
ALGORITHMS FOR FINDING ZEROS AND EXTREMA OF FUNCTIONS
WITHOUT CALCÜLAT TNG DER I VAT i VES

iN»

IQ BY

CQ RICHARD P. BRENT

Q

STAN-CS-71-198
FEBRUARY, 1971

DISTRIBUTION STATEMEI

Apprcred ior public rel©
Distribution Unlimited

COMPUTER SCIENC: DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY Y D D
 - -^r' - JMHl^EL

I (. j t ,J L i L.r [.j""'i.j

Unclassified
Scciinlv Classification

DOCUMENT CONTROL DATA -R&D
(Srcarny cl«t*iftrMtton ot Itllo, body of nbmrort n,\d indexing Annotation must be mnfted when the overmll report I» ctmeeifimd)

i oniüiNAViNC Ac Ti vi Tv fCorporar« AurAor;

otanford University
2». BE PORT SECURITY CLASSIFICATION

Unclassified
2b. CROUP

3 REPORT TITLE

ALGORITHMS FOR FINDING ZEROS AND EXTREMA OF FUNCTIONS WITHOUT CALCULATING DERIVATIVES

4 DESCRIPTIVE NOTES (Typ» ot rmpott and incluaive date»)

9 AU THOtHSi (Firtt nmme, middtm initiml, Immt nmma)

Richard P. Brent

6 «EPORT DATE

Febnuiry 1971
U. CON TRAG T OR GRANT NO

6. PROJECT NO. ONR - N-OOOll|-67-A-0112-0029

NR 0hh-2U.

7t. TOTAL NO. OF PASES

513
76. NO. OF REFS

•r. ORIGINATOR'S REPORT NUMSEtiSt

STAN-CS-7I-I98

Ct>. OTHER REPORT NOISI (Any other number» (hat mey b» meeltned
thie report)

10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

II SUPPLEMENTAMY NOTES

\

L
12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

«►•STRACT

-iTheorfims are given concerning the order (i.e., rate) of convergence of a succes-
sive interpolation process for finding simple zeros of a function or its derivatives,
using only function evaluations. Special cases include the successive linear inter-
polation process for finding zeros, and a parabolic interpolation process for finding
turning points. Results on interpolation and finite differences include weakening the
hypotheses of a theorem of Ralston on the derivative of the error in Lagrangian inter-
polation.

The theoretical results are applied to given algorithms for finding zeros or local
minima of functions of one variable, in the presence of rounding errors. The algorithm
are guaranteed to converge nearly as fast as would bisection or Fibonacci search, and
in most practical cases convergence is s\^e£lin«i»ry-and much faster than for bisection
or Fibonacci search. \ X^L... —-—"""'

The problem of findinf a global minimum of a function f , of one variable, is
investigated. We give a nearly optimal algorithm which is applicable if an upper bound
on f is known. A generalization, useful in practice if n < 3 , is given for
functions of n variables. The effect of rounding errors in these algorithms can be
accounted for.

Finally, we present a modification of Powell's algorithm for finding a local
minimum of a function of several variables without calculating derivatives. The modi-
fication ensures that the search directions can not become linearly dependent, and
numerical examples suggest that the algorithm compares favorably with other methods
which do not require derivatives.

A bibliography on unconstrained minimization is given, and ALGOL implementacions

DD 'o** 1473
I NOV «S I "* / W

S/N 0101.807.6801

(PAGE I)
Unclassified

Security Clastification

of all the above algorithms are included.

C _ J"" f LJ ^ &

Unclassified
—" Sacurity Classification

KCY MONO*

Interpolation, global minimization,
unconstrained «linimization, order of
convergence, unimodality, superlinear
convergence

DD ,T.A473 (^ao
(PAGE 2) Unclassified

Steurity Ciassincation

w». '.**i&

Preface

The problem of finding numerical approximations to the zeros and

extrema of functions, using hand computation, has a long history. In

the last few years, considerable progress has been made in the development

of algorithms suitable for use on a digital computer. The aim of this

work is to suggest improvements to some of these algorithms, extend the

mathematical theory behind them, and describe some new algorithms for

approximating local and global minima. The unifying thread Iv that all

the algorithms considered depend entirely on sequential function

evaluations: no evaluations of derivatives are required. Such algorithms

are very useful if derivatives are difficult to evaluate, and this is

often true in practical problems.

I am greatly indebted to Professors G. E. Forsythe and G. H. Golub

for their advice and encouragement during my stay at Stanford, and for

their guidance of my research. Thanks are due to them and to the other

members of my reading committee. Professors J. G. Herriot, F. W. Dorr

and C. B. Moler, for their careful reading of various drafts, and for

many helpful suggestions.

Several people have contributed to this work. I would particularly

like to thank Dr. T. J. Rivlin for suggesting how to find bounds on

polyncmials (Chapter 6), and Dr. J. H. Wilkinson for introducing me to

Dekker's algorithm (Chapter h). Also, thanks to Professor F. Dorr and

Dr. I. Sobel for their help in testing some of the algorithms, to

Michael Malcolm, Michael Saunders and Alan George for many interesting

iii

■ i ii

'im*l£
•Ä?; /.r--.:

IV

:1

discussions, and to Phyllis Winkler for her fast and accurate typing.

I am grateful for the influence of ray teachers V. Grenness, H. Smith,

Drs. D. Faulkner and E. Strzelecki, Professors G. Preston, J. Miller,

Z. Janko, R. Floyd, D. Knuth, and M. Schiffer, and those mentioned above.

Deepest thanks to my wife Erin for her careful proof-reading,

and help in obtaining some of the numerical results, testing the

algorithms, plotting graphs, and in many other ways.

Finally, I wish to thank the Commonwealth Scientific and Industrial

Research Organization, Australia, for its generous support during my

stay at Stanford.

This work is dedicated to Oscar and Nancy, sine quis non.

^HrfHAi

Table of Contents

Chapter Page

1. Introduction and Summary

1.1 Introduction

1.2 Summary

2. Some Useful Results on Taylor Series, Divided

Differences, and Lagrangian Interpolation

2.1 Introduction

2.2 Notation and definitions

2.3 Truncated Taylor series

2,h Lagranginn interpolation

2.5 Divided differences

2.6 Differentiating the error

3. The Use of Successive Interpolation for Finding Simple

Zeros of a Function and its Derivatives

3.1 Int r oduct ion

3.2 The definition of order

3.3 Convergence to a zero

3.^- Superlinear convergence

3.5 Strict superlinear convergence

3.6 The exact order of convergence

3.7 Stronger results for q = 1 and 2

3.8 Accelerating convergence

3.9 Some numerical examples

3.10 Summary

h. An Algorithm with Guaranteed Convergence for Finding

a Zero of a Function

k.l Introduction

k.2 The algorithm

h,3 Convergence properties

h.k Practical tests

4.5 Conclusion

h.6 ALGrOL 60 procedures

1

2

6

15
16

17

19
21

22

25

32

33

36

38

1+1

^5

50

58

68

7^

79

60

61

82

90

93

97

99

Chapter Page

An Algorithm with Guaranteed Convergence for Finding

a Minimum of a Function of One Variable lOh

5.1 Introduction 105

5.2 Fundamental limitations because of rounding errors 108

5.3 Unimodality and 5-unimodality 111

5.U An algorithm analogous to Dekker's algorithm 125

5.5 Convergence properties 129

5.6 Practical tests 131

5.7 Conclusion 13^

5.8 An ALGOL 60 procedure 135

Global Minimization Given an Upper Bound on the

Second Derivative

6.1 Int roduct ion

6.2 The basic theorems

6.3 An algorithm for global minimization

6.1^ The rate of convergence in some special cases

6.5 A lower bound on the number of function

evaluations required

6.6 Practical tests

6.7 Seme extensions and generalizations

6.6 An algorithm for global minimization of a

function of several variables

6.9 Summary and conclusions

6.10 ALGOL 60 procedures

139

lltO

1^5

11+9

167

173

178

180

18k

192

193

f
I

7« A New Algorithm for Minimizing a Function of Several

Variables Without Calculating Derivatives

7^1 Introduction and survey of the literature

7.2 The effect of rounding errors

7.3 Powells algorithm

7.k The main modification

7.5 The "resolution ridge" problem

7.6 Some further details

199

200

210

213

219

227

232

VI

^ I ^ ^ I f I 1 I

1 ■ -- 1^^«^

Chapter

7-7

7-8

7-9

Numerical resul.ts and cauparison with other

methods

Conclusion

An AIOOL W procedure and test program

8. Bibliography

vii

236

2to
261

278

List of Tables

Page

5.5.1 The constants ß and 7 for

q = 1(1)10 to 12D 1^7

3.8.1 The constants ß» for q = 1(1)10 to 12D 71

3.9.1 Numerical results for q = 1, 2, 3 and h 77

k.h.l The number of function evaluations for

convergence with procedure zero2 95

k,h,2 Comparison of Dekker's procedure with procedure zero 96

5.6.I Coraparieon of procedures localmin and zero 133

6.6.1 Numerical results for procedure glcmin 179

6,8.1 Numerical results for procedure glominSd 190

7.7.1 Results for various test functions 239

7.7.2 Rosenbrock 2l+8

7.7.3 Helix 2^9

7.7^ Singular 250

7.7.5 Chebyquad 251

viii

_- —J u J

List of Illustrations

5.2.1 The effect of rounding errors 109

5.5.1 Unimodal functions 112

5A.1 The analogy between algorithms for finding zeros

and extrema 12k

5.J+.2 A possihle configuration 126

5.^.5 A typical situation after termination 129

6.5.1 Thy points a- and at 152

6.1^.1 A straight line, f(x) = k(>.-a)+t (for N = 6) 170

6.5.I The points x , ...,x^ (for N = 10) 17^

7.5.1 A resolution ridge 228

7.7.1 Rosenbrock 255

7.7.2 Helix 25^

7.7.5 Singular (Powell's function of four variables) 255

7.7A Chebyquad, n = 2 256

7.7.5 Chebyquad, n = U 257

7.7.6 CheLiyquad, n = 6 258

7.7.7 Chebjquad, n = 8 259

ix

t \ \ \ »1

^^»

Chapter 1.

Introduction and Summary

i i i

*-^^/

1.1

1. Introduction

Consider the problem of finding an approximate zero or minimum of

a function of one real variable, using limited-precision arithmetic on a

sequential digital computer. The function f may not be differentiable,

or the derivative f* may be difficult to compute, so a method which

uses only computed values of f is desirable. Since an evaluation of

f may be very expensive in terms of computer time, a good method should

guarantee to find a correct solution, to within some prescribed tolerance,

using only,a small number of function evaluations. Hence, we study

algorithms which depend on evaluating f at a small number of points,

and for which certain desirable properties are guaranteed, even in the

presence of rounding errors.

Slow, safe algorithms are seldom preferred in practice to fast

algorithms which may occasionally fail. Thus, we want algorithms which

are guaranteed to succeed in a reasonable time even for the most "difficult"

functions, yet are as fast as commonly used algorithms for "easy"

functions. For example, bisection is a safe method for finding a zero

of a function which changes sign in a given interval, but from our point

of view it is not an acceptable method, because it is just as slow for

any function, no matter how well behaved, as it is in the worst possible

case (ignoring the possibility that an exact zero may occasionally be

found by chance). As a contrasting example, consider the method of

successive linear interpolation, which converges superlinearly to a

simple zero of a C function, provided that the initial approximation

is good and rounding errors are unimportant. This method is not

acceptable either, for, in practice, we may have no way of knowing in

[.i'+joj,^'*' - ■" * V -

1.1

advance if the zero is simple, if the initial approximation is sufficiently-

good to ensure convergence, or what the effect of rounding errors will be.

In Chapter U we describe an algorithm which, by combining some of

the desirable features of bisection and successive linear interpolation,

does come close to satisfying our requirements: it is guaranteed to

converge (i.e., halt) after a reasonably small number of function

evaluations, and the rate of convergence for well-behaved functions

is so fast that a lees reliable algorithm is unlikely to be preferred

on grounds of speed.

An antilogous algorithm, which finds a local minimum of a function

of one variable by a combination of golden section search and successive

parabolic interpolation, is described in Chapter 5. This algorithm

fails to completely satisfy one of our requirements: in certain

applications where repeated one-dimensional minimizations are required,

and where accuracy is not very important, a faster (though less reliable)

method is preferable. One such application, finding local minima of

functions of several variables without calculating derivatives, is

discussed in Chapter 7« Note that, wherever we consider minima, we

could equally well consider maxima.

Most algorithms for minimizing a nonlinear function of one or more

variables find, at best, a local minimum. For a function with several

local minima, there is no guarantee that the local minimum found is the

global (i.e., true or lowest) minimum. Since it is the global minimum

which is of interest in most applications, this is a serious practical

disadvantage of most minimization algorithms, and our algorithm given

in Chapter 5 is no exception. The usual remedy is to try several

iii« mi M^,^,—^^^M^—ta—^a^it^M—^^—M^^^M^M^MJuaMMi

1.1

different starting points and, perhaps, vary some of the parameters of

the minimization procedure, in the hope that the lowest local minimum

found is the global minimum. This approach is inefficient, as the same

local minimum may be found several times, and it is also unreliable, for,

no matter how many starting points are tried, it is impossible to be

quite sure that the global minimum has been found.

In Chapter 6 we discuss the problem of finding the global minimum

to within a prescribed tolerance. It is possible to give an algorithm

for solving this problem, provided that a little a priori information

about the function to be minimized is known. We describe an efficient

algorithm, applicable if an upper bound on f" is known, and we show

how this algorithm can be used recursively to find the global minimum

of a function of several variables. Unfortunately, because the amount

of computation involved increases exponentially with the uomber of

variables, this is practically useful only for functions of less than

four variables. For functions of more variables, we still have to

resort to the unreliable "trial and error" method, unless special

information about the function to be minimized is available.

Thus, we are led to consider practical methods for finding local

(unconstrained) minima of functions of several, variables. As before, we

consider methods which depend on evaluating the function at a small

number of points. Unfortunately, without imposing very strict conditions

on the functions to be minimized, it is not possible to guarantee that

an n-dimensional minimization algorithm produces results which are correct

to wixhin some prescribed tolerance, or that the effect of rounding errors

has completely been taken into account. We have to be satisfied with

I w \
J-M.

1.1

algorithms which nearly always give correct results for the functions

likely to arise in practical applications.

As suggested by the length of our bibliography, there has recently

been considerable interest in the unconstrained minimization problem.

Thus, we can hardly expect to find a good method which is completely

unrelated to the known ones. In Chapter 7 we take one of the better

methods which does not use derivatives, that of Powell (196^), and modify

it to try to overcome some of the difficulties observed in

the literature. Numerical tests suggest that our proposed method is

faster than Powell's oiJ.ginal method, and just as reliable. It also

compares quite well with a different method proposed by Stewart (I967),

at least for functions of less than ten variables. (We have no numerical

results for non-quadratic functions of more than ten variables.)

ALGOL implementations of all the above algorithms are given. Most

testing was done with ALGOL W (Wirth and Hoare (1966)) on IBM 560/67 and

560/9I computers. As ALGOL W is not widely used, we give ALGOL 60

procedures (Naur (1963))^ except for the n-dimensional minimization

algorithm. FORTRAN subroutines for the one-dimensional zero-finding

and local minimization algorithms are also available.

To recapitulate, we describe algorithms, and give ALGOL procedures,

for solving the following problems efficiently, using only function (not

derivative) evaluations:

1.

2.

Finding a zero of a function of one variable if ein interval in which

the function changes sign is given;

Finding a local minimum of a function of one variable, defined on a

given interval;

■ ■! «^»_^^^,^^^^^^^^

1.2

3. Finding, to within a prescribed tolerance, the global minimum of

a function o~ one or more variables, given upper bounds on the

second derivatives;

4. Finding a local minimum of a fUnction of several variables.

For the first three algorithms, rigorous bounds on the error and the

number of function evaluations required are established, taking the

effect of rounding errors into account. Sane results concerning the

order of convergence of the first two algorithms, and preliminary

results on interpolation and divided differences, are also of interest.

· 2 • S\1JIIIl&ry

In this section we summarize the main results of the following

chapters. A more detailed discussion is given at the appropriate

places in each chapter. This SUJJI!lary is intended to serve as a guide

to the reader who is interested in sane of our results, but nat in

others. To assist such a reader, an attempt has been made to keep each

chapter as self-contained as possible.

Chapter 2

In Chapter 2 we collect sane results on Taylor_ series, Lagrangian

interpolation, and divided differences. Most of these results Ct'e needed

in Chapter 3, and the casual reader might prefer to skip Chapter 2 and

refer back to it when necessary. Sane of the results are similar to

classical ones, but instead of assuming that f has n+l continuous

6

*»•■■ mtß

1.2

derivatives, we only assume that f^ ' is Lipschitz continuous, and

the term f^ '(|) in the classical results is replaced by a number
1

bounded in absolute value by a Lipschitz constant. For example.

Lemmas 2.5.1, 2.3.2, 2.U.1, and 2.5.1 are of this nature. Since a
)
j

Lipschitz continuous inunction is differentiable almost everywhere,
i

these results are not surprising, although they have not been found in

the literature, except where references are given. (Sometimes Lipschitz

conditions are imposed on the derivatives of functions of several

variables: see, for example, Armijo (1966) and McCormick (1969).) The

proofs are mostly similar to those for the classical results.

Theorem 2.6.1 is a slight generalization of some results of

Ralston (1965, I965) on differentiating the error in Lagrangian

interpolation. It is included both for its independent interest, and

because it may be used to prove a slightly weaker form of Lemma 5.6.1

for the important case q = 2 . (A similar proof is sketched in

Kowalik and Osbome (1968).)

An interesting result of Chapter 2 is Theorem 2.6.2, which gives

an expression for the derivative of the error in Lagrangian interpolation

at the points of interpolation. A well-known weaker result is that the

conclusion of Theorem 2.6.2 holds if f has n+1 continuous derivatives,

but Theorem 2.6.2 shows that it is sufficient for f to have n

continuous derivatives.

Theoren 2.5-1, which gives an expansion of divided differences, may

be regarded as a generalization of Taylor's theorem. It is used several

times in Chapter 5: for example, see 'iheorem 5.^.1 and Lemma 5.6.1.

Theorem 2.5.I is useful for the analysis of interpolation processes

1.2

whenever the coefficients of the interpolation polynomials can conveniently

be expressed 5n terms of divided differences.

Chapter 3

In Chapter 5 we prove seme theorems which provide a theoretical

foundation for the algorithms described in Chapters h and 5« In

particular, we show when the algorithms will converge superlinearly,

and w'oat the order (i.e., rate) of convergence will be. Of course, for

these results the effect of rounding errors is ignored. The reader

whose main interest is the practical applications of our results might

omit Chapter 3, except for the numerical examples (Section 3.9) and the

summary (Section 3.10).

So that results concerning successive linear interpolation for

finding zeros (used in Chapter k), and successive parabolic interpolation

for finding turning points (used in Chapter 5), can be given together,

we consider a more general process for finding a zero of f^q~ ' , for

any fixed q > 1 . Successive linear interpolation and successive

parabolic interpolation are Just the special cases q = 1 and q - 2 .

Another case which is of some practical interest is q = 3 * for finding

inflexion points. As the proofs for general q are essentially no more

difficult than for q = 2 , most of our results are for general q .

For the applications in Chapters k and 5^ the most important

results are Theorem 3.^.1> which gives cenditions under which convergence

is superlinear, and Theorem 3.5*1* which shows when the order is at least

1.6l8... (for q = 1) or 1.32^... (for q = 2) . These numbers are

well-known, but our assumptions about the differentiability of f are

8

. (

1.2

weaker than those of previous authors, e.g., Ostrowski (I966) and

Jarratt (1967, 1968).

From a mathematical point of view, the most interesting result

of Chapter 5 is Theorem 3.7»l« The result for q = 1 is given in

Ostrowski (1966), except for our slightly weaker assumption about the

smoothness of f . For q = 2 , our result that convergence to t, with

'3) order at least 1.578« •• is possible, even if iv '(£) / 0 , appears to

be new. Jarratt (1967) and Kowalik and Osborne (1968) assume that

lim
n -*oa

I*
= 0 (2.1)

and then, from Lemma 3.6.1, the order of convergence is 1.32h...

However, even for such a simple function as

f (x) = 2x5 + x2 , (2.2)

there are starting points x , x.. and x such that (2.1) fails to

hold, and then the order may be at leas!; 1.57ß«'« • We should point

out that this exceptional case is unlikely to occur: an interesting

conjecture is that the set of starting points for which it occurs has

measure zero.

The practical conclusion to be drawn from Theorem 5.7«1 is that,

if convergence is to be accelerated, then the result of Lenuna 3.6.1

should be used. In Section 5.8 we give one of the many ways in which

this may be done. Finally, some numerical examples illustrating both the

accelerated and unaccelerated processes are given in Section 5.9«

I) 1 '. i J

■I 1 „ , ,amm^^k^^^m^^i^^tuamm

-i S-l LJ L J L .J l_,J I, J L_J i..i L_J

i

1.2

Chapter U

In Chapter h we describe an algorithm for finding a zero of a

function which changes sign in a given interval. The algorithm is

based on a combination of successive linear interpolation and bisection,

in much the same way as "Dekker's algorithm" (van Wijngaarden, Zonneveld

and Dijkstra (1965), Wilkinson (1967), Peters and Wilkinson (1969),

Dekker (1969))« Our algorithm never converges much slower than bisect3 on,

whereas Dekker's algorithm may converge extremely slowly in certain cases.

(Examples are given in Section k.2.)

It is well-known that bisection is the optimal algorithm, in a

minimax sense, for finding zeros of functions which change sign in an

interval. (We only consider sequential algorithms: see Bobbins (1952),

Wilde (196^) and Section U.^.) The motivation for both our algorithm and

Dekker's is that bisection is not optimal if the class of allowable

functions is suitably restricted. For example, it is not optimal for

convex functions (Bellman and Dreyfus (1962), Gross and Johnson (1959));

or for C functions with simple zeros.

Both our algorithm and Dekker's exhibit super linear convergence to

a simple zero of a C function, for eventually only linear interpolations

are performed, and the theorans of Chapter 3 are applicable. Thus,

convergence is usually much faster than for bisection. Our algorithm

incorporates inverse quadratic interpolation as well as linear interpolation,

so it is often slightly faster than Dekker's algorithm on well-behaved

functions (see Section k.k).

10

1 ;J%). '<¥«-.> .<«■. ■ »i>i^

1.2

Chapter 5

An algorithm for finding a local mintmum of a fUnction of one

variable is described in Chapter 5· The algorithm combines golden

section search (Bellman (1957), Kiefer (1953), Wilde (1964), Witzgall

(1969)) and successive parabolic interpolation (the case q = 2 of the

process analysed in Chapter 3), in the same way as bisection and successive

linear interpolation are canbined in the zero-finding algorithm of

Chapter 4. Convergence in a reasonable number of function evaluations

is guaranteed (see Section 5.5), and, for a c2 function with positive

curvature at the minimum, the results of Chapter 3 show that convergence

ib auperlinear, if we ignore r ounding errors and suppose that the minimum

is at an interior point of the interval. other algorithms given in the

literature either fail to have these two desirable properti es, or, when

convergence is strictly superlinear, t he order of convergence is less

than for our algorithm (see Sections 5.4 and 5.5).

I n Sect ions 5.2 and 5.3 we consider the effect of rounding errors.

Section 5.2 contains an analysis of the limitations, imposed by rounding

errors, on the attainable accuracy of any algorithm which is based

entirely on function evaluations, and this section should be studied

by the reader who intends to use the ALGOL procedure given in Section 5.8.

If f is unimodal, then our algorithm rlll find the unique minimum,

provided there are no rounding errors. To study the effect of rounding

errors, we define " o -unimodal" functions. A unimodal function is o -unimodal

f or all o ? o' , but a canp1ted approximation to a uni.J!lodal function can

not be unim~: it will be o-unimodal .for some positive o , depend:iltg

on the function and on the precision of computation. (o 0 as the

11

1.2

precision increases indefinitely.) We prove some theorems about 6-unimodal

functions, and give a bound for the error in the approximate minimum found

by our algorithm when applied to a 8-unimodal function. In this way we

can justify the use of our algorithm in the presence of rounding errors,

and account for their effect. Our motivation is rather similar to that

of Richman (I968) in developing the e-calculus, but we are not concerned

with properties that hold as e -• 0 . The reader who is not very

interested in the effect of rounding errors might prefer to skip

Section 5«5.

Chapter 6

In Chapter 6 we consider the problem of finding em approximation

to the global minimum of a function f , defined on a finite interval,

if some a priori information about f is known. This interesting problem

does not seem to have received much attention, although there have been

some empirical investigations, e.g., see Magee (i960). In Section 6.1,

we show why some a priori information is necessary, and discuss some of

the possibilities. In the remainder of the chapter we restrict our

attention to the case where an upper bound on f" is toiown.

An algorithm for global minimization of a function of one variable,

applicable when such an upper bound on the second derivative is known, is

described in Section 6.3. The basic idea of this algorithm is used by

Rivlin (1970) to find bounds on a polynomial in a given interval. We

pay particular attention to the problem of giving guaranteed bounds in

the presence of rounding errors, and the casual reader may find the

details in the last half of Section 6.3 rather indigestible.

12

/ 1 I 1 f I I 1 (1 () /) i

1.2

In Section 6.h, we try to obtain some insight into the behaviour

of our algorithra by considering some tractable special cases. Then, in

Sections 6.5 and 6.6, we show that no algorithm which uses only function

evaluations and an upper bound on f" could be much faster than our

algorithm. Finally, a generalization to functions of several variables

is given in Section 6.8. The conditions on f are much weaker than

unimodality (Newman (1965)). The generalization is not practically useful

for functions of more than three variables, and it is em open question

whether a significantly better algorithm is possible.

Chapter 7

In Chapter 7 we describe a modification of Powell^ (I96U) algorithm

for finding a local minimum of a function of several variables, without

calculating derivatives. The modification is designed to ensure

quadratic convergence, and to avoid the difficulties with Powells

criterion for accepting new search directions.

First, a brief introduction to the problem and a survey of the

recent literatureare given in Section 7.1. The effect of rounding errors

on the limiting accuracy attainable is discussed in Section 7«2. Powell's

algorithm is described in Section 7*5, and our main modification is given

in Section 7«'+' The idea of the modification (finding the principal axes

of an approximating quadratic form) is not new: for example, it is used

by Greenstadt (I967) in his quasi-Newton method. Unlike Greenstadt,

though, we do not use an explicit approximation to the Hessian matrix.

An interesting feature of our modification is that it is posible to avoid

squaring the condition number of the eigenvalue problem by using a singular

value decomposition: see Section 7«^ for the details.

13

■ 'J

t l"~| J t J L-J t^J l l""L^-i""l—I i^-J i—i

1-2

In Sections 7«5 and 7.6 we describe some additional features of our

algorithm. Then, in Section 7«7* we give the results of some numerical,

experiments, and compare our method with those of Powell (196^), Davier,

Swann and Campey (Swann (196^)), and Stewart (1967). For the comparison

we have used numerical results obtained by Fletcher (1965) and Stewart.

(I967). The numerical results suggest that our algorithm is competitive

with the currently used algorithms which do not require the user to

compute derivatives, although it is difficult to reach a definite

conclusion without more practical experience.

Finally, we give a bibliography of the recent literature on

nonlinear minimization, with the emphasis being on methods for solving

unconstrained problems.

Ik

' '-

w

MF ' WST'

Chapter 2.

Some Useful Results on Taylor Series, Divided Differences,

and Lagrangian Interpolation

2.1

1. Introduction

In this chapter we collect some results which are needed in Chapters

3 and 6. The reader who is mainly interested in the practical applications

described in Chapters ~- to 7 might prefer to skip this chapter, except for

Section 2, and refer back to it when necessary.

Classical expressions for the error in truncated Taylor series and

Lagrangian interpolation o:f'ten involve a term f(n+ l) (~) , where ~ is an

unknown point in some interval. For such expressions to be valid, f must

have n+l derivatives. Several of the results of this chapter give

expressions which a~e valid if f(n) satisfies a (possibly one-sided)

Lipschitz condition. In these results, the term f(n+l)(~) is replaced

by a number which is bounded by a Lipschitz constant. It seems unlikely

that these results are new, but they have not been found in the literature

eYcept where r eferences are given.

The results of Chapter 3 depend heavily on Theorem 5.1, which gives

an expansion of the divided '.iifference f[x0, .•. ,xn] (see Section 2) near

the origin. This theorem, and the less cumbersome Corollary 5 .• 1, are

usefUl for the analysis of interpelation processes, for the coefficients

of the interpolating polynomials can be expressed in terms of divided

differences (see Chapter 3).

Finally, in Section 6, we extend some results of Ralston (1963) on

the derivative of the error term in Lagrangian interpolation. These

results are -..e:tevant to Chapter 3, although they are given mainly for

their independent interest. Perhaps the most interesting result is

Theorem 6 .2, which shows that, i f we are only concerned with the points

of interpolation, then we can dirterentiate the classical expression for

the error (equation (6.4)), regarding the term f(n)(~(x)) as constant.

16

2.2

This is well-known if f has n+1 continuous derivatives, but Theorem 6.2

shows that it is sufficient for f to have n continuous derivatives.

2. Notation and definitions

Throughout this chapter [a,b] is a nonempty, finite, closed

interval, and f is a real-valued function defined on [a,b] . n is

a nonnegative integer, M a nonnegative real number, and ct a number

in (0,1] .

Definitions

The modulus of continuity w(f;6) of f (in [a,b]) is defined by

w(f;5) = sup |f(x) -f(y)
x,y€ [a,b]
|x-y| < &

(2.1)

for all 6 > 0 .

If f has a continuous n-th derivative on [a,b] , then we write

,n (n) f eC [a,b] . If, in addition, fv ' e Lip^ a , i.e.,

w(f(n);6) < M6a (2.2)

,nr for all 8 > 0 , then we write f € I£! [a,b;M,a]. (This notation is not

standard, but it is convenient if we want to mention the constants M

and a explicitly.) If f e LCn[a,b;M,l] then we write simply

feLCn[a,b;M] .

If x ,...,:: are distinct points in [a,b] , then IP(f;x , ...,x)

is the Lagrangian interpolation polynomial, i.e., the unique polynomial

of degree n or less which coincides with f at xrt, ...,x . The On

1?

I { f i 1)1) /) I i

■AaMMM^^^ -•■ - - -

I 1

' --

L^y U-J ~l-J L-J L- i l.-,J U^J "t„J

2.2

divided difference f[x, ...,x] is defined by

f[V...,xn] = E — ^ • (2.5)

(There are many other notations: see for example, Milne (19^9),

Milne-Thomson (1953), and Traub (1964).) Note that, although we suppose

for simplicity that x , ...,x are distinct, nearly all the results given

here and in Chapter 3 hold if seme of x , ...,x coincide. (We then have

Hermite interpolation and confluent divided differences: see Traub (1964).)

For the statement of these results, the word "distinct" is enclosed in

parentheses.

Newton's identities

For future reference, we note the following useful identities (see

Cauchy (l84o), Isaacson and Keller (1966), or Traub (1964)). The first

is often used as the definition of the divided difference f[x^, ...,x] , 0 ' n '

while the second gives an explicit representation of the interpolating

polynomial and remainder.

1. f[x0] = f(x0)

and, for n > 1 ,

f[.Xr,J • • 'jX -I J ~ flX-|> • •'^x J

f[>V"xJ = —2 ^h—i1 • (2^ On x0 - xn

2. If P = IP(f;x , ...,x) , then

f(x) - P(x)+ f 77 (x-x)) .f[x , ...,x ,x] , (2.5)
v i=o i y 0 n

18

■MM
tm^m

I 1 L 1

2-3

and

P(x) = f[x0]+(x-x^fbfyXjJ +...

+ (x-x0)...(x-xn_1)f[x0, ...,xn] (2.6)

5. Truncated Taylor series

In this section we give some forms of Taylor^ theorem. Lemma 3.1

is needed in Chapter 6, and applies if f^ ' satisfies a one-sided

Lipschitz condition.

Lemma 3.1

,n. Suppose that f cC [0,b] for seme b > 0 , and that there is a

constant M such that, for all ye[0,b] ,

f(n)(y) -f(n)(0) < My .

Then, for all xe[0,b] ,

n r / s n+1

r=0 (nfl)l

where

m(x) < M .

(3.1)

(3.2)

(3.3)

Reraarks

The proof is by induction on n , and is omitted. The corresponding

two-sided result is immediate, and is generalized in Lemma 5.2 below. In

Lemma 3.2, fractional factorials are defined in the usual way, so

(n + a)!/«! = (l+a)(2 + a)...(n + a)

19

(3.10

• -1

2.3

Lemma 5»2

If f €LCn[a,b;M,Q:] and x,y€[a,b] , then

n ,, vr
f (x) = r %f-

r=0

where

|ni(x,y) | < M .

Remarks

(5.6)

The res\ilt is trivial if n = 0 , and for n > 1 it follows from

Taylor's theorem with the integral form for the remainder, using the

integral

x jx, ^n-1 r "
o
JX ^jnllil"1 dt = ^a«!/(^a)! (5.7)

for x > 0 .

Note that the bound (3.6) is sharp, as can be seen ftcm the example

f(x) = x1^ , (3.8)

with y = 0 and M = (n+a) l/a! . Since, for n > 1 ,

nl < (nfa)t/al , (3.9)

the bound obtained from the classical result

fW = E ^f(r)(y)+^f(n){i) , (5.io)

for some £ between x and y , is not sharp.

20

'* \ {) \ \ \) \ \ \ \ I) i \

mm

2.k

k. Lagrangian Interpolation

The following lemma, used in Chapter 6, gives a one-sided bound on

the error in Lagrangian interpolation, if f ' satisfies a one-sided

Lipschitz condition. Thus, it corresponds to Lemma 3.1. The corresponding

two-sided result follows from Theorem 5 of Baker (1970), but the proof

given here is simpler, and similar to the usual proof of the classical

result that, if f eC^^b] , then ra(x) = r^'UCx)) , for some

|(x) e [a,b] . (See, for example, Isaacson and Keller (I966), pg. 190.)

Lemma k.l

Suppose that fe C [a,b] ; x , ...,x are (distinct) points in

[a,b] ; F = IP(f;x , ...,x) ; and, for all x,yG[a,b] with x >y ,

f(n)(x) - f(n)(y) < M(x-y) . (k.l)

Then, for all xe [a,b] ,

f(x) =P(x) +(TT (x-xr)) -gg^ , {k.2)
n
n
r=0

where

Oä '

m(x) < M . ih.3)

Proof

Suppose that n > 0 and x / x for any r = 0, ..., n , for

otherwise the result is tri/lal. Let

w(x) =TT (x-xj , (^M
r=0

and write

21

i \

L-J I L-j i ..r~i.-i L__J ! j i i i j

2.5

f(x) = p(x) +w(x)S(x) . (^.5)

RegSLrding x as fixed, define

F(z) = f(z) -P(z) -w(z)S(x) ik.6)

for z e [a,b] .

Thus FeC [a,b] , and F(z) vanishes at the n+2 distinct points

x,x , ...,x . Applying Rolle's theorem n times shows that there are

two distinct points ^y^-jG (a,b) , such that

F(n)(l0) =F(n)(l1) =0 . (^.7)

Differentiating (^.6) n times gives

F(^(z) = f(n)(z) - (nfl)!S(x)z + c(x) , (^•8)

where c(x) is independent of z . Thus, from (^.7),

S(x) = J&iJT

f(n)Uo) ,f(n)Ui)

i^9)

so the result follows from condition (U.l).

5. Divided differences

Lemma 5»1 and Theorem 5*1 are needed in Chapter 3. The first part

of Lemma 5*1 follows immediately from Lemma U.l and the identity (2.5)

(we state the two-sided result for variety), while the second part is

well-known, and follows similarly. Theorem 5'1 is more interesting, and

most of the results of Chapter 3 depend on it. It may be regarded as a

generalization of Taylor's theorem (the special case n = O) .

22

t—I

2.5

Lemma 5^3.

,n
Suppose that f e LC"[a,b;M] and that xn, ...,XM+1 are (distinct) ■0'"''"n+l

points in [a,b] . Then

f[x0, ..^x^j^] =m/(nfl)J , (5.1)

where

|m| < M . (5.2)

Furthermore, if f €C [a,b] , then

m = f^1)(0 (5.3)

for sane | e [a,b] .

,n+kr

Theorem $.3-

Suppose that k,n > 0 ; f eC^^ajb] ; a < 0 ; b > 0 ; and

x0,...,x are (distinct) points in [a,b] . Then

f(n) tlx° x*] '^+(o<l^\l^m

E .(n^-k) fv"^ (0)

^<r1<r2<...<rlt<n rl \ li^Jl R ,

(5.U)

where

R =
^^OKT^jr.Kr^J**! ■K U(ntk>(S,

••'rk
)-f(ttfk)(o)i

(5.5)

for some £ in the interval spanned by x ,...,x and 0
rr*--'rk rl rk

23

- - - - - ' t.

2.5

Corollary $.1

If, in Theorem 5'1^

then

6 = max |xr| , (5.6)
r=0,...,n

Rl ^ Hin w(f(n+k);5) • (5.7)

Proof of Theorem $.1

The result for k = 0 is immediate from the second part of Lemma 5,1,

so suppose that k > 0 . Take points y0,-..^y which are distinct, and

distinct frcm x_,...,x . Then 0' n

f[x0, ...,xn] -f[y0, ...,yn]

n

= E Cf[V,,,Vyrfl,,,,,yn] "f[V*",Xr-l,yr,,',,yn^ r=0

(5.8)

n
= L (x -y)f[x , ...,x ,y ;...,y] , (5.9)

r=0

by the identity (2.k).

We may suppose, by induction on k , that the theorem holds if k

is replaced by k-1 and n by nfl . Use this result to expand each

term in (5'9)> and consider the limit as y0, .'.,y tend to 0 . By

the second part of Lemma 5-1* f[yn>'"jy] tends to f^ '(C^/nl , so

the result follows. (Strictly, to show the existence of the points

4 , we must add to the inductive hypothesis the result that

<.(n+k) (|w ^) is a continuous function of x^ , ...,xw .)

2k

rl',,*,rk " ^ ^""""^ ^ rl rk

i) i] t) I \ I > i] ! :) 1 \

L

2.6

Corollary 5*1 is immediate, once we note that there sire exactly

nlkl terms in the sum (5ö)«

6. Differentiating the error

The two theorems in this section are concerned with differentiating

the error term for Lagrangian interpolation. These theorems are not

needed later, but are included for their independent interest, and also

because they may be used to give altv "native proofs of seme of the results

of Chapter 5 (see Kowalik and Osborne (1968), pp. 18-20).

n+1
Theorem 6.1 is given by Ralston (I963, I965) if feC [a,b] . We

state the result tinder the slightly weaker assumption that f e LC [a,b;M]

for some M : the only difference in the conclusion is that Ralston*s

term f^ (Tl(x)) is replaced by ri(x) , where jra(x) | <M . The proof

is similar to that given by Ralston (1965), and is also similar to the proof

of Lemma 6.2 below, so it is omitted.

Theorem 6.2 gives an expression for the derivative of the error at

the points of interpolation. If f e LC [a,b;M] then the result follows

immediately from Theorem 6.1, but Theorem 6.2 shows that f eC [a,b] Is

sufficient. This result may be of some independent interest.

Theorem 6.1

.n, Suppose that n>l ; f e I£! [a,b;M] ; x, ...,x .. are (distinct)

points in [a,b] ; w(x) = (x-x0)...(x-x^^ ; P = IP(f;x0,. .^x^) ;

and f(x) = P(x) + R(x) . Then there are functions ^: [a,b] -» [a,b]

and m: [a,b] -• [-M,M] , such that

25

I^MM MMMHMMM^to

2.6

l. f(n)(Hx)) is a continuous :t'unction of X€ [a,b] (although Hx)

is not necessarily continuous};

2. m(x) is continuous on [a,b], except possibly at x0, .•• ,xn-l;

3. for all x E [a, b] ,

R(x) = w(x)f(n)(~(x))/n!

and

R'(x) = w'(x)f(n)(~(x))/n! ~ w(x)m(x)/(n+l)t

and

4. if · X F X for r = o, .•. ,n-1' then r

~ f(n) (~(x)) _ m(x)
dx - n+l

Theorem 6.2

.·.r ...

(6.1)

; (6.2)

(6.3)

· Suppose tha n ~ 1; fECn[a,b] ; x0, ..• ,xn-l are (distinct)

point·s in [a,b] w(x) = (x-x0) ... (x-xn_1) ; P = IP(f;x0, ••. ,xn_1)

and f(x) = P(x) + R(x) . Then there is a function ~: [a, b] - [a, b] ,

such that f(n) (Hx)) is a continuous function of x E [a, b] ; for all

x E [a, b] ,

R(x) = w(x)f(n)(s(x))/nt . (6.4)

and, for r = o, •.. ,n-1'

B'(x) = w'(x)f(n)(Hx))/n! (6.5) r r . r

Before proving Theorem 6.2, we need scme lemma.s. Note the similarity

between Lemma 6 .·2 and Theorem 6 .1.

Lemma 6.1

Suppose that n > 1
n .

f E C [a, b] x
0

, .•• ,xn are distinct points

in [a,b] ; P = IP(f;x0, ..• ,xn) ;

26

J " L_ - _J L i I J L- - J

2.6

ar^.

A= max |f(n)(x)| , (6.6)
xe[a,b]

5 = max jx. -x.j . (6.?)
0<i<(i<n 1 0

Then, for all xG[a,b] ,

f(x) =P(x) +(Jf (x-xr))s(x) , (6.8)

where

Iswi < itr • (6-9)

Proof

If x = x for some r = 0, ...,n , then we can take S(x) = 0 .

Otherwise, by the identity (2.5),

S(x) = F[x0,...,xn,x] . (6.10)

Write x . for x , and reorder x , ...,x (if necessary) so that,

if the reordered points are x*, ...,x' , then

x' - x« = max |xl - x'| > 5 . (6.11)
0<i<ti<n+l 1 J

Fran (6.10) and the identity (2.U),

S(x) = —^ n
xt xt

1 2^ , (6.12)
X0 " Xn+1

so, by Lemma 5*1?

^ = n-M'^'J) (6-13)

27

2.6

for some § and I1 in [a,b] . In view of (6.6) and (6.11), the

result follows.

Lemma 6.2

Suppose that n>2 ; feC [a,b] ; x,.

points in [a,b] ; A = max \f^ '(x)| ; 6 -.
xe[a,b]

.,x n are distinct ' n-1

max
0<i<j <n

x. -x.
i 3

Pn = IP(f',7t0,...fXn_1) ; wn(x) = (x-x0)... (x-x^ ; and

f(x) = P (x)+R(x) . Then there is a function |: [a,b] -» [a,b] such n'
>(n) that, for all xe[a,b] , fv y(g(x)) is a continuous function of x ,

R(x) =wn(x)f(n)(|(x))/n!

and

/ \ ^iw (x) 1^
|R'(x) .w;(x)fWa(x))/nl| < —^

., if x / x for r = 0, ...,n-l , then

|Af(n)U(x))| <^ .

(6.1^)

(6.15)

(6.16)

Proof

Let x be a point in [a,bl , distinct from x and x^,...,x n

For k = n or n+1 , define

and

Pk=IP(f;x0,...,xk_1)

wk(x) = (x-x0). . . (X-Xj^j

(6.1?)

(6.18)

By the classical result corresponding to Leimna h.l, there is a function

| such that (6.1^) holds. Suppose, until further notice, that x / x

28

() (J f i f) (1 (1
j^,

mm

2.6

for r = 0, ...,n . Then, from (6.11+) and the identity

kil f(xr)wk(x)
p

k
(x)=L (x-x:)wt(x) ' «^ r=0 v r' k r

we have

AMI -. nfL-i . fy,. . (6.30) nt w Tx) t- (x-x jw' (x) v / nv ' r=0 r7 nx r'

Since the right side of (6.20) is continuously differentiable at x , so

is the left side, and

Define S(x,x) by n'

f(x) = P^Jx) + wr<+.(x)S(x,xn) . (6.22) n+lv ' n+lv ' v ' n

Since

w (x) if r = n ,
w« (x) =/ n n (6.23)
m-i j Mv^A^ if r = 0,...,n-l,

equation (6.19) gives

P^xCx) nil f(xJ f(xJ
w^/x) = ^ (x-x){x -x)w»(x) + (x-x)w (x) ' (6*2U)

SO

n+lv ' r=0 v r/v r n' n^ r' v n' nv n

f(x) f(xn)
w (x) w (x) n-1 f(x)

S(x'xn> - " x-x" " + S (x-xj(x!xjv,.(xj • f6-2« n r=0 x r'v n r7 n r'

29

I t r 1 i 1 i 1

i—i i—M ' i—* ~' i—J

2.6

As x -• x , the right side of (6.25) tends to the right side of (6.21).

Thus, there exists

lim s(x,xn) =^Af(«)U(x)) t {6t26)

x -»x
n

and, from the definition (6.22) and Lemma 6.1, this proves (6.16). Now,

by differentiating the right side of (6,lh) by parts, we see that (6.15)

holds, in fact

w'(x)f^U(x)) + w rx) Af(n)(l(x))
r(x)=-^ "n,

n ^ ^_ } (6>27)

provided that x / x , for r = 0, ...,n-l . Consider (6.27) near one

of the points x , r - 0, ...,n-l . R^x) is continuous at x ,

w
n(xr) = 0 , w^(xr) / 0 , and, by (6.16), ^ f(n)(l(x)) is bounded

for x / x . Thus f^ ;(5(x)) has, at worst, a removable discontinuity

at x , and, by the continuity of f^ '(I-) as a function of I ,

a suitable redefinition of t(x) will ensure that f^(^(x)) is a

continuous function of x , and that

B'(xr) =W];(xr)f
(n)U(xr))/n! . (6.28)

This conrpletes the proof of the lemma.

Proof of Theorem 6.2

If n > 2 then the result follows immediately from Lemma 6.2. If

n = 1 , choose 5(x) so that 6(xn) = x and, for x / x ,

f(x) - f(x)
fUW) = ; 0 • (6.29) x - x0

Then f,(f(x)) is a continuous function of xe[a,b] r and, as

30

2.6

R(x) = f(x) - f(x0) and w(x) = x-x , it is easy to see that

equations (6.^) and (6.5) are satisfied. Thus, the theorem holds for

all n > 1 .

31

■■-■--- MB^hte

Chapter 5.

The Use of Successive Interpolation for Finding Simple

Zeros of a Function and its Derivatives

(i (l (I r) r i f i (j J i -

-''-

■ "J

3.1

1. Introduction

Suppose that q >1 and feC^" [a,b] . Given (distinct) points

x , ...,x in [a,b] , a sequence (x) may be defined in the following

way: if x.. ...,x , are already defined, let P = IP(f;x ,...,x_J) ^ 0 ' n+q J n v ' n n+q7

be the q-th degree polynomial which coincides with f at x , ...,x ,

and choose x . . n so that
n+q+1

(VD n v n+q+l7

Under certain conditions the sequence (x) is well-defined bv/fl.l),

lies in [a,b] , and converges to a zero £ of f^ ' . Ip^this chapter

we give sufficient conditions for convergence, and estimate the asymptotic

rate of convergence, making various assumptions about the differentiability

of f .

Since P is a polynomial of degree q , (l-l) is a linear equation

in x ^ ^ . If
n+q+1

f[x ,.. ^x^] ^ 0 ,
n' ' n+qJ r '

(1.2)

n+q+1 q V A^ "n+i

f [x ,..,.. .,x .] \
n+V n+o/ i

f[x , ...,x ^] / '
n' n+q /

(1.3)

then Lemma 3.1 shews that the unique solution is

and this might be used as an alternative definition. From Section h on,

e tha

^~ ' , so (1.2) holds. In Section 3, the assumption

our assumptions ensure that x ,...,x . are sufficiently close to a
* n n+q ^

n+q+1

simple zero £ 0^ ^

that f (j) / 0 is unnecessary: all that is required is that xr

is a (not necessarily unique) solution of (1.1) •

The cases of most practical interest are q = 1, 2 and 5. For q = 1 ,

our successive interpolation process reduces to the familiar method of

33

I 1' I—J " - I 1 ~ t—I L __ J I I U- J L J

3.1

successive linear interpolation for finding a zero of f , and some of our

results are well-known (see Collatz (196^), Householder (I971), Ortega and

Rheinboldt (1970), Ostrowski (I966), Schröder (I870), Traub (1964, 1967)

etc.). For q = 2 , we have a process of successive parabolic interpolation

for finding a turning point, and, for q = 3 , a process for finding an

inflexion point. These two cases are discussed separately by Jarratt (1967,

1968), who assumes that f is analytic near 5 . By using (1.5) and

Theorem 2.5.I, we show that much milder assumptions on the smoothness of f

suffice fsee Theorems k.l, 5.1 and 7«l)' Also, most of our results hold

for «my q > 1 , and the proofs are no more difficult than those for the

special cases q = 2 and q = 3 .

Some simplifying assumptions

Practical algorithms for finding zeros and extrema, using the results

of this chapter, are discussed in Chapters k and 5« Until then we ignore

the problem of rounding errors, and usually suppose that the initial

approximations x , ...,x are sufficiently good.

For the sake of simplicity, we assume that any q+1 consecutive

points x ,...,x + are distinct. (This is always true in the applications

described in Chapters k and 5«) Thus, P is just the Lagrange

interpolation polynomial, and the results of Chapter 2 are applicable.

As in Chapter 2, the assumption of distinct points is not necessary, and

the same results hold without this assumption if P is the appropriate

Hermite interpolation polynomial.

;♦

3^

I < - ' U

^j-^j-*jr •x

3-1

A preview of the results

The definition of "order of convergence" is discussed in Section 2,

and in Section 3 we show +liat, if a sequence (x) satisfies (l.l) and

converges to ^ , then f^' '({j) = 0 (Theorem 5.1) •

In Sections h to f, we consider the rate of convergence to a simple

zero 5 of f^" ' , making increasingly stronger assumptions about the

smoothness of f . For practical applications, the most important result

is probably Theorem h.l, which shows that convergence is super linear if

f€Cq and the starting values are sufficiently good. As in similar results

for Newton's method (Collatz {196h), Kantorovich and Akilov (1959),

Ortega (1968), Ortega and Rheinboldt (1970) etc.), it is possible to say-

precisely what "sufficiently good" means. Theorem 5.1 is an easy

consequence of Theorem h.l and the thecry of linear difference equations

(Nörlund (195^))^ and gives a lower bound on the order of convergence if

f^ is Lipschitz continuous.

