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Preface

The problem of finding numerical approximations to the zeros and
extrema of functions, using hand computation, has a long history. 1In
the last few years, considerable progress has been made in the development
of algorithms suitable for use on a digital camputer. The aim of this
work is to suggest improvements to same of these algorithms, extend the
mathematical theory behind them, and describe some new algorithms for
approximating local and global minima. The unifying thread is that all
the algorithms consid_ered depend entirely on sequential function
evaluations: no evaluations of derivatives are required. Such algorithms
are very useful if derivatives are difficult to evaluate, and this is
often true in practical problems.

I am greatly indebted to Professors G. E. Forsythe and G. H. Golub
for their advice and encouragement during my stsey at Stanford, and for
their guidance of my resegrch. Thanks are due to them and to the other
members of my reading committee, Professors J. G. Herriot, F. W. Dorr
and C. B. Moler, for their careful reading of various drafts, and for
many helpful suggestions.

Several people have contributed to this work. I would particularly
like to thank Dr. T. J. Rivlin for suggesting how to find bounds on
polyncmials (Chapter 6), and Dr. J. H. Wilkinson for introducing me to
Dekker's algorithm (Chapter 4). Also, thanks to Professor F. Dorr and
Dr. I. Sobel for their help in testing some of the algorithms, to

Michael Malcolm, Michael Saunders and Alan George for many interesting
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discussions, and to Phyllis Winkler for her fast and accurate typing.
I am grateful for the influence of my teachers V. Grenness, H. Smith,
Drs. D. Faulkner and E. Strzelecki, Professors G. Preston, A Miller,
Z. Janko, R. Floyd, D. Knuth, and M. Schiffer, and those mentinned above.
Deepest thanks to my wife Erin for her careful proof-reading,
and help in obtaining some of the numerical results, testing the
algorithms, plotting graphs, and in many other ways.
Finally, I wish to thank the Commonwealth Scientific and Industrial
Research Organization, Australia, for its generous support during my
stay at Stanlord.

This work is dedicated %o Oscar and Nancy, sine quis non.
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1.1

1. Introduction

It Consider the problem of finding an approximate zero or minimui oI

a function of one real veriable, using 11mited-precision arithmetic on a
sequential digital computer. The function f may not be differentiable,
[ or the derivative f* may be difficult to compute, so & method which

uses only computed values of f 1is desirable. Since an evaluation of

f may be very expensive in terms of computer time, a good method should

e i

guarantee to find a correct solution, to within some prescribed tolerance,

caemar

using only .a small number of function evaluations. Hence, we study

algorithms which depend on evaluating f at a small number of points,

and for which certain desirable properties are guaranteed, even in the
presence of rounding errors.

| Q Slow, safe algorithms are seldam preferred in practice to fast

algorithms which may occasionally fail. Thus, we want algorithms which
are guaranteed to succeed in a reasonsble time even for the most "difficult"

functione, yet are as fast as cammonly used algorithms for "easy"

A AT

functions. For example, bisection is a safe method for finding a zero
of a function which changes sign .in a given interval, but from our point
of view it is not an acceptable method, because it is just as slow for
any function, no matter how well behaved, as it is in the worst possible
case (ignoring the possibility that an exact zero may occasionally be

' found by chance). As a contrasting example, consider the method of
successive linear interpolation, which converges superlinearly to a
simple zert.a of a Cl ﬁmc;tion, provided that the initial approximation
is good and roﬁnding errors are unimportant. This method is not

acceptable either, for, in practice, we may nave no way of knowing in

S e
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1.1

advance if the zero is simple, if the initial approximation is sufficiently

good to ensure convergence, or what the effect of rounding errors will be.

In Chapter 4 we describe an.algorithm which, by combining some of
the desirable features of bisection and successive linear interpolation,
does come close to satisfying our requirements: it is guaranteed to
converge (i.e., halt) after a reasonably small number of function

evaluations, and the rate of convergencé for well-behaved functions

B . e N

is so fast that a less reliable algorithm is unlikely to be preferred

on grounds of speed.

An analogous algorithm, which finds a local minimum of a function

of one variatle by a combination of golden section search and successive

i

parabolic interpolation, is described in Chapter 5. This algoritim
fails to completely satisfy one of our requirements: in certain

applications where repeated one-dimensional minimizations are required,

and where accuracy is not very important, a faster (though less relieble) 3
method is preferable. One such application, finding local minima of i
functions oi' several variables without calculating derivatives, is

discussed in Chapter 7. Note that, wherever we consider minima, we

could equally well consider maxima.

Most algorithms for minimizing a nonlinear function of one or more i

variables find, at best, a local minimum. For & function with several

local minima, there is no guarantee that the local minimum found is the
global (i.e., true or lowest) minimum. Since it is the global minimum
which is of interest in most applications, this is a serious practical

disadvantage of most minimization algorithms, and our algorithm given

e

in Chapter 5 is no exception. The usual remedy is to try several

S e
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different starting points and, perhaps, vary some of the parameters of
the minimization procedure, in the hope that the lowest local minimum
found is the globel minimum. This approach is inefficient, as the same
local minimum may be found several times, and it is also unreliable, for,
no matter how many starting points are tried, it is impossible to te
quite sure that the global minimum has been found.

In Chapter 6 we discuss the problem of finding the global minimum
to within a prescribed tolerance. It is possible to give an algorithm
for solving this problem, provided that a little & priori information
about the function to be minimized is known. We describe an efficient
algorithm, applicable if an upper bound on f" is known, and we show
how this algorithm can be uvsed recursively to find the global minimum
of a function of several variables. Unfortunately, because the amount
of computation involved increases exponentially with the i.amber of
variables, this is practically useful only for functions of less than
four variables. For functions of more variables, we still have to
resort to the unreliable "trial and error" method, unless special
information about the function to be minimized is available.

Thus, we are led to consider practical methods for finding local
(unconstrained) minima of functions of several variables. As before, we
consider methods which depend on evaluating the function at a small
number of points. Unfortunately, without imposing very strict conditions
on the functions to be minimized, it is not possible to guarantee that
an n-dimensional minimization algorithm produces results which are correct
to within some prescribed tonlerance, or that the effect of rounding errors

has completely been taken into account. We have to be satisfied with

Ll




[ S

1<l
algorithms which nearly always give correct results for the functions
likely to arise in practical applications.

As suggested by the length of our bibliography, there has recently
been considerable interest in the unconstrained minimization problem.
Thus, we can hardly expect to find a good method which is completely
unrelated to the known ones. 1In Chapter 7 we take one of the better
methods which does not use derivatives, that of Powell (1964), and modify
it to try to overcome some of the difficulties observed in
the literature. Numerical tests suggest that our proposed method is
faster than Powell's or’ ginal method, and just as reliable. It also
compares quite well with a different method proposed by Stewart (1967),
at least for functions of less than ten variables. (We have no numerical
results for non-quadratic functions of more than ten variables.)

ALGOL implementations of all the above algorithms are given. Most
testing was done with ALGOL W (Wirth and Hoare (1966)) on IBM 360/67 and
360/91 computers. As ALGOL W is not widely used, we give ALGOL €0
procedures (Naur (1963)), except for the n-dimensional minimization
algorithm. FORTRAN subroutines for the one-dimensional zero-finding
and local minimization algorithms are also available.

To recapitulate, we describe algorithms, and give ALGOL procecdures,
for solving the following problems efficiently, using only function (not

derivative) eveluations:

1. Finding a zero of a function of one variable if an interval in which
the function changes sign is given;
2. Finding a local minimum of a function of one variable, defined on a

given interval;

[y
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1.2

- Finding, to within a prescribed tolerance, the global minimum of
a function of one or more variables, given upper bounds on the
second derivatives;

4. Finding a local minimum of a function of several variables.

For the first three algorithms, rigorous bounds on the error and the
number of function evaluations required are established, taking the
effect of rounding errors into account. Some results concerning the
order of convergence of the first two algorithms, and preliminary

results on interpolation and divided differences, are also of interest.

2.  Summary
In this section we summarize the main results of the following

chapters. A more detailed discussion is given at the appropriate
places in each chapter. This summary is intended to serve as a guide
to the reader who is interested in some of our results, but not in
others. To assist such a reader, an attempt has been made to keep each

chapter as self-contained as possible.

c er 2

In Chapter 2 we collect some results on Taylor series, Lagrangian
interpolation, and divided differences. Most of these results cre needed
in Chapter 3, and the casual reader might prefer to skip Chapter 2 and
refer back to it when necessary. Some of the results are similar to

classical ones, but instead of assuming that f has n+tl continuous



1.2

(n)

derivatives, we only assume that £ is Lipschitz continuous, and
the term f(n+l)(§) in the classical results is replaced by a number

bounded in absolute value by a Lipschitz constant. For exémple,

Lemmas 2.3.1, 2.3.2, 2.4.1, and 2.5.1 are of this nature. Since a

H
:

Lipschitz continuous runction is differentiable almost everywhere,
these results are not surprising, although they have not been found in

the literature, except where references are given. (Sometimes Lipschitz

conditions are imposed on the derivatives of functions of several

variables: see, for example, Armijo (1966) and McCormick (1969).) The

Sraid s A v

proofs are mostly similar to those for the classical results.
Theorem 2.6.1 is a slight generalization of some results of

Ralston (1963, 1965) on differentiating the error in Lagrangian

interpclation. It is included both for its independent interest, and
because it may be used to prove a slightly weaker form of Lemma 3.6.1

for the important case q =2 . (A similar proof is sketched in 1

Kowalik and Osborne (1968).) !
An interesting result of Chapter 2 is Theorem 2.6.2, which gives (]
an expression for the derivative of the error in Lagrangian interpolation ! +
1 at the points of interpolation. A well-known weaker result is that the
l} conclusion of Theorem 2.6.2 holds if f has n+l continuous derivatives,
| but Theorem 2.6.2 shows that it is sufficient for f to have n

a contimious derivatives.

[ Theorem 2.5.1, which gives an expansion of divided differences, may
be regarded as a generalization of Taylor's theorem. It is used several
times in Chapter 3: for example, see ‘neorem 3.4.1 and Lemma 3.6.1.

}L Theorem 2.5.1 is useful for the analysis of interpolation processes
b

L
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vhenever the coefficients of the interpolation polynomials can conveniently

be expressed in terms of divided differences.

Chapter 3

In Chapter 3 we prove some theorems which provide a theoretical
foundation for the algorithms described in Chapters 4 and 5. 1In
particular, we show when the algorithms will converge superlinearly,
and whaat the order (i.e., rate) of convergence will be. Of course, for
these results the effect of rounding errors is ignored. The reader
whose main interest is the practical applications of our results might
omit Chapter 3, except for the numerical examples (Section 3.9) and the
summary (Section 3.10).

So that results concerning successive linear interpolation for
finding zeros (used in Chapter 4), and successive parabolic interpolation
for finding turning points (used in Chapter 5), can be given together,
we consider a more general process for finding a zero of f(q-l) , for
any fixed q > 1 . Successive linear interpolation and successive
parabolic interpolation are just the special cases q =1 and q =2 .
Another case which is of some practical interest is8 q = 3 , for finding
inflexion points. As the proofs for general q are essentially no more
difficult than for q = 2 , most of our results are for general gq .

For the applications in Chapters 4 and 5, the most important
results are Theorem 3.4.1, which gives caditions under which convergence
is superlinear, and Theorem 3.5.1, which shows when the order is at least
1.618... (for q =1) or 1.324... (for q =2) . These numbers are

well-known, but our assumptions about the differentiability of f are




1.2
weaker than those of previous authors, e.g., Ostrowski (1966) and
Jarratt (1967, 1968).

From a mathematical point of view, the most interesting result
of Chapter 5 is Theorem 3.7.1. AThe result for q =1 1is given in
Ostrowski (1966), except for our slightly weaker assumption about the
smoothness of f . For q = 2, our result that convergence to { with
order at least 1.378... 1is possible, even if 1(5)(§) £ 0, appears to
be new. Jarratt (1967) and Kowalik and Osborne (1968) assume that

%1 - ¢
ii—lflco Tt - o, (2.1)

and then, from Lemma 3.6.1, the order of convergence is 1.32h... .

However, even for such a simple function as
£(x) = 2% + x° 3 (2.2)

there are starting points x, , x;, and x, such that (2.1) fails to
hold, and then the order may be at least 1.37L... . We should point
out that this exceptional case is unlikely to occur: an interesting
conjecture is that the set of starting pcints for which it occurs has
measure Zzero.

The practical conclusion to be drawn from Theorem 3.7.1 is that,
if convergence is to be accelerated, then the result of Lemma 3.6.1
should be used. In Section 3.8 we give one of the many ways in which
this may be done. Finally, some numerical examples illustrating both the

accelerated and unaccelerated processes are given in Section 3.9.

g i el
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1.2
Chapter L

In Chapter L we describe an algorithm for finding a zero of a
function which changes sign in a given interval. The algorithm is
based on a combination of successive linear interpolation and bisection,
in much the same way as "Dekker's algorithm" (van Wijngaarden, Zonneveld
and Dijkstra (1963), Wilkinson (1967), Peters and Wilkinson (1969),
Dekker (1969)). Our algorithm never converges much slower than bisection,
whereas Dekker's algorithm may converge extremely slowly in certain cases.
(Examples are given in Section L4.2.)

It is well-known that bisection is the optimal algoritnm, in a
minimax sense, for finding zeros of runctions which change sign in an
interval. (We only consider sequential algorithms: see Robbins (1952),
Wilde (196L) and Section 4.5.) The motivation for both our algorithm and
Dekker's is that bisection is not optimal if the class of allowabie
functions is suitably restricted. For example, it is not optimal for
convex functions (Bellman and Dreyfus (1962), Gross and Johnson (1959)),
or for C1 functions with simple zeros.

Both our algorithm and Dekker's exhibit superlinear convergence to
a simple zero of a Cl function, for eventually only linear interpolations
are performed, and the theorems of Chapter 3 are spplicable. Thus,
convergence is usually much faster than for bisection. Our algorithm
incorporates inverse quadratic interpolation as well as linear interpolation,
so it is often slightly faster than Dekker's algorithm on well-behaved

functions {see Section L.k4).

10




1.2
Chapter 5

An algorithm for finding a local minimum of a function of one
variable is described in Chapter 5. The algorithm combines golden
section search (Bellman (1957), Kiefer (1953), Wilde (1964), Witzgall
(1969)) and successive parabolic interpolation (the case q = 2 of the
process analysed in Chapter 3), in the same way as bisection and successive
linear interpolation are combined in the zero-fimiing algorithm of
Chapter l:. Convergence in a reasonable number of function evaluations
is guaranteed (see Section 5.5), and, for a 02 function with positive
curvature at the minimum, the results of Chapter 3 show that convergence
is superlinear, if we ignore rounding errors and suppose that the minimum
is at an interior point of the interval. Other algorithms given in the
literature either fail to have these two desirable properties, or, when
convergence is strictly superlinear, the order of convergence is less
than for our algorithm (see Sections 5.4 and 5.5).

In Sections 5.2 and 5.3 we consider the effect of rounding errors.
Section 5.2 contains an analysis of the limitations, imposed by rounding
errors, on the attainable accuracy of any algorithm which is based
entireiy on function evaluations, and this section should te studied
by the reader who intends to use the ALGOL procedure given in Section 5.8.

