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Abstract 

The generalized lattice point problem,  posed by Charncs and 

studied by M. J. L.  Kirby, H.  Love and others, is a linear program whose 

solutions are constrained to be extreme points of a specified polytope.    We 

show how to exploit this and more general problems by convexity (or inter- 

section) cut strategies without resorting to standard problem augmenting 

techniques such as introducing 0-1 variables.   In addition, we show how to 

circumvent "degeneracy" difficulties inherent in this problem without rely- 

ing on perturbation (which provides us» lessly shallow cuts) by identifying 

nondegenerate subregions relative to which cuts may be effectively defined. 

Finally, we give results that make it possible to obtain strengthened cuts 

for problems with special structures. 
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1.   Introduction 

The generalized lattice point (GLP) problem (first posed by A. Charnes 

[6])    subsumes a wide variety of combinatorial programming problems, in- 

cluding the mixed 0-1 problem of integer linear programming. 

The GLP problem,  while remarkably easy to state, is not amenable 

to solution by standard optimization methods because of its generality and 

the non-convexity of its feasible region.    For instance, solution approaches 

based on certain "purification" and "decomposition" principles have been 

2 
studied by several researchers,     but may fail because it is not possible to 

generate the appropriate tableau information or because insufficient criteria 

are manufactured to distinguish local from global optima. 

The solution method presented in this paper for the GLP problem is 

based on the "convexity cut" ideas developed by Young [16]  and Balas [1] (in 

the context of mixed integer programming) and by Tui [15)  (in the context of 

3 
concave programming),    utilizing the extended conceptual framework due to 

Glover [8]. 

The key obstacle to applying convexity cuts to the GLP problem is 

the occurance of certain "degeneracy1' difficulties which are not present in 

the integer programming applications and which are not resolvable by per- 

turbation.   In fad, we show that perturbation is useless in the creation of 

convexity cuts, which demonstrates that reliance on perturbation t(  overcome 

degeneracy in the use of these cuts, as proposed in the concave programming 

context, is unfortunately unworkable. 
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The work of this paper enlarges the applicability of convexity cuts 

in two ways.    First, we show how to resolve the fundamental degeneracy 

difficulties associated with the GLP problem without relying on perturba- 

tion.    Second, we give results for strengthening these cuts for GLP problems 

with special structures. 

2.    Problem Statement 

We define the GLP problem to be that of finding a vector  x e Rn to 

Minimize   ex 

Subject to: Ax   ^  b 

x   i   0 

and        x lies on an n - q dimensional face of the 
polytope   Q = {x: Dx ^ d}, 

where   n a q ^0  and all matrices and vectors are, of course, assumed to be 

dimensioned conformably.    By the statement that   x  lies on an n - q dimen- 

sional face of Q   we mean we mean  x e Q  and   D^x - d^ = 0 for at least  q 

linearly independent rows   D1   of D (where  q ^ rank (D)). 

For simplicity in the following we shall assume that the inequality 

x i 0 is absorbed into the matrix inequality  Ax ^ b (except for any com- 

ponents of this inequality that are already contained in Dx ^ d) and that none 

of the row inequalities of Ax ^ b duplicate those of  Dx * d.   (Duplicate 

inequalities may, of course, be deleted from  Ax * b without altering the 

problem. ) 

Introducing slack variables  u = d - Dx and v = b - Ax, we define 

the polytopes 
P =   [x:   v 2   0} 

Q =   (x:   u*   0} 
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and also define 

Q* = i>: x lies on an n-q dimensional face of Q] . 

The GLP problem may then be written 

Minimize ex . 
xePOO* 

Corresponding to the GLP problem, we shall define a relaxed problem which 

arises by replacing Q* with Q to yield the ordinary linear program 

Minimize ex .. 
x e PflQ 

Clearly, if an optimal solution to the relaxed problem is feasible for 

the GLP problem, then it must be optimal for the GLP problem. 

3.   Tableau Representation of the GLP Problem 

We    assume (without loss of generality) that the problem con- 

straints and variables are indexed so that the equations u = d - Dx and 

v = b - Ax have the form 

and 

Uj  =  dj  -   Djx 

Xj  =  0    +  x. 

xn  = ü  +  xn 

Vj    =  bj- AjX 

where   u = (xl),   v = (y11)   and x = Q1).   Thus, defining   y = ($, the con- 

ditions u ^ 0 and v * 0 may alternately be written 

- - 



These notatlonal assumptions insure that the linear programming "column 

tableau" representation for the relaxed problem has a convenient structure 

that simplifies the identification of the "current x vector,"  Specifically, 

the initial column tableau representation is given by 

maximize x    = 0  +  c(-x) 

subject to u = d + D(-x) 

v = b + A(-x) 

u* 0,   v^ 0 

or, in more compressed form, by 

Maximize x    *  0  +  c(-x) o 

subject to    y    *  B +  B(-x) 

y   i    0 

where B0 = (^) and B = ^). (Maximizing x0 =-ex, of course, corresponds 

to minimizing ex.) It may be noted that the "middle equations" of this tableau 

representation are simply the identity equations 

x    -  -(-x),    J » l,...,n . 

