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The purpose of this research is to develop an
analyze a gradient-descent surface-searching al-
gorithm for automatically adjusting (adapting) the
parameters of a linear tapped-delay-line array
processor in order to improve its performance in
an unknown ¢ ing environment./ tracking
ability of this aorithm is demondtrated when th
characteristics of the nonstationarity are such
that the optimum parameter sequence can be mocdele
as a first-order Markov process with a known tran
ition function. A worst-case analysis of the
algorithm is presented for three types of non-
stationarities vhen the above model for the non-
stationarity is not applicable.

The techniques developed in analyzing the
above algorithm provide a powerful approach for t + #
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further study of gradient-descent algorithms used |in se
unknown, nonstationary surfaces. Among the most don-
sequences are:
1) the removal of the usual assumption that |the
data be Jointly Gaussian;
11) the development of a new convergence thedrem
for a dynamic stochastic approximation algorithm,
thereby extending a branch of stochastic appro tion
theory to the analysis of adaptive processors in gon-
stationary statistics;
111) the enlargement of the class of problems |for
which stochastic approximation algorithms, adaptiye
estimation algorithms, and the Kalman-Bucy theory|can
be compared.

Also presented in an appendix is a procedure
for automatically adjusting the convergence fac-
tor. Some experimental results are presented.
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e problem considered in this report is to find the vector of weights W minimizing

E([a(t) - 'wa(t.)la} subject to linear equality constraints on W, where X(t) is a
vector of random variables measured at time t and d(t) is a random variable related
to X(t). This 1s a classical problem in linear estimation theory, except that the
statistics of the random variables are assumed unknown and must be learned through ob-
servations. A computationally simple procedure, called the Constrained Least-Mean-
Squares slgorithm, 1s proposed for processing the observations and 1s shown to con-
verge to the optimal linear processor. The algorithm is useful in real-time
modeling, filtering, and estimation, particularly in cases where the optimal time-
varying linear processor (e.g., Kalman filter) cannot be used because of computational
complexity or lack of necessary information about the system. Special attention is
given to real-time processing of data from an array of sensors, and it is shown that
the Constrained Least-Mean-Squares algorithm permits implementation of an array pro-
cessor thet requires very little a priori statistical information.

PART II

. the classical deeign of processors for sensor arrays whose purpose is signal de-
mection and estimation, a receiver is optimized on the basis of the a priori knowledge
of the statistics of its input signals. However, wheu the a priori knowledge is not
available, the re ceiver's performance can still be improved by performing measurements
n its input signals and incorporating this new information into its design. Such re-

celvers are called adaptive. (contd. on back)
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FOREWORD

This is a Final Report under Contract NOOO24-69-C-1430, covering
a period of research from 27 June 1969 to 30 April 1970. The report

consists of two parts:

Part I, by O. L. Frost, III, is based on his Ph.D. thesis. The
principal contribution is a new adaptive algorithm for minimizing mean-
square-error in an adaptive processor which simultaneously subjects the
welght-vector components to a linear equality constraint. When applied
to adaptive -"rrays, this algorithm allows one to obtain precise control
of the array frequency response and gain level in the "look direction"
while minimizing mean-square-error. Frost's algorithm is probably the
best yet devised for adaptive arrays.

Part II, by James Edward Brown, III, is based on his Ph.D. thesis.
This work is highly theoretical and presents a framework for mathemati-
cal analysis of adaptive processors when subjected to changing (non-
stationary) signal and noise fields. For various adaptive algorithms,
rate of convergence and variance of the weight vectors are analyzed.
This work is general, and applicable to a wide variety of adaptive

signal processors.

James Edward Brown, III

i1 SEL-71-00k




PART I.

ADAPTIVE LEAST SQUARES OPTIMIZATION !
SUBJECT TO LINEAR EQUALITY CONSTRAINTS
by
Otis Lamont Frost, III

ABSTRACT

The problem considered in this report is to find the vector of
veights W minimizing E(fd(t) - WTX(t)le} subject to linear equality
constraints on W, where X(t) i1s a vector of random variables 5
measured at time t and d(t) is a random variable related to X(t). ]
This is a classical problem in liﬁepr estimation theory, except that
the statistics of the random variables are assumed unknown and must be
learned through observations. A computationally simple procedure,
called the Constrained Least-Mean-Squares algorithm, is proposed for

processing the observations and is shown to converge to the optimal

Lo

linear processor.

The algorithm is useful in real-time modeling, filtering, and
estimation, particularly in cases where the optimal time-varying linear
| processor (e.g., Kalman filter) cannot be used because of computational
complexity or lack of necessary information about the system. Special
attention is given to real-time processing of data from an array of sensors,
and it is shoyn that the Constrained Least-Mean-Squares algorithm permits
implementation of an array processor that requires very little a priori
E statistical information.

114 SEL-T1-00k4
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I. INTRODUCTION

This paper presents a simple algorithm for minimizing
a quadratic cost criterion subject to linear equality
constraints. The technique, called the "Constrained-Least-
Mean Squares" or "Constrained IMS" algorithm is an iterative,
stochastic gradient-descent algorithm with low memory
requirements. Computationally, it is simple enough that for
a variety of practical problems it can be implemented in
real time on a small general-purpose computer.

The algorithm is applicable to problems in least squares
filtering, estimation, modeling, and others which may
properly be viewed as linear-constrained quadratic optimi-
zation problems. Specific examples treated in the paper
include real-time minimum-variance unbiased estimation,
consistent modeling that includes known linear constraints
on the model parameters, and real-time processing of data
from an array of antennas or other sensors. The constrained
least-mean-squares approach is particularly interesting in

the estimation and array processing applications because

it requires very little a priori information for implementation.

The rate of convergence of the algorithm is studied and
its steady-state performance is compared with the optimum.
A gain constant is shown to control a tradeoff between fastest
convergence rate and best steady-state performance. By
suitable choice of gain the steady-state performance of the

algorithm can be made arbitrarily close to the performance

-1-
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of the osptimum least-squares filter.

Previous work on unconstrained least-squares array
processing was done by Griffiths [12]; his method requires
knowledge of second-order signal statistics. Widrow,
et al. [30] proposed a variable-criterion optimization
procedure involving the use of a known training signal;
this was a direct application of the original work on adaptive
filters done by Widrow and Hoff [29]. Griffiths also
proposed a constrained least-mean-squares processor not |

requiring a priori knowledge of the signal statistics [11];

a new derivation of this processor, given in Appendix A,

) shows that it may be considered as putting "soft" constraints ’

on the processor via the quadratic penalty function method. .
"Hard" (i.e., exactly)-constfained iterative optimi-

] zation was studied by Rosen [23] for the deterministic case.

; Lacoss [14] and Booker [1l] studied "hard"-constrained

| stochastic optimization in the array processing context.

All three authors used "gradient projection" techniques;

Rosen and Booker correctly indicate that gradient prcjection

methods are susceptible to cumulative roundoff errors and

are not suitable for long runs without an additional error-

correction procedure. The Constrained IMS algorithm is
designed to avoid error accumulation while maintaing a

"hard" constraint; as a result, it is able to operate con-

tinually in order to track an environment that may be slowly

time-varying. Discussion of gradient-projection methods and




a comparison of the error-correcting properties of the two
algorithms is given in Section VII.

In the following section, the general constrained
least-mean-squares problem is formulated as a theorem and
the optimal solution is derived under the assumption that
all the relevant statistics of the problem are known.
Several corollaries applying to interesting special cases
are drawn. The optimal solution is seen to be computationally
difficult, requiring a number of matrix multiplications and
inversions. In Section III, the computationally simple
Constrained IMS algorithm is derived that converges to the
optimal solution while learning the statistics of the problem.
This algorithm and studies of its properties is the principal
result of this thesis. Special forms of the general algorithm
are used to solve particular problems. Remaining sections
are concerned with geometrical interpretation of the algorithm,

its performance, applications, and computer simulations.
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II. CONSTRAINED LEAST-MEAN-SQUARES OPTIMIZATION

A. Notation

In this paper a vector is taken to be a column vector.

The superscript T denotes transpose. The expected value
of a quantity (Q) is denotedby E{Q) or Q. The matrix of ;
correlations between two vectors of random variabies, |
A and B , is written E[ABT] = R ; the vector of corre-

lations between a vector X and a scalar d is written

E{xd) = RXd . A vector of zeros of arbitrary dimension is

6 and thematrix of zeros is 0

B. The General Problem and Optimal Solution

There are two purposes for this section. The first is to
define the general constrained least-mean-squares problem and
derive the optimal solution. This solution could be obtained
directly if one knew the problem statistics beforehand. It
will be shown later that the Constrained IMS algorithm converges
to this solution and can be used when the problem statistics
are unknown. The second purpose is to show that several inte-
resting and important problems can be put in the framework of
the general constrained IMS problem and therefore are solvable
by the algorithm.

Let X be a vector of n pbserved data points,

XT = (xl,xz, .. .,xn) , that are drawn from a distribucion with

E(xxT} =

%0( . Let 4 be a random variable correlated with X

by an n-dimensional correlation vector R?(d . In this section

-4-
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Rxx and RXd are assumed known. Let W be an n-dimensional
vector of weightings that will be applied to X to estimate
d . Let the estimate of d be

y & wix , (2.1)

and the error between d and the estimate be

e fay . (2.2)
The constrained least-mean-squares optimization problem is
to find the weight vector W, that minimizes the expected
squared error in the estimate,
2
)

E{e?) = E{fd- y]?]) = E[d- WX] (2.3)

subject to certain linear equality constraints on W .

The reason for placing constraints on W was suggested
in the introduction and will be made clear in the applications.
In general, m linear equality constraints (with n >m) are

c Fl = f ’ i=l,2,-.o’m r} (2.4)
i i

where each ¢y is an n-dimensional vector and each fi is a
scalar constant. This is a set of m simultaneous equations
which the n components of W must satisfy, but since m<n,
the equations do not completely determine or totally constrain
W . Therefore W can be optimized, to minimize a mean square
error, subect to the linear constraint (2.4). It is well
known that by requiring W to satisfy c'fw==fi for any
single i restricts W to lie in an (n-1l)-dimensional hype€r-

plane. Similarly, it is shown in Section IV that constraining
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W to satisfy the m equations of (2.4) restricts W to

Y if the vectors c¢; are linearly

an (n-m)-dimensional plane i

independent. To express the constraints in matrix notation

define
: m > 1
TT £,
A A f2
C = € G .--Cpfn, §= - |- (2.5)
1
- r =

The constraint matrix C is (nxm) with n>m . It will
be assumed that the constraint vectors c; are linearly
independent so that by the definition of rank as the number
of linearly independent columns of a matrix, C has full

rank equal to m . The constraints (2.4) are now written
Cw =¥ . (2.6)

The problem is summarized and the solution is given in the

form of a theoren.

Theorem 1. (Constrained Linear Least-Mean-Squares Optimi-
zation) lLet d be a random variable and X be an

n—dimensional vector of random variables with known

correlation matrices

*Other names for an "r-dimensional plane" are "linear variety"

and "Linear manifold".

i " s i e 4 iR i Ba e e e e




E{(xX7} = Ry  (nxn)

E{xd} = Ryq (nx1)

and R’O( positive-definite. The optimum constrained

least-mean-squares weight vector solving

minimize E([d- WTX] 2]

T (2.7)
subject to CW =9

where C is an (nxm) matrix (n >m) of full rank and

¥ 1s an m-vector, is

w, = [1- p"olcc (cTn;&C)’lcT]xg'olcl&d+1§OIIC(CTR;°1(C)'15.(2.8)

The optimum constrained linear least~mean-squares estimate

of 4 is y=w'fx.

Proof of Theorem 1.

The proof uses the method of Lagrange multipliers,

which is basic to the later development of the major algorithm

and another proof. A geometrical interpretation of Lagrange

multipliers expressed in the context of this work is pre-

sented in Appendix E.

The cost function is J(W)

E{[d-w'x]?)

E(a%) - 2 E(W'Xd) + E[WI XX W)

= E(d%) - 2WTRxd + prxxw .(2.9)



Including a factor of % to simplify later arithmetic, adjoin
the constraint function to the cost function by a

m-dimensionai vector of undetermined Lagrange multipliers A :
HW) = 53W) + AT(CTw-§)
T T T
= 4[Ea®- 2WTR  +WR W] + AT(CTW-%) . (2.10)

The necessary conditions for optimality are

va(W) =6 , (2.11)
and
cTw =5 . (2.12)

Taking the gradient of (2.10) with respect to W
VW) = «Roq + Rxxw*-+ck = 0 (2.13)
and solving for the optimal weight vector

W, = ReyRyg = Rk (2.14)

where R;; exists because Ry, was assumed positive

definite. Since W, must satisfy the constraint (2.12)

cTw, = ¥ = TR IR, - TR ZCM (2.15)
and from (2.15) A is found to be
T-1.-1,T-1
M= [CRCI TICRGRyy - F1 . (2.16)

It is shown in Appendix C that the existence of [CTK;;C]'I

follows from the facts that Ryx is positive definite and




C. has full rank. Substituting the last expression for the
lLagrange multipliers intc the expression for W, (2.14)
the result follows.

This completes the proof of Theorem 1.

C. Special Cases

A well-known special case of Theorem 1 is the uncon-

strained least-squares problem.

Corollary 1.1. (Least-Mean-Square Error -- Wiener) The
optimum set of weights W, solving the problem

defined by Theorem 1 without constraints, i.e.,

minimize E[[d-WTx12] (2.17)
with
E(XX) = Ryx
E{xd) = Ryq
is

W, = ARos . (2.18)

And the best unconstrained estima*e of d is

T
y=W, X .
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Proof of Corollary 1.1.

Let the constraint matrix C vanish in Theorem 1.
See especially Eq. (2.14) of the proof.

This completes the of of Corolla

A second well-known problem that can be formulated as
a special case of Theorem 1 is the distortionless least-mean-

squares estimation problem that was solved by Gauss.

Corollary 1.,2. (Least-Mean-Squares Distortionless
Estimate -- Gauss, Markov) Let the data vector X
be of the form
X=CB+N, (2.19)

where C is a known (nxm) matrixofrank m, and B is an
L3 . * T
unknown m-dimensional vector with B = b,b,...b_ .
(Pl Al
B may be a vector of random variables with unknown
mean (so E(B) =B), or it may be a vector of unknown
parameters, in which case E{B})=B=B . N is an

unknown n-dimensional vector of random variables

considered as noise. B and N are uncorrelated, with

e(BB!) = Rpp (mxm)
E(N} =06 (nx1)
E(NNT) = Ry (nx n)
E(BN') = 0 (mxn) ,

and Ryn is positive definite.
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Fig. 2.1. The estimation problem of Corollary 1.2. Thick
lines indicate vector-valued quantities. W is

chosen so that y 1is an estimate of the ith
component of B, bi
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]
v... v'.. v

=)
L

W
BDFC.D‘TVT y

(A)

(-
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L.

(B)

Fig. 2.2. Manipulation of the flow charts f&om Fig. 2.1
yields (A). Constraining WIC =§ yields (B),
showing that the constraint puts a Enlty transfer

function on bi and that y=b +W'N .
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Thus
T
Ryx = CRpgC + Ryy - .
The problem is to make a linear least-squares estimate
of bi , say yszx, that is unbiased (see Fig. 2.1). v
We wish the estimate of bi to be corrupted only by

the minimum amount of zero-mean noise. The optimum

weight vector solving the problem

minimize E({ [b; - WTX] 2]
subject to E(WX-D;}=0 (2.20)
is
W, = R;ol(C[CTR;o]('C]-ls {¢.21) )
2
where
\J
5 =i position (2.22)

|O"°HO'OOJ

T
and the best unbiased estimate of b, is y=wW, X .
2

Proof of Corollary 1.2, ]

The problem (2.20) is put into the form of the problem
solved by Theorem 1. Observe that bi = STB . Using (2.19)

X = CB+N , and the fact that N is zero mean, we have

| E{wa-Si] = E[cha+w"'N-Fi] = E{WTCB-Ei] .

Now if we require cTw =5 then

— — —— R i laaten it il e i i ; ’ TR ———
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E(W'x-B;) = E{§7B-F;) = 0 (2.23)
and the constraint of (2.20) is satisfied. This is reasonable
- since the constraint applies a unit transfer function to bi
Y
(see Fig. 2.2).
Further, with the constraint CTW=S in force
y=w'?x=WTCB+WTN=bi +WTN and the cost function becomes
E([b; - y1?) = E(b?) - 2E(b,y) + E(y?)
— E{bi] - 2E(b, (b, +W'N)} + E(y?)
i
) = E(y?) - E(®?) . (2.24)
Because E[bi] is a constant, the weight vector that mini-
’ mizes E{y2] also minimizes E[yz]-— E[bi] , 80 the problem
(2.20) reduces to
minimize E({y?) = E{ (W x] %)
subject to ctw =3 ’ (2.25)

where C is defined in (2.19), and ¥ in (2.22). This is
a special case of the problem of Theorem 1 with d=0 .
Since d=0 , E(xd} =Ry3=6 and so the first term of (2.8)

vanishes and the optimal solution becomes the second term.

This completes the proof of Corollary 1.2.

In some cases the unbiased estimator may not be the

most desirable. Suppose that (as in the array-processing

problem discussed later) B is the sum of two vectors

B= 4+A4A, (2.26)

1
L—a R N_————— - e . F
ah. L sbania’ a e et Tt s M ve cab e Bl L e e Ll T T e o Ty~




Fig. 2.3.

R

helaiie as duadioad i

BC

is a given structure for Corollary 1.3.
is the sum of signals 4

plus noise A.
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where 4 and A are m-dimensional vectors of random variables
which may be statistically correlated. 4 is to be thought

of as a vector of "signals", one of which we wish to estimat:,
say s, . A is to be considered as a vector of additive
noise. Note that A and N are both "noise" vectors of
different dimension (see Fig. 2.3).

Since the "unbiased estimator" of Corollary l.2 forms
an estimate of bi ., which is equal to 8; plus a; , it
may not be satisfactory as an estimator of 8; alone.

Another approach is to recall from Corollary 1.2 that
by suitable choice of the constraints a vector ¥ can be
.applied directly to B . Therefore a "filter" vector ¥
(which may be different from (2.22)) may be designed to use
the correlation among the components of 4 and the (hopefully
different) correlations among the components of A , so that
when J is applied to B it may enhance s; in the output
and discriminate against A . This is exactly analogous to
the use of a filter in the frequency domain to pass signals
and discriminate against noises.

In the following, it is assumed that ¥ is a vector
chosen by the user. The best choice of § is a topic with
which we do not wish to get deeply involved. An example of
a choice of § is given in Example 3, Section VI. If the

T,

weight vector W is constrained to satisfy C'W=§ , then

the output is

b4 SWTX = WTCB + WTN = gTB + WTN ’ (2.27)

and output power is
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E[yz] = TTRBBS + WTRNNW . (2.28)

Because B and N are uncorrelated there is no cross term
and so long as W satisfies the constraint any permissible
variation in W affects only the power of the noise in the
output. Thus the "degrees of freedom" of W not constrained
by CTw=?f may be used to minimize the excess noise power in
the estimate of s; -

With the preceding motivation, the problem is set up

as a special case of Theorem 1.

Corolla 1.3. (Least-Mean-Squares Filtered Estimate)
ILet X be a known n-dimensional vector oi observations

of the form
X =CB + N,

where C is a known (nxm) matrix with (n >m).
B and N are unknown vectors of random variables_
with dimensions m and n respectively. Let B be

of the form
B= 4+ A,

where 4 and A are m-dimensional vectors of random

variables. We wish to form an estimate of the ith

element of 4, s; -
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E{N)

6

Ryn

= 0

E[NNT]
E[BNT]

E(xx") = Ryy -

Let § be a given m-dimensional filter vector. The
least-mean-squares filtered estimator is the weight

vector solving the problem

minimize E(y?)} = E{[WTX]?)

e (2.29)
subject to CW=¥¢

and is

W, = K€ [cTRgc1 ™ s (2.30)

The best f-filtered estimate of s; is yswf X .

Proof of Corollary 1.3.

Proof follows directly from Theorem 1, with d=0 and hence

Ryg=6 - The fact that y--wf X is an estimate for 84
3

follows from the above discussion.

This completes the Proof of Corollary 1.3,

Remark: If ¥ is chosen as in (2.22) (one unit entry and
the rest zeros) the solution is the same as the solution

of Corollary 1.2.

- - " EEOLY ST UL Sy 0 e
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III. THE ADAPTIVE ALGORITHM

A. The Unknown Statistics Problem

Suppose now that the correlation matrices Ry, and !
Ryg required by Theorem 1 are not known a priori. Instead
a sequence of observation vectors (X(0),X(1),...,X(k),...]}
is presented, each vector drawn independently from a quasi- Ii
stationary ergodic distribution with autocorrelation Rxx 5
A sequence of random variables {d(0),d(1),...,d(k),...)
which are related to the X's by an unknown correlation
vector RXd is also presented. We wish to minimize the

constrained mean square er:or of the problem of Theorem 1. .

An obvious solution is to make estimates of the unknown

? correlation matrices from observations, e.q.,

Ry (k) = aR (k= 1) + (1-a)X(k- )X (k- 1) ,

z' and

Ry ) = aRy (k-1) + (1-a)X(k-1d(k-1) ,
0<a<l,

i
|

E and insert these estimates into the expression for the

} optimal weight vector given by Theorem 1, Eq. (2.8).

( Inspection of (2.8) shows that because of the number of

l matrix multiplications and inversions involved, a great deal ' :
of computation is required at each iteration by this approach,

ultimately limiting the rate at which estimates can be made

and the dimensionality of a system of given cost. See

Appendix F for an example of the performance of this approach.

-18-
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The next section describes a computationally simple
procedure (the Constrained-IMS algorithm) that converges to
the weight vector W, that solves the problem posed by
Theorem 1 without prior knowledge of the correlation matrix
Rxx . Further, if d(k) is available for training, or is
not required fcr the solution (as in Corolilaries 1.2 and 1.3)

then the algorithm does not require knowledge of RXd .

B. Derivation
The Constrained-IMS algorithm is based on a constrained
gradient descent, satisfying CTW =% at all times while

iterating to find a weight vector minimizing the cost function
e | — E 2, _ 1 2_ T T
J (W) 2E:([d (k)=-wWXxkx)]°) 2[Ed W' Ry +W pxxw] .

For motivation of the derivation, temporarily suppose
that Rxx and Rxd zre known. As in the proof of Theorem 1,
form the function H(W) by adjoining the constraint to the
cost function by a m-dimensional vector of Lagrange multi-

pliers A :
H(W) =%[Ed2'2prjcd+lesO(w] +7\T[CTW-.‘f]- (3.1)

As in Theorem 1, we wish to find a weight vector W, such
that the gradient of H at W, is ¢ and W, satisfies
CTW = § . The gradient descent is initialized by choosing

a weight vector W(0) that satisfies the constraint.

N
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The gradient of H with respect to W is

VwH = RXX"" R3<d+c)‘ s (3.2)

At each iteration the weight vector is moved in the direction
of the negative gradient. (Note: a move in the direction
of the positive gradient tends to increase a cost function.)
The length of the step is proportional to the magnitude of
the gradient and scaled by a gain factor 1 . At the kth

iteration the next weight vector would be

Wk+l) = W(k) - quH(k)
= W(K) - b [RuW (k) - Ry o + CA(K)] . (3.3)

The constrained gradient [FXXW (k) - Rxd +CA(k)] 1is the

unconstrained gradient

%W = B’O(W(k)-EXd , (3.4)

plus the term CA(k) . As noted in Appendix E and later in
Section 1V, the vector CA(k) is orthogonal to the constraint.
By proper choice of A (k) the component of the unconstrained

gradient normal to the constraint (and hence deviating from

it) can be exactly cancelled. Thus the lLagrange multipliers

are chosen by requiring W(k+1l) to satisfy the constraint

o= CTW :

§ = CTW(k+1) = CIW (k) - uchxxwoc) +uCTlS(d— wetTer x)
(3.5)




and solving for the Lagrange multipliers for the kth

iteration,

= =] =
Ak) = (cTe) e R (k) - 3 (cTe) W) - (cTe)T iRy,

(3.6)
where it is shown in Appendix C that the existence of
(CTC)—1 follows from the fact that C has full rank.
Inserting the Légrange multipliers of (3.6) into the iter-

ative equation (3.3) we have

W(k+1) =W (k) - L[I-C (cTc)™ LT [Ryo W (k)-Ry ] rccte)y g-cTwix)) .