If f is unimodal, then our algorithm will find the unique minimum,
provided there are no rounding errors. To study the effect of rounding
errors, we define " S-unimodal" functions. A unimodal function is $-unimodal
for all % >0 , but a computed apprcximation to a unimodal function can
not be unimodal: it will be S-unimodal for some positive & , depending

on the function and on the precision of computation. (6 - O as the

11
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| precision increases indefinitely.) We prove some theorems about &-unimodal
functions, and give a bound for the error in the approximate minimum found
by our algoritlm when applied tn a 8-unimodal function. 1In this way we

i can justify the use of our algerithm ’» the presence of iounding errors,

and account for their effect. Our motivation is rather similar to that

of Richman {1968) in developing the €-calculus, but we are not concerned

with properties that hold as € - C . The reader who is not very

» interested in the effect of rounding errors might prefer to skip

; Section 5.3.

Chapter 6

In Chapter 6 we consider the problem of finding an approximation
to the global minimum of a function f , defined on a finite interval,
" if same a priori information about f is known. This interesting problem

i does not seem to have received much attention, although there have been

[ some empirical investigations, e.g., see Magee (1960). In Section 6.1,

we show why some & priori information is necessary, and discuss same of
: the possibilities. In the remainder of the chapter we restrict our
attention to the case where an upper bound on f" 1is known.

An algorithm for global minimization of a function of one variable,
applicable when such an upper bound on the second derivative is known, is
described in Section 6.3. The basic idea of this algorithm is used by
Rivlin (1970) to find bounds on a polynomial in a given interval. We
pay particular attention to the problem of giving guaranteed bounds in
the presence of rounding errors, and the casual reader may find the

details in the last half of Section 6.3 rather indigestible.




p—

In Section 6.4, we try to obtain some insight into the behaviour
of our algorithm by considering some tractable special cases. Then, in
Sections 6.5 and 6.6, we show that no algorithm which uses only function
evaluations and an upper bound on f" could be much faster than our
algorithm. Finally, a generalization to functions of several variables
is given in Section 6.8. The conditions on f are much weaker than
unimodality (Newman (1965)). The generalization is not practically useful
for functicns of more than three variables, and it is an open question

whether a significantly better algorithm is possible.

Chapter 7

In Chapter 7 we describe a modification of Powell's (196k4) algorithm
for finding a local minimum of a function of several variables, without
calculating derivatives. The modification is designed to ensure
quadratic convergence, and to avoid the difficulties with Powell's
criterion for accepting new search directions.

First, a brief introduction to the problem and a survey of the
recent literatureare given in Section 7.1l. The effect of rounding errors
on the limiting accuracy attainable is discussed in Section 7.2. Powell's
algorithm is deseribed in Section 7.3, and our main modification is given
in Section 7.4. The idea cf the modification (finding the principal axes
of an approximating quadra%ic form) is not new: for example, it is used
by Greenstadt (1967) in his quasi-Newton method. Unlike Greenstadt,
though, we do not use an explicit approximation to the Hessian matrix.
An interesting feature of our modification is that it is posible to avoid
squaring the condition number of the eigenvalue problem by using a singular

value decomposition: see Section 7.4 for the details.

13




1.2

"In Sections 7.5 and 7.6 we describe some additional features of our
algorithm; Then, in Section T.7, we give the results of some numerical
experiments, and compare our method with those of Powell (1964), Davier:,
Swann and Campey (Swann (1964)), and Stewart (1967). For the camparison
we have used numerical results obtained by Fletcher (1965) and Stewart
(1967) . The numerical results suggest that our algorithm is competitive
with the currently used algorithms which do not require the user to
campute derivatives, although it is difficult to reach a definite
conclusion without more practical experience.

Finally, we give a bibliography of the recenf literature on
nonlinear minimization, with the emphasis being on methods for solving

unconstrained problems.
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Some Useful Results cn Taylor Series, Divided Differences,
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2.1

1 Introduction

In this chapter we collect some results which are needed in Chapters
3 and 6. The reader who is mainly interested in the practical applications
described in Chapters 4 to 7 might prefer to skip this chapter, except for
Section 2, and refer back to it when necessary.

Classical expressions for the error in truncated Taylor series and
Lagrangian interpolation often involve a term f(n+1)(§) , where £ is an
unknown point in some interval. For such expressions to be valid, f must
have nt+l derivatives. Several of the results of this chapter give
expressions which are velid if f(n) satisfies a (possibly one-sided)

. Lipschitz condition. In these results, the term f(n+l)(§) is replaced
by a number which is bounded by a Lipschitz constant. It seems unlikely
that these results are new, but they have not been found in the literature
except where references are given.

The results of Chapter 3 depend heavily on Theorem 5.1, which gives
an expansion of the divided difference f[xo, ,xn] (see Section 2) near
the origin. This theorem, and the less cumbersome Corollary 5.1, are
useful for the analysis of interpclation processes, for the coefficients
of the interpolating polynomials can be expressed in terms of divided
differences (see Chapter 3).

Finally, in Section 6, we extend some results of Ralston (1963) on
the derivative of the error term in Lagrangian interpolation. These
results are relevant to Chapter 3, although they are given mainly for
their independent interest. Perhaps the most interesting result is
Theorem 6.2, which shows that, if we are only concerned with the points
of interpolation, then we can differentiate the classical expression for
the error (equation (6.4)), regarding the term f(n)(g(x)) as consiant.

16
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This is well-known if f has n+l continuous derivatives, but Theorem 6.2

shows that it is sufficient for f to have n continuous derivatives.

2. Notation &nd definitions

Throughout this chapter [e,b] ic & nonempty, finite, closed
interval, and f is a real-valued function defined on [a,b] . n is

a nonnegative integer, M a nonnegative real number, and @ a number

in (0,1] .

Definitions

The modulus of continuity w(f;%) of f (in [a,b]) is defined by

w(f;s) =  sup  |£(x) -£(3)| (2.1)
x,ye[a,b]
|x-y| <8

for all 8 >0 .

If f has a continuous n-th derivative on [a,b] , then we write

feCn[a,b] . If, in addition, f(n) eLipM @'y 3. By
(n), Q
w(f''/;8) < MB® (2.2)

for al1 & > 0 , then we write feICn[a,b;M,a], (This notation is not
standard, but it is convenient if we want to mention the constants M
and a explicitly.) If feIC™[a,b;M,1] then we write simply
feI.Cn[a.,b;M] .

If Xgseees K 8TE distinct points in [a,b] , then IP(f;xO,...,xn)
is the Lagrangian interpolation polynomial, i.e., the unique polymomial
of degree n or less which coincides with f a*% xo, ...,xn . The

17
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divided difference f[xo, ...,xn] is defined by

f(x.)
- J . (2.3)

X.-X,
)L (x5 - %)

it

(There are many other notations: see for example, Milne (1949),

f[xo’o.o’xn] =

-

Milne-Thomson (1933), and Traub (1964).) Note that, although we suppose
for simplicity that XyreeesX ~are distinct, nearly all the results given

here and in Chapter 3 hold if same of Xor e e eaXy coincide. (We then have
Hermite interpolation and confluent divided differences: see Traub (1964). )
For the statement of these results, the word "distinct" is enclosed in

parentheses.

Newton's ldentities

For future reference, we note the following useful identities (see
Cauchy (1840), Isaacson and Keller (1966), or Traub (1964)). The first
is often used as the definition of the divided difference f[xo, o ,xn] 5
vhile the second gives an explicit representation of the interpolating

polynomial and .remainder.

v
and, for n > 1,
f[x ,.--,X ] -f[x ,...,X ]
: 0 n-1 1 n R
. f[)‘o,...,xn] _— x - x L] (2.&)
! 0 n
}
’ t
| 2. If P =IPfix,, ...,xn) , then
§ L
.% ( n
f f(x) == P(x) + TT (x -xi) . f[xo, ...,xn,x] . (2.5)
\_ i=0
" 18
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and i {
P(x) = f[xo] + (x -xo)f[xo,xl] +...
+ (x—XO)...(X-Xn_l)f[XO,...,Xn] . (2-6) F
3. Truncated Taylor series 1
In this section we give some forms of Taylor®s theorem. Lemma 3.1
is needed in Chapter 6, and applies if f(n) satisfies a one-sided :1
Lipschitz condition.
Lema 3.1 |
Suppose that feC"[0,b] for some b >0 , and that there is a g
constant M such that, for all ye([O,b], S
() _ olm) ; |
£(y) -7 (0) < My (3.1) 1
Then, for all x¢{0,b] , 2
j
n o r (r) n+l i
£(x) = 3 T £0(0) + m(x) (3.2) !
r=0 ' (n+1)? !
!
where !
m(x) <M . (3.3) ,’
Remarks
The proof is by induction on n , and is omitted. The corresponding
two-sided result is immediate, and is generalized in Lemma 3.2 below. 1In
Lema 3.2, fractional factorials are defined in the usuel way, so
(n+a)tfat = (1+@)(2+q)...(n+q) . (3.4)
19
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2.3
Lemma 5.2
i feICn[a,b;M,a] and X,y e [a,b] , then
n r
OKI G o) () o ey m )/ ()t (3.5)
r=
where
Im(x,y)l <M . (3.6)
Remarks

The result is trivial if n =0, and for n >1 it follows from

Taylor's theorem with the integral form for the remainder, using the

integral
x L0 n-1
t(x-t n+Q
Io (()r:-l)ﬁ at = x7 2 at/(na)! (3.7)
for x >0 .

Note that the bound (3.6) is sharp, as can be seen from the example

£(x) =%, (3.8)

with y =0 and M= (n+a)!/a! . Since, for n>1,

nt < (ma)tfat , (3.9)
the bound obtained from the classical result

n-1

) - Ll ) L) )y (5.10)
r

for some ¢ between x and y , is not sharp.

20
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4. Lagrangian interpolation

The following lemma, used in Chapter €, gives a one-sided bound on

the error in Lagrangian interpolation, if f(n) satisfies a one-sided

Lipschitz condition. Thus, it corresponds to Lemma 53.1. The corresponding

two-sided result follows from Theorem 3 of Baker (1970), but the proof
given here is simpler, and similar to the usual proof of the classical
result that, if feCn+l[a,b] , then m(x) = f(n+l)(§(x)) , for some

¢(x) el(a,b] . (See, for example, Isaacson and Keller (1966), pg. 190.)

Lemma 4.1

Suppose that fe Cn[a,b] ; X e

(ayb] ; F = IP(f3x.,...,x ) ; and, for all x,ye(a,b] with x>y,
0 n

sesX  are (distinct) points in

™ - ™) < Mx-y) (4.1)

Then, for all xe([a,b],

2 = 2 +( TT <x-xr)) o (1.2)

where

m(x) < M . (4.3)

Proof

Suppose that n >0 and x # x. foramy r =0,...,n, for
otherwise the result is trisial. Let

n

wx) =TT (x-x) (1)
r=0

and write

21
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2.5
f(x) = P(x) +w(x)S(x) . (k.5)

Regarding x as fixed, define
F(z) = £(z) -P(2z) -w(z)s(x) (4.6)

for zela,b] .

Thus FeC’la,b] , and F(z) vanishes at the n+2 distinct points

TR

XyXyyooosX - Applying Rolle's theorem n times shows that there are

==

two distinct points ¢ (a,b) , such that

EO’gl
P () = r® () -0 . (47)
Differentiating (L.6) n times gives

F(n)(z) = f(n)(z) - (n+l)is(x)z+c(x) , (4.8)

where c¢(x) is independent of z . Thus, fram (4.7),

e ) - £ (e))
9" h

) (k.9)

r so the result follows from condition (k4.1).

5. Divided differences

Lemma 5.1 and Theorem 5.1 are needed in Chapter 3. The first part
of Lemma 5.1 follows immediately from Lemma 4.1 and the identity (2.5)
(we state the two-sided result for variety), while the second part is
well-known, and follows similarly. Theorem 5.1 is more interesting, and

most of the results of Chapter > depend on it. It may be regarded as a

generalization of Taylor's theorem (the special case n = 0) .

22
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2.5
Lemma 5.J

Suppose that feIC"[a,b;M] and that x,...,x are (distinct)

0

points in [a,b] . Then ' .

ntl

f[xo,...,xm_l] =mn/(nl)i , (5.1) |

where !

lm| < M . (5.2) !
Furthermore, if feC™ 1[a,b] , then |
i

{

m = £ () " (5.3) |

for some ¢ ¢[a,b] .

Theorem 2.1 ‘

Suppose that k,n >0 ; fecmk[a,b] ; a<0; b>0; and

Xgr+eesX ~ &TE (distinct) points in [a,b] . Then

(n) (n+l)
T 0 f

Aaca K

Z f(n+k)
' S I e Fa |
OSrlSres...SrkSn ;
(5.14)
where '
i
1 ntk nt
R =i ) e, oex (29 (e _)-28) ()]
0<r.<r,<...<r, <n "1 K 1777k
l1-"2~- k- |
(5.5) |
for some & in the interval spanned by x_ ,...,x and O . H
s SOOI S o r r
1 k 1 k |
i
23 %
| |

[y




e S
e
2.5
Corollary 5.1
If, in Theorem 5.1,
5 = max |xr| q (5.6)
r=0,...,n
then
k ,
e} ntk
Rl < 2 w(el™Fgy (5.7)

LY

Proof of Theorem 5.1

The result for k = 0 is immediate from the second part of Lemma 5.1,

so suppose that k > 0 . Take points Yor =+ 2¥, which are distinct, and

distinct from XgpeeesX - Then

f[xo: . --)xn] - f[YO: .o -:Yn]

n
= rz=:o {f[xo: ""xr’yr+l’ '--;Yn] = f[xO’ ""xr-l’yr’ “"yn]}
(5.8)
n
= rz=:0 (xr-yr)f[XO’“"xr’yr""’yn] » (5.9)

by the identity (2.4).

We may suppose, by induction on k , that the theorem holds if k
is replaced by k-1 and n by ntl . Use this result to expand each
term in (5.9), and consider the limit as Yoo ooy tend to 0 . By
the second part of Lemma 5.1, f[yo,...,yn] tends to f(n)(o)/n! , 80
the result follows. (Strictly, to show the existence of the points

¢ » we must add to the inductive hypothesis the result that
rl, L ’ rk ‘

£(mK) (¢

) is a continuous function of X_ ,...,x_ .)
r T

k ol Ty

24
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2.6

Corollary 5.1 is immediate, once we note that there are exactly

(n+k)!

T terms in the sum (5.5).

6. Differentiating the error

The two theorems in this section are concerned with differentiating
the error term for Lagrangian interpolation. These theorems are not

needed later, but are included for their independent interest, and also

because they may be used to give alt. mative proofs of some of the results
of Chapter 3 (see Kowalik and Osborne (1968), pp. 18-20).

Theorem 6.1 is given by Ralston (1963, 1965) if feCn+l[a,b] . We
state the result under the siightly weaker assumption that f ¢ ICn[a,b;M]
for some M : the only difference in the conclusion is that Ralston's
term f(n+l)(‘n(x)) is replaced by m{x) , where |m(x)| <M . The proof
is similar to that given by Ralston (1963), and is also similar to the proof
of Lemma 6.2 below, so it is omitted.