The components of x are the nonbasic variables for this initial tab- 

leau, and setting x = 0 uniquely determines the linear programming extreme 

point (or "basic") solution: x   ■ 0, y ■ B0.   This solution is defined to be 

primal feasible if B0 ^ 0, in which case it follows that x c P n Q.   The 

■^M mtm—ummn 



solution is defined to be dual feasible if c s 0.    By standard linear pro- 

gramming theory, a basic solution that is botn primal and dual feasible is 

optimal for the relaxed problem. 

We write the more general current tableau  representation of the 

problem in the analogous form 

Maximize   x    =   crt + c(-t) o        0 

subject to y     =   B0+ B(-t) 

y  s   0 

wh^re the y vector is the same as before, but where t denotes any set of 

"current nonbasic variables" (hence its components conijutute a subset of 

the components of y).    The scalar c ,   the vectors c and B0,   and the matrix 

B will depend upon the composition of t.   This composition may be identified 

by n of the equations of y = B0 - Bt, which have the form 

yi - -(-V 

where of course j depends on i.   These again are identity equations, corres- 

ponding to the previously indicated identity equations of the initial tableau." 

Example of the GLP Problem in Tableau Form 

To illustrate the foregoing tableau representation of the GLP problem 

consider the problem 

Minimize   -3x.  + 4x2   ~  ^x3 

subject to 2xj  - |x2  + 2x3 ^ 7 

xl' x2' x3 * 0 

'■ ■■' '■-"--•—'-■->■■■—- ■ 1            ......    _.    .....      . , l, 
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where x is required to He on a one dimensional face of the polytope defined 

by 

xl   +  x2   +   x3    S    ^ 

-xl   "  x2   "   x3    $    '3 

Xj a    0 .. 

Then (eliminating   xi ^ 0 since it is accommodated in Q to follow), 

P = [x:   2X!  - x2 + 2x3 i 7,  X2 3ft 0. X3 i O) 

Q  =  [x:  X! + x2 + X3 s 4,   -xj - x2 -X3 « -3. xl * 0] 

and the tableau representation is: 

Maximize x0 = 0  -   U-xJ + 4(-x2) - 6(-x3) 

subject to 

yi  =  4 + K-x^ + l(-x2) + K-Xj) 

y2   ~   -Z  - K-Xj)  - l(-x2)  -  K-Xg) 

y3   =   0 -K-Xj) 

y4 = 0 - K-xz) 

y5   =   0 - ^-a) 

y6   =   7 + ZC-xp  - l(-x2) + 2(-X3) 

y  i   0 

where ^  =  u^ y2 = u2, 73 = U3 = x^ y4 = Vj - x2, y.. = v2 - x3, y6 = V3. 

In the detached coefficient form 
-t 

xo    = co c 

Bo B 

M**—*fc I   I  11 I   I      '*m 



the foregoing becomes 

x_   ■ 

-x. -x. -x. 

0 -3 4 -6 

4 1 1 1 

-3 -1 -1 -1 | 

0 -1 0 0 

0 0 -1 0 

0 0 0 -1 

7 2 -1 2* 

where the double line separates the "u" and "v" sections of the tableau. 

Optlmallty Criteria for the GLP Problem In the Tableau Representation 

To Illustrate how to Identify the optlmallty criteria for the GLP 

problem in terms of the tableau format, we first pivot on the coefficient 2 

Indicated by the aBterisk In the preceding tableau to obtain 

u. 

Äl 

x2 

x« 

-xl -x2 -v3 

21 3 1 3 | 

1/2 0 3/2 -1/2 1 

1/2 0 -3/2 1/2 

0 -1 0 o 1 
0 0 -1 0 | 

7/2 1 -1/2 1/2 

0 0 0 -1 

A 
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This tableau gives an optimal linear programming solution to the relaxed 

problem,  since it is both primal and dual feasible (B  >0 and c>0,  respectively). 

To determine whether this solution to the relaxed problem also solves 

the GLP problem we must translate the feasibility requirement of the GLP 

problem into an equivalent requirement applicable to the linear programming 

tableau.   The statement that a vector   x = x*  lies on an n - q dimensional 

face of Q (i.e. , x1 e Q*) may be expressed in the terminology of the column 

tableau for which (i) the basic solution (y ■ B0) yields x ■ x', and (ii) at least 

q of the current non-basic variables (components of t) are also components of 

u. 

In the foregoing example n - q = 1 and so q s 2.   However, only 1 of the 

components of u (i.e.. xj) is among the current nonbasic variables in the final 

tableau.   Moreover, there is no other tableau yielding the same solution in 

which 2 components of u are nonbasic, due to the absence of primal degeneracy. 

(We show how to take care of degeneracy in later sections. )  The existence of 

such a tableau is both necessary and sufficient for the current basic solution to 

lie on a one-dimensional face of Q,   and hence for the solution to satisfy the 

desired optimality criteria.   Thus, the basic solution of the current tableau does 

not solve the GLP problem. 