(3.7)
The algorithm may be rewritten, defining the n-dimensional
vector

F = c(clc)” 1y (3.8)

1

W(k+1) = [I-C(CC) CT] [W(K) = MR W (k) + R g] +F. (3.9)

Equation (3.9) is a deterministic gradient-descent
algorithm that converges to the optimal weight vector W,
of Theorem 1 for a suitably small choice of the gain W«
(proof given in Section VI). However, it requires knowledge

of the correlation matrices Rxx and Rxd , which in this

study are assumed unavailable a priori. But recall

lS(x=ED((k)XT(k)] and Rxd=E[X(k)d('k)] , SO an easily-

available and simple approximation for Rxx at the k" 4

iteration is the outer product of the observation vector

with itself: X(K)XT(k) ; likewise if d(k) is available
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a simple approximation for %(d at the kth iteration is
X (k)d (k) .1' This substitution gives the stochastic algorithm

1l
cT) Wk) - ux )X )W (k) + uX(K)a (k)] 4+ F ,

(3.10)

W (k+l) = [I-C (CoC)~

which can be simplified using y(k) -x'r (k)W(k) and
e(k)=d(k)-y(k) ¢to

W(k+l) = [I-C(cTC)'lcT][W(k)+ue(k)x(k)]+F . (3.11)

Equation (3.11) is the Constrained-IMS algorithm. It
is a stochastic gradient-descent algorithm satisfying the
constraint that CTW (k) =5 at all times (check: CTW(k+1) =5).
At each iteration it requires only the observations X(k)
(and d(k) if re@uired). No a priori knowledge of Ryex
or Rd(d is needed. The most comples operation is the multi-
plication of a constant matrix times a vector, which is a
substantial savings over the matrix multiplications and
inversions required (either explicitly or implicitly) by a
direct implementation of the optimal equations.

The algorithm was derived heuristically. Its convergence

to theoptimum, rate of convergerice, and steady-state

*As mentioned previously, better, but more complex, esti-
mates for lso( are available, such as k—i-lzxu)x'r(i) .

See Saradis, et al, [24] for use of this estimate in another
algorithm; and Mantey and Griffiths [18) for a closely

related estimate. For discussion and use of simpler

estimates, see Moschner [20], Lender [15], and Nuttall [21].
The use of X(‘k)xT(‘k) here is a compromise between algorithm
complexity and performance and may be chazuged if desired.

s
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performance are shown in Section V. The next section
develops the theory of constrained gradient descent from a

geometrical viewpoint.
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IV. A GEOMETRICAL VIEW OF THE ALGORITHM

A geometrical interpretation of the Constrained-IMS

algorithm (3.11) is now given. Results will be found that

permit an easier and more intuitive derivation of the g
properties of the algorithm than would oﬁherwise be possible.
Readers interested in applications may skip to Section VI.
We start from basic definitions.
Definition (Subspace) Let a and P be real scalar numbers.
A nonempty subset S of a vector space is called a "

subspace if every vector of the form avV+fW is in S

whenever V and W are both in S .

Since a subspace must contain at least one element W ,
it must also include the zero vector 6 because 0 -W=g9 .

Thus every subspace includes the origin.

lLet = be the set of all n-dimensional weight vectors

satisfying the homogeneous form of the constraint equation
cw=0 .

5@ wWw:clw=0) . (4.1)
Then we have

Geometrical Property 1. The set I ={W: CTW=6] defined

by the homogeneous form of the constraint equation

is a subspace.

- 24~
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Proof of Geometrical Prcperty 1.

Let V and 2Z be vectors in I . They must satisfy

the equations CTV=9 and CTZ=6 . Therefore for any

constants o and B , the vector Y=aV+BZ also

satisfies CT'I=9 , 80 the set 3 is a subspace.

This completes the proof of Geometrical Property 1.

Definition (Linear Variety) A linear variety is a trans-

lation of a subspace.

A linear variety L may be expressed by the set equation
L=S+U , where S is a subspace and U is any vector in

the linear variety. The linear variety L is said to be

parallel to the subspace S .

Fig. 4.1. A linear variety and its subspace.

Let I be the set of all weight vectcrs W satisfying

T

the constraint CwW=§ .

ré (w:cw=s) . (4.2)
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This definition leads to

T

Geometrical Property 2. The set I'= (W:C'W=¥%} defined

by the constraint equation is a linear variety parallel -

to the subspace X .

Proof of Geometrical Property 2.

We must show that a vector W is in I if and only
if it can be written as the sum of a vector in I and a
translation vector.

(IF) Let the translation vector U be in ' and 2

be any vector in 3 . Then CTU-=$ and cTz-=e . Thus

W=2+U satisfies CTW=CT(Z+U) =%, s80 if U is in
I' the sum of any vector in = and U is in I . |

(ONLY IF) Now suppose a vector W in ' satisfied
CTW=S but could not be written as the sum of U and a |
vector in I . Then it follows that the vector W-U could
not be written as a vector in X . But CT(W- U)=5-% =0

so W-U is in X . Contradiction.

This completes the proof of Geometrical Property 2.

Geometrical Property 3. The shortest vector from the

origin to the linear variety I is the vector

F=C(CTC)-13 , which is orthogonal to I .

Proof of Geometrical Property 3.

We want to find the vector W minimizing Ilwll2 =WW

while satisfying CTW= ¥ . Use the method of Lagrange

b i e s A i ihagt S T TP WO I SO PN
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multipliers. Form the function H(W) by adjoining the

constraint to the cost criterion:
HW) = %[WTW] + M cTw-5) .
i necessary condition for optimality is

vw1-1=w+c?\=9 ,
or .

W = =CA ,

Requiring W to satisfy the constraint

cTw =¥

we have

-cTer =5 .

Solving for A

A= (cTey ly,
and inserting this into the expression for W above
w=c(le)yls .

This is the vector F appearing in the algorithm (3.11)
and defined in (3.8). As a check that F is in [ note

that cT

F = cle(cfe)™ s =5.
We wish to show F is orthogonal to ' . Vectors
parallel to the linear variety itself are the vectors of

the parallel subspace X . Any vector Z in 2

R T Ty i w i PR R

bk
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is orthogonal to F=c(cTc)" 1§ since z satisfies cTz =g

T 1.T

and so the inner product F ' Z= § ey deTz=0 .

This completes the proof of Geometrical Property 3.

Note from the above proof that any vector of the form
CY , where 7Y is an m-vector, i= orthogonal to the constraint
variety T .

Geometrical properties 1- 3 are illustrated in Fig. 4.2.

The (nxn) matrix appearing between brackets in the
algorithm (3.11) has an interesting geometrical interpretation.

Call the matrix P .

p £ r-ccTe)~1cT . (4.3)

The following definition appears in Luerberger {16]:

Definition. Let a vector W have a unique representation
as the sum of two vectors, one from subspace I and
the other from the subspace X, perpendicular to = .
Thus let W=W, + W, , where W, e >, W e Z;, . The

operator % defined by PW=W, is called the
projection operator onto I .

In other words, a projection operator acts as an
identity operator on components in X and as a zero operator

on components in X, .

Geometrical Property 4, P is a projection operator

onto 2 .

L s e b e e i et A POSITR IRt
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FeC(CTC)"'s

Fig. 4.2. The linear variety and subspace defined
by the constraint.

s {w:c’w-a}

Fig. 4.3. P projects vectors onto I .
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Proof of Geometrical Property 4.

Any weight vector W can be represented as

W= (W-PW) + PW .

The vector PW = [I-C(CTC)-ICT]W is in = since

cT(m) = cT[1-c(cTc) YeTiw = (cT-cTw =6 . The vector
W- M) = c(crc) teTw is in 3, . This is true because by
definition of Z for all vectors 2Ze¢Z , CTZ=9 : then
every vector Z in I 1is orthogonal to (W- PW) since
zTc (cTe)” lcTw--eT(CTC)— 1cTw=0 . Therefore we may make the
identifications: (W-PW) =W, €2 ; PN=W €I ; and

W=W, + W, , where W, and W, satisfy the terms of the
definition. By the second identification, P is the

projection operator onto I .

This completes the proof of Geometrical Property 4.

The geometrical interpretation of P is shown in
Fig. 4.3.
The algorithm (3.11) may be rewritten in terms of the

projection operator:
W(k+l) = P[W(k) + He(RK)X(kk)]+F . (4.4)

It should be mentioned that the vector -e(k)X(k) is an
estimate of the unconstrained gradient VwJ . The uncon-
strained gradient, given in (3.4), is FXXW(k)- p)(d .
Replacing Ryy by X(k)xT(k) and IS(d by X(k)d(k)
results in X (K)XT (k)W (k) - X (k)d (k) =-e (k)X (k) , where
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e(k) =d(k) - XT k)W(k) . The algorithm is now considered
as a whole.
The algorithm attempts to minimize the cost function
E{[d (k) - WiX (k)]z] by iterating to the optimal weight
vector W, along the constraint. Figure 4.4 shows the
position of a hypothetical adaptive weight vector at iteration

k and the position of the optimal weight vector.

6~—___ CONTOURS or{ w2}

) FecicTe)' s

A={w:cTw=s}

Fig. 4.4. Position of the adaptive weight vector W(k) at the
kth iteration and the optimal constrained weight

vector W,

W, = [I- RoC (CTRC) ™ TeTRpgRy g + P;O%c (CTR;:C)-I:? :

P L, A 03 P
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The operation of the Constrained-IMS algorithm (4.4)
is shown in Fig. 4.5. 1In this example, the unconstrained

negative gradient estimate e(k)X(k) is scaled by K and

added to the current weight vector. The resulting vector
is projected onto the subspace I , producing a vector
parallel to the constraint variety A . This vector is

translated out to the constraint surface by adding it to

F , forming the new weight vector W(k+1l) satisfying the
constraint.
\ W(k) +pue (k)X (k)
{ Wik+1)-
~ P[Wk)+pe(kxik)
T A

—

Fig. 4.5. Operation of the Constrained-IMS algorithm.

W(k+l) = P[W(k) +ne(k)X(k)] + F .

It is now shown that any difference vector between two
vectors satisfying the constraint must lie in 2 (see Fig.
4.6). An identity that will be useful in the next section

is given.




Fig. 4.6.

The difference between two vectors satisfying
the constraint is in the subspace I .

[
[/
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Geometrical Property 5. Let wl and w2 be in ' and let JJ

their difference dbe V:Wl— 1] Then V is in the

2 -
subspace I and PV=V .,

Proof of Geometrical Property 5.

. .
Since "1 and Wz are in T , 2

so V is in I . By definition of a projection operator,

cT T

V=C wl-cTw =5-5=09,

if VeZ then PV=V . Algebraically,

I pv=[1I-c(clec) 1T

This completes the proof of Geometrical Property 5.

IV=V+e =V .

Note also that P is symmetric and idempotent, i.e.,

' Pl =p, (4.5)

R S

and “t

' p2 = p . (4.6)

These are verified by carrying out the operations. The

idempotence relation (4.6) for a matrix that is, in general,

f neither the zero nor the identity operator is interesting
E because it is impossible in the scalar case. It is a result

of the fact (not proven here) that P has only zero and .

unity eigenvalues.




S V. PERFORMANCE

In Part A of this section it is shown that the mean
adaptive Constrained-IMS weight vector converges to the optimal
constrained weight vectc.: of Theorem 1. Rates of conver-
gence along the eigenvectors of the matrix PRxxP are given.
In part B it is shown that the difference in steady-state
performance between the algorithm and the optimal estimator
can be made arbitrarily small by decreasing the adaptive

gain constant U .,

A. Convergence in Mean to the Optimum and Rate of Convergence

The algorithm (4.4) is repeated here in a more convenient

form:

W(k+1l) = P[W(k) - MX(k)XT (k)W (k) + KX (k)d (k)] +F . (5.1)

Note that the weight vector W(k) is a function of WwW(0) ,
{(X(k-1),X(%-2),...,X(0)} and (d(x-1),d(k-2),...,d4(0)} .

It was assumed at the beginning of Section III that the

observation vectors X are independentt so X(k) 4is inde-

T T T

pendent of W(k) . Taking the expected value of both sides
of (5.1) we have an iterative equation in the mean value of

the Constrained-IMS weight vector

EW (k+1) = P[EW(k) - MRy EW (k) + upxd] +F . (5.2)

*This is believed to be an overly-restrictive assumption but

greatly simplifies the analysis. For a special case of the
algorithm (no constraints), Daniell [6] has shown e-convergence
assuming that the X's are only asymptotically independent.

=35~
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Convergence of the mean is easily established using
identities for expressing F and Rxd in terms of the

optimal weight vector:
F=[I-PlW, , (5.3)

Req = PRoH, & (5.4)

both of which are verified directly using (2.4), (4.3), and
(3.8). Let V(k+1l) Dbe the difference between the mean
adaptive weight vector at iteration k+1 and the optimal

weight vector:
V(k+1) @ EW(k+1) - W, . (5.5)

From (5.2)-(5.5) an equation for the difference process

may be constructed:
V(k+l) = P[EW(k) - KR EW (K) + upnxxw*] +[I-PlW, -W,
= PV(k) - UPR,V (k) . (5.6)

Using PV= (VP)T=V from Geometrical Property 5 and (4.5)

obtain
Vk+l) = [I- MPPxxP]V(k)
= [1- uer 1" v (0) . (5.7)

The matrix PRXXP is the correlation matrix of projected
observations, i.e., E[(PX)(PX)T] . The non-zero eigenvalues

of this matrix are extremely important in determining both

R L T AP Ty e~

A g oo




37

the convergence rate of the algorithm and its steady-state

pérformance relative to the optimum. The matrix being

(nxn) and symmetric is diagonalizable into n orthogonal

eigenvectors. It is shown in Appendix C that m of the

eigenvectors of PRxxP lie entirely outside the subspace

Z and have zero eigenvalues; the other (n-m) eigenvectors E

lie entirely within 3 and have strictly non-zero eigen-

values. All of the "action" is in the subspace X .
Call the (n-m) non-zero eigenvalues of PRxxP

oi,i=1,2,...,(n-m) . and call the n (non-zero) eigenvalues

BT

of R Ai,i=1,2,...,n . To get a feeling for
the relationship between the o©'s and the A's , it is ]

proven in Appendix C that the non-zero eigenvalues of

R bl b

PRXXP all fall between the largest 2nd smallest eigen-

-

values of Ry that is, for 1 < i £ (n-m)

Apin < O S0, <o <A

min = min = - max '’ (5.8)

where the subscripts min and max denote respectively
the smallest and largest members of a set.
Since V(0) is the difference between two vectors 1

satisfying the constraint (5.5), from Geometrical Property 5

V(0) 1lies entirely within the subspace X and may
therefore be expressed as a linear combination of eigen-

ﬁ vectors of PRXXP corresponding to non-zero eigenvalues.

If V(0) is equal to an eigenvector of PR*XP, e; with ]

eigenvalue o4 then
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V0k+1) = [1- peR P]** e

i

k+1
= [1- 4o,] e, . (5.9)

Thus the convergence along any eigenvector of PRxxP is
geometric with geometric ratio [1- uoi] and associated

time constant

where the approximation is valid for uoi‘é(l . It is clear

then that if U is chosen so that

0<u< 1/0

S (5.11)

then the euclidean norm of the difference vector is bounded

between two ever-decreasing geometric progressions

vl < IvkeD) | < [1- ko, ¥ v ()]
(5.12)

[l-Lwhax

and the expected value of the weight vector converges to the
optimum with time constants given by (5.10) if the initial
difference is finite.

We emphasize that convergence of the mean shown here
is

lim |EWw(k)-w, | = 0 . (5.13)

koo
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B. Steady-state Performance Compared to Optimum

In this subsection the performance of the Constrained-IMS

algorithm is compared with the optimum of Theorem 1 after

stationary (i.e., slowly time-varying) environments,
the adaptive gain U remains constant during the application §

of the algorithm. (In stochastic approximation schemes the

gain is usually »llowed to go to zero as time passes.) As
a fesult of continually adapting, the weight vector has a
non-zero variance about its optimal value. In a stationary
noise field, the effect of variations about the optimum
weight vector is to add a slight additional cost in excess
of that achievable by the optimur. (See Brown [2] for
results on time-varying noise fields.)

The excess cost normalized by the optimum cost level
is a dimensionless quantity called "misadjustment" by
Widrow [28) and is a measure of how closely the algorithm's
performance achieves the optimal performance. Steady-state

misadjustment is

Cost of
% g Cost of
[Adapt:.ve Fllte:ﬂ - [Opti 1 Filter]

ML) = lim at time k | .

k=0 Cost of
Optimal Filter

VR SERCS ARSI SR NI T Ca ik = Koo o e b i
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For the constrained least-mean-squares problem of Theorem 1

the steady-state misadjustment is

E((d(k)- W (K)X(K)1%) - E([d(K)-wix(K)]?)
ML) = 1lim

(5.14)
k=0 E([d (k) - WyX (k)] %)

Under the assumptions that d(k) and the components of
X(k) are jointly Gaussian-distributed and independent from
observation to observation it is possible to calculate very
tight bounds on M (L) Dby a method due to Moschner [20].

For an adaptive gain constant satisfying

1
0 << ’ (5.15)

c x-+(1/2)Tr(PRxxP)

ma

it is shown in Appendix B that steady-state misadjustment

may be bounded by

u Tr(PRxxP)
2 1-£[Tr (PR P) + 20,

e py—— Tr (BRyy P)
in 1-Z(Tr (PRyyP) + 20, ]
(5.16)
M(L) can be made arbitrarily close to zero by suitably
small choice of gain constant W ; this means that the steady-
state performance of the Constrained-IMS algorithm can be
made arbitrarily close to the optimum. From (5.10) it is

seen that such cost performance is obtained at the expense

of increased convergence time.
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VI. APPLICATIONS

In this section adaptive solutions are given to the
problems defined in Theorem 1 and its corollaries. At the
same time the performance of each adaptive algorithm is
given. The important application to array processing is the
main example cf this section.
The results of the preceding section are summarized ;

in a companion theorem to Theorem 1:

Theorem 2. (Adaptive Constrained Least-Mean-Squares Optimi-
zation) Let (d(k)}] be a sequence of random variables
and ({X(k)}] be a sequence of n-dimensional data vectors
of observed random variables. Each vector X(k) is
assumed to be produced independently by an unknown

ergodic source with unknown correlation matrices 3
E(X(X)X (k)} = R, (nxn)
E{X(k)d (k)] = Ry, (nx1)
and Rxx positive definite. The algorithm

Wk+1l) = P[W(k) +une(k)X(k)] +F , (6.1) ;

where ]
- 5
p=[1-c(cTc) Ty ,
F=C(cTc)'1Sf . 4
ctw) =5 , 1
and

IR SPE IR SETE LY
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e(k) = d(k) - WE (k)X (k) ,

converges in the mean to the optimum weight vector W,

solving the constrained IMS problem defined in

Theorem 1:
e T 2
minimize E{[((d(k)-W'X(k)]*“]
'r (6.2) ‘
subject to C =¥ ,
if
1l
0 <K< 1 s (6.3)
%max * 2 'I‘r(PR’o(P)
Further, o 3
i) the convergence time constant of the difference ;
between EW(k) and W, along the ith eigen- g
vector of PRXXP is z
= z 6.4 j
Ty *In(i-vwo) - M9 (6.4) ]
i 1
where o is the eigenvalue corresponding to ]

the ith eigenvector of PRXXP .

ii) Under the additional assumption that variables
d(k) and X (k) are jointly Gaussian

distributed, the steady-state misadjustment of

the adaptive solution can be bounded by (5.16).

Proof of Theorem 2. (See Section V)

This completes the proof of Theorem 2.
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Example 1. (Consistent Modeling)

| A single-input, single-output system is to be modeled
with a tapped-delay-line filter. It is known that the system's
steady-state response to a unit step- function input is a
particular number a , and this feature is to be incorporated

into the model.

UNKNOWN | 94N
SYSTEM

ult) —— :é:)—-— elt)

Ay

TOL FILTER

yiDzwTx (1)

Fig. 6.1. Tapped-delay-line filter modeling a system. ;

Let the input to the system and model be a random
variable yuy (t) . The model is a tapped-delay-line filter
with n tap points and a delay of A seconds between each

tap. Inputs pass down the tapped-delay-line (TDL) filter.

Let the states at each tap point be denoted Xi(t),i=l,2, c..,n .
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Thus the first state is equal to the input, xl(t)==u(t) "
the second state is equal to the input delayed by A seconds,
Xy (t) =u(t- ), and so forth. The output y(t) of the
TDL filter is a weighted sum of the states. Let the weight
on the ith state be W and form the n-dimensional vectors
of weights WTz (wl,wz,...,wn) and states XT (t) =
(xl(t),xz(t),...,xn(t)) . Theoutput of the TDL filter at
time t is then y(t) =wa(t) . The desired output of
the mmodel is the output of the unknown system d4d(t) . The
error is the difference between the desired output and the
actual output: e(t)=d(t)-y(t) .

The constraint is now includgd. If the systems are given
a unit step input (i.e., u(t) =1), then after nA seconds
the TDL filter will be in steady state, with XT(t)=alT=
(1,1,...,1) . Thus the constraint that the steady-state

response of the TDL filter be a a is equivalent to requiring

1w=a. (6.5)

The consistent modeling problem is therefore

minimize E:[e2 (t)}
subject to 1W=a .

To apply the Constrained IMS algorithm, the state vector and
error are sampled at intervals of T seconds. At the kth
sampling instant the state vector is X(kT) and the error is

e(KT) . The time between samples T is made large enough
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so that X(kT) is essentially independent of X(jT) for
j¥k . (As noted in Section V this is not believed to be

absolutely necessary). The algorithm is therefore

W(k+l) = P[W(k) + Le (KT)X (KT)] + o (6.7)
where

11T

P=1I-1(1"1)"1" =1I-

S

and the weight vector is assumed to be constant for t in
kT < t < (k+1)T .

A practical matter arises here. It may be difficult
to walculate the permissible upper bound on U given by
(6.3), especially if the autocorrelation matrix Rxx is
not known. An easily measured quantity guaranteed to be

no higher than the permissible upper bound is

1
B, = ——t (6.8)
o0 3 _
2 Tr(RXX)

That is, if K is chosen to satisfy

0<u<uo. (6.9)

then it is guaranteed to satisfy (6.3). Observe that Ko
can be calculated directly and easily from observations
since Tr(Rxx)==E[xT(k)X(k)] , the sum of the powers of the

states.

P —_—
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A special case of the algorithm given in Theorem 2 is
the celebrated IMS algorithm. The following is a companion

to Corollary 1.1.

Corollary 2.1. (Adaptive Least-Mean-Squares Optimization--

Widrow and Hoff) Let the sequences {d(k)}, {X(k)]
and their (unknown) correlation matrices be defined as

in Theorem 2. The algorithm

W(k+l) = wW(k) + e (k)X (k) (6.10)
where

e(k) = d(k)-W. (K)X(K) .

converges in the mean to the optimum weight vector

W solving the unconstrained least-mean-squares

*]
optimization problem defined in Corollary 1l.1l:

minimize E{22(k)} ., (6.11)
if
1
0 <1< T 3 (6.12)
)\max+3 L (RXX)
Further,

i) the convergence time constant of the difference

between EW(k) and w*]_ along the ith

eigenvector of Rxx is

i T TInaenh = M (6.13)
1

R T —
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where Ki is the eigenvalue corresponding to

the it'h eigenvector of Rxx .

ii) Under the additional assumption that variables

d(k) and X (k) are jointly Gaussian distributed,

the steady state misadjustment of the adaptive

solution can be bounded by

Tr (Ryy)

1- %[Tr (Ry) + 2)‘max]

n T (R
2 1-%[1‘: (Ryge) + 2

min

<Mm) <%
]

Proof of Corollary 2.1.
The projection operator P of Theorem 2 goes to the
identity when all constraints are removed. The vector F

vanishes.

This completes the proof of Corollary 2.1.

Uses of linear least-squares algorithms are abundant
and well-known so no examples will be given.

The next corollary is a companion to Corollarxy 1l.2.