Theorem 6.2 gives an expression for the derivative of the error at ’
the points of interpolation. If feICn[a,b;M] then the result follows
immediately from Theorem 6.1, but Theorem 6.2 shows that f cc™a,b] is

sufficient. This result may be of some independent interest. 4

Theorem 6.1

Suppose that n > 1 ; fe1c™a,b;M] 5 x are (distinct)

O’
points in [a,b] ; w(x) = (x-xo)...(x-xn_l) ; P=IP(f;xO,...,xn_l) 3

'.'x
’“n-1

—_— e e

and f(x) = P(x)+ R(x) . Then there are functions ¢&: [a,b] — [a,b]

and m: [a,b] - [-M,M] , such that

25

|
l
!




2.6
: 1 f(n)(g(x)) is a continuous function of xe[a,b] (although E&(x)
is not necessarily continuous);
2. m(x) is continuous on [a,b] , except possibly at XgpeeesX 3
3. for all xecla,b] ,
R(x) = w(x)£(™ (¢ (x)) /nt (6.1)

and

R*(x) = wt(x) 2 (£(x))/nt + w(x)m(x)/ (1)t ; (6.2)

and

e AL x;éxr for r

0,...,!1-1 ) then

m(x)
n+l

£+ (4(x))

. (6.3)

Theorem 6.2

Suppose that n > 1 ; fec™a,b] 3 x yeeesXy are (distinct)

0 -1

points in [a,b] ; w(x) = (x-xo)...(x-xn_l) ; P = IP(f;xo,...,xn_l) 3

and f(x) = P(x)+R(x) . Then there is a function £: [a,b] - [a,b] ,
. (

such that f"n)(g(x)) is a continuous function of xe[a,b] ; for all

xe[a,b] ,
R(x) = w(x)e™ (e(x))/mt (6.4)
and, for r = 0ye..,n-1,

R (x) = (x )2 (6(x ))/mt . (6.5)

Before proving Theorem 6.2, we need soOme leinas. Noter the similarity

between Lemma 6.2 and Theorem 6.1.

Lemma 6.1

Suppose that n >1 ; feCn[a,b] 3 XyyeeesX,  are distinct points

in [a,b] ; P = IP(f;xO,...,xn) 3
26
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A= max If(n)(x)| s (6.6)
xela,b]
ard,
8 = max ‘X. -X, . (6'7)
o<i<j<n Y

Then, for all xela,b],

n
£(x) = P(x) +(TT (x-x,) |S(x) , (6-8)
r=0
where
5| < gor - (6.9)
Proof

If % =x for some r = 0,...,n , then we can take S(x) =0 .

Otherwise, by the identity (2.5),

Bi(x) = F[xo,...,xn,x] . (€.10)
Write X 41 for x , and reorder Xyreeos¥pg (if necessary) so that,
if the reordered points are xé, ""xr'ﬁl s then

Xy - X4 = max |x! - x3| > 8 . (6.11)

0<i<j<ntl
From (6.10) ard the identity (2.4),

f[X('), .;.,X;l] - f[Xi, ...,X;1+l]

S(x) = T ) (6.12)
XO B xn+l
so, by Lemms 5.1,
300 = Se) = £ (er) (6.13)
n.(xO - xn+l)
27
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for some & and &' in [a,b] . In view of (6.6) and (6.11), the

result follows.

Lemma 6.2
Suppose that n > 2 ; feCn[a.,b] 3 XgyeeesX o are distinct

points in [a,b] ; A = max |f(n)(x)|; S = max |xi-x_|
xe[a,b] 0<i<j<n e

.
b

Pn = Ip(f;xo, o ',xn-l) ; Wn(X) = (X-XO) s e .(x-xn_l) ; a-!ld
£(x) = P (x) +R(x) . Then there is & function &: [a,b] - [a,b] such

that, for all xe[a,b], f(n)(g(x)) is a continuous function of x ,

R(x) = w (0™ (5()/nt (6.14)

|R* (x) -wg(X)f(n)(E(x))/n!\ < —m (6.15)

and, if xfxr for r =0,...,0-1, then

12 ™y < 2. (6.16)

Proof
Let X, be a point in [a,b] , distinct fram x and XopeeesX g
For k=n or nt+l , define
P, = IP(f;xO,...,xk_l) (6.17)
and
wk(x) = (x-xo)...(x-xk_l) . (6.18)

By the classical result corresponding to Lemma L.l, there is a function

¢ such that (6.1k) holds. Suppose, until further notice, that x # X,
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2.6
for r =0,...,n . Then, from (6.14) and the identity

k-1 f(xr)wk(x)

Pk(X) = S (x_x;ngxr) ’ (6.19)
we have
f(n) (t(x))  f£(x) _ n-1 f(xr)
n! - wnixs = (x-xr)wx'l(xr) (6.20)

Since the right side of (6.20) is continuously differentiable at x , so

is the left side, and

H
—~
=
L
—~
v
~~
»
~
~
1

nl f(x
%({{(%) "L (x—xr)ejr;l(xr) - e
Define S(x,xh) by
£(x) =B, (x) + v ()S(x,x) . (6.22)
Since

wn(xn) : i = =n ;

w! (x) = (6.23)
L2 VR (xr-xn)w;l(xr) 2 1 =0y0..,n=2 ,

equation (6.19) gives

P, q(x) n-1 £(x_) f(xn)
wm,l(XS - rz=:o (x-xr) (xr-xn)w;l(xr) + (x_xnywn(xn) ’ (6.24)
s0
£f(x) _ f(xn)
wn(x) wn(xn) n-1 f(xr)
S(x’xn) = X - Xn + rgo (x_xI) (xn_Xr)w;l(xr) . (6.25)
29
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2.6
As x -Xx, the rght side of (6.25) tends to the right side of (6.21).

Thus, there exists

1

d .(n)
lim S(%,X) =<7 5 £\ (8 (%)) (6.26)

X_ -X
n
and, fram the definition (6.22) and Lemma 6.1, this proves (6.16). Now,
by differentiating the right side of (6.14) by parts, we see that (6.15)

holds, in fact

W ()£ (5(0) + w_(x) & (™) (&)

R'(X) = n! )

(6.27)

provided that x £ x,, for r=0,...,u-1 . Consider (6.27) near one

of the points X, T= 0y.s.yn-1 . R'(x) is continuous at S

wn(xr) =0, wx'x(xr) #£0, and, by (6.16), % f(n)(g(x)) is bounded
for x £ x. - Thus f(n)(g(x)) has, at worst, a removable discontinuity
at X, and, by the continuity of f(n)(g) as a function of ¢ ,

a suitable redefinition of §(xr) will ensure that f(n)( E(x)) is a

continuous function of x , and that

R (x) = w ()™M (g(x))/mt . (6.28)

This completes the proof of the lemma.

Proof of Theorem 6.2

If n >2 then the result follows immediately fraom Lemma 6.2. If
n =1, chocse E(x) so that §(xo) = x, and, for x # Xo
f(x) - f(xo)

X-XO

fr(&(x)) =

Then f£'(&(x)) is a continuous function of xe[a,b] , and, as

EY




2.6

R(x) = f£(x) -f(xo) and w(x) = X=Xy it is easy to see that

equations (6.4) and (6.5) are satisfied. Thus, the theorem holds for

all n>1.




Chapter 3.

The Use of Successive Interpolation for Finding Simple

Zeros of a Function and its Derivatives
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1. Introduction

Suppose that q >1 and fqu-l[a,b] . Given (distinct) points

xo, LN 4

way: |if xo, seeyX

.,xq in [a,b] , a sequence (xn) may be defined in the following

ntq are already defined, let Pn = IP(f;xn, . "’xn+q)

be the g-th degree polynomial which coincides with f at xn, S ”xn+q 5

and choose xn+q+l so that

P(‘l'l) (x

e n+q+l) =0 . (1.1)

>
s

Under certain conditions the sequence (xn) is well-defined bx/(l.l),
Ve

lies in [a,b] , and converges toa zero { of f(q'l) . Ir’this chapter

we give sufficient conditions for convergence, and estimate the asymptotic
rate of convergence, making various assumptions about the differentiability
of f .

Since P is a polynomial of degree q , (1.1) is a linear equation

in If

Xrgtl
f[xn,...,xmq] £0 , (1.2)

then Lemma 3.1 shows that the unique solution is

flx IOETPS ]
X -1 i pYe - [ n+1’ ’ n+q‘\ (1.3)
n+q+l q & n+i f[xn, ...,xrl+ ] j ’ \

and this might be used as an alternative definition. From Section 4 on,

our assumptions ensure that X yeeorX are sufficiently close to a

ntq
simple zero { of f(q'l) , 80 (1.2) holds. In Section 3, the assumption
that f(Q)(c) #£ 0 1is unnecessary: all that is required is that xn+q+1
is a (not necessarily unique) solution of (1.1).

The cases of most practical interest are q =1, 2and 3. For q =1,

our successive interpolation process reduces to the familiar method of

33

4




—

[ USSR U A W R U Rt U I B N

BiLal

successive linear interpolation for finding & zero of f , and some of our
results are well-known (see Collatz (1964), Householder (1971), Ortega and
Rheinboldt (1970), Ostrowski (1966), Schroder (1870), Traub (1964, 1967)
etc.). For q =2, we have a process of successive parabolic interpolation
for finding a turning point, and, for q = 3 , a process for finding an
inflexion point. These two cases are discussed separately by Jarratt (1967,
1968), who assumes that f is a.nalytic near ¢ . By using (1.3) and
Thecrem 2.5.1, we show that much milder assumptions on the smoothness of f
suffice (see Theorems 4.1, 5.1 and 7.1). Also, most of our results hold
for any q > 1, and the proofs are no more difficult than those for the

special cases g =2 and q =3 .

Some simplifying assumptions

Practical algorithms for finding zeros and extrema, nsing the results
of this chapter, are discussed in Chapters 4 and 5. Until then we ignore
the problem of rounding errors, and usually suppose that the initial
approximations Xy ...,xq are sufficiently good.

For the sake of simplicity, we assume that any g+l consecutive

points Koo ,xn+q are distinet. (This is always true in the applications
described in Chapters 4 and 5.) Thus, P 1is just the Lagrange
interpolation polynomial, and the results of Chapter 2 are applicable.

As in Chapter 2, the assumption of distinct points is not necessary, and
the same results hold without this assumption if Pn is the appropriate

Hermite interpolation polynomial.

3L
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3.1

A preview of the results

The definition of "order of convergence" is discussed in Section 2,
and in Section 3 we show taat, if a sequence (xn) satisfies (1.1) and
converges to { , then f(q-l)(;) =0 (Theorem 3.1).

In Sections 4 to 7, we consider the rate of convergence to a simple

(q-1) , making increasingly stronger assumptions about the

zero { of f
smoothness of f . For practical applications, the most important result
is probably Theorem 4.1, which shows that convergence is superlinear if
fec? and the starting values are sufficiently good. As in similar results
for Newton's method (Collatz (196%), Kantorovich and Akilov (1959),
Ortega (1968), Ortega and Rheinboldt (1970) etc.), it is possible to say
precisely what "sufficiently good" means. Theorem 5.1 is an easy
consequence of Theorem 4.1 and the theary of linear difference equations
(Norlund (1954)), and gives a lower bound on the order of convergence if
f(q) is Lipschitz continuous.
The question of when the order of convergence is equal to the lower
bound given by Theorem 5.1 is the subject of Sections 6 and 7. Although
the resnlts are interesting, they are not of much practical importance,
for in practical problems it is merely a pleasant surprise if the iterative
process converges faster than expected! Thus, the reader whose main
interest is practical applications might prefer to skip Sections 6 and 7
(and also Theorem 3.1), except for Lemma 6.1.

Ta Section 8, we consider the interesting problem of accelerating the
rate of convergence, and Theorem 8.1 shows how this may be done. We make
use of Lemma 6.1, which gives a recurrence relation for the error in

successive approximations to { , and is a generalization of results of

Ostrowski (1966) and Jarratt (1967, 1968).
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3.2

Finally, in Section 9 the theoretical results are illustrated by
some numerical examples, and a brief summary of the main theorems is
given in Section 10. The reader may find it worthwhile to zlance at

this summary occasionally in order to see the pattern of the results.

2. The definition of order

Suppose that lim x = { - There are many reascnable definitions
n-—ow

of the "order of convergence" of the sequence (xn) . For example, we
could say that the order of convergence is p if any one of (2.1) to (2.h4)

holds:

-8
1mkﬁl———| = K>0 , (2.1)
n-o |xn-§|p

log|x,,, - ¢
nl.h: Toglx -¢] =~ P 7 e
1/n
lim(-log|x - ¢l = p , (2.3)
n—w
lim inf(-log|xn - §|)l/n = p . (2.4)
n—ow

These conditions are in decreasing order of strength, i.e.,
(2.1) o (2.2) o (2.3) o (2.4), and none of them are equivaient. (2.1) is
used by Ostrowski (1966), Jarratt (1967) and Traub (1964, 1967), while

(2.2) is used by Wall (1956), Tornheim (1964) and Jarratt (1968). Voigl (1969)
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3.2

and Ortega and Rheinboldt (1970) give some more possibilities (for
example, we may take the supremum of p such that the limit K in (2.1)
exists and is zero, or the infimum of p such that X is infinite). See
also Schroder (1870). For our purpeses it is convenient to use (2.1) and

(2.4), so we make the following definitionms. | h

Definition 2.1

I S

We say X - { with strong order p and asymptotic constant K
if x - { as n - » and {2.1) holds.
We say X, - § with wet - order o if X, = £ as n - o and 1

(2.4) holds. (If X = > for all sufficiently large n then we say

that x - § with weak order o .)

Definition 2.2

Let

¢ = lim sup |xn - §|l/n . (2.5)

n-ow

We say x - { sublincarly (or less than linearly) if x - { eand

c=1. We say xn—~§ linearly if 0 <c¢ <1 . We say xn~§
superlinearly if ¢ = 0 . We say x, - ! strictly superlinearly if

xn—o§ with weak order p > 1 . 1

Examples {

Some remarks and examples may help tc clarify the definitions. If
p>1 and x = exp(-p")(L+0(1)) as n — o , then x, = O with strong
order p and asymptotic constant 1 . If g >1 and X o= exp(-gn)(z r (-1)"

1569) then X, - 0 with weak order g5 , put not with any strong order, for the
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3.3
limit in (2.1) does not exist if p = g , is zero if p <¢g , and is
infinite if p > g . Thus, convergence with strong order p implies
convergence with weak order p , but not conversely.

If the limit in (2.1) or (2.4) exists, and X -8, then ¢ >1.
If the limit (2.1) exists with p =1, and X -+, then K<1

(K < 1 for linear convergence, and K = 1 for sublinear convergence).

Examples cf sublinear, linear,

1 -n -n
X ==, 2 n
n n ) )

superlinear, and strictly superlinear
B
, and 2

convergence are respectively.

3.

Convergence to a zerc

In this = “°n we show that, if the sequence (xn) defined by (1.1)

f(q'l)

converges, ti .. it must converge to a zero of , assuming only

that fqu-J'[a,b] . First, we need a lemma which gives a relation

between the points X ""xn+q+l 5
Lemma 3.1
1f xn’xml""’xn+q are (distinct) poirts in [a,b] , and xn+q+l
satisfies (1.1), then
q-1
(i}z‘o(xmi xn+q+l))f[xn" R +q] = filoel ;0L n+q-l] (3.1
Preof
By the identity (2.2.6),
b = ] - 1 r o0 0
P (x) = flx ]+ (x-x ) €lx ox ]
/ .
+ \x-xn) . "(x-xmq-l) f[xn, - .,xmq] , (3.2)

SO

T e
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PO (x) - (1) tislx, .. ]

11
- s (%4

*Xreg-1

i--x))f[xn,...,x 1} . (3.3)

n+q

("

Thus, the result follows from (1.1).

