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Preface 

The problem of finding numerical approximations to the zeros and 

extrema of functions,  using hand computation,  has a long history.    In 

the last few years,  considerable progress has been made in the development 

of algorithms suitable for use on a digital computer.    The aim of this 

work is to suggest improvements to some of these algorithms,  extend the 

mathematical theory behind them,  and describe some new algorithms for 

approximating local and global minima.    The unifying thread Iv that all 

the algorithms considered depend entirely on sequential function 

evaluations:    no evaluations of derivatives are required.    Such algorithms 

are very useful if derivatives are difficult to evaluate, and this is 

often true in practical problems. 

I am greatly indebted to Professors G. E. Forsythe and G. H. Golub 

for their advice and encouragement during my stay at Stanford,  and for 

their guidance of my research.   Thanks are due to them and to the other 

members of my reading committee. Professors J. G. Herriot, F. W. Dorr 

and C. B. Moler, for their careful reading of various drafts, and for 

many helpful suggestions. 

Several people have contributed to this work.    I would particularly 

like to thank Dr. T. J. Rivlin for suggesting how to find bounds on 

polyncmials (Chapter 6),  and Dr. J. H. Wilkinson for introducing me to 

Dekker's algorithm (Chapter h).   Also, thanks to Professor F. Dorr and 

Dr. I. Sobel for their help in testing some of the algorithms, to 

Michael Malcolm, Michael Saunders and Alan George for many interesting 
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discussions, and to Phyllis Winkler for her fast and accurate typing. 

I am grateful for the influence of ray teachers V. Grenness, H. Smith, 

Drs. D. Faulkner and E. Strzelecki, Professors G. Preston, J. Miller, 

Z. Janko, R. Floyd, D. Knuth,  and M. Schiffer,  and those mentioned above. 

Deepest thanks to my wife Erin for her careful proof-reading, 

and help in obtaining some of the numerical results, testing the 

algorithms, plotting graphs,  and in many other ways. 

Finally,  I wish to thank the Commonwealth Scientific and Industrial 

Research Organization, Australia, for its generous support during my 

stay at Stanford. 

This work is dedicated to Oscar and Nancy,   sine quis non. 
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1.1 

1.  Introduction 

Consider the problem of finding an approximate zero or minimum of 

a function of one real variable, using limited-precision arithmetic on a 

sequential digital computer. The function f may not be differentiable, 

or the derivative f* may be difficult to compute, so a method which 

uses only computed values of f is desirable. Since an evaluation of 

f may be very expensive in terms of computer time, a good method should 

guarantee to find a correct solution, to within some prescribed tolerance, 

using only,a small number of function evaluations. Hence, we study 

algorithms which depend on evaluating f at a small number of points, 

and for which certain desirable properties are guaranteed, even in the 

presence of rounding errors. 

Slow, safe algorithms are seldom preferred in practice to fast 

algorithms which may occasionally fail. Thus, we want algorithms which 

are guaranteed to succeed in a reasonable time even for the most "difficult" 

functions, yet are as fast as commonly used algorithms for "easy" 

functions. For example, bisection is a safe method for finding a zero 

of a function which changes sign in a given interval, but from our point 

of view it is not an acceptable method, because it is just as slow for 

any function, no matter how well behaved, as it is in the worst possible 

case (ignoring the possibility that an exact zero may occasionally be 

found by chance). As a contrasting example, consider the method of 

successive linear interpolation, which converges superlinearly to a 

simple zero of a C  function, provided that the initial approximation 

is good and rounding errors are unimportant. This method is not 

acceptable either, for, in practice, we may have no way of knowing in 

[.i'+joj,^'*' - ■"  * V - 
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advance if the zero is simple,   if the initial approximation   is sufficiently- 

good to ensure convergence,  or what the effect of rounding errors will be. 

In Chapter U we describe an algorithm which, by combining some of 

the desirable features of bisection and successive linear interpolation, 

does come close to satisfying our requirements:    it is guaranteed to 

converge (i.e.,  halt)  after a reasonably small number of function 

evaluations,  and the rate of convergence for well-behaved functions 

is so fast that a lees reliable algorithm is unlikely to be preferred 

on grounds of speed. 

An antilogous algorithm, which finds a local minimum of a function 

of one variable by a combination of golden section search and successive 

parabolic interpolation, is described in Chapter 5.    This algorithm 

fails to completely satisfy one of our requirements:    in certain 

applications where repeated one-dimensional minimizations are required, 

and where accuracy is not very important, a faster (though less reliable) 

method is preferable.    One such application,  finding local minima of 

functions of several variables without calculating derivatives, is 

discussed in Chapter 7«    Note that, wherever we consider minima, we 

could equally well consider maxima. 

Most algorithms for minimizing a nonlinear function of one or more 

variables find, at best, a local minimum.    For a function with several 

local minima,  there is no guarantee that the local minimum found is the 

global (i.e.,  true or lowest) minimum.    Since it is the global minimum 

which is of interest in most applications, this is a serious practical 

disadvantage of most minimization algorithms, and our algorithm given 

in Chapter 5 is no exception.    The usual remedy is to try several 

iii« mi   M^,^,—^^^M^—ta—^a^it^M—^^—M^^^M^M^MJuaMMi 



1.1 

different starting points and, perhaps,  vary some of the parameters of 

the minimization procedure,   in the hope that the lowest local minimum 

found is the global minimum.    This approach is inefficient,  as the same 

local minimum may be found several times,  and it is also unreliable,  for, 

no matter how many starting points are tried,   it is impossible to be 

quite sure that the global minimum has been found. 

In Chapter 6 we discuss the problem of finding the global minimum 

to within a prescribed tolerance.    It is possible to give an algorithm 

for solving this problem, provided that a little a priori information 

about the function to be minimized is known.    We describe an efficient 

algorithm, applicable if an upper bound on    f"    is known,  and we show 

how this algorithm can be used recursively to find the global minimum 

of a function of several variables.    Unfortunately, because the amount 

of computation involved increases exponentially with the uomber of 

variables, this is practically useful only for functions of less than 

four variables.    For functions of more variables, we still have to 

resort to the unreliable "trial and error" method, unless special 

information about the function to be minimized is available. 

Thus, we are led to consider practical methods for finding local 

(unconstrained) minima of functions of several, variables. As before, we 

consider methods which depend on evaluating the function at a small 

number of points.    Unfortunately, without imposing very strict conditions 

on the functions to be minimized,  it is not possible to guarantee that 

an n-dimensional minimization algorithm produces results which are correct 

to wixhin some prescribed tolerance,  or that the effect of rounding errors 

has completely been taken into account.    We have to be satisfied with 

I      w \ 
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algorithms which nearly always give correct results for the functions 

likely to arise in practical applications. 

As suggested by the length of our bibliography, there has recently 

been considerable interest in the unconstrained minimization problem. 

Thus, we can hardly expect to find a good method which is completely 

unrelated to the known ones. In Chapter 7 we take one of the better 

methods which does not use derivatives, that of Powell (196^), and modify 

it to try to overcome some of the difficulties observed in 

the literature. Numerical tests suggest that our proposed method is 

faster than Powell's oiJ.ginal method, and just as reliable. It also 

compares quite well with a different method proposed by Stewart (I967), 

at least for functions of less than ten variables. (We have no numerical 

results for non-quadratic functions of more than ten variables.) 

ALGOL implementations of all the above algorithms are given. Most 

testing was done with ALGOL W (Wirth and Hoare (1966)) on IBM 560/67 and 

560/9I computers. As ALGOL W is not widely used, we give ALGOL 60 

procedures (Naur (1963))^ except for the n-dimensional minimization 

algorithm. FORTRAN subroutines for the one-dimensional zero-finding 

and local minimization algorithms are also available. 

To recapitulate, we describe algorithms, and give ALGOL procedures, 

for solving the following problems efficiently, using only function (not 

derivative) evaluations: 

1. 

2. 

Finding a zero of a function of one variable if ein interval in which 

the function changes sign is given; 

Finding a local minimum of a function of one variable, defined on a 

given interval; 

■ ■!    «^»_^^^,^^^^^^^^ 



1.2 

3. Finding, to within a prescribed tolerance, the global minimum of 

a function o~ one or more variables, given upper bounds on the 

second derivatives; 

4. Finding a local minimum of a fUnction of several variables. 

For the first three algorithms, rigorous bounds on the error and the 

number of function evaluations required are established, taking the 

effect of rounding errors into account. Sane results concerning the 

order of convergence of the first two algorithms, and preliminary 

results on interpolation and divided differences, are also of interest. 

· 2 • S\1JIIIl&ry 

In this section we summarize the main results of the following 

chapters. A more detailed discussion is given at the appropriate 

places in each chapter. This SUJJI!lary is intended to serve as a guide 

to the reader who is interested in sane of our results, but nat in 

others. To assist such a reader, an attempt has been made to keep each 

chapter as self-contained as possible. 

Chapter 2 

In Chapter 2 we collect sane results on Taylor_ series, Lagrangian 

interpolation, and divided differences. Most of these results Ct'e needed 

in Chapter 3, and the casual reader might prefer to skip Chapter 2 and 

refer back to it when necessary. Sane of the results are similar to 

classical ones, but instead of assuming that f has n+l continuous 

6 
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derivatives, we only assume that    f^ '    is Lipschitz continuous, and 

the term   f^      '(|)    in the classical results is replaced by a number 
1 

bounded in absolute value by a Lipschitz constant.    For example. 

Lemmas 2.5.1, 2.3.2, 2.U.1, and 2.5.1 are of this nature.    Since a 
) 
j 

Lipschitz continuous inunction is differentiable almost everywhere, 
i 

these results are not surprising, although they have not been found in 

the literature,  except where references are given.    (Sometimes Lipschitz 

conditions are imposed on the derivatives of functions of several 

variables:    see,  for example,  Armijo (1966)  and McCormick (1969).)    The 

proofs are mostly similar to those for the classical results. 

Theorem 2.6.1 is a slight generalization of some results of 

Ralston (1965, I965) on differentiating the error in Lagrangian 

interpolation.    It is included both for its independent interest,  and 

because it may be used to prove a slightly weaker form of Lemma 5.6.1 

for the important case    q = 2 .    (A similar proof is sketched in 

Kowalik and Osbome (1968).) 

An interesting result of Chapter 2 is Theorem 2.6.2, which gives 

an expression for the derivative of the error in Lagrangian interpolation 

at the points of interpolation.    A well-known weaker result is that the 

conclusion of Theorem 2.6.2 holds if   f   has    n+1    continuous derivatives, 

but Theorem 2.6.2 shows that it is sufficient for    f   to have    n 

continuous derivatives. 

Theoren 2.5-1, which gives an expansion of divided differences, may 

be regarded as a generalization of Taylor's theorem.    It is used several 

times in Chapter 5:    for example, see 'iheorem 5.^.1 and Lemma 5.6.1. 

Theorem 2.5.I is useful for the analysis of interpolation processes 
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whenever the coefficients of the interpolation polynomials can conveniently 

be expressed 5n terms of divided differences. 

Chapter 3 

In Chapter 5 we prove seme theorems which provide a theoretical 

foundation for the algorithms described in Chapters h and 5«    In 

particular, we show when the algorithms will converge superlinearly, 

and w'oat the order (i.e., rate) of convergence will be.    Of course, for 

these results the effect of rounding errors is ignored.    The reader 

whose main interest is the practical applications of our results might 

omit Chapter 3,  except for the numerical examples (Section 3.9) and the 

summary (Section 3.10). 

So that results concerning successive linear interpolation for 

finding zeros (used in Chapter k),  and successive parabolic interpolation 

for finding turning points (used in Chapter 5), can be given together, 

we consider a more general process for finding a zero of   f^q~ ' , for 

any fixed   q > 1 .    Successive linear interpolation and successive 

parabolic interpolation are Just the special cases   q = 1   and   q - 2 . 

Another case which is of some practical interest is    q = 3 *  for finding 

inflexion points.    As the proofs for general   q   are essentially no more 

difficult than for   q = 2 , most of our results are for general   q . 

For the applications in Chapters k and 5^ the most important 

results are Theorem 3.^.1> which gives cenditions under which convergence 

is superlinear, and Theorem 3.5*1* which shows when the order is at least 

1.6l8...     (for    q = 1)    or    1.32^...     (for   q = 2)   .    These numbers are 

well-known, but our assumptions about the differentiability of   f   are 

8 
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1.2 

weaker than those of previous authors,  e.g.,   Ostrowski (I966) and 

Jarratt (1967, 1968). 

From a mathematical point of view,  the most interesting result 

of Chapter 5 is Theorem 3.7»l«    The result for    q = 1    is given in 

Ostrowski (1966),  except for our slightly weaker assumption about the 

smoothness of    f .    For    q = 2 , our result that convergence to    t,    with 

'3) order at least   1.578« ••    is possible,  even if   iv  '(£) / 0 , appears to 

be new.    Jarratt  (1967)  and Kowalik and Osborne (1968) assume that 

lim 
n -*oa 

I* 
=    0 (2.1) 

and then, from Lemma 3.6.1, the order of convergence is    1.32h... 

However,  even for such a simple function as 

f (x)  = 2x5 + x2      , (2.2) 

there are starting points   x    , x..    and   x      such that (2.1) fails to 

hold, and then the order may be at leas!;    1.57ß«'«   •    We should point 

out that this exceptional case is unlikely to occur:    an interesting 

conjecture is that the set of starting points for which it occurs has 

measure zero. 

The practical conclusion to be drawn from Theorem 5.7«1 is that, 

if convergence is to be accelerated, then the result of Lenuna 3.6.1 

should be used.    In Section 5.8 we give one of the many ways in which 

this may be done.    Finally,  some numerical examples illustrating both the 

accelerated and unaccelerated processes are given in Section 5.9« 

I        ) 1        '.       i        J 
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Chapter U 

In Chapter h we describe an algorithm for finding a zero of a 

function which changes sign in a given interval.    The algorithm is 

based on a combination of successive linear interpolation and bisection, 

in much the same way as "Dekker's algorithm" (van Wijngaarden, Zonneveld 

and Dijkstra (1965), Wilkinson (1967), Peters and Wilkinson (1969), 

Dekker (1969))«    Our algorithm never converges much slower than bisect3 on, 

whereas Dekker's algorithm may converge extremely slowly in certain cases. 

(Examples are given in Section k.2.) 

It is well-known that bisection is the optimal algorithm,  in a 

minimax sense,  for finding zeros of functions which change sign in an 

interval.    (We only consider sequential algorithms:     see Bobbins (1952), 

Wilde (196^)  and Section U.^.)    The motivation for both our algorithm and 

Dekker's is that bisection is not optimal if the class of allowable 

functions is suitably restricted.    For example,  it is not  optimal for 

convex functions  (Bellman and Dreyfus (1962), Gross and Johnson (1959)); 

or for   C      functions with simple zeros. 

Both our algorithm and Dekker's exhibit super linear convergence to 

a simple zero of a   C      function,  for eventually only linear interpolations 

are performed, and the theorans of Chapter 3 are applicable.    Thus, 

convergence is usually much faster than for bisection.    Our algorithm 

incorporates inverse quadratic interpolation as well as linear interpolation, 

so it is often slightly faster than Dekker's algorithm on well-behaved 

functions (see Section k.k). 

10 
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Chapter 5 

An algorithm for finding a local mintmum of a fUnction of one 

variable is described in Chapter 5· The algorithm combines golden 

section search (Bellman (1957), Kiefer (1953), Wilde (1964), Witzgall 

(1969)) and successive parabolic interpolation (the case q = 2 of the 

process analysed in Chapter 3), in the same way as bisection and successive 

linear interpolation are canbined in the zero-finding algorithm of 

Chapter 4. Convergence in a reasonable number of function evaluations 

is guaranteed (see Section 5.5), and, for a c2 function with positive 

curvature at the minimum, the results of Chapter 3 show that convergence 

ib auperlinear, if we ignore r ounding errors and suppose that the minimum 

is at an interior point of the interval. other algorithms given in the 

literature either fail to have these two desirable properti es, or, when 

convergence is strictly superlinear, t he order of convergence is less 

than for our algorithm (see Sections 5.4 and 5.5). 

I n Sect ions 5.2 and 5.3 we consider the effect of rounding errors. 

Section 5.2 contains an analysis of the limitations, imposed by rounding 

errors, on the attainable accuracy of any algorithm which is based 

entirely on function evaluations, and this section should be studied 

by the reader who intends to use the ALGOL procedure given in Section 5.8. 

If f is unimodal, then our algorithm rlll find the unique minimum, 

provided there are no rounding errors. To study the effect of rounding 

errors, we define " o -unimodal" functions. A unimodal function is o -unimodal 

f or all o ? o' , but a canp1ted approximation to a uni.J!lodal function can 

not be unim~: it will be o-unimodal .for some positive o , depend:iltg 

on the function and on the precision of computation. (o ..... 0 as the 

11 
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precision increases indefinitely.)    We prove some theorems about 6-unimodal 

functions, and give a bound for the error in the approximate minimum found 

by our algorithm when applied to a 8-unimodal function.    In this way we 

can justify the use of our algorithm in the presence of rounding errors, 

and account for their effect.    Our motivation is rather similar to that 

of Richman (I968)  in developing the e-calculus,  but we are not concerned 

with properties that hold as    e -• 0  .    The reader who is not very 

interested in the effect of rounding errors might prefer to skip 

Section 5«5. 

Chapter 6 

In Chapter 6 we consider the problem of finding em approximation 

to the global minimum of a function    f , defined on a finite interval, 

if some a priori information about    f   is known.    This interesting problem 

does not seem to have received much attention,  although there have been 

some empirical investigations,  e.g., see Magee (i960).    In Section 6.1, 

we show why some a priori information is necessary,  and discuss some of 

the possibilities.    In the remainder of the chapter we restrict our 

attention to the case where an upper bound on    f"    is toiown. 

An algorithm for global minimization of a function of one variable, 

applicable when such an upper bound on the second derivative is known,   is 

described in Section 6.3.    The basic idea of this algorithm is used by 

Rivlin (1970) to find bounds on a polynomial in a given interval.   We 

pay particular attention to the problem of giving guaranteed bounds in 

the presence of rounding errors, and the casual reader may find the 

details in the last half of Section 6.3 rather indigestible. 

12 
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In Section 6.h,  we try to obtain some insight into the behaviour 

of our algorithra by considering some tractable special cases.    Then,   in 

Sections 6.5 and 6.6,  we show that no algorithm which uses only function 

evaluations and an upper bound on    f"    could be much faster than our 

algorithm.    Finally,  a generalization to functions of several variables 

is given in Section 6.8.    The conditions on    f    are much weaker than 

unimodality (Newman (1965)).    The generalization is not practically useful 

for functions of more than three variables,  and it is em open question 

whether a significantly better algorithm is possible. 

Chapter 7 

In Chapter 7 we describe a modification of Powell^  (I96U)  algorithm 

for finding a local minimum of a function of several variables, without 

calculating derivatives.    The modification is designed to ensure 

quadratic convergence,  and to avoid the difficulties with Powells 

criterion for accepting new search directions. 

First, a brief introduction to the problem and a survey of the 

recent literatureare given in Section 7.1.    The effect of rounding errors 

on the limiting accuracy attainable is discussed in Section 7«2.    Powell's 

algorithm is described in Section 7*5,  and our main modification is given 

in Section 7«'+'    The idea of the modification  (finding the principal axes 

of an approximating quadratic form)  is not new:    for example,   it is used 

by Greenstadt  (I967)   in his quasi-Newton method.    Unlike Greenstadt, 

though, we do not use an explicit approximation to the Hessian matrix. 

An interesting feature of our modification is that it is posible to avoid 

squaring the condition number of the eigenvalue problem by using a singular 

value decomposition:     see Section 7«^ for the details. 

13 
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In Sections 7«5 and 7.6 we describe some additional features of our 

algorithm.    Then,  in Section 7«7* we give the results of some numerical, 

experiments, and compare our method with those of Powell (196^), Davier, 

Swann and Campey (Swann (196^)), and Stewart  (1967).    For the comparison 

we have used numerical results obtained by Fletcher (1965) and Stewart. 

(I967).    The numerical results suggest that our algorithm is competitive 

with the currently used algorithms which do not require the user to 

compute derivatives, although it is difficult to reach a definite 

conclusion without more practical experience. 

Finally, we give a bibliography of the recent literature on 

nonlinear minimization, with the emphasis being on methods for solving 

unconstrained problems. 

Ik 
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Chapter 2. 

Some Useful Results on Taylor Series, Divided Differences, 

and Lagrangian Interpolation 



2.1 

1. Introduction 

In this chapter we collect some results which are needed in Chapters 

3 and 6. The reader who is mainly interested in the practical applications 

described in Chapters ~- to 7 might prefer to skip this chapter, except for 

Section 2, and refer back to it when necessary. 

Classical expressions for the error in truncated Taylor series and 

Lagrangian interpolation o:f'ten involve a term f(n+ l) ( ~) , where ~ is an 

unknown point in some interval. For such expressions to be valid, f must 

have n+l derivatives. Several of the results of this chapter give 

expressions which a~e valid if f(n) satisfies a (possibly one-sided) 

Lipschitz condition. In these results, the term f(n+l)(~) is replaced 

by a number which is bounded by a Lipschitz constant. It seems unlikely 

that these results are new, but they have not been found in the literature 

eYcept where r eferences are given. 

The results of Chapter 3 depend heavily on Theorem 5.1, which gives 

an expansion of the divided '.iifference f[x0, .•. ,xn] (see Section 2) near 

the origin. This theorem, and the less cumbersome Corollary 5 .• 1, are 

usefUl for the analysis of interpelation processes, for the coefficients 

of the interpolating polynomials can be expressed in terms of divided 

differences (see Chapter 3). 

Finally, in Section 6, we extend some results of Ralston (1963) on 

the derivative of the error term in Lagrangian interpolation. These 

results are -..e:tevant to Chapter 3, although they are given mainly for 

their independent interest. Perhaps the most interesting result is 

Theorem 6 .2, which shows that, i f we are only concerned with the points 

of interpolation, then we can dirterentiate the classical expression for 

the error (equation (6.4)), regarding the term f(n)(~(x)) as constant. 

16 



2.2 

This is well-known if    f    has    n+1   continuous derivatives, but Theorem 6.2 

shows that it is sufficient for    f   to have    n    continuous derivatives. 

2.      Notation and definitions 

Throughout this chapter    [a,b]    is a nonempty,   finite, closed 

interval,  and   f   is a real-valued function defined on    [a,b]  .      n    is 

a nonnegative integer,    M    a nonnegative real number,  and   ct   a number 

in    (0,1]   . 

Definitions 

The modulus of continuity   w(f;6)    of    f    (in    [a,b])    is defined by 

w(f;5) =       sup        |f(x) -f(y) 
x,y€ [a,b] 
|x-y|  < & 

(2.1) 

for all   6 > 0 . 

If    f   has a continuous n-th derivative on    [a,b] , then we write 

,n (n) f eC [a,b]  .    If, in addition,     fv ' e Lip^ a ,  i.e., 

w(f(n);6)    <   M6a (2.2) 

,nr for all    8 > 0 , then we write    f € I£! [a,b;M,a].   (This notation is not 

standard,  but it is convenient  if we want to mention the constants   M 

and   a    explicitly.)    If    f e LCn[a,b;M,l]    then we write simply 

feLCn[a,b;M]   . 

If   x ,...,::     are distinct points in    [a,b]  ,  then   IP(f;x , ...,x ) 

is the Lagrangian interpolation polynomial,   i.e.,  the unique polynomial 

of degree    n   or less which coincides with    f   at    xrt, ...,x    .    The On 

1? 
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divided difference    f[x, ...,x  ]    is defined by 

f[V...,xn]    =     E       — ^  • (2.5) 

(There are many other notations:    see for example,    Milne (19^9), 

Milne-Thomson (1953), and Traub (1964).)    Note that, although we suppose 

for simplicity that    x , ...,x      are distinct, nearly all the results given 

here and in Chapter 3 hold if seme of   x , ...,x     coincide.   (We then have 

Hermite interpolation and confluent divided differences:    see Traub (1964).) 

For the statement of these results,  the word "distinct" is enclosed in 

parentheses. 

Newton's  identities 

For future reference, we note the following useful identities (see 

Cauchy (l84o), Isaacson and Keller (1966),  or Traub (1964)).    The first 

is often used as the definition of the divided difference    f[x^, ...,x ] , 0        ' n   ' 

while the second gives an explicit representation of the interpolating 

polynomial and remainder. 

1.      f[x0] = f(x0) 

and, for   n > 1 , 

f[.Xr,J • • 'jX      -I J    ~   flX-|> • •'^x   J 

f[>V"xJ = —2 ^h—i1  • (2^ On x0 - xn 

2.      If   P = IP(f;x , ...,x )  , then 

f(x)   - P(x)+ f  77 (x-x ) )   .f[x , ...,x ,x]    , (2.5) 
v i=o     i y     0     n 

18 
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and 

P(x)  = f[x0]+(x-x^fbfyXjJ +... 

+ (x-x0)...(x-xn_1)f[x0, ...,xn] (2.6) 

5.      Truncated Taylor series 

In this section we give some forms of Taylor^ theorem.    Lemma 3.1 

is needed in Chapter 6,  and applies if    f^  '    satisfies a one-sided 

Lipschitz condition. 

Lemma 3.1 

,n. Suppose that    f cC  [0,b]    for seme    b > 0 ,  and that there is a 

constant   M   such that,  for all   ye[0,b] , 

f(n)(y) -f(n)(0)    <   My   . 

Then,   for all   xe[0,b] , 

n       r    / s n+1 

r=0 (nfl)l 

where 

m(x) < M    . 

(3.1) 

(3.2) 

(3.3) 

Reraarks 

The proof is by induction on n , and is omitted. The corresponding 

two-sided result is immediate, and is generalized in Lemma 5.2 below. In 

Lemma 3.2, fractional factorials are defined in the usual way,  so 

(n + a)!/«!    =    (l+a)(2 + a)...(n + a) 

19 
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Lemma 5»2 

If    f €LCn[a,b;M,Q:]    and   x,y€[a,b] , then 

n    ,,      vr 
f (x) = r %f- 

r=0 

where 

|ni(x,y) | < M    . 

Remarks 

(5.6) 

The res\ilt is trivial if   n = 0 , and for    n > 1    it follows from 

Taylor's theorem with the integral form for the remainder, using the 

integral 

x   jx,   ^n-1 r    " 
o 
JX   ^jnllil"1   dt    =   ^a«!/(^a)! (5.7) 

for   x > 0 . 

Note that the bound (3.6)  is sharp, as can be seen ftcm the example 

f(x) = x1^   , (3.8) 

with y = 0 and M = (n+a) l/a!  . Since, for n > 1 , 

nl < (nfa)t/al , (3.9) 

the bound obtained from the classical result 

fW = E   ^f(r)(y)+^f(n){i)   , (5.io) 

for some    £    between   x   and   y ,  is not sharp. 

20 
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k.      Lagrangian Interpolation 

The following lemma, used in Chapter 6, gives a one-sided bound on 

the error in Lagrangian interpolation,  if    f   '    satisfies a one-sided 

Lipschitz condition.    Thus,  it corresponds to Lemma 3.1.    The corresponding 

two-sided result follows from Theorem 5 of Baker (1970),  but the proof 

given here is simpler,  and similar to the usual proof of the classical 

result that,  if    f eC^^b] , then    ra(x)  = r^'UCx))  ,   for some 

|(x) e [a,b]   .     (See,  for example,  Isaacson and Keller (I966),  pg. 190.) 

Lemma k.l 

Suppose that    fe  C  [a,b] ; x , ...,x     are (distinct) points in 

[a,b]  ;      F = IP(f;x , ...,x )   ; and,  for all   x,yG[a,b]    with    x >y , 

f(n)(x)   - f(n)(y)    <   M(x-y)   . (k.l) 

Then,  for all   xe [a,b] , 

f(x)  =P(x) +(   TT  (x-xr)  ) -gg^     , {k.2) 
n 
n 
r=0 

where 

Oä ' 

m(x)    <   M    . ih.3) 

Proof 

Suppose that    n > 0   and   x / x      for any   r = 0, ..., n , for 

otherwise the result is tri/lal. Let 

w(x) =TT (x-xj  , (^M 
r=0 

and write 

21 
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2.5 

f(x) = p(x) +w(x)S(x)    . (^.5) 

RegSLrding   x   as fixed,  define 

F(z)  = f(z) -P(z) -w(z)S(x) ik.6) 

for    z e [a,b]  . 

Thus   FeC [a,b] , and   F(z)    vanishes at the   n+2   distinct points 

x,x , ...,x    .    Applying Rolle's theorem   n   times shows that there are 

two distinct points    ^y^-jG (a,b)  , such that 

F(n)(l0)   =F(n)(l1)   =0    . (^.7) 

Differentiating (^.6)    n   times gives 

F(^(z)  = f(n)(z)   - (nfl)!S(x)z + c(x)    , (^•8) 

where   c(x)    is independent of   z  .    Thus, from (^.7), 

S(x)    = J&iJT 

f(n)Uo)  ,f(n)Ui) 

i^9) 

so the result follows from condition (U.l). 

5.      Divided differences 

Lemma 5»1 and Theorem 5*1 are needed in Chapter 3.    The first part 

of Lemma 5*1 follows immediately from Lemma U.l and the identity (2.5) 

(we state the two-sided result for variety), while the second part is 

well-known, and follows similarly.    Theorem 5'1 is more interesting, and 

most of the results of Chapter 3 depend on it.    It may be regarded as a 

generalization of Taylor's theorem (the special case   n = O)   . 
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Lemma 5^3. 

,n 
Suppose that f e LC"[a,b;M] and that xn, ...,XM+1 are (distinct) ■0'"''"n+l 

points in    [a,b]   .    Then 

f[x0, ..^x^j^] =m/(nfl)J    , (5.1) 

where 

|m| <   M    . (5.2) 

Furthermore, if   f €C      [a,b] , then 

m = f^1)(0 (5.3) 

for sane    | e [a,b]  . 

,n+kr 

Theorem $.3- 

Suppose that    k,n > 0 ;    f eC^^ajb]  ;    a < 0 ;    b > 0 ; and 

x0,...,x     are (distinct) points in    [a,b]  .    Then 

f(n) tlx° x*] '^+(o<l^\l^m 

E .(n^-k) fv"^ (0) 

^<r1<r2<...<rlt<n   rl       \ li^Jl R , 

(5.U) 

where 

R = 
^^OKT^jr.Kr^J**! ■K U(ntk>(S, 

••'rk 
)-f(ttfk)(o)i 

(5.5) 

for some   £ in the interval spanned by   x    ,...,x        and   0 
rr*--'rk rl rk 
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Corollary $.1 

If,  in Theorem 5'1^ 

then 

6 =     max      |xr|    , (5.6) 
r=0,...,n 

Rl ^ Hin w(f(n+k);5)    • (5.7) 

Proof of Theorem $.1 

The result for    k = 0    is immediate from the second part of Lemma 5,1, 

so suppose that   k > 0 .    Take   points   y0,-..^y     which are distinct, and 

distinct frcm   x_,...,x    .    Then 0' n 

f[x0, ...,xn] -f[y0, ...,yn] 

n 

=   E   Cf[V,,,Vyrfl,,,,,yn] "f[V*",Xr-l,yr,,',,yn^ r=0 

(5.8) 

n 
=   L   (x   -y )f[x , ...,x ,y ;...,y  ]  , (5.9) 

r=0 

by the identity (2.k). 

We may suppose, by induction on   k , that the theorem holds if   k 

is replaced by   k-1   and   n   by   nfl .   Use this result to expand each 

term in (5'9)> and consider the limit as    y0, .'.,y     tend to   0  .    By 

the second part of Lemma 5-1*      f[yn>'"jy ]    tends to    f^ '(C^/nl ,  so 

the result follows.     (Strictly, to show the existence of the points 

4 ,  we must add to the inductive hypothesis the result that 

<.(n+k) (|w ^ )    is a continuous function of   x^ , ...,xw    .) 

2k 
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Corollary 5*1 is immediate,   once we note that there sire exactly 

nlkl terms in the sum (5ö)« 

6.      Differentiating the error 

The two theorems in this section are concerned with differentiating 

the error term for Lagrangian interpolation.    These theorems are not 

needed later, but are included for their independent interest,  and also 

because they may be used to give altv "native proofs of seme of the results 

of Chapter 5 (see Kowalik and Osborne (1968),   pp.   18-20). 

n+1 
Theorem 6.1 is given by Ralston (I963, I965)  if    feC      [a,b]   .      We 

state the result tinder the slightly weaker assumption that    f e LC [a,b;M] 

for some   M    :    the only difference in the conclusion is that Ralston*s 

term   f^        (Tl(x))    is replaced by   ri(x)  , where    jra(x) | <M  .    The proof 

is similar to that given by Ralston (1965), and is also similar to the proof 

of Lemma 6.2 below,   so it is omitted. 

Theorem 6.2 gives an expression for the derivative of the error at 

the points of interpolation.    If    f e LC  [a,b;M]    then the result follows 

immediately from Theorem 6.1, but Theorem 6.2 shows that    f eC  [a,b]    Is 

sufficient.    This result may be of some independent interest. 

Theorem 6.1 

.n, Suppose that    n>l  ;    f e I£!  [a,b;M]   ;    x, ...,x    ..    are  (distinct) 

points in    [a,b]   ;    w(x)  = (x-x0)...(x-x^^   ;    P = IP(f;x0,. .^x^)   ; 

and    f(x)  = P(x) + R(x)   .    Then there are functions    ^:   [a,b]  -» [a,b] 

and   m:  [a,b] -• [-M,M] ,   such that 
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l. f(n)(Hx)) is a continuous :t'unction of X€ [a,b] (although Hx) 

is not necessarily continuous}; 

2. m(x) is continuous on [a,b], except possibly at x0, .•• ,xn-l; 

3. for all x E [a, b] , 

R(x) = w(x)f(n)(~(x))/n! 

and 

R'(x) = w'(x)f(n)(~(x))/n! ~ w(x)m(x)/(n+l)t 

and 

4. if · X F X for r = o, .•. ,n-1' then r 

~ f(n) (~(x)) _ m(x) 
dx - n+l 

Theorem 6.2 

.·.r ... 

( 6.1) 

; (6.2) 

(6.3) 

· Suppose tha n ~ 1; fECn[a,b] ; x0, ..• ,xn-l are (distinct) 

point·s in [a,b] w(x) = (x-x0 ) ... (x-xn_1) ; P = IP(f;x0, ••. ,xn_1) 

and f(x) = P(x) + R(x) . Then there is a function ~: [a, b] - [a, b] , 

such that f(n) ( Hx)) is a continuous function of x E [a, b] ; for all 

x E [a, b] , 

R(x) = w(x)f(n)(s(x))/nt . (6.4) 

and, for r = o, •.. ,n-1' 

B'(x) = w'(x )f(n)(Hx ))/n! (6.5) r r . r 

Before proving Theorem 6.2, we need scme lemma.s. Note the similarity 

between Lemma 6 .·2 and Theorem 6 .1. 

Lemma 6.1 

Suppose that n > 1 
n . 

f E C [a, b] x
0

, .•• ,xn are distinct points 

in [a,b] ; P = IP(f;x0, ..• ,xn) ; 
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ar^. 

A=     max      |f(n)(x)|    , (6.6) 
xe[a,b] 

5 = max        jx. -x.j     . (6.?) 
0<i<(i<n      1      0 

Then, for all   xG[a,b] , 

f(x)  =P(x) +( Jf (x-xr) )s(x)    , (6.8) 

where 

Iswi < itr   • (6-9) 

Proof 

If   x = x     for some    r = 0, ...,n , then we can take    S(x)   = 0 . 

Otherwise, by the identity (2.5), 

S(x)  = F[x0,...,xn,x]       . (6.10) 

Write   x    .     for   x , and reorder    x , ...,x (if necessary)  so that, 

if the reordered points are   x*, ...,x'      , then 

x'  - x«        = max |xl  - x'|    >   5    . (6.11) 
0<i<ti<n+l     1        J 

Fran (6.10)  and the identity (2.U), 

S(x) = —^ n
xt      xt

1 2^   , (6.12) 
X0 " Xn+1 

so,  by Lemma 5*1? 

^  =     n-M'^'J    ) (6-13) 
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for some § and I1 in [a,b] . In view of (6.6) and (6.11), the 

result follows. 

Lemma 6.2 

Suppose that    n>2 ;    feC  [a,b]  ;    x,. 

points in    [a,b]  ;    A =     max    \f^ '(x)|   ;    6 -. 
xe[a,b] 

.,x   n    are distinct ' n-1 

max 
0<i<j <n 

x. -x. 
i       3 

Pn = IP(f',7t0,...fXn_1)  ;   wn(x) = (x-x0)... (x-x^  ; and 

f(x) = P (x)+R(x)   .    Then there is a function    |: [a,b] -» [a,b]    such n' 
>(n) that, for all   xe[a,b] ,      fv y(g(x))    is a continuous function of   x , 

R(x)  =wn(x)f(n)(|(x))/n! 

and 

/ \                            ^iw (x) 1^ 
|R'(x) .w;(x)fWa(x))/nl|    <   —^  

., if   x / x      for    r = 0, ...,n-l , then 

|Af(n)U(x))|    <^        . 

(6.1^) 

(6.15) 

(6.16) 

Proof 

Let   x     be a point in    [a,bl , distinct from   x   and   x^,...,x   n 

For   k = n   or   n+1 , define 

and 

Pk=IP(f;x0,...,xk_1) 

wk(x)   =  (x-x0). . . (X-Xj^j 

(6.1?) 

(6.18) 

By the classical result corresponding to Leimna h.l,  there is a function 

| such that (6.1^) holds. Suppose, until further notice, that x / x 
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for r = 0, ...,n . Then, from (6.11+) and the identity 

kil     f(xr)wk(x) 
p

k
(x)=L (x-x:)wt(x) ' «^ r=0    v      r'  k    r 

we have 

AMI -. nfL-i . fy,. .      (6.30) nt w Tx)       t-     (x-x jw' (x ) v        / nv  '      r=0 r7 nx r' 

Since the right side of (6.20) is continuously differentiable at x , so 

is the left side, and 

Define S(x,x ) by n' 

f(x) = P^Jx) + wr<+.(x)S(x,xn) . (6.22) n+lv '   n+lv ' v ' n 

Since 

w (x )        if r = n , 
w« (x) =/ n n (6.23) 
m-i j   Mv^A^  if r = 0,...,n-l, 

equation (6.19) gives 

P^xCx)   nil      f(xJ f(xJ 
w^/x) = ^ (x-x ){x -x)w»(x ) + (x-x )w (x )  '     (6*2U) 

SO 

n+lv '    r=0 v  r/v r n' n^ r'  v  n' nv n 

f(x)   f(xn) 
w (x)  w (x )    n-1       f(x ) 

S(x'xn> -  " x-x" "   + S  (x-xj(x!xjv,.(xj  • f6-2« n       r=0  x  r'v n r7 n r' 
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As x -• x , the right side of (6.25) tends to the right side of (6.21). 

Thus, there exists 

lim s(x,xn) =^Af(«)U(x)) t {6t26) 

x -»x 
n 

and, from the definition (6.22) and Lemma 6.1, this proves (6.16). Now, 

by differentiating the right side of (6,lh) by parts, we see that (6.15) 

holds,  in fact 

w'(x)f^U(x)) + w rx) Af(n)(l(x)) 
r(x)=-^  "n,    

n ^ ^_  } (6>27) 

provided that   x / x   , for   r = 0, ...,n-l .   Consider (6.27) near one 

of the points   x    ,    r - 0, ...,n-l .    R^x)    is continuous at    x    , 

w
n(xr)  = 0 ,    w^(xr) / 0 ,  and, by (6.16),      ^ f(n)(l(x))    is bounded 

for   x / x    .      Thus    f^  ;(5(x))    has,  at worst, a removable discontinuity 

at   x   , and, by the continuity of   f^ '(I-)    as a function of    I , 

a suitable redefinition of    t(x )    will ensure that    f^(^(x))    is a 

continuous function of   x , and that 

B'(xr)  =W];(xr)f
(n)U(xr))/n!       . (6.28) 

This conrpletes the proof of the lemma. 

Proof of Theorem 6.2 

If   n > 2   then the result follows immediately from Lemma 6.2.    If 

n = 1 , choose    5(x)    so that    6(xn)  = x     and, for   x / x    , 

f(x)  - f(x ) 
fUW)  =      ;   0 • (6.29) x - x0 

Then    f,(f(x))    is a continuous function of   xe[a,b] r and,  as 
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R(x)  = f(x) - f(x0)    and   w(x)  = x-x    ,  it is easy to see that 

equations (6.^) and (6.5)  are satisfied.    Thus, the theorem holds for 

all   n > 1 . 
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Chapter 5. 

The Use of Successive Interpolation for Finding Simple 

Zeros of a Function and its Derivatives 
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3.1 

1.      Introduction 

Suppose that    q >1    and   feC^" [a,b]   .    Given (distinct)  points 

x , ...,x      in    [a,b] ,  a sequence    (x )    may be defined in the following 

way:    if   x.. ...,x ,       are already defined,  let    P   = IP(f;x ,...,x_J   ) ^ 0        '  n+q J n v   ' n n+q7 

be the q-th degree polynomial which coincides with   f   at    x , ...,x        , 

and choose   x .   . n     so that 
n+q+1 

(VD n        v n+q+l7 

Under certain conditions the sequence    (x )     is well-defined bv/fl.l), 

lies in    [a,b]  ,  and converges to a zero   £    of    f^    '   .    Ip^this chapter 

we give sufficient conditions for convergence,  and estimate the asymptotic 

rate of convergence, making various assumptions about the differentiability 

of    f . 

Since   P      is a polynomial of degree    q ,     (l-l)  is a linear equation 

in    x ^ ^   .    If 
n+q+1 

f[x ,.. ^x^   ] ^ 0    , 
n'       '  n+qJ r       ' 

(1.2) 

n+q+1      q V   A^ "n+i 

f [x ,..,.. .,x .   ] \ 
n+V n+o/ i 

f[x , ...,x ^  ] /    ' 
n' n+q / 

(1.3) 

then Lemma 3.1 shews that the unique solution is 

and this might be used as an alternative definition.    From Section h on, 

e tha 

^~ '  ,  so (1.2)  holds.    In Section 3,  the assumption 

our assumptions ensure that    x ,...,x .       are sufficiently close to a 
* n n+q ^ 

n+q+1 

simple zero    £    0^    ^ 

that    f      (j) / 0    is unnecessary:    all that is required is that    xr 

is a (not necessarily unique)  solution of (1.1) • 

The cases of most practical interest are    q = 1, 2 and 5.    For    q = 1 , 

our successive interpolation process reduces to the familiar method of 
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successive linear interpolation for finding a zero of    f ,  and some of our 

results are well-known (see Collatz (196^), Householder (I971),  Ortega and 

Rheinboldt  (1970), Ostrowski (I966), Schröder (I870),  Traub (1964,  1967) 

etc.).    For   q = 2 , we have a process of successive parabolic interpolation 

for finding a turning point,  and,  for   q = 3 ,  a process for finding an 

inflexion point.    These two cases are discussed separately by Jarratt  (1967, 

1968), who assumes that    f    is analytic near    5   .    By using (1.5) and 

Theorem 2.5.I, we show that much milder assumptions on the smoothness of    f 

suffice fsee Theorems k.l,  5.1 and 7«l)'    Also, most of our results hold 

for «my   q > 1 , and the proofs are no more difficult than those for the 

special cases   q = 2    and    q = 3  . 

Some simplifying assumptions 

Practical algorithms for finding zeros and extrema,  using the results 

of this chapter, are discussed in Chapters k and 5«    Until then we ignore 

the problem of rounding errors,  and usually suppose that the initial 

approximations   x , ...,x      are sufficiently good. 

For the sake of simplicity, we assume that any   q+1    consecutive 

points   x ,...,x +     are distinct.    (This is always true in the applications 

described in Chapters k and 5«)    Thus,    P     is just the Lagrange 

interpolation polynomial,  and the results of Chapter 2 are applicable. 

As in Chapter 2, the assumption of distinct points is not necessary, and 

the same results hold without this assumption if    P     is the appropriate 

Hermite interpolation polynomial. 

;♦ 

3^ 
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A preview of the results 

The definition of "order of convergence" is discussed in Section 2, 

and in Section 3 we show +liat,  if a sequence    (x )    satisfies (l.l) and 

converges to    ^ , then   f^' '({j)  = 0      (Theorem 5.1) • 

In Sections h to f, we consider the rate of convergence to a simple 

zero    5    of    f^" '   , making increasingly stronger assumptions about the 

smoothness of   f .    For practical applications, the most important result 

is probably Theorem h.l, which shows that convergence is super linear if 

f€Cq   and the starting values are sufficiently good.    As in similar results 

for Newton's method (Collatz {196h),  Kantorovich and Akilov (1959), 

Ortega (1968), Ortega and Rheinboldt (1970)    etc.),  it is possible to say- 

precisely what "sufficiently good" means.    Theorem 5.1 is an easy 

consequence of Theorem h.l and the thecry of linear difference equations 

(Nörlund (195^))^  and gives a lower bound on the order of convergence if 

f^        is Lipschitz continuous. 

The question of when the order of convergence is equal to the lower 

bound given by Theorem 5»1 is the subject of Sections 6 and ?•    Although 

the results are interesting, they are not of much practical importance, 

for in practical problems it is merely a pleasant surprise if the iterative 

process converges faster than expected'.      Thus, the reader whose main 

interest is practical applications might prefer to skip Sections 6 and 7 

(and also Theorem 5.1)> except for Lemma 6.1. 

In Section 8, we consider the interesting problem of accelerating the 

rate of convergence, and Theorem 8.1 shows how this may be done.    We make 

use of Lemma 6.1, which gives a recurrence relation for the error in 

successive approximations to    5 ,   and is a generalization of results of 

Ostrowski  (I966) and Jarratt (I967,   I968). 
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Finally,  in Section 9 the theoretical results are illustrated by 

some numerical examples,  and a brief summary of the main theorems  is 

given in Section 10.    The reader may find it worthwhile to glance at 

this summary occasionally in order to see the pattern of the lesults. 