The main results of this paper provide a method for "cutting away1' 

such a basic solution to the relaxed problem when it is thus determined to be 

infeasible for the GLP problem.   The background for these results is given in 

the next section. 



4.   Convexity Cuts    Preliminaries 

The convexity cuts, In general, may be applied to a problem In which 

It Is desired to find a vector y contained in the intersection of the cone 

C  -   {y:  y -B0 - Bt.    t i 0) 

and some arbitrary set S.   The basic characterization of the convexity cuts is 

as follows: 

Convexity Cut Lemma ([81)   Assume there Is a convex set R whose Interior 

contains the vertex B0 of C, but does not contain any points of S.   Then, 

given numbers t* > 0  such that 

Bo ' Blt*i e R for a11 )■!»••• .n 

the cut 

^ ft*) tj  i  1 (1) 

Is satisfied by all y ■ B0 - Bt such that ye C Cl S. 

One way to visualize the assertion of the lemma Is to think of extend- 

ing the j     edge (half line),   y ^ B0 - Bjt-, t   i 0, of the cone C a "distance" 

tt > 0 such that the endpoint of the extended edge remains in the convex set 

R.   If this is done for each edge, and a hyperplane Is passed through the end- 

points of these edges (disregarding BQ) , then the convexity cut lemma says 

that all points y of C fl S must lie in the associated half space that does not 

contain B0.   Whenever B has rank n, as it does for the linear programming 

tableau, the solution  y = B0 is uniquely determined for   t = 0, 
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and cannot be obtained for any y e C satisfying (1), which Implies t» 0 and 

t ^ 0. 

The basic solution strategy Implied by the convexity cut lomma is to 

obtain a "cone representation" of the feasible region, such as that automa- 

tically given by the linear programming tableeu, and to determine a convex 

set R and numbers t* > 0 as Indicated in the lemma.   The problem constialnts 

are then augmented by requiring (1) to hold, i.e., by adjoining the cut (1) to 

the linear programming tableau and pivoting to a new basic solution (thus 

obtaining a new cone representation).   The process repeats until B- e S, 

whereupon y ■ B0 satisfies ye COS. 

Convexity Cut Strategy Exemplified for the GLP Problem 

We illustrate the foregoing (without yet specifying the convex region  R 

on which the numbers  t*.   are based) for the example GLP problem of the pre- 

ceding section.    The final linear programming tableau previously obtained, 

which gives the desired representation, is 

-x 1 -Xr -V, 

"O 

Ul 

u2 

U3 
= xl 

Vl 
s X2 

V2 
a x3 

! 21 3 1 3 | 

1/2 0 3/2 -1/2 ! 

1/2 0 -3/2 1/2 

0 -1 0 0 1 

0 0 -1 0 

7/2 1 -1/2 1/2 

0 0 0 -1 J 

1 "1 0 -3* -1 j 
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An appropriate convexity i.ut for this problem has been adjoined UH a new 

constraint row which apptars at the bottom of the tableau.    The cut is derived 

(using procedures to be specified later) from the values t*.  = ».  t'^ s  1/3,   and 

t*3 = 1  (where   tj = Xj, tg = Xg. t;j = v3).    We have denoted the slack variable 

that transforms the convexity cut inequality into an equality by  v4,  thereby 

indicating that the cut is being used to augment the set of constraints defining 

the polytope  P. 

Applying the dual simplex method to this tableau yields the pivot element 

indicated by the asterisk, and thus gives rise to the new tableau 

-x, -v. 

u. 

ul   " 

u2  " 

xl   = 

x«   ■ 

v.,   = 

v.   = 

20 2/3 3 1/3 8/3  1 

0 0 1/2 -1 

1 0 -1/2 1 

0 -1 0 0    1 

1/3 0 -1/3 1/3  1 

22/6 1 -1/6 4/6 

0 0 0 -1 

o 0 -1 0   1 

At this point the updated cut row (i. e.,  the v4 row) can optionally be dropped. 

The current tableau is primal and dual feasible and hence is once again "locally 

optimal".    Using the ideas presented in Section 3, we Investigate whether the 

current basic solution solves the GLP problem.   Only one of the "u variables" 

Is nonbaslc (i.e.,    Xj),   which is one less than 
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the number required.    However, the current tableau Is degenerate in Q (i.e., 

In the u variables)  since the basic variable u. receives a value of 0.   More- 

over, both v4 and v^ have nonzero coefficients in the Ui row, and hence u 

is possible to pivot on either of these coefficients to obtain a new tableau 

In which both u. and x. are nonbaslc, leaving the solution y ■ B0 unchanged. 

Thus the current tableau in fact provides an optimal solution to the example 

GLP problem. 

We now develop the fundamental notions and procedure for implement- 

ing the convexity cuts and for accommodating the considerations illustrated in 

this example. 

5.   Determining a Convexity Cut for the GLP Problem 

Corresponding to the sets P, Q, and Q*, we introduce counterpart 

sets P, Q, and Q* , defined by: 

P   = [y: x  e   P} 

Q = Cy: x  e  Q} 

0*= {y: x e Q*) 

where 

We note that P and Q are also given by P« {y:va0} and 

M 
Q = [y: u 2 0)  (where y = QX Thus, for example, y e P D Q may equlvalently 



be expressed as y iO. 