Lorollary 2.2. (Adaptive Least-Mean-Squares Distortionless
Estimate) Let the sequences (d(k)}, (X(k)}, and their
(unk: own) correlation matrices be defined as in

Theorem 2. Further, let each X(k) be of the form

ek s it L L s et TR (P T I T 19 Lo 0 (0 GG A7) il datheh ot S iin

(6.14)




X(k) = CB(k) +N(k) , (6.15)

where C is a known (nxm) matrix with n>m and (B(k))

is a sequence of unknown m-dimensional vectors. Each
B(k) may be a vector of random variables with unknown
mean (so E{B} =B), or it may be a vector of unknown
parameters, in which case E(B}=B=B. (N(k)) isa
sequence of unknown n-dimensional zero-mean random
vectors considered as noise. B(k) and N(k) are

assumed uncorrelated. Let

- -
bl(k) 0
b., (k) Ol tn
B(k) = "2 and §=1 i~ component . (6.16)
. 0
bm(k) 0
- -
The algorithm
W(k+l) = P[W(k) - Ly &)X(k)] +F (6.17)

where

P= [I- C(cTc)'lcT

]
F = C(cTc)'lff
cTW(0) =¥

y(k) = W (K)X(K) ,

converges in the mean to the optimum weight vector

w*z solving the least-mean-squares distortionless

estimation problem defined in Corollary 1.2:

i it




F

minimize E({ (b, - WIX (k)] e

- T (6.18)

subject to E[(bi- WXk)}=0,

as long as UL satisfies condition (6.3) of Theorem 2.
The convergence rates and misadjustment are the

same as those of Egs. (6.4) and (5.16) of Theorem 2.

Proof of Corollary 2.2.
It was shown in Corollary 1.2 that the problem (6.18)

may be reformulated as
Py [ T 2
minimize” E{[W X (k)] “}
= (6.19)

subject to CW :=§F .
This is just the problem of Theorem 2 with d(k) =0 .
Accordingly in the Constrained-IMS algcrithm (6.1), a4 (k)
is set to zero and the corollary follows. The requirements

on K and performance are unchanged.

This completes the proof of Corollary 2.2.

Example 2, (State Estimation under Uncertainty)

A system is described by the equations

B (k+1)

¢B (k) + I'u (k)
{(6.20)

X(k) = CB(k) +N(k) ,

where C is 2@ known (nxm) matrix with n>m . B(k) is
the state vector and U(k) is the input vector. N(k) is

zero—~mean measurement noise. The matrices ¢ and [I' are
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not known; the statistics of U(k) and N(k) are not known.
We wish to estimate a component bi(k) of the state vector.
The algorithm (6.17) converges to the best constant linear least
squares unbiased estimator of a component of B(k) . If

an estimate of the entire vector is desired, m algorithms
like (6.1) may be used, with the unit entry in a different

place in each ¥ vector.

Note that the amount of knowledge required for an
estimate of B(k) using the constrained IMS algorithm is
a small fraction of that required by the Kalman filter.
(The Kalman filter is the optimum unconstrained time-varying
linear least-squares estimator for the state vector of the
dynamic system (6.20), and requires that all system matrices
and correlation matrices be known.)

The next corollary is a companion to Corollary 1.3 .

orolla (Adaptive least-Mean-Squares Filtered Estimate)
Let the sequence (d(k))}, {X(k)), and their (unknown)

correlation matrices be defined as in Theorem 2. Let
X(k) = CB(k) +N(k), (6.21)

B(k) and N(k) be vectors of random variables as in
Corollary 1.3. Further, let B(k) be written

B(k) = 4(k) + A(k) , (6.22)
where (4(k))} and (A(k)) are sequences of m-dimensional

vectors of random variables. We wish to estimate the

e st g s Reaal it ke
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.th .
i component of 4(k), si(k) . A filter vector %
is given, which may be based on as much or as little }
information about the statistics of 4(k) and A(k) %
as is known. ;
The algorithm ]
W(k+l) = P[W(k)-uy(k)X(k)] +F , (6.23)

where
P = [I-c(cic) TeTy
F = c(cc)” 1y
cW(0) =¥

vy (k) = W (k)X (k) ,

i converges in the mean to the optimum weight vector W*3
{
i solving the least-mean-squares filtering problem given
in Corollary 1.3:
. . T 2
. minimize E([s, (k)-W'X(k)]“)}

_ i

) - (6.24)

subject to CwW=7¥,

as long as M satisfies condition (6.3) of Theorem 2.

The convergence rates and misadjustment are the

same as those of Egqs. (6.4) and (5.16) of Theorem 2.

Proof of Corollary 2.3.
In Corollary 1.3, it is shown that the problem (6.24)

may be reformulated as
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minimize E{ [wa (k)] 2)

subject to CTW =¥ (6.25)

As before, this is just the problem of Theorem 2 with

d(k) =0 . The results follow from Theorem 2.

This_completes the proof of Corollaxy 2.3.

The next example is the major example of the paper, and
is one of the main reasons for an interest in adaptive

constrained least squares optimization: It is shown in this

example that adaptive constrained IMS optimization makes

possible the near-optimum processing of data from an array
of antennas or other sensors with very little a priori
information about the signals and noises involved. 1In
contrast, known adaptive processors converging to the optimal
unconstrained least-mean-squares filter [12] require know-

ledge of either the signal or noise statistics.

Example 3. (The Array Processor)

In most applications involving arrays of sensors--
notably sonar, seismology, radio communication, and radio
astronomy using antenna arrays-- it is desirable to reduce
antenna sensitivity to unwanted signals and noises while
processing the signals of interest in real time. For
exampie, arrays of sonar hydrophones provide information
about the undersea environment; it may be desirable to listen
to signals coming from a particular direction and simul-

taneously avoid hearing the noise of the sonar ship's own

e oo an pgl K B e ARk ot s s Sk b b iR

e e

—




- & L& v LA el Sl i i o i & v
. N T Siegs Saci s A Siam o e DTS e O S M e - " ——— -
- e "

53

"TedT3uspT axe sdey I93TTF JO uwnTod uaalb Aue uo
sjuauodwod Teubrs wesq e ‘UoT3IDAITP HOOT BY3 pPIeMmO] paIa93s ST ]
Aexxe ay3 ssneoag ‘*ALeixe ayz uo JUSPTOUT SISTOU pue sTeubrs -z°9 °*Hig

l NOBN3S M3d ol
I Sdvl1 1 | ]
st Lo 8 ISION M
™, ¥ ISION m
]
W ™6 + (PU-Tm \ M
sfd) .#.'.-
DL K4 m
1
v % ‘ 1 ()9 ,
__
v
SiNOIM
IWYLSHAOY
!




54

machinery and screws [22]. In geology, sub-arrays of
seismometers are being used in the large-aperture seismic
array in Montana (4] to listen to seismic events; such arrays
must discriminate against noises emanating from surr-unding
cities. In radio communications using antenna arrays, it

is desirable to receive signals from one direction while
ignoring the signals from amateur radio operators and other
electromagnetic noises [5]. Radio astronomers using antenna
arrays want to look in one part of the sky while discrimi-
nating against other radiation sources impinging on antenna
sidelobes [25, p. 33]. In all these applications, it is
desirable to have a processor that can discriminate against
unwanted noises in real time and that requires a minimum of
a priori information.

An array processor is a filter both in frequency and in
space. A typical processor configuration is shown in Fig.
6.2. The array has K sensors with a tapped delay line
following each sensor. Each line has L tap points and
~ delays of A seconds between taps. Signals and noises
impinging on the array are converted to voltages which pass
down the tapped delay lines and the weighted sum of these
voltages is the output of the filter. By proper choice
of weights, the array processor can discriminate against
unwanted noises distributed both in frequency and space.

The filter separates desirable signals from other noises.

In this example, to be "desirable" a signal must come from

T T ——
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a particular chosen direction in space, called the "look
direction". All signals coming from other directions, plus
any measurement or amplifier noise, are termed "undesirable
noise". But not all signals coming from the look direction
are desirable; some noise comes from the 1lnok direction and
is called "look direction noise".

The signal is modeled as a zero-mean random process

emanating from the look direction in the far field of the

55

array. It is assumed that the propagating medium is linear,

non~-dispersive, and that propagation times along the signal
phase-front are well enough known that the array can be
steered, electrically or mechanically, in the direction of
the signal. Sources in the look direction, i.e., desired
signal and look direction noise, are assumed tc be statis-
tically uncorrelated with noises emanating from other
directions. (This rules out multipath.) Finally, all the
sensors are assumed to have identical characteristics (but
are not necessarily omnidirectional).

It should be mentioned that sonar and seismic signals
are generally low frequency (audio or lower) and may be
processed in real time using the adaptive algorithm imple-

mented by present-day hardware [13]. In radio~frequency

applications, however, the signals must first be demodulated.

As in Example 1, let the observations at each tap points

at time t Dbe denoted xi(t),i=1,2,...,n . In this case

n=KL , the number of sensors times the number of taps per

i e i
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i ‘ sensor. Lat the weight on the ith observation be w, and

form the n-dimensional vectors of weights wTac(wl,wz,...,wn)

E' and observations XT(t)==(kl(t),xz(t),...,xn(t)) . The output

“ of the array processor at time t is then y(t):-me(t) . .
Let the signals arriving "in the beam" (i.e., from the look 1
direction) at time t be denoted b(t) . Because the |
array is steered toward the look direction, signals arriving

"in the beam" enter each of the K tapped-delay lines E
simultaneously and parade in parallel down the lines (see

Fig. 6.2). All K taps on the first column of taps have

the same beam component, b(t) , and a different undesirable {
noise component ni(t),ial....,K from noises entering from
other directions and amplifier noise; every tap on the
second column of taps has the same beam component b(t- 4)
and a different noise component ﬂi(t),i-K+1,...,2K. , and
so forth. Forming the I~dimensional vector of beam signals

on each colunn at time ¢t , BT(t)-[b(t),b(t-A),...,b(t—(L—l)A)] 3

and the n-dimensional vector of undesirable noises on each

tap at time t , N (t)=(n) (t),n,(t),...,N (t)] it is seen

—T——— m——

from Fig. 6.2 that the vector of observations may be written .

P T NS VL TRTOv, FLIW AP oy

X(t) = CB(t) +N(t) , (6.26)

where .
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Fig. 6.3 Equivalent processor for signals coming
from the look direction.
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L —>
0 o ... o] A
0 0 )
1 0
5 KL (6.27)
1 0
T 0 1
0 1 ¢

Due to the array steering it is particularly easy to
specify the frequency response of the processor in the
look direction, since all K taps in every vertical column
of taps have identical beam components: The processor output
is formed by a weighted sum of the observations; therefore,
as far as the beam signal is concerned, the total weighting
it receives at each vertical column is the sum of the weights
in that column (see Fig. 6.3). For the beam signal, the
multichannel processor could be replaced by a single-channel
filter. Each weight on the single-channel filter would be
equal to the sum of weights on the corresponding column of
the multichannel filter.

th

let the i weight on the beam-signal-equivalent filter

in Fig. 6.3 be fi . Let the I-~dimensional vector of filter

weights be
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1
£
£
§ = . (6.28)
fL
Each weight fi is the sum of the weights in the ith column

of the multichannel processor. Referring to the definition

of C above, it is seen that this statement is equivalent to
fF=Cw. (6.29)

¥ determines the transfer function of the processor in

thz look direction. If, for example,

f’t - |0IOI...‘0‘1‘0‘00‘0. ’ (6'30)

then all frequencies of signals arriving from the look
direction in plane waves would be passed equally without
attenuation (flat frequency response). Changing any of
the zero components would result in a different impulse
response and corresponding frequency shaping.

Recall that in the beam signal b(t) there is a com
ponent of "desired signal" s(t) and an additive "look
direction noise" a(t) , i.e., Db(t)=s(t)+a(t) . It is
assumed that from any a priori information he might have
about the frequency content of s(t) or a(t), the processor
user specifies the look direction frequency response he

wants in the form of the vector ¢ . If he has no prior

e o Ll - - )
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information about the desired signal then a reasonable

choice for ¥ is the all-pass filter (6.30). Notice that »
specifying the look direction frequency response constrains

only L "degrees of freedom" of the n weights in W .

The remaining "degrees of freedom" are used by the processor

to reduce the power of undesirable noises N(t) in the 3
output. Since the response to the beam signals is constrained !

and the undesirable noises are assumed uncorrelated with the o

beam signal, minimizing total processor output power is
exactly the same as minimizing noise output power.

The problem is

minimize E{ [WTX(t)] 2]

subject to CTW =¥

(6.31)

and the algorithm is (6.22): W(k+l) =P[W(k) - Ly (KT)X (KT] + F
where T is the time between adaptations made sufficiently
large so that successive vectors X are essentially inde-

pendent.

In this case P is simple and sparse due to the
simple form of the constraint matrix (6.26). The matrix
i_ multiplication by P is more simply regarded as a series of 4

additions and scalar multiplications:




6l

p— A Fl o - '
1 -K L) K 0 0 i
A
K
P=| . 0
O S | '
K K 0 0 0
1 L )
o 0 0 1 -K o e e K 0 L . ') ;
0 -1 1 0 . )
K . (6.32)
D 1 _1
A 0 -K K oo 1. 0
= 1
E - 1 —— - & o -K
[ 4
1
K 1l
S0 - e R |
J 0 o & = ... 1J

¢
i

t
L
E
3
4

A computer simulation of the processor was made using a

- low-precision language (BASIC) on a small compnter (the HP

2116). The processor had four sensors on a line spaced at

SRl ik et

iL A second intervals and had four taps per sensor (thus n=16).
The environment had three point noise sources, and white noise
added to each sensor. Power of the beam signal was quite :

small in comparison to the power of interfering noises 1

(see Table 6.1). The tap spacing defined a frequency of
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DOIRECTION CENTER {
SOURCE POWER | (0O IS NORMAL FREQUENCY BANDWIDTH 1
TO ARRAY) (1.0is 1/4)
Beam Signal . 0° 0.3 0.1
Noise A . 45° 0.2 0.05 i
Noise B 1.0 60° 0.4 0.07 ]
v White Noise 0.1 = = -
(per tap)
] Table 6.1. Signals and noises in the simulation ¢
: ’
' 1.0 (i.e., £=1.0 is a frequency of 1/A Hz.). In the look . %
k !
] direction, foldover frequency for the processor response was
! o] A
ﬁ' l1/22, or 0.5. All signals were generated by a pseudo-random, 4
1 pseudo-Gaussian generator and passed through a filter to 4
i

give them the proper spatia’ and temporal correlations. All

temporal correlations were arranged to be identically zero
for time differences greater than 25 A . The time between
adaptations was assumed greatexr than 58 A, so successiv=2
samples of X(kT) were generated independently.

The look direction filter was specified by the vector

yT =1,-2,1.5,2, which resulted in a frequency characteristic s

shown in Fig. 6.4. The signal and noise spectra are shown

in Fig. 6.5 and their spatial position in Fig. 6.2.

In this problem, the eigenvalues of Pxx ranged from .
0.111 to 8.355. The upper permissible bound on the gain
constant K calculated by (6.3) was .074; a value of

U= .01 was selected, which, by (5.16) would lead to a .

misadjustment of between 15.2 and 17.0%.

k. i b i A i A el ek T il
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Fig. 6.4. Frequency response of the processor in the
look direction.

e S

BEAM
NOISE A SIGNAL NOISE B

)
N

M—Q'ﬂ. )| _..- | . J
0 0.1 0.2 0.3 0.4 0.5 ;

. FREQUENCY
|

Fig. 6.5. Power spectral density of incoming signals.
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The processor was initialized with W(0)=F =C(CTC)-lff ,
and Fig. 6.6 shows performance as a function of time. The
upper graph has three horizontal lines. The lower line is
the output power of the optimum weight vector. The closely-
spaced upper two lines are upper and lower bounds for
optimnm_output power plus misadjustment. The mean value

of the processor's output power falls somewhere between the
upper and lower bounds. The difference between the initial
and steady state power levels is the amount of undesirable
noise power the processor has been able to remove from the
output.

Although the weight vector is, in theory, constrained
to satisfy CmW(k) = § at all times, very small deviations
occur in an actual implementation due to quantization and
computational errors. The lower graph in Fig. 6.6 shows
the squared Euclidean distance between the weight vector
and the constraint HCTW(k)--SII2 . An error-correcting
feature of the Constrained-IMS algorithm prevents the

deviations from the constraint from growing.
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A last corollary deals with the deterministic constrained

least squares problem.

Corollary 2.4. (Gradient-descent, Deterministic Constrained
Least Squares) Let Ryx DPe a known (nxn) matrix

and RXd be a known n-vector. The algorithm

W(k+l) = P[W(k) - upxxwac) +“R7(d] +F (6.33)

where

P = [I-c(cTe)icTy
F = c(cle)"1g

cTw(o) =5 ,

converges deterministically to the solution W, of
the problem

minimize ([a- ZWTRXd + WTR)O(WJ

subject to C'W = § , (6.34)

where a is any finite constant, as long as U
satisfies (6.3). The convergence time along eigen-
vectors of PR, P is given by (6.4) and there is no

steady-state misadjustment.

Proof of Corollary 2.4.

This algorithm is the same as the recursive relation
(5.2) for the mean weight vector of the stochastic constrained

IMS algorithm. Showing that the stochastic algorithm

el i e b e g mtie s kit e b
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converges in the mean is therefore the same as showing

i P —

(6.3) converges. Convergence in the mean was proved in

Theorem 2.

This completes the proof of Corollary 2.4.

Remark: See Rusen [23] for an alternative solution

to this problem.

- TR e Tm———




VII. SENSITIVITY OF ALGORITHMS TO CALCULATION ERRORS

The constrained-IMS algorithm is related to the gradient-
projection algorithms due to Rosen [23], Lacoss [14], and I
Booker [l]. The difference between the Constrained-IMS ]

algorithm and gradient-projection algorithms lies in the way

information about the location of the constraint surface is

carried. As Fig. 4.5 showed, the Constrained IMS algorithm "

(3.11) "knows" the orientation of the constraint surface by

A the matrix C, and its translation from the origin by the

] vector F . In this section, it is shown that gradient-
é projection algorithms use only the orientation matrix C ; *
ii to ensure that the weight vector stays on the constraint

surface, they rely exclusively? on the fact that the weight v

vector is initialized on the constraint surfoce and always
moves parallel to it. The gradient-prcjection method is
shown to be sensitive to quantization errors which may cause
the weight vector to deviate from the constraint on long v N
runs. -
Differences in the algorithms may be traced to Eq. (3.5)
of the derivation. 'If CTW(k) is replaced by ¥ in (3.5)
and Ranre , the gradientpprojecfion algorithm of Booker

results. (CTW(k) should equal ¥ if W(k) exactly satisfies

?Rosen recognized this problem and suggested using a second
algorithm to "reset" the weight vector to the constraint .
whenever errors became excessive.

- 68~
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the conscraint. It is shown in Fig. 6.6 that it may be
unreasonable to assume that W(k) is exactly on the constraint
at all times. 1In the derivation of the Constrained-IMS
algorithm, the term CTW (k) was carried instead of replacing
it by § . Carrying the term corresponds physically to
assuming that W(k) may not precisely satisfy the constraint,
perhaps due to the quantization error of a digital imple-

mentation.

The algorithm that results from replacing CTW (k) by

¥ is
W(k+l) = W(k) +LPe(K)X(K) ; CW(0) = § . (7.1)

This is a gradient-projection algorithm. It is so named
‘ because the unconstrained gradient is projected onto the
i constraint subspace and then added to the current weight

1 vector. 1Its operation is shown in Fig. 7.1 (compare with

Fig. 4.5).

P "
-

Fig. 7.1. Operation of the gradient-~projection algorithm (7.1).
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If somewhere in the computation an error occurs due
to quantization and the weight vector is a bit off the
constraint at time %k, Fig. 7.2 shows that the Constrained-IMS
algorithm (3.11) will bring the weight vector back to the
constraint in the next iteration; however, the gradient-
projection algorithm (7.1) assumes that W(k) satisfied
the constraint and adds a change parallel to the constraint
surface, continuing the error.

An algebraic analysis is obtained by assuming that at
each iteration the actual processor introduces a small vector
of errors £(k) to the weights. The update equations for
the two algorithms become

Constrained-IMS:

from (3.11): W (k+l) =P[W(k)+Ue (k)X (k)] +F+ £ (k) (7.2)

Gradient-Projection:

from (7.1): W(k+l) =wW(k)+uPe(k)X(k) + £ (k) ;
cTW() = ¥ (7.3)

Iterating the Constrained-IMS algorithm (7.2) back to

the original weight vector we have

W(k+1) = PW (k) - HX (k)X (k)W (1:) + X (k)d (k)] +F + € (k)
(7.4)

= 'ﬁ (P[I-HX (1)X" (1)] W (0)
i=0

k X :
£ 5T P[I—uxmxT(j)'a[upxmd(k)+r+e(i)1
i=0 =i+l (7.5)
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\ GRADIENT-PROJECTION ALGORITHM
Wik+1)sW(k)+puPe ;X (k)

Wik+1)

Wik)

O AT TNV ot YOS

#Pe(k)xik)

(A) z

CONSTRAINED-LMS ALGORITHM
\ Wik +1) = P[Wikl+petIX(h)] + F

N

(B)

j Fig. 7.2. Error propagation. The Constrained-IMS algorithm (A)
i corrects deviations from the constraints while the

‘ gradient-projection algorithm (B) allows them to
accumulate.
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wher2 undefined products are taken to be the identity. Now
noting that CTP = CT[I-C(CTC)- lCT] = 6 and premultiplying
by CT to see how the weight satisfies the constraint we

have

cTw(k+1) = CT[P+E (k)] = §+C & (k) . (5.6)

In a perfect implementation the right side of (7.6) would i

be ¥ . With quantization errors and using thé Constrained- .

IMS algorithm, the weight vector is off the constraint ;

only by a term linear in the last error vector.' .
Now an error analysis on the gradient-projection

algorithm is made. Performing a backward iteration on

(7.3) produces

-

.

W(k+1) = W(k)-HP[X (K)X' kIW(K) - X(k)d (k)] + £ () (7.7)

PP P P

k
1l -uPX(i)XT(i)} W (0)
i =0

k k
+ Z T t-wpx()xT (591 [Lex (1)d (1)+£ (1)] "
i=0 [j=i+l (7.8) ’a

k k
W (k+1) = OOW(0) + oF Z E(i) =95+ o Z e(i) (7.9
i=0 i=0

The last term of (7.9) shows how the alcorithm (7.1) accumu-

lates deviations from the constraint. .

If the caomputation errors are modeled as a zero-mean

process [27], the gradient-projection algorithm does a 1

i A e S T2 i el s A
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random walk, away from the constraint with variance increasing
as the number of iterations (see Appendix D).
: ’ A simulation of the gradient projection algorithm on k

the array problem (Example 3) was made, using exactly the

same data as used by the Constrained-IMS algorithm. The
results are thown in Fig. 7.3. The lower part of Fig. 7.3
shows how the gradient- projection algorithm walks away from
the constraint. Note the change in scale. If the errors

e of the Constrained IMS algcorithm (Fig. 6.6) were plotted on
the same scale they would not be discernible. Further, the
errors of the gradient-projection method are expected to

continue to grow.
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VIII. SUMMARY

A general algorithm was developed for stochastic linear
least~-squares optimization subject to linear equality
constraints. The algorithm has three major properties:
First, it has very modest computational requirements;
second, it requires very little a priori knowledge; third,
it converges to an optimal filter. A fourth property is
that the algorithm can operate continuously without wandering
from the constraints.

Rate of convergence and steady-state performance of the
general algorithm are derived. Special cases of the algorithm
are treated, with examples. An important application of the

algorithm is the real-time processing of data from an array

of sensors.
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APPENDIX A
DERIVATION OF GRIFFITHS' MLR ALGORITHM
BY THE QUADRATIC PENALTY FUNCTION METHOD
The purpose of this appendix is to show that the
Maximum Likelihood Ratio (MLR) algorithm due to Griffiths

[11) may be considered as an algorithm solving a least-
mean-squares problem subject to "soft" linear equality
constraints. This gives a simpler derivation than the
original and immediately illuminates some properties of the
algorithm that are well-known general properties of quadratic
penalty function algorithms. As a side benefit, a general .
method of generating adaptive algorithms, based on the
quadratic penalty function method, is indicated.