2.      The definition of order 

Suppose that      lim   x    = £  •    There are many reasonable definitions 
n -»oo 

of the "order of convergence" of the sequence    (x )   .    For example, we 

could say that the order of convergence is    p    if any one of (2.1)  to (2.4) 

holds: 

Ivi -1\ lim—^    =   K>0   , (2.1) 
n-oo    |x    - i\ n 

1081 Vl " tl 
llm   log|x    - i\      -   "     ' f2-2» 

llm(-logU    - C|)l/n   =   p   , n n -»a» 
(2.5) 

lim inf(-log|xn - SI)1/"    =   p    . (2.JO 

These conditions are in decreasing order of strength,  i.e., 

(2.1) 3 (2.2) D (2.3) 3 (2.4), and none of them are equivalent.     (2.1)  is 

used by Ostrowski (I966), Jarratt  (I967) and Traub (1964,  1967), while 

(2.2) is used by Wall (1956), Tomheim (1964)  and Jarratt  (I968).    Voi^L  (1969) 
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and Ortega and Rheinboldt  (1970)  give some more possibilities  (for 

example, we may take the supreraum of    p    such that the limit    K    in (2.1) 

exists and is zero,   or the infimum of    p    such that    K    is  infinite).    See 

also Cchroder  (1870).    For our purposes it  is convenient to use  (2.1) and 

(2.4),   so we make the following definitions. 

Definition 2.1 

We say    x    -♦ £    with strong order    p    and asymptotic constant    K 

if   x    — t    as    n -♦ 00    and (2.1) holds. 
n 3 \ / 

We say x -» ! with wef  order p if x -»C as n -»» and ^  n  a     —  1     n  » 

(2.U) holds.  (If x = 5 for all sufficiently large n then we say 

that x -» £ with weak order 00 .) 
n  * ' 

Definition 2.2 

Let 

We 

c = lim sup |xn - £| 'n . (2.5) 
n -«oo 

say x — £ sublincarly (or less than linearly) If x -» £ and 

c = 1 . We say x -» £ linearly if 0 < c < 1 . We say x -» £ 

superlinearly if c = 0 . We say x -* £ strictly superlinearly if 
n 

x   -• t    with weak order    p > 1 . n      ' K 

Examples 

Sane remarks and exaraplef. may help to clarify the definitions.    If 

p > 1    and    x    = exp(-p )(x+ o(l))     as    n -* co , then    x    — 0    with strong 

order    p    and asymptotic constant    1   .    If    cr > 1    and    x    = exp(-cr )(£+ (-1) 

then    x    -.0    with weak order    a >  but not with any strong order,   for the 
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limit in (2.1)  does not exist if   p = a >  is zero if   p < a ^  and is 

infinite if   p > a •    Thus,  convergence with strong order    p    implies 

convergence with weak order    p , but not conversely. 

If the limit in (2.1)  or (2.1+)  exists,  and    x    - ^ , then    p > 1 . 

If the limit  (2.1)  exists with   p = 1 , and    x    - £ , then    K < 1 

(K ^ 1   for linear convergence, and   K = 1    for sublinear convergence). 

Examples of sublinear,   linear,  superlinear,   and strictly superlinear 

convergence are   x    = — ,2      jn'1,  and    2 L'      respectively. 

5«      Convergence to a zero 

In this ^    '-" n we show that,  if the sequence    (x )    defined by (l.l) 

(q-1) ,  assuming only converges, ti ..   it must converge to a zero of    f 

that    f eC      la,b]   .    First, we need a lemma which gives a relation 

between the points    x , ...,x       ,   . 

Lemma 3.1 

If   x ,x 1,,...,x . are (distinct) points in    [a,b]  , and    x .     .. 
n    n+1 n+q '  * n+q+l 

satisfies (1.1), then 

q-1 
(  V   (x . . - x ,      ,))f[x ,...,Xl    1  = f[x , ...,x J     ,]   . 
\tjQ    nfi      n+q+1 ^      n'       ' n+qJ n        ' n+q-lJ (3.1) 

Pre of 

By the identity (2.2.6), 

P (x)   = f[x  ] + (x-x )f[x ,x_Ll ] r ... 
nvy n       v      n'n'n+l 

+ (x-x )...(x-x        ^ftx ,...,x ,   ]    , v      nJ      y      n+q-l'       n        7  n+qJ    ' 
(5.2) 

so 
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P^'^Cx) = (q-l)l{f[x ,...,x^    .] 

1=0 ^ 

Thus,  the result follows from (1.1). 

Theorem 5.1 

Suppose that    f eCq    [a,b]   ; that a sequence    (x )    satisfying 

(1.1)  is defined (see Section 1)  in    [a,b]  ; and that there exists 

lim   x    = $   .    Then    f^"1^)   = 0  . 
n -»oo 

Proof 

Suppose, by vay of contradiction,  chat 

For    0 < r < q , the identity  {2.2.k)  shows that 

(x J    -xj)f[x,...,xJ   1 = f[x , ...,x .     ,]- 
n+r      n+q'      n'      '  n+q n       '  n+q-lJ 

n n+r-1    n+r+1 n+q        v       ' 

Thus,  from Lemma 3.1, 

l-l 
x .,    -x J.    = H /     (x ^ -x _.  ^i)     * (5.6) n+r      n+q        n,r  .^  v  n+i      n+q+l' v       ' 

where 

XIX    t • •     « X TJX _«•••* X i 
n n+r-1    n+r+1 n+q ,, „v 

^n,r = 1 f[x,...,x4    J ^    ' (?-7) 
n n+q-1 

Both divided differences  in  (3.7)  tend to    rq"lj (0/(q-l) I    as    n -♦ 00 , 

so there is no loss of generality in assuming that the denominator 
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f[x , ••• ,x + 1 ] is nonzero for all n (on the assumption (3.4)), n n q-

and we have 

lim I..L = 0 n,r n _.. oo 

Summing (3.6) over r = o, •.• ,q-l and rearranging terms gives 

where 

I..L' n ' 
l -

and, by (3.8), there .is no loss of generality in assuming that the 

denaninator in (3.10) is nonzero for all n > 0 . From (3.6), with 

r = q-l , and (3.9), we have 

X -X = J.L (x -X ) n+q-l n-:-q n n+q n+q+l ' 

where 

The repeated application of (3.ll) gives 

and, by (3.8), (3.10) and (3.l2), I..L _.. 0 as n _.. oo , flO the right 
n 

(3.8) 

(3 ·9) 

(3.10) 

(3.ll) 

(3 .l2) 

(3.13) 

side of (3.13) tends to zero ~s n -+ oo • This contradicts the assumption 

tru t x 1 F x , so (3.4) must be false, and the proof is complete. (If 
q- q 

we do not wish to assume that any q+l consecutive points X , ••• ,x + n n q 
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are distinct, then we may argue as follows:    on the assumption O-h), 

the right side of (5.1)   is nonzero for all sufficiently large    n ,  and 

thus at least two consecutive points from   x .....x        _    are distinct. * n n+q+1 

Taking these two points in place of   x and    x    , we get a contradiction 

in the same way as from  (5.15).) 

h.      Superlinear convergence 

If    f   has one more continuous derivative than required in 

Theorem 5.1> then Theorem k.l shows that convergence to a simple zero 

of    f^~ '    is superlinear,   in the sense of Definition 2.2, provided the 

starting values are sufficiently good.    The theorem makes precise what 

we mean by "sufficiently good",    (in equation (^.1),    w    is the modulus 

of continuity:    see Section 2.2.)    Convergence to a multiple zero of 

f^    '     is not usually superlinear,  even if   q = 1    (see Section ^.2), 

and Theorem 3.1 above is the only theorem in this chapter for which we 

do not need to assume that the zero is simple.    Thus, there is no reason 

to expect that the algorithms described in Chapters k and 5 will converge 

any faster than linearly to multiple zeros of    f^    '   . 

Theorem h.l 

Suppose that    feC   [a,b]   ;    5e[a>b]   j    xn>«-'*x      are  (distinct) 

points  in    [a,b]   ;      5 max 
i=0, . . .,q 

\-i\ ; t^hi) =o; 

[5 -50,; + 50] c [a,b]   ;  and 

3w(f(ci);60)     <    lfrq)(C)l       • (^•1) 

1+1 
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Then a sequence    (x )    is uniquely defined by (l.l),    and    x    -* t, 

superlinearly as    n -* & .      Furthermore,  if,  for    n > 0 , 

5    =        max      |x _._. -M (h.2) n      .  ^ ' n+i    '' v      ^ i=0,.. .,q 

and 

^ = 3w(f(q);5n)/|f
(q)(0|    , (4.5) 

then the sequence    (6 )    is monotonic decreasing,  and 

Wl    ^   ^nVl       ' (^ 

Proof 

Without loss of generality,  assume that    5 = 0.    Let    6      and   \ 

be as in the statement of the theorem  (equations  {h.2)  and (4.5)). 

Since    f'q~ ^(0)   = 0 ,    Corollary 2.S.1 to Theorem 2.5.1    (with 

k = 1 ,    n = q-1)    gives 

flx^...^^  = (T   x1)f(q)(0)/ql+R1    , (4.5) 

where 

if 

iRj  <6'w(f(q)
;5')Aq-l)l       , (4.6) 

6«   -        max      jxj  < 60    . (4.?) 
i=l, ...,q 

Similarly, 

^v-'V'^'^V 'ifji^y ' (k-8' 

k2 



where 

|R2| <w(f(<l);50)/|f(<l)(0)|  ^XQ/?    <   1/3      , (^.9) 

so 

S3I    =    li^l    <   XJ2   <   1/2 (1..10) 

(Note that the assumption  (U.l)  ensvires that    f[x , ...,x ] / 0   .) 

Fran (^.5),   (^«8),  and Lemma 5.1 (with   x      and    x     interchanged). 

^-^ ^--i^y^>*. • (lull) 

where 

R^E5'ixl)£TTM + Rl(1 + R5)    • 
1=1 ^ 

(U.12) 

From (U.6),   (U.y) and (I+.IO),   equation (U.12)  gives 

X05.|f^(0)|        ^^^.^ 
RUI    ^ 2.(q-l)l      +    2.(q-l)! > (^•13) 

so,   from (U.5) and (U.7), 

XoB'If^^O)! 
IRJ ^ -VDI  (U.lU) 

Now,   fron (H.ll), we have 

IViJ  ^ \)5, (U.15) 

By the assumption (U.l),       \    < 1 ,  so    x lies  in    [a,bj  ,    6      and    ) 

are well-defined,       ^-t   - ^,  5 &-) »      ^-i £ ^^ »  an(^ 
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|xq+1| < ^    . (4.16) 

In the same way, we see that    5    > 5,  > 5p > ...     , 

1 > \0 > X-L > X2 > • • •  ,  and,   for    n > 0 , 

|x ^ inI    <   X 5 ^n       . (4.17) 1  n+q+11    -      n n+1 v       '' 

Thus,  the inequality (h.h) holds,   and it only remains to show that 

x   -»0    superlinearly.    Fran (h.h)  and the above. 
n 

Vl^oV"\k-l)ci5l<X0&l    ' ih'lQ) 

and    \^ < 1   by assumption (k.l),   so   5    -«0    as    n -♦ oo .      Thus,  by 

the continuity of   f^    and the definition (4.5),       K* " 0    as    n -»» . 

Take any    e > 0 .    For all sufficiently large    n , 

Xn    <   Eq       , (4.19) 

so,  from (4.4), 

11m sup 5 
^   n 

n -»oo 
I/"    <   e     . (4.20) 

As    e    is arbitrarily small,  this shows that 

lim   |x   j1/"    =    lim 6l/n    =    0      . (4.21) 
n1 n 

n -»oo n -»JO 

Thus,     x    - 5  - 0      Buperlinearly,   and the proof is complete. 

Remarks 

The proof of Theorem 4.1 shows that, for n>0, |x   -,-Cl is 
— '   n+q+1    ^ 

no greater than the second-largest  of    |x   -5|,...,|x -C|   •    Thus,   if 
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q = 1 , the sequence    (|x   -C|)    ^s Monotonie decreasing,   except perhaps 

for the first term.    In fact, the proof shows that,  for    q = 1    and 

n > 1 , 

|x        . (;| 
n+1       ''       ■    • -   0      as    n - » (^.22) 

Tir^TT - ^-i 

(provided x / ^) . This is a common definition of "superlinear 

convergence", stronger than our Definition 2.2. 

If q > 2 , the sequence (|x - C|) need not be eventually 

monotonic decreasing: monotonicity would follow from strong superlinear 

convergence with order greater than 1 , but more conditions are necessary 

to ensure this sort of convergence (see Sections 6 and 7)' 

5«  Strict superlinear convergence 

Aseuming slightly more than in Theorem h.l,  Theorem 5.1  shows that 

convergence to a simple zero of f^ '  is strictly superlinear, 

according to Definition 2.2. Before stating the theorem, we define some 

constants ß ^ and 7   which are needed here and in Sections 6 and ^. 

Definition ^.1 

For q > 1 and a > 0 , let the roots of 

xq+ - x+a (5.1) 

be  J«  , for i = 0,...,, , with  ju^l > ^J  > ...  > |u^)| . 

Then the constants ß    and y are defined by pq,a     'q^ * 

ß   = lu(0)|  and  7   = |u(l)l  . 

^^^MM^^M^^M^^MMHIBBMB^HaaaBMMHitMHHaailMfHM 
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Since the case   a = 1   often occurs, we write simply   ß     for 

ß    T    ,  and   7      for    7    n   . Kq,l 'q 'q,l 

Eemarks 

ß is just the positive real root of (5«l)^ and it is easy to q,u 

see that, for   0 < a < 1 , 

1 

(I + Q0
2<1+1

   <   ßq^   <   (l+a)^     . (5.2) 

We are only interested in the constants    7    _   when   a - 1 .    If 
q*ct 

a = 1   and   q > 2   then there are exactly two complex conjugate roots 

of (5*l) with modulus    7     .    If   q = 1   or   2    then   7    < 1 , but,   for 

q >3 , 

1 < 7    < ß 
q      q 

This may be proved by applying the Lehmer-Schur test to show that,  for 

suitable    e > 0 ,  exactly    q-2    roots of 

xq+1 = x+l (5.3) 

lie in the circle    |x| < 1+ e  .      The details are emitted, for all cases 

of practical interest are covered by Table 5*1^ which gives   ß     and    7 

to 12 decimal places for   q = 1, ...,10  .      The table was computed by 

finding all roots of (5«3) with the program of Jenkins  (I969),  and the 

entries are the correctly rounded values of   ß      and   7      if Jenkin's 
q q 

a posteriori error bounds are correct. 
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Table $.1:      The constants    ß      and    7      for   q = 1(1)10    to    12D 

.2) 

1 

2 

3 

U 

5 

6 

7 

8 

9 

10 

1.618055988750 

1.52^7179572^5 

1.22071^o8U6o6 

1.167505978261 

1.15^7241581402 

1.11277568^279 

1.096981557799 

I.0850702U5491 

I.075766066087 

I.068297188921 

0.618055988750 

O.868856961855 

1.065556958821 

1.0990005151^6 

I.09917U915506 

1.091955505766 

1.0857^5696285 

1.076155154055 

I.069448852721 

1.065666958404 

See Definition 5'1 and the remarks above for a description of 

the constants    ß     and   7 
1 q 
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Theorem ^.1 

Suppose that    f € LC^a^bjMjQ!]     (see Section 2.2);    ^ e (a,b)   ; 

f (S)  = 0  ; and    f^q^(0  / 0  .      If    XQ, ...,x      are (distinct and) 

sufficiently close to    t,  ,  then a sequence     (x )     is uniquely defined 

by (1,1).,  and   x    -♦ ^    with weak order at least    ßn      ,  the positive 

real root of   xq      = x + a . 

Remark 

,,  - .«=..       Ix. -M  ,  then,   from Theorem ^.1,      xrt, ...,x If   S^ =       max 
i=0, • • .^q 

are "sufficiently close" to    ^    if   50 < ^ " a ^    5o - ^ " ^ ^  and 

3M5^   <    |f(q)(0|    • (5A) 

If these conditions are satisfied, then an upper bound on |x - ^ 

follows from equation (5»10) below. 

Proof of Theorem !?.! 

For n > 0 , let 

1=0,.. .,q 

Suppose that x , ...,x  are so close to %    that the conditions 

mentioned in the remark doove are satisfied. Then Theorem U.l shows 

that (5 ) is monotonic decreasing to zero, and 

< -^ 6^6_  . (5.6) 
n+q+1 - jf(l)(^ 1 n n+1 

If eventually    6    = 0 ,  then the result  follows ii-jnediately:     by 

our definition,       x    -* *    with weak order    OD  .    Hence,  suppose that 
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5    / 0    for all   n > 0    (and thus,   from (5.6)',      M > 0 ).    Let 

*n -lo^5 3M 
n   \Jd f^ja) 

l/a 
(5-7) 

(not the same    X      as In Theorem h.l).      From condition (^.h) and the fact 

that    (5 )    is monotonic decreasing,      0 < X^ < X.  < A.    < ...  ,  and,  from 

equation   .'   6), 

Xn+q+l   -    Vl ' % (5.8) 

■^ 

Since   ß    ^ > 1 , we have 

^    >    X0^ 
n-q 
q,a (5-9) 

for   n = 0, ...,q .    Thus,   from (5.8)  and the definition of    ß        , the 
q,u 

inequality (5.9) holds for all n > 0 , by induction on n . Hence, for 

all n > 0 , 

■^ iv si->-^-> ^,> i Hä (5.10) 

Since    XQ > 0      and   ß       > 1 ,  equation (5.10)  shows that 

lira inf (-log Ix    - M)1^    >   ß   ^      , v      0 i n      a|/ —     q,a     ' 
n -» öD ^' 

(5.11) 

which completes the proof. 

Note that, in the important case a = 1 , there is a simple proof of 

Theorem 5.1 which does not depend on Theorems 2.5.1 and k.l.    Also, this 

proof shows that, instead of (5.^), the condition 

3MS0 < 2|f(q)(C)| (5.12) 

k9 

-  '■* -■ 
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ie sufficient.    The iiea is this:    by applying Rolle's Theorem    q-1 

times, we see that    P^~ ' (x)    coincides with    f   at points    |      and    |' n -^ n n 

say, with    U   -t    <5      and    Uf  - t\ < 6'  = the second largest of 

|x   -5|,"^|x       -5|   •      Thus,  fron Lemma 2.4.1, 

|p(q-l)(S)|    <   IMö 8.       . 
1 n        ^»'1   —   2     n n (5.13) 

On the other hand,  equations (1.1) and (3.3)  show that 

p(q-l)(S) 

n+q+1    ~    '      q!x[x , ...,x      ]"    ' (5.1^) 
n n+q' 

so we can bound     x        -, - C    >  and then the result follows in much the 1 nrq-i-1    •' 

same way as above. 

6.      The exact order of convergence 

Theorem 5.1 gives conditions under which   x    -» £    with weak order at 

least   ß    .    It is natural to ask if the order is exactly   ß    .    In general, 

this is true, but some conditions are necessary to ensure that the rate 

of convergence is not too fast:    for example, the successive linear 

interpolation process    (q = 1)    converges to a simple zero    $   with weak 

order at least    2    (> ß.,  = I.618 ...)    if it happens that   f"(S)  = 0 ,  for 

then linear interpolation is more accurate than would normally be expected. 

Theorem 6.1 gives sufficient conditions for the order to be exactly   ß    . 

Apart from the condition    f^      (£) / 0 >  it is necessary to impose seme 

conditions on the initial points    x , ...,x .  (ihese extra conditions are 

superfluous if   q = 1 :    see Section 7  .) 
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Before proving Theorem 6.1, we need two lemmas. lemma 6.2 is 

concerned with the solution of a certain difference equation; and is 

closely related to Theorem 12.1  o ■" Ostrowski (1966).  (The lemma coiild 

easily be generalized, but we only nted the result stat d.) Lemma 6.1 

gives a recurrence relation for the error x - ^ . Special cases of this 

lemma have been given by Ostrowski (I966) and Jarratt (1967, 1968). 

Ostrowski essentially gives the case q = 1 , and Jarratt gives weaker 

results for q = 2 and q - 5. (our bound on the remainder R  is 

sharper than Jarratt's, and we do not assume that f is analytic.) In 

Section 8, we show how the result of Lemma 6.1 may be used to accelerate 

convergence of the sequence (x ) . 

Lemma 6.1 

Suppose that    feCq+1[a,b]   ;     5e[a,b]  ;    f^"1'^)   =0 ; 

f      (t)  / 0  >    x »•••>x are (distinct) points in    [a,b]  ;    and 

x        ,     satisfies equation (1.1).      Let    6     be the largest of 

|x -5l,...,|x     -51   ;    and   6'    the second largest.    Then 

where 

Xn+q+l " ^ 
f (q+l) / M 

^ 
I 

q(ct*l)f^(S)    0<i<j<q 
v  n+i    s/ v n+j    *'        n  ' 

(6.1) 

R    = 0(5 B'[6   +w(f(q+1);8 ) ]) 
n        v n n    n      v ' n^   ' (6.2) 

as    8    -• 0  . 
n 

Proof 

Without loss of generality,  assume that    n ^ 0    and    £ = 0  .    Rearrange 

51 
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x0 , ... ,xq, if necessary, so that lx0 1 S lx1 1 S ... S lxql . From 

Lemma 3 .l, 

~l 
q.x +lf[x

0
, .. . ,x ] = ( L x.)f[x

0
, ••. ,x ] - f[x

0
, ••. ,x _1 ] • 

q q i =O 1 q q 

Thus, as f(q- l)(O) = 0 f f(q)(O) , Theorem 2.5.1 gives 

( 6.3) 

q-l f(q) (0) \ f(tl) ~0) - (( L x. ) q! + ( L.. xi x ) - q+ l ! + r3) ' 
i~ 1 OS i Sj<q j 

(6.4) 

where 

( 6. 5) 

lr2l < o
0
w(f(q+l);o

0
)jq! = o(o

0
w(f(q+l);o

0
)) , (6.6) 

and 
o' 2w(f(q+l) ·6') 

O(o0
2w(f(q+l);o0)) . lr3\ < 

0 ' 0 ( 6.·7) 
2(q-l)! 

as 50 -0 • 

The right side of ( 6. l~) is just 

< 'L x.x ) 
osi<jsq 1 j 

+ r4 ' 
(6.8) 
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where 

Kl < ^o\r2^+ N 0(^5'w(f((1+l);50)) (6.9) 

as    5    -♦ 0 ,   so the result follows, 

Remarks 

Fran the bounds on    r,,.. .,r,   ,  it is easy to derive an explicit 

bound on      R        for sufficiently snail   5     .    For our purposes, though. n n 

the relation (6.2) is adequate. A  simple corollary of (6.2) is that, 

if f ^q-+1^ z Lipu CJ , then 

R =0(fc1+a6') 
n   v n   n7 

(6.10) 

as 5 -» 0 . 
n 

Lemma 6.2 

Suppose that   \   -.K»    as    n-*oo, and, for   n > 0 , 

Xn+q+l " Ni+1 - \    - k n        n (6.11) 

where 

nv 
kn   =  0(8") (6.12) 

as    n -»a» ,      s    a constemt.      If   y    < s < ß     then 
q q 

\   =  C.ßq+0(8   ) (6.15) 

as    n -• öD .  and if   k   = o(s )    as    n -• »   then 7 n ' 

K    = c.ßn + o(sn) 
n q 

i6.lh) 
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as     n-oo.      If0<s<7      then 
q 

Kn = c.ßn
q+ 0(nV.7^) (6.15) 

as    n -• oo , where 

(6.16) 

and c is a nonnegative constant. 

Proof 

The restriction luJ < 1 in Theorem 12.1 of Ostrowski (I966) is 21 

unnecessary, for we can choose any \ with |up| < \ < [u, ]  and 

consider \ /\ , instead of \ , in Ostrowski's proof. Thus, in view 

of the remarks after Definition 5.1,     ('J.I^) and (6.15) follow from 

Ostrowski's Theorem 12.1. (6.1k)  does not follow directly in the same 

way, but the proof of Ostrowski's Theorem 12.1 goes through, assuming 

k = o(s ) instead of k = 0(s ) , and giving a result from which (6.1^) 

follows. The only difficulty is in proving the modified form of 

Ostrowski's Lemma 12.1, but this follows fron the Toeplitz lemma: if 

k -»0,  111 < 1 , and z =k+k ng+... + k_e
n , then z - 0 as n   '   i3!    > n   n  n-1      0- n 

n - a»      (see Ortega and Rheinboldt (1970), pg. 399). 

Theorem 6,1 

Suppose    feCq+1[a,b]   ;    £ e (a,b)   ;    f^ki)  = 0 ;      f(q)(0/0; 

and    f^q+1^(0 / 0  .      If    |x0-^|     is sufficiently small, 

xi-i - ^1   ^ Mxi - C| (6.17) 

^ 

I 



3.6 

f or i = 1, 2, ... ,q, and 

where 

' 

then a sequence (x ) n 
is uniquely defined by (l.l), and x .... C with n 

weak order exactly ~ . 
q 

In fact, if q = l or 2 then x .... C with 

(6.18) 

(6.19) 

strong order ~ and asymTtotic constant 
q 

~ -1 n 
\K\ q , and if q ? 3 t hen 

- log\xn - t I ( 6 .20) 

as n .... CD , for sane positive constant c . 

Remarks 

Condition (6 .17) ensures that x0 , ... ,xq approach t sufficiently 

fast, ile (6 .18) makes sure that they do not approach t too fast. 

These conditions could be weakened, but Theorem 7.1 shows that sane such 

conditions are necessary if q ? 2 . If q = 1 th~n the conditions 

are superfluou.s: see Corollary 7 .l. 

Equation ( 6 . 20) implies that (2 .2) holds with p = ~ , but (2.1) 
q 

does not necessarily hold, for 

Proof of Theorem 6 .1 

Let y = jK(x - t)l · n n 

.., > 1 if q? 3 • 
q 

Fran the assumpti01:s (6 .17) and (6 .18) we have, at lec.st for n = 0 , 

55 
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Vi-i > Vi ^•22) 

for    i  = 1,2,.. .,q , and 

Vq    >   Vn+1    >   0    * ^•25) 

We shall show that (6.22) and (6.23) hold for all n > 0 . Suppose as 

inductive hypothesis, that they hold for all n < m . Then, by taking 

|x - £| sufficiently small (independent of m) , we may suppose that i he 

remainder R  of Lemma 6.1 satisfies 
n 

for all n < m . Thus, from Lemma 6.1, 

Wl   ^   ymVl^ + t+Ä+3^+   ••• + Ä) 

-   2 JmJm*l < |ymy^i    • (6.25) 

From (6.25) with    n = m , this gives 

Vq    >   Wl    ' (6-26) 

Similarly, 

y_^-,   > y..y_.-,(i - r - — -   ; 
,,1225 IN 

Vq+1   ^   ynym+l
(1 " 5 " ^2 " 3 " ^ "   ••'   ' ^ 

! ^ i ymVl (6-2^ 

^   ^lym+2      * (6-28) 

Also,  from (6.27),    jr. +1 > 0 ^   so the right side of (6.28)   is positive. 

From (6.26)  and (6.28), we see that  (6.22) and (6.23) hold for    n = m+1 , 

so they hold for all   n > 0 , by induction.      Thus (6.25)  and (6.27) hold 

for all   m > C  . 
56 
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^w 

Let 

and 

\    = -log y 
n ^ Jn 

n        n+q+1        n+1        n 

(6.29) 

(6.50) 

From (6.25) and (6.27), 

k        _    log 2    , (6.51) 

so we may apply Lemma 6.2 with    s = 1 .    If   q > 5   then   7    > 1 ,   so 

\      =    c.ßn + 0(n.7n) 
n Kq q 

(6.52) 

as    n -♦ 00 .    From Theorem 5.1,    c > 0 ,   so the result for   q > 5    follows, 

If   q - 1    or    2   then   7    < 1 ,   so 
q 

.n 
X. = c.ß' + 0(1) 
n    Kq   v ' (6.55) 

as n -• ao . From (6.29), (6.30), (6.33) and Lemma 6.1, we now see that 

k = o(l) 
n   v ' (6.510 

as    n -. oo ,  so,  by equation (6.1^) with    s = 1 , 

\   = c.ßn + o(l) ü ^q        v   ' (6.55) 

as    n -» C5  .    Tlius,  there exists 

lim —^- 
n -*»      pq 

y n 

=    1    , (6.56) 

.(q+i) so the result follows frotr equation (6.21).    (Note that,  if    fw ^ c Lip., a 
M 

for any M and a > 0 , then (6.5*0 may be replaced by k = o(s )  for 

any s > 0 , so (6.15) nolds, and 
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*- -^1        . A-1 

n 

as   n -»«a .) 

2Ü—1-    =    IKI«     + 0(n«-1 . ^) (6.57) 
x   - £1 1 

7 •      Stronger resiilts for   q = 1   and    2 

In this section W9 restrict our attention to the two cases of the 

greatest practical interest,    q = 1    (successive linear interpolation) 

and   q = 2    (successive parabolic interpolation for finding an extreme 

point).    Corollary 7-1 shows that the conditions (6.17) and (6.l8) of 

Theorem 6.1 are unnecessary if   q = 1 . 

Corollary 7*1 
p 

Suppose that    q = 1  ;    f eC  [a,b]   ;    (; e (a,b)   ;    f(5)  = 0 ; 

f (C) / 0 ; and    f"^) /■ 0 .      If   x0 , x^^   and   £    are distinct and 

sufficiently close together, then a sequence    (x )    is uniquely defined 

by (1.1),  and   x   -» {J    with strong order   ß    = - (1 + /5)    and asymptotic 

constant      L.p.m I as   n - oo . 

Proof 

mr 

From Lemma 6.1, 

X2-C    =    2FTf} (X0"5)(X1-S)(l+O(l)) ^'^ 

as      max(|x -^j,   |x -^|)  -0  .      Thus, Theorem 6.1 is applicable to the 

sequence    (x1)  , where    x'  = x        , provided    x     and    x     are sufficiently 

close to    5  • 

5Ö 
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Remarks 

Ost rowski (1966) gives Corollary 7.1 with the stronger assumption 

that f EC3(a,b] . He also shows that, if f EC3[a,b] and the 

conditions of Corollary 7.1 are satisfied, then 

(7.2) 

e.s n .... oo • As we remarked at the end of the proof of Theorem 6 .1, the 

2 relation (7 .2) holds provided that f Eu:; [a, b ;M,a] or sane M and a 

(see equation (6 . .37)). For an even weaker condition, see (7.7) and (7.8) 

below. 

The following thecrem removes the rather artificial restrictions 

(6.17) and (6.18) of Theorem 6.1, if f(q+l) is Lipschitz continuous 

and q = l or 2 • The proof does not extend to q ~ .3 , because it 

depends on the assumption that 

and q = 2 ( see Table 5.1). 

Theorem 7.1 

r < l , which is only true for q = l 
q 

q+l fEU:: (a,b;M] t E (a, b) ; Suppose that q = l or 2 ; 

f(q-l)(t) = 0 ; and f(q)(t) f 0 • If x0 , •.• ,xq are (distinct and) 

t , then a sequence (x ) is uniquely defined sul'ficiently close to 

by (l. l), B.:ld either 

l: X -+ ~ n with strong order 

n 

~ and asymptotiu constant 
q 



3-7 

IVi - i 

n ^ 

f(q+1)(0_ 

q(q+l)f^(S) 

n     + 0(n^      / ) (7.3) 

or 

as    n - OD    (recall that    ß   ~ 1.6l8 ,    ß2 ^ 1.525 ,    7- ^O.ölS , 

and   7    ~ 0"869)   ; 

2:      x    -• 5    wtth weak order at least   2   if   q = 1 ,  or n 

c2-^)5 - 1-378   if ^2 • 

- 
i 

Remarks 

If   q = 1   then, by Corollary J.l,    case 2 of Theorem 7.1 is 

possible only if   f"(S) = 0    (or if one of   x     and   x      coincides with    5 > 

vhen the weak order is     « ). 

If   q = 2   then case 2 is possible, although unlikely, even if 

f     (S) / 0    and   x   / 5    for all   n .    All that is necessary is that 

the terms in relation (7.28)  repeatedly nearly cancel out.    Jarratt (1967) 

and Kowalik and Osborne (1968) assume that such cancellation will eventually 

die out,  so the order will be   ß_  .     The conditions (6.17) and (6.18) 

are sufficient for this to be true, but without sane such conditions there 

is a remote possibility that cancellation will continue indefinitely. 
o      p 

7or example, with f(x) = 2x ♦x , there are starting values x , x 

and x2 such that 

and 

x2n ~ exP(-2n) 

x2n+l ~ -exP(-?n) ' 

)  (7A) 

J 
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so   x    -• £ = 0    with weak order   /?.   .      Similarly,  if 

7 =|(3 + /5)    =   2.618 ...  , (7-5) 

then there are starting values such that 

x5n    ~   exp(-7 )    , 

X3ttfl   ~   exp(-(7-l)7n)    , 

and 

3nt-2 -exp(-(7-l)7n    )     , 

(7-6) 

J 

so   x   -• 0   with weak order   y '    = 1.378  ...  .   The x.roof is emitted, 

but the reader may easily verify that  (7'^) and (7.6) are compatible 

with Lemma 7'3 below (this depends on the relation   27-I = 7(7-1))   . 

For the sake of simplicity, we have not stated Theorem 7.1 in 

the sharpest possible form.      If   f'q+ '(C)  = 0 , then   x    - $   with 

(q+D 
Li% 

a   for weak order at least  ß .  > ß , provided that f 

some M and a > 0 .  If  f^q+ '(5) / 0 , then the theorem holds 

Q+l 
provided that    f 6CH    [a,b]  .    Equation (7.3) may no longer hold, but if 

there is an    e > 0    such that 

w(f(<1+l);5)     =   0(|log6|"e/q) (7.7) 

as   8 -• 0 ,  then 

1^1 - 5 D+l 

K ■ «I 
ß. f(1+1Y 

q{q+l)^
q'{C) 

^ 

>, 
0(nq"17n)       if    e  > 1 ," 

=    (   0(nq7q) if    e = 1 ,\(7.8) 
/ 

V. <) if    E < 1 , 
J 

as   n -» 00 .       (A condition like (7'7)  occurs in seme variants of Jackson's 

theorem:    s ee Me inardus (I967).) 
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Before proving Theorem 7 .1, we need three rather technical lemmas. 

Lemma 7.1 

Suppose that, for n ? 0 , 

xn+3 = xnxn+l + xn+lxn+2 + xnxn+2 + mnB~B~ , (7 .9) 

where Bn is the largest of lxnl , lxn+1 1 And lxn+2 1 , and B~ is 

the second largest. If there is a positive constant L such that 

l~L? lx01 ? 3\~1 ? 91~1 ? 271~\' and 

Proof 

As in the proof of Theorem 6.1, it follows by induction on n that 

for al.1 n > 0 • 

Lemma 7-2 

If the ~cndit ions of Lemma 7.1 are satisfied, then either x = 0 n 

for all sufficiently large n , or 

as n-+a>. 

(7 .ll) 
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Proof 

If   x    / 0    for infinitely many   n   then, by Lemma 7.1,    xn / 0    for 

all   n > 0 .    If this is so, define   \   = -loglx I    and — n ' n1 

k    aX^-X-.^-X    .     From equation (7.1l)>      k     is bounded, so n       n+5      n+1     n ^ ^      "        n 

Lenuna 6.2 with   8=1   gives    \    = cß2 + 0(1)    as   n - « .      By 

Lemma 7.1,      \   -»+oo,so   c>0.      Thus, from (7.9), 

»n+l,. 
k    = 0{ew[Mßr>'l)ßo]) (7.12) n 

as   n -» *    (this is not necessarily true in the proof of Theorem 6.1). 

Now, Lemma 6.2 with   s < 72    gives 

Ni = Cß2+ 0(n72) (7-13) 

as n -♦ » , and the result follows from the definition of X . n 

Lemma 7*3 

Suppose that (7 »9) and (7*10) hold.   Then there are constants   K 

and   N    (depending on   L)    such that if, for some   n >N , 

and 

then 

I > Ivil * *KJ  • (7-15) 

x ^,    =   xx^. (l+vn    ) ,                                                             (7 «16) n+5          n r&l>         1,^ '                                                             M      / 

2 
x ^1.    =   x x ^,(1 + v0    ) + x ^^ AO(l + v,    )   ,                         (7 »17) n+4           n n+lv          2,^ n+1 n+2v          J^n'   '                          v«     ■/ 

I 
x^c    =   x2x\-(l+ v.     ) + x x ^.x ^0(1 + vc    )  ,                    (7-18) n+5           n n+lv          h,^ n n+1 n+2v          5,n/  '                     vi       / 
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and 

x..^    =   x2x.^1(l+ v.    ) + x x ^_x . 0(1 + v.,    )  , (7.19) n+6 n n+V b,n'        n n+1 n+2v IJV. \\    ;i 

where 

K 

for   i = ^ ...,7  . 

Proof 

The lemma follows by repeated use of the recurrence relation  (7-9) 

and the inequalities  (7.10),  (7.1^) and (7.15). 

Proof of Theorem 7.1 

Without loss of generality assume that    S = 0 •    First suppose that 

q = 1 .    If.   f'tO) / 0     then the theorem holds, by Corollary 7.1.      If 

f"(0) = 0   then,  by Lemma 6.1, 

as   8    -♦ 0 , where    5      and   6'    are as in Lemma 6.1.      If   x^    and   x, n n n 0 1 

aj'e sufficiently small,  equation (7«21)   implies that 

8n    =    lxnl C'-22) 

and 

for all   n > 1  .      Thus    x   -0    as    n-»»,  and - n ' 

lXn+2l    <   A2|Vn+ll «'^ 

6k 
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for all    n > 0 , where   A    is some positive constant.     If some   x    = 0 n 

then   x1^=xir, = ...=0.  and we are finished (weak order   «.) n+1       n+2 v ' 

Otherwise,  there is no loss of generality in assuming that 

AU I    <   exp(-2n) n 

for    n = 0    and   n = 1 .    From  (7.2h), equation (7.25)  holds for all 

n > 0 ,  by induction on   n  .    Thus,  the weak order of convergence is at 

least    2 ,   and the proof for    q = 1    is complete. 

From now on,  suppose that    q = 2 .    By Lerama 6.1, 

(7-25) 

f(3)(0)   , 
cn+3   "     6f"(0)   lxn 

.(3) 

x ^ + x ^nx^0 + x x ^0) + 0(8 6») (7.26) n+1       n+1 n+2        n n+2/ v n n7 v ' 

as    n -♦ 00  .      if   f ^  ' (0)  = 0    then the weak order of convergence is at 
3 

least    ß , the positive real root of     x    = x+2 ,  by a proof like 

that above for   q = 1 , and the theoran holds as    ß0 0 = I.52 ...  . 

(3) If    fv'(0)/0,  then we may as well suppose that 

ftr1 = 1 > "-^ 
by a change of scale,  as in the proof of Theorem 6.1.    Thus, we mi'St 

study the interesting recurrence relation 

x-^z = x x ..T  + x ^x ^r, + x x ^ + 0(6 6»)     , n+5       n n+1       n+1 n+2       n n+2        ^ n n'     ' (7-28) 

and, by Theorem 5«1* we can assume that   x   - 0   with weak order at 

least    ßp   . 

First suppose that the %e is an infinite sequence    N = (n ^n..,...) 

with the property that,  for every    i > 0   and   n = n.   ,   either 
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1: 
i+l (7.29) 

and 

kn lx x'j-nl     <    lx ^ol     <    2|x x 1   n n+11    -    '  n+2'    -       •  n : n+11     ' (7-30) 

or 

n 
i+l 

n+5 (7.31) 

and 

lXn+pl       <     H*XJ nVl' (7.52) 

If either (7-30)  or (7-32) holds, then Lemma 7.3 is applicable for all 

sufficiently large   n = n      in the sequence   N .    To avoid confusion 

with sutscripts,  write   .-n    for   n.+1     (so   ra = n+2    or    n+5 ).    If 

n = ni    U sufficiently large* and (7.29)  and (7.30)  hold, then 

lx I     <   2|x x _l 1 m1    -      ' n n+11 (7.33) 

and, by Lemma 7.3> 

lx ... I     <   2|x x Ll I 1  m+11    —      ' n n+11 (7.3M 

If (7.31) and (7-32) hold then,  similarly, 

|x I     <   2|x x 1 nr    —       ' n nfl (7.35) 

and 

ra*-!1    —      ' n n+11 (7.3r.) 

Let 

y   = ^ x n '  n (7-37) 

Alter a fixed      n  ^ n.    in   N ,  suppose that the next    r > 1    element: 
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of N "'a.tis:t'y (7 .31), and t hen th.e next s ~ l .:;at is:t'y (7 .29) . Then 

repeated use of the inequalities (7 .33) to (7 .36) gives 

max(y y ) < max(y y )~(r,s) 
· n+3r+-2s' n+3r+2o+l - n' n+l , 

where 

Let 1 

( 3r+-2s 1V(r, s) = ~ r, s) 

('7.38) 

(7 ·39) 

(7.4o) 

For fixed s ~ 1 , 'f(r,s) is a decreasing function of r , with limit 

1 

c = (3 ; /"5) 3 = inf 'f(r, s) 
r,s ~1 

s.s r ..... co • Thus, 

the theorem holds. 

x - 0 with weak order at least c , so c se 2 of 
n 

(7 .41) 

Now suppose that there is no infinite sequence N as above. By the 

superlinea.r convergence of (x ) ' n 
Lemma 7.3 is applicahle for infinitely 

many n • Choose such an n (sufficiently large) • There are only 

three possibilities: 

1. Equation (7 .30) holds; 

2 . Equation (7 .32) holds; or 

) . Neither (7 .30) nor (7 .32) holds , so 

(7 .42) 

In the first case, Lemma 7.3 shows that we can replace n by n+2 , and 

continue with one of the three cases (it is crucial to note that Lemma 7.3 is 
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still applicable).    In the second case,  Lenma 7'5 shows that we can 

replace    n   by   n+5    and continue.    Since no infinite sequence   N   with 

the above properties exists,  the third case must   eventually arise.    Then, 

from (7-^2) and Leinma 7-3^ we see that Lemma 7.2 is applicable to the 

sequence    (x') , where   x'  = x        ,  .      By Lemma 7'2,     (x1)    converges 

with strong order   ß0   and asymptotic constant    1, and hence,  so does    (x ) n' 

In view of the assumption (7.27), this completes the proof. 

8.      Accelerating convergence 

If a very accurate solution is required,  and high-precisica evaluations 

of   f   are expensive, then it may be worthwhile to try to increase the 

order of convergence of the successive approximations by some acceleration 

technique.    For example, we can use Lemma 6.1 to improve the current 

approximation at each step of the iterative process.    Jarratt (1967)  suggests 

one way of doing this if   q = 2 , but the method which we are about to 

describe seems easier to justify (see Theorem 8.1), and applies for 

any   q > 1 . 

Suppose that   x , ...,x are approximations to a simple zero    5 

of    f^~ *   .      For example, they could be the last    q+2   approximations 

generated by the successive interpolation process discussed above.   We 

may define   x   p,x +,, ...    in the following way:    if n > 1    and 

X-,. •., x 
n+q 

are already defined, let P = IP(f;x ,...,x  ) , and n n n+q' 

choose    y      such that an 

P^Cy )   =   0   , n        wn/ (8.1) 
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i.e.,      y      is just the next approximation generated by our usual 

interpolation process.    From Lemma 5.1,      y      is given explicitly by 

^n    =    i (.£ Vi 
^    1=1 

f[x nfr r£Q 
f[x ,. .^x^   ] rr n+q 

(8.2) 

Instead of taking   y     as the next approximation   x^ . _ , we use n nrq+J. 

Lemma 6.1 to ccmpute a correction to   y    ,  and take the corrected value 

as the next approximation.      Formally, we define   x       .    by 
nrCj+J. 

f[x 

n+q+1 yn " q 
h-r 

•I|X   •*•••X I 
n'      ' n+q n (8.3) 

where 

s    = L (x _,.. 
n      0<i<j<q      n+i Vr) (xn+j  " V     ' (8.10 

For a Justification of equations (8.3) and (8.U),  see the proof of Theorem 

8.1 below.    This theorem shows that, under suitable conditions, the 

sequence    (x )    is well-defined, and   x   -» ^   with weak order appreciably 

greater than   ß    , which is the usual order of convergence of the 

unaecelerated process (see Sections 5 to 7) ♦      Note that there is very 

little extra work involved in computing   x + +1    from equations  (8.3) 

and (Q.h)  if   y      is computed via (8.2),   for    f[x ,...,x      ]    and 

f[x      ,...,x ]       (except at the first iteration) will already be 

known. 

Before stating Theorem 8.1, we define some constants    ß'    which 

take the place of the constants   ß      (see Definition 5.1)  if the 

accelerated process is used. 
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Definition 8.1 

For    q > 1 ,      f'     is the positive real root of 

xq+2    =   x2 + x + 1    . (8.5) 

Remarks 

It is easy to see that    ß* > ß    , and,  corresponding to the bound 
1 4 M. 

(5.2), we have 

1 1 

3q+1   <   ß»    <   3q       . (6.6) 

If x -♦ (; with weak order ß > 1 then, by the definition of 

order (see Section 2), for any e > 0 we eventually have 

-log|xn - 5| > (ß - e)n . (8.7) 

Thus, the number of function evaluaticns required to reduce |x - £| 

below a very small positive tolerance is inversely proportional to log ß 

(assuming that approximate equality holds in (8.7)), and the ratio 

log ß 
■.  of     suggests how much we gain by using the accelerated process, 

q 

rather than the unaccelerated process, if very high accuracy is required. 