The question of when the order of convergence is equal to the lower

bound given by Theorem 5»1 is the subject of Sections 6 and ?• Although

the results are interesting, they are not of much practical importance,

for in practical problems it is merely a pleasant surprise if the iterative

process converges faster than expected'. Thus, the reader whose main

interest is practical applications might prefer to skip Sections 6 and 7

(and also Theorem 5.1)> except for Lemma 6.1.

In Section 8, we consider the interesting problem of accelerating the

rate of convergence, and Theorem 8.1 shows how this may be done. We make

use of Lemma 6.1, which gives a recurrence relation for the error in

successive approximations to 5 , and is a generalization of results of

Ostrowski (I966) and Jarratt (I967, I968).

35

■^^^^y^i

3-2

Finally, in Section 9 the theoretical results are illustrated by

some numerical examples, and a brief summary of the main theorems is

given in Section 10. The reader may find it worthwhile to glance at

this summary occasionally in order to see the pattern of the lesults.

2. The definition of order

Suppose that lim x = £ • There are many reasonable definitions
n -»oo

of the "order of convergence" of the sequence (x) . For example, we

could say that the order of convergence is p if any one of (2.1) to (2.4)

holds:

Ivi -1\ lim—^ = K>0 , (2.1)
n-oo |x - i\ n

1081 Vl " tl
llm log|x - i\ - " ' f2-2»

llm(-logU - C|)l/n = p , n n -»a»
(2.5)

lim inf(-log|xn - SI)1/" = p . (2.JO

These conditions are in decreasing order of strength, i.e.,

(2.1) 3 (2.2) D (2.3) 3 (2.4), and none of them are equivalent. (2.1) is

used by Ostrowski (I966), Jarratt (I967) and Traub (1964, 1967), while

(2.2) is used by Wall (1956), Tomheim (1964) and Jarratt (I968). Voi^L (1969)

36

i) c i 1 1 r i (1 1 1

3.2

and Ortega and Rheinboldt (1970) give some more possibilities (for

example, we may take the supreraum of p such that the limit K in (2.1)

exists and is zero, or the infimum of p such that K is infinite). See

also Cchroder (1870). For our purposes it is convenient to use (2.1) and

(2.4), so we make the following definitions.

Definition 2.1

We say x -♦ £ with strong order p and asymptotic constant K

if x — t as n -♦ 00 and (2.1) holds.
n 3 \ /

We say x -» ! with wef order p if x -»C as n -»» and ^ n a — 1 n »

(2.U) holds. (If x = 5 for all sufficiently large n then we say

that x -» £ with weak order 00 .)
n * '

Definition 2.2

Let

We

c = lim sup |xn - £| 'n . (2.5)
n -«oo

say x — £ sublincarly (or less than linearly) If x -» £ and

c = 1 . We say x -» £ linearly if 0 < c < 1 . We say x -» £

superlinearly if c = 0 . We say x -* £ strictly superlinearly if
n

x -• t with weak order p > 1 . n ' K

Examples

Sane remarks and exaraplef. may help to clarify the definitions. If

p > 1 and x = exp(-p)(x+ o(l)) as n -* co , then x — 0 with strong

order p and asymptotic constant 1 . If cr > 1 and x = exp(-cr)(£+ (-1)

then x -.0 with weak order a > but not with any strong order, for the

37

L-J j ! I I I S J ä J

3-3

limit in (2.1) does not exist if p = a > is zero if p < a ^ and is

infinite if p > a • Thus, convergence with strong order p implies

convergence with weak order p , but not conversely.

If the limit in (2.1) or (2.1+) exists, and x - ^ , then p > 1 .

If the limit (2.1) exists with p = 1 , and x - £ , then K < 1

(K ^ 1 for linear convergence, and K = 1 for sublinear convergence).

Examples of sublinear, linear, superlinear, and strictly superlinear

convergence are x = — ,2 jn'1, and 2 L' respectively.

5« Convergence to a zero

In this ^ '-" n we show that, if the sequence (x) defined by (l.l)

(q-1) , assuming only converges, ti .. it must converge to a zero of f

that f eC la,b] . First, we need a lemma which gives a relation

between the points x , ...,x , .

Lemma 3.1

If x ,x 1,,...,x . are (distinct) points in [a,b] , and x . ..
n n+1 n+q ' * n+q+l

satisfies (1.1), then

q-1
(V (x . . - x , ,))f[x ,...,Xl 1 = f[x , ...,x J ,] .
\tjQ nfi n+q+1 ^ n' ' n+qJ n ' n+q-lJ (3.1)

Pre of

By the identity (2.2.6),

P (x) = f[x] + (x-x)f[x ,x_Ll] r ...
nvy n v n'n'n+l

+ (x-x)...(x-x ^ftx ,...,x ,] , v nJ y n+q-l' n 7 n+qJ '
(5.2)

so

33

i.. .,-i t 1 «.-—*

3.3

P^'^Cx) = (q-l)l{f[x ,...,x^ .]

1=0 ^

Thus, the result follows from (1.1).

Theorem 5.1

Suppose that f eCq [a,b] ; that a sequence (x) satisfying

(1.1) is defined (see Section 1) in [a,b] ; and that there exists

lim x = $. Then f^"1^) = 0 .
n -»oo

Proof

Suppose, by vay of contradiction, chat

For 0 < r < q , the identity {2.2.k) shows that

(x J -xj)f[x,...,xJ 1 = f[x , ...,x . ,]-
n+r n+q' n' ' n+q n ' n+q-lJ

n n+r-1 n+r+1 n+q v '

Thus, from Lemma 3.1,

l-l
x ., -x J. = H / (x ^ -x _. ^i) * (5.6) n+r n+q n,r .^ v n+i n+q+l' v '

where

XIX t • • « X TJX _«•••* X i
n n+r-1 n+r+1 n+q ,, „v

^n,r = 1 f[x,...,x4 J ^ ' (?-7)
n n+q-1

Both divided differences in (3.7) tend to rq"lj (0/(q-l) I as n -♦ 00 ,

so there is no loss of generality in assuming that the denominator

39

.^Mk

3·3

f[x , ••• ,x + 1] is nonzero for all n (on the assumption (3.4)), n n q-

and we have

lim I..L = 0 n,r n _.. oo

Summing (3.6) over r = o, •.• ,q-l and rearranging terms gives

where

I..L' n '
l -

and, by (3.8), there .is no loss of generality in assuming that the

denaninator in (3.10) is nonzero for all n > 0 . From (3.6), with

r = q-l , and (3.9), we have

X -X = J.L (x -X) n+q-l n-:-q n n+q n+q+l '

where

The repeated application of (3.ll) gives

and, by (3.8), (3.10) and (3.l2), I..L _.. 0 as n _.. oo , flO the right
n

(3.8)

(3 ·9)

(3.10)

(3.ll)

(3 .l2)

(3.13)

side of (3.13) tends to zero ~s n -+ oo • This contradicts the assumption

tru t x 1 F x , so (3.4) must be false, and the proof is complete. (If
q- q

we do not wish to assume that any q+l consecutive points X , ••• ,x + n n q

40

3.^

are distinct, then we may argue as follows: on the assumption O-h),

the right side of (5.1) is nonzero for all sufficiently large n , and

thus at least two consecutive points from xx _ are distinct. * n n+q+1

Taking these two points in place of x and x , we get a contradiction

in the same way as from (5.15).)

h. Superlinear convergence

If f has one more continuous derivative than required in

Theorem 5.1> then Theorem k.l shows that convergence to a simple zero

of f^~ ' is superlinear, in the sense of Definition 2.2, provided the

starting values are sufficiently good. The theorem makes precise what

we mean by "sufficiently good", (in equation (^.1), w is the modulus

of continuity: see Section 2.2.) Convergence to a multiple zero of

f^ ' is not usually superlinear, even if q = 1 (see Section ^.2),

and Theorem 3.1 above is the only theorem in this chapter for which we

do not need to assume that the zero is simple. Thus, there is no reason

to expect that the algorithms described in Chapters k and 5 will converge

any faster than linearly to multiple zeros of f^ ' .

Theorem h.l

Suppose that feC [a,b] ; 5e[a>b] j xn>«-'*x are (distinct)

points in [a,b] ; 5 max
i=0, . . .,q

\-i\ ; t^hi) =o;

[5 -50,; + 50] c [a,b] ; and

3w(f(ci);60) < lfrq)(C)l • (^•1)

1+1

^*m

i_j i i "L_r i ii J i—I""L—i~i—i i—i

3A

Then a sequence (x) is uniquely defined by (l.l), and x -* t,

superlinearly as n -* & . Furthermore, if, for n > 0 ,

5 = max |x _._. -M (h.2) n . ^ ' n+i '' v ^ i=0,.. .,q

and

^ = 3w(f(q);5n)/|f
(q)(0| , (4.5)

then the sequence (6) is monotonic decreasing, and

Wl ^ ^nVl ' (^

Proof

Without loss of generality, assume that 5 = 0. Let 6 and \

be as in the statement of the theorem (equations {h.2) and (4.5)).

Since f'q~ ^(0) = 0 , Corollary 2.S.1 to Theorem 2.5.1 (with

k = 1 , n = q-1) gives

flx^...^^ = (T x1)f(q)(0)/ql+R1 , (4.5)

where

if

iRj <6'w(f(q)
;5')Aq-l)l , (4.6)

6« - max jxj < 60 . (4.?)
i=l, ...,q

Similarly,

^v-'V'^'^V 'ifji^y ' (k-8'

k2

where

|R2| <w(f(<l);50)/|f(<l)(0)| ^XQ/? < 1/3 , (^.9)

so

S3I = li^l < XJ2 < 1/2 (1..10)

(Note that the assumption (U.l) ensvires that f[x , ...,x] / 0 .)

Fran (^.5), (^«8), and Lemma 5.1 (with x and x interchanged).

^-^ ^--i^y^>*. • (lull)

where

R^E5'ixl)£TTM + Rl(1 + R5) •
1=1 ^

(U.12)

From (U.6), (U.y) and (I+.IO), equation (U.12) gives

X05.|f^(0)| ^^^.^
RUI ^ 2.(q-l)l + 2.(q-l)! > (^•13)

so, from (U.5) and (U.7),

XoB'If^^O)!
IRJ ^ -VDI (U.lU)

Now, fron (H.ll), we have

IViJ ^ \)5, (U.15)

By the assumption (U.l), \ < 1 , so x lies in [a,bj , 6 and)

are well-defined, ^-t - ^, 5 &-) » ^-i £ ^^ » an(^

k^ '

3.h

|xq+1| < ^ . (4.16)

In the same way, we see that 5 > 5, > 5p > ... ,

1 > \0 > X-L > X2 > • • • , and, for n > 0 ,

|x ^ inI < X 5 ^n . (4.17) 1 n+q+11 - n n+1 v ''

Thus, the inequality (h.h) holds, and it only remains to show that

x -»0 superlinearly. Fran (h.h) and the above.
n

Vl^oV"\k-l)ci5l<X0&l ' ih'lQ)

and \^ < 1 by assumption (k.l), so 5 -«0 as n -♦ oo . Thus, by

the continuity of f^ and the definition (4.5), K* " 0 as n -»» .

Take any e > 0 . For all sufficiently large n ,

Xn < Eq , (4.19)

so, from (4.4),

11m sup 5
^ n

n -»oo
I/" < e . (4.20)

As e is arbitrarily small, this shows that

lim |x j1/" = lim 6l/n = 0 . (4.21)
n1 n

n -»oo n -»JO

Thus, x - 5 - 0 Buperlinearly, and the proof is complete.

Remarks

The proof of Theorem 4.1 shows that, for n>0, |x -,-Cl is
— ' n+q+1 ^

no greater than the second-largest of |x -5|,...,|x -C| • Thus, if

44

3-5

q = 1 , the sequence (|x -C|) ^s Monotonie decreasing, except perhaps

for the first term. In fact, the proof shows that, for q = 1 and

n > 1 ,

|x . (;|
n+1 '' ■ • - 0 as n - » (^.22)

Tir^TT - ^-i

(provided x / ^) . This is a common definition of "superlinear

convergence", stronger than our Definition 2.2.

If q > 2 , the sequence (|x - C|) need not be eventually

monotonic decreasing: monotonicity would follow from strong superlinear

convergence with order greater than 1 , but more conditions are necessary

to ensure this sort of convergence (see Sections 6 and 7)'

5« Strict superlinear convergence

Aseuming slightly more than in Theorem h.l, Theorem 5.1 shows that

convergence to a simple zero of f^ ' is strictly superlinear,

according to Definition 2.2. Before stating the theorem, we define some

constants ß ^ and 7 which are needed here and in Sections 6 and ^.

Definition ^.1

For q > 1 and a > 0 , let the roots of

xq+ - x+a (5.1)

be J« , for i = 0,...,, , with ju^l > ^J > ... > |u^)| .

Then the constants ß and y are defined by pq,a 'q^ *

ß = lu(0)| and 7 = |u(l)l .

^^^MM^^M^^M^^MMHIBBMB^HaaaBMMHitMHHaailMfHM

w

g f I I I J I i !^J

3-5

Since the case a = 1 often occurs, we write simply ß for

ß T , and 7 for 7 n . Kq,l 'q 'q,l

Eemarks

ß is just the positive real root of (5«l)^ and it is easy to q,u

see that, for 0 < a < 1 ,

1

(I + Q0
2<1+1

 < ßq^ < (l+a)^ . (5.2)

We are only interested in the constants 7 _ when a - 1 . If
q*ct

a = 1 and q > 2 then there are exactly two complex conjugate roots

of (5*l) with modulus 7 . If q = 1 or 2 then 7 < 1 , but, for

q >3 ,

1 < 7 < ß
q q

This may be proved by applying the Lehmer-Schur test to show that, for

suitable e > 0 , exactly q-2 roots of

xq+1 = x+l (5.3)

lie in the circle |x| < 1+ e . The details are emitted, for all cases

of practical interest are covered by Table 5*1^ which gives ß and 7

to 12 decimal places for q = 1, ...,10 . The table was computed by

finding all roots of (5«3) with the program of Jenkins (I969), and the

entries are the correctly rounded values of ß and 7 if Jenkin's
q q

a posteriori error bounds are correct.

h6

:
(

I

m
!
)

3-5

Table $.1: The constants ß and 7 for q = 1(1)10 to 12D

.2)

1

2

3

U

5

6

7

8

9

10

1.618055988750

1.52^7179572^5

1.22071^o8U6o6

1.167505978261

1.15^7241581402

1.11277568^279

1.096981557799

I.0850702U5491

I.075766066087

I.068297188921

0.618055988750

O.868856961855

1.065556958821

1.0990005151^6

I.09917U915506

1.091955505766

1.0857^5696285

1.076155154055

I.069448852721

1.065666958404

See Definition 5'1 and the remarks above for a description of

the constants ß and 7
1 q

47

J

3-5

Theorem ^.1

Suppose that f € LC^a^bjMjQ!] (see Section 2.2); ^ e (a,b) ;

f (S) = 0 ; and f^q^(0 / 0 . If XQ, ...,x are (distinct and)

sufficiently close to t, , then a sequence (x) is uniquely defined

by (1,1)., and x -♦ ^ with weak order at least ßn , the positive

real root of xq = x + a .

Remark

,, - .«=.. Ix. -M , then, from Theorem ^.1, xrt, ...,x If S^ = max
i=0, • • .^q

are "sufficiently close" to ^ if 50 < ^ " a ^ 5o - ^ " ^ ^ and

3M5^ < |f(q)(0| • (5A)

If these conditions are satisfied, then an upper bound on |x - ^

follows from equation (5»10) below.

Proof of Theorem !?.!

For n > 0 , let

1=0,.. .,q

Suppose that x , ...,x are so close to % that the conditions

mentioned in the remark doove are satisfied. Then Theorem U.l shows

that (5) is monotonic decreasing to zero, and

< -^ 6^6_ . (5.6)
n+q+1 - jf(l)(^ 1 n n+1

If eventually 6 = 0 , then the result follows ii-jnediately: by

our definition, x -* * with weak order OD . Hence, suppose that

1+8

3-5

5 / 0 for all n > 0 (and thus, from (5.6)', M > 0). Let

*n -lo^5 3M
n \Jd f^ja)

l/a
(5-7)

(not the same X as In Theorem h.l). From condition (^.h) and the fact

that (5) is monotonic decreasing, 0 < X^ < X. < A. < ... , and, from

equation .' 6),

Xn+q+l - Vl ' % (5.8)

■^

Since ß ^ > 1 , we have

^ > X0^
n-q
q,a (5-9)

for n = 0, ...,q . Thus, from (5.8) and the definition of ß , the
q,u

inequality (5.9) holds for all n > 0 , by induction on n . Hence, for

all n > 0 ,

■^ iv si->-^-> ^,> i Hä (5.10)

Since XQ > 0 and ß > 1 , equation (5.10) shows that

lira inf (-log Ix - M)1^ > ß ^ , v 0 i n a|/ — q,a '
n -» öD ^'

(5.11)

which completes the proof.

Note that, in the important case a = 1 , there is a simple proof of

Theorem 5.1 which does not depend on Theorems 2.5.1 and k.l. Also, this

proof shows that, instead of (5.^), the condition

3MS0 < 2|f(q)(C)| (5.12)

k9

- '■* -■

i—£

3-6

ie sufficient. The iiea is this: by applying Rolle's Theorem q-1

times, we see that P^~ ' (x) coincides with f at points | and |' n -^ n n

say, with U -t <5 and Uf - t\ < 6' = the second largest of

|x -5|,"^|x -5| • Thus, fron Lemma 2.4.1,

|p(q-l)(S)| < IMö 8. .
1 n ^»'1 — 2 n n (5.13)

On the other hand, equations (1.1) and (3.3) show that

p(q-l)(S)

n+q+1 ~ ' q!x[x , ...,x]" ' (5.1^)
n n+q'

so we can bound x -, - C > and then the result follows in much the 1 nrq-i-1 •'

same way as above.

6. The exact order of convergence

Theorem 5.1 gives conditions under which x -» £ with weak order at

least ß . It is natural to ask if the order is exactly ß . In general,

this is true, but some conditions are necessary to ensure that the rate

of convergence is not too fast: for example, the successive linear

interpolation process (q = 1) converges to a simple zero $ with weak

order at least 2 (> ß., = I.618 ...) if it happens that f"(S) = 0 , for

then linear interpolation is more accurate than would normally be expected.

Theorem 6.1 gives sufficient conditions for the order to be exactly ß .

Apart from the condition f^ (£) / 0 > it is necessary to impose seme

conditions on the initial points x , ...,x . (ihese extra conditions are

superfluous if q = 1 : see Section 7 .)

50

'■vj.' ■ -,*-.■ £#''-:.\- ■-■ ml

*H
A y

^r

3)

3-6

Before proving Theorem 6.1, we need two lemmas. lemma 6.2 is

concerned with the solution of a certain difference equation; and is

closely related to Theorem 12.1 o ■" Ostrowski (1966). (The lemma coiild

easily be generalized, but we only nted the result stat d.) Lemma 6.1

gives a recurrence relation for the error x - ^ . Special cases of this

lemma have been given by Ostrowski (I966) and Jarratt (1967, 1968).

Ostrowski essentially gives the case q = 1 , and Jarratt gives weaker

results for q = 2 and q - 5. (our bound on the remainder R is

sharper than Jarratt's, and we do not assume that f is analytic.) In

Section 8, we show how the result of Lemma 6.1 may be used to accelerate

convergence of the sequence (x) .

Lemma 6.1

Suppose that feCq+1[a,b] ; 5e[a,b] ; f^"1'^) =0 ;

f (t) / 0 > x »•••>x are (distinct) points in [a,b] ; and

x , satisfies equation (1.1). Let 6 be the largest of

|x -5l,...,|x -51 ; and 6' the second largest. Then

where

Xn+q+l " ^
f (q+l) / M

^
I

q(ct*l)f^(S) 0<i<j<q
v n+i s/ v n+j *' n '

(6.1)

R = 0(5 B'[6 +w(f(q+1);8)])
n v n n n v ' n^ ' (6.2)

as 8 -• 0 .
n

Proof

Without loss of generality, assume that n ^ 0 and £ = 0 . Rearrange

51

3·6

x0 , ... ,xq, if necessary, so that lx0 1 S lx1 1 S ... S lxql . From

Lemma 3 .l,

~l
q.x +lf[x

0
, .. . ,x] = (L x.)f[x

0
, ••. ,x] - f[x

0
, ••. ,x _1] •

q q i =O 1 q q

Thus, as f(q- l)(O) = 0 f f(q)(O) , Theorem 2.5.1 gives

(6.3)

q-l f(q) (0) \ f(tl) ~0) - ((L x.) q! + (L.. xi x) - q+ l ! + r3) '
i~ 1 OS i Sj<q j

(6.4)

where

(6. 5)

lr2l < o
0
w(f(q+l);o

0
)jq! = o(o

0
w(f(q+l);o

0
)) , (6.6)

and
o' 2w(f(q+l) ·6')

O(o0
2w(f(q+l);o0)) . lr3\ <

0 ' 0 (6.·7)
2(q-l)!

as 50 -0 •

The right side of (6. l~) is just

< 'L x.x)
osi<jsq 1 j

+ r4 '
(6.8)

3-6

where

Kl < ^o\r2^+ N 0(^5'w(f((1+l);50)) (6.9)

as 5 -♦ 0 , so the result follows,

Remarks

Fran the bounds on r,,.. .,r, , it is easy to derive an explicit

bound on R for sufficiently snail 5 . For our purposes, though. n n

the relation (6.2) is adequate. A simple corollary of (6.2) is that,

if f ^q-+1^ z Lipu CJ , then

R =0(fc1+a6')
n v n n7

(6.10)

as 5 -» 0 .
n

Lemma 6.2

Suppose that \ -.K» as n-*oo, and, for n > 0 ,

Xn+q+l " Ni+1 - \ - k n n (6.11)

where

nv
kn = 0(8") (6.12)

as n -»a» , s a constemt. If y < s < ß then
q q

\ = C.ßq+0(8) (6.15)

as n -• öD . and if k = o(s) as n -• » then 7 n '

K = c.ßn + o(sn)
n q

i6.lh)

53

t I i i, i i i i

Jmmi*

&—£ jL—ji • & m^M m~~m »A -i^ji

3-6

as n-oo. If0<s<7 then
q

Kn = c.ßn
q+ 0(nV.7^) (6.15)

as n -• oo , where

(6.16)

and c is a nonnegative constant.

Proof

The restriction luJ < 1 in Theorem 12.1 of Ostrowski (I966) is 21

unnecessary, for we can choose any \ with |up| < \ < [u,] and

consider \ /\ , instead of \ , in Ostrowski's proof. Thus, in view

of the remarks after Definition 5.1, ('J.I^) and (6.15) follow from

Ostrowski's Theorem 12.1. (6.1k) does not follow directly in the same

way, but the proof of Ostrowski's Theorem 12.1 goes through, assuming

k = o(s) instead of k = 0(s) , and giving a result from which (6.1^)

follows. The only difficulty is in proving the modified form of

Ostrowski's Lemma 12.1, but this follows fron the Toeplitz lemma: if

k -»0, 111 < 1 , and z =k+k ng+... + k_e
n , then z - 0 as n ' i3! > n n n-1 0- n

n - a» (see Ortega and Rheinboldt (1970), pg. 399).

Theorem 6,1

Suppose feCq+1[a,b] ; £ e (a,b) ; f^ki) = 0 ; f(q)(0/0;

and f^q+1^(0 / 0 . If |x0-^| is sufficiently small,

xi-i - ^1 ^ Mxi - C| (6.17)

^

I

3.6

f or i = 1, 2, ... ,q, and

where

'

then a sequence (x) n
is uniquely defined by (l.l), and x C with n

weak order exactly ~ .
q

In fact, if q = l or 2 then x C with

(6.18)

(6.19)

strong order ~ and asymTtotic constant
q

~ -1 n
\K\ q , and if q ? 3 t hen

- log\xn - t I (6 .20)

as n CD , for sane positive constant c .

Remarks

Condition (6 .17) ensures that x0 , ... ,xq approach t sufficiently

fast, ile (6 .18) makes sure that they do not approach t too fast.

These conditions could be weakened, but Theorem 7.1 shows that sane such

conditions are necessary if q ? 2 . If q = 1 th~n the conditions

are superfluou.s: see Corollary 7 .l.

Equation (6 . 20) implies that (2 .2) holds with p = ~ , but (2.1)
q

does not necessarily hold, for

Proof of Theorem 6 .1

Let y = jK(x - t)l · n n

.., > 1 if q? 3 •
q

Fran the assumpti01:s (6 .17) and (6 .18) we have, at lec.st for n = 0 ,

55

(6.21)

*w~^mm

3.6

Vi-i > Vi ^•22)

for i = 1,2,.. .,q , and

Vq > Vn+1 > 0 * ^•25)

We shall show that (6.22) and (6.23) hold for all n > 0 . Suppose as

inductive hypothesis, that they hold for all n < m . Then, by taking

|x - £| sufficiently small (independent of m) , we may suppose that i he

remainder R of Lemma 6.1 satisfies
n

for all n < m . Thus, from Lemma 6.1,

Wl ^ ymVl^ + t+Ä+3^+ ••• + Ä)

- 2 JmJm*l < |ymy^i • (6.25)

From (6.25) with n = m , this gives

Vq > Wl ' (6-26)

Similarly,

y_^-, > y..y_.-,(i - r - — - ;
,,1225 IN

Vq+1 ^ ynym+l
(1 " 5 " ^2 " 3 " ^ " ••' ' ^

! ^ i ymVl (6-2^

^ ^lym+2 * (6-28)

Also, from (6.27), jr. +1 > 0 ^ so the right side of (6.28) is positive.

From (6.26) and (6.28), we see that (6.22) and (6.23) hold for n = m+1 ,

so they hold for all n > 0 , by induction. Thus (6.25) and (6.27) hold

for all m > C .
56

i i r f r i r ! f i f i

J.6

^w

Let

and

\ = -log y
n ^ Jn

n n+q+1 n+1 n

(6.29)

(6.50)

From (6.25) and (6.27),

k _ log 2 , (6.51)

so we may apply Lemma 6.2 with s = 1 . If q > 5 then 7 > 1 , so

\ = c.ßn + 0(n.7n)
n Kq q

(6.52)

as n -♦ 00 . From Theorem 5.1, c > 0 , so the result for q > 5 follows,

If q - 1 or 2 then 7 < 1 , so
q

.n
X. = c.ß' + 0(1)
n Kq v ' (6.55)

as n -• ao . From (6.29), (6.30), (6.33) and Lemma 6.1, we now see that

k = o(l)
n v ' (6.510

as n -. oo , so, by equation (6.1^) with s = 1 ,

\ = c.ßn + o(l) ü ^q v ' (6.55)

as n -» C5 . Tlius, there exists

lim —^-
n -*» pq

y n

= 1 , (6.56)

.(q+i) so the result follows frotr equation (6.21). (Note that, if fw ^ c Lip., a
M

for any M and a > 0 , then (6.5*0 may be replaced by k = o(s) for

any s > 0 , so (6.15) nolds, and

57

mm

L-J LA LI

3-7

*- -^1 . A-1

n

as n -»«a .)

2Ü—1- = IKI« + 0(n«-1 . ^) (6.57)
x - £1 1

7 • Stronger resiilts for q = 1 and 2

In this section W9 restrict our attention to the two cases of the

greatest practical interest, q = 1 (successive linear interpolation)

and q = 2 (successive parabolic interpolation for finding an extreme

point). Corollary 7-1 shows that the conditions (6.17) and (6.l8) of

Theorem 6.1 are unnecessary if q = 1 .

Corollary 7*1
p

Suppose that q = 1 ; f eC [a,b] ; (; e (a,b) ; f(5) = 0 ;

f (C) / 0 ; and f"^) /■ 0 . If x0 , x^^ and £ are distinct and

sufficiently close together, then a sequence (x) is uniquely defined

by (1.1), and x -» {J with strong order ß = - (1 + /5) and asymptotic

constant L.p.m I as n - oo .

Proof

mr

From Lemma 6.1,

X2-C = 2FTf} (X0"5)(X1-S)(l+O(l)) ^'^

as max(|x -^j, |x -^|) -0 . Thus, Theorem 6.1 is applicable to the

sequence (x1) , where x' = x , provided x and x are sufficiently

close to 5 •

5Ö

3·7

Remarks

Ost rowski (1966) gives Corollary 7.1 with the stronger assumption

that f EC3(a,b] . He also shows that, if f EC3[a,b] and the

conditions of Corollary 7.1 are satisfied, then

(7.2)

e.s n oo • As we remarked at the end of the proof of Theorem 6 .1, the

2 relation (7 .2) holds provided that f Eu:; [a, b ;M,a] or sane M and a

(see equation (6 . .37)). For an even weaker condition, see (7.7) and (7.8)

below.

The following thecrem removes the rather artificial restrictions

(6.17) and (6.18) of Theorem 6.1, if f(q+l) is Lipschitz continuous

and q = l or 2 • The proof does not extend to q ~ .3 , because it

depends on the assumption that

and q = 2 (see Table 5.1).

Theorem 7.1

r < l , which is only true for q = l
q

q+l fEU:: (a,b;M] t E (a, b) ; Suppose that q = l or 2 ;

f(q-l)(t) = 0 ; and f(q)(t) f 0 • If x0 , •.• ,xq are (distinct and)

t , then a sequence (x) is uniquely defined sul'ficiently close to

by (l. l), B.:ld either

l: X -+ ~ n with strong order

n

~ and asymptotiu constant
q

3-7

IVi - i

n ^

f(q+1)(0_

q(q+l)f^(S)

n + 0(n^ /) (7.3)

or

as n - OD (recall that ß ~ 1.6l8 , ß2 ^ 1.525 , 7- ^O.ölS ,

and 7 ~ 0"869) ;

2: x -• 5 wtth weak order at least 2 if q = 1 , or n

c2-^)5 - 1-378 if ^2 •

-
i

Remarks

If q = 1 then, by Corollary J.l, case 2 of Theorem 7.1 is

possible only if f"(S) = 0 (or if one of x and x coincides with 5 >

vhen the weak order is «).

If q = 2 then case 2 is possible, although unlikely, even if

f (S) / 0 and x / 5 for all n . All that is necessary is that

the terms in relation (7.28) repeatedly nearly cancel out. Jarratt (1967)

and Kowalik and Osborne (1968) assume that such cancellation will eventually

die out, so the order will be ß_ . The conditions (6.17) and (6.18)

are sufficient for this to be true, but without sane such conditions there

is a remote possibility that cancellation will continue indefinitely.
o p

7or example, with f(x) = 2x ♦x , there are starting values x , x

and x2 such that

and

x2n ~ exP(-2n)

x2n+l ~ -exP(-?n) '

) (7A)

J

60

i t r i r 1 \ i

3-7

so x -• £ = 0 with weak order /?. . Similarly, if

7 =|(3 + /5) = 2.618 ... , (7-5)

then there are starting values such that

x5n ~ exp(-7) ,

X3ttfl ~ exp(-(7-l)7n) ,

and

3nt-2 -exp(-(7-l)7n) ,

(7-6)

J

so x -• 0 with weak order y ' = 1.378 The x.roof is emitted,

but the reader may easily verify that (7'^) and (7.6) are compatible

with Lemma 7'3 below (this depends on the relation 27-I = 7(7-1)) .

For the sake of simplicity, we have not stated Theorem 7.1 in

the sharpest possible form. If f'q+ '(C) = 0 , then x - $ with

(q+D
Li%

a for weak order at least ß . > ß , provided that f

some M and a > 0 . If f^q+ '(5) / 0 , then the theorem holds

Q+l
provided that f 6CH [a,b] . Equation (7.3) may no longer hold, but if

there is an e > 0 such that

w(f(<1+l);5) = 0(|log6|"e/q) (7.7)

as 8 -• 0 , then

1^1 - 5 D+l

K ■ «I
ß. f(1+1Y

q{q+l)^
q'{C)

^

>,
0(nq"17n) if e > 1 ,"

= (0(nq7q) if e = 1 ,\(7.8)
/

V. <) if E < 1 ,
J

as n -» 00 . (A condition like (7'7) occurs in seme variants of Jackson's

theorem: s ee Me inardus (I967).)

61

3·7

Before proving Theorem 7 .1, we need three rather technical lemmas.

Lemma 7.1

Suppose that, for n ? 0 ,

xn+3 = xnxn+l + xn+lxn+2 + xnxn+2 + mnB~B~ , (7 .9)

where Bn is the largest of lxnl , lxn+1 1 And lxn+2 1 , and B~ is

the second largest. If there is a positive constant L such that

l~L? lx01 ? 3\~1 ? 91~1 ? 271~\' and

Proof

As in the proof of Theorem 6.1, it follows by induction on n that

for al.1 n > 0 •

Lemma 7-2

If the ~cndit ions of Lemma 7.1 are satisfied, then either x = 0 n

for all sufficiently large n , or

as n-+a>.

(7 .ll)

3-7

Proof

If x / 0 for infinitely many n then, by Lemma 7.1, xn / 0 for

all n > 0 . If this is so, define \ = -loglx I and — n ' n1

k aX^-X-.^-X . From equation (7.1l)> k is bounded, so n n+5 n+1 n ^ ^ " n

Lenuna 6.2 with 8=1 gives \ = cß2 + 0(1) as n - « . By

Lemma 7.1, \ -»+oo,so c>0. Thus, from (7.9),

»n+l,.
k = 0{ew[Mßr>'l)ßo]) (7.12) n

as n -» * (this is not necessarily true in the proof of Theorem 6.1).

Now, Lemma 6.2 with s < 72 gives

Ni = Cß2+ 0(n72) (7-13)

as n -♦ » , and the result follows from the definition of X . n

Lemma 7*3

Suppose that (7 »9) and (7*10) hold. Then there are constants K

and N (depending on L) such that if, for some n >N ,

and

then

I > Ivil * *KJ • (7-15)

x ^, = xx^. (l+vn) , (7 «16) n+5 n r&l> 1,^ ' M /

2
x ^1. = x x ^,(1 + v0) + x ^^ AO(l + v,) , (7 »17) n+4 n n+lv 2,^ n+1 n+2v J^n' ' v« ■/

I
x^c = x2x\-(l+ v.) + x x ^.x ^0(1 + vc) , (7-18) n+5 n n+lv h,^ n n+1 n+2v 5,n/ ' vi /

63

tfei ^.T^nuRj^ffeä 'J».. . ■ --■'^■.-^K-.^^v., ".■;f.,-t>'^:.-i;ii1».. , , .

^^MMA^i^i

3-7

and

x..^ = x2x.^1(l+ v.) + x x ^_x . 0(1 + v.,) , (7.19) n+6 n n+V b,n' n n+1 n+2v IJV. \\ ;i

where

K

for i = ^ ...,7 .

Proof

The lemma follows by repeated use of the recurrence relation (7-9)

and the inequalities (7.10), (7.1^) and (7.15).

Proof of Theorem 7.1

Without loss of generality assume that S = 0 • First suppose that

q = 1 . If. f'tO) / 0 then the theorem holds, by Corollary 7.1. If

f"(0) = 0 then, by Lemma 6.1,

as 8 -♦ 0 , where 5 and 6' are as in Lemma 6.1. If x^ and x, n n n 0 1

aj'e sufficiently small, equation (7«21) implies that

8n = lxnl C'-22)

and

for all n > 1 . Thus x -0 as n-»», and - n '

lXn+2l < A2|Vn+ll «'^

6k

t • f 1 i t f « 1 1 r ^ '4 0 1 <

mm

3-7

for all n > 0 , where A is some positive constant. If some x = 0 n

then x1^=xir, = ...=0. and we are finished (weak order «.) n+1 n+2 v '

Otherwise, there is no loss of generality in assuming that

AU I < exp(-2n) n

for n = 0 and n = 1 . From (7.2h), equation (7.25) holds for all

n > 0 , by induction on n . Thus, the weak order of convergence is at

least 2 , and the proof for q = 1 is complete.

From now on, suppose that q = 2 . By Lerama 6.1,

(7-25)

f(3)(0) ,
cn+3 " 6f"(0) lxn

.(3)

x ^ + x ^nx^0 + x x ^0) + 0(8 6») (7.26) n+1 n+1 n+2 n n+2/ v n n7 v '

as n -♦ 00 . if f ^ ' (0) = 0 then the weak order of convergence is at
3

least ß , the positive real root of x = x+2 , by a proof like

that above for q = 1 , and the theoran holds as ß0 0 = I.52

(3) If fv'(0)/0, then we may as well suppose that

ftr1 = 1 > "-^
by a change of scale, as in the proof of Theorem 6.1. Thus, we mi'St

study the interesting recurrence relation

x-^z = x x ..T + x ^x ^r, + x x ^ + 0(6 6») , n+5 n n+1 n+1 n+2 n n+2 ^ n n' ' (7-28)

and, by Theorem 5«1* we can assume that x - 0 with weak order at

least ßp .

First suppose that the %e is an infinite sequence N = (n ^n..,...)

with the property that, for every i > 0 and n = n. , either

65

t i » ('»

*

3-7

1:
i+l (7.29)

and

kn lx x'j-nl < lx ^ol < 2|x x 1 n n+11 - ' n+2' - • n : n+11 ' (7-30)

or

n
i+l

n+5 (7.31)

and

lXn+pl < H*XJ nVl' (7.52)

If either (7-30) or (7-32) holds, then Lemma 7.3 is applicable for all

sufficiently large n = n in the sequence N . To avoid confusion

with sutscripts, write .-n for n.+1 (so ra = n+2 or n+5). If

n = ni U sufficiently large* and (7.29) and (7.30) hold, then

lx I < 2|x x _l 1 m1 - ' n n+11 (7.33)

and, by Lemma 7.3>

lx ... I < 2|x x Ll I 1 m+11 — ' n n+11 (7.3M

If (7.31) and (7-32) hold then, similarly,

|x I < 2|x x 1 nr — ' n nfl (7.35)

and

ra*-!1 — ' n n+11 (7.3r.)

Let

y = ^ x n ' n (7-37)

Alter a fixed n ^ n. in N , suppose that the next r > 1 element:

66

^^,

3· 7

of N "'a.tis:t'y (7 .31), and t hen th.e next s ~ l .:;at is:t'y (7 .29) . Then

repeated use of the inequalities (7 .33) to (7 .36) gives

max(y y) < max(y y)~(r,s)
· n+3r+-2s' n+3r+2o+l - n' n+l ,

where

Let 1

(3r+-2s 1V(r, s) = ~ r, s)

('7.38)

(7 ·39)

(7.4o)

For fixed s ~ 1 , 'f(r,s) is a decreasing function of r , with limit

1

c = (3 ; /"5) 3 = inf 'f(r, s)
r,s ~1

s.s r co • Thus,

the theorem holds.

x - 0 with weak order at least c , so c se 2 of
n

(7 .41)

Now suppose that there is no infinite sequence N as above. By the

superlinea.r convergence of (x) ' n
Lemma 7.3 is applicahle for infinitely

many n • Choose such an n (sufficiently large) • There are only

three possibilities:

1. Equation (7 .30) holds;

2 . Equation (7 .32) holds; or

) . Neither (7 .30) nor (7 .32) holds , so

(7 .42)

In the first case, Lemma 7.3 shows that we can replace n by n+2 , and

continue with one of the three cases (it is crucial to note that Lemma 7.3 is

67

3.8

still applicable). In the second case, Lenma 7'5 shows that we can

replace n by n+5 and continue. Since no infinite sequence N with

the above properties exists, the third case must eventually arise. Then,

from (7-^2) and Leinma 7-3^ we see that Lemma 7.2 is applicable to the

sequence (x') , where x' = x , . By Lemma 7'2, (x1) converges

with strong order ß0 and asymptotic constant 1, and hence, so does (x) n'

In view of the assumption (7.27), this completes the proof.

8. Accelerating convergence

If a very accurate solution is required, and high-precisica evaluations

of f are expensive, then it may be worthwhile to try to increase the

order of convergence of the successive approximations by some acceleration

technique. For example, we can use Lemma 6.1 to improve the current

approximation at each step of the iterative process. Jarratt (1967) suggests

one way of doing this if q = 2 , but the method which we are about to

describe seems easier to justify (see Theorem 8.1), and applies for

any q > 1 .

Suppose that x , ...,x are approximations to a simple zero 5

of f^~ * . For example, they could be the last q+2 approximations

generated by the successive interpolation process discussed above. We

may define x p,x +,, ... in the following way: if n > 1 and

X-,. •., x
n+q

are already defined, let P = IP(f;x ,...,x) , and n n n+q'

choose y such that an

P^Cy) = 0 , n wn/ (8.1)

68

ff f 1 til*

3.8

i.e., y is just the next approximation generated by our usual

interpolation process. From Lemma 5.1, y is given explicitly by

^n = i (.£ Vi
^ 1=1

f[x nfr r£Q
f[x ,. .^x^] rr n+q

(8.2)

Instead of taking y as the next approximation x^ . _ , we use n nrq+J.

Lemma 6.1 to ccmpute a correction to y , and take the corrected value

as the next approximation. Formally, we define x . by
nrCj+J.

f[x

n+q+1 yn " q
h-r

•I|X •*•••X I
n' ' n+q n (8.3)

where

s = L (x _,..
n 0<i<j<q n+i Vr) (xn+j " V ' (8.10

For a Justification of equations (8.3) and (8.U), see the proof of Theorem

8.1 below. This theorem shows that, under suitable conditions, the

sequence (x) is well-defined, and x -» ^ with weak order appreciably

greater than ß , which is the usual order of convergence of the

unaecelerated process (see Sections 5 to 7) ♦ Note that there is very

little extra work involved in computing x + +1 from equations (8.3)

and (Q.h) if y is computed via (8.2), for f[x ,...,x] and

f[x ,...,x] (except at the first iteration) will already be

known.

Before stating Theorem 8.1, we define some constants ß' which

take the place of the constants ß (see Definition 5.1) if the

accelerated process is used.

69

III« \ * i

-■i

I

3.8

Definition 8.1

For q > 1 , f' is the positive real root of

xq+2 = x2 + x + 1 . (8.5)

Remarks

It is easy to see that ß* > ß , and, corresponding to the bound
1 4 M.

(5.2), we have

1 1

3q+1 < ß» < 3q . (6.6)

If x -♦ (; with weak order ß > 1 then, by the definition of

order (see Section 2), for any e > 0 we eventually have

-log|xn - 5| > (ß - e)n . (8.7)

Thus, the number of function evaluaticns required to reduce |x - £|

below a very small positive tolerance is inversely proportional to log ß

(assuming that approximate equality holds in (8.7)), and the ratio

log ß
■. of suggests how much we gain by using the accelerated process,

q

rather than the unaccelerated process, if very high accuracy is required.

Fron the bounds (5.2) and (8.6),

log ß
lim 3—^ = l0g^ 2 = 0.6309... , (8.8)

so there is R. 37 percent saving for large q . Of course, the only

practical interest is in small values of q , and in Table 8.1 the
log ß

values of ß1 , ß and ■=——-rf are given for q = 1,2, ...,10 . The
4 1 q

entries for ß* are correctly rounded to 12 decimal places, and the

70

^^ __—I .1— '^

mm ^~r
& ' w t» ■p

3-8

Table 8.1; The constants ß« for q = 1(1)10 to 12D

r

"4

4

1 ■ "i
log ßo/log ß^ '

1 i 1.83928675?21^ 1.6180 0.7897

! 2 : 1A65571231877 1.32U7 0.7557

5 1.32^71795721+5 1.2207 O.7093

: h 1.2^98515888611 1.1673 O.6936

5 1.203216033518 1.13^7 0.6832

6 I.171321856385 1.1128 0.6757

7 l.lWn ^97353 1.0970 0.6702

: 8 1.13045957186^ I.0851 O.6658

9 1.116575158368 I.0758 0.662?

i 10
i

I.1053673229I19 1.0683 0.6595
.. . J

I

See Definition 8.1, and the remarks above, for a description
logß

of the constants ß* and the significance of the ratio •; rf
q log ß^

The constants ß are given to 12D in Table 5.1.

71

- **?>,

mm

3-8

other entries are given to h places (they are given for comparison

only: see Table 5'1 for the ß to 12 places). The table suggests

CO 5 ?
that ßl = ß2 , and this is true, for xv - x - x - 1 = (xv - x - l) (x +1) .

Theorem 8.1

Suppose that f eK;q+1[a,b;M] ; C e (a',b); f^"1^^) =0;

f (C) / 0 ; and x ,...,x are (distinct) points in [a,b] . If

x0, ...,x .. are sufficiently close to £ , then a sequence (x) is

uniquely defined by equations (8.2) to {&.k), and x -» ^ vith weak

order at least ß' (see Definition 8.1) as n -♦» .

Proof

For n > 1 , Ir/t 8 be the largest of |x -Cl>'"^lx_. - t\ ', ~~ n ' n ' n+q

let 8' be the second-largest; and let

8n -max^lx^-d) . (8.9)

If y is defined by equation (8.2), then Lemma 6.1 shows that n

yn - S = K t (x - c) (x - 0 + o(5V) (8.10)
0<i<J<q ai "^^ nn

as 8 -» 0 . where n

f(q+l)/M
K = f {

{J} - (8.11)
q(q+l)f^(0

In pai'ticular, (8.10) implies that

yn-S =0(5^) (8.12)

as P«. - 0 . Thus, for 0 < i < j < q ,

72

r t t 1 t 1 1 ? 1 1 f 1
_J t. -

3.8

(Vi-V^n+r^ v n+x " v n+j ' • n n' (8.13)

as 6 -♦ 0 . n

If 5 is sufficiently small then, since fVH/(t;) / 0 , we have (q)
n

f[x ,...,x +] / 0 , and, by Theorem 2.5.1,

^^X
n_l' * * *,Xvvi« J

n+q
(8.1U)

as 6 -♦ 0 . n

If s is as in (8A), then (8.13) and (8.lU) give

113C -•••••X I n-1' ' n+q_ . s
n = K Z i*^A-t){*^*~i)h0ilj>J>l) (8.15

a ^n+qJ 0<i<o <q q.f[xM, ...,x .] n **A^4*^4^^ '"n:fi "^'n+J " »an

as & -» 0 . Thus, from (8.3) and (8.10),

x ^ ^ -5 = 0(5 & 5') n+q+1 * v n n n' (8.16)

as S -» 0 . This shows that, provided 5^^ is sufficiently small, the

sequence (x) is vmiquely defined, lies in [a,h] , and x -» J as

n -• oo .

From equation (8.16), there is a positive const suit A such that,

for all n > 1 ,

lx^. ^-1-51 < A2 & 5 5f , 1 rH-q+1 »• - n n n ' (8.17)

and, if 6, is sufficiently small, then

-log(A|xn.S|) > ß'n (8.18)

for n = 0, ...,q+l . From equation (8.17) and the definition of ß' , we

see that (8.18) hold* for all n > 0 , by induction on n . Thus

73

l) t i I A \ i i ;

■MnMn_«|_Baaaa4BI^>AMajta

'fj "^ *~ IM». » ._ » m ■ "* l!'' m W!' * wr *

3.9 1

lim lnf(-log|xn - C|)n > ß' , (8.19)
n -» 00

i.e., the weak order of convergence is at least ß' , so the proof is

complete.

9. Some numerical examples

To illustrate the theoretical results obtained in Sections h to 8,

we give the following examples:

1. q = 1 , f(x) = x+x +x' , x- - 2 , x- = 1 ;

2. q = 2 , f(x) = 8+6x2+4x5+3x , x0 = 2 , ^ = 1 ' Xg = 0.5 ;

?. q = 5 , f(x) = 1+ l40x+ 10x5+ 5x + 3x5 , x0 = 2 ' yi = 1 '

x2 = 0.5 , x^ = 0.25 ; and

k. q = ^ , f(x) = 1+ 2x+ lK)x + 5x + 2x^+ x , x = 2 , x = 1 ,

x2 = 0.5 , x, = 0.25 , x^ = 0.125 •

In all these examples 5=0, and the iterative process defined

by (1.1) converges, even though the initial values are not very close

to 5 • Apart frcw constant factors, the polynomials are obtained by

differentiating the last one (for q = ^) h-q times, so we are solving

the same problem in four different ways.

Table 9*1 gives the sequences (x) produced by the successive

interpolation process, for the functions and starting values given above.

To illustrate the superlinear convergence, the entries are given until

-20
|x I < 10 ^ , although such high precision would seldom be required in

practical problems. The table also gives the sequences (x1) produced

Ik

'. ^ij* ■ - MiWl&»

mm

-■•■ i •'f^;. |B* ■■ sm •■ m-v ■'. ■ K:'

3-9

by the accelerated interpolation process described in Section 8, with

starting values x.1 = x. for i = 0, ...,q+l . As predicted by Theorem 8.1

and Table 3.1, the accelerated sequences converge appreciably faster than

the unaccelerated ones.

To verify relations (8.12) and (8.16), the table also gives

n
n x x _ n-q n-q-1

(9.1)

and

r» = n

x»
n

n-q n-q-1 n-q-2
(9-2)

when they are defined. With a few exceptions near the beginning of some

of the sequences, both (|x |) and (jx'l) are monotonic decreasing, so

r and r' should be bounded. Prom Lemma 6.1, we expect that n n

f (q+D
lim r = —T--^ ,

n-» n q(q+l)f^(S)
7^ (9.3)

and this is just ; +-v for our examples,

proof of Theorem 8.1, we expect that

lim r' = \)K ■ ,
n-» n q(qfl)(q+2)f^(0

Similarly, fron the

(9^)

and this is just { +-\\f +o\ • ^e reBults support these predictions.

Table 9.1 was computed on an IBM 560/91 computer, with 1^ digit

truncated floating-point arithmetic to base l6. To minimize the effect

of rounding errors, we took advantage of the fact that n-th divided

differences of l,x,x ,...,x vanish identically when compating the

75

3-9

divided differences in equations (8.2) and (8.3)• Without this device,

it is not possible to reduce |x j or jx' | to 10" vithout using

higher precision arithmetic, because of the effect of rounding errors

(except for q = l) .

For q = 2 , our example is the same as that used by Jarratt (1967),

and our results agree with his for n < 9 • For n = 10 and 11 our

results differ slightly, presumably because of rounding errors. The

example given by Jarratt (1968) for q = 3 has also been verified.