The quadratic penalty function method is a way of turning
a constrained optimization problem into an easily-solved
unconstrained optimization problem. Given a cost function

J(W) and a vector-valued constraint function ¢(W) =9 ,

the problem
minimize J (W)
(A.1l) %
subject to ¢ (W) = 9
is changed to
minimize J(W) +B20T (W)oMW) . (a.2)

As the scalar P -—-x» the solution to the unconstrained problem
(A.2) goes to the solution of the problem (A.l). The second
problem is easily solved by standard unconstrained optimi-

zation techniques.
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The specific problem considered by Griffiths is the
problem of Example 3, Section VI, where J (W) ’"prxw and
dW) -cTW-‘f . The algorithm is derived by forming the

function

HW) =%anmw+Bz(cTw-S)T(cTw-ff) .

and taking the gradient with respect to W
vl = R Wepic(cTw-5) .
The iteration is then
W(k+l) = W(k)- LV H
= W(k) - bR, W (k) - upZe(cTw ) - 5) .
Rxx is replaced by its estimate, X(k)xT(k) ., 9iving
W(k+l) = W(k) - KX ()X (k)W (k) - up2c(cW@m) -5) . (a.6)

This is Griffiths' MLR algorithm.
We infer from this derivation, and well-known properties

of penalty function schemes ([3], [17] that:

i) the algorithm has an error correcting property,
i.e., it will not wander far from the constraint
in the sense of the gradient projection algorithm
discussed in Section VII.

However, the satisfaction of the constraint is
"grft", i.e., for finite values of £ the
sulution of (A.2) will not exactly satisfy the
constraint.
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iii) 1Increasing £ to cause the weight vector to
more nearly satisfy the constraint will increase
the convergence time of the algorithm.
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APPENDIX B

STEADY- STATE MISADJUSTMENT

Moschner [20] calculated the misadjustment for the

algorithm

W(k+l) = P(W(k) - Ry (X)X (k)] +F . (B.1)

By his method precisely the same results for misadjustment

may be obtained for the algorithm
W(k+l) = P[W(k) + Le(k)X (k)] +F , (B.2)

where e(k) =d(k)-y (k) and the optimal weight vector of
(B.2) is defined to be W, of Theorem 1.
A slight improvement in the bounds obtained by Moschner
is possible by noting in his equation (D.19) that since
A T .
anE(VnVn] and V_ =PV by Geometrical Property 5 and

P2 =P , then

Tr (PRBnR) = Tr (PRPBnR) F (B.3)
and so
O Tr (BnR) < Tr (PRBnR) < O e Tr(BnR) 5 (9.4)
where omin and omax are the smallest and largest non-

zero eigenvalues of PRP . The result follows by using the

above facts in Moschner's derivation.
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APPENDIX C

LEMMAS ON QUADRATIC FORMS

Lemma C.1. Let R be an (nxn) positive-definite matrix
and C be an (nxm) matrix (with n >m) having fuil
rank m . Then the (mxm) matrix cTre is posit ive

definite and (CTRC)™! exists.

Proof of lemma C.1,
Since R is positive definite then V'RV >0 for any

n-vector Vy¥9 . We want to show for any m-vector U¥g
that UTCTRCU>O ., hence, CTRC is positive definite and
its inverse exists.

If the vector Uy¥9 , it has rank 1. By Sylvester's
inequality [9], the rank of the product of two matrices is
not less than the sum of the ranks of the matrices, less
their common dimension. Letting p(:) denote rank, the

rank of the n-vector CU is bounded by
p(CU) 2 p(C)+pP(U)-m

2m+l-m

21

(C.1)
from which we conclude CU is not the zero vector. There-
fore, letting V =CU we conclude

UTCTR-’.’U = VTRV >0, (C.2)
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for any non-zero vector U 8o CTRC is positive definite.

This completes the proof of lemma C.1.

Remark It follows that if R is positive definite
Rl is positive definite and (CTR-lc)'l exists.

Remark 2. Since the identity matrix is positive definite

it follows that (CTC)-]' exists.

Lemma C.2. lLet R be a positive-definite (nxn) matrix.
tet P=[I-c(ctc)"cT] , where C is (nxm) with
full rank m . Let the subspace X be defined as

Z={W: CTW=S] . Then

i) m eigenvectors of PRP lie entirely outside
Z and have zero eigenvalues.

ii) The other (n-m) eigenvectors of PRP lie
entirely within I and have strictly
non-zero eigenvalues.

iii) Let o be the ith non-zero eigenvalue of
PRP and 7\3. be the jth eigenvalue of R .

Then the eigenvalues are related by

)‘min S °min < °i S “max S )‘max ’ (c.3)

for all i=1,2,...(n—m) .
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Proof of lemma C.2.

Since PRP is a symmetric (nxn) matrix, it has n
eigenvectors and n eigenvalues. The eigenvectors can be

chosen to be orthogonal [7].

i) Since the matrix C has full rank it has m columns
of linearly independent n-vectors. Direct calculation
shows that CTPRP-G , 80 the m cé:lumns of C are
eigenvectors of PRP with zero eigenvalues.

ii) There must be (n-m) remaining eigenvectors ortho-
gonal to the columne of C . As shown in Appendix E,
the columns of C are vectors normal to the constraint
plane [ and subspace X . Therefore, the remaining
(n-m) eigenvectors must be in X . As shown in
Geometrical Property 5 of Section 1V, if V is a

vector in I , then PV=V . Therefore if an

eigenvector e; of PRF is in X then
|
T T
’ eiPRPei = eiRei >0 . (C.4)

Let o be an eigenvalue corresponding to an eigen-

vector of PRP in X . Then by definition

8O

T
i

T
e PRPei = oieiei = oi . (C.6)
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From (C.4) and (C.6) it follows that
°i> o i=1,2,..., (n-m) . (C.7)
It is well known that if e is a unit vector
then eTRe is bounded by
A . < eRe <A (c.7)
min = = max ' *
where }‘min and xmax are respectively the
largest and smallest eigenvalues of R . There-
fore from (C.4) and (C.6)
Ain < % < Mpax - (C.8)

The result follows.

This completes the proof of Lemma C.2.




APPENDIX D @

EXPECTED DEVIATION FROM THE CONSTRAINT ‘
BY THE GRADIENT-PROJECTION ALGORITHM * 3

As an approximation, quantization in the weight vector
is modeled as an additive white noise process (see Widrow,
[27])); the expected deviation from the constraint by the

gradient projection algorithm is computed as a function of

time.

Assume that a fixed-point representation for the weights

.
L i e ——

is used; let the quantization size of.a single weight

L

3 be q . Using Widrow's value for the error variance, q2/12 A

3 from (7.9) the expected squared Euclidean distance from the vl
Q‘ constraint at time k is
k k s
. T 3
] e(lc™wae) -5 %) = B}, €5cc” 3 €,) ‘|
- i=l j=1 {
1 k k
T,.T
| = Tr(E{C JZE.ﬁ-]C )
r 1221 =11
4 - 2
= Tr(C —1%- 1 cT) :
; 2
" =L ccT) (D.1)
j 12 .
f Thus the expected squared distance from the constraint
3 increases linearly with time (approximately).
For the special case of the array problem, with C 1 §
! defined by Eq. (6.27), Tr(CCT)==n , where n is the number

of tap points. Eguation (D.1l) becomes

ElflcTwx) - 712} = xn

g
gN
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APPENDIX E

THE METHOD OF LAGRANGE MULTIPLIERS
] Consider the equality-constrained optimization problem

minimize J(W)
(E.1)

subject to OW) =6

. ' where J(-) is a scalar cost function and ¢(.) is a vector-
valued constraint function. 1In Theorem. 1, J(W) =E{ (d-wa)z]
énd ".45 (W) :CTW,- § . Let the gradient of the function J(W)

with respect to a vector W evaluated at Wj be written 4

VWI-MO) where . ‘
oJ |
, ;
P :
My %
r o 1
. . 1
: 37 ,
! w =% -
1 i
] A necessary requirement for the optimal solution of (E.l) to 1
F— . 3
E}, be at a point Wo is that the gradient of J with respect
.\ to W be normal to the constraint surfacefat Wo . If the ‘
gradient of J at W, were not normal to the constraint 1
b 3
surface then by sliding along the constraint a vector Wl 3
t' ' " could be found still satisfying the constrain: but having 3
' *'I'he constraint surface is understood to be the points ,
satisfying the constraint ¢(W) =6 . )

1 ‘ -85-
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lower cost, i.e., J(Wl) < J(Wo) .

Fleming (([8}, p. 126) shows that the normal vectors to
any manifold defined by d(W) =9 is Vwo . For example, |
the gradient of the constraint defined by ¢ (W) =ClW-§ =0 1is ’ !
Vw(CTW—S) =C ; therefore, each of the m columns of C

is a vector orthogonal to the constraint plane and any linear |

combination of those vectors is also orthogonal to the plane.

Let A be an undetermined m-vector of multipliers.
The vector CA is a linear combination of the columns of
. C and so is normal to the constraint plane. Thus another 5
way to express the necessary condition that the gradient of J
the cost function J be orthogonal to the constraint surface
is to say that for some choice of A the gradient and the

normal may be anticollinear, i.e., (see Fig. E.1l)

V"J(Wo) +CA =9 , (B.3)

nr more generally

va(wo) +vw<b(w°)>\ =0 . (E.4) =

1 Another way of writing (E.4) analogous to the necessary
condition for unconstrained optimality (VWJ (Wo) =9) is by
defining the function H(W) by "adjoining" the cost function

to the constraint function by the Lagrange multipliers,

HW) = J(W) +ATo W) (E.5)

and requiring

Vw“(w) =0 . (E.6)
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. @en since VWH(WO) = VWH(WO) = VwJ(wo) +vwo(w°)>\ , (E.6) '
is identical to (E.4) and the necessary conditions become 1
p (E.6) and '
dMW,) =6 . (E.7)
For an excellent discussion of the Lagrange multiplier !
. method in more general applications see Bryson and Ho [3].
- ;
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APPENDIX F

SIMULATION OF THE DIRECT SUBSTITUTION ALGORITHM

At the beginning of Section III the direct substitution '
algorithm was suggested: To obtain an estimate of the opti-
mal weight vector, the unknown correlation matrices are
estimated and inserted directly into the equation for the
optimal weight vector. Although computationally quite .
difficult (because of the number of matrix inversions and
multiplications involved) the direct substitution method 5
offers the possibility of improved performance.

The direct substitution algorithm was simulated on
the array-processing problem of Example 3 using exactly the
same data as the Constrained-IMS processor. The direct

substitution algorithm is
Ry ) = aR (k=1) + (1-a)X (k=1)X7T (k=1) (F.1)

Wk) = Bxx)c(cTRm)cl ™ s (F.2) .

where 0<a <1 . Equation (F.l) is an exponentially-weighted
estimate of the true correlation matrix Rxx . Eqguation (F.2)
is the equation for the optimal weight vector for the problem
with ﬁxx(k) substituted for Rex - The constant a ,

which controls both rate of convergence and misadjustment,

was chosen to be 0.97, a value which experimentally lead to

approximately the same misadjustment as the Constrained- IMS ’

processor had in Example 3. ﬁxx(O) was initialized to the
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identity matrix, scaled by the power measured on each tap;

in this case the total power on each tap was 2.2 (see

Table 6.1), so ﬁxx(O) was 2.2I. This is a reasonable
starting point since the power on a tap is easily measured
in a real situation and also a simple calculation shows that
if R,,(0) is any diagonal matrix then W(0)=c(cTc) l5=F .
The vector F w8 also the initial weiglt vector of the
Constrained-IMS algorithm so the two processors essentially
start out at the same point and a meaningful comparison is
easily obtained.

Results of the simulation are shown in Fig. F.l.
Compare with Fig. 6.6. For the same misadjustment, the
better processor should have a faster rate of convergence.

A careful comparison of Fig. F.l and 6.6 fails to show
conclusively which algorithm has the better performance.
For this example at least, the user would have been just as
well off to use the simpler Constrained-IMS processor.

Readers interested in the direct substitution method

should consult Saradis, et al. [24] and Mantey and Griffiths

(18] , [19].
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PART II ) j
ADAPTIVE ESTIMATION IN NONSTATIONARY ENVIRONMENTS 1
by
James Edward Brown, III
ABSTRACT

’ In the classical design of processors for sensor arrays
whose purpose is signal detection and estimation, a receiver
is optimized on the basis of the a priori knowledge of the

’ statistics of its input signals. However, when the a priori
knowledge is not available, the receiver's performance can still
be improved by performing measurements on its input signals
and incorporating this new information into its design. Such
receivers are called adaptive. :

. The purpose of this research iz to develop and analyze
a gradient-descent surface-searching algorithm for automatically
adjusting (adapting) the parameters of a linear tapped-delay-

. line array processor in order to improve its per formance in

an unknown changing environment. The tracking ability of this

algorithm is demonstrated when the characteristics of the

nonstationarity are such that the optimum parameter sequence

can be modeled as a first-order Markov process with a known

transition function. A worst-case analysis of the algorithm

is presented for three types of nonstationarities when the

above model for the nonstationarity is not applicable.

' The techniques developed in analyzing the above algorithm
provide a powerful approach for the further study of gradient-
R descent algorithms used in searching unknown, nonstationary
| surfaces. Among the most important consequences are:

i) the removal of the usual assumption that the data
2 be jointly Gausrian;

: ii) the development of a new convergence theorem for a

i dynamic stochastic approximation algorithm, thereby
extending a branch of stochastic approximation theory
to the analysis of adaptive processors in nonstationary
statistics;

[ .

| iii) the enlargement of the class of problems for which
' stochastic approximation algorithms, adaptive esti-

; mation algorithms, and the Kalman-Bucy theory can

: : be compared.

Also presented in an appendix is a procedure for auto-
i matically adjusting the convergence factor. Some experimental

results are presented.
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I. INTRODUCTION

A. PURPOSE

In the classical design of processors for sensor arrays
whose purpose is signal detection and estimation [ 1]-[ 7], a
crucial role is played by the a priori information available
at the receiver. 1In practice, the receiver's performance can
be improved by performing measurements on its input signals
and incorporating this new information into its design [11]-
[21]. Such receivers are called adaptive.

The purpose of this research is to develop and analyze
a procedure for automatically adjusting (adapting) the
processor in order to improve its performanéé in an unknown

changing environment.

B. THE PROBLEM

The type of array processor considered in this paper is
the multichannel linear discrete time processor (also
referred to as the tapped-delay-line processor) shown in
Fig., 1.1. The input x at each receiver is sampled at
regular intervals and shiftea down the tapped delay line.
The sampled value at each tap is weighted, and all the
weighted values are summed to form an output y which will
be viewed as an estimate of some desired quantity d . For
the simple case when x consists of a transmitted signal plus
additive noise, the desired output d is taken to be the

transmitted signal. In general, 4 may be taken to be

-1-
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some other desired output, depending on the purpose of
the receiver.

The criterion used in this research for determining
the best set of weight values w for the above system is
the mean-squared error between the processor output y and

the desired output 4 (1] -[7]. This criterion is a

TR AT

common one used in the design of array processors since the
pioneering work of Wiener (4 ].

The mathematical description of the array problem is
given as follows: Let [xk :k=1,2,...} be a sequence of
p-dimensionyl vector-valued random variables to be referred

to as the input sequence. The components of X, are the
inputs X930 Xox s ...,xpk at the various taps of the proncessor
at time Xk . Let [dk tk=1,2,...] be a corresponding
sequence of real-valued random variables to be referred to

as the desired-output sequence. The pair (dk'x'k’) will be

called the data pair at time k . Assume that the sequence
((4.%) :k=1,2,...}] is an independent sequence. The
correlation matrix at time k=n , defined by

1-

A T
R 2 E[XX] , (1.1)

is assumed to be positive definite with finite eigenvalues.

The crosscorrelation vector at time k=n is defined by

?'I‘he expectation operator will be denoted by E[-] .

The transpose will be denoted by T .




e

A
P, = E[dnxn] . (1.2)

let W Dbe some p-dimensional column vector, referred

to as the weight vector or discrete-time filter, whose compo-

nents are the weights wl,wz,...,wb

The object is to estimate that weight vector w;

which minimizes the mean-squared error at time n,

given by
T 2
en(W) = E[(a, - W xn) ]

2 by T
= E[d]] - 2W P _+WR W . (1.3)

It is a well known result [42] that w; is given by

S |
W o=R"'P . (1.4)

This vector, w; ., Wwill be called the "Wiener" wejght vector

or the optimum finite-dimensional linear weight vector at
time n . The corresponding mean-squared error will be
denoted by 6; . (A typical mean-squared-error surface is
shown in Fig. 1.2 when the weight vector has only two
components.) Note that the expression (1.4) requires that
the second order statistics, Rn and Pn' be known. It
would be highly desirable to have a design procedure which
would not require this a priori information since it normally
would not be available to the array processor.

A method for determining Rn and P that immediately

comes to mind is to compute the time-averages [14]

sl Yo’ &
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For the stationary problem this would result in the optimum

finite-dimensional linear estimator W* in the limit as

more and more measurements become available. However, if 4
1 the environment in which the receiver operates is nonstationary,
the above method is not applicable in the determination of

the instantaneous value of the optimum weight vector W: s >
The time-averages (l1.5) progressively weighs the new, infor— “

mation contained in the data pair (d,X) 1less and less as

time progresses. Meanwhile, the optimum weight vector ’ j
continues to change. Another procedure for estimating
* 1
W, will have to bpe developed. _ ol
C. APPROACH ] g

The approach used in this research for estimating (or

tracking) the optimum weight-vector sequence {w;} is to
extend a gradient-descent surface-searching algorithm (the
method of steepest descent [g] - [10]) to the tracking of
an unknown time- varying surface. The resulting system o
(axray processor plus adaptation algorithm) gains the

capability of responding to changes in the input-data sta-
tistics. This results in an adaptive system whose performance »
is vastly superior to that of a fixed system in many instances.

The analysis of the adaptation algorithm is divided into

two parts. In Chapter IV asymptotic bounds for the performance

of an adaptive processor are obtaired when its input is




nonstationary. The characteristics of the nonstationarity
are such that the optimum weight-vector sequence {w;) can
be modeled as a first-order Markov process with a known
transition function. However, in many applications it

s unreasonable to expect that a model for the nonstationarity

1l be available. For this reason a worst-case analysis of
.adaptive system is presented in Chapter V for three types
of ‘nonstationarities. As shown by the example given in
Chépter VI, these results are particularly informative as

to the type of behavior to expect from the adaptive system.

D. CONTRIBUTIONS

The principle contributions of this research are:

1) A gradient-descent surface-searching algorithm is
developed for adapting the parameters of a linear
tapped-delay- line array processor in an tinknown,
time-varying environment. The tracking ability of this
algorithm is demonstrated when the nonstationarity is
modeled by the optimum weight-vect.or.sequence [W;)
being a first-order Markov process with a known transition
function. A worst-case analysis of the algorithm is
presented for three types of nonstationarities when the

above model for the nonstationarity is not applicable.

2) The techniques developed in analyzing the above algorithm
provide a very powerful approach for the further study

2 € gradient-descent algorithms used in searc® i-:g urkr ,wn,
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nonstationary surfaces. Among the most important

consequences are:

(1) the removal of the usual assumption that the
data pair (d,X) be jointly Gaussian.
(ii) the development of a new convergence y

theorem for a dynamic stochastic approxi-

mation algorithm, thereby extending a .
branch of stochastic approximation theory
to the analysis of adaptive array pro-
cessors in nonstationary astatistics.

(iii) the development of an analytical comparison
between the adaptation algorithm and the
Kalman-Buey recursive filter. This result

is presented in Appendix I.

]
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.II. TRADITIONAL METHODS FOR DESIGNING ADAPTIVE PROCESSORS

A large number of array processors which adjust their
parameters as a function of their inputshave been considered
in the literature. A representative sample is given in the
references [11]- [52]. Two basic types of systems have
resulted from the above research: a parametric system
[ 11] - [13] and a non-parametric system [14] - [52]. The
paiametric system is characterized by the assumption of an
underlying statistical framework for the input data; e.q.,
(d,X) jointly Gaussian, or the waveform of d Xknown with
X Gaussian, etc. This system is inevitably specialized to
specific applications. On the other hand, the non-parametric
system is less structured and more applicable to a wider
range of problems.

The work directly related to the research presented
in this paper is in the area of the non-parametric design of
array processors. Within this classification there are a
number of approacﬁes to the design problem. The most
promising statistical procedures are those which can keep
~pace with the incoming data so as to constantly update the
receiver's current state of knowledge about its environment
[17]- [52]). There are primarily two approaches in changing
the processor's parameters in "real-time": stochastic

approximation [17]- [40] and adaptive estimation [41]- [52].

-9
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The application of these two theories to processor é
design in minimum-mean-squared error estimation problems i?

yields a differential correction algorithm based on the

method of steepest descent [8 ] - [ 9]. The form of the

algorithm is

wn+l = Wn- unzn 0 (2.1)
where Wn is an estimate of W; P uh is the convergence 9
factor for the nth iteration, and Zn is an estimate of
Jn(wn) . the gradient of the mean-squared error surface »
E‘n (W) with respect to W evaluated at W=W, . (Methods ,

for obtaining the estimate Zn will be discussed later.)
The stochastic approximation version of the algorithm
(2.1) is characterized by the sequence [un] tending to
zero in some prescribed manner; the adaptive estimation
version of the algorithm (2.1) is characterized by the
sequence [un] being set equal to some prescribed positive
constant M . The former procedure is designed to estimate
the unknown parameters W in a strong probabilistic sense
(mean-square and almost surely), while the latter is . ;
designed to allow a "tolerance" in the estimates. As will
be shown in this research, by allowing convergence in a weak
sense, the class of nonstationary problems that can be handled -l

by adaptive estimation theory is larger than those handled

by stochastic approximation theory.
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The history of stochastic approximation theory began
with its introduction in 1951 by Robbins and Monro [17].
The results directly related to the present research were
obtained by Blum, Gardner, Dupac, and DeFiguerido. 1In
1954, Blum [18] extended the Robbins and Monro procedure
to the estimation of a multivariate parameter. This permitted
the application of stochastic approximation theory to the
analysis of the gradient descent algorithms in optimization
theory [19] - [40]. Gardner [21] demonstrated the appli-
cability of this approach in the design of adaptive
predictors.

The development of stochastic approximation algorithms
for estimating a time-varying parameter received little
attention until 1965 when Lupac [22] published his classic
paper on dynamic stochastic approximation methods.
DeFiguerido [24] extended this work to the estimation of
a multivariable parameter evolving in a nonlinear fashion.

The development of the IMS adaptation algorithm was
motivated by Widrow in considering deterqinstic gradient
procedures for use in pattern recognition [41]. The
IMS algorithm was later applied to adaptive filtering by
Widrow [42] and by Widrow et al. [43], because, in part, of
its conjectured ability to track nonstationarities. Griffiths
[44] later modified the algorithm for certain array appli-
cations. Senne [46] provided an exact analysis of both

Widrow's and Griffiths' algorithms under a special set of
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assumptions (stationary, jointly Gaussian statistics).
However, the technique used in Senne's analysis has not been
shown to generalize for non-Gaussian, time-varying statistics.
Daniell [50]) - [51] has demonstrated an approach to the
problem that can be generalized. It is this approach that

will be extended in this research.




III. THE ADAPTATION ALGORITHM

A. THE DERIVATION OF THE ALGORITHM
The starting point for the derivation of the algorithm
to be considered in this research is the procedure given in

Chapter II by

w = Wn- HnZn . (3.1)

n+l

where Wn is an estimate of w*

n 14
factor for the nth iteration, and Zn is an estimate

uh is the convergence

of Jn(wn), the gradient of the mean-squared error surface
&n(W) with respect to W evaluated at W=W_ . (A typical

choice for 2, is [ ]

T
Zn = -2(dn--Wan)Xn . (3.2)

However, a number of other choices have been considered in
the literature [42] - [50]. For a further discussion on methods
of obtaining Z, the reader is referred to Appendix E,
Section B.)

The important thing to note about Zn , for the moment,
is that if it were a good estimate of Jn(wn) ., then one
would expect wn+l ., given by (2.1), to be a better estimate
of w; than Wn . Recall that a function changes most
rapidly in the direction given by its gradient. Hence, by
moving along the gradient, one is moving down the
quadratic surface. However, in the nonstationary

case, one would rather have Wn+l as a good estimate of

-13-
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W +1 ° since the next data vector processed by the receiver !
n+1l

* ’ .
i i i weight vector for this input.
is Xn+1 - wn+l is the optimum g
Motivated by the Kalman- Bucy theory [56], the following
argument is presented for modifying (2.1) in order to track

*
the sequence [Wn] .

