for the mean weight vector of the stochastic constrained 

LMS algorithm. Showing that the stochastic algorithm 

m  



67 

converges in the mean is therefore the same as showing 

(6.3) converges.  Convergence in the mean was proved in 

Theorem 2. 

This completes the proof of Corollary 2.4. 

Remark:  See Rosen [23] for an alternative solution 

to this problem. 

- - — ^. 
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VII.     SENSITIVITY OF ALGORITHMS  TO CALCULATION ERRORS 

The constrained-IMS algorithm is related to the gradient- 

projection algorithms due to Rosen   [23]•   Lacoss   [14],  and 

Booker   [1] .    The difference between the Constrained-IMS 

algorithm and gradient-projection algorithms lies in the way 

information about the location of the constraint surface is 

carried.    As Fig. 4.5 showed,  the Constrained IMS algorithm 

(3.11)   "knows"  the orientation of the constraint surface by 

the matrix  C ,   and its translation from the origin by the 

vector    F  .     In this section,  it is shown that gradient- 

projection algorithms use only the orientation matrix    C  ; 

to ensure that the weight vector stays on the constraint 

surface,  they rely exclusively    on the fact that the weight 

vector is initialized on the constraint surface and always 

moves parallel to it.     The gradient-projection method is 

shown to be sensitive to quantization errors which may cause 

the weight vector to deviate from the constraint on long 

runs. 

Differences in the algorithms may be traced to Eq.   (3.5) 

of the derivation.     If    CTW(k)    is replaced by    5F    in   (3.5) 

and    RJM " Ö  »   the gradient-projection algorithm of Booker 
T results.     (C W(k)    should equal    !f    if   W(k)     exactly satisfies 

Rosen recognized this problem and suggested using a second 
algorithm to "reset"  the weight vector to the constraint 
whenever errors became excessive. 

-68- 
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the conscraint.  It is shown in Fig. 6.6 that it may be 

unreasonable to assume that WQc)  is exactly on the constraint 

at all times.  In the derivation of the Constrained-IMS 

T algorithm, the term C W(k) was carried instead of replacing 

it by ? .  Carrying the term corresponds physically to 

assuming that WQc) may not precisely satisfy the constraint, 

perhaps due to the quantization error of a digital imple- 

mentation . 

The algorithm that results from replacing C W(k) by 

7 is 

WOc+1)   = W(k)+^Pe0OX0O   7     0^(0)   = 5F (7.1) 

This is a gradient-projection algorithm.    It is so named 

because the unconstrained gradient is projected onto the 

constraint subspace and then added to the current weight 

vector.     Its operation is shown in Fig.  7.1   (compare with 

Pig.  4.5). 

MedOxU) 

ftPe(k)X(k) 

Fig.   7.1. Operation of the gradient-projection algorithm (7.1) 

■jm. 
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If somewhere in the computation an error occurs due 

to quantization and the weight vector is a bit off the 

constraint at time   k , Fig. 7.2 shows that the Constrained-IMS 

algorithm (3.11) will bring the weight vector back to the 

constraint in the next iteration; however,  the gradient- 

projection algorithm   (7.1) assumes that    W(k)    satisfied 

the constraint and adds a change parallel to the constraint 

surface,  continuing the error. 

An algebraic analysis is obtained by assuming that at 

each iteration the actual processor introduces a small vector 

of errors     £(k)    to the weights.    The update equations  for 

the two algorithms become 

Constrained- IMS: 

from (3.11):    W(k+1) « P[W(k)+Ue (k)X(k)] + F+^ (k) (7.2) 

Gradient- Projection: 

from (7.1): W(k+1)-W(k)+HPe(k)X(k) + ^ (k) ; 

CTW(0) = y      (7.3) 

Iterating the Constrained-IMS algorithm (7.2) back to 

the original weight vector we have 

W(k+1) »P(!W(k)-WC(k)XT(k)W0:) +MX(k)d(k)] +F + |(k) 

(7.4) 

t II {P[I-WC(i)XT(i)])W(0) 
1=0 

k   k 

+ Y     it rP[I-HX(j)XT(j)]|[^PX(k)d(k)+F+e(i)] 

i=0 j-i+1 -1 (7.5) 

        ••,   m    ■, — - -■ 1 ii      n    rumirtiMT 
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/tptooxdo 

GRADIENT-PROJECTION ALGORITHM 
W(k+l)»W(k)+/*Pt» ^Xlk) 

(A) 

>|w(k)*/i«(k)X(k] 

CONSTRAINEO-LMS ALGORITHM 

W(k+I) -p[w(k|+Me(k)X(w] ♦ F 

(B) 

Fig.   7.2 Error propagation.     The Constrained-I/4S algorithm (A) 
corrects deviations  from the constraints while the 
gradient-projection algorithm   (B)  allows them to 
accumulate. 

- _.__  i. . — 
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when undefined  products are taken to be the identity.    Now 

noting that    CTP = CT[I-C (C^rV)   = 9    and premultiplying 

by    C      to see how the weight satisfies the constraint we 

have 

CTW0c+l)   =CT[F+4fk)]   =5+CTC0O   . (5.6) 

In a perfect implementation the right side of   (7.6) would 

be    If   .    With quantization errors and using the Constrained- 

LMS algorithm,  the weight sector is off the constraint 

only by a term linear in tna last error vector. 

Now an error analysis on the gradient-projection 

algorithm is made.    Performing a backward iteration on 

(7.3)   produces 

W(k+1) = W(k)-M.P[XOc)XT(k)W(k)-X(k)d0c)] +*,{}:)     (7.7) 

Ti|l-kLPx(i)XT(i)l W(0] 

k   j    k 
+   ^<    TT   [I-UPX(j)XT(j)]^[HPX(i)d(i)+|(i)] 

i=oljsi+l 
(7.8) 

CTW(k+l) = cTW(0)   +  cT   ^    ^(i) = 
i=0 

5+  CT  ^    ?(i) 
i=0 

(7.9) 

The  last term of   (7.9)   shows how the algorithm   (7.1)   .iccumu- 

lates deviations   from the constraint. 

If the computation errors are modeled as a zero-mean 

process  [27] ,  the gradient-projection algorithm does a 

"^'''■*'■ ■■'■-'-■■•"•■- -■■—:■■.. ■.— ■'—■■ -^ -■■n,,.^       ; ..,    -i,.     ^_^.^^. 
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random walk, away from the constraint with variance increasing 

as the number of iterations (see Appendix D). 

A simulation of the gradient projection algorithm on 

the array problem (Example 3) was made, using exactly the 

same data as used by the Cons trained-IMS algorithm. The 

results are i:hown in Pig. 7.3. The lower part of Fig. 7.3 

shows how the gradient-projection algorithm walks away from 

the constraint. Note the change in scale. If the errors 

of the Constrained IMS algorithm (Fig. 6.6) were plotted on 

the same scale they would not be discernible.  Further, the 

errors of the gradient-projection method are expected to 

continue to grow. 

- - ^rfjMlMiaiMHMMäUMiMJl  ■ 
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VIII.  SUMMARY 

A general algorithm was developed for stochastic linear 

least-squares optimization subject to linear equality 

constraints. The algorithm has three major properties: 

First, it has very modest computational requirements; 

second, it requires very little a priori knowledge; third, 

it converges to an optimal filter.  A fourth property is 

that the algorithm can operate continuously without wandering 

from the constraints. 

Rate of convergence and steady-state performance of the 

general algorithm are derived. Special cases of the algorithm 

are treated, with examples. An important application of the 

algorithm is the real-time processing of data from an array 

of sensors. 

-75- 
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APPENDIX A 

DERIVATION OF GRIFFITHS' MLR ALGORITHM 
BY THE QUADRATIC PENALTY FUNCTION METHOD 

The purpose of this appendix is to show that the 

Maximum Likelihood Ratio (MLR) algorithm due to Griffiths 

[11] may be considered as an algorithm solving a least- 

mean-squares problem subject to "soft" linear equality 

constraints.  This gives a simpler derivation than the 

original and immediately illuminates some properties of the 

algorithm that are well-known general properties of quadratic 

penalty function algorithms. As a side benefit, a general 

method of generating adaptive algorithms, based on the 

quadratic penalty function method, is indicated. 

The quadratic penalty function method is a way of turning 

a constrained optimization problem into an easily-solved 

unconstrained optimization problem. Given a cost function 

J(W) and a vector-valued constraint function <t(W)=0 , 

the problem 

minimize J (W) 

subject to <I)(W) ■ 0 
(A.l) 

is changed to 

minimize J(W) + ßV(W)<t>(W) . (A. 2) 

As the scalar ß-*<» the solution to the unconstrained problem 

(A.2) goes to the solution of the problem (A.l).  The second 

problem is easily solved by standard unconstrained optimi- 

zation techniques. 

-76- 
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The specific problem considered by Griffiths is the 

problem of Example 3, Section VI, where J(W) »V^R^-W and 

T 
<I>(W) «C W-T . The algorithm is derived by forming the 

function 

H(W) = "l WTRxxW + ß2(cTW-y )T(CTW-J) (A. 3) 

and taking the gradient with respect to W 

V = R^W+ß^^W-Sf ) (A.4) 

The iteration is  then 

W(lc+1)  - WOO- [iVyü 

= W(k)- HR^WQc)- Hß2C(CTW0c)-S)   .      (A.5) 

T 
R-Q.    is replaced by its estimate,    X(k)X   (k)   ,  giving 

WQc+l)   = W(k)- ^X(k)XT(k)W(k)- kLß2C(CTW0c)-y)   .    (A.6) 

This is Griffiths' MLR algorithm. 

We infer from this derivation, and well-known properties 

of penalty function schemes [3] , [17] that: 

i)  the algorithm has an error correcting property, 

i.e., it will not wander far from the constraint 

in the sense of the gradient projection algorithm 

discussed in Section VII. 

ii) However, the satisfaction of the constraint is 

"soft",   i.e., for finite values of ß the 

solution of (A.2) will not exactly satisfy the 

constraint. 

■      
—    ...-_.    .-    -^...^ —   
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iii)     Increasing    ß    to cause the weight vector to 
more nearly satisfy the constraint will increase 
the convergence time of the algorithm. 

  



 '— —p-^—— ""I   I  ' " —" - 

APPENDIX B 

STEADY-STATE MISADJUSTMENT 

Moschner   [20]   calculated the misad^ustment  for the 

algorithm 

W(k+1)   = P[W0O- M.y(X)X0c)] -»-F   . (B.l) 

By his method    precisely the same results  for misadjustment 

may be obtained  for the algorithm 

WOc+1)   ■ P[W0O+M.e(k>X(k)] +F  , (B.2) 

where    eQc) =d(k)-y(lc)    and the optimal weight vector of 

(B.2)  is defined to be   WA    of Theorem 1. 

A slight improvement in the bounds obtained by Moschner 

is possible by noting in his equation   (D.19)  that since 

B   =E(V VT)    and    V.= PV      by Geometrical Property 5  and n n n n        n 

P   = P ,   then 

and so 

Tr(PRBnR)   =  Tr(PRPBnR)   , (B.3) 

o Tr(B R) £ Tr(PRB R)   <,  O Tr(B R)   , (B.4) mm n     "* n     "*    max n 

where    o   .       and    o are the  smallest and largest non- 
mxn max 

zero eigenvalues of    PRP .     The result follows by using the 

above facts  in Moschner's derivation. 

-79- 
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APPENDIX C 

LEMMAS ON QUADRATIC FORMS 

Lemma c.l. Let R be an (nxn) positiv»-definite matrix 

and C be an (nxm) matrix (with n >m) having full 

rank m . Then the (mxm) matrix C RC is positive 

definite and  (Ac)"1 exists. 

Proof of Lemma C.l. 

T Since R is positive definite then V RV > 0 for any 

n-vector V^ö . We want to show for any m-vector Uf^e 

that UTCTRCü > 0 , hence,  CTRC is positive definite and 

its inverse exists. 

If the vector U/d , it has rank 1.  By Sylvester's 

inequality [9] , the rank of the product of two matrices is 

not less than the sum of the ranks of the matrices, less 

their conmon dimension.  Letting p(>) denote rank, the 

rank of the n-vector CU is bounded by 

P(CU) > p(C) + p(U)-m 

> m+ 1~ m 

> 1 . (CD 

from which we conclude CU is not the zero vector. There- 

fore, letting V«CU we conclude 

UTCTRCU « VTRV > 0 , (C.2) 

-80- 
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T for any non-zero vector    U    so    C RC is positive definite. 

This completes the proof of Lemma c.l. 

Remark 1.     It follows that if    R    is positive definite 
-1 T-1    -1 R        is positive definite and   (C R    C) exists 

Remarlc 2.    Since the identity matrix is positive definite 

it follows that     (C^C)"1 exists. 

Leawroa C.2.     Let    R   be a positive-de finite   (nxn) matrix. 

Let    P« [I-CCC^rV]   , where    C    is   (nxm) with 

full rank   m  .    Let the subspace    Z    be defined as 

2 « (W : CTW ■ 5)   .     Then 

i) m eigenvectors of    PRP    lie entirely outside 

2    and have zero eigenvalues, 

ii)  The other   (n-m)  eigenvectors of    PRP    lie 

entirely within    2    and have strictly 

non-zero eigenvalues, 

iii)  Let    o.    be the i      non-zero eigenvalue of 

PRP and    A.    be the j      eigenvalue of    R  . 

Then the eigenvalues are related by 

Ji A   ,     < o   .     < ö.   < o mm -^    mm —    i -*   max •*    max (C.3) 

for all    i = 1,2,... (nr-m)   . 

■°—     i      ...     - H  i 
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Proof of Lemma C.2. 

Since PRP is a symmetric (nxn) matrix, it has n 

eigenvectors and n eigenvalues.  The eigenvectors can be 

chosen to be orthogonal [7J . 

i) Since the matrix C has full rank it has m columns 

of linearly independent n-vectors. Direct calculation 

T 
shows that C PRP = 9 , so the m columns of C are 

eigenvectors of PRP with zero eigenvalues, 

ii) There must be (n-m) remaining eigenvectors ortho- 

gonal to the columns of C . As shown in Appendix E, 

the columns of C are vectors normal to the constraint 

plane r and subspace Z . Therefore, the remaining 

(n-m)  eigenvectors must be in Z  .    As shown in 

Geometrical Property 5 of Section IV, if V is a 

vector in 2 , then PV-V . Therefore if an 

eigenvector e. of PRP is in £ then 

eTpRPei - eTRei > 0 . (C.4) 

Lot o. be an eigenvalue corresponding to an eigen- 

vector of PRP in Z   .  Then by definition 

PRPe. - o.e. (C.5) 
i   i i 

so 

eTpRPe^^ » 0ieiei s ^ • (c'6) 

■ -     - - 
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From   (C.4)   and   (C.6)   it  follows  that 

83 

oi > 0 1=1,2,..., (n-m) . {C.7) 

ill)  It is well known that if e is a unit vector 

T 
then e Re is bounded by 

^in < e
ARe < Aniax . (C.7) 

where A ... and ^.„ are respectively the inin      max 

largest and smallest eigenvalues of R . There- 

fore from (C.4) and (C.6) 

min — i — max * (C.8) 

The result follows. 

This completes the proof of Lemma C.2, 

- - 
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APPENDIX  D 

EXPECTED  DEVIATION FROM THE  CONSTRAINT 

BY  THE  GRADIENT-PROJECTION ALGORITHM 

As an approximation, quantization  in the weight vector 

is modeled as an additive white noise process   (see Widrow, 

[27] );  the expected deviation from the constraint by the 

gradient projection algorithm is computed as a function of 

time. 

Assume that a  fixed-point representation for the weights 

is used;   let the quantization size of a single weight 
2 

be    q  .    Using Widrow* s value for the error variance,    q /12   , 

from  (7.9)  the expected squared Euclidean distance from the 

constraint at time    k    is 

x    ^    T E{iicTwoo-5r} - E{ j; qccT£ ej 
i-l x       j»l 3 

Tr 
ä :Fi ^^ 1 

M! Tr(C -^  I CT) 

12 Tr(CCT) (D.l) 

Thus the expected squared distance  from the constraint 

increases linearly with time   (approximately). 

For the special  case of the array problem,  with    C 

defined by Eq.   (6.27),     Tr(CCT)=n  ,  where    n    is  the number 

of tap points.     Equation   (D.l)  becomes 

,2 
E(i|cTw(k)-?!|2}  « kn-Sg  . (D.2) 

-64- 
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APPENDIX E 

THE METHOD OF   LAGRANGE MULTIPLIERS 

Consider the equality-constrained optimization problem 

minimize    J(W) 

subject to    <HW)  = 9 
(E.l) 

where J(«)  is a scalar cost function and <!>(•)  is a vector- 

T  2 
valued constraint function.  In Theorem 1, J(W) « E{ (d - W X) } 

T 
and *(W) =C W- j . Let the gradient of the function J(W) 

with respect to a vector W evaluated at W . be written o 

VWJ ^o ^ ^ö16 

vwJ(wo) = 

m 

(E.2) 

W = W. 

A necessary requirement for the optimal solution of (E.l) to 

be at a point W  is that the gradient of J with respect 

to W be normal to the constraint surface at W_ If the 

gradient of J at W were not normal to the constraint 

surface then by sliding along the constraint a vector VI. 

could be  found still satisfying the constraint: but having 

The constraint surface is understood to be the points 
satisfying the constraint   <I>(W)«9   .. 

-85- 
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lower cost, i.e.,  JfW.) < J(W ) . 