Fron the bounds (5.2) and (8.6), 

log ß 
lim 3—^ = l0g^ 2 = 0.6309... , (8.8) 

so there is R. 37 percent saving for large    q  .    Of course, the only 

practical interest is in small values of   q ,  and in Table 8.1 the 
log ß 

values of    ß1  ,    ß        and    ■=——-rf     are given for    q = 1,2, ...,10  .    The 
4 1 q 

entries for   ß*    are correctly rounded to 12 decimal places,  and the 
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Table 8.1;      The constants    ß«    for   q = 1(1)10 to 12D 

r 

"4 

4 

1 ■                      "i 
log ßo/log ß^ ' 

1   i 1.83928675?21^ 1.6180 0.7897 

!       2      : 1A65571231877 1.32U7 0.7557 

5 1.32^71795721+5 1.2207 O.7093 

: h 1.2^98515888611 1.1673 O.6936 

5 1.203216033518 1.13^7 0.6832 

6 I.171321856385 1.1128 0.6757 

7 l.lWn ^97353 1.0970 0.6702 

:   8 1.13045957186^ I.0851 O.6658 

9 1.116575158368 I.0758 0.662? 

i  10 
i  

I.1053673229I19 1.0683 0.6595 
..    .       J 

I 

See Definition 8.1,  and the remarks above,  for a description 
logß 

of the constants ß* and the significance of the ratio  •; rf 
q log ß^ 

The constants ß  are given to 12D in Table 5.1. 
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other entries are given to h places (they are given for comparison 

only:    see Table 5'1 for the    ß     to 12 places).    The table suggests 

CO 5 ? 
that ßl = ß2 ,  and this is true, for xv - x - x - 1 = (xv - x - l) (x +1) . 

Theorem 8.1 

Suppose that    f eK;q+1[a,b;M]  ;    C e (a',b);    f^"1^^)  =0; 

f     (C) / 0 ; and   x ,...,x are (distinct) points in    [a,b]  .    If 

x0, ...,x    ..    are sufficiently close to   £ , then a sequence    (x )    is 

uniquely defined by equations  (8.2) to {&.k), and   x    -» ^   vith weak 

order at least   ß'    (see Definition 8.1) as   n -♦»  . 

Proof 

For   n > 1 ,    Ir/t   8      be the largest of    |x   -Cl>'"^lx_.   - t\   ', ~~ n ' n ' n+q 

let   8'    be the second-largest; and let 

8n -max^lx^-d)   . (8.9) 

If   y     is defined by equation (8.2), then Lemma 6.1 shows that n 

yn - S = K      t      (x    - c) (x    - 0 + o(5V) (8.10) 
0<i<J<q      ai "^^ nn 

as   8    -» 0 . where n 

f(q+l)/M 
K =      f       {

{J} - (8.11) 
q(q+l)f^(0 

In pai'ticular,   (8.10)  implies that 

yn-S =0(5^) (8.12) 

as   P«.   - 0 .      Thus,    for   0 < i < j < q , 
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(Vi-V^n+r^ v n+x    " v n+j      '       • n n' (8.13) 

as    6   -♦ 0 . n 

If   5      is sufficiently small then,  since    fVH/(t;) / 0 , we have (q) 
n 

f[x ,...,x +  ] / 0 , and, by Theorem 2.5.1, 

^^X
n_l'   *   *  *,Xvvi« J 

n+q 
(8.1U) 

as   6   -♦ 0 . n 

If     s      is as in (8A), then (8.13) and (8.lU) give 

113C      -•••••X I n-1'      ' n+q_    . s
n   =   K Z i*^A-t){*^*~i)h0ilj>J>l)    (8.15 

a ^n+qJ 0<i<o <q q.f[xM, ...,x  .   ]        n **A^4*^4^^  '"n:fi    "^'n+J    " »an 

as   &   -» 0 .   Thus, from (8.3) and (8.10), 

x ^ ^ -5    =   0(5 & 5') n+q+1    * v n n n' (8.16) 

as S -» 0 . This shows that, provided 5^^ is sufficiently small, the 

sequence (x ) is vmiquely defined, lies in [a,h] , and x -» J as 

n -• oo . 

From equation (8.16), there is a positive const suit   A   such that, 

for all   n > 1 , 

lx^. ^-1-51    < A2 & 5 5f       , 1 rH-q+1      »•    - n n n      ' (8.17) 

and, if   6,    is sufficiently small, then 

-log(A|xn.S|)    >   ß'n (8.18) 

for   n = 0, ...,q+l .    From equation (8.17) and the definition of   ß' , we 

see that (8.18) hold* for all   n > 0 , by induction on   n .    Thus 
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lim lnf(-log|xn - C|)n   >   ß'       , (8.19) 
n -» 00 

i.e., the weak order of convergence is at least   ß' , so the proof is 

complete. 

9.      Some numerical examples 

To illustrate the theoretical results obtained in Sections h to 8, 

we give the following examples: 

1. q = 1 ,    f(x)  = x+x  +x'   ,    x-  - 2 ,    x-   = 1 ; 

2. q = 2 ,    f(x)  = 8+6x2+4x5+3x    ,    x0 = 2 ,    ^ = 1 '    Xg = 0.5  ; 

?.     q = 5 ,    f(x) = 1+ l40x+ 10x5+ 5x + 3x5 ,    x0 = 2 '    yi = 1 ' 

x2 = 0.5 ,    x^ = 0.25 ; and 

k.      q = ^ ,    f(x)  = 1+ 2x+ lK)x  + 5x  + 2x^+ x    ,      x    = 2 ,    x    = 1 , 

x2 = 0.5 ,    x, = 0.25 ,    x^ = 0.125 • 

In all these examples 5=0, and the iterative process defined 

by (1.1) converges, even though the initial values are not very close 

to 5 • Apart frcw constant factors, the polynomials are obtained by 

differentiating the last one (for q = ^) h-q   times, so we are solving 

the same problem in four different ways. 

Table 9*1 gives the sequences (x ) produced by the successive 

interpolation process, for the functions and starting values given above. 

To illustrate the superlinear convergence, the entries are given until 

-20 
|x I < 10 ^ , although such high precision would seldom be required in 

practical problems. The table also gives the sequences (x1) produced 
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by the accelerated interpolation process described in Section 8, with 

starting values x.1 = x. for i = 0, ...,q+l . As predicted by Theorem 8.1 

and Table 3.1, the accelerated sequences converge appreciably faster than 

the unaccelerated ones. 

To verify relations (8.12) and  (8.16), the table also gives 

n 
n  x  x   _ n-q n-q-1 

(9.1) 

and 

r» = n 

x» 
n 

n-q n-q-1 n-q-2 
(9-2) 

when they are defined. With a few exceptions near the beginning of some 

of the sequences, both (|x |) and (jx'l) are monotonic decreasing, so 

r  and r' should be bounded. Prom Lemma 6.1, we expect that n     n 

f (q+D 
lim r =  —T--^   , 

n-» n  q(q+l)f^(S) 
7^ (9.3) 

and this is just   ; +-v  for our examples, 

proof of Theorem 8.1, we expect that 

lim r' = \)K ■ , 
n-» n   q(qfl)(q+2)f^(0 

Similarly, fron the 

(9^) 

and this is just        { +-\\f +o\     •      ^e reBults support these predictions. 

Table 9.1 was computed on an IBM 560/91 computer, with 1^ digit 

truncated floating-point arithmetic to base l6.    To minimize the effect 

of rounding errors, we took advantage of the fact that n-th divided 

differences of   l,x,x ,...,x vanish identically when compating the 
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divided differences in equations (8.2) and (8.3)•    Without this device, 

it is not possible to reduce    |x  j    or    jx' |    to   10"       vithout using 

higher precision arithmetic, because of the effect of rounding errors 

(except for    q = l)   . 

For   q = 2 ,  our example is the same as that used by Jarratt (1967), 

and our results agree with his for   n < 9 •    For   n = 10    and   11   our 

results differ slightly, presumably because of rounding errors.    The 

example given by Jarratt (1968) for   q = 3    has also  been verified. 
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Table 9.1;  Numerical results for q = 1, 2, 3 and h 

'   „! X 
n 

x.          ' 
n 

r 
n 

r 
q r» 

n 

1 0 2.000 2.000 

1 1.000 1.000 

2 7.273,-l 7.275t-l 0.3636 ; 

5 5.980'-l 2.100t-l 0.5V73 j 0.1444 

li 1.983,-1 4.389»~2 O.685I i 0.2874  ; 

] 

5 6.727»-2 -1.846»-3   : 0.8523 | -O.2755   i 

6 1.276»-2 1.221»-5    ; O.9568 ! -O.7178   i 

7 8.5^3'-^ l.035t-9   ; 0.9949 i -1.0455 

8 1.090,-5 2.350»-17 ; 0.9998 -I.OO66  \ 

9 9-51^,-9    : -2.982»-31 l 1.0000 -1.0039  ' 

10 1.015'-13 1.0000 

11 

0 

9.U57»-22 

2.000 2.000 

1.0000 ' 

2 

1 1.000 1.000 i 

'         2     ; 5.000»-1 5.000»-l : 
\ 

■     3   ^ 5.l62»-l 5.l62'-l   : 0.2581 ' 

i     h   ■ 2.68l»-l 1.219»-1 0.5362 \ 0.1219 j 

'     5 1.366»-1 5.27l'-2 0.5291 ' 0.1267 j 

6 6.978«-2 5.618»-3 0.5042  ; 0.1786 

7 2.053»-2 -3.365'-4 O.5607 -0.1634 : 
;     8 ^.5^7'-3 -3.484»-6 0.4772 -0.1556 

9 6.15V-U 1.325'-8 0.4296 -0.2144  j 

10 3.631,-5 -I.728»-12 O.389O -0.2625 

11 9.956»-7 -3.844'-18 0.3558 -0.2477 

i 
t 

12 7.666»-9 -2.008»-26 0.3430 -0.2518 

i 13 1.215»-T1 0.3360 i 

i 11* 2.51*8,-15 0.3339 
; 

15 5.10^»-20 0.3334 ; 

16 1.032»-26 0.3333   ; 
— : 
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Table 9-1    fcont.irmf«l> 

i     q            n X n 

3            0 2.000 
j                    1 1.000 

2 5.000«-1 
? 2.500»-l 
h 3.775,-l 
5 1.81V-1 

i                 6 8.57^-2 
7 h.2lk*-2 
8 2.268»-2 
9 5.580'-3 

10 1.227'-5 
11 2.3^7'-^ 
IP 2.809'.5 
13 l.lAl»-6 
ll< 5.518«-8 
15 l.l64'-9 
16 7.021'-12 
17 1.35k'~ik 
18 1.077'-17 
19 I.365»-21 

h         0 2.000 
1 :     1.000 
2 5.000»-1 
3 2.500,-l 
U 1.250'-1 
5 2.8iK)»-l 
6 :  1.258»-1 
7 5^53,-2 
8 2.^92»-2 
9 1.274»-2 

ID 7.507,-3 
11 1.564»-3 
12 3.227»-4 
13 6.871»-5 
Ik 1.360»-5 
15 1.5k5'.6 
16 6.659»-8 
17 2.8lU»-9 
18 I.067»-10 
19 2.207»-12 
20 1.073'-14 
21 1.944»-17 
22 3.069»-20 
23     i 2.367'-25 

X» 
n 

2.000 
1.000 
5.000»-1 
2.500,-l 
3.775,-l 
6.882»-2 
1.567,-2 
3.572'-3 
7.222»-4 
-3.9^9'-5 
-3.5^7'-7 
-2.893'-9 
8.630,-l2 
-1.067'-15 
4.009'-21 

2.000 
1.000 
5.000»-l 
2.500»-l 
1.250»-1 
2.84o'-l 
3.887'-2 
7.030'-5 
1.461'-3 
4.448»-4 
l.l68»-4 
-4.334'-6 
-2.390»-8 
-2.370'-10 
-2.500'-12 
9.027»-15 
-6.291»-19 
1.243'-24 

n 

O.I887 
0.3628 
0.6860 
0.4465 
0.3313 
0.3588 
0.3395 
O.2455 
0.2219 
0.2105 
O.1917 
O.1766 
0.1735 
0.1703 
0.1677 
0.1670 

1 

0.1420 
0.2517 
0.4362 
0.7975 
0.3588 
0.2101 
0.2279 
0.2374 
0.2164 
0.1423 
0.1316 
0.1316 
0.1270 
0.1142 
0.1050 
0.1046 
o.io4o 
0.1022 
0.1005 

r' 
n 

0.0688 
0.1253 
0.0757 
0.1112 

-O.O970 
-O.O92I 
-O.O716 
-0.0847 
-O.IO55 
-O.O989 

O.O389 
0.0562 
0.0935 
0.0501 
0.0846 

-O.0558 
-O.0598 
-O.0519 
-O.0329 
-0.0401 
-O.0520 
-O.0506 
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10.    Summary 

The main results of this chapter for    q = 1    (successive linear inter- 

polation for finding a zero) and   q - 2    (successive parabolic interpolation 

for finding a turning point) are summarized below. 

Theorem 3.1 

q = 1:    If   feC    and   x    -» £ , then    f(5)  = 0  . 

q = 2:    If   feC1    and   x    -» £ , then    f» (0   = 0  . 

Theorem k.l 

q = 1: If feC ,  f (£) / 0 , and a good start, then superlinear convergence, 

q = 2: If feC ,  f'^C) r ® >  an^ a sood  start, then superlinear convergence. 

Theorem ^.1 

q = 1:    If   fe.IC , f* (C) / 0 , and a good start, then weak o^der at 

least    ß1 = I.618 ... 

q = 2:    If   feLC , f"(S) f 0 *  ^ a good start, then weak order at 

least    ß2 = 1.32^ ... 

Theorem 7'1 
p 

q = 1:    If   feLC    ,     f1^) / 0 ,  and a good start, then either strong 

order   ß1 = 1.6l8...    or weak order at least    2  . 

q = 2:    If   feW    ,     f"(£)  / 0 ,  and a good start,  then either strong 

1/3 
order   ß2 = 1.52^...    or weak order at least    {'JZl

]f:;')        = 1.378... 

Theorem 8.1 
2 

q = 1: If feLC ,  f (5) / 0 , and a good start, then the accelerated 

sequence converges with weak order at least ß' = 1.339... 

q = 2: If feLC ,  f"($) / 0 , and a good start, then the accelerated 

sequence converges with weak order at least ß' = 1.465... 
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1.      Introduction 

Let    f   be a real-valued function,  defined on the interval   [a,b] , 

vith   f(a)f(b)  < C .      f   need not be continuous on    [a,b]   :     for 

example,      f   might be a limit ed-prec is ion approximation to some continuous 

function (see Forsythe (1969)).   We want to find an approximation    S    to 

a zero    5   of   i" > to within a given positive tolerance   26 , by evaluating 

f   at a small number of points.    Of course, there may be no zero in    [a,b] 

if   f   is discontinuous,  so we shall be satisfied if   f   takes both 

nonnegative and nonpositive values in    [£-26,  C+2&] Cl [a,b]   . 
A 

Clearly,  such a    5   may always be found by bisection in about 

logp[(b-a)/5]    steps,  and this is the best that we can do for arbitrary   f . 

In this chapter we describe an algorithm which is never much slower than 

bisection (see Section 3)> but which has the advantage of superlinear 

convergence to a simple zero of a continuously differentiable function,  if 

the effect of rounding errors is negligible.    This means that,  in practice, 

convergence is of^.en much faster than for bisection (see Section k). 

There is no contradiction here:    bisection is the optimal algorithm (in a 

minimax sense)  for the class of all functions which change sign on    [a,b] ;, 

but it is not optimal for other classes of functions:    e.g.,    C      functions 

with simple zeros, or convex functions (see Gross and Johnson (1959)> 

Bellman and Dreyfus (I962), and Chemousko (19^0)). 

Dekker's algorithm 

The algorithm described here is similar to one, which we call Dekker's 

algorithm for short,  variants of which have been given by van Wijngaarden, 

Zonneveld and Dijkstra (1965), Wilkinson (1967), Peters and Wilkinson (I969), 
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confusion if we omit subscripts.      b    is the best approximation so far 

to   ^ ,    e    is the previous value of   b ,  and   £   must lie between   b 

and   c  .    (initially    a = c  .) 

If   f(b)  = 0   then wt are finished.    The ALGOL procedure given by 

Dekker (I969)  does not recognise this case,  and can take a large number of 

small steps if    f    vanishes on an interval, which may happen because of 

underflow.  Hiie occurred with    f(x)  = xy    on em IBM 560 computer  . 

If    f(b) / 0 ,   let   ra = (c-b)/2;  .    We prefer not to return with 

5=0 (b+c)    as soon as    jmj < 26 ,   for if superlinear convergence has set 

in then   b , the most recent approximation,   is probably a much better 

1 * approximation to    ^    than   p(b+c)    is  .    Instead, we return with    5 = ^ 

if    |m| < 5    (so the error is no more than    5    if, as is often true,      f    is 

nearly linear between   b   and   c)  , and otherwise interpolate    or extrapolate 

f   linearly between    a   and   b ,  giving a new point    i.   (see later for 

inverse quadratic interpolation.)    To avoid the possibility of overflow 

or division by zero, we find    i    as    b + p/q ,  and the division is not 

perfoimed if   2|p|  > 5|m.qj ,  for then    i    is not needed anyway.    The 

reason why the simpler criterion    |pi > jm.qj    is not used is explained 

later.    Since      0 < |f(b)| < |f(a)|     (see later), we can safely compute 

s = f(b)/f(a)  ,      p = +(a-b)s ,  and    q = +(l-s)   . 

f i    if    i   lies between    b    and   b + ^m    ("interpolation"). 
Define      b" = ( 

Ib+m    otherwise ("bisection"), 
i 

Tb"    if    jb-b"!  >5 , 
and b«   = < 

I b + 5.sigr(m)    otherwise    (a "step of   6 ") . 

Dekker's algorithm takes    b*    as the next point at which    f    is 

evaluated,  forms a new set    fa,b.c}    from the old set    (b^jb1] ,  and 
i 

continues.    Unfortunately,   it  is easy to construct a function    f    for which 
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steps of   6    are taken every time,  so about    (b-a)/6    function evaluations 

are required for convergence.    For example,  let 

2X/6      for    a+6 < x < b , 

f(x)  = { .(bia^)#2b/5      for    x = a ^ {2ml) 

arbitrary for   a < x < a+6   . 

The first linear interpolation gives the point    b-6 , the next  (an 

extrapolation) gives   b-2B , the next   b-36 , and so on. 

Even if steps of   5    are avoided, the asymptotic rate of convergence 

of successive linear interpolation may be very slow if   f   has a zero of 

sufficiently high multiplicity.     (Note that none of the theorems of 

Chapter 3, apart from Theorem 3.3.1, apply for a multiple zero.)    Suppose 

that    f €Cn[ft,b] ,    n >1 ,    5e(a,b) ,    f(£)  = f'C)  = ... = f^"1^)  = 0 , 

and    f^n)(5)/0    (i.e.,    C    is a root of multiplicity   n>l).    If 
Xl " S 

e > 0 ,   (- w) e (e^l-e) ,  and x  is sufficiently close to 5 > 
x0 " ^ 

then successive linear interpolation gives a sequence (x ) which converges 

linearly to 5 . In fact, equation (5.2.1) holds with p = 1 and 

K = ß"  , where the constants ß 2:2'^t~^    '    are defined in Definition 

3.5«1« The proof is simple: if 

y = Xmfl \ (2.2) 
m  * 

is the ratio of successive errors, then a Taylor series expansion of    f 

about    S    gives 

1 -   n"1 

vi = (—^H(1 + o(1)) (2-3) 

as x -• C * provided y  remains bounded away from 1 . Since the 
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iteration 

Vl = 8(\)    ' (2-U> 

wher^ 

n-1 

g(2) = lj:^-r    ' (2-5) 

1 - z 

has fixed point    z = ß"     , and 

|g'(z)|<l (2.6) 

for    Z€(0,1)  , the result follows fron Ostrowski (1966), Theorem 22.1. 

An example for which convergence is sublinear (see Definition 5.2.2) 

is 

fo     if   x = 0    , 
f(x)   = ( .2 (2.7) 

1 x.exp(-x   )      if   x / 0   , 

on an interv€LL containing the origin.    This is an extreme case, for   f   and. 

all its derivatives vanish at the origin.(As a function of a complex 

variable,      f   has an essential singularity at the origin.)    If 

0 < x;L < x0 </2    , (2.8) 

then (x ) is a positive, monotonic decreasing sequence, and, by Theorem 

5.5.1, its limit must be 0 . Thus, successive linear interpolation does 

converge, but very slowly. 

Sane of the examples above are rather artificial, and unless an 

extended exponent range is used (see later) we may be saved by underflow, 

i.e., the algorithm may terminate with a "zero" as soon as underflow occurs. 
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Even so,   it iß clear that couvergeace nay occäsioaülly   be very slow if 

ttekJter's algorithm is used. 

Our main modification of DekJser'e algorithm ensures that a bisection 

iß done at leaßt once In every   S.logpf |b-c j / &)    consecutive steps. 

The modification iß thiß:    let   e    be the value of   p/q   at the step before 

the laßt one.    If    |e| < 6    or    |p/q|  >ö |el    then we do a bisection, 

otherwise we do either a bißection. or an interpolation Jußt as in Dekke^s 

algorithm,    Thuß,     jej    decreaaeß by at leaßt a factor of two on every 

ßecond ßtep, and when    |ej <fi   a bisection mußt be done.    (After a 

bißection we take    e = ra    for the next ßtep.)    This is why our algorithm, 

unlike Dekker'ß,  iß never much slower than bißection. 

A simpler idea is to take   e   as the value of   p/q   at the last step, 

but practical t.^ßtß ßhow that thie ßlowß down convergence for well-behaved 

functions by caußlng unneceesary bißections.    With the better choice of   e , 

our experience haß been that convergence Iß always at least as fast as 

for Dekker'a algorithm (see Section h). 

Xnverfle quadratic interpolation 

If the three current points    a ,  b    and   c    are distinct, we can find 

the point    1    by inverße quadratic Interpolation,  i.e.,  fitting   x    as a 

quadratic in    y ,  instead of by linear interpolation using Jußt    a    and   b . 

Experiments show that,  for well-behaved functlone, this device saves about 

0.5 function evaluationß per zero on the average  (see Section U).    Inverse 

Interpolation Is used bacauee with direct quadratic Interpolation we have 

to solve a quadratic equation i'or    1 ,   and there  is the problem of which 

root iihould be accepted.    Cox (1970)  tUves another way of avoiding thiK 
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problem: fit y as a fUnction of the form p(x)/q(x) , where p and q 

are polynomials and p has degree one. A third possibility is to use the 

acceleration technique described in Section ).8. (See also Ostrowski (1966), 

Chapter ll.) 

Care must be taken to avoid overflow or division by zero when computing 

the new point i • Since b is the most recent approximation to the root ~ , 

and a is the previous value of o , we do a bisection if I f(b) I ~If( a) I . 

otherwise we have lf(b)l < \f(a) I$ lf(c) \, so a safe way to find i is 

to compute r
1 

= f(a)/f(c) , r 2 = f(b)/f(c) , r 3 = f(b)/f(a) , 

p = ~ r
3

((c-b)r
1

(r
1
-r2)-(b-a)(r2-l)) , and q = + (r1-l)(r2-l) (r3-l) • 

Then i = b + pfq , but as before we do not perfonn the division unless it 

is safe to do so. (If a bisection ie to be done then i is not r.eeded 

anyway.) When inverse quadratic interpolation is used it is natural to 

accept the point i if it lies between b and c and up to three-quarters 

of the way ·fran b tc c: consider the limiting case where the 

interpolat ing parabola has a vertical tangent at c and f(b) = - f(c) . 

Thus , i nn be rejected if 2\p 1 ~ 3\ cc;b> ·q 1 , which explains the 

criterion discussed above. 

The tolerance 

As in Peters and wilkinson (1969), the tolerance (25) is a 

combination of a r·elative tolerance (4£) and an absolute t olerance (2t ) . 

At each step we take 

' (2.9) 

where b is the current best approximation to ~ , £ = ma~heps is 

the relative machine precision (f3l--r for -r -digit truncated f loating-point 
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arithmetic with base   ß , and half this for rounded arithmetic),  and   t 

is a positive absolute tolerance.    Since    5    depends on    b , which could 

lie anywhere in the given interval, we should replace    6   by its positive 

minimum over the interval in the upper bound for the number of function 

evaluations required.    In the ALGOL procedures the variable   tol   is used 

for   6  . 

The effect of rounding errors 

The ALGOL procedures given in Section 6 have been written so that 

rounding errors in the computation of    i , m   etc.    can not prevent 

convergence with the above choice of   5  .    The number   2e    in (2.9) 

may be increased if a higher relative error is acceptable, but it should 

not be decreased,  for then rounding errors might prevent convergence. 

The bound for    |5 - SI    has to be increased slightly if we take 

rounding errors into account.    Suppose that, for floating-point numbers 

x   and   y , the computed arithmetic operations satisfy 

and 

fl(xxy)  = x.y(l+ e^ 

fl(x + y)   = x(l+e2)+y(l+e:5)     , 

(2.10) 

(2.11) 

where    |e. | < e    for   i = 1,2,5    (see Wilkinson (1963)).    Also suppose 

that    fl(|x|)  =  |xj    exactly,   for any floating-point number    x  .    The 

algorithm computes approximations 

m fl(0.5 X (c-b)) 

and 

tol = fl(2 x e X |b| + t) 

(2.12) 

(2.13) 
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to    m   and   tol , where    5    lies between   b = |    suid   c , and the algorithm 

terminates only when 

\m\  < tol (2.1U) 

(unless    f(b)  = 0 , when    £ = 5 = b ).    Our asstjmptions (2.10)  and (2.11) 

give 

|ä| >| (|c.b|-e(|b|+|c|))(l-e)    , (2.15) 

and,  similarly, 

tol < (2e|b| + t)(l+e)5     , (2.16) 

so (2.110 implies that 

|c-b| <(IrF)(2e|b|+t)(l+e)5+ e(|b|+|c|)     . (2.1?) 

Since    |5-C| < |c-b|    and   b = g , this gives 

\\-i\ <6£|5| + 2t    , (2.18) 

neglecting terms of order    et   and   e   |5j   •    Usually the error is less 

than half this bound (see above). 

Of course,  it is the user's responsibility to consider the effect of 

rounding errors in the computation of    f .    The ALGOL procedures only 

guarantee to find a zero    £    of the computed function   f   to an accuracy 

given by (2.18),  and    £    may be nowhere near a root of the mathematically 

defined function that the user is really interested in! 
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Extended eacponent range 

In some applications the range of   f   may be larger than is allowed 

for standard floating-point numbers.    For example,     f(x)    might be 

det(A-xl)  ,  where   A    is a matrix whose eigenvalues are to be found. 

In Section 6 we give an ALGOL procedure    (zero2)    which accepts    f(x) 

z(x) 
represented as a pair    (y(x),s(x))   , where    f(x)   = y(x) .2  v  /    (y real, 

z integer).    Thus,    zero2   will accept functions in the same representation 

as is assumed by Peters and Wilkinson (I969),  although    zero2   does not 

require that    l/l6 < |y(x) | < 1    or    y(x)  = 0 ,  and could be simplified 

slightly if this assumption were made. 

3.      Couvergence properties 

If the initial interval is    [a,b] , assume that 

b-a > 5ra   ; (3.1) 

and let 

k =   llog2i{h-(i)/bm)^    , 0.2) 

where   5      is the minimum over    [a,b]    of the tolerance 

6(x)  = 2.macheps. |xj + t (3.3) 

(see Section 2),  and    fx-]    means the least integer    y >x  .    By 

assumption (3.1),    k > 0.  (If k = 0, procedure zero takes only two 

function evaluations.) 

First consider the bisection process,  terminating when the 

interval known to contain a zero has length   < 26      (so the endpoint —     m 
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minimizing    If 1    is probably within    5      of the zero,  and certainly 

within    26    ).    It  is easy to see that this process terminates after 

exactly   k+1    function evaluations    unless, by good fortune,     f   happens 

to vanish at one of the points of evaluation . 

Now consider procedure zero or zero2.    If   k = 1   then the procedure 

terminates after 2 function evaluations,  one at each end-point of the 

initial interval,   just like bisection.    If    k = 2   then there are 2 

initial evaluations, and after no more than k more evaluations a bisection 

must be done,   for the reason described in Section 2.    After this bisection, 

which requires one more function evaluation,  the procedure must terminate. 

Thus,  at most    2+5=7 evaluations are required.    Similarly,   for    k > 1 , 
i 

the maximum number of function evaluations required is 

2+(5+7+9+.••+(2k+l))  = (k<-l)2-2      . (3.10 

Since Dekker's algorithm may take up to    2      function evaluations  (see 

Section 2), this Justifies the remarks made in Section 1.    Also,  although 

the upper bound (J.U)  is attainable,   it is clear that it is unlikely to 

be attained except for very contrived examples, and in practical tests our 
j 

algorithm has never taken more than    5(k+l)    function evaluations  (see 

Section k) .    This justifies the claim that our algorithm is never    much 

slower than bisection. 

Superlinear convergence 

Ignoring the effect of rounding errors and the tolerance    5 , we see, 

as in Dekker (I969), that the algorithm will eventually stop doing bisections 

when it is approaching a simple zero    5    of a   C      function.    Thus, 
i 

temporarily ignoring the improvanent described in Section 2,  the theorems 

of Chapter 3 are applicable (with    q = 1 ).    In particular,  convergence is 
i 
i 
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superlinear,  in the sense that       lim sup jx   - £ |  '     = 0 , provided    f 

n -» oo 

is    C      near the simple zero    £    (Theorem J.U.l).    If   f    is Lipschitz 

continuous near    £ > then the weak order of convergence is at least 

p(l + /5) = 1.6l3 .o.    (Theorem 3.5«1)«    For a summary of the other 

results of Chapter 5,  see Section 3.10. 

If   f    is Lipschitz continuous near the simple zero    £ , then,  even 

with the inverse parabolic interpolation modification described in Section 2, 

the weak order of convergence is still at least   ^(l + /5)   .   The idea of 

the proof is that, by Lemma 2.5«1> the curvature at    £    0^ "t*16 approximating 

parabolas is bounded,  so the inequality (5.5 »15)  still holds for some   M 

(no longer the Lipschitz constant) and sufficiently small   6    . 

Thus, our procedure always converges in a reasonable number of 

steps    and, under the conditions mentioned above, convergence is superlinear 

with order at least   1.6l8 ....    It is well-known that,  since 
p 

(I.618...)    = 2.6l8... > 2 , this compares favorably with Newton's method 

if an evaluation of   f*    is as expensive as an evaluation of   f .    In 

practice, convergence for well-behaved functions is fast, and the stopping 

criterion is usually satisfied in a few steps once superlinear convergence 

sets in. 

Summary 

The results of Sections 2 and 5 above may be summarized in the following 

"theorem": 

If   a < b ,      e = macheps >0,    t>0,    f    is defined on    [a,b]  , 

f(a)f(b) < 0 , and arithmetic is exact, then the algorithm defined by 

procedure zero (see Section 6) converges, and returns    $€[a,b]    such that 
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f   changes sign in    L  = [5-26,   S+26] fl [a,b] , where   6 = 2E|5|+t , 

and the number    n    of times that    f    is evaluated does not exceed 

2 1 (k+l)  -2 , where    k   is given by equation (5.2).    Also,   if    f eC  [a,b] 

i        Ä 11/n 
has a unique simple zero    ^ e (a,b)  ,  then    |5 ~ £1        -»0    as macheps 

and   t - 0  ,    Finally,   if arithmetic ie approximate, but satisfies  (2.10) 

and (2.11) with    e < 10"    , then the algorithm still converges,  and 

returns    £    such that    f   changes sign in   I-, , where   5s  = 1.01(3e|5|+t)   . 

(The factor   1.01   takes care of terms of order    et    and    e  |5J  .) 

h.     Practical tests 

The ALGOL procedures zero (for standard floating-point numbers) and 

zero2 (for floating-point with an extended exponent range) have been 

tested using ALGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1968)) 

-13 on an IBM 360/67 and a 360/91 with machine precision   16        .    The number 

of function evaluations for convergence has never been greater than three 

times the number required for bisection,  even for the functions mentioned 

in Section 2, and for the functions given by (2.1) and (2.7) Dekker's 

algorithm takes more than 10    function evaluations.    Zero2 has been 

tested extensively with eigenvalue routines, and in this application it 

usually takes the same or one less function evaluation per eigenvalue than 

Dekker's algorithm, and considerably less than bisection. 

In Table U.l, we give the number of function evaluations required 

for convergence with procedure zero2 and functions    x    , x      ,  f, (x) , 

and   fp(x)  , where 
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Table 4.1: The number of' function evaluations f'or convergence with 

procedure zero2 

- · - ·-- - ··· - ·- ~ ·-

f'(x) a b 

x9 -1.0 +1.1 

x9 -1.0 +4.0 

X 
19 -1.0 +4.0 

f'l(x) -1.0 +4.0 

f'2 (x) 1! -1001200 0 
- - - ----··-- ------ · - -----·· ·· · · 

.. --· -· .... .. , ._ 
t 

1'-9 

1' -20 

1'-20 

1'-20 

-,. - . ·- ··- - --·T- ·- ··- ... ··- ·--- - - . --1 
~ - t ;function evals. 

I l 4.99' -10 . I 81 I 

I i 

4.92'-21 

1~.81'-21 

* 0 

I 8 I ! 1 9 I 
i I 

195 i 
33 I 

1' -20 1' -9 
L 79 I 

···--J 
,., 

* ~ = 2.17'-4 and f'1 (t) = 0 

For a definition of' f'1 , f'2 etc., and a discussion, see above. 
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Table k,2:     Comparison of Dekker's procedure with procedure zero 

1+ 

i 

6 
i 

i 7 

8 
i 

I 9 

; 10 

n 
|    12 

15 

111 

15 

I.05838256968867 

1.2399500556075^ 

1.5623961^62^727 

2.05025253169^17 

2.72832U93649769 

5.61I110919225782 

li. 710^83'?1557 581 

6.00000000000000 

7.44175272160161 

8.9716772^556908 

10.5065081987721 

11.9497474685058 

15.2029707184829 

14.1742655087655 

14.7893764955559 

"D 
1 

10 10 

10 9 

10 10 

10 10 

n 10 

11 10 

10 10 

9 9 

10 9 

10 10 

20 10 

10 9 

10 9 

10 9 

Q 8 
j 

For a definition of   K   ,  n^    end n , see above. The K     have a 

relative error of less than 5,-l^' 
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For each eigenvalue, the tolerances for Dekker's procedure and for procedure 

zero were the same. (The tolerance was adjusted by the eigenvalue program 

to ensure that the computed eigenvalues had a relative error of less 

-Ik 
than 5*10   .) Tests were run for several values of n , p , q and r : 

t^e table gives a typical set of results for n -■ 15 ,    V = 1 >    Q = l/^ > 

and r = 1/2 . To obtain the same accuracy with bisection, at least ItO 

function evaluations per eigenvalue would be required, so both our procedure 

and Dekker's are at least four times as fast as bisection for this application. 

Seme more experimental results are given in Chapter 5«  (For an 

illustration of the superlinear convergence, see the examples given in 

Section 3.9-) 

5»  Conclusion 

Our algorithm appears to be at least as fast as Dekker's on well- 

behaved functions, and, unlike Dekker's,  it is guaranteed to converge in a 

reasonable number of steps for any function.    The ALGOL procedures zero 

and zero2 given in Section 6 have been written to avoid problems with 

rounding errors or overflow,  and floating-point underflow is not harmful 

as long as the result is set to zero. 

Before giving the ALGOL procedures zero and zero2, we briefly discuss 

sane Tjossible extensions. 
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Cox's algorithm 

A recent paper by Cox (1970)  gives an algorithm which combines 

bisection with interpolation, using both    f    and   f*   .    This algorithm 

may fail to converge in a reasonable number of steps in the same way 

as Dekker's.    A simple modification,  exactly like the one that we have given 

in Section 2 for Dekker's algorithm, will remedy this defect without 

slowing the rate of convergence for well-behaved functions. 

Parallel algorithms 

In this chapter we have considered only serial algorithms.    It is 

well-known (see, for example, Traub (I96U)) that all serial methods which 

use only function evaluations and Lagrangian interpolation polynomials 

have weak order less than   2 , unless certain relations hold between the 

derivatives of   f   at    £  •    (Winograd has recently shown that no serial 

method, using only function evaluations,  can have order greater than 2 

for all analytic functions with simple zeros.)    Thus, nothing much can be 

gained by going beyond linear or quadratic interpolation.    However, 

Miranker (19^9) has shown that, if a parallel computer is available, a 

class of algorithms using Lagrangian interpolation polynonials gives 

superlinear convergence with weak order greater than 2 under certain 

conditions.    Also,   it is clearly possible to generalize the bisection 

process to "(r+l)-section" with advantage if a parallel computer with    r 

independent processors is available.    See,  for example, Wilde (196^). 

There does not appear to be any fundamental difficulty  in combining 

generalized bisection with one of Miranker*s parallel algorithms so that 

convergence in a reasonable number of steps is guaranteed for any function. 
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and super linear convergence with order greater than 2 is likely for 

well-behaved functions. 

Searching an ordered file 

A problem which is commonly solved by a binary search (i.e., bisection) 

method is that of locating an element in a large ordered file.    The problem 

may be formalized in the following way.    Let    S   be a (finite or infinite) 

totally ordered set,  and   cp: S -♦ R    an order-preserving mapping from   S 

into the real numbers.    Suppose that    T = [t ,t ^...^t  }    is a finite 

subset of    S , with   t    <t    < ... <t    .    Given    c e [cp(t ),cp(t ) ] , we 

may define a monotonic function    f    on    [0,n]    by 

f(x)  =9^) -c    , (5.1) 

where   xe [0,n]    and    i =  |~x - —~|   .    Thus,  finding an index    i    such 

that    cp(t.)  = c    is equivalent to finding a zero of    f    in    [0,n] , and 

our zero-finding algorithm could be used instead of the usual bisection 

algorithm.    It might be worthwhile to modify our algorithm slightly,  so 

as to take the discrete nature of the problem into account.   A related 

application of our algorithm is in finding the median (or other percentiles) 

of a list of numbers, but there are faster ways of doing this. 

6.      ALGOL 60 procedures 

The ALGOL procedures zero (for standard floating-point numbers) and 

zero2  (for floating-point with an extended exponent range) are given below. 

For a description of the idea of the algorithm,   see Section 2.    Some 

test cases and numerical results are described in Section U. 
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Procedtire zero 

real procedure zero (a, b, macheps, t,  f); 

value a, b, macheps, t;    real a, b, macbeps, t; 

real procedure f; 

begin comment: 

Zero returns a zero x of the function f in the given interval [a/b], 

to within a tolerance 6.macheps. jxj+2.-t, where macheps is the relative 

machine precision and t Is a positive tolerance.    The procedure assumes 

that f(a) and f(b) have different signs; 

real c, d, e,  fa, fb, fc, tol, m, p, q, r, s; 

fa := f(a);    fb := f (b); 

int:    c  := a;    fc := fa;    d := e := b-a; 

ext:    if abs(fc) < abs(fb) then 

begin a := b;    b := c;    c  := a; 

fa := fb;    fb := fc;    fc := fa 

end; 

tol := 2 x macheps x abs(b) + t;   m := 0.5 x (c-b); 

if abs(m) > tol A fb / 0 then 

begin comnent;    See if a bisection is forced; 

if abs(e) < tol v abs(fa) < abs(fb) then d := e := m else 

begin s  := fh/fa;    if a = c then 

begin comment:    Linear interpolation; 

p := 2 x m x s;    q := 1-s 

end 

else 

begin comment;  Inverse quadratic interpolation; 
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q := fa/fc;    r  := fb/fc; 

p := sx(2xmxqx (q-r) - (b-a) x (r-l)); 

q := (q-1) x (r-l) x (s-l) 

end; 

if p > 0 then q := -q else p := -p; 

s  := e;    e := d; 

if 2xp Oxmxq -abs(tolxq) A p < abs(0.5 x s x q) then 

d := p/q else d := e  := m 

end; 

a := b;    fa, := fb; 

b  := b+ (if abs(d)  > tol then d else if m > 0 then 

tol else -tol); 

fb  := f(b); 

gotoiffb>0 = fc >C then int else ext 

end; 

zero := b 

end zero; 

Procedure zero2 

real procedure zero2 (a, b, machept, t,  f); 

value a, b, macheps, t;    real a, b, macheps, t;    procedure f; 

begin comment; 

Zero2 finds a zero of the function f in the same way as procedure 

zero,  except that the procedure f(x,y,z)  returns y (reed) and z (integer) 

so that f(x)  = y.2  .      Thus underflow and overflow can be avoided with 

a very large function range; 
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real procedure pwr2 (x,n); value x, n; real x; integer n; 

comment: The procedure is machine-dependent. It computes x.2 for 

n < 0, avoiding underflow in the intermediate results; 

pwr2 : = if n > -200 then x x 2 t n else 

if n > -hoo  then (x x 2 t (-200)) x 2 t (n+200) else 

if n > -600 then ((xx2t (-200)) x2 t (-200)) x2r (n+^KX)) else 0; 

integer ea, eb, ec; 

real c, d, e, fa, fb, fc, tol, m, p, q, r, s; 

f(a,fa,ea); f(b,fb,eb); 

int: c := a; fc := fa; ec := ea; d := e := b-a; 

ext: if (ec < eb A pwr2(abs(fc), ec-eb) < abs(fb)) 

V (ec > eb A pwr2(abs(fb), eb-ec) > abs(fc)) then 

begin a := b; fa := fb; ea := eb; 

b := c; fb := fc; eb := ec; 

c := a; fc := fa; ec := ea 

end; 

tol := 2 xmacheps x abs(b) + t; m :=0.5x(c-b); 

if abs(m) > tol A fb / 0 then 

begin if abs(e) < tol v 

(ea < eb A pwr2(abs(fa), ea-eb) < abs(fb)) v 

(ea > eb A pwr2(abs(fb), eb-ea) > abs(fa)) then 

d := e := m else 

begin s := pwr2(fb, eb-ea)/fa; if a = c then 

begin p:=2xmxs; q:=l-s end 

else 

begin q := pwr2(fa, ea-ec)/fc; 
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r := pwr2(fb,  eb-ec)/fc; 

p := sx(2xmxqx (q-r) - (b-a) x (r-l)); 

q  := (q-1) x (r-l) X (s-l) 

end; 

if p > 0 then q := -q else p := -p;    s  := e;    e := d; 

if2xp<3xmxq -abs(tolxq) A p < abs(0.5xsxq) then 

d := p/q else d := e  := m 

end; 

a := b;    fa := fb;    ea  := eb; 

b  := b+ (if abs(d)  > tol then d else if ni > 0 then 

tol else -tol); 

f(b,  fb,  eb); 

^otoiffb>Osfc >0 then int else ext 

end; 

zero2 := b 

end zero2; 
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1.      Introduction 

A common computational problem is finding an approximation to the 

minimum or maximum of a real-valued function    f    in some interval    [a>b]   . 

This problem may arise directly or indirectly.    For example,  many methods 

for minimizing functions   g(x)    of several variables need to minimize 

functions of one variable of the form 

7(\)  = g(x0 + \8)    , (1.1) 

where   xn   and    s    are fixed (a "one-dimensional search" from   x      in 

the direction    s ).    In this chapter,  we give an algorithm which finds 

an approximate local minimum of   f   by evaluating    f   at a small number 

of points.    There is a clear analogy between this algorithm and the 

algorithm described in Chapter k for root-finding (see Diagram ^.1). 

Unless   f   is unimodal (Section 5), the local minimum may not be the global 

minimum of   f    in    [a,b] , and the problem of finding global minima is 

left   until Chapter 6. 

The algorithm described in this chapter could be used to solve the 

problem (1.1),  but,  for this application,  it may be more economical to 

use epecial algorithms which make use of any extra information which is 

available (e.g.,  estimates of the second derivative of   y ),  and which do 

not attempt to find the minimum very accurately.    This is discussed in 

Chapter ?•    Thus, a more likely practical use for our algorithm is to find 

accurate minima of naturally arising functions of one variable. 

In Section 2 we consider the effect of rounding errors on any 

minimization algorithm based entirely on function evaluations.    Unimodality 

is defined in Section 3,  and we also define "5-unimodality" in an attempt 
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to explain why methods like golden section search work even for functions 

which are not quite unimodal (because of rounding errors in their 

computation, for example).    In Sections h and 5 we describe a minimization 

algorithm analogous to the zero-finding algorithm of Chapter k,  and sane 

numerical results are given in Section 6.    Finally,  some possible extensions 

are deecribed in Section f, and an ALGOL 60 procedure is given in 

Section 8. 

Reduction to a zero-finding problem 

If   f   is differentiable in    [a,b] ,  a necessary condition for    f 

to have a local minimum at an interior point    ^ e (a,b)    is 

f'(n)  -= 0 (1.2] 

There is also the possibility that the minimum is at    a   or   b :    for 

example, this is true if   f»    does not change sign on    [a,bj  .    If we 

are prepared to check for this possibility,  one approach is to look for 

zeros of   f  .    If   f»    has different signs at   a   and   b , then the 

algorithm of Chapter h might be used to approximate a point   (i   satisfying 

(1.2). 

Since   f    vanishes at any stationary point of   f ,  it is possible 

that the point found is a maximum, or even an inflexion point, rather than 

a minimum.    Thus,  it  is necessary to check whether the point found is a 

true minimum, and continue the search in some way if it is not. 

If it is difficult or impossible to compute    f    directly, we could 

approximate    f    numerically (e.g.,  by finite differences),  and search 

for a zero of   f*    as above.    However, a method which does not need    f 
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seems more natural, and could be preferred for the following reasons: 

1. It may be difficult to approximate    f*    accurately because of 

rourding errors; 

2. A method which does not need    f*    may be more efficient  (see below); 

and 

3. Whether    f*    can be computed directly or not, a method which avoids 

difficulty with maxima and inflexion points is clearly desirable. 