Theorem 5.1

Suppose that fe;Cq-l[a,b] ;5 that a sequence (xn) satisfying
(1.1) is defined (see Section 1) in [a,b] ; and that there exists
lim x_ =08 . Then f(q'l)(g) 0.

n-w O
Proof

Suppose, by way of contradiction, that
) fo . (3.1)

For 0 <r <q , the identity (2.2.4) shows that

(x -x . )flx

n+r n+q n, oo.’xn+q] = f[xn’ooa,xn+q-l] o’

] . (3.5)

LI B x * 80
PUX = oo e (i en Ry

Thus, from Lemma 3.1,

-1
*ntr " ¥n+q T Mo,r (it-o Ry 'xn+q+1) ’ (5.6)

where

. f[xn""’xn+r-l’xn+r+l’""xn+q] s
M, r T frxn,... ] * -

’xn+q-l

Both divided differences in (2.7) tend to f(q-l)(g)/(q-l)! as n - o ,

s0 there is no loss of generali'y in assuming that the denaminator

392
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3.3

f[xn,...,x is nonzero for all n (on the assumption (3.4)),

n+q-1]

and we have

lim un
n-—ow

L=0 - (3.8)

2

Summing (3.6) over r = 0y...,q-1 and rearranging terms gives

=]
where
1- ¥
r=0 ",

and, by (3.8), there is no loss of generality in assuming that the
denominator in (3.10) is nonzero for all n >0 . From (3.6), with

r = q-1, and (3.9), we have

nrq-1 " *nrq T u'n(xrr~l-q"xn+q+l) 4 (5.11)
where

My = Bpgatn (3.12)
The repeated application of (3.11) gives

X1 % = uoul...un(xn+q-xn+q+l) 5 (3.15)

and, by (3.8), (3.10) and (3.12), kW -0 as n -, g0 the right
side of (3.13) tends to zero a8 n — » . This contradicts the assumption
that Xy-1 # x, » 80 (3.4) must be false, and the proof is complete. (If
we do not wish to assume that any gq+1 consecutive points X 3eeerX

nt+q
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3.k
are distinct, then we may argue as follows: on the assumption (3.4),
the right side of (3.1) is nonzero for all sufficiently large n , and

thus at least two consecutive points from xn, Jenel; are distinct.

xn+ qtl

Taking these two points in place of xq-l and xq » we get a contradiction

in the same way as from (3.13).)

L.  Superlinear convergence

If f has one more continuous derivative than required in
Theorem 3.1, then Theorem 4.1 shows that convergence to a simple zero
of f(q-l) is superlinear, in the sense of Definition 2.2, provided the
starting values are sufficiently good. The theorem makes precise what
vwe mean by "sufficiently good". (In equation (4.1), w is the modulus
of continuity: see Section 2.2.) Convergence to a multiple zc¢ro of
f(q-l) is not usually superlinear, even if q = 1 (see Section L4.2),
and Theorem 3.1 above is the only theorem in this chapter for which we
do not need to assume that the zero is simple. Thus, there is no reason
to expect that the algorithms described in Chapters 4 and 5 will converge

any faster than linearly to multiple zeros of f(q°l) .

Theorem 4.1

Suppose that fqu[a,b] ; Lela,b] xo,...,xq are (distinct)

points in [a,b] ; 8, = max [x;-t] ; ela-D ey -0 ;
i=0,...,q
[§-60,§+60] c {e,b] ; and

w(tWis) < 2Dy . (4.2)

L1
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3oh
Then a sequence (xn) is uniquely defined by (1.1), and x, - ¢

superlinearly a8 n -+« . Furthermore, if, for n >0,

i ’n T 10y n1) v ¢ (-
and
n = (e Vs y/1e @y (k.3)

; then the sequence (Sn) is monotonic decreasing, and

5 (4.b)

mqtl = Mdnel

Proof

} Without loss of generality, assume that § = 0 . Let Sn and A

T

be as in the statement of the theorem (equations (4.2) and (4.3)).
Since f(q-l)(o) =0, Corollary 2.5.1 to Theorem 2.5.1 (with

k=1, n=q-1) gives

| f[xl,...,xq] = (iil xi)f(‘n(o)/q'.ml 3 (4.5)

.

| where

IRy | <z @) /(-1 (1.5)
if

| SN izl.;nz.n.(.,q|xi| S By (4.7)
| Sinilarly,

: . U -l
, xgr--erig] = 8 ey - Ll (4.8)

L2




3.4
where
8, | Sw(f(q);ao)”f(q)(o)l =)/3 < /3 (4.9)
80
R
|R3| = ‘F%z\ < a2 < e (k.10)

(Note that the assumption (4.1) ensures that f[xo, ...,xq] £0 )

From (4.5), (L4.8), and Lemma 3.1 (with x. and X, interchanged),

0]
q £( () q (D (o) b1t
- = + .
Where
i £(9) (o) 5
R, = R5(1=1 xi) 3 + Rl(l+ RB) (4.12)
From (4.6), (4.7) and (4.10), equation (k.12) gives f
|r,| < — + = ; (4.13)
L = 2.(q-1)! 2.(q-1)!
\'\
so, from (k.3) and (4.7),
, ;
L,
ml < o (1.24)
Now, fram (k.11), we have
Ixpal < a8t - (4.15)
By the assumption (L.1), Ao < 1, so xq+l lies in {a,by , 61 and M
are well-defined, bl =6' < 63 c }‘l < M , and

by
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3.h
lxq+l| < ?\051 (4.16)
In the same way, we see that 80 > 61 = 52 > e,
l>)\02)\12)\22... » and, for n >0,
lxn+q+l| S )\n8n+l * (h"l'z)
Thus, the inequality (L4.4) holds, and it only remains to show that
x -0 superlinearly. From (4.4) and the above,
) € Mo g Ih 3) <)\k6 (k.18)
kq+l = "0%q (k-l)g"1 =" "1’
and ), <1 by assumption (k.1), so 8, +0 & n ~wo . Thus, by
the continuity of f(Q) and the definition (L4.3), )‘n -0 as n +o .
Take any € >0 . For all sufficiently large n ,
Ay, S, (4.19)
so, from (L4.4),
1/n
lim sup 8 /7 < € . (4.20)
n-o
As € 1is arbitrarily small, this shows that
lim |xn|l/n 14m 850 - o . (b.21)
n-w n-w 0
Thus, X, £ = 0 superlinearly, and the proof is complete.
Remarks
The proof of Theorem L.l shows that, for n >0, Ixn+q+l- ;\ is
no greater than the second-largest of |xrl - §|, coog ‘xn+q - §| . Thus, if

Lh




3-5
q =1, the sequence (Ixrl - CI) is monotonic decreasing, except perhaps
for the first term. 1In fact, the proof shows that, for g =1 and

n>1,

d
L};—_ﬂl 0O as n-o (k.22)

(provided X #£¢t) . This is a common definition of "superlinear
convergence", stronger than our Definition 2.2.

If q >2, the sequence (|xn -t|) need not be eventually
monctonic decreasing: monotonicity would follow from strong superlinear
convergence with order greater than 1 , but more conditions are necessary

to ensure this sort of convergence (see Sections 6 and 7).

5. Strict superlinear convergence

Assuming slightly more than in Theorem k4.1, Theorem 5.1 shows that
convergence to a simple zero of f(q-l) is strictly superlinear,
according to Definition 2.2. Before stating the theorem, we define some

constants Bq o and 7q 5 which are needed here and in Sections 6 and 7.
) b

Definition 5.1

For ¢ >1 and a >0, let the roots of

P Ay (5.2}
o(1) ; ; (0) (1) (a)
be for i =20,... with |u > > el >
q’ ’ ’ 29 ‘ q,Cl‘ = |uq,a| > = ‘uq’al
Then the constants Bq,a and 7q,a are defined by
(0) (1)
and
By,q = 1ug,al Te,a = 1¥gal

[ —— -



e p—

3.5
Since the case a = 1 often occurs, we write simply Bq for
and for >
Pg,1 7q 7q,1
Remarks

ﬁq o is just the positive real root of (5.1), and it is easy to
)

see that, for 0 <a <1,

2 1
(1+a)29' < g < (1+a)? . (5.2)
q,Q
We are only interested in the constants 7y c when a=1. If
J
@ =1 and q >2 then there are exactly two complex conjugate roots
of (5.1) with modulus 7q . If gq=1 or 2 then 7 <1, but, for
qQ > 3,
L€y, < .
q Bq
This may be proved by applying the Lehmer-Schur test to show that, for
suitable € >0 , exactly q-2 roots of
xq+l=x+l (55)

lie in the circle |x| < 1+€ . The details are omitted, for all cases

of practical interest are covered by Table 5.1, which gives B and '/q

to 12 decimal places for q =1,...,10 . The table was computed by

finding all roots of (5.3) with the program of Jenkins (1969), and thc
entries are the correctly rounded values of Bq and 7q if Jenkin's

a posteriori error bounds are correct.

L6
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Table 5.1:

=

O OO ~N O W,

I‘ 10

See Definition 5.1 and the remarks

the constants

The constants Bq

Py

1.618033988750
1.32k7179572k45
1.220744084606
1.167303978261
1.13k724138L02
1.112775684279
1.096981557799
1.085070245491
1.075766066087

1.068297188921

Py

and
7‘1

and
7q

L7

for q = 1(1)10 to 12D

0.618033988750

0.868836961833
1.063336938821
1.0990003151k46
1.099174913506
1.091953305766
1.083743696285
1.076133134033
1.069448852721
1.06366693840L4

above for a description of
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3.5
Theorem 5.1
Suppese that feI_Cq[a,b;M,a] (see Section 2.2); e (a,b) ;

f(q-l)(g) =0 ; and f(Q)(C) £0. If x x_ are (distinct and)

O,-n., q

sufficiently close to { , then a sequence (xn) is uniquely defined

by (1.1), and x, - £ with weak order at least 8_ o » the positive
Qs

real root of xq+l = x+Q .
Remark
If 8, = max |Xi -t| , then, from Theorem k.1, Xos+eer Xy
i=0,...5q

are "sufficiently close" to § if 50 <fl-a, 50 <b-{, and

My < 12D )|

If these conditions are satisfied, then an upper bound on Ixn - §|

foilows from equation (5.10) below.

Proof of Theorem 5.1

For n >0, let

1

5 =  max ,xnﬂ_-n .

e
i1=0,...,q

Suppose that X2 ...,xq are so close to { that the conditions
mentioned in the remark noove are satisfied. Then Theorem 4.l shows

that (ﬁn) is monotonic decreasing to zero, and

oM Q

® < & &
ntq+l -~ !fhs(gﬂ n n+l

If eventually 5n = 0 , then the result follows inmediately: Dby

with weak order « . Hence, suppose that

ve

our definition, x, -

43
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&, £0 for all n >0 (and thus, from (5.6), M >0 ). Let

M |/«

5.7)
(@ ¢) (

= -log®

n

(not the same A, @&s in Theorem L.1). TFrom condition (5.4) and the fact

that (8n) is monotonic decreasing, 0 < )‘O < )‘l < )\2 < ..., and, from

equation " 3),
Migrl 2 A Ty (5:9)
Since Bq,oz > 1, we have

2 %8s (5.9)

for n=20,...,q . Thus, from (5.8) and the definition of Bq o ° the
)

Lo

inequality (5.9) holds for all n >0, by induction on n . Hence, for

ell n >0,
R _ _ n-q 1 SM
log |xn ¢| > -Log 5, 2 Xy Bq,a + 5 log W (5.10)
Since \g >0 and B > 1, equation (5.10) shows that
q,Q
lim inf (-log |x_ - §|)1/n > B (5.11)
n - q’a 2 7

n—o

vhich caapletes the proof.
Note that, in the important case « = 1 , there is a simple proof of
Theorem 5.1 which does not depend on Theorems 2.5.1 and 4.1. Also, this

proof shows that, instead of (5.4), the condition

aw, < 22 @) (5.12)

49
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ie sufficient. The ilea is this: by applying Rolle's Theorem q-1
times, we s<e that Plgq-l) (x) coincides with f at points En and §I'l
say, with |§n- ¢ < & and IgI'l -t < 8! = the second largest of

|xn-§|,...,|xn+q-§| . Thus, from Lemma 2.4.1,
ey < Lwsr . (5.12)

On the other hand, equations (1.1) and (3.3) show that

p(2-1)(¢)

X = c - e )

(5.1k)

50 we can bound |x - §| » and then the result follows in much the

nrgrl

same way as above.

6. The exact order of convergence

Theorem 5.1 gives conditions under which X, - ! with weak order at

least Bq . It is natural to ask if the order is exactly Bq . In general,
this is true, but some conditions are necessary to ensure that the rate

of convergence is not too fast: for example, the successive linear
interpolation process (q = 1) converges to a simple zero { with weak
order at least 2 (> B, = 1.618 ...) if it happens that f"({) = 0, for
then linear interpolation is more accurate than would normally be expected.
Theorem 6.1 gives sufficient conditions for the order to be exactly Bq 5
Apart fram the conéition f(q+l)(§) #£ 0, it is necessary to impose some
conditions on the initial points Xyp oo ,xq. (Tese extra conditions are

superfluous if q = 1 : see Section 7 .)

50
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Before proving Theorem .1, we need two lemmas. Temma 6.2 is
concerned with the solution of a certain difference equation, and is
closely related to Thecrem 12.1 of Ostrowski (1996). (The lemma could
easily be generalized, bu* we only nced the result stat d.) Lemma 6.1
gives a recurrernce relation for the error X, -{ . Specisal cases of this

3)
lemma have been given by Ostrowski (1966) and Jarratt (19€7, 1968). )

Ostrowski essentially gives the case q =1, and Jarratt gives weaker
results for q =2 and q = 3., (our bound on the remainder R is
L)
sharper than Jarratt's, and we do not assume that f is analytic.) 1In

Section 8, we shiow how the result of Lemma 6.1 may be used to accelerate

convergence of the sequence (xn) .