Fleming ([8], p. 126) shows that the normal vectors to 

any manifold defined by <l'(W)=9 is V.-* . For example, 

the gradient of the constraint defined by ^(W) «C W-? -e    is 

T 
V-ytC W-?) «C ; therefore, each of the m columns of C 

is a vector orthogonal to the constraint plane and any linear 

combination of those vectors is also orthogonal to the plane. 

Let X be an undetermined ro-vector of multipliers. 

The vector CA  is a linear combination of the columns of 

C and so is normal to the constraint plane. Thus another 

way to express the necessary condition that the gradient of 

the cost function J be orthogonal to the constraint surface 

is to say that for some choice of A the gradient and the 

normal may be anticollinear, i.e., (see Fig. E.l) 

or more generally 

vWJ(Wo)+vw<I,CWo)?V " e * (E-4) 

Another way of writing (E.4) analogous to the necessary 

condition for unconstrained optimality (V^fW )«9)  is by 

defining the function H(W) by "adjoining" the cost function 

to the constraint function by the Lagrange multipliers, 

H(W) - J(W) + XT<I»(W) (E.5) 

and requiring 

^(W) « 0 . (E.6) 
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Then since ^(W^ - V^H^) « V^(Wo) + V^(Wo)X , {E.6) 

is identical to (E.4) and the necessary conditions become 

(E.6) and 

*<V 0 . (E.7) 

For an excellent discussion of the Lagrange multiplier 

method in more general applications see Bryson and Ho [3] . 
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APPENDIX  F 

SIMULATION OF THE  DIRECT  SUBSTITUTION ALGORITHM 

At the beginning of Section III the direct substitution 

algorithm was suggested:    To obtain an estimate of the opti- 

mal weight vector,  the unknown correlation matrices are 

estimated and inserted directly into the equation for the 

optimal weight vector.    Although computationally quite 

difficult   (because of the number of matrix inversions and 

multiplications  involved)    the   direct substitution method 

offers the possibility of improved  performance. 

The direct substitution algorithm was simulated on 

the array-processing problem of Example 3 using exactly the 

same data  as  the Constrained-IMS  processor.     The direct 

substitution algorithm is 

R^OO  » aR^Oc-l) + (l-a)X0c-l)XT0c-l) (F.l) 

WOO     = S^{X)C[CT^0c)C]"15 (F.2) 

where    0<a<l   .     Equation   (F.l)   is an exponentially-weighted 

estimate of the true correlation matrix    R^-.  .    Equation   (F.2) 

is the equation for the optimal weight vector for the problem 

with    RvvOO     substituted  for    R^   .    The constant    a   , 

which controls both rate of convergence and misadjustment, 

was  chosen  to be 0.97,   a value which experimentally lead to 

approximately the same misadjustment as the Constrained-IMS 

processor had  in Example 3.     Rvx^0)    vma initialized to the 

-88- 
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identity matrix, scaled by the power measured on each tap; 

in this case the total power on each tap was 2.2 (see 

Table 6.1), so ftyvt0) was 2.21.  This is a reasonable 

starting point since the power on a tap is easily measured 

in a real situation and also a simple calculation shows that 

if ^(O)  is any diagonal matrix then W(0) ■ CcA)-1? = F . 

The vector F vns also the initial weigM vector of the 

Constrained-IMS algorithm so the two processors essentially 

start out at the same point and a meaningful comparison is 

easily obtained. 

Results of the simulation are shown in Fig. F.l. 

Compare with Fig. 6.6.  For the same misadjustment, the 

better processor should have a faster rate of convergence. 

A careful comparison of Fig. F.l and 6.6 fails to show 

conclusively which algorithm has the better performance. 

For this example at least, the user would have been just as 

well off to use the simpler Constrained-IMS processor. 

Readers interested in the direct substitution method 

should consult Saradis, et al. [24] and Mantey and Griffiths 

[18] , [19] . 
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PART II 
ADAPTIVE ESTIMATION IN NONSTATIONARY ENVIRONMENTS 

by 
James Edward Brown,   III 

ABSTRACT 

In the classical design of processors for sensor arrays 
whose purpose is signal detection and estimation,  a receiver 
is optimized on the basis of the a priori knowledge of the 
statistics of its input signals.    However, when the a priori 
knowledge is not available,   the receiver's performance can still 
be improved by performing measurements on its input signals 
and incorporating this new information into its design.    Such 
receivers are called adaptive. 

The purpose of this research is to develop and analyze 
a gradient-descent surface-searching algorithm for automatically 
adjusting   (adapting)  the parameters of a  linear tapped-delay- 
line array processor in order to improve its performance in 
an unknown chancing environment.    The tracking ability of this 
algorithm is demonstrated when the characteristics of the 
nonstationarity are such that the optimum parameter sequence 
can be modeled as a first-order Markov process with a known 
transition function.    A worst-case analysis of the algorithm 
is presented for three types of nonstationarities when the 
above model for the nonstationarity is not applicable. 

The techniques developed in analyzing the above algorithm 
provide a powerful approach for the further study of gradient- 
descent algorithms used in searching unknown,  nonstationary 
surfaces.    Among the most important consequences are: 

i)     the removal of the usual assumption that the data 
be jointly Gausrian; 

ii)     the developroeut of a new convergence theorem for a 
dynamic stochastic approximation algorithm,  thereby 
extending a branch of stochastic approximation theory 
to the analysis of adaptive processors in nonstationary 
statistics; 

iii)     the enlargement of the class of problems for which 
stochastic approximation algorithms,  adaptive esti- 
mation algorithms,   and the Kaiman-Bucy theory can 
be compared. 

Also presented in an appendix is a procedure  for auto- 
matically adjusting the convergence factor.    Some experimental 

results are presented. 
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I.  INTRODUCTION 

A. PURPOSE 

In the classical design of processors for sensor arrays 

whose purpose Is signal detection and estimation [ 1 ]-[ 7], a 

crucial role Is played by the a^ priori Information available 

at the receiver.  In practice, the receiver's performance can 

be Improved by performing measurements on its input signals 

and Incorporating this new Information into its design [ll]- 

[21].  Such receivers are called adaptive. 

The purpose of this research is to develop and analyze 

a procedure for automatically adjusting (adapting) the 

processor in order to improve its performance in an unknown 

changing environment. 

B. THE PROBLEM 

The type of array processor considered in this paper is 

the multichannel linear discrete time processor (also 

referred to as the tapped-delay-line processor) shown in 

Fig. 1.1. The input x at each receiver is sampled at 

regular intervals and shifted down the tapped delay line. 

The sampled value at each tap is weighted, and all the 

weighted values are summed to form an output y which will 

be viewed as an estimate of some desired quantity d .  For 

the simple case When x consists of a transmitted signal plus 

additive noise, the desired output d is taken to be the 

transmitted signal.  In general, d may be taken to be 

-1- 
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some other desired output, depending on the purpose of 

the receiver. 

The criterion used in this research for determining 

the best set of weight values w for the above system is 

the mean-squared error between the processor output y and 

the desired output d  [ 1 J - [ 7 ] . This criterion is a 

common one used in the design of array processors since the 

pioneering work of Wiener [4 ] . 

The mathematical description of the array problem is 

given as follows:  Let  (X. tin.» 1,2,—} be a sequence of 

p-dimensional vector-valued random variables to be referred 

to as the input sequence. The components of X.  are the 

inputs xiv»x2V» * *'^ck at tlie var^OU8 taPs of tlie processor 

at time Tc .  Let (d^ :k=l,2,...) be a corresponding 

sequence of real-valued random variables to be referred to 

as the desired-output sequence.  The pair  ^»^Sc» ^ will be 

called the data pair at time k . Assume that the sequence 

{(d. ,X. ) :k = l,2,...)  is an independent sequence.  The 

correlation matrix at time k = n , defined by 

t 
Rn = EfXnXnJ  ' (1.1) 

is assumed to be positive definite with finite eigenvalues. 

The crosscorrelation vector at time k = n is defined by 

The expectation operator will be denoted by E[«] . 

The transpose will be denoted by T . 

— _J   _  ..-_._ ... 



Pn = EfdnXnJ (1.2) 

Let w be some p-dimensional column vector, referred 

to as the weight vector or discrete-time filter, whose compo- 

nents are the weights w.fw , ...tw 

The object is to estimate that weight vector K 
which minimizes the mean-squared error at time n , 

given by 

4n(w) -Ef(dn- wTxn)2j 

- Efd^J - 2WTP„ + WTR W n    n • (1. 3) 

It is a well known result [42] that W  is given by 

n R«lpn n n (1.4) 

This vector, W , will be called the "Wiener" weight vector 

or the optimum finite-dimensional linear weight vector at 

time n . The corresponding mean-squared error will be 

denoted by I  . (A typical mean-squared-error surface is 

shown in Fig. 1.2 when the weight vector has only two 

components.)  Note that the expression (1.4) requires that 

the second order statistics, Rn and Pn , be known.  It 

would be highly desirable to have a design procedure which 

would not require this ja priori information since it normally 

would not be available to the array processor. 

A method for determining Rn and Pn that immediately 

comes to mind is to compute the time-averages [14] 

■■«.... 
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For the stationary problem this would result in the optimum 

finite-dimensional linear estimator W  in the limit as 

more and more measurements become available. However, if 

the environment in which the receiver operates is nonstationary, 

the above method is not applicable in the determination of 

the instantaneous value of the optimum weight vector W . 

The time-averages (1.5) progressively weighs the new.infor- 

mation contained in the data pair  (d,X)  less and less as 

time progresses. Meanwhile, the optimum weight vector 

continues to change.  Another procedure for estimating 

* 
W  will have to oe developed. 

C.  APPROACH 

The approach used in this research for estimating (or 

tracking) the optimum weight-vector sequence  {W 1  is to 

extend a gradient-descent surface-searching algorithm (the 

method of steepest descent [B ] - [10] ) to the tracking of 

an unknown time-varying surface.  The resulting system 

(array processor plus adaptation algorithm) gains the 

capability of responding to changes in the input-data sta- 

tistics.  This results in an adaptive system whose performance 

is vastly superior to that of a fixed system in many instances. 

The analysis of the adaptation algorithm is divided into 

two parts. In Chapter IV asymptotic bounds for the performance 

of an adaptive processor are obtained when its input is 

- -    ■ ■ - ■       -       m^m^^t^^^-^^  nur  - ' ■    ...-:.  -   -^ 
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nonstationary.    The characteristics of the nonstationarity 

are such that the optimvum weight-vector sequence     (w }    can 

be modeled as a first-order Markov process with a known 

transition function.    However,   in many applications it 

s unreasonable to expect that a model for the nonstationarity 

1 be available.    For this reason a worst-case analysis of 

tA« adaptive system is presented in Chapter V for three types 

of nonstationarities.    As  shown by the example given in 

Chapter VI,   these results are particularly informative as 

to the type of behavior to expect from the adaptive system. 

D.     CONTRIBUTIONS 

The principle contributions of this research are: 

1) A gradient-descent surface-searching algorithm is 

developed for adapting the parameters of a  linear 

tapped-de lay-line array processor in an -anknown, 

time-varying environment.     The tracking ability of this 

algorithm is demonstrated when the nonstationarity is 
r    *i modeled by the optimum weight-vector sequence     (W J 

being a first-order Markov process with a known transition 

function.    A worst-case analysis of the algorithm is 

presented for three types of nonstationarities when the 

above model for the nonstationarity is not applicable. 

2) The techniques developed  in analyzing the above algorithm 

provide a very powerful approach for the further study 

Df gradient-descent algorithms used in searc1 ■*••<; ur.V >wn, 

■Mm 
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nonstationary surfaces. Among the most importent 

consequences are: 

(1) the removal of the usual assumption that the 

data pair  (d#X) be jointly Gaussian, 

(ii) the development of a new convergence 

theorem for a dynamic stochastic approxi- 

mation algorithm, thereby extending a 

branch of stochastic approximation theory 

to the analysis of adaptive array pro- 

cessors in nonstationary statistics, 

(iii) the development of an analytical comparison 

between the adaptation algorithm and the 

Kaiman-Buey recursive filter. This result 

is presented in Appendix I. 

8 
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II.   TRADITIONAL METHODS  FOR DESIGNING ADAPTIVE  PROCESSORS 

A large number of array processors which adjust their 

parameters as a function of their inputs have been considered 

in the literature.    A representative sample is given in the 

references  [11]- [52],     Two basic types of systems have 

resulted from the above research:    a parametric system 

[11]- [13]  and a non-parametric system [14]- [52].    The 

parametric system is characterized by the assumption of an 

underlying statistical framework for the input data;  e.g., 

(d,X)   jointly Gaussian,   or the waveform of    d    known with 

X    Gaussian,  etc.    This system is inevitably specialized to 

specific applications.    On the other hand,   the non-parametric 

system is less structured and more applicable to a wider 

range of problems. 

The work directly related to the research presented 

in this paper is in the area of the non-parametric design of 

array processors.    Within this classification there are a 

number of approaches to the design problem.     The most 

promising statistical procedures are those which can keep 

pace with the incoming data so as to constantly update the 

receiver's current state of knowledge about its environment 

[17] - [52].     There are primarily two approaches  in changing 

the processor's parameters in "real-time":     stochastic 

approximation  [17]- [40]   and adaptive estimation  [41]- [52]. 

-9- 
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The application of these two theories to processor 

design in minimum-mean-squared error estimation problems 

yields a differential correction algorithm based on the 

method of steepest descent [8 ] - [ 9].  The form of the 

algorithm is 

Wn+1 - 
wn- Vn ' ^^ 

* where W  is an estimate of wn »  M- is the convergence 

factor for the n  iteration, and Z  is an estimate of 

Jn(Wn) , the gradient of the mean-squared error surface 

^n(W) with respect to W evaluated at w*W .  (Methods 

for obtaining the estimate Z  will be discussed later.) 

The stochastic approximation versdon of the algorithm 

(2.1) is characterized by the sequence (M- )  tending to 

zero in some prescribed manner; the adaptive estimation 

version of the algorithm (2.1) is characterized by the 

sequence  f^V.)  being set equal to some prescribed positive 

constant  M .  The former procedure is designed to estimate 

the unknown parameters W in a strong probabilistic sense 

(mean-square and almost surely), while the latter is 

designed to allow a "tolerance" in the estimates. As will 

be shown in this research, by allowing convergence in a weak 

sense, the class of nonstationary problems that can be handled 

by adaptive estimation theory is larger than those handled 

by stochastic approximation theory. 

 . i .i — 
MMM 
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The history of stochastic approximation theory began 

with its introduction in 1951 by Robbins and Monro [17]. 

The results directly related to the present research were 

obtained by Blum, Gardner, Dupac, and DeFiguerido.  In 

1954, Blum [18] extended the Robbins and Monro procedure 

to the estimation of a multivariate parameter. This permitted 

the application of stochastic approximation theory to the 

analysis of the gradient descent algorithms in optimization 

theory [19]- [40].  Gardner [21] demonstrated the appli- 

cability of this approach in the design of adaptive 

predictors. 

The development of stochastic approximation algorithms 

for estimating a time-varying parameter received little 

attention until 1965 when Eupac [22 ] published his classic 

paper on dynamic stochastic approximation methods. 

DeFiguerido [24] extended this work to the estimation of 

a multivariable parameter evolving in a nonlinear fashion. 

The development of the IMS adaptation algorithm was 

motivated by Widrow in considering determinstic gradient 

procedures for use in pattern recognition [41] . The 

I14S algorithm was later applied to adaptive filtering by 

Widrow [42] and by Widrow et al. [43], because, in part, of 

its conjectured ability to track nonstationarities.  Griffiths 

[44] later modified the algorithm for certain array appli- 

cations.  Senne [46] provided an exact analysis of both 

Widrow's and Griffiths' algorithms under a special set of 

--  -        -          -- -■-   - -■ ~.-.-■>. — -. ...  ,..,. ■■■.,.. ■.,. ^.-, , ,„..i.  ..la.m.n  ».. 
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assumptions (stationary, jointly Gaussian statistics). 

However, the technique userl in Senne's analysis has not been 

shown to generalize for non-Gaussian, time-varying statistics, 

Daniell [50]- [51] has demonstrated an approach to the 

problem that can be generalized.  It is this approach that 

will be extended in this research. 

—      — ■ 
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III.     THE ADAPTATION ALGORITHM 

A.     THE DERIVATION OF THE ALGORITHM 

The starting point for the derivation of the algorithm 

to be considered  in this research  is  the procedure given  in 

Chapter  II by 

Wn+1 =Wn- Vn  ' ^'^ 

* 
where Wn is an estimate of W ,  U  is the convergence 

factor for the n  iteration, and Z  is an estimate 

of J
n(
w
n) » the gradient of the mean-squared error surface 

ln(W) with respect to W evaluated at W = W  .  (A typical 

choice for Z  is  i  1 n 

Zn = -2<dn-WnVXn  ' (3-2) 

However, a number of other choices have been considered in 

the literature [42]- [50]-  For a further discussion on methods 

of obtaining Z  , the reader is referred to Appendix E, 

Section B.) 

The important thing to note about Z , for the moment, 

is that if it were a good estimate of J«^»,) » then one 

would expect W  , , given by (2.1), to be a better estimate 

* 
of VT  than W  .  Recall that a function changes most n        n 

rapidly in the direction given by its gradient.  Hence, by 

moving along the gradient, one is moving down the 

quadratic surface.  However, in the nonstationary 

case, one would rather have W ,  as a good estimate of 

-13- 
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w    ,   ,   since the next data vector processed by the receiver 
n+I 
is X , . W , is the optimum weight vector for this input, 

n+l    n+1 
Motivated by the KaIman-Bucy theory [56], the following 

argument is presented for modifying (2.1) in order to track 

the sequence  (W ) . 