76

f t f f #1 if ((

mm ■^^p^^

3-9

Table 9.1; Numerical results for q = 1, 2, 3 and h

' „! X
n

x. '
n

r
n

r
q r»

n

1 0 2.000 2.000

1 1.000 1.000

2 7.273,-l 7.275t-l 0.3636 ;

5 5.980'-l 2.100t-l 0.5V73 j 0.1444

li 1.983,-1 4.389»~2 O.685I i 0.2874 ;

]

5 6.727»-2 -1.846»-3 : 0.8523 | -O.2755 i

6 1.276»-2 1.221»-5 ; O.9568 ! -O.7178 i

7 8.5^3'-^ l.035t-9 ; 0.9949 i -1.0455

8 1.090,-5 2.350»-17 ; 0.9998 -I.OO66 \

9 9-51^,-9 : -2.982»-31 l 1.0000 -1.0039 '

10 1.015'-13 1.0000

11

0

9.U57»-22

2.000 2.000

1.0000 '

2

1 1.000 1.000 i

' 2 ; 5.000»-1 5.000»-l :
\

■ 3 ^ 5.l62»-l 5.l62'-l : 0.2581 '

i h ■ 2.68l»-l 1.219»-1 0.5362 \ 0.1219 j

' 5 1.366»-1 5.27l'-2 0.5291 ' 0.1267 j

6 6.978«-2 5.618»-3 0.5042 ; 0.1786

7 2.053»-2 -3.365'-4 O.5607 -0.1634 :
; 8 ^.5^7'-3 -3.484»-6 0.4772 -0.1556

9 6.15V-U 1.325'-8 0.4296 -0.2144 j

10 3.631,-5 -I.728»-12 O.389O -0.2625

11 9.956»-7 -3.844'-18 0.3558 -0.2477

i
t

12 7.666»-9 -2.008»-26 0.3430 -0.2518

i 13 1.215»-T1 0.3360 i

i 11* 2.51*8,-15 0.3339
;

15 5.10^»-20 0.3334 ;

16 1.032»-26 0.3333 ;
— :

77

m ,-

3.9

Table 9-1 fcont.irmf«l>

i q n X n

3 0 2.000
j 1 1.000

2 5.000«-1
? 2.500»-l
h 3.775,-l
5 1.81V-1

i 6 8.57^-2
7 h.2lk*-2
8 2.268»-2
9 5.580'-3

10 1.227'-5
11 2.3^7'-^
IP 2.809'.5
13 l.lAl»-6
ll< 5.518«-8
15 l.l64'-9
16 7.021'-12
17 1.35k'~ik
18 1.077'-17
19 I.365»-21

h 0 2.000
1 : 1.000
2 5.000»-1
3 2.500,-l
U 1.250'-1
5 2.8iK)»-l
6 : 1.258»-1
7 5^53,-2
8 2.^92»-2
9 1.274»-2

ID 7.507,-3
11 1.564»-3
12 3.227»-4
13 6.871»-5
Ik 1.360»-5
15 1.5k5'.6
16 6.659»-8
17 2.8lU»-9
18 I.067»-10
19 2.207»-12
20 1.073'-14
21 1.944»-17
22 3.069»-20
23 i 2.367'-25

X»
n

2.000
1.000
5.000»-1
2.500,-l
3.775,-l
6.882»-2
1.567,-2
3.572'-3
7.222»-4
-3.9^9'-5
-3.5^7'-7
-2.893'-9
8.630,-l2
-1.067'-15
4.009'-21

2.000
1.000
5.000»-l
2.500»-l
1.250»-1
2.84o'-l
3.887'-2
7.030'-5
1.461'-3
4.448»-4
l.l68»-4
-4.334'-6
-2.390»-8
-2.370'-10
-2.500'-12
9.027»-15
-6.291»-19
1.243'-24

n

O.I887
0.3628
0.6860
0.4465
0.3313
0.3588
0.3395
O.2455
0.2219
0.2105
O.1917
O.1766
0.1735
0.1703
0.1677
0.1670

1

0.1420
0.2517
0.4362
0.7975
0.3588
0.2101
0.2279
0.2374
0.2164
0.1423
0.1316
0.1316
0.1270
0.1142
0.1050
0.1046
o.io4o
0.1022
0.1005

r'
n

0.0688
0.1253
0.0757
0.1112

-O.O970
-O.O92I
-O.O716
-0.0847
-O.IO55
-O.O989

O.O389
0.0562
0.0935
0.0501
0.0846

-O.0558
-O.0598
-O.0519
-O.0329
-0.0401
-O.0520
-O.0506

78

m
_>^* . - '- ■-

«•"«> iWMk ^tfte •■■li)ttPMf SBv

3.10

10. Summary

The main results of this chapter for q = 1 (successive linear inter-

polation for finding a zero) and q - 2 (successive parabolic interpolation

for finding a turning point) are summarized below.

Theorem 3.1

q = 1: If feC and x -» £ , then f(5) = 0 .

q = 2: If feC1 and x -» £ , then f» (0 = 0 .

Theorem k.l

q = 1: If feC , f (£) / 0 , and a good start, then superlinear convergence,

q = 2: If feC , f'^C) r ® > an^ a sood start, then superlinear convergence.

Theorem ^.1

q = 1: If fe.IC , f* (C) / 0 , and a good start, then weak o^der at

least ß1 = I.618 ...

q = 2: If feLC , f"(S) f 0 * ^ a good start, then weak order at

least ß2 = 1.32^ ...

Theorem 7'1
p

q = 1: If feLC , f1^) / 0 , and a good start, then either strong

order ß1 = 1.6l8... or weak order at least 2 .

q = 2: If feW , f"(£) / 0 , and a good start, then either strong

1/3
order ß2 = 1.52^... or weak order at least {'JZl

]f:;') = 1.378...

Theorem 8.1
2

q = 1: If feLC , f (5) / 0 , and a good start, then the accelerated

sequence converges with weak order at least ß' = 1.339...

q = 2: If feLC , f"($) / 0 , and a good start, then the accelerated

sequence converges with weak order at least ß' = 1.465...

79

- I L

" ■ u ^

Chapter h.

An Algorithm with Guaranteed Convergence for Finding a

Zero of a Function

♦ * t • I 1 f I (« ^ I I)

h.i

1. Introduction

Let f be a real-valued function, defined on the interval [a,b] ,

vith f(a)f(b) < C . f need not be continuous on [a,b] : for

example, f might be a limit ed-prec is ion approximation to some continuous

function (see Forsythe (1969)). We want to find an approximation S to

a zero 5 of i" > to within a given positive tolerance 26 , by evaluating

f at a small number of points. Of course, there may be no zero in [a,b]

if f is discontinuous, so we shall be satisfied if f takes both

nonnegative and nonpositive values in [£-26, C+2&] Cl [a,b] .
A

Clearly, such a 5 may always be found by bisection in about

logp[(b-a)/5] steps, and this is the best that we can do for arbitrary f .

In this chapter we describe an algorithm which is never much slower than

bisection (see Section 3)> but which has the advantage of superlinear

convergence to a simple zero of a continuously differentiable function, if

the effect of rounding errors is negligible. This means that, in practice,

convergence is of^.en much faster than for bisection (see Section k).

There is no contradiction here: bisection is the optimal algorithm (in a

minimax sense) for the class of all functions which change sign on [a,b] ;,

but it is not optimal for other classes of functions: e.g., C functions

with simple zeros, or convex functions (see Gross and Johnson (1959)>

Bellman and Dreyfus (I962), and Chemousko (19^0)).

Dekker's algorithm

The algorithm described here is similar to one, which we call Dekker's

algorithm for short, variants of which have been given by van Wijngaarden,

Zonneveld and Dijkstra (1965), Wilkinson (1967), Peters and Wilkinson (I969),

81

\ (

-' it

I #j; I

,

J

,, ~ f i; I

1 I

I ~ I llfJ .h In ~

11111111 I ~1j IJ ~~

I Ill , l1rM

II I' Uf •

Hi II Hl\li\1

tl I

' 'I'll

I • \I n

h.2

confusion if we omit subscripts. b is the best approximation so far

to ^ , e is the previous value of b , and £ must lie between b

and c . (initially a = c .)

If f(b) = 0 then wt are finished. The ALGOL procedure given by

Dekker (I969) does not recognise this case, and can take a large number of

small steps if f vanishes on an interval, which may happen because of

underflow. Hiie occurred with f(x) = xy on em IBM 560 computer .

If f(b) / 0 , let ra = (c-b)/2; . We prefer not to return with

5=0 (b+c) as soon as jmj < 26 , for if superlinear convergence has set

in then b , the most recent approximation, is probably a much better

1 * approximation to ^ than p(b+c) is . Instead, we return with 5 = ^

if |m| < 5 (so the error is no more than 5 if, as is often true, f is

nearly linear between b and c) , and otherwise interpolate or extrapolate

f linearly between a and b , giving a new point i. (see later for

inverse quadratic interpolation.) To avoid the possibility of overflow

or division by zero, we find i as b + p/q , and the division is not

perfoimed if 2|p| > 5|m.qj , for then i is not needed anyway. The

reason why the simpler criterion |pi > jm.qj is not used is explained

later. Since 0 < |f(b)| < |f(a)| (see later), we can safely compute

s = f(b)/f(a) , p = +(a-b)s , and q = +(l-s) .

f i if i lies between b and b + ^m ("interpolation").
Define b" = (

Ib+m otherwise ("bisection"),
i

Tb" if jb-b"! >5 ,
and b« = <

I b + 5.sigr(m) otherwise (a "step of 6 ") .

Dekker's algorithm takes b* as the next point at which f is

evaluated, forms a new set fa,b.c} from the old set (b^jb1] , and
i

continues. Unfortunately, it is easy to construct a function f for which

83

 . ._

h.2

steps of 6 are taken every time, so about (b-a)/6 function evaluations

are required for convergence. For example, let

2X/6 for a+6 < x < b ,

f(x) = { .(bia^)#2b/5 for x = a ^ {2ml)

arbitrary for a < x < a+6 .

The first linear interpolation gives the point b-6 , the next (an

extrapolation) gives b-2B , the next b-36 , and so on.

Even if steps of 5 are avoided, the asymptotic rate of convergence

of successive linear interpolation may be very slow if f has a zero of

sufficiently high multiplicity. (Note that none of the theorems of

Chapter 3, apart from Theorem 3.3.1, apply for a multiple zero.) Suppose

that f €Cn[ft,b] , n >1 , 5e(a,b) , f(£) = f'C) = ... = f^"1^) = 0 ,

and f^n)(5)/0 (i.e., C is a root of multiplicity n>l). If
Xl " S

e > 0 , (- w) e (e^l-e) , and x is sufficiently close to 5 >
x0 " ^

then successive linear interpolation gives a sequence (x) which converges

linearly to 5 . In fact, equation (5.2.1) holds with p = 1 and

K = ß" , where the constants ß 2:2'^t~^ ' are defined in Definition

3.5«1« The proof is simple: if

y = Xmfl \ (2.2)
m *

is the ratio of successive errors, then a Taylor series expansion of f

about S gives

1 - n"1

vi = (—^H(1 + o(1)) (2-3)

as x -• C * provided y remains bounded away from 1 . Since the

b „ii .i

k.2

iteration

Vl = 8(\) ' (2-U>

wher^

n-1

g(2) = lj:^-r ' (2-5)

1 - z

has fixed point z = ß" , and

|g'(z)|<l (2.6)

for Z€(0,1) , the result follows fron Ostrowski (1966), Theorem 22.1.

An example for which convergence is sublinear (see Definition 5.2.2)

is

fo if x = 0 ,
f(x) = (.2 (2.7)

1 x.exp(-x) if x / 0 ,

on an interv€LL containing the origin. This is an extreme case, for f and.

all its derivatives vanish at the origin.(As a function of a complex

variable, f has an essential singularity at the origin.) If

0 < x;L < x0 </2 , (2.8)

then (x) is a positive, monotonic decreasing sequence, and, by Theorem

5.5.1, its limit must be 0 . Thus, successive linear interpolation does

converge, but very slowly.

Sane of the examples above are rather artificial, and unless an

extended exponent range is used (see later) we may be saved by underflow,

i.e., the algorithm may terminate with a "zero" as soon as underflow occurs.

85

(\

W i" J w i 4 ^i ■ ■.-^p

k,2

Even so, it iß clear that couvergeace nay occäsioaülly be very slow if

ttekJter's algorithm is used.

Our main modification of DekJser'e algorithm ensures that a bisection

iß done at leaßt once In every S.logpf |b-c j / &) consecutive steps.

The modification iß thiß: let e be the value of p/q at the step before

the laßt one. If |e| < 6 or |p/q| >ö |el then we do a bisection,

otherwise we do either a bißection. or an interpolation Jußt as in Dekke^s

algorithm, Thuß, jej decreaaeß by at leaßt a factor of two on every

ßecond ßtep, and when |ej <fi a bisection mußt be done. (After a

bißection we take e = ra for the next ßtep.) This is why our algorithm,

unlike Dekker'ß, iß never much slower than bißection.

A simpler idea is to take e as the value of p/q at the last step,

but practical t.^ßtß ßhow that thie ßlowß down convergence for well-behaved

functions by caußlng unneceesary bißections. With the better choice of e ,

our experience haß been that convergence Iß always at least as fast as

for Dekker'a algorithm (see Section h).

Xnverfle quadratic interpolation

If the three current points a , b and c are distinct, we can find

the point 1 by inverße quadratic Interpolation, i.e., fitting x as a

quadratic in y , instead of by linear interpolation using Jußt a and b .

Experiments show that, for well-behaved functlone, this device saves about

0.5 function evaluationß per zero on the average (see Section U). Inverse

Interpolation Is used bacauee with direct quadratic Interpolation we have

to solve a quadratic equation i'or 1 , and there is the problem of which

root iihould be accepted. Cox (1970) tUves another way of avoiding thiK

06

4.2

problem: fit y as a fUnction of the form p(x)/q(x) , where p and q

are polynomials and p has degree one. A third possibility is to use the

acceleration technique described in Section).8. (See also Ostrowski (1966),

Chapter ll.)

Care must be taken to avoid overflow or division by zero when computing

the new point i • Since b is the most recent approximation to the root ~ ,

and a is the previous value of o , we do a bisection if I f(b) I ~If(a) I .

otherwise we have lf(b)l < \f(a) I$ lf(c) \, so a safe way to find i is

to compute r
1

= f(a)/f(c) , r 2 = f(b)/f(c) , r 3 = f(b)/f(a) ,

p = ~ r
3

((c-b)r
1

(r
1
-r2)-(b-a)(r2-l)) , and q = + (r1-l)(r2-l) (r3-l) •

Then i = b + pfq , but as before we do not perfonn the division unless it

is safe to do so. (If a bisection ie to be done then i is not r.eeded

anyway.) When inverse quadratic interpolation is used it is natural to

accept the point i if it lies between b and c and up to three-quarters

of the way ·fran b tc c: consider the limiting case where the

interpolat ing parabola has a vertical tangent at c and f(b) = - f(c) .

Thus , i nn be rejected if 2\p 1 ~ 3\ cc;b> ·q 1 , which explains the

criterion discussed above.

The tolerance

As in Peters and wilkinson (1969), the tolerance (25) is a

combination of a r·elative tolerance (4£) and an absolute t olerance (2t) .

At each step we take

' (2.9)

where b is the current best approximation to ~ , £ = ma~heps is

the relative machine precision (f3l--r for -r -digit truncated f loating-point

87

k.2

arithmetic with base ß , and half this for rounded arithmetic), and t

is a positive absolute tolerance. Since 5 depends on b , which could

lie anywhere in the given interval, we should replace 6 by its positive

minimum over the interval in the upper bound for the number of function

evaluations required. In the ALGOL procedures the variable tol is used

for 6 .

The effect of rounding errors

The ALGOL procedures given in Section 6 have been written so that

rounding errors in the computation of i , m etc. can not prevent

convergence with the above choice of 5 . The number 2e in (2.9)

may be increased if a higher relative error is acceptable, but it should

not be decreased, for then rounding errors might prevent convergence.

The bound for |5 - SI has to be increased slightly if we take

rounding errors into account. Suppose that, for floating-point numbers

x and y , the computed arithmetic operations satisfy

and

fl(xxy) = x.y(l+ e^

fl(x + y) = x(l+e2)+y(l+e:5) ,

(2.10)

(2.11)

where |e. | < e for i = 1,2,5 (see Wilkinson (1963)). Also suppose

that fl(|x|) = |xj exactly, for any floating-point number x . The

algorithm computes approximations

m fl(0.5 X (c-b))

and

tol = fl(2 x e X |b| + t)

(2.12)

(2.13)

88

t ft t 1 r t f 1
i - -

i t
' - -

k.2

to m and tol , where 5 lies between b = | suid c , and the algorithm

terminates only when

\m\ < tol (2.1U)

(unless f(b) = 0 , when £ = 5 = b). Our asstjmptions (2.10) and (2.11)

give

|ä| >| (|c.b|-e(|b|+|c|))(l-e) , (2.15)

and, similarly,

tol < (2e|b| + t)(l+e)5 , (2.16)

so (2.110 implies that

|c-b| <(IrF)(2e|b|+t)(l+e)5+ e(|b|+|c|) . (2.1?)

Since |5-C| < |c-b| and b = g , this gives

\\-i\ <6£|5| + 2t , (2.18)

neglecting terms of order et and e |5j • Usually the error is less

than half this bound (see above).

Of course, it is the user's responsibility to consider the effect of

rounding errors in the computation of f . The ALGOL procedures only

guarantee to find a zero £ of the computed function f to an accuracy

given by (2.18), and £ may be nowhere near a root of the mathematically

defined function that the user is really interested in!

89

I i

___!

i i—j i—i -\—j t_j L_J u_J~i i"~»._J

Extended eacponent range

In some applications the range of f may be larger than is allowed

for standard floating-point numbers. For example, f(x) might be

det(A-xl) , where A is a matrix whose eigenvalues are to be found.

In Section 6 we give an ALGOL procedure (zero2) which accepts f(x)

z(x)
represented as a pair (y(x),s(x)) , where f(x) = y(x) .2 v / (y real,

z integer). Thus, zero2 will accept functions in the same representation

as is assumed by Peters and Wilkinson (I969), although zero2 does not

require that l/l6 < |y(x) | < 1 or y(x) = 0 , and could be simplified

slightly if this assumption were made.

3. Couvergence properties

If the initial interval is [a,b] , assume that

b-a > 5ra ; (3.1)

and let

k = llog2i{h-(i)/bm)^ , 0.2)

where 5 is the minimum over [a,b] of the tolerance

6(x) = 2.macheps. |xj + t (3.3)

(see Section 2), and fx-] means the least integer y >x . By

assumption (3.1), k > 0. (If k = 0, procedure zero takes only two

function evaluations.)

First consider the bisection process, terminating when the

interval known to contain a zero has length < 26 (so the endpoint — m

90

*i ■ *

*-jr

U.3 I

minimizing If 1 is probably within 5 of the zero, and certainly

within 26). It is easy to see that this process terminates after

exactly k+1 function evaluations unless, by good fortune, f happens

to vanish at one of the points of evaluation .

Now consider procedure zero or zero2. If k = 1 then the procedure

terminates after 2 function evaluations, one at each end-point of the

initial interval, just like bisection. If k = 2 then there are 2

initial evaluations, and after no more than k more evaluations a bisection

must be done, for the reason described in Section 2. After this bisection,

which requires one more function evaluation, the procedure must terminate.

Thus, at most 2+5=7 evaluations are required. Similarly, for k > 1 ,
i

the maximum number of function evaluations required is

2+(5+7+9+.••+(2k+l)) = (k<-l)2-2 . (3.10

Since Dekker's algorithm may take up to 2 function evaluations (see

Section 2), this Justifies the remarks made in Section 1. Also, although

the upper bound (J.U) is attainable, it is clear that it is unlikely to

be attained except for very contrived examples, and in practical tests our
j

algorithm has never taken more than 5(k+l) function evaluations (see

Section k) . This justifies the claim that our algorithm is never much

slower than bisection.

Superlinear convergence

Ignoring the effect of rounding errors and the tolerance 5 , we see,

as in Dekker (I969), that the algorithm will eventually stop doing bisections

when it is approaching a simple zero 5 of a C function. Thus,
i

temporarily ignoring the improvanent described in Section 2, the theorems

of Chapter 3 are applicable (with q = 1). In particular, convergence is
i
i

91

' L

l/n
superlinear, in the sense that lim sup jx - £ | ' = 0 , provided f

n -» oo

is C near the simple zero £ (Theorem J.U.l). If f is Lipschitz

continuous near £ > then the weak order of convergence is at least

p(l + /5) = 1.6l3 .o. (Theorem 3.5«1)« For a summary of the other

results of Chapter 5, see Section 3.10.

If f is Lipschitz continuous near the simple zero £ , then, even

with the inverse parabolic interpolation modification described in Section 2,

the weak order of convergence is still at least ^(l + /5) . The idea of

the proof is that, by Lemma 2.5«1> the curvature at £ 0^ "t*16 approximating

parabolas is bounded, so the inequality (5.5 »15) still holds for some M

(no longer the Lipschitz constant) and sufficiently small 6 .

Thus, our procedure always converges in a reasonable number of

steps and, under the conditions mentioned above, convergence is superlinear

with order at least 1.6l8 It is well-known that, since
p

(I.618...) = 2.6l8... > 2 , this compares favorably with Newton's method

if an evaluation of f* is as expensive as an evaluation of f . In

practice, convergence for well-behaved functions is fast, and the stopping

criterion is usually satisfied in a few steps once superlinear convergence

sets in.

Summary

The results of Sections 2 and 5 above may be summarized in the following

"theorem":

If a < b , e = macheps >0, t>0, f is defined on [a,b] ,

f(a)f(b) < 0 , and arithmetic is exact, then the algorithm defined by

procedure zero (see Section 6) converges, and returns $€[a,b] such that

92

if» It fl t \ 11 ri is i

k.k

f changes sign in L = [5-26, S+26] fl [a,b] , where 6 = 2E|5|+t ,

and the number n of times that f is evaluated does not exceed

2 1 (k+l) -2 , where k is given by equation (5.2). Also, if f eC [a,b]

i Ä 11/n
has a unique simple zero ^ e (a,b) , then |5 ~ £1 -»0 as macheps

and t - 0 , Finally, if arithmetic ie approximate, but satisfies (2.10)

and (2.11) with e < 10" , then the algorithm still converges, and

returns £ such that f changes sign in I-, , where 5s = 1.01(3e|5|+t) .

(The factor 1.01 takes care of terms of order et and e |5J .)

h. Practical tests

The ALGOL procedures zero (for standard floating-point numbers) and

zero2 (for floating-point with an extended exponent range) have been

tested using ALGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1968))

-13 on an IBM 360/67 and a 360/91 with machine precision 16 . The number

of function evaluations for convergence has never been greater than three

times the number required for bisection, even for the functions mentioned

in Section 2, and for the functions given by (2.1) and (2.7) Dekker's

algorithm takes more than 10 function evaluations. Zero2 has been

tested extensively with eigenvalue routines, and in this application it

usually takes the same or one less function evaluation per eigenvalue than

Dekker's algorithm, and considerably less than bisection.

In Table U.l, we give the number of function evaluations required

for convergence with procedure zero2 and functions x , x , f, (x) ,

and fp(x) , where

93

1 1 < 1

^Maaamta

I t ~
11 11 1

'"
\i'

:

4.4

Table 4.1: The number of' function evaluations f'or convergence with

procedure zero2

- · - ·-- - ··· - ·- ~ ·-

f'(x) a b

x9 -1.0 +1.1

x9 -1.0 +4.0

X
19 -1.0 +4.0

f'l(x) -1.0 +4.0

f'2 (x) 1! -1001200 0
- - - ----··-- ------ · - -----·· ·· · ·

.. --· -· , ._
t

1'-9

1' -20

1'-20

1'-20

-,. - . ·- ··- - --·T- ·- ··- ... ··- ·--- - - . --1
~ - t ;function evals.

I l 4.99' -10 . I 81 I

I i

4.92'-21

1~.81'-21

* 0

I 8 I ! 1 9 I
i I

195 i
33 I

1' -20 1' -9
L 79 I

···--J
,.,

* ~ = 2.17'-4 and f'1 (t) = 0

For a definition of' f'1 , f'2 etc., and a discussion, see above.

95

h.k

Table k,2: Comparison of Dekker's procedure with procedure zero

1+

i

6
i

i 7

8
i

I 9

; 10

n
| 12

15

111

15

I.05838256968867

1.2399500556075^

1.5623961^62^727

2.05025253169^17

2.72832U93649769

5.61I110919225782

li. 710^83'?1557 581

6.00000000000000

7.44175272160161

8.9716772^556908

10.5065081987721

11.9497474685058

15.2029707184829

14.1742655087655

14.7893764955559

"D
1

10 10

10 9

10 10

10 10

n 10

11 10

10 10

9 9

10 9

10 10

20 10

10 9

10 9

10 9

Q 8
j

For a definition of K , n^ end n , see above. The K have a

relative error of less than 5,-l^'

96

•5

For each eigenvalue, the tolerances for Dekker's procedure and for procedure

zero were the same. (The tolerance was adjusted by the eigenvalue program

to ensure that the computed eigenvalues had a relative error of less

-Ik
than 5*10 .) Tests were run for several values of n , p , q and r :

t^e table gives a typical set of results for n -■ 15 , V = 1 > Q = l/^ >

and r = 1/2 . To obtain the same accuracy with bisection, at least ItO

function evaluations per eigenvalue would be required, so both our procedure

and Dekker's are at least four times as fast as bisection for this application.

Seme more experimental results are given in Chapter 5« (For an

illustration of the superlinear convergence, see the examples given in

Section 3.9-)

5» Conclusion

Our algorithm appears to be at least as fast as Dekker's on well-

behaved functions, and, unlike Dekker's, it is guaranteed to converge in a

reasonable number of steps for any function. The ALGOL procedures zero

and zero2 given in Section 6 have been written to avoid problems with

rounding errors or overflow, and floating-point underflow is not harmful

as long as the result is set to zero.

Before giving the ALGOL procedures zero and zero2, we briefly discuss

sane Tjossible extensions.

97

-IB-—i

—J I J L_ J I J " L_ J L J I I" I 1 4~-J •.

4.5

Cox's algorithm

A recent paper by Cox (1970) gives an algorithm which combines

bisection with interpolation, using both f and f* . This algorithm

may fail to converge in a reasonable number of steps in the same way

as Dekker's. A simple modification, exactly like the one that we have given

in Section 2 for Dekker's algorithm, will remedy this defect without

slowing the rate of convergence for well-behaved functions.

Parallel algorithms

In this chapter we have considered only serial algorithms. It is

well-known (see, for example, Traub (I96U)) that all serial methods which

use only function evaluations and Lagrangian interpolation polynomials

have weak order less than 2 , unless certain relations hold between the

derivatives of f at £ • (Winograd has recently shown that no serial

method, using only function evaluations, can have order greater than 2

for all analytic functions with simple zeros.) Thus, nothing much can be

gained by going beyond linear or quadratic interpolation. However,

Miranker (19^9) has shown that, if a parallel computer is available, a

class of algorithms using Lagrangian interpolation polynonials gives

superlinear convergence with weak order greater than 2 under certain

conditions. Also, it is clearly possible to generalize the bisection

process to "(r+l)-section" with advantage if a parallel computer with r

independent processors is available. See, for example, Wilde (196^).

There does not appear to be any fundamental difficulty in combining

generalized bisection with one of Miranker*s parallel algorithms so that

convergence in a reasonable number of steps is guaranteed for any function.

93

4

—^m^**

if.6

and super linear convergence with order greater than 2 is likely for

well-behaved functions.

Searching an ordered file

A problem which is commonly solved by a binary search (i.e., bisection)

method is that of locating an element in a large ordered file. The problem

may be formalized in the following way. Let S be a (finite or infinite)

totally ordered set, and cp: S -♦ R an order-preserving mapping from S

into the real numbers. Suppose that T = [t ,t ^...^t } is a finite

subset of S , with t <t < ... <t . Given c e [cp(t),cp(t)] , we

may define a monotonic function f on [0,n] by

f(x) =9^) -c , (5.1)

where xe [0,n] and i = |~x - —~| . Thus, finding an index i such

that cp(t.) = c is equivalent to finding a zero of f in [0,n] , and

our zero-finding algorithm could be used instead of the usual bisection

algorithm. It might be worthwhile to modify our algorithm slightly, so

as to take the discrete nature of the problem into account. A related

application of our algorithm is in finding the median (or other percentiles)

of a list of numbers, but there are faster ways of doing this.

6. ALGOL 60 procedures

The ALGOL procedures zero (for standard floating-point numbers) and

zero2 (for floating-point with an extended exponent range) are given below.

For a description of the idea of the algorithm, see Section 2. Some

test cases and numerical results are described in Section U.

99

^.6

Procedtire zero

real procedure zero (a, b, macheps, t, f);

value a, b, macheps, t; real a, b, macbeps, t;

real procedure f;

begin comment:

Zero returns a zero x of the function f in the given interval [a/b],

to within a tolerance 6.macheps. jxj+2.-t, where macheps is the relative

machine precision and t Is a positive tolerance. The procedure assumes

that f(a) and f(b) have different signs;

real c, d, e, fa, fb, fc, tol, m, p, q, r, s;

fa := f(a); fb := f (b);

int: c := a; fc := fa; d := e := b-a;

ext: if abs(fc) < abs(fb) then

begin a := b; b := c; c := a;

fa := fb; fb := fc; fc := fa

end;

tol := 2 x macheps x abs(b) + t; m := 0.5 x (c-b);

if abs(m) > tol A fb / 0 then

begin comnent; See if a bisection is forced;

if abs(e) < tol v abs(fa) < abs(fb) then d := e := m else

begin s := fh/fa; if a = c then

begin comment: Linear interpolation;

p := 2 x m x s; q := 1-s

end

else

begin comment; Inverse quadratic interpolation;

100

n

K.6

q := fa/fc; r := fb/fc;

p := sx(2xmxqx (q-r) - (b-a) x (r-l));

q := (q-1) x (r-l) x (s-l)

end;

if p > 0 then q := -q else p := -p;

s := e; e := d;

if 2xp Oxmxq -abs(tolxq) A p < abs(0.5 x s x q) then

d := p/q else d := e := m

end;

a := b; fa, := fb;

b := b+ (if abs(d) > tol then d else if m > 0 then

tol else -tol);

fb := f(b);

gotoiffb>0 = fc >C then int else ext

end;

zero := b

end zero;

Procedure zero2

real procedure zero2 (a, b, machept, t, f);

value a, b, macheps, t; real a, b, macheps, t; procedure f;

begin comment;

Zero2 finds a zero of the function f in the same way as procedure

zero, except that the procedure f(x,y,z) returns y (reed) and z (integer)

so that f(x) = y.2 . Thus underflow and overflow can be avoided with

a very large function range;

101

^^^^^^^^^^^^^^^^^^^^^M^^^^BMft^Mi

L 1 I

4.6

real procedure pwr2 (x,n); value x, n; real x; integer n;

comment: The procedure is machine-dependent. It computes x.2 for

n < 0, avoiding underflow in the intermediate results;

pwr2 : = if n > -200 then x x 2 t n else

if n > -hoo then (x x 2 t (-200)) x 2 t (n+200) else

if n > -600 then ((xx2t (-200)) x2 t (-200)) x2r (n+^KX)) else 0;

integer ea, eb, ec;

real c, d, e, fa, fb, fc, tol, m, p, q, r, s;

f(a,fa,ea); f(b,fb,eb);

int: c := a; fc := fa; ec := ea; d := e := b-a;

ext: if (ec < eb A pwr2(abs(fc), ec-eb) < abs(fb))

V (ec > eb A pwr2(abs(fb), eb-ec) > abs(fc)) then

begin a := b; fa := fb; ea := eb;

b := c; fb := fc; eb := ec;

c := a; fc := fa; ec := ea

end;

tol := 2 xmacheps x abs(b) + t; m :=0.5x(c-b);

if abs(m) > tol A fb / 0 then

begin if abs(e) < tol v

(ea < eb A pwr2(abs(fa), ea-eb) < abs(fb)) v

(ea > eb A pwr2(abs(fb), eb-ea) > abs(fa)) then

d := e := m else

begin s := pwr2(fb, eb-ea)/fa; if a = c then

begin p:=2xmxs; q:=l-s end

else

begin q := pwr2(fa, ea-ec)/fc;

102

m^*^

t—I

k.6

r := pwr2(fb, eb-ec)/fc;

p := sx(2xmxqx (q-r) - (b-a) x (r-l));

q := (q-1) x (r-l) X (s-l)

end;

if p > 0 then q := -q else p := -p; s := e; e := d;

if2xp<3xmxq -abs(tolxq) A p < abs(0.5xsxq) then

d := p/q else d := e := m

end;

a := b; fa := fb; ea := eb;

b := b+ (if abs(d) > tol then d else if ni > 0 then

tol else -tol);

f(b, fb, eb);

^otoiffb>Osfc >0 then int else ext

end;

zero2 := b

end zero2;

103

Chapter 5

An Algorithm with Guaranteed Convergence for Finding a

Minimum of a Function of One Variable

I

ftlltl fill fill

5-1

1. Introduction

A common computational problem is finding an approximation to the

minimum or maximum of a real-valued function f in some interval [a>b] .

This problem may arise directly or indirectly. For example, many methods

for minimizing functions g(x) of several variables need to minimize

functions of one variable of the form

7(\) = g(x0 + \8) , (1.1)

where xn and s are fixed (a "one-dimensional search" from x in

the direction s). In this chapter, we give an algorithm which finds

an approximate local minimum of f by evaluating f at a small number

of points. There is a clear analogy between this algorithm and the

algorithm described in Chapter k for root-finding (see Diagram ^.1).

Unless f is unimodal (Section 5), the local minimum may not be the global

minimum of f in [a,b] , and the problem of finding global minima is

left until Chapter 6.

The algorithm described in this chapter could be used to solve the

problem (1.1), but, for this application, it may be more economical to

use epecial algorithms which make use of any extra information which is

available (e.g., estimates of the second derivative of y), and which do

not attempt to find the minimum very accurately. This is discussed in

Chapter ?• Thus, a more likely practical use for our algorithm is to find

accurate minima of naturally arising functions of one variable.

In Section 2 we consider the effect of rounding errors on any

minimization algorithm based entirely on function evaluations. Unimodality

is defined in Section 3, and we also define "5-unimodality" in an attempt

105

. I

I J L _ J L J f -I *

5.1

to explain why methods like golden section search work even for functions

which are not quite unimodal (because of rounding errors in their

computation, for example). In Sections h and 5 we describe a minimization

algorithm analogous to the zero-finding algorithm of Chapter k, and sane

numerical results are given in Section 6. Finally, some possible extensions

are deecribed in Section f, and an ALGOL 60 procedure is given in

Section 8.

Reduction to a zero-finding problem

If f is differentiable in [a,b] , a necessary condition for f

to have a local minimum at an interior point ^ e (a,b) is

f'(n) -= 0 (1.2]

There is also the possibility that the minimum is at a or b : for

example, this is true if f» does not change sign on [a,bj . If we

are prepared to check for this possibility, one approach is to look for

zeros of f . If f» has different signs at a and b , then the

algorithm of Chapter h might be used to approximate a point (i satisfying

(1.2).

Since f vanishes at any stationary point of f , it is possible

that the point found is a maximum, or even an inflexion point, rather than

a minimum. Thus, it is necessary to check whether the point found is a

true minimum, and continue the search in some way if it is not.

If it is difficult or impossible to compute f directly, we could

approximate f numerically (e.g., by finite differences), and search

for a zero of f* as above. However, a method which does not need f

106

5-1

seems more natural, and could be preferred for the following reasons:

1. It may be difficult to approximate f* accurately because of

rourding errors;

2. A method which does not need f* may be more efficient (see below);

and

3. Whether f* can be computed directly or not, a method which avoids

difficulty with maxima and inflexion points is clearly desirable.

Jarratt's method

Jarratt (1967) suggests a method, using successive parabolic

interpolation, which is a special case of th* iteration analyzed in

Chapter 5» With arbitrary starting points Jarratt's method may diverge,

or converge to a maximum or inflexion point, but this need not be fatal if

the method is used in combination with a safe method such as golden section

search, in the same way as, in Chapter h, we used a combination of

successive linear interpoiatior and bisection for finding a zero. Theorem

3.5*1 shows that, if f has a Lipschitz continuous second derivative which

is positive at an interio-" minimum \i , then Jarratt's me:hod gives

superlinear convergence to n with weak order at least ß = 1.32i+7...

(see Definitions 3.2.1 and 3»5*1)^ provided the initial approximation is

good and rounding errors are negligible.

Let us compare Jarratt's rrethod with one of the alternatives:

estimating f by finite differences, and then using successive linear

interpolation to find a zero of f . (This process may also diverge,

or converge to a maximum.) Suppose tnat fr'(^x) > 0 and f^ '(|i) / 0 , to

107

5-2

avoid exceptional cases (see Sections 3-6, 5.7 and U.2). Since at least

two function evaluations are needed to estimate f* at any point, and

\ll.6lQ... = 1.272... < 1.52it... , Jarratt's method has a slightly-

higher order of convergence. (The comparison is similar to that between

Newton^ method and successive linear interpolation if an evaluation of

f» is as expensive as an evaluation of f : see Golab (1966) or

Ostrowski (I966).)

2. Fundamental limitations because of rounding errors

Suppose that t elC [a,b;M] has a minimum at p. e (a,b) . Since

ff((i) = 0 , Lemma 2.5.1 gives, for xe[a,b] ,

f(x) - I fS(x-n)2 + f (x-^)3 , (2.1)

where |m | < M , f = f(ji) , and f" = f"(n) . Because of rounding

errors, the best the.t can be expected if single-precision floating-point

numbers are used is that the computed value fl(f(x)) of f(x) satisfies

the (nearly attainable) bound

fl(f(x)) = f(x)(l+ej , (2.2)

where

Ex^E ' (2.5)

and e is the relative machine precision (see Section U.2). The ei-ror

bound is unlikely to be as good as this unless f is a very simple

function, or is evaluated using double-precision, and then rounded 01

108

t ?
■«LHMMMAM^aAHMJa

?.2

truncated to single-precision.

Let 6 be the largest number such that, according to equations

(2.2) and (2.3), it is possible that

fl(f(n + 6)) < ff 0
(2.4)

It is unreasonable to expect any minimization procedure, based on

single-precision evaluations of f , to return an approximation \i to

H with a guaranteed upper bound for l^-p] less than 6 . This is

so, regardless of whether the ccmputed values of f are used directly,

as in Jarratt^ method, or indirectly, as in the other method suggested

in Section 1. The reason is simply that the minimum of the computed

function fl(f(x)) may lie up bo 6 from the minimum n of f(x) :

see Diagram 2.1.

Diagram 2.1: The effect of rounding errors

109

M^Mta

m i>i i^

t-_^l

5-2

If f3 > 0 , equations (2.1) to {2.k) give

6 >
2lfole

fö
e - M6

M5

(2.5)

for the relative error
U

could hardly be less than

Thus, if ^ / 0 and the term r~?r is negligible, an upper bound
0 ~~~

A 2lfo.

11 ^o
and full single-precision accuracy in n is unlikely unless

»%
is of order e or less, although fl(ff^)) may agree with f(^)

to full single-precision accuracy. (See also Pike, Hill, and James (1967).)

If f* has a simple analytic representation, then it may be easy to

compute f accurately. For example, perhaps

fl(f'(x)) = f,(x(l+e'))(l+e") (2.6)

where |e'| < c and |e"| < e , so we can expect to find a zero of f

with a relative error bounded by e (see Lancaster (I966) and Ostrowski

(1967b)). If (2.6) holds it might be worthwhile to use the algorithm

described in Chapter '+ to search for a zero of f • , or at least use it to

refine the approximation p. given by a procedure using only evaluations

of f . However, this is not so if f has to be approximated by

differences, for then (2.6) can not be expected to hold.

Even if f(x) is a uniraodal function, the computed approximation

fl(f(x)) will not be uniraodal, because of rounding errors. Ncte that

fl(f(x)) must be constant over small intervals of real numbers x which

have the same floating-point approximation fl(x) . In the next section

110

5-3

we define "&-unimodality" to circumvent this difficulty.

From now on, we consider the problem of approximating the minimum

of the ccmputed function, or, equivalently, we ignore rounding errors

in the computation of f . The user should bear in mind that the minimum

of the computed function may differ from the minimum that he is really

interested in by as much as 6 (see equation (2.5) above). In particular,

there is no point in wasting function evaluations by finding the minimum

of the computed function to excessive accuracy, and our procedure localmin

(Section 8) should not be called with the parameter "eps" much less than

2lfol'

"^o

5« Unimodality and 5-unimodality
j

There are several different definitions of a unimodal function in the

literature. One source of confusion is that the definition may depend on

whether the function is supposed to nave a unique minimum or a unique

maximum (we always consider minima). Kowalik and Osborne (1968) say that
I

f is unimodal on [a,b] if f has only one (no more than one?) stationary

value on [a,b] . This definition has two disadvantages: first, it is

meaningless unless f is differentiable on [a,b] , but we would like to

say that Ixl is unimodal on [-1,1] . Cecond, functions which have

inflexion points with a horizontal tangent are prohibited, but we would

6 U 2 like to say that f(x) = x - 5x Ox is unimodal on [-2,2] (here

f (+1) = f"(+ l) = 0).

Wilde (I96M gives another definition: f is unimodal on [a,b] if,

for all x1,x2 f [a,b] ,

111

i^^^Aa

5-3

x1<x2Z3 (x2 < x* ^ f(x;L) > f(x2)) A (x1 > x* D f(x1) < f(Xg)) , (3.1)

where x is a point at which f attains its least value in [a,h] .

(We have reversed some of Wilde's inequalities as he considers maxima

rather than minima.) Wilde's definition does not assume differentiability,

or even continuity, but to verify that a function f satisfies O-l) we

need to know the point x (and such a point must exist). Hence, we

prefer the following definition, which is nearly equivalent to Wilde's

(see Lemma 5.1)^ but avoids any reference to the point x . The

definition is not as complicated as it looks: it merely says that f can

not have a "hump" between any two points x and x in [a,b] . Two

possible configurations of the points xn, x , xp and x in (5.1) and

(5.2) eure illustrated in Diagram 3.1.

Diagram 5.1: Unlmodal functions

112

I r B r ■ t t r t i i

5-3

Definition 5.1

f is unimodal on [a,b] if, for all x , .v1 and x € [a,b] ,

yJ>

X0 < X1 A X1 < X2 3 (f(x0) < fCx^ 3 f(Xl) < f(X2)) A

(ffx^ > f(x2) 3 f(x0) > ^X^) . (5.2)

Lemma 3.1

If a point x at which f attains its minimum in [a,b] exists,

then Wilde's definition of unimodality and Definition 5.1 are equivalent.

Proof

Suppose that f is unimodal according to Definition 5.1. If x < x

and x < x , take x' = x , x' = x , and x• - x . Since f attains

its least value at x ,

f(xp > f(x) = f(x') , (5.5)

so equation (5.-) with primed variables gives

f(x^) > f(xp , (3A)

and thus

f^) > f(x2) . (5.5)

Similarly, if x < x« and x >x , equation (5.2) gives

f(x1) < f(x2) . (5.6)

113

,,
I < %1. xz , -r

~ -til hV.&.-..v••.a.'-·1 ~ing ~ 11

(yf * ~
..

g ,
I

:iC. f ,

* f& I

* J at t1f'i ~ .) 1ft h prim variabl4J& gives

•) 1:(f) '

(~ J
.. = f(j(, t(x) t(x') - f(x2) (3 ·9)

j
I ke :~t ' ,_ " 1114 -Since * ;; I x• "l x• < x' X • • l 2 ,

) v " t(1t') t(x •) , oontrl4ict1ng th auumpt ion that

) ' 1 ~~811bl 1 &nd,by {3.7) and (3.9), we

tA (} rH.m ly, if -(1tl) 1'(x2) then

' ()) f1d tb proof 11 conplete .

A £ Jermt& • :f' io eontinuou&, then

w t~ 1 II %'1 r · qui valent . For arbitrary

~II n t\t . :r '1: xamp ,

-(Jt I
r(, (3 .10)

0

j 11~

fc~—&

5.3

is unimodal on [-1^1] by our definition, but not by Wilde's, for x

does not exist.

The following theorem gives a simple characterization of unimodality.

There is no assumption that f is continuous. Since a strictly monotonic

function (e.g., x) may have stationary points, the theorem shows that

both our definition and Wilder are essentially different from Kowalik

and Osborne's, even if f is continuously differentiable. (Although

this point is obvious, it is sometimes overlooked! See also Corollary 3•3-)

Theorem 3.1

f is unimodal on [e,b] (according to Definition 3«l) iff^ for some

(unique) ne[a,b] , either f is strictly monotonic decreasing in [a,pi)

and strictly monotonic increasing in [ji,b] , or f is strictly monotonic

decreasing in [a,n] and strictly monotonic increasing in (n,b] .

The theoren is a special case of Theorem 5.2 below, so the proof is

omitted. The following corollaries are immediate.

Corollary 3.1

If f is unimodal on [a,b] , then f attains its least value at

most once on [a, b] . (If f attains its least value, then it must

attain it at the point n given by Theorem 3.1.)

Corollary 3.?

If f is unimodal and continuous on [a,b] , then f attains its

leact value exactly once on [a,bj .

5-3

Corollary 3^3

If feC [a,b] then f is vmimodal iff, for some |ie[a,b] ,

f < 0 almost everywhere on [a,|i] and f' > 0 almost everywhere

on [n,b] . (Note that f may vanish at a finite number of points.)

Fibonacci and golden section search

If f is unimodal on [a,b] , then the minimum of f (or, if

the minimum is not attained, the point |i given by Theorem 5.1) can be

located to any desired accuracy by the well-known methods of Fibonacci

search or golden section search. The reader is referred to Wilde (196*0

for an excellent description of these methods. (See also Boothroyd

(1965a, b), Johnson (1955); Krolak (1968), Newman (1965), Pike and Pixner

(1967), and Witzgall (1969).) Care should be taken to ensure that the

coordinates of the points at which f is evaluated are computed in a

numerically stable way (see Overholt (1965)). Fibonacci and golden section

search, as well as similar but less efficient methods, are based on the

following result, which shows how the interval known to contain |i may

be reduced in 3?ze.

Corollary J>.k

Suppose that f is animodal on [a,b] , n is the point given by

Theorem 3.1, and a < x1 < x < b . If f(x1) < f(x2) then n < x ,

and if f(x) > f(x) then n > x. .

116

5-3

Proof

If x < n then, by Theorem 3-1, fta) > f(x) . Thus, if

f(x) < f(x) then fi < x . The other half follows similarly.

If the reader is prepared to ignore the problem of computing

"unimodal" functions using limited-precision arithmetic, he may skip the

rest of this section.

S-unlmodality

As was pointed out at the end of Section 2, functions computed using

limited-precision arithmetic will not be unimodal because of rounding

errors. Thus, the theoretical basis for Fibonacci search, golden section

search, and similar methods, is irrelevant, and it is not clear that these

methods will give even approximately correct results in the presence or

rounding errors. To analyze this problem, we generalize the idea of

unimodality to &-unimodality. Intuitively, 6 is a nonnegative number

such that Fibonacci or golden section search will give correct results,

even though f is not necessarily unimodal (unless 6=0), provided

that the distance between points at which f is evaluated is always

greater than 6 . The results of Section 2 indicate how large B is

likely to be in practice. (Our aim differs from that of Richman (1968) <n

defining the e-calculus, for he is interested in properties that hold as

e -» 0 .) For anothei approach to the problem of rounding errors, ^ee

Overholt (1967).

In the remainder of this section, 5 is a fixed nonnegative number.

As well as 5-unimodality, we need to define 6-monotonicity. If 5=0

then 5-unimodality and 5-monotoni-ity redtce 10 unimodality (Definition 5.1)

-17

M^Mtl ^MM^^M!

s

5.3

and monotonicity.

Definition ?.2

Let I be an interval and f a real-valued function on I . We

say that f Is strictly 6-monotonlc Increasing on I if, for all

l'X2

X.J+& < x2 -j f(x1) < f(x2) . (3.11)

i
X.,X0 6 I ,

As an abbreviation, we shall write simply " f is 5-t on I ".

Strictly 6-raonotonic decreasing functions (abbreviated 6-i) are defined

in the obvious way.

Definition 3»3

Let I be an interval and f a real-valued function on I . We

say that f is 6-unLnodal on I if, for all x ,x ,x el ,

x0+5 < x1 A x.j+6 < x2 D (f(x0) < f(x1) 3 f(x1) < f(x2))

A (f(x1) > f(x2) 3 f(x0) > fixj) . (5.12)

The following theorem gives a characterization of 5-uniraodal functions.

It reduces to Theorem 5.1 if 6=0.

Theorem 3.2

V is fj-unimodal on [a,b) iff there exists fic[a,b] such that

eith< r f is S-i or. [a,|i) and b-t on [n>b] , or f Is 5-i

on (a>n] and 6-t on (^b] . ■■"urthermore, if f is &-uni.nodal on

il

T:

_J

5-3

[a,b] , then there is a unique interval [|i, ^p] c [a,b] such that

the points n with the above properties are precisely the elements of

[n-L,^] , and n2 < H1+5 .

Proof

Supi,'jse \x exists so that f is 5-i on ta,^) and 6-t on [M.,b]

Take any x , x , x in [a,b] with x +5 <x and x +5 < x0 . If

f(x) < f{^) then, since f is 6-i on [a,|a) , n < x . As f is

5-t on [^,b) , it follows that f (x) < f{.r.?) . The other cases are

similar, so f is 5-unimodal.

Conversely, suppose that f is Ö-unimodal on [a,b] . Let

H = inf{xe[a,b] | f is 5-1 on [x,b]] , (3.15)

(so '^ <max(a,b-5)) , and

H = sup[xt[a,b] | f is 5-i on [a,x]j , (5.11+)

(so ji >min(a-!-0,b)) .

It is immediate from the definitions (3.13) and (3.11+) that f is

5-t on (|i-1,b] and f is 8-i on [a,ii?) . We shall show that

^51^2 . (3.15)

Suppose, by way of contradiction, that

^1>^2 • (3.16)

This implies that (JI, > a and ^ < b , so, from the definitions of (i

and n , there are points x' and x" with

119

■

<

ttkmmmäm^tätm^mmmmhd^

5-3

ki2 < x" <
^1+^

< x' < u1 , (5.17)

such that f is not 6-t on [x'^h] and f is not 5-1 on [a,x"] .