Lemma 6.1

Suppose that f‘qu+1[a,b] ; Lela,b] ; f(q'l)(g) =0 &
f(Q)(g) £0 ; xn""’xn+q are (distinct) points in [a,b] ; and
gl satisfies equation (1.1). Let & be the largest of
|xn-§|,...,|xn+q-§| ; and 6& the second largest. Then

f(q+l)('-) u . !
xn+q+1- q(q+1)f(q (;) 0<1<i<q (xn+i = g)(}‘n+j -3) + Rn ’ i {
(6.1)
where
R = o(anar'l[an+w(f(q+l) ;sn)]) (6.2)

as & -0 .
n

Proof

L Without loss of generality, assume that n =0 and § = O . Rearrange

4 51 '
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Xop e esXy s if necessary, so that |xo| < |xl| < vos £ |xq| . From
Lemma 3.1,
-1
q-xq+lf[xo’ .o o,xq] = (i‘{_:‘o xi) f[xo, .o .,Xq] - f[xo, .o .,Xq_l] . (6.5)

Thus, as f(q'l)(o) =0 £ f(Q)(O) , Theorem 2.5.1 gives

(q)( )
1 fq! 0 (l+rl)

q.xq+
- (;ZO xi) (Ti_l + (igo Xi)’ —(-q:iﬁ—l + I‘2)
ST R e (T xSt e
(6.1)
where
|z, | '——ﬁ——(f(q) %) (8,) (6.5)
< = 0(8 9 )
rl - lf q (°)| 0
el < owie(@Dse0)/ar = o(s (e se.)) (6-6)
i (q+1)
2 +1
8! w(£' T 581)
Il s 2y - 0T 5en)) (6.7)
as 50 -0
The right side of (6.h4) is just
(m+1)
£ 0
(051§35q %) @Dt T (6.8)
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where

Im | < asglrol+ Iyl = ol pgu(e( T s )

as 60 - 0 , so the result follows.
Remarks

Fram the bounds on rl,

(6.9)

cesT) it is easy to derive an explicit

bourd on |Rn} for sufficiently small & . For our purposes, though,

the relation (6.2) is adequate. A simple corollary of (6.2) is that,

ir £(@*1) e Lip, G , then

R =otl%s
n n

&)

n

as 5 -0 .
n

Lemma 6.2

Suppose that }\n-ohn as n -+ o, and, for n >0,

>‘n+q+l A
where
n
k = 0(s")

as n - w , s a constant. I8 7q <8 < Bq then

N, = c.a:+ o(s")

a8 n -« , and if k = o(s") as n - then

A, = C'B: + o(s")

23

(6.10)

(6.11)

(6.12)

(6.13)

(6.1%)
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as n o, If O_§s<7q then

n v n
Ny = CB 0(n .7q) (6.15)

as n - o , where

0 if q=1 ,
v = (6.16)
1 if 9>1 ,

and ¢ 1is a nonnegative constant.

Proof
The restriction \u2| <1 1in Theorem 12.1 of Ostrowski (1966) is
unnecessary, for we can chcose any X with ‘ue‘ <N< Iul\ and
consider kn/)\n s instead of >\n s in Ostrowski's proof. Thus, in view
of the remarks after Definition 5.1, (%.1%) and (6.15) follow from
Ostrowski's Theorem 12.1. (6.14) does not follow directly in the same
way, but the proof of Ostrowski's Theorem 12.1 goes through, assuming
k = o(sn) instead of k = O(sn) , and giving a result from which (6.1k4)
foilows. The only difficulty is in proving the modified form of

Ostrowski's Lemma 12.1, but this follows from the Toeplitz lemma: if

X -0, |¢] <1, and 2, =k +k _

n
s 00 + =
n + ko.ﬁ , then z 0 as

16
n - o (see Ortega and Rheinboldt (1970), pg. 399).

Theorem 6.1
suppose feC¥a,0] 5 Ce (a,b) ; f(q'l)(C) =0 § f(Q)(C) AN

and f(q+l)(§) £0. 1If |x0-§| is sufficiently small,

|xi-l -t > h‘xi - ¢l (6.17)

Sk
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fOI‘ i = l,2,o-s,q » &nd

Ix - ¢l 2 6lK(x -0 (x -] > o, | (6.18)

(q+1)
f §§2
K = ’ (6°19)
a(ar) £ Y (2)

then a sequence (xn) is uniquely defined by (1.l1), and x - § with
weak order exactly aq . In fact, if @ =1 or 2 then X - with

g -1
strong order Bq and asymvtotic constant |K| * , and if q >3 then

-loglxn -t = c.B: + O(n.yg) (6.20)

as n -« , for some positive constant c .

Remarks
Condition (6.17) ensures that Xgo + 2%y approach { sufficiently
fast, while (6.18) makes sure that they do not approach { too fast.
These conditions could be weakened, but Theorem 7.1l shows that some such
conditions are necessary if q >2 . If q =1 then the conditions
are superfluous: see Corollary T7.l.
Equation (6.20) implies that (2.2) holds with p = Bq , but (2.1)

does not necessarily hold, for 7q >1 I 9> »

Proof of Thecrem 6.1

Let y = {K(x - 8| - (6.21)

From the assumptions (6.17) and (6.18) we have, at leest for n =0,

25
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Yoriel 2 hyn‘!-i (6.22)
for i =1,2y...5q0 , and

yn+q > 6ynyn+l > 0 . (6.23)

We shull show that (6.22) and (6.23) hold for all n >0 . Suppose, as
inductive hypothesis, that they hold for all n <m . Then, by taking
|xo - §| sufficiently small (independent of m) , we may suppose that {he

remainder Rn of Lemma 6.1 satisfies

Ik | < ilgynynﬂ (6.21)
for al). n <m . Thus, fram Lemma 6.1,
Vmtqrl S ymyml(lﬂl; + h% + fg* fl;+ cee t 1—13)
%ymymﬂ. y (6.25)
From (6.23) with, n =m , this gives
Ymq 2 hquﬂ (6.26)
Similarly,
Ymtqrl 2 Y Fmey (L = TlI - h—22 - ff - flI 2 - %)
=5 ey | (6.21)
> 6V Yo (6.28)

Also, from (6.27), Ymrqrl

From (6.26) and (6.28), we see that (6.22) and (6.23) hold for n = m+l ,

>0 , so the right side of (5.28) is positive.

so they hold for a1l n >0 , by induction. Thus (6.25) and (6.27) hold

for all m >C .

st
=g
i
L]
L
—y
-y
—
—

—
—




Let

>
1l

-log yn (6'29)

NS R (6.30)

From (6.25) and (6.27),

k| _ log2 , (6.31)
so we may apply Lemma 6.2 with s =1 . If q >3 then 7q>l, so

n n
N, = c.ﬁq+0(n.7q) (6.32)

as n -»o . From Theorem 5.1, ¢ >0 , so the result for q > 3 follows.
If 9q=1 or 2 then 7q<l, so
r

N, = c-B + 0(1) (6.33)
as n -« . From (6.29), (6.30), (6.33) and Lemma 6.1, we now see that

N o(1) (6.3h)
as n - o, 80, by equation (6.14) with s =1,

u

A = c.Bg + o(1) (5.35)

as n -o . Thus, there exists

Y.

m 2L . g (6.36)
n-w Bq
n

so the result follows fror equation (6.21). (Note that, if f(q+l) € LipM a
for any M and & >0 , then (6.34) may be replaced by k = o(s") for

any s >0, so (6.15) nolds, and

o1
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3.7

T Stronger results for q =1 and 2

In this section we restrict ocur attention to the two cases of the
greatest practical interest, q =1 (successive linear interpolation)
and q = 2 (successive parabolic interpolation for finding an extreme
point). Corollary 7.1 shows that the conditions {6.17) and (6.18) of

Theorem 6.1 are unnecessary if q =1 .

Corollary 7.1
Suppose that q = 1 ; feCz[a,b] ; Ce(a,b) 3 f£(8) =0

£1(8) A0 ;and M) 0. If x;,x; and { are distinct and

‘ 0
sufficiently close together, then a sequence (xn) is uniquely defined
by (1.1), and x - { with strong order B, = % (1+/5) and asymptotic
e (t)|P1t
constant \gf' \ a8 n - o .
Proof
From Lemma 6.1,
f"( *
Xy-8 = serrd (%o - ) (% - 8)(1+0(1)) (7.1)

as max(\xo-§|, |x1-§]) - O . Thus, Theorem 6.1 is applicable to the

' ] | - £ $
sequence (xn) s Where XL =X 410 provided X and xl are sufficiently

close to ¢ .

5
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Remarks
Ostrowski (1966) gives Corollary 7.l with the stronger assumption

that feCj[a,b] . He also shows that, if fecj[a,b] and the

conditions of Corollary 7.1l are satisfied, then

x5 - ¢ )Pt
e & g

‘ ;|Bl - 1 - 5 0(72) (7.2)
x -

28 n - » . As we remarked at the end of the proof of Theorem 6.1, the
relation (7.2) holds provided that feme[a,b;M,a] ior some M and «
(see equation (6.37)). For an even weaker condition, see (7.7) and (7.8)
below.

The following thecrem removes the rather artificial restrictions
(6.17) and (6.18) of Theorem 6.1, if f(q*l) is Lipschitz continuous
and q =1 or 2 . The proof does not extend to q >3 , because it
depends on the assumption that 7q < 1, which is only true for g =1

and q = 2 (see Table 5.1).

Theorem 7.1
Suppose that q =1 or 2 ; fecY a,b;M) 5 Le(ayb) ;

£@D(ey -0 ; ana #(0) gy £O0 . If Xgr++es%,  are (distinct and)
sufficiently close to { , then a sequence (xn) is uniquely defined

by (1.1), aad either

l: X - 5 with strong order Bq and asymptotic constant

| d=De) By
latar) 2@ 2)

sy in fact



%4y - 8 ) @D ) |Bgt + 0(ndL ;0 (7.3)
-t la@ns@w :
as n -» o (recall that B, ~1.618, B, ~1.325, 7. ~0.618,
12 2 = 1=

and 7220.869) 3

X, - { with weak ourder at least 2 if q =1, or

1
(2—}@)3 ~ 1.378 if gq=2.

Remarks

If q =1 then, by Corollary 7.1, case 2 of Theorem 7.l is
possible only if f"({) = 0 (or if one of x, and x; coincides with ¢§ ,
when the weak order is o ).

If q =2 then case 2 is possible, although unlikely, even if
f(j)(g) £ 0 and x £¢ for all n . All that is necessary is that
the terms in relation (7.28) repeatedly nearly cancel out. Jarratt (1967)
and Kowalik and Osborne (1968) assume that such cancellation will eventually
die out, so the order will be B, - The conditions (6.17) and (6.18)
are sufficient for this to be true, but without same such conditions there

is a remote possibility that cancellation will continue indefinitely.

Tor example, with f(x) = 2x3~'0'x2 s there are starting values x, , X

0 1

and x2 such that

X, ~ exp(-2")
and (7.%)

o - .ol
.‘;2n+l ~ exp( ? ) )

60
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s0 X, -+ =0 with veak order /2 . Similarly, if

y =:§L(5+/'5') - 2.618 ...,

then there are starting values such that

xan ~ exp("'yn) ) R
Xy ~ e@(-(-1)7")

and >
Xambp ™ —exp(~(7-1)7™ 1) )

1/3

80 X - 0 with weak order 7y / =1.378 ... . The proof is omitted,

but the reader may easily verify that (7.4) and (7.6) are compatible

with Lemma 7.3 below (this depends on the relation 2y-1 = y(y-1)) .
For the sake of simplicity, we have not stated Theorem 7.1 in

the sharpest possitle form. I £ @*1)(¢) -0, then x_ - ¢ with

weak order at least » provided that f(q+l) € LipM a for

Bq, 1+a = Bq
some M and @ >0 . If f(q+l)(§) # 0, then the theorem holds

(7.5)

(7-6)

provided that £ qu+1[a,b] . Equation (7.3) may no longer hold, but if

there is an € > 0 such that
-E
w(eleD) ;8) = 0(|1og 5| /q)

as 8 - 0, then

(7.7)

f O(nq-lyg) if e>1),)
|x . - ¢ (a+1) B -1
—= - akd (9 i R e I AT ,>(7.8)
Ix. - ¢| 2 a(g+1) £' 1 (8) q
n O('yne) if e<1;
: J

as n - = . (A condition like (7.7) occurs in same variants of Jackson's

theorem: see Meinardus (1967).)

61

et

e o e

A




3.7

Before proving Theorem 7.l, we need three rather technical lemmas.

Lemma 7.1
Suppose that, for n >0,

= t
X3 = XX tX Kt XX mnsian " (7-9)

where & is the largest of |x |, |x .| and ol » and 8! is

%
the second largest. If there is a positive constant L such that

ilﬁ.? x| >31x,| >9Ix,| >27|x;] » and
)5 (7.10)

for all n >0, then |x | >3] for all n >0 .

X |

Proof

As in the proof of Theorem 6.1, it follows by induction on n that

22 22
‘xn+3‘ 2 55 xnxn-!-l‘ s 5 |xmlxm2| 2 5|xnl-l+| ’ (7.11)

for all n >0 .

Lemma 7.2
If the conditions of Lemma 7.l are satisfied, then either xn =0

for all sufficiently large n , or
EY
B2

=, |

= 1+ 0(nyp)

as n - o .
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Proof

all n>0 .
kn =>\n+ -A

Lemma 7.1,

ag n - oo

Now, Lemma 6.2 with s < 7, &ives

a8 n - o , and the result follows from the definition of kn 3

Lemma 7.3
Suppose that (7.9) and (7.10) hold. Then there are constants K

and N (depending on L)

and

then

A.n-.+oo,so c>0.

k= O(exp{-c(B,-1)B

(tkis is not necessarily true in the proof of Theorem 6.1).

n ¢
)"n = CBZ + 0(!1721)

1>
n—

5=
v

nt3

n+h

nt5

If this is so, define A, -loglxn| and

From equation (7.11), is bounded, so

n+l '

Lemma 6.2 with 8 =1 gives M ch,a1 +0(1) a8 n -~ .

Thus, fram (7.9),

such that if, for some n >N,

‘xnl > n

i

+ xn+lxn+2(l + VB,n) -

m

If x #£ 0 for infinitely many n then, by Lemma 7.1, X £0 for

(7.12)

(7.13)

(7.1k)

(7.15)

(7.16)

(7.17)

(7.18)
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and

6 T x121x1r31+l(1+ Ve,nd * X ngl+1 Kop(1+ Vo o (7.19)
where

vyl < 3 (7.20)

Proof
The lemma follows by repeated use of the recurrence relation (7.9)

and the inequalities (7.10), (7.1%4) and (7.15).

Proof of Theorem 7.1

Without loss of generality assume that § = 0 . First suppose that
q=1. If f'(0) £ 0 then the theorem holds, by Corollary 7.1. If

'(0) = 0 then, by IL.emma 6.1,

2 T
X 4o = o(snan) (7.21)

as & -0, where B and &' are as in Lemma 6.1. If x. and x
n n n 0] 1

are sufficiently small, equation (7.21) implies that

5. = Ix| (7.22)
and
5y = ¥yl L
forall n>1. Thus x -0 as n -, and
2.2
%ol < A%|xx (7.2%)
6k
et £ ¥ ¥ ¥ ¢ ¢ 8 Y 0 X 4ow {
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for all n >0, where A is some positive constant. If some X = 0

then x = X = «vo =0, and we are finished (weak order o) .

n+1 nt+2

Otherwise, there is no loss of generality in assuming that
n
A\xn| < exp(-2")

for n=0 and n=1. From (7.24), equation (7.25) holds for all

n >0 , by induction on n . Thus, the weak order of convergence is at

least 2 , and the proof for q =1 1is complete.