Let us assume that the input nonstationarity is such that 

the optimum weight-vector sequence (Wn) can be modeled by the 

discrete-time system 

Wn+l-
FnfV+Un ' (3.3) 

where Fn(-) is some function, not necessarily known, and 

fun} is a zero-mean random process with finite second 

moment given by 

EflfuJ2] = P2 < » ! 

According to this model, which is similar in form to tne 

usual linear discrete-time model introduced by Kaiman [55], 

the optimum weight vector undergoes a first-order Markov random 

walk.  The problem for the adaptive process is to track W* . 

The problem here differs from the Kaiman problem in that here 

Fn (•) need not be linear and the random process [u } need 

not be an independent Gaussian random process. (More will be 

said about this model in the next section.) 

Since (ün]  is zero-mean, from (3.3) one sees that 

Fn(W*)  i-s an unbiased estimate of W* ,. Hence, if a weight 

vector W were a good estimate of W , the one would » oect 

n. II is  the Euclidean norm defined by    |!u!|=U U . 

— - 
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that F (W) would be a good estimate of W*   . Therefore. n n+i ' 
a logical modification of the algorithm (2.1) is 

Vl-'n^n^nV ' (3-4) 

Unfortunately,   in many applications,  one will not have 

a priori knowledge of the sequence of functions     {F )     or 

the nonstationarity cannot be modeled by   (3.3).     It may 

still be desirable to use an algorithm of the  form   (3.4). 

Let     {G }    be a sequence of functions determined by the 

experimenter.      (G    could be an estimate of    F    , based on 

physical measurements,   for example,   or on a priori knowledge.) 

The algorithm   (3.4) becomes 

Wn+l 
= Gn^n-^nV   ' <3-5) 

(Some specific algorithms of the form (3.5)   are given in 

Appendix E.)     This is the adaptation algorithm to be consi- 

dered in this research. 

The procedure   (3.5)   is similar  to the algorithm proposed 

by DeFigueiredo   [24]   for learning the unknown mixture 

distribution in a pattern recognition problem in which the 

environment  is allowed to evolve  in time.    However,  his 

formulation requires exact knowledge of the nonstationarity, 

i.e.,  both     [F  )     and     {U  )     are assumed known, chein and Fu [23] 

also considers  a similar problem to  that of DeFigueiredo. 

Here again the nonstationarity must be known exactly. 

■^jfUHfatf/gjjj^ 
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The analysis of   (3.5)  given in Chapter IV of this 

research requires  exact knowledge of only     [F )     and     {p  } 

The worst-case analysis  for   (3.5)  presented in Chapter V 

removes even this restriction. 

  - ■ ■ 
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B.      PRELIMINARIES 

1.    Assumptions 

All vectors  in this paper are contained in the 

Euclidean p-space    E™  . 
* 

It is easily verified that the gradient    J„ (W) =R   (W-W  ) 

of the mean-squared-error surface    ^n(W)     satisfies  the two 

conditions: 

Condition   (CD.    For all    W e Rp 

l|Jn(W)ll2^ ^ax(n)IIW-w;i|2 , (3.6) 

and: 

Condition   IC2).    For all    W e Rp 

(W-w;)TJn(W)   >Amin(n)|(w-W;||2  , (3.7) 

where ^m;{n(
n) an<3 ^max^n^ are the minimum and 

maximum eigenvalues of R  respectively. 

It will be assumed that there exist positive constants A# 
it 

and     A       such that for all    n: 

Condition   (C3). 

«X^^^in""^^"1^^^-- (3•8, 

In one-dimension these conditions require that J (W) be 

bounded between the lines  ^* (W-W ) and  ^ (W-W ) . 

(See Fig. 3.1.) 

■ 
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X*{W-W*) 

allowed region 
for    Jn(W) 

^*(W- W*) 

»W 

Fig. 3. 1.  Illustration of Conditions Placed on Jn(W) . 
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We assume that the gradient is measured in such a way 

that the sequence of gradient estimates  [z } satisfies 

the two conditions; 

Condition (C4). For all n 

E^nKK^   " Jn(V ' (3.9) 

Condition   (C5).    There  exist     positive constants     o.     and 

o       such  that for  all    n 

E[|!Zn- Jn(Wn)||2|Wn,W*]    < ol + 02
2\\Wn-^\\2   . (3.10) 

Condition   (C4)   is  the requirement that the gradient measure- 

ment be  conditionally unbiased.     This  is consistent with 

the desire that algorithm   (2.1) be based on the method of 

steepest descent.     Condition   (C5)   reflects  the experience 

that as  one  is farther  from the optimum«  the instantaneous 

mean-squared error becomes a noisier estimate of the expected 

mean-squared  error.     (For a  zero-mean Gaussian random varia- 

ble,  the variance  in its second moment  is twice the second 

moment  squared  [42].)     Hence,   the  instantaneous gradient 

estimate should be expected  to increase. 

Condition  (05)  is  satisfied easily by most gradient 

estimates   (see Appendix E,   Section C).     The condition   (C4) 

on the other hand is almost  never  satisfied exactly.     In 

order for   (C4)  to hold,   one  essentially has  to require that 
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the data  pair     (dn'Xn^     ^ie conditionally independent of 

the  previous data   pairs.    This  insures  that     (d  #X   )     is 

independent of    W     .     However,   it turns out that for a  large 

weight system     (p»l)   ,   condition   (C4)   is a  reasonable 

assumption. 

The model used in Chapter  IV  for  the nonstationarity 

is   that given by   (3.3), 

Wn+1 'FnO+Un ' ^3) 

where  fu )  is a zero-mean random process, not necessarily 

an independent Gaussian random process.  The evolution 

transformation F„ also need not be linear.  However, it n 

will be assumed that F  satisfies the Lipschitz condition 

|!Fn(W)- Fn(V)||
2    , 

sup— ^  « f* < oo , (3.11) 
llw- v||2      n 

where the supremum is over all weight vectors W and V . 

This condition is weaker than one requiring that the deriva- 

tive of F (W)  exist and be bounded for all W .  Note that 

the condition (3.11) does require that F  be continuous 

in W . 

The purpose of the Lipschitz condition is to bound the 

the maximum change or stretching of Ep allowed under F  . 

If two  vectors W and V are close together, one wants the 

transformed vectors F (W)  and F (V)  to be close together. 
n n 

Another way of putting it is if two vectors are close together, 

the effect of F  operating on them should be similar. 
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It will also be assumed  that the  functions    G   (•) 

satisfy the Lipschitz condition, 

l|Gn(W)-Gn(V)||2A 
sup r  = g     < oo   , (3.12) 

l|w-v||2 

where the supreraum is over all weight vectors    W    and    V  . 

2.    Mathematical Approach to the Analysis of   (3.5) 

The straightforward approach to the analysis of the 

algorithm   (3.5) would be to develop    a recursive relation 

for    E[^nfWn^-'   '   t^e exPecte^ mean-squared error,   and 

evaluate this expression.    However,   this approach suffers 

the drawback that it leads to  the setting up of the problem 

in a  randomly time-varying metric space.     It  is worthwhile 

to pause a moment and see how this comes about. 

Starting from   (1.3)   and using   (1.4),   it can be shown 

[     ]  after some   (easy)  algebra that 

?n(V  = O^n-OX^n-V   ' (3-13) 

Note that 

^V-^ =   ("n-'OV'V'O 
is the excess mean-squared error due to using the weight 

vector W  rather than the optimum one W   .  The expected 

value of this expression, defined by 

a2 ^E[(Wn-^)TRn(Wn-W;)] , (3.14) 
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is the expected excess mean-squared error.  It is a measure 

of the rost associated with not having the necessary _a priori 

* 2 knowledge to compute W  .  This quantity C  provides a 

measure of the efficiency of the adaptive algorithm (3.5). 

2 
A large excess cost: c  would indicate that the algorithm 

is not tracking the sequence  (W )  very well, while a 

2 
small excess cost C  would indicate that the algorithm is 

2 
working well.     A recursive relation for    C       is desirable. 

Unfortunately,   the  expression 

^n-VV^-O 
is  the equivalent to defining a  random  time-varying norm on 

the weight-space because    R      varies.     This  adds  a  further 

complication to  the  problem because the  changes  in both 
* 

R      and    W      have  to be characterized  in order to develop n n 
a  recursive  relation  for   (3.14).     Note,   however,   that 

using assumption   (3.8),   one can obtain  the  inequalities 

\#E[  Wn- W*"2)  <E[(Wn-W*)TRn(Wn- W*)J   <A*E[|IWn-W*||2I    ,    (3.15) 

which  follow from the trace inequalities   [47]   given by 

The  inequalities (3.15)  follow from the   trace inequalities by 
noting 

^-VX^n-V  " trfVWn-V^n-Wn^   ' 

Make the  identification    A = R    and  B= (W  - W*) (W   - W*)T  . n n      n      n      n 
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*minMtrW   <   tr^   <   A
max(A,trf33    ' rain 

where A and B are two symmetric, positive-semidefinite 

matrices of the same order and  A . (A)  and  A   (A)  are mm max 
the minimum and maximum eigenvalues of    A  ,   respectively. 

Expressing bounds on the excess mean-squared error  in terms 

of 

bn = EniWn-w;i|2] (3.16) 

avoids the randomly varying metric problem.     For this reason, 

the expression   (3.16)  will be considered  in this research. 

Referring back to the algorithm   (3.5),   one sees that 

the sequence of random weight vectors     (W  )     depends on  the 

choice of the sequence     (^n]»     This sequence   (M- )     controls 

the stability and rate of convergence of the algorithm   (3.5). 

In the following chapters the asymptotic properties of the 

sequence     {b )     are  investigated as a  function of the choice 

of     f^n)   . 
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IV.  CONVERGENCE PROPERTIES OF THE ADAPTATION ALGORITHM 

In this chapter, asymptotic properties of the sequence 

(b^ « E[|lWn-Wn(!] 
2)  are investigated as a function of the 

convergence factors  (u )  for the case in which the environ- 

mental functions  (F )  are known.  The corresponding 

adaptation algorithm to be used is (3.5) with G
n =Fn » 

given by 

n+i   n n  n n (3.5) 

The first three results to be established below demonstrate 

the tracking ability of the constant-u algorithm, while the 

last result provides sufficient conditions for the appli- 

cation of the corresponding stochastic approximation algorithm. 

A.  CONVERGENCE PROPERTIES OF THE CONSTANT-H ALGORITIH 

The following theorem and its proof provide many key 

results used in obtaining bfrujids on the sequence 

fb2 « E[!'W -W*!2]}  in the subsequent discussion.  The n    '  n 

theorem is 

n 

Theorem 4.1.  Assume that the optimum weight sequence  fw ) 

is generated according to (3.3)# 

W— - Fn<)+Un 'n+l (3.3) 

Assume 

and 

E[Un) = 0 

-24- 
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p2  = lim sup E[||Un|l2]   < oo   . 

Let the adaptive processor be descrited by   (3.5)  with 

n      n 

WnJ,   = FfW   - U.Y)   . n+l        n    n n (3.5) 

Assume  that the  sequence of  functions     {F  )     satisfy 

the Lipschitz condition   (3.12)  with 

lim sup f    = f ^  1   . 
n-»» n 

Assume that the sequence of gradient estimates     fz  } 

satisfy conditions   (3.9)  and   (3.10),  which are 

EfZnlWn'V   ^n^n) 

and 

(3.9) 

2 . „2, ,*i|2 E[||Zn- Jn(Wn)||^|Wn,W;]   <  0j + 0^||Wn-Wnr   • (3.10) 

Define 

b2 ^E[iiwn-w;ii2] (3.16) 

Then,   if 

0 < U < 
2\ 

^2 + a
2     ' 

one can conclude 

lim sup b^ .< 
^f + p 

n~ 1- f[l- 2nXÄ + U2(^*2 + o2)]J5 
(4.1) 
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Remark; Note that this bound applies even for the case in 

which the stochastic driving sequence [u }  is correlated 

in time. Moreover, the sequence {u ) may be correlated 

with either the optimum weight sequence  [W*)  or the adaptive 

weight sequence  [w ) or both. The only requirement is 

that  fu ) be zero-mean and asymptotically bounded in 

expected norm-squared. An example of this type of environment 

is one that can be modeled as a finite-state Markov dependent 

switching environment. 

The general form of the bound (4.1) is shown in 

Fig . 4.1 for the two cases f = 1 and f < 1 , 

respectively. Note that in both cases, the convergence 

factor ^ which minimizes the  lim sup of (b }  is 

different from zero.  This is due to the unknown component, 

[U } , of the nonstationarity.  More will be said about this 

effect later in discussing Corollary 4.1.1 and 4.1.2. 

However, despite the general applicability of the 

bound, the real importance of this theorem lies in its 

proof.  The methodology used here demonstrates the power of 

the formulation developed in Chapter III. 

Proof of Theorem 4.1. 

Subtract W . , as given by (3.3) from both sides of 

(3.5) to obtain 

Wn+1-Wn+1 * VWn-^V-VWn^Un  ' (4.2) 

Using Minkowski's inequality  [61]# which states that 
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h H h 
fEfCX+Y)2]}     <   (E[X2]}     +   (E[Y2])        , (4.3) 

one  concludes   that based on   (4.2) 

where 

bn-E(l|w„-<ll2l   • 
and 

pn = E(llUn"2J     • 

The  evaluation of   (4.4)   proceeds as  follows:     By the  Lipschitz 

condition on Fn ,   given by   (3.12),   it follows that 

|,Fn<w
n " ^n' "  Vn'1^ f2|lwn " < "  MZn«2 

^  £n{»Wn "  «O2 -   2MWn -  W^V^2 M • '4-5' 

By    (3.9)   and  (3.7)      it  follows that 

E fWn '  Wn)\]= E[(Wn -  K^ E^KK^ 
= El(Wn-  wy Jn(Wn)] 

>   \E[i|Wn -   Wnl|   ]   • 

By   (3.9),    (3.10)       and   (3.6)      it  follows that 

= E[,Zn-   Jn%>l,2] + E["Jn^n)l'2] 

+   2E[j;(Wn)E[Zn-   Jn(Wn)|Wn,W;   lj 

,2   +   (02 +   A«2)E^Wn-  w^ll2! . (4.7) ^ "I 
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Putting   Eqs.    (4.5),  (4.6), and (4.7), together, one has the result 

E^Fn (Wn- ^Zn) - Fn (W^) ||2] <  fj[l - 2^\ + U2 (a2 + X*2 H bn
2 

(4.8) + ^f2o2 

n  l 

Once more using  the Minkowski inequality. Eg. (4.3), conclude that: 

+ "Vi ■ 

From   the above and   (4.4),  the key recursive relation, 

bn+l S fn[l - 2UX. + U2 (o2 + X*2)]15 bn + uf^ + pn , (4.9) 

follows.     Iterating   (4.9) backward   to k = N    yields 

bn+l^ 

[n        ( n   I       n 

k=N   KJ N ieNLj=k+l ^ 
0, (4.10) 

where 

and 

ak "  ^11-2^^* + ^2(^*2 + a2)J 

ßfc = ^fko1 + pk     , 

By definition of limit superior  [58] ,   one has the result that 

for any e> 0 , there exists an    N      such that for all   n> N 
B —     E 

f n   <   f   +   6    , 

and 



Pn < P + e . 

Pick the e such that for any 

0 < H < 
A*2 I ol 

it  is also the case  that 

max ^il1-*) < ^ < 
2\ 

\*2     „2 A        + O^ 
- max '•tM 

where 

max[x,y] 
x      x >  y 

y     y > x 

This guarantees  that 

{'- e • -Di" (f+c)| i- 2fiA^ + H2^*2 + ah <  l  . 

Hence, for any n ^ N, , one has from (4.10) 

b^, < a*"* "e. b n+i 
n+l-N_ ^  . t^ _n-k 

v*V   ß 

where 

and 

a.  = (f + s) [i-2W. + ^*2 + 0i)] 

3 = (f + e)M-a. + p + s . 

Since     i<l  ,   for all     5>0  ,   there exists an    Mc > N
e    such 

that   for all    n > Mr 

n-N. 
i 

N, 
ß 

1-a 
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Therefore,   for all    ^2 Mg  # 

b^i  < iSr + 5 < p.— ± — --r-- + 7 n+1  ^ 1-a 
- f 1- 2^^ + H

2
^*

2
 + ö|J 

where   Y > 0    can be made arbitrarily small by choosing a 

sufficiently small   e     and     5  .     From this it follows by 

definition of limit superior 

M-o. f + p 
lim sup b<  = * —r r^— (4.1) 

n-»« 
1- f|l- 2^ + ^*   +a2)j 

This completes the proof of Theorem 4.1. 

Two important special cases of the problem handled by 

the previous theorem are when; 

(i) the nature of the nonstationarity becomes 

determinsistic in time (the random driving 

process  fu }  goes to zero in expected 

norm-squaredj i.e.,  p = 0). Examples of this 

case are: 

a) stationary statistics.    Here    Fn(W)=W    and 
U   =0    for all time.     This is the customarily n 
treated problem  in adaptive system theory [42]-[47] 

b) asymptotically stationary statistics.     Noise 
sources may be initially present that eventually 

move out of range of the r€:ceiver. 

c) known varying channel.    Measurements  can be 

performed on the channel  so as to determine 
its effect on the input statistics to  the 

receiver. 
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d)  known constraints  placed on  the weight vector. 
It may be desirable,   for  example,   to control 
the   frequency response of the array processor 
in a given direction while nulling out 
signals  coming from other directions   (see 
[40 ] or[48 1   or Appendix E,   Section B). 