Thus, there are points y1 , y" , z' , z" in [a,b] such that

z"+& < y" < x" < x» < y« < zf-6 ,

f(z") < fir) ,

and

f(y') >f(z») .

(3-18)

(3.19)

(3.20)

Let x. = z" , x = zf , and

Xl:-

y» if f(y') > f(y») ,

y" otherwise .
(3.21)

From relations (3.18) to (3.21), the points x , x and x contradict

8-uniinodality (equation (3.12)). Thus (3.16) is impossible, (3.15) must

hold, and [|i ,|i] is nonempty.

Choose any n in [n,,^] . From the definitions of JI.. and (ip ,

f is 8-i on [a,|i) and 5-t on (|i,b] . Suppose, by way of contradiction,

that f is neither 6-t on [a,|i] nor 6-T on [|i,b] . Then there

axe points y, and y2 in [a,b] such that

y2+6 < fi < y^t , (3.22)

f^) < f(n) , (3.23)

and

120

«■rti

mm

5-3

f(y2)<f(n) . (5.2M

Thus, the points y^ , \± , and y, contradict the 6-unimodality of f ,

so f is either 5-1 on [a,p.] or 5-t on [^,b] . This completes

the proof of the first part of the theorem.

Finally, by the definitions (3.13) and {^.lh), th" set of points \i

satisfying the conditions of the theorem is precisely [^-.^pl • Since

f is both 6-t and 5-i on (n^u-) > we have n2 < v+b , and the

proof is complete.

Remarks

The interval [n ,np] depends on & . Suppose that f attains its

minimum in [a,b] at |i . By Theorem 3.2, f is 6-T on (fi,,b]

and &-i on [a,^p) , so ^e [^p-6,ti1+5] , an interval of length at

most 26 .

As an example, consider

f(x) -x2+e.g(x) (3.25)

on [-1,1] , where g is any function (not necessarily continuous) with

U(x) 1 < 1 ^ an<i e > 0 . Since f(x) is bounded above and below by the

2 2 unimodal functions r +e and x -e , we see that f is 6-unimodal if

6 > \/26 . In a practical, case e might be (a small multiple of) the

relative machine precision, and the fact that the least 6 for which f

1/2 is 6-unimodal is of order e ' , rather than e , is to be expected from

the discussion in Section 2.

121

(I I 1,

r '!J ; " 1/f

J • 'I I • I' · I t ! ; ,) ~ I

, , ' I / ./
I I

I J'

I

I ,

5-^

two function evaJLuations giving I. were at points separated by more

than 6 . The smallest such interval I. has length no greater than

(2 + /5)S0 , so

|^-^| < (? + /5)&0 r 5-2366ö . (3.26)

Thus, golden section search gives an approximation p, which is nearly

as good as could be expected if we knew 5 . This may be regarded as

a justification for using golden section (or Fibonacci) search to approximate

minima of functions which, because of rounding errors, are only "approximately"

unimodal.

U. An algorithm analogous to Dekker's algorithm

For finding a zero of a function f , the bisection process has the

advantage that linear convergence is guaranteed, as the interval known to

contain a zero is halved at each evaluation of f after the first.

However, if f is sufficiently smooth and we have a good initial

approximation to a simple zero, then a process with superlinear convergence

will be much faster than bisection. This is the motivation for the

algorithm, described in Chapter \, which combines bisection and successive

linear interpolation in a way which retains the advantages of both.

There is a clear analogy between methods for finding a minimum and

for finding a zero. The Fibonacci and golden section search methods have

guaranteed linear convergence, and correspond to bisection. Processes

like successive parabolic interpolation, which do not always converge, but

under certain conditions converge superlinearly, correspond to successive

123

L-^^^alM^HM

i

5.h

linear interpolation. In this section we describe an algorithm which

combines golden section search and successive parabolic interpclation

in a way which retains the advantages of both. The analogy with the

algorithm ox Chapter h is illustrated in Diagram h,l.

Zeros Extrema

Linear convergence Bisection ♦—» Golden section search

I I
Super linear convergence Successive linear <—» Successive parabolic

interpolation interpolation

Diagram k,l: The analogy between algorithms for
finding zeros and extreraa

Many more or less "ad hoc" algorit1 jns have been proposed for one-

dimensional minimization, particularly as components of n-dimensional

minimization algorithms. See Box, Da vies and Swann (I969), Flanagan,

Vitale and Mendelsohn (1969), Fletcher and Reeves (196^), Jacoby,

Kowalik and Pizzo (1971), Kowalik and Osborne (1968), Pierre (I969),

Powell (196^), etc. The algorithm presented here might be regarded as

an unwarranted addition to this list, but it seems to us to be more

natural than these algorithms, which involve arbitrary prescriptions like

"if ... fails then halve the step-size and try again". Of course, our

algorithm is not quite free of arbitrary prescriptions either, so a more

objective criticism of the "ad hoc" algorithms is that for many of them

convergence to a local minimum in a reasonable number of function evaluations
H

can not be guaranteed, and, for the exceptions, the asymptotic rate of
I

convergence if f is sufficiently smooth is less than for our algorithm

12h

f f 1 s •*• < i '. ' 1 1
■ --- ""- -,■'- -v- ,-r- ,^^^i^i»^«

(see Section 5) • Note that we do not claim that our algorithm is

suitable for use in an n-dimensional minimization procecure: an "ad hoc"

algorithm my bo more efficient, (see Sections 1 and f .1) •

A description of the algorithm

j
Here we give an outline which should make the main ideas of the

algorithm clear. For questions of detail the reader should refer to

Section 8, where the algorithm is described formally by the ALGOL 60

procedure localmin.

The algorithm finds an approximation to the minimum of a function f

defined on the interval [a,b] . Unless a is very close to b , f is

never evaluated at the endpoints a and b , so f need only be defined

on (a,b) , and if the minimum is actually at a or b then an interior

point distant no more than 2.tol from a or b will be returned,

where tol is a tolerance (see equation (^.2) belcw). The minimum found

may be local, but non-global, unless f is 8-unimodal for seme 6 < tol .

At a typical step there are six significant points a,b,u,v,w,

and x , not all distinct. The positions of these points change during

the algorithm, but there should be no confusion if we emit subscripts.

Initially, (u,b) is the interval on which f is defined, and

v = w = x = a+ (1^2) (b-a) . (h.l)

5-/5 (The magic number -—^—- - O.58I966... is rather arbitrarily chosen so

that the first step is the same as for a golden section search.)

At the start of a cycle (label "loop" of procedure localmin) the

points a , b , u , v , w , and x always serve as follows: a local

125

MMHMAMMnaMMBM>1^aMMM__taMaMMBH^MMMM^Hrf^HnaatfiMMaaMHBMMMi

minimum lies in [a,b] ; of all the points at which f has been evaluated,

x is the one with the least value of f , or the point of the most recent

evaluation if there is a tie; w is the point with the next lowest value

of f ; v is the previous value of w ; and u is the]n,st point at

which f has been evaluated (undefined the first time). One possible

configuration is shown in Diagram h.2.

a

w

u

X

m b

v

Diagram U.2: A possible configuration

As in procedure zero (Chapter h), the tolerance is a combination of

a relative and an absolute tolerance. If

tol = eps. |x| + t , (4.2)

then the point x returned approximates a minimum to an accuracy of

2.tol + 6 < 5'tol , if f is 5-uniraodal near x and 5 < tol . The

user must provide the positive parameters eps and t . In view of the

discussion in Section 2, it is generally unreasonable to take eps much

1/2
less than e ., where E is the machine-precision (see Section k.2).

126

I
5.U

t should be positive in case tne minimum is at 0 . It is possible that

the error may exceed 2.tol + 5 because of the effect of rounding errors

in determining if the stopping criterion is satisfied, but the additional

error is of order e|x| , which is negligible if tol is of order

e ' |x| or greater.

Let m = - (a+b) be the midpoint of the interval known to contain

the minimum. If |x-m| <2.tol-- (b-a) , i.e., if max(x-a, b-x) < 2.tol ,

then the procedure terminates with x as the approximate position of the

minimum. Otherwise, numbers p ard q (q > 0) are computed so that

x + p/q is the turning point of the parabola passing through (v, f(v)) ,

(w,f(w)) , and (x,f(x)) . . If two or more of these points coincide, or if

the parabola degenerates to a straight line, then q = 0 .

p and q are given by

p = +[(x-v)2(f(x).f(w)) - (x-w)2(f(x)-f(v))] (U.3)

= j_ (x-v)(x-w)(v-v){(x-w)f[v,w,x] + f[w,x]] , (U.U)

and

q = +2[(x-v)(f(x)-f(w)) -(x-w)(f(x)-f(v))] (U.5)

= +2(x-v)(x-w)(w-v)f[v,7,x] . (U.6)

From (h.k) and {h.6), the correction p/q should be small if x is close

to a minimum where the second derivative is positive, so the effect of

rounding errors in computing p and q is minimized. (Golub and Smith

(1967) compute a correction to —(v+w) for the same reason.)

As in procedure zero, let e be the value of p/q at the second-last

cycle. If \e\ < tol , q = 0 , x + p/q/ (a,b) , or |p/ql > ölel > then

127

5.^

a "golden section" step is performed, i.e., the next value of u is

V^OX-H (^2)a if x >m ,

u) (^-7)

(£^x + (MS) (^—)x + (2 ~)b if x < m .

(An optima.1, choice in the limit: sen Witzgall (I969).) Otherwise u is

taken as x + p/q (a "parabolic interpolation" step), exctpt that

the distances |u-xj , u-a and b-u must be st least tol . Then f

is evaluated at the new point u , the points a , b , v , w and x

are updated as necessary, and the cycle is repeated (the procedure

returns to the label "loop"). We see that f is never evaluated at

two points closer together than tol , so 5-unimodality for some 6 < tol

is enough to ensure that the global minimum is found to an accuracy of

2.tol+ 5 (see Theorem 3-3 and the following remarks).

Typically the algorithm terminates in the following way: x = b -tol

(or, symmetrically, a+tol) after a parabolic interpolation step has been

performed with the condition |u-x| > tol enforced. The next parabolic

interpolation point lies very close to x and b , so u is forced to

be x - tol . If f(u) > f(x) then K moves to u , b-a becomes 2.tol ,

and the termination criterion is satisfied (see Diagram h.3). Note that

two consecutive steps of tol are done just before termination. If a

golden section search were done whenever the last, rather than seccnd-last,

value of lp/q| was tol or less, then termination with two consecutive

steps of tol would be prevented, and unnecessary golden section steps

would be performed.

128

1 n in

•»^■^■^

5.5

/

/

/
/

s

Diagram U.J: A typical situation after termination

5. Convergence properties

There can not be more than about 2.log ((b-a)/tol) consecutive

parabolic interpolation steps (with the current a and b , and the

minimum of tol over the interval), for while parabolic interpolation

steps are being perfomed jp/qj decreases by a factor of at least two

on every second cycle of the algorithm, and when |e| < tol a golden

section step is performed. (In this section, "about" means we are net

distinguishing between a real number and its integer part.) A golden

section step does uot necessarily decrease b-a significantly, e.g.,

if x = b - tol and f (u) < f (x) , then b-a is only decreased by tol ,

b1 A, two golden section steps must decrease b-a by a factor of at least

-——^ = 1.6l8... . As in Section U.3, we see that convergence can not

require more than about

129

• -- -'

mm

L..--.J t .-„i 1 > 1 y ' i I / '» . J " i, 4~' " *_

5.5

2K(log2(^))
2 (5.1)

function evaluations, where

K = l/log2{±±p) =1.H... . (5.2)

By comparison, a golden section or Fibonacci search would require about

K.log2(-f) (5.3)

b-a function evaluations, and a brute-force search about v . ., . 2.tol

The analogy with procedure zero of Chapter h should be clear, and

essentially the same remarks apply here as were made in Chapter k. In

practical tests convergence has never been more than 5 percent slower

than for a Fibonacci search (see Section 6).

In deriving (5'1) we have ignored the effect of rounding errors inside

the procedure, but it is easy to see (as in Section h.2) that they can not

prevent convergence if floating-point operations satisfy (1|-.2.10) and (1+.2.11),

provided the parameter eps of procedure localmin is at least 2e .

Superlinear convergence

If f is C near an interior minimum \i with f'di) > 0 , then

Theorem ^.h.l shows that, while rounding errors are negligible, convergence

will be super linear. Usually the algorithm stops doing golden section steps,

and eventually does only parabolic interpolation steps, with f(x) decreasing

at each step, until the tolerance comes into play just before termination.

This is certainly true if the successive parabolic interpoJation process

130

^M

*-— * *- • ~ *--.—t "K i ~ v- --< •-- --*

5-6

converges with strong order ßp = I.52U7... (sufficient conditions for

this are given in Sections 3.6 and j^.T)'

For most of the "ad hoc" methods given in the literature, convergence

with a guaranteed error bound of order tol in the number of steps given

by (5'1) is not certain, and, even if convergence does occur, the order

is no greater than for our algorithm. For example, the algorithm of

Davies, Swann and Campey (see Box, Davies and Swann (I969)) evaluates f

at two or more points for each parabolic fit, so the order of convergence

is at most /jÜL = 1.150... (excluding exceptional cases).

section steps, and the procedure is much faster than Fibonacci search.

As an example, in Table 6.1 we give the number of function evaluations

required to find the minima of the function

20

?(*) = r f ^H \ - (6.1) £(S)
2 2 2

This function has poles at x = 1 ;2 ,...,20 • Restricted to the open

131

6. Practical tests

The ALGOL procedure localmin given in Section 8 has been tested using
i
i

ALGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (I968)) on an

-13
IBM 360/67 and a 360/9I with a machine precision of l6 . Although it

I
might be possible to contrive an example where the bound (5*1) on the I

number of function evaluations is nearly attained, for our test cases

i
convergence never requires as many as 5 percent more function evaluations

than would be needed to guarantee the same accuracy using Fibonacci search.
1

In most practical cases superlinear convergence sets in after a few golden

5-6
2 2 interval (i ^(i+l)) for i = 1,2, ...,19 it is unimodal (ignoring

rounding errors) with an interior minimum. The fourth column of Table 6.1

gives the number rL of function evaluations required to find this

-7 -10 minimum |i. , using procedure localmin with eps = 16 and t = 10

—7 -TO
(so the error bound is less than J.tol , where tol = 16 . |x)+10~).

The last column of the table gives the number n of function

evaluations required to find the zero of

20 /o- c\2

i=l (x-i2)^
(6.2)

r 2 -9 2-9
in the Interval [i +10 , (i+l) -10] , using procedure zero (Section

-7 -10
^.6) with macheps = 16 and t = 10 , so the guaranteed accuracy is

nearly the same as for localmin. Of course, in practical cases we would

seldom be lucky enough to have such a simple analytic expression for V ,

so procedure zero could not easily be used to find minima of f in this

manner. Also, procedure zero could find a maximum rather than a minimum.

Table 6.1 shows that the number of function evaluations required by

procedure localmin compares favorably with the number required by procedure

zero. Both are much faster than Fibonacci search, which would require ^5

function evaluations to find the minimum for i = 10 to the same accuracy.

For some numerical results illustrating the super linear convergence

of the successive parabolic interpolation process, see Section 3.9'

132

1 1. 1 ■-

5-6

Table 6.1: Comparison of procedures localmin and zero

! i ^1 f{^) nz

1 3.0229155 5.676699OI69 12 11+

2 6.6837536 1.1118500100 11 8

5 11.2587017 1.2182217657 15 11+

i h 19.6760001 2.16211.05109 10 12

1 5 29.8282273 :.0322905195 11 12

1 6 Ul.9061162 5.7585856477 n 11

! 7
i

55.9?55958 4.555^105856 10 11

! 8 71.9856656 U.8U82959565 10 11

; 9 90.OO88685 5.2587585^ 10 10

10 110.0265527 5.605652^295 10 10

: 11 152.01*05517 5.8956057976 10 10

; 12
1

156.052nM 6.11+588615^2 9 10

13 182.062060^ 6.5550761+595 9 10

Ik 210.0711010 6.5355662005 9 ID

i i5
1

2U0.08001+85 ! 6.680565981+9 9 UO

i 16
1

272.0902669 6.7938558565 9 10

' 17 506.1051255 6.8651+981055 9 10

; 18
l

5U2.1569U5I1 6.8559021+651 9 9

19 580.2687097 i
. L 1

6.60081+701+81
_ i

9 9

For a discussion and definition of the terms, see above.

133

-* ■ - - ■ ^■mBMta M^«^
1 ' —

4. J *^—•♦

5-7

7. Conclusion

The algorithm given in this chapter has the same advantages as the

algorithm described in Chapter h for finding zeros: convergence in a

reasonable number of steps is guaranteed for any function (see equation

(5«l))> and on well-behaved functions convergence is superlinear, with

order at least 1.52^7« •• > and thus much faster than Fibonacci search.

There is no contradiction here: Fibonacci search is the fastest method

for the worst possible function, but our algorithm is faster on a large

class of functions (including, for example, C functions with positive

second derivatives at interior minima).

A similar algorithm using derivatives

We pointed out in Section ^.5 that bisection could be combined with

interpolation foimulas which use both f and f * . We could combine

golden section search with an interpolation method using both f and f*

in a similar way. Davidon (1959) suggests fitting a cubic polynanial to

agiee with f and f1 at two points, and taking a turning point of the

cubic as the next approximation. (See also Johnson and Myers (I967).) This

method, which givec the possibility of superlinear convergence, could well

replace successive parabolic interpolation (using f at three points) in

our algorithm if f is easy to compute. If the cubic has no real turning

point, or if the turning point which is a local minimum lies outside the

interval known to contain a minimum of f , then we can resort to golden

section search.

I3U

Marti

4»—-^

5-8

Parallel algorithms

So far we have considered only serial (i.e., sequentlaJ) algorithms

for finding minima. If a parallel computer is available, more efficient

algorithms which take advantage of the parallelism are possible, just as

in the analogous zero-finding problem (see Section ^.5)« Karp and

Miranker (1968) give a parallel search method which is a generalization of

Fibonacci search (and optimal in the same sense, if a sufficiently parallel

processor is available). oee also Wilde (196i+) and Avriel and Wilde (I966).

Miranker (1969) gives parallel methods for approximating the root of a

function, and these could be used to find a root of f* (or parallel

methods for finding a root of f , using only evaluations of f , could

be used). These parallel methods could be combined, in much the same way

as we have combined golden section search and successive parabolic

interpolation, to give a parallel method with guaranteed convergence,

and often superlinear convergence with a higher order than for our serial

method.

8. An ALGOL 60 procedure

The ALGOL procedure localmin for finding a local minimum of a function

of one variable is given below. The algorithm and some numerical results

are described in Sections U to 6.

Procedure localmin

real procedure localmin (a, b, eps, t, f, x);

value a, b, eps, t; real a, b, eps, t, x; real procedure f;

135

" ' J

5.8

begin canment;

If the function f is defined in the interval (a,b), then localmin

finds an approximation x to the point at which f attains its minimum

(or the appropriate limit point), and returns the value of f at x.

t and eps define a tolerance tol = eps.|x|+t, and f is never evaluated

at two points closer together than col. If f is 5-unimodal (see

Definition 3.5)^ for some 5 < tol, then x approximates the global

minimum of f with an error of less tuan 3.tol (see Section k), If

f is not 5-unimodal on (a,b), then x may approximate a local, but

non-global, minimum, eps should be no smaller than 2.macheps, and

preferably not much less than sqrt(macheps), where macheps is the

relative machine precision (Section ^.2). t should be positive. For

further details, see Section 2.

The metnod used is a combination of golden section search and

successicn parabolic interpolation. Convergence is never much slower

than for a Fibonacci search (see Sections 5 and 6). If f has a continuous

second derivative which is positive at the minimum (not at a or b) then,

ignoring rounding errors, convergence is superlinear, and usually the

order is at least l.^kj.,.;

real c, d, e, m, p, q, r, tol, t2, u, v, w, fu, fv, fw, fx;

c := 0.58l9660112501051517951+13l6565^; comment: c = (3 - sqrt(5))/2;

v :=w :=x :=a+cx (b-a); e := 0;

fv : = fV : ^ fx : = f (x);

canment; Main loop;

loop: m :-0.5x(a+b);

tol := eps x ab8(x)+t; t2 := 2 x tol»

136

3.8

comment; Check stopping criterion;

if abs(x-m) > t2 -0.5 X (b-a) then

begin p := q := r := 0;

if abs(e) > tol then

begin comment; Fit parabola;

r := (x-w) x (fic-fv); q := (x-v) x (fs-ftf);

p := (x-v) xq-(x-w) x r; q := 2x (q-r);

if q > 0 then p := -p else q := -q;

r := e; e := d

end;

if abs(p) < abs(0.5 X qxr) Ap>qx (a-x) A p < q x (b-x) then

begin camnent; A "parabolic interpolation" step;

d *.= p/q; u := x+d;

conment; f must not be evaluated too close to a or b;

if u-a < t2 v b-u < t2 then d : = if x < m then tol else -tol

end

else

begin comment;: A "golden section" step;

e := (if x < m then b else a) -x; d := c x e

end;

comment; f must not be evaluated too close to x;

u := x+ (if abs(d) > tol then d else if d > 0 then tol else -tol);

fu := f(u);

commant; Update a, b, v, w and x;

if fu < fx then

137

<(< * > • i

tdftk^^^M ■A.M>^MHM^S^^te ' -- ^^^^^mm

«—I c—i U— J ^. . J i 4

= x else a := x;

= x; fw := fx; x ;= u; ftc := fu

5.8

begin if u < x then b :

v := w; fv := fw; w :

end

else

begin if u < x then a : = u else b : = u;

iffu<f»rvw = x then

begin v := w; fv := fw; w := u; fw := fu end

else iffu<fvvv-xvv=w then

begin v := u; fv := fu

end

end;

go to loop

end;

localmin := fx

end localmin;

138

AMMMI d^t

Chapter 6.

Global Minimization Given an Upper Bound on the

Second Derivative

6.1

1. Introduction

Minimization procedures like the one described in Chapter 5 can

only guarantee to find a local, not necessarily global, minimum of a

function f€C[a,b] . If f happens to be unimodal then a local

minimum muFt be the global minimum in [a,b] , but in practical problems

it often happens that f is not unimodal, or that unimodality is difficult

to prove. In this chapter we investigate the problem of finding a good

approximation to the global minimum, given weaker conditions on f than

unimodality. As usual, we consider methods which depend on the sequential

evaluation of f at a finite number of points, and our aim is to reduce,

as far as possible, the number of function evaluations required to give

an answer which is guaranteed to be accurate to within some prescribed

tolerance.

In Sections 2 to 6 we describe an efficient algorithm for

approximating the global minirüum of a function of one variable, given an

upper bound on the second derivative. There are many obvious applications

for this algorithm. For example, when finding a posteriori error bounds

for the approximate solution of elliptic pe^tial differential equations,

we may need to find the taaxlmum of |f(x) j (Fox, Henrici and Moler (1967)).

Instead of working with |f(x) j , which may have discontinuous derivatives,

it is probably better to use the relation

max |t(x)| = -min(min(f(x)), min(-f(x)))
X XX

(1.1)

In Sections 7 and 8 we show how to extend the method to functions of

several variables, and ALGOL 60 procedures are given in Section 10,

IkO

t 1 * t a % t I

.^M.^ Il I ' -' ' ^—^

6.1

Some fundamental limitations

If feC[a,b] , let

(pf - inf {f(x) | xe[a,bl} , (1.2)

and

}if = inf [xe[a,b] | f(x) = (pf} . (1.5)

Even if f satisfies very stringent smoothness conditions, the problem

of finding \i is improperly posed, in the sense that \i is not a

continuous function of f (with the uniform topology on C[R,b]).

For example, consider

f (x) = COS(TTX) -6X (1.^)

on [-2,2] . If 8 > 0 then ji ~ 1 ' bufc if & < ^ ^hen ^f ~ -1 ,

so a very small change in f can cause a large change in ^x. .

Instead of trying to approximate ^„ , ve should seek to approximate

<pf = f(nf) . Since

K-Vgl < ll^-glL (1-5)

for all f and g in Cfa,!)], ?f is a continuous function on C[a,b] , so

the problem of finding cp„ is properly posed. However, given t > 0 ,

it is still impossible to find 'p such that

|9-<Pf| < t (1.6)

witii a finite number N. of function evaluations, unless we have some

a priori information about f .

Ikl

-* - -

|_ / L . i' \. J "~~u_._ J- ._. J l_ J "% 4

6.1

A priori concfitions on f

If f€C[a,b] , the modulus of continuity w(f;5) is defined (RS

in Section 2.2) by

w(f;6) = sup |f(x) -f(y)|. (1.7)
|x-y j <5

x,ye[a,b]

for 6 > 0 . Suppose that a function W(6) is given such that

lim W{6) = 0 , (1.8)
5-0+

and

w(f;6)<W(5) (1.9)

for all 5 > 0 . Given t > 0 , choose 8 > 0 such that

W(5) <t (1.10)

(always possible by (1.8)), and evaluate f at points x , ...,x in

[a,b] such that

max min |x-x,| < 8 .
X£[a,b] 0<i<n 1

(1.11)

(For example, we might choose x. = a+8 , x1 = a+>5 , x» = af58 , etc.)

If

(p = min f (x) ,
0<i<n 1

then, from (1.?), (1-9)^ (1-10) and (l.ll).

0 <<p-q)f < t

(1.12)

(1.15)

lk2

I

-' '-

6.1

Thus, a quite weak condition on f , enabling us to approximate q)f

with a finite number of evaluations of f , is that we have a bound

W(6) , satisfying (1.8), on the modulus of continuity w(f;8) of f .

For example, if feC [a,b] and

Ir'iL < M , (l.Hf)

then we can take

W(5) = M5 . (1.15)

Unfortunately, the procedure suggested above will be very slow if

t is small: in fact, about (b-a)M/(2t) function evaluations will be

required. In the worst case, though, it is impossible to do much better

than this without knowing more about f . To see this, consider

minimizing a function which is,known to be in the class

[f (x) = min (l.Olt, M|x-c|) | ce[a,b]} . (1.16)

If

5 = l.Olt/M , (1.17)

and 9 is computed from (1.12) for some set of points x , ...,x , then

there is a choice of C€[a,bJ for which 9 fails to satisfy (1.15)

unless (1.11) holds, so at least |~ (b-a)M/(2.02t) ~| function evaluations

are required. In some cases less function evaluations will be required:

for example, if

f(x) = Mx , (1-18)

then it is enough to evaluate f at a and b . (See also Section 5»)

I
1

I
11*3

-' 1

«^ ■»•i

6.1

Instead of having an a priori bound on Hf'jl , we could have a

bound

f(r)ll < M (1.19)

>(r), on \\f^ '11 , for sane r > 1 . We show below that, with such a bound,

At

the maximum number of function evaluations required to find cp

satisfying (1.13) is of order (M/t)1/1" .

The case r = 1 is discussed above, so suppose r > 2 , and let

n = (b-a) /'JjM ^

Ivcos(^) Vrl V (1.20)

b-a Define 8 = -=- , a. = a+i5 for i = 0, ...,n (so a = b) , and n

ai,J =*±
+2(l~

n

cos((j -^n/r)

cos(^ n/r)
(1.21)

for i = 0, ...,n-l and j = 1, ...,r (so a. , = a. , a. = &..-.) •

Let P. = IP(f;a. .,...,a.) be the polynomial of degree r-1 x x^x x,r
which

coincides with f at a. ,,...,a. . Then, Lonma 2.1^.1 and the bound
i,l l,r

(1.19) show that, for all X€[a.,a ..] ,

|f(x)-Pi(X)| < Kx-a.^^-.^x-a^^j M/rl . (1.22)

The right side of (1.22) is no greater than (A =- ,
\j2co8(iL)y ria1"1

«md, by (1.20) and the choice of 8 , this is no greater than t/2 . Thus,

we need only find the minimum of each polynomial P. (x) in [a.,a.+1]

to within a tolerance t/2 . This is easy if r = 2 , for then each

Ikh

f *

■■■■J

6.2

polynomial P. (x) is linear. If r > 2 then we can bound |PV(x) |

in [a..ta. ,] , emd apply the procedure for r = 2 to minimize P. (x) .

(This idea for finding bounds on polynomials in an interval was suggested

by Rivlin (1970).) Because successive intervals [a.,a ..] are adjacent,

the number of function evaluations required to find 9 satisfying (1.15)

does not exceed

N = (r-l)n + 2 , (1.23)

where n is given by (1.20).

l/r Since N is of order (M/t) ' , the method described above is

not likely to be practical for small t unless r > 2 . On the other

hand, in practical problems it is usually difficult to obtain good bounds

on the third or higher derivatives of f (if they exist). Thus, in the

rest of this chapter we suppose that r = 2 . It turns out that 81 one-

sided bound

f'Cx) <M (1.2U)

is sufficient, instead of the two-sided bound (I.19). If f'^x) has a

physical interpretation (e.g., as an acceleration), then a bound of the

form (1.2^) can sometimes be obtained frcm physical considerations.

2. The basic theorems

The global minimization algorithm which is described in the next

section depends on the simple Theorens 2.1, 2.2 and 2.3. Theorem 2.1 is

related to the maximum principle for elliptic difference operators, and

also to some results in Davis (I965). We assume that feC [a,b] , and

145

*,— ^ —4 — -

6.2

f'(x) - f (y) < M(x-y) , (2.1)

for all xyy in [a,b] with x >y . (Weaker conditions suffice:
p

see Section 7.) If feC [a,b] then the one-sided Lipschitz condition

(2.1) is equivalent to

f'^x) < M (2.2)

for all x€[a,b] .

Theorem 2.1

Suppose (2.1) holds. Then, for all xe[a,b] ,

fW > (b-*)f(a) t (*-a)f(t)lM(x.a)(b.x) . (2.3)

Proof

The proof is immediate from Lemma 2.U.I.

Lemma 2.1

Suppose (2.1) holds and a < 0 < b . Then

f.(o) < w :f(0) - i m a (2.10

Proof

Applying Lemma 2.3.1 to f(-x) , we have

f (a) < f (0) + af • (0) + | Ma2 , (2.5)

so the result follows.

146

■ m»

6.2

Theorem 2.2

Suppose (2.1) holds, M>0, a<c<b, f(a) > f(c) , and

f^c) = 0 . Then

c - a > f(a) - f(C) . (2.6)
|M

Proof

Applying Lemma 2.1 with a suitable translation of the origin gives

0 = f.(c) < f(a) "c^
C) - | M(a-c) , (2.7)

a-c

so

f(a) - f(c) <|M(c-a)2 , (2.8)

and the result follows.

Lemma 2.2

Suppose (2.1) holds, M > 0 , and a < 0 < b < -f'^/M . Then

f»(b) < 0 .

Proof

By condition (2.1),

f'OO < f»(0) +Mb , (2.9)

and, as

b < -f»(0)/M , (2.10)

the result follows.

1U7

6.2

Theorem 2.5

Then

Suppose (2.1) holds, M>0, a<c<b, and

^ ^ . ,. a+c f(a)-f(cK

f' (x) < 0 .

(2.11)

f2.12)

Proof

There is no loss of generality in assuming that c = 0 and b = x .

By condition (2.11),

so, by Lemma 2.1* we have

b<-f'(0)/M . (2.1^0

Now the result follows from Lemma 2.2.

Remarks

Theorems 2.1, 2.2 and 2.5 are sharp, as can easily be seen by

1 2 taking f (x) as a suitable parabola with leading term p Mx . The

theorems are generalized in Section f, and the proofs given there show

that everything needed to justify our minimization algorithm follows

from the fundamental inequality (2.5). The proofs given in this section

are, however, simpler and more intuitive than those in Section 7«

lk3

f « r »

6.3

3. An algorithm for global minimization

p
Suppose that feC [a,b] and, for all X€[a,b] ,

f'Cx) < M .

We want to find ne[a,b] and cp = f(n) satisfying

|$-(pf| < t ,

where t is a given positive tolerance, and

cp» = min f (x)
X€[a,b]

(3.1)

(5.2)

(3.5)

If M < 0 the problem is quite trivial, for Theorem 2.1 says that f(x)

can not lie below the straight line interpolating f at a and b , so

(pf = min (f(a),f(b)) (5.10

If M > 0 the problem is not trivial, although we saw in Section 1 that

there does exist an algorithm to solve it.

The basic algorithm

The algorithm described in this section is an elaboration and

refinement of the following basic algorithm. (The notation is consistent

with that of the ALGOL procedure glomin (Section 10), except that we

write M for m , \i for x , <p for y (= glomin), and E for

macheps.)

1. Set $ -min (f(a),f(b)) ,

li - if ^ = f(a) then a else b ,

and a_ •- a .

1U9

+m— ^dta

Jt •-

6.3

2. If M < 0 or a > b then halt. Otherwise set a, «- some point

in (ap,b] (e.g., b: see below for a better choice).

5. If f(a,)<qj then set ^ •- a, and 9 - f(a,) .

h. if the parabola y = P(x) , with P'^x) = M , P(a2) = f(a2) ,

and P(a,) = f(a,~) , satisfies P(x) > rp -1 for all x in [ap,a,] ,

then go on to 5 • Otherwise set a, •- p (ap + a,) and go back to 5

5. Set ap ♦- a, sind go back to 2 .

We shall see shortly that (with a sensible choice of a, at

step 2) the basic algorithm must terminate in a finite number of steps.

In view of Theorem 2.1 and step k, it is clear that, when the algorithm

terminates, it does so with $ satisfying (^•2).

Refinements of the basic algorithm

The crux of the problem is how to make a good choice of a, at

step 2 of the basic algorithm. We want to choose a, as large as

possible, but not so large that it has to be reduced at step h.

Theorems 2.2 and 2.5 provide useful lower bounds. If the global minimum

^_ lies outside (ap,b) , or if (pf > ^ -1 , then the algorithm may

halt, for $ already satisfies (5.2). Otherwise

and

f'^P = 0 (3.5)

f(nf) <$-t , (3.6)

so, from Theorem 2.2 with a replaced by a and c by |i ,

150

li L

mn ' Mmniiy "

6.3

kif - a2 >
f(a2) -(p + t

2 m

(3.7)

Thus , at step 2 it is safe to take a, = ai , where

a* = min < b, a_ +
f(a2) -^ + t

(5.8)

and with this choice there is no risk that a, will have to be reduced

at step V. Since the right side of (3.7) is at least (2t/M):L/2 , the

basic algorithm must converge in a finite number of steps if, in step 2,

we choose any a, in the range [aX,t] .

If f is decreasing rapidly at a , then Theorem 2.5 may give a

bettfr bound than (5.?). Apply Theorem 2.5 with c replaced by &-

and a replaced by a point a2 - d (with d > 0) where f has

already been evaluated. (This is not possible if ap = a .) Combining

the result with (5.8), we see that it is safe to choose a., = a" at

step 2, where

a n _ L mimb, max \ a + Ln«D
f (a2) - f (n) + t

1I f(a2) -f(a2-d0) + 2.01e

&2 ' ^O + 171 2M.d0

(5.9)

Here e is a positive tolerance, and the term 2.01e is introduced

to combat the effect of rounding errors (see equations (5.^1) and (5.52)).

The choic» a, = all is safe, but it is possible to speed up the

algorithm by sometimes choosing a, > al' . Because we want to avoid

f

151

mm ^g^m

6.3

having to decrease a, at step ^, the best choice would be to take

a, = min (b,a*) , where a* is the abscissa of the point to the right

of a» where the curve y = f(x) intersects the parabola P , with

second derivative M , which passes through (ap, f(a?)) and attains

its miniraira value q)» -t to the right of a« . Here

9' = min (9, f(a5)) (3.10)

is the value of 9 after step 3 has been executed, and we can extend

the domain of f by defining f(x) = f(b) for x > b if this is

necessary. A typical situation is illustrated in Diagram 5.1.

a a
%

Diagram 3.1: The points a2 and a*

It is not practical to choose a, = a* , for, although a* exists,

several function evaluations are needed to approximate it accurately.

Procedure glomin (flection 10) finds a rough approximation a** to a* ,

without any extra function evaluations, by assuming that f can be

approximated sufficiently well by the parabolo. which interpolates f at

152

6.3

the last three points at which f has been evaluated To avoid

overstepping at too often, because of the inadequacy of the parabolic

approximation to f , the procedure uses a heuristic "safety factor"

he(0,1) . If

a5 = min (b , a2+ h(a^ - a2)) , (5-11)

then at step 2 we choose

a5 = max (a^a^) , (3.12)

and if it necessary to reduce a, at step U then we set

a, •- max (a" , ^ (ap+ a,)) . Procedure glcmin also makes a rather

primitive attempt to adjust h , ehe adjustment depending on the outcome

of step h.

Some details of procedure glcmin

The ALGOL 60 procedure glomin given in Section 10 uses the basic

algorithm with the refinements suggested above, from equation (3.8)

and ths criterion in step k of the basic algorithm, it is clear that,

to speed \xp convergence, we want to find a rough approximation to the

global minimum as soon as possible. In other words, <p should be

nearly at its final value as soon as possible. For this reason, procedure

glomin incorporates several strategies which are designed to reduce «p

quickly. We emphasize that the global minimum would be found without

using these strategies; the strategies merely reduce the number of

function evaluations required (see Sections 5 and 6).

The first strategy for reducing $ quickly is a pseudo-random

153

6'.:;

search. About 10 percent of the function evaluations are used to

evaluate f at "randan" points uniformly distributed in (ap,b) .

(f is not evaluated at the random poxnt a, if Theorem 2.1, with a

replaced by a« and x by a, , indicates that f(a,) >9-t , for

such an evaluation would be a waste of time.) At worst, this strategy

wastes 10 percent of the function evaluations, but in practice the

saving in function evaluations caused by quickly finding a good value

of qp is often much more than 10 percent. (The choice of 10 percent

is, of course, rather arbitrary.)

By comparison with the random search strategy, the second strategy

Is a highly "non-random" search. f is evaluated at the minimum a,

of the parabola which interpolates f at the last three points at which

f has been evaluated, provided that this point a, lies in (ap,b)

and Theorem 2.1 does not show that the evaluation is futile for the purpose

of reducing $. The details are similar to those of procedure localmin

(see Chapter 5) • This strategy helps to locate the local minima of f

which are in the interior of [a,b] , and, unless the global minimum is

at a or b , one of these local minima is the global minimum. A bonus

is that, if f is sufficiently well-behaved near the global minimum

(see Chapter 5 for more precise conditions), then the minimum will be

found more accurately than would be expected with the basic algorithm.

The numerical examples given in Sections 6 and 8 illustrate this. To

avoid wasting function evaluations by repeatedly finding the same local

minimum, this strategy is only used about once in every tenth cycle,

although it is always used if q) = f(a0) , for then there is a good

chance that f(a,) < qp »

15^

^^H*

6.3

Finally, the user may be able to make a good guess at the global

minimum. For example, he may know a local minimum which is likely

to be the global minimum, or he may know the global minimum of a

slightly different function (see the application discussed in Section 8)

Thus, procedure glomin has an input parameter c which may be set by

the user at the suspected position of the global minimum, and on entry

the procedure evaluates f at c in an attempt to reduce <p . If the

user knows nothing about the likely position of the global minimum, he

can set c = a or b .

We can now summarize procedure glomin (for points of detail, see

Section 10). Step 1 of the basic algorithm is performed, and the

algorithm terminates immediately unless M > 0 and a < b . Before

choosing a,e(ap,b] at step 2, the strategies described above are used
A

to try to reduce cp . Then a, is chosen, and perhaps reduced at

step U, as described above.

The reader who is not very interested in the murky details of

procedure glomin, or in the effect of rounding errors, would be well

advised to skip the rest of this section.

Some of the formulas used by procedure glomin need an explanation.

When either the random or non-random search strategy is performed, we

have numbers q and r , and wish to determine if the relation

q / 0 A (a? < a^+r/q < b) A

(b-(a +r/4))f(ap) + (r/ci)f(b)
 rri= |M(r/q)(b-(a2+r/q)) <(p-t (5.13)

155

^^MM

*^mm

6.3

z2 =b-a2 >0 , yb is true. If m2=pM>0,

Yp = f(ap) , then (5.13) is equivalent to

= f(b) , and

q[r(yb - y2) + z2q(y2 -$+ t)] < z^rCz^.-r) , (3.1^)

which is the condition tested after label "retry" of procedure glomin.

(If q = 0 then (3.1^) is false, and it is also false if a + r/q

lies outside (ap,b) , since nip > 0 and $-t < min (yp^y.) .)

To approximate at , we need the point at*- where the parabola

y = P(x) , passing through (a.,y.) for i = 0,1,2 , intersects the

parabola

y »mg *-a2-
\|

y2 - (p +1

m. + (p -t (3.15)

(In procedure glomin we use c in place of a., to save a storage

location.) Let z0 = y2 - y1 , z1 = y2 - y0 , (^ = a2 - a1 , d1 = a2 - a0 ,

and d2 = a1 - a0 In the non-random search we have already computed

numbers p and q (r and q above) with
s

p = Vo " Vl

and

*sSB2(dD2l-dlV '

(3.16)

(3.17)

in order to find the turning point a0 + p/qo of P(x) . By forming

the qtiadratic equation for at* , and dividing out the unwanted root ap ,

we find that

a^ = a2+p'/q' , (3.18)

156

- - -it. J

6.3

where

p1 = p+ 2rs ,

q« =r+|qs ,

r = ^d^ ,

and

y2-J + t 8=j m2

(3.19)

(5.20)

(3.21)

(3.22)

Finally, there is the inspection of the lower bound on f in

(a2,€u) given by the parabola

(a,-x)yp+ (x-ap)y,
Y--2 V ^-^ - m2(x - a2) (a5 - x) , (5.25)

where nu = ^ M > 0 and

c^ = a^-ag >0 . (5.210

If

P = ^^ , (3.25)

then the parabola (5-25) is monotonic increasing or decreasing in

(a2,a,) provided

\v\>^ - (3.26)

Otherwise, the parabola (5.25) attains its minimum in (a ,a,) , and

1 12 2° 1 the minimum value is ^ (y.^+y^) - ^ m2(d0 + p) at x = ^ (a2+a^* p) .

Thus, at step U of the basic algorithm, a, must be reduced if

157

«-• « 1 %.- «- Jl" "« J
I J»

6.3

i.e., if

|p| <do A I iy2 + vJ ' i m2(do + p2) <i -t '

|p| <d0 A ^M(d^ + p2) > (y2-$) + (y3-9) + 2t

(5-27)

(3.28)

The effect of rounding errors

So far we have ignored the effect of rounding errors, which

actually occur both in the computation of f(x) and in the internal

computations of procedure glomin. How we show how these rounding errors

can be accounted for.

Let e be the relative machine precision (parameter macheps of

procedure glomin), i.e..

e -

1-T ß (truncated arithmetic),

1 1-T 7j ß (rounded arithmetic).

for T-digit floating-point arithmetic to base ß . We suppose,

following Wilkinson (1965), that

fl(x#y) = (x#y)(l+5) , (3.29)

where f stands for any of the arithmetic operations + , - , y. , / ,

and

|5| < e . (3.50)

On machines without guard digits, the relations (3.29) and (3.30) may

fail to hold for addition and subtraction: we may only have the weaker

relation

158

1 m

6.3

fl(x+y) = xCl+ö^ + y(l+52) ,

where

5.j < e for i = 1,2 .

(5.51)

With these machines it seems difficult to be sure that rounding errors

committed inside procedure glomin are harmless. At any rate, our

analysis depends heavily on relation (3.29). (See equation (5.52) and

the following analysis.)

We also suppose that square roots are computed with a small relative

error, say

fl(sqrt(x)) = v/x(l+55) ,

where (5.52)

(Any good square root routine should satisfy (5-52) very easily. The

library routines for the IM 560 certainly do: see Clark, Cody, Hillstrora

and Thieleker (I967).)

Let us first consider the effect of rounding errors in the computation

of f , supposing for the moment that the internal computations of

procedure glomin are done exactly. The user has to provide procedure

glomin with a positive tolerance e which gives a bound on the absolute

error in computing f . More precisely, we assume that, for all & and

x with 151 < e and x , x(l+5) in [a,b] , we have

|n(f(x(l+6))) -f(x)| <e , (3.55)

where f(x) is the exact mathematical function (satisfying condition

(2.1)), and fl(f(x)) is its computed floating-point approximation. The

159

■ • — ■ — -—-* -».--. .- -- 1 —- ^■M^^^^UMMMMMI

mm " ■ ■J U

6.3

reason for condition (5.35) will be apparent later: at present we only-

need the special case with 5 = 0 , i.e..

|fl(f(x)) - f(x)| <e (5.5^)

for all xe[a,b] .

We have seen that, without rounding errors, procedure glomin would

return cp (or y = glomin) and \i (or x) satisfying

<P-<J = f(il) <<P^ + t . (5.55)

With rounding errors, (5.55) no longer holds, but we shall show that

and

<Pf <f(Ü <<Pf+t+2e

9- - e < 9 = fl(f(!l)) < «p- + t + e

(3.56)

(5.57)

If the error e in canputing f is much less than the tolerance t ,

then (5.56) and (5.57) are much the same as (5.55)> so rounding errors

have little effect on the accuracy of 9 .

The left hand inequality in (3.36) is obvious from the definition

of qp f * To prove the right hand inequality, we must look closely at

the "critical" sections of procedure glomin, i.e., the sections where

rounding errors could make an essential difference. (Examples of non-

critical sections are the random and non-random searches.)

In computing the safe choice a" for a^ according to equation

(5-9)* we contpute

s =
y2 - 9 + t

(5.58)

160

ft ti »1.1 » ixr 1 ?! r
: . :

6.3

and

r = -i(v
(z0 + 2.016)

^^2
(5.59)

where "^ = a2 " ai » zO = y2 " yl ' m2 = 2 M ' ^

and y. - flCf^)) for i = 1,2 . Thus

= nitM) ,

8 <
f(a2) - f(n) + (t + 2e)

*2
(3.1*0)

so, as feu: as the computation of s is concerned, everything said

a^ove holds if t is replaced by t + 2e . (Remember that we axe

regarding all ccmputacions inside the procedure as exact.) We are only

interested in r when cL > 0 and nu > 0 , and as

z0 + 2.01e > z0 + 2e > f(a2) - f(a1) ,

we have

r <
J f(ag) - t(^) \

-^4o + —a^ J • (3.1.1)

(The reason for the extra O.Ole will be apparent later.) Thus, the

computed s^I will not exceed the correct value given by (5-9)* if t

is replaced by t +2e .

The other point where rounding errors in the computation

of f are critical is when we determine whether the parabola y = P(x) ,

with P"(x) = M , P(a2) = y , and P(a,) = y, , lies above the line

y = (p -t in the interval (ap,a,) . Let y = Q(x) be the parabola

with Q'^x) = M , Q(a2) = f(a2) , and Q(a5) = f^) . Since

161

i i i

6.3

y. = fl(f(ai)) < fCa.) + e for i = 2,5 ,

it is clear that

P(x) < Q(x) + e

in (a2,a,) . Thus, if

0.k2)

F(x) >$ - t (5.^5)

in (a2,a5) , then

Q(x) > $ - t - e > f (ji) - t - 2e O.hk)

in (ap,a,) , so again everything is accounted for by changing t to

t + 2e . This completes the proof of (5.56). The left inequality in

0'3l) is obvious, and the right inequality follows from the above

argument if we note that it is sufficient to replace t by t+e+(f(Jl) -9)

Now, let us consider the effect of rounding errors committed inside

procedure glomin. We shall show that (5.56) and (3.3T) still hold,

provided some minor modifications are made in the algorithm. These

modifications are included in procedure glomin, but, to avoid confusion,

they were not mentioned in the description above. The most important

modification is that, instead of having nu = ^ M , procedure glomin has

m2 = fl(i(l+l6e)M) , (5.^5)

where the factor 1+ 16E is introduced purely to nullify the effect

of rounding errors.

2
For the sake of simplicity, terms of order e are ignored in the

rest of this section. Because of the slack in some of oar inequalities,

162

•*ia-aaaate_*»^ ■u*

6.3

these tenns may be accounted for if e < j^ö ' Fr001 (5^5) and the

aasvuaption (3.29), we certainly have

m2 > I (1+1?E)M . (5.^6)

In the computation of a" according to (5.9)* procedure glomin

actually conrputes

1

s =ia| " ' f" , (5.U7) -...{^i)
and as errors in the computation of f have already been accounted for,

we can assume that y and ^ are exact floating-point numbers. From

(5.^ and the assumptions (5.29) and 0.32),

1

^(yp-iMi+öJ+tKi+ö)(i+5 A
ky |M(l+15e) J

where)6 j < e for i = l,...,^ . Since yp-^ and t are both

nonnegative,

(y -9)(l+E)+t < (yP-9
+t)(i+0 , (3A9)

so

S < 6 = -~ . (3.50)

2M

Thus, the slight modification of mp has ensured :hat the computed s

is no greater than the exact s . Note that, in the derivation of

(3.50), it was essential that yp-cp was computed with a small relative

error, so the assumption (3.29) was necessary: (3.31) would not be enough.

163

■ ll il ■! 1

6-3

Similarly, to find a" , we actually compute

f-, f (y -y)+2.01e
- i (a0-aj + —j i-r 2 I v 2 V (a - a)nu (5.51)

where e; > 0 , m0 > 0 , and a0 > a, . We are only interested in r 2 1

if r > 0 , so

0 > fl((y2-y1) + 2.01e)

> ((y2-y1)(l+e)+2.01e(l-e))(l+e)

> (y2-y1+2e)(l+e)2 , (5.52)

assuming that e S üyT • (The reason for the extra O.Ole in (3.59) is

now clear.) Thus

where

and

r = fl(-| (r1+r2)) ,

0 < (ag-a^Cl-e) < ^ < (a2-a1)(l+e)

(y2-y1
+2e)(l-90

(5.55)

(5.5M

0 > r2 > 1 (5.55)
2 M(a2 " ai)

Since r >0 , (5.55) shows that |r | < |r2| , so, fron (5-55) to

(5.55),

r < r < - 2 (a2-al)+ I

y2 " yl + 2e

2M(a2-a1)
(5-56)

161*

 ■t

6-3

As "before, the computed r is no greater than the correct r . The

seuiie is not true for a" , tne computed value of a" , but a^ is

either b , fl(ap + r) , or fl(a + s) . Suppose, for example, that

a^ = fl(a2+s) . (5.57)

Then

fl(f(^)) = fl(f((a2-*-s)(l+&))) (5.58)

where ib I < e , so, from (5.55),

|fl(f(a^)) - f(a2+i)| _; e (5-59)

(This is why we required (5.55) instead of the weaker (3.5^).) Thus,

the error in computing ap+s or a +r can be ignored, for it has

been absorbed into the assumption (5.53) on e .