From now on, suppose that q =2 . By Lemma 6.1,

. - 3 (o

2
n+3 (0 (xnx + O(Snsrz)

n+1 + xn+1xn+2 * xnxn+2)

z
as n -+ o . If f(J) (0) = 0 then the weak order of convergence is at

b}

least B2 o the positive real root of x” =x+2 , by & proot like
> -

that above for q =1, and the theorem holds as =52 Naere | s

P2
If f(j)(o) #£ 0, then we may as well suppose that

s
(0

by a change of scale, as in the proof of Theorem 6.1l. Thus, we must

study the interesting recurrence relation

2
= + A '
xn+3 ¥+l T Farr®neo * X n+2 * O(E)nﬁ'n) ’

and, by Theorem 5.1, we can assume that X - 0 with weak order at
least 62 .
First suppose that the-e is an infinite sequence N = (no,nl, sstol)

with the property that, for every i >0 and n = n. , either

65
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3.7
1: Niyp = D 2 (7.-29)
and
2 '
lmlxnxn+1| < |xn+2| < 2 xnxn+ll - (7.30)
or
2: iy = n+3 (7.51)
and
I .| < bnfx i, | (7.32)
n+2 nntl - *

If either (7.30) or (7.32) holds, then Lemma 7.3 is applicable for all
sufficiently large n = ni in the sequence N . To avoid confusion
with sutscripts, write m for Ny (so m=n+t2 or m3 ). If

n =n. 1is sufficiently large, and (7.29) and (7.30) hold, then

x| < 2xx | (7.33)
and, by Lemma 7.3,

ixm+l| < 2lxx o] - (7.3h)
If (7.31) and (7.32) hold then, similarly,

|xm| < 2|xnxn+l| (7.35)
and

0

%, 1] < MHxx | - (7.36)
Let

o) 2l | (7.37)
After a fixed n = ng in N , suppose that the next r > 1 elements

66
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of N satisfy (7.31), and then the next s >1 satisfy (7.29). Then

repeated use of the inequalities (7.33) to (7.36) gives

X (Y1 3rros Y sprope)) S "‘“(yn’yn+1)q>(r’s) d (7.38)
where
L5+ 203+ /5 W5 -2 3 /5T
o(n8) = 2 LR ) + (LN (7.39)
s 1
¥{r,s) = ‘P(T:S)BNQS * (7.%0)

For fixed s >1, V¥(r,s) is a decreasing function of r , with limit
E
*.
2 W (3%/2) = inf  ¥(r,s) (7.41)

r,s>1

88 r - . Thus, X = 0 with weak order at least c¢ , so case 2 of
the theorem holds.

Now suppose that there is no infinite sequence N as above. By the
superlinear convergence of (xn) , Lemma 7.3 is applicable for infinitely
many n . Choose such an n (sufficiently large). There are only

three possibilities:

1. FEquation (7.30) holds;
2. Equation (7.32) holds; or

%. Neither (7.30) nor (7.32) holds, so
|xn+2| - N xnxn+1| ) (7.42)

In the first case, Lemma 7.3 shows that we can replace n by n+2 , and

continue with one of the three cases (it is crucial to note that Lemma 7.3 is
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still applicable). In the second case, Lemma 7.3 shows that we can
replace n by nt3 and continue. Since no infinite sequence N with
the above properties exists, the third case must eventually arise. Then,
from (7.42) and Lemma 7.3, we see that Lemma 7.2 is applicable to the

sequence (xl;l) , where xx;x = X

mn+3 By Lemma 7.2, (Xm) converges

with strong order B2 and asymptotic constent 1, and hence, so does (xn) A

In view of the assumption (7.27), this completes the proof.

8. Accelerating convergence

If a very accurate solution is required, and high-precisica evaluations
of f are expensive, then it may be worthwhile to try to increase tne
order of convergence of the successive approximations by some acceleration
technique. For example, we can use Lemma 6.1 to improve the current
approximation at each step of the iterative process. Jarratt (1967) suggests
one way of doing this if q = 2 , but the method which we are about to
describe seems easier to justify (see Theorem 8.1), and applies for
any q >1.

Suppose that x ,...,x are approximations to a simple zero §

0 qtl
of f(q-l) . For example, they could be the last q+2 approximations

generated by the successive interpolation process discussed above. We
may define xq+2,-xq+5,
are already dcfined, let Pn = IP(f;xn, : ..,xmq) , and

in the following way: if n >1 and

xo’ LN .’xn+q

choose Y, such that

Pr(lq-l)(yn) - o0 , (8.1)
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i.e., % is just the next approximation generated by our usual

interpolation process. From Lemma 5.1, Y, is given explicitly by

f[xn+l, s "xn+q])

f[xn, L .,Xn_'_q]

: (8.2)

nti

Instead of taking v, @s the next approximation x ntqtl ’ we use
Lemma 6.1 to compute a correction to N and take the corrected value

as the next approximation. Formally, we define x el by

Pt —yemeg® . ]
n-l ntq
x y. - 2 5 (8.3)
ntqtl n q.f[xn,...,xmq] n '’
where
R S TSI A (8.%)

0<i<j<q

For a justification of equations (8.3) and (8.4), see the proof of Theorem

8.1 below. This theorem shows that, under suitable conditions, the

sequence (xn) is well-defined, and { with weak order appreciably
greater than Bq » which is the usual order of convergence of the

unaccelerated process (see Sections 5 to 7). Note that there is very

little extra work involved in computing x from equetions (8.3)

n+qtl

and (8.4) if ¥, 1is computed via (8.2), for f[xn""’xn+q] and

f[ (except at the first iteration) will already be

Xy "xn-i-q-l]
known.

Before stating Theorem 8.1, we define some constants ﬁ:l which
take the place of the constants Bq (see Definition 5.1) if the

accelerated process is used.

et
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Definition 8.1

For 9 >1, F:l is the positive real root of

2L P ax+ 1 . (8.5)

Remarks

It is easy to see that ﬁ(‘l > ﬁq » and, corresponding to the bound

(5.2), we have
1 1

R AP gili< Bh (6.6)

TR x - { with weak order B > 1 then, by the definition of

order (see Section 2), for any € >0 we eventually have
n
-loglx - 8| > (B -¢) . (8.7)

Thus, the number of function evaluatias required to reduce |xn _d
below a very small positive tolerance is inversely proportional to 1log B8
(assuming that approximate equality holds in (8.7)), and the ratio

log B
Tog B’ suggests how much we gain by using the accelerated process,
q

rather than the unaccelerated process, if very high accuracy is required.

Fram the bounds (5.2) and (8.6),

log Bq
Qi Ve q
so there is & 37 percent saving for large q . Of ccurse, the only

practical interest is in small values of q , and in Table 8.1 the

log B
values of g8', B and ———-?' are given for q = 1,2,...,10 . The
q q log ﬁq

entries for Bc'l are correctly rounded to 12 decimal places, and the

2 e >
i Mot Wi T d e —

e —— — . i s

S N
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Table 8.1: The constants 5:1 for q = 1{1)10 to 12D

'r q By | By 1 log B, /1og Bc':
:- 1— ”1.83928675;211; ’ 1.5180 | 0.7897 ‘
.2 1.k65571231877 1.32k7 0.7357
' 3 1.324717957245 | 1.2207 0.7093
L) 1.249851588864 1.1673 0.69%6
I 1.203216033518 1.13k7 0.6832

6 1.171%21856385 1.1128 0.6757

7 1.148115k97353 1.0970 0.6702
8 1.13045957186k4 1.0851 0.6658

9 1.116575158368 1.0758 0.662%
llol 1_.1_0536732291;9”. 1.0683 ‘_ 0.5595 _j

See Definition 8.1, and the remarks above, for a description

log B
of the constants B& and the significance of the ratio Tog B!
q
The constants Bq are given to 12D in Table 5.1.
71
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3.8
other entries are given to 4 places (they are given for comparison
only: see Table 5.1 for the ﬁq to 12 places). The table suggests

that Bé = B, » and this is true, for X -x-x-1 = (xB-x-l)(x2+1) b

Theorem 8.1

Suppose that £ eIcT {a,bsM] 5 Le(ayp); £ () -0 ;

f(Q)(g) £0 ;and x.,...,% are (distinct) points in [a,b] . If

0 q+l

xo,...,xq+l are sufficiently close to § , thgn a sequence (xn) is
uniquely defined by equations (8.2) to (8.4), and X - { with weak

order at least B:l (see Definition 8.1) as. n —» o .

Proof
For n>1, 1t & be the largest of Ixn-§|,...,|xn+_q-§| ;
let 8;1 be the second-largest; and let

5, = max(s,|x_-4]) - _ - (8.9)

If y, is defined by equation (8.2), then Lemma 6.1 shows that

’4 2 ]
y -0 =K 051§35q (%05 =8 (05 =) + O(8.8)) (8.10)

as 5n - 0 , where

. (8.11)
a(e+1) £ (¢)

K =

In particular, (8.10) implies that
¥y = ¢ = O(Snsr'l) (8.12)

as F‘.‘-.o. Thus, for 0<i<Jj<q,
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(g ~¥) (5 =) = (5 =) (- D) +0(6%2) (8.13)

as b -0 .
“n
'If & is sufficiently small then, since f(q)(g) £ 0, we have

f[xn,...,x ] # 0, and, by Theorem 2.5.1,

n+q

Px ypeeerx . ] .
D-L Pdr - x+0(8) (8.1%)

q.f[in, .o "xn+q

as 5 -0 .
n

If s isasin (8.4), then (8.13) and (8.14) give

f[x F .,X ] A~
n-1 ntq” . . r _rY. ' .
TR ] T K osiz(’.j g Bt "Dy~ w 0G0 (815

as 8n - 0 . Thus, from (8.3) and (8.10),

Xyqr1 - = 0(B8.8). (8.16)

as Sn ~0 . This shows that, provided 5. is sufficiently small, the

1
sequence (xn) is uniquely defined, lies in [a,b] , and x - as
n-—-o.

From equation (8.16), there is a positive constant A such that,

for all n>1,

22
IXpqer = 8l S A8 380 (8.17)
and, if 61 is sufficiently small, then
n
-1og(A|xn-§|) > B"l (8.18)

for n =0,...,qt1 . From equation (8.17) and the definition of Bf'l , we

see that (8.18) holds for all n >0 , by induction on n . Thus
73




3.9 1
1im 1nf(-1og,|xn -t > By (8.19)

n--ow

i.e., the weak order of convergence is at least B('l » 80 the proof is

complete.

9. Some numerical examples

To illustrate the theoretical results obtained in Sections 4 to 8,

we give the following examples:

IS5 a =iy f(x)=x+x2+x3, Xp =2, X5 =13
2 9
2. q=2, f(x)=8+6x +)+X +5x f) x0—2, xl=l, X2=O-5;
- v 3, e, 2.5 _ -
3. aq=3, f(x)=21+L4ox+10x"+5x +3x’, X,=2, ¥ =1,
x2=0.5, x5=0.25;a.nd
2 L 5, .6
L, q=L4, f(x) =1+2x+hox"+5x +2x’+x , X, =2, x =1,
x2=0.5, X3=0.25, Xh=0.125.

In all these examples § = 0 , and the iterative process defined
by (1.1) converges, even though the initial values are not very close
to § . Apart fraa constant factors, the polynomials are obtained by
differentiating the last one (for q = 4) k-q times, so we are golving
the same problem in four different ways.

Table 9.1 gives the sequences (xn) produced by the successive
interpolation process, for the functions and starting values given above.
To illustrate the superlinear convergence, the entries are given until

20

lxnl <10 7, although such high precision would seldom be required in

practical problems. The table also gives the sequences (xr'l) produced

Th
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by the accelerated interpolation process described in Section 8, with

starting values x; =x, for i =0, ..e5qtl . As predicted by Theorem 8.1
and Table 8.1, the accelerated sequences converge appreciably faster than
the unaccelerated ones.

To verify relations (8.12) and (8.16), the table also gives

X

n
L S (9:1)
n-q n-q-1
end
xl
) = . ; (9:2) |

] 4 t
xn-qxn-q-lxn-q-2

when they are defined. With a few exceptions near the beginning of some
of the sequences, both (Ixn|) and (|xr'1|) are monotonic decreasing, so

r and r;l should be bounded. From Lemma 6.1, we expect that

(q+1)
lim r = - (S) ’ (9:3)
n-o q(g+1) £ (§) f
2 . s {
and this is Jjust m for our examples. Similarly, fram the i
proof of Theorem 8.1, we expect that
(a+2)
limrt = —2— (B (9.5) |

new q(qrl)(qr2)£$Y ()

. -6
and this is just (1) (32 . The results support these predictions.

Table 9.1 was computed on an IBM 360/91 computer, with 1h digit
truncated floating-point arithmetic to base 16. To minimize the effect
of rounding errors, we took advantage of the fact that n-th divided

differences of l,x,x2, ...,xn-l vanish identically when computing the

5

Ao e s



o ol = s —— T el

O ——

3-9
divided differences in equations (8.2) and (8.3). Without this device,
it is not possible to reduce |xn| or |x1§1| to 10° without using
higher precision arithmetic, because of the effect of rounding errors
(except for q = 1) .

For q = 2, our example is the same as that used by Jarratt (1967),
and our results agree with his for n <9 . For n=10 and 11 our

results differ slightly, presumably because of rounding errors. The

example given by Jarratt (1968) for q = 3 has also been verified.
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3.9
Table 9.1:

=

r_._
()
(o))

ES\OGD\]O\U'I-F'\)II\)!—'O

X
n

2.000

1.000

7.273'-1
3.0807-1
1.983t-1
6.7271 -2
1.276t-2
8.543t L
1.090'-5
9.31k'-9
1.015'-13

2.000

1.000

5.000'-1
5.1627-1
2.681'-1
1.366%-1
6.9781-2

!

i

x!
n

2.000
1.000
T.275'-1
2.100°-1
4.389'-2

- -1.8L46'-3

9.4571.22 |

1.221t-5
1.035'-9

2.000

1.000

£.000'-1
5.1621-1
1.219'-1
3.271'-2
5.618'-3

N

©0.8523
i 0.9568

Numerical results for q =1, 2, 3 and L

O.5636g
0.5473
0.6851

; ~ 0.99%9
| 2.350"-17 |
| -2.9821-31

0.9998
1.0000 .
1.0000
1.0000

© 0.2581 ?

0.5362 %
0.5291

© 0.50k2

GREBowowwoaw+suwmprpo!