(ii)   the nature of the nonstationarity is  strictly 
first-order Markoff   (the random driving process 
fU )     is a  zero-mean,   independent random 
process).     An example of this problem is where 
the  input data    x    is  the output of a  linear 
randomly-time-varying channel with additive 
white noise   [53]- [54].    The object of the 
filter  is  to  predict the next  input    xn+i    on 

the bases of the previous    p    input«. 

The theorems are: 

Corollary 4.1.1.     Under the hypothesis of Theorem 4.1,   if 

p » 0 ,   then 

^2o2f2 

and 

Corollary 4.1.2.     Under the assumptions of Theorem 4.1,   if 

fu  j   in   (3.3 )   is a  zero-mean,   independent random 

process,   then 

^o2f2 +  p2 

lim sup b2 ^     = :—= ^c-   .     (4.16) 
1-f2 [l-2^^2(A*2  + o2)] 
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Remark  1;     The bounds   (4.11)   and   (4.16)   are shown  in Figs. 

4.2  and 4.3,   respectively.    While the  form of the bounds 

(4.1)   and   (4.16)   are similar  for a given set of 

parameters,   the bound   (4.16)   is tighter than  that of   (4.1) 

Remark   2;     One should note  that by choosing a  sufficiently 

small    M^ ,   the bound   (4.11)   can be made arbitrarily 

close to zero,   i.e., 

2 lim    lim sup b' = 0   . 
M.-»0+    n-»oo 

An algorithm with this  property is said to be e-optimal 

fel]. 

Remark 3 t    For the stationary statistics problem in which 

Fn(W)  = w   and    Un = 0  ,   the bound given by   (4.11) 

reduces to 

2                   ^1 lim sup b^ ^ —    

This  is the result given by Daniell  [50]. 

2\ -   U 

Proof of Corollary 4.1.1. 

From the proof of Theorem 4.1   (see   (4.4)  and   (4.8)), 

it follows that 

H 
+  pn   '   (4.12) 

2\ 
By Theorem 4.1,     lim sup b       is  finite  for    0 < |i. <   —75 —   . 

Xi A "" 2 n-»» A     +0' 

bn+l ^  ^M1- 2^* + ^ ^ + ^^n +  ^2oi| 
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lim sup b 
n-»» 

n 

Fig. 4.2.  Representative Curve for Bound (4.11). 
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n 

•H 
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Using the result, proven in Appendix A, that 

(lim sup b V 
n-«   7 

2 2 
lire sup b 

_     n n-»a> 

it then  follows  from   (4.12)   that  for any    e>0  ,   there exists 

an    N      such that for    n > N„   , 

n+ 1£  f2^l-2^ 2   ^** + ^ (^      + 02 )bn+^2f2ol + e   *   (4-13) 

Noting the similarity, of   (4.9)  and   (4.13),  one has by analogy 

to   (4.1) 

lim sup b   £ 
WVc£ 

m  sup D   ^     r-fi *-= = 5-» 
n-»«       n        1- f2[l- 2^\ + H2(A*2 + oH 

This completes the proof of Corollary 4.1.1. 

Proof of Corollary 4.1.2. 

Square both sides of   (4.2)   and take the expectation 

to obtain 

Ef:;wn+1-Vl,,2J   " Erl,Fn(Wn-^n,-Fn(Wn,"2J ^^J^ 

-   2E[fFn(Wn-HZn))TUn]-2ErfFn(W;))TUn]     . 

By the  independence assumption on the sequence     {Un)   »   it 

follows   that 

E^Fn(Wn-azn^TünJ   =  fEfFn'V Uzn)] ^'V 

(4.17) 



and 

E[[Fn(W*))
TUn| = (E[Fn(W*)j]

TE[UnJ 

= 0 . 
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Recall (4.8) from the proof of Theorem 4.1, 

EIIIF^-W^-FX)«
2
) ^ ^[i-^. + ^H)]1"« 

l n (4.8) 

Therefore, 

bn2
+l^  fn^-^*^2(^2 + o2,)b2 + ^02f2 + p2   ^      {4>18) 

Comparing (4.18)   with   (4.9)  in the proof of Theorem 4.1,  one 

can argue by analogy that 

lim sup b* ^ 
^a|f2 + p2 

>ni       l-f2[l-2nA# + H2(A*2 + o2)'" 

This completes  Vie proof of Corollary 4.1.2. 

(4.16) 
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B.      CONVERGENCE   PROPERTIES OF  THE  STOCHASTIC  APPROXIMATION 

ALGORITHM 

For a  subclass of the problems considered in the previous 

section,   the sequence of random vectors     fw  )     generated by 

(3.5)   converges in a  strong probabilistic sense   (e.g.,  mean^ 

square convergence and probability one convergence)   to the 

sequence     fw  ) .   The  following theorem provides a  set of 

sufficient conditions  for convergence: 

Theorem 4.2. Assume the optimum weights are generated by 

(3.3) where {U } is a zero-mean independent random 

process with    E[||U  11   ]   = p      where 

jV    <    CO    . 
n=l 

Let the adaptive processor be given by (3.5) with 

G =F  . Assume  (F ]  satisfy (3.12). If  (u )  is n  n n n 

a sequence of non-negative real numbers satisfying 

k-l^ 
and  if 

2 
(i)     for sufficiently large    n,  ^n^'^n^*^—  1 

(ü)    £ (i- ^(i-^x
A*)) = « ' 

then 
*  2 

lim E[||Wn- Wni'|   ]   = 0 
n-»oo 



■""     ' ' p." ■ 

and 

P[lim  l(W   - W  ||     =  0]   =  1 
n-»oo 
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Proof of Theorem 4.2. 

Since convergence in mean-square will be needed to  show 

convergence with probability one,   this aspect will be 

considered first. 

Pick    N.     such that for all    n J> N.   , 

2A. 
0£K<> n ^    ,*2 2 

+  a2 

Then  for    n ^ N,   #   one can obtain the  equivalent expression 

to(4.18)   in the proof of Corollary 4.1.2, 

where 

and 
n 

b?.,  < a b2 p 
n+l -^    n n        ^n 

-^-^n^^n^^)] 

ß. = n 
2^2  2 2 

^nfn0l + Pn 

(4.19) 

(4.20) 

(4.21) 

Therefore,   by recursive substitution,   one has  for    n>N^ 

'n+l I fr J^N + E I it «1 
[K=S1     k|   Nl K=N1  jj^lc+l     J 

ßx (4.22) 

An especially straightforward proof of convergence of 

(4.22)   is based on Kronecker's   lemma,   proven in Appendix B, 
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Lemma 4.2.1 <Kronecker' s Lemma)  Let  [x. } be a sequence of 

real numbers.  Let  (a. )  be a sequence of positive 

numbers converging monotonically upward to infinity. 

— = s   converges to some finite number, 
1 ak   n 

say s, then 
lim   i: .f. ^ =0 • 

Returning to (4.22). assume, without a loss of generality, 

that Nj^ = 1 .  Make the identification with Lemma 4.2.1, 

that 

k         3=1    J 

and 

^  "   akßk      * 

Therefore,   if 

ff a-\| 0        as n-»oo 
k-1 x (4.23) 

and   if 

k?!^^0^   P^J<  ^  ' (4-24) 

then    lim b   = 0  . n 

To show  (4.24),   note that     f^    is bounded.    Therefore,   it 

follows that 

K = l 
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IX < k-1 
and r Pv < °o  • 

lc»l K 

To  show   (4.23),  use the inequality,     e      2 i-x #   for all x  , 

to obtain 

n j   n 
Tl «v ^ exp ( J   (a. - 

k=l K llc^l    K 
1) 

Therefore it suffices to show that there exists an    N_     such 

that for all    n 2 N«  ,     cin ^ 1 #  and 

k=l K 
oo        as   n-»oo 

Now 

Since    M-^-^O   ,  one can assvune without loss of generality that 

for all    1c 

By hypothesis of theorem,  it immediately follows 

lim E[||wn-W*ll    ] = 0   . 
n-»oo 

To show convergence with probability one,  take condi- 

tional expectations to obtain, in an analogous fashion to (4.19), 

.*     n 2 *„2 
Ef"Wn+l-

Wn+lln (VWnl ^ «n^n"^"   + ßn 
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where    an    and    3n    are defined by   (4.20)  and   (4.21). 

Therefore 

lanl|wn-w;!l2 + ßn  . (4.25) 

Note that if   an £ 1    and    ßn « 0 ,   then one could use the 

martingale convergence theorem to prove convergence of 

(4.25).    However,    ^n ^ 0  •    The following lemma,  proven in 

Appendix C,   provides the necessary result to show convergence, 

4,2,2. Let     (je)     be a random process such that 

(i)     sup B[ |X.  |]   < » 
k K 

(ii)    B[Xk+1IXk Xj^J^^-a^     for all    k 

where     (a,}     is a  sequence of non-negative real numbers 

such that 

2a,   < u>  . 

Then with probability one. 

lim X,,  = X        where    E[ \x\]   < 

Make the  identification with  Lemma 4.2.2» 
,♦.•2 

and 
-xn=  ^n-Wn' 

3    = a     . ^n        n 

By  the  first part of this proof,   it has been shown that 
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«n^ 1 

n 
EP„< 

K-l 
00 

lim b^ s -• 0 . 

and 

Hence,     SnPE [ "wn" Wni'2J   < ^   •    Therefore, by Lemma 4.2.2, 

one has with probability one 

lim  IIWn-w;il2 «x^ , 

where 

Efix^n < co. 

To  show    x   =0  ,  use Fatou's   lemma   [61],  which states that 

Tlim xl  ^ lir 
^n-»oo    J        n-» 

lim E[Xn]   , 
00 

to obtain the chain of inequalities, 

0^ EFlim Ilwn-W*!|2l ^ lim Er||Wn-W*||2l = 0 . 

Thus,    lim llwn-W*||2 = 0    a.e. 
n-»oo 

This completes the proof of Theorem 4.2. 

Remark;     With    Fn(w)=W    and    Un = 0    for all    n ,   one has 

algorithm   (3.5)  in the stationary statistics case.     By the 

previous  theorem,   if 



 — i    ■■ i—^i^^. »^^^^^^B^—■■H—>——wyi» 

44 

M^     >   0 

2^. n 

2^2 < oo 

* 
then    W   -«W      in mean-square and with probability one   (see 

Appendix E).     These are the usual conditions required in 

the  stochastic approximation  literature  [l?]- [39].     However, 

one  important difference here  is  the additional variance 

term,   02'Wn~*'n       '   9iven *>¥   (3.10).   This term prevents the 

application of Dvoretzky's theorem  [35]   to  prove convergence. 

. 



V.     A WORST-CASE ANALYSIS 

Implicit in the analysis presented in the previous 

chapter is that the nonstationarity is known and can be 

modeled by the discrete-time system   (3.3).     If the nonsta- 

tionarity is unknown or cannot be modeled by   (3.3),   the 

results given in that chapter do not apply.     In this 

chapter, bounds are obtained for the asymptotic behavior 

of the adaptive system  (3.5) under mild restrictions on the 

optimum weight vector sequence     (w )   .    It should be empha- 

sized that the results given here are not limited to the 

nonstationarity model   (3.3). 

The three classes of nonstationarities considered are 

the bounded-increment, bounded-variation,   and bounded- 

optimum.    The bounded increment class is defined to consist 

of those sequences     {W }     for which 

lim sup E[||W*+1 - W*|I21   = A2 < oo    . {5>i) 

the bounded variation class is defined to consist of those 

sequences     {W )     for which 

lim   t tElK+l"  wkll2nai<«'    . (5.2) 
n-»ook=l 

and the bounded optimum class is defined to consist of 

those  sequences     [W   )     for which n- 

lim sup E[|lw* - W*|l  ]   = B2  < oo    , (53) 
n-»oo 

for some constant weight vector    WQ 

-45- 
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The emphasis of the analysis is for the algorithm (3.5) 

with Gn(W)=W; i.e., the original algorithm (3.1). However, 

the theorems stated have analogies to the more general 

algorithm (3.5).  (The extension to this case is straight- 

forward.)  The three major results given are by no means 

exhaustive of the possible situations that can be encountered 

Nevertheless, they do illustrate some basic approaches and 

philosophy for the handling of the nonstationary statistics 

problem. 

The analysis presented here is a worst- case analysis 

for (3.1) in the following sense.  Pick the convergence 

factor sequence  (^ ) (U-    could equal  M- for all n). 

For each of the three previously mentioned nonstationarities 

2 the corresponding  lim sup b  is the asymptotic bound on 
n-»oo # 

the supremum of E[ilW - W || ] over all possible input data 

pair sequences  ((d,,X. )]  that satisfy the conditions 

(3.6)- (3.10) for a specific choice of \ . ^ » 0i ' an(^ 02 ' 

(In general, a different sequence  {M- }  will result in a 

different choice of the sequence  f (^v»5^^ •  However, the 
2 

bound lim sup b  may remain unchanged.)  In other words, 
n-»<» 

within a given  set of constraints   (conditions   (3.6)-  (3.10) , 

[V-  V   ,   and  the  class of nonstationarity),   what is  the most 

raanevolent  thing  that nature can do  to the behavior of the 

algorithm   (3.1)   in terms of the sequence     (bn)   ? 



, r~. ^- ■ -  ■- ' i "■-'■  ■ ■ -  ■ ■ — 

47 

A.  NONSTATIONARITY OF THE BOUNDED-INCREMENT CLASS 

A surprising amount of information about the performance 

of the adaptive filter can be inferred from knowing only that 

the expected change in the norm of the optimum weight is 

bounded. This is sufficient to conclude that for suitable 

choices of the gain parameter M- , the optimum weight vector 

can be tracked within some finite distance.  The result is 

summarized by 

Theorem 5.1. For the adaptive filter system described in 

Chapter III with  Gn(W)=W , if 

lim sup E[||W*+1-W*||2] = A2 <.« , 

and 
2\ 

0 < M- < =   , 
>*   2 

then 

A + MO. 
lim sup b ^  - (5.4) 
n-»<» 

1-^1-2^+^  (A* + o2) 

Proof of Theorem 5.1. 

Starting from (3.5), with Gn(W) =W , subtract Wn+1 

from both sides to obtain 

Wn.Ll " W^Ll  " W« - W« " ^Zn - flC-Ll - Wn >  ' n+l  n+l   n  n   n   n+l  n 

Using the Minkowski inequality (4.3), one concludes 

bn+l^/
Efl|Wn-Wn-^nl|2l'+ ^ (5.5) 
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where 

Comparing (5.5) to (4.4) in the proof of Theorem 4.1, one 

has the conclusion (5.4) by direct analogy to (4.1) with 

f = 1 . 

This completes the proof of Theorem 5.1. 

It is interesting to note that by using the conclusion 

of this theorem, one can obtain a tighter bound by returning 

to its proof.  This observation is summarized by 

Corollary 5.1.1. Under the hypothesis of Theorem 5.1, 

lim sup b <-^-r + fU^A    +^4^       (5.6) 
n-»«  n  i-or yVi-or/   i-or 

where 

a2 = 1- 2H\ + ^(0, + ^* ) 

and 
o2   A2 ^ ..2^2 p  = A + M- O  . 

Proof of Corollary 5.1.1. 

Using 4.8) in (5.5), one obtains 

bn+l^ i*2*l+^    + An ' ^'^ 

where 
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a2  m  1- 2^+M.2(o^ +A*2) . 

Using the result proven in Appendix A, which states 

,2 = (lim sup b V lim sup b* ■ [lim sup b,,) 

and the conclusion of Theorem 5.1 that lim sup b  is finite, n n-»« 
one can conclude that for sufficiently large n 

bn+1i [a2(b*)2 + ^i2oJ],5 + A + e ,        (5.8) 

where 

b* ■ lim sup b^ 

and 

6 > 0   arbitrary . 

From (5.8) it follows directly that 

b* ^ [a2(b*)2 + ^2o2]J5 + A . (5.9) 

Solving for b* in (5.9), one obtains 

l-a2 Vll-a2i     l-a2 

A?- A2 

b*^-^+ /f-Aör+—^-r- (5-6) 

This completes the proof of Corollary 5.1.1. 

Remarkt  It has been argued by Widrow [49] that the "rate of 

adaptation is optimized when the loss of performance resulting 

from adapting too rapidly equals twice the loss in per- 

formance resulting from adapting too slowly."  Since the 



50 

rate of adaptation is inversely proportional to the 

gain-constant ^ [42]» an equivalent statement to the one 

above is, "the gain-constant M- is optimized when the loss 

of performance resulting from adapting too rapidly equals 

twice the loss in performance resulting from adapting too 

slowly." Under certain conditions, to be specified, this 

rule applies very closely to the bound (5.6), as shown by 

the following argument: 

Assume that b* (M-) , given by (5.6), is minimized with 

respect to V-    for 

2\ 
H « 

A*2 + O? 

For a value of ^ satisfying this condition one can consider 

the bound 

y     v2   M-o* 
(5.10) 

The component due to changes in the optimum weight vector is 

b™(M) "tf: - 

(Set o1 = 0.) The component due to noise in the gradient 

estimate is 

bMN<U' ' 

(Set  A=0.) 
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Express    b   (M-)    as 

b*(H)   -^(H)   +   /[^(H)l2  +  [b^(H)l2'  . (5.11) 

Taking the derivative of   b   (M-)    with respect to    M-    and 

setting equal tc zero,   one obtains 

2Kv'v]2-[CM2 • (5•12, 

where M-Q is the value of the gain constant M- which 

minimizes b*(M.) given by (5.11). Solving (5.12) for 

\i.Q    yields 

"°-^i (5.13) 

Hence, if 

2/3     X*    3r—p 

then the value of H given by (5.12) and (5.13) is close 

to the value of M- which minimizes the bound (5.6).  In 

other words, for a slowly varying environment, a good rule 

of thumb is pick the gain constant M- using Widrow's rule. 
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B.     NONSTATIONARITy OF THE  BOUNDED-VARIATION  CIASS 

It may readily be seen that Corollary 5.1.1 applies to 

the bounded variation problem since    2 A,, < »    implies 
k ^ 

A^ -» o .     However, within this class of nonstationarity is 

the stationary weight vector case,    W,   * W      for all    k  ,   and 

the asymptotically stationary weight vector case,     W,  -»W    . 