Finally, we have to consider the effect of rounding errors when

testing the condition (5.28). First

{ y2 " y3

\jM(a5-a;
(5.60)

is computed. It is Important to note that we use pM , not the

slightly different v&. (given by (5.^5)) here. Thus

2M(a3-a)
- • (1+5^) , (5.61)

and

d0 = fl(a5-a2) ^ (a5-a2)(l+62) , (5.62)

165

*■ ■ a

^p^"—""^

6.3

where |5. | < e for i = 1,2 .

The test actually made by procedure glomin is whether

£1 <fl((l+9e)d0) A fl(|m2(d^ + p2)) >fl[(y2-9)+(y5-9)+25] , (5.63)

and we shall show that (5.65) is true whenever the condition (3.28) is

true. First, |p| <d implies that |pj < d (l+5e) , and thus

|51 <fl((l+9e)än) (3.64)

Similarly, if |p | < d aid

^M(c^ + p2) > (y2-$) + (y?-9)+2t ,

then

so

dg + i2 >(d2 + P
2)(l- 60 ,

fl(| m2(d^ + f)) > ^ M(d2 + P
2)(l + he)

> ((y2 - $) + (y^ - $) + 2t)(l+ 3e)

>fl((y2 - $) + (y3 -$) + 2fc) •

(5.65)

(3.66)

(5.6?)

(Note the importance of grouping the terms: since yp-9 , y*-^ and

2t are all nonne^ative, their sum can be conputed with a small relative

error.)

Frora (5.64) and (3.67), the inexact test (5.65) results in a^ being

reduced whenever the exact test (5.28) says that it must be. a, may

occasionally be reduced unnecessarily because of rounding errors, but

this does not invalidate the bounds (5-36) and (5.57)? it merely causes

seme unnecessary function evaluations.

166

_a^tda

35)

6.k

We shoiold mention a remote possibility that rounding errors can

prevent convergence. This is only possible if fl(a + s) = a» , and,

1/2 as s > (1 - 1UE)(2t/M) ' , there is no chance of it happening provided

t > ME
2
 max(a2,b2) . (5.68)

Thus, convergence can only be prevented by rounding errors if t is

unreasonably small.

In conclusion, procedure glouin is guaranteed to return 9 and \x

satisfying the bounds (5.56) and (507); provided the input parameters

raacheps, t and e are set correctly.

k. The rate of convergence in some special cases
1

It is difficult to say mich in general about the number of function

evaluations required by th'3 algorithm described in Section 5. In the J
I

next section we compare the algorithm with the best possible one for
I

given M and t . In this section, we try to gain some insight into the

dependence of the number of function evaluations on the bound M and
■

the tolerance t , by looking at some simple special cases.

j
1

The worst case .—^^__^—___

As pointed out above (equation (5.4))* two function evaluations

are enough to determine JI and 7) if M < 0 , so suppose that M > 0 ,

and let

\| M * (^•1)

167

6.k

We shewed above that, if the last function evaluation was at ape[a,b) ,

we could safely choose

a, = min(b,a2 + 5) (4.2)

for the next evaluation (step 2 of the basic algorithm). With this

simple choice of a, , about (b-a)/5 function evaluations would be

■required. Procedure glomin tries to do better than this, and is nearly

always successful (see Section 6), but the worst that can happen is

that a, will be chosen to be b , and then a, will be reduced several

times at step k of the basic algorithm. As a*-a2 is halved at each

such reduction of a3 , there can be at most
5

(^5)

consecutive reductions of a, at step h. Thus, at worst, about

function evaluations will be required. We have ignored the random and

b - a •nonrandom searches, but these can only add about 2(,) extra function

evaluations.

b a If b is given by (h.l), the tem log (—g—) in (h.k) varies

only slowly with M and t , so the upper bound is roughly proportional

1/2 to (b-a) (M/t) ' . In particular, the upper bound is roughly proportional

to \/M , and it seems to be a good general rule that the number of function

evaluations is roughly proportional to /M , even when the upper bound

(h.k) is not attained (see below and Section 6^.

168

Ssm^^*

6.1+

A straight line

If the global minimum of f occurs at an endpoint n = a or b ,

and f (n) / 0 , we can gain an insight into the behaviour of the

algorithm near n by considering the linear approximation f(n) + (x-^f (n)

to f(x) . Suppose, for example, that

f(x) = k(x-a) + t (iv.5)

for some k>0,so n = a. Ignoring the r andern searches, the

algorithm will evaluate f at the points a , b , c, and then at

points x < x2 < x, < ... < x^ T say, where x=a<x1, Xj^^b,

and the points (x ,f(x)) and (x 1,f(x)) lie on the parabola

y = P (x) which touches the line y = 0 and has P"(x) = M . (See xr n

Diagram ^.1.) If P (x) touches y = 0 at x = a , then

P.(x) =|M(x-an)2 , (1^6)

so

a = x +1 | (k(x -a)+t) = X^T - % (kCi^, -a)+t) . (U.?) n n S M v v n ' ' n+1 ^ M v v n+1 ' ' v i/

If

zn = Jxn-a + t/k , (U.8)

then (^.7) gives

Vl ^n + ft ' (U-9)
SO

It |2k
Sn = >|k +M-M (lv.10)

Thus

169

— J

=

1-Ptf3l' ti~n~

t ~ ~ t ~"

""" ~ -
t • ~

e~'f~~ ~

f i1 iM

'(4 ll)

I
I

I I
I t

m~l-1 a.n4

(4 13)

~fi! n gl (ltin~ "tit\f:l

■^■^^

6.1+

effect of rounding errors, but these should not be important if t

satisfies the weak condition (5-68).)

If k is very small, so that k(b-a) « t , then (^.12) gives

N ~i (b-a)/5 , {h.lk)

and the algorithm proceeds in steps of size about 26 , where 6 is

given by (U.l).

A parabola

If the global minimum of f occurs at an interior point [i , then

f* (n) = 0 , so if -"(n) / 0 we may analyse the behaviour of the

algorithm near \i by considering the parabolic approximation

f(ji)+^ f"(pi)(x-n) to f(x) . Thus, suppose t,hatv

M > m > 0

and

f(x) = |m(x-u)2 + t ,

(^•15)

(^16)

where ^€(a,b) . The nonrandom search will quickly locate n , so we

may suppose that (1 = ^ , and, without loss of generality, ^ - 0 . The

algorithm will call for the evaluation of f at points to the left, and

then to the right, of \x . As these two cases are similar, let us

defined above,

except that now f is given by (^.16) instead of by (U.jp). In place

of (H.7), we find hat

define x = ^ = 0 , and study the points x ,x ,

t m , 2 ^ 2t^ | a , 2 2t^ ,,, ^x
n n ^{^"n m7 n+1 ^Mv n+1 m' v '

171

6.U

It does not seem to be possible to give a simple expression like

(U.U) for x , defined, by the recurrence relation (h.Yj), but we may

solve for x in terms of x , obtaining

= (>£AX + (JSL] I s {x2 + st) . (u.ia)
I M-m In I U-mj J M v n m' v ' n+1

If

p = (M/m)1/2 , (1^.19)

this may be written as

Xn+1 = ^)^+te)([^f-%) • <-)
Suppose that p is close to 1 , i.e., M is not much larger

than m = t"{\i) . Then

■'■Wi x, = I -- S i ^ • (^.21)

For n > 1 , the first term in (I*.20) dominates the second, and

^ ■= ! ST |K„(l + 0((p-l)a)) as p - 1 . (1..22) (^I)V1+0< n+1

Thus, if p is close to 1 , then

for n > 1 , and, as the factor £-=■ is large, only a few function

evaluations will be required.

172

■^■^^

6.5

5. A lower bound on the number of flmction evaluations required

Suppose that a positive tolerance t and bound M are given,

that f attains its global minimum q)f in [a,b] at |if , and that

f'Cx) <M (5.1)

for all x».[a,b] . (Similar results to those below hold if equality is

allowed, but the definitions and. proofs have to be modified slightly.)

First, we need a lemma.

Lemma ^.1

If x,€[a,b) , then there is at most one point xl,e(x,,b] , such that

the parabola y = P(x) , with P,,(x) = M , P(x') = ^x«) , and touching

the line y = <pf-t , satisfies P(x") = f{x") .

Proof

Suppose, by way of contradiction, that two such distinct points x"

and x"1 exist. Then

M = 2t[x',x",x"'] = f'd) (5.2)

for seme IcCxS^] (see Chapter 2), contradicting

f'U) <M . (5.5)

Definition $.1

For x'elajb) , define

s(x') =
xw if the point x" of Lemma 5.1 exists,

b otherwise.

173

I

I.
,,

I ti I

1 (

h

Lemma 5.2 shows that N is finite, in fact

The following lermna shavs that, in order to prove that f(x) ? q>f'- t

f'or all xe[a,b] , given only condition (5.1), it is sufficient to

2 If' .gee [a,b], g"(x) <M f'or all xea,b, and

g(x) = f'(x) n n

for n = 1, 2, ••• ,N and the points x
n

Proof'

q> > q>f'- t . g-

defined above, then

(5.6)

(5-7)

The lermna follows immediately f'rom the definitions and Theorem 2.1.
. I

(Clearly, weaker conditions on g , e.g. condition (2.1), are sufficient.)

Our interest in the points x
1

, ... ,:XW stems from the following

theorem, which canplements Lemma 5.3.

'
Theorem 5.1 -::· ...

~ ·- - T- .':::'-_..:. .. ~~~ -~~~ -1 I
___ .- "· .. ~., . -:i.JeG x1 < x2 < ..• < x'

•• , •••. -· <- "' " v be any v points in [a, b l , with v < N •

Then there is a function g E Cuo[a, b] , satis:f'ying

g"(x) < M (5.8)

f'or all xe[a,b] , and

175

mm

6.5

g(x^) = f(x^) (5-9)

for n = 1,2,..., v , such that

q>g<<pf-t > (5.10)

Proof

Suppose, by way of contradiction, that

«Pg^f't (5.11)

for all such g - Then x' = a , for otherwise -g(a) can be

arbitrarily large, and, similarly, x• = b . Since v < N , there is

an n, l<n<v, such that x1 < x and x', n > x , n . Thus, '- ' n-n n^l n+1 '

the parabola y = P(x) , with P'^x) = M , T{x') = f(x,) , and

P(xA+l) = f(xifl) ' is such that

min
X€[x,,x' ,] n' n+lJ

P(x) < qjf-t . (5.12)

Since there ?a a function g as above which is arbitrarily close to

P(x) in [x',*»] , this contradicts (5.11), so the theorem holds.

Consequences of the theorem

Theorem 5'1 says that, if all that is known a priori about f is

that f€C [a,b] and satisfies condition (5«l)^ then any algorithm,

which is guaranteed to find \x so that f(|i) ^«P.f.+ t , must require

at least N evaluations of f . This is so because, if an algorithm

required only V < N evaluations at points x' < x' < ... < x' , say.

176

-' y - ■

6.5

then it would be sure to fail for either f or for g , for f and g

are indistinguishable on the Vasis of the v function evaluations,

yet cp + t < 9 . Of course, we are only considering algorithms which

sequentially evaluate f at a finite number of points.

Conversely, Lemma 5.5 implies that N+l function evaluations are

sufficient (just evaluate f at |i_ and x , ...,0 , and possibly N

are sufficient. (See Diagram 5.1«) Unfortunately, Lemma 5*5 does not

give us an effective algorithm for approximating «p» , for we do not

know N or the points xc, ...,x_ in advance, and a large number of

function evaluations is usually needed to approximate them.

Efficiency

Suppose that an algorithn requires N' function evaluations to

find cp = f(^) such that (p < q) +1 is guaranteed. We could define

the efficiency E of the algorithm by

E = N/N' . (5.1?)

(Note that E depends on f , M , t , a and b , as well as on the

algorithm.) We have shown that

E < 1 (5-l1+)

for any correct (i.e., guaranteed) algorithm, so, if an algorithiti has

an efficiency close to 1 , then we are justified in saying that the

algorithm is nearly optimal (for that f , M , t etc.). In the next

section we give numerical results which show that, for practical examples,

the algorithm described in Section 5 is often nearly optimal.

177

tw^mm

I

j 6.6
j

6. Practical tests

The ALGOL procedure glomin given in Section 10 was tested using
f

ALGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1968)) on an

I -13 IBM 560/9I ccmputer with machine precision l6 . Some representative

numerical results are summarized in Table 6.1. For all of these
I

-lU -13
results the parameters e and macheps were set at 10 and 16

i
i

respectively.
I

The table gives the upper bound M (parameter ra of glomin) on f" ,
I

and the total number of function evaluations required by procedure glomin:

N" with tolerance t = lO" , and N1 with tolerance t - 10 . The

-12 lover bouid N defined in Section 5 is also given for t = 10

(Recall that no algorithm which is guaranteed to succeed can take less

than N function evaluations.) N and the points x , ...,x^ (see
i

Sectiorc- computed in the obvious way from Definition 5-2, using

procedure zero of Chapter h to solve the nonlinear equation

(
! P(x) = f(x) , (6.1)
I

where P(x) is the parabola of Lemma 5'1« Finally, the efficiency
I

E = N/N" (equation (5*13)) is given.

For some more numerical results, see Section 8,

i/y

i^-""^"-

6.6

Table 6.1: Numerical results for procedure glomin

1 f M N" N' \ N E = N/N

0 2 2 1 2 1.00

f]

100 15 15 n 0.75 |

10000 106 106 101 0.95

2 U 1+ 2 0.50 1

2.1 8 11 8 0.75 |

2.2 9 15 9 O.69 1
f2 8 25 3h 29 O.85 !

52 U8 68 60 0.88 |

128 95 Ikl 120 0.85

Ih 53 51 57 0.75

f5
28 U8 63 5^- 0."° i
56 67 98 76 0.,.

^

7k' 222 21^6 126 0.51

f5
72 U56 3k2 U37 0.81

The symbols are explained above. The functions are:

f (x) = 2 - x on [7,9] (in all cases [i = 9, $ = 7),

<\ A

f (x) = x' on [-1,2] (in all cases ^ = 9 = 0) ,

I

f (x) = x2 + x5 on [- I , 2] (for t = IG-12, 1^1 < 5.10~10 , \i\ < 6.10"20) ,

fu(x) = (x+sin(x))exp(-x2) on [-10,10] & = -0.6795786599525 ,

cp = -O.82U259598U76C77) , and

f (x) = (.: - sin(x))exp(-x2) on [-10,10]

(i - -1.1951566U1665 , j = -0.065^90528956^599) •

1(9

6.7

Comments on Table 6.1

The results for the simple functions f, (x) = 2 -x and fp(x) = x

verify the predictions made in Section k. For example, the values N = 11

and N = 101 for f1 are exactly as predicted: one more than the

right side of equation (^.12). N , IT and N" are roughly proportioned,

to /M if M » f"{\i) (see also the results for f,) , but this rule

breaks down if M ~ f"(ii) , as expected from equation (^.25). (See the

results for f2 with M = 2, 2.1, 2.2.)

It appears that the number of function evaluations does not- depend

strongly on t : comparing N" with N' , we see that the average

number of function evaluations required is only about 20 percent more

for t = ID'12 than for t = 10

Finally, the efficiency E of the algorithm is fairly high, even

for the difficult functions fj^ and f- . This means that no correct

algorithm based entirely on function evaluations could do very much better

than ours, at least on these examples. This is not too surprising, in

view of the results of Section 5«

7. Some extensions and generalizations
2

So far we have assumed that feC [a,b] and

f"(x) <M (7.1)

for all xela,b] , or at leas« that f eC [a,b] and

f(x) - f'(y) < M(x-y) (7.2)

180

6-7

for a < y < x < b . Condition (7'2) was necessary to prove the basic

Theorem 2.1. For the application discussed in Section 8 (global

minimization of a function of several variables), we need to find the

global minimum of a function which is continuous, but not necessarily

differentiable. We can justify using procedure glanin, even though f

may not be different iable, because of the following Theorems 7*1 to 7-5>

which generalize Theorems 2.1 to 2.3. (if the reader is prepared to

accept the fact that Theorems 2.1 to 2.3 can be generalized in the

appropriate way, he may skip this section.)

Theorem 7.1

Let feC[a,b] , and suppose that there is a constant M such

that, for all sufficiently small h > 0 ,

f (u+h) - 2f (u) + f(u-h) < Mh2 (7.5)

for all u€[a+h,b-h] . Then, for all xe[a,b] ,

f(x) > (b-x)f(«)^(«-.)f(b) .lM(M)(b.x) . (7.U)

Proof

There is no loss of generality in assuming that

f(a) = f(b) = 0 (7.5)

and

M = 0 , (7.6)

for we can consider f (x) - P(x) , where P(x) is the right side of

(7.^), instead of f(x) . Thus, we have to show that

181

6.7

^ > 0 , (7.7)

where cp is the least value of f on [a,b] . Suppose, by way of

contradiction, that

<Pf<0 , (7.8)

and let

u = sup(xt-[a,b] | f(x) = cpf} . (7-9)

By the continuity of f , f(u) = qp - < 0 , so u / a or b . Thus,

for sufficiently small h > 0 , ue[a+h, b-h] , and, from the

definition of u ,

f(u-h) > f(u) (7.10)

and

f(u+h) > f(u) . (7.11)

Because of the assumption (7.6), this contradicts (7.5), so (7.8) is

impossible, and the result follows. (Note the close connection with

the maximum principle for elliptic difference operators.)

Theorem 7.2

Suppose that (7.3) holds, M>0, a<c1<c0<b, and

f(a) > f(c1) - f(c2) . Then

c0 - a >
f(a) -f(c-)
—T • (7.12)

2M

Proof

Apply Theorem 7-1 with x replaced by c and b by c0 . The

182

6.7

hypothesis that f(c) = f(c2) gives, after some simplification,

f(a) - f(c)
(c1-a)(c2-a) > 1 ~ , (7-13)

2M

and the result follows as c2 - a > (^ - a > 0 .

Theorem 7«3

Suppose that (7.3) holds, M > 0 , a < c < b , and the interval

I = [c,b] n [c , ~ - -(a). 'fi0^-] has positive length. Then f(x)

is strictly monotonic decreasing on I .

Proof.

Suppose x ,x2 el with x1 < x2 . We have to show that

f(Xl) > f(x2) . (7.1M

Apply Theorem 7.1, first with x replaced by c and b by x1 ,

then with a replaced by c , x by x^^ and b by x2 . The two

resulting inequalities give, after sorae simplification,

f^ - f(x?) , a+c f(a) - f(c) . V^ ()
M(x2 - x^ ^ Mta-cJ 2 ' [1'^

X + x^
Since -^—- < x0 , the right side of (7-15) is positive, so (1 .lh)

holds.

Remarks

Theorems 7-1 to 7-5 generalize Theorems LJ.l to 2.3 respectively.

133

6.8

Since the algorithm described in Section 5 is based entirely on

Theorems 2.1 to 2.3, it is clear that condition (7.3) is sufficient for

the algorithm to find a correct approximation to the global minimum

of f . This is not surprising, for condition (7«3) is equivalent to

(7-2) if feC [a,b] , and is equivalent to (7-1) if feC2[a,b] . In the

next section, we use this result to develop an algorithm for finding the

global minimum of a function f of several variables. The conditions

on f are much weaker than those required by Newman (I965), Sugie (196^),

or Krolak and Cooper (1963). (See also Kaupe (1964) and Kiefer (1957).)

8. An algorithm for global minimization of a function of several variables

•P
Suppose that D = [a,b]x[a,b] is a rectangle in Rw ,

xx y y

f: D -■• R has continuous second derivatives on D , and constants M

and M are known such that
V w

fX)t(x,y)<Mx (8.1)

and

fyy(x,y) -My ' (8*2)

for all (x,y)eD . Let us define y: [a ,b J -» R by

(p(y) = min f(x,y) . (8.5)
xe[a ,b] xx

Clearly cp(y) is continuous, and

min f(x,y) - rain q)(y) . (8.U)
(x,y)cD ye[ay,by]

181+

6.8

Thus, we have reduced the minimization of f(x,y) , a function of two

variables, to the minimization of functions of one variable. Procedure

glomin (see Sections 3 and 10) can be used to evaluate cp(y) for a

given y , using condition (8.1). If we could show that

^'(y) <My , (8.5)

then procedure glomin could be used again (recursively) to minimize

cp(y) , and thus, from (8.U), f(x,y) . Unfortunately, examples show

that (p(y) need not be differentiable everywhere in [a ,b] , so

(8.5) may be meaningless (we shall see below that (8.5) holds when

(p"(y) exists). For example, consider

f(x,y) = xy

on D = [-1,1] X [-1,1] . Then

<p(y) = min (y,-y) = -|y| ,

(8.6)

(8.7)

which is not differentiable at y = 0 , and we can not expect to prove

(8.5). The same problem may arise if the minimum in (8.5) occurs at an

interior point of D : one example is

f(x,y) = (x^ - 5x)sin(y) (8.8)

on D = [V3,/3] x [-10,10] . (f (x,y) vanishes for x = + 1 ,

so (p(y) = -2|sin(y)| , which is not differentiable at 0 , + rr , etc.)

Fortunately, the following theorem shows that cp(y) does satisfy

a condition like (7.5), so the results of Section 7 show that procedure

glanin can be used to find the global minimum of (p(y) , just as if (8.5)

held.

185

6.8

Theorem 8.1

Let f(x,y) and q)(y) be as above. Then, for all h > 0 and

yc [a +h, b -h] ,
|

(p(yfh) - atp(y) + cp(y-h) < M h2 . (8.9)

Proof

From the definition (8.5) of cp(y) , there is a function n(y)

from [a/b] into [a ,b] (not necessarily continuous), such that

q>(y) = f(n(y),y) • (8.10)

j

Thus

9(y+h) < f(n(y),y+h) , (8.11)

I
so

(p(y+h) -2qp(y)+(p(y-h) < f(n(y),y+h) - 2f(n(y),y) + f(ii(y),y-h) , (8.12)

and the result follows from condition (8.2).

Corollary 8.1

For all y€[a ,b] at which q)"(y) exists,

ffi"(y) <M . (8.13)

Functions of n variables

Theorem 8.2 generalizes Theorem 8.1 to functions of any finite

number of variables.

Theorem 8.2

Suppose that n > 1 ^ I- iE a nonempty compact set in R for

n+l
i = 1, ...,n+l , D = I1x I0 x ... x I fl c R , f: D - R is continuous,

136

■•

6.8

and

f(x + he.) -2f(x) + f(x-he.) < M.h2 (8.11+)

for all sufficiently small h >0 , all xeR such that x^+he.eD ,

and i =1,2,,. .,n+l . Let D* = I, x . • • X I , and define 9: D' -» R by

q)(y) = min fCy^.. .,yn,x) . (8.15)
X€lnfl

Then cp is continuous on D* ,

min f(x) = min cp(y) , (8.16)
xeD ~ yeD1 ~

and

9(y+he;) -ap(y)+<p(y-hel) < Mh2 (8.17)

n
for all sufficiently small h > 0 , yeR such that y^+he*. eD1 ,

and J = 1,2, ...,n . (Here e. is a unit vector in R , and e'

is a unit vector in R .)

Proof

The proof is a straight-forward generalization of the proof of

Theorem 8.1, so the details are omitted.

Theorem 8.2 shows that it is possible to use procedure glomin to

find the global minimum of a function f(x , ...,x) of any finit?

number n > 1 of variables, provided upper bounds are kno*m for the

partial derivatives f (x) (i = 1, ...,n) . It is interesting that
i i "

no bounds on the cross derivatives f (x) (i / j) are necessary.

187

6.8

If a one-dimensional minimization using procedure glorsln requires

about K function evaluations, then we would expect that about YT

function evaluations would be required for an n-dimensional minimization.

Since K is likely to be in the range ID < K < 100 in practice (see

Section 6), the computation involved is likely to be excessive for

n > 5 . Thus, for functions of more than three variables, we probably

must be satisfied with methods which find local, but not necessarily

global, minima (see Chapter 7). It should be noted, however, that the

theorems of Section 5 do not extend to functions of more than one

variable, so we do not know how lar our procedure is from the best

possible (given only upper bounds on f for i = 1, ...,n). Thus,
i i

there is a chance that a much better method for finding the global

minimum of a function of several variables exists. It is also possible

that slightly stronger a priori conditions on f (e.g., both upper

and lower bounds on certain derivatives) might enable us to find the

global minimum much more efficiently.

Minimization of a function of two variables: procedure glomin2d

In Section 10 we give an /LGOL 60 procedure (glomin2d) for finding

the global minimum of a function f(x,y) of two variables, using the

method suggested above. Note that glorcin2d uses procedure glomin in a

recursive manner, for glomin is required both to evaluate and to

minimize (p . The error bounds given in the initial comment of procedure

glomin2d are easily derived from the error bounds (3.56) and (5.57) for

procedure glomin.

188

6.8

Procedure glomin2d was tested on an IBM 360/91 compate?' (using

ALGOL W), and scane numerical results are summarized in Table 8.1. In

all cases shown in the table the parameters macheps , e and t were

-15 -J.h -10 -1^ A

set at l6 , 10 and 10 respectively. (Thus <pf -10 < q)

< <p+1.0002 x 10" is guaranteed, where qp» is the true minimum of f ,

and cp is the value returned by the procedure.) In the table we give

the upper bounds M and M (see equations (8.1) and (8.2)), the total

number of function evaluations N , and the approximate global minimum <p

(always very close to the true global minimum (p_) .

I89

1 - —

••»-^^ mm 3B^"" ^~r

6.8

Table 8.1: Numerical results for procedure glomin2d

f Mx M N
A

fl
0

It

0

1+ 9

-1

-1

f
2

 — • "
2

2

10

10

1+

10

h

10

51

n6
1+U6

956

0

0

5'-55

V-59

f5
2210 200 13520 2»-18

h 200 2210 1815 0

f5
h k 195^ -0.5966529610851^71

f6
k

8

k

8

100556

150U96

-0.596652961085^68

-0.59665296l085^51+

The symbols are explained above. The functions are;

Vx'y) = 155 + 99x - 55y on [-1,1] x [-1,1] ;

f_(x,y) = x2 + xy + 2y2 on [-1,5] x [-2,1+] ;

f3(x,y)

fu(x,y)

f5(x,y)

f6(x,y)

100(y-x2)2+ (l-x)2 on [-1.2,1.2] x [-1.2,1.2] ;

f*(y,x) on ^e same domain;

sin(x)cos(y)exp(-(x2 + y2)) on [-1,2] x [-1,2] ;

f5(x,y) on [-2,1+] x [-2,1+] .

190

-'vw.smKtmr '•-•'«'HWWwwril—iwwaiWBWig'' j.a» pwi

6.8

Comments on Table 8.1

The res-alts for the simple functions f, and fU are not very

ffjrpnsing. As expected frcxn the behaviour of proced-ore glorain on

functions of one variable (see Sections 5 and Q> the number of function

evaluations (N) increases »rith M and M . 7 x y
2 2 2

f*fx>y) = 100(y-x) + (1- x) is the well-known Rosenbrock

function (Rosenbrock (i960)), and it has a steep curved valley along

the parabola y = x . f. (x,y) = f,(y,x) ij just the Rosenbrock function

in disguise, and it is interesting that only 1815 function evaluations

were required to minimize f. , compared to 15520 for f, . Thus, it can

make a large difference whether we minimize first over x (with y fixed)

and then over y , or vice versa, but it is difficult to give a reliable

rule as to which should be done first. Of course, even the lower figure

of I815 function evaluations is very high by comparison with 100 or less

for methods which seek local minima (see Chapter 7)> hut perhaps this is

the price which must be paid to guarantee that we do have the global
r

minimum. (This is only a conjecture, for the results of Section 5 have

not been extended to functions of several variables.)

The functions f,. and ir are the same, but the domain of f, is

four times as large as the domain of f . For this function the size

of the domain has much more influence on N than do the bounds M x

and M : increasing the size of the domain by a factor of four increased

N by a factor of about 50, but doubling M and M only increased N

by about 50 percent. With a different function, though, we could easily

reach the opposite conclusion. (fp is one example.)

191

6.9

To summarize: if it is possible to give upper bounds M and M
x y

on the partieil second derivatives f ard f , then procedure

glcrain2d will find a guaranteed good approximation to the global minimum,

but the number of function evaluations required may be considerable,

especially if the domain of f is large or if the bounds M and M

are weak. As for one-dimensional minimization, the size of the tolerance

t has a fairly small influence on the total number of function evaluations

required.

Finally, we should note that we have restricted ourselves to

rectangular domains merely for the sake of simplicity: there is no

real difficulty in dealing with nonrectangolar doroainß.

9. Summary and conclusions

In Section 1 we saw that the problem of finding the global minimum

(pr = f (jiJ of a function f defined on a compact set is well-posed,

whereas the problem of finding n- is not well-posed. To be sure to

find the global minimum, some a priori conditions on f are necessary,

and several possible conditions were discussed in Section 1. We

cuncentrated our attention mainly on one such condition, a given upper

bound on f" , and small variations of this condition.

An efficient algorithm for one-dimensional global minimization,

based on theorems in Sections 2 and 7* iß described in Section 3. The

effect of rounding errors, and the nuiaber of function evaluations

required, are discussed in Sections 3 to 5, and numerical results axe

given in Section 6, Finally, in Section 8 the results for functions of

192

II ■!

6.10

one variable are used to give an algorithm for finding the global

rainimim of a function of several variables (practically useful for two

or three variables), and ALGOL procedures are given in Section 10. The

ALGOL procedures are guaranteed to give correct results, provided the

basic aritbmetic operations are performed with a small relative error

(see the remark following equation (5.50)).

For practical problems, the main difficulty hi using the results of

this chapter lies in finding the necessary bounds on second derivatives.

One intriguing idea is that, if f(x) were expressed in terms of

elementary functions, then the second derivatives could be computed

symbolically, and upper bounds could then be obtained from the symbolic

second derivatives by using simple ineq-Alities. Thus, the entire

process of finding the global minimum could be automated. In some cases

fimctions defined on infinite domains could also be dealt with

automatically by using suitable elementary transfoimations.

ID. ALGOL 60 procedures

The ALGOL procedures glomin (for global minimization of a function

of one variable) and glomin2d (for global minimization of a function of

two variables) are given below. The algorithms and some numerical results

are described in Sections 5 to 6 and 8.

193

6.10

Procedure glomin

real procedure glomin (a, b, c, m, macheps, e, t, f, x);

value a^ b, c, m, macheps, e, t;

real a, b> c, m, maoheps, e, t, x; real proced'ure f;

begin comment:

Glomin returns the global minimum y at x of the function

f(x) defined on [a,b] . The procedure assumes that feC^ '[a,b]

and f"(x) <m for all xe[a,b] (weaker conditions are sufficient:

see the text). e and t are positive tolerances: we assume that

f(x) is conpuTced with an absolute error bounded by e , i.e., that

|fl(f(x(l+macheps))) - f(x) | < e , where macheps is the relative

machine precision. Then x and y =• glomin are returned so that

min(f) < f(x) < min(f) + t + 2e and

rain(f) -e <y = fl(f(x)) <min(f)+t+e .

c is en initial guess at x (a or b will do). The number of

function evaluations required is usually close to the least possible,

1/2 anc considerably less than (b-a)(m/öt) ' , provided t is not

vjir jasonably small (see Sections 3 to 5) >

integer k; real aO, a2, a5, dO, dl, d2, h, m2, p, q, qs, r, s, y,

:/0, yl, y2, y5, yb, zO, zl, 22;

conment: Initialization;

x := aO := b; a2 := a;

yb := yO :-- f(b); y := y2 := f(a);

if yO < y then y := yO else x := a;

if a' > 0 A a < b then

19k

6.10

begin comment; Nontrivial case (m > 0, a < b);

m2:=0.5x(l+l6x macheps) x m;

ifc<avc>b then c := 0.5 x (a+b);

yl := f(c); k := 3; dO := a2-c; h := 9/ll;

if yl < y then

begin x := c; y := yl end;

cormnent; Main loop

next: dl:=a2-a0; d2:=c-a0;

z2 := b - a2; zO := y2 - yl; zl := y2 - yO;

p := r := dl x dl x zO - dO x dO x zl;

q :=qs :=2x(d0xzl-dlx zO);

ccmment: Try to find a lover value of f using quadratic interpolation;

if K > 100000 A y < y2 then £0 to skip;

retry: if q x (r X (yb-y2) + z2 x q X ((y2-y)+t))

<z2xni2xrx(z2xq-r) then

begin a? := a2 + r/q; y5 := f (a3);
■■■

if y5 < y then

begin x := a3; y := y3

end

end;

comment; With probability about 0.1 do a randcm search for a lower

value of f . Any reasonable random number generator can be used in

place of the one here (it need not be very good);

skip: k := l6ll y k; k := k - 10^576 x (k -i- IOU8576);

q := 1; r := (b-a) x (k/100000);

if r < z2 then go to retry;

195

6.10

ccmment: Prepare to step as far as possible;

r := m2 x dO x ell x (12; s := sqrt(((y2-y)+t)/m2);

h := 0.5 x (1+h);

p:=hx(p+2xrxs); q:=r+0.5xqs;

r :^ -0.5 x (dO + (zO + 2.01 x e)/(clO x ni2));

r : = a2 + (if r < s v dO < 0 then s else r);

comment: It is safe to step to r , but we may try to step further;

a5:=ifpxq>0 then a2 + p/q else r;

inner: if a5 < r then a3 := r;

if a3 > b then

begin a3 := b; y3 := yb end

else y5 := f(a5);

if y5 < y then

begin x :- a5; y := y3 aid;

dO := u3 - a2;

if a5 > r then

begin comment; Inspect the parabolic lower bound on f in (a2,a5);

p := 2 x (y2 - y5)/(m x dO);

if ab8(p) < (1 + 9 x macheps) x dO

A 0.5 X n»2 x (dO x dO + p x p) > (y2 - y) + (y5 - y) + 2 x t then

begin comment: Halve thd step and try again;
i

a5 := 0.5 x (»2 + a5); h := 0.9 x h; go to inner

i end
i

end;

if a? < b then

196

^^^i

6.10

begin comment: Prepare for the next step;

a0 : = c; c : = a2; B.2 : = aj;

yO : = yi; yi :=y2; y2 := y3;

go to next

end

end •

glanin := y

end glomin;

Procedure glomin2d

real procedure gloniin2d (ax, ay, bx, by, mx, my, mac heps, e, t, f, x, y) ;

value ax, ay, bx, by, mx, my, macheps, e, t;

real ax, ay, bx, by, mx, my, macheps, e, t, x, y;

real procedure fj

begin comment;

Glumin2d returns the global minimum z = f(x,y) of the function

f(x,y) defined on the rectangle [ax,bx] x fay^ty] . mx and my

are upper bounds on the second partial derivatives of f : we

assume that f (x,y) < mx and f (x,y) < my in the rectangle. xx -" yy

e and t are positive tolerances: f must be evaluated to an

accuracy of +e , and on return

min(f) < f(x,y) <min(f)+t + 3e and

min(f) - e < z = fl(f(x,y)) < min(f) + t + 2e .

macheps is the relative machine precision, and procedure glomin (for

one-dimensional minimization) is assumed to be global;

197

rr^

6.10

real procedure phi (y); value y; real v;

begin comment; Returns nin f(x,,y) over x (y fixed), and may

alter the global variables first, xs and zm;

real procedure fx (x); value ^; real x;

begin fx := f(x,y) eid fx;

real ym;

ym := glomin (ax, bx, xs, mx, macheps, e, tl, fx, xs);

if first v ym < zm then

begin first := false; zm := ym; x := xs end;

phi := ym I

end phi;

real tl, xs, zm; Boolean first;

first ;= true; zm := 0;

tl := 0-5 x t; xs := ax;

glomin2d := glomin (ay, by, ay, my, macheps, tl + e, tl, phi, y)

end glamin2d;

196

J

*"" - '■-■ -—— ~ "■■ ^M J ■'

Chapter 7.

A New Algorithm for Minimizing a Function of Several Variables

Without Calculating Derivatives

7.1

1. Introduction and survey of the literature

In this chapter we consider the general unconstrained minimization

problem: given a function f: R -• R , find an approximate local minimum

of f . There is no need to emphasize the practical importance of this

problem, and the recent literature on the subject is quite extensive.

Here we give only a brief introduction, and no attempt is made to duplicate

the survey articles by Box (1966), Fletcher (1965, 19690), and Powell

(1970a, e), or the books by Beale (I968), Box, Davies and Swann (I969),

Jacoby, Kowalik and Pizzo (1971), Kowalik and Osborne (I968), Wilde (I96V),

and Wilde and Beightler (I967).

In practical problems the global minimum, not a mere local minimum,

is usually of interest. Methods for finding global minima are discussed

in Chapter 6, but for functions of a moderate or large number of variables

the methods of Chapter 6 are impractical. Usually the best that we can

do, in the absence of any special knowledge about f , is to use a good

local minimizer and try several different combinations of starting

positions, eteplengths etc., in the hope that the best local minimum

found is the global minimum.

Constrained problems

It often happens that we want to minimize f(x) subject to the

constraint that x is in seme subset D of R . (Sometimes f is

only defined on D .) Simple upper and/or lower bounds, of the form

«i < ^i < \ (1.1)

on the components x of x , are particularly common, and problems

200

7.1

with such constraints can be reducfd to unconstrained problems by a

transformation of variables (see Box (I966)).

More general constraints may be of the form

or

g.(x) - 0 (an equality constraint)

g (x) > 0 (em inequality constraint) f

where g.: D. c R -♦ R is some given function, for i

g. (x) may be linear, say

g (x) = a x + c

h (1.2)

J

= 1, ...,m •

(1.5)

for some a. eR and c.€R , or g. (x) may be nonlinear, and perhaps

quite difficult to compute. From the point of view of efficiency, it is

probably best to deal with linear constraints directly, but this is

difficult for nonlinear constraints. Direct methods for linear constraints

are given in Fletcher (1968b), Goldfarb (.1969a), and Rosen (i960). (See

also Bartels (1968), Bartels and Golub (1969), Bartels, Golub and

Saunders (1970), Gill and Murray (1970), Goldfarb and Lapidus (I968),

Hanson (1970), and Shanno (1965, 1970b).)

Problems with nonlinear constraints can be reduced to a sequence of

unconstrained problems by the use of penalty or barrier functions. (See

Carroll (1961), Fiacco (I96I, 1967, 1969), Fiacco and Jones (1969),

Fiacco and McCormlck (I968), Fletcher (1969b), Fletcher and McCann (1969),

Jones and McCormick (1969), Kowalik, Osbome and Ryan (1969), Lootsira

(I968, 1970), Murray (1969a, b), Osborne and Ryan [1970, 1971),

Pietrzykowski (1969), and Zangwill (1967b).) Attempts have also been made

201

:

J

7.1

to deal with nonlinear constraints directly. (See Allran and Johnsen

(1970), Box (1965), Haarhoff and Buys (1970), Kalfon, Ribiere and

Sogno (I968), Luenberger (1970), Mitchell and Kaplan (1968), Murtagh

and Sargent (1969), Powell (I969d), Rosen (I96I), and Zoutendijk (i960,

1970).)

Methods using derivatives

Many methods for the constrained or unconstrained minimization of

f: D -♦ R explicitly use the partial derivatives öf/öx. , for

i = 1, ...,n , and some methods also use the second partial derivatives

of f . (Methods for constrained minimization may also use the partial

derivatives of the constraint functions g. .) For example, the

classical method of steepest descent (Akaike (1959), Cauchy (18^7),

Curry (19^0, Forsythe (I968), Goldstein (1962, 1965), and Ostrowski

(I966, 1967a)) repeatedly minimizes f in the direction -g , where

g =

df/^

.dt/dx

(1.5)

is the gradierit of f . Perhaps the most successful methods using

derivatives are the Davidon-Fletcher-Powell "variable metric" method

(Davidon (1959), Fletcher and Powell (1965), Huang (1970), and

McCormick (I969)), B:<A the conjugate gradient method of Fletcher and

Reeves (196^), which is slower but requires less storage than the

variable metric method. (For other methods using derivatives, and related

topics, see Bard (I968, 1970), Broyden (1970a, b), Cantrell (3.969), Cragg

202

■I ■ —„PI ■ ^ ■ 'J

7-1

and Levy (1969), Davidon (1968, 1969), Davies (I968), Fletcher (1966,

1970), Goldfarb (I966, 1969b, 1970), Goldfeld, Quandt and Trotter (I968),

Greenstadt (1967, 1970), Hestenes (1969), Kelley and layers (1967),

Luenberger (1969b), McCormick and Pearson (1969), Miele and Cantrell

(I969, 1970), layers (I968), Pearson (I969), Powell (1969b, c, 1970b, c, d),

Rcunsay (1970), Shanno (1969a, b), Shanno and Kettler (1969), Sorensen

(1969), Takahashi (I965), Tokuraaru, Adachi and Goto (1970), Vercoustre

(1970), Goldstein and Price (I967), and Wells (1965).)

In many practical problems, it is difficult or impossible to find

the partial derivatives of f(x) directly. One possibility is to

compate derivatives numerically, e.g., by finite differences, and then

use czif of the methods requiring derivatives. Stewart (1967) has

successfully modified the variable metric method so that difference

approximations to derivatives can be used. The difficulty is in

balancing the influence of rounding errors and truncation errors when

using finite differences to estimate derivatives. For a computer program,

see Lill (1970).

Methods not using derivatives

Although Stewart's modification of the variable metric method
1

appears to work well in most practical cases (see Stewart (1967),

Powell (1970a), and Section 7), it is more natural to use a method which

does not need derivatives, if derivatives can only be found numerically.

Possibly such methods could be more efficient than methods which approximate

derivatives numerically, although this is less clear in n dimensions than

in one dimension (for which see Chapter 5).

(

203

7.1

Several methods which do not use derivatives have been compared in

the survey papers of Box (1966), Fletcher (1965, 1969c), Powell (1970a, e),

and Spang (1962). (See also Bell and Pike (1966), Berman (1969), Box

(1957), Chazan and Miraulrer (1970), Hooke and Jeeves (I961), Kowalik

and Osborne (1968), Neider and Mead (I965), Smith (I962), Spendley (1969),

Sperdley, Hext and Himsworth (1962), Swann (196^), and Winfield (1967).)

Excluding Stewart's method, the most successful method, especially for

functions of more than three or four variables, appears to be that of

Powell (196^) (see Section 3). The main object of this chapter is to

present some modifications which improve the speed and reliability of

nwell's method. The modifications are discussed in Sections h to 6,

and some numerical results are given in Section J.

Quadratic convergence

Suppose that f(x) has continuous second derivatives

ho - & (^

for i,J = 1, ...,n , in a neighbourhood N of a local minimum |i .

Since |i is a minimum, the gradient of f vanishes at |i , and the

Hessian matrix

A = (fi;j) (1.7)

is positive definite or semi-definite. Near |i , the quadratic form

Q(X) -fOO + i (w)T A(X-M) (1.8)

20k

- ' ■-

7.1

is a good approximation to f(x) . Thus, any minimization method, having

ultimate fast convergence for a general function f(x) with continuous

second derivatives, must have fast convergence for a positive definite

quadratic form, and we might expect the converse to hold too. This

observation has led to the investigation of methods which have quadratic

convergence, i.e., which find the minimum of a positive definite quadratic

form in a finite number of function and/or derivative evaruations, apart

from the effect of rounding errors. Examples of methods with quadratic

convergence are those of Davidon-Fletcher-Powell, Fletcher and Reeves,

and Powell (1964) (this is not quite true: see Section 3). The method

of steepest descent exhibits only linear convergence on a quadratic form,

so it is not quadratically convergent.

A few methods are not quadratically convergent, for exact convergence

requires an infinite number of steps, but they do exhibit superlinear

convergence on quadratic foims. Examples are the methods of Rosenbrock,

as modified by Davies, Swann and Campey (see Swann (I96U)), of Goldstein

and Price (1967), and of Greenstadt (1970). There is no apparent reason

why such methods should fail to perform as well as quadratically convergent

methods on general (nonquadratic) functions. Thus, quadratic convergence

is a desirable property, but it is neither necessary nor sufficient for

a good minimization method.

Stability; the descent property

In many methods for unconstrained minimization, f(x) has been

evaluated at x0 , the current best estimate of the position of the

minimum of f(x) . A new estimate, x1 , is made on the basis of the

205

7.1

values of f at xn and a small number of other points (previous best

estimates, or points close to ^n) • Additional information built up

fron previous iterations, e.g., an approximation to the Hessian matrix

of f at x0 , may also be used. The prediction x.. may be unreliable,

and it may happen that

f(x1) > f(x0) . (1.9)

For example, this often occurs if x is not close to a local minimum,

and an inadequate quadratic approximation to f(x) is used.

To avoid the possibility of instability, most procedures do not

accept x, as the next approximation to the minimum. Instead, they

perform a "linear search" in the direction x -x , i.e., they take

the point

^i= ik + V'^i - ^ (1.10)

as the next approximation, where \ is chosen to minimize the function

<p(X) = f(x0 + M*! " x0)) (1.11)

of one variable. This ensures that

f(x;L) < f(x0) , (1.12)

so the successive points generated must lie in the "level set"

S = (xeRn | f(x) <f(x0)] . (1.13)

In practice, it is not worthwhile to try to minimize the function

cp(\) very accurately. In feet, the minimum may not even exist: <p(M may

206

- I b

7.1

be monotonic increasing or decreasing, or have a maximum but no minimum.

Box {I966) gives examples where an attempt to minimize q)(\) too accurately

prevents a minimization procedure from finding the desired minimum. It

is sometimes stated that the quadratic convergence property of certain

methods depends on (p(\) being minimized exactly, but all that is really

required for these methods is that the one-dimensional minimization

procedure minimizes a quadratic function of \ exactly. Thus, for

quadratic convergence, it is sufficient to fit a parabola P(\) to cp(X) ,
■X- ¥r

and take \-x = \n. > where \n minimizes P(\) . Because of the danger

of instability, this simple procedure is not acceptable, but it is reasonable

■*

to take \ = Xn provided that

y{\) < <P(O) , (1.1M

which ensures that (1.12) holds. (Powell (i970e) gives some reasons

for requiring rather more them (1..14).) See also Sections 6 and 7«

Sums of squares

A very common imconstrained minimization problem is to minimize a

function f(x) of the form

f(*) = t KW)2 ' (1-15)
1=1 1 ~

for some (generally nonlinear) functions f, (x) . For example, this

problem arises when parameters x.,....x are fitted, by the method of

least squares, using m observations. An important special case arises

when the minimum value of f(x) is zero: then we have a solution of the

207

w

7.1

system of equations

j f (x) = 0 , (1.16)

for i = I,.. .^m .

Applying a general function minimizer to f(x) may not be the most

efficient way to minimize (1.15). Methods which make use of the individual

residuals f (x) are likely to be considerably more efficient than

methods which merely try to minimize f(x) without considering the

individual residuals, at least if the minimum value of f(x) is close to

zero. Methods which make use of th^ residuals are described in Barnes

(I965), Box (I966), Brown and ^ennie (I968, 1970, 1971a., b), Broyden (I967,

1969), Dennis (1968, 1969a, b, c), Fletcher (1968a), Gauss (1809),

Hartley (I96I), Jones (1970), Levenberg (I9W), Marquardt (1963),

Matthews and Davies (1969), Morrison (I968), Ortega (1970), Ortega and

Rheinboldt (1970), Peckham (1970), Powell (1965, 1968b, 1969a),

Rabinowitz (I969), Rail (I966, 1969), Schubert (1970), Shanno (1970a),

Späth (1967), Voigt (1969), Wolfe (1959a), and Zeleznik (1968). Good

numerical methods for solving linear least squares problems are also

relevant: see BJorck (1967a, b, I968), Businger and Golub (I965),

Golub (I965, I968), Golub and Reinsch (1970), Golub and Seunders (1969),

Golub and Wilkinson (I966), Jordan (I968), Khabaza (1965), Maddison (1966),

and Powell and Reid (I968).

Let us see why it may be worthwhile to use the residuals. Suppose

that we have a good initial approximation to the minimum of f(x) , so the

functions f.(x) can be closely represented by linear approximations in

the region of interest. To find a linear approximation to f. (x) , we

208

7.1

need to evaluate f. (x) at n+1 points, or evaluate f (x) and the

n components of its gradient at one point. Thus, after the same amount

of work as is required for n+1 evaluations of f(x) , or one evaluation

of f(x) and its gradient, the solution of a lineai least squares problem

gives an approximation to the minimum. This approximation is usually good

if the minimum value of f(x) is small (see Powell (I965)), unless the

linear problem is very Ill-conditioned. On the other hand, if the special

form (1.15) of f(x) is disregarded, then it is necessary to evaluate

f(x) at - (n+l)(nH-2) points to find in approximating quadratic form.

(Alternatively, f and its gradient must be evaluated at f^ (n+2) ~j

or more points.) This suggests that methods which disregard the special

form of f(x) are likely to be much slower than methods which use the

individual residuals, at least if n is large. Empirical evidence

supports this conclusion (see particularly Table 5 of Box (1966) for

n = 20), although seme of the present methods which make use of the

residuals appear to be rather unreliable.
I

Despite our conclusion, most of the numerical examples given in

Section 7 are of the form (1.15) • This is because a particularly simple
j

way to construct test functions with bounded level sets is to use ftmccions

of the form (1.15), and most of the test functions given in the literature

have this fonn.

Some additional references

The following general references on function minimization and related,

topics have not boen mentioned above: Abadie (I97O), Balakrishnan (1970),

Bennett (1965)* Bennett and Green (19('>6), Colville (I968), Davies (1969),

209

7.2

Davies and Swann (I969), Dold and Eckmann (lQ70a, b), Evans and Gould

(1970), Fletcher (1969a)> Hadley (196^), King (I966), Kunzi, Tzschach
j

and Zehnder (I968), Lavi and Vogl (1966), Leon (1966), Luenberger (1969a),

I
Mangasarian (1969), Murtagh (1969), Murtagl. and Sargent (1970), Powexl

(1966, 1969e), Ralston and Wilf (i960), Rice (1970), Rosen and Suzuki

(1965), Shah, Buehler and Kempthorne (I96U), Wolfe (1965, I969), Zadeh

(1969), Zangwill (1969a, b), and Zoutendijk (I966).