2.0531-2
4.5h71-3
6.15ht -4
3.6311-5
9.956" -7
7.6661 -9
1.215'-11
2.5481-15
3.104t-20
1.0321-26

C =3
v =3
1
-1

-3.8441-18

-2

363t-L
L484r-6
.325'-8
.728t-12

.0081-26

(i

. 0.5607 -
0.U772
- 0.4296

0.3890

0.3558
0.3430

0.3360
0.3339
0.3334
0.3333 |

rt
n

O.1u4h
0.287h -

-0.2755
-0.7178

-1.0455

~1.0066
-1.0039

0.1219

0.1786
-0.163h

- =0.1556

-0.21kk
-0.2625
-0.2477

-0.2518

L
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3.9
Table 9.1 (continued)
t ?
q n xn xn rn I‘n
3 0 2.000 2.000
1  1.000 1.000
2 5.000*-1 5.000'-1
: 3 2.500t-1 2.500'-1
f L 3,775t 3.775t-1 0.1887
: 5 1.814t-1 6.882'-2  0.3¢28 0.0688
: 6 8.57ht-2 1.567t=2 0.6860 0.1253
' 7 L.21ht-2 3.572'-3  0.4hé5 0.0757
‘ 8 2.268t-2 T.222'-4  0.3313 0.1112
9 5.580'-3 -3.9491-5  0,3588 -0.0970
10 1.2271-3 -3.54%7'-7  0.3395 -0.0921
11 2.347r-L -2.893'-9  0.2455 -0.0716
12 2.809'-5 8.630'-12  0.2219 -0.0847
13 1.443r-6 -1.067'-15 0.2105 -0.1055
1k 5.518!-8 L.009'-21 0.1917 -0.0989
15 1.16k4t-9 0.1766 -
16  7.021'-1z 0.1735
17 1.354 14 0.1703
18 1.077t-17 0.1677
19 1.365'-21 0.1670
L 0 . 2.000 2.000
1 . 1.000 1.000
2 | 5.000'-1 5.000t-1
3 . 2.500t-1 2.5001-1
L 1.250%-1 1.250'-1
5 | 2.8401-1 2.8L0'-1  0.1%0
6  1.258t.1 3.8871-2 0.2517 0.0389
7 5.4531 0 7.0301-3 0.4362 ' 0.0562 -
8 2.hg21.p 1.4611-3 0.7975 0.0935
9 1.274t -2 L. 48l 0.3588 0.0501
10 7.507t-3 1.168'-4 0.2101 : 0.08L46 |
1 1.564t-3 L. 33416 0.2279  -0.0558
12 3.227'-4 -2.390!-8 0.237%+  -0.0598
13 6.871t-5 -2.370'-10  0.2164  -0.0519
| 14 1.360t-5 -2.500'-12  0.1423  -0.0329
} 15 L.545t-6 © 9.027'-15 0.1316 -0.0bol ,
| 16 6.6591-8 -6.291'-19 0.1316 -0.0520
| 17  2.8141g 1.2k3'-24  0.1270  -0.0506
| 18 1.067'-10 - 0.11k2
| 19 2.207'-12 0.1050
| 20 1.073t-14 0.10k46
21 1.94hr-17 0.1040
; 22 3.069'-20 0.1022
} 23 { 2.3671.23 | 0-1005
:
|
r (C
b o -




- ——

= seaaes - adiRes— U |
- e P : e e g . P " o oo ﬁ}gn E{N E}q

3.10

10. Summary

The main results of this chapter for q = 1 (successive linear inter-

polation for finding a zero) and q = 2 (successive parabolic interpolation

for finding a turning point) are summarized below.

Theorem 3.1

q =1: If feC and xn—o(,',then £f(§) =0 .

2: If £’ end x_~f, then £'(}) =0 .

q

Theorem 4.1
1

Q =1: If feC™, f£'() #0, and a good start, then superlinear convergence. ‘
q =2: If f€02 » (%) £0, and a good start, then superlinear convergence. ;
Ll
1
Theorem 5.1 :
q=1: If feICl » f£'(8) £0, and a good start, then weak order at z
leasf By, = 1.618 ... g
q =2: If fe1c? » f(t) £0, and a good start, then weak order at '
least B, = 1.324 ... }
Theorem 7.1 4
q=1: If :t‘eI.C2 > f£'(8) £#0, und a good start, then either strong L
order B, = 1.618... or weak order at least 2 .

q =2: If fem5 f"(§) # 0, and a good start, then either strong

-

1/3
1.324... or weak order at least (2%&) = 1.378...

f

order 62

Theorem 8.1

q = 1: If fem2 , f'(8) £0, and a good start, then the accelerated

sequence converges with weak order at least Bi = 1.839...
>
J

q = 2: If fell (§) £#0, and a good start, then the accelerated

sequence converges with weak order at least Bé = 1l.465...

19
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Chapter L.

An Algorithm with Guaranteed Convergence for Finding a

Zero of a Function
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L.1

1. Introduction

Let f be a real-valued function, defined on the interval [a,b] ,
with f(a)f(b) < C . £ need not be confinuous on [a,b] : for
example, f might be a limited-precision approximation to same continuous
functi.on (see Forsythe (1969)). We want to find an approximation E to
azero { of £, to within a given positive tolerance 25 , by evaluating
f at a small number of points. Of course, there may be no zero in [a,b]
if f 1is discontinuous, so we shall be satisfied if f takes both
nonnegative and nonpositive values in [E - 28, §+ 25] n [a,b] .

Clearly, such a E may always be found by bisection in about
loge[(b-a)/S] steps, and this is the best that we can do for arbitrary f .
In this chapter we describe an algorithm which is never much slower than
bisection (see Section 3), but which has the advantage of superlinear
convergence to a simple zero of a continuously differ.entiable function, if
the effect of rounding errors is negligible. This means that, in practice,
convergence is often much faster than for bisection (see Section L4).

There is no contradiction here: bisection is the optimal algorithm (in a
minimax sense) for the ciass of all functions which change sign on {a,b] .
but it is not optimal for other classes of functions: e.g., Cl functions
with simple zeros, or convex functions (see Gross and Johnson (1959),

Bellman and Dreyfus (1962), and Chernousko (197C)).

Dekker's algorithm

The algorithm described here is similar to one, which we call Dekker's
algorithm for short, variants of which have been given by van Wijngaarden,

Zonneveld and Dijkstra (1963), Wilkinson (1967), Peters and Wilkinson (1969),
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confusion if we omit subscripts. b is the best approximation so far

to {, & is the previous value of b , and { must lie between b
and ¢ . (Initially a =c .)

If f(b) = O then we are finished. The ALGOL procedure given by
Dekker (1969) does not recognize this case, and can take a large number of
small steps if f vanishes on an interval, which may happen because of
underflow. This occurred with f(x) = x° on an TBM 360 computer .

If f(b) £ 0, let m = (c-b)/2 . We prefer not to return with
g - % (btc) as soon as |m| < 26 , for if superlinear convergence has set
in then b , the most receant approximation, is protably a much better
approximetion to § than %‘-(b+c) is . Instead, we return with E =b
if |m| <& (so the error is no more than & if, as is often true, f is
nearly linear between b and c¢) , and otherwise interpolate or extrapolate
£ 1linearly between a and b , giving 8 new point 1i. (gee later for
inverse quadratic interpolation.) To avoid the possibility cf overflow
or division by zero, we find i as b+p/q , and the division is not
performed if 2|p| > 3|m.q| , for then i is not needed anyway. The
reason why the simpler criterion |p| > |m.q| is not used is explained
later. Since 0 < |f(b)| < |f(a)| (see later), we can safely campute

s = f(b)/f(a) , p =+(a-b)s, and q = +(1-8) .

i 4if i lies between 0 and b+g-m ("interpolation"),

Define b"
b+m otherwise ("bisection"),

b" if |b-b"! >5 ,
and bt =
Lb+6.sigv(m) otherwise (a "step of & ").

Dekker's algoritnm takes b' as the next point at which f is
evaluated, forms a new set fa,b.c} from the old set {b,c,b'} , and

continues. Unfortunately, it is easy to construct a function f for which
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4.2

steps of 5 are taken every time, so about (b-a)/& function evaluations

are required for convergence. For example, let

2x/ 8

2(x) = { -(22) 20

for atd <x<b,

for x = a, (2.1)

arbitrary for a <x < atd .
\ .

The first linear interpolation gives the point ©-5 , the next (an
extrapolation) gives b-25 , the next b-3% , and so on.

Even if steps of © are avoided, the asymptotic rate of ~onvergence
of successive linear interpolation may be very slow if f has a zero of
sufficiently high multiplicity. (Note that none of the theorems of |
Chapter 3, apai't from Theorem 3.3.1, apply for a multiple zero.) Suppose
that feC™eb], n>1, Le(ab), £(8) = £(5) = ... =22y 2o,
and f(n)(C) £0 (i.e., { is a root of multiplicity n>1). If
€E>0, (%—:—;—) €(eyl-¢) , and X, is sufficiently close to ¢,
then successive linear interpolation gives a sequence (xn) which converges

linearly to § . In fact, equation (3.2.1) holds with , =1 and

- (2]
K = Bni-l » where the constants Bq ~ 22/ (29+1) are defined in Definition
3.5.1. The proof is simple: if
y = xm+l - ; (902)
moox - 4 0

is the ratio of successive errors, then a Taylor series expansion of f

about { gives

gl B= y::-l
Yoey = (W)(l + 0(1)) (2.3)
m

es x - ! , provided Y, remains bounded away from 1 . Since the

8k
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h.2
iteration
Zm+l = 8(zm) ’ (2'1‘)
where
n-1
g(z) = _1_-z__n_ ’ (2.9)
l-2
-1
has fixed point =z = Bn-l , and
le*(z) | <1 (2.6)

for ze(0,1) , the result follows from Ostrowski (1966), Theorem 22.1.
An example for which convergence is sublinear (see Definition 3.2.2)
is
0 if x=0 ,
f(X) = -2 (2'7)
x.exp(-x ) if x fo0 , '
on an interval containing the origin. This is an extreme case, for f and

ell its derivatives vanish at the origin.(As a function of a complex

variable, f has an essential singularity at the origin,) If
o<xl<xo</2 3 (2.8)

then (xn) is a positive, monotonic decreasing sequence, and, by Theorem
3.3.1, its 1limit must be O . Thus, successive linear interpolation does
converge, but very slowly.

Some of the examples above are rather artificial, and unless an
extended exponent range is used (see later) we may be saved by underflow,

i.e., the algorithm may terminate with a "zero" as soon as underflow occurs.
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k,2
Even so, it is clear that convergence may occasionally be very slow {7
Dekker's algorithm 12 used,

Our main modification of Dekker's algorithm ensures that a bisection
is done &t lesst once in every 2.log2(|b-c| /&) consecutive steps.
The modificetion is this: let e be the value of p/q at the step before
the last one. If |e| <5 or |p/q| 2% |e| then we do a bisection,
otherwise we do either a bisection or an interpolation just as in Dekker's
elgorithm., Thus, |e| decreases by at least a factor of two on every
second step, and when |e| <& & bisection must be done. (After a

bisection we take e = m for the next step.) This is why our algorithm,

unlike Dekker's, is never much slower than bisection.

A simpler ides is to teke e as the value of p/q at the last step,
but practical 1.3s8ts show that thie slows down convergence for well-behaved
n E functions by causing unnecessary bisections. With the better choice of e,
our experience has been that convergence is always at least as fast &s

for Dekker's algorithm (see Section k).

Inverse quadratic interpolation

If the three current points a , b and c¢ are distinct, we can find

i the point 1 by inverse quadratic interpolation, i.e., fitting x as &
quadratic in y , instead of by linear interpolation using just a and b .
Experiments show that, for well-behaved functione,this device saves about
0.5 function evaluations per zero on the average (see Section L). Inverse
interpolation 18 used bLecauee with direct gquadratic interpolation we have

to sclve a quadratic equation for 1 , and there 1is the problem of which

root should be accepted. Cox (1970) gives another way of avoiding this

Bewrene
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4.2
problem: fit y as a function of the form p(x)/q(x) , where p and q
are polynomials and p has degree one. A third possibility is to use the
acceleration technique described in Section 3.8. (See also Ostrowski (1966),
Chapter 11.)

Care must be taken to aveid overflow or division by zero when computing
the new point i . Since b is the most recent approximation to the root ¢ ,
and a is the previous value of b , we do a bisection if |f(b)|>|f(a)]| .
Otherwise we have |f(b)| < |f(a)| < |f(c)| , so a safe way to find i is
to compute r, = f(a)/f(e) , r, = f(b)/£{c) , Ty = £(v)/£(a) ,
P = + T5((e-b)ry (r)-r,)-(b-2) (r)-1)) , and q = F (ry-1)(ry-2)(r5-1)
Then 1i = bi-p/q , but as before we do rot perform the division unless it
is safe to do so. (If a bisection ie to be done then i is not reeded
anyway.) When inverse quadratic interpolation is used it is natural to
accept the point i if it lies between D and c¢ and up to three-quarters
of the way from b teo c: consider the limiting case where the
interpolating parabola has a vertical tangent at ¢ and f(b) = -f(c) .
Thus, i will be rejected if 2|p| >3|(%52)-q| , which explains the

criterion discussed above.

The tolerance

As in Peters and Wilkinson (1959), the tolerance (28) is a
combination of a relative tolerance (4€) and an absolute tolerance (2t) .

At each step we take
5 =2¢elp|+t , (2.9)

where b is the current best approximation to § , € = macheps is

the relative machine precision (Bl-T for 1-digit truncated floating-point
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arithmetic with base B , and half this for rounded arithmetic), and t
is a positive absolute tolerance. Since & depends on b , which could
lie anywhere in the given interval, we should replace & by its positive
minimum over the interval in the upper bound for the number of function
evaluations required. In the ALGOL procedu_res the variable tol is used

for 8 .

The effect of rounding errors

The ALGOL procedures given in Section 6 have been written so that
rounding errors in the computation of i , m etc. can not prevent
convergence with the above choice of & . The number 2¢ in (2.9)
may be increased if a higher relative error is acceptable, but it should
not be decreased, for then rounding errors might prevent convergence.

The bound for lE - §| has to be increased slightly if we take
rounding errors into account. Suppose that, for floating-point numbers

x and y , the computed arithmetic operations satisfy

(2.10)

fl(xxy) = x.y(1+¢

1

and

fl(x+y) = x(1+ 62) +y(1+ 53) ) (2.11)

where |ei| <e for i=1,2,5 (see Wilkinson (1963)). Also suppose
that fl(|x|) = |x\ exactly, for any floating-point number x . The

algorithm camputes approximations

m = £1(0.5 x (c-b)) (2.12)
and

tol = £1(2 x € x |b]+t) (2.13)
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to m and tol , where { 1lies between b = t and c , and the algorithm

terminates only when
|m| < tol (2.14)

(unless f(b) =0, when £ = =b ). Our assumptions (2.10) and (2.11)

give
] >3 (le=b] = e(fpl+leD)(2-0) (2.15)
and, similarly,

tol < (2¢|b|+ 1;)(1+e)5 , (2.16)
so (2.14) implies that

le-b| < (550) (2e|v] + ) (1+e) + e(b]+ |e|) - (2.17)
since |§-4| < |c-b| and b =t , this gives

1E-¢| <éeft+2t , (2.18)

neglecting terms of order €t and 52|§| . Usually ihe error is less
than half this bound (see above).

Of course, it is the user's responsibility to consider the effect of
rounding errors in the computation of f . The ALGOL procedures only
guarantee to find a zero { of the computed function f to an accuracy
given by (2.18), and { may be nowhere near a root of the mathematically

defined function that the user is really interested in!
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Extended exponent range

In some applications the range of f may be larger than is allowed
for standard floating-point numbers. For example, f(x) wight be
det(A-xI) , where A is a matrix whose eizenvalues are to be found.

In Section 6 we give an ALGOL procedure (zero2) which accepts f(x)
represented as a pair (y(x),z(x)) , where f(x) = y(x).zz(x) (y real,

z integer). Thus, zero2 will accept functions in the same representation
as is assumed by Peters and Wilkinson (1969), although =zero2 does not
require that 1/16 < |y(x)| <1 or y(x) =0, and could be simplified

slightly if this assumption were made.

3. Couvergence properties

If the initial interval is [a,b] , assume that
b-a >8 (3.1)
and let
k = [ log,((b-a)/8 )] , (3.2)
where 5m is the minimum over [a,b] of the tolerance
8(x) = 2.macheps.|x|+t (3.3)

(see Section 2), and [ x | means the least integer y >x . By
assumption (3.1), k > 0. (If k = O, procedure zero takes only two
function evaluations.)

First consider the bisection process, .teminating when the

interval known to contain a zero has length < 26m (so the endpoint
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4.3
minimizing |f| is probably within 8~ of the zero, and certainly
within 25m ). It is easy to see that this process terminates after

exactly k+l function evaluations unless, by good fortune, f happens

to vanish at one of the points of evaluation .