It will be shown that stochastic approximation algorithms 

(^n-»0)    can also be applied with success,  to these two cases. 

The result is  summarized by: 

Theorem 5.2.     For the adaptive algorithm given in Chapter III 

with    Gnrw)=W,   if the sequence     [\i  )     satisfy 

i)     ^>0 

ii)     2 u     =  oo 
n n 

iii)     2 nf < 
n n 

+ The  fact that    2||w*   ,  - W*||   < «>    implies   limWv»W    follows k+1 k-»0» 
froir  the  inequality   (m>n) , 

k=n 

and 

S<-<"-II5 <<+I-<>^XII<+I-< 

ytyM - <i -»0    as    n-»» 

Hence,  by the Cauchy convergence criterion [58],    W   ^ lim Wk Tc-»oo 

exists. 

i ■'- - -'--  — ■■■■ —- -— -■  m^mmm* ■ 
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and the sequence of optimum weight vectors     (w*) 

satisfy 

where 

then 

2 A    < 
n ^ 

\ =  "Vl - wn"  ' 
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and 

lim b* = 0 
n-»<» 

?/lim ||Wn - W*||  = o} 
|jl-»oo * J 

1. 

Proof of Theorem 5.2. 

Starting from    Wn+1 = Wn - ULn»n ,   subtract   W*+1    from 

both sides,   square,   and take expectations to obtain 

bn+l ^ anbn + ^Gl + ^E^n'<' Vn"! +4 

where 
2,^*' 

an " ^   2^* + lXn^       + 02, 

and b  and A^    are as before. Use the inequality 

(Appendix E) 

E[|x|] < 6 +^ E[x2] 

and (4.8) to conclude 

—  -     - --  —     
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{^yy^^fj^i^* 
Iterating backwards,  one gets the result 

2 
bn+ 

where 
4tf4*Kt[i44^' 

'{^)*i ak- i+?Hoi + 4 + eÄ
k- 

As done in the proof of Theorem 4.2,  one can use Kronecker's 

lemma   (Lemma 4.2.1),   to conclude that if 

00 

k»l 
and  for some    N 

Zßv < " 

i^}- 
then     lim b^ = 0   .     If n 

f    Mk = ^    ' 
k=l 

and 

k-1     k 
00 

then one has     JT^v^00«  Using the inequality    e~x ^ 1-x , 
k-1 K 

it  follows  for sufficient  large    N  , 

/ 
/ 

/ 
/ 

   ——i —— i ■ '■■    -     - ••"*<' 
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^".{■^'•(■4)('-v.)} 

(-Älv.^(.-v.)]} 1 exp 

2 
Thus, lim bn * 0 • 

The probability one result follows in a manner similar 

to Theorem 4.2. 

This completes the proof of Theorem 5.2. 

M     - r   -      MM -  --    - - -—■■.^—- i      i^  ■ !  i   ■■>■■ ■ 
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C.     NONSTATIONARITY OF THE BOUNDED OPTIMUM CLASS 

It is often the case that the optimum weight vector is 

known to lie within a p-dimensional hyper sphere.    For example, 

if the background noise field fluctuates about some average 

value,  the optimum will  fluctuate about a  fixed vector.    The 

following theorem gives an upper bound for the sequence 

fb  }     for this model, n 

Theorem 5.3. For the adaptive system described in Chapter II, 

if there exists a vector w« and a positive constant B 

such that 

lim sup |lw* - W*|l ^ B , n      "C n-»<» 

then 

/e + ^oj 
 1      (5.14) 

(l--^)[2\-^*   +o2
2)] 

where 

E 
.*2  2 A B 

0' "2 7" (5.15)      ' 

 -■— -— 
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Proof of Theorem 5.3. 

For  the model defined by the hypothesis   it  is  not 

possible  in general to bound directly the sequence     {b  )   . 

However,   by considering the  sequence     fc   }     defined by 

C*   =  E[^n-vO|2] 
2 

one can infer an upper bound for  fb ) .  The first step is 
2 

to obtain a recursive relation for sequence  {c ) . 

Subtracting WQ  from both sides of (3.5), squaring, and 

taking expectations, yields 

cn+l - 
Cn " 2^[CWn-wJ)\] + A[||Zn||2] . 

The second term on the R.H.S. may be bounded as follows, 

E[(Wn-W;)TZn] = E[(Wn-w;)TE[Zn|Wn#w;]] 

* T 
= E[(Wn-W0) Jn(Wn)] 

- ^n-V^n^ + E[(w;-w;)TJn{Wn)] 

>. V>2. 4(6+1 X* BV) . 

where by using the inequality   (Appendix D), 

E[ |x|] ^ |+~ E[x2]   ,     e>0    arbitrary, 

one has 

E[(w;-W;)TJn(Wn)] ^ E[||w;-W*|l!!Jn(Wn)||]l ^(e+^Vb2)    . 

Proceeding in an analogous manner to that in Theorem 4.1, 

one obtains 

■-——-    . . .     ...    .. 
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Therefore, 

where 

cn+l^
cn-   rl(e'bn + W* (5-16) 

r2(s) « ^ + AJ 

Note that    Ti (e)   >  0 provided that 

X*2  2 
e>  B_  Äe0(H)# (5.15) 

2\- ^(^*   +0^) 
and 

0 <  ^ < 
2\ 

x*2       2 
^      +ö2 

2 
To bound (5.16) in terms of c  , use the Minkowski inequality 

to conclude 

From this. 

n   -^ n -* n 

cn+l ^  [1" rl(6)lcn + 2Br1(s)cn - r1(e)B
2 + r2(e)   .  (5.17) 

From (5.17) conclude 

lim sup c < B + 
/r2(g) 
/ r1 (Zl   ' 

Hence, again by the Minkowski inequality, one obtains 

lim sup b < 2B + 
n_  'n-^^r^e) 

ZEIEI 

- - - - 
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Since    s^Sn    was arbitrary,  one can conclude 

lim sup b    <  2B 
/r2 (e) 

e>en\lri{e) (5.14) 

This completes the proof of Theorem 5.3. 

The following corollary gives a looser, but more 

tractable bound. 

Corollary 5.3.1. Under the hypothesis of Theorem 5.3 

lim sup b 
n-»"o 

*2 
2[2\-H(X  +0*)]  2[2X 

and 

lim lim sup b n ^ «(l ♦ ^1) 

(5.18) 

(5.19) 

Proof of Corollary 5.3.1. 

Let e = 2s0 in the original bound for lim sup bn 
n-»oo 

found in the proof of Theorem 5.3. After a little algebra, 

the desired result follows. 

This completes the proof of Corollary 5.3.1. 

The importance of the results given in this section is that 

they guarantee, in the mean-norm-squared sense, that if the 

optimum weight vector sequence (W } remains bounded about a 

vector WQ , then the algorithm (3.1) will yield estimates 

within a finite region about the true minima. 

. -'-'."■-A* 

- — - - — 
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VI.     AN  EXAMPLE 

The purpose of the example discussed in this chapter is 

to compare the  theoretical bound   (5.6)  with an experimental 

result obtained by using the  IMS adaptation algorithm  [42], 

WX+1 - Wk "   ^k (6.1) 

where 

•k " ** " Vk 

As shown in Appendix E,   the IMS adaptation algorithm is  a 

special case of algorithm   (3.5)  with    ^   (W)  = W    and  parameters 

and 

A. . i"f . 
n      9,in(Rn)   ' 

K  «  SUP A        (R   )   , 
* n      max1  n'   ' 

O?   =       ^EflKxxV  -   dXn)||2]    , n n n n n 

02  _       sup „HI« ~T       „   ii2 7E(iixx-Hnn. 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

where     A        (R   )     and    ^       (R  )     are the minimum and maximum min    n max    n 

eigenvalues of    R     ,   respectively. 

The criterion used to measure the performance of the 
2 

adaptive  filter is the excess mean-squared error    C      as 

defined by   (3.14).     Using   (3.15)  and   (5.6),   on has the bound 

M- or- A 

l-cT y/\l-az/ 1-a 
2        -v* lim sup c    <  * n 

n-»oo 

where  the  parameters are as defined  in Chapter V. 

-60- 
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The object of the adaptive filter wk in this example 

was to predict a random process (3^} one time-delay ahead 

using only the previous value,   i.e.. 

and 
\ = ^+1 

The data was generated according to the one-point autoregressive 

scheme 

where 
^ - Wi + vk 

x. m  input data value at time k 

\  - 0.2 sin 3^ + c 

7,   • white,   stationary,  Gaussian random process 
with zero mean and unit variance. 

The instantaneous error squared,      ^xv+i~wvxk^     » was 

averaged over 700 points  for each value of    u    used in the 

adaptation algorithm   (6.1).  Two experiments were conducted, 

one with    c = 0.0    and the other with    c = 0.5.    The resulting 

averages are shown as a  function of    M-    by the solid line 

in Figs.  6.1 and 6.2.     The corresponding theoretical bounds 

are given by the dashed  line in the figures. 

The discrepancy between the two curves can be accounted 

for by the following three observations.     First,  as pointed 

out in the previous chapter,  the theoretical bound is a 
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worst-case analysis.  In other words, the periodic nature 

of the time-variability of the data is not exploited by the 

bound. Second, the experimental curve corresponds to th^ 

aver ago mean-square error over a period while the bound 

corresponds to the maximum mean-square error during the 

period.  Last, the sequence of data pairs  ((dv'Xv))  is not 

an Independent sequence. 

The reason for the larger discrepancy in Fig. 6.2 than 

in Fig. 6.1 is due, in part, to the increase in the ratio 

A yA# and its effect on the bound (6.5). For the case 

c = 0.0 the ratio is given by 

^-1.04 

while for c«0.5, the ratio becomes 

i -1-™ • 
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VII.  CONCLUSION 

A.  SUMMARY OF RESULTS 

The research reported herein dealt with the convergence 

properties of stochastic gradient descent algorithms as 

applied to the sequential adaptation of array processors. 

In Chapter IV, sufficient conditions were derived for the 

convergence of these algorithms.  A new convergence theorem 

and proof for certain stochastic approximation algorithms 

(u -» 0 )  were presented.  These results serve as a guide 

for deciding whether to use a constant M- or a decreasing 

u  when the dynamics of the nonstationarity are known. 

However, in general, one has incomplete a priori information 

concerning the type of nonstationary environment to be 

encountered.  For this reason the worst-case analysis pre- 

sented in Chapter V is particularly informative as to the 

type of behavior to expect of the algorithm in general. 

Representative curves for the bounds derived in Chapter V 

for the three types of nrmstationarities considered there are 

shown in Fig. 7.1.  It should be emphasized that these 

bounds are of a worst-case nature. They are summarized by 

the three theorems: 

-64- 
< 

- ■  ■■ ■ - 
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Theoram 5.1     (Bounded Increment)     If 
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0 < H < 
2\ 

X*2       2 
and        W. n+1 " Wn" ^ * 

then 

lim «upEfllw  -wVi   < 
n-*« n      n1   J -^ 

A + M-o. 

1- /1-2^+H2^* + oh *f 
Corollary 5.1.1.   (Bounded Variation)    If 

(5.4) 

0 < ^ < 
2\ 

.•2 2 
and     £ A^ < 

k    K 

then 

lirn^up E(K.„'nfy ^ M-O? 

*2 2 2\ - H(^      + o*) 

.   (5.6) 

^g, - - -         -   .  — - . , -...,,  ,  
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u 
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Theorem 5.3   (Bounded Optimum)    If 
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2^ 
0 < ^ < 

*    + at 

and there exists some weight vector    W     such that o 

llw* - W*|| ^ B .  then 

11!;j,-up «tFwn-w;ii2^ 
min 

2B + €£€ 
€  + MO- 

X*2B2 *2       2 
2e 

2A B 

(5.14) 

2 
2M<J 

2B + 1. 
2 T / 2 

2\- M(X* +a| )     / 2\- ^(o2 + \*   ) 

where 

.*2 2 X    B* 

*2       2 2\- M(X    + o*) 

It should also be noted that the range of values  that    U 

can take in all three cases  is independent of the conditions 

placeJ on the optimum weight vector sequence    (Wn)   . 

, ^-——>^- ^ ~^-^.—^ 
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B.  OTHER APPLICATIONS OF THE ALGORITHM 

The algorithm developed in this research could equally 

well be applied to a number of problems in the system sciences 

such as system identification, process control, and pattern 

recognition when the underlying statistics are alllowed to 

vary in time.  A large number of authors [25]- [30] have 

considered the application of stochastic approximation theory 

to these problems in the stationary case, but rather limited 

consideration has been given to the time-varying problem 

[23]- [24]. 

■ - ■  
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C.      RECOMMENDATIONS   FOR  FURTHER WORK 

The following problem areas have been suggested by the 

research reported in this paper: 

i)    Although a mechanism has been demonstrated  for the 

behavior of the adaptive processor in non-stationary 

environments,  an optimum choice for the gain 

constant    M-    is impossible unless reasonably complete 

a priori knowledge of the nature of the time- 

variability is available.    A procedure for auto- 

matically adjusting    M-    is desirable.    An original 

algorithm,  based on the method of steepest descent, 

for adapting    M-    is found in Appendix F.     Even though 

the procedure has been shown to work well experi- 

mentally,  a theoretical proof of convergence would 

be desirable.     (The corresponding deterministic 

algorithm is discussed in Appendix G.) 

ii)    The analysis presented in this research did not 

exploit the  linearity property of the gradient 

J   (W)   .    By incorporating this additional property 

into the analysis,  one might be able to obtain 

tighter bounds on the system performance.     As an 

indication of how this might be done,   see Appendix H 

for a discussion of the scalar problem. 

-- ■ ■ - "  
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iii)    Much attention has been given to comparing 

stochastic approximation algorithms and the 

Kalmarv-Bucy filter [55]- [57].     The analysis 

presented here enlarges upon the problems  for 

which  the two methods can be compared.    A further 

elaboration on this topic could prove fruitful, 

since the algorithm   (3.5)   is computationally 

simpler to  implement than the corresponding 

Kalmarv-Bucy  filter.     For a   further discussion, 

see Appendix I. 

MWiHIB   
.-       .    -_  .     ,.   -  - 1 ■ 
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APPENDIX A 

A  LEMMA ON THE  LIMIT SUPERIOR 
FOR A SEQUENCE OF NON-NEGATIVE REAL NUMBERS 

The following lemma establishes an important algebraic 

property of the limit superior of a sequence of non-negative 

real numbers. 

Lemma.     Let    fx }    be a non-negative sequence of real 

numbers.    Define 

* 
x    = lim sup    x.. 

„     „ n 
n -»•• 

(X  )     =  lim sup    x^ 
n -♦ •• 

then 

(x2)* -   (X*)2 

Proof of the Lemma. 
2.* *. 2 Assume the contrary.     Let     (x )    <   (x  )     .     Let    a>0 

2   * 2 *   2 be such that     (x  )    < a    <   (x )     .    Now there exists an 
2 2  * N,     such that for all    n 2 N,    it follows    x* ^   (x )    + ei   » 

2 2  * where we let    €,= a    -   (x  )     .     This implies    x    < a   . 

But for all     e- >  0  ,   it is  the case that    x    >  x   -   e2 

* 
infinitely often.     Let    €2 = x  - a  .    Then    xn > a    infinitely 

often.     Hence,  a contradiction.    Now suppose that 

(x*)2 <   (x2)*   .     Let    a>0    be such that     (x*)2 < a2 <   (x2)*   . 

Since there exists an    N-    such that for all    n ^ N-    we 

-  - - 
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have xn ^ x + t3 where  €3 = a - x* . Thus,  xn < a . 

2     2 * iut for all e. > 0 we have x > (x ) - e. infinitely 

often.  Letting e4 » (x ) - a  we have x2 > a2 . Again, 

a contradiction. Thus, it must be the case that 

This completes the Proof of the Lenma. 

i 

• ■ 
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APPENDIX B 

PROOF OF KRONECKER'S LEMMA 

This appendix presents the proof of Kronecker's lemma 

stated in Chapter IV.  The lemma is: 

Lemma 4»2.L fKronecker)  Let (x^) be a sequence of real 

numbers.  Let  (a. ) be a sequence of positive numbers 

converging monotonically upward to infinity.  If 
n x. 
]jr — = s  converges to some finite number, say s , 

k=l \ 

then 

n-»»     n K=I 
lim 

Proof of Lemma 4^2ll. 

Before proving this lemma we need Abel's lemma on 

partial summation: 

Lemma   (Abel),     Let    (y )    and    [z )    be sequences.    Define 
n 

a^ -   T    y.    .     If    m > n ,  then 
n      k-1    k 

Y y .z.  =   (zs   -zs    ,)+   >     s.(z.-z..,) A-'i  1       v m m      n rv-1'       /-      3* ]       3+1' finl 3 

m-1 

Proof of Abel's Lemma. 