Our first goal Is to specify the set   S  of the convexity cut lemma In a 

form relevant to the GLP problem.   This may be done rather easily, since 

it is sufficient to define   S   so that the statement   y e C H S is equivalent to 

the statement   x e P H Q*.    Thus,  we let   S = {y; y 2 0 and y € Q^), which 

implies  S = C H S, since y = B0 - Bt.   (noting that y i 0 implies t 2O in the 

linear programming tableau). 

Our second goal is to specify the convex set   R   relative to which the con- 

vexity cut is determined.   It is instructive in pursuing this goal to identify the 

"natural" alternative for the set   R.    By the convexity cut lemma, the interior 

of R   must contain  B0 but no points of S.   Thus, a plausible first candidate 

for   R   is   Q .    This set is clearly convex and, moreover, every   y  that satis- 

fies y e Q"" (and hence y eS) lies on the "boundary" of Q , but not in its interior. 

However, there is no assurance that  Q will contain   B    in its interior.   In fact, 

this will almost never occur, for   y = B    can be in the interior of Q ( = {y: u * 0}) 

only if u > 0.    This latter implies not only the absence of "degeneracy in Q" 

(as discussed in the preceding section), but also that all of the components of 

u are basic.    This condition can   never be satisfied in tableaus that are feasible 

(or even "partially feasible") for the GLP problem, since one condition of 

feasibility is that  u. = 0 for at least   q   of the components of  u. 
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The set   P run be quickly dismissed as a viable alternative for R, 

since, althougi. ,   it may quite possibly contain points of S in its interior. 

The set   P H Q overcomes this latter limitation, but also fails, since B    is 

always on its boundary (and in any case this choice would not be as good as 

Q,   if Q  were acceptable,  since   PnQ«Q). 

A more plausible approach is that of "perturbing" B    (when necessary) 

from the boundary to the interior of Q,   whereupon  Q becomes an acceptable 

choice for R.   However,  such perturbation, which very satisfactorily combats 

degeneracy in ordinary linear programming, is totally useless in the 

convexity cut context.     To see this,  note that perturbation gives rise 

to ong of the following two possibilities.   First, there may be an edge from 

the perturbed B    that stays inside R for no more than an "e distance. *  Con- 

sequently, the value of t* for this edge is minutely small, and the convexity 

cut eliminates a correspondingly small "e neighborhood" of B0.   Disregarding 

the numerical difficulties of dealing with an enormously large cut coefficient 

l/t1* (which might be accommodated,for example, by using a non-Archimedean 

ordering), the new B0 obtained after   re-optimizing   with the dual simplex 

method must be essentially the same as the perturbed B0, and the cut method 

gets nowhere. 

The second possible consequence of perturbation is the opposite one, 

that an edge from the perturbed B0 now stays for some distance in the interior 

of R when it would have continued along a boundary of R in the absence of 

perturbation.   (The case in which all edges lead from a boundary into the 

interior of R Is automatically legitimate by footnote 6 and does not require 
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7 
perturbation; hence we exclude it. )     But then points of  S   on the boundary 

of R  may be by-passed by the cut.   Thus, once again,  perturbation is of no 

use. 

Our fundamental result, which specifies a superset of Q that is 

acceptable in the role of R,  and which does not rely on perturbation, is 

given to follow. 

Theorem: 

u' 
Let y' = (   ,)  -  B   * 0,   and define the index set M = {i:  u] / 0}. v o l 

Then,  if y'  is not feasible for the GLP problem  (B0 4 S),   the set R = {y: u.*0, 

i € M}  satisfies the assumptions of the convexity cut lemma, i.e. ,   R contains 

B    but no points of S in its interior. 

The set R specified in the foregoing theorem is the superset of 

Q  =   {y: u ^ 0}  that results by disregarding all of the inequalities Uj = dj -D x^O 

defining Q except those that are inactive (i.e.,  for which Dlx<d.) at the 

solution y' = B .   Thus, the theorem rather surprisingly (and pleasantly) 

states that one can ignore degeneracy (and indeed all active constraints) in Q 

when determining R. 

The key observation we shall use to prove this theorom is the following: 

Lemma: 

Let y* be a feasible solution for the GLP problem (i.e. , y* e S).    Then 

if y* = B0 ^ 0 and B0 4 S,  there is an index k such that u1^ = 0 and u'k ^ 0. 

Proof: 

We shall say that a tableau verifies y* e S (or y' c S) if y!;i (or y') 

is obtained as the current basic solution and at least q of the components of 
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u are nonhasic in this tableau.    Relative to a given tableau that verifies 

y* € S, define M ' = (i;  Uj is nonbasic}.    Then, for the sake of contradiction, 

suppose the lemma is false, whereupon   u'   = 0 implies u'  = 0 for all 

8 
i e M>;'.   By the basis exchange theorem    there must exist a sequence of 

pivots from the current tableau (in which y' = B0) to a new tableau in which 

u.  is nonbasic for all i e M*.    Moreover, each pivot is executed by selecting 

an i s M* such that u^   is basic, and then performing a basis exchange that 

leaves u* nonbasic (replacing u^ in the basis by some variable that is basic 

in the tableau that verifies y* eS, but which is nonbasic in the crrrent tableau 

before the pivot).   Each of these successive pivots leaves B    unchanged, and 

hence the end result is a tableau that verifies y1 €S.    But this violates the 

assumption that y' is not feasible for the GLP problem, thereby completing 

the proof. 