2. The effect of rounding errors

Rounding errors in the ccraputation of f(x) limit the accuracy

attainable with any minimization method usin.j; only the computed values

of f(x) . In this section, we generalizr, the result- of Section 5«2,

where the same problem is considered for functions of one variable. As

in Section 5.2, the results of this section do not necessarily apply to

methods which use the gradient of f , computed analytically. (They do

apply if the gradient is computed by finite differences.)

Suppose that, in a neighbourhood N of a local minimum n , the

partial derivatives f. .(x) ure Lipschitz continuous, i.e., for all

x,yeN ,

ifijW - V^i ^ Mijfc -yJ > ^

where M. . is a Lipschitz constant (i,j = 1, ...,n) , and any of the

usual vector norms may be used. Since the gradient of f(x) vanishes

at ^ , a simple extension of Lemma 2.3.1 shows that, for xcN ,

210

7-2

where

f(x) = f(n) + i (x - n)T A(x - n) + R(x) , (2.2)

A={tM) (2.5)

is the Hessian matrix of f(x) at |i , and

|R(x) | < Mljx - ^l3 , (2 A)

for some constant M depending on n , the norm used, and the

Lipschitz constants M. . .

As in Section 5.2, the best that can be expected is that the computed

value fl(f(x)) oi f(x) satisfies the nearly attainable bound

fl(f(x)) = f(x).(l+ ej (2.5)

where

e
xl < e . (2.6)

and e is the relative machine precision (see Section k.2). If f is

computed using single-precis ion arithmetic, the error bound will probably

be consideraoly worse than this.

Let 5 be the largest number such that, according to equations

(2.2) to (2.6), it is possible that

fl(f(|i + 5u)) < f(ja) , (2.7)

for some unit vector u . Then it is unreasonable to expect any

minimization procedure, based on single-precision evaluations of f , to

return an approximation ^ to ^ with a guaranteed uppor bound for

jlji - n'll less than 6 .

211

^^^^*^*^BMMB*«a*MM

■iHKMMMHaHBMMM

7.2

Let the eigenvalues of A be \ > ^vj > • • • > ?*- > with a set of

corresponding normalized eigenvectors IL.,!! , ...,u . Since ^ is a

local minimum of f (x) , certainly

n - ' (2.8)

and we suppose that \ > 0 . (The i>ositicn of the minimum is worse

MB determined if \ = 0 .) If n ' X is small compared to unity, and
n

we take u = u , then (2.7) is possible for

6 ^
2|^)

n
(2.9)

Thus, an upper bound on jjp, - IJ, | can hardly be less than the right side

of (2.9).

The condition number

With the assumptions above, and 5 given by (2.9),

f^ + 5uJ -fOx) + H e|f(^)| , (2.10)

where

K = \/\ (2.11)

is the usual condition number of A . We shall say that K is the

condition number of the minimization problem (for the local minimum p,).

The condition number determines the rate of convergence of some niinlnization

methods (e.g., steepest descent), and it is also important because rounding

errors make it difficult to solve problems with condition numbers of the

order of e" or greater (see below).

212

7-3

Scaling

A change of scale along the coordinate axes has the effect of

replacing the Hessian matrix A by SAß , where S is a positive

diagonal matrix. The problem of choosing S to minimize the condition

number of SAS is difficult, even if A is known explicitly. (See

Forsythe and Molsr (196?) for the problem of minimizing the condition

number of S AS? , where A is not necessarily symmetric.) A good

general rule is that SAS should be roughly row (and hence column)

equilibrated (see Wilkinson (1963, 1965a)). In practical minimization

problems, one difficulty is that little is known about the Hessian

matrix A until a reasonable approximation to the minimum

has been found. This suggests that a general function minimizer which

is scale-dependent could incorporate an automatic scaling procedure,

using current information about A to determine the scaling. One way

of doing this is described in Section k.

213

3« Powell's algorithm
i

In this section we briefly describe Powell*s algorithm for minimization
5
:

without calculating derivatives. The algorithm is described more fully 1

in Powell (I96U), and a small error in this paper is pointed out by
i

Zangwill (1967a). Numerical results are given in Fletcher (1965),
1

Box (I966), and Kowalik and Osborne (1968). A modified algorithm, which

is suitable for use on a parallel computer, and which converges for

2
strictly convex C' functions with bounded level sets, is described by

Chazan and Miranker (1970).

■ —- - - ~ - - '--t-

7-3

Powell's method is a modification of a quadraticaHy convergent

method proposed by Smith (19^2). Both methods ensure convergence in a

finite number of steps, for a positive definite quadratic form, by

! making use of some properties of conjugate directions.

Conjugate directions

If A is positive definite and symmetric, then minimizing the

quadratic function

xTAx - 2bTx = (x - A":Lb)TA(x - A-^) - b'V'S) (5.1)

is equivalent to solving the system of linear equations

Ax = b . (3.2)

If the matrix A is known explicitly, then, instead of minimizing

(3.1), we can solve (3.2) by any suitable method: for example, by forming

the Cholesky decomposition of A. In the applications of interest here,

A is the Hessian matrix of a certain function, and is not known explicitly,

but the equivalence of the problems (3.1) and (5.2) is still useful.

Definition 3.1

Two /ectors u and v are said to be conjugate with respect to

the positive definite symmetric matrix A if

uTAv = 0 . (5.5)

When there Is no risk of confusion, we shall simply say that u

and v are conjugate. By a set of conjugate directions, we mean a set

of vectors which are pairwise conjugate.

21U

.n

7-3

Remark

If (u,....,u] is any set of nonzero conjugate directions in R" ,

then u,t....u are linearly independent. Thus m < n , and m = n iff
~1 ~ni

_n
UT>...,U span R

Theorem 3'1

If A is positive definite symmetric, Ax = b , and {^•••»)in}

is a set of nonzero conjugate directions, then

is conjugate to each of un,...,u .

Proof

If 1 < j <m , then, from (3A),

U'JAX» = u^Ax - b) =0 . (5.5)

Corollary 3«1

If m = n in Theorem 5.1, then x» = 0 , so

(5.6)

Returning to the minimization problem. Theorem 5.1 and the equivalence

of problems (5-1) and (5.2) give the following result.

215

« ~ - ->

7-3

Theorem 5.2

If A is positive definite symmetric,

f (x) = xTAx - 2bTx + c (5.7)

,n
for somt; beR and ceR , and u.., ...,u is a set of nonzero conjugate

directions, then the minimum of f(x) in the space spanned by u,i...,u
m

occurs at the point J^ß.u. , where
i=l 1~1

ßA -.
uTb

u.Au.
(3.8)

Proof

This follows from Theorem 3.1, or, alternatively, from the relation

ft aA m o m "^ föf
(3.9)

i=l i=l u.Au.
~i ~i

(cross tenns vanish because of the conjugacy of u1,...,u).

The usefulness of Theorem 5.2 stems from the following result,

which shows how we can calculate the ß, of (5.8) uaing function

evaluations, even if A , b and c are not known explicitly.

Theorem 5.5

With the notation of Theorem 5.2, a fixed j satisfying 1 < J < m ,

and fixed Q!_,...,a, .,a. .,...,a , the minimum of 1 j-1 j+17 ' m '

W = f(li ^-v (5.10)

occurs at a = ß, .

216

■ I ■*!■ »

mm

7-3

Proof

This follows immediately from equation (5 •9).

From Theorems 5.2 and 5.3> we see that the rainimum of the quadratic

form f(x) can be found by n one-dimensional minimizations along nonzero

conjugate directions u_,...,u , and the order of the one-dimensional

minimizations is irrelevant. To use this result, we have to be able to

generate sets of conjugate directions. Both Powell's method and Smith's

method do this by using the following theorem, given in Powell (196^) •

Theorem 3«^-

If the minimum of f(x) (given by (^.T)) in the direction u from

the point x. is at x. , for i = 0,1 , then x -x is conjugate

to u .

Proof.

For i = 0 and 1 ,

^
f(x. +\u) = 0 at \ = 0 , (3.11)

so, from 0.7),

uT(Axi - b) = 0 . (3.12)

Subtracting equations (3.12) for i = 0 and 1 gives

u A(x1 - x0) = 0 , (3.13)

which completes the proof.

217

■^a^^

7-3

Povell's basic procedure

We can now describe the basic idea of Powell's algorithm. Let x,.

be the initial approximation to the minimum, and let u..,...,u be

the columns of the ilentity matrix. One iteration of the basic procedure

consists of the following steps:

1. For i = 1, ...,.1 , compute ß. to minimize f(x. -i + ß.11.) >

and define x. = x. , + ß.u. . ~i «i-1 i~i

2. For i = 1, ...,n-l , replace u by u
^i UJ ^i+l '

5. Replace u by x -X-. * ^n J ^n ^0

k. Compute ß to minimize f(x + ßu) , and replace x by x + ßu .

For a general (non-quadratic) function, we just repeat the iteration

until some stopping criterion is satisfied. Suppose that 1 < k < n ,

and consider the situation after the k-th iteration. If f is quadratic

then we can show, by induction on k , that u .,...,11 are conjugate.

This follows from the choice of u at step 3> and Theorem J.k: see

Powell (196^). After n iterations, we have minimized along n

conjugate directions u., ...,u , so, by Theorems 5.2 and 3.3, the

minimum will have been reached if the u. are all nonzero. This is

true if, at each iteration, ß, / 0 , for then the directions u,, ...,u

can not become linearly dependent.

The problem of linear dependence

Unfortunately, as pointed out by Zangwill (1967a), even for a

quadratic function f one of the iterations may have ß. = 0 , which

218

results in the directions u-,...,u becoming linearly dependent, and
~1 ~n

from then on the procedure can only find the miniraum of f(x) over a

proper subspace of Rn . The sane is, of course, true for non-quadratic

functions, and even though it is unlikely that ß1 will vanish exactly,

Powell discovered that the directions uv*"'un often becote nearly

linearly dependent. Thus, he suggests that the new direction x - x

should be used, and one o^ the old u., ...,u discarded, only if this
' „1 ~n

does not decrease the value of |det(Y ... v)| , where

_1

Zx = (^i) 2 üi (5.1^)

for i = 1, ...,n . With this modification the algorithm is quite successful

(see Fletcher (1965) and Box (1966) for a comparison with other methods),

but the desirable property of quadratic convergence is lost, for a complete

set of conjugate directions may never be built up. In the next section,

we describe a different way of avoiding the problem of linear dependence

of the search directions. The numerical results given in Section 7

suggest that our method of ensuring linear independence may be preferable

to Powell's.

k. The main modification

The simplest way to avoid linear dependence of the search directions

with Powell's basic procedure, and retain quadratic convergence if ß1 / 0 ,

is to reset the search directions u,,...,u to the columns of the „1 ~n

identity matrix after, say, every n iterations. A similar "restarting"

219

-* - — - '■ '- -■

7.4

device is suggested by Fletcher and Reeves (I96U) for their conjugate

gradient method. Unfortunately, restarting tends to slow down convergence

for approximately quadratic functions, because any information built up

about the function is periodically thrown away. (Perhaps this is why

the Fletcher-Reeves algorithm is generally slower than the Davidon-

Fletcher-Powell algorithm.)

Instead of resetting U = [u,,...,u] to the identity matrix, we
~J- ~n

could equally well reset U to any orthogonal matrix Q . To avoid

discarding useful information about f , we could choose Q so that,

if f is quadratic, u , ...,u remain conjugate. This suggests that

principal vectors q , ...,q should be computed on the assumption that

f is quadratic, and U should be reset to Q = [q^.^.^q] • The

motivation for this procedure may be summarized thus:

1. If the quadratic approximation to f is good, then the new search

directions should be conjugate with respect to a matrix which is close

to the Hessian matrix of f at the minimum, and thus subsequent

iterations should give fast convergence.

2. Regardless of the validity of the quadratic approximation, the new

search directions are orthogonal, so the search for a minimum can never

become restricted to a subspace.

The extra computation involved

We show below that finding principal axes does not require any

extra function evaluations, but it does involve finding an orthogonal

set of eigenvectors for a symmetric matrix H of order n . This requires

220

j^k

w^m

2

about 6n multiplications, and a similar number of additions, if done

as suggested below. Since the principal axes are found only once for

2
every n linear minimizations, and a linear minimization requires about

2.25 function evaluations on the average (see Section 7)* the extra

computation is less than 3n multiplications per function evaluation.

We can expect the evaluation of a nontrivial function of n variables to

require considerably more than 5n multiplications, and possibly order n" ,

so the overhead caused by our modification is not excessive. Also, it

may be worth paying a little for the principal axis reduction, for the

extra information about f is often of interest. For example, it

shows the sensitivity of f(x) to slight changes in x near the minimum.

The principal axes and eigenvalues may be of interest in statistical

problans when f is minus the J og-likelihood, for then the inverse of

the Hessian at the minimum is the sample variance-covariance matrix of

the maximum likelihood estimates: see Neider and Mead (I965) •

Scaling

Powell's modification of his basic procedure has one feature which

ours lacks: his determinantal criterion is independent of a linear

transformation of the independent variable space (an important special

case is a change of scale for the independent variables). This feature

is certainly desirable, for when a function of, say, tenperature and

pressure is to be minimized, there is no natural way to scale the variables.

We should note, though, that Powell's algorithm is not completely

independent of linear t reins format ions of the variable space, or even of

221

*^—"^

I
i

7.^

scale chan^jS, for these influence both the initial choice of the

vectors u..,...,u , and the stopping criterion.

Finding the principal vectors

Suppose that

f(x) = xTAx - 2bTx + c (k.l)

is a positive definite quadratic form, although A , b and c may not

be known explicitly. If n iterations of Powell's basic procedure are

performed as described above, and at each iteration ß / 0 , then we

obtain n nonzero conjugate directions u,,...,u . Let U = [u, ... u] „I ~n ~1 ^n

By the conjugacy of u,, ...,u t

UTAU = D , (U.2)

where D is a diagonal matrix with positive diagonal elements d. .

During the last (i.e., n-th) iteration, we have performed one-

dimensional minimizations in the directions un,...,u . Consider a -.1' ~n

minimization from the point x . , in the direction u , for

1 < i < n . We minimize the function

^(a) = f(x1_1+ ca^) (^.5)

= a u^Au, + acz(u^Ax, , -utb) + (xT ,Ax. . - 2xT ^b + c) . (k.k) ~i -i \^i ~i-l -i~ ~i-l ~i-l ~i-L- ' v '

To minimize cp.(a) we fit a parabola, which necessitates computing the

second difference <p,[a ,a ,a2] for three distinct points a0 , Q^ ,

and a . t^rcm eq\iation (U.U),

222

■ ' * ■

7.U

vpi[a0,a1,a2] = Ä^ = ^ , (^.5)

so the diagonal elements d. of D are known without any extra

canputation. (If the quadratic approximation to <p. (ct) is bad we may

have <p.[a ,ct ,a] < 0 , and then we arbitrarily set d to a small

positive number.)

Let 1

V = ur 2 • (4.6)

be the matrix with columns v , ...,v given by (3.l4)> and let

H = A"1 . (U.7)

Since U is nonsingular, equation {k.2) gives

H = UD'V = W1 . (h.8)

i 2
The matrix V is easily computed from U in n multiplications and i-

n square roots, but the computation of Vy is more expensive, and can

be avoided: see below.

Our aim is to find the principal axes of the quadratic form f ,

i.e., to find an orthogonal matrix Q, such that

Q'rAQ - A , (M)

where A = diag(\) is diagonal. Thus, the columns q of Q are just

the eigenvectors of A , with corresponding eigenvalues \ , ...,\ , and

we can assume that k > ... >\ . The obvious way to find Q and A

is to compute H - Vv explicitly, and then find Q, and A such that

QTHQ = A"1 , (4.10)

by finding the eigensystera of H .

223

^^m*m ^MMMtf^di

Use of the singular value decomposition to find ^ and A

If the condition number H = ^,A is of order e , where e is 1' n

the relative machine precision (see Section h.2), then rounding errors

may lead to disastrous. errors in the computed small eigenvalues

\~ ,\' ,... of H , and in the corresponding eigenvectors q^qp*''*^

even if they are well-determined by V . Thus, it may be necessary to

compute H , and find its eigensysten, using double precision arithmetic.

This difficulty can be avoided if, instead of forming H = Vv , we work

directly with V . Suppose that we find the singular valu<: decomposition

of V , i.e., find orthogonal matrices -Q, and Q' such that

Q^' = Z , (^.11)

where L = diagfa.) is a diagonal matrix. (See Golub and Kahan (1965),

and Kogb etliant z (195 5) •) Then

A"1 = QTHQ = (QTVQ')(QTVQ,)T = ^ . ik'^)

so Q is the desired matrix of eigenvectors of A , and tha eigenvalues

\. are given by

Note that the matrix Q' is not required, and it is not necessary to

compute Vv" .

Since it is desirable that the computed matrix Q should be close

to an orthogonal matrix, we suggest that Q and E should be found by

the method of Golub and Reinsch (1970). This involves reducing V to

bidiagonal form by Householder transformations, and then computing the

t
i

22k

TA

singular value decomposition of the bidiagonal matrix by a variant of

the QR algorithm.

Let us compare the amount of conputational work involved in

computing Q and A via

1, The singular value decomposition (SVD) of V as described

above, and

2. Finding the matrix H and its eigensystem, using Householder's

reduction to tridiagonal form and then the QR algorithm. (See

Bowdler, Martin, Reinsch and Wilkinson (I968), Francis (I962),

Householder (196^), Kublanovskaya (1961), Martin, Reinsch and

Wilkinson (1968), and Wilkinson (1965a, b, I968),)

For pui-poses of comparison, we count only multiplications, and

2 ignore terms of order n , so our conclusions may not be valid for very

small n . Suppose that, in each case, the QR process requires pn

iterations, for some modest number p .

For method 1, the Householder reduction requires kn /3 multiplica-

tions, accumulation of the (left-hand) transformations requires another

hn /3 multiplications, and the QR process with accumulation of the

transformations requires 2pn multiplications, if no splitting occurs.

Thus, method 1 requires (8+6p)n /5 multiplications in all.

For method 2, the Householder reduction requires 2n'/5 multiplications

(only half as much as for method 1 because of symmetry), accumulation of

the transformations requires 2n'/5 multiplications, and the QR process

3 5 requires 2pn , giving (U+6p)n /5 altogether. This could be reduced
■5 2

to hn /3 , still ignoring terms of order n , if inverse iteration were

used to compute the eigenvectors of the tridiagonal matrix, but then it

225

I

I

nan

CilJ , • b

V I •
ffl '11t AU ".rn-axt•"

y 1 on ton

tl N v 1 With

I
.

(4 •)

W11 • t ft • 4 li (1 .

h d '1

"^Ml^m

7-5

scbd should be fairly small (say about ID) unless the axes are very

badly scaled initially. The automatic scaling is worthwhile, but its

effect is not dramatic, and it is rather unreliable, which is the reason

for introducing scbd . Thus, it is still worthwhile for the user to

try to scale his problem as well as possible.

Another modification

For Powell's basic procedure to minimize a positive definite

quadratic form in n iterations, steps 1 to 3 of the first iteration

are unnecessary. Thus, our algorithm omits steps 1 to 5 on the first

iteration, and, subsequently, after each singular -value decomposition

(i.e., at the (n+l)-st, (2n+l)-st, ... , iterations). For this reason,

there are exactly

1 + (n-1) (nf 1) = n' (U.16)

linear minimizations, instead of n(nrH) , between each singular value

decomposition. This modification is not important for large n , but

numerical results suggest that it is worthwhile for small n .

5. The "resolution ridge" problem

Suppose temporarily that we are trying to maximize a function f(x ,x0)

of two variables by an ascent method. Wilde (I96H) points out that

rounding errors in the computation of f may lead to premature termination

because of the "resolution ridge" problem illustrated in Diagram 5«1«

227

^M^ ^

^p^p

7-5

= 6
= 5

= 4

= 3

= 2

= 1

*Sa
*&

Diagram ^.1: A resolution ridge

Regarding the surface defined by f(x1,xp) as a hill, we may reach

a point xn , situated on a narrow ridge, and then try to proceed to a

higher point by performing linear searches in certain directions.

Suppose, for example, that we attempt linear searches in the EW and NS

directions. The point x may not be at the true minimum of f in both

these directions but, because of the effect of rounding errors in

evaluating f , our one-dimensional search procedure will only attempt to

locate the position of maxima to within sane positive tolerance 6 (see

228

7-5

Section 2). Let ^j. = XQ + 5^ , ^ = x0 -5e1 , x^. = x0+5e2 , and

x = x - 5e . As shown in the diagram, it may happen that f (xn) is

greater than each of f(xN) , ^(x-) , fC3^) and ^(^SJ) > so xn is

within the tolerance 5 of local maxima in both of the search directions,

even though x. may be a long way from the true maximum.which could be

reached by climbing up the ridge. The same problem can arise with

functions of more than two variables, or when we are looking for a

minimum rather them a maximum (then we might speak of a "resolution

valley" problem).

It is clear from the diagram that, if we know another point x*

on the ridge, then a linear search in the direction x - x' will give

a point x" with ^Cx!!) > f(xn) > unless the ridge is sharply curved.

This is the motivation for the method suggested by Rosenbrock (i960),

and improved by Davies, Swann and Campey. (See Swarm (1964), and also

Andrews (I969), Baer (I962), Fletcher (1965, 1969c, d), Osborne (I969),

Palmer (1969), Powell (1968a), Rice (I966), and Section 7-)

I

Finding another point on the ridge

If linear searches from the point x fail to give a higher point,

and a resolution ridge is suspected, then the following strategy may be

successful: take a step of length, say 105 , in a random direction

from x0 , reaching the point x . Then perform one or more linear

seavchcs, starting at x^ , and reaching the point x' . As the diagram

shows, the point x* is likely to be on the ridge, so a linear search in

the direction x - x* may be successful.

229

• --■
a^^^

7-5

Although he does not refer to the resolution ridge problem,

Powell (19&0 incorporates such a strategy in his stopping criterion.

We propose to use this strategy during the regular iterations as well.

Incorporating a random step into Powell's basic procedure

Suppose that we are commencing iteration k of Powell's basic

procedure, ?ounting either from the start or from the last singular

value decomposition, and 2 < k < n . To ensure quadratic convergence,

we must search along the directions u ,._,,...,u in step 1 of

iteration k , but the searches along directions un,...,u ... are not ~1 „n-k+l

necessary for quadratic convergence. (They are desirable for other

reasons: see Fletcher (1965) for a comparison of Powell's method and

Smith's method.) The quadratic convergence property still holds if,

at step 1, we move to any point

Vk.1 = ^0+ .£ Hh ^-i)

with ß• / 0 , before performing linear searches in the directions

u ^p, ...,u . Thus, before performing linear searches in directions

u,, ...,u at step 1 of iteration k , we may try the random step strategy

as described above. Procedure praxis does this if the problem appears to

be ill-conditioned, or if the procedure is about to terminate (i.e., if

previous linear searches have failed to find a better approximation to

the minimum).

This modification is not necessary for well-conditioned problems,

but numerical results show that it is essential in order to ensure that a

230

7-5

good approximation to the minimum is found for very ill-conditioned

problems. For example, consider minimizing

f(x) = xTAx , (5.2)

where A is a 10 by 10 Hilbert matrix (i.e., a. . = l/(i+j-l)

15
for 1 < i , j < 10), with a condition number of 1.6x10 . Using

long real on an IBM 360 computer (machine precision 16") , «md

starting fron (1,1, ...,l) , oior algorithm successfully found the

position of the minimum of f(x) to within the specified tolerance

of 10 , but it failed without the random step strategy. (For further

details, see Section 70

Extrapolation along the ridge

If the function minimizer has been climbing a ridge for several

complete cycles, so the quadratic approximation to f is obviously

inadequate (or the maximum would already have been found), then it may

be worthwhile to try an extrapolation along the ridge. Suppose that

immediately before three successive singular value decompositions, the best

approximations to the maximum are x' , x" , and x"' , with

d0 = ||x» -x,fU2 >0 and d;L = Hx" -x»" |12 >"o . Numerical tests indicate

that curved ridges are often approximated fairly well by the space-curve

given parametric ally by

\(\-d) (\+d)(\-d) M^-dJ

which is chosen because x(-d0) = xf , x(0) = x" , and x(d1) = x,M .

Hence, before the 3rd, Uth, 5th ... singular value decompositions,

231

I

I

7.6

procedure praxis (see Section 9) moves to the point x(\) , where \n

is chosen to approximately minimize f(x(\)) . \ is computed by the

same procedure that performs linear searches.

6. Some further details

In this section we give sane more details of the ALGOL procedure

given in Section 9. The criterion for discarding search directions, the

linear search procedure, and the stopping criterion are described briefly.

(For the sake of clarity, some unimportant details are omitted.)

The discarding criterion

Suppose for the moment that f(x) is the quadratic form given by

equation (5.7). In steps 2 and 3 of Powell's basic procedure (see Section 5)^

we effectively discard the search direction u. , and replace it by

x ~ x. . The algorithm suggested by Powell does not necessarily discard

u. : instead, as mentioned in Section 2; it discards one of u , ...,u ,

u ^ = x -x. , so as to maximize „n+l ~n JD

(det^ ... vn)|, (6.1)

where v. is given by equation (5.1^), after renumbering the remaining

n directions. We wish to retain convergence for a quadratic form in

n iterations, so we are not free to discard any one of un,...,u .. . -1 „n+l

At the k-th iteration, for 2 < k < n , we can discard any one of

u.««**,u _j^1 without losing quadratic convergence (see Section 5). For

232

7.6

lack of a better criterion, we choose to discard the direction, from

u1,...,u .^ , to maximize the resulting determinant (6.1).

Suppose that the new direction x -x. = u ., satisfies ~n ~o -.n+x

u^.n n u-

TV ' ha'l^W ' rj» I/O «_« -"4 T» .I/O " V.0*^/

(Vl^nfl) i=1 (^A)

Then, the effect of discarding u. and replacing it by u , (and then

renumbering the directions) is to multiply the determinant (6.1) by |a j ,

so our criterion is to choose i , with 1 < i < n-kfl , so that |a |

is at its maximum. If ß , ...,ß are as in the description of Powell's

basic procedure (see Section 5)> and the linear minimization with step

ß.u. decreases f(x) by an amount A. , then, from (5.7)*

Ai = ßiüiAUi ' (6,5)

so JAJ / jß. j may be used as an estimate of (u.Au.)'^ . (If ß. = 0

then we use the result of a previous iteration.)

Suppose that the random step procedure described in Section 5 moves

from x to

before the linear searches in the directions u.,...,u are performed.
-.1 ~n

Then

n

Vi'^-fo'E^v^i ' (6-5)

and the ß' of equation (5.1) are given by

233

7.6

ß +7. if 1 < i < n-k+1 ,
ßl M f (6.6) i 17, if n-lcf 2 < i < n . /

From (6.2), (6.3) and (6.5),

f&i^i^S - Oi-^JZ/iej . (6.7)

so we muat discard direction u. , ! < i < n-k+1 , to maximize the

modulus of the right side of (6.7). Since this does not explicitly

depend on the matrix A , the same criterion is used even if f is not

necessarily a quadratic form. Note that our criterion reduces to Powell's,

apart from our restriction that i < n-k+1 , if there are no random ßteps,

i.e., if 7. =0 for i = 1, ...,n . Quadratic convergence is guaranteed

(apart from the effect of rounding errors) unless, for some k = 2, ...,n ,

ßi = ß^= ... =ßi.kfl = 0 (6.8)

at iteration k .

The linear search

Our linear search procedure is similar to that suggested by Powell

(I96U). We wish to find a value of \ which approximately minimizes

(p(X) = f(x0 + \u) , (6.9)

where the initial point x and direction u / 0 are given, and

(p(0) = f(xn) is already known. If a linear search in the direction u

has already been performed, or if u resulted from a singular value

decomposition, then an estimate of ^"(0) is available. A parabola

P(\) is fitted to (p(M , using 9(0) , the estimate of <p"(0) if

23U

m-tä'-m f-njwagwpH

7.6

avt rtle, and the computed value of q)(\) at another point, or at two

points if there is no estimate of 9"(>0 . If PvM h*8 a minimum at

\ - \ , and (p(X.) < 9(0) , then \ is accepted as a value of X to

approximately minimize (6.9). Otherwise \ is replaced by X /2 ,

<p(X) is re-evaluated, and the test is repeated. (After a number of

unsuccessful tries, the procedure returns with \ - 0 .)

The stopping criterion

The user of procedure praxis provides two parameters: t (a positive

absolute tolerancj), and e (i.e., macheps , the machine precision);

and the procedure attempts to return x satisfying

where n is the position of the truv' local minimum near x . The

exact foim of the right side of (6.10) is not important, and could

easily be changed if desired. It was chosen because of the analogy with

the one-dimensional case (see Chapter 5).

It is impossible to guarantee that (6.10) will hold for all

functions f , or even for f which are C near \JL . Our stopping

criterion is, however, rather cautious, and (6.10) is satisfied for all

numerical examples discussed in Section 7, with the sole exception of

the extremely ill-conditioned problem

f(x) = xTAx , (6.11)

where A is a 12 by 12 Hubert matrix, with a condition number

H~1.7X10 >E ~UxlO'*. In most cases the stopping criterion

is over-cautious, and some unnecessary function evaluations are performed.

235

7-7

Let us remark, as does Powell (196^), that the stopping criterion is

not an essential part of our algorithm, so an improved criterion could

easily be incorporated.

Let x' be the current best approximation to the minimum before an

iteration of the basic procedure, and let x" be the best approximation

after the iteration, i.e., n linear searches later. We test if

2llx'-x"l| < el/2llx»l| +t . (6.12)

The stopping criterion is simply to stop, and re+nm the approximation

x" , if (6.12) is satisfied for a prescribed nunbei of consecutive

iterations. The number of consecutive iterations depends on how cautious

we wish to be: 2 is reasonable, and was used for the examples

described in Section f. Because of the random step strategy described

in Section 5, and always adopted if (6.12) was satisfied on the previous

iteration, there is no need for a more complicated criterion, such as

the one used by Powell {lQ6h).

7. Numerical results and comparison with other methods

The ALGOL W procedure "praxis", given in Section 9, has been tested

-13
on IBM 560/67 and .,>6o/91 computers with machine precision 16 . In

this section we summarize the results of the numerical tests, and compare

them with results for other methods reported in the literature. Our

procedure has also been translated into SAIL (an extension of ALGOL:

see Swinehart and Sproull (1970)) and used to solve least-squares

parapet er-fitting problems with up to 16 variables on a PDP 10 computer

236

^^^

7-7

(machine precision 2'^) . The parameter-fitting problem is described

in Sobel (1970). ■

Table 7'1 stunmarizes the performance of procedure praxis on the
-

-5 test functions described below. In all cases the tolerance t = 10 j

-15 and macheps = 16 . The table gives the number of variables, n ;

the initial step-size (a rough estimate of the distance to the minimum),

h ; and the starting point, x0 . So that the results can be compared

with those of methods with a different stopping criterion, we give the

number n. of function evaluations, and the number n, of linear

searches (including any parabolic extrapolations), required to reduce

f(x) - f(n) below 10~ , where f(n) is the true minimum of f .

As f(x) was only printed out after each iteration of the basic procedure,

i.e., after every n linear minimizations, the number of function

evaluations required to reduce f (x) - f (n) to 10 is often slightly

less than n» , so we also give the actual value of f(x) - f (|i) after

n» function evaluations. Finally, the table gives K , the estimated

condition number of the problem. Except for the few cases where it is

easily found analytically, H is estimated from the computed singular

values, and may be rather inacevirate.

For those examples marked with an asterisk, the random step strategy

was used from the start, (in the initialization phase of procedure

praxis, the variable "illc" was set to true.) For the other examples

the procedure was used as given in Section 9 (with "illc" set to false

initially). Although the automatic scaling feature (see Section U)

reduces n. by about 25 percent for some of the badly scaled problems,

this feature was switched off for the examples given in the table. (The

bound "scbd" of equation (^.15) was set to 1 .)

237

i

7.7

Definitions of the test functions, and comments on the results

summarized in Table 7*1, are given after the table.

A cautionary note

When comparing different minimization methods, such as ours,

Powell's and Stewart's, the reader should net forget that the numerical

results reported for the methods may have been obtained on different

computers (with different word-lengths), and with different linear search

procedures. The effect of different word-lengths should only be

significant in the final stages of the search, when rounding errors

determine the limiting accuracy attainable, except for ill-conditioned

problems (say K > 10) . This is another reason why we prefer to

consider the number of function evaluations required to reduce f(x) - f(jx)

to a reasonable threshold (say 10~) , rather than the number required

for convergence.

Because apparently minor differences in the linear search procedures

can be quite important, Fletcher (1965) prefers to consider the number

of linear searches, n, , instead of the numoer of function evaluations,

n_ . This approach discriminates against methods, such as Powell's,

which use most of the search directions several times, and can thus use

second derivative estimates to reduce the number of function evaluations

required for the second and later searches in each direction. Note that,

for the examples given in Table 7*1^ n.p/n-i lies between 2.1 PT^ 2.7

but it would be at least 3.0 for methods which do not use second

>

derivative information, if the linear search involves fitting a parabola
\

and evaluating 1 at the minimum of the parabola. Also, there are

promising methods which do not use linear searches at all (see Broyden (1967),

238

7-7

Davidon (I968, I969), Goldstein and Price (1967)^ and PoweU (1970e)),

and these methods could presumably be adapted to accept difference

approximations to derivatives. Thus, we prefer to compare methods on

the basis of the number of function evaluations required, and regard

the linear search procedure, if any, as an integral part of each method.

Table 7.1: Results for various test functions

1 Function n h xT
^0

nf nl f(x)-f(|x) K I

Rosenbrock 2 1 (-1.2,1) 120 ^7 6.61' -18 2508 j

Rosenbrock 2 5 (5,5) 110 k2 | 8.55 -17 2508 1

| Rosenbrock 2 12 (8,8) 181 67 9.71 -18 2508

1 Cube 2 1 (-1.2,-1) 177 68 7.13 -18 10018

\ Beale 2 1 (0.1,0.1) 5^ 22 2.00 -15 162

1 Helix 5 1 (-1,0,0) 155 67 1.75 -U 500 |

Powell 5 1 (0,1,2) 55 25 1.99 -11 28

Box^ 5 20 (0,10,20) 100 57 2.57 -15 8500

Singular* k 1 (5,-1,0,1) ? 23h 106 9.76 -11 00 1

I Wood* k 10 -(5,1,5,1) 1+52 191 6.06 -Ih ikoo

| Chebyquad 0 0.1 xi = i/(n+l) 51 12 7.89' -20 1.5

Chebyquad k 0.1 xi=i/(n+l) 74 52 7.89' -n 7

Chebyquad 6 0.1 xi = i/(n+l) 223 101 7.00 -15 50

Chebyquad 8 : 0.1 x =i/(n+l) 526 lU7 6.52' -n 200?

Watson* 6 \ 1 0T 516 1U5 2.85' -12 86000

Watson* 9 1 1 118U 5^1 5.18 -11 l.?^

* For these results we set illc := true in the initialization

phase of procedure praxis, and the random number generator was

initialized by calling raninit(2) in procedure test.

239

^iMl^HMta

7-7

Table "] .1 continued

Function n h
T

^0 nf nl
f(x)-fOi) K

Tridiag k 8 oT
27 11 0 29.3

Tridiag 6 12 oT
51 22 0 61».9

Tridiag 8 16 oT 126 55 0 113

Tridiag 10 20 oT 201 89 1.56»-15 175

Tridiag 12 2k oT
259 118 2.23»-15 250

Tridiag 16 32 oT km 222 1.26«-13 108

Tridiag 20 ko oT
805 379 0 677

Hubert 2 10 (1,...,1) 11 k 3.98'-15 19

Hubert k 10 (1,...,1) 50 22 e.ii1-^ 1.5'^

Hilbert 6 10 (1,...,1) 133 58 i^c-n l.5'l

HUbert 8 10 (1,...,1) 262 119 8.1V-11 1.3*10

Hilbert+ 10 10 (1,...,1) 592 267 7.8^»-n 1.6'13

Hilbert+ 12 10 (l,...,l) 731 328 1.98»-11 1.7*16

+ For these results the stopping criterion was more conservative:

we set ktm := 4 in the initialization phase of procedure praxis.

240

m^mtm ^^MM

7.7

Definitions of the test functions and comments on Table J .1

Rosenbrock (Rosenbrock (i960)):

f(x) ^ 100(x2-x^)2^ (1-x^2
(7.1)

This is a well-known function with a parabolic valley. Descent methods

tend to fa,12. into the valley, and then follow it around to the minimum

at (1,1) . Details of the progress of the algorithm, for the starting

point (-1.2, l) , are given in Table 7.2. In Diagram 7.1 we compare

these results with those reported for Stewart's method (Stewart (1967)),

Powell's method, and the method of Davies, Swann and Campey (as reported

by Fletcher (1965)). The graph shows that our method compares favourably

with the other methods. Although the function (7*1) is rather artificial,

similar curved valleys often arise when penalty function methods are used

to reduce constrained problems to unconstrained problems: consider

2 2 minimizing (1-x..) , with the constraint that x = x , by a simple-

minded penalty function method.

Cube (Leon (1966))

f(x) = 100(x2-x^)2+(l-x1)2 (7.2)

This function is similar to Rosenbrock's, and much the same remarks

apply. Here the valley follows the curve x? = x^ .

Beale (Beale (1958)):

f(x) = Z (c.-x.d-xj))2

i=l 1 ■L d
(7.5)

241

r ■*■

7-7

where c = 1.5 , c = 2.25 , c, = 2.625 • This function has a valley

1 T approaching the line x2 = 1 , and has a minimum of 0 at (5, 5) •

Kowalik and Osborne (I96Ö) report that the Davidon-Fletcher-Powell

algorithm reduced f to 2.18x10" in 20 function and gradient

evaluations (equivalent to 60 function evaluations if the usual (n+1)

weighting factor is used), and Powell's method required 86 function

-ft
evaluations to reduce f to 2.9^x10' . Thus, our method compares

favourably on this example.

Helix (Fletcher and Powell (1965)):

f(x) = 100((x3-10e)2+(r-l)2) + x? , (7.10

where

2 _.. 2v 1/2 c. + X-) ' r«(xj+xp^c (7.5)

and

j arctan(x /x) if x > 0 ,
2TTÖ = (2 1 1 (7.6)

1 TT + arctan(xVx) if x < 0 .

This function of three variables has a helical valley, and a minimum

T at (1,0,0) . The results are given in more detail in Table 7*5 and

Diagram 7*2. For this example our method is faster than Powell's

method, but slightly slower than Stewart's.

2k2

^t

7-7

Powell (Powell {196k)):

^=5-(i7^) --^^--{[-(^j -2r}-(7-7)

For a description of this function, see Powell {196k) . Perhaps by good

luck, our procedure had no difficulty with this function: it found the

true minimum quickly and did not stop prematurely.

Box (Box (I966)):

(exp(-ix1/lO) - exp(-ix2/l0)) ID

i=l 1^ -x5(exp(-i/lD) -exp(-i))] (7.8)

This function has minima of 0 at (1, 10, 1) , and also along the

line {(X.,K,on • C0^ procedxire found the first minimum.) Kowalik

and Osborne (1968) report that Powell's method took 205 function

evaluations to reduce f to 3.09 x 10 , so our method is about twice

as fast. Our method took 79 function evaluations to reduce f to

2.29 x 10 , so it is faster, in this example, than any of the methods

compared by Box (I966), with the exception of Powell's method for sums

of squares (Powell (1965)). See the comment in Section 1 about special

methods for minimizing sums of squares'.

Singular (Powell (1962)):

f(x) = (x1+10x2)2+5(x3-x1+)
2
+(x2-2x5)1|

+10(x1-x^)1' . (7.9)

2U3

7.7

This function is difficult to minimize, and provides a severe test of

the stopping criterion, because the Hessian matrix at the minimum

(x = 0) is doubly singular. The function varies very slowly near 0

in the two-dimensional subspace {(10X., -\,, Xp, \27"} • Table 7«^

and Diagram 7'3 suggest that the algorithm converges only linearly,

as does Powell's algorithm. It is interesting to note that the output

from our procedure would strongly suggest the singularity, if we did not

know it in advance: after 219 function evaluations, with

f(x) = 7.67 xio'9 , the computed eigenvalues were 101.0 , 9.999 ,

0.003790 , and 0.00101^ . (The exact eigenvalues at 0 are 101 , ID ,

0 , and 0 .) After 58U function evaluations, with f(x) reduced to

-17 -7 1.02x10 , the two smallest eigenvalues were 1.56x10 and
-R

5.98x10 . Thus, our procedure should enable singularity of the

Hessian matrix to be detected, in the unlikely event that it occurred

in a practical problem. (For one example, see Freudenstein and Roth

(1965).)

Wood (see Colville (1968)):

f(x) = lD0(x2-x^)2 : (1-x^2 + 90(xu-x2)2 + (1-x^2 +

10.1[(x2-l)2 + (x^-1)2] + 19.8(x2-l)(xu-l) . (T.üJ)

This function is rather like Rosenbrock* s, but with four variables

instead of two. Procedures with an inadequate stopping criterion may

terminate prematurely on this function (see McCormick and Pearson (1969)),

but our procedure did find the minimum at n = (1,1,1, If .

2H
1

*'■■ 1 mmmmmä^mmmmi^^^^j^^^^^

■J V

7.7

Chebyquad (Fletcher (1965)):

f(x) is defined by the ALGOL procedure given by Fletcher (1965).

As the minimization problem is still valid, we have not corrected a

small error in this procedure. (The procedure does not ccnrpute exactly

what Fletcher intended.) In contrast to most of our other test functions,

which are designed to be difficult to minimize, this function is fairly

easy to minimize. For n = 1(1)7 and 9 the minimum is 0 , for other

n it is nonzero. (For n = 8 it is approximately 0.00351687572568 .)

The results given in Table 7.5, and illustrated in Diagrams f.h to 7.7,

show that our method is faster than those of Powell or of Davies, Swann

and Campey, but a little slower than Stewart's.

Watson (see Kowalik and Osborne (I968)):

f(x) =x^+ (x2-x^-l)2 +

Uh^^ii^'1)2-1]2- (7-u)

Here a polynomial

p(t) = x1 + x2t + ... + x^-""1 (7.12)

i« fitted, by least squares, to approximate a solution of the

differential equation

dz/dt = 1 + z2 , (7.13)

with z(0) = 0 , for t € [0,1] . (The exact solution is z = tan(t) .)

Because of a bad choice of basis functions {l,t, ...,t " } , the

2U5

7.7

minimization problem is ill-conditioned, and rather difficult to solve.

For n = 6 , the minimum is f(^) ~ 2.28767005355XIO , at

H ~ (-0.015725, 1.012^55, -0.252992, 1.260^50, -1.515729, 0.992996)T .

For n = 9 , f(n) ;-1.599760138x 10' , and n ~ (-O.OOOOI5, 0.999790,

O.OIU76J+, 0.1465^2, 1.000821, -2.617751, U.10^*05, -5.1^5612, 1.052627)T .

(We do not claim that all the figures given are significant.)

Kowtlik and Osborne (I968) report that, after 700 function

evaluations, Powell's method had only reduced f to 2.^5^x10

(for n = 6) , so o.ir method is at least twice as fast here. The

Watson problem for n = 9 is very ill-conditioned, and seems to ^e a

good test for a minimization procedure.

Tridiag (see Gregory and Karney (1969), pp. hi and fk):

f(x) = xTAx - 2x1 , (7.1M

where

A =
-1

0

0
2 -1

-1 2 -1 (7.15)

This function is useful for testing the quadratic convergence property.

The minimum f((i) = -n occurs when n is the first column of A , i.e.,

H = (n, n-1, n-2, ..., 2, 1) (7.16)

2k6

^M

7-7

The results given in Table 7*1 show that, as expected, the minimum is

2
founl in n or less linear minimizations. The eigenvalues of A are

just Vj = ^ cos2(al?i) for J = ±,.",n .

Hubert

f (x) = x Ax (7.17)

where A is an n by n Hubert matrix, i.e.,

a.^. ^ l/(i+j-l) (7.18)

for 1 < i , J < n . f(x) can be computed directly without storing

the matrix A . Like {7.lh), (7.17) is a positive definite quadratic

f jrm, but the condition number increases rapidly with n . Because of

2
the effect of rounding erroirs, more than n linear minimizations were

required to reduce f to 10" , except for n = 2 . The procedure

successfully found the minimum ^ = 0 , to within the prescribed

tolerance, for n < 10 . For n = 12 , some components of the computed

minimum were greater than 0.1 , even though f was reduced to

2.7uxl0 . This illustrates how ill-conditioned the problem is!

Some more detailed r3sults

Tables 7.2 to 7.5 give more details of the progress o-" our procedure

(B) on the Rosenbrock, Helix, Singular, and Chebyquad functions. In

Diagrams 7»1 to 7*7^ ve plot

^7

7-7

A = log10(f(x)-f({i)) (7.19)

against nf , the ntnnber of function evaluations. Using the results

given by Fletcher (I965) and Stewart (I967), the corresponding graphs

for the methods of Davies, Swann and Canrpey (D), Powell (?), and

Stewart (S), eure also given, for purptsses of comparison.

Table 7.2; Rosenbrock

nf nl
f(x) xl X2

1 0 2.42,1 1 -1.20OOO0 1.000000

n k ^.llf'O -1.03^611
i

1.071270

21 8 3.i+2,0
1

j -0.811598
i

0.621199

51 12 2.59*0
1

1.5^9031 0.258076

U5 17 1.67'0 , -0.268211 0.046503

58 22 1.07,0 -O.028125 -0.010783

72 27 3.71,-1 O.I+82692 0.200894

8U 32 2.79,-3 O.947231 o. 897130

98 37 5.89,-li 0.99638U 0.990382

109 k2 6.69»-9 0.999991 0.999974

12C Vf 6.61'-18 1.000000 1.000000

1 132
1

52 1.13'-23 1.000000 1.000000

155 57 k.hT-2h 1.000000 1.000000
L] 1 . __ 1 , ___ .,——•.

248

7-7

Table 7.5: Helix

r i
n. f(x)

..

\ 1 0 2.50'5 -1.000000
1
i

0.000000 0.000000

i i^ 5 1.62,2 \ 1.000000 2.000000 2.000000

1 25 ,
1

9 l.lS'a 0.563852 1.952025 1.759^93

1 56 : ik 5.22*0 0.511857
j

1.000020 2.09612U

kk \ 18 h.Ok'O ' 0.50555U 0.967190 1.9871^5

\ ^ '
25 5.78'0 0.3^7506 0.907981 1.922708

i 65 ! 27 5.01,0 0.8147975 0.73^103 1.07^593

; 82 :
! 35 9.46'-1 0.816717 0.566910 0.969820

' 91 i 37 5.66,-l 0.96575!+ 0.5^2025 1 0 -'^kh

!
105 h3 2.14-6'-1 1.00U62U 0.259^18 0.36J+506

j ^^^ i hi 2.8ir-2 0.9958U5 0.091699 ! 0.155178

: 126 55 6.55f-5 1.002519 0.0^5726 0.072152

| i5u ; 57 8.01'A 1.002726 0.002505 1
j

0.002966

iVf 63 8.66«-6 0.999996
1

0.001855 1 0.002942

155 ;
1 i

67 1.75'-n 1.000000 8.^9«-9 ! 2.147'-7

i 169 ! 73 1.12»-20 1.000000 -6.U5,-11 ! -9.92'-n

1 178 77 1.99»-2I4 ^.000000 -1.69«-15 1 -2.1+7'-13

200 i
. 1.

83 1.91^1 _2l|
 _. ..

1.000000 -1.60'-13 ■
i

-2.55'-15

2U9

mm-

7.7

Table 1 .h: Singular*

nf nl " f(x) :
"f

nl f(x) "

1
T

0 ; 2.15 »2 234 ! 106 ! 9.76'-ll

19 6 1.18 '1 j 244 m 2.03l-12

51 11 7.96 •0
1

254 n6 i 4.n «-13

42 16 7.75 '0 ; 269 123 2.61»-14

58 22 2.94 0 279 128 6.43'-15

68 27 9.86 '-1 ; 289 133 8.88'-16 1

78 52 1.54 '-1 308 llK) 7.35'-16 \

94 38 6.92 -3 i
1

319 145 3.87'-16 :

\ 104 45 1.18 '-3 330 150 9-92,-r7 j

114 46 • 5.25 -5 ; 358 157 9.92»-17 j

129 55 : 8.25
t

1
-6 i 373 162 1.65'-17 j

159 60 ! 2.13
1

-6 i
l

384 167 1.02«-17

i 1^9
1

65 2.70
-7 ;

404 174 9.95'-18

, 164
1

72 7.91 -8 ■
1

421 179 6.02»-23 j

j 174 77 3.95 -8 1 436 184 5.89'-23

184 82 ; 3.90' -8 i 464 191 5.89'-23

199 89 j 3.90'
1

.8 : , 436 196 5-89T-23

1 209 94 j 3.89«
1

-8 :

: 219
1

99 1 7.67'
.-. .._ 1.

-9

^T - (-9.73X10'7 , 9.73xl0"8 , 5.31xl.o"7 , 5.31xl0"7) , lying

approximately in the subspace {(10^,, -\ , \ , ^)} , as expected.

* See the comment ander Table '{.1.

U i

2 50

7.7

Table 7,^; Chebyquad

n = 2

t
: nf nl

f(x)

0 1.98'-1

12 h ^.55,-3

22 8 l.89'-8

51 12 7.89«-20

^5 17 U.89,-2^

75
.. .J

22 i+.89,-2l+

jl1 = (0.211321+9, 0.7886751)

n = 6

n. n.

1

f(x)

L

23
i

37
i

66 i

81 i
1

105 i
1

117

0 i

8 ;

15

22 .

29 ■

36 ;
i

kk

51

k.6k*~2

2.55,-2

1.80«-2

1.21'-2

5.69'-3

2.07'-5

9.89«-5

3.V7'-5

n - k

nf nl f(x)

1- 0
r

7.12,-2

1 17 ! 6 i.ky~2

ST 11 1.59'-3
1 j

j }8 i 16 l.OO'-U

, 5»* i 22 U.22,-7
1 i
i 6h \ 27 1.86»-8

7U
1

32 7.8q'-n

87 i
1

38 7.75,-l^

98 Jo 1.88«-l6

iix = (0.1026728, o.Uo62057>

0.5937963, 0.8973272)

n = 6 (continued)

n.