Noting that    y.  = s. - s._1 , we may write 



--1 ■ll1 <^^mmmmi^^^mrvm ■■■■■■■VMHMMP 

m m 

^Vi-^'TVr 

m in 

Z zjsj - Z zjsj-i 3=n 

z s m m 

3«n 

^ m-1 
+ &VD "   ^j.l-j "  ZnVl 

(Vm-  Vn-^  +^n
8j(Zj "  Zj+1) 

This completes the proof of Abel's lemma, 
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Defining    y^  =-^  ,  zj = aj   '   s0 ^ 0 '   ao"0'  we have bY 

Abel's  lemma 

|xXi ' anSn + JoSJ '^ - Vl'   • 
Using the identity 

^S'Vi-V-1 
n j=iO 

we may write 

ti^-tS""-8!'^!- V • 
n 

To  show   —   Y, *'     converges  to zero,   we use the repeated 
n j=l ^ 

application of the triangle inequality to obtain 

-Ex.     <-^   J"   |s   - s. |(a.   . -a.) 
ln j.l  3    * «n DV  n      ^       ^       3 



WJ   II.      II    .T.   Jl       Ul^.- ^l.lir^.   ■        ■■^■■.-■. —— ■l.l»ll»    ■! I 

75 

Since    s      converges to some finite number    s  ,  there exists 

some integer    N,    such that for all    n,m>N1    we have 

js^-s^l < E/2   .    Therefore,   for    n>N1 , 1 n      m 1 

■i      n 

^ xi 'n D=0  J 

»j-1 

an ]=0      n 

n 

■jK-i+i-'j' *-2rnZ "j+i-V 

H-l 

^t^O   ^n-^1'^-3!' +t 
Since a  converges monotonically to infinity, there exists 

an N- > 1^ , such that for n^ N- 

v1 

n ]=0 

Therefore,   for    n 2 N2 

T: .L I'n-'iK'i+i-'i' <e/2 • 

t^|^+U4(aj+1'aj 

-^ 2 +  2       e   * 

Hence,   for sufficiently large    n    we can make 
n 

arbitrarily small. 

This completes the proof of Kronecker's  lemma. 

'nMXi 
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APPENDIX   C 

A MARTINGAI^ CONVERGENCE THEOREM 

The purpose of this appendix is to prove the following 

lemma,  needed in the proof of Theorem 4.2. 

4.2.2.    Let (fi,5,P)    be a probability space.     Let 

(X  ,     )    be a stochastic sequence on     (fl, ?, P),   with 

j   c. 5F   .,   •    Let    (a^)    be a sequence of non-negative 

real numbers.    Assume the following conditions hold 

(HI)     sup E[|Xjj   < oo 
k K 

00 

(H2)      Z a.   < co 

(H3)    £[^^1^] 2 Xj^-a^        for all k      a.e. 

Then, 

limX„=Xm     where    E[|x   I]   <«      a.e. 
n-»<» 

Remark;   If    ^ ■ 0    for a^1    ^  »   then by the basic martingale 

convergence theorem  fcl] ,  the above conclusion follows. 

The effect of the    a.     is to translate the    X^ . 
00 

Since I« a,   < ^ ,  one should  expect the above lemma. 
1 ^ 

We now formalize this observation. 

Proof of the Lemma. 
00 

Define ^ = ^ - T,   *£•       Note that  ^'^k'  is a 

submartingale since 
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E[Zk+l'V   =E k+i- ^=k+l ^ Jk 

= E[Xk+l'
5k]  "      E.,3 

i«k+l 

00 

^-&•'■**• 

t follows iimnediately that 

Etl^ll   < Efl^l]   +   f.*t< sup EtlxJ]   +   f ai 

and by the martingale convergence theorem  [61] # 

lim Z. = Z   and E[ (z |] < «  a.e. 
,      K     oo 'oo 

00 

Since JT a.    converges by the monotone convergence theorem, 

it must be the case that 

lim X.   = X a.e. 
k-»oo   ^ 

00 

Moreover,   since    X    =Z    +   V a.    .  ET |X   1]   < »  . 
00 00 T^^T      K 00 

ThJs completes the proof of the  lemma. 

■ --      n--'-   ■ — — - 
!■ I       I      II-'-   ■      -   
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APPENDIX D 

AN INEQUALITY BETWEEN THE ABSOLUTE MOMENTS APOUT ZERO 
OF ORDER 1 AND ORDER 2 

An inequality useful in proving convergence theorems 

is 

Lemma.  Let x be a random variable on some probability 

space  (nff#P).  Then, for all e > 0 

Etlxli <;|+ lUali- 

Proof of the Lemma. 

The trick is to note that for all    a > 0    and    c > 0 

Letting    a •  {E[|x|  ])^ ,  we can obtain 

}s(€ +-iE[|x|2]    >   {EUXI2])*5    . 

Applying the Cauchy-Schwarz  inequality   (p=2  in Holder's 

inequality) we obtain the desired result, 

| +  Eli£li.2Er|x|]    . 

This  completes the proof of the lemma. 

— ■    ■■■ I     ■■■■MM ^^^M^^^^^^^^^M^^   
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APPENDIX E 

SOME ADAPTATION ALGORITHMS 

Examples of some specific adaptation algorithms which 

are members of the class of iterative procedures defined by 

(3.5) will be given in this appendix. 

A.  A STOCHASTIC APPROXIMATION ALGORITHM 

If the statistics of the filtering problem are wide-sense 

stationary (i.e.,  Rn *
R and pn= P fo1 a11 n ^ tlie 

stochastic approximation algorithm suggested by Gardner [21 ] 

for estimating W  based on the data set 

Ud^) :k=l,2....n) ^ Ud^X^J , 

is given by 

Wn+1 = 
wn + VnXn ' ^'^ 

where 

n-1 Wn is the estimate of W  based on  [(dv,Xv)) 
T 

en = dn - WnXn = the error between the desired filter 

output and actual filter output at time n 

M'n = gain or weighting constant at time n . 

For the stationary problem, the model for the optimum 

weight vector given by (3.3) becomes 

Wn+1 = ^n* ' 

where for all W 

^l -- -■ -■ 
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Fn(W) - W ; 

i.e., for all n 

*      * A  * Wn+1 = W1 = W  . 

Thus, the algorithm (E.l) is of the correct form to apply 

Theorem 4.2 to show convergence of the sequence  (W )  to 

* A W  .  All that one has to do is verify that Y = -e X n n n 
satisfies   (3.9)  and   (3.10). 

The conditions under which    Y      satisfies   (3.9)  and n 
(3.10) will be derived in Section C.    Both the Gaussian and 

non-Gaussian cases will be considered  there. 

B.     CONSTANT - U ALGORITHMS 

If the statistics of the problem are not stationary,  the 

algorithm given by Widrow [42]   for estimating    W    .    based 

on the data set     ^\'\^i    is 

Wn+1 =Wn + ^nXn (E'2) 

where 

Wn is the estimate of W* based on  f (d^X.))?" .n-1 

.T. 
en = dn - WnXn = the error between the desired output 

and actual output at time n 

u = gain or weighting constant. 

MMMMUMBAl 
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Although this algorithm is similar to (E.l) , note that the 

gain constant is no longer a function of time. This enables 

the IMS  algorithm (E.2> to tracX a rather general sequence 

of weight vectors fw*) .  (See Chapter V.) 

In many applications, the desired response sequence 

fd )  is not available. This is the case, for example, with 

the filtering problem, where the desired response is the 

unknown signal. However, if the correlation matrix P  is 

known, Griffiths [44] has suggested the modified algorithm 

Wn+1 =
Wn- ^nxn- V <E-3) 

where 

T yn ■ WnXn m output of adaptive filter. 

With this algorithm, one does not need the desired response 

to be able to adjust the filter. 

Widrow, .et _al.   [43 ] have proposed an alternate procedure 

for supplying training signals while simultaneously processing 

the received signal.    Griffiths   [44 ]  showed this approach 

is equivalent to his algorithm, 

Wn+1 = Wn" ^V^n + ß2c (CX" V) ]   ' (E•4, 

where the matrix C is related to the spatial characteristics 

of the array and V controls the temporal characteristics. 

»M«IM 
"-H-  ■ 
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2 
By allowing p  to become large, the sequence  {W } 

converges in the mean-value to the maximum-likelihood weight 

vector 

W* m R~ ^ {CTR~ ^f ^V  . 

Kelly [7 ] has shown that when the data pairs  (d, »x,) 

are jointly Gaussian, the maximum-likelihood weight vector 

is also the weight vector which minimizes output power 

2 T E[yn] subject to the linear constraint C W = V . Rosen 

[10] has developed a gradient projection method for 

iteratively computing this constrained weight vector.  Lacoss 

[40] has extended the technique to the stochastic design 

problem.  Frost [48] has modified this procedure for imple- 

mentation on a digital computer.  Frost's procedure automa- 

tically corrects for quantization errors introduced in the 

constraint equation during adaptation. 

The algorithm suggested by Frost is 

Wn+1 • 
P^n- ^nV +Q (E.5) 

where 

T  -IT 
P = I- C(C C) xc 

Q = c^cT-V 

and the optimum weight vector is given by 

■ ■ ■ - 
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* _ 1 T—1       —1 
W     =  R   •LC(C1R  ■LC)   -"-V   . 

Mathematically,   algorithm   (E.5)   is equivalent to the algorithm 

Wn+1 =  P(Wn-UynXn + HRW*)   + Q (E.6) 

it 
since     PRW   =0   .     This algorithm satisfies   (3.5)  with 

Gn(W)   ^ EW + Q   . 

Note also that   W      satisfies 

* * 
W    = IW   +Q  . 

Hence, the model (3.3) applies with 

and 

Fn(W) « iw + Q , 

UnS0 ' 

Convergence of (E.6) implies convergence of (E.5). 

The convergence analysis of the algorithms given in 

this section for the stationary statistics problem follows 

from Corollary 4.1.1 where the relevant parameters are found 

in a fashion similar to that done in Section C for the 

stochastic approximation algorithm (E.l).  The behavior of 

(E.2- E.6) for the nonstationary problem may be obtained by 

reference to the results in Chapter V.  It should be noted 

that these results are far more general than any previous 

convergence analysis for (E.2-E.6) [42]- [48]. 

■ IM ,, -- — 



—mmmim^* "■'    " 

84 

C.    Sufficient Conditions for Convergence of Stochastic 

Approximation Algorithm 

1.    General Non-Gaussian Case 

To verify   (3.ft),   note that,  by the  independent samples 

assumption for     [(d^.X^))   ,    Wn    and     (dn'
X

n)    are independent, 

Hence, 

E[YJW -W*]   = E[X xVlw,,^*]  -   B[d X   (WW,W*] n'  n" n n n'  n 

£[XnX„]w„ - E[d X ] n n    n n n 

RW   -  RW n 

- J<V • 

n n' n 

To verify (3.19)   use the chain of inequalities. 

(XnXn-R)^n-W*)- VX " dnXn>"" 

£ 11! (xnx;- R) (wn- w ) || + || (xnxjw - dnxn) || ] 

*II2 ,T. * <, 2ii.(xnx*-R)riiwn-w r+2ii(xnx*w -dnxn)r, 

to show that by the  independent samples  assumption 

E[||Yn- J(Wn)||2|Wn,W*] ^ O2  +  o2||Wn-W*||2   , 

where 

and 

ol  =  2E[l|(XnXy-dnXn)||2] 

02  = 2E[ll(XnXn" R),i   ]    * 

. - ——UM - ■    -     -     
i ■■mill—  in •   "  - . ^.-.   ..-..^-.l 
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Therefore, by Theorem 4.2,  under the independent data pairs 

assumption and existing moments of order  four,   the     [w } 

given by  (E.l)  converge with probability one and in mean- 

square to    W      if    fnn)     satisfy the usual conditions. 

(i)     ^n > 0 

(ii)    2 U     « « n 
(iii)     2 M-2   < «  . n 

2.     Gaussian Case 

If,   in addition to  the assumptions given in part 1, 

one assumes that the data pair   (dn#x  )     is  jointly Gaussian, 
2 2 he can obtain tighter bounds  for    o|    and    a     .    This  is 

shown by the  following argument. 

By the independent samples assumption it  follows that 

E[ || (XnX^- R) (Wn- W*) ||2 |Wn,W*] 

=    (Wn- W*)TE[(XnX^-R)2] (Wn-W*)    . 

Senne   [46]   has shown that if    X      is Gaussian,   then 

E[(Xnx£-R)2]   = R2+R tr(R}   , 

where 

tr{R)   =   f r..  = trace of    R   . 
Al " 

Therefore, 

Er||(XnX^R)(Wn.W   )ll2|Wn,Wl<Amax(Amax+tr{R))||Wn-W*ll2   , 

 -„ M     - -.   , - ■ - —          -   - " ' ' 
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where  \__v  is the maximum eigenvalue of R . 

Define 

*       T * 
sn - d - X^W  . n   n  n 

Since the data pair     (dn*xn)    are jointly Gaussian,   it 

follows that any linear combination is Gaussian  [    ] .     In 
* 

particular,     en    is Gaussian.    Moreover,   since by definition 

of    W*   , 

E[e*Xn]   = 0 = E[e*]E[Xn]   , 

it  follows   [     ]   that    e       and    X      are independent.     Hence, 

s      and any function of    X      are independent   [    ] .    Therefore, 

E[ (XnXy - dnXn)T(XnxJ- R) (Wn- W*) |Wn,W*] 

=  Ers;jE[X^(XnxJ-R)](Wn-W*) 

and 

= 0  , 

E(||XnxJ**-dnXn)||2|Wn.W*]    =  E[(6*)2]E[||Xn||2] 

=    (tr{R))|(W  )   . 

Hence, 

E[||Yn- J(Wn)||2|Wn.W*]   < e(W*)[tr(R}] 

+   ^max+\naxtrfR*n-W*"2   ' 

M-mitu     ^-.. — .^.^^ . -      -    - -     ■ ■ ■   - - 
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APPENDIX F 

TIME-VARYING ADAPTATION ALGORITHM 

One of the major problems connected with using the 

IMS adaptation algorithm , 

Wn+1 =
Wn+ ^nXn ' ^'^ 

discussed in Appendix E is the choice of M- to use during 

adaptation. Without any a priori knowledge of the time- 

varying characteristics of the data, one would like an 

algorithm which automatically seeks out the optimum value 

of M- without resorting to a random trial-and-error method. 

The following algorithm was originally suggested by the 

author to accomplish this task^ 

n+i   n   n n n 

K    - ^n-l + Äe,v.ienXLlX« (F*2) n   n^ 1    n-1 n n-l n 

The reasoning behind the above scheme is as follows. 

Consider (P.l)  without regard to how M-  is chosen.  Since 
2 

e  ,  is a function of '* ■. , which in turn depends on the 

sequence  fM-.} , one would be led to pick ^„.i  according to 

^n+1  ^n  2  dÜ~ 
2 n 

where  k" ■-  is the gradient of e
n+1 with respect to 

n 
V-    .  Evaluating the gradient. 
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de_ 
_  e2       =  2e ^n+1 

oi-       n+1        "-  n+1       oM n n 

- 2en+l   (dn+l "  xn+l 
Wn+1> 

T     b 
2en+l Xn+1 ( üTT Wn+1 ) 

n 

n+1 n+l dl-L    n   n n n n 

= -2enen+l Xn+lXn 

we obtain the algorithm 

^+1 n    n n+i n n+l 

While most of the time this algorithm did perform 

quite well under experimental conditions, there were 

instances for which it did diverge.  The reason for this 

behavior is that the value of  ^  to be used 

depends upon the initial weight vector W. .  This is 

demonstrated by the following example. 

V 

Example. 

The deterministic adaptation algorithm equivalent to 

(F.l) and (F.2) is given by 

^n = ^j + ^ Z (i>-l)Z(n) (P.3) 

Z(n+1) = [I - UnR] Z(n) (F.4) 

where  Z(n)  is related to W(n)  by 

^^^,^^^1 
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Z(n)  = R(W{n)  -  W*) 

R = covariance matrix of the  input data   (which  is 
assumed  to be stationary for  this example) 

W* = optimum   finite-dimensional  linear estimator. 

We shall consider the case with 

Z (n)  = z1(n) 

z2(n)l 

r      Öl 

.0      rj 
(r>0) 

Then, our algorithm becomes 

^n m ^n-l + xf1-^n-lr)(zl(n"1) +zltn-1)) 

zi(n+l) «= (1- M.nr)zi(n) iBl#2 

Defining 

a(n) = 1- \inx 

ß «= Ar 

we can write the above algorithm in the form 

a(n) = a(n-l) - ßa(n-l) (zj (n-1) + z^fn-l) 

zi(n+l) = a(n)zi (n) 1 = 1,2 

Letting    z, (1) =!Z2(1)   , we can further simplify to 

a2(n) = a2(n-l) (1-2ßzj;(n-l))2 

z2(n+l)  = a2(n)z2(n) 

If    z2(l)  = "^      and    nj^O     (a(l) = l)    where    €>0  ,  then 

- 

----■■ 
. -    - 
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a2 (2) = (l + 2e)2 

zl(3) = "^ (1+2e)2 

a2(3) = (1 + 2€)2[1- 2(1 + 2€)2(1 + €)12 

i (l + 2e)3 

etc. 

2 2 with a (n) -♦ » as n-»oo .  Hence zf (n) -»oo as n-+00 . 

Thus, the choice of X (or  ß above) for stability of the 

algorithm does depend on initial conditions. 
End of Example. 

is it possible to modify the time-varying algorithm such that 

initial conditions no longer govern the stability of the processor? 

The argument to be presented for modifying the deterministic 

gradient procedure suggests that the stability of the corres- 

ponding 1HS  time-varying algorithm is independent of initial 

conditions.  No theoretical proof is available as yet to support 

this conjecture; however the experimental results at the conclusion 

of this argument do support this hypothesis. 