Let us assume that the input nonstationarity is such that
*
the optimum weight-vector sequence (in} can be modeled by the

discrete-time system

* * u
Woel = Fn(Wn) +U. ., (3.3)

where Fn(-) is some function, not necessarily known, and

[Un] is a zero-mean random process with finite second

moment given by i

2

Bllu %) = p2 < =

According to this model, which is similar in form to the

usual linear discrete-time model introduced by Kalman [55],

the optimum weight vector undergoes a first-order Markov random
walk. The problem for the adaptive process’is to track W; 3
The problem here differs from the Kalman problem in that here
F,(-) need not be linear and the random process [Un] need
not be an independent Gaussian random process. (More will be

said about this model in the next section.)

Since [Un] is zero-mean, from (3.3) one sees that

F (W;) 1s an unbiased estimate of W;+l. Hence, if a weight

L
vector W were a good estimate of Wn ,» the one would ¢ oect

Yili is the Euclidean norm defined by U]l =uly .
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that Fn(W) would be a good estimate of w;

a logical modification of the algorithm (2.1) is

+1 - Therefore, 4

Wh+1 = Fn(Wh-unZn) . (3.4)

Unfortunately, in many applications, one will not have 1

a priori knowledge of the sequence of functions {Fn] or E
the nonstationarity cannot be modeled by (3.3). It may

still be desirable to use an algorithm of the form (3.4).

Let [Gn] be a sequence of functions determined by the
experimentor. (Gn could be an estimate of Fn , based on
physical measurements, for example, or on a priori knowledge.)
The algorithm (3.4) becomes

W

nel = Sn W= K2 . (3.5)

(Some specific algorithms of the form (3.5) are given in
Appendix E.) This is the adaptation algorithm to be consi-
dered in this research.

The procedure (3.5) is similar to the algorithm proposed
by DeFigueiredo [24] for learning the unknown mixture
distribution in a pattern recognition problem in which the
environment ig allowed to evolve in time. However, his
formulation requires exact knowledge of the nonstationarity,
i.e., both [Fn} and [Un] are assumed known. Chein and Fu [23]
also considers a similar problem to that of DeFigueiredo.

Here again the nonstationarity must be known exactly.
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The analysis of (3.5) given in Chapter IV of this
research requires exact knowledge of only {Fn] and [pi] .
The worst-case analysis for (3.5) presented in Chapter V

removes even this restriction.
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] B. PRELIMINARIES
1. Assumptions
All vectots in this paper are contained in the
Euclidean p-space EP .
It is easily verified that the gradient Jn (W) =Rn(w- w:_:)
of the mean-squared-error surface En(W) satisfies the two

e conditions:

Condition (Cl), For all WGRP

2 2 * 12
\ lo, 1€ < AL () W=w_[I©, (3.6)
and:
. Condition (C2). For all WeRP
»
1 * T A * 2
. W-W )T W) > A . (n)w-w (€, (3.7)
where A (n) and A (n) are the minimum and

min max
maximum eigenvalues of Rn respectively.

It will be assumed that there exist positive constants A,

. and A" such that for all n:

Condition (C3).

0 <A <A (n) < A* < w . (3.8)

min(n) Sha

max
In one-dimension these conditions require that Jn (W) be
bounded between the lines A, (W- w;) ana A" w- W;)

(See Fig. 3.1.)
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allowed region
for Jn (W)

Fig. 3.1. Illustration of Conditions Placed on Jn w)
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We assume that the gradient is measured in such a way i
that the sequence of gradient estimates (Zn] satisfies
the two conditions:
f
Condition (C4). For all n
*
Elz W, W 1 =3 () ; (3.9)
Condition (C5). There exist positive constants o, and ;
S, such that for all n
_ 2 i 2 2 *)2
Efllz, - g, 0 )W W] < of+a5lw -w 1€ . (3.10)

Condition (C4) is the requirement that the gradient measure-
ment be conditionally unbiased. This is consistent with
the desire that algorithm (2.1) be based on the method of
steepest descent. Condition (C5) reflects the experience

that as one is farther from the optimum, the instantaneous

mean-squared error becomes a noisier estimate of the expected
mean-squared error. (For a zero-mean Gaussian random varia- 4

ble, the variance in its second moment is twice the second

moment squared [42).) Hence, the instantaneous gradient 4
estimate should be expected to increase.
- Condition (C5) is satisfied easily by most gradient

estimates (see Appendix E, Section C). The condition (C4) 5

on the other hand is almost never satisfied exactly. 1In

f order for (C4) to hcld, one essentially has to require that .




R T L T T P Y UL R 1P VRGN e L Gl dh it ik

20 Jo

the data pair (dn,xn) be conditionally independent of | ‘
the previous data pairs. This insures that (dn,xn) is
independent of wn . However, it turns out that for a large
weight system (p >>1) , condition (C4) is a reasonable
assumption.

The model used in Chapter IV for the nonstationarity

is that given by (3.3), 4

| 4 *
wm’1 = rn‘n(wn)+un . (3.3)

where fUn} is a zero-mean random process, not necessarily
an independent Gaussian random process. The evolution .
transformation Fo also need not be linear. However, it

will be assumed that F. satisfies the Lipschitz condition

2
IF, (W) = F (V)]

sup A= (3.11) :

2
lw=- vl
where the supremum is over all weight vectors W and V .

This condition is weaker than one requiring that the deriva- .

P -

tive of Fn(W) exist and be bounded for all W . Note that

the condition (3.11) does require that Fn " be continuous .

in W ..
The purpose of the Lipschitz condition is to bound the

the maximum change or stretching of EP allowed under F. - R

T ————

If two vectors W and V are close together, one wants the

S

transformed vectors Fn(W) and Fn(V) to be close together.

Another way of putting it is if two vectors are close together,

the effect of F operating on them should be similar.



It will also be assumed that the functions Gn(-)

satisfy the Lipschitz condition,

2
ley ) - G, D17 4 5

sup 95 <o, (3.12)

W= v

where the supremum is over all weight vectors W and V .

2. Mathematical Approach to the Analysis of (3.5)
The straightforward approach to the analysis of the

algorithm (3.5) would be to develop a recursive relation
for E[En(wn)] , the expected mean-squared error, and
evaluate this expression. However, this approach suffers
the drawback that it leads to the setting up of the problem
in a randomly time-varying metric space. It is worthwhile
to pause a moment and see how this comes about.

Starting from (1.3) and using (1.4), it can be shown

[ ] after some (easy) algebra that

E W) = £+ (wn-w;)TRn(wn-w;) : (3.13)
Note that

6 (0 )- &% = W - W) R (W -W")

is the excess mean-squared error due to using the weight
*
vector Wh rather than the optimum one Wn . The expected

value of this expression, defined by

2 & o *
co € E[(wn-wn) Rn(wn-wn)] , (3.14)

b o o

-

T T DU g e TP AT e




22

1s the expected excess mean-squared error. It is a measure

of the cost associated with not having the necessary a priori
*
knowledge to compute Wn.. This quantity Ci provides a

measure of the efficiency of the adaptive algorithm (3.5).

A large excess cost Cﬁ would indicate that the algorithm

1s not tracking the sequerice {W;] very well, while a

3
small excess cost Ci would indicate that the algorithm is :

working well. A recursive relation for Ci is desirable.

Unfortunately, the expression 4

wHTR wWo-w
W, -W,) Ry (W, - n)

is the eguivalent to defining a random time-varying norm on
the weight-space because R, varies. This adds a further

complication to the problem because the changes in both

*
Rn and wn have to be characterized in order to develop
a recursive relation for (3.14). Note, however, that

using assumption (3.8), one can obtain the inequallities‘r

x*z[‘wn-w;"zygs[(wn-w;)TRn(wn-w;)]_<_7\*E[uwn-w;|12] . (3.15)

which follow from the trace inequalities [47] given by

+

The inequalities (3.15) follow from the trace inequalities by

noting
* * * * T !
W ~W )R (W -W) = tr[Rn(wn—wn)(wn-wn) } . -
T

+ . . . * *
Make the identification I\--Rn and B= (wn-wn)(wn-wn) .
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Apin (B)tr(B} < tr(aB) < A (A)tr(s) ,

= max

where A and B are two symmetric, positive-semidefinite
i A A

matrices of the same order and mln(A) and max(A) are

the minimum and maximum eigenvalues of A , respectively.

Expressing bounds on the excess mean-squared error in terms

of

pl & E[nwn-w;uz] (3.16)

2
n
avoids the randomly varying metric problem. For this reason,
the expression (3.16) will be considered in this research.
Referring back to the algorithm (3.5), one sees that
the sequence of random weight vectors [wn] depends on the
choice of the sequence [un]. This sequence [Hh] controls
the stability and rate of convergence of the algorithm (3.5).
In the following chapters the asymptotic properties of the

sequence {bi] are investigated as a function of the choice

of [un] .

Py T

i

s ma e o e
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IV. CONVERGENCE PROPERTIES OF THE ADAPTATION ALGORITHM

.
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In this chapter, asymptotic properties of the sequence
2 A | *02 . . .
(bn = E[lwn-WnH] ] are investigated as a function of the :

convergence factors [un} for the case in which the environ-

mental functions [Fn] are known. The corresponding
adaptation algorithm to be used is (3.5) with G,=F_,
given by

W= Fn(wn- unYn) . (3.5)

The first three results to be established below demonstrate

the tracking ability of the constant-u algorithm, while the

last result provides sufficient conditions for the appli-

‘ cation of the correspcnding stochastic approximation algorithm. i
E A. CONVERGENCE PROPERTIES OF THE CONSTANT-{ ALGORITHM

The following theorem and its proof provide many key

results used in obtaining ds on the sequence

{bi 4 B["wq-WZVzl] in the subsequent discussion. The ]
b ' \\
theorem is: T
] Theorem 4.1. Assume that the optimum weight seqdénge {W;} *N
1 : .
is generated according to (3.3),
W F (W) +U (3.3) |
ntl = “n'"'n n° E I
Assume
E[Un] =0 U
and

F‘ - 24-




P

0% 2 1im sup E[”UnHZ] < o,

n—o

aadieiie st b
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Let the adaptive processor be descriked by (3.5) with

Gn==Fn '

W = Fn(Wn- uYn) 3

n+1l
Assume that the sequence of functions

the Lipschitz condition (3.12) with

limsup £ 2 £< 1.
n
N—»00

Assume that the sequence of gradient estimates

satisfy conditions (3.9) and (3.10), which are

* ..
E(2, |W W] =J (W)

(3.5)

satisfy

{z ]}

n

(3.9)

and
2 * 2 2 *|2
E(llz, - 3, W)€ |w W3] < oy +05lw -w il® . (3.10)
. Define
2 A *,2
b, = E[lan-Wnll | S (3.16)
! Then, if
2X*
P 2
2
one can conclude
u01f+p
lim sup b_ < . (4.1)

nom BT 1o £[1- 20k, +u2 (e 0?))

VT T O e P
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Remark: Note that this bound applies even for the case in

which the stochastic driving sequence (Un) is correlated
in time. Moreover, the sequence [Un] may be correlated
with either the optimum weight sequence (W;} or the adaptive
weight sequence [Wn] or both. The only requirement is
that [Un] be zero-mean and asymptotically bounded in
expected norm-squared. An example of this type of environment
is one that can be modeled as a finite-state Markov dependent
switching environment.

The general form of the bound (4.1) is shown in
Fig . 4.1 for the two cases £ =1 and f£< 1, - .
respectively. Note that in both cases, the convergence

factor K which minimizes the 1lim sup of [bn] is

different from zero. This is due to the unknown component,

[Un] , of the nonstationarity. More will be said about this

effect later in discussing Corollary 4.1.1 and 4.1.2.
However, despite the general applicability of the

i bound, the real importance of this theorem lies in its

i proof. The methodology used here demonstrates the power of

the formulation developed in Chapter III.

Proof of Theorem 4.1,

Subtract w* as given by (3.3) from both sides of

n+l ‘’
(3.5) to obtain

W W
“ "n+l

*
W =F W -HZ )-F (W )-U . (4.2)

.-

Using Minkowski's inequality (e1], which states that

A
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Y ] L “
Ereen)?) "< (ex®) + (2rv?)) 0, (4.3) N

one concludes that based on (4.2)

By S (ELIE 0 -1z -F W) 1211 540, (4.4)

where i
o2 = E(lu )I? 1
[ The evaluation of (4.4) proceeds as follows: By the Lipschitz «

condition on Fp, o given by (3.12), it follows that
, - _ * 12 2 - 2
'F (W, - uz ) - F w )< £lw, - w - uz |

2
n

< 2w - Wi - an - whTy s n? Iz, I} . a.5)

By (3.9) and (3.7) it follows that
x T * T | *
2 [(wn = W) Z|= Bl (W, - Wo) E(Z, W, W)

RENCNY

*

=E[(W - W
2

> NELW, - wil7) - '

By (3.9), (3.10) and (3.6) it follows that

E[fz n,,z]

E[th - 3 (W) + Jn(Wn)Hz] :

E[i'zn - I (wn)llz] + E[Han(wn)”z]

T *
+ 2E Jn(Wn)E[Zn - J (W) lwn,wn ]]

2
R R L L 0.7
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3
1
Putting Egs. (4.5), (4.6), and (4.7), together, one has the result !

*02 2|1 _ 5y 2,2 .%2,1,2 i

E[HFn(Wn-uZn)- Fn(wn)H]g fn[l 2ul, +uc (05 + %) b2 |
2,22 e ;

+ U fnol 5 ( ) .

Once more usiny the Minkowski inequality, Eq. (4.3), conclude that:

*, 2 % 2({ 2 *?'%
B IF, 0y - uz) - £ 00 17| < g 1- 2un, w0 (03 40*0)] b

+ ufnol .

From the above and (4.4), the key recursive relation,
b < £ |1-2uA +u2 02+7\*2 ;ib +Uf O + (4.9)
n+l = “n B 2 n n®1 ¥ P\

follows. 1Iterating (4.9 backward to k=N yields

n n
.10
Phe1 S T “x bN * gN T %5 P 4.19)

k=N j=k+1
where
¥ _ 2 h+2, 2\|*
1k a = fk[l-ZM* + U é\ +02)] :
By = WHOy + P
‘ and
n

a, =1 .
k:lle

i By definition of limit superior [58], one has the result that

i for any €> 0, there exists an N_ such that for all n> N.

’ £ <f+e,

and




f‘n<p+€

Pick the & such that for any

2A,
0 < 1< ———
AYE 4 og
it is also the case that

A
2 [- 1) 2" ..2.(
max|0, ¥ (1=} <K K - max |0, -
A G T, 2 .
where X x>y
max[x,y] 3 .
Y y2x

This guarantees that

Y
(f+s)[1- 2uA, + u? (N*z + o§>] <1.

Hence, for any n > N_ , one has from (4.10)

n
b, <a™¥ ey o y_Na“'k B
n+l N
g k=
€
_ . n+l-N _ B\l B8
= s[sz 1-a 22 l-a '
where
2 X
a = (f+s)[1-2u>\*+u2<>\* +o§)]
and
B = (f+s)u01+ P +€ .

Since 1<1, for all 6> 0 , there exists an M6>Ns

that for all nZMr)

n-N B

P
—

* T]b,, -

)
Q

such

ki




|

i
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- Therefore, for all nZM6 .

ho, £ +p
b < + 6 <

L : 1
n+l 1-a 2 *2 li + Y
= l- £f]l1- 2“7\*4-“' ()\ +03 ]

where Y > 0 can be made arbitrarily small by choosing a

sufficiently small € and & . From this it follows by
definition of limit superior 1

ho,f + o 3
lim sup bn_g :

L 5 (4.1)
*
R 1- fEI.-ZLU\*+u2(?\ +o§)”‘

This completes the proof of Theorem 4.1.

Two important special cases of the problem handled by

the previous theorem are when:

(i) the nature of the nonstationarity becomes
determinsistic in time (the random driving
process {Un] goes to zero in expected
norm-squared; i.e., p=0). Examples of this

case are:

a) stationary statistics. Here Fn(W)==w and
Un==0 for all time. This is the customarily
treated problem in adaptive system theory [42]-[47].

b) asymptotically stationary statistics. Noise
sources may be initially present that eventually
move out of range of the receiver.

c) known varying channel. Measurements can be
1R performed on the channel so as to determine
its effect on the input statistics to the
receiver.




32

d) known constraints placed on the weight vector.
It may be desirable, for example, to control -
the frequency response of the array processor

in a given direction while nulling out
signals coming from other directions (see ¢ !

(40] orl4s8 ] or Appendix E, Section B).

(ii) the nature of the nonstationarity is strictly
first-order Markoff (the random driving process
fUn] is a zero-mean, independent random
process). An example of this problem is where
the input data x is the output of a linear

i randomly-time-varyino channel with additive

white noise [53] - [54]. The object of the

filter is to predict the next input Xn41 ©R .
the bases of the previous p inputs.
The theorems are: R *
A
1 Corollary 4.1,1. Under the hypothesis of Theorem 4.1, if a
N =0, then
, ulod
lim sup b_ < — (4.11) -
now D 1-f25-2u>\*+u2(7~—*2+o§]

and

Corollary 4.1.2. Under the assumptions of Theorem 4.1, if
fUn} in (3.3) is a zero-mean, independent random

process, then

2 ifz + P
lim sup b < -

3 :
N 1- fz[l- 2HA, + u? (K* + og)]_

uZO 2

(4.16)
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Remark 1l: The bounds (4.11) and (4.16) are shown in Figs.
4.2 and 4.3, respectively. While the form of the bounds
(4.1) and (4.16) are similar for a given set of
parameters, the bound (4.16) is tighter than that of (4.1).

Remark 2:;: One should note that by choosing a sufficiently
small K , the bound (4.11) can be made arbitrarily

close to zero, i.e.,

lim 1lim sup b2 =0 .
Uu—0 n—o n

An algorithmwith this property is said to be e-optimal

'. b1].

Remark 3; For the stationary statistics problem in which
Fo (W) =W and U, = 0 , the bound given by (4.11)

reduces to
Lo

ﬁ lim sup bi L

N

2
* 2)
Ao+ 02

. This is the result ~g‘iven by Daniell [50].

27, - 1

—~~ =~

Proof of Corollary 4.1.1.
From the proof of Theorem 4.1 (see (4.4) and (4.8)),

it follows that

X

| 2
| 2 ,,* 2 2 2.2
f - bn+15 fn [1- 2u>\*+u (A + 02)]bn + K ol + pn - (4.12)
27,
By Theorem 4.1, 1lim sup bn is finite for 0<u< =7 5 -
N~ AT+

2
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i
|
R
2
lim sup bn
n—w
4 X |
I ‘a
i ]
] h
4
| ;
| g
|
| :
I
bound (4.11 !
| ;
|
I
I
|
I
I o
| P
L I 1
|
L
|
|
I
|
i
L, -
2A,
T!_E
+0
2
[
Fig. 4.2. Representative Curve for Bound (4.11).
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Using the result, proven in Appendix A, that

[ )
R

n—o n—so

. 2 . 2
(llm sup bn) = lim sup bn

sk s

it then follows from (4.12) that for any €> 0 , there exists

R o WP ey

an N_ such that for nst ’

2 2

2 2 5% 2|2 2.2 .2
b 1S f [1-2u>\*+u (A +02£]bn+u ff0]+e . (4.13)

Noting the similarity of (4.9) and (4.13), one has by analogy
to (4.1)

| ) ) n2g252 ;
lim sup b 1!

i
nse BT 1o fzﬁ- 2UA, + 12 (A*2 oi]— ‘
This completes_the proof of Corollary 4.1.1. .

Proof of Corollary 4.1.2.

Square both sides of (4.2) and take the expectation
| to obtain
| * udn _ - * 02 2
E:["Wn+l-wn+1 = E:[“Fn(wn “zn) Fn(wn)” ]+E[”Un” ]
(4.17) *
T * T
- 2E[{F, (W _-u2 )}"u - 2E[(F (W )}"U ] .

By the independence assumption on the sequence (U } ., it

follows that .

‘ E[(F, (W =12 ) ]TUnl

(E(F, W_-uz )]} E[U]

o . i




E[(F, 07))Tu ) = (E[F, (W})) ) E(U,)

0 L]

Recall (4.8) from the proof of Theorem 4.1,

* 2 2 (y*2 2) 2
E(lIF, (W, - uy,) - F, W) %) < fn[l- 2un, + 12 2 +02]bn

2

2.2
il olfn

Therefore,

2 2 - 2,,%2 2,002 222 2
bie1 S £L(1- WAL +u(A +65) )b + 1 Oyt +P, - (4.18)
Comparing (4.18) with (4.9) in the proof of Theorem 4.1, one
can argue by analogy that

5 n2o2g2 4 o2
lim sup b < 1

T (4.16)
n=o 1- f2 1-2uA, +u2 (7\*2+o§)i

This completes the proof of Corollary 4.1.2.
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B. CONVERGENCE PROPERTIES OF THE STOCHASTIC APPROXIMATION
ALGOR ITHM

For a subclass of the problems considered in the previous
section, the sequence of random vectors (Wn] generated by
/3.5) converges in a strong probabilistic sense (e.g., mean-
square convergence and probability one convergence) to the
sequence [W;] . The following theorem provides a set of

sufficient conditions for convergence:

Theorem 4.2. Assume the optimum weights are generated by

(3.3) where {Un] is a zero-mean independent random

2

re
- whe

process with E[HUnHZ] = p

Let the adaptive processor be given by (3.5) with
G, =F . Assume [Fn] satisfy (3.12). If [un] is

a sequence of non-negative real numbers satisfying

and if

(i) for sufficiently large n, £2(l-k A,) < 1
. = 2
(ii) k{_:l(l- £ (1= 2,)) ==,

then :
lim E[ W _- w;u ] =0

Nn—$o

R

o

il o
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and

. * 2
P[lim ”Wn- Wn”
Nn-+00

0] =1. i

Proof of Theorem 4.2,

Since convergence in mean-square will be needed to show
convergence with probability one, this aspect will be
considered first. 1

Pick Ny such that for all n > N

1"’ |
27, ]

0 U & =m0 . 3
e C e apups i
Ao oy

Then for n 2 Nl . One can obtain the equivalent expression

to(4.18) in the proof of Corollary 4.1.2,

2 2
bryaSoby +8 (4.19)
where i
a = £4|1- 2u_A +u2(>\*2+ 02) (4.20) i
n_ n n * n 2 : i
and
222 2 :
B, = Wafnoy + P - (4.21) 4

Therefore, by recursive substitution, one has for n>N1
K=Nl j=k+1

2 T 2 Rl
b2 S | T olon. + & asl By - (4.22)
RN, 1

An especially straightforward proof of convergence of

(4.22) is based on Kronecker's lemma, proven in Appendix B,
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Lemma 4.2.1(Kronecker's Lemma) Let (x ] be a sequence of .
real numbers. Let {ak] be a sequence of positive
numbers converging monotonically upward to infinity.

n
If Kz :—k- =%, converges to some finite number,
=] "k

say s, then

. l f
lim s x] =0 .
N+ an K=1

Returning to (4.22), assume, without a loss of generality,

that Nl = 1 . Make the identification with Iemma 4.2.1,

that
k
1
—_— a.
A '_‘il;rl J
and .
X = By -
Therefore, if
f
‘ﬁ'ak\o as n-w (4.23) .
k=1

and if

2 [ 2.2 2 2
_ 24 02|cw, (4.24)
= kgl[”kfk 1 k]

then lim b;‘: =0 .

Nn—co

To show (4.24), note that flz{ is bounded. Therefore, it

follows that

™s

[0} + o] < o

Kk=1
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if
00

2 S 2
< o a { o ,
kgluk - kzs:lpk

To show (4.23), use the inequality, e *> 1-x , for all x ,
to obtain

n n .
a, £ exp @ -1)) .
1111 k k§1 k

Therefore it suffices to show that there exists an N2 such

that for all n2> N a, <1, and

2 ’
n
(1—ak) - o ag N~
k=1
Now
2
= 1- £2|1- 2(y\* 2)
l-a, =1 fk[l 2uk7\*+uk(7\ +02] .
Since 4, <0 , one can assume without loss of generality that

for all k

2
a < fk(l-p‘k)\*) .
By hypothesis of theorem, it immediately follows

] *, 2
lim E[lw_ -w [ 1 =0 .
I ~$00

To show convergence with probability one, take condi-

tional expectations to obtain, in an analogous fashion to (4.19),

* 2 * * 2
E[IW,, = Wo 15T W W) <o lw -w [l +8

et e o St

e

i i
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where a, and Bn are defined by (4.20) and (4.21).