Jarratt's method 

Jarratt (1967)  suggests a method, using successive parabolic 

interpolation, which is a special case of th*   iteration analyzed in 

Chapter 5»      With arbitrary starting points Jarratt's method may diverge, 

or converge to a maximum or inflexion point,  but this need not be fatal if 

the method is used in combination with a safe method such as golden section 

search,  in the same way as,      in Chapter h, we used a combination of 

successive linear interpoiatior and bisection for finding a zero.    Theorem 

3.5*1 shows that,   if    f    has a Lipschitz continuous second derivative which 

is positive at an interio-" minimum   \i ,  then Jarratt's me:hod gives 

superlinear convergence to   n   with weak order at least    ß    = 1.32i+7... 

(see Definitions 3.2.1 and 3»5*1)^  provided the initial approximation is 

good and rounding errors are negligible. 

Let us compare Jarratt's rrethod with one of the alternatives: 

estimating    f    by finite differences,  and then using successive linear 

interpolation to find a  zero of    f   .     (This process may also diverge, 

or converge to a maximum.)    Suppose tnat     fr'(^x)   > 0    and    f^   '(|i)  / 0 ,  to 
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avoid exceptional cases  (see Sections 3-6, 5.7 and U.2).    Since at least 

two function evaluations are needed to estimate    f*    at any point,  and 

\ll.6lQ... = 1.272... < 1.52it...  , Jarratt's method has a slightly- 

higher order of convergence.     (The comparison is similar to that between 

Newton^ method and successive linear interpolation if an evaluation of 

f»    is as expensive as an evaluation of   f :    see Golab (1966)  or 

Ostrowski (I966).) 

2.      Fundamental limitations because of rounding errors 

Suppose that    t elC  [a,b;M]    has a minimum at    p. e (a,b)   .    Since 

ff((i)   = 0 , Lemma 2.5.1 gives,   for   xe[a,b] , 

f(x)      -       I fS(x-n)2 + f (x-^)3    , (2.1) 

where    |m | < M ,    f    = f(ji)   ,  and   f" = f"(n)   .    Because of rounding 

errors,   the best the.t can be expected if single-precision floating-point 

numbers are used is that the computed value    fl(f(x))    of   f(x)    satisfies 

the (nearly attainable)  bound 

fl(f(x))  = f(x)(l+ej    , (2.2) 

where 

Ex^E    ' (2.5) 

and    e    is the relative machine precision (see Section U.2).    The ei-ror 

bound is unlikely to be as good as this unless    f    is a very simple 

function,  or is evaluated using double-precision,   and then rounded 01 
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truncated to single-precision. 

Let    6    be the largest number such that, according to equations 

(2.2) and (2.3),   it is possible that 

fl(f(n + 6)) < ff 0 
(2.4) 

It is unreasonable to expect any minimization procedure,  based on 

single-precision evaluations of    f ,  to return an approximation   \i   to 

H   with a guaranteed upper bound for    l^-p]    less than   6  .    This is 

so,  regardless of whether the ccmputed values of   f    are used directly, 

as in Jarratt^ method, or indirectly,  as in the other method suggested 

in Section 1.    The reason is simply that the minimum of the computed 

function    fl(f(x))    may lie   up   bo   6    from the minimum    n    of   f(x)   : 

see Diagram 2.1. 

Diagram 2.1:      The effect of rounding errors 
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If   f3 > 0 ,   equations (2.1) to {2.k) give 

6    > 
2lfole 

fö 
e - M6 

M5 

(2.5) 

for the relative error 
U 

could hardly be less than 

Thus,  if   ^ / 0    and the term   r~?r      is negligible, an upper bound 
0 ~~~ 

A 2lfo. 

11 ^o 
and full single-precision accuracy in   n    is unlikely unless 

»% 
is of order    e    or less, although    fl(ff^))    may agree with    f(^) 

to full single-precision accuracy.     (See also Pike, Hill,  and James  (1967).) 

If   f*    has a simple analytic representation, then it may be easy to 

compute   f    accurately.    For example, perhaps 

fl(f'(x))   = f,(x(l+e'))(l+e") (2.6) 

where    |e'| < c    and    |e"| < e ,  so we can expect to find a zero of    f 

with a relative error bounded by    e    (see Lancaster (I966)  and Ostrowski 

(1967b)).    If (2.6)  holds it might be worthwhile to use the algorithm 

described in Chapter '+ to search for a zero of    f •  , or at least use it to 

refine the approximation    p.    given by a procedure using only evaluations 

of    f .    However,  this is not so if    f    has to be approximated by 

differences,  for then  (2.6)  can not be expected to hold. 

Even if    f(x)     is a uniraodal function,  the computed approximation 

fl(f(x))    will not be uniraodal, because of rounding errors.    Ncte that 

fl(f(x))    must be constant over small intervals of real numbers    x    which 

have the same floating-point approximation    fl(x)   .    In the next section 

110 



5-3 

we define "&-unimodality" to circumvent this difficulty. 

From now on, we consider the problem of approximating the minimum 

of the ccmputed function,  or,   equivalently, we ignore rounding errors 

in the computation of    f .    The user should bear in mind that the minimum 

of the computed function may differ from the minimum that he is really 

interested in by as much as    6    (see equation  (2.5)  above).    In particular, 

there is no point in wasting function evaluations by finding the minimum 

of the computed function to excessive accuracy,  and our procedure localmin 

(Section 8)  should not be called with the parameter "eps" much less than 

2lfol' 

"^o 

5«      Unimodality and 5-unimodality 
j 

There are several different definitions of a unimodal function in the 

literature.    One source of confusion is that the definition may depend on 

whether the function is supposed to nave a unique minimum or a unique 

maximum (we always consider minima).    Kowalik and Osborne (1968)   say that 
I 

f    is unimodal on    [a,b]    if    f   has only one  (no    more than one?)  stationary 

value on    [a,b]  .    This definition has two disadvantages:    first,   it is 

meaningless unless    f    is differentiable on    [a,b]  ,   but we would like to 

say that     Ixl    is unimodal on    [-1,1]   .    Cecond,   functions which have 

inflexion points with a horizontal tangent are prohibited,  but we would 

6        U       2 like to say that    f(x)   = x   - 5x   Ox      is unimodal on    [-2,2]    (here 

f (+1)   =  f"( + l)   = 0 ). 

Wilde (I96M  gives another definition:       f    is  unimodal on    [a,b]     if, 

for all    x1,x2 f [a,b]  , 
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x1<x2Z3 (x2 < x* ^ f(x;L)  > f(x2)) A (x1 > x* D f(x1) < f(Xg)) ,   (3.1) 

where   x     is a point at which    f   attains its least value in    [a,h]  . 

(We have reversed some of Wilde's inequalities as he considers maxima 

rather than minima.)    Wilde's definition does not assume differentiability, 

or even continuity,  but to verify that a function   f    satisfies  O-l) we 

need to know the point   x     (and such a point must exist).    Hence, we 

prefer the following definition, which is nearly equivalent to Wilde's 

(see Lemma 5.1)^  but avoids any reference to the point    x    .    The 

definition is not as complicated as it looks:    it merely says that    f   can 

not have a "hump" between any two points    x     and   x      in    [a,b]   .    Two 

possible configurations of the points    xn,  x , xp    and   x      in  (5.1) and 

(5.2) eure illustrated in Diagram 3.1. 

Diagram 5.1:    Unlmodal functions 
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Definition 5.1 

f   is unimodal on    [a,b]    if,  for all    x ,  .v1  and x   € [a,b] , 

yJ> 

X0  < X1 A  X1  < X2 3   (f(x0)   < fCx^   3  f(Xl)   <  f(X2))   A 

(ffx^   > f(x2)   3  f(x0)   > ^X^)       . (5.2) 

Lemma 3.1 

If a point    x      at which   f   attains its minimum in    [a,b]    exists, 

then Wilde's definition of unimodality and Definition 5.1 are equivalent. 

Proof 

Suppose that    f    is unimodal according to Definition 5.1.    If   x    < x 

and   x   < x    ,  take   x'   = x   ,    x'  = x   ,  and   x•   - x    .    Since    f   attains 

its least value at    x    , 

f(xp > f(x )  = f(x')    , (5.5) 

so equation (5.-) with primed variables gives 

f(x^) > f(xp    , (3A) 

and thus 

f^) > f(x2)     . (5.5) 

Similarly,  if   x    < x«    and   x   >x    ,  equation  (5.2) gives 

f(x1)  < f(x2)     . (5.6) 
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is unimodal on    [-1^1]    by our definition,  but not by Wilde's,  for   x 

does not exist. 

The following theorem gives a simple characterization of unimodality. 

There is no assumption that    f   is continuous.    Since a strictly monotonic 

function (e.g.,  x   )   may have stationary points, the theorem shows that 

both our definition and Wilder are essentially different from Kowalik 

and Osborne's,   even if   f   is continuously differentiable.     (Although 

this point is obvious,   it is sometimes overlooked!    See also Corollary 3•3-) 

Theorem 3.1 

f    is unimodal on    [e,b]    (according to Definition 3«l)   iff^  for some 

(unique)    ne[a,b] ,   either    f    is strictly monotonic decreasing in    [a,pi) 

and strictly monotonic increasing in    [ji,b]  ,  or    f    is strictly monotonic 

decreasing in    [a,n]    and strictly monotonic increasing in    (n,b]   . 

The theoren is a special case of Theorem 5.2 below,  so the proof is 

omitted.    The following corollaries are immediate. 

Corollary 3.1 

If    f    is unimodal on    [a,b]  ,  then    f    attains its least  value at 

most once on    [a, b]   .     (If   f    attains  its least value,  then it must 

attain it at the point    n    given by Theorem 3.1.) 

Corollary 3.? 

If    f    is unimodal and continuous  on    [a,b]  ,  then    f    attains  its 

leact  value exactly once on    [a,bj   . 
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Corollary 3^3 

If    feC  [a,b]    then    f    is vmimodal iff,   for some   |ie[a,b] , 

f  < 0    almost everywhere on    [a,|i]    and    f'  > 0   almost everywhere 

on    [n,b]  .    (Note that    f    may vanish at a finite number of points.) 

Fibonacci and golden section search 

If    f   is unimodal on    [a,b] , then the minimum of   f    (or,  if 

the minimum is not attained,  the point    |i    given by Theorem 5.1)  can be 

located to any desired accuracy by the well-known methods of Fibonacci 

search or golden section search.   The reader is referred to Wilde (196*0 

for an excellent description of these methods.     (See also Boothroyd 

(1965a,  b), Johnson (1955);  Krolak (1968), Newman (1965), Pike and Pixner 

(1967),  and Witzgall (1969).)    Care should be taken to ensure that the 

coordinates of the points at which   f   is evaluated are computed in a 

numerically stable way (see Overholt (1965)).    Fibonacci and golden section 

search, as well as similar but less efficient methods, are based on the 

following result, which shows how the interval known to contain   |i    may 

be reduced in 3?ze. 

Corollary J>.k 

Suppose that    f    is  animodal on    [a,b] ,      n    is the point given by 

Theorem 3.1, and   a < x1 < x    < b .      If    f(x1)  < f(x2)    then   n < x    , 

and if    f(x ) > f(x )    then    n > x.   . 
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Proof 

If   x    < n   then, by Theorem 3-1,      fta) > f(x )   .    Thus,  if 

f(x )  < f(x )    then    fi < x    .      The other half follows similarly. 

If the reader is prepared to ignore the problem of computing 

"unimodal"  functions using limited-precision arithmetic,  he may skip the 

rest of this section. 

S-unlmodality 

As was pointed out at the end of Section 2,  functions computed using 

limited-precision arithmetic will not be unimodal because of rounding 

errors.    Thus,  the theoretical basis for   Fibonacci  search,  golden section 

search,  and similar methods,  is irrelevant, and it is not clear that these 

methods will give even approximately correct results in the presence or 

rounding errors.    To analyze this problem,  we generalize the idea of 

unimodality to &-unimodality.    Intuitively,    6    is a nonnegative number 

such that Fibonacci or golden section search will give correct results, 

even though    f    is not necessarily unimodal (unless    6=0),  provided 

that the distance between points at which    f   is evaluated is always 

greater than    6  .    The results of Section 2 indicate how large    B    is 

likely to be in practice.    (Our aim differs from that of Richman (1968)   <n 

defining the e-calculus,  for he is interested in properties that hold as 

e -» 0  .)    For anothei approach to the problem of rounding errors,   ^ee 

Overholt (1967). 

In the remainder of this section,      5    is a fixed nonnegative number. 

As well as 5-unimodality, we need to define 6-monotonicity.    If   5=0 

then 5-unimodality and 5-monotoni-ity redtce 10 unimodality  (Definition 5.1) 
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and monotonicity. 

Definition ?.2 

Let    I    be an interval and   f   a real-valued function on    I  .    We 

say that    f    Is strictly 6-monotonlc Increasing on    I    if,  for all 

l'X2 

X.J+& < x2 -j f(x1)  < f(x2)    . (3.11) 

i 
X.,X0 6 I   , 

As an abbreviation, we shall write simply "  f    is   5-t    on    I ". 

Strictly 6-raonotonic decreasing functions  (abbreviated   6-i)    are defined 

in the obvious way. 

Definition 3»3 

Let    I    be an interval and   f   a real-valued function on    I   .    We 

say that    f   is 6-unLnodal on    I    if,  for all    x ,x ,x   el , 

x0+5 < x1 A x.j+6 < x2 D (f(x0)  < f(x1) 3 f(x1) < f(x2)) 

A (f(x1)  > f(x2) 3 f(x0)  > fixj)     . (5.12) 

The following theorem gives a characterization of 5-uniraodal functions. 

It reduces to Theorem 5.1 if    6=0. 

Theorem 3.2 

V    is fj-unimodal on    [a,b)    iff there exists    fic[a,b]    such that 

eith< r    f    is    S-i    or.    [a,|i)     and   b-t    on    [n>b]  ,   or    f    Is    5-i 

on     (a>n]    and    6-t     on     (^b]   .     ■■"urthermore,   if    f    is &-uni.nodal on 

il 
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[a,b] ,  then there is a unique interval    [|i, ^p] c [a,b]     such that 

the points    n   with the above properties are precisely the elements of 

[n-L,^]  ,  and    n2 < H1+5   . 

Proof 

Supi,'jse    \x    exists so that    f    is    5-i    on    ta,^)    and   6-t    on    [M.,b] 

Take any   x ,  x ,  x     in    [a,b]    with   x +5 <x      and   x +5 < x0 .    If 

f(x )  < f{^)    then,  since    f    is    6-i    on    [a,|a)  ,       n < x    .    As    f    is 

5-t    on    [^,b)  ,   it follows that    f (x )  < f{.r.?)   .    The other cases are 

similar,   so    f    is    5-unimodal. 

Conversely,   suppose that    f    is Ö-unimodal on    [a,b]   .    Let 

H    = inf{xe[a,b] | f is 5-1 on  [x,b]]    , (3.15) 

(so    '^  <max(a,b-5))  , and 

H    = sup[xt[a,b] | f is 5-i on [a,x]j    , (5.11+) 

(so    ji    >min(a-!-0,b))   . 

It  is immediate from the definitions  (3.13)  and (3.11+) that    f    is 

5-t    on    (|i-1,b]    and   f   is    8-i    on    [a,ii?)   .    We shall show that 

^51^2    . (3.15) 

Suppose, by way of contradiction,  that 

^1>^2    • (3.16) 

This implies that    (JI, > a    and   ^    < b ,   so,  from the definitions of   (i 

and   n    ,  there are points    x'    and   x"    with 
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ki2   <   x"    < 
^1+^ 

<   x'    <   u1   , (5.17) 

such that    f   is not    6-t    on    [x'^h]    and    f    is not    5-1    on    [a,x"]   . 

Thus, there are points    y1  , y" ,  z'  ,  z"    in    [a,b]    such that 

z"+& < y" < x"  < x» < y«  < zf-6    , 

f(z")  < fir)      , 

and 

f(y')  >f(z»)     . 

(3-18) 

(3.19) 

(3.20) 

Let   x. = z" ,    x    = zf  ,  and 

Xl:- 

y»      if    f(y') > f(y»)    , 

y"      otherwise    . 
(3.21) 

From relations (3.18) to (3.21), the points    x , x     and   x     contradict 

8-uniinodality (equation (3.12)).    Thus (3.16)  is impossible,   (3.15) must 

hold, and   [|i ,|i ]    is nonempty. 

Choose any   n    in    [n,,^]  .    From the definitions of   JI..    and   (ip , 

f   is   8-i    on    [a,|i)    and   5-t    on    (|i,b]   .    Suppose, by way of contradiction, 

that   f   is neither    6-t    on   [a,|i]    nor    6-T    on   [|i,b]  .    Then there 

axe points   y,    and   y2    in   [a,b]    such that 

y2+6 < fi < y^t    , (3.22) 

f^)  < f(n)    , (3.23) 

and 
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f(y2)<f(n)      . (5.2M 

Thus,  the points    y^ ,  \± ,   and    y,     contradict the 6-unimodality of    f , 

so    f    is either   5-1    on    [a,p.]    or   5-t    on    [^,b]   .    This completes 

the proof of the first part of the theorem. 

Finally, by the definitions  (3.13)  and {^.lh),  th" set of points    \i 

satisfying the conditions of the theorem is precisely    [^-.^pl  •    Since 

f   is both   6-t    and   5-i    on    (n^u-) > we have    n2 < v+b ,  and the 

proof is complete. 

Remarks 

The interval    [n ,np]    depends on   &  .    Suppose that    f   attains its 

minimum in    [a,b]    at    |i .    By Theorem 3.2,      f    is    6-T    on    (fi,,b] 

and   &-i    on    [a,^p) ,  so   ^e [^p-6,ti1+5] , an interval of length at 

most    26   . 

As an example, consider 

f(x) -x2+e.g(x) (3.25) 

on    [-1,1] , where   g    is any function (not necessarily continuous) with 

U(x) 1 < 1 ^  an<i   e > 0 .    Since    f(x)    is bounded above and below by the 

2 2 unimodal functions   r +e    and    x -e  , we see that    f    is 6-unimodal if 

6 > \/26    .    In a practical, case      e   might be (a small multiple of) the 

relative machine precision, and the fact that the least    6    for which    f 

1/2 is 6-unimodal is of order    e '     ,   rather than    e ,   is to be expected from 

the discussion in Section 2. 
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two function evaJLuations giving   I.    were at points separated by more 

than    6    .    The smallest  such interval    I.    has length no greater than 

(2 + /5)S0 ,  so 

|^-^|    <   (? + /5)&0   r   5-2366ö     . (3.26) 

Thus, golden section search gives an approximation p, which is nearly 

as good as could be expected if we knew 5  . This may be regarded as 

a justification for using golden section (or Fibonacci) search to approximate 

minima of functions which, because of rounding errors, are only "approximately" 

unimodal. 

U.      An algorithm analogous to Dekker's algorithm 

For finding a zero of a function    f , the bisection process has the 

advantage that linear convergence is guaranteed,  as the interval known to 

contain a zero is halved at each evaluation of    f    after the first. 

However,  if    f    is sufficiently smooth and we have a good initial 

approximation to a simple zero, then a process with superlinear convergence 

will be much faster than bisection.    This is the motivation for the 

algorithm,  described in Chapter \, which combines bisection and successive 

linear interpolation in a way which retains the advantages of both. 

There is a clear analogy between methods for finding a minimum and 

for finding a zero.    The Fibonacci and golden section search methods have 

guaranteed linear convergence,  and correspond to bisection.    Processes 

like successive parabolic interpolation, which do not always converge,   but 

under certain conditions converge superlinearly,   correspond to successive 
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linear interpolation.    In this section we describe an algorithm which 

combines golden section search and successive parabolic interpclation 

in a way which retains the advantages of both.    The analogy with the 

algorithm ox Chapter h is illustrated in Diagram h,l. 

Zeros Extrema 

Linear convergence Bisection ♦—» Golden section search 

I I 
Super linear convergence        Successive linear <—» Successive parabolic 

interpolation interpolation 

Diagram k,l:    The analogy between algorithms for 
finding zeros and extreraa 

Many more or less "ad hoc" algorit1 jns have been proposed for one- 

dimensional minimization, particularly as components of n-dimensional 

minimization algorithms.    See Box, Da vies and Swann (I969),  Flanagan, 

Vitale and Mendelsohn (1969),  Fletcher and Reeves  (196^),  Jacoby, 

Kowalik and Pizzo (1971),  Kowalik and Osborne (1968),  Pierre (I969), 

Powell (196^),   etc.      The algorithm presented here might be regarded as 

an unwarranted addition to this list,  but it seems to us to be more 

natural than these algorithms, which involve arbitrary prescriptions like 

"if ... fails then halve the step-size and try again".    Of course, our 

algorithm is not quite free of arbitrary prescriptions either, so a more 

objective criticism of the "ad hoc" algorithms is that for many of them 

convergence to a local minimum in a reasonable number of function evaluations 
H 

can not be guaranteed, and, for the exceptions, the asymptotic rate of 
I 

convergence if    f    is sufficiently smooth is less than for our algorithm 

12h 
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(see Section 5) •    Note that we do not claim that our algorithm is 

suitable for use in an n-dimensional minimization procecure:    an "ad hoc" 

algorithm my bo more efficient,  (see Sections 1 and f .1) • 

A description of the  algorithm 

j 
Here we give an outline which should make the main ideas of the 

algorithm clear. For questions of detail the reader should refer to 

Section 8, where the algorithm is described formally by the ALGOL 60 

procedure localmin. 

The algorithm finds an approximation to the minimum of a function f 

defined on the interval [a,b] . Unless a is very close to b , f is 

never evaluated at the endpoints a and b , so f need only be defined 

on (a,b) , and if the minimum is actually at a or b then an interior 

point distant no more than 2.tol from a or b will be returned, 

where tol is a tolerance (see equation (^.2) belcw). The minimum found 

may be local, but non-global, unless    f    is 8-unimodal for seme    6 < tol . 

At a typical step there are six significant points    a,b,u,v,w, 

and   x , not all distinct.    The positions of these points change during 

the algorithm, but there should be no confusion if we emit subscripts. 

Initially,     (u,b)    is the interval on which    f   is defined,  and 

v = w = x = a+ (1^2) (b-a)    . (h.l) 

5-/5 (The magic number     -—^—- - O.58I966...    is rather arbitrarily chosen so 

that the first step is the same as for a golden section search.) 

At the start of a cycle (label "loop" of procedure localmin) the 

points   a , b , u ,  v , w ,    and   x   always serve as follows:    a local 
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minimum lies in [a,b] ; of all the points at which f has been evaluated, 

x is the one with the least value of f , or the point of the most recent 

evaluation if there is a tie; w is the point with the next lowest value 

of f ;  v is the previous value of w ; and u is the ]n,st point at 

which f has been evaluated (undefined the first time). One possible 

configuration is shown in Diagram h.2. 

a 

w 

u 

X 

m b 

v 

Diagram U.2:      A possible configuration 

As in procedure zero (Chapter h), the tolerance is a combination of 

a relative and an absolute tolerance.    If 

tol = eps. |x| + t    , (4.2) 

then the point x returned approximates a minimum to an accuracy of 

2.tol + 6 < 5'tol , if f is 5-uniraodal near x and 5 < tol . The 

user must provide the positive parameters eps and t . In view of the 

discussion in Section 2, it is generally unreasonable to take eps much 

1/2 
less than e   ., where E is the machine-precision (see Section k.2). 
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t should be positive in case tne minimum is at 0 . It is possible that 

the error may exceed 2.tol + 5 because of the effect of rounding errors 

in determining if the stopping criterion is satisfied, but the additional 

error is of order e|x| , which is negligible if tol is of order 

e ' |x| or greater. 

Let m = - (a+b) be the midpoint of the interval known to contain 

the minimum. If |x-m| <2.tol-- (b-a) ,  i.e., if max(x-a, b-x) < 2.tol , 

then the procedure terminates with x as the approximate position of the 

minimum. Otherwise, numbers p ard q (q > 0) are computed so that 

x + p/q is the turning point of the parabola passing through (v, f(v)) , 

(w,f(w)) , and (x,f(x)) . . If two or more of these points coincide, or if 

the parabola degenerates to a straight line, then q = 0 . 

p and q are given by 

p = +[(x-v)2(f(x).f(w)) - (x-w)2(f(x)-f(v))] (U.3) 

= j_ (x-v)(x-w)(v-v){(x-w)f[v,w,x] + f[w,x]] ,        (U.U) 

and 

q = +2[(x-v)(f(x)-f(w)) -(x-w)(f(x)-f(v))] (U.5) 

= +2(x-v)(x-w)(w-v)f[v,7,x] . (U.6) 

From (h.k) and {h.6),  the correction   p/q    should be small if    x    is close 

to a minimum where the second derivative is positive,   so the effect of 

rounding errors  in computing   p    and    q    is minimized.     (Golub and Smith 

(1967) compute a correction to   —(v+w)    for the same reason.) 

As in procedure zero,   let    e    be the value of   p/q    at the second-last 

cycle.    If    \e\ < tol ,    q = 0 ,     x + p/q/ (a,b)  ,   or     |p/ql > ölel  >  then 
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a "golden section" step is performed,  i.e.,  the next value of   u    is 

V^OX-H  (^2)a     if   x >m    , 

u ) (^-7) 

(£^x + (MS) (^—)x +  (    2 ~)b      if    x < m    . 

(An optima.1, choice in the limit:    sen Witzgall (I969).)    Otherwise    u    is 

taken as    x + p/q    (a "parabolic interpolation"  step),  exctpt that 

the distances    |u-xj  ,    u-a    and   b-u   must be st least    tol .    Then    f 

is evaluated at the new point    u , the points    a ,  b ,  v , w   and   x 

are updated as necessary,  and the cycle is repeated (the procedure 

returns to the label "loop").    We see that    f    is never evaluated at 

two points closer together than   tol ,  so 5-unimodality for some   6 < tol 

is enough to ensure that the global minimum is  found to an accuracy of 

2.tol+ 5    (see Theorem 3-3 and the following remarks). 

Typically the algorithm terminates in the following way:      x = b -tol 

(or,   symmetrically,    a+tol)    after a parabolic interpolation step has been 

performed with the condition    |u-x| > tol    enforced.    The next parabolic 

interpolation point lies very close to    x    and    b ,  so   u    is forced to 

be   x - tol .    If   f(u)  > f(x)    then    K   moves to   u ,    b-a   becomes    2.tol , 

and the termination criterion is satisfied (see Diagram h.3).    Note that 

two consecutive steps of   tol   are done just before termination.    If a 

golden section search were done whenever the last,  rather than seccnd-last, 

value of    lp/q|    was    tol    or less, then termination with two consecutive 

steps of   tol   would be prevented, and unnecessary golden section steps 

would be performed. 
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/ 

/ 

/ 
/ 

s 

Diagram U.J:      A typical situation after termination 

5.      Convergence properties 

There can not be more than about    2.log ((b-a)/tol)    consecutive 

parabolic interpolation steps (with the current   a    and   b ,  and the 

minimum of   tol   over the interval),   for while parabolic  interpolation 

steps are being perfomed    jp/qj    decreases by a factor of at least two 

on every second cycle of the algorithm,  and when    |e| < tol    a golden 

section step is performed.    (In this section,  "about" means we are net 

distinguishing between a real number and its integer part.)    A golden 

section step does uot necessarily decrease    b-a   significantly,    e.g., 

if   x = b - tol    and    f (u) < f (x)  ,  then   b-a    is only decreased by   tol , 

b1 A, two golden section steps must decrease    b-a   by a factor of at least 

-——^ = 1.6l8...   .    As in Section U.3, we see that convergence can not 

require more than about 
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2K(log2(^))
2 (5.1) 

function evaluations, where 

K = l/log2{±±p)  =1.H...    . (5.2) 

By comparison, a golden section or Fibonacci search would require about 

K.log2(-f) (5.3) 

b-a function evaluations,  and a brute-force search about    v .   .,     . 2.tol 

The analogy with procedure zero of Chapter h should be clear, and 

essentially the same remarks apply here as were made in Chapter k. In 

practical tests convergence has never been more than 5 percent slower 

than for a Fibonacci search (see Section 6). 

In deriving (5'1) we have ignored the effect of rounding errors inside 

the procedure, but it is easy to see (as in Section h.2)  that they can not 

prevent convergence if floating-point operations satisfy (1|-.2.10) and (1+.2.11), 

provided the parameter eps of procedure localmin is at least 2e . 

Superlinear convergence 

If f is C  near an interior minimum \i   with f'di) > 0 , then 

Theorem ^.h.l  shows that, while rounding errors are negligible, convergence 

will be super linear. Usually the algorithm stops doing golden section steps, 

and eventually does only parabolic interpolation steps, with f(x) decreasing 

at each step, until the tolerance comes into play just before termination. 

This is certainly true if the successive parabolic interpoJation process 
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converges with strong order ßp = I.52U7... (sufficient conditions for 

this are given in Sections 3.6 and j^.T)' 

For most of the "ad hoc" methods given in the literature, convergence 

with a guaranteed error bound of order tol in the number of steps given 

by (5'1) is not certain, and, even if convergence does occur, the order 

is no greater than for our algorithm. For example, the algorithm of 

Davies, Swann and Campey (see Box, Davies and Swann (I969)) evaluates f 

at two or more points for each parabolic fit, so the order of convergence 

is at most /jÜL = 1.150... (excluding exceptional cases). 

section steps, and the procedure is much faster than Fibonacci search. 

As an example, in Table 6.1 we give the number of function evaluations 

required to find the minima of the function 

20 

?(*) = r f ^H   \        - (6.1) £(S) 
2 2     2 

This function has poles at x = 1 ;2 ,...,20 • Restricted to the open 
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6.  Practical tests 

The ALGOL procedure localmin given in Section 8 has been tested using 
i 
i 

ALGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (I968)) on an 

-13 
IBM 360/67 and a 360/9I with a machine precision of l6   . Although it 

I 
might be possible to contrive an example where the bound (5*1) on the I 

number of function evaluations is nearly attained, for our test cases 

i 
convergence never requires as many as 5 percent more function evaluations 

than would be needed to guarantee the same accuracy using Fibonacci search. 
1 

In most practical cases superlinear convergence sets in after a few golden 
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2 2 interval    (i ^(i+l)   )    for    i = 1,2, ...,19    it is unimodal (ignoring 

rounding errors) with an interior minimum.    The fourth column of Table 6.1 

gives the number    rL    of function evaluations required to find this 

-7 -10 minimum    |i.   ,  using procedure localmin with    eps = 16       and   t = 10 

—7 -TO 
(so the error bound is less than   J.tol ,  where   tol = 16    . |x)+10~      ). 

The last column of the table gives the number   n      of function 

evaluations required to find the zero of 

20    /o-     c\2 

i=l (x-i2)^ 
(6.2) 

r 2   -9     2-9 
in the Interval [i +10 , (i+l) -10 ] , using procedure zero (Section 

-7 -10 
^.6) with macheps = 16   and t = 10   , so the guaranteed accuracy is 

nearly the same as for localmin. Of course, in practical cases we would 

seldom be lucky enough to have such a simple analytic expression for V  , 

so procedure zero could not easily be used to find minima of f in this 

manner. Also, procedure zero could find a maximum rather than a minimum. 

Table 6.1 shows that the number of function evaluations required by 

procedure localmin compares favorably with the number required by procedure 

zero. Both are much faster than Fibonacci search, which would require ^5 

function evaluations to find the minimum for i = 10 to the same accuracy. 

For some numerical results illustrating the super linear convergence 

of the successive parabolic interpolation process, see Section 3.9' 
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Table 6.1:      Comparison of procedures localmin and zero 

!      i ^1 f{^) nz 

1 3.0229155 5.676699OI69 12 11+ 

2 6.6837536 1.1118500100 11 8 

5 11.2587017 1.2182217657 15 11+ 

i     h 19.6760001 2.16211.05109 10 12 

1     5 29.8282273 :.0322905195 11 12 

1     6 Ul.9061162 5.7585856477 n 11 

!     7 
i 

55.9?55958 4.555^105856 10 11 

!     8 71.9856656 U.8U82959565 10 11 

;   9 90.OO88685 5.2587585^ 10 10 

10 110.0265527 5.605652^295 10 10 

:   11 152.01*05517 5.8956057976 10 10 

;   12 
1 

156.052nM 6.11+588615^2 9 10 

13 182.062060^ 6.5550761+595 9 10 

Ik 210.0711010 6.5355662005 9 ID 

i i5 
1 

2U0.08001+85    ! 6.680565981+9 9 UO 

i   16 
1 

272.0902669 6.7938558565 9 10 

'   17 506.1051255 6.8651+981055 9 10 

;   18 
l 

5U2.1569U5I1 6.8559021+651 9 9 

19 580.2687097    i 
. L                                  1 

6.60081+701+81 
_ i 

9 9 

For a discussion and definition of the terms,  see above. 
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7.      Conclusion 

The algorithm given in this chapter has the same advantages as the 

algorithm described in Chapter h for finding zeros:    convergence in a 

reasonable number of steps is guaranteed for any function  (see equation 

(5«l))>  and on well-behaved functions convergence is superlinear, with 

order at least    1.52^7« ••  > and thus much faster than Fibonacci search. 

There is no contradiction here:    Fibonacci search is the fastest method 

for the worst possible function,  but our algorithm is faster on a large 

class of functions (including,  for example,    C      functions with positive 

second derivatives at interior minima). 

A similar algorithm using derivatives 

We pointed out in Section ^.5 that bisection could be combined with 

interpolation foimulas which use both    f   and    f *   .    We could combine 

golden section search with an interpolation method using both    f   and    f* 

in a similar way.    Davidon (1959)  suggests fitting a cubic polynanial to 

agiee with    f    and    f1    at two points,  and   taking   a turning point of the 

cubic as the next approximation.    (See also Johnson and Myers  (I967).)    This 

method,  which givec the possibility of superlinear convergence,  could well 

replace successive parabolic interpolation (using    f   at three points)   in 

our algorithm if    f    is easy to compute.    If the cubic has no real turning 

point,  or if the turning point which is a local minimum lies outside the 

interval known to contain a minimum of    f ,  then we can resort to golden 

section search. 
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Parallel algorithms 

So far we have considered only serial (i.e.,   sequentlaJ) algorithms 

for finding minima.    If a parallel computer is available, more efficient 

algorithms which take advantage of the parallelism are possible,   just as 

in the analogous zero-finding problem (see Section ^.5)«    Karp and 

Miranker (1968)  give a parallel search method which is a generalization of 

Fibonacci search (and optimal in the same sense,   if a sufficiently parallel 

processor is available).    oee also Wilde (196i+)  and Avriel and Wilde  (I966). 

Miranker (1969)  gives parallel methods for approximating the root of a 

function, and these could be used to find a root of   f*     (or parallel 

methods for finding a root of   f  , using only evaluations of    f ,  could 

be used).    These parallel methods could be combined,  in much the same way 

as we have combined golden section search and successive parabolic 

interpolation, to give a parallel method with guaranteed convergence, 

and often superlinear convergence with a higher order than for our serial 

method. 

8.      An ALGOL 60 procedure 

The ALGOL procedure localmin for finding a local minimum of a function 

of one variable is given below.    The algorithm and some numerical results 

are described in Sections U to 6. 

Procedure localmin 

real procedure localmin (a,  b,  eps, t,  f, x); 

value a, b,  eps,  t;    real a,  b,  eps,  t,  x;    real procedure f; 
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begin canment; 

If the function f is defined in the interval (a,b), then localmin 

finds an approximation x to the point at which f attains its minimum 

(or the appropriate limit point),  and returns the value of f at x. 

t and eps define a tolerance tol = eps.|x|+t,  and f is never evaluated 

at two points closer together than col.    If f is 5-unimodal (see 

Definition 3.5)^ for some 5 < tol, then x approximates the global 

minimum of f with an error of less tuan 3.tol (see Section k),    If 

f is not 5-unimodal on  (a,b), then x may approximate a local, but 

non-global, minimum,    eps should be no smaller than 2.macheps,  and 

preferably not much less than sqrt(macheps), where macheps is the 

relative machine precision (Section ^.2).    t should be positive.    For 

further details,  see Section 2. 

The metnod used is a combination of golden section search and 

successicn parabolic interpolation.   Convergence is never much slower 

than for a Fibonacci search (see Sections 5 and 6).    If f has a continuous 

second derivative which is positive at the minimum (not at a or b) then, 

ignoring rounding errors, convergence is superlinear, and usually the 

order is at least l.^kj.,.; 

real c, d, e, m, p, q,  r, tol, t2, u, v, w,  fu,  fv,  fw, fx; 

c := 0.58l9660112501051517951+13l6565^;    comment:    c = (3 - sqrt(5))/2; 

v :=w :=x :=a+cx (b-a);    e := 0; 

fv : = fV : ^ fx : = f (x); 

canment;    Main loop; 

loop:    m :-0.5x(a+b); 

tol := eps x ab8(x)+t; t2  := 2 x tol» 

136 



3.8 

comment;    Check stopping criterion; 

if abs(x-m)  > t2 -0.5 X (b-a) then 

begin p := q  := r  := 0; 

if abs(e)  > tol then 

begin comment;    Fit parabola; 

r := (x-w) x (fic-fv);    q  := (x-v) x (fs-ftf); 

p := (x-v) xq-(x-w) x r;    q := 2x (q-r); 

if q > 0 then p  := -p else q := -q; 

r := e;    e  := d 

end; 

if abs(p) < abs(0.5 X qxr) Ap>qx (a-x) A p < q x (b-x) then 

begin camnent;    A "parabolic interpolation" step; 

d *.= p/q;    u := x+d; 

conment; f must not be evaluated too close to a or b; 

if u-a < t2 v b-u < t2 then d : = if x < m then tol else -tol 

end 

else 

begin comment;:    A "golden section" step; 

e := (if x < m then b else a) -x;    d := c x e 

end; 

comment;    f must not be evaluated too close to x; 

u := x+ (if abs(d) > tol then d else if d > 0 then tol else -tol); 

fu := f(u); 

commant;    Update a, b, v, w and x; 

if fu < fx then 
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= x else a := x; 

= x;    fw := fx;    x ;= u;    ftc := fu 

5.8 

begin if u < x then b  : 

v := w;    fv := fw;    w : 

end 

else 

begin if u < x then a : = u else b  : = u; 

iffu<f»rvw = x then 

begin v := w;    fv := fw;   w := u;    fw := fu end 

else iffu<fvvv-xvv=w then 

begin v := u;    fv := fu 

end 

end; 

go to loop 

end; 

localmin := fx 

end localmin; 
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Chapter 6. 

Global Minimization Given an Upper Bound on the 

Second Derivative 



6.1 

1.      Introduction 

Minimization procedures like the one described in Chapter 5 can 

only guarantee to find a local, not necessarily global, minimum of a 

function    f€C[a,b]   .    If   f   happens to be unimodal then a local 

minimum muFt be the global minimum in    [a,b] , but in practical problems 

it often happens that    f    is not unimodal,  or that unimodality is difficult 

to prove.    In this chapter we investigate the problem of finding a good 

approximation to the global minimum,  given weaker conditions on    f   than 

unimodality.    As usual, we consider methods which depend on the sequential 

evaluation of   f    at a finite number of points, and our aim is to reduce, 

as far as possible,  the number of function evaluations required to give 

an answer which is guaranteed to be accurate to within some prescribed 

tolerance. 

In Sections 2 to 6 we describe an efficient algorithm for 

approximating the global minirüum of a function of one variable,  given an 

upper bound on the second derivative.    There are many obvious applications 

for this algorithm.    For example, when finding a posteriori error bounds 

for the approximate solution of elliptic pe^tial differential equations, 

we may need to find the taaxlmum of    |f(x) j    (Fox, Henrici and Moler (1967)). 

Instead of working with    |f(x) j , which may have discontinuous derivatives, 

it is probably better to use the relation 

max |t(x)|   = -min(min(f(x)), min(-f(x))) 
X XX 

(1.1) 

In Sections 7 and 8 we show how to extend the method to functions of 

several variables, and ALGOL 60 procedures are given in Section 10, 

IkO 
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Some fundamental limitations 

If    feC[a,b]  ,  let 

(pf - inf {f(x) | xe[a,bl}    , (1.2) 

and 

}if = inf [xe[a,b] | f(x)   = (pf}     . (1.5) 

Even if   f    satisfies very stringent smoothness conditions, the problem 

of finding    \i      is improperly posed, in the sense that    \i     is not a 

continuous function of   f    (with the uniform topology on   C[R,b] ). 

For example,  consider 

f (x)   = COS(TTX) -6X (1.^) 

on    [-2,2]   .    If   8 > 0   then    ji    ~ 1 '  bufc if   & < ^    ^hen    ^f ~ -1 , 

so a very small change in    f   can cause a large change in   ^x. . 

Instead of trying to approximate   ^„ , ve should seek to approximate 

<pf = f(nf)   .      Since 

K-Vgl    <   ll^-glL (1-5) 

for all f and g in Cfa,!)], ?f is a continuous function on C[a,b] , so 

the problem of finding cp„ is properly posed. However, given t > 0 , 

it is still impossible to find   'p    such that 

|9-<Pf|    <   t (1.6) 

witii a finite number   N.    of function evaluations, unless we have some 

a priori information about    f . 

Ikl 
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6.1 

A priori concfitions on    f 

If   f€C[a,b]  ,  the modulus of continuity   w(f;5)    is defined (RS 

in Section 2.2) by 

w(f;6)  =      sup      |f(x) -f(y)|. (1.7) 
|x-y j <5 

x,ye[a,b] 

for   6 > 0 .    Suppose that a function   W(6)    is given such that 

lim   W{6) = 0    , (1.8) 
5-0+ 

and 

w(f;6)<W(5) (1.9) 

for all 5 > 0 . Given t > 0 , choose 8 > 0 such that 

W(5) <t (1.10) 

(always possible by (1.8)), and evaluate    f   at points   x , ...,x     in 

[a,b]    such that 

max min    |x-x,|    <   8     . 
X£[a,b]    0<i<n 1 

(1.11) 

(For example, we might choose   x. = a+8 ,    x1 = a+>5 ,    x» = af58 ,  etc.) 

If 

(p =     min      f (x )    , 
0<i<n        1 

then,  from (1.?),   (1-9)^   (1-10) and (l.ll). 

0 <<p-q)f < t 

(1.12) 

(1.15) 

lk2 
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Thus,  a quite weak condition on    f ,  enabling us to approximate   q)f 

with a finite number of evaluations of   f ,  is that we have a bound 

W(6)  ,   satisfying (1.8),  on the modulus of continuity   w(f;8)    of    f . 

For example,  if   feC [a,b]    and 

Ir'iL   <  M   , (l.Hf) 

then we can take 

W(5)   = M5    . (1.15) 

Unfortunately, the procedure suggested above will be very slow if 

t    is small:    in fact, about    (b-a)M/(2t)    function evaluations will be 

required.    In the worst case,  though, it is impossible to do much better 

than this without knowing more about    f .    To see this,  consider 

minimizing a function which is,known to be in the class 

[f (x) = min (l.Olt, M|x-c|) | ce[a,b]}    . (1.16) 

If 

5 = l.Olt/M       , (1.17) 

and   9    is computed from (1.12)  for some set of points    x , ...,x   , then 

there is a choice of   C€[a,bJ    for which   9    fails to satisfy (1.15) 

unless (1.11) holds,  so at least    |~ (b-a)M/(2.02t) ~|    function evaluations 

are required.    In some cases less function evaluations will be required: 

for example,  if 

f(x)  = Mx   , (1-18) 

then it is enough to evaluate f at a and b . (See also Section 5») 

I 
1 
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Instead of having an a priori bound on Hf'jl , we could have a 

bound 

f(r)ll  < M (1.19) 

>(r), on \\f^  '11 , for sane r > 1 . We show below that, with such a bound, 

At 

the maximum number of function evaluations required to find   cp 

satisfying (1.13)  is of order    (M/t)1/1" . 

The case    r = 1    is discussed above,   so suppose    r > 2 ,  and let 

n = (b-a)     /'JjM ^ 

Ivcos(^)   Vrl V (1.20) 

b-a Define   8 = -=- ,      a.  = a+i5    for    i = 0, ...,n    (so   a    = b)  ,  and n 

ai,J  =*±
+2(l~ 

n 

cos((j -^n/r) 

cos(^ n/r) 
(1.21) 

for   i = 0, ...,n-l   and   j = 1, ...,r    (so    a. , = a.  ,    a.      = &..-.)  • 

Let P. = IP(f;a.  .,...,a.    )    be the polynomial of degree    r-1 x x^x x,r 
which 

coincides with    f   at    a. ,,...,a.       .    Then, Lonma 2.1^.1 and the bound 
i,l    l,r 

(1.19) show that, for all X€[a.,a ..] , 

|f(x)-Pi(X)| < Kx-a.^^-.^x-a^^j M/rl  .        (1.22) 

The right side of (1.22) is no greater than ( A      =-   , 
\j2co8(iL)y      ria1"1 

«md, by (1.20)  and the choice of   8 , this is no greater than   t/2 .    Thus, 

we need only find the minimum of each polynomial   P. (x)    in    [a.,a.+1] 

to within a tolerance   t/2 .    This is easy if   r = 2 ,  for then each 

Ikh 
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polynomial   P. (x)    is linear.    If   r > 2   then we can bound    |PV(x) | 

in    [a..ta.  ,] ,  emd apply the procedure for    r = 2    to minimize    P. (x)   . 

(This idea for finding bounds on polynomials in an interval was suggested 

by Rivlin (1970).)    Because successive intervals    [a.,a   ..]    are adjacent, 

the number of function evaluations required to find   9    satisfying (1.15) 

does not exceed 

N = (r-l)n + 2 , (1.23) 

where    n    is given by (1.20). 

l/r Since   N   is of order    (M/t) '     , the method described above is 

not likely to be practical for small   t    unless    r > 2  .    On the other 

hand,   in practical problems it is usually difficult to obtain good bounds 

on the third or higher derivatives of   f    (if they exist).    Thus,   in the 

rest of this chapter we suppose that   r = 2 .    It turns out that 81 one- 

sided bound 

f'Cx)  <M (1.2U) 

is sufficient, instead of the two-sided bound (I.19). If f'^x) has a 

physical interpretation (e.g., as an acceleration), then a bound of the 

form (1.2^) can sometimes be obtained frcm physical considerations. 