An important reason for why the stability of the method of 

steepest descent algorithm doesn't depend on initial conditions 

is linearity.  Although the modified algorithm can't be made 

linear, the norm of Z(n)  can almost be made linear by updating 

u  according to 

* • 1 *  /-v ■ For the determinstic gradient procedure when the ratio  A /A^    IS 
less  than two,   convergence can be proven.  See Appendix G for a proof. 
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llz(n-l)||2 

The algorithm then becomes 

ZT(n- 1)[I -  ^L^J^ R]   Z(n-l) 
Un " ^     i +  *  (F.5) 

n 1 IIZ(n.l)!|2 

Z(n+1)  =  [I-nnRl   Z(n)     . (F.6) 

The corresponding stochastic algorithm is 

e (n)        XT(n) X (n-1) 
Un C ^1 + ' "^^        ||X(r>.l)||2 (F-7) 

W(n+1)  = W(n) - nne(n)X(n) (F.8) 

where 

e (n)  ■ difference between desired output and actual output 

of adaptive filter 

X(n)  = data vector at time    n 

The stochastic algorithm can be further modified by observing 

a  few properties of the deterministic algorithm,   the idea being 

that we want the stochastic algorithm to behave   in as deterministic a 

way as possible without knowledge of the j* priori statistics of 

the problem.    Define 

ar>.l e 

Z^1 R Z(n-l) 

IIZ(n-l)!I2 

and note 

^an-l < A* 

. 

11 
 ^._ - ... .^ ..-^.■.--.-.   .    --...., 



1    ' "'W I <<<< I "•" IIW . . ■jwum  ii muwmmmmmmmmmm 

92 

where 

^^ » smallest eigenvalue of R 

\ « largest eigenvalue of R 

The algorithm for M^  becomes n 

%'Vi^'i-ViVi' 

I* ^n.! > 0 , we have 

W^viVi^Vi 
For convergence we want 

which implies 

o^ Wx^^Vi^ 2 

^ViVilÜ 

by the previous inequality. 

This suggests the further modification in the stochastic 

algorithm: 

anc1 

where 

u.     + xf- 'Jak- xT'n> JS'0-1)  l1 

L
 J-l 

W(n+1)  » W(n) - nne(n) X(n) 

b        y > *> 

[yjj   ^     y        a < y < b 

a        y^ a 

K     is some constant    < 2A* 

K 

(F.q) 

(F.10) 

  n 
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Since X* is in general unknown, the choice of K would appear 

to be a problem. However, experimental evidence suggests that 

the choice of K is relatively unimportant (the results 

presented here used K = « ). This is not really too surprising, 

for if \i    becomes too large we should expect the quantity 

,fn)   XT(n)X(n-l) 
e{n-l) IX(n-l) 

to be biased negatively.    Thus    p.    would tend to become smaller. 

The following set of experiments have been conducted on the 

IBM 1130 to determine the behavior of the stochastic algorithm. 

The data was generated according to the one-point autoregressive 

scheme 

xt = at-i Vi + vt 

where 

x. = data value at time t 

at « b 8in(wt) + c 

v. B white, stationary, gaussian random variable with 

variance one and zero mean. 

The purpose of the adaptation filter was to predict the process 

(x.) one-point ahead of time. Figs. F.l and F.2 show the mean-squre- 

error of the prediction filter as a function of the initial choice 

n        for M^ for various values of X ( b ( w , and c . The averages 

were computed over 700 points after 3800 adaptations.  It should 

be recalled that for X = 0 , one has the basic IMS adaptation 

algorithm. 

Ma»-.  ^ ^^^.— . . 
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Mean-square 
Error 

4 

1.20 

1.15 i 

1.10 

1.05   J 

.01 

A.O 

■■II 
.05 

*= .001 

^ = . 0005 

^ 

Fig. F.l.  Mean-squared Error for Time-varying Algorithm: 

b=0.4 c=0.5 w'1=200 

■■--- -  —■  --■—-^ - ■-.— ,-..-  ._ ■ 
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Mean-square 
Error 

1.10J 

1.05 

1.00 
i  i  i • 1   i 1   i 

•01 .05 

^ = 0.01 

X = 0 

A «0.005 
* = 0.001 

.09 
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Fig. F.2. Mean-squared Error for Time-varying Algorithm: 

b=0.2 c=0.5        w"1=200 

    .  ». ■. 
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It is  easy to  show,   just by repeating the argument 

given  for  the  IMS adaptation algorithm,   that the 

algorithm given  by 

W    ,   = W    -  M. Y n+1        n n n (3.5) 

can be modified to yield 

n   r>-1 

T 
Wl 
'n-l1 

+1 

-1 

Other schemes for varying the step-size are discussed in 

the references [30 ] - (32 ] . 

. ■ -   
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APPENDIX G 

A DISCUSSION OF THE DETERMINISTIC 

TIME-VARYING ADAPTATION ALGORITHM OF APPENDIX F 

The purpose of this appendix is to discuss the deterministic 

time-varying adaptation algorithm developed in Appendix F. 

First,   a convergence theorem: 

Theorem.     Let the sequence of vectors     (Z  )    be generated 

by the pair of recursive relations 

^ = ^wi  +  A —- N ^ tf"'5) n        n-1 M,,       n 2 ,!z. n-11 

Vl-^-V^n (F-6) 

where R is a positive-definite, symmetric matrix with 
* 

eigenvalues lying in the interval  [0<A#, A <«] . 

If ^A* < 2 ,  0 < A < 1/X* , and 0^ [i1  , then 

lim W„ = W* . n n-»oo 

* 
Remark.  Since R is positive definite and z

n = R(wn"
w ) » 

the convergence of Zn to 0 is equivalent to 

lim w =W 

Proof of Theorem. 

The first step is to derive sufficient conditions on 

the sequence    {M.  )     for convergence of   (F.6).     Note that 

■ 

■ -     -■     ...,_.....,_.»^^„»„mji 
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!lzn+1lli lli-^RllllzJI 

<!    TT III- M. R||l II2L. 

for some    N > 1  .    Now    ||l-nnR|| < 1    if,   say,   for some    6 >0 

_2.. 

for sufficiently large n . Hence. 

^^T^f-^ (G.l) 
A 

n-»ooLk«N 

and consequently. 

- n 
lim    TT III- H^RII    m o 
n-^ooLk-N K   . 

lim Zw « 0 . _ n n-»oo 

To verify that the    ^      generated according to   (F.5)   satisfy 

(G.l)   for sufficiently large    n  ,   proceed as follows. 

Note that   (F.5) may be written 

^n -   ^-'VlJVl^ 

where 
ZnRZn 

n       i!„   112 llzjl- 

JL Therefore,   if    0^ ^ <   -*f      and    n.     .2 0  ,   then 

0<   (1- ^A*)^n_1+A ^ .^^   (1- ^W)tin,1 + A   .        (G.2) 

Consequently,   if    M^2 0  »  then   (G.2) holds  for all    n  . 

Upon successive iteration,  one obtains 

0< (1- AA*)n-1(u1-:i)+^^ Un^ (i-^\)n"1(^1-^;)+t7 

-—"        - -      -     - ---■' "  -  ■■ ^^-^--^.   „..^  .^^--.J.--.J-..-    - 
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Hence, if 0<A<—r , then for all E>0 there exists an 
A 

N  such that n2 N^  implies 

4-e^^n^-f+e. (G.3) 
A * 

X* 
Let r =Y~ • Then, 

^-6^^ + e- 

Since    l<r<2    by hypothesis,   for any    0<e < *-¥■    there 

exists a    6 > 0  ,   namely 

6   -      j- -   6 
A 

such that (G.l) is satisfied for sufficiently large n . Hence, 

lim Z = 0 . 
n-»» 

This completes the proof of the theorem. 

An interesting question arises at this point.     By 

changing    M-    according to   (F.5),   is the rate of convergence 

of   (F.6)  increased over that of using a constant    M-= A  ? 

A partial answer is given by the following argument.    Note 

that 

l|Zn+1l|2  =   ||(I- AR)Znl|2+ (1- S^^llRZ^II2 

-2(l-Aarv_1)Vlz;R(I-AR)Zn   . 

Therefore,   if 

2(1- ^^^Rd- *R)Zn  >  (1- ^n-l,2^lllRZn-ll|2   '    W 
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then the rate of convergence of the sequence (Z ) has been 

speeded up by changing the step size ^ .  If 0 < A <-^ , 

then one can write (G.4) as 

This inequality holds if for all the eigenvalues of R , 

A. , it is the case 

2Ai > [(1- 
Aary.1)^n.1+2A]A? 

or 

■^^ t(l-AaB.1)Hn.1 + 2X] . 

From the proof of the theorem, if M-. ^ -5*- , then ^ < "jp 

for all  n .  Consequently« 

(1~ ?Van-imn-l + 2A-^   (l-^\)^- + 2A 

1 + AA. * x— 
Hence,   if 

1     * 

the rate of convergence has been increased.  Since 

1   A 

for all     1 .< i ü P »  a sufficient condition for speed-up is 



or 

Therefore one wants 

and 

-   1 

^ 

t<2 

0<^t     ' 

0 < ^  < min 
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It would appear that these conditions are far too 

restrictive for  the speed-up conditions.     In Fig.  G.l is 

plotted the convergence curves obtained experimentally for 

the case where the ratio    A /h^    is equal to    8(A   =1)   . 
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APPENDIX H 

AN ALTERNATE ANALYSIS OF ADAPTIVE ESTIMATION 
IN NONSTATIONARY ENVIRONMENTS 

In the text we considered a state-space representation 

for the dynamic model of nonstationary statistics,  other 

models could also be developed.  In this appendix, a 

first-order two-state Markov model will be considered for 

the single weight case.  The results obtained will be 

shown to apply to more general scalar models. 

The problem to be discussed is defined as follows.  Let 

the sequence  (w ) be defined by 

where 

and 

wn+l - 
wn- ^n 

yn = r(wn-w;)+zn 

E[2n|wn,w;]   = 0 

E[znlwn'wnJ   = öl + ^K'^ 

* ... w    m least-mean-square-weight at time    n 

An example of this type of algorithm is the IMS adaptation 

algorithm discussed in Appendix E when the input data pair 

sequence is an independent Gaussian random process with 

Et*2nK'"*rJ   =EfxnJ   = r 

and 

E^V<xn)2J   =öl/r 

E[(x2-r)2|wn,w;]   =a2 

; 
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Let the optimum weights  {wn) be generated by a first- 

order N-state Markov process with transition probability 

matrix  P = ^Pi-J •  If» at time n , the Markov process is 
* 

in state i , then wn « ^ .  The steady-state probability 

vector is given by 

where 

* 
TT.   * steady-state probability that    w  ■ qp.   . 

As an example,   consider the two-state Markov process 

shown in Fig.  H.l.     If at time    n    the Markov process is in 

state 1   (indicated by    ^i ) »   then    w   •* <?,   ;     if at time    n , 

the Markov process  is in state 2   (indicated by    ^ ^ '  t^en 

w   ■ T-  .    The transition probability matrix is given by 

'11 

J21 

'12 

'22 

1-p 

1-q 

The  steady-state probability vector is given by  f60] 

To demonstrate  the tracking ability of the algorithm, 

consider  first the random process  fw ) defined by 

wn+l " ^i-^n-V   ' 

i.e.,   the  noiseless  gradient descent with     zri * 0  •  T*16 

2 * 2 
behavior of    b    = Eflv,'   -w_||  )     is summarized by n n     n 
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M     »i 

qp i     prob   ni * M 

K- 

*2       Prob     n2  - Fi 

Fig.  H.l.    Two-state Markov process. 

. 
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Theorem 1. Define the random process  (w ) by 

wn+l '"n-^^n-O 

* 2 
where w1 is arbitrary subject to EfCw.-w.) ] < « . 

r  *i     . lwnJ    xs a stationary random process with finite second 

moment.     If    0 < Mr < 2  ,   then 

limb*.Um   (Mr)2X    £  (1-Mr)i+3E[ (w*      w*) (w*        *) j 
n-»oo   n    n-»» £=0 j=0 3-+d    ■L      :,+2    1 

Proof of the Theorem 1 . 

Note that by successive iterations, the algorithm can 

be written 

wn+l-d- (l-^)n(w1-w;+1)+urji(l-nr)n-i(w*-qpk) . 

Thus, if  |l-ur|<l, then 

bn+l 
= Enwn+1-w;+1)

2] 

= ü(n)+(nr)2f  f (l-Ur)2n-i-jE[(w*-w* ^(w^-w* ,)] 1=1 ;.SB1 i   n+x       j        n+x 

* 
where  lim 0(n) «0 .  By the stationarity of  [w ] one has 

n-»oo 

Ef(wi-wn+l
)(wj-wn+l

)^ = Er(d+2-
wI)(w^j+2-

wI)] ' 
2 

By re-indexing the expression for b i , one obtains the 

result 

bn+l " 0(n)+ ^^   ^ L   (l-^)1+:,c(i,j| , 
iio j=0 

where 
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c(i,j) = E[ (wi+2-
wi) (wj+2" ^^ • 

The conclusion of the theorem follows immediately. 

This completes the proof of Theorem 1. 

It should be emphasized that this theorem holds for any 

stationary random process  (wn) with finite second moment. 

The following corollary gives one a way of evaluating the 

expression when: 

Corollary 1.  If the  {wn)  are generated by an N-state, 

first-order, stationa 

as in Theorem 1, then 

first-order, stationary Markov process and  (w )  are 

lim b2= mr)2 r1,g1(l^r)i+^Tri-p3+l.pi+l+pU-J(]q, 

where 

?. (ywj 
and pyj' is an element of p'11 = P • • •  p 

m factors 

Proof of Corollary 1. 

The corollary follows immediately from: 

Lemma.  Let (e ) be a first-order, M-state, stationary 

Markov process with transition matrix P= fPj^) • 

Let the elements of  (P)m be denoted by P^^  . Define 

■ 
■ ■. 
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and 

Then 

? V, = state vector, 

rN 

Ef9n+m0nl   "  ^ &** 

Proof of the  Lenma. 

By straightforward calculation 

N      N 
Ef9n+menJ   = ^ ^ W^n+m = \ ' 0n ^P 

N       N (m) 
: Äi l^v.^ 

=  qpT(P)mqp   . 

This completes the proof of the  lemma. 

Noting that the  [ • ]  operation is  linear,   it follows 

immediately  that 

rtlrt.1 
lim b* = lim   (ur)2 T'T'd-nr)1^^^-?^1-^^? ,i-j,l ? 
 n   — i-oj=o L J 

)2 = lim   "-'2 

n-» oo n-»00 

or by symmetry 
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lim b* = lim (nr n )2^151a-^)i+^Tri.2Pi^+P
,i-^lq) 

i=0 D =0 L J 

This completes the proof of Corollary 1. 

The following corollary provides a nice example of the 

tracking ability of the algorithm. 

Corollary 2. Under the assumptions of Corollary 1 for the 

two-state Markov process considered in Fig. 1, 

U^n^lVV V2 (2.^r)[^;P:^q) ; (pfq)] 

Proof of Corollary 2. 

Using the result  [    ],     P^sa W2      -"2 
-TT, TTi 

,  one has 

I- P i+1 _pj+l + p|i-jl =ri-ai+1-a
i+1 + a'i-j'] 7r2      -7r2 

L"^ V lm 

where    a ■ 1-p-q  .    Therefore,  by Corollary 1, 

n^l n^l 
lim b* = (M.r 

1 2     -L    2    n-»ooi=o j=0 

The only term of any difficulty in evaluating is 

n-1 n-1 

n-*oo i=0 j=0 

Defining    ß = l-tir  ,   one can show 
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i=0 j=0 j.-^i)   i_ ß2 j—7n-l)     1-ß2 

where 

V    ^-ili._L_/;+2(ae)a^M^] 
j=-7r>-l)     1-ß^ 1-ß^ ^ 1-aß     J 

and 

j—Tn-l)    1- 

2riCil[ Jj 

^— / i + 2ßn (aSn (aß) ^ ^— -r<l+2ß"(aß"{aß) 
1-ß2   1 ß-a 

a 
ß' 

-§ 
2n 

1-ß' 
(2n- 1) 

Ö^a 

ß=a 

in the limit as    n-*oo , 

iv-1 n-1 
lim     Z    J]   a'^'ß^.^.^ 
n-oo   i=o  j=0 x    aP       1-ß2 

Thus,   it  follows after some algebra   that 

lim b2  = 7r,7r_ (q>. - q).)2 ?(F*q) 
n-»» n  ~  "1  2VU     ^2'      (2- ^r) (Hr(l-p-q) + (pfq)   * 

This completes the proof of the corollary. 

The expected squared distance between the optimum 

constant weight and the  (w }  is given by 

, *, * 
Corollary 3.  Let  [w J be as in Corollary 2.     Let w0 be 

r   *    * 2-i that constant weight which minimizes E[ (w - wn) J . n "0' 

Then 

-   ■- 
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and 

w0 = 7r1q)1 + 7r2qp2 

E[ (w* - wj)2] =7r 

Proof of Corollary 3. 

It  is a well-known result   [61]   that the constant which 

minimizes    E[{x-a)  ]     is 

Therefore, 

a » E[x]   . 

w0 = Tr191 + 7r2(P2 

and 

E[(w*-wJ)2]   = 7r1(
(P1-^1-^2

<P2)
2 + 7r2(^2-7r1

(P1-7r2T2)
2 

~ Tr1Tr2iV1~ V2)     • 

This completes the proof of Corollary 3. 