Therefore

" _"”2,_""2= o 2 o > w2
ElWoa1 Wnyy! "W =W %) = EJEIW_ ) LY LA S ) L

w w12
Note that if n <1 and Bn = 0 , then one could use the
martingale convergence theorem to prove convergence of

(4.25). However, Bn # 0 . The following lemma, proven in

Appendix C, provides the necessary result to show convergence.

Lemwa g.3.2. let (X,] Dbe a random process such that
(1) sup E[|x |1 < =
k
(i1) z[xk+1]xk....,xl] 2 X -a forall k .

where [ak} is a sequence of non-negative real numbers

such that
z% < w L
Then with probability one,

lim X = X where E[IX_|] <= .

n-—sc

Make the identification with Lemma 4.2.2,

-x = W - W)

and

3

L

a Ll
n n

By the first part of this proof, it has been shown that

.
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and

L2
lim bZ =0 .

n—ow
Hence, 8ng[lan- W;"2] < » . Therefore, by Lemma 4.2.2,
one has with probability one

*,2
lim ||wn- Wnll =Xx_
N=»00

where

E[ Ix,]] < = .

To show x =0 , use Fatou's lemma [61], which states that

n—o

E[lim X | £ lim E[X ] ,
n—oo

to obtain the chain of inequalities,
: * 2 * 2
0 EI;];:Lm Iw_ - Wl ] < lim E[Ilwn-wnll ] .
-5 n-»o

3 * 2
Thus, 1lim llwn-wnll =0 a.e.
n-sw

This completes the proof of Theorem 4.2.

Remark: With Fo (W) =W and Unzo for all n , one has
algorithm (3.5) in the stationary statistics case. By the

previous theorem, if

PR G =

e WPOTon oY .
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zu§<m

then wn -.w* in mean-square and with probability one (see
Appendix E). These are the usual conditions required in

the stochastic approximation literature [17]- [39]. However,
one important difference here is the additional variance
term, og'lwn-w;"z , given by (3.10). This term prevents the
application of Dvoretzky's theorem [35] to prove convergence.

i




V. A WORST-CASE ANALYSIS

Implicit in the analysis presented in the previous
chapter is that the nonstationarity is known and can be
modeled by the discrete-time system (3.3). If the nonsta-
tionarity is unknown or cannot be modeled by (3.3), the
results given in that chapter do not apply. In this

chapter, bounds are obtained for the asymptotic behavior

of the adaptive system (3.5) under mild restrictions on the

. optimum weight vector sequence [w;] . It should be empha-
’ sized that the results given here are not limited to the

nonstationarity model (3.3).

The three classes of nonstationarities considered are
the bounded-increment, bounded-variation, and bounded-
optimum. The bounded increment class is defined to consist
of those sequences [w;] for which

*

w2, _ .2
ne1 = Walll =27 <=y (5.1)

1. lim sup E[|w
n-—-»0

the bounded variation class is defined to consist of those

sequences [w;} for vhich

L]
lim i [E[”W]:_'_l = W;:Hzl} <w , (5.2)
n-o k=1

p and the bounded optimum class is defined to consist of

those sequences (W;] for which

. * * 2 2
lim sup E[lw_ - Wyll"] =B <= (5.3)

N-o

*
for some constant weight vector Wo 5

-45-
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The emphasis of the analysis is for the algorithm (3.5)
with Gn(W)==w ; i.e., the original algorithm (3.1). However,
the theorems stated have analogies to the more general
algorithm (3.5). (The extension to this case is straight-
forward.) The three major results given are by no means
exhaustive of the possible situations that can be encountered.
Nevertheless, they do illustrate some basic approaches and
philosophy for the handling of the nonstationary statistics
problem.

The analysis presented here is a worst- case analysis
for (3.1) in the following sense. Pick the convergence
factor sequence (un] (b could equal M for all n).

For each of the three previously mentioned nonstationarities
the corresponding 1lim sup bi is the asymptotic bound on

the supremum of E[“w:-f”w;ﬂzl over all possible input data
pair sequences ((dk,xk)] that satisfy the conditions
(3.6) - (3.10) for a specific choice of A,, AY, O+ and o, -
(In general, a different sequence [Hh] will result in a
different choice of the sequence [(dk,xk)] . However, the
bound lim sup bi may remain unchanged.) In other words,
within an;;;en set of constraints (conditions (3.6)- (3.10),
[unv , and the class of nonstationarity), what is the most

manevolent thing that nature can do to the behavior of the

algorithm (3.1) in terms of the sequence [bi] ?

e L
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A. NONSTATIONARITY OF THE BOUNDED-INCREMENT CLASS

A surprising amount of information about the performance
of the adaptive filter can be inferred from knowing only that
the expected change in the norm of the optimum weight is
bounded. This is sufficient to conclude that for suitable
choices of the gain parameter K , the optimum weight vector

can be tracked within some finite distance. The result is

summarized by

Theorem 5.1. For the adaptive filter system described in

Chapter III with Gn(w) =W , if

* *
lim sup E[llwn+l-wn||2] =22 < o ,
n—o
and
2A,
7\* +<J2
2
then
A+ HOl
lim sup bn < v (5.4)
Nn—o 2

2

2 *
1-\f1- 2+ w5 AT 4+ 0)

Proof of Theorem 5.1.

Starting from (3.5), with Gn(W) =W , subtract w:1+1

from both sides to obtain

*
W -W

W=z o W
ntl” ey = Wp - Wp-HZ,- W ) .

n+tl” ''n

Using the Minkowski inequality. (4.3), one concludes

. 2;
bn+13‘/E[llwn-wn- wz 111 + 2 (5.5)
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where
2 _ *, 2
by = E[llwn = wnll ]
2 _ w2
Tt E[llwn+1 wnll ]

Comparing (5.5) to (4.4) in the proof of Theorem 4.1, one
has the conclusion (5.4) by direct analogy to (4.1) with
f=1 .

This completes the proof of Theorem 5.1.

It is interesting to note that by using the conclusion
of this theorem, one can obtain a tighter bound by returning

to its proof. This cobservation is summarized by

Corollary 5.1.1. Under the hypothesis of Theorem 5.1,

2 .2 2"
lim sup b_ < —2— + ( Az) +B‘§A— (5.6)
n—so 1-a 1-a 1-a
where 2
a? = 1-2m, s uZ(od AT
and

Proof of Corollary 5.1.1.

Using '4.8) in (5.5), one obtains

22 2 2.% -
b [a bn+uol] + 48, (5.7)

<
n+l —

where




o?

= 1-2WA, + uz(c§+ 7\*2) .

Using the result proven in Appendix A, which states

) 2
lim sup bi = (J.im sup bn) %

N-sc0 n—so

and the conclusion of Theorem 5.1 that 1lim sup bn

n-+o
one can conclude that for sufficiently large n

bm_lg [az(b*)2+uzoi]” + A+ €,
where

b* £ lim sup b
n—s

n

and

€ >0 arbitrary .
From (5.8) it follows directly that
b* < [az(b*)2+u20§];’ + A .

Solving for b* in (5.9), one obtains

, n202_ A2

b* S .._A_ + A + __—l—-—
2 2 2
1-a 1-a l-a

This completes the proof of Corollary 5.1.1.
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is finite,

(5.8)

(5.9)

(5.6)

Remark: It has been argued by Widrow [49] that the "rate of

adaptation is optimized when the loss of performance resulting

from adapting too rapidly equals twice the loss in per-

formance resulting from adapting too slowly."

Since the
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rate of adaptation is inversely proportional to the
gain-constant H [42], an equivalent statement to the one
above is, "the gain-constant K is optimized when the loss
of performance resulting from adapting too rapidly equals
twice the loss in performance resulting from adapting too
slowly." Under certain conditions, to be specified, this
rule applies very closely to the bound (5.6), as shown by
the following argument:

Assume that b* (L) , given by (5.6), is minimized with

respect to M for

27,
*2 2
A 4-02

H <L

For a value of U satisfying this condition one can consider

the bound =
Lo

2
A A
b*(u) =m+ﬁm) +"2jf]:' (5.10)

The component due to changes in the optimum weight vector is

by (1) = TR .

*

(Set ol==0.) The component due to noise in the gradient

estimate is
2

by ) =305 -

*

(Set A=0.)
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Express b*(u) as

zﬁ
BY (1) = Fbr () +/[2 v (4) qb;N(u)] . (5.11)

Taking the derivative of b (L) with respect to 1 and

setting equal tc zero, one obtains

2 [bgy (1))

where Ko is the value of the gain constant © which

= [b;;N (u,o)]2 , (5.12)

minimizes p*(u) given by (5.11). Solving (5.12) for

Lo yields
452
o = 3 = (5.13)
A*ol
Hence. if
A
2/3 * 3
A e co— AN O
<< )\*2"-02 * 1

then the value of It given by (5.12) and (5.13) is close
to the value of M which minimizes the bound (5.6). 1In
other words, for a slowly varying enviromment, a good rule

of thumb is pick the gain constant K wusing Widrow's rule.
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B. NONSTATIONARITY OF THE BOUNDED-VARIATION CLASS

It may readily be seen that Corollary 5.1.1 applies to
the bounded variation problem since 3 & < = implies

k

Ak -+ 0. However, within this class of nonstationarity is

the stationary weight vector case, W}: = w* for all k , and
the asymptotically stationary weight.vector case, W.; —»W* .T
It will be shown that stochastic approximation algorithms
(un-»O) can also be applied with success, to these two cases.

The result is summarized by:

Theorem 5.2. For the adaptive algorithm given in Chapter III

with G (W)=W, if the sequence {un] satisfy

i) un_> o
11) E u,n = o0
iii) 2 12 < w
n n

* * ) ) * *
TThe fact that zllwk+l - wkll < @ implies lim W, =W follows

k ko
fror the inequality (m >n),
1 m=1
b N * * * * _ o
:!wn - wm” = ”:Zn(wk_',]_-wk)uskgn”wk,.,l k”
and
o W . - w*ll -0 as now
],L- n K+l k
i w" 8 lim W
Hence, by the Cauchy convergence criterion (581, & "

koo

exists.

4
3

2
§
3
3
E

A i e e




and the sequence of optimum weight vectors {w;]

satisfy
X<
where
= W X
n Wn+1 wn” ’
then
2
lim b" =0
Nn-so0 n
and

Proof of Theorem 5,2,

*
Starting from wn+1 = Wn - ”’n’n , subtract wn+1 from

both sides, square, and take expectations to obtain

2 2,2 2.2 * 2
br+1 S Opbp + B0 + AnEl I Wn=Wn- “nzh”] + 4

where
2

2 2 % 2
ar =1-2uA, +u (A +0,)

and b;‘: and A, are as before. Use the inequality

(Appendix E)

E[|x|] < & + 2 E[x?]

and (4.8) to conclude
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b2 < fre)a2 o (1, 20) 202, 22
n+l € n°n * *e M1t tEL .
Iterating backwards, one gets the result
n n A
2 %Y 2] 2 g 25) 2.2
b ST I1+=]alIDs + mw {1+ a; |8 &
n+l =] 10 TR A IR W) IR e i [Pk
where

2 Sy

. 2.2 .2
Bk:x 1+e “kol"'Ak"'SAk'
As done in the proof of Theorem 4.2, one can use Kronecker's
lemma (Lemma 4.2.1), to conclude that if
o0
LBE<w

k=1
and for some N

ng;l 1+? “1'21\‘ 0

then 1lim brz1 =0 . 1If

Ny

Z Uk =] 10 »
k=1
S A
< [a o] 0 K
kzs:l "x /
and o i
A Lo ,
k=1 k

00

then one has Zﬁi<w . Using the inequality e X 21-x,
k=1

it follows for sufficient large N ,

i e i e g el e et i
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Thus, lim bfl =0
n—sw

The probability one result follows in a manner similar

to Theorem 4.2.

This completes the proof of Theorem 5.2,
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C. NONSTATIONARITY OF THE BOUNDED OPTIMUM CLASS

It is often the case that the optimum weight vector is
known to lie within a p~dimensional hypersphere. For example,
if the background noise field fluctuates about some average
value, the optimum will fluctuate about a fixed vector. The
following theorem gives an upper bound for the sequence

[bn} for this model.

Theorem 5.3. For the adaptive system described in Chapter II,

if there exists a vector W; and a positive constant B

such that
\ * *
lim sup Ilwn - woll £ B,
N-—-»00
then
2 '\
€ + quL
lim sup bn < 2B + min = 2 (5.14)
n-w D€ __9 - * 2
0 (1-— ) [27A, - B (A +o2)]
where 2
LAY
A B
eo = == 2 (5.15)

e
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il it i A itaaridin

Proof of Theorem 5.3.

For the model defined by the hypothesis it is not |

possible in general to bound directly the sequence [bﬁ] : ’1

However, by considering the sequence {ci} defined by

2 * 2
one can infer an upper bound for {brle . The first step is

to obtain a recursive relation for sequence [cﬁ] : k

Subtracting W; " from both sides of (3.5), squaring, and

taking expectations, yields

T
cﬁﬂ = cg - 2uE[ ‘Wn"w;) z) + HZE[HZnHz] .

The second term on the R.H.S. may be bounded as follows,

. T
i‘ B[ (0, - Wo) 2] = E[ (4, - W) Elz W, W} 1]

* T
= E[ W, -Wq) J, (W )]

T T
y = E[ W -Wy) g ()] + E[ (- Wy) 3, (W ))
2
> Ab? - -,‘1;(3 +2 282 .

where by using the inequality (Appendix D),

E[ |x|]$%+2—ls E[xz] ., €>0 arbitrary,

one has

2
o E[ (w;- w;)TJn(wn)] £ E[llw;- w(;ll ”Jn (Wn)ll] £ %(s +%>\* szﬁ) .

Proceeding in an analogous manner to that in Theorem 4.1,

one obtains
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2
v 118 2 2 * 2
E[IY €] L o] + (0542 )by .
Therefore,
2 2 2
Che1 S S = Iy (E)D + T, (€) (5.16)
where
22) 22
*
pl(e) = 2H{A, - e - EAT 02)
2.2
rz(s) = Ue + U o] .
Note that pl(e)_z 0 provided that
2
*e 2
A
€2 — Se,m (5.15)
2
2\, - LAY +03)
and
2A
0< U —me
2
A4 o2
2

To bcund (5.16) in terms of ci , use the Minkowski inequality

to conclude
cn-B_gbng c,+B.

From this,

2 2 2
Cnel < [1- rl(s)]cn + 2131‘1(8)cn - pl(s)B + 1‘2(8) . (5.17)
From (5.17) conclude

r,(e)
lim supc_ < B + —z—ﬁ

Hence, again by the Minkowski inequality, one obtains

r, ()
3 b —L—
lim sup bn S 2B + Pl(S) 5

n-oo




L Since € €y Wwas arbitrary, one can conclude
T, (c) |
lim sup b, £ 2B + min T‘% . (5.14)
n—o 8280 1

This completes the proof of Theorem 5.3.

The following corollary gives a lnoser, but more

¢ tractable bound.

ssioedion e

Corollary 5.3.1. Under the hypothesis of Theorem 5.3 i

-
)\*2 uof/n2 ]
lim sup b_< 2B|1 + + = 1
n-sm " «2 3 *2 3
2[2A, - u (A +05)] 2[2A, =K (N +c Y]
(5.18)
and
] A*
|- lim lim sup b < 23(1 + ?)\—) (5.19)
1 L0 nNooo *

Proof of Corollary 5.3.1.

Let €=2¢g, in the original bound for 1lim sup bn {
n-—-o .
found in the proof of Theorem 5.3. After a little algebra, 3

the desired result follows. 1

This completes the proof of Corollary 5.3.1.

The importance of the results given in this section is that ]
they guarantee, in the mean-norm-squared sense, that if the

%*
optimum weight vector sequence [Wn] remains bounded about a

*
i vector Wo » then the algorithm (3.1) will yield estimates

within a finite region about the true minima.




VI. AN EXAMPLE

The purpose of the example discussed in this chapter is
to compare the theoretical bound (5.6) with an experimental

result obtained by using the IMS adaptation algorithm [42],

Wiepl = W T Llekxk . (6.1)
where
e = %% = Wk*k -
As shown in Appendix ﬁ, the IMS adaptation algorithm :is a

special case of algorithm (3.5) with Gn(W) = W and parameters

A, = igf Ain®Ry) (6.2)

Ay ® S\!:p )\max (Rp) (68

o = WP p()x xW - ax)IY . (6.4)
and

og = szp E[llxnx;r‘ - Rnllz] . (6.5)

A (] [] »
where xmin(Rn) and max(Rn) are the minimum and maximum

eigenvalues of Rn , respectively.

The criterion used to measure the performance of the

adaptive filter is the excess mean-squared error Ci as

defined by (3.14). Using (3.15) and (5.6), on has the bound

F 2 1202 A2

f lim sup c? £ N ) ——— (6.6)
n 2 2 2

[ n—co l=-a 1-a 1-a

where the parameters are as defined in Chapter V.

-60- .

PP I S IO S ..‘

P




61

The object of the adaptive filier Wy in this example
was to predict a random process [xk} one time-delay ahead

using only the previous value, i.e.,

de = X4

and

Y = WX -
The data was generated according to the one-point autoregressive

scheme
¥ = %M1 * Y
where
X = input data value at time k
| -
. ak = 0.2 sin 100 + c
Vk = white, stationary, Gaussian random process

with zero mean and unit variance.

The instantaneous error squared, (xk+1-wk>c,‘)2 , was

averaged over 700 points for each value of | used in the

adaptation algorithm (6.1). Two experiments were conducted,

one with ¢=0.0 and the other with ¢=0.5. The resulting 2

e

averages are shown as a function of 1 by the solid line
| in Figs. 6.1 and 6.2. The corresponding theoretical bounds
are given by the dashed line in the figures.
The discrepancy between the two curves can be accounted
% for by the following three observations. First, as pointed

out in the previous chapter, the theoretical bound is a
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worst-case analysis. 1In other words, the periodic nature
of the time-variability of the data is not exploited by the

bound. Second, the experimental curve corresponds to the

averagc mean-square error over a period while the bound

corresponds to the maximum mean-square error during the

(@ %)} is not

period. Last, the sequence of data pairs

an independent sequence.

The reason for the larger discrepancy in Fig. 6.2 than

in Fig. 6.1 is due, in part,
R*/%* and its effect on the

c¢=0.0 the ratio is given by

)\*

—

*
while for ¢ =0.5, the ratio

)\*

R

to the increase in the ratio

bound (6.5).

= 1.04

becomes

= 1.78 .

For the case
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VII. CONCLUSION

A. SUMMARY OF RESULTS

The research reported herein dealt with the convergence
properties of stochastic gradient descent algorithms as
applied to the sequential adaptation of array processors.
In Chapter IV, sufficient conditions were derived for the
convergence of these algorithms. A new convergence theorem
and proof for certain stochastic approximation algorithms
“Hx"o) were presented. These results serve as a guide
for deciding whether to use a constant K or a decreasing
K when the dynamics of the nonstationarity are known.
However, in general, one has incomplete a priori information
concerning the type of nonstationary environment to be
encountered. For this reason the worst-case analysis pre-
sented in Chapter V is particularly informative as' to the
type of behavior to expect of the algorithm in general.

Representative curves for the bounds derived in Chapter V

for the three types of nonstationarities considered there are
shown in Fig. 7.1. It should be emphasized that these

bounds are of a worst-case nature. They are summarized by

the three theorems:

- 64~
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Theorem 5.1 (Bounded Increment) If

0<u<

2A* * *
2 o and "wn+1 - wn” L4
L o5

then

1lim * 4
su _
N~ = E[”wn Wn||2] <L

Corollary 5.1.1. (Bounded Variation) 1If

and %Ak<w,

then

no?
lim su w2 1 .
SR ELlW, - W 19] < 2
2

2
27, - u(7\* +0

1- [1-20A, +u2 (A" e o)
: -

65

2

(5.4)

(5.6)
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Theorem 5.3 (Bounded Optimum) If
]
2\,
0< k< 3
) AN+ 02 k
and there exists some weight vector w; such that ]
" % *
woo- woll < B , then
'y - an 3
2 2
lim sup * 2 min € + Hog
n-sw ELMW =W, [°1< | 2B+ e2¢e 3
- X B2 2 ,
. ) T )=k (A +02)_J
. (5.14)
P
* i 2
2 .
2\ B 2uo
L 2B + + 1
2A, - K( +02 2)\*-u(oz+>\ )
= -
where
2
A" 32
€ =
. o 2 E
2\, - k(A" + 03)
It should also be noted that the range of values that U
can take in all three cases is independent of the conditions .
placed on the optimum weight vector sequence [w;}

i aan bt tntainedtonsiiih it il s o i WPDREF AR WESEERES gl St 2 cenion i ik b M it bl s i i s FISUREAOPRFTE e
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B. OTHER APPLICATIONS OF THE ALGORITHM

The algorithm developed in this research could equally
well be applied to a number of problems in the system sciences
such as system identification, process control, and pattern
recognition when the underlying statistics are alllowed to
vary in time. A large number of authors [25] -~ [30] have
considered the application of stochastic approximation theory
to these problems in the stationary case, but rather limited
consideration has been given to the time-varying problem
[23] - [24].
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C. RECOMMENDATIONS FOR FURTHER WORK

The following problem areas have been saggested by the
research reported in this paper:

i) Although a mechanism has been demonstrated for the
behavior of the adaptive processor in non-stationary
enviromments, an optimum choice for the gain
constant K is impossible unless reasonably complete
2 priori knowledge of the nature of the time-

’ variability is available. A procedure for auto-

matically adjusting K 1s desirable. An original

. algorithm, based on the method of steepest descent,

- for adapting K is found in Appendix F. Even though

the procedure has been shown to work well experi-
mentally, a theoretical proof of convergence would
be desirable. (The corresponding deterministic

algorithm is discussed in Appendix G.)

ii) The analysis presented in this research did not
exploit the linearity property of the gradient
Jn(W) . By incorporating this additional property

into the analysis, one might be able to obtain

tighter bounds on the system performance. As an

indication of how this might be done, see Appendix H

-

} for a discussion of the scalar problem.




iii)

Much attention has been given to comparing
stochastic approximation algorithms and the
Kalman-Bucy filter [55]- [57]. The analysis
presented here enlarges upon the problems for
which the two methods can be compared. A further
elaboration on this topic could prove fruitful,
since the algorithm (3.5) is computationally
simpler to implement than the corresponding
Kalman-Bucy filter. For a further discussion,

see Appendix I.
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APPENDIX A
A LEMMA ON THE LIMIT SUPERIOR

FOR A SEQUENCE OF NON-NEGATIVE REAL NUMBERS
The following lemma establishes an important algebraic

property of the limit superior of a sequence of non-negative

real numbers.

Lemma. Let {xn] be a non-negative sequence of real

numbers. Define

X = lim sup x,

n— ee
(xz)* = lim sup x2
n

n-es

then
* *
x%)* = (x")?

Proof of the lemma.

Assume the contrary. Let (xz)

* * 2
< (x) . Let a>o0
2, % 2 * 2 ,
be such that (x°) < a“ < (x )® . Now there exists an

N, such that for all n> N, it follows x2< (x°) +¢; ,

where we let € = a2 - (xz)“r . This implies xng a .
But for all €, > 0, it is the case that X, > x* - €,

*
infinitely often. Let €, =Xx ~a. Then X, > a infinitely

often. Hence, a contradiction. Now suppose that
x )2 < (x*)* . Let a>0 be such that (x)% < a® < (x%)* .

Since there exists an N, such that for all n > N2 we

o i kbt o ' PR M a i

o
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* *
have X, S X + cq where €3 a-x . Thus, X, S a.

3ut for all €4 > 0 we have xi > (xz)* - €, infinitely
often. Letting €q = (xz)* - a2 we have xﬁ > a2 . Again,
a contradiction. Thus, it must be the case that

()" = )2 .