Now consider procedure zero or zero2. If k =1 then the procedure
terminates after 2 function evaluations, one at each end-point of the
initial interval, just like bisection. If k =2 then there are 2
initial evaluations, and after no more than 4 more evaluations a bisection
must be done, for the reason described in Section 2. After this bisection,
which requires one more function evaluation, the procedure must terminate.
Thus, at most 2+5 = 7 evaluations are required. Similarly, for k >1, i

the maximum number of function evaluations required is
D+ (5+T+9+ ...+ (2kt1)) = (k+1)°-2 . (3.4) ]

Since Dekker?!s algorithm may take up to 2k function evaluations (see

Section 2), this justifies the remarks made in Section 1. Also, although |

the upper bound (3.4) is attainable, it is clear that it is unlikely to

be attained except for very contrived examples, and in practical tests our 5

algorithm has never taken more than 3(k+l) function evaluations (see
Section 4). This justifies the claim that our algorithm is never much
slower than bisection.

Superlinear convergence

Ignoring the effect of rounding errors and the tolerance o , we see,

as in Dekker (1969), that the algorithm will eventually stop doing bisections

when it is approaching a simple zero § of a Cl function. Thus,
temporarily ignoring the improvement described in Section 2, the theourems

of Chapter 3 are applicable (with q = 1 ). In particular, convergence is
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superlinear, in the sense that lim sup ‘xn - §|l/ .0, provided f

n - o

is C' near the simple zero { (Theorem 3.4k.1). If f' is Lipschitz
continuous near { , then the weak order of convergence is at least
%(l+/§) = 1.618 ... (Theorem 3.5.1). For a summary of the other
results of Chapter 3, see Section 3.10.

If f* is Lipschitz continuous near the simple zeroc { , then, even
with the inverse parabolic interpolation modification described in Section 2 b
the weak order of convergence is still at least -215(l+/§) . The idea of
the proof is that, by Lemma 2.5.1, the curvature at { of the upproximating
parabolas is bounded, so the inequality (3.5.13) still holds for some M
(no longer the Lipschitz constant) and sufficiently small Bn 5

Thus, our procedure always converges in a reasonable number of
steps and, under the corditions mentioned above, convergence is superlinear
with order at least 1.618 ... . It is well-known that, since
(1.618. ..)2 = 2.618... > 2 , this compares favorably with Newton's method
if an eveluation of f' is as expensive as an evaluation of f . 1In
practice, convergence for well-behaved functions is fast, and the stopping
criterion is usually satisfied in a few steps once superlinear convergence

gets in.

Summary

The results of Sections 2 and 3 above may be summarized in the following
"theorem":

If a<b, ¢ =macheps >0, t>0, f is defined on [a,b] ,
f(a)f(b) <O , and arithmetic is exact, then the algorithm defined by

procedure zero (see Section 6) converges, and returns tefa,b] such that
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f changes sign in I, = [E-25, E+-26] N [a,b] , where & = 2€|E|-+t 5
and the number n of times that f 1is evaluated does not exceed
(k&l)e-e , where k 1is given by equation (3.2). Also, if fezCl[a,b]
has a unique simple zero { e (a,b) , then |§ -Ell/n - 0 as macheps

and t -0 . Finally, if arithmetic it approximate, but satisfies (2.10)

2 » then the algorithm still converges, and

and (2.11) with € <10°
returns E such that f changes sign in Iy, » Where &' = 1.01(35|§l+t) .

(The factor 1.01 takes care of terms of order ¢t and 52|§| .)

4., Practical tests

The ALGOL procedures zero (for standard floating-point numbers) and
zero2 (for floating-point with an extended exponent runge) have been
tested using ALGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1968))
on an IBM 360/67 and a 360/91 with machine precision 16 . The number
of function evaluations for convergence has never been greater than three
times the number required for bisection, even for the functions mentioned
in Section 2, and for the functions given by (2.1) and (2.7) Dekker's
algorithm takes more than 106 function evaluations. Zero2 has been
tested extensively with eigenvalue routines, and in this application it
usually takes the same or one less functior. evaluation per eigenvalue than
Dekker's algorithm, and considerably less than bisection.

In Table 4.1, we give the number of function evaluations required

for convergence with procedure zero2 and functions x9 s x19 » fl(x) 5

and fz(x) , where
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Table 4.1: The number of function evaluations for convergence with

procedure zero2

N B

f(x) a b , - i E -t function evals.
9 z | | ’

x -1.0 +1.1 | 1'-9 4.99'-10 | 81

! | 5

x° -1.0 | +4.0 | 1'-20 ' k.ger-21 | 189 !
x19 -1.0 - +4.0 11-20 «  4.811-21 195 i
t | f i
£,(x) | 1.0 +4.0 1120 | 0 ' 33 !
B2 D R il Wi NS P

*
Ve

= 2.17'-4  and fl(E)

For a definition of fl ’ f2

=0

etc., and a discussion, see above.
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Table 4.2: Comparison of Dekker's procedure with procedure zero

" gl 1.05838256968867 & -io Nl 10 )
t ‘ 2 1.23995005360754 10 9
5 1.56239614 620727 z‘ 10 : 10
{ i 2,05025253169417 10 10
f 5 2.72832493649769 ' gl ' 10 '
6 | 3.61410919225782 11 10 |
: 7 L .71048321337581 | 10 10
8 6.00000000000000 9 9
9 7.44175272160161 10 9
| 10 8.97167724536908 10 | 10
11 10.5063081987721 10 0
12 11.0bg7h7h683058 10 9
13 13.2029707184829 : 10 9
1 1h7he635087655 | 10 9
R T

For a definition of hk » Iy and n, , see above. The Kk have a

% relative error of less than 5'-1k.
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b.5
For each eigenvalue, the tolerances for Dekker's procedyre and for procedure
zero were the same. (The tolerance was adjusted by the eigenvalue program
to ensure that the computed eigenvalues had a relative error of less

than 5.10'11‘L

.) Tests were run for several values of n, p, q and r :

tue table gives a typical set of results for n=15, p=7, q=T7/b4,

and r = 1/2 . To obtain the same accuracy with bisection, at least 40

function evaluations per eigenvalue would be required, so both our procedure

and ﬁekker's are at least four times as fast as bisection for this application.
Sume more experimental results are given in Chapter 5. (For an

illustration of the superlinear convergence, see the examples given in

Section 3.9.)

5. Conclusion

Our algérithm appears to be at least as fast as Dekker's on well-
behaved functions, and, unlike Dekker's, it is guaranteed to converge in s
reasonable number of steps for any function. The ALGOL procedures zero
and zero2 given in Section 6 have been written to avoid problems with
rounding errors or overflow, and floating-point und.rflow is not harmful
as long as the result is set to zero.

Before giving the ALGOL procedures zero and zero2, we briefly discuss

some wossible extensions.
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k.5

Cox's algorithm

A recent paper by Cox (1970) gives an algorithm which combines
bisection with interpolation, using both f and f' . This algorithm
may fail to converge in a reasonable number of steps in the same way
as Dekker's. A simple modification, exactly like the one that we have given
in Section 2 for Dekker's algorithm, will remedy this defect without

slowing the rate of convergence for well-behaved functions.

Parallel algorithms

In this cﬁapter we have considered only serial algorithms. it is
well-known (see, for example, Traub (1964)) that all serial methods which
use only function evaluations and Lagrangian interpolation polynomials
have weak order less than 2 , unless certain relations hold between the
derivatives of f at § . (Winograd has recently shown that no serial
method, using only function evaluetions, can have order greater than 2
for all analytic functions with simple zeros.) Thus, nothing much can be
gained by going beyond linear or quadratic interpolation. However,
Miranker (1959) has shown that, if a parallel computer is available, a
class of algorithms using Lagrangian interpolation polynamials gives
superlinear convergence with weak order greater than 2 under certain
conditions. Also, it is clearly possible to generalize the bisection
process to "(r+l)-section™ with advantage if a parallel camputer with r
independent processors is available. See, for example, Wilde (196L).
There does not appear to be any fundamental difficult, in cambining
generalized bisection with one of Mira.nker"s parallel algorithms so that

convergence in a reasonable number of steps is guaranteed for any function,
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and superlinear convergence with order greater than 2 is likely for

well-behaved functions.

Searching an ordered file

A problem which is commonly solved by & binary search (i.e., bisection)
method is that of locating an element in a large ordered file. The problem
may be formalized in the following way. Let S be a (finite or infinite)
totally ordered set, and @: S - R an order-preserving mapping from S
into the real numbers. Suppose that T = {to,tl, ...,tn} is a finite
subset of S , with to <tl < ouy & ’cn . Given ¢ e[w(to),qa(tn)] , We

may define a monotonic function f on ([O,n] by
£(x) = 9(t,) -c (5.1)

vhere xe[O,n] and i = rx - -;‘-.\ . Thus, finding an index i such

that q)(ti) = ¢ 1is equivalent to finding a zero of f in [O,n] , and

our zero-finding algorithm could be used instead of the usual bisection
elgorithm. It might be worthwhile to modify our algorithm slightly, so

as to take the discrete neture of the problem into account. A related
application of our algorithm is in finding the median (or other percentiles)

of a list of numbers, but there are faster ways of doing this.

6. ALGOL 60 procedures

The ALGOL procedures zerc (for standard floating-point numbers) and
zero2 (for floating-point with an extended exponent range) are given below.
For a description of the idea of the algerithm, see Section 2. Some

test cases and numerical results are described in Section L.
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Procedure zero

real procedure zero (a, b, macheps, t, f);

value a, b, macheps, t; real a, b, macheps, t;

real procedure f;

begin comment:

Zero returns a zero x of the function f in the given interval [a,b],
to within a tolerance 6.macheps.|x|+2.t, where macheps is the relative
machine precision and t is & positive tolerance. The procedure assumes
that f(a) and f(b) have different signs;
real ¢, d, e, fa, fb, fc, tol, m, p, q, r, 8;
fa := £f(a); fb := £(b);
int: ¢ :=a; fc :=fa; d :=e := b-a;

ext: if abs(fc) < abs(fb) then

begin a :=Db; b :=c; ¢ :=a;

fa := fb; fb := fe; fc := fa

end;
tol := 2 x macheps x abs(b) + t; m := 0.5 x (c-b);
if abs(m) > tol A fb # O then

begin comment: See if a bisection is forced;

if abs(e) < tol v abs(fa) < abs(fb) then d := e :=m else
begin 8 := ft/fa; if a = c then

begin comment: Linear interpolation;

Pp:=2xmxs; q:=1-8
end

else

begin camment: Inverse quadratic interpolation;
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q := fa/fe; r := fb/fte; !
p :=sx (2xmxqx (q-r) - (b-a) x (r-1));
q := (g-1) x (r-1) x (s-1) ;
end;
if p >0 then q := -q else p := -p;
8 t=g; & g=d;
if 2xp <3xmxq-abs(tolxq) A p < abs(0.5x sxq) then
d:=p/fqelsed :=e :=m b
end;
a :=b; fa := fb;
b := b+ (if abs(d) > tol then d else if m > O then
tol else -tol);
b := £(b);
go to if fb >0 = fc > ¢ then int else ext
end;
zero :=b
end zero;

Procedure zero?2

real procedure zero2 (a, b, macheps, t, f);

value a, b, macheps, t; real a, b, macheps, t; procedure f;

begin comment:

Zero2 finds a zero of the function f in the same way as procedure
zero, except that the procedure f(x,y,z) returns y (real) and z (integer)
so that §(x) = y.2%.  Thus underflow and overflow can be avoided with

a very large function range;
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real procedure pwr2 (x,n);

value x, n;

el =
e —

| I R U R W PR | PO

real x; integer n;

comment: The procedure is machine-dependent. It computes x.2" for

n <0, avoiding underflow in the intermediate results;
pwr2 := if n > -200 then x x2t n else

if n > -L0OO then (xx 21t (-200)) x 2t (n+200) else

if n > -600 then ({(xx21t (-200)) x 21t (-200)) x 2 t (n+L0O) else O;

integer ea, eb, ec;

real ¢, 4, e, fa, fb, fc, tol, m, p, q, r, s;
f(a,fa,ea); f(b,fb,eb);
int: ¢ :=a; fc :=fa; ec :=ea; d :=e := b-a;
ext: if (ec < eb A pwr2(abs(fc), ec-eb) < abs(fb))

v (ec > eb A pwr2(abs(fb), eb-ec) > abs(fc)) then

ey . .

L

X A

.

begin a :=Db; fa := fb; ea := eb;
b :=¢c; fb :=fc; eb := ecy
c :=a; fc :=Tfa; ec := ea
end;
tol := 2 x macheps x abs(b) +t; m := 0.5x (c-b);
if abs(m) > tol A fb £ 0 then
begin if abs(e) < tol v
(ea < eb A pwr2(abs(fa), ea-eb) < abs(fb)) v

(ea > eb A pwr2(abs(fb), eb-ea)

> abs(fa)) then

d := e :=m else
begin s := pwr2(fb, eb-ea)/fa; if a = ¢ then
begin p := 2xmxs; q := 1l-s end
else

begin q := pwr2(fa, ea-ec)/fc;




4.6

pwr2(fb, eb-ec)/fc;

r:

sx (2xmxqx(q-r) - (b-a) x (r-1));

(q-1) x (r-1) x (s-1)

P :

q :
end;
if p >0 then q := -q else p := -p; 8 :=¢€; e :=d;
if 2xp <3xmxq-abs(tolxq) A p < abs(0.5xsxq) then
d:=p/qelsed :=e :=m
end;
a :=b; fa := fb; ea := eb;
b := b+ [if abs(d) > tol then d else if m > 0 then
tol else -tol);
f(b, fb, eb);
go to if fb > 0 = fc > O then int else ext
end;
zero2 := b

end zero2;
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Chapter 5

An Algorithm with Guaranteed Convergence for Finding a

Minimum of a& Function of One Variable
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1. Introduction

A camon computational problem is finding an approximation to the i

<

minimum or maximum of a real-valued function f in some interval [a,b] . |
This problem may arise directly or indirectly. For example, many methods
for minimizing functions g(x) of several variables need to minimize

functions of one variable of the form
7(}‘-) = 8(xo i )"E) ’ (1.1) ‘ ]

where X, and s are fixed (a "one-dimensional search" from X, in

the direction 8 ). 1In this chapter, we give an algorithm which finds
an approiimate local minimum of f by evaluating f at a small number
of points. There is a clear analogy between this algorithm and the
algorithm described in Chapter L4 for root-finding (see Diagram L4.1).
Unless f is unimodal (Section 3), the local minimum may not be the global
minimum of £ in ([a,b] , and the problem of finding global minima is
left until Chapter 6.

The algorithm described in this chapter could be used to solve the
problem (1.1), but, for this application, it may be more econamical to
use special algorithms which make use of any extra information which is
available (e.g., estimates of the second derivative of 7 ), and which do
not attempt to find the minimum very accurately. This is discussed in
Chapter 7. Thus, a more likely practical use for our algorithm is to find *
accurate mirima of naturally arising functions of one variable.

In Section 2 we consider the effect of rounding errors on any

minimization algorithm based entirely on function evaluations. Unimodality

is defined in Section 3, and we also define "®-unimodality” in an attempt |
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to explain why methods like golden section search work even for functions
which are not quite unimodal (because of rounding errors in their
computation, for example). In Sections 4 and 5 we describe a minimization
algorithm analogous to the zero-finding algorithm of Chapter 4, and same
numerical results are given in Section 6. F<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>