It is interesting to consider a "separating hyperplane" interpretation 

of the lemma by visualizing its implications geometrically in the space of the 

y vectors.   In this context the lemma can be restated in the form: if y* is 

feasible for the GLP problem but y1 is not (where y1 = B0 s 0), then there is 

at least one constraint hyperplane defining Q (i.e.. a hyperplane of the form 

[y;  uk = 0 for some k)) that passes through y* but that does not pass 

through y'.    This interpretation prompts the following speculation.   The half 

space {y: u.  2 0} corresponding to a constraint hyperplane that passes 

through y* but not y' = B0 must contain B0 but not y* in its interior.    Moreover, 

 — 
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if y* is optimal for the GLP problem, then all other feasible solutions can 

be thrown away and S redefined to consist of the single point y!;'. It imme- 

diately follows that the half space {y: u. i 0} provides an acceptable R for 

determining a convexity cut. 

Of course, such a half space would undoubtedly be extremely diffi- 

cult to identify.   In fact, its identification would render a cutting approach 

superfluous, since after q steps of specifying an appropriate index k for 

which one could require u,   to be nonbasic, the GLP problem would be solved. 

Nevertheless, the fact that these half spaces exist makes it possible to 

specify an R that can be readily identified, as we now demonstrate in the 

following proof. 

Proof of the theorem: 

First, it is immediate that R as specified in the theorem contains 

B    in its interior.   Thus, we must show that this interior contains none of 

the points of S.   Let M1 = {k: u'   / 0 and u*   = 0 for some y* cS},   and 

let R* be the intersection of the half spaces [y: u,  ^ 0},   k e M'.    By the 

lemma, every y* e S must lie on a hyperplane  {y: u^ = 0} for some  k e M'. 

Thus y* € S implies y* cannot be contained in the interior of R*.    But 

M' C    M, and hence the set R of the theorem (which is the intersection of 

the half spaces  {y: uk ^ 0], k eM) must be contained in R*.   This completes 

the proof. < 
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6.   Implementation of the Convexity Cuts for the GLP Problem 

Having specified an appropriate R  , two tasks remain In order to 

Implement the convexity cuts.   The tasks are: 

1) To provide explicit criteria for determining when B   e S. 

2) To specify the calculation of the numbers t*. 

We consider these tasks In sequence. 

Determining whether Bf> e s 

The first task, applied to a primal feasible tableau, involves deter- 

mining whether there exists a series of degenerate pivots that will yield at 

least q components of u nonbaslc (if this is not already the case).   Some- 

times simple inspection of the tableau will provide the answer, and some- 

times It may actually be necessary to carry out several degenerate pivots. 

The key is this:   as long as there is a degenerate basic u   whose tableau row 

contains a nonzero coefficient in the column of a nonbaslc Vj, then a pivot 

may be made on this nonzero coefficient yielding a new tableau in which one 

more component of u Is nonbaslc (and B0 remains unchanged).   If there are no 

such u , then the current tableau contains the maximum number of nonbaslc 

Uj for any tableau with the same B0. 

In particular, if the current tableau has r of the u^ nonbaslc, and if 

fewer than q - r of the nonbaslc v. have a nonzero coefficient in at least one 

of the degenerate ui rows, then It Is clear that Bo e S (without having to 

pivot).   On the other hand, if iL Is known from the structure of the constraint 

I 1   I    I r        ■■k.-mii. .iii.    | ttmttlmmmmfmitttltll^am^aa 
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Inequality Dx * d that all O-valued Uj can be made nonbaslc, then checking 

for B0 e S becomes merely a matter of counting (see Section 7).   Other struc- 

tures can, of course, provide other shortcuts for checking whether B0 e S0. 

However, it seems intuitively reasonable that the convexity cut will tend to 

be stronger if a tableau is used that has a maximum number of u^ nonbaslc. 

Calculating t^ 

The second task, calculating the t*  values, corresponds precisely 

to the task of determining the amount a nonbaslc variable can be increased 

without violating primal feasibility in the application of the primal simplex 

method.   However, primal feasibility in the present context is restricted to 

the tableau rows corresponding to "basic non-degenerate uj" (i.e., 1 e M). 

Thus, specifically, it follows that 

t*   -      Mln.     {bio/bi,} 
* le M 

bij>0 

where bl0 is the Ith component of B0 and b. is the ijth component of B. 

(By convention t* ■ » if b. £ 0 for all i c M.) This value is, of course, 

always positive since bl0 > 0 for all 1 e M. 