2.      The basic theorems 

The global minimization algorithm which is described in the next 

section depends on the simple Theorens 2.1,  2.2 and 2.3.    Theorem 2.1 is 

related to the maximum principle for elliptic difference operators,  and 

also to some results in Davis  (I965).   We assume that    feC [a,b] ,  and 
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f'(x)  - f (y)    <   M(x-y)    , (2.1) 

for all   xyy   in    [a,b]    with    x >y .    (Weaker conditions suffice: 
p 

see Section 7.)      If   feC  [a,b]    then the one-sided Lipschitz condition 

(2.1)  is equivalent to 

f'^x)    <   M (2.2) 

for all   x€[a,b] . 

Theorem 2.1 

Suppose (2.1) holds. Then, for all xe[a,b] , 

fW > (b-*)f(a) t (*-a)f(t)lM(x.a)(b.x)  .       (2.3) 

Proof 

The proof is immediate from Lemma 2.U.I. 

Lemma 2.1 

Suppose (2.1) holds and    a < 0 < b .    Then 

f.(o) < w :f(0) - i m a (2.10 

Proof 

Applying Lemma 2.3.1 to    f(-x) , we have 

f (a)    <   f (0) + af • (0) + | Ma2    , (2.5) 

so the result follows. 
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Theorem 2.2 

Suppose (2.1)  holds,    M>0,    a<c<b,    f(a)  > f(c)  ,  and 

f^c)  = 0  .    Then 

c - a   > f(a)  - f(C)       . (2.6) 
|M 

Proof 

Applying Lemma 2.1 with a suitable translation of the origin gives 

0 = f.(c)    <   f(a)  "c^
C)  - | M(a-c)    , (2.7) 

a-c 

so 

f(a) - f(c) <|M(c-a)2  , (2.8) 

and the result follows. 

Lemma 2.2 

Suppose (2.1)  holds,    M > 0 ,  and    a < 0 < b < -f'^/M  .    Then 

f»(b) < 0  . 

Proof 

By condition  (2.1), 

f'OO  < f»(0) +Mb    , (2.9) 

and, as 

b < -f»(0)/M      , (2.10) 

the result follows. 
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Theorem 2.5 

Then 

Suppose (2.1) holds,    M>0,    a<c<b,  and 

^     ^    .     ,.     a+c      f(a)-f(cK 

f' (x) < 0    . 

(2.11) 

f2.12) 

Proof 

There is no loss of generality in assuming that    c = 0    and   b = x  . 

By condition (2.11), 

so, by Lemma 2.1* we have 

b<-f'(0)/M    . (2.1^0 

Now the result follows from Lemma 2.2. 

Remarks 

Theorems 2.1, 2.2 and 2.5 are sharp, as can easily be seen by 

1     2 taking    f (x)    as a suitable parabola with leading term   p Mx    .    The 

theorems are generalized in Section f, and the proofs given there show 

that everything needed to justify our minimization algorithm follows 

from the fundamental inequality (2.5).    The proofs given in this section 

are,  however, simpler and more intuitive than those in Section 7« 
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3.      An  algorithm for  global minimization 

p 
Suppose that    feC  [a,b]    and,   for all   X€[a,b] , 

f'Cx)  < M    . 

We want to find   ne[a,b]    and   cp = f(n)     satisfying 

|$-(pf|  < t    , 

where t is a given positive tolerance, and 

cp» =     min    f (x) 
X€[a,b] 

(3.1) 

(5.2) 

(3.5) 

If   M < 0   the problem is quite trivial,   for Theorem 2.1 says that    f(x) 

can not lie below the straight line interpolating   f   at   a   and   b ,  so 

(pf = min (f(a),f(b)) (5.10 

If   M > 0   the problem is not trivial, although we saw in Section 1 that 

there does exist an algorithm to solve it. 

The basic algorithm 

The algorithm described in this section is an elaboration and 

refinement of the following basic algorithm.    (The notation is consistent 

with that of the ALGOL procedure glomin  (Section 10),  except that we 

write   M   for   m ,       \i    for   x ,      <p    for    y    (= glomin), and    E    for 

macheps.) 

1.      Set   $ -min  (f(a),f(b)) , 

li - if   ^ = f(a)    then   a    else   b , 

and   a_ •- a . 

1U9 
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2.      If   M < 0    or    a    > b   then halt.    Otherwise set    a, «- some point 

in    (ap,b]    (e.g.,    b:  see below for a better choice). 

5.      If   f(a,)<qj    then set    ^ •- a,    and   9 - f(a,)   . 

h.      if the parabola y = P(x) , with P'^x) = M , P(a2) = f(a2) , 

and P(a,) = f(a,~) ,  satisfies P(x) > rp -1 for all x in [ap,a,] , 

then go on to 5 • Otherwise set a, •- p (ap + a,) and go back to 5 

5.  Set ap ♦- a, sind go back to 2 . 

We shall see shortly that (with a sensible choice of a, at 

step 2) the basic algorithm must terminate in a finite number of steps. 

In view of Theorem 2.1 and step k,  it is clear that, when the algorithm 

terminates, it does so with $ satisfying (^•2). 

Refinements of the basic algorithm 

The crux of the problem is how to make a good choice of a, at 

step 2 of the basic algorithm. We want to choose a, as large as 

possible, but not so large that it has to be reduced at step h. 

Theorems 2.2 and 2.5 provide useful lower bounds. If the global minimum 

^_ lies outside (ap,b) , or if (pf > ^ -1 , then the algorithm may 

halt, for $ already satisfies (5.2). Otherwise 

and 

f'^P = 0 (3.5) 

f(nf) <$-t , (3.6) 

so,   from Theorem 2.2 with    a    replaced by   a      and   c    by   |i    , 

150 

li   L 



mn '    Mmniiy   " 

6.3 

kif - a2    > 
f(a2) -(p + t 

2 m 

(3.7) 

Thus ,  at step 2 it is safe to take    a, = ai , where 

a*   = min < b, a_  + 
f(a2) -^ + t 

(5.8) 

and with this choice there is no risk that   a,    will have to be reduced 

at step V.    Since the right side of (3.7) is at least    (2t/M):L/2 , the 

basic algorithm must converge in a finite number of steps if,  in step 2, 

we choose any   a,    in the range    [aX,t]  . 

If    f    is decreasing rapidly at    a    , then Theorem 2.5 may give a 

bettfr bound than (5.?).    Apply Theorem 2.5 with   c    replaced by   &- 

and   a   replaced by a point    a2 - d      (with   d   > 0)    where   f   has 

already been evaluated.    (This is not possible if   ap = a .)    Combining 

the result with (5.8), we see that it is safe to choose    a., = a"    at 

step 2, where 

a n  _ L mimb, max \ a  + Ln«D 
f (a2) - f (n) + t 

1I f(a2) -f(a2-d0) + 2.01e 

&2 ' ^O +  171  2M.d0 

(5.9) 

Here    e    is a positive tolerance,  and the term    2.01e    is introduced 

to combat the effect of rounding errors  (see equations  (5.^1)  and (5.52)). 

The choic»    a, = all    is safe,  but it is possible to speed up the 

algorithm by sometimes choosing    a, > al'  .    Because we want to avoid 

f 
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having to decrease    a,    at step ^,  the best choice would be to take 

a, = min (b,a*)   , where   a*    is the abscissa of the point to the right 

of   a»   where the curve   y = f(x)    intersects the parabola   P , with 

second derivative   M , which passes through    (ap, f(a?))    and attains 

its miniraira value   q)» -t   to the right of   a«  .    Here 

9'  = min (9, f(a5)) (3.10) 

is the value of 9 after step 3 has been executed, and we can extend 

the domain of f by defining f(x) = f(b) for x > b if this is 

necessary. A typical situation is illustrated in Diagram 5.1. 

a a 
% 

Diagram 3.1:      The points    a2   and   a* 

It is not practical to choose   a, = a* ,  for, although   a*    exists, 

several function evaluations are needed to approximate it accurately. 

Procedure glomin (flection 10) finds a rough approximation    a**    to   a* , 

without any extra function evaluations,  by assuming that    f   can be 

approximated sufficiently well by the parabolo. which interpolates    f   at 
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the last three points at which   f   has been evaluated       To avoid 

overstepping    at   too often,  because of the inadequacy of the parabolic 

approximation to   f ,  the procedure uses a heuristic "safety factor" 

he(0,1)   .    If 

a5 = min (b , a2+ h(a^ - a2))    , (5-11) 

then at step 2 we choose 

a5 = max (a^a^) , (3.12) 

and if it necessary to reduce   a,    at step U then we set 

a, •- max (a" , ^ (ap+ a,))  .    Procedure glcmin also makes a rather 

primitive attempt to adjust    h ,   ehe adjustment depending on the outcome 

of step h. 

Some details of procedure glcmin 

The ALGOL 60 procedure glomin given in Section 10 uses the basic 

algorithm with the refinements suggested above,    from equation (3.8) 

and ths criterion in step k of the basic algorithm,  it is clear that, 

to speed \xp convergence, we want to find a rough approximation to the 

global minimum as soon as possible.      In other words,    <p    should be 

nearly at its final value as soon as possible.    For this reason, procedure 

glomin incorporates several strategies which are designed to reduce   «p 

quickly.    We emphasize that the global minimum would be found without 

using these strategies;   the strategies merely reduce the number of 

function evaluations required (see Sections 5 and 6). 

The first strategy for reducing   $   quickly is a pseudo-random 
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search. About 10 percent of the function evaluations are used to 

evaluate f at "randan" points uniformly distributed in (ap,b) . 

(f is not evaluated at the random poxnt a, if Theorem 2.1,  with a 

replaced by a« and x by a, , indicates that f(a,) >9-t , for 

such an evaluation would be a waste of time.) At worst, this strategy 

wastes 10 percent of the function evaluations, but in practice the 

saving in function evaluations caused by quickly finding a good value 

of qp is often much more than 10 percent.  (The choice of 10 percent 

is, of course, rather arbitrary.) 

By comparison with the random search strategy, the second strategy 

Is a highly "non-random" search.  f is evaluated at the minimum a, 

of the parabola which interpolates f at the last three points at which 

f has been evaluated, provided that this point a,  lies in (ap,b) 

and Theorem 2.1 does not show that the evaluation is futile for the purpose 

of reducing $ . The details are similar to those of procedure localmin 

(see Chapter 5) • This strategy helps to locate the local minima of f 

which are in the interior of [a,b] , and, unless the global minimum is 

at a or b , one of these local minima is the global minimum. A bonus 

is that, if f is sufficiently well-behaved near the global minimum 

(see Chapter 5 for more precise conditions), then the minimum will be 

found more accurately than would be expected with the basic algorithm. 

The numerical examples given in Sections 6 and 8 illustrate this. To 

avoid wasting function evaluations by repeatedly finding the same local 

minimum, this strategy is only used about once in every tenth cycle, 

although it is always used if q) = f(a0) , for then there is a good 

chance that f(a,) < qp » 
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Finally, the user may be able to make a good guess at the global 

minimum.    For example,     he may   know a local minimum which is likely 

to be the global minimum,    or  he may  know the global minimum of a 

slightly different function (see the application discussed in Section 8) 

Thus, procedure glomin has an input parameter    c   which may be set by 

the user at the suspected position of the global minimum,  and on entry 

the procedure evaluates    f   at    c    in an attempt to reduce   <p .    If the 

user knows nothing about the likely position of the global minimum, he 

can set    c = a   or   b . 

We can now summarize procedure glomin (for points of detail,  see 

Section 10).    Step 1 of the basic algorithm is performed,  and the 

algorithm terminates immediately unless    M > 0    and    a < b  .    Before 

choosing    a,e(ap,b]    at step 2, the strategies described above are used 
A 

to try to reduce   cp .    Then   a,    is chosen, and perhaps reduced at 

step U, as described above. 

The reader who is not very interested in the murky details of 

procedure glomin,  or in the effect of rounding errors,  would be well 

advised to skip the rest of this section. 

Some of the formulas used by procedure glomin need an explanation. 

When either the random or non-random search strategy is performed, we 

have numbers    q   and   r , and wish to determine if the relation 

q / 0 A (a? < a^+r/q < b) A 

(b-(a +r/4))f(ap) + (r/ci)f(b) 
 rri= |M(r/q)(b-(a2+r/q))  <(p-t       (5.13) 
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z2 =b-a2 >0 ,    yb is true.    If   m2=pM>0, 

Yp = f(ap)  , then (5.13) is equivalent to 

= f(b)  ,  and 

q[r(yb - y2) + z2q(y2 -$+ t) ] < z^rCz^.-r)    , (3.1^) 

which is the condition tested after label "retry" of procedure glomin. 

(If   q = 0   then (3.1^) is false, and it is also false if   a  + r/q 

lies outside    (ap,b)  , since   nip > 0    and   $-t < min (yp^y.)   .) 

To approximate at , we need the point at*- where the parabola 

y = P(x) , passing through (a.,y.) for i = 0,1,2 , intersects the 

parabola 

y »mg   *-a2- 
\| 

y2 - (p +1 

m. + (p -t (3.15) 

(In procedure glomin we use c in place of a., to save a storage 

location.) Let z0 = y2 - y1 , z1 = y2 - y0 , (^ = a2 - a1 , d1 = a2 - a0 , 

and   d2 = a1 - a0 In the non-random search we have already computed 

numbers   p   and   q      (r   and   q   above) with 
s 

p = Vo " Vl 

and 

*sSB2(dD2l-dlV    ' 

(3.16) 

(3.17) 

in order to find the turning point    a0 + p/qo   of   P(x)   .    By forming 

the qtiadratic equation for   at* , and dividing out the   unwanted root    ap , 

we find that 

a^ = a2+p'/q'    , (3.18) 
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where 

p1  = p+ 2rs    , 

q«  =r+|qs    , 

r = ^d^      , 

and 

y2-J + t 8=j m2 

(3.19) 

(5.20) 

(3.21) 

(3.22) 

Finally, there is the inspection of the lower bound on   f   in 

(a2,€u)    given by the parabola 

(a,-x)yp+ (x-ap)y, 
Y--2 V ^-^ - m2(x - a2) (a5 - x)     , (5.25) 

where   nu = ^ M > 0   and 

c^ = a^-ag >0    . (5.210 

If 

P = ^^   , (3.25) 

then the parabola (5-25)  is monotonic increasing or decreasing in 

(a2,a,)    provided 

\v\>^    - (3.26) 

Otherwise, the parabola (5.25) attains its minimum in    (a ,a,)  , and 

1 12        2° 1 the minimum value is   ^ (y.^+y^)  - ^ m2(d0 + p )    at    x = ^ (a2+a^* p)   . 

Thus,  at step U of the basic algorithm,    a,    must be reduced if 
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i.e.,  if 

|p| <do A I iy2 + vJ ' i m2(do + p2) <i -t  ' 

|p| <d0 A ^M(d^ + p2) > (y2-$) + (y3-9) + 2t 

(5-27) 

(3.28) 

The effect of rounding errors 

So far we have ignored the effect of rounding errors, which 

actually occur both in the computation of f(x) and in the internal 

computations of procedure glomin. How we show how these rounding errors 

can be accounted for. 

Let e be the relative machine precision (parameter macheps of 

procedure glomin), i.e.. 

e  - 

1-T ß (truncated arithmetic), 

1     1-T 7j ß (rounded arithmetic). 

for T-digit floating-point arithmetic to base   ß .    We suppose, 

following Wilkinson (1965), that 

fl(x#y)  = (x#y)(l+5)    , (3.29) 

where   f    stands for any of the arithmetic operations    + ,   - ,  y. , / , 

and 

|5| < e    . (3.50) 

On machines without guard digits, the relations (3.29) and (3.30) may 

fail to hold for addition and subtraction: we may only have the weaker 

relation 
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fl(x+y)   = xCl+ö^ + y(l+52)     , 

where 

5.j  < e        for    i = 1,2    . 

(5.51) 

With these machines it seems difficult to be sure that rounding errors 

committed inside procedure glomin are harmless.    At any rate,  our 

analysis depends heavily on relation (3.29).     (See equation (5.52)  and 

the following analysis.) 

We also suppose that square roots are computed with a small relative 

error,  say 

fl(sqrt(x))   = v/x(l+55)    , 

where (5.52) 

(Any good square root routine should satisfy (5-52)  very easily.    The 

library routines for the IM 560 certainly do:     see Clark, Cody,  Hillstrora 

and Thieleker (I967).) 

Let us first consider the effect of rounding errors in the computation 

of    f ,  supposing for the moment that the internal computations of 

procedure glomin are done exactly. The user has to provide procedure 

glomin with a positive tolerance    e    which gives a bound on the absolute 

error in computing    f . More precisely, we assume that,  for all    &    and 

x    with    151 < e    and    x ,      x(l+5)    in    [a,b]  , we have 

|n(f(x(l+6))) -f(x)| <e      , (3.55) 

where    f(x)    is the exact mathematical function  (satisfying condition 

(2.1)),  and    fl(f(x))     is its computed floating-point approximation.    The 
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reason for condition (5.35) will be apparent later:    at present we only- 

need the special case with   5 = 0 , i.e.. 

|fl(f(x))  - f(x)| <e (5.5^) 

for all    xe[a,b]  . 

We have seen that, without rounding errors, procedure glomin would 

return   cp    (or   y = glomin) and   \i    (or   x)    satisfying 

<P-<J = f(il)  <<P^ + t      . (5.55) 

With rounding errors,  (5.55) no longer holds, but we shall show that 

and 

<Pf <f(Ü <<Pf+t+2e 

9- - e < 9 = fl(f(!l)) < «p- + t + e 

(3.56) 

(5.57) 

If the error e in canputing f is much less than the tolerance t , 

then (5.56) and (5.57) are much the same as (5.55)> so rounding errors 

have little effect on the accuracy of   9 . 

The left hand inequality in (3.36) is obvious from the definition 

of   qp f * To prove the right hand inequality, we must look closely at 

the "critical" sections of procedure glomin,  i.e., the sections where 

rounding errors could make an essential difference.    (Examples of non- 

critical sections are the random and non-random searches.) 

In computing the safe choice   a"    for   a^    according to equation 

(5-9)* we contpute 

s = 
y2 - 9 + t 

(5.58) 
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and 

r = -i(v 
(z0 + 2.016) 

^^2 
(5.59) 

where "^ = a2 " ai » zO = y2 " yl ' m2 = 2 M ' ^ 

and y. - flCf^)) for i = 1,2 . Thus 

= nitM) , 

8  < 
f(a2)  - f(n) + (t + 2e) 

*2 
(3.1*0) 

so, as feu: as the computation of   s    is concerned,  everything said 

a^ove holds if   t    is replaced by   t + 2e .    (Remember that we axe 

regarding all ccmputacions inside the procedure as exact.)    We are only 

interested in   r   when    cL > 0   and   nu > 0 ,  and as 

z0 + 2.01e > z0 + 2e > f(a2) - f(a1)    , 

we have 

r < 
J        f(ag) - t(^) \ 

-^4o + —a^ J     • (3.1.1) 

(The reason for the extra O.Ole will be apparent later.) Thus, the 

computed s^I will not exceed the correct value given by (5-9)* if t 

is replaced by   t +2e . 

The other point where rounding errors in the computation 

of   f   are critical is when we determine whether the parabola   y = P(x)  , 

with   P"(x)  = M ,    P(a2) = y   , and   P(a,)  = y, , lies above the line 

y = (p -t    in the interval   (ap,a,)   .    Let   y = Q(x)    be the parabola 

with   Q'^x) = M ,    Q(a2) = f(a2) , and   Q(a5)  = f^)  .    Since 
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y. = fl(f(ai)) < fCa.) + e     for    i = 2,5 , 

it is clear that 

P(x) < Q(x) + e 

in    (a2,a,)    .    Thus,  if 

0.k2) 

F(x) >$ - t (5.^5) 

in    (a2,a5)  , then 

Q(x) > $ - t - e    >   f (ji) - t - 2e O.hk) 

in    (ap,a,)  ,  so again everything is accounted for by changing   t    to 

t + 2e .    This completes the proof of (5.56).    The left inequality in 

0'3l) is obvious, and the right inequality follows from the above 

argument if we note that it is sufficient to replace   t   by     t+e+(f(Jl) -9) 

Now,  let us consider the effect of rounding errors committed inside 

procedure glomin.   We shall show that (5.56)  and (3.3T) still hold, 

provided some minor modifications are made in the algorithm.    These 

modifications are included in procedure glomin, but,  to avoid confusion, 

they were not mentioned in the description above.    The most important 

modification is that,   instead of having   nu = ^ M ,  procedure glomin has 

m2 = fl(i(l+l6e)M)     , (5.^5) 

where the factor   1+ 16E    is introduced purely to nullify the effect 

of rounding errors. 

2 
For the sake of simplicity, terms of order    e      are ignored in the 

rest of this section.    Because of the slack in some of oar inequalities, 
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these tenns may be accounted for if    e < j^ö '    Fr001 (5^5) and the 

aasvuaption (3.29), we certainly have 

m2 >   I (1+1?E)M    . (5.^6) 

In the computation of   a"    according to (5.9)* procedure glomin 

actually conrputes 

1 

s =ia|    "    '       f" , (5.U7) -...{^i) 
and as errors in the computation of   f   have already been accounted for, 

we can assume that   y     and   ^   are exact floating-point numbers.    From 

(5.^ and the assumptions (5.29)  and 0.32), 

1 

^(yp-iMi+öJ+tKi+ö )(i+5 A 
ky |M(l+15e)        J 

where )6 j < e for i = l,...,^ .  Since yp-^ and t are both 

nonnegative, 

(y -9)(l+E)+t < (yP-9
+t)(i+0 , (3A9) 

so 

S < 6 =   -~  . (3.50) 

2M 

Thus, the slight modification of   mp   has ensured  :hat the computed   s 

is no greater than the exact    s  .    Note that,  in the derivation of 

(3.50),   it was essential that    yp-cp   was computed with a small relative 

error,  so the assumption (3.29) was necessary:    (3.31) would not be enough. 
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Similarly,  to find   a" , we actually compute 

f-, f                    (y   -y )+2.01e 
- i    (a0-aj + —j i-r  2 I v 2      V          (a   - a )nu (5.51) 

where e; > 0 , m0 > 0 , and a0 > a, . We are only interested in r 2        1 

if   r > 0 ,  so 

0    >    fl((y2-y1) + 2.01e) 

> ((y2-y1)(l+e)+2.01e(l-e))(l+e) 

> (y2-y1+2e)(l+e)2     , (5.52) 

assuming that    e S üyT •    (The reason for the extra   O.Ole    in (3.59)  is 

now clear.)    Thus 

where 

and 

r = fl(-| (r1+r2))    , 

0 < (ag-a^Cl-e) < ^ < (a2-a1)(l+e) 

(y2-y1
+2e)(l-90 

(5.55) 

(5.5M 

0 > r2 >        1 (5.55) 
2 M(a2 " ai) 

Since   r >0 ,     (5.55) shows that    |r   | < |r2| ,  so, fron (5-55) to 

(5.55), 

r < r < - 2 (a2-al)+      I 

y2 " yl + 2e 

2M(a2-a1) 
(5-56) 
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As "before,    the computed   r    is no greater than the correct    r  .    The 

seuiie is not true for   a" ,  tne computed value of   a" , but    a^    is 

either   b ,     fl(ap + r)  ,  or    fl(a   + s)   .    Suppose,  for example, that 

a^ = fl(a2+s)     . (5.57) 

Then 

fl(f(^)) = fl(f((a2-*-s)(l+&))) (5.58) 

where    ib I < e ,   so, from (5.55), 

|fl(f(a^)) - f(a2+i)|    _;   e (5-59) 

(This is why we required (5.55)  instead of the weaker (3.5^).)    Thus, 

the error in computing   ap+s    or    a  +r   can be ignored,  for it has 

been absorbed into the assumption (5.53) on   e  . 

Finally, we have to consider the effect of rounding errors when 

testing the condition (5.28).    First 

{    y2 " y3 

\jM(a5-a; 
(5.60) 

is computed.    It is Important to note that we use   pM   ,  not the 

slightly different   v&.      (given by (5.^5)) here.    Thus 

2M(a3-a ) 
- •  (1+5^)    , (5.61) 

and 

d0 = fl(a5-a2)  ^ (a5-a2)(l+62)      , (5.62) 
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where    |5. | < e    for    i = 1,2  . 

The test actually made by procedure glomin is whether 

£1 <fl((l+9e)d0) A fl(|m2(d^ + p2))  >fl[(y2-9)+(y5-9)+25]  ,      (5.63) 

and we shall show that  (5.65) is true whenever the condition (3.28)  is 

true.    First,     |p| <d      implies that     |pj < d (l+5e)  ,  and thus 

|51 <fl((l+9e)än) (3.64) 

Similarly,  if    |p | < d      aid 

^M(c^ + p2)  > (y2-$) + (y?-9)+2t    , 

then 

so 

dg + i2 >(d2 + P
2)(l- 60    , 

fl(| m2(d^ + f)) > ^ M(d2 + P
2)(l + he) 

> ((y2 - $) + (y^ - $) + 2t)(l+ 3e) 

>fl((y2 - $) + (y3 -$) + 2fc)   • 

(5.65) 

(3.66) 

(5.6?) 

(Note the importance of grouping the terms:     since   yp-9 ,    y*-^    and 

2t    are all nonne^ative,  their sum can be conputed with a small relative 

error.) 

Frora (5.64)  and (3.67), the inexact test  (5.65)  results in    a^    being 

reduced whenever the exact test  (5.28)   says that it must be.      a,    may 

occasionally be reduced unnecessarily because of rounding errors, but 

this does not invalidate the bounds (5-36)  and (5.57)?  it merely causes 

seme unnecessary function evaluations. 
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We shoiold mention a remote possibility that rounding errors can 

prevent convergence.    This is only possible if    fl(a  + s)  = a» ,  and, 

1/2 as    s > (1 - 1UE)( 2t/M ) '     ,  there is no chance of it   happening   provided 

t > ME
2
 max(a2,b2)     . (5.68) 

Thus,   convergence can only be prevented by rounding errors if   t    is 

unreasonably small. 

In conclusion, procedure glouin is guaranteed to return   9    and   \x 

satisfying the bounds (5.56)  and (507); provided the input parameters 

raacheps,    t    and   e    are set correctly. 

k.      The rate of convergence in some special cases 
1 

It is difficult to say mich in general about the number of function 

evaluations required by th'3 algorithm described in Section 5.    In the J 
I 

next section we compare the algorithm with the best possible one for 
I 

given    M   and   t  .    In this section, we try to gain some insight into the 

dependence of the number of function evaluations on the bound   M   and 
■ 

the tolerance t , by looking at some simple special cases. 

j 
1 

The worst case .—^^__^—___ 

As pointed out above (equation (5.4))* two function evaluations 

are enough to determine   JI    and   7)    if   M < 0 ,  so suppose that   M > 0 , 

and let 

\|  M       * (^•1) 

167 



6.k 

We shewed above that, if the last function evaluation was at ape[a,b) , 

we could safely choose 

a, = min(b,a2 + 5) (4.2) 

for the next evaluation (step 2 of the basic algorithm).    With this 

simple choice of    a, , about    (b-a)/5    function evaluations would be 

■required.    Procedure glomin tries to do better than this,  and is nearly 

always successful (see Section 6), but the worst that can happen is 

that    a,    will be chosen to be   b , and then   a,   will be reduced several 

times at step k of the basic algorithm.    As   a*-a2    is halved at each 

such reduction of    a3 , there can be at most 
5 

(^5) 

consecutive reductions of   a,    at step h.    Thus, at worst,  about 

function evaluations will be required.    We have ignored the random and 

b - a •nonrandom searches, but these can only add about    2(   ,   )    extra function 

evaluations. 

b    a If   b    is given by (h.l), the tem      log (—g—)    in (h.k) varies 

only slowly with   M   and   t ,  so the upper bound is roughly proportional 

1/2 to    (b-a) (M/t) '     .    In particular, the upper bound is roughly proportional 

to   \/M ,  and it seems to be a good general rule that the number of function 

evaluations is roughly proportional to   /M ,  even when the upper bound 

(h.k)  is not attained (see below and Section 6^. 

168 



Ssm^^* 

6.1+ 

A straight line 

If the global minimum of   f   occurs at an endpoint   n = a   or   b , 

and    f (n) / 0 , we can gain an insight into the behaviour of the 

algorithm near   n   by considering the linear approximation   f(n) + (x-^f (n) 

to    f(x)  .    Suppose,  for example, that 

f(x) = k(x-a) + t (iv.5) 

for some   k>0,so    n = a.    Ignoring the r andern searches, the 

algorithm will evaluate   f   at the points    a , b , c, and then at 

points   x   < x2 < x, < ... < x^ T    say, where   x=a<x1,    Xj^^b, 

and the points    (x ,f(x ))    and   (x   1,f(x      ))    lie on the parabola 

y = P (x)   which touches the line   y = 0   and has   P"(x)  = M .    (See xr n 

Diagram ^.1.)    If   P (x)    touches   y = 0   at   x = a   , then 

P.(x) =|M(x-an)2   , (1^6) 

so 

a   = x +1 | (k(x -a)+t) = X^T -    % (kCi^, -a)+t)   .  (U.?) n       n   S M v  v n   '      '        n+1    ^ M v  v n+1     '      '       v     i/ 

If 

zn = Jxn-a + t/k   , (U.8) 

then (^.7) gives 

Vl ^n + ft        ' (U-9) 
SO 

It |2k 
Sn = >|k   +M-M (lv.10) 

Thus 
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effect of rounding errors, but these should not be important if t 

satisfies the weak condition (5-68).) 

If k is very small, so that k(b-a) « t , then (^.12) gives 

N ~i (b-a)/5 , {h.lk) 

and the algorithm proceeds in steps of size about 26 , where 6 is 

given by (U.l). 

A parabola 

If the global minimum of f occurs at an interior point [i  , then 

f* (n) = 0 , so if -"(n) / 0 we may analyse the behaviour of the 

algorithm near \i    by considering the parabolic approximation 

f(ji)+^ f"(pi)(x-n)  to f(x) . Thus, suppose t,hatv 

M > m > 0 

and 

f(x) = |m(x-u)2 + t , 

(^•15) 

(^16) 

where   ^€(a,b)   .    The nonrandom search will quickly locate    n ,   so we 

may suppose that    (1 = ^ ,  and, without loss of generality,    ^  - 0   .    The 

algorithm will call for the evaluation of    f    at points to the left,   and 

then to the right,   of   \x  .    As these two cases are similar,  let us 

defined above, 

except that now    f    is given by (^.16)  instead of by (U.jp).    In place 

of (H.7), we find    hat 

define   x    = ^ = 0 ,  and study the points    x ,x , 

t      m  , 2 ^ 2t^ | a , 2 2t^ ,,,  ^x 
n        n      ^{^"n      m7 n+1      ^Mv n+1       m' v ' 
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It does not seem to be possible to give a simple expression like 

(U.U)   for   x    , defined, by the recurrence relation (h.Yj), but we may 

solve for   x in terms of   x    ,  obtaining 

= (>£AX + (JSL] I s {x2 + st) . (u.ia) 
I M-m In       I U-mj J M v n       m' v ' n+1 

If 

p = (M/m)1/2    , (1^.19) 

this may be written as 

Xn+1 = ^)^+te)([^f-%) •   <-) 
Suppose that    p    is close to   1 ,  i.e.,    M    is not much larger 

than   m = t"{\i)   .    Then 

■'■Wi x,  =   I --   S   i ^      • (^.21) 

For    n > 1 , the first term in (I*.20) dominates the second, and 

^ ■= ! ST |K„(l + 0((p-l)a))     as    p - 1 . (1..22) (^I)V1+0< n+1 

Thus,  if   p   is close to    1 , then 

for   n > 1 , and, as the factor   £-=■   is large,  only a few function 

evaluations will be required. 
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5.     A lower bound on the number of flmction evaluations required 

Suppose that a positive tolerance   t   and bound   M   are given, 

that    f   attains its global minimum   q)f    in    [a,b]    at    |if ,  and that 

f'Cx)  <M (5.1) 

for all   x».[a,b]   .    (Similar results to those below hold if equality is 

allowed, but the definitions and. proofs have to be modified slightly.) 

First, we need a lemma. 

Lemma ^.1 

If x,€[a,b) , then there is at most one point xl,e(x,,b] , such that 

the parabola y = P(x) , with P,,(x) = M , P(x') = ^x«) , and touching 

the line y = <pf-t , satisfies P(x") = f{x")  . 

Proof 

Suppose, by way of contradiction, that two such distinct points x" 

and x"1 exist. Then 

M = 2t[x',x",x"']  = f'd) (5.2) 

for seme    IcCxS^]    (see Chapter 2), contradicting 

f'U)  <M    . (5.5) 

Definition $.1 

For x'elajb) , define 

s(x') = 
xw  if the point x" of Lemma 5.1 exists, 

b   otherwise. 
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Lemma 5.2 shows that N is finite, in fact 

The following lermna shavs that, in order to prove that f(x) ? q>f'- t 

f'or all xe[a,b] , given only condition (5.1), it is sufficient to 

2 If' .gee [a,b], g"(x) <M f'or all xea,b, and 

g(x ) = f'(x ) n n 

for n = 1, 2, ••• ,N and the points x 
n 

Proof' 

q> > q>f'- t . g-

defined above, then 

( 5.6) 

(5-7) 

The lermna follows immediately f'rom the definitions and Theorem 2.1. 
. I 

(Clearly, weaker conditions on g , e.g. condition (2.1), are sufficient.) 

Our interest in the points x
1

, ... ,:XW stems from the following 

theorem, which canplements Lemma 5.3. 

' 
Theorem 5.1 -::· ... 

~ ·- - T- .':::'-_..:. .. ~~~ -~~~ -1 I 
_ .. ..__ .- "· .. ~., . -:i.JeG x1 < x2 < ..• < x' 

•• , •••. -· <- "' " v be any v points in [a, b l , with v < N • 

Then there is a function g E Cuo[ a, b ] , satis:f'ying 

g"(x) < M (5.8) 

f'or all xe[a,b] , and 
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g(x^) = f(x^) (5-9) 

for   n = 1,2,..., v ,  such that 

q>g<<pf-t   > (5.10) 

Proof 

Suppose, by way of contradiction, that 

«Pg^f't (5.11) 

for all such   g -    Then   x' = a , for otherwise    -g(a)    can be 

arbitrarily large,  and,  similarly,    x• = b  .    Since   v < N , there is 

an   n,    l<n<v, such that   x1 < x     and   x', n > x , n   .    Thus, '- ' n-n n^l       n+1 ' 

the parabola   y = P(x)  , with   P'^x)  = M ,    T{x')  = f(x,) ,  and 

P(xA+l) = f(xifl)  '  is such that 

min 
X€[x,,x'  , ] n' n+lJ 

P(x)    <  qjf-t    . (5.12) 

Since there ?a a function   g   as above which is arbitrarily close to 

P(x)    in    [x',*»     ] , this contradicts (5.11),  so the theorem holds. 

Consequences of the theorem 

Theorem 5'1 says that,  if all that is known a priori about    f   is 

that    f€C  [a,b]    and satisfies condition (5«l)^  then any algorithm, 

which is guaranteed to find   \x   so that    f(|i) ^«P.f.+ t , must require 

at least   N   evaluations of   f .    This is so because,  if an algorithm 

required only    V < N    evaluations at points    x'  < x' < ... < x'  ,   say. 
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then it would be sure to fail for either    f    or for    g ,   for    f   and   g 

are indistinguishable on the Vasis of the    v    function evaluations, 

yet   cp  + t < 9    .    Of course, we are only considering algorithms which 

sequentially evaluate    f   at a finite number of points. 

Conversely, Lemma 5.5 implies that   N+l   function evaluations are 

sufficient  (just evaluate    f    at    |i_    and   x , ...,0  ,  and possibly   N 

are sufficient.    (See Diagram 5.1«)    Unfortunately, Lemma 5*5 does not 

give us an effective algorithm for approximating   «p» ,  for we do not 

know   N    or the points    xc, ...,x_        in advance,  and a large number of 

function evaluations is usually needed to approximate them. 

Efficiency 

Suppose that an algorithn requires   N'    function evaluations to 

find   cp = f(^)    such that   (p < q)  +1    is guaranteed.    We could define 

the efficiency    E   of the algorithm by 

E = N/N'     . (5.1?) 

(Note that E depends on f , M , t , a and b , as well as on the 

algorithm.) We have shown that 

E < 1 (5-l1+) 

for any correct (i.e.,  guaranteed)  algorithm,  so,  if an algorithiti has 

an efficiency close to   1 ,  then we are justified in saying that the 

algorithm is nearly optimal (for that    f ,  M ,  t    etc.).    In the next 

section we give numerical results which show that,  for practical examples, 

the algorithm described in Section 5 is often nearly optimal. 
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6.      Practical tests 

The ALGOL procedure glomin given in Section 10 was  tested using 
f 

ALGOL W (Wirth and Hoare (1966), Bauer,  Becker and Graham (1968))  on an 

I -13 IBM 560/9I ccmputer with machine precision l6   . Some representative 

numerical results are summarized in Table 6.1. For all of these 
I 

-lU       -13 
results the parameters e and macheps were set at 10   and 16 

i 
i 

respectively. 
I 

The table gives the upper bound   M    (parameter   ra    of glomin)  on    f" , 
I 

and the total number of function evaluations required by procedure glomin: 

N"    with tolerance    t  = lO"    , and   N1    with tolerance   t - 10        .    The 

-12 lover bouid   N    defined in Section 5 is also given for   t = 10 

(Recall that no algorithm which is guaranteed to succeed can take less 

than    N   function evaluations.)      N    and the points    x , ...,x^    (see 
i 

Sectior ... .c- computed in the obvious way from Definition 5-2,  using 

procedure  zero of Chapter h to solve the nonlinear equation 

( 
! P(x)  = f(x)    , (6.1) 
I 

where    P(x)     is the parabola of Lemma 5'1«    Finally,  the efficiency 
I 

E = N/N"     (equation  (5*13))   is given. 

For some more numerical results,   see Section 8, 

i/y 
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Table 6.1: Numerical results for procedure glomin 

1   f M N" N' \   N E = N/N 

0 2 2 1      2 1.00 

f] 

100 15 15 n 0.75       | 

10000 106 106 101 0.95 

2 U 1+ 2 0.50       1 

2.1 8 11 8 0.75       | 

2.2 9 15 9 O.69       1 
f2 8 25 3h 29 O.85       ! 

52 U8 68 60 0.88      | 

128 95 Ikl 120 0.85 

Ih 53 51 57 0.75 

f5 
28 U8 63 5^- 0."°   i 
56 67 98 76 0.,. 

^ 

7k' 222 21^6 126 0.51 

f5 
72 U56 3k2 U37 0.81 

The symbols are explained above. The functions are: 

f (x) = 2 - x on [7,9] (in all cases [i = 9,    $ = 7 ), 

<\ A 

f (x)   = x'    on    [-1,2]     (in all cases    ^ = 9  = 0)   , 

I 

f (x)   = x2 +  x5    on    [- I ,   2]     (for  t = IG-12, 1^1  < 5.10~10  ,   \i\  < 6.10"20)   , 

fu(x)   = (x+sin(x))exp(-x2)    on    [-10,10]    & = -0.6795786599525 , 

cp = -O.82U259598U76C77)   ,  and 

f (x)   =  (.:   - sin(x))exp(-x2)     on    [-10,10] 

(i - -1.1951566U1665 , j = -0.065^90528956^599) • 

1(9 



6.7 

Comments on Table 6.1 

The results for the simple functions    f, (x) = 2 -x   and   fp(x)  = x 

verify the predictions made in Section k.    For example, the values   N = 11 

and   N = 101    for    f1    are exactly as predicted:    one more than the 

right side of equation (^.12).      N , IT    and   N"    are roughly proportioned, 

to   /M   if   M » f"{\i)    (see also the results for   f,) , but this rule 

breaks down if   M ~ f"(ii)  , as expected from equation (^.25).    (See the 

results for    f2   with   M = 2,  2.1,  2.2.) 

It appears that the number of function evaluations does not- depend 

strongly on   t :    comparing   N"   with   N'  , we see that the average 

number of function evaluations required is only about 20 percent more 

for   t = ID'12   than    for   t = 10 

Finally, the efficiency   E   of the algorithm is fairly high,  even 

for the difficult functions    fj^   and    f-  .      This means that no correct 

algorithm based entirely on function evaluations could do very much better 

than ours, at least on these examples.    This is not too surprising,  in 

view of the results of Section 5« 

7.      Some extensions and generalizations 
2 

So far we have assumed that    feC [a,b]    and 

f"(x)  <M (7.1) 

for all   xela,b] ,  or at leas« that    f eC  [a,b]    and 

f(x)   -  f'(y)     <   M(x-y) (7.2) 
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for   a < y < x < b .    Condition (7'2) was necessary to prove the basic 

Theorem 2.1.    For the application discussed in Section 8 (global 

minimization of a function of several variables), we need to find the 

global minimum of a function which is continuous, but not necessarily 

differentiable.   We can justify using procedure glanin, even though   f 

may not be different iable, because of the following Theorems 7*1 to 7-5> 

which generalize Theorems 2.1 to 2.3.    (if the reader is prepared to 

accept the fact that Theorems 2.1 to 2.3 can be generalized in the 

appropriate way, he may skip this section.) 

Theorem 7.1 

Let    feC[a,b] , and suppose that there is a constant   M   such 

that,  for all sufficiently small   h > 0 , 

f (u+h) - 2f (u) + f(u-h)  < Mh2 (7.5) 

for all   u€[a+h,b-h]  .    Then,  for all   xe[a,b] , 

f(x) > (b-x)f(«)^(«-.)f(b)    .lM(M)(b.x)    . (7.U) 

Proof 

There is no loss of generality in assuming that 

f(a)  = f(b)  = 0 (7.5) 

and 

M = 0      , (7.6) 

for we can consider    f (x) - P(x)   , where    P(x)     is the right side of 

(7.^),   instead of    f(x)   .      Thus, we have to show that 
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^ > 0   , (7.7) 

where cp is the least value of f on [a,b] . Suppose, by way of 

contradiction,  that 

<Pf<0    , (7.8) 

and let 

u = sup(xt-[a,b] | f(x)  = cpf}    . (7-9) 

By the continuity of    f ,    f(u)   = qp - < 0 ,  so   u / a    or    b   .    Thus, 

for sufficiently small   h > 0 ,      ue[a+h, b-h] ,  and,  from the 

definition of   u , 

f(u-h)  > f(u) (7.10) 

and 

f(u+h) > f(u)    . (7.11) 

Because of the assumption (7.6), this contradicts (7.5), so (7.8) is 

impossible, and the result follows. (Note the close connection with 

the maximum principle for elliptic difference operators.) 

Theorem 7.2 

Suppose that  (7.3) holds,    M>0,    a<c1<c0<b,  and 

f(a)  > f(c1)   - f(c2)   .    Then 

c0 - a    > 
f(a) -f(c-) 
—T       • (7.12) 

2M 

Proof 

Apply Theorem 7-1 with    x    replaced by    c      and    b    by    c0  .    The 
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hypothesis that f(c ) = f(c2) gives, after some simplification, 

f(a) - f(c ) 
(c1-a)(c2-a) >  1 ~    , (7-13) 

2M 

and the result follows as c2 - a > (^ - a > 0 . 

Theorem 7«3 

Suppose that  (7.3) holds,    M > 0 ,     a < c < b ,  and the interval 

I = [c,b] n [c , ~ - -(a). 'fi0^-]      has positive length.    Then    f(x) 

is strictly monotonic decreasing on    I  . 

Proof. 

Suppose x ,x2 el with x1 < x2 . We have to show that 

f(Xl) > f(x2) . (7.1M 

Apply Theorem 7.1,   first with    x    replaced by   c    and   b    by    x1 , 

then with    a    replaced by   c ,      x    by    x^^   and   b   by   x2  .    The two 

resulting inequalities give, after sorae simplification, 

f^ - f(x?)    ,   a+c      f(a) - f(c)   . V^ (        ) 
M(x2 - x^        ^ Mta-cJ 2 ' [1'^ 

X + x^ 
Since -^—- < x0 , the right side of (7-15) is positive, so (1 .lh) 

holds. 

Remarks 

Theorems 7-1 to 7-5 generalize Theorems LJ.l to 2.3 respectively. 
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Since the algorithm described in Section 5 is based entirely on 

Theorems 2.1 to 2.3,  it is clear that condition (7.3)  is sufficient for 

the algorithm to find a correct approximation to the global minimum 

of    f .    This is not surprising,   for condition (7«3)  is equivalent to 

(7-2)  if    feC [a,b] ,  and is equivalent to (7-1)   if    feC2[a,b]   .    In the 

next section, we use this result to develop an algorithm for finding the 

global minimum of a function    f    of several variables.    The conditions 

on    f    are much weaker than those required by Newman (I965),  Sugie (196^), 

or Krolak and Cooper (1963).   (See also Kaupe (1964)  and Kiefer (1957).) 