131

I 159
i

181

195

209

225

i 238

58

65

72

80

87

9k

101

108

2.1V-5

l.lU'-5

2.7l'-6

1.13f-7

6.59'-10

1.58'-10

7.00'-15

3.77'-15

-T
li = (0.06(^77, 0.2837U1, 0.366682, 0.633318, 0.711259, 0.933123)

251

7-7

Table T-S» continued

nf '

1 :

29 ;

65 |
i

83 I
■

102 I
|

125 |

172

190

\
ni ;

0

10

19

28

37

55

7^ i

f(x)

O.0386176982859

0.017112^Ul3O73

0.010913181597^

0.0102860269896

0.0093337535951

0.0071908595069

0.001+99521+81593

O.OOl+4U325131+63

0.0O379J+O^l6l25

83 J 0.0035390722159

! nf I ni

208

226

2^

92

101

no

262 ! 119

280 1 128

508

326

3^5

36U

138

1U7

156

165

f(x)
n

0.00552699687U7 1

0.0055191392^

0.0035180637576 I

0.005517656^629 j
i

0.005517196^5^1

0.00551687^57^5

0.0055168757890

0.0055168757290

0.0055168757288

fi = (0.0U3153, 0.193091, 0.266329, 0.500000, 0.500000, 0.755671,

0.806910, 0.9568U7)

252

T

7-7

Diagram 2*1: Rosenbrock

Key: B: Our method,

D: The method of Davies, Swann and Campey,

as given by Fletcher (I965),

P: Powell's (196^) method, as given by Fletcher (1965),

S: Stewart's method, as given by Stewart (1967).

A = log-n(f(x) -fM)

150 nf

j

7-7

Diagrair 7.2; Helix

Key: B:
D:

P:
S:

Our method.
The method of Davies, Swann and Campey, as given
by Fletcher (I965),
Pcwell's {196h) method, as given by Fletcher (I965),
Stewart's method, as given by Stewart (1967).

A-lcgln(f(x)-f(u))
"lO

MM

7-7

Diagram 7-3: Singular (Powell's fimctlon of four variables)

Our method.
The method of Davies, Swpjin and Carapey, as
given by Fletcher (1965),,
Powell's (1964) method, as given by Fiebcher (I965),
Stewart's method^ a^ given by Stewar1; (I967).

Key: B:
D:

t
1

P:
S:

A = = log10(f(x) -f(jl))

I

2tj5

7-7

Diagram ^.h: Chebyquad, n = 2

Key: B: Our method,

D: The method of Davies, Swarm and Carapey, as given
by Fletcher (1965),

P: Powell's (I96U) method, as given by Fletcher (1965),

S: Stewart's method, as given by Stewart (1967).

A - lo610(f(x) -fM)

2^)6

7-7

Diagram 7.5; Chebyquad, n = U

Key B: Our method,
D: The method of Davies, Swann and Campey, as given

by Fletcher (1965),
P: Powell's (196^) method, as given by Fletcher (1965),
S: Stewart's method, as given by Stewart (1967).

A = log10(f(x) -fM)

' I I

' .•
'•

~ '· . -,, ~-.
....... ~.

It II -.,..J

II.W«J—WUIJ

7-7

Diagram 7 »7: Chebyquad, n = 8

(Results for Stewart's method not available.)

Key: B: Our method.

D: The method of Davies, Swann and Campey, as given
by Fletcher (I965),

P: Powell's (196^) method, as given by Fletcher (1965)

A = login(f(x) -f(n))

2^9

7.8

8. Conclusion

Powell (19&0 observes that, with his determinantal criterion for

accepting new search directions (see Section 5), there is a tendency for

the new directions to be accepted less often as the number of variables

increases, and the quadratic convergence property of his basic procedure

is lost. Our aim was to avoid this difficulty, keep the quadratic

convergence property, and ensure that the search directions continue to

span the whole space, while using basically the same method as Powell

(and Smith (1962)) to generate conjugate directions.

The numerical results given in Section 7 suggest that our algorithm

is faster than Powell's, and comparable to Stewart's, if the criterion

is the number of function evaluations required to reduce f(x) to a

certain threshold. Also, our algorithm seems to be reliable ever for

very ill-conditioned problems like Watson (n = 9) and Hilbert (n - 10) ,

while Stewart's method breaks down because of numerical difficulties on

some functions, e.g., the Rosenbrock and Singular functions (see

Stewart (1967)) • However, we should not try to conclude too much from

the numerical results: see the warning in Section 7.

Theoretical convergence results

Suppose that all arithmetic is exact (i.e., there are no rounding

errors), and consider our algorithm with the stopping criterion removed.

Since the algorithm keeps on performing linear searches along n

orthogonal directions, the same conditions that ensure convergence of

the method of coordinate search to a local minimum will ensure convergence

of our algorithm. In particular, the algorithm will converge to the

260

7-9
2

(unique) minimum for all functions f which are C1" , strictly convex,

and satisfy

lim f(\e) = + oo (8.1)
\ -♦ 00

for all nonzero vectors e . Of course, this result is of little

practical interest, for in practice rounding errors may be very

important: see Section 5-

It is plausible that, if the Hessian matrix of f is strictly-

positive definite at the minimum, then our algorithm will converge

super linearly. McCormick (19^9) shows that this is true for the reset

Daviden-Fletcher-Powell algorithm, provided a Lipschitz condition is

satisfied. Figures 7*1* 7*2, and 7«^ to 7«7 certainly suggest that

convergence is superlinear until rounding errors become important. We

do not have a proof of this conjecture though: perhaps additional

conditions on f , or a slight modification of the algorithm, are

necessary.

9« An ALGOL W procedure and test program

The procedure praxis, plus a driver program and test functions,

is given below. The language is ALGOL W (Wirth and Hoare (1966),

Bauer, Becker and Graham (1968)), but none of the special features

of ALGOL W have been used, so translation into another dialect of

ALGOL should be straightforward.

261

-

BEGIN COMMENT:
TEST PROGRAM FOR PROCEDURE PRAXIS.
A********************************;

LONG REAL PROCEDURE PRAXIS (LONG REAL VALUE T, MACHEPS, H;
INTEGER VALUE N, PRIN;
LONG REAL ARRAY X(*); LONG REAL PROCEDURE F, RANDOM);
BEGIN COMMENT:

I
THIS PROCEDURE MINIMIZES THE FUNCTION FCX, N) OF N

VARIABLES Xd)^ ... X(N)/ USING THE PRINCIPAL AXIS METHOD.
ON ENTRY X HOLDS A GUESS/ ON RETURN IT HOLDS THE ESTIMATED
POINT OF MINIMUM^ WITH (HOPEFULLY) |ERROR| <
SQRT(MACHEPS)*|X| ♦ T/ WHERE MACHEPS IS THE MACHINE
PRECISION, THE SMALLEST NUMBER SUCH THAT 1 ♦ MACHEPS > 1,
T IS A TOLERANCE, AND |.| IS THE 2-NORM. H IS THE MAXIMUM
STEP SIZE: SET YO ABOUT THE MAXIMUM EXPECTED DISTANCE FROM
THE GUESS TO THE MINIMUM (IF H IS SET TOO SMALL OR TOO
LARGE THEN THE INITIAL RATE OF CONVERGENCE WILL BE SLOW).

THE USER SHOULD OBSERVE THE COMMENT ON HEURISTIC NUMBERS
AFTER PROCEDURE QUAD.

PRIN CONTROLS THE PRINTING OF INTERMEDIATE RESULTS.
F PRIN - 0, NO RESULTS ARE PRINTED.
F PKIN » 1, F IS PRINTED AFTER EVERY N*l OR N+2 LINEAR
MINIMIZATIONS, AND FINAL X IS PRINTED, BUT INTERMEDIATE
X ONLY IF N <- U.

F PRIN - 2, EIGENVALUES OF A AND SCALE FACTORS ARE ALSO
PRINTED.

F PRIN - 3, F AND X ARE PRINTED AFTER EVERY FEW LINEAR
MINIMIZATIONS.

F PRIN - U, EIGENVECTORS ARE ALSO PRINTED.
FMIN IS A GLOBAL VARIABLE: SEE PROCEDURE PRINT.
RANDOM IS A PARAMETERLESS LONG REAL PROCEDURE WHICH RETURNS

A RANDOM NUMBER UNIFORMLY DISTRIBUTED IN (0, 1). ANY
INITIALIZATION MUST BE DONE BEFORE THE CALL TO PRAXIS.

THE PROCEDURE IS MACHINE-INDEPENDENT, APART FROM THE OUTPUT
STATEMENTS AND THE SPECIFICATION OF MACHEPS. WE ASSUME THAT
MACHEPS**(-IO DOES NOT OVERFLOW (IF IT DOES THEN MACHEPS MUST
BE INCREASED), AND THAT ON FLOATING-POINT UNDERFLOW THE
RESULT IS SET TO ZERO;

PROCEDURE MINFIT (INTEGER VALUE N; LONG REAL VALUE EPS, TOL;
LONG REAL ARRAY AB(*,*); LONG REAL ARRAY Q(*));
BEGIN COMMENT: AN IMPROVED VERSION OF MINFIT, SEE GOLUB &

REIN3CH (1969), RESTRICTED TO M - N, P » 0.
THE SINGULAR VALUES OF THE ARRAY AB ARE
RETURNED IN Q, AND AB IS OVERWRITTEN WITH
THE ORTHOGONAL MATRIX V SUCH THAT
U.DIAG(Q) « AB.V,
WHERE U IS ANOTHER ORTHOGONAL MATRIX;

INTEGER L, KT;

262

^.■i ■ w ■ 'J ^
iM^ww ''->n<RA«aniHWHHH^HK9^MW!^Cff>'

LONG REAL C/F^G^^.X^ Y.Z;
LONG REAL ARRAY E(1::N);
COW^ENT: HOUSEHOLDER'S REDUCTION TO BlDIAGONAL FORM;
G :« X :» 0;
FOR I :- 1 UNTIL N DO
BEGIN
E(I) :- G; S :» 0; L :» H-l;
FOR J :« I UNTIL N DO S :« S*AB(J;I)**2;
IF S<TOL THEN G :- 0 ELSE
BEGIN
F :- ABd,!;; G :- IF F<ö THEN LONGSQRT(S)

ELSE -L0NG3QRT(S);
H :- F*G-S; ABCM) :- F-G;
FOR J :» L UNTIL N DO

BEGIN F :» 0;
FOR K :» I UNTIL N DO F := F ♦ ABCK,i)*AB(K#J);
F :- F/H;
FOR K :» I UNTIL N DO ABd^J) :» ABCK^J) ♦ F*AB(K/I)
END J

END S;
Q(l) :- G; S :» 0;
IF l<«N THEN FOR J :- L UNTIL N DO

S :» S ♦ AB(I/J)**2;
IF S<T0L THEN G :- 0 ELSE
BEGIN
F :- ABd^+l); G :- IF F<0 THEN LONGSQRT(S)

ELSE -LONGSQRT(S);
H :- F*G-S; AB(M*1) :- F-G;
FOR J :» L UNTIL N DO E(J) :- AB(I/J)/H;
FOR J :- L UNTIL N DO

BEGIN S :- 0; .
FOR K :« L UNTIL N DO S :» S ♦ AB(J/K)*AB(UK);
FOR K :- L UNTIL N DO ABC^K) :- ABCJ^K) ♦ S*E(K)
END J

END S;
Y :- ABS(Qd)) ♦ ABS(Ed)); IF Y >X THEN X :« Y j
END I;

COMMENT: ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS;
FOR I :- N STEP -1 UNTIL 1 DO

BEGIN
IF G^-O THEN
BEGIN
H :- AB(M*1)*G;
FOR J :« L UNTIL N DO AB(J/I) :- AB(I/J)/H;
FOR J :- L UNTIL N DO
BEGIN S :« 0;
FOR K :- L UNTIL N DO S :» S ♦ AB(I/K)*AB(K/J) ;
FOR K :- L UNTIL N DO ABCl^J) :- ABCK^J) ♦ S*AB(K,I)
END J

END G;

263

1 i. —.—.»

rr^

.

FOR J :- L UNTIL N DO AB(UJ) := AB(J/I) := 0;
AB(M) :» 1; G := E(l); L := I
END I;

COMMENT: DlAGONALIZATION OF THE 81 DIAGONAL FORM;
EPS :■ EPS*X*
FOR K :- N STEP -1 UNTIL 1 DO

BEGIN KT :« 0;
TESTFSPLITTING:
KT :« KT ♦ 1; IF KT > 30 THEN

BEGIN E(K) :- OL;
WRITE ("QR FAILED")
END;

FOR L2 :- K STEP -1 UNTIL 1 DO
BEGIN
L :- L2;
IF ABS(E(L))<-EPS THEN GOTO TESTFCONVERGENCE;
IF ABS(Q(L-1))<-EPS THEN GOTO CANCELLATION
END L2;

COMMENT: CANCELLATION OF E(L) IF L>1;
CANCELLATION:
C :■ 0; S :- 1;
FOR I :» L UNTIL K DO

BEGIN
F :« S«E(I); E(l) :- C*E(I);
IF ABS(F)<-EPS THEN GOTO TESTFCONVERGENCE;
G :- Q(l); Q(I) :» H :- IF ABS(F) < ABS(G) THEN
ABS(G)*LONGSQRT(l ♦ (F/G)**2) ELSE IF F "- 0 THEN
ABS(F)*LONGSQRT(l ♦ (G/F)**2) ELSE 0;
IF H « 0 THEN G :- H :- 1;
COMMENT: THE ABOVE REPLACES Q(I):-H:-LONGSQRT(G*G*F*F)

WHICH MAY GIVE INCORRECT RESULTS IF THE
SQUARES UNDERFLOW OR IF F - G = 0;

C :■ G/H; S :- -F/H
END I;

TESTFCONVERGENCE:
Z :- Q(K); IF L-K THEN GOTO CONVERGENCE;

COMMENT: SHIFT FROM BOTTOM 2*2 MINOR;

\

X
F
G
F

Q(L); Y :- Q(K-l); G :« E(K-l); H :- E(K);
« ((Y-Z)*(Y*Z) ♦ (G-H)*(G*H))/(2*H*Y);
- L0N6SQRT(F*F+1);
• ((X-Z)*(X*Z)*H*(Y/(IF F<0 THEN F-G ELSE F+G)-H))/X;

COMMENT: NEXT QR TRANSFORMATION;
C *s S *B 1*
FOR I :« L*l UNTIL K DO
BEGIN
G :- E(l); Y :- Q(l); H :- S*G; G :- G*C;

264

. i i. —.

I

4

E(l-l) :» Z := IF ABS(F) < ABS(H) THEN
ABS(H)*L0N&SQRT(1 ♦ (F/H)**2) ELSE IF F ^- 0 TH£N
ABS(F)*L0NGSQRT(1 + (H/F)**2) ELSE 0;
IF Z - 0 THEN Z :» F :- 1;
C := F/Z; S :- H/Z;
F :« X*C + G*S; G :» -X*S +0*0; H := Y*S;
y »a Y»C;
FOR J :«'l UNTIL N DO

BEGIN
X :« ABCJ.I-l); Z := ABCJ^);
ABCJJ-l) := X*C ♦ Z*S; ABCJ^I) :« -X*S ♦ Z*C
END J;

Q(l-l) :- Z :» IF ABS(F) < ABS(H) THEN ABS(H)*
LONGSQRTd ♦ (F/H)**2) ELSE IF F ^- 0 THEN
ABS(F)*LONGSaRT(l ♦ (H/F)**2) ELSE 0;
IF Z » 0 THEN Z :- F :» 1;
C :- F/Z; S :- H/Z;
F ;» C*G ♦ S*Y; X :» -S*G ♦ C*Y
END I;

E(L) :- 0; E(K) :» F; Q(K) := X;
30 TO TESTFSPLITTING;

CONVERGENCE:
IF Z<0 THEN

BEGIN COMMENT: O'K) IS MADE NON-NEG;
Q(K) := -Z;
FOR J :- 1 UNTIL N DO ABCvMO :« -ABCJ^K)
END Z

END K
END MINFIT;

i

PROCEDURE SORT;
BEGIN COMMENT: SORTS THE ELEMENTS OF D AND CORRESPONDING

COLUMNS OF V INTO DESCENDING ORDER; {
INTEGER K;
LONG REAL S;
FOR I :- 1 UNTIL N - 1 DO

BEGIN K :- I; S :- D(l); FOR J :» I ♦ 1 UNTIL N DO
IF D(J) > S THEN
BEGIN K :- J; S :- D(J) END;

IF K > I THEN
BEGIN DU) :» D(l); D(l) :» S; FOR J :« 1 UNTIL N DO

BEGIN S :« VCvM); VCJJ) :- VCJ^K); VCJ.K) :» S
END

END
END

END SORT;

PROCEDURE PRINTS-
COMMENT: THE VARIABLE FMIN IS GLOBAL, AND ESTIMATES THE

VALUE OF F AT THE MINIMUM: USED ONLY FOR

265

J

PRINTING LOGCFX - FMIN);
IF PRIN > 0 THEN
BEGIN INTEGER SVINT; SVINT ;= INTFIELDSIZE;
INTFIELDSIZE := 10;
WRITE (NL/ NF, FX);
COMMENT: IF THE NEXT TWO LINES ARE OMITTED THEN FMIN IS

NOT REQUIRED;
IF FX <» FMIN THEN WRITEON (" UNDEFINED ") ELSE
WRITEON (ROUNDTOREAL (LONGLOG (FX - FMIN)));
COMMENT: "lOCONTROLm" MOVES TO THE NEXT LINE;
IF N > »» THEN IOCONTROL(2);
IF (N <- k) OR (PRIN > 2) THEN
FOR I :« 1 UNTIL N DO WRITEON(ROUNDTOREAL(X(I)));
IOCONTROL(2); INTFIELDSIZE :- SVINT
END PRINT;

PROCEDURE MATPRINT (STRING(80) VALUE S; LONG REAL ARRAY
V(*/*); INTEGER VALUE M, N);
BEGIN COMMENT: PRINTS M X N MATRIX V COLUMN BY COLUMN;
WRITE (S)*
FOR K :- 1 UNTIL (N ♦ 7) DIV 8 DO

BEGIN FOR I ;» 1 UNTIL M DO
BEGIN IOCONTROL(2);
FOR J :- 8*K - 7 UNTIL (IF N < (8*10 THEN N ELSE 8*K)
DO WRITEON (ROUNDTOREAL (V (I^J)))
END;

WRITE (" "); I0C0NTR0L(2)
END

END MATPRINT;

PROCEDURE VECPRINT (STRING(32) VALUE S; LONG REAL ARRAY V(*);
INTEGER VALUE N);
BEGIN COMMENT: PRINTS THE HEADING S AND N-VECTOR V;
WRITE(S);
FOR I :- 1 UNTIL N DO WRITEOM(ROUNDTOREAL(V(I)))
END VECPRINT;

\

LONG REAL VALUE
BOOLEAN VALUE FK)

PROCEDURE MIN (INTEGER VALUE J, NITS;
RESULT D2/ XI; LONG ^EAL VALUE Fl;
BEGIN COMMENT:

MINIMIZES F FROM X IN THE DIRECTION V(*/J)
UNLESS J<1/ WHEN A QUADRATIC SEARCH IS DONE
IN THE PLANE DEFINED BY QO, Ql AND X.
02 AN APPROXIMATION TO HALF F" (OR ZERO),
XI AN ESTIMATE OF DISTANCE TO MINIMUM,
RETURNED AS THE DISTANCE FOUND.
IF FK - TRUE THEN Fl IS FLINfXl), OTHERWISE
XI AND Fl ARE IGNORED ON ENTRY UNLESS FINAL
FX > Fl. NITS CONTROLS THE NUMBER OF TIMES
AN ATTEMPT IS MADE TO HALVE THE INTERVAL.

SIDE EFFECTS: USES AND ALTERS X, FX, NF, NL.

266

—ww—nai

IF J < 1 USES VARIABLES Q... .
USES H, N, T/ M2, MU, LOT, 0MIN/ MACHEPS;

LONG REAL PROCEDURE FLIN (LOKG REAL VALUE L);
COMMENT: THE FUNCTION OF OWE VARIABLE L WHICH IS

MINIMIZED BY PROCEDURE MIN;
BEGiN LONG REAL ARRAY T(1::N);
IF J > 0 THEN
BEGIN COMMENT: LINEAR SEARCH;
FOR I :« 1 UNTIL N DO T(l) :» X(l) ♦ L^VCI^J)
END

ELSE
BEGIN COMMENT: SEARCH ALONG A PARABOLIC SPACE-CURVE;
QA :« L*(L - QDI)/(QDO*(QD0 ♦ QDD)
QB :» (L ♦ QD0)*(QD1 - L)/(aD0*QDl)
QC :- l.*(L ♦ QDO)/(aDl*(QD0 ♦ QDD)
FOR I :- 1 UNTIL N DO T(l) := QA*Q0(I)+QB*X(I)+Q:*Ql(I)
END;

COMMENT: INCREMENT FUNCTION EVALUATION COUNTER;
NF :- NF ♦ 1;
F(T. N)
END FLIN;

INTEGER K; BOOLEAN DZ;
LONG REAL X2, XM, FO, F2, FM, Dl, 72, S, SF1/ SX1;
SF1 :- Fl; SX1 :- XI;
K :• 0; XM :- 0; FO :- FM :- FX; DZ :« (D2 < MACHEPS);
COMMENT: FIND STEP SIZE;
S :- 0; FOR I :- 1 UNTIL N DO S := S ♦ X(l)**2;
S :- LONGSQRT(S);
T2:« MU*LONGSQRT(ABS(FX)/(IF DZ THEN DMIN ELSE D2)

♦ S*LDT) ♦ M2*LDT;
S :■ Mi»*S ♦ T;
F DZ AND (T2 > S) THEN T2 :» S;
F T2 < SMALL THEN T2 :- SMALL;
F T2 > (0.01*H) THEN T2 :- 0.01*H;
F FK AND (Fl O FM) THEN BEGIN XM :» XI; FM := Fl END;
F ^FK OR (ABS(Xl) < T2) THEN
BEGIN XI :- IF XI >• OL THEN T2 ELSE -T2;
Fl :- FLIN(Xl)
END;

IF Fl <« FM THEN BEGIN XM :» XI; FM :» Fl END;
LO: IF DZ THEN

BEGIN COMMENT: EVALUATE FLIN AT ANOTHER POINT AND
ESTIMATE THE SECOND DERIVATIVE;

X2 :» IF FO < Fl THEN -XI ELSE 2*X1; F2 :- FLIN(X2);
IF F2 <• FM THEN BEGIN XM :- X2; FM :» F2 END;
D2 :- (X2*(F1 - FO) - X1*(F2 - FO))/(X1*X2*(X1 - X2))
END;

COMME'T: ESTIMATE FIRST DERIVATIVE AT 0;
Dl :- (Fl - F0)/X1 - X1*D2; DZ :- TRUE;

267

I

11 J

COMMENT: PREDICT MINIMUM;
X2 :« IF D2 <» SHALL THEN (IF Dl < 0 THEN H ELSE -H) ELSE

-0.5I.*D1/D2;
IF ABS(X2) > H THEN X2 := IF X2 > 0 THEN H ELSE -H;
COMMENT: EVALUATE F AT THE PREDICTED MINIMUM;
LI: F2 := FLIN(X2);
IF (K < NITS) AND (F2 > FO) THEN
BEGIN COMMENT: NO SUCCESS SO TRY AGAIN; K := K ♦ 1;
IF (FO < Fi) AND ((Xi*X2) > 0) THEN GO TO LO;
X2 :- 0.5L*X2; GO TO LI
END;

COMMENT: INCREMENT ONE-DIMENSIONAL SEARCH COUNTER;
NL :- NL ♦ 1;
IF F2 > FM THEN X2 := XM ELSE FM := F2;
COMMENT: GET NEW ESTIMATE OF SECOND DERIVATIVE;
D2 :- IF ABS(X2*(X2 - XI)) > SMALL THEN

(X2*(F1 - FO) - X1*(FM - F0))/(X1*X2*(X1 - X2))
ELSE IF K > 0 THEN 0 ELSE D2;

IF D2 <- SMALL THEN D2 :» SMALL;
XI :" X2 * FX :* FM *
IF SF1 <'FX THEN BEGIN FX := SF1; XI :» SXi END;
COMMENT: UPDATE X FOR LINEAR SEARCH BUT NOT FOR PARABOLIC

PARABOLIC SEARCH;
IF J > 0 THEN FOR I :« 1 UNTIL N DO X(l) := X(l) + X1*V(I/J)
END MIN;

PROCEDURE QUAD;
BEGIN COMMENT: LOOKS FOR THE MINIMUM ALONG A CURVE

DEFINED BY QO, Ql AND X;
LONG REAL L, S;
S :- FX; FX :- QF1; QF1 :- S; QD1 :» 0;
FOR I :- 1 UNTIL N DO
BEGIN S :» X(l); X(l) :» L :» Ql(l); Ql(l) := S;
QD1 :- QD1 ♦ (S - L)**2
END;

L :- QD1 :- LONGSQRT(QDl); S :« 0;
IF (QDO > 0) AND (QD1 > 0) AND (NL >« f5*N*N)) THEN
BEGIN MIN (0, 2, S, I, QF1/ TRUE);
QA :■ L*(L - QD1)/(QD0*(QD0 ♦ QDD);
QB :» (L ♦ QD0)*(QD1 - L)/(QD0*QD1);
QC :- L*(L ♦ QD0)/(QD1*(QDC + QDD)
END

l-LSE BEGIN FX :- QF1; QA :» QB :» 0; QC :« 1 END;
400 !- QD1; FOR I :- 1 UNTIL N DO
BEGIN S :« Q0(l); Q0(l) :« X(l);
X(l) :- QA*S ♦ QB*X(I) ♦ QC*Q1(I)
END

END QUAD;

BOOLEAN ILLC;
INTEGER NL/ NF/ KL, KT, KTM;

268

^—^^^ -M J i 11 ■ i J

LONG REAL S, SI, DU, DhUU, FX, Fl, LDS, LDT/ SF, DF,
QF1, QDO^ QD1, QA, QB/ QC,
M2, Mk, SMALL, VSMALL, LARGE, VLAR6E, SCBD, LDFAC, T2;
LONG REAL ARRAY D, Y, 1, QO, Ql (1::N);
LONG REAL ARRAY V (1::N, 1::N);

COMMENT: INITIALIZATION;
COMMENT: MACHINE DEPENDENT NUMBERS;
SMALL :- MACHEPS**2; VSMALL
LARGE :- 1L/SMALL; VLARGE
M2 :» LONGSQRT(MACHEPS); MU

COMMENT: HEURISTIC NUMBERS

SMALL**2;
1L/VSMALL;
LONGSQRT(M2);

IF AXES MAY BE BADLY SCALED (WHICH IS TO BE AVOIDED IF
POSSIBLE; THEN SET SCBD :- 10, OTHERWISE 1.

IF THE PROBLEM IS KNOWN TO BE ILLCONDITIONED SET
ILLC :« TRUE, OTHERWISE FALSE.
KTM+1 IS THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT BEFORE

THE ALGORITHM TERMINATES (SEE SECTION 5). KTM • »♦ IS VERY |
CAUTIOUS: USUALLY KTM - 1 IS SATISFACTORY; |

SCBD :- 1; ILLC :- FALSE; KTM :- 1;

LDFAC :• IF ILLC THEN 0.1 ELSE 0.01;
KT :- NL :- 0; NF :« 1; QF1 :- FX :» F(X,N);
T :- T2 :- SMALL ♦ ABS(T); DMIN :- SMALL;
IF H < (100*T) THEN H :- 100*T; LOT :- H;
FOR I :- 1 UNTIL N DO FOR J :» 1 UNTIL N DO
V(I,J) :- IF I - J THEN 1L ELSE OL;
D(l) :- QDO :- 0; FOR I :- 1 UNTIL N DO QKI) :- X(l);
PRINT;

COMMENT: MAIN LOOP;
LO: SF s- D(l); D(l) :- S :- 0;
COMMENT: MINIMIZE ALONG FIRST DIRECTION;
MIN (1, 2, D(l), S, FX, FALSE);
IF S <• 0 THEN FOR I :- 1 UNTIL N DO 7(1,1) :* -V(M);
IF (SF <» (0.9*D(1))) OR ((0.9*SF) >« D(l)) THEN
FOR I :- 2 UNTIL N DO D(l) := 0;
FOR K :- 2 UNTIL N DC

BEGIN FOR I :• 1 UNTIL N DO Y(l) :- X(lJ; SF :- FX;
ILLC :- ILLC OR (KT > 0);
LI: KL :- K; OF :- 0; IF ILLC THEN
BEGIN COMMENT: RANDOM STEP TO GET OFF RESOLUTION VALLEY;
FOR I :- 1 UNTIL N DO
BEGIN S :- Z(l) :- (0.1*LDT ♦ T2*10**KT)*(RANÜOM-0.5L);
COMMENT: PRAXIS ASSUMES THAT RANDOM RETURNS A RANDOM

NUMBER UNIFORMLY DISTRIBUTED IN (0, 1) AND
THAT ANY INITIALIZATION OF THE RANDOM NUMBER

269

■"

f/ :* f<// U); Hf ;* *f * X

fW W i* £ Will H W

um (W, %, QiW, $, f/, fAt$£;;
$;*> if iUC TUEH Q<W)*($ * l{n))**2 £t$£ §1 " F/;
<F Of < $ TH£«

#£<3iN OF t» $; KL c» K^

^F ->JMJG AIUP <0F < WSHWfHMHtrS'f*)) TiEH
HQiu wmmt HO WCC£$$ IUC • FAl$£ SO T«y 0«C£

WIT« UU * T«U£;
ILLC tm Jm; QQ TO U

^F <(K » t) AHO (WIH > I) THt« y£CPft<WT ("«£W D", 0/ W);

0£QM CQ^FWfj M^IMIZIE /kLOIiG "COHMQATt" 0<ftECTJ0N$;
$ r» Qf MH in, i, otn), s, n, FAi.$t)

F^ i» F*,' F/ l» §F/ 10% [• Qf
F08 i ^ i mu H 00

miH $«- f» xn;; x(n i' vo); st (= yo) f- st - yd);

mi
m i* ioimmd-os)} IF LOS > smi THEN

«Eti^ COMMfWT» THROW AWAV OIRECTIOW KL AND MINIMIZE
AMMO Tm HtU "QQHJUQAU" DIRECTION;

P0» I {»• Kl- - t $TfP -I uwm K 00
BEÖIN F0« ^ !• I UWTIl N 00 WJJ ♦ U {• V(JJ);
P(l t U i» P(|) m*

0(K) »• 0; FOR I f» I UNTII- H DO V(I,K) I« V(I)/LD5;
MIN It, h, DU). |.P5# Fl, TRUE);
IF |.pö <• 0 THEN

»MIN EDS ;• -ED5;
FOB I I« I UNTII- N DO V(UK) I» -Vd^K)
PHD

END;
M)T »« |.DFAC»(.DT; IF l-DT < EDS THEN EDT I- i-DS;
PRINT/
Ti ;• Q; FOR I J» I UNTIE N 00 T2 l« T2 ♦ X(l)**2;
T^ i« Ha«l-0Ne5aRT(T?) t T;
COMMENT« UEf IF STtP l-ENQTIl EXCEEDS HALF THE TOLERANCE;

P KT I» IF l-DT > (Q,ß»Tn THEN 0 EI-SE KT ♦ 1;
IF KT > KTM THEN QO TO U
END;

yyu

. i .i.

mm

COMMENT: TRY QUADRATIC EXTRAPOLATION IN CASE WE ARE STUCK
IN A CURVED VALLEY;

QUAD;
DN ;» 0; FOR I :» 1 UNTIL N DO

BEGIN D(l) :« l/LONGSQRT(D(i}); 1

IF DN < D(l) THEN DN :- D(l)
END;

IF PRIN > 3 THEN MATPRINT ("NEW DIRECTIONS", V, N, N);
FOR J :- 1 UNTIL N DO

BEGIN S :- D(J)/DN;
FOR I :» 1 UNTIL N DO VCM) :» S*V(I/J)
END;

IF SCBD > 1 THEN
BEGIN COMMENT: SCALE AXES TO TRY TO REDUCE CONDITION

NUMBER;
S :- VLARGE; FOR I := 1 UNTIL N DO

BEGIN SL :- 0; FOR J :» 1 UNTIL N DO SL := SL+V(I/J)**2;
Z(l) :- LONGSQRT(SL);
IF Z(l) < Ml» THEN Z(l) :« Hk; IF S > Z(l) THEN S :« Z(l)
END;

FOR I :- 1 UNTIL N DO
BEGIN SL :» S/Z(l); Z(l) :- 1/SL; IF Z(l) > SCBD THEN

BEGIN SL :- 1/SCBD; Z(l) :- SCBD
END;

FOR J :- 1 UNTIL N DO Vd^J) :- SL*V(I/J)
END

END;
COMMENT: TRANSPOSE V FOR MINF IT;
FOR I :- 2 UNTIL N DO FOR J :- 1 UNTIL I - 1 DO

BEGIN S :• Vd^d); Vd^J) :« VCJ.I); V(J#I) :- S END;
COMMENT: FIND THE SINGULAR VALUE DECOMPOSITION OF V. THIS

GIVES THE EIGENVALUES AND PRINCIPAL AXES OF THE
APPROXIMATING QUADRATIC FORM WITHOUT SQUARING THE
CONDITION NUMBER;

MINFIT (N# MACHEPS, VSMALL, V, D);
IF SCBD > 1 THEN
BEGIN COMMENT: UNSCALING; FOR I :■ 1 UNTIL N DO

BEGIN S :«• Z(l);
FOR J :- 1 UNTIL N DO VO.J) :- S^VCUJ)
END;

FOR I :- 1 UNTIL N DO
BEGIN S :- 0; FOR J :- 1 UNTIL N DO S :« S ♦ V(J/I)**2;
S :- LONGSQRT(S); D(l) :» S*D(I); S :- 1/S;
FOR J :- 1 UNTIL N DO V(J/I) :- S^VCJ,I)
END

END;
FOR I :- 1 UNTIL N DO

BEGIN D(l) :- IF (DN*D(I)) > LARGE THEN VSMALL ELSE
IF (DN*D(I)) < SMALL THEN VLARGE ELSE (DN*D(I))**(-2)
END;

COMMENT: SORT NEW EIGENVALUES AND EIGENVECTORS;

271

SORT;
DMIN :» D(N); IF DMIN < SMALL THEN DMIN :» SMALL;
ILLC := (M2*D(1)) > DMIN;
IF (PRIN > 1) AND (SCBD > 1) THEN
VECPRINT ("SCALE FACTORS^ 1, N);
IF PRIN > 1 THEN VECPRINT ("EIGENVAIUES OF A", D, N);
IF PRIN > 3 THEN MATPRINT ("EIGENVECTORS OF A"/ V, N, N);
COMMENT: GO BACK TO MAIN LOOP;
GO TO LO;
L2: IF PRIN > 0 THEN VECPRINT ("X IS"/ X/ N);
FX
END PRAXIS;

COMMENT: RANDOM NUMBER GENERATOR

PROCEDURE RANDOM RETURNS A LONG REAL RANDOM NUMBER UNIFORMLY
DISTRIBUTED IN (0,1) (INCLUDING 0 BUT NOT 1).

RANINIT(R) WITH R ANY INTEGER MUST BE CALLED FOR
INITIALIZATION BEFORE THE FIRST CALL TO RANDOM, AND THE
DECLARATIONS OF RANI, RAN2 AND RAN3 MUST BE GLOBAL.

THE ALGORITHM RETURNS X(N)/2**56, WHERE
X(N) » X(N-l) ♦ X(N-127) (MOD 2**56).

SINCE 1 ♦ X + X**127 IS PRIMITIVE (MOD 2), THE PERIOD IS AT
LEAST 2**127 - 3 > 10**38. SEE KNUTH (1969), PP. 26, 3U, U6U.

X(N) IS STORED IN A LONG REAL WORD AS
RAN3 - X(N)/2**56 - 1/2, AND ALL FLOATING POINT ARITHMETIC
IS EXACT;

LONG REAL RANI; INTEGER RAN2; LONG REAL ARRAY RAN3 (0::126);

PROCEDURE
BEGIN R
RAN2 :«

BEGIN
FOR I :

BEGIN
RANI

RANINIT (INTEGER VALUE R);
:- ABS(R) REM 8190 ♦ 1;
127; WHILE RAN2 > 0 DO
RAN2 :- RAN2 - 1; RANI
:- 1 UNTIL 7 DO

R :- (1756*R) REM 8191;
- (RANI ♦ (R DIV 32))*(l/256);

« -2L**55;

END;
RAN3 (RAN2)
END

END RANINIT;

RANI

LONG REAL PROCEDURE RANDOM;
BEGIN RAN2 :« IF RAN2 - 0 THEN 126 ELSE RAN2 - 1;
RANI :- RANI ♦ RAN3 (RAN2);
RAN3 (RAN2) :- RANI :« IF RANI < OL THEN RANI ♦ 0.5L

ELSE RANI - 0.5L;
RANI ♦ 0.5L
END RANDOM;

272

■ "J ^

COMMENT: TEST FUNCTIONS
«A************; <

I

LONG REAL PROCEDURE ROS (LONG REAL ARRAY X(*); INTEGER VALUE N);
COMMENT: SEE ROSENBROCK (1960);
100L*((X(2) - X(l)**2)**2) ♦ (1L - X(l))**2;

LONG REAL PROCEDURE SING(L0NG REAL ARRAY X(*);INTEGER VALUE N); j
COMMENT: SEE POWELL (1962);
(X(l) ♦ 10L*X(2))**2 ♦ 5L*(X(3)-X(t»))**2 ♦ (X(2)-2L*X(5))**«»
♦ 10L*(X(1) - XU))**«»;

LONG REAL PROCEDURE HELIX(LONG REAL ARRAY X(*);INTEGER VALUE N);
COMMENT: SEE FLETCHER & POWELL (1^63);
BEGIN LONG REAL R, T;
R := LONGSQRT (X(l)**2 ♦ X(2)**2);
T :» IF X(l) » 0 THEN 0.25L ELSE LONGARCTAN (X(2)/X(l))/(2L*

5.1U159265358979L);
IF X(l) < 0 THEN T := T + 0.5L;
100L*((X(3) - 10L*T)**2 ♦ (R - 1L)**2) + X(3)**2
END HELIX;

LONG RCAL PROCEDURE CUBE(L0NG REAL ARRAY X(*);INTEGER VALUE N);
COMMENT: SEE LEON (1966);
100L*(X(2) - X(l)**3)**2 ♦ (1L - X(l))**2;

LONG REAL PROCEDURE BEALEUONG REAL ARRAY X(*); INTEGER VALUE N);
COMMENT: SEE BEALE (1958);
(1.5L - X(1)*(1L - X(2)))**2 ♦
(2.25L - X(1)*(1L - X(2)**2))**2 ♦
(2.625L - X(1)*(1L - X(2)**3))**2;

LONG REAL PROCEDURE WATSON (LONG REAL ARRAY X(*);
INTEGER VALUE N);
COMMENT: SEE KOWALIK & OSBORNE (1968);
BEGIN LONG REAL S, T, U, Y;
S :» X(l)**2 ♦ (X(2) - X(l)**2 - 1L)**2;
FOR I :> 2 UNTIL 30 DO

BEGIN Y :- (I - l)/29; T :» X(N);
FOR J :- N - 1 STEP -1 UNTIL 1 DO T :« X(d) ♦ Y*T;
U :■ (N - 1)*X(N);
FOR J :« N - 1 STEP -1 UNTIL 2 DO U := (J - 1)*X(J) ♦ Y*U;
S :- S ♦ (U - T*T - 1L)**2
END;

S
END WATSON;

LONG REAL PROCEDURE CHEBYQUAD (LONG PEAL ARRAY X(*);
INTEGER VALUE H];
COMMENT: SEE FLETCHER (1965);
BEGIN

273

I

LONG REAL f, DELTA, TPLUS;
BOOLEAN EVEN;
LONG REAL ARRAY Y/ Tl, TMINUS (1::N);

DELTA :- OL;
FOR J :» 1 UNTIL N DO

BEGIN Y(J) i' 2L*X(J) - 1L;
DELTA :« DELTA ♦ Y(J);
TKJ) :- Y(J); TMINUS(J) := 1L
END;

F :• DELTA**2; EVEN s« FALSE;
FOR I :- 2 UNTIL N DO

BEGIN EVEN :- "EVEN; DELTA :» OL;
FOR J :- 1 UNTIL N DO

BEGIN TPLUS :- 2L*Y(J)*TI (J) - TMINUS(J);
DELTA ;= DELTA •»■ TPLUS;
TMINUS(J) :» TKJ);
TI(J) :- TPLUS
END;

DELTA :- DELTA/N - (IF EVEN THEN 1/(1 - 1*1) ELSE 0);
F :» F ♦ DELTA**2
END;

F
END CHEBYQUAD;

LONG REAL PROCfDURE POWELL (LONG REAL ARRAY X(*);
INTEGER VALUE N);
COMMENT; SEE POWELL (I960;
3L - 1L/(1L ♦ (X(l) - X(2))**2) -
LONGSIN(0.5L*3.1U159265358979L*X(2)* X(3))-(IF X(2) « 0 THEN
OL ELSE LONGEXP(-((X(l)*X(3))/X(2) - 2L)**2));

LONG REAL PROCEDURE WOODKONG REAL ARRAY X(*); INTEGER VALUE N);
COMMENT: SEE MCCORMICK & PEARSON (1969) OR COIVILLE (1968);
100L*(X(2) - X(l)**2)**2 ♦ (1L - X(l))**2 ♦ 90L*(XU) -
XO)**2)**2 ♦ (1L - X(3))**2 ♦ 10.1L*((X(2) - 1L)**2 ■»• (X(k)
- 1L)**2) ♦ 19.8L*(X(2) - 1L)*(X('*) - ID;

LONG REAL PROCEDURE HILBERT (LONG REAL ARRAY X(*);
INTEGER VALUE N);
COMMENT: COMPUTES XT.A.X, WHERE A IS THE N BY N HILBERT

MATRIX/ SEE GREGORY & KARNEY (1969), PP. 33, 66;
BEGIN LONG REAL S, T;
S :« OL; FOR I :- 1 UNTIL N DO

BEGIN T :« OL; FOR J :» 1 UNTIL N DO
T :- T ♦ X(J)/(I + J - 1);
S :» S ♦ T*X(I)
END;

S
END HILBERT;

274

LONG REAL PROCEDURE TRIDIAG (LONG REAL ARRAY X(*);
INTEGER VALUE N);
COMMENT: COMPUTES XT.A.X - 2E1T.X, WHERE N > 1/

(1-1 0 0 ... 0)
(-1 2-10 ... 0)
(0-1 2-1 ... 0)

A - ()
(0 ... -1 2 -1)
(0 ... 0 -1 2),

AND E1T - (1, 0, ... , 0).

SEE GREGORY & KARNEY (1969), PP. kl, 7k;
BEGIN LONG REAL S;
S :- X(1)*(X(1) - X(2));
FOR I :» 2 UNTIL N - 1 DO
S ;» S ♦ X(I)*((X(I) - X(l - 1)) + (X(l) - X(l ♦ 1)));
S + X(N)*(2*X(N) - X(N - D) - 2*X(1)
END TRIDIAG;

LONG REAL PROCEDURE BOX (LONG REAL ARRAY X(*);INTEGER VALUE N);
COMMENT: SEE BOX (1966) OR BROWN & DENNIS (1970);
BEGIN LONG REAL P, S; ,
S :» 0; FOR I :- 1 UNTIL 10 DO

BEGIN P :» -1/10;
S :» S ♦ ((L0NGEXP(P*X(1)) - (IF (P*X(2)) < (-U0) THEN 0

ELSE L0N6EXP(P*X(2)))) -
X(3)*(L0NGEXP(P) - LONGEXP(10*P)))**2

END;
S
END BOX;

COMMENT: GENERAL TESTING PROCEDURE

PROCEDURE TEST (STRING (80) VALUE S; LONG REAL VALUE H;
LONG REAL PROCEDURE F; INTEGER VALUE N);

BEGIN LONG REAL FMIN; INTEGER TIM;
WRITEC "); WRITEC "); WRITE(S);
WRITEC'N «", N, " H «M

/ ROUNDTOREAL(H)); WRITEC ");
COMMENT: INITIALIZE RANDOM NUMBER GENERATOR; RANINITU);
COMMENT: TIME(2) RETURNS CLOCK TIME IN UNITS OF 26 MICROSEC;
TIM :» TIME(2);
FMIN :- PRAXIS (I'-S, 16**(-15), H, N, 1, X, F, RANDOM);
WRITE ("TIME (MILLISEC) »,,/ ROUND((TIME(2) - Tl M)/38.l»));
WRITEC ")
END TEST;

COf-IMENT: TESTING PROGRAM
««ft************;

275

LONG REAL FMIN, LAM;
COMMENT: INCREASE DIMENSIONS FOR M > 20;
LONG REAL ARRAY X(l::20)*
COMMENT: INTFIELDSIZE CONTROLS THE OUTPUT FORMAT OF INTEGERS;
INTFIELDSIZE :- 7;

X(l) :- -1.2L; X(2) :- 1L; FMIN := 0;
TEST ("ROSENBROCK'S FUNCTION WITH A PARABOLIC VALLEY'M^OS^);

X(l) :■ X{2) :- 3;
TEST ("ROSENBROCK'S FUNCTION ", 5, ROS, 2);

X(l) :- X(2) :« 8;
TEST ("ROSENBROCK'S FUNCTION", 12, ROS, 2);

X(l) :- -1; X(2) :- X(3) :- 0;
TEST ("HELIX", 1, HELIX, 3);

X(l) :- -1.2L; X(2) :» -1;
TEST ("CUBE", 1, CUBE, 2);

X(l) :- X(2) :- 0.1L;
TEST ("BEALE", 1, BEALE, 2);

X(l) :- 0; X(2) :- 1; X(3) :- 2;
TEST ("POWELL", 1, POWELL, 3);

i

FMIN :• 0; Xtl) :« 0; X(2)
TEST ("BOX", 20, BOX, 3);

- 10; X(3) :- 20;

X(l) :- 3L; X(2) :- -1L; X(3) :» OL; XU) :« 1L;
TEST ("POWELLS FUNCTION WITH A SINGULAR JACOBIAN",l,SI NG,i»);

FMIN :■ 0; X(l) :- X(3) i- -3; X(2)
TEST ("WOOD", 10., WOOD, k);

X(l») -1;

FOR N :- 2 STEP 2 UNTIL 8 DO
BEGIN FOR I :• 1 UNTIL N DO X(l) :- l/(N + 1);
FMIN :- IF N < 8 THEN OL ELSE 0.0035168737256779L;
TEST ("CHEBYQUAD", 0.1, CHEBYQUAD, N)
END;

FOR N :- 6 STEP 3 UNTIL 9 DO
BEGIN FOR I :■ 1 UNTIL N DO X(l) :« 0;
FMIN :- IF N - 6 THEN 0.002287670O5355L ELSE

IF N - 9 THEN 1.399760138098,-6L ELSE OL;
TEST ("WATSON", 1, WATSON, N)
END;

FOR N s- I», 6, 8, 10, 12, 16, 20 DO

276

BEGIN FOR I :> 1 UNTIL N DO X(l)
TEST ("TRIDIAG", 2*^ TRIDIAG^ N)
END;

OL; FMIN -N;

FMIN :■ 0; FOR N :- 2 STEP 2 UNTIL 12 DO
BEGIN FOR I :- 1 UNTIL N DO X(l) !- 1;
TEST ("HILBERT", 10, HILBERT, M)
END

END.

277

Bibliography

This bibliography contains references relevant to the minimization

of nonlinear functions, and other references referred to in the text.

There is no attempt at completeness, but a large number of recent (up

to late 1970) references on unconstrained minimization have been included.

There are also some references dealing with constrained problems, with

methods for converting constrained problems to unconstrained problems,

and with methods for solving nonlinear equations. For a brief survey,

see Section J ,1. References on linear and quadratic programming have

generally been excluded, and we have not attempted to duplicate the

large bibliographies in Jacoby, Kowalik and Pizzo (1971), Kunzi and

Oettli (1970), Lawson (1968), and Ortega and Rheinboldt (1970).

In lieu of annotations, the chapter and section numbers of references

to each entry are given in parentheses after the entry.

References which are not known to have appeared have been assigned

the year 1971« (Sane may have appeared late in 1970.)

278

mv* ^■3"

279

Abadle^ J. (ed.)/ 1970/ "Nonlinear and Integer programming"/

North-Holland/ Amsterdam. (7.1/ 8)

Adachl, N./ see TokumarU/ Adachl & Goto (1970).

Akalke/ H./ 1959/ "On a successive transformation of

probability distribution and Its application to the

analysis of the optimum gradient method"/ Ann. Inst.

Statist. Math, of Tokyo 11/ 1-16. (7.1)

Akllov/ G. P./ see Kantorovlch & Akllov (1959).

Allran/ R. R. & Johnsen/ S. E. J./ 1970/ "An alsorlthm for

solving nonlinear programming problems subject to nonlinear

Inequality constraints"/ Comp. J. 13/ 2/ 171-177. (7.1)

Andrews/ A. M,/ 1969/ "The calculation of orthogonal vectors"/

Comp. J. 12/ 1*11. (7.5)

ArmljO/ L./ 1966/ "Minimization of functions having Llpschltz-

contlnuous first partial derivatives"/ Pacific J. Math. 16/

1-3. (1.2)

Avrlel/ M. & Wilde/ D. J./ 1966/ "Optimal search for a maximum

with sequences of simultaneous function evaluations"/

Management Scl. 12/ 722-731. (5.7)

Baer/ R. M./ 1962/ "Note on an extremum locating algorithm"/

Comp. J. 5/ 193. (7.5)

Baker/ C. T. H,, 1970/ "The error In polynomial

Interpolation"/ Numer. Math. 15/ 315-319. (2.if)

Balakrtshnan/ A. V. (ed.)/ 1970/ "Symposium on optimization

(Nice/ June 1969)"/ Sprlnger-Verlag/ Berlin. (7.1/ 8)

Bcrd/ Y./ 1968/ "On a numerical Instability of Davidon-llke

■MB« AM.M " ' ' -

methods", Math. Comp. 22, 665-665. (7.1)

Bard, Y., 1970, "Comparison of gradient methods for the

solution of nonlinear parameter estimation problems", SIAM

J. Numer. Anal. 7, 1, 157-186. (7.1)

Bard, Y., see Greenstadt (1970).