7.   Special Structures and Strengthened Cuts 

The issue of special structures was briefly touched on in the preceding 

section, where we remarked that for some structures the problem of checking 

whether y c 0* reduces to checking the number of 0-valued Uj.   Such structures 
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are of interest for more than their ability to facilitate checking y eQ*, 

howevc-r,  as we now indicate. 

We shall way that a GLP problem has the counting property provided 

that the condition "D x = d   (hence u, = 0) for q or more of the rows D 

of D" implies that at least q of these rows* O  are linearly independent. 

By definition, the counting property implies y e Q* if and only if y e Q 

and Uj = 0 for at least q components of u.   The 0-1 mixed integer pro- 

gramming problem obviously has the counting property since in this case 

Dx ^ d summarizes the constraints x   * 1 and -x- «0, j = 1,. . . ,q. 
J J 

Similarly, it is clear that any problem has the counting property for which 

Dx « d summarizes sets of constraint pairs Irx * h. and -H x ^k., where 

all of the H   are linearly independent and k. / -h..   Rather than attempt to 

characterize more general structures that give rise to the counting property, 

however, we note that these problems are subsumed in a larger class of 

"quasi-GLP" problems in which Q* is redefined to be (y: y e Q and u, = 0 

for at least q components of u). ignoring whether the associated rows D 

of D are linearly independent.   The fundamental results of Section 5 apply 

as readily to the quasi-GLP problem as to the GLP problem itself, and 

hence the previously indicated convexity cuts can be the same for both 

problems. (The altered definition of Q*. of course, alters the definition of 

S correspondingly. ) 

A more important observation concerns the ability to obtain stronger 

cuts for the GLP problem.   Suppose that the matrix D (upon re-indexing) is 

partitioned into two submatrices 
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where the rank of D' is q' < q.   Then, If x lies on an n - q dimensional 

face of D, it must also lie on an n - p dimensional face of D", where 

p » q - q'.   Thus, whenever fewer than p of the components of u associated 

with D" can be made nonbasic in the current basic solution, then a convexity 

cut can be determined relative to D"x ^ d" instead of Dx ^ d.   This must 

yield a cut at least as strong as the one for Dx ^ d, since the half spaces 

whose intersection determines R are reduced in number whenever D'x / d', 

thereby enlarging R. 

The special structures previously indicated very conveniently submit 

to such partitioning, since it suffices to let D'x ^ d* summarize any q - 1 pairs 

of the constraints H^x £ hj,  -H x s k^; and, in fact, any choice of these pairs 

will yield a convexity cut (when y / S) provided D"x ^ d".   The best choices 

are, of course, those that assign as many of the unsatisfied constraints of 

Dx ^ d to D'x ^ d* as possible (provided at least one is assigned to D"x s d"). 

Such choices are trivial for the 0 - 1 mixed integer problem for then D"x ^ d" 

can be selected to be any single pair of constraints x. £ 1 and -x. £ 0  such 

that x. T* 0 or 1 in the current basic solution.   Convexity cuts determined in this 

fashion for the 0-1 problem correspond precisely to the mixed integer cuts 
g 

proposed by Gomory in [12], 

By Introducing a number of additional variables and constraints, a 

variety of GLP problems (and all quasi-GLP problems) can be given a 0 - ) 
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mixed integer formulation.    Interestingly enough, however,  it can be shown 

that the mixed integer cuts of (12) applied to such a formulation will be 

10 
generally weaker than the convexity cuts indicated here, A similar state- 

ment applies to certain "conjunctive-disjunctive" and "disjunctive-con- 

junctive" generalizations of the GLP problem, which subsume the general 

mixed integer problem In the same way that the GLP problem subsumes the 

0-1 mixed Integer problem.  (See 111).) 

8.   Examples 

To illustrate the ideas of the foregoing sections, we provide the follow- 

ing geometric and numerical examples: 

Consider the GLP problem 

Minimize   Ixj  +  1x2 

subject to 

-1/2X!     -    lx2    s    -1 

5/2X!     +    3x2     *    23 

-5/2XJ     +    1x2     s      1 

xi' x2        *      ^ 

and   (x1,X2)   is an extreme point (i.e. , lies on a 0 dimensional face)  of 

the polytope defined by 

1/2X!     -     lx2    s      1 

-2X!     -     1X2     *    '2 

5/2 X!     -     1X2     *      9     • 
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Then 

P  =   [Uvx2):   -1/2X! -lx2 i -1.   Ö/2X! +:i*2 * 23,    -5/2X!   +   lx2 ^   1, 

Xj i 0.   x2 i0} 

and 

Q   =   t(x1.x2):  1/2X! -Ix^ 1,   -2X! -lx2 ^-2, 5/2 x1-lx2  i  9}, 

and the tableau representation is: 

Maximize    x0 = 0 + K-Xj) +   l(-x2) 

subject to 

uj = 1 + l/2(-x1) - K-xg) 

U2 =-2- 2(-x1) - 1(-X2) 

U3 = 9 + 5/2(-x1) - 1(-X2) 

v = 0 - K-Xj) ♦ 0(-X2) 

v2 = 0 + Ol-Xj) - K-Xg) 

v3 =-1- l/2(-x1) - l(-x2) 

v4 =23+ 5/2(-x1) + 3(-x2) 

V5 = 1 - 5/2(-x1) + l(-x2) 

Table 1 illustrates the problem in the detached coefficient form 



24 

-x. 