This completes the Proof of the Lemma.
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APPENDIX B

PROOF OF KRONECKER'S LEMMA

This appendix presents the proof of Kronecker's lemma

stated in Chapter IV. The lemma is:

Lemma 4.2.], (Kronecker) Let (X, ] be a sequence of real
numbers. Let [a.k] be a sequence of positive numbers

converging monotonically upward to infinity. 1If
n

= 8 converges to some finite number, say s

kgl 2y n
then

1im—a-1-f:xk=o.

n-x n k=1

Proof of Lemma 4.2.1,
Before proving this lemma we need Abel's lemma on

partial summation:

Lemma (Abel), Let [yn} and [zn] be sequences. Define
n
’n'zyk' If m > n, then

k=1
m m=1
jz yjzj = (zmsm- znsn_l) + z sj (zj- zj+1) .
=n J=n
Proof of Abel's Lemma.
Noting that yj = sj- sj—l , we may write
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Li
N
L
1

. Z.8.
R A .

R P

nil m=1
2SS + z.8, - z2,..,8. - 2
mm = 33 jgn j+173 n®n-1 i

m=1
(ZnSm = Zndp-1) * }Ensj(zj T %541

This completes the proof of Abel's lemma, t

Defining yj

Abel's lemma

X.
=;:1 ' zj=aj ’ So=0 ; aO-O, we have by
]

n ril
jglxj =a s + sj (aj - aj+1) .

Using the identity

we may write

: f ‘ nil
— X, = == (s _s')(a' _a.) .
a, j=1 | a, {20 n j+1 j
1 &
To show 3 Z xJ converges to zero, we use the repeated S
n j=1

e X.| £ = s_-s.|(a -a;) .
nj=1 I T3 J=0 M I I+t I




75

Since s, converges to some finite number s , there exists

some integer Nl such that for all n,m>Nl we have

Isn-sml < €/2 . Therefore, for n>N

10
N.,-1
n n
1 I 1 £
- X:| £ s ~s.|(ay,,-a.) + =—=— E (a., . ~a.)
a, J;oj a, {20 n j j+1 j Zan j=l j+1 j
Nl-l
€
S—L Is_-s.l(a,.,~a;) += .
an f20 B 3 j+1  7j 2

Since a, converges monotonically to infinity, there exists

an N2>N1 » 8such that for n> N2

N.,-1
LT s - )
2 o lsn 8 | (aj+1 aj) <e/2.

Therefore, for n > N2

n j=1 J nj 1
€ £
< > +3 =€ .
n
Hence, for sufficiently large n we can make -al- z xj
n j=1

arbitrarily small.

This completes the proof of Kronecker's lemma.
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APPENDIX C

A MARTINGALE CONVERGENCE THEOREM

The purpose of this appendix is to prove the following

lemma, needed in the proof of Theorem 4.2.

Lemmua 4.2.2. Let (Q,5,P) be a probability space. Let

{x } be a stochastic sequence on (,5%,P) with

n’ n

5. S ¥

L S . Let [ak] be a sequence of non-negative

n+l
real numbers. Assume the following conditions hold

(H1) s;:p E[IX [] <
(H2) 2 ay < w
1l

(H3) E[X.k+1|3k] 2% -3, for allk a.e.

Then,

lim X =X, where E[IX_[] <= a.e.

N—ew

Remark: If a.kzo for all k , then by the basic martingale

convergence theorem [6l], the above conclusion follows.
The effect of the a, is to translate the x‘k .
o0
Since Z a, < » , one should expect the above lemma.
1

We now formalize this observation.

Define 2z =X - lgk a,, Note that (2.9, )

submartingale since

T Py
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[o2}

ElZy 1 193] = B Xy - P z '’

=k+1

¥x

00

B I9d - L 2,

2=k+1

2%- Lag =z

t follows immediately that

00

E(l5 ) < BCix 1 + L a, < sup 2% ) 4 ey

and by the martingale convergence theorem [61],

lim =2 and E[|2 |]] < » a.e.
k—boozk 0 )

o2
Since E a y converges by the monotone convergence theorem,

it must be the case that

lim =X a.e.
k»mxk *

o0
Moreover, since X _=Z_+ kz a, , E[ X 1] <.
=1

This completes the proof of the lemma.

D dh e e e e e i ks A M i, A St e et B Ny 0 bt o bt




APPENDIX D

AN INEQUALITY BETWEEN THE ABSOLUTE MOMENTS APOUT ZERO
OF ORDER 1 AND ORDER 2

An inequality useful in proving convergence theorems
is
lemma. Let x be a random variable on some probability
space (2,¥,P). Then, for all € > 0

2
E[|x]|] S%*’ _E.:.LL’_‘.L]_

2€

Proof of the Lemma.

The trick is to note that for all a > 0 and € > 0

M (

+ )21

m o
o im

Letting a = [E[lxlzll;5 , we can obtain
e + Le0ixZ 2> (BOIx1?)Y .

Apﬁlying the Cauchy-Schwarz inequality (p=2 in Holder's

inequality) we obtain the desired result,

2
£+ ELEE 5 wrixpy

This completes the proof of the lemma.
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APPENDIX E

SOME ADAPTATION AILGORITHMS

Examples of some specific adaptation algorithms which
are members of the class of iterative procedures defined by

(3.5) will be given in this appendix.

A. A STOCHASTIC APPROXIMATION ALGORITHM

If the statistics of the filtering problem are wide-sense
stationary (i.e., R =R and P, =P for all n ) the
stochastic approximation algorithm suggested by Gardner [21]

for estimating w* based on the data set
((4,,%) :k=1,2,...n) & ((@x))] .

is given by

Wopl =W, + heX (E.1)

where

: . * n-1
W, is the estimate of W based on [(d.k,xk)]l

T
= dn - wnxn = the error between the desired filter

e

output and actual filter output at time n

un gain or weighting constant at time n .

For the stationary problem, the model for the optimum
weight vector given by (3.3) becomes

*
W

= *
n+l = 1:‘n(wn) ’

where for all W

LRI SRR x.A,;ii‘.,; 2 0 PO T ACLC TP LR P ey NI IR D R S
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F.W) =W ;

i.e., for all n

* [

*
-Wl-W r

|

*
wn+l

Thus, the algorithm (E.l) is of the correct form to apply

Theorem 4.2 to show convergence of the sequence {Wh] to
W . All that one has to do is verify that Y, g -e X,
satisfies (3.9) and (3.10).

The conditions under which Y, satisfies (3.9) and

(3.10) will be derived in Section C. Both the Gaussian and

non-Gaussian cases will be considered there.

B. CONSTANT -j ALGORITHMS -

If the statistics of the problem are not stationary, the
*
algorithm given by Widrow [42] for estimating wn+1 based

on the data set {(dk,xk)]? is

W

atl = Wn + uenxn (E.2)

where .

. : * n—1
W is the estimate of W) based on ((dk.Xk)]l

e = dn - wﬁxn = the error between the desired output
and actual output at time n )
M = gain or weighting constant.
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Although this algorithm is similar to (E.l), note that the
gain constant is no longer a function of time. This enables
the IMS algorithm (E.2)} to track a rather general sequence
of weight vectors {W;] . (See Chapter V.)

In many applications, the desired response sequence
[dn] is not available. This is the case, for example, with
the filtering problem, where the desired response is the
unknown signal. However, if the correlation matrix Bo is

known, Griffiths [44] has suggested the modified algorithm

Wopl =Wy - By X, - P) (E.3)
where
Y, = ngn = output of adaptive filter.

With this algorithm, one does not need the desired response
to be able to adjust the filter.

Widrow, et al. [43 ] have proposed an alternate procedure
for supplying training signals while simultaneously processing
the received signal. Griffiths [44 ] showed this approach

is equivalent to his algorithm,

_ _ T 2, ,~T., _
Woel = Yn u[xnxnwn+BC(c W V)] , (E.4)

where the matrix C is related to the spatial characteristics

of the array and V controls the temporal characteristics.
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By allowing ﬂz to become large, the sequence {wn]

converges in the mean-value to the maximum-likelihood weight

vector

w = rlcwcTr oy v .

Kelly [7 ] has shown that when the data pairs (dk'xk)
are jointly Gaussian, the maximum- likelihood weight vector
is also the weight vector which minimizes output power
E[yi] subject to the linear constraint c™W=vV . Rosen
[10] has developed a gradient projection method for
iteratively computing this constrained weight vector. Lacoss
[40] has extended the technique to the stochastic design
problem. Frost [48] has modified this procedure for imple-
mentation or a digital computer. Frost's procedure automa-
tically corrects for quantization errors introduced in the
constraint equation during adaptation.

The algorithm suggested by Frost is

Wner = POW, - wyp X ) +Q
where

I-c(cle)” 1.T

o
]

Q = cicloy v,

and the optimum weight vector is given by

L o e iam e TR T e B By ol L
L e e Ol i e 10 ddibiand b, PIARADS, W N

P et e o i el
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w' = R lccTr o) v .
Mathematically, algorithm (E.5) is equivalent to the algorithm

*
Wn+1 = P(Wn- Ly X, +HRW ) + Q (E.6) g

since PRW*==O . This algorithm satisfies (3.5) with

>

G_ (W)

n PW+Q . $

Note also that w* satisfies
* *
W =PW +Q .

Hence, the model (3.3) applies with

Jay
Fn(W) = PW+Q ,

and

Convergence of (E.6) implies convergence of (E.5).

L The convergence analysis of the algorithms given in
this section for the stationary statistics problem follows
from Corollary 4.1.i where the relevant parameters are found
in a fashion similar to that done in Section C for the

stochastic approximation algorithm (E.l). The behavior of

(E.2- E.6) for the nonstationary problem may be obtained by
reference to the results in Chapter V. It should be noted
that these results are far more general than any previous

convergence analysis for (E.2- E.6) [42]- [48].

T . il I, W, Mot A I o ot i mantlil
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C. Sufficient Conditions for Convergence of Stochastic
Approximation Algorithm

1. General Non-Gaussian Case i
To verify (3.9), note that, by the independent samples

assumption for {(dk,xk)] » W, and (d,,X ) are independent.

Hence,

T * *
E[X X W lwn.w ] - Ela X lwn.w ] ’

w*
E[Y, Iwn,w ]

T
E[x X 1w - E[d X_]

. 1
= RW_- RW . 5
=JW,) . *
To verify (3.19) use the chain of inequalities, *
| (X X2~ R) (W =W )= (X X7W -a X )
E S X -rR) 0 =W+ (xnerlw*- dmxm)ll]2
| < 2l x xT-R) [P w - w2 e 2] x xowt - @ x 0112, “
to show that by the independent samples assumption .

2
Blly - g0 )2 W W) < of + 2w -w'|”,

where
of = 2£[] (x X W - a x )]
F and
. 2 T 2
| o) = 2E[ (x x_-R)["] .

&
L s — ke i T b o e e i £
B . g - - p— kel M dalshidais &
A e v P TR PO y e ik
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Therefore, by Theorem 4.2, under the independent data pairs
assumption and existing moments of order four, the {w_}

n
given by (E.l) converge with probability one and in mean-

*
square to W if {un} satisfy the usual conditions.

(1) w20
(ii) Zun =
2
(iii) Zun < o,

2. Gaussian Case

If, in addition to the assumptions given in part 1,

one assumes that the data pair (dn,xn) is jointly Gaussian,

he can obtain tighter bounds for o% and og . This is

shown by the following argument.
By the independent samples assumption it follows that

T * 2 *
E[Il (x X = R) W -W )W W]
- - * T T 2 _ *
= W - W )EI(Xan-R) ](Wn W)
Senne [46] has shown that if X, is Gaussian, then

E[(anﬁ-R)zl = R2+R tr(R} ,

where

tr{R} s frii trace of R .
i=1

Therefore,

Erl(x X - R) (=W 2 W W SN O e (RY) W - w2

3
: |
—J

S e




= e

where A is the maximum eigenvalue of R .

max

Define

Since the data pair (dn'xn) are jointly Gaussian, it

follows that any linear combination is Gaussian [ ]. 1In

. *
particular, sn

*
of W ,

*
it follows [ ] that €n and xn are independent. Hence, .

n

T

* T
E[(X X W -dX )" (XX

and
T,

E(Ix,xW -ax )12 W w1 = e(E)?IEflx [

Hence,

E(ly - T )2 W W] < EW") [tr(R)] ;

e and any function of X, are independent [ ). Therefore,

86

*ed -xw
€hn =9~ " -

is Gaussian. Moreover, since by definition

* * i
E[snxn] =0 = E[sn]E[xn] . )

'r' * * ‘
n-RYMW -W)|w W)
% E[s;]E[X: (xnxﬁ- R)] W, - wh)

= 0,

= (tr(RHEW) .

2 %2
i U\max L ?\mm{tr[R])llwn w €.

b e etk dar M i Rvow Badediiabitl




APPENDIX F

TIME-VARYING ADAPTATION ALGORITHM

One of the major problems connected with using the

IMS adaptation algorithm, 1

W

nel = W t He X, -« (3.5)

discussed in Appendix E is the choice of K to use during
adaptation. Without any a priori knowledge of the time-
varying cﬁaracteristics of the data, one would like an
algorithm which automatically seeks out the optimum value
of K without resorting to a random trial-and-error method.
The following algorithm was originally suggested by the

author to accomplish this task:

Wn+1 = Wn + unenxn (F.1)

T
- F [ ] 2
LLn p’rx- 1l & )‘en- lenxn- lxn ( )

The reasoning behind the above scheme is as follows.

Consider (F.l) without regard to how U«n is chosen. Since

e§+l is a function of Wosl ¢ which in turn depends on the
sequence [ui} . one would be led to pick uml according to
" - U - A aefx-rl
ntl =" 2 TSR
aerzn—l : . 2 :
where —Wr-l— is the gradient of e+l with respect to

un . Evaluating the gradient,
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’ 2 aen+l
O en+l = 2en+l Ak
n n
=2 . (A, - X W)
T ““n+l ‘Tn+l n+l "n+l
_ T o)
=-2¢n,1 Xn4y | ok Wne1 )
e T 9
= -2¢n,1 Xn41 Sun Wy = HnenXn )
- - T
- 2enen+l xn+lxn
we obtain the algorithm
He = 1+ he_e_. .X0X
n+l n nn+l ' n"n+l
While most of the time this algorithm did perform
quite well under experimental conditions, there were
instances for which it did diverge. The reason for this
behavior is that the value of A to be used
depends upon the initial weight vector Wy - This is
demonstrated by the following example.
Example.
The deterministic adaptation algorithm equivalent to
(F.1) and (F.2) is given by
b=k o+ Azl (n1)2Z(n) (F.3)
n n-1 *
Z(n+l) = [I - unR]Z(n) (F.4)

where 2Z(n) is related to W(n) by

E p— LT o S 2 H " T PR R ST TS
= . ik AsBadh r b sdivadl bl Ol




89

Z(n)

R(W(n) - w*)

R = covariance matrix of the input data (which is ]
assumed to be stationary for this example)

w*

optimum finite-dimensional linear estimator.

We shall consider the case with

Z (n) = 2z, (n) R =[x O] (r> 0)
* z, (n) I_O r

Then, our algorithm becomes

by = g A ) (22(0-1) + 22 (1))

.

z,(n+1) = (1-y_r)z, () iel,2

Defining

1 a(n) = l-p,r

B = Ar

we can write the above algorithm in the form

, a(n) = a(m1) - Ba(n-1) (z3 (n-1) + zg (n-1)
zi(n+1) = u(n)z‘,l (n) i=1,2
5 Letting zl(l) =zz(1) , we can further simplify to

e®(m) = a®(n-1) (1- 2p22 (n-1))2

zi (n+l) = az (n)zi (n)

1f 22(1) =l§€ and ;=0 (a(l)=1) where €30 , then
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rzf(z) = K
< .
a®(2) = (1+26)2 !
(25(3) =l£_€ (1+ 2¢)2 ]
<‘a2(3) = (1+2¢)2(1-201+2¢)2(1+¢))2
> (1+2¢)3 RE
etc.

with az(n)-.eo a8 nh-oo . Hence zi(n) -0 a8 N owx .,
Thus, the choice of )\ (or B above) for stability of the

algorithm does depend on initial conditions.
End of Example.

Is it possible to modify the time-varying algorithm such that

initial conditions no longer govern the stability of the processor?
The argument to be presented for modifying the deterministic
gradient procedure suggests that the stability of the corres-
ponding IMS time-varying algorithm is independent of initial
conditions. No theoretical proof is available as yet to support
this conjecture{rhowever the experimental results at the conclusion ‘Ai
of this argument do support this hypothesis.
An important reason for why the stability of the method of }

steepest descent algorithm doesn't depend on initial conditions ’

is linearity. Although the modified algorithm can't be made

linear, the norm of 2Z(n) can almost be made linear by updating
19 according to

- * 3
‘For the determinstic gradient procedure when the rat;p AN /N, is
less than two, convergence can be proven. See Appendix G for a proof.
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2°(n- 1)z (n)
By = U + A
n- -l Iz (n- 1) 2
The algorithm then becomes
T i
2 n-1)[I - T R] Z(n-1)
Hp = Hpy + A (F.5)
v Iz (n- 1)
Z(n+l) = [I-p R] 2(n) . (F.6) j
The corresponding stochastic algorithm is ]
e (n) xT(n)x (n-1) ‘
By =My g + A F.7 :
W(n+l) = W(n) - p e(n)X(n) | (F.8) 1
]

where

e (n) = difference between desired output and actual output
of adaptive filter

X(n) = data vector at time n

The stochastic algorithm can be further modified by observing

a few properties of the deterministic algorithm, the idea being
that we want the stochastic algorithm to behave in as deterministic a

way as possible without knowledge of the a priori statistics of 4

the problem. Define {

T
1 = Zn-1

a =
2! Iz (n-1) 2 4

R Z2(n-1) %

and note
*
A*'s an—l.S A

Luw st e b B s =2 4 i r—
= S S —_—— g




The algorithm for K becomes

A, = smallest eigenvalue of R

A, = largest eigenvalue of R

For convergence we want

which implies

»
S )‘.“n_]_S A un—l-S e

[1<a

by the previous inequality.

+ A(l-a

n—lun-ll 1

n-lun-l)

This suggests the further modification in the stochastic

algorithm:
Hp =
and
where

Hn-1

e(n
* MTeim-1

XT(n) X(n-1)

% (n-1) )2

W(n+l) = W(n) - u,ne..(n) X(n)

it M

b
yid & {y

X is some constant ¢ 2/\*

ko bl il s b i

y2»
acy<b
Y<a

1jo

(F.9)

(F.10)
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Since A* is in general unknown, the choice of K would appear
to be a problem. However, experimental evidence suggests that
the choice of K 1is relatively unimportant (the results
presented here used K=o ). This is not really too surprising,
for if j Dbecomes too large we should expect the quantity

_e(n) XT(n)X(n-l)

e(r1)  jix(n-1)|?

to be biased negatively. Thus  would tend to become smaller.
The following set of experiments have been conducted on the
-IBM 1130 to determine the behavior of the stochastic algorithm.

The data was generated according to the one-point autoregressive

scheme
Xe =81 ¥em1 * Ve
where
X, = data value at time ¢t
a, = b sin(wt) + ¢

Ve = white, stationary, gaussian random variable with

variance one and zero mean.

The purpose of the adaptation filter was to predict the process
{x.)
error of the prediction filter as a function of the initial choice
Ko for KL for various values of A ,b,w,and c¢c . The averages

were computed over 700 points after 3800 adaptations. It should

be recalled that for A =0 , one has the basic IMS adaptation

algorithm.

one-point ahead of time. Figs. F.1l and F.2 show the meéan-squre-

ST e, O SRS
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Mean-square
Error
? A=0
1.20
1-15 .
A=,001
110 o X = .0005
1.05 «

.01 .05 .09

Fig. F.1. Mean-squared Error for Time-varying Algorithm:

b=0.4 c=0.5 w 12200
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Fig. F02.

Mean-squared Error for Time-varying Algorithm:

=1

b=0.2 c=0.5 w =200
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It is easy to show, just by repeating the argqument
given for the IMS adaptation algorithm, that the ‘

algorithm given by

Yael = Wn - MY, (3.5) §

can be modified to yield ]

8 T+ ]

T, 1

Y Y g0

L o= W + A Ln'_l__ ;

n n-1 b ”2 1

n—1 1

= ] :

- |

L 4 c

Other schemes for varying the step-size are discussed in ?

the references (30] - (32].

A U o e




APPENDIX G

A DISCUSSION OF THE DETERMINISTIC
TIME-VARYING ADAPTATION ALGORITHM OF APPENDIX F

The purpose of this appendix is to discuss the deterministic

time-varying adaptation algorithm developed in Appendix F.

First, a convergence theorem:

Theorem. Let the sequence of vectors {Zn] be generated

by the pair of recursive relations
T

Z2_,[I-n_.R]Z
—n-1 nl _ n-1
Moo= R g+ A iz “2 (F.5)
“n=-1
Z 41 = [I-HRIZ, (F.6)

where R is a positive-definite, symmetric matrix with
*
eigenvalues lying in the interval [0<A,, A <«] .

1f A", <2, 0<KAK1A", and 0K, , then

*
lim Wn =W .
n—o
*
Remark. Since R is positive definite and anR(wn-W ) &
the convergence of Zn to O is equivalent to

5 *
limw =w
n—o

Proof of Theorem.
The first step is to derive sufficient conditions on

the sequence [un] for convergence of (F.6). Note that

u..'.ij
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12 01l < lz-w RllZ |

<[ - iz

for some N>1 . Now |[I- unRH <1 if, say, for some 6> 0
2 _
6, £ x 8, (G.1)

for sufficiently large n . Hence.
. n
ool
and consequently,

lin 2_ = 0 .,
n-so o

To verify that the o generated according to (F.5) satisfy
(G.1) for sufficiently large n , proceed as follows.

Note that (F.5) may be written

= - I\\
Hn (1 an_l)un_l+>\

where T

ZnRZ

Q =
n 2
iz I
Therefore, if 0SA< =& and w_ .20, then
A

0< (=M 1 +A < < A=Mu_1+A . (6.2)

Consequently, if ulzo , then (G.2) holds for all n .

Upon successive iteration, one obtains

0< (1- M*)“‘l(ul-fgn—és mo S (1- M,,)“'1<u1-71;) +-Al:

Lo e =

——
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Hence, if °<7‘<% » then for all e£>0 there exists an
A

N_ such that nZNs implies

£
1
- - g 13 + £ . G.3
RS (6.3)
*
Let r=s— . Then,
*
1 T ]
! x*-sgungx*\«s. ]

Since 1<r<2 by hypothesis, for any 0<eg < .Z)\:} there

exists a 6>0 , namely

3uch that (G.l) is satisfied for sufficiently large n . Hence,

lim Z_ =0 .
nowo o

] This completes the proof of the theorem,

v

An interesting question arises at this point. By
changing ¥ according to (F.5), is the rate of convergence
of (F.6) increased over that of using a constant K=2A ?

A partial answer is given by the following argument. Note
' that
12, ,1% = I(x= M)z 12+ 1= 2 )22 Rz, I

T
2 R(I- ?\R)Zn .