8.      An algorithm for global minimization of a function of several variables 

•P 
Suppose that   D = [a,b]x[a,b]    is a rectangle in   Rw , 

xx        y   y 

f: D -■• R    has continuous second derivatives on   D ,  and constants   M 

and   M      are known such that 
V w 

fX)t(x,y)<Mx (8.1) 

and 

fyy(x,y) -My   ' (8*2) 

for all    (x,y)eD  .    Let us define   y:  [a ,b  J -» R    by 

(p(y)  =       min      f(x,y)     . (8.5) 
xe[a ,b   ] xx 

Clearly   cp(y)    is continuous,  and 

min    f(x,y)   -        rain      q)(y)     . (8.U) 
(x,y)cD ye[ay,by] 
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Thus, we have reduced the minimization of    f(x,y) , a function of two 

variables, to the minimization of functions of one variable.    Procedure 

glomin (see Sections 3 and 10)  can be used to evaluate   cp(y)    for a 

given   y , using condition (8.1).    If we could show that 

^'(y)  <My      , (8.5) 

then procedure glomin could be used again (recursively) to minimize 

cp(y)  , and thus,   from (8.U),    f(x,y)   .    Unfortunately,  examples show 

that   (p(y)    need not be differentiable everywhere in    [a ,b  ] ,   so 

(8.5) may be meaningless (we shall see below that (8.5) holds when 

(p"(y)    exists).    For example, consider 

f(x,y)  = xy 

on   D = [-1,1] X [-1,1]   .    Then 

<p(y)  = min (y,-y)  = -|y|     , 

(8.6) 

(8.7) 

which is not differentiable at    y = 0 ,  and we can not expect to prove 

(8.5).    The same problem may arise if the minimum in (8.5)  occurs at an 

interior point of   D  :    one example is 

f(x,y)   =  (x^ - 5x)sin(y) (8.8) 

on   D = [V3,/3] x [-10,10]  .      (f (x,y)    vanishes for    x = + 1 , 

so   (p(y)   = -2|sin(y)|  , which is not differentiable at    0  , + rr ,  etc.) 

Fortunately,  the following theorem shows that   cp(y)     does satisfy 

a condition like  (7.5),   so the results of Section 7 show that procedure 

glanin can be used to find the global minimum of   (p(y)  ,   just as  if (8.5) 

held. 
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Theorem 8.1 

Let    f(x,y)    and   q)(y)    be as above.    Then,   for all   h > 0    and 

yc [a +h, b -h] , 
| 

(p(yfh) - atp(y) + cp(y-h) < M h2      . (8.9) 

Proof 

From the definition (8.5) of   cp(y)  ,  there is a function    n(y) 

from    [a/b ]    into    [a ,b  ]    (not necessarily continuous),  such that 

q>(y) = f(n(y),y)    • (8.10) 

j 

Thus 

9(y+h) < f(n(y),y+h)    , (8.11) 

I 
so 

(p(y+h) -2qp(y)+(p(y-h)  < f(n(y),y+h) - 2f(n(y),y) + f(ii(y),y-h)   ,   (8.12) 

and the result follows from condition (8.2). 

Corollary 8.1 

For all   y€[a ,b  ]    at which   q)"(y)    exists, 

ffi"(y)  <M      . (8.13) 

Functions of   n    variables 

Theorem 8.2 generalizes Theorem 8.1 to functions of any finite 

number of variables. 

Theorem 8.2 

Suppose that    n > 1 ^       I-    iE a nonempty compact set in    R     for 

n+l 
i = 1, ...,n+l ,    D  = I1x I0 x ... x I fl c R        ,     f: D - R    is continuous, 
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and 

f(x + he.) -2f(x) + f(x-he.) < M.h2 (8.11+) 

for all sufficiently small     h >0 , all   xeR such that   x^+he.eD , 

and    i =1,2,,. .,n+l .    Let    D*  = I, x . • • X I    ,  and define   9: D' -» R   by 

q)(y) =     min   fCy^.. .,yn,x)      . (8.15) 
X€lnfl 

Then cp is continuous on D* , 

min f(x) = min cp(y) , (8.16) 
xeD  ~   yeD1  ~ 

and 

9(y+he;) -ap(y)+<p(y-hel)    <   Mh2 (8.17) 

n 
for all sufficiently small h > 0 , yeR such that y^+he*. eD1 , 

and J = 1,2, ...,n . (Here e. is a unit vector in R , and e' 

is a unit vector in   R    .) 

Proof 

The proof is a straight-forward generalization of the proof of 

Theorem 8.1, so the details are omitted. 

Theorem 8.2 shows that it is possible to use procedure glomin to 

find the global minimum of a function f(x , ...,x ) of any finit? 

number n > 1 of variables, provided upper bounds are kno*m for the 

partial derivatives f   (x)  (i = 1, ...,n) . It is interesting that 
i i " 

no bounds on the cross derivatives f   (x)  (i / j) are necessary. 
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If a one-dimensional minimization using procedure glorsln requires 

about    K   function evaluations, then we would expect that about    YT 

function evaluations would be required for an n-dimensional minimization. 

Since   K   is likely to be in the range    ID < K < 100    in practice (see 

Section 6), the computation involved is likely to be excessive for 

n > 5 .    Thus,   for functions of more than three variables, we probably 

must be satisfied with methods which find local, but not necessarily 

global, minima  (see Chapter 7).    It should be noted, however,  that the 

theorems of Section 5 do not extend to functions of more than one 

variable,  so we do not know how lar our procedure is from the best 

possible (given only upper bounds on    f for    i = 1, ...,n ).    Thus, 
i i 

there is a chance that a much better method for finding the global 

minimum of a function of several variables exists.    It is also possible 

that slightly stronger a priori conditions on    f    (e.g., both upper 

and lower bounds on certain derivatives) might enable us to find the 

global minimum much more efficiently. 

Minimization of a function of two variables:    procedure glomin2d 

In Section 10 we give an /LGOL 60 procedure (glomin2d)  for finding 

the global minimum of a function    f(x,y)    of two variables,  using the 

method suggested above.    Note that glorcin2d uses procedure glomin in a 

recursive manner,   for glomin is required both to evaluate and to 

minimize   (p  .    The error bounds given in the initial comment of procedure 

glomin2d are easily derived from the error bounds (3.56)  and (5.57)  for 

procedure glomin. 
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Procedure glomin2d was tested on an IBM 360/91 compate?'   (using 

ALGOL W),  and scane numerical results are summarized in Table 8.1.    In 

all cases shown in the table the parameters    macheps ,  e    and   t    were 

-15 -J.h -10 -1^      A 

set at    l6       ,  10 and    10 respectively.     (Thus   <pf -10        < q) 

< <p+1.0002 x 10"        is guaranteed, where   qp»    is the true minimum of    f , 

and   cp    is the value returned by the procedure.)    In the table we give 

the upper bounds   M      and    M      (see equations (8.1)  and (8.2)), the total 

number of function evaluations    N , and the approximate global minimum   <p 

(always very close to the true global minimum   (p_)   . 

I89 
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Table 8.1:    Numerical results  for procedure glomin2d 

f Mx M N 
A 

fl 
0 

It 

0 

1+ 9 

-1 

-1 

f
2 

 —   • " 
2 

2 

10 

10 

1+ 

10 

h 

10 

51 

n6 
1+U6 

956 

0 

0 

5'-55 

V-59 

f5 
2210 200 13520 2»-18 

h 200 2210 1815 0 

f5 
h k 195^ -0.5966529610851^71 

f6 
k 

8 

k 

8 

100556 

150U96 

-0.596652961085^68 

-0.59665296l085^51+ 

The symbols are explained above.    The functions are; 

Vx'y) = 155 + 99x - 55y    on   [-1,1] x [-1,1] ; 

f_(x,y)   = x2 + xy + 2y2      on    [-1,5] x [-2,1+]   ; 

f3(x,y) 

fu(x,y) 

f5(x,y) 

f6(x,y) 

100(y-x2)2+  (l-x)2      on    [-1.2,1.2]  x [-1.2,1.2]   ; 

f*(y,x)      on ^e same domain; 

sin(x)cos(y)exp(-(x2 + y2))      on    [-1,2] x [-1,2]  ; 

f5(x,y)      on    [-2,1+]  x [-2,1+]  . 
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Comments on Table 8.1 

The res-alts for the simple functions    f,     and    fU   are not very 

ffjrpnsing.    As expected frcxn the behaviour of proced-ore glorain on 

functions of one variable (see Sections 5 and Q> the number of function 

evaluations (N)   increases »rith   M     and   M    . 7 x y 
2 2 2 

f*fx>y)  = 100(y-x  )   + (1- x)      is the well-known Rosenbrock 

function (Rosenbrock (i960)),  and it has a steep curved valley along 

the parabola   y = x    .      f. (x,y) = f,(y,x)    ij just the Rosenbrock function 

in disguise,  and it is interesting that only 1815 function evaluations 

were required to minimize    f.   , compared to 15520 for    f,   .    Thus,  it can 

make a large difference whether we minimize first over   x    (with   y    fixed) 

and then over   y ,  or vice versa, but it is difficult to give a reliable 

rule as to which should be done first.    Of course,   even the lower figure 

of I815 function evaluations is very high by comparison with 100 or less 

for methods which seek local minima (see Chapter 7)> hut perhaps this is 

the price which must be paid to guarantee that we do have the global 
r 

minimum.    (This is only a conjecture,  for the results of Section 5 have 

not been extended to functions of several variables.) 

The functions    f,.    and    ir   are the same,  but the domain of    f,    is 

four times as large as the domain of    f    .    For this function the size 

of the domain has much more influence on   N   than do the bounds    M x 

and   M    :    increasing the size of the domain by a factor of four increased 

N    by a factor of about 50, but doubling   M      and   M     only increased   N 

by about 50 percent.    With a different function,  though, we could easily 

reach the opposite conclusion.    (fp      is one example.) 
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To summarize: if it is possible to give upper bounds M  and M 
x y 

on the partieil second derivatives    f       ard   f      , then procedure 

glcrain2d will find a guaranteed good approximation to the global minimum, 

but the number of function evaluations required may be considerable, 

especially if the domain of    f    is large or if the bounds   M     and   M 

are weak.    As for one-dimensional minimization, the size of the tolerance 

t    has a fairly small influence on the total number of function evaluations 

required. 

Finally, we should note that we have restricted ourselves to 

rectangular domains merely for the sake of simplicity:    there is no 

real difficulty in dealing with nonrectangolar doroainß. 

9.      Summary and conclusions 

In Section 1 we saw that the problem of finding the global minimum 

(pr = f (jiJ    of a function   f   defined on a compact set is well-posed, 

whereas the problem of finding   n-    is not well-posed.    To be sure to 

find the global minimum, some a priori conditions on    f   are necessary, 

and several possible conditions were discussed in Section 1.   We 

cuncentrated our attention mainly on one such condition,  a given upper 

bound on   f" , and small variations of this condition. 

An efficient algorithm for one-dimensional global minimization, 

based on theorems in Sections 2 and 7* iß described in Section 3.    The 

effect of rounding errors, and the nuiaber of function evaluations 

required, are discussed in Sections 3 to 5, and numerical results axe 

given in Section 6,    Finally,  in Section 8 the results for functions of 
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one variable are used to give an algorithm for finding the global 

rainimim of a function of several variables  (practically useful for two 

or three variables),  and ALGOL procedures are given in Section 10.    The 

ALGOL procedures are guaranteed to give correct results,  provided the 

basic aritbmetic operations are performed with a small relative error 

(see the remark following equation (5.50)). 

For practical problems, the main difficulty hi using the results of 

this chapter lies in finding the necessary bounds on second derivatives. 

One intriguing idea is that,  if    f(x)    were expressed in terms of 

elementary functions,  then the second derivatives could be computed 

symbolically,  and upper bounds could then be obtained from the symbolic 

second derivatives by using simple ineq-Alities.    Thus,  the entire 

process of finding the global minimum could be automated.    In some cases 

fimctions defined on infinite domains could also be dealt with 

automatically by using suitable elementary transfoimations. 

ID.    ALGOL 60 procedures 

The ALGOL procedures glomin (for global minimization of a function 

of one variable)  and glomin2d (for global minimization of a function of 

two variables) are given below.    The algorithms and some numerical results 

are described in Sections 5 to 6 and 8. 
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Procedure glomin 

real procedure glomin (a,  b,  c, m, macheps,   e,  t,  f, x); 

value a^ b,  c, m, macheps,  e, t; 

real a, b> c, m, maoheps,   e, t, x;    real proced'ure f; 

begin comment: 

Glomin returns the global minimum   y    at    x    of the function 

f(x)    defined on     [a,b]   .    The procedure assumes that    feC^  '[a,b] 

and    f"(x) <m    for all   xe[a,b]    (weaker conditions are sufficient: 

see the text).      e    and   t    are positive tolerances:    we assume that 

f(x)    is conpuTced with an absolute error bounded by    e ,  i.e.,  that 

|fl(f(x(l+macheps))) - f(x) | < e , where macheps is the relative 

machine precision.    Then   x   and   y =• glomin    are returned so that 

min(f) < f(x) < min(f) + t + 2e    and 

rain(f) -e <y = fl(f(x)) <min(f)+t+e . 

c    is en initial guess at    x    (a   or   b    will do).    The number of 

function evaluations required is usually close to the least possible, 

1/2 anc considerably less than    (b-a)(m/öt) '     , provided   t    is not 

vjir jasonably small (see Sections 3 to 5) > 

integer k;    real aO,  a2,  a5, dO, dl, d2,  h, m2, p, q,  qs,  r,  s, y, 

:/0,  yl, y2, y5, yb,  zO,  zl,  22; 

conment:    Initialization; 

x := aO := b;    a2  := a; 

yb  := yO :-- f(b);    y := y2 := f(a); 

if yO < y then y := yO else x := a; 

if a' > 0 A a < b then 
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begin comment;    Nontrivial case  (m > 0,  a < b); 

m2:=0.5x(l+l6x macheps)   x m; 

ifc<avc>b then c   := 0.5 x (a+b); 

yl := f(c);    k := 3;    dO  := a2-c;    h  := 9/ll; 

if yl < y then 

begin x  := c;    y := yl end; 

cormnent;    Main loop 

next:    dl:=a2-a0;    d2:=c-a0; 

z2  := b - a2;    zO  := y2 - yl;    zl  := y2 - yO; 

p := r  := dl x dl x zO - dO x dO x zl; 

q  :=qs   :=2x(d0xzl-dlx zO); 

ccmment:    Try to find a lover value of   f   using quadratic interpolation; 

if K > 100000 A y < y2 then £0 to skip; 

retry:    if q x (r X (yb-y2) + z2 x q X ((y2-y)+t)) 

<z2xni2xrx(z2xq-r) then 

begin a?  := a2 + r/q;    y5  := f (a3); 
■■■ 

if y5 < y then 

begin x := a3;    y := y3 

end 

end; 

comment;    With probability about 0.1 do a randcm search for a lower 

value of    f  .    Any reasonable random number generator can be used in 

place of the one here (it need not be very good); 

skip:    k := l6ll y k;    k := k - 10^576 x (k -i- IOU8576); 

q := 1;    r  := (b-a)  x (k/100000); 

if r < z2 then go to retry; 
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ccmment:  Prepare to step as far as possible; 

r := m2 x dO x ell x (12; s := sqrt(((y2-y)+t)/m2); 

h := 0.5 x (1+h); 

p:=hx(p+2xrxs); q:=r+0.5xqs; 

r :^ -0.5 x (dO + (zO + 2.01 x e)/(clO x ni2)); 

r : = a2 + (if r < s v dO < 0 then s else r); 

comment: It is safe to step to r , but we may try to step further; 

a5:=ifpxq>0 then a2 + p/q else r; 

inner:    if a5 < r then a3  := r; 

if a3 > b then 

begin a3  := b;    y3  := yb end 

else y5 := f(a5); 

if y5 < y then 

begin x :- a5;    y := y3 aid; 

dO := u3 - a2; 

if a5 > r then 

begin comment;    Inspect the parabolic lower bound on    f    in (a2,a5); 

p := 2 x (y2 - y5)/(m x dO); 

if ab8(p) < (1 + 9 x macheps)  x dO 

A 0.5 X n»2 x (dO x dO + p x p)  > (y2 - y) +  (y5 - y) + 2 x t then 

begin comment:    Halve thd step and try again; 
i 

a5 := 0.5 x (»2 + a5);   h := 0.9 x h;    go to inner 

i end 
i 

end; 

if a? < b then 

196 

^^^i 



6.10 

begin comment: Prepare for the next step; 

a0  : = c;    c  : = a2;    B.2  : = aj; 

yO  : = yi;   yi :=y2;    y2 := y3; 

go to next 

end 

end • 

glanin  := y 

end glomin; 

Procedure glomin2d 

real procedure gloniin2d (ax,  ay,  bx, by, mx, my, mac heps,   e, t,  f, x, y) ; 

value ax,  ay,  bx, by, mx, my, macheps,  e, t; 

real ax,  ay,  bx, by, mx, my,  macheps,  e, t, x,  y; 

real procedure fj 

begin comment; 

Glumin2d returns the global minimum   z = f(x,y)    of the function 

f(x,y)    defined on the rectangle    [ax,bx] x fay^ty]  .      mx   and   my 

are upper bounds on the second partial derivatives of   f :   we 

assume that    f   (x,y) < mx   and    f    (x,y) < my    in the rectangle. xx -" yy 

e    and   t    are positive tolerances:    f   must be evaluated to an 

accuracy of   +e , and on return 

min(f) < f(x,y) <min(f)+t + 3e    and 

min(f) - e < z = fl(f(x,y)) < min(f) + t + 2e . 

macheps is the relative machine precision, and procedure glomin (for 

one-dimensional minimization) is assumed to be global; 
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real procedure phi (y);    value y;    real v; 

begin comment;    Returns   nin f(x,,y)    over   x    (y    fixed),  and may 

alter the global variables first,    xs    and    zm; 

real procedure    fx (x);    value ^;    real x; 

begin    fx  := f(x,y)  eid fx; 

real ym; 

ym := glomin (ax, bx,  xs, mx,   macheps,  e, tl,  fx, xs); 

if first v ym < zm then 

begin first  := false;    zm  := ym;    x := xs end; 

phi  := ym I 

end phi; 

real tl,  xs,  zm;    Boolean first; 

first  ;= true;    zm := 0; 

tl := 0-5 x t;    xs  := ax; 

glomin2d  := glomin (ay, by, ay,  my, macheps, tl + e, tl,  phi,  y) 

end glamin2d; 
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Chapter 7. 

A New Algorithm for Minimizing a Function of Several Variables 

Without Calculating Derivatives 



7.1 

1.      Introduction and survey of the literature 

In this chapter we consider the general unconstrained minimization 

problem:    given a function    f: R    -• R ,  find an approximate local minimum 

of   f .    There is no need to emphasize the practical importance of this 

problem,  and the recent literature on the subject is quite extensive. 

Here we give only a brief introduction,  and no attempt is made to duplicate 

the survey articles by Box (1966), Fletcher (1965,  19690),  and Powell 

(1970a,  e),  or the books by Beale (I968),  Box, Davies and Swann (I969), 

Jacoby,  Kowalik and Pizzo (1971), Kowalik and Osborne (I968), Wilde (I96V), 

and Wilde and Beightler (I967). 

In practical problems the global minimum, not a mere local minimum, 

is usually of interest.   Methods for finding global minima are discussed 

in Chapter 6, but for functions of a moderate or large number of variables 

the methods of Chapter 6 are impractical.    Usually the best that we can 

do, in the absence of any special knowledge about    f ,  is to use a good 

local minimizer and try several different combinations of starting 

positions,  eteplengths etc.,  in the hope that the best local minimum 

found is the global minimum. 

Constrained problems 

It often happens that we want to minimize   f(x)    subject to the 

constraint that   x    is in seme subset    D    of   R    .    (Sometimes    f    is 

only defined on   D  .)    Simple upper and/or lower bounds,  of the form 

«i < ^i < \ (1.1) 

on the components    x      of   x , are particularly common,  and problems 
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with such constraints can be reducfd to unconstrained problems by a 

transformation of variables  (see Box (I966)). 

More general constraints may be of the form 

or 

g.(x)  - 0 (an equality constraint) 

g (x)  > 0 (em inequality constraint)  f 

where    g.: D. c R    -♦ R    is some given function,  for    i 

g. (x)    may be linear,  say 

g (x)  = a x + c 

h  (1.2) 

J 

= 1, ...,m  • 

(1.5) 

for some   a. eR     and   c.€R ,  or   g. (x)    may be nonlinear, and perhaps 

quite difficult to compute.    From the point of view of efficiency,  it is 

probably best to deal with linear constraints directly, but this is 

difficult for nonlinear constraints.    Direct methods for linear constraints 

are given in Fletcher (1968b),  Goldfarb (.1969a), and Rosen (i960).    (See 

also Bartels (1968), Bartels and Golub (1969), Bartels, Golub and 

Saunders (1970), Gill and Murray (1970), Goldfarb and Lapidus (I968), 

Hanson (1970), and Shanno (1965, 1970b).) 

Problems with nonlinear constraints can be reduced to a sequence of 

unconstrained problems by the use of penalty or barrier functions.    (See 

Carroll (1961), Fiacco (I96I,  1967, 1969), Fiacco and Jones (1969), 

Fiacco and McCormlck (I968),  Fletcher (1969b),  Fletcher and McCann (1969), 

Jones and McCormick (1969), Kowalik, Osbome and Ryan (1969), Lootsira 

(I968,   1970), Murray (1969a,  b), Osborne and Ryan  [1970,  1971), 

Pietrzykowski (1969), and Zangwill (1967b).)    Attempts have also been made 
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to deal with nonlinear constraints directly.    (See Allran and Johnsen 

(1970),  Box (1965), Haarhoff and Buys (1970),  Kalfon, Ribiere and 

Sogno (I968),  Luenberger (1970), Mitchell and Kaplan (1968), Murtagh 

and Sargent (1969), Powell (I969d), Rosen (I96I), and Zoutendijk (i960, 

1970).) 

Methods using derivatives 

Many methods for the constrained or unconstrained minimization of 

f: D -♦ R    explicitly use the partial derivatives    öf/öx.   ,  for 

i = 1, ...,n , and some methods also use the second partial derivatives 

of   f .    (Methods for constrained minimization may also use the partial 

derivatives of the constraint functions   g.   .)    For example, the 

classical method of steepest descent (Akaike (1959), Cauchy (18^7), 

Curry (19^0, Forsythe (I968),  Goldstein (1962, 1965), and Ostrowski 

(I966,  1967a)) repeatedly minimizes    f   in the direction    -g , where 

g = 

df/^ 

.dt/dx 

(1.5) 

is the gradierit of   f .    Perhaps the most successful methods using 

derivatives are the Davidon-Fletcher-Powell "variable metric" method 

(Davidon (1959), Fletcher and Powell (1965), Huang (1970), and 

McCormick (I969)), B:<A the conjugate gradient method of Fletcher and 

Reeves (196^), which is slower but requires less storage than the 

variable metric method.    (For other methods using derivatives, and related 

topics,   see Bard (I968,  1970),  Broyden (1970a, b), Cantrell (3.969), Cragg 
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and Levy (1969), Davidon (1968,  1969),  Davies  (I968), Fletcher (1966, 

1970), Goldfarb (I966,  1969b, 1970),  Goldfeld, Quandt and Trotter (I968), 

Greenstadt (1967,  1970), Hestenes (1969),  Kelley and layers (1967), 

Luenberger (1969b), McCormick and Pearson (1969), Miele and Cantrell 

(I969, 1970), layers  (I968), Pearson (I969), Powell (1969b, c,  1970b,  c, d), 

Rcunsay (1970), Shanno (1969a, b), Shanno and Kettler (1969), Sorensen 

(1969), Takahashi (I965), Tokuraaru, Adachi and Goto (1970), Vercoustre 

(1970), Goldstein and Price (I967),  and Wells (1965).) 

In many practical problems,  it is difficult or impossible to find 

the partial derivatives of   f(x)    directly.    One possibility is to 

compate derivatives numerically, e.g., by finite differences, and then 

use czif of the methods requiring derivatives.    Stewart (1967) has 

successfully modified the variable metric method so that difference 

approximations to derivatives can be used.    The difficulty is in 

balancing the influence of rounding errors and truncation errors when 

using finite differences to estimate derivatives.   For a computer program, 

see Lill (1970). 

Methods not using derivatives 

Although Stewart's modification of the variable metric method 
1 

appears to work well in most practical cases (see Stewart (1967), 

Powell (1970a), and Section 7), it is more natural to use a method which 

does not need derivatives,  if derivatives can only be found numerically. 

Possibly such methods could be more efficient than methods which approximate 

derivatives numerically,  although this is less clear in   n    dimensions than 

in one dimension (for which see Chapter 5). 

( 
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Several methods which do not use derivatives have been compared in 

the survey papers of Box (1966), Fletcher (1965, 1969c), Powell (1970a,  e), 

and Spang (1962).    (See also Bell and Pike (1966),  Berman (1969), Box 

(1957), Chazan and Miraulrer (1970),   Hooke and Jeeves  (I961), Kowalik 

and Osborne (1968), Neider and Mead (I965), Smith (I962), Spendley (1969), 

Sperdley, Hext and Himsworth (1962), Swann (196^), and Winfield (1967).) 

Excluding Stewart's method,  the most successful method,  especially for 

functions of more than three or four variables,  appears to be that of 

Powell (196^) (see Section 3).    The main object of this chapter is to 

present some modifications which improve the speed and reliability of 

nwell's method.   The modifications are discussed in Sections h to 6, 

and some numerical results are given in Section J. 

Quadratic convergence 

Suppose that    f(x)    has continuous second derivatives 

ho - & (^ 

for    i,J = 1, ...,n , in a neighbourhood   N   of a local minimum   |i . 

Since   |i    is a minimum, the gradient of   f   vanishes at    |i , and the 

Hessian matrix 

A = (fi;j) (1.7) 

is positive definite or semi-definite.   Near |i , the quadratic form 

Q(X) -fOO + i (w)T A(X-M) (1.8) 
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is a good approximation to   f(x)   .    Thus,  any minimization method, having 

ultimate fast convergence for a general function    f(x)    with continuous 

second derivatives, must have fast convergence for a positive definite 

quadratic form,  and we might expect the converse to hold too.    This 

observation has led to the investigation of methods which have quadratic 

convergence,  i.e., which find the minimum of a positive definite quadratic 

form in a finite number of function and/or derivative evaruations, apart 

from the effect of rounding errors.    Examples of methods with quadratic 

convergence are those of Davidon-Fletcher-Powell, Fletcher and Reeves, 

and Powell (1964)   (this is not quite true:    see Section 3).    The method 

of steepest descent exhibits only linear convergence on a quadratic form, 

so it is not quadratically convergent. 

A few methods are not quadratically convergent,  for exact convergence 

requires an infinite number of steps, but they do exhibit superlinear 

convergence on quadratic foims.    Examples are the methods of Rosenbrock, 

as modified by Davies, Swann and Campey (see Swann (I96U)),  of Goldstein 

and Price (1967),  and of Greenstadt (1970).    There is no apparent reason 

why such methods should fail to perform as well as quadratically convergent 

methods on general (nonquadratic) functions.    Thus, quadratic convergence 

is a desirable property, but it is neither necessary nor sufficient for 

a good minimization method. 

Stability;    the descent property 

In many methods for unconstrained minimization,    f(x)    has been 

evaluated at    x0 , the current best estimate of the position of the 

minimum of   f(x)   .    A new estimate,    x1 ,  is made on the basis of the 
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values of   f   at    xn    and a small number of other points  (previous best 

estimates,  or points close to   ^n ) •    Additional information built up 

fron previous iterations,  e.g., an approximation to the Hessian matrix 

of    f   at    x0 , may also be used.    The prediction    x..    may be unreliable, 

and it may happen that 

f(x1)    >   f(x0)       . (1.9) 

For example, this often occurs if x  is not close to a local minimum, 

and an inadequate quadratic approximation to f(x) is used. 

To avoid the possibility of instability, most procedures do not 

accept x, as the next approximation to the minimum. Instead, they 

perform a "linear search" in the direction x -x , i.e., they take 

the point 

^i= ik + V'^i - ^ (1.10) 

as the next approximation, where   \     is chosen to minimize the function 

<p(X)  = f(x0 + M*! " x0)) (1.11) 

of one variable. This ensures that 

f(x;L) < f(x0)  , (1.12) 

so the successive points generated must lie in the "level set" 

S = (xeRn  |  f(x)  <f(x0)]     . (1.13) 

In practice,  it is not worthwhile to try to minimize the function 

cp(\)    very accurately.    In feet, the minimum may not even exist:    <p(M    may 
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be monotonic increasing or decreasing,  or have a maximum but no minimum. 

Box {I966)  gives examples where an attempt to minimize   q)(\)    too accurately 

prevents a minimization procedure from finding the desired minimum.    It 

is sometimes stated that the quadratic convergence property of certain 

methods depends on   (p(\)    being minimized exactly,   but all that is really 

required for these methods is that the one-dimensional minimization 

procedure minimizes a quadratic function of   \   exactly.    Thus,  for 

quadratic convergence,  it is sufficient to fit a parabola   P(\)    to   cp(X)  , 
■X- ¥r 

and take \-x = \n. > where \n   minimizes P(\) . Because of the danger 

of instability, this simple procedure is not acceptable, but it is reasonable 

■* 

to take \ = Xn provided that 

y{\)  < <P(O)    , (1.1M 

which ensures that (1.12) holds.  (Powell (i970e) gives some reasons 

for requiring rather more them (1..14).) See also Sections 6 and 7« 

Sums of squares 

A very common imconstrained minimization problem is to minimize a 

function f(x) of the form 

f(*) = t   KW)2  ' (1-15) 
1=1  1 ~ 

for some  (generally nonlinear)  functions    f, (x)   .    For example, this 

problem arises when parameters    x.,....x     are fitted,  by the method of 

least squares, using   m    observations.    An important special case arises 

when the minimum value of    f(x)     is zero:    then we have a solution of the 
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system of equations 

j f (x) = 0   , (1.16) 

for    i = I,.. .^m  . 

Applying a general function minimizer to    f(x)    may not be the most 

efficient way to minimize (1.15).    Methods which make use of the individual 

residuals    f (x)    are likely to be considerably more efficient than 

methods which merely try to minimize    f(x)    without considering the 

individual residuals, at least if the minimum value of   f(x)    is close to 

zero.    Methods which make use of th^ residuals are described in Barnes 

(I965), Box (I966),  Brown and ^ennie  (I968,  1970, 1971a., b), Broyden (I967, 

1969), Dennis (1968,  1969a, b, c), Fletcher (1968a), Gauss  (1809), 

Hartley (I96I), Jones (1970), Levenberg (I9W), Marquardt (1963), 

Matthews and Davies (1969), Morrison (I968), Ortega (1970), Ortega and 

Rheinboldt (1970), Peckham (1970), Powell (1965, 1968b, 1969a), 

Rabinowitz (I969), Rail (I966, 1969), Schubert (1970), Shanno (1970a), 

Späth (1967), Voigt (1969), Wolfe (1959a),  and Zeleznik (1968).    Good 

numerical methods for solving linear least squares problems are also 

relevant:    see BJorck (1967a, b, I968), Businger and Golub (I965), 

Golub (I965, I968), Golub and Reinsch (1970), Golub and Seunders (1969), 

Golub and Wilkinson (I966), Jordan (I968),  Khabaza (1965), Maddison (1966), 

and Powell and Reid (I968). 

Let us see why it may be worthwhile to use the residuals.    Suppose 

that we have a good initial approximation to the minimum of    f(x)  ,  so the 

functions   f.(x)    can be closely represented by linear approximations in 

the region of interest.    To find a linear approximation to   f. (x)  , we 
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need to evaluate   f. (x)    at    n+1   points, or evaluate    f (x)    and the 

n   components of its gradient at one point.    Thus,  after the same amount 

of work as is required for    n+1    evaluations of    f(x)  ,  or one evaluation 

of   f(x)    and its gradient, the solution of a lineai least squares problem 

gives an approximation to the minimum.    This approximation is usually good 

if the minimum value of   f(x)     is small (see Powell (I965)), unless the 

linear problem is very Ill-conditioned.    On the other hand, if the special 

form (1.15) of   f(x)    is disregarded,  then it is necessary to evaluate 

f(x)    at    - (n+l)(nH-2)    points to find in approximating quadratic form. 

(Alternatively,    f   and its gradient must be evaluated at    f^ (n+2) ~j 

or more points.)    This suggests that methods which disregard the special 

form of    f(x)    are likely to be much slower than methods which use the 

individual residuals, at least if   n   is large.    Empirical evidence 

supports this conclusion (see particularly Table 5 of Box (1966) for 

n = 20 ),  although seme of the present methods which make use of the 

residuals appear to be rather unreliable. 
I 

Despite our conclusion, most of the numerical examples given in 

Section 7  are of the form (1.15) •    This is because a particularly simple 
j 

way to construct test functions with bounded level sets is to use ftmccions 

of the form (1.15), and most of the test functions given in the literature 

have this fonn. 

Some additional references 

The following general references on function minimization and related, 

topics have not boen mentioned above: Abadie (I97O), Balakrishnan (1970), 

Bennett  (1965)* Bennett and Green (19('>6), Colville (I968), Davies (1969), 
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Davies and Swann (I969), Dold and Eckmann (lQ70a, b), Evans and Gould 

(1970), Fletcher (1969a)> Hadley (196^), King (I966), Kunzi, Tzschach 
j 

and Zehnder (I968), Lavi and Vogl (1966), Leon (1966), Luenberger (1969a), 

I 
Mangasarian (1969), Murtagh (1969),  Murtagl. and Sargent  (1970), Powexl 

(1966,  1969e),  Ralston and Wilf (i960), Rice (1970), Rosen and Suzuki 

(1965), Shah,  Buehler and Kempthorne (I96U), Wolfe (1965,  I969), Zadeh 

(1969), Zangwill (1969a, b),  and Zoutendijk (I966). 

2.      The effect of rounding errors 

Rounding errors in the ccraputation of    f(x)    limit the accuracy 

attainable with any minimization method usin.j; only the computed values 

of   f(x)   .    In this section, we generalizr, the result-  of Section 5«2, 

where the same problem is considered for functions of one variable.    As 

in Section 5.2,  the results of this section do not necessarily apply to 

methods which use the gradient of    f ,  computed analytically.     (They do 

apply if the gradient is computed by finite differences.) 

Suppose that,   in a neighbourhood    N    of a local minimum    n , the 

partial derivatives    f. .(x)    ure Lipschitz continuous,   i.e.,   for all 

x,yeN , 

ifijW - V^i ^ Mijfc -yJ > ^ 

where   M. .    is a Lipschitz constant    (i,j  = 1, ...,n)  ,  and any of the 

usual vector norms may be used.    Since the gradient of    f(x)     vanishes 

at    ^ , a simple extension of Lemma 2.3.1 shows that,  for   xcN , 
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where 

f(x)   = f(n)  + i (x  -  n)T A(x  - n)  + R(x)     , (2.2) 

A={tM) (2.5) 

is the Hessian matrix of    f(x)  at    |i ,  and 

|R(x) |  < Mljx - ^l3      , (2 A) 

for some constant M depending on n , the norm used, and the 

Lipschitz constants M. . . 

As in Section 5.2,  the best that can be expected is that the computed 

value fl(f(x)) oi    f(x) satisfies the nearly attainable bound 

fl(f(x)) = f(x).(l+ ej (2.5) 

where 

e
xl < e   . (2.6) 

and e is the relative machine precision (see Section k.2).    If f is 

computed using single-precis ion arithmetic, the error bound will probably 

be consideraoly worse than this. 

Let 5 be the largest number such that, according to equations 

(2.2) to (2.6), it is possible that 

fl(f(|i + 5u)) < f(ja)  , (2.7) 

for some unit vector    u .    Then it is unreasonable to expect any 

minimization procedure,  based on single-precision evaluations of   f , to 

return an approximation    ^   to    ^    with a guaranteed uppor bound for 

jlji - n'll     less than    6   . 
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Let the eigenvalues of A be \ > ^vj > • • • > ?*- > with a set of 

corresponding normalized eigenvectors IL.,!! , ...,u . Since ^ is a 

local minimum of f (x) , certainly 

n -    ' (2.8) 

and we suppose that   \   > 0 .    (The i>ositicn of the minimum is worse 

MB determined if   \    = 0 .)    If n ' X is small compared to unity, and 
n 

we take u = u  , then (2.7) is possible for 

6 ^ 
2|^) 

n 
(2.9) 

Thus, an upper bound on jjp, - IJ, | can hardly be less than the right side 

of (2.9). 

The condition number 

With the assumptions above, and 5 given by (2.9), 

f^ + 5uJ -fOx) + H e|f(^)| , (2.10) 

where 

K = \/\ (2.11) 

is the usual condition number of A . We shall say that K is the 

condition number of the minimization problem (for the local minimum p, ). 

The condition number determines the rate of convergence of some niinlnization 

methods (e.g., steepest descent), and it is also important because rounding 

errors make it difficult to solve problems with condition numbers of the 

order of e"  or greater (see below). 
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Scaling 

A change of scale along the coordinate axes has the effect of 

replacing the Hessian matrix A by SAß , where S is a positive 

diagonal matrix. The problem of choosing S to minimize the condition 

number of SAS is difficult, even if A is known explicitly. (See 

Forsythe and Molsr (196?) for the problem of minimizing the condition 

number of S AS? , where A is not necessarily symmetric.) A good 

general rule is that SAS should be roughly row (and hence column) 

equilibrated (see Wilkinson (1963, 1965a)). In practical minimization 

problems, one difficulty is that little is known about the Hessian 

matrix A until a reasonable approximation to the minimum 

has been found. This suggests that a general function minimizer which 

is scale-dependent could incorporate an automatic scaling procedure, 

using current information about A to determine the scaling. One way 

of doing this is described in Section k. 
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3«      Powell's algorithm 
i 

In this section we briefly describe Powell*s algorithm for minimization 
5 
: 

without calculating derivatives. The algorithm is described more fully 1 

in Powell (I96U), and a small error in this paper is pointed out by 
i 

Zangwill (1967a). Numerical results are given in Fletcher (1965), 
1 

Box (I966), and Kowalik and Osborne (1968).    A modified algorithm, which 

is suitable for use on a parallel computer, and which converges for 

2 
strictly convex   C'    functions with bounded level sets,  is described by 

Chazan and Miranker (1970). 
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Powell's method is a modification of a quadraticaHy convergent 

method proposed by Smith (19^2).    Both methods ensure convergence in a 

finite number of steps, for a positive definite quadratic form, by 

! making use of some properties of conjugate directions. 

Conjugate directions 

If   A   is positive definite and symmetric, then minimizing the 

quadratic function 

xTAx - 2bTx = (x - A":Lb)TA(x - A-^) - b'V'S) (5.1) 

is equivalent to solving the system of linear equations 

Ax = b . (3.2) 

If the matrix A is known explicitly, then, instead of minimizing 

(3.1), we can solve (3.2) by any suitable method: for example, by forming 

the Cholesky decomposition of A.   In the applications of interest here, 

A is the Hessian matrix of a certain function, and is not known explicitly, 

but the equivalence of the problems (3.1) and (5.2) is still useful. 

Definition 3.1 

Two /ectors u and v are said to be conjugate with respect to 

the positive definite symmetric matrix A if 

uTAv = 0 . (5.5) 

When there Is no risk of confusion, we shall simply say that u 

and v are conjugate. By a set of conjugate directions, we mean a set 

of vectors which are pairwise conjugate. 
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Remark 

If    (u,....,u ]    is any set of nonzero conjugate directions in   R" , 

then   u,t....u     are linearly independent.    Thus    m < n , and   m = n    iff 
~1 ~ni 

_n 
UT>...,U     span   R 

Theorem 3'1 

If   A   is positive definite symmetric,    Ax = b , and    {^•••»)in} 

is a set of nonzero conjugate directions, then 

is conjugate to each of   un,...,u    . 

Proof 

If   1 < j <m , then,  from (3A), 

U'JAX»    =    u^Ax - b)    =0    . (5.5) 

Corollary 3«1 

If   m = n   in Theorem 5.1, then   x» = 0 ,  so 

(5.6) 

Returning to the minimization problem. Theorem 5.1 and the equivalence 

of problems (5-1) and (5.2) give the following result. 
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Theorem 5.2 

If   A    is positive definite symmetric, 

f (x) = xTAx - 2bTx + c (5.7) 

,n 
for somt; beR  and ceR , and u.., ...,u  is a set of nonzero conjugate 

directions, then the minimum of f(x) in the space spanned by u,i...,u 
m 

occurs at the point  J^ß.u. , where 
i=l 1~1 

ßA  -. 
uTb 

u.Au. 
(3.8) 

Proof 

This follows from Theorem 3.1, or, alternatively, from the relation 

ft aA m o     m "^ föf 
(3.9) 

i=l i=l   u.Au. 
~i ~i 

(cross tenns vanish because of the conjugacy of   u1,...,u   ). 

The usefulness of Theorem 5.2 stems from the following result, 

which shows how we can calculate the   ß,    of (5.8) uaing function 

evaluations,  even if   A , b    and   c    are not known explicitly. 

Theorem 5.5 

With the notation of Theorem 5.2, a fixed   j    satisfying   1 < J < m , 

and fixed   Q!_,...,a, .,a. .,...,a   , the minimum of 1 j-1   j+17      ' m ' 

W = f(li ^-v (5.10) 

occurs at   a   = ß,  . 
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Proof 

This follows immediately from equation (5 •9). 

From Theorems 5.2 and 5.3> we see that the rainimum of the quadratic 

form   f(x)    can be found by   n    one-dimensional minimizations along nonzero 

conjugate directions    u_,...,u   ,  and the order of the one-dimensional 

minimizations is irrelevant.    To use this result, we have to be able to 

generate sets of conjugate directions.    Both Powell's method and Smith's 

method do this by using the following theorem,  given in Powell (196^) • 

Theorem 3«^- 

If the minimum of    f(x)     (given by (^.T))   in the direction    u    from 

the point    x.    is at    x.  ,  for    i = 0,1 , then    x   -x      is conjugate 

to   u . 

Proof. 

For    i = 0   and    1 , 

^ 
f(x. +\u)  = 0     at    \ = 0    , (3.11) 

so, from 0.7), 

uT(Axi - b)  = 0    . (3.12) 

Subtracting equations  (3.12)  for    i = 0    and    1    gives 

u A(x1 - x0)   = 0     , (3.13) 

which completes the proof. 
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Povell's basic procedure 

We can now describe the basic idea of Powell's algorithm.    Let    x,. 

be the initial approximation to the minimum, and let    u..,...,u     be 

the columns of the ilentity matrix.    One iteration of the basic procedure 

consists of the following steps: 

1. For    i = 1, ...,.1 ,  compute   ß.    to minimize    f(x.  -i + ß.11.) > 

and define   x.  = x.  , + ß.u.   . ~i     «i-1     i~i 

2. For    i = 1, ...,n-l ,  replace   u     by   u 
^i    UJ    ^i+l ' 

5.      Replace   u     by   x -X-. * ^n     J    ^n ^0 

k.      Compute   ß   to minimize    f(x + ßu ) ,  and replace   x     by   x + ßu    . 

For a general (non-quadratic) function, we just repeat the iteration 

until some stopping criterion is satisfied.    Suppose that    1 < k < n , 

and consider the situation after the k-th iteration.    If   f   is quadratic 

then we can show, by induction on   k , that    u       .,...,11     are conjugate. 

This follows from the choice of   u     at step 3> and Theorem J.k:    see 

Powell (196^).    After   n    iterations, we have minimized along   n 

conjugate directions   u., ...,u    , so, by Theorems 5.2 and 3.3, the 

minimum will have been reached if the   u.    are all nonzero.    This is 

true if, at each iteration,    ß, / 0 , for then the directions   u,, ...,u 

can not become linearly dependent. 

The problem of linear dependence 

Unfortunately, as pointed out by Zangwill (1967a),  even for a 

quadratic function    f   one of the iterations may have   ß. = 0 , which 
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results in the directions   u-,...,u     becoming linearly dependent, and 
~1    ~n 

from then on the procedure can only find the miniraum of f(x) over a 

proper subspace of Rn . The sane is, of course, true for non-quadratic 

functions, and even though it is unlikely that ß1 will vanish exactly, 

Powell discovered that the directions uv*"'un often becote nearly 

linearly dependent. Thus, he suggests that the new direction x - x 

should be used, and one o^ the old u., ...,u  discarded, only if this 
' „1    ~n 

does not decrease the value of |det(Y ... v )| , where 

_1 

Zx = (^i) 2  üi (5.1^) 

for i = 1, ...,n . With this modification the algorithm is quite successful 

(see Fletcher (1965) and Box (1966) for a comparison with other methods), 

but the desirable property of quadratic convergence is lost, for a complete 

set of conjugate directions may never be built up. In the next section, 

we describe a different way of avoiding the problem of linear dependence 

of the search directions. The numerical results given in Section 7 

suggest that our method of ensuring linear independence may be preferable 

to Powell's. 

k.     The main modification 

The simplest way to avoid linear dependence of the search directions 

with Powell's basic procedure, and retain quadratic convergence if ß1 / 0 , 

is to reset the search directions u,,...,u  to the columns of the „1 ~n 

identity matrix after,  say,  every    n    iterations.    A similar "restarting" 
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device is suggested by Fletcher and Reeves (I96U)  for their conjugate 

gradient method.    Unfortunately, restarting tends to slow down convergence 

for approximately quadratic functions, because any information built up 

about the function is periodically thrown away.     (Perhaps this is why 

the Fletcher-Reeves algorithm is generally slower than the Davidon- 

Fletcher-Powell algorithm.) 

Instead of resetting    U = [u,,...,u  ]    to the identity matrix, we 
~J- ~n 

could equally well reset    U   to any orthogonal matrix   Q .    To avoid 

discarding useful information about    f , we could choose   Q    so that, 

if    f   is quadratic,    u , ...,u     remain conjugate.    This suggests that 

principal vectors    q , ...,q      should be computed on the assumption that 

f    is quadratic,  and   U    should be reset to   Q = [q^.^.^q  ]   •    The 

motivation for this procedure may be summarized thus: 

1. If the quadratic approximation to   f   is good, then the new search 

directions should be conjugate with respect to a matrix which is close 

to the Hessian matrix of    f   at the minimum, and thus subsequent 

iterations should give fast convergence. 

2. Regardless of the validity of the quadratic approximation, the new 

search directions are orthogonal, so the search for a minimum can never 

become restricted to a subspace. 