1       o 1    0 1 1      1      1 
11 1 

1 1/2 -1 

U2 
1 -2 -2 "l 

u3 9 5/2 -1 

Vl 0 1 0 

V2 
0 0 -1 

I 

V3 
-1 -1/2 -1 

V4 23 5/2 3 

1      V5   l 1      | -5/2        j 1 

Table  1 

The geometry of this problem is illustrated in Figure 1.    (From this 

diagram it can be seen that the GLP problem has only one feasible solution, 

namely, the point at the intersection of the hyperplanes Uj = 0 and U3 = 0.) 

The inequalities Uj > 0. i = 1,2, 3.   and vj s 0.  i = 1,2, . ..,5 define the 

L, P.  region.   The inequalities Vj = xj i 0 and v, = X2 i0 are redundant in 

this example. 

As shown in Table 2, the optimal L.P. solution occurs at the intersection 

of the hyperplanes U2 = 0 and V3 = 0.   At this point all other u. and v. are 

positive since the L. P. solution does not lie on their associated hyperplanes. 

Thus the intersection of the half spaces u^ 2 0 and U3 ^ 0 contains the L. P. 

solution in its interior and serves as a suitable choice for R. The convexity cut 
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Figure 1 



26 
i 

Is thus obtained by extt-nding the edges from the L. P.  solution until they 

hit the first hyperplane   ui = 0   for  I = 1. 3 (I.e., a boundary of R).    As 

depicted In Figure   1. edge u2 = 0 may be extended to Infinity and edge v„ = 0 

may be extended to the hyperplane   Uj = 0.    The cut Is created by passing a 

hyperplane through the Intersection points.   Since one of the Intersection 

points Is along the displaced ray  u    ^ 0 at Infinity, the cut Involves moving 

u2 = 0 parallel to Itself until It passes through the point of Intersection of 

the hyperplanes   V3 = 0    and Uj = 0.   This is labeled Cut One In Figure 1. 

The algebraic counterpart of extending an edge until it Intersects R 

simply amounts to Increasing the value of a current nonbaslc variable and 

determining which one of the Uj in R becomes zero first. 

u 

u. 

u. 

-4/3 

4/3 

0 

8 

1/3 

2/3 

-1 

2 

2/3 

•5/3 

0 

-3 

v.. 

2/3 

2/3 

0 

58/3 

•2/3 

1/3 

0 

l/)2 

2/3 

-4/3 

-1 

7/3 

Table 2 
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To determine the cut, we identify the relevant equations for defining R 

from Table 2 to be; 

Uj   =  4/3   -  2/3U2  + 5/3V3 

U3=     8     -       2u2  +      3V3. 

Holding v« = 0 and allowing U2 to vary (i.e. , traveling along the hyper- 

plane  v    = 0), we find that 

Uj =  0       iff       "2  = 2 

u3 =  0       iff       "2  = 4   . 

Thus,  the hyperplane   u. = 0   is intersected first (as may be seen visually 

in Figure 1).    Furthermore,   t^ is equal to 2.    Similar calculations in- 

volving v    yield: 

u    = 0       if       V3 = -4/5 

u    = 0       if       v   = -8/3  . 
3 3 

Since all of the values for V3 are negative,  t*   is taken to be +• by con- 

vention. 

The convexity cut is (l/t* hig + (1/t* )v„ i 1.    Adding a slack Vg to 

transform the convexity cut into an equality, we obtain 

v6   =   -1   +   l/2u2   +   OV3. 

(Notice that the effect of the cut is to compel u, to be greater than or equal 

to 2.    This likewise corresponds to the geometric portrayal in Figure 1. ) 

Upon adjoining the convexity cut to Table 2 and iterating to the new L. P. 

optimum. Table 3 is obtained. 

 t^m^m^immmm^im^^ima^mtmmmammmimmll^m 
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-v. 

1        0   1 
-2 2/3      1 2/3 

ul 
0 4/3 -5/3    ' 

u2 2 -2        1 0 

U3 
4 4 -3 

| 

Vl 
2 -4/3 2/3 

V2 
0 1     2/3 |    -4/3 

V3 
0 0 -1 

V4 
115/6 1/6 7/3 

V5 
7 -4 1         3 

1      V6 1      0 -1 0 

Table 3 

The L. P. solution given by Table 3 is again infeasible for the GLP 

problem since none of the u^ are non-basic. 

A new convexity cut is therefore calculated relative to the set 

R  = [(xj.xg):  ug ^ 0,   U3 i 0), yielding  1 v6 + 0v2 ^ 1.    (In Figure 1, this 

is called Cut Two. ) 

 - - - ■M^^a^^aMMMMHHMH 
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Adjoining this cut to Table 3 (with slack v^) and finding the new 

optimal L. P. solution gives Table 4 to follow. 