-2(1- )‘an-l)p'n-l n

T T ———
T
. -

Therefore, if

T 2,2 2
W12 R(I-AR)Z, 2> (1-Pa__,) un_lllnzn_lll , (G.4)

2(1- 7\c‘n- n-1“n

1

i SZait i e e b oenin S B s i
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then the rate of convergence of the sequence [zn) has been
speeded up by changing the step size X , If O <7\<—% ,
A

then one can write (G.4) as
T T2
2z Rz > [(1- kan_l)un_l+2>\]znn 2, -

This inequality holds if for all the eigenvalues of R ,

}\i , i1t is the case

2
22, 2 [(1- 2 + 20A%

n1"n-1
orx

2 l-ra_pr_+20] .

b §

From the proof of the theorem, if ul < -)\L , then I
»*

]
In
1?1"'

for all n . Consequently,

(1-Aa_ Ik +27 < (1- M,)-Al;nx

1+AM,
z—r*——— .
Hence, if
1+ AA
< > =
A, = A
i *

the rate of convergence has been increased. Since
>4
i A

for all 1< i < p, a sufficient condition for speed-up is
1+
i SN ol

AY < A

ik,

i Sl s S e




or A

Therefore one wants

A
<2
T; '
1
0 <1 <&
157, ¢
and - -
)\*
—-1
0 <A< min|——— , 1 :
A, A

It would appear that these conditions are far too
restrictive for the speed~up conditions. 1In Fig. G.l is
plotted the convergence curves obtained experimentally for

the case where the ratio R*/%* is equal to B(K*==1) R
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APPENDIX H

AN ALTERNATE ANALYSIS OF ADAPTIVE ESTIMATION
IN NONSTATIONARY ENVIRONMENTS

In the text we considered a state-space representation

for the dynamic model of nonstationary statistics. Other

models could also be developed. In this appendix, a

first-order two-state Markov model will be considered for ;

. the single weight case. The results obtained will be
shown to apply to more general scalar models.
B The problem to be discussed is defined as follows. Let

the sequence [wn] be defined by :

* Wntl = Wpo MY, ;
where

*
= Yo = r(wn-wn) +z, 1

E[z_|w ,w*] =0

n'"n’*n

2 « 2. 2 *, 2 3

E(z lwn,wn] = 0] + O Ilwn w |l ;

. :

and ~
W, = least-mean-square-weight at time n .

i

An example of this type of algorithm is the IMS adaptation

algorithm discussed in Appendix E when the input data pair ;

sequence is an independent Gaussian random process with

2 e 2, _
b E[xnlwn,wn] =E[x] =r

PPN Ry o TROR

E[ (dn- w;xn)z] = oi/r

and
2 2 * 2
E((xg-1)|w ,w ] =05 .
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Let the optimum weights (w;] be generated by a first-
order N-state Markov process with transition probability
matrix P = [pij] . If, at time n , the Markov process is
in state 1i , then w;:x ?; - The steady-state probability

vector is given by

T = [TTl,Trz,.‘.TTN]

where
= steady-state probability that w;-CPi 3

As an example, consider the two-state Markov process
shown in Fig. H.l. 1If at time n the Markov process is in

state 1 (indicated by 2 ) , then w;= ¢Dl ; if at time n
the Markov process is in state 2 (indicated by <P2 ) , then
w;= @2 . The transition probability matrix is given by

’

- 1 = —
pll plz l'p p
P = =
)2 p q 1-q
21 22_ e g
The steady-state probability vector is given by [60]
= = =3 B
T = {n‘_,_.Trz] Pta ' pta

To demonstrate the tracking ability of the algorithm,

consider first the random process [wn) defined by

w

*
- ] -
nel = Vo HT W =)o,

i.e., the noiseless gradient descent with zn==0 .
2

: * 2 , .
behavior of bn = E[l»t-:n- wnll ] is summarized by

The

A i 20t




(
*
Wi <
.
Fig. H.1.

= =2

1 prob Hl P+q

e

2 prob n2 ptq
Two-state Markov process.
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Theorem 1. Define the random process (w_] by

wrx+ 1

*
=W, = Hr(w, - W)
where W is arbitrary subject to E[(wl-wI)2] o,

*
[wn} is a stationary random process with finite second

moment. If O<Hr <2 , then

n—-1n1 oo
0 2 . 2 i+j * * * *
lim bS = 1lim (Hr) E (1- Hr) E[ (W, ~W,) (W, -W.)] .
Noo P noe 20 jgo i+2 71 j+2 1

Proof of the Theorem] ,

Note that by successive iterations, the algorithm can

be written
* A n * n ! n-i, * )
wn+1" wn+1 = (1-Ur) (wl- wn+1) +url£=l( - ur) (wi— CPk

Thus, if |l-ur|<1, then

2 _
bn-o»l =E[ (w

ERN?
n+1” ¥n+1)"
=0(n) + (ur)zf1 _fl(l- ur)2mi-dgg (‘”;" w;+1) (w;- w;+1)]
1= J:

*
where 1lim O(n) =0 . By the stationarity of [wn} one has
Nn-—-w

*

E (w;- w:1+1) (w;- W::+1)] = E[ (w* wI) (wn-j+2' w;_)] ‘

n—i+2 "
By re-indexing the expression for br21+1 ., one obtains the

result
n—-1r-1

2 (1- ur)

n+1l

b = 0(n) + (ur)2 i+jc(i.j) ’

=0 j=0
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.. * * * *
C(l,]) = E[ (wi+2—wl) (wJ+2-w1)] .

The conclusion of the theorem follows immediately.

This completes the proof of Theorem 1.

It should be emphasized that this theorem holds for any
stationary random process [w;] with finite second moment.
The following corollary gives one a way of evaluating the

expression when:

Corollary 1. 1If the [w;} are generated by an N-state,
first-order, stationary Markov process and [wn] are

as in Theorem 1, then

’\/
1n=-1 . . . .
lim b2 = (ur)? E X (l-ur)1“3@)'1'[1-1>3”“1-1>1"1+1>'1‘J '] P
n
n—-o 1=03=0
where

m o (m)
Pm = {ﬂipij }

and Pi(?) is an element of Pm=£ ° - * P,.

—

m factors

Proof of Corollary 1.

The corollary follows immediately from:

Lemma., Let [gn} be a first-order, N-state, stationary

Markov process with transition matrix P= [Pij] :

(m)

)m be denoted by Pi] . Define

Let the elements of (P

r~ (m)

m
(P)" = {ﬂipij )




and

Then

Proof of the Lemma.

state vector.

By straightforward calculation

2 [9n+m6 n]

N N
kgl ;ququEP[en_’_m = q)k ’ en = "’z}

N N (m)
kgl £1%¢z”zpzk

P~
P (P)"p

This completes the proof of the lemma,

o~

Noting that the [ . ] operation is linear, it follows

immediately that

n-ln=-1

lim b2 = lim ()2 § ¥

n— o n—wo

or by symmetry

i=0 j=0

108

.

(1-ur) i+j T I:I_ pi+l pi+l o li- 5l
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’_\/
n=1ln=1
lim B2=lim @r)? T T (1- ur)itd T[x 2pt* '1'3']

N—p00 N—»o0 i=0 J=O

This completes the proof of Corollary 1. i

The following corollary provides a nice example of the

tracking ability of the algorithm.

Corollary 2. Under the assumptions of Corollary 1 for the

two-state Markov process considered in Fig. 1,

2 - _ 2 2(ptag)
iﬂbn T2 (P1= %)" Fouofur (I-p-a) + (pra)]

Proof of Corollary 2.

Using the result [ ], P=a™ 1r2 =T, |. one has
!
1o pitl_ pi*+l, pli-3l _ [1 g i+l B |1'J|] -7,
™
where o =1-p-q . Therefore, by Corollary 1,
n-1 n-
o2 2 _ i+j i+l 3+1 |- 5l
lim bf = (ur)“m T, (9,-9,) “1im } _Z (1-ur) ' (1-a ) .

n-o n-eo i=0 j=0

The only term of any difficulty in evaluating is

n=1
lim ni (1= ur)it+igli-d
n—o J.—O 3=0

Defining B=1- Uur , one can show

[ P PSSyt = ST




T N
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TR i, B sBl Bl g By
1=0 3=0 j==(n-1) 1-62 j==(n~1) 1-32
where
1 131,131 n-1
L_az ,,_..]:_2 1+2(QB)_1_'_.EL
j==(n~1) 1-p8 1-P8 l-aB
and r
2n n-1 n—1
£— (1+28" (08" (ap) E—=2 B¥a
1-B8 B-a

1 @2r1§-fjla,j'=<
j=<Tn-1) 1-82

2n
£— (2n-1)
1-8
\.

B=a

In the limit as n-w,

-1 n-1 aa HLEE
Y L JRE E L R Sy
now i=0 j=0 + 1-8

Thus, it follows after some algebra that

L2 e y2 —  2(ptgq)
r];:n;bn =TT (9= %)" D) Gr(I-p-q) + (pra)

This completes the proof of the corollary.

The expected sguared distance between the optimum

*®
constant weight and the [wn} is given by

* *
Corollary 3. Let [wn} be as in Corollary 2. Let w,

* * 2
that constant weight which minimizes E[ (W, = wo) ]

be

Then

a2 aad

aato
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] *

and

E[ (w; - w;)z] =T .

Proof of Corollary 3.
It is a well-known result [61] that the constant which

minimizes E[(x- a)2] is

a = E[x] .

Therefore,
. *
Wo = TP + %
and
* *

! E[ (wn- w0)2] = 1r1(cpl- TP - 1r2q92)2 +T, (q>2- 1r1CPl- 1r21>2)2
9
: = T, T,(P;- @ e
1"2'"1 2 *
1)
1L This completes the proof of Corollary 3.
g Define
‘1
1 h 2 * *.2
1 P(L) = lim b, - E[ (W, = W) %
r n—o
‘ P(u)

In Fig. H.2 is plotted * =+ ) for three values of
. v E[ (wn" wo) ]
' Pp+q . It should be noted that when this expression is

negative, the [wn] has smaller misadjustment than is

. possible with any fixed weight vector.
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Adding noise to the gradient estimate, as originally

discussed, one has
Theorem 2. Define the random process [wn] by

Ynel = Wn =~ WY

where

w*
Yo © r(wn - wn) +z,

il b ot i

where z, satisfies the three conditions

R e

*
E[z, lwn,wn] =0

2 * 2, %
E[zn lwn,wn] = 0] + 0} (wy = W)
E[zizj] =0 i#3j .

*
Let the random process [wn] be stationary with finite

second moment. If 0<u<—-2r— , then

r2+0§
n-1 n=1 e
lim b2 = —E2=BX) _ 1) 340 ¥ T (1-unitic, )
2, 2 &
n-$o 2r- U (r +02) n-x i=0 j=0
u02

+

2r - u(r2+0§)

TP L ——

Proof of Theorem 2.

Proceeding as in the proof of Theorcm 1,

w

n+1l

n .
* n * n-1,_ * *
=W g = (1mur) Y (wymw ) +ui{=:l(1-ur) [xw=w -2 .
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Squaring and taking the expectation yields

2 2 & Q 2N=i- * " * *
by 0@ ¢ et 3 - ur) Yl Wy - why 1) W=y p))
2l 2(n-i), 2. 2.2
+ U (1- ur) [0F +0°bY]) .
& 1%9%2°:

From this expression a lower and an upper bound on the [bﬁ]

may be obtained. After a little algebra it can be shown k

R Ty

that both bounds are equal and given by

2 n-1n-1 )
p? - HEMDWEL 35§V o unitieq,d)
2r- L (r +0;) now i=0 j=0

2
1

2r - u(r2+o§)

Ho

+

where

C(i,j) = E[ ("";+2""I”“';+2"";)] .

This completes the proof of Theorem 2.

] For the two-state Markov process previously considered

we have plotted

P(u) 7
* *
E[ (wn-wo) ]

for the noisy gradient case with 02 =0 . The effect of the

gradient noise, z, . is to increase the misadjustment and

&

decrease the magnitude of the optimum U to use for a given
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(p,q9) pair. This is strikingly evident by comparing the
graphs of the noiseless gradient descent procedure (Fig. H.2)

with the noisy gradient descent procedure (Fig. H.3) {
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APPENDIX I

THE ADAPTATION ALGORITHM AS A FILTER

This appendix is concerned with looking at the time-
varying filtering problem from an entirely different viewpoint
than that of the text. It will be shown how the adaptation
algorithm (3.5) can be used as a filter. The performance of
this system will be compared to the optimum Kalman system for

a scalar filtering problem.

A, PROBLEM STATEMENT AND ASSUMPTIONS
It will be assumed that the target signal and noise field

can be modeled by the dynamic systems

es(n+1) = Fg 6g (n) + GSUS (n) (I.1la)
S(n) = Hg 6g(n) + Vo (n) (I.1b)
and
6y (n+l) = Fy 6y (n) + GNUN(n) (I.2a)
N(n) = Hg6y(n) + Vg(n) (I.2b)

where fg and 6y are the state-vectors, F and FN are

S

known matrices, U, and U, are random vector inputs of

S
zero mean satisfying E[US (n)Ug (m)] = stnm 2

E[UN(n)ug(m)J = Q@ , E[U(mUsm)] =0, G and G, are

known shaping matrices, H, and HN are known output matrices,

S

VS and VN are random noise vectors of zero mean satisfying

E[Vg (n)Vg m)]

Rgb s E[VN(n)V;'S (m)] = RS,

E[Vs (n)VN(m)] =0, and S(n) and N(n) are the signal
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and noise components present on the array sensors at time n .
Tre received vector at time n is X(n) =S(n) +N(n) (see

Fig. I.1). Note the change in notation from that presented in
the test. It will aslo be assumed that V., N US' and UN are

mutually independent Gaussian random vectors. This is the usual {

5
Kalman model for dynamic linear discrete-time random processes.
For the combined system model, (I.la), (I.1lb), (I.2a), and
»
(I.2b), one has
8 (n+l) = F(n) + GU(n) (1.3a)
X(n) = H9 (n) + V(n) (I.3b) '
r~ - -4
where g(n) = Gs(n) i
|
0y (n)
K ]
F = Fs 0 3
_0 FNJ
G = Gs 0
b0 GNd
| I
U(n) = | Ug(n)
t | Uy (n)

e[ ow)

v(n) = vs(n) + VN(n)
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This system, (I.3a) and (I.3b), is shown in Fig. I.2.

The problem is to determine the filter ({W(n+l,j):j=1,2,..n}

oy

which minimizes

E([IS(n+1) = § (n+1|n) |2 (1.4)
where §(n+1ln) is the estimate of S(n+l) given by ]
S(n+l|n) = j£W(n+1,j)x(j) .

=1

The S(n+l|n) minimizing (I.4) is called the ginimum-variance

estimator of S(n+l) . , 3

B. THE O RE SIVE EST TION FILTER
As shown in [57], the minimum-variance estimator of

S(n+l) , denoted from here on by S (n+l|n) , is given by
S(n+l|n) = H5 (n+1|n) (1.5)

where

H = [Hy O] (I.6)

and 5(n+1ln) is the minimum-variance estimator of 6 (n+l)

given the observations X(1),X(2),...,X(n) .
The optimal Kalman recursive linear filter for estimating

6 (n) based on the observations X(1),X(2),...X(n-1) is given

by (55] - [57]

~ B :
9(n+l|n) = F P(n)HT«HP(n)HT'O-R)']‘Q((n)- H§ (nln—l)\) +§(nln-lﬂ

]

(1.7a)
P(n+l) = F|P(n) - P(n)H® (HP (n)HT + R)™ 1 HP(n)]FT+GQGT (1.7b)

e




121

W_ waTqoad Aexae 103 Tapow ezeq

(u) %A

*¢°I *b1a
—-d Ba
, (u) Na
w\
: N N, = AvIIa
M (u)™e T+ufe
m.
(U N
] _ —P "
(u) X . ’
1 (u)s
” .
.“ H AViada
: (w)®e +ale

(u)Np

(u) n




122

where 8(n|n-1) is the minimum- variance estimate of 6 (n)
given the data observations X(1l),X(2),...X(n~1) . P(mn) is

the error covariance matrix at time n defined by

~ T
P(n) = 1-:[(9 (n) - §(nln-1)) (6 (n)—e(nln-l)) J .

An equivalent form for the Kalman filter givenby (1.7a) and (1.7b) is

6 (n+l|n) = F[ﬁ (nln-l)-K(n)(H@ (n ln-l)-x(n))] (I.8a)
P(n+l) = F[I- K(n)HIP(n)F® + GQG" . (1.8Db)
K(n) = p(n)HT @p(n)HT + R) T (I.8c)

(See Fig. I.3).

C. A RECURSIVE FEEDBACK FILTER BASED ON THE ADAPTATION

ALGORITHM

Consider now a suboptimum approcach for estimating S(n)
based on the observations X(1),X(2),...,X(n-1) . The idea
is to first estimate es(n) by 55 (n) , say. The estimate

of S(n) will be defined by
S(n) = Hsas(n) 5 (I.9)

In analogy to (2.3), define the mean-:quared errnor at time n
by
¢, 2 Ellsm)-Sm? . (1.10)

Using (I.1lb) and (I.9) in (I.10), one has the expression

&, = EllH (o () - 5, (n)] + v, (n)]|?] (1.11)

n

-
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An unbiased estimate of the gradient of (I.1ll) with respect

to §s(n) is given by
T, 4 o T
Yg(n) = HH [6,(n) =6 (n)] - HV_(n)
= H3(S(n) - S(n)]. (I.12)

The corresponding algorithm for estimating es(n+1) , based

on the method of steepest descent, is
A ~
8g (n+l) = F [6 (n) = u Y (n)] . (T.13)

This algorithm is of the form (3.5) in the text.

Note that the algorithm (I.13) requires knowledge of
either es(n) or S(n) in addition to the signal model
parameters. If the object were to estimate es(n) based on
S(l),...S(n-1) , this restriction would be acceptable.
However, in general, one does not know the signal sequence
{(sx)} .

Suppose we estimate the total state vector 6(n) by

an . The estimate of S(n) will be defined by

S(n) = 'ﬁén (I.14)

where H is given by (I.6). Define the mean-squared error

at time n by

&, £ EClX(n) - X 1%

where

4 3 v i faae - S TP PR LR DL 3 T 2
2l Crhaie i e o PTG RPN PO TTH 17 PP L TR 0P W TR o aadpehahiaiiatiin od

e
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X(n) = Ho_ .

Proceeding as above, the algorithm for estimating 6 (n+l) is

N A
9n+1 = F[en - unYn] | (I.15)
where
T. .« T
Yn = H H[en- en] - H Vn
T ~ T
= H Hen - H Xn a (I.16)

Comparing (I.15) with the Kalman filter (I.8a), one should

note that they are equivalent if

i

K(n) = unHT .

(See Figs. 1.3 and I.4.)
The performance of the filter given by (I.15) and

(I.16) is summarized by:

Theorem 1, Let [8n] be as defined by (I.15) and (I.16)
with W=k . If

2 T +
Noay[F(I- HHHT)] < 1
then
2 T . T T
. ~ 2 tr{FH + G
limsupE([[6 -6 _[°]1 < (1.17)
n-sc0 LA 1- A2 [F(I- uHTH)]

max

T)‘xiax (A) is defined to be the maximum eigenvalue of the
matrix ATA .
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Proof of the Theorem,

Subtracting O+ from both sides of (1.15) one obtains

1

~ _ T ”~ T
One1~ One1 = FII-HHH] (6, -6 ) +UWFH'V_-GU .  (I.18)

Defining

A ”~ T
B, = E[(B,-6,) (B, -6.)"]

it can be easily shown from (I.l17) that

Corr uT I S
B,y = F[I- WH'H]B_ [I- uH H]F
+ w2FHTRHFT + GQGT .
Hence,
tr(s,,) = tr(a"aB ) + wltr (FHTRHFT) + tr{cQet)  (I.19)
where
A = F[I - uHH] .
1f IIATAH <1, or M. (a) <1, then
* ’ max ’
2 2 T, T
. tr{B ) < A2 (A)tr(B )+ wPer(FHTRHF") + tr{GQGT) .

Hence, it follows

2 T T T
lim sup tr(B } < ME-[—FMI;F 1 +tr(GQc ) (1.17)
n—o l1- 7\max (A)

This completes the proof of the theorem.
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Remark: A tighter bound can be obtained starting from

T
B = ABnA + S

n+l

where

2 Tror T

S = L2FHTRHFT + GQGT .

It can be shown that if X;ax(A) <1, then (Bn] converges

to some matrix, say B .* Hence,

B = ABAY 4+ § . .f

Taking the trace, we conclude

tr{B} = tr(ABAT) + tr(s)
= tr (ATAB) + tr(s)

and consequently

tr(B) < tr(s] — . (I1.20)
Ayin (I= ATA)

Remark: The corresponding result for the Kalman filter is

T T -1 T T
P = F[Pw- P_H' (HP H" +R) "HP_]F" +GQG" . (I.21)

In general, no way has yet been bound to compare these two

results. However, the following scalar example does provide

an interesting comparison.

fThis resuit is a direct consequence of fixed-point theory [58]

as applied to the vector space of matrices with the norm on
this space defined by /tr(ATA) .
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D. COMPARISON OF KAIMAN AND SUBOPTIMUM FILTERS

Let en be the signal at time n generated according
to

9n+1 = WBn + Un

and let X be the received signal at time n given by |

By (1.8a), (I.8b), and (I.8c), the Kalman estimates are given by

P i
"N - " - J_ ”n -
9n+1 "'Yen (Pn+r) (en xn) ]
P r
- e n
1:‘n+1_'y Pn+r+q

and by (I.15) and (I.16), the suboptimum estimates

C]

n+l W((é\n" u(61'1 - %)) 1

2,2

b ¥2 (1 - w2 b, + #2¥r + q .

RPrOee 3

n+l

The resulting steady-state solutions are

2 Pmr
o=V P +r * 4
[o o]
2.2
b_ = u;r+j2 72(1_u)2<1
1-7Y°(1-H)

Using the K which minimizes the expression for b

b, (M p) = B, .
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E. CHOOSING THE 128 FOR_SUBOPTIMUM FILTER

The convergence rate of the filter (I.15) can be improved
by using a sequence [un] rather than a constant gain &« .
In fact, as pointed out earlier, if K(n) sunHT then the
Kalman and IMS filters are equivalent. Since this in general
will not be the case, how does one pick a good sequence {un] 2

An answer to this question is found by referring back to
(I.19) and minimizing the R-H-S with respect to KL . (This
procedure is an extension of that given by Chein and Fu [23].)
This yields

tr[FTFHTHBn]

B tr[FTFHT(HBnHTi-R)H]

with the resulting recursive relation

(tr[FTFHTHBn})z

T

— + tr{coc’) .
tr{F'FH (Hnnn

) = tr(F FB_) -

tr(B s

For the scalar problem considered in the previous example,

the Hn found by using (I1.22) are given by

b= ™
n bn+r
and the optimum K(n) are
L
K(n) = P +r °
n
Thus, if b1=pl , then un=K(n) for this scalar problem.

It is also interesting to note that the choice of LN doesn't

depend on knowledge of G or OQ .

|
/
;
|

bt ¢ s Sl LA el
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F. FURTHER COMPARISONS OF THE TWO FILTERS
Some further comparisons can be obtained if we assume
Q=0 . For then the Kalman result is

T

T -1 T
P = F(P_- P H (HP H” +R) "HP_ ]F

and consequently

The adaptive feedback filter yields

lim lim sup E[[8- o %] = 0

-0 noow
provided xxiax (F) 1 . Thus, in the limit both filters can
be made to perform arbitrary close to each other. The

previous example with =0 and 7Y=1 provides a nice

comparison,

Example.

Let gq=0 and Y=1 in the previous example. Assume

plsb1 . The corresponding recursive equations are

R
n+l Pn +r

(1- U-)zbn+u2r i

bn+l

As shown in Appendix J,

_ Plr

Phe1 = npP, +r
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and

- - 2n " r
bn+l (1=1) (bl 2-1 ) +-2-Lu

In Pig. I.5 wehave compared P, and bn for two values of
K when Pl=b1=r=1 3

Future research into the comparison of the two filters
would be desirable. Although the adaptive algorithm is
suboptimal, it has the advantage of being computationally
simpler. Also, less 2 priori statistics are needed to apply
this filter, the Gaussian assumption is not necessary, and
the theory presented can easily be extended to a non-linear
dynamic system, to name only a few advantages of the adaptive

algorithm.
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APPENDIX J

TWO RECURSIVE RELATIONS

The purpose of this appendix is to derive two recursive
relations needed in Appendix I. They are summarized by the

following lemma.

Lemma. Let {an} be a sequence of non-negative real numbers.
let o and 8 be two positive real constants with

a<l . Then,

. n
(1) if &, =3 1P n>1
n
a,B
then ay = nal+B : and
(i1) if a =aan+B n>1
n
n l-0
then a ., =0, +B 5 -
Proof of the Lemma.
(i) Assume that
alﬁ

a = —— 5
n (n—l)al+B

e £A2 1 ni s ol Aaamitain a il ek i Lo s aakiiilanivht di i bbbl SRl SR
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Then

n+1l a_ + B

= (n-l)a1+B ) a.B
(n—l)a1+B

+ B

i Szal . (-1)a, +B
= (n—l)a1 +B

2,8 +8(n-1)a, +p?

Pa,
na, +B °

This is the assumed form of the relation. It is easily
verified that a, and a, satisfy the formula. Hence,

by induction, the desired result follows for all n .

(ii) Assume

n—-1
_ o n=1 l-a
8 = @ a, + P l-a ¥
Then
2n+l T %3n +8
n-1
n-1 l-a
=a[a a1+B-——1_a ]

n
. l-a
= ey % Pise

This is the assumed form of the relation. It is easily

verified that a, and a, satisfy the formula. Hence, by

SRRPVIREIRIY R .

T




induction, the desired result follows for all n .

This completes the proof of the Lemma,
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