The extra computation involved 

We show below that finding principal axes does not require any 

extra function evaluations, but it does involve finding an orthogonal 

set of eigenvectors for a symmetric matrix   H   of order   n .    This requires 
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2 

about    6n      multiplications,  and a similar number of additions,  if done 

as suggested below.    Since the principal axes are found only once for 

2 
every    n      linear minimizations,  and a linear minimization requires about 

2.25    function evaluations on the average (see Section 7)* the extra 

computation is less than    3n    multiplications per function evaluation. 

We can expect the evaluation of a nontrivial function of   n    variables to 

require considerably more than    5n    multiplications,  and possibly order    n" , 

so the overhead caused by our modification is not excessive.    Also,  it 

may be worth paying a little for the principal axis reduction,  for the 

extra information about    f    is often of interest.    For example,  it 

shows the sensitivity of    f(x)    to slight changes in   x    near the minimum. 

The principal axes and eigenvalues may be of interest in statistical 

problans when    f   is minus the J og-likelihood,  for then the inverse of 

the Hessian at the minimum is the sample variance-covariance matrix of 

the maximum likelihood estimates:    see Neider and Mead (I965) • 

Scaling 

Powell's modification of his basic procedure has one feature which 

ours lacks:      his determinantal criterion is independent of a linear 

transformation of the independent variable space (an important special 

case is a change of scale for the independent variables).    This feature 

is certainly desirable,  for when a function of,  say, tenperature and 

pressure is to be minimized,  there is no natural way to scale the variables. 

We should note, though,  that Powell's algorithm is not completely 

independent of linear t reins format ions of the variable space,  or even of 
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scale chan^jS, for these influence both the initial choice of the 

vectors u..,...,u , and the stopping criterion. 

Finding the principal vectors 

Suppose that 

f(x) = xTAx - 2bTx + c (k.l) 

is a positive definite quadratic form,   although   A , b   and    c    may not 

be known explicitly.    If   n    iterations of Powell's basic procedure are 

performed as described above, and at each iteration   ß   / 0 ,  then we 

obtain   n   nonzero conjugate directions    u,,...,u    .    Let   U = [u,   ... u ] „I ~n ~1 ^n 

By the conjugacy of   u,, ...,u    t 

UTAU = D    , (U.2) 

where   D    is a diagonal matrix with positive diagonal elements    d.   . 

During the last (i.e.,    n-th ) iteration, we have performed one- 

dimensional minimizations in the directions    un,...,u    .      Consider a -.1'   ~n 

minimization from the point x . , in the direction u , for 

1 < i < n . We minimize the function 

^(a) = f(x1_1+ ca^) (^.5) 

= a u^Au, + acz(u^Ax, , -utb ) + (xT ,Ax. . - 2xT ^b + c) .  (k.k) ~i -i   \^i ~i-l -i~    ~i-l ~i-l  ~i-L-   '    v  ' 

To minimize   cp.(a)    we fit a parabola,  which necessitates computing the 

second difference   <p,[a ,a ,a2]    for three distinct points    a0 , Q^ , 

and   a    .    t^rcm eq\iation (U.U), 
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vpi[a0,a1,a2]    =   Ä^    =   ^   , (^.5) 

so the diagonal elements    d.    of   D    are known without any extra 

canputation.     (If the quadratic approximation to   <p. (ct)    is bad we may 

have   <p.[a ,ct ,a ] < 0 ,  and then we arbitrarily set    d     to a small 

positive number.) 

Let 1 

V = ur  2 • (4.6) 

be the matrix with columns    v , ...,v     given by (3.l4)>  and let 

H = A"1    . (U.7) 

Since   U    is nonsingular,  equation  {k.2) gives 

H = UD'V = W1    . (h.8) 

i 2 
The matrix   V    is easily computed from   U    in   n     multiplications and i- 

n    square roots, but the computation of   Vy      is more expensive, and can 

be avoided:    see below. 

Our aim is to find the principal axes of the quadratic form    f , 

i.e., to find an orthogonal matrix    Q,    such that 

Q'rAQ  - A   , (M) 

where    A = diag(\ )    is diagonal.    Thus, the columns    q      of   Q   are just 

the eigenvectors of   A , with corresponding eigenvalues    \ , ...,\    ,  and 

we can assume that   k   > ... >\    .    The obvious way to find   Q   and    A 

is to compute    H - Vv      explicitly,  and then find   Q,    and    A    such that 

QTHQ  = A"1    , (4.10) 

by finding the eigensystera of   H  . 
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Use of the singular value decomposition to find   ^   and   A 

If the condition number   H = ^,A      is of order    e      , where    e    is 1'   n 

the relative machine precision (see Section h.2), then rounding errors 

may lead to disastrous. errors in the computed small eigenvalues 

\~ ,\' ,...    of   H ,  and in the corresponding eigenvectors    q^qp*''*^ 

even if they are well-determined by   V .    Thus,  it may be necessary to 

compute   H ,  and find its eigensysten, using double precision arithmetic. 

This difficulty can be avoided if,   instead of forming   H = Vv    , we work 

directly with    V .    Suppose that we find the singular valu<: decomposition 

of   V ,   i.e.,   find orthogonal matrices    -Q,    and   Q'    such that 

Q^'  = Z   , (^.11) 

where   L = diagfa.)    is a diagonal matrix.     (See Golub and Kahan (1965), 

and Kogb etliant z  (195 5) •)    Then 

A"1 = QTHQ =  (QTVQ')(QTVQ,)T = ^ . ik'^) 

so Q is the desired matrix of eigenvectors of A , and tha eigenvalues 

\. are given by 

Note that the matrix Q' is not required, and it is not necessary to 

compute Vv" . 

Since it is desirable that the computed matrix Q should be close 

to an orthogonal matrix, we suggest that Q and E should be found by 

the method of Golub and Reinsch (1970). This involves reducing V to 

bidiagonal form by Householder transformations, and then computing the 

t 
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singular value decomposition of the bidiagonal matrix by a variant of 

the QR algorithm. 

Let us compare the amount of conputational work involved in 

computing   Q    and    A    via 

1, The singular value decomposition (SVD)  of   V   as described 

above,  and 

2. Finding the matrix   H   and its eigensystem, using Householder's 

reduction to tridiagonal form and then the QR algorithm.     (See 

Bowdler, Martin,  Reinsch and Wilkinson  (I968), Francis  (I962), 

Householder (196^),  Kublanovskaya (1961), Martin, Reinsch and 

Wilkinson (1968),  and Wilkinson (1965a,  b, I968),) 

For pui-poses of comparison, we count only multiplications,  and 

2 ignore terms of order    n    ,   so our conclusions may not be valid for very 

small   n .    Suppose that,  in each case, the QR process requires    pn 

iterations, for some modest number    p  . 

For method 1, the Householder reduction requires   kn /3   multiplica- 

tions, accumulation of the (left-hand) transformations requires another 

hn /3   multiplications, and the QR process with accumulation of the 

transformations requires    2pn     multiplications,  if no splitting occurs. 

Thus, method 1 requires    (8+6p)n /5   multiplications in all. 

For method 2,  the Householder reduction requires    2n'/5   multiplications 

(only half as much as for method 1 because of symmetry),  accumulation of 

the transformations requires    2n'/5   multiplications, and the QR process 

3 5 requires   2pn   ,  giving    (U+6p)n /5    altogether.    This could be reduced 
■5 2 

to    hn /3 , still ignoring terms of order    n    ,  if inverse iteration were 

used to compute the eigenvectors of the tridiagonal matrix, but then it 
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scbd   should be fairly small (say about    ID)    unless the axes are very 

badly scaled initially.    The automatic scaling is worthwhile, but its 

effect is not dramatic, and it is rather unreliable, which is the reason 

for introducing    scbd  .    Thus,  it is still worthwhile for the user to 

try to scale his problem as well as possible. 

Another modification 

For Powell's basic procedure to minimize a positive definite 

quadratic form in    n    iterations,   steps 1 to 3 of the first iteration 

are unnecessary.    Thus,   our algorithm omits steps 1 to 5 on the first 

iteration,  and,   subsequently, after each singular -value decomposition 

(i.e., at the    (n+l)-st,   (2n+l)-st,   ...  ,   iterations).    For this reason, 

there are exactly 

1 +  (n-1) (nf 1)    =   n' (U.16) 

linear minimizations,   instead of   n(nrH)  ,  between each singular value 

decomposition.    This modification is not important for large    n , but 

numerical results suggest that it is worthwhile for small   n  . 

5.      The "resolution ridge" problem 

Suppose temporarily that we are trying to maximize a function    f(x ,x0) 

of two variables by an ascent method.    Wilde  (I96H) points out that 

rounding errors in the computation of    f   may lead to premature termination 

because of the "resolution ridge" problem illustrated in Diagram 5«1« 
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Diagram ^.1:    A resolution ridge 

Regarding the surface defined by    f(x1,xp)    as a hill, we may reach 

a point    xn ,   situated on a narrow ridge, and then try to proceed to a 

higher point by performing linear searches in certain directions. 

Suppose,  for example, that we attempt linear searches in the    EW   and   NS 

directions.    The point   x     may not be at the true minimum of    f   in both 

these directions but, because of the effect of rounding errors in 

evaluating    f ,  our one-dimensional search procedure will only attempt to 

locate the position of maxima to within sane positive tolerance   6    (see 
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Section 2).    Let    ^j. = XQ + 5^ ,    ^ = x0 -5e1 ,    x^. = x0+5e2 , and 

x    = x   - 5e    .    As shown in the diagram,   it may happen that    f (xn)     is 

greater than each of    f(xN) ,  ^(x-)   ,  fC3^)    and   ^(^SJ)   >  so   xn    is 

within the tolerance   5    of local maxima in both of the search directions, 

even though   x.    may be a long way from the   true maximum.which could be 

reached by climbing up the ridge.    The same problem can arise with 

functions of more than two variables,  or when we are looking for a 

minimum rather them a maximum (then we might speak of a "resolution 

valley" problem). 

It is clear from the diagram that,   if we know another point    x* 

on the ridge, then a linear search in the direction   x   - x'    will give 

a point   x"    with    ^Cx!!)  > f(xn)  > unless the ridge is sharply curved. 

This is the motivation for the method suggested by Rosenbrock (i960), 

and improved by Davies,  Swann and Campey.     (See Swarm (1964),  and also 

Andrews (I969), Baer (I962), Fletcher (1965,  1969c, d), Osborne (I969), 

Palmer (1969), Powell (1968a), Rice (I966), and Section 7-) 

I 

Finding another point on the ridge 

If linear searches from the point    x     fail to give a higher point, 

and a resolution ridge is suspected,  then the following strategy may be 

successful:    take a step of length,   say      105 ,   in a random direction 

from   x0 ,  reaching the point   x    .    Then perform one or more linear 

seavchcs,  starting at   x^ , and reaching the point   x'   .    As the diagram 

shows, the point    x*    is likely to be on the ridge, so a linear search in 

the direction   x    - x*    may be successful. 
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Although he does not refer to the resolution ridge problem, 

Powell (19&0  incorporates such a strategy in his stopping criterion. 

We propose to use this strategy during the regular iterations as well. 

Incorporating a random step into Powell's basic procedure 

Suppose that we are commencing iteration    k   of Powell's basic 

procedure,  ?ounting either from the start or from the last singular 

value decomposition, and   2 < k < n .    To ensure quadratic convergence, 

we must search along the directions   u   ,._,,...,u      in step 1 of 

iteration   k , but the searches along directions    un,...,u   ...    are not ~1 „n-k+l 

necessary for quadratic convergence.    (They are desirable for other 

reasons:    see Fletcher (1965)  for a comparison of Powell's method and 

Smith's method.)    The quadratic convergence   property  still holds if, 

at step 1, we move to any point 

Vk.1 = ^0+ .£ Hh ^-i) 

with   ß• / 0 , before performing linear searches in the directions 

u   ^p, ...,u    .    Thus, before performing linear searches in directions 

u,, ...,u     at step 1 of iteration   k , we may try the random step strategy 

as described above.    Procedure praxis does this if the problem appears to 

be ill-conditioned, or if the procedure is about to terminate (i.e., if 

previous linear searches have failed to find a better approximation to 

the minimum). 

This modification is not necessary for well-conditioned problems, 

but numerical results show that it is essential in order to ensure that a 
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good approximation to the minimum is found for very ill-conditioned 

problems.    For example, consider minimizing 

f(x)  = xTAx     , (5.2) 

where   A    is a   10   by   10   Hilbert matrix (i.e.,    a. .  = l/(i+j-l) 

15 
for   1 < i ,    j < 10 ), with a condition number of   1.6x10      .   Using 

long real on an IBM 360 computer (machine precision    16"    )  , «md 

starting fron    (1,1, ...,l)    , oior algorithm successfully found the 

position of the minimum of   f(x) to within the specified tolerance 

of   10      , but it failed without the random step strategy.     (For further 

details,  see Section 70 

Extrapolation along the ridge 

If the function minimizer has been climbing a ridge for several 

complete cycles,  so the quadratic approximation to    f    is obviously 

inadequate (or the maximum would already have been found), then it may 

be worthwhile to try an extrapolation along the ridge.    Suppose that 

immediately before three successive singular value decompositions, the best 

approximations to the maximum are   x'  , x" , and   x"'   , with 

d0 = ||x» -x,fU2 >0 and   d;L = Hx" -x»" |12 >"o .    Numerical tests indicate 

that curved ridges are often approximated fairly well by the space-curve 

given parametric ally by 

\(\-d) (\+d)(\-d) M^-dJ 

which is chosen because   x( -d0)  = xf  ,    x(0) = x" , and   x(d1)  = x,M   . 

Hence, before the 3rd, Uth,  5th ...    singular value decompositions, 
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procedure praxis (see Section 9) moves to the point   x(\ ) , where   \n 

is chosen to approximately minimize   f(x(\))   .      \     is computed by the 

same procedure that performs linear searches. 

6.      Some further details 

In this section we give sane more details of the ALGOL procedure 

given in Section 9.    The criterion for discarding search directions, the 

linear search procedure,  and the stopping criterion are described briefly. 

(For the sake of clarity,  some unimportant details are omitted.) 

The discarding criterion 

Suppose for the moment that    f(x)    is the quadratic form given by 

equation (5.7).    In steps 2 and 3 of Powell's basic procedure (see Section 5)^ 

we effectively discard the search direction    u.  , and replace it by 

x    ~ x.  .    The algorithm suggested by Powell does not necessarily discard 

u.   :    instead, as mentioned in Section 2;  it discards one of   u , ...,u   , 

u ^  = x   -x. ,  so as to maximize „n+l     ~n   JD 

(det^ ... vn)|, (6.1) 

where   v.    is given by equation    (5.1^),   after renumbering the remaining 

n    directions.     We wish to retain convergence for a quadratic form in 

n    iterations, so we are not free to discard any one of   un,...,u ..   . -1 „n+l 

At the k-th iteration, for   2 < k < n , we can discard any one of 

u.««**,u _j^1   without losing quadratic convergence (see Section 5).    For 
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lack of a better criterion, we choose to discard the direction, from 

u1,...,u   .^ , to maximize the resulting determinant (6.1). 

Suppose that the new direction   x   -x. = u .,    satisfies ~n   ~o     -.n+x 

u^.n n u- 

TV ' ha'l^W  ' rj» I/O «_«      -"4 T» .I/O " V.0*^/ 

(Vl^nfl) i=1        (^A) 

Then, the effect of discarding   u.    and replacing it by   u   ,    (and then 

renumbering the directions)  is to multiply the determinant (6.1) by    |a j , 

so our criterion is to choose    i , with   1 < i < n-kfl ,  so that    |a | 

is at its maximum.    If   ß , ...,ß     are as in the description of Powell's 

basic procedure (see Section 5)> and the linear minimization with step 

ß.u.    decreases   f(x)    by an amount   A.  , then, from (5.7)* 

Ai = ßiüiAUi    ' (6,5) 

so  JAJ / jß. j  may be used as an estimate of (u.Au.)'^  .  (If ß. = 0 

then we use the result of a previous iteration.) 

Suppose that the random step procedure described in Section 5 moves 

from x  to 

before the linear searches in the directions u.,...,u  are performed. 
-.1    ~n 

Then 

n 

Vi'^-fo'E^v^i   ' (6-5) 

and the ß' of equation (5.1) are given by 
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ß +7.      if   1 < i < n-k+1    , 
ßl M f (6.6) i 17, if   n-lcf 2 < i < n    . / 

From (6.2),  (6.3) and (6.5), 

f&i^i^S - Oi-^JZ/iej  . (6.7) 

so we muat discard direction   u.  ,    ! < i < n-k+1 , to maximize the 

modulus of the right side of (6.7).    Since this does not explicitly 

depend on the matrix   A , the same criterion is used even if    f   is not 

necessarily a quadratic form.    Note that our criterion reduces to Powell's, 

apart from our restriction that    i < n-k+1 ,  if there are no random ßteps, 

i.e.,  if   7.  =0    for    i = 1, ...,n  .    Quadratic convergence is guaranteed 

(apart from the effect of rounding errors) unless, for some   k = 2, ...,n , 

ßi = ß^= ... =ßi.kfl = 0 (6.8) 

at iteration   k . 

The linear search 

Our linear search procedure is similar to that suggested by Powell 

(I96U).   We wish to find a value of   \   which approximately minimizes 

(p(X)   = f(x0 + \u)    , (6.9) 

where the initial point   x     and direction    u / 0   are given,   and 

(p(0)  = f(xn)    is already known.    If a linear search in the direction   u 

has already been performed,  or if   u   resulted from a singular value 

decomposition,  then an estimate of   ^"(0)    is available.    A parabola 

P(\)    is fitted to   (p(M  , using   9(0)   , the estimate of   <p"(0)    if 
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avt    rtle,  and the computed value of   q)(\)    at another point,   or at two 

points if there is no estimate of   9"(>0 .        If   PvM    h*8 a minimum at 

\ - \    ,  and   (p(X. ) < 9(0)  , then    \     is accepted as a value of   X   to 

approximately minimize (6.9).    Otherwise   \    is replaced by   X /2 , 

<p(X )     is re-evaluated,  and the test is repeated.    (After a number of 

unsuccessful tries, the procedure returns with   \ - 0  .) 

The stopping criterion 

The user of procedure praxis provides two parameters:    t    (a positive 

absolute tolerancj),  and    e    (i.e.,    macheps , the machine precision); 

and the procedure attempts to return   x    satisfying 

where    n    is the position of the truv' local minimum near   x  .    The 

exact foim of the right side of (6.10)  is not important, and could 

easily be changed if desired.    It was chosen because of the analogy with 

the one-dimensional case (see Chapter 5). 

It is impossible to guarantee that (6.10) will hold for all 

functions    f ,  or even for    f   which are   C      near    \JL  .    Our stopping 

criterion is, however,  rather cautious,  and (6.10)  is satisfied for all 

numerical examples discussed in Section 7, with the sole exception of 

the extremely ill-conditioned problem 

f(x)  = xTAx    , (6.11) 

where    A    is a    12   by    12   Hubert matrix, with a condition number 

H~1.7X10      >E     ~UxlO'*.     In most cases the stopping criterion 

is over-cautious, and some unnecessary function evaluations are performed. 

235 



7-7 

Let us remark, as does Powell (196^), that the stopping criterion is 

not an essential part of our algorithm, so an improved criterion could 

easily be incorporated. 

Let x' be the current best approximation to the minimum before an 

iteration of the basic procedure, and let x" be the best approximation 

after the iteration, i.e., n linear searches later. We test if 

2llx'-x"l|  < el/2llx»l| +t . (6.12) 

The stopping criterion is simply to stop, and re+nm the approximation 

x" , if (6.12) is satisfied for a prescribed nunbei of consecutive 

iterations. The number of consecutive iterations depends on how cautious 

we wish to be: 2 is reasonable, and was used for the examples 

described in Section f.    Because of the random step strategy described 

in Section 5, and always adopted if (6.12) was satisfied on the previous 

iteration, there is no need for a more complicated criterion, such as 

the one used by Powell {lQ6h). 

7.  Numerical results and comparison with other methods 

The ALGOL W procedure "praxis", given in Section 9, has been tested 

-13 
on IBM 560/67 and  .,>6o/91 computers with machine precision 16   . In 

this section we summarize the results of the numerical tests, and compare 

them with results for other methods reported in the literature. Our 

procedure has also been translated into SAIL (an extension of ALGOL: 

see Swinehart and Sproull (1970)) and used to solve least-squares 

parapet er-fitting problems with up to 16 variables on a PDP 10 computer 
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(machine precision    2'^ )   .    The parameter-fitting problem is described 

in Sobel (1970). ■ 

Table 7'1 stunmarizes the performance of procedure praxis on the 
- 

-5 test functions described below.    In all cases the tolerance   t = 10 j 

-15 and macheps = 16        .    The table gives the number of variables,    n ; 

the initial step-size (a rough estimate of the distance to the minimum), 

h ; and the starting point,    x0  .    So that the results can be compared 

with those of methods with a different stopping criterion, we give the 

number   n.    of function evaluations, and the number   n,    of linear 

searches (including any parabolic extrapolations),   required to reduce 

f(x) - f(n)    below   10~      , where    f(n)    is the true minimum of    f . 

As    f(x)    was only printed out after each iteration of the basic procedure, 

i.e.,  after every   n    linear minimizations, the number of function 

evaluations required to reduce    f (x) - f (n)    to    10 is often slightly 

less than n» , so we also give the actual value of f(x) - f (|i) after 

n» function evaluations. Finally, the table gives K , the estimated 

condition number of the problem. Except for the few cases where it is 

easily found analytically, H is estimated from the computed singular 

values, and may be rather inacevirate. 

For those examples marked with an asterisk,  the random step strategy 

was used from the start,     (in the initialization phase of procedure 

praxis, the variable    "illc"    was set to true.)    For the other examples 

the procedure was used as given in Section 9 (with "illc" set to false 

initially).    Although the automatic scaling feature (see Section U) 

reduces   n.   by about 25 percent for some of the badly scaled problems, 

this feature was switched off for the examples given in the table.    (The 

bound "scbd" of equation (^.15) was set to    1 .) 
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Definitions of the test functions, and comments on the results 

summarized in Table 7*1, are given after the table. 

A cautionary note 

When comparing different minimization methods, such as ours, 

Powell's and Stewart's, the reader should net forget that the numerical 

results reported for the methods may have been obtained on different 

computers (with different word-lengths), and with different linear search 

procedures. The effect of different word-lengths should only be 

significant in the final stages of the search, when rounding errors 

determine the limiting accuracy attainable, except for ill-conditioned 

problems (say K > 10 ) . This is another reason why we prefer to 

consider the number of function evaluations required to reduce f(x) - f(jx) 

to a reasonable threshold (say 10~ ) , rather than the number required 

for convergence. 

Because apparently minor differences in the linear search procedures 

can be quite important, Fletcher (1965) prefers to consider the number 

of linear searches, n, , instead of the numoer of function evaluations, 

n_ . This approach discriminates against methods, such as Powell's, 

which use most of the search directions several times, and can thus use 

second derivative estimates to reduce the number of function evaluations 

required for the second and later searches in each direction. Note that, 

for the examples given in Table 7*1^ n.p/n-i lies between 2.1 PT^ 2.7 

but it would be at least 3.0 for methods which do not use second 

> 

derivative information,  if the linear search involves fitting a parabola 
\ 

and evaluating    1   at the minimum of the parabola.    Also, there are 

promising methods which do not use linear searches at all (see Broyden (1967), 
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Davidon (I968,  I969),  Goldstein and Price (1967)^  and PoweU (1970e)), 

and these methods could presumably be adapted to accept difference 

approximations to derivatives.    Thus, we prefer to compare methods on 

the basis of the number of function evaluations required,  and regard 

the linear search procedure,  if any, as an integral part of each method. 

Table 7.1:    Results for various test functions 

1 Function n h xT 
^0 

nf nl f(x)-f(|x) K     I 

Rosenbrock 2 1 (-1.2,1) 120 ^7 6.61' -18 2508  j 

Rosenbrock 2 5 (5,5) 110 k2 | 8.55 -17 2508  1 

| Rosenbrock 2 12 (8,8) 181 67 9.71 -18 2508 

1 Cube 2 1 (-1.2,-1) 177 68 7.13 -18 10018 

\   Beale 2 1 (0.1,0.1) 5^ 22 2.00 -15 162 

1 Helix 5 1 (-1,0,0) 155 67 1.75 -U 500  | 

Powell 5 1 (0,1,2) 55 25 1.99 -11 28 

Box^ 5 20 (0,10,20) 100 57 2.57 -15 8500 

Singular* k 1 (5,-1,0,1) ? 23h 106 9.76 -11 00    1 

I Wood* k 10 -(5,1,5,1) 1+52 191 6.06 -Ih ikoo 

| Chebyquad 0 0.1 xi = i/(n+l) 51 12 7.89' -20 1.5 

Chebyquad k 0.1 xi=i/(n+l) 74 52 7.89' -n 7 

Chebyquad 6 0.1 xi = i/(n+l) 223 101 7.00 -15 50 

Chebyquad 8  : 0.1 x =i/(n+l) 526 lU7 6.52' -n 200? 

Watson* 6 \ 1 0T 516 1U5 2.85' -12 86000 

Watson* 9 1 1 118U 5^1 5.18 -11 l.?^ 

*   For these results we set    illc  := true    in the initialization 

phase of procedure praxis, and the random number generator was 

initialized by calling raninit(2) in procedure test. 
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Table "] .1 continued 

Function n h 
T 

^0 nf nl 
f(x)-fOi) K 

Tridiag k 8 oT 
27 11 0 29.3 

Tridiag 6 12 oT 
51 22 0 61».9 

Tridiag 8 16 oT 126 55 0 113 

Tridiag 10 20 oT 201 89 1.56»-15 175 

Tridiag 12 2k oT 
259 118 2.23»-15 250 

Tridiag 16 32 oT km 222 1.26«-13 108 

Tridiag 20 ko oT 
805 379 0 677 

Hubert 2 10 (1,...,1) 11 k 3.98'-15 19 

Hubert k 10 (1,...,1) 50 22 e.ii1-^ 1.5'^ 

Hilbert 6 10 (1,...,1) 133 58 i^c-n l.5'l 

HUbert 8 10 (1,...,1) 262 119 8.1V-11 1.3*10 

Hilbert+ 10 10 (1,...,1) 592 267 7.8^»-n 1.6'13 

Hilbert+ 12 10 (l,...,l) 731 328 1.98»-11 1.7*16 

+   For these results the stopping criterion was more conservative: 

we set    ktm := 4    in the initialization phase of procedure praxis. 
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Definitions of the test functions and comments on Table J .1 

Rosenbrock (Rosenbrock (i960)): 

f(x) ^ 100(x2-x^)2^ (1-x^2 
(7.1) 

This is a well-known function with a parabolic valley.    Descent methods 

tend to fa,12. into the valley,  and then follow it around to the minimum 

at (1,1)   .    Details of the progress of the algorithm, for the starting 

point    (-1.2,  l)  ,  are given in Table 7.2.    In Diagram 7.1 we compare 

these results with those reported for Stewart's method (Stewart  (1967)), 

Powell's method,  and the method of Davies,  Swann and Campey (as reported 

by Fletcher (1965)).    The graph shows that our method compares favourably 

with the other methods.    Although the function (7*1)  is rather artificial, 

similar curved valleys often arise when penalty function methods are used 

to reduce constrained problems to unconstrained problems:    consider 

2 2 minimizing    (1-x..)     , with the constraint that    x    = x    , by a simple- 

minded penalty function method. 

Cube    (Leon (1966)) 

f(x)  = 100(x2-x^)2+(l-x1)2 (7.2) 

This function is similar to Rosenbrock's, and much the same remarks 

apply. Here the valley follows the curve x? = x^ . 

Beale (Beale (1958)): 

f(x) = Z   (c.-x.d-xj))2 

i=l  1  ■L   d 
(7.5) 
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where    c    = 1.5 ,    c    = 2.25 ,    c, = 2.625  •    This function has a valley 

1 T approaching the line   x2 = 1 , and has a minimum of   0   at    (5, 5)   • 

Kowalik and Osborne (I96Ö) report that the Davidon-Fletcher-Powell 

algorithm reduced   f   to   2.18x10"       in   20    function and gradient 

evaluations (equivalent to    60    function evaluations if the usual    (n+1) 

weighting factor is used), and Powell's method required   86   function 

-ft 
evaluations to reduce    f   to    2.9^x10'    .    Thus, our method compares 

favourably on this example. 

Helix    (Fletcher and Powell (1965)): 

f(x)  = 100((x3-10e)2+(r-l)2) + x?      , (7.10 

where 

2 _..    2v 1/2 c.  + X-)   ' r«(xj+xp^c (7.5) 

and 

j arctan(x /x ) if   x   > 0    , 
2TTÖ = ( 2   1 1 (7.6) 

1 TT + arctan(xVx )      if   x   < 0    . 

This function of three variables has a helical valley, and a minimum 

T at    (1,0,0)   .    The results are given in more detail in Table 7*5 and 

Diagram 7*2.    For this example our method is faster than Powell's 

method,  but slightly slower than Stewart's. 
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Powell (Powell {196k)): 

^=5-(i7^) --^^--{[-(^j -2r}-(7-7) 

For a description of this function, see Powell {196k) . Perhaps by good 

luck, our procedure had no difficulty with this function: it found the 

true minimum quickly and did not stop prematurely. 

Box (Box (I966)): 

(exp(-ix1/lO) - exp(-ix2/l0)) ID 

i=l 1^ -x5(exp(-i/lD) -exp(-i)) ] (7.8) 

This function has minima of   0    at    (1, 10, 1) ,  and also along the 

line    {(X.,K,on  •    C0^ procedxire found the first minimum.)    Kowalik 

and Osborne (1968) report that Powell's method took   205    function 

evaluations to reduce   f   to    3.09 x 10     , so our method is about twice 

as fast.    Our method took   79    function evaluations to reduce   f   to 

2.29 x 10      ,  so it is faster,  in this example, than any of the methods 

compared by Box (I966), with the exception of Powell's method for sums 

of squares (Powell (1965)).    See the comment in Section 1 about special 

methods for minimizing sums of squares'. 

Singular    (Powell (1962)): 

f(x)   = (x1+10x2)2+5(x3-x1+)
2
+(x2-2x5)1|

+10(x1-x^)1'    .      (7.9) 
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This function is difficult to minimize,  and provides a severe test of 

the stopping criterion,  because the Hessian matrix at the minimum 

(x = 0)    is doubly singular.    The function varies very slowly near    0 

in the two-dimensional subspace    {(10X.,   -\,, Xp, \27"}  •    Table 7«^ 

and Diagram 7'3 suggest that the algorithm converges only linearly, 

as does Powell's algorithm.    It is interesting to note that the output 

from our procedure would strongly suggest the singularity,  if we did not 

know it in advance:    after   219   function evaluations, with 

f(x) = 7.67 xio'9 , the computed eigenvalues were   101.0 , 9.999 , 

0.003790 , and   0.00101^  .    (The exact eigenvalues at   0    are    101 ,   ID , 

0 , and 0 .)    After   58U    function evaluations, with   f(x)    reduced to 

-17 -7 1.02x10       , the two smallest eigenvalues were    1.56x10        and 
-R 

5.98x10      .    Thus,  our procedure should enable singularity of the 

Hessian matrix to be detected, in the unlikely event that it occurred 

in a practical problem.    (For one example,  see Freudenstein and Roth 

(1965).) 

Wood   (see Colville (1968)): 

f(x)  = lD0(x2-x^)2  :   (1-x^2 + 90(xu-x2)2 + (1-x^2 + 

10.1[(x2-l)2 + (x^-1)2] + 19.8(x2-l)(xu-l)    . (T.üJ) 

This function is rather like Rosenbrock* s, but with four variables 

instead of two.    Procedures with an inadequate stopping criterion may 

terminate prematurely on this function (see McCormick and Pearson (1969)), 

but our procedure did find the minimum at    n    = (1,1,1, If . 

2H 
1 
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Chebyquad    (Fletcher (1965)): 

f(x)     is defined by the ALGOL procedure given by Fletcher (1965). 

As the minimization problem is still valid, we have not corrected a 

small error in this procedure.     (The procedure does not ccnrpute exactly 

what Fletcher intended.)    In contrast to most of our other test functions, 

which are designed to be difficult to minimize,  this function is fairly 

easy to minimize.    For    n = 1(1)7    and   9   the minimum is   0 ,  for other 

n    it is nonzero.    (For   n = 8    it is approximately   0.00351687572568 .) 

The results given in Table 7.5,  and illustrated in Diagrams f.h to 7.7, 

show that our method is faster than those of Powell or of Davies, Swann 

and Campey,  but a little slower than Stewart's. 

Watson    (see Kowalik and Osborne (I968)): 

f(x)   =x^+ (x2-x^-l)2 + 

Uh^^ii^'1)2-1]2- (7-u) 

Here a polynomial 

p(t) = x1 + x2t +  ... + x^-""1 (7.12) 

i« fitted, by least squares, to approximate a solution of the 

differential equation 

dz/dt =   1 + z2    , (7.13) 

with    z(0)  = 0 ,  for   t € [0,1]  .    (The exact solution is    z = tan(t)   .) 

Because of a bad choice of basis functions    {l,t, ...,t " } , the 
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minimization problem is ill-conditioned,  and rather difficult to solve. 

For   n = 6 , the minimum is   f(^) ~ 2.28767005355XIO     ,  at 

H ~ (-0.015725, 1.012^55,  -0.252992, 1.260^50,  -1.515729, 0.992996)T . 

For   n = 9 ,    f(n) ;-1.599760138x 10'    , and   n ~ (-O.OOOOI5, 0.999790, 

O.OIU76J+, 0.1465^2, 1.000821, -2.617751, U.10^*05, -5.1^5612, 1.052627)T . 

(We do not claim that all the figures given are significant.) 

Kowtlik and Osborne (I968) report that, after 700 function 

evaluations, Powell's method had only reduced   f   to   2.^5^x10 

(for   n = 6)  ,  so o.ir method is at least twice as fast here.    The 

Watson problem for   n = 9    is very ill-conditioned, and seems to ^e a 

good test for a minimization procedure. 

Tridiag    (see Gregory and Karney (1969), pp. hi and fk): 

f(x)  = xTAx - 2x1       , (7.1M 

where 

A = 
-1 

0 

0 
2      -1 

-1        2       -1 (7.15) 

This function is useful for testing the quadratic convergence property. 

The minimum    f((i)   = -n    occurs when    n    is the first column of   A      ,  i.e., 

H =  (n,  n-1,  n-2,   ...,  2,  1) (7.16) 
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The results given in Table 7*1 show that, as expected,  the minimum is 

2 
founl in    n      or less linear minimizations.    The eigenvalues of   A   are 

just     Vj = ^ cos2(al?i)     for   J = ±,.",n . 

Hubert 

f (x)   = x Ax (7.17) 

where    A    is an    n   by    n   Hubert matrix,  i.e., 

a.^.  ^ l/(i+j-l) (7.18) 

for    1 < i ,     J < n .        f(x)    can be computed directly without storing 

the matrix    A  .      Like {7.lh),   (7.17)   is a positive definite quadratic 

f jrm, but the condition number increases rapidly with    n  .    Because of 

2 
the effect of rounding erroirs, more than   n      linear minimizations were 

required to reduce   f   to   10"      ,   except for    n = 2  .    The procedure 

successfully found the minimum    ^ = 0 , to within the prescribed 

tolerance,   for    n < 10  .    For    n = 12 ,  some components of the computed 

minimum were greater than   0.1 ,  even though    f   was reduced to 

2.7uxl0 .    This illustrates how ill-conditioned the problem is! 

Some more detailed r3sults 

Tables 7.2 to 7.5 give more details of the progress o-" our procedure 

(B)  on the Rosenbrock, Helix,  Singular,  and Chebyquad functions.    In 

Diagrams 7»1 to 7*7^ ve plot 
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A = log10(f(x)-f({i)) (7.19) 

against    nf ,  the ntnnber of function evaluations.    Using the results 

given by Fletcher (I965) and Stewart  (I967), the corresponding graphs 

for the methods of Davies, Swann and Canrpey (D), Powell (?),  and 

Stewart (S), eure also given, for purptsses of comparison. 

Table 7.2;    Rosenbrock 

nf nl 
f(x) xl X2 

1 0 2.42,1 1     -1.20OOO0 1.000000 

n k ^.llf'O -1.03^611 
i 

1.071270 

21 8 3.i+2,0 
1 

j    -0.811598 
i 

0.621199 

51 12 2.59*0 
1 

1.5^9031 0.258076 

U5 17 1.67'0 ,    -0.268211 0.046503 

58 22 1.07,0 -O.028125 -0.010783 

72 27 3.71,-1 O.I+82692 0.200894 

8U 32 2.79,-3 O.947231 o. 897130 

98 37 5.89,-li 0.99638U 0.990382 

109 k2 6.69»-9 0.999991 0.999974 

12C Vf 6.61'-18 1.000000 1.000000 

1 132 
1 

52 1.13'-23 1.000000 1.000000 

155 57 k.hT-2h 1.000000 1.000000 
L ] 1  . __         1 , ___    .,——•. 
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Table 7.5:    Helix 

r i 
n. f(x) 

.. 

\    1 0 2.50'5 -1.000000 
1 
i 

0.000000 0.000000 

i   i^ 5 1.62,2 \      1.000000 2.000000 2.000000 

1      25    , 
1 

9 l.lS'a 0.563852 1.952025 1.759^93 

1      56   : ik 5.22*0 0.511857 
j 

1.000020 2.09612U 

kk       \ 18 h.Ok'O '   0.50555U 0.967190 1.9871^5 

\             ^       ' 
25 5.78'0 0.3^7506 0.907981 1.922708 

i      65   ! 27 5.01,0 0.8147975 0.73^103 1.07^593 

;      82   : 
! 35 9.46'-1 0.816717 0.566910 0.969820 

'      91   i 37 5.66,-l 0.96575!+ 0.5^2025   1 0 -'^kh 

! 
105 h3 2.14-6'-1 1.00U62U 0.259^18 0.36J+506 

j     ^^^   i hi 2.8ir-2 0.9958U5 0.091699   ! 0.155178 

:      126 55 6.55f-5 1.002519 0.0^5726 0.072152 

| i5u ; 57 8.01'A 1.002726 0.002505   1 
j 

0.002966 

iVf 63 8.66«-6 0.999996 
1 

0.001855   1 0.002942 

155   ; 
1                             i 

67 1.75'-n 1.000000 8.^9«-9     ! 2.147'-7 

i    169 ! 73 1.12»-20 1.000000 -6.U5,-11    ! -9.92'-n 

1    178 77 1.99»-2I4 ^.000000 -1.69«-15   1 -2.1+7'-13 

200  i 
.  1. 

83 1.91^1 _2l| 
 _. .. 

1.000000 -1.60'-13    ■ 
i 

-2.55'-15 

2U9 



mm- 

7.7 

Table 1 .h: Singular* 

nf nl "    f(x)  : 
"f 

nl f(x)  " 

1 
T 

0   ;     2.15 »2 234    ! 106    ! 9.76'-ll 

19 6        1.18 '1       j 244 m 2.03l-12 

51 11        7.96 •0 
1 

254 n6  i 4.n «-13 

42 16        7.75 '0      ; 269 123 2.61»-14 

58 22          2.94 0 279 128 6.43'-15 

68 27          9.86 '-1    ; 289 133 8.88'-16  1 

78 52          1.54 '-1 308 llK) 7.35'-16  \ 

94 38          6.92 -3     i 
1 

319 145 3.87'-16 : 

\   104 45          1.18 '-3 330 150 9-92,-r7  j 

114 46   •     5.25 -5   ; 358 157 9.92»-17  j 

129 55   :    8.25 
t 

1 
-6    i 373 162 1.65'-17  j 

159 60   !    2.13 
1 

-6    i 
l 

384 167 1.02«-17 

i 1^9 
1 

65         2.70 
-7 ; 

404 174 9.95'-18 

,   164 
1 

72         7.91 -8    ■ 
1 

421 179 6.02»-23   j 

j  174 77        3.95 -8    1 436 184 5.89'-23 

184 82     ;      3.90' -8     i 464 191 5.89'-23 

199 89   j    3.90' 
1 

.8   :        , 436 196 5-89T-23 

1   209 94  j   3.89« 
1 

-8   : 

:   219 
1 

99   1    7.67' 
.-. .._    1. 

-9 

^T - (-9.73X10'7    ,  9.73xl0"8 ,  5.31xl.o"7 ,  5.31xl0"7)  ,  lying 

approximately in the subspace    {(10^,,   -\ , \ ,  ^ )}  ,  as expected. 

*    See   the  comment ander Table  '{.1. 

U       i 
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Table 7,^;    Chebyquad 

n = 2 

t 
: nf nl 

f(x) 

0 1.98'-1 

12 h ^.55,-3 

22 8 l.89'-8 

51 12 7.89«-20 

^5 17 U.89,-2^ 

75 
_.._   .J 

22 i+.89,-2l+ 

jl1 =  (0.211321+9,  0.7886751) 

n = 6 

n. n. 

1 

f(x) 

L 

23 
i 

37 
i 

66   i 

81   i 
1 

105   i 
1 

117 

0 i 

8 ; 

15 

22 . 

29 ■ 

36 ; 
i 

kk 

51 

k.6k*~2 

2.55,-2 

1.80«-2 

1.21'-2 

5.69'-3 

2.07'-5 

9.89«-5 

3.V7'-5 

n - k 

nf nl f(x) 

1- 0 
r 

7.12,-2 

1 17  ! 6 i.ky~2 

ST 11 1.59'-3 
1                    j 

j  }8   i 16 l.OO'-U 

,   5»*   i 22 U.22,-7 
1                    i 
i   6h   \ 27 1.86»-8 

7U 
1 

32 7.8q'-n 

87   i 
1 

38 7.75,-l^ 

98 Jo 1.88«-l6 

iix = (0.1026728, o.Uo62057> 

0.5937963, 0.8973272) 

n = 6 (continued) 

n. 

131 

I   159 
i 

181 

195 

209 

225 

i 238 

58 

65 

72 

80 

87 

9k 

101 

108 

2.1V-5 

l.lU'-5 

2.7l'-6 

1.13f-7 

6.59'-10 

1.58'-10 

7.00'-15 

3.77'-15 

-T 
li   = (0.06(^77, 0.2837U1, 0.366682, 0.633318, 0.711259, 0.933123) 
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Table T-S»    continued 

nf  ' 

1  : 

29 ; 

65  | 
i 

83  I 
■ 

102   I 
| 

125   | 

172 

190 

\ 
ni ; 

0 

10 

19 

28 

37 

55 

7^   i 

f(x) 

O.0386176982859 

0.017112^Ul3O73 

0.010913181597^ 

0.0102860269896 

0.0093337535951 

0.0071908595069 

0.001+99521+81593 

O.OOl+4U325131+63 

0.0O379J+O^l6l25 

83   J    0.0035390722159 

! nf I ni 

208 

226 

2^ 

92 

101 

no 

262 ! 119 

280 1 128 

508 

326 

3^5 

36U 

138 

1U7 

156 

165 

f(x) 
n 

0.00552699687U7   1 

0.0055191392^ 

0.0035180637576   I 

0.005517656^629   j 
i 

0.005517196^5^1 

0.00551687^57^5 

0.0055168757890 

0.0055168757290 

0.0055168757288 

fi   = (0.0U3153, 0.193091, 0.266329, 0.500000, 0.500000, 0.755671, 

0.806910, 0.9568U7) 
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7-7 

Diagram 2*1:    Rosenbrock 

Key:    B:    Our method, 

D:    The method of Davies, Swann and Campey, 

as given by Fletcher (I965), 

P:    Powell's (196^) method, as given by Fletcher (1965), 

S:    Stewart's method, as given by Stewart (1967). 

A    =    log-n(f(x) -fM) 

150   nf 
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Diagrair 7.2;    Helix 

Key: B: 
D: 

P: 
S: 

Our method. 
The method of Davies,  Swann and Campey,  as given 
by Fletcher (I965), 
Pcwell's {196h) method,   as given by Fletcher (I965), 
Stewart's method,  as given by Stewart  (1967). 

A-lcgln(f(x)-f(u)) 
"lO 



MM 
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Diagram 7-3:    Singular (Powell's fimctlon of four variables) 

Our method. 
The method of Davies,  Swpjin and Carapey, as 
given by Fletcher (1965),, 
Powell's  (1964) method,  as given by Fiebcher (I965), 
Stewart's method^  a^ given by Stewar1;  (I967). 

Key:    B: 
D: 

t 
1 

P: 
S: 

A = = log10(f(x) -f(jl)) 

I 
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Diagram ^.h: Chebyquad,    n = 2 

Key:    B:    Our method, 

D:    The method of Davies,  Swarm and Carapey, as given 
by Fletcher (1965), 

P:    Powell's  (I96U) method, as given by Fletcher  (1965), 

S:    Stewart's method, as given by Stewart  (1967). 

A - lo610(f(x) -fM) 

2^)6 
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Diagram 7.5;    Chebyquad,    n = U 

Key B:    Our method, 
D:    The method of Davies,  Swann and Campey, as given 

by Fletcher  (1965), 
P:    Powell's  (196^) method,  as given by Fletcher (1965), 
S:    Stewart's method, as given by Stewart (1967). 

A = log10(f(x) -fM) 



' I I 

' .• .... 
'• 

~ '· . -,, ~-. 
....... ~. 

It II -.,..J 
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Diagram 7 »7:    Chebyquad,    n = 8 

(Results for Stewart's method not available.) 

Key:    B:    Our method. 

D:    The method of Davies, Swann and Campey, as given 
by Fletcher (I965), 

P:    Powell's  (196^) method,  as given by Fletcher (1965) 

A = login(f(x) -f(n)) 

2^9 
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8.      Conclusion 

Powell (19&0  observes that, with his determinantal criterion for 

accepting new search directions  (see Section 5), there is a tendency for 

the new directions to be accepted less often as the number of variables 

increases,  and the quadratic convergence property of his basic procedure 

is lost.    Our aim was to avoid this difficulty,  keep the quadratic 

convergence property, and ensure that the search directions continue to 

span the whole space, while using basically the same method as Powell 

(and Smith (1962)) to generate conjugate directions. 