Define 

P(U)  = lim b2 - E[(w*-w*)2] 'n    w0j 

In Fig. H.2 is plotted  IM  
E[(w;-w*)2] 

for three values of 

p + q   .     It should be noted  that when this  expression is 

negative,   the     fwn}    has  smaller misadjustment than is 

possible with any  fixed weight vector. 

.. 

  i  - ■ -- 
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Adding noise to the gradient estimate, as originally 

discussed, one has 

Theorem 2. Define the random process  [w ) by 

n+l   n   ""n 

where 

yn - r(wn- w*) + zn 

where    z^    satisfies the three conditions n 

E[znlwn'w^   m 0 

Efznlwn'w^  sö? + 02(wn-  wn)2 

E[ziZj]   = 0       i^j 

Let the random process     fw )    be  stationary with  finite 

second moment.     If    0< u <   <?^
r -     ,   then 

r^ + o* 

limbg=      rllz^Ü       (ur)2 lim
I£lrZ1a-vr)i+lc(i.i) 

n-»« 2r-M.(r   +a*) n-»oo i=o  j=0 

M-Oj 
+  • 

2r- u(r2 + a2) 

Proof of Theorem 2. 

Proceeding as  in the proof of Theorom 1, 

n 
wn+l-

wn+l= (l-^)n(w1-w;+1)+uXi(l-^)n-i[r(w*-w;+1)- z.] 
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Squaring and  taking the expectation yields 

n      n 
<+1 = 0(n)+ ^r)2^   Zi(l-^)2n-i^E[(w%w;+1)(w*-w;+1)] 

n ,2(n-i)r„2_2,2. 
ffl L   1       2  iJ 

From this expression a lower and an upper bound on the (b2) 

may be obtained. After a little algebra it can be shown 

that both bounds are equal and given by 

2r-u(r +o*) n-»« i=o j«0 

M-o! 

2   2   ' 2r- U(r^ + o*) 

where 

C(i,j) = E^wi+2" wi)(wj>2'Wl^ 

This completes the proof of Theorem 2 

For the two-state Markov process previously considered 

we have plotted 

 Lftü _ 
Enwn-w0) ] 

for the noisy gradient case with    0=0.     The effect of the 

gradient noise,     z     ,   is to  increase the misadjustment and 

decrease  the magnitude of the optimum    |i    to use  for a given 
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(p#q)  pair.  This is strikingly evident by comparing the 

graphs of the noiseless gradient descent procedure (Fig. H.2) 

with the noisy gradient descent procedure (Fig. H.3) 

* 
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APPENDIX   I 

THE  ADAPTATION ALGORITHM AS A  FILTER 

This appendix is concerned with looking at the time- 

varying  filtering problem  from an entirely different viewpoint 

than that of the text.     It will be shown how the adaptation 

algorithm   (3.5)   can be used as a   filter.    The performance of 

this  system will be compared  to the optimum Kaiman system for 

a scalar  filtering problem. 

A.      PROBLEM  STATEMENT AND  ASSUMPTIONS 

It will be assumed that the target signal and noise  field 

can be modeled by the dynamic systems 

0s(n+l)  - Fses(n)+ GsUs(n) (I.la) 

S(n)   = Hs 9s(n) + ys(n) (I.lb) 

and 

eN(n+l)  = FNeN(n)+ GNUN(n) (1:2a) 

N(n)   = HjjöjjCn) + vN(n) (1.2b) 

where    9S    and    9N    are the state-vectors,     Fs    and    F      are 

known matrices,     U«    and    UN    are random vector inputs of 

T zero mean satisfying    E[US (n)Us (m)]   = Qgö       , 

E[UN(n)UjJ(m)]   = QJJ^ ,    E[UN(n)l£(m)]   = 0 ,     Gs    and    GN are 

known shaping matrices, HL and H^ are known output matrices. 

V- and VN are random noise vectors of zero mean satisfying 

E[Vs(n)v£(m)] = Rgi^ ,  E[VN(n)vJ(m)] = R^ö^  , 

E[VS (n)VN(m)] ■ 0 , and S(n) and N(n) are the signal 

■ ■'.Ä>^ii*fctaf-.Ji^» 
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and noise components present on the array sensors at time n . 

The received vector at time n is X(n) =S(n)+N(n) (see 

Fig. 1.1). Note the change in notation from that presented in 

the test.  It will aslo be assumed that V-, # VM f U_ # and U.T are 
s   N   S        N 

mutually independent Gaussian random vectors. This is the usual 

Kaiman model for dynamic linear discrete-time random processes. 

For the combined system model, (I.la), (I.lb), (1.2a), and 

(I.2b), one has 

9(n+l) - Fe(n) + GU(n) (1.3a) 

X(n) - H0(n) + V(n) (1.3b) 

where B(n) 0s(n) 

9N(n) 

F N 

G m 

N 

U(n) Us(n) 

UN(n) 

H [HS   <] 
V(n) « Vs(n) + VN(n) 
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This  system,    (1.3a)   and   (I.3b)#   is  shown in Fig.   1.2. 

The problem is to determine the  filter    fw(n+l,j):j=l,2,..n} 

which minimizes 

E[||S(n+l)-S(n+l|n)||2J 

where S (n+1 |n)  is the estimate of S(n+1) given by 

(1.4) 

S (n+1 |n) = ?W(n+l.j)X(j) . 
j=l 

The S(n+l|n) minimizing (1.4) is called the minimum-variance 

estimator of S(n+1) . 

B.  THE OPTIMUM RECURSIVE ESTIMATION FILTER 

As shown in [57] # the minimum-variance estimator of 

S(n+1) , denoted from here on by S (n+1 (n) , is given by 

S(n+l|n) = H0(n+l|n) (1.5) 

where 

H - [H8 0] (1.6) 

and    d (n+1 |n)     is the minimum-variance estimator of    0(n+l) 

given the observations    X(1),X(2),.. .,X(n)   . 

The optimal Kaiman recursive linear filter for estimating 

9 (n) based on the observations X(l) ,X(2),.. .X(n-l) is given 

by   [55] - [57] 

e(n+i |n)   . Flp(n)HT|lP(n)HT + Rf1cx(n)-H§ (n|i>-l))) +g(n|n-l)| 

P(n+1)   = F rP(n)- P(n)HT(HP(n)HT + R)' 1 HP(n)j 

(1.7a) 

PT + GQGT   (1.7b) 



■•■ — ■ ■   ■       " 
 ■  '  ■•■   —-^-^  .p.^....,-.-., ..,    . ■_    ... ™-  

121 

5 
25 

m 

0) 

(0 

<N 

H 



ii wmmmmmm '.l11'1 

122 

where 0(n|n-l)  is the minimum-variance estimate of 0 (n) 

given the data observations X (1) #X(2), .. .X(n-l) .  p(n)  is 

the error covariance matrix at time n defined by 

P(n) = EUe(n)-^(n|n-l)j (eO*)-9(n|r>.lA 

An equivalent form for the Kaiman filter given by (1.7a) and (1.7b) is 

0(n+l|n) = Fb(n|n-l)-K(nHHg(nin-l)-X(n)jl     (1.8a) 

P(n+1) - F[I-K(n)H]P(n)FT + GQGT 

K(n) = P(n)HT(HP(n)HT + R)"  . 

(I.8b) 

(I.8c) 

(See Fig. 1.3). 

C.  A RECURSIVE FEEDBACK FILTER BASED ON THE ADAPTATION 

ALGORITHM 

Consider now a suboptimum approach for estimating S (n) 

based on the observations X(l) ,X(2),.. .,X(n-l) . The idea 

is to  first estimate    H   (n)    by    ea (n)   ,  say.    The estimate 
9 S 

of S(n) will be defined by 

S(n) = Hg0s(n) . (1.9) 

In analogy to   (2.3),  define the mean-squared error at  time    n 

by     . 

t    Ä E(||S(n)- S(n)||2]   . (1.10) n 

Using (I.lb) and (1.9) in (I.10), one has the expression 

ln = E[l(H8[08(n)-0s(n)] + Vg(n)||
2] (1.11) 

-■ ■   ——— 
  ■ ■ - - 

 :.—       ■       -■     
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An unbiased estimate of the gradient of  (I.11) with respect 

to    0g(n)    is given by 

Ys (n)  « H^Hg[es (n) - 9S (n)]  - l£va (n) 

HgfS^) -  S(n)J. (1.12) 

The corresponding algorithm for estimating 0 (n+1) , based 

on the method of steepest descent, is 

0s(n+l) - P8[es(n) - HnY8(n)J (1.13) 

This algorithm is of the form (3.5) in the text. 

Note that the algorithm (1.13) requires knowledge of 

either ds(n)  or S(n)  in addition to the signal model 

parameters.  If the object were to estimate d.(n) based on 

S(1),...S (n-1) , this restriction would be acceptable. 

However, in general, one does not know the signal sequence 

fS(k))  . 

Suppose we estimate the total state vector 0 (n) by 

0  . The estimate of S(n) will be defined by 

S(n) « H0 n (1.14) 

where H is given by (1.6).  Define the mean-squared error 

at time n by 

^n £ E[||X(n) - X(n)|(
2] 

where 

■■■ • - -    ■ - -— 

__ 
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X(n)  = H9n    . 

Proceeding as above, the algorithm for estimating 9 (n+1) is 

gn+l 
Ä F^n- W ^•15) 

where 

Yn =  HTH[en-9n]   -   HTVn 

= HTH9n -   HTXn   . (1.16) 

Comparing (1.15) with the Kaiman filter (I.8a), one should 

note that they are equivalent if 

K(n) = |inH
T . 

(See Figs. 1.3 and 1.4.) 

The performance of the filter given by (1.15) and 

(1.16) is summarized by: 

Theorem 1.  Let  (9n) be as defined by (1.15) and (1.16) 

with M.n = M. .  If 

NL^-^J < 1 + 

then 

U».upB[||Sn-enl|2I   <      ^trfFHV1 ± ttlSflsL 
»-»» "        " 1- XMxrF(I"ltH H)I 

t        2 ^ .„(A)  is defined to be the maximum eigenvalue of the max    T 
matrix A A . 

  ■     ■        ■                - - ■- - -* 
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Proof of the Theorem. 

Subtracting 9n+1 from both sides of (1.15) one obtains 

*n+l- 
9n+l = W- ^«J ^n- 9n) ^FH

TVn- GUn .   (1.18) 

Defining 

Bn = En9n-0n)(Sn-»n)
T] 

it can be easily shown from (1.17) that 

Bn+1 = F[I - HHTH] Bn[I - HHTH]FT 

+ ti2FHTRHFT + GQGT . 

Hence, 

4"'rt>n+lJ   *  "^ "^n 

where 

trfBr,xJ   = trCATABn}   +  H2trfFHTRHFT}   +  trfGQGT}        (1.19) 

A  = F[I -   UHTH] 

If    |(ATA|(  < 1  ,   or    A2
av(A)  < 1 ,   then max 

trfB^)   < A2
;,v(A)trfBn}+   ^2trfFHTRHFT)+tr{GQGT)   . 'n+lJ ^   "max^'^^n 

Hence,   it follows 

li» »up tr(Bj  <    ^trfFHWl^trfGflG7] (I.17) 

1-X^X(A) 

This completes the proof of the theorem. 

    II ■■( Ill  Mill  !■■  ■■■II      IIIMIIH.. M .1..      II l>l 
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Remark;    A tighter bound can be obtained starting from 

where 

Bn+1 " ABnAi + S 

S   ■  ^2FHTRHFT + GQGT 

It can be shovm that if ^X(A) < 1  ,   then  [Bn)    converges 

to some matrix,   say    B  .       Hence, 

B « ABA* + 8   . 

Taking the trace, we conclude 

trfB) - tr(ABAT) + tr(S) 

trfATAB} + tr(8) 

and consequently 

trfB) < trfS] 

W1-*1*) 
(1.20) 

Remark;    The corresponding result for the Kaiman filter is 

P     « F[P   - P HT(HP HT + R)"1HP  ]FT + GQGT   . (1.21) 
oo '■oooo'co 00J " 

In general, no way has yet been bound to compare these two 

results. However, the following scalar example does provide 

an interesting comparison. 

t This result is a direct consequence of fixed-point theory   [58] 
as applied to the vector space of matrices with the norm on 
this  space defined by    /TWA^AT 

■KB 
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D.  COMPARISON OF KAIMAN AND SUBOPTIMUM FILTERS 

Let 6n    be the signal at time n generated according 

to 

n+i    n   n 

and let x  be the received signal at time n given by 

n   n   n 

By (1.8a), (1.8b), and (1.8c), the Kaiman estimates are given by 

K+l - * 'n-(^)(9„--„) 

n+l 
0       Pnr „ y2 —n_ 

P + r ^ q n 

and by   (1.15) and   (1.16),   the suboptimum estimates 

§n+l - ^V ^n "  *„" 
2^2. 

'n+l = 7'(1- M-)' bn +  PL'Y*r + q   . 

The resulting steady-state solutions are 

2    Pcor 

oo P   + r      ^ 
00 

b    = ^272r + q 

1- 72(1- ^)2 
72(1- ^)2 <1 

Using the  M- which minimizes the expression for b 

b (M- 4.) = P . 
w  Opt      oo 

. 

I MfciiMMaU^MT^-^   -'  -    ■ ^ ■ ■ ■- ■ ■-■—«-■■ h  ■  
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E.  CHOOSING THE  U   FOR SUBOPTIMUM FILTER 

The convergence rate of the filter (1.15) can be improved 

by using a sequence fu ) rather than a constant gain u . 

T In fact, as pointed out earlier, if K(n) «M- H  then the n 

Kaiman and IMS filters are equivalent.  Since this in general 

will not be the case, how does one pick a good sequence (u } ? 

An answer to this question is found by referring back to 

(1.19) and minimizing the R-H-S with respect to U .  (This 

procedure is an extension of that given by Chein and Fu [23] .) 

This yields 

tr{FTFHTHBn) 
Mn =  ST^f §  (1.22) 

trfF1FH1 (HB^1 + R)H) 

with the resulting recursive relation 

_        (trfFTFHTHBn))
2 T 

tr[Bn+1) = tr{F
TFBn) -  =r-T S  + trfGQG1) . 

n+1 "    tr [FTFHT (HBnH
T + R) H} 

For the scalar problem considered in the previous example, 

the u  found by using (1.22) are given by 

n  b,, + r n 

and the optimum K(n)  are 

K(n) =^7 
n 

Thus, if bi = Pi # then p.n = K(n)  for this scalar problem. 

It is also interesting to note that the choice of M-_ doesn't 

depend on knowledge of G or Q . 

 — ■        ■ 
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P.     FURTHER COMPARISONS OF THE  TWO  FILTERS 

Some further comparisons can be obtained if we assume 

Q = 0   .    For then the Kaiman result is 

P    =  F[P   - P HT(HP HT + R)"1HP   ]FT 

and consequently 

P = 0 
00 

The adaptive feedback filter yields 

lim lim sup E[||e- 9nll2] » 0 
|i-»0  n-»» 

provided \Ia,,(F)<l .  Thus, in the limit both filters can 
InclX 

be made to perform arbitrary close to each other.  The 

previous example with q = 0 and 7=1 provides a nice 

comparison. 

Example. 

Let q = 0 and 7=1  in the previous example.  Assume 

p. =b, .  The corresponding recursive equations are 

pnr 

P.     ^— 
n+1  p

n + 
r 

bn+1= (l-^)
2bn + U

2r 

As shown in Appendix J, 

Plr 
n+l  nP. + r 

■, 

mm—mamija+mtm^ttam^m^-^m,,,,          — -    -        -        _ — 
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and 

In Fig. 1.5 we have compared    Pn    and    bn     for two values of 

M.   when    P1 = b, = r = 1  . 

Future research into the comparison of the two filters 

would be desirable. Although the adaptive algorithm is 

suboptimal, it has the advantage of being computationally 

simpler. Also, less a priori statistics are needed to apply 

this filter, the Gaussian assumption is not necessary, and 

the theory presented can easily be extended to a non-linear 

dynamic system, to name only a few advantages of the adaptive 

algorithm. 
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APPENDIX J 

TWO RECURSIVE RELATIONS 

The purpose of this appendix is to derive two recursive 

relations needed in Appendix I. They are summarized by the 

following lemma. 

Lemma.  Let  {a }  be a sequence of non-negative real numbers 

Let a and ß be two positive real constants with 

a < 1 .  Then, 

ßan 
<*> if an=I^fß    n^1 

a
lß 

then    an+l 
a l^Tß     '   and 

(ii)   if    an = aan + ß n^ 1 

then    an+1 = ct^ + ß i^ 

Proof of the Lemma. 

(i)    Assume that 

a.P 
n "   (n-l)a1 + ß 

■ ..n.i.iii i    i rn i       II        r n   II I   I      1   i   n. i ...i i   iiimn»       -—■ -    - 
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Then 

n+1      an + ß 

^ 
(n-l)a1 + ß a^ 

(n-l)a1 + ß    + ß 

ß^j^ (n-l)a1 + ß 

(n-l)a1 + ß  ' a1ß + ß(n-l)a1 + ß: 

ßa^ 
na^^ + ß   * 

This  is the assumed form of the relation.     It is easily 

verified that    a,    and    a-    satisfy the formula.    Hence, 

by induction,  the desired result follows  for all    n  . 

(ii)    Assume 

an " a       al + ß     1-a 

Then 

a     .   ■ eta    + 0 n+1 n      H 

.„^1.^9 1^1] 

^nai + e^ir  • 

This  is the assumed form of the relation.     It is easily 

verified that a.  and a.  satisfy the  formula.     Hence, by 

     -^— |.        ._>. .... .   ■.-.-..■ ^- 
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induction,   the desired result  follows for all    n 

This completes the proof of the Lemma. 

 - Ml 
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