■u. 

xo -16/5 6/5 2/5J 

1U1 0 0 -1 

u2 4 -2 0     | 

U3 12/5 8/5 -9/5   1 

vl 14/5 -4/5 2/5 

v2 2/5 -2/5 -4/5 

v3 4/5 -4/5 -3/5   | 

V4 514/30 61/30 7/5 

V5 
43/5 -8/5 9/5 

v6 1 -1 0    1 

V7 0 -1 0 

Table 4 

The solution provided by this table Improves upon the previous solu- 

tion since one of the Uj is now nonbasic.   However, still another uj must 

become nonbasic in order to provide a feasible solution for the GLP problem. 

Consequently a new convexity cut is calculated relative to the set 

R = [(xj.x«):   Ug ^ 0, U3 SO}.    (Note that this R  is coincidentally the same 

one used to derive Cut Two.    If uj had been made non-basic by replacing the 

non-basic variable v^ in Table 3, Cut Two could have been avoided.)   The 

convexity cut is 2/3v7 + Ouj ^ 1 (labeled Cut Three in Figure 1). 

■■ - —• ■■■'       —■ ■-  ■■ ■■■■--  ir IMM 
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Adding this convexity cut to Table 4 and finding the optimal L. P. 

solution to the new problem, Table 5 is obtained. 

xoT -5   T 9/5    1 2/5    1 

ui 1 0 0 -1     1 

U2 
7      1 -3 0 

U3 
0 12/5 -9/5 

Vl    ' 
4 -6/5 2/5 

V2 
1 -3/5 -4/5 

v3 
1        7/5 -3/5 -3/5 

V4 
845/60 183/60 7/5 

V5 
11 -12/5 9/5 

V6 
5/2 -3/2 0     I 

v7 
3/2 -3/2 1      0 

1    V8 
0 -1 1        0 

Table 5 

The L. P.  solution contained in Table 5 is feasible (and optimal) 

for the GLP problem since u, can obviously be made non-basic.   Thus, 

the GLP problem is solved. 

il.l         -I II       ■..■■■■.I.  I       t    lmmMmmMmimmmm 



FOOTNOTES 

The name "generalized lattice point problem" was coined for this 
problem by William M.   Haike. 

2Private communications, A. Charnes,  Anthony Fiacco,  Michael 
Kirby, and William W.  Haike.    More recently.  Kirby,  Love, and Swarup 
(Ul have proposed solving this problem by procedures btpyd on "extreme 
point ranking" and "parallel shifts of the objective hyperplane. " 

^The excellent work that pertains either directly or indirectly to 
the convexity cut ideas has been developed by Ragavachari. M. (14) and 
Bürdet 15].   Recent extensions of interest are also to be found in (2, 3,4,9, 
10. 13,17). 

^This statement is slightly more general than the original statement 
of Charnes, which requires x to be an extreme point of the polytope 
Q' = {x: D'x = d', x ^ 0).    It is interesting to note that the attempt to cir- 
cumvent the non-negativity restriction on x in the definition of Q1 encounters 
some difficulty.   In particular, the standard device of replacing an unre- 
stricted variable by the difference of two non-negative variables fails due 
to the introduction of extraneous extreme points.    For example, the polytope 
(x: Xj + X2 = 1, X2 + X3 = 1,  X3 i 0) has one extreme point: xj = X3 = 0  and 
Xg = 1.   However, the corresponding polytope (y: yj - y2 + Ys ' V* = 1' 
y3 " y4 + y5 s ^ y ^ 0J'   where xj = yj - y2.  x2 = y3 - y4 and X3 = y5.  has 

two extreme points:   yj = ys = 1,  J^ = y3 = y4 = 0 and V^ = ^ yi = y2 = y4 
= y^ = 0.   Only the second of these corresponds to the extreme point of the 
original polytope. 

5 
The rules for column tableau pivoting may be briefly stated:   divide 

the pivot column by the negative of the pivot element; then add the appropriate 
multiple of the pivot column to each of the other columns so that the resulting 
"updated" pivot row will have O's everywhere except in the pivot column. 

As observed in (8), the convexity cut lemma is also valid more 
generally if B    is not in the interior of R, provided there is a deleted 
neighborhood of B0 such that all points of C  In this neighborhood are in the 
interior of R. 

^This case cannot arise for the GLP problem when R = Q if any 
components of u are nonbasic (unless, in fact, x contains only 1 component). 

**The usual statement of the basis exchange theorem is (loosely) 
that, given any pair of bases, one can progress from one to the other through 
a sequence of bases in which any selected member of the second (not pre- 
viously selected) replaces some member of the first (not previously replaced). 

mm, d 



II II reverse An easily proved consequence of this, which we rely on here, is the 
theorem that states (again loosely) one can remove any selected member of 
the first basis (not previously selected) and find a member of the second 
(not previously found) to replace it. 

This connection is developed by Glover in (8), 

^This assertion follows directly from considerations introduced in 
(9).   Note that this relationship to earlier cuts circumvents the finiteness 
issue for the present cuts. 

^The fact that the successive convexity cuts are all parallel in this 
example is, of course, a fortuitous consequence of the problem structure 
and is not to be expected in general. 
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