The numerical results given in Section 7 suggest that our algorithm 

is faster than Powell's,  and comparable to Stewart's,  if the criterion 

is the number of function evaluations required to reduce    f(x)    to a 

certain threshold.      Also, our algorithm seems to be reliable ever for 

very ill-conditioned problems like Watson    (n = 9)    and Hilbert    (n - 10)  , 

while Stewart's method breaks down because of numerical difficulties on 

some functions,   e.g., the Rosenbrock and Singular functions  (see 

Stewart (1967)) •    However, we should not try to conclude too much from 

the numerical results:    see the warning in Section 7. 

Theoretical convergence results 

Suppose that all arithmetic is exact (i.e., there are no rounding 

errors), and consider our algorithm with the stopping criterion removed. 

Since the algorithm keeps on performing linear searches along   n 

orthogonal   directions, the same conditions that ensure convergence of 

the method of coordinate search to a local minimum will ensure convergence 

of our algorithm.    In particular, the algorithm will converge to the 
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(unique) minimum for all functions    f   which are   C1" ,  strictly convex, 

and satisfy 

lim f(\e)   = + oo (8.1) 
\ -♦ 00 

for all nonzero vectors    e .    Of course, this result is of little 

practical interest,   for in practice rounding errors may be very 

important:    see Section 5- 

It is plausible that,  if the Hessian matrix of   f    is strictly- 

positive definite at the minimum, then our algorithm will converge 

super linearly.    McCormick (19^9)  shows that this is true for the reset 

Daviden-Fletcher-Powell algorithm, provided a Lipschitz condition is 

satisfied.    Figures 7*1*    7*2, and 7«^ to 7«7 certainly suggest that 

convergence is superlinear until rounding errors become important.    We 

do not have a proof of this conjecture though:    perhaps additional 

conditions on    f , or a slight modification of the algorithm, are 

necessary. 

9«     An ALGOL W procedure and test program 

The procedure praxis, plus a driver program and test functions, 

is given below.    The language is ALGOL W (Wirth and Hoare (1966), 

Bauer, Becker and Graham (1968)), but none of the special features 

of ALGOL W have been used, so translation into another dialect of 

ALGOL should be straightforward. 
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BEGIN   COMMENT: 
TEST  PROGRAM  FOR   PROCEDURE   PRAXIS. 
A********************************; 

LONG   REAL  PROCEDURE   PRAXIS   (LONG  REAL  VALUE   T,   MACHEPS,   H; 
INTEGER  VALUE   N,   PRIN; 
LONG  REAL  ARRAY  X(*);     LONG  REAL   PROCEDURE  F,   RANDOM); 
BEGIN COMMENT: 

I 
THIS   PROCEDURE MINIMIZES  THE   FUNCTION   FCX,   N)   OF  N 

VARIABLES   Xd)^   ...   X(N)/   USING  THE   PRINCIPAL AXIS METHOD. 
ON   ENTRY X  HOLDS A  GUESS/   ON  RETURN   IT HOLDS  THE   ESTIMATED 
POINT OF  MINIMUM^   WITH   (HOPEFULLY)   |ERROR|   < 
SQRT(MACHEPS)*|X|   ♦   T/   WHERE  MACHEPS   IS   THE  MACHINE 
PRECISION,   THE  SMALLEST  NUMBER  SUCH  THAT   1  ♦  MACHEPS   >   1, 
T   IS  A  TOLERANCE,   AND   |.|   IS   THE   2-NORM.      H   IS   THE  MAXIMUM 
STEP  SIZE:     SET  YO  ABOUT  THE  MAXIMUM  EXPECTED  DISTANCE   FROM 
THE     GUESS  TO  THE  MINIMUM   (IF  H   IS   SET  TOO  SMALL  OR   TOO 
LARGE  THEN  THE   INITIAL   RATE  OF  CONVERGENCE  WILL   BE   SLOW). 

THE USER  SHOULD  OBSERVE  THE   COMMENT  ON  HEURISTIC NUMBERS 
AFTER  PROCEDURE  QUAD. 

PRIN CONTROLS  THE   PRINTING  OF   INTERMEDIATE  RESULTS. 
F   PRIN  -   0,   NO   RESULTS  ARE   PRINTED. 
F   PKIN  »   1,   F   IS   PRINTED  AFTER  EVERY  N*l   OR  N+2   LINEAR 
MINIMIZATIONS,   AND   FINAL  X   IS  PRINTED,   BUT   INTERMEDIATE 
X   ONLY   IF  N  <-  U. 

F   PRIN  -  2,   EIGENVALUES  OF A  AND  SCALE   FACTORS   ARE  ALSO 
PRINTED. 

F   PRIN -   3,   F  AND  X  ARE   PRINTED AFTER   EVERY  FEW  LINEAR 
MINIMIZATIONS. 

F   PRIN  -  U,   EIGENVECTORS  ARE  ALSO   PRINTED. 
FMIN   IS A GLOBAL  VARIABLE:     SEE   PROCEDURE  PRINT. 
RANDOM   IS A  PARAMETERLESS   LONG  REAL  PROCEDURE  WHICH   RETURNS 

A  RANDOM NUMBER  UNIFORMLY  DISTRIBUTED   IN   (0,   1).       ANY 
INITIALIZATION MUST  BE  DONE  BEFORE  THE   CALL  TO  PRAXIS. 

THE  PROCEDURE   IS  MACHINE-INDEPENDENT,   APART FROM  THE   OUTPUT 
STATEMENTS  AND  THE   SPECIFICATION OF  MACHEPS.       WE ASSUME   THAT 
MACHEPS**(-IO   DOES   NOT OVERFLOW  (IF   IT  DOES  THEN  MACHEPS  MUST 
BE   INCREASED),   AND   THAT ON  FLOATING-POINT  UNDERFLOW  THE 
RESULT  IS  SET TO ZERO; 

PROCEDURE MINFIT  (INTEGER   VALUE  N;     LONG   REAL  VALUE  EPS,   TOL; 
LONG  REAL ARRAY AB(*,*);       LONG  REAL ARRAY Q(*)); 
BEGIN COMMENT:     AN   IMPROVED   VERSION  OF   MINFIT,   SEE  GOLUB   & 

REIN3CH   (1969),   RESTRICTED  TO  M  -  N,   P   »   0. 
THE   SINGULAR  VALUES  OF   THE  ARRAY AB   ARE 
RETURNED   IN  Q,   AND AB   IS   OVERWRITTEN  WITH 
THE   ORTHOGONAL MATRIX   V   SUCH  THAT 
U.DIAG(Q)   «  AB.V, 
WHERE  U   IS  ANOTHER  ORTHOGONAL  MATRIX; 

INTEGER  L,   KT; 
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LONG REAL C/F^G^^.X^ Y.Z; 
LONG REAL ARRAY E(1::N); 
COW^ENT: HOUSEHOLDER'S REDUCTION TO BlDIAGONAL FORM; 
G :« X :» 0; 
FOR I :-  1 UNTIL N DO 
BEGIN 
E(I) :- G;  S :» 0;   L :» H-l; 
FOR J :« I UNTIL N DO S :« S*AB(J;I)**2; 
IF S<TOL THEN G :- 0 ELSE 
BEGIN 
F :- ABd,!;;  G :-  IF F<ö THEN LONGSQRT(S) 

ELSE -L0NG3QRT(S); 
H :- F*G-S; ABCM) :- F-G; 
FOR J :» L UNTIL N DO 

BEGIN F :» 0; 
FOR K :» I UNTIL N DO F := F ♦ ABCK,i)*AB(K#J); 
F :- F/H; 
FOR K :» I UNTIL N DO ABd^J) :» ABCK^J) ♦ F*AB(K/I) 
END J 

END S; 
Q(l) :- G;  S :» 0; 
IF l<«N THEN FOR J :- L UNTIL N DO 

S :» S ♦ AB(I/J)**2; 
IF S<T0L THEN G :- 0 ELSE 
BEGIN 
F :- ABd^+l);  G :- IF F<0 THEN LONGSQRT(S) 

ELSE -LONGSQRT(S); 
H :- F*G-S; AB(M*1) :- F-G; 
FOR J :»  L UNTIL N DO E(J) :- AB(I/J)/H; 
FOR J :- L UNTIL N DO 

BEGIN S :- 0; . 
FOR K :« L UNTIL N DO S :» S ♦ AB(J/K)*AB( UK); 
FOR K :- L UNTIL N DO ABC^K) :- ABCJ^K) ♦ S*E(K) 
END J 

END S; 
Y :-  ABS(Qd)) ♦ ABS(Ed)); IF Y >X THEN X :« Y j 
END I; 

COMMENT: ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS; 
FOR I :- N STEP -1 UNTIL 1 DO 

BEGIN 
IF G^-O THEN 
BEGIN 
H :- AB(M*1)*G; 
FOR J :« L UNTIL N DO AB(J/I) :- AB(I/J)/H; 
FOR J :- L UNTIL N DO 
BEGIN S :« 0; 
FOR K :- L UNTIL N DO S :» S ♦ AB(I/K)*AB(K/J) ; 
FOR K :- L UNTIL N DO ABCl^J) :- ABCK^J) ♦ S*AB(K,I) 
END J 

END G; 
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FOR J   :-   L  UNTIL N DO AB(UJ)   := AB(J/I)   :=   0; 
AB(M)   :» 1;    G  := E(l);     L   :=   I 
END  I; 

COMMENT:   DlAGONALIZATION OF   THE  81 DIAGONAL  FORM; 
EPS   :■ EPS*X* 
FOR  K  :-  N  STEP  -1 UNTIL 1   DO 

BEGIN  KT   :«  0; 
TESTFSPLITTING: 
KT  :«  KT ♦   1;      IF KT  >  30  THEN 

BEGIN E(K)   :-  OL; 
WRITE   ("QR  FAILED") 
END; 

FOR  L2   :-   K  STEP  -1  UNTIL   1  DO 
BEGIN 
L  :-  L2; 
IF ABS(E(L))<-EPS THEN GOTO TESTFCONVERGENCE; 
IF ABS(Q(L-1))<-EPS THEN GOTO CANCELLATION 
END L2; 

COMMENT:   CANCELLATION OF  E(L)   IF   L>1; 
CANCELLATION: 
C  :■ 0;    S   :- 1; 
FOR   I   :»  L  UNTIL  K DO 

BEGIN 
F   :« S«E(I);     E(l)   :- C*E(I); 
IF ABS(F)<-EPS  THEN GOTO  TESTFCONVERGENCE; 
G  :- Q(l);     Q(I)   :» H  :-   IF ABS(F)  < ABS(G)   THEN 
ABS(G)*LONGSQRT(l  ♦   (F/G)**2)   ELSE   IF  F "-   0  THEN 
ABS(F)*LONGSQRT(l ♦   (G/F)**2)   ELSE  0; 
IF H  « 0  THEN G  :- H  :-  1; 
COMMENT:   THE ABOVE  REPLACES Q(I):-H:-LONGSQRT(G*G*F*F) 

WHICH MAY GIVE   INCORRECT RESULTS   IF  THE 
SQUARES UNDERFLOW OR   IF  F  - G  =  0; 

C  :■ G/H;     S   :-  -F/H 
END  I; 

TESTFCONVERGENCE: 
Z   :- Q(K);      IF  L-K THEN GOTO CONVERGENCE; 

COMMENT:   SHIFT FROM BOTTOM  2*2 MINOR; 

\ 

X 
F 
G 
F 

Q(L);  Y :- Q(K-l); G :« E(K-l); H :- E(K); 
« ((Y-Z)*(Y*Z) ♦ (G-H)*(G*H))/(2*H*Y); 
- L0N6SQRT(F*F+1); 
• ((X-Z)*(X*Z)*H*(Y/(IF F<0 THEN F-G ELSE F+G)-H))/X; 

COMMENT: NEXT QR TRANSFORMATION; 
C *s S *B 1* 
FOR I :« L*l UNTIL K DO 
BEGIN 
G :- E(l);  Y :- Q(l); H :- S*G;  G :- G*C; 
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E(l-l)   :»  Z   :=   IF ABS(F)   <  ABS(H)   THEN 
ABS(H)*L0N&SQRT(1   ♦   (F/H)**2)   ELSE   IF   F   ^-   0  TH£N 
ABS(F)*L0NGSQRT(1  +   (H/F)**2)   ELSE   0; 
IF   Z   -  0  THEN Z   :»  F   :- 1; 
C   := F/Z;    S   :- H/Z; 
F   :« X*C + G*S;     G  :»  -X*S +0*0;     H   :=  Y*S; 
y   »a Y»C; 
FOR J   :«'l UNTIL N DO 

BEGIN 
X   :« ABCJ.I-l);   Z   := ABCJ^); 
ABCJJ-l)   := X*C ♦  Z*S;  ABCJ^I)   :«  -X*S ♦ Z*C 
END J; 

Q(l-l)   :-  Z   :»   IF  ABS(F)   < ABS(H)   THEN ABS(H)* 
LONGSQRTd  ♦   (F/H)**2)   ELSE   IF  F  ^-   0  THEN 
ABS(F)*LONGSaRT(l   ♦   (H/F)**2)   ELSE   0; 
IF  Z  » 0 THEN Z   :-  F   :»  1; 
C   :-  F/Z;    S   :-  H/Z; 
F   ;»  C*G ♦  S*Y;     X   :»   -S*G ♦  C*Y 
END   I; 

E(L)   :-  0;     E(K)   :»  F;     Q(K)   := X; 
30  TO  TESTFSPLITTING; 

CONVERGENCE: 
IF  Z<0  THEN 

BEGIN COMMENT:   O'K)   IS  MADE  NON-NEG; 
Q(K)   :=  -Z; 
FOR J :- 1 UNTIL N DO ABCvMO :« -ABCJ^K) 
END Z 

END K 
END MINFIT; 

i 

PROCEDURE SORT; 
BEGIN COMMENT:  SORTS THE ELEMENTS OF D AND CORRESPONDING 

COLUMNS OF V INTO DESCENDING ORDER; { 
INTEGER K; 
LONG REAL S; 
FOR I :- 1 UNTIL N - 1 DO 

BEGIN K :- I;  S :- D(l);  FOR J :» I ♦ 1 UNTIL N DO 
IF D(J) > S THEN 
BEGIN K :- J;  S :- D(J) END; 

IF K > I THEN 
BEGIN DU) :» D(l);  D(l) :» S;  FOR J :« 1 UNTIL N DO 

BEGIN S :« VCvM);  VCJJ) :- VCJ^K);  VCJ.K) :» S 
END 

END 
END 

END SORT; 

PROCEDURE PRINTS- 
COMMENT:  THE VARIABLE FMIN IS GLOBAL, AND ESTIMATES THE 

VALUE OF F AT THE MINIMUM:  USED ONLY FOR 
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PRINTING  LOGCFX   -   FMIN); 
IF  PRIN   >   0  THEN 
BEGIN   INTEGER  SVINT;     SVINT   ;=   INTFIELDSIZE; 
INTFIELDSIZE   :=  10; 
WRITE   (NL/   NF,   FX); 
COMMENT:      IF  THE  NEXT TWO   LINES   ARE  OMITTED   THEN   FMIN   IS 

NOT REQUIRED; 
IF  FX  <»   FMIN  THEN WRITEON   (" UNDEFINED     ")   ELSE 
WRITEON   (ROUNDTOREAL   (LONGLOG   (FX   -  FMIN))); 
COMMENT:     "lOCONTROLm" MOVES  TO THE NEXT  LINE; 
IF N  >  »»   THEN   IOCONTROL(2); 
IF   (N   <-   k)   OR   (PRIN  >  2)   THEN 
FOR   I   :«   1  UNTIL N DO WRITEON(ROUNDTOREAL(X(I))); 
IOCONTROL(2);      INTFIELDSIZE   :-  SVINT 
END PRINT; 

PROCEDURE  MATPRINT  (STRING(80)   VALUE  S;     LONG   REAL ARRAY 
V(*/*);      INTEGER VALUE M,   N); 
BEGIN  COMMENT:      PRINTS M X  N MATRIX  V COLUMN  BY COLUMN; 
WRITE   (S)* 
FOR K   :-   1 UNTIL  (N ♦  7)   DIV  8  DO 

BEGIN FOR   I   ;»  1 UNTIL M DO 
BEGIN   IOCONTROL(2); 
FOR J   :-  8*K -  7 UNTIL  (IF N  <   (8*10  THEN  N ELSE   8*K) 
DO  WRITEON   (ROUNDTOREAL   (V  (I^J))) 
END; 

WRITE   ("   ");      I0C0NTR0L(2) 
END 

END MATPRINT; 

PROCEDURE  VECPRINT   (STRING(32)   VALUE  S;     LONG   REAL ARRAY  V(*); 
INTEGER  VALUE  N); 
BEGIN COMMENT:     PRINTS  THE HEADING  S AND N-VECTOR  V; 
WRITE(S); 
FOR  I   :-  1 UNTIL  N DO WRITEOM(ROUNDTOREAL(V( I))) 
END VECPRINT; 

\ 

LONG  REAL  VALUE 
BOOLEAN   VALUE   FK) 

PROCEDURE MIN  (INTEGER VALUE  J,   NITS; 
RESULT D2/   XI;     LONG  ^EAL  VALUE  Fl; 
BEGIN COMMENT: 

MINIMIZES  F   FROM  X   IN  THE  DIRECTION  V(*/J) 
UNLESS  J<1/   WHEN A  QUADRATIC SEARCH   IS   DONE 
IN  THE  PLANE  DEFINED  BY QO,   Ql  AND  X. 
02  AN APPROXIMATION   TO HALF  F"   (OR  ZERO), 
XI  AN ESTIMATE  OF  DISTANCE  TO MINIMUM, 
RETURNED AS   THE  DISTANCE  FOUND. 
IF   FK - TRUE  THEN  Fl   IS  FLINfXl),   OTHERWISE 
XI  AND  Fl ARE   IGNORED  ON ENTRY UNLESS   FINAL 
FX   >  Fl.     NITS   CONTROLS  THE  NUMBER  OF   TIMES 
AN  ATTEMPT   IS  MADE   TO  HALVE  THE   INTERVAL. 

SIDE  EFFECTS:  USES AND ALTERS  X,   FX,   NF,  NL. 
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IF J < 1 USES VARIABLES Q... . 
USES H, N, T/ M2, MU, LOT, 0MIN/ MACHEPS; 

LONG REAL PROCEDURE FLIN (LOKG REAL VALUE L); 
COMMENT:  THE FUNCTION OF OWE VARIABLE L WHICH IS 

MINIMIZED BY PROCEDURE MIN; 
BEGiN LONG REAL ARRAY T(1::N); 
IF J > 0 THEN 
BEGIN COMMENT:  LINEAR SEARCH; 
FOR I :« 1 UNTIL N DO T(l) :» X(l) ♦ L^VCI^J) 
END 

ELSE 
BEGIN COMMENT:  SEARCH ALONG A PARABOLIC SPACE-CURVE; 
QA :« L*(L - QDI)/(QDO*(QD0 ♦ QDD) 
QB :» (L ♦ QD0)*(QD1 - L)/(aD0*QDl) 
QC :- l.*(L ♦ QDO)/(aDl*(QD0 ♦ QDD) 
FOR I :- 1 UNTIL N DO T(l) := QA*Q0(I)+QB*X(I)+Q:*Ql(I) 
END; 

COMMENT:  INCREMENT FUNCTION EVALUATION COUNTER; 
NF :- NF ♦ 1; 
F(T. N) 
END FLIN; 

INTEGER K; BOOLEAN DZ; 
LONG REAL X2, XM, FO, F2,   FM, Dl, 72,   S, SF1/ SX1; 
SF1 :- Fl; SX1 :- XI; 
K :• 0;  XM :- 0;  FO :- FM :- FX; DZ :« (D2 < MACHEPS); 
COMMENT:  FIND STEP SIZE; 
S :- 0;  FOR I :- 1 UNTIL N DO S := S ♦ X(l)**2; 
S :- LONGSQRT(S); 
T2:« MU*LONGSQRT(ABS(FX)/(IF DZ THEN DMIN ELSE D2) 

♦ S*LDT) ♦ M2*LDT; 
S :■ Mi»*S ♦ T; 
F DZ AND (T2 > S) THEN T2 :» S; 
F T2 < SMALL THEN T2 :- SMALL; 
F T2 > (0.01*H) THEN T2 :- 0.01*H; 
F FK AND (Fl O FM) THEN BEGIN XM :» XI;  FM := Fl END; 
F ^FK OR (ABS(Xl) < T2) THEN 
BEGIN XI :- IF XI >• OL THEN T2 ELSE -T2; 
Fl :- FLIN(Xl) 
END; 

IF Fl <« FM THEN BEGIN XM :» XI;  FM :» Fl END; 
LO:  IF DZ THEN 

BEGIN COMMENT:  EVALUATE FLIN AT ANOTHER POINT AND 
ESTIMATE THE SECOND DERIVATIVE; 

X2 :» IF FO < Fl THEN -XI ELSE 2*X1;  F2 :- FLIN(X2); 
IF F2 <• FM THEN BEGIN XM :- X2;  FM :» F2 END; 
D2 :- (X2*(F1 - FO) - X1*(F2 - FO))/(X1*X2*(X1 - X2)) 
END; 

COMME'T:  ESTIMATE FIRST DERIVATIVE AT 0; 
Dl :- (Fl - F0)/X1 - X1*D2;  DZ :- TRUE; 
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COMMENT:  PREDICT MINIMUM; 
X2 :« IF D2 <» SHALL THEN (IF Dl < 0 THEN H ELSE -H) ELSE 

-0.5I.*D1/D2; 
IF ABS(X2) > H THEN X2 := IF X2 > 0 THEN H ELSE -H; 
COMMENT:  EVALUATE F AT THE PREDICTED MINIMUM; 
LI:  F2 := FLIN(X2); 
IF (K < NITS) AND (F2 > FO) THEN 
BEGIN COMMENT:  NO SUCCESS SO TRY AGAIN;  K := K ♦ 1; 
IF (FO < Fi) AND ((Xi*X2) > 0) THEN GO TO LO; 
X2 :- 0.5L*X2;  GO TO LI 
END; 

COMMENT:  INCREMENT ONE-DIMENSIONAL SEARCH COUNTER; 
NL :- NL ♦ 1; 
IF F2 > FM THEN X2 := XM ELSE FM := F2; 
COMMENT:  GET NEW ESTIMATE OF SECOND DERIVATIVE; 
D2 :- IF ABS(X2*(X2 - XI)) > SMALL THEN 

(X2*(F1 - FO) - X1*(FM - F0))/(X1*X2*(X1 - X2)) 
ELSE IF K > 0 THEN 0 ELSE D2; 

IF D2 <- SMALL THEN D2 :» SMALL; 
XI :" X2 *  FX :* FM * 
IF SF1 <'FX THEN BEGIN FX := SF1;  XI :» SXi END; 
COMMENT:  UPDATE X FOR LINEAR SEARCH BUT NOT FOR PARABOLIC 

PARABOLIC SEARCH; 
IF J > 0 THEN FOR I :« 1 UNTIL N DO X(l) := X(l) + X1*V(I/J) 
END MIN; 

PROCEDURE QUAD; 
BEGIN COMMENT:  LOOKS FOR THE MINIMUM ALONG A CURVE 

DEFINED BY QO, Ql AND X; 
LONG REAL L, S; 
S :- FX;  FX :- QF1;  QF1 :- S;  QD1 :» 0; 
FOR I :- 1 UNTIL N DO 
BEGIN S :» X(l);  X(l) :» L :» Ql(l);  Ql(l) := S; 
QD1 :- QD1 ♦ (S - L)**2 
END; 

L :- QD1 :- LONGSQRT(QDl);  S :« 0; 
IF (QDO > 0) AND (QD1 > 0) AND (NL >« f5*N*N)) THEN 
BEGIN MIN (0, 2, S,   I,   QF1/ TRUE); 
QA :■ L*(L - QD1)/(QD0*(QD0 ♦ QDD); 
QB :» (L ♦ QD0)*(QD1 - L)/(QD0*QD1); 
QC :- L*(L ♦ QD0)/(QD1*(QDC + QDD) 
END 

l-LSE BEGIN FX :- QF1;  QA :» QB :» 0; QC :« 1 END; 
400 !- QD1;  FOR I :- 1 UNTIL N DO 
BEGIN S :« Q0(l);  Q0(l) :« X(l); 
X(l) :- QA*S ♦ QB*X(I) ♦ QC*Q1(I) 
END 

END QUAD; 

BOOLEAN ILLC; 
INTEGER NL/ NF/ KL, KT, KTM; 
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LONG  REAL  S,   SI,   DU,   DhUU,   FX,   Fl,   LDS,   LDT/   SF,   DF, 
QF1,   QDO^   QD1,   QA,   QB/   QC, 
M2,   Mk,   SMALL,   VSMALL,   LARGE,   VLAR6E,   SCBD,   LDFAC,   T2; 
LONG  REAL ARRAY D,   Y,   1,   QO,   Ql   (1::N); 
LONG  REAL ARRAY V   (1::N,   1::N); 

COMMENT:      INITIALIZATION; 
COMMENT:     MACHINE  DEPENDENT  NUMBERS; 
SMALL   :-  MACHEPS**2;     VSMALL 
LARGE   :-   1L/SMALL; VLARGE 
M2   :»  LONGSQRT(MACHEPS);     MU 

COMMENT:     HEURISTIC  NUMBERS 

SMALL**2; 
1L/VSMALL; 
LONGSQRT(M2); 

IF AXES MAY BE BADLY SCALED (WHICH IS TO BE AVOIDED IF 
POSSIBLE; THEN SET SCBD :- 10, OTHERWISE 1. 

IF THE PROBLEM IS KNOWN TO BE ILLCONDITIONED SET 
ILLC :« TRUE, OTHERWISE FALSE. 
KTM+1 IS THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT BEFORE 

THE ALGORITHM TERMINATES (SEE SECTION 5).   KTM • »♦ IS VERY | 
CAUTIOUS:  USUALLY KTM - 1 IS SATISFACTORY; | 

SCBD :- 1;  ILLC :- FALSE;  KTM :- 1; 

LDFAC :• IF ILLC THEN 0.1 ELSE 0.01; 
KT :- NL :- 0;  NF :« 1;  QF1 :- FX :» F(X,N); 
T :- T2 :- SMALL ♦ ABS(T);  DMIN :- SMALL; 
IF H < (100*T) THEN H :- 100*T;  LOT :- H; 
FOR I :- 1 UNTIL N DO FOR J :» 1 UNTIL N DO 
V(I,J) :- IF I - J THEN 1L ELSE OL; 
D(l)   :-  QDO  :-  0;     FOR   I   :-  1 UNTIL N  DO QKI)   :- X(l); 
PRINT; 

COMMENT:     MAIN  LOOP; 
LO:     SF   s- D(l);     D(l)   :-  S   :-  0; 
COMMENT:     MINIMIZE ALONG  FIRST DIRECTION; 
MIN   (1,   2,   D(l),   S,   FX,   FALSE); 
IF S <• 0 THEN FOR I :- 1 UNTIL N DO 7(1,1) :* -V(M); 
IF (SF <» (0.9*D(1))) OR ((0.9*SF) >« D(l)) THEN 
FOR I :- 2 UNTIL N DO D(l) := 0; 
FOR K :- 2 UNTIL N DC 

BEGIN FOR I :• 1 UNTIL N DO Y(l) :- X(lJ;  SF :- FX; 
ILLC :- ILLC OR (KT > 0); 
LI:  KL :- K;  OF :- 0;  IF ILLC THEN 
BEGIN COMMENT: RANDOM STEP TO GET OFF RESOLUTION VALLEY; 
FOR I :- 1 UNTIL N DO 
BEGIN S :- Z(l) :- (0.1*LDT ♦ T2*10**KT)*(RANÜOM-0.5L); 
COMMENT:  PRAXIS ASSUMES THAT RANDOM RETURNS A RANDOM 

NUMBER UNIFORMLY DISTRIBUTED IN (0, 1) AND 
THAT ANY INITIALIZATION OF THE RANDOM NUMBER 
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mm 

COMMENT:  TRY QUADRATIC EXTRAPOLATION IN CASE WE ARE STUCK 
IN A CURVED VALLEY; 

QUAD; 
DN ;» 0;  FOR I :» 1 UNTIL N DO 

BEGIN D(l) :« l/LONGSQRT(D(i}); 1 

IF DN < D(l) THEN DN :- D(l) 
END; 

IF PRIN > 3 THEN MATPRINT ("NEW DIRECTIONS", V, N, N); 
FOR J :- 1 UNTIL N DO 

BEGIN S :- D(J)/DN; 
FOR I :» 1 UNTIL N DO VCM) :» S*V(I/J) 
END; 

IF SCBD > 1 THEN 
BEGIN COMMENT:  SCALE AXES TO TRY TO REDUCE CONDITION 

NUMBER; 
S :- VLARGE;  FOR I := 1 UNTIL N DO 

BEGIN SL :- 0;  FOR J :» 1 UNTIL N DO SL := SL+V(I/J)**2; 
Z(l ) :- LONGSQRT(SL); 
IF Z(l) < Ml» THEN Z(l) :« Hk;     IF S > Z(l) THEN S :« Z(l) 
END; 

FOR I :- 1 UNTIL N DO 
BEGIN SL :» S/Z(l);  Z(l) :- 1/SL;  IF Z(l) > SCBD THEN 

BEGIN SL :- 1/SCBD;  Z(l) :- SCBD 
END; 

FOR J :- 1 UNTIL N DO Vd^J) :- SL*V(I/J) 
END 

END; 
COMMENT:  TRANSPOSE V FOR MINF IT; 
FOR I :- 2 UNTIL N DO FOR J :- 1 UNTIL I - 1 DO 

BEGIN S :• Vd^d);  Vd^J) :« VCJ.I);  V(J#I) :- S END; 
COMMENT:  FIND THE SINGULAR VALUE DECOMPOSITION OF V.  THIS 

GIVES THE EIGENVALUES AND PRINCIPAL AXES OF THE 
APPROXIMATING QUADRATIC FORM WITHOUT SQUARING THE 
CONDITION NUMBER; 

MINFIT (N# MACHEPS, VSMALL, V, D); 
IF SCBD > 1 THEN 
BEGIN COMMENT:  UNSCALING;  FOR I :■ 1 UNTIL N DO 

BEGIN S :«• Z(l); 
FOR J :- 1 UNTIL N DO VO.J) :- S^VCUJ) 
END; 

FOR I :- 1 UNTIL N DO 
BEGIN S :- 0;  FOR J :- 1 UNTIL N DO S :« S ♦ V(J/I)**2; 
S :- LONGSQRT(S);  D(l) :» S*D(I);  S :- 1/S; 
FOR J :- 1 UNTIL N DO V(J/I) :- S^VCJ,I ) 
END 

END; 
FOR I :- 1 UNTIL N DO 

BEGIN D(l) :- IF (DN*D(I)) > LARGE THEN VSMALL ELSE 
IF (DN*D(I)) < SMALL THEN VLARGE ELSE (DN*D(I))**(-2) 
END; 

COMMENT:  SORT NEW EIGENVALUES AND EIGENVECTORS; 
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SORT; 
DMIN :» D(N);  IF DMIN < SMALL THEN DMIN :» SMALL; 
ILLC := (M2*D(1)) > DMIN; 
IF (PRIN > 1) AND (SCBD > 1) THEN 
VECPRINT ("SCALE FACTORS^ 1,  N); 
IF PRIN > 1 THEN VECPRINT ("EIGENVAIUES OF A", D, N); 
IF PRIN > 3 THEN MATPRINT ("EIGENVECTORS OF A"/ V, N, N); 
COMMENT:  GO BACK TO MAIN LOOP; 
GO TO LO; 
L2:  IF PRIN > 0 THEN VECPRINT ("X IS"/ X/ N); 
FX 
END PRAXIS; 

COMMENT: RANDOM NUMBER GENERATOR 
*********************** 

PROCEDURE RANDOM RETURNS A LONG REAL RANDOM NUMBER UNIFORMLY 
DISTRIBUTED IN (0,1) (INCLUDING 0 BUT NOT 1). 

RANINIT(R) WITH R ANY INTEGER MUST BE CALLED FOR 
INITIALIZATION BEFORE THE FIRST CALL TO RANDOM, AND THE 
DECLARATIONS OF RANI, RAN2 AND RAN3 MUST BE GLOBAL. 

THE ALGORITHM RETURNS X(N)/2**56, WHERE 
X(N) » X(N-l) ♦ X(N-127)  (MOD 2**56). 

SINCE 1 ♦ X + X**127 IS PRIMITIVE (MOD 2), THE PERIOD IS AT 
LEAST 2**127 - 3 > 10**38.   SEE KNUTH (1969), PP. 26, 3U, U6U. 

X(N) IS STORED IN A LONG REAL WORD AS 
RAN3 - X(N)/2**56 - 1/2, AND ALL FLOATING POINT ARITHMETIC 
IS EXACT; 

LONG REAL RANI;  INTEGER RAN2;  LONG REAL ARRAY RAN3 (0::126); 

PROCEDURE 
BEGIN R 
RAN2 :« 

BEGIN 
FOR I : 

BEGIN 
RANI 

RANINIT (INTEGER VALUE R); 
:- ABS(R) REM 8190 ♦ 1; 
127; WHILE RAN2 > 0 DO 
RAN2 :- RAN2 - 1;  RANI 
:- 1 UNTIL 7 DO 

R :- (1756*R) REM 8191; 
- (RANI ♦ (R DIV 32))*(l/256); 

« -2L**55; 

END; 
RAN3 (RAN2) 
END 

END RANINIT; 

RANI 

LONG REAL PROCEDURE RANDOM; 
BEGIN RAN2 :« IF RAN2 - 0 THEN 126 ELSE RAN2 - 1; 
RANI :- RANI ♦ RAN3 (RAN2); 
RAN3 (RAN2) :- RANI :« IF RANI < OL THEN RANI ♦ 0.5L 

ELSE RANI - 0.5L; 
RANI ♦ 0.5L 
END RANDOM; 
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COMMENT:     TEST  FUNCTIONS 
«A************; < 

I 

LONG  REAL  PROCEDURE   ROS   (LONG   REAL  ARRAY  X(*);   INTEGER  VALUE  N); 
COMMENT:     SEE  ROSENBROCK  (1960); 
100L*((X(2)   -  X(l)**2)**2)   ♦   (1L  -   X(l))**2; 

LONG  REAL   PROCEDURE   SING(L0NG   REAL  ARRAY  X(*);INTEGER  VALUE  N); j 
COMMENT:     SEE  POWELL  (1962); 
(X(l)   ♦   10L*X(2))**2  ♦   5L*(X(3)-X(t»))**2  ♦   (X( 2)-2L*X( 5) )**«» 
♦  10L*(X(1)   -  XU))**«»; 

LONG  REAL   PROCEDURE   HELIX(LONG  REAL  ARRAY  X(*);INTEGER  VALUE  N); 
COMMENT:     SEE  FLETCHER &  POWELL   (1^63); 
BEGIN  LONG  REAL  R,   T; 
R  :=  LONGSQRT   (X(l)**2  ♦  X(2)**2); 
T  :»   IF  X(l)   »  0   THEN  0.25L  ELSE   LONGARCTAN  (X(2)/X(l))/(2L* 

5.1U159265358979L); 
IF  X(l)   <   0  THEN  T   := T +   0.5L; 
100L*((X(3)   -   10L*T)**2 ♦   (R  -   1L)**2)   + X(3)**2 
END HELIX; 

LONG  RCAL  PROCEDURE   CUBE(L0NG   REAL  ARRAY  X(*);INTEGER  VALUE  N); 
COMMENT:     SEE  LEON   (1966); 
100L*(X(2)   -  X(l)**3)**2 ♦   (1L  -  X(l))**2; 

LONG REAL  PROCEDURE   BEALEUONG  REAL ARRAY X(*); INTEGER  VALUE  N); 
COMMENT:     SEE  BEALE   (1958); 
(1.5L - X(1)*(1L   -  X(2)))**2  ♦ 
(2.25L -  X(1)*(1L  -  X(2)**2))**2 ♦ 
(2.625L -  X(1)*(1L  - X(2)**3))**2; 

LONG REAL  PROCEDURE  WATSON  (LONG  REAL  ARRAY X(*); 
INTEGER VALUE  N); 
COMMENT:     SEE  KOWALIK & OSBORNE   (1968); 
BEGIN  LONG REAL  S,   T,  U,  Y; 
S  :» X(l)**2  ♦   (X(2)  - X(l)**2  -  1L)**2; 
FOR   I   :>  2  UNTIL   30  DO 

BEGIN Y   :-  (I   -   l)/29;     T   :»  X(N); 
FOR J   :-  N  -  1   STEP -1 UNTIL  1  DO   T   :« X(d)   ♦  Y*T; 
U  :■  (N  -  1)*X(N); 
FOR J   :« N  -  1   STEP -1 UNTIL  2  DO  U   :=   (J  -   1)*X(J)   ♦   Y*U; 
S   :- S  ♦   (U  -  T*T -  1L)**2 
END; 

S 
END WATSON; 

LONG REAL  PROCEDURE   CHEBYQUAD   (LONG   PEAL ARRAY X(*); 
INTEGER VALUE  H]; 
COMMENT:     SEE  FLETCHER  (1965); 
BEGIN 
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LONG REAL  f,   DELTA,   TPLUS; 
BOOLEAN EVEN; 
LONG REAL ARRAY Y/   Tl,   TMINUS   (1::N); 

DELTA  :- OL; 
FOR J   :» 1  UNTIL N DO 

BEGIN Y(J)   i' 2L*X(J)  -  1L; 
DELTA  :« DELTA ♦  Y(J); 
TKJ)   :- Y(J);     TMINUS(J)   :=  1L 
END; 

F   :• DELTA**2;     EVEN  s« FALSE; 
FOR  I   :- 2 UNTIL N DO 

BEGIN EVEN   :- "EVEN;    DELTA   :»  OL; 
FOR J   :-  1  UNTIL  N DO 

BEGIN TPLUS   :-   2L*Y(J)*TI (J)   -  TMINUS(J); 
DELTA   ;= DELTA  •»■  TPLUS; 
TMINUS(J)   :» TKJ); 
TI(J)   :- TPLUS 
END; 

DELTA   :-  DELTA/N   -   (IF  EVEN THEN  1/(1  -   1*1)   ELSE   0); 
F  :» F ♦  DELTA**2 
END; 

F 
END CHEBYQUAD; 

LONG  REAL PROCfDURE  POWELL  (LONG REAL ARRAY X(*); 
INTEGER VALUE N); 
COMMENT;     SEE  POWELL   (I960; 
3L  - 1L/(1L ♦   (X(l)   -  X(2))**2)   - 
LONGSIN(0.5L*3.1U159265358979L*X(2)*  X(3))-(IF X(2)   «  0  THEN 
OL  ELSE  LONGEXP(-((X(l)*X(3))/X(2)   -   2L)**2)); 

LONG  REAL PROCEDURE WOODKONG  REAL ARRAY  X(*); INTEGER  VALUE  N); 
COMMENT:     SEE MCCORMICK & PEARSON   (1969)   OR COIVILLE   (1968); 
100L*(X(2)   -  X(l)**2)**2 ♦   (1L  -  X(l))**2  ♦  90L*(XU)   - 
XO)**2)**2  ♦   (1L  -   X(3))**2  ♦  10.1L*((X(2)  -   1L)**2  ■»•   (X(k) 
-  1L)**2)   ♦   19.8L*(X(2)   -  1L)*(X('*)   -   ID; 

LONG  REAL PROCEDURE HILBERT (LONG REAL ARRAY X(*); 
INTEGER VALUE N); 
COMMENT:     COMPUTES XT.A.X, WHERE A   IS   THE N BY N HILBERT 

MATRIX/   SEE GREGORY & KARNEY   (1969),   PP.   33,   66; 
BEGIN LONG REAL S,   T; 
S   :« OL;     FOR  I   :-  1  UNTIL N DO 

BEGIN T  :«  OL;     FOR J  :» 1 UNTIL N DO 
T  :- T ♦ X(J)/(I   +  J  - 1); 
S   :» S ♦  T*X(I) 
END; 

S 
END  HILBERT; 
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LONG REAL PROCEDURE TRIDIAG (LONG REAL ARRAY X(*); 
INTEGER VALUE N); 
COMMENT:  COMPUTES XT.A.X - 2E1T.X, WHERE N > 1/ 

(1-1 0 0 ... 0) 
(-1 2-10 ... 0) 
(0-1  2-1 ... 0) 

A  -    ( ) 
( 0 ... -1 2 -1) 
( 0  ...   0 -1  2), 

AND E1T - (1, 0, ... , 0). 

SEE GREGORY &  KARNEY   (1969),   PP.   kl,   7k; 
BEGIN  LONG  REAL S; 
S   :-  X(1)*(X(1)  -  X(2)); 
FOR   I   :»   2   UNTIL N  -   1  DO 
S   ;»  S  ♦  X(I)*((X(I)  -  X(l   -   1))  +   (X(l)   -  X(l   ♦   1))); 
S  +  X(N)*(2*X(N)  -  X(N -  D)   -   2*X(1) 
END  TRIDIAG; 

LONG REAL PROCEDURE BOX (LONG REAL ARRAY X(*);INTEGER VALUE N); 
COMMENT:  SEE BOX (1966) OR BROWN & DENNIS (1970); 
BEGIN LONG REAL P, S; , 
S :» 0;  FOR I :- 1 UNTIL 10 DO 

BEGIN P :» -1/10; 
S :» S ♦ ((L0NGEXP(P*X(1)) - (IF (P*X(2)) < (-U0) THEN 0 

ELSE L0N6EXP(P*X(2)))) - 
X(3)*(L0NGEXP(P) - LONGEXP(10*P)))**2 

END; 
S 
END BOX; 

COMMENT:     GENERAL TESTING  PROCEDURE 

PROCEDURE   TEST   (STRING   (80)   VALUE   S;     LONG   REAL   VALUE  H; 
LONG  REAL  PROCEDURE  F;     INTEGER  VALUE N); 

BEGIN   LONG   REAL  FMIN;     INTEGER  TIM; 
WRITEC  ");     WRITEC   ");     WRITE(S); 
WRITEC'N   «",   N,   " H  «M

/   ROUNDTOREAL(H));     WRITEC  "); 
COMMENT:      INITIALIZE  RANDOM  NUMBER GENERATOR;     RANINITU); 
COMMENT:     TIME(2)   RETURNS   CLOCK  TIME   IN  UNITS  OF   26 MICROSEC; 
TIM   :»  TIME(2); 
FMIN   :-  PRAXIS  (I'-S,   16**(-15),   H,   N,   1,   X,   F,   RANDOM); 
WRITE   ("TIME   (MILLISEC)   »,,/   ROUND( (TIME( 2)   -   Tl M)/38.l»)); 
WRITEC  ") 
END TEST; 

COf-IMENT:     TESTING  PROGRAM 
««ft************; 
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LONG REAL   FMIN,   LAM; 
COMMENT:     INCREASE  DIMENSIONS  FOR M   >   20; 
LONG  REAL ARRAY  X(l::20)* 
COMMENT:      INTFIELDSIZE  CONTROLS   THE   OUTPUT FORMAT OF   INTEGERS; 
INTFIELDSIZE   :-  7; 

X(l)   :- -1.2L;     X(2)   :- 1L;     FMIN   :=  0; 
TEST  ("ROSENBROCK'S  FUNCTION WITH A   PARABOLIC  VALLEY'M^OS^); 

X(l)   :■ X{2)   :-  3; 
TEST  ("ROSENBROCK'S  FUNCTION ",   5,   ROS,   2); 

X(l) :- X(2) :« 8; 
TEST ("ROSENBROCK'S FUNCTION", 12,   ROS,   2); 

X(l) :- -1; X(2) :- X(3) :- 0; 
TEST ("HELIX", 1, HELIX, 3); 

X(l) :- -1.2L; X(2) :» -1; 
TEST ("CUBE", 1, CUBE, 2); 

X(l) :- X(2) :- 0.1L; 
TEST ("BEALE", 1, BEALE, 2); 

X(l) :- 0; X(2) :- 1; X(3) :- 2; 
TEST ("POWELL", 1, POWELL, 3); 

i 

FMIN :• 0; Xtl) :« 0; X(2) 
TEST ("BOX", 20, BOX, 3); 

- 10;  X(3) :- 20; 

X(l) :- 3L; X(2) :- -1L; X(3) :» OL; XU) :« 1L; 
TEST ("POWELLS FUNCTION WITH A SINGULAR JACOBIAN",l,SI NG,i»); 

FMIN :■ 0; X(l) :- X(3) i- -3;  X(2) 
TEST ("WOOD", 10., WOOD, k); 

X(l») -1; 

FOR N :- 2 STEP 2  UNTIL 8 DO 
BEGIN FOR I :• 1 UNTIL N DO X(l) :- l/(N + 1); 
FMIN :- IF N < 8 THEN OL ELSE 0.0035168737256779L; 
TEST ("CHEBYQUAD", 0.1, CHEBYQUAD, N) 
END; 

FOR N :- 6 STEP 3 UNTIL 9 DO 
BEGIN FOR I :■ 1 UNTIL N DO X(l) :« 0; 
FMIN :- IF N - 6 THEN 0.002287670O5355L ELSE 

IF N - 9 THEN 1.399760138098,-6L ELSE OL; 
TEST ("WATSON", 1, WATSON, N) 
END; 

FOR N s- I», 6, 8, 10, 12, 16, 20 DO 
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BEGIN FOR I :> 1 UNTIL N DO X(l) 
TEST ("TRIDIAG", 2*^ TRIDIAG^ N) 
END; 

OL;  FMIN -N; 

FMIN :■ 0;  FOR N :- 2 STEP 2 UNTIL 12 DO 
BEGIN FOR I :- 1 UNTIL N DO X(l) !- 1; 
TEST ("HILBERT", 10, HILBERT, M) 
END 

END. 
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