Barnes, J. P. 6., 1965, "An algorithm for solving nonlinear

equations based on the secant method", Comp. J. 8, 66-72.

(7.1)

Bartels, R. H., 1968, "A numerical Investigation of the

Simplex method". Tech. Report CS 10*», Computer Scl. Dept.,

Stanford Unl. (7.1)

Bartels, R. H. & Golub, G. H., 1969, "The simplex method of

linear programming using LU decomposition", Comm. ACM 12,

5, 266-268. (7.1)

Bartels, R. H., Golub, G. H. & Saunders, M. A., 1970,

"Numerical techniques In mathematical programming". Tech.

Report CS 162, Stanford Unl. (7.1)

Bauer, H., Becker, S. & Graham, S., 1968, "ALGOL W language

description". Tech. Report CS 89 (revised as CS 110 with

E. Satterthwalte, 1969), Stanford Unl. (k.k, 5.6, 6.6, 7.9)

Beale, E. M. L., 1958, "On an Iterative method for finding a

local minimum of a function of more then one variable".

Tech. Report No. 25, Statistical Techniques Research Group,

Princeton Unl. (7.7, 7.9)

Beale, E. M. L., 1968, "Mathematical programming In practice",

Wiley, New York. (7.1)

280

Becker/ $,, see Bauer« Becker & Graham (1968).

Beckman, F. S., 1960/ "The solution of linear equations by the

conjugate gradient method"/ in Ralston & Wllf (1960). (7.3)

Beightler/ C. S./ see Wilde & Belghtler (1967).

Bell/ M. A Pike/ M. C./ 1966/ "Rerr-k on algorithm 178(EI»)/

DIRECT SEARCH"/ Comm. ACM 9/ 681». (7.1)

Bellman/ R. E./ 1957/ "Dynamic programming"/ Princeton Uni.

Press, Princeton/ New Jersey. (1.2)

Bellman/ R- E. h Dreyfus, S. E., 1962/ "Applied dynamic

programming"/ Princeton Uni. Press, Princeton/ New Jersey.

(1.2/ 4.1)

Bennett/ J. M./ 1965/ "Triangular factors of modified

matrices"/ Numer. Math. 7, 217-221. (7.1)

Bennett/ J. M. & Green/ D. R./ 1966/ "Updating the Inverse or

the triangular factors of a modified matrix"/ Tech. Report

M, Basser Computing Oept./ Uni. of Sydney. (7.1)

Berman/ G./ 1969/ "Lattice approximations to the minima of

functions of several variables"/ J. ACM 16/ 286-291*. (7.1)

Bjorck/ A./ 1967a/ "Solving linear least squares problems by

Gram-Schmidt orthogonalization"/ BIT 7, 1-21. (7.1)

Björck/ A./ 1967b/ "Iterative refinement of linear least

squares solutions I"/ BIT 7, 257-278. (7.1)

Bjorck/ A./ 1968/ "Iterative refinement of linear least

squares solutions 11"/ BIT 8/ 8-30. (7.1)

Boothroyd; J./ 1965a/ "Algorithm 7, MINIX"/ Comp. Bulletin 9/

10i>. (5.3)

281

^MMM aA^MAa ■ I ll

■^ai^»

Boothroyd, J., 1965b, "Certification of Algorithm 2, FIBONACCI

SEARCH"/ Comp. Bulletin 9, 105. (5.3)

Bowdler, H., Martin, R. S,, Relnsch, C. & Wilkinson, J. H.,

1968, "The QR and QL algorithms for symmetric matrices",

Numer. Math. 11, 293-306. (7.J*)

Box, G. E. P., 1957, "Evolutionary operations: a method for

Increasing Industrial productivity", Appl. Stat. 6, 3-23.

(7.1)

Box, M. J., 1965, "A new method for constrained optimization

and a comparison with other methods", Comp. J. 8, 1*2-52.

(7.1)

Box, M. J., 1966, "A comparison of several current

optimization methods, and the use of transformations in

constrained problems", Comp. J. 9, 67-77. (7.1, 7.3, 7.7,

7.9)

Box, M. J., Oavles, D. & Swann, W. H., 1969, "Non-linear

optimization techniques", ICI Monograph No. 5, Oliver and

Boyd, London. (5.i», 5.5, 7.1)

Brown, K. M. & Dennis, J. E., 19C8, "On Newton-like Iteration

functions: general convergence theorems and a specific

algorithm", Numer. Math. 12, 186-191. (7.1)

Brown, K. M. & Dennis, J. E., 1970, "A new algorithm for

nonlinear least squares curve fitting". Tech. Report 70-57,

Dept. of Computer Science, Cornell Uni. (7.1, 7.9)

Brown, K. M. & Dennis, J. E., 1971a, "A quadratica 11 y

convergent finite difference analog of the

I
282

mm

Levenberg-Marquardt algorithm for nonlinear least squares

curve fitting", to appear. (7.1)

Brown, IC. M. & Dennis, J. E., 1971b, "Derivative free

analogues of the Levenberg-Marquardt and Gauss algorithms

for nonlinear least squares approximation", to appear.

(7.1)

Broyden, C. G., 1967/ "Quasi-Newton methods and their

application to function minimization". Math. Comp. 21,

368-381. (7.1, 7.7)

Broyden, C. G,, 1969, "A new method of solving nonlinear

simultaneous equations", Comp. J. 12, 1, 9^-99. (7.1)

Broyden, C. G., 1970a, "The convergence of a class of

double-rank minimization algorithms. Parts I and 11", J.

Inst. Maths. Apps. 5, 76-90 Ä 222-231. (7.1)

Broyden, C. G., 1970b, "The convergence of single-rank

quasl-Newton methods", Math. Comp. 2U, 365-382. (7.1)

Buehler, R. J., see Shah, Buehler & Kempthorne (196«»).

Buslnger, P. & Golub, G. H., 1965, "Linear least squares

solutions by Householder transformations", Numer. Math. 7,

269-276. (7.1)

Buys, J. D., see Haarhoff & Buys (1970).

Cantrell, J. W., 1969, "Relation between the memory gradient

method and the Fletcher-Powell method", J. Optzn. Thry. &

Apps. I», 67-71. (7.1)

Cantrell, J. W., see Mlele & Cantrell (1969, 1970).

Carroll, C. W., 1961, "The created response surface technique

283

«M

mm

for optimizing nonlinear restrained systems"/ Operations

Res. 9/ 169-181». (7.1)

Cauchy/ A./ IBkQ, "Sur les fonctlons InterpolaI res"/ C. R.

Acad. Scl. Paris 11/ 775 (or see Oeuvres completes/

Gauthler-Vlllars/ Paris, 1897/ Vol. 5/ U09-U2U). (2.2)

Cauchy/ A./ 18^7/ "Methode generale pour la resolution des

syst^mes d'^quatlons slmultanles"/ C. R. Acad. Scl.

Parts 25/ 536-538 (or see Oeuvres completes/

Gauthler-Vlllars/ Paris, 1897/ Vol. 10/ 399-«t02). (7.1)

Chazan, D. & Hlranker/ W. I., 1970/ "A non-gradient and

parallel algorithm for unconstrained minimization"/ SIAM J.

Control 8/ 2, 207-217. (7.1/ 7.3)

ChernouskO/ F. L./ 1970/ "On optimal algorithms for search"/

In Dold & Eckmann (1970a). U.l)

Clark/ N. A./ Cody, W. J./ Hillstrom/ K. E. & Thleleker/ E.

A./ 1967/ "Performance statistics of the FORTRAN IV (H)

library for the IBM System/360"/ Argonne Nat. Lab. Report

ANL-7321. (6.3)

Cody, W. J./ see Clark/ Cody, Hillstrom & Thleleker (1967).

CollatZ/ L./ 1964/ "Functional analysis and numerical

mathematics"/ Springer-Verlag/ Berlin (translation by H.

Oser, Academic Press, New York, 1956/ Chs. 17-20). (3.1)

Colvllie/ A. R./ 1968/ "A comparative study of nonlinear

programming codes"/ IBM New York Scientific Center Tech.

Report 320-2949. (7.1/ 7.7/ 7.9)

Cooper, L./ see Krolak & Cooper (1963).

2dh

^ ^ ■ --— _______ " ' "

Cox^ M. S./ 1970, "A bracketing technique for computing a zero

of a function", Comp. J. 13, 1, 101-102. (k.2, k.5)

Cragg, E, E. & Levy, A. V., 1969, "Study of a supermemory

gradient method for the minimization of functions", J.

Optzn. Thry. & Apps. k, 191. (7.1)

Curry, H,, 19'»'», "The method of steepest descent for nonlinear

minimization problems". Quart. Appl. Math. 2, 258-261. (7.1)

Daniel, J. W., 1967a, "The conjugate gradient method for

linear and nonlinear operator equations", SIAM J, Numer.

Anal. I», 10-26. (7.3)

Daniel, J. W., 1967b, "Convergence of the conjugate gradient

method with computationally convenient modifications",

Numer. Math. 10, 125-131. (7.3)

Daniel, J. W., 1970, "A correction concerning the convergence

rate for the conjugate gradient method", SIAM J. Numer.

Anal. 7, 277-280. (7.3)

Davldon, W. C, 1959, "Variable metric method for

minimization", Argonne Nat. Lab. Report ANL-5990 (Rev. TID

1*500). (5.7, 7.1)

Davldon, W. C, 1968, "Variance algorithm for minimization",

Comp. J. 10, I»06-I»10. (7.1, 7.7)

Davldon, W. C, 1969, "Variance algorithms for minimization".

In Fletcher (1969a). (7.1, 7.7)

Davies, D., 1968, "The use of Davldon's method In nonlinear

programming", ICI Management Services Report MSDH/68/110.

(7.1)

285

- - ■ . ■ ^-n*^.^^—■!

OavfeS/ D., 1969, "Some practical methods of optimization",

ICI Management Services Report MSDH/69/90. (7.1)

Oavles/ D., see Box, Davfes & Swann (1969), Matthews & Oavles

(1969), Swann (196U).

Davles, D. & Swann, W. H., 1969, "Review of constrained

optimization". In Fletcher (1969a). (7.1)

Davis, P. J., 1965, "Interpolation and approximation", 2nd

ed., Blalsdell, New York & London. (6.2)

Dejon, B. & Henrlcl, P. (eds.), 1969, "Constructive aspects of

the fundamental theorem of algebra", Intersclence, New

York. (8)

Dekker, T. J., 1969, "Finding a zero by means of successive

linear Interpolation", In Dejon & Henrlcl (1969). (1.2,

U.l, l».2, 4.3, d.i»)

Dekker, T. J., see van Wljngaarden, Zonneveld & DIjkstra

(1963).

Dennis, J. E., 1968, "On Newton-like methods", Numer. Math.

11, 324-330. (7.1)

Dennis, J. E., 1969a, "On the convergence of Newton-like

methods". In Rah I nowItz (1969). (7.X)

Dennis, J. E., 1969b, "On the local convergence of Broyden's

method for nonlinear systems of equations". Tech. Report

69-U6, Dept. of Computer Science, Cornell Unl. (7.1)

Dennis, J. E., 1969c, "On the convergence of Broyden's method

for nonlinear systems of equations". Tech. Report 69-48,

Dept. of Computer Science, Cornell Unl. (7.1)

286

Dennis, J. E., see Brown & Dennis (1968, 1970, 1971a, b).

Dljkstra, E. W., see van Wljngaarden, Zonneveld & Dljkstra

(1963).

Dold, A. & Eckmann, B. (eds.), 1970a, "Colloquium on methods

of optimization (Novlslblrsk, June 1968)", Springer-Verlag,

Berlin. (7.1, 8)

Dold, A. & Eckmann, B. (eds.), 1970b, "Symposium on

optimization (Nice, June 1969)", Springer-Verlag, Berlin &

New York. (7.1)

Dreyfus, S. E., see Bellman & Dreyfus (1962).

Eckmann, B., see Dold & Eckmann (1970a, 1970b).

Ehrlich. L. W., 1971, "Eigenvalues of symmetric five-diagonal

matrices", to appear. U.J»)

Evans, J. P. & Gould, F. J., 1970, "Stability In nonlinear

programming", Oper. Res. 18, 107-118. (7.1)

Flacco, A. V,, 1961, "Comments on the paper of C. W. Carroll",

Oper. Res. 9, 18U. (7.1)

Flacco, A. V., 1967, "Sequential unconstrained minimization

methods for nonlinear programming". Ph. D. Thesis,

Northwestern Unl. (7.1)

Flacco, A. V., 1969, "A general regularized sequential

unconstrained minimization technique", SI AM J. Appl. Math.

17, 6, 1239-12U5. (7.1)

Flacco, A. V. & Jones, A. P., 1969, "Generalized penalty

methods In topologlcal spaces", SIAM J. Apps. Math. 17, 5,

996-1000. (7.1)

287

Flacco, A. V. & McCormlck/ G. P^ 1968/ "Nonlinear

programming: sequential unconstrained mlnfmlzatIon

techniques"/ Wiley/ New York, (7.1)

Flanagan/ P. D., Vitale, P. A. & Mendelsohn/ J./ 1969/ "A

numerical Investigation of several one-dimensional search

procedures in nonlinear regression problems"/ TechnometrIcs

11/ 265-28i». (5.4)

Fletcher/ R», 1965, "Function minimization without evaluating

derivatives - a review"/ Comp. J. 8/ 33-^1. (1.2, 7.1, 7,5,

7.5/ 7.7/ 7.9)

Fletcher/ R., 1966/ "Certification of Algorithm 251"/ Comm.

ACM 9/ 686. (7.1)

Fletcher/ R., 1968a/ "Generalized Inverse methods for the best

least squares solution of systems of non-linear equations"/

Comp. J. 10/ 392-399. (7.1)

Fletcher/ R./ 1968b/ "Programming under linear equality and

inequality constraints"/ ICI Management Services Report

MSDH/68/19. (7.1)

Fletcher/ R. (ed.), 1969a/ "Optimization"/ Academic Press,

New York. (7.1/ 8)

Fletcher/ R./ 1969b/ "A class of methods for nonlinear

programming with termination and convergence properties"/

Report TP 386/ AERE/ Harwell/ England. (7.1)

Fletcher/ R., 1969c/ "A review of methods for unconstrained

optimization"/ In Fletcher (1969a). (7.1/ 7.5)

Fletcher/ Rt, 1969d/ "A technique for orthogonalIzatIon"/

288

i i. —

J. Inst. Maths. Apps. 5, 162-166. (7.5)

Fletcher, R., 1970, "A new approach to variable metr!c

algorithms", Comp. J. 13, 3, 317-322. (7.1)

Fletcher, R. & McCann, A. P., 1969, "Acceleration techniques

for nonlinear programming". In Fletcher (1969a). (7.1)

Fletcher, R. & Powell, M. J. D., 1963, "A rapidly convergent

descent method for minimization", Comp. J. 6, 163-168.

(7.1, 7.7, 7.9)

Fletcher, R. & Reeves, C. M., 196«*, "Function minimization by

conjugate gradients", Comp. J. 7, 1U9-15U. (S.U, 7.1, 7,k)

Forsythe, G. E., 1968, "On the asymptotic directions of the

s-dlmenslonal optimum gradient method", Numer. Math. 11,

57-76. (7.1)

Forsythe, G. E., 1969, "Remarks on the paper by Dekker",

In Dejon & Henrlcl (1969). U.l)

Forsythe, 6, E. & Moler, C. B., 1967, "Computer solution of

linear algebraic systems", Prentice-Hall, New Jersey. (7.2)

Fox, L., Henrlcl, P. & Moler, C. B., 1967, "Approximations and

bounds for eigenvalues of elliptic operators", SIAM J.

Numer. Anal. I», 1, 89-102. (5.1)

Francis, J., 1962, "The QR transformation. A unitary analogue

to the LR transformation", Comp. J. k, 265-271. (7.1»)

Freudensttiln, F. & Roth, B., 1963, "Numerical solution of

systems of nonlinear equations", J. ACM 10, 550-556. (7.7)

Gauss, K. F., 1809, "Theoria motus corporum coellsttum",

Werke, Vol. 7, Book 2, Sec. 3. (7.1)

289

- - • - ' '-

GUI, P. E. & Murray^ W., 1970, "A numerfcally stable form of

the simplex algorithm". Tech. Report Maths. 87, NPL,

Teddtngton, England. (7.1)

Golab, S., 1966, "La comparatson de la rapldlt/ de convergence

des approximations successlves de la m^thode de Newton avec

la methode de "regula falsl"", Mathematlca (CluJ) 8, kS~k9.

(5.1)

Goldfarb, D., 1966, "A conjugate gradient method for nonlinear

programming". Ph. D. Thesis, Princeton Unl. (7.1)

Goldfarb, D,, l<)69a, "Extensions of Oavldon's variable metric

method to maximization under linear Inequality and equality

constraints", SIAM J. Appl. Math. 17, k, 739-76«». (7.1)

Goldfarb, D,, 1969b, "Sufficient conditions for the

convergence of a variable metric algorithm". In Fletcher

(1969a). (7.1)

Goldfarb, D., 1970, "A family of variable-metric methods

derived by varlatlonal means". Math. Comp. 2k, 23-26. (7.1)

Goldfarb, D. A Lapldus, L., 1968, "A conjugate gradient method

for nonlinear programming problems with linear constraints",

Indust. Eng. Chem. Fundamentals 7, 1U2-151, (7.1)

Goldfeld, S. M., Quandt, R. E. A Trotter, H. F., 1968,

"Maximization by Improved quadratic hill-climbing and other

methods". Econometrics Research Program Res. Mem. 95,

Princeton Unl. (7.1)

Goldstein, A A., 1962, "Cauchy's method of minimization",

Numer. Math, k, l«i6-150. (7.1)

290

"■ "J

Goldstein, A. A., 1965, "On steopest descent", SIAM J. on

Control, Ser. A 3, 11*7-151. (7.1)

Goldstein, A. A. & Price, J. F., 1967, "An effective algorithm

for minimization", Numer. Math. 10, m-189. (7.1, 7.7)

Golub, G. H., 1965, "Numerical methods for solving linear

least squares problems", Numer. Math. 7, 206-216. (7.1)

Golub, G. H., 1968, "Least squares, singular values, and

matrix approximations", Apllkace Matematlky 13, 1*4-51. (7.1)

Golub, G. H., see Buslnger & Golub (1965), Bartels & Golub

(1969), Bartels, Golub & Saunders (1970).

Golub, G. H. & Kahan, W., 1965, "Calculating the singular

values and pseudo-Inverse of n matrix", J. SIAM Numer.

Anal., Ser. B 2, 205-22U. (7.10

Golub, G. H. & Relnsch, C, 1970, "singular value

decomposition and least squares solutions". Handbook Series

Linear Algebra, Numer. Math. Ik, «»03-U20. (7.«», 7.9)

Golub, G. H. & Saunders, M., 1969, "Linear least squares and

quadratic programming". Report CS 131», Stanford Unl. (7.1)

Golub, G. H. & Smith, L. B., 1967, "Chebyshev approximation of

continuous functions by a Chebyshev system of functions".

Tech. Report CS 72, Stanford Uni. (5.ii)

Golub, G. H. & Wilkinson, J. H., 1966, "Note on the Iterative

refinement of least squares solution", Numer. Math. 9,

139-U8. (7.1)

Goto, K., see Tokumaru, Adachl & Goto (1970).

Gould, F. J., see Evans & Gould (1970).

291

I t

Graham/ S., see Bauer, Becker & Graham (1968).

Green/ D. R., see Bennett & Green (1966).

Greenstadt/ J, L., 1967, "On the relative efficiencies of

gradient methods". Math. Comp. 21, 360-367. (1.2, 7.1)

Greenstadt, J. L,, 1970, "Variations on variable metric

methods", Math. Comp. 2U, 1-22 (appendix by Y. Bard). (7.1)

Gregory, R. T. & Karney, D. L., 1969, "A collection of

matrices for testing computational algorithms",

Intersctence, New York. (7.7, 7.9)

Gross, 0. & Johnson, S. M., 1959, "Sequential minlmax search

for a zero of a convex function", MTAC (now Math. Comp.)

13, kk-5l. (1.2, k.l)

Haarhoff, P. C. & Buys, J. D., 1970, "A new method for the

optimization of a nonlinear function subject to nonlinear

constraints", Comp. J. 13, 2, 178-181*. (7.1)

Hadley, G., 196U, "Nonlinear and dynamic programming",

Addlson Wesley, Reading, Massachusetts. (7.1)

Hanson, R. J., 1970, "Computing quadratic programming

problems: linear Inequality and equality constraints".

Tech. Memo. 2^0, JPL, Pasadena. (7.1)

Hartley, H. 0., 1961, "The modified Gauss-Newton method for

fitting of nonlinear regression functions by least

squares", Technometrics 3, 269-280. (7.1)

Henrtcl, P., see Dejon & Henrlcl (1969), Fox, Henrlcl &

Moler (1967).

Hestenes, M. R., 1956, "The conjugate gradient method for

292

solving linear systems"/ Proc. Symp. Appl. Math. 6/ Amer.

Math. Soc, Providence/ 83-102. (7.3)

HesteneS/ M. R,, 1969/ "Multiplier and sradient methods"/ J.

Optzn. Thry. & Apps. '4, 303. Also in Zadeh (1969). (7.1)

HesteneS/ M. R. & Stiefel/ E. L./ 1952/ "Method of conjugate

gradients for solving linear systems"/ J. Res. Nat. Bur.

Standards, Sect. B, k9, «»0S-U36. (7.3)

Hext/ G. R./ see Spendley/ Hext & HImsworth (1962).

Hill/ I. D./ see P\ke, Hill & James (1967).

Hlllstrom/ K. E./ see Clark/ Cody, Hlllstrom & Thleleker

(1967).

HImsworth/ F. R./ see Spendley/ Hext & HImsworth (1962).

Hoare, C, see Wlrth & Hoare (1966).

Hooke/ R. & Jeeves/ T. A./ 1961/ "Direct search solution of

numerical and statistical problems"/ J. ACM 8/ 212-229.

(7.1)

Householder/ A. S./ 196^/ "The theory of matrices In numerical

analysis"/ Blalsdell/ New York. (7.1»)

Householder/ A. S./ 1971/ "The numerical treatment of a single

nonlinear equation"/ to appear. (3.1)

Huang/ H. Y./ 1970/ "Unified approach to quadrat leal 1y

convergent algorithms for function minimization"/ J. Optzn.

Thry. & Apps. 5/ i»05-U23. (7.1)

Isaacson/ E. & Keller/ H. B./ 1966/ "Analysis of numerical

methods"/ Wiley/ New York. (2.2/ 2.1»)

Jacoby/ S. L. S./ Kowallk/ J. S. & PIzzo/ J. T., 1971,

293

"Iterative methods for nonlinear optimization problems",

Prentice-Hall, Englewood Cliffs, New Jersey (to appear).

(5.^ 7.1, 8)

James, F. 0., see Pike, Hill A James (1967).

Jarratt, P., 1967, "An Iterative method for locating turning

points", Comp. J. 10, 82-8*». (1.2, 3.1, 3.2, 3.6, 3.7,

3.8, 3.9, 5.1)

Jarratt, P., 1968, "A numerical method for determining points

of Inflexion", BIT 8, 31-35. (1.2, 3.1, 3.2, 3.6, 3.9)

Jeeves, T. A., see Hooke & Jeeves (1961).

Jenkins, M. A., 1969, "Three-stage variable-shift Iterations

for the solution of polynomial equations with a posteriori

bounds for the zeros". Tech. Report CS 138, Stanford

University. (3.5)

Johnsen, S. E. J., see Al Iran & Johnsen (1970).

Johnson, I. L. A Myers, G. E., 1967, "One-dimensional

minimization using search by golden section and cubic fit

methods". Report N68-18823 (NASA), Manned Spacecraft

Center, Houston. (5.7)

Johnson, 3. M., 1955, "Best exploration for maximum is

Fibonsccian", RAND Corp. RM-1590. (5.3)

Johnson, S. M., see Gross & Johnson (1959), Bellman (1957),

Bellman & Dreyfus (1962).

Jones, A. P., 1970, "SPIRAL - a new algorithm for non-linear

parameter estimation using least squares", Comp. J. 13, 3,

301-308. (7.1)

29k

Jones, A. P., see Flacco & Jones (1969).

Jones, A. P. & McCormlck, G. P., 1969, "Penalty methods In

optimal control theory", RAC-TP-371, Res. Anal. Corp.,

McLean, Virginia. (7.1)

Jordan, T. L., 1968, "Experiments on error growth associated

with some linear least-squares procedures". Math. Comp. 22,

579-588. (7.1)

Kahan, W., see Golub & Kahan (1965).

Kalfon, P., Riblere, G. & Sogno, J. C, 1968, "A method of

feasible directions using projection operators", presented

at IFIPS Congress, Edinburgh, 1968. (7.1)

Kantorovich, L. V. & Akllov, G. P., 1959, "Functional analysis

In normed spaces", Moscow (translation by D. Brown, edited

by A. Robertson, MacMMIan, New York, 1961»). (3.1)

Kaplan, J. L., see Mitchell & Kaplan (1968).

Karney, D. L., see Gregory & Karney (1969).

Karp, R. M. & Miranker, W. L., 1968, "Parallel minlmax search

for a maximum", J. Comb. Thry. k, 1, 19-35. (5.7)

Kaupe, A. F., 1961», "On optimal search techniques", Comm. ACM

7, 38. (6.7)
i

Keller, H. B., see Isaacson & Keller (1966).

Kelley, H. J. & Myers, G. E., 1967, "Conjugate direction

methods for parameter optimization", presented at the 18th

Congress of the international Astronaut leal Federation,

Belgrade. (7.1)

Kempthorne, 0., see Shah, Buehler & Kempthorne (196*0.

I
295 i

'

Kettleo P. C, see Shanno & Kettler (1969).

Khabaza/ I. M., 1963/ "An iterative least-square method

suitable for solving large sparse matrices"/ Comp. J. 6/

202-206. (7.1)

Kiefer/ J,/ 1953/ "Sequential mlnlmax search for a maximum"/

Proc. Amer. Math. Soc. k, 503-506. (1.2)

Kiefer/ J,/ 1957, "Optimal sequential search and approximation

methods under minimum regularity assumptions"/ SIAM. J.

Appl. Math. 5/ 105-136. (6.7)

King/ R. P./ 1966/ "Necessary and sufficient conditions for

Inequality constrained extreme values"/ Ind. Eng. Chem.

(Fund.) 5/ l*8i*. (7.1)

Knuth/ D. E./ 1969/ "The art of computer programming"/ Vol. 2/

Addlson-Wesley/ Reading/ Massachusetts. (7.9)

KogbetllantZ/ E. G., 1955/ "Solution of linear equations by

diagonalIzation of coefficients matrix"/ Quart. Appl. Math.

13/ 123-132. (7.1»)

Kowallk/ J. S. & Osborne/ M. R./ 1968/ "Methods for

unconstrained optimization problems"/ Elsevier/ New York.

(1.2/ 2.6/ 3.7/ 5.3/ 5.«»/ 7.1/ 7.3/ 7.7/ 7.9)

Kowallk/ J. S./ Osborne/ M. R. & Ryan, D. M./ 1969/ "A new

method ror constrained optimization problems"/ Oper. Res.

17/ 973. (7.1)

KowaUk/ J. S./ see Jacoby/ Kowallk & Pizzo (1971).

Krolak/ P. D., 1968/ "Further extensions of Flbonaccian search

to nonlinear programming problems"/ SIAM J. Control 6/ 2,

296

J_L_

■ *J

258-265. (5.5)

Krolak, P. D. & Cooper/ I..* 1963^ "An extension of Flbonitcclan

search to several variables", Comm. ACM 6, 639. (6.7)

Kublanovskaya« V. N., 1961, "On some algorithms for the

solution of the complete eigenvalue problem", Zh, Vych.

Mat. 1, 555-570. (7.1»)

Kunzl, H. P. & Oettll, W., 1970, "NIchtlIneare Optimierung:

Neuere Verfahren Bibliographie", Springer-Verlag^ Berlin. (8)

KunzI, H. P., Tzschach, H. G. & Zehnder, C. A., 1968,

"Numerical methods of mathematical optimization". Academic

Press, New York. (7.1)

Lancaster, P., 1966, "Error analysis for the Newton-Raphson

method", Numer. Math. 9, 55-68. (5.2)

Lapldus, i.., see Goldfarb & Lapldus (1968).

Lavl, A. & Vogl, T. P.(eds.), 1966, "Recent advances In

optimization techniques", Wiley, New York. (7.1, 8)

Lawson, C. (.., 1968, "Bibliography of recent publications In

approximation theory with emphasis on computer

applications". Tech. Mem. 201, JPl, Pasadena. (8)

Leon, A., 1966, "A comparison of eight known optimizing

procedures". In Lavl & Vogl (1966). (7.7, 7.9)

Levenberg, K. /., 19UU, "A method for the solution of certain

non-linear problems In least squares". Quart. Appl. Math.

2, 16«»-168. (7.1)

levy, K V., see Cragg & Levy (1969).

LIU, S. A., 1970, "A modified Davldon method for finding the

297

minimum of a functions using difference approximations for

derivatives^ Algorithm i»6/ Comp. J. 13, 111-113. (7.1)

Lootsma, F. A., 1968/ "Constrained optimization via penalty

functions". Philips Res. Report. 23, 1*08. (7.1)

Lootsma, F. A., 1970, "Boundary properties of penalty

functions for constrained minimization". Thesis, Eindhoven,

Holland. (7.1)

Luenberger, D. G., 1969a, "Optimization by vector space

methods", Wiley, New York. (7.1, 7.3)

Luenberger, D. G., 1969b, "Hyperbolic pairs In the method of

conjugate gradients", SIAM J. Appl. Math. 17, 6, 1263-1267.

(7.1)

Luenberger, D. G., 1970, "The conjugate residual method for

constrained minimization problems", SIAM J. Numer. Anal. 7,

3, 390-398. (7.1)

Maddlson, R., 1966, "A procedure for nonlinear least squares

refinement In adverse practical conditions", J. ACM 13,

m-m. (7.1)

Magee, E. J., 1960, "An empirical Investigation of procedures

for locating the maximum peak of a multiple-peak regression

function", Lincoln Lab. Report 22G-0046. (1.2)

Mangasarlan, 0. L., 1969, "Nonlinear programming", McGraw

Hill, New York. (7.1)

Marquardt, D. W., 1963, "An algorithm for least squares

estimation of nonlinear parameters", J. SIAM 11, k31-kkl.

(7.1)

29Ö

•»•■■^^ ■ '-»^

Martin/ R. S., see Bowdler, MarMn# Relnsch & Wilkinson

(1968).

Martin, R. S., Relnsch/ C. & Wilkinson/ J. H./ 1968,

"Householder's trldiagonalIzatlon of a symmetric matrix"/

Numer. Math. 11/ 181-195. (7.1|)

Matthews/ A. & Davles/ D., 1969/ "A comparison of modified

Newton methods for unconstrained optimization"/ ICI

Management Services Report MSDH/69/91». (7.1)

McCann/ A. P./ see Fletcher & McCann (1969).

McCormick/ G. P./ 1969/ "The rate of convergence of the reset

Davidon variable metric method"/ MRC Report 1012/ Unl. of

Wisconsin. (1.2/ 7.1/ 7.8)

McCormick/ G. P., see Flacco & McCormick (1968)/ Jones A

McCormick (1969).

McCormick/ G. P. & Pearson/ J. 0./ 1969/ "Variable metric

methods and unconstrained optimization"/ In Fletcher

(1969a). (1.2/ 7.1/ 7.7/ 7.9)

Mead/ R., see Neider & Mead (1965).

MeinarduS/ G., 1967/ "Approximation of functions: theory and

numerical methods"/ Springer-Verlag/ Berlin & New York.

(3.7)

Mendelsohn/ J./ see Flanagan/ Vitale & Mendelsohn (1969).

Miele/ A. & Cantrell/ J. W./ 1969/ "Study on a memory gradient

method for the minimization of functions"/ J. Optzn. Thry.

& Apps. 3/ l»59-lt70. (7.1)

Miele/ A. & Cantrell/ J. W./ 1970/ "Memory gradient method for

299

' L

'- '.J

the minimization of functions"/ In Balakrlshnan (1970).

(7.1)

MMne^ W. E./ 1949/ "Numerical calculus"/ Princeton Unl.

Press/ Princeton/ New Jersey. (2.2)

Milne-Thomson/ L. M./ 1933/ "The calculus of finite

cIfferences"/ MacMlllan/ London. (2.2)

Ml ranker/ W. L*, 1969/ "Parallel methods for approximating the

root of a function"/ IBM Jour. Res. & Dev. 13/ 3/ 297-301.

(I».5/ 5.7)

Mlranker/ W. L,, see Chazan & Mlranker (1970)/ Karp &

Mlranker (1968).

Mitchell/ R. A. & Kaplan/ J. L., 1968/ "Nonlinear constrained

optimization by a non-random complex method"/ J. Res. NBS

(Engr. and Instr.) 72C/ 2'»9. (7.1)

Moler/ C. B,, see Forsythe & Moler (1967)/ Fox, Henrlcl &

Moler (1967).

Morrison, D. 0./ 1968/ "Optimization by least squares"/ SIAM

J. Numer. Anal. S, 83. (7.1)

Murray/ W./ 1969a/ "111-condltlonlng In barrier and penalty

functions arising In constrained nonlinear programming"/ In

"Proceedings of the sixth International symposium on

mathematical programming"/ Princeton/ New Jersey/ 1967. (7.1)

Murray/ W./ 1969b/ "An algorithm for constrained

minimization"/ In Fletcher (1969a). (7.1) ,

Murray/ W./ see Gill A Murray (1970).

Murtagh/ B. A./ 1969/ "Optimization methods with applications

300

,' - - -

mm ■» " 'J

to chemical engineering design". Ph. D. Thesis, Unl. of

London. (7.1)

Murtagh, B. A. & Sargent, R. W. H., 1969, "A constrained

minimization method with quadratic convergence". In

Fletcher (1969a). (7.1)

Murtagh, B. A. & Sargent, R. W. H., 1970, "Computational

experience with quadratIcally convergent minimization

methods", Comp. J. 13, 2, 185-191*. (7.1)

Myers, G. E., 1968, "Properties of the conjugate gradient and

Davldon methods", J. Optzn. Thry. & Apps. 2, 209-219. (7.1)

Myers, G. E., see Johnson & Myers (1967), Kelley & Myers (1967)

Naur, P. (ed.), 1963, "Revised report on the algorithmic

language ALGOL 60", Comm. ACM 6, 1, 1-17. (1.1)

Neider, J. A. & Mead, R., 1965, "A simplex method for function

minimization", Comp. J. 7, 308-313. (7.1, 7.1»)

Newman, D. J., 1965, "Location of the maximum on unlmodal

surfaces", J. ACM 12, 395-398. (1.2, 5.3, 6.7)

Nörlund, N. E., 195U, "Vorlesungen über Differenzenrechnung",

(reprinted). New York. (3.1)

Oettll, W., see Kunzl & Oettll (1970).

Ortega, J. M., 1968, "The Newton-Kantorovich theorem", Amer.

Math. Monthly 75, 658-660. (3.1)

Ortega, J. M., 1970, "Solution of nonlinear systems of

equations". Notes for Uni. of Michigan Conf. on Numerical

Analysis, June 1970. (7.1)

Ortega, J. M, & Rheinboldt, W. C, 1970, "Iterative solution

301

of nonlinear equations In several variables"/ Academic

Press, New York. (3.1/ 3.2/ 3.6/ 7.1/ 8)

Osborne/ M. R., 1969/ "A note on Powell's method for

calculating orthogonal vectors"/ Austral. Comp. J. 1, 216.

(7.5)

Osborne/ M. R,, see Kowallk & Osborne (1968)/ Kowalik/ Osborne

& Ryan (1969).

Osborne/ M. R. & Ryan, D. M./ 1970/ "An algorithm for

nonlinear programming"/ Tech. Report 35/ Computer Centre,

Australian National Unl./ Canberra. (7.1)

Osborne/ M. R. & Ryan, D. M./ 1971/ "On penalty function

methods for nonlinear programming problems"/ J. Math.

Anal. Apps. (to appear). (7.1)

Ostrowski/ A. M./ 1966/ "Solution of equations and systems of

equations"/ Academic Press, New York (2nd edition). (1.2/

3.1/ 3.2/ 3.6/ 3.7/ k,2, 5,1, 7.1)

Ostrowski, A. M./ 1967a/ "Contributions to the theory of the

method of steepest descent"/ Arch. Rational Mech. Anal. 26,

257-280. (7.1)

Ostrowski/ A. M./ 1967b/ "The round-off stability of

iterations", Z. Angew. Math. Mech. »»7/ 77-82. (5.2)

Overholt/ K. J./ 1965/ "An Instability In the Fibonacci and

the golden section search methods" BIT 5/ 28'». (5.3)

Overholt/ K. J./ 1967, "Note on Algorithm 2, Algorithm 16 and

Algorithm 17", Comp. J. 9, klk. (5.3)

Palmer, J. R., 1969, "An Improved procedure for

302

orthogonalising the search vectors In Rosenbrock's and

Swann's direct search optimization methods"^ Comp. J. 12,

69. (7.5)

Pearson, J. D., 1969, "Variable metric methods of

minimization", Comp. J. 12, 2, 171-178. (7.1)

Pearson, J. D., see McCormlck & Pearson (1969).

Peckham, G., 1970, "A new method for minimizing a sum of

squares without calculating gradients", Comp. J. 13, k,

i»18-i»20. (7.1)

Peters, G. & Wilkinson, J. H., 1969, "Eigenvalues of Ax » XBx

with band symmetric A and B", Comp. J. 12, 398-W». (1.2,

«♦.1, I».2)

Pierre, D. A., 1969, "Optimization theory with applications",

Wiley, New York. (5.1»)

Pletrzykowskl, T., 1969, "An exact potential method for

constrained maxima", SIAM J. Numer. Anal. 6, 229. (711)

Pike, M. C, Hill, 1. D. & James, F. D., 1967, "Note on

Algorithm 2, FIBONACCI SEARCH and on Algorithm 7,

MINX", Comp. J. 9, l»16. (5.2)

Pike, M. C. & Plxner, J., 1967, "Algorithm 2, FIBONACCI

SEARCH", Comp. Bulletin 8, U7. (5.3)

Pike, M. C, see Bell & Pike (1966).

Plxner, J., see Pike * Plxner (1967).

Plzzo, J. T., see Jacoby, Kowallk & Plzzo (1971).

Powell, M. J. D., 1962, "An Iterative method for finding

stationary values of a function of several variables".

303

J~L.

Comp. J. 5, 11»7-151. (7.7, 7.9)

Powell, M. J. D., 1961», "An efficient method for flndln? the

minimum of a function of several variables without

calculating derivatives", Comp. J. 7, 155-162. (1.1, 1.2,

5.1», 7.1, 7.3, 7.5, 7.6, 7.7, 7.8, 7.9)

Powell, M. J. D., 1965, "A method of minimizing a sum of

squares of non-linear functions without calculating

derivatives", Comp. J. 7, 303-307. (7.1, 7.7)

Powell, M. J. D., 1966, "Minimization of functions of several

variables". In Walsh (1966). (7.1)

Powell, M. J. D., 1968a, "On the calculation of orthogonal

vectors", Comp. J. 11, 3, 302-301». (7.5)

Powell, M. J. D., 1968b, "A FORTRAN subroutine for solving

systems of non-linear equations". Report R-59'»7, AERE,

Harwell, England. (7.1)

Powell, M. J. D., 1969a, "A hybrid method for nonlinear

equations". Report TP 36U, AERE, Harwell, England. (7.1)

Powell, M. J. D., 1969b, "Rank one methods for unconstrained

optimization". Report TP 372, AERE, Harwell, England. (7.1)

Powell, M. J. 0., 1969c, "On the convergence of the variable

metric algorithm". Report TP 382, AERE, Harwell, England.

(7.1)

Powell, M. J. D., 1969d, "A method for nonlinear constraints

In minimization problems". In Fletcher (1969a). (7.1)

Powell, M. J. D., 1969e, "A theorem on rank one modifications

to a matrix and its inverse", Comp. J. 12, 3, 288-290. (7.1)

30k

cwell, M. J. D., 19 70a, "A survey of numerical methods for

unconstrained optimization", SIAM Review 12, 79-97. (7.1)

Powell, M. J. D., 1970b, "A new algorithm for unconstrained

optimization". Report TP 393, AERE, Harwell, England. (7.1)

Powell, M. J. D., 1970c, "Rank one methods for unconstrained

optimization". In Abadle (1970). (7.1)

Powell, M. J. D., 1970d, "A FORTRAN subroutine for

unconstrained minimization, requiring first derivatives of

the objective function". Report R-f'SQ, AERE, Harwell,

England. (7.1)

Powell, M. J. D., 1970e, "Recent advances In unconstrained

optimization". Report TP U30, AERE, Harwell, England. (7.1,

7.7)

Powell, M. J. D., see Fletcher & Powell (1963).

Powell, M. J. D. & Reld, J. K., 1968, "On applying Householder

transformations to linear least squares problems". Report

TP 322, AERE, Harwell, England. (7.1)

Price, J. F., see Goldstein & Price (1967).

Quandt, R. E., see Goldfeld, Quandt & Trotter (1968).

Rablnowltz, P. (ed.), 1969, "Proceedings of the conference on

numerical methods for nonlinear algebraic equations". (7.1, 8)

Rail, L. B. (ed.), 1965, "Error In digital computation". Vol.

2, Wiley, New York. (8)

Rail, L. B., 1966, "Convergence of the Newton process to

multiple solutions", Numer. Math. 9, 23-37. (7.1)

Rail, L. B., 1969, "Computational solution of nonlinear

305

•«Inm^te^^ta MM^^aM^tfHfl

operator equations"/ WMey^ New York. (7.1)

Ralston, A./ 1963, "On differentiating error terms", Amer.

Math. Monthly 70, 187-188. (1.2, 2.1, 2.6)

Ralston, A., 1965, "A first course In numerical analysis",

McGraw Hill, New York. (1.2, 2.6)

Ralston, A. & WMf, H. S. (eds.), 1960, "Mathematical methods

for digital computers". Vol. 1, Wiley, New York. (7.1, 8)

Ralston, A. & WMf, H. S. (eds.), 1967, "Mathematical methods

for digital computers". Vol. 2, Wiley, New York. (8)

Ramsay, J. 0., 1970, "A family of gradient methods for

optimization", Comp. J. 13, «♦, kl5-kl7. (7.1)

Reeves, C. M.r see Fletcher & Reeves (196»»).

Reld, J. X., see Powell & Reid (1968).

Relnsch, C, see Golub & Relnsch (1970), Martin, Relnsch &

Wilkinson (19G8), Bowdler, Martin, Relnsch !i Wilkinson

(1968).

Rheinboldt, W. C, see Ortega & Rheinboldt (1970).

Riblere, G., see Kalfon, Ribiere & Sogno (1968).

Rice, J. R., 1966, "Experiments on Gram-Schmidt

orthogonal Ization", Math. Comp. 20, 325-328. (7.5)

Rice, J. R., 1970, "Minimization and techniques In nonlinear

approximation", SIAM Studies In Numer. Anal. 2, 80-98. (7.1)

Rlchman, P. L., 1968, "f-calculus". Tech. Report CS 105,

Stanford Unl. (1.2, 5.3)

Rivlln, T. J., 1970, "Bounds on a polynomial", J. Res. Nat.

Bureau of Standards-B, 7UB, 1, k7-5k. (1.2, 6.1)

306

RobblnS/ H^ 1952, "Some aspects of the sequential design of

experiments"/ Bull. Amer. Math. Soc. 58, 527-536. (1.2)

Rosen, J. B., I960, "The gradient projection method for

nonlinear programming. Part 1. Linear constraints", J.

SIAM 8, 181. (7.1)

Rosen, J. B., 1961, "The gradient projection method for

nonlinear programming. Part 2. Nonlinear constraints", J.

SIAM 9, 511*. (7.1)

Rosen, J. B. & Suzuki, S., 1965, "Construction of nonlinear

programming test problems", Comm. ACM 8, 113. (7.1)

Rosenbrock, H. H., 1960, "An automatic method for finding the

greatest or least value of a function", Comp. J. 3,

175-181». (6.8, 7.5, 7.7, 7.9)

Roth, B., see Freudenstein & Roth (1963).

Ryan, D. M., see Osborne & Ryan (1970, 1971), Kowallk, Osborne

& Ryan (1969).

Sargent, R. W. H., see Murtagh & Sargent (1969, 1970).

Satterthwaite, E., see Bauer, Becker & Graham (196S).

Saunders, M., see Golub & Saunders (1969), Bartels, Golu^ ^t

Saunders (1970).

Schröder, E., 1870, "Über unendlich viele Algorithmen zur

Auflösung der Gleichungen", Math. Ann. 2, 317-355. (3.1, 3.2)

Schubert, L. K*, 1970, "Modification of a quast-Newton method

for nonlinear equations with a sparse Jacobian", Math.

Comp. 2k, 27-30. (7.1)

Shah, B. V., Buehler, R. J. & Kempthorne, 0., 1964, "Some

307

•

algorithms for minimizing a function of several variables"/

SIAM J. Appl. Math. 12, 7U-92. (7.1)

Shanno« D. f., 1965, "An algorithm for the solution of

nonlinear estimation problems with linear constraints".

Gulf Research and Development Co. Tech. Memo 161. (7.1)

Shanno, D. F., 1969a, "Conditioning of quasl-Newton methods

for function minimization". Center for Math. Studies in

Business and Economics Report 6910 (revised), Unl. of

Chicago. (7.1)

Shanno, D. F., 1969b, "Inverse quasl-Newton methods". Center

for Math. Studies In Business and Economics Report 6938,

Unl. of Chicago. (7.1)

Shanno, D. F., 1970a, "Parameter selection for modified Newton

methods for function minimization", SIAM J. Numer. Anal.

7, 3, 366-372. (7.1)

Shanno, D. F., 1970b, "An accelerated gradient projection

method for linearly constrained nonlinear estimation", SIAM

J. Appl. Math. 18, 2, 322-33I». (7.1)

Shanno, D. F. & Kettler, P. C, 1969, "Optimal conditioning of

quasl-Newton methods". Center for Math. Studies In Business

and Economics Report 6937, Unl. of Chicago. (7.1)

Smith, C. S., 1962, "The automatic computation of maximum

likelihood estimates", NCB Sei. Dept. Report SC 8U6/MRM0.

(7.1, 7.3, 7.8)

Smith, L. B., see Golub & Smith (1967).

Sobel, I., 1970, "Camera models and machine perception".

30Ö

J—L J

I

Stanford Artificial Intelligence Report AIM-121. (7.7)

SognO/ J. C, see Kalfon/ RIblere & Sogno (1968).

Sorensen# H. W., 1969/ "Comparison of some conjugate direction

procedures for function minimization11/ J. Franklin

Institute 288/ i»21. (7.1)

Spang/ H. A./ 1962/ "A review of minimization techniques for

nonlinear functions"/ SIAM Review k, 3i»3-365. (7.1)

Späth/ H./ 1967/ "The damped Taylor series method for

minimizing a sum of squares and for solving systems of

nonlinear equations"/ Comm. ACM 10/ 726-728. (7.1)

Spendley/ W., 1969/ "Nonlinear least squares fitting using a

modified simplex minimization technique"/ In Fletcher

(1969a). (7.1)

Spendley/ W./ Hext/ G. R. & Hlmsworth/ F. R./ 1962/

"Sequential application of simplex designs In optimization

and evolutionary operation"/ Technometrlcs k, kkl, (7.1)

Sproull/ R./ see Swlnehart & Sproul1 (1970).

Stewart/ G. W./ 1067/ "A modification of Oavldon's

minimization method to accept difference approximations of

derivatives"/ J. ACM Ik, 72-83. (1.1/ 1.2/ 7.1/ 7.7/ 7.8)

Stiefel/ E. L./ see Hestenes & Stiefel (1952).

SuglC/ N./ 196i»/ "An extension of Fibonaccian searching to

multidimensional cases"/ IEEE Trans. Control AC-9/ 105. (6.7)

Suzuki, S./ see Rosen & Suzuki (1965).

Swann« W. H./ 196U/ "Report o.i the development of a new direct

search method of optimization"/ ICI. Ltd. Cent. Inst. Lab.

309

■ ■ ■■■-■-- w*^^

Research Note 6it/3. (1.2, 7.1, 7.5)

Swann, W. H., see Box, Davles & Swann (1969), Davles 3t Swann

(1969).

Swlnehart, D. & Sproull, R., 1970, "SAIL", Stanford Artificial

Intelligence Project Operating Note 57.1, April 1970. (7.7)

Takahashi, I., 1965, "A note on the conjugate gradient

method". Information Processing In Japan 5, ^5-'*9. (7.1)

Thieleker, E. A., see Clark, Cody/ Hillstrom & Thieleker

(1967).

Tokumaru, H., AdachI, N. & Goto, K., 1970, "Davidon's method

for minimization problems In Hilbert space with an

application to control problems", SIAM J. Control 8, 2,

163-178. (7.1)

Tornheim, L., 196*», "Convergence of multipoint Iterative

methods", J. ACM 11, 210-220. (3.2)

Traub, J. F., 1964, "Iterative methods for solution of

equations", Prentice-Hall, Englewood Cliffs, New Jersey.

(2.2, 3.1, 3.2, k.5)

Traub, J. F., 1967, "The solution of transcendental

equations". In Ralston & Wilf (1967:. (3.1, 3.2)

Trotter, H. F., see Goldfeld, Quandt a Trotter (1968).

Tzschach, H. G., see KÜnzi, Tzschach *i Zehnder (1968).

Vercoustre, A. M., 1970, "Etude comparative des ir.ethodes de

minimization de Fletcher et Powell et de Davidon"^ Bulletin

de la direction des etudes et recherches serie C -

Math^matiques, No. 1, 57-76. (7.1)

3io

wi^tm

Vitale, P. A., see Flanagan, Vitale & Mendelsohn (1969).

Vosl, T. P., see Lavl & Vogl (1966).

Voigt, R. G,, 1969, "Rates of convergence for Iterative

methods for nonlinear systems of equations", Unl. of

Maryland Computer Scl. Center Report 69-97. (3.2, 7.1)

Wall, D., 1956, "The order of an Iteration formula". Math.

Comp. 10, 167-168. (3.2)

Walsh, J. (ed.), 1966, "Numerical analysis: an introduction".

Academic Press, London & New York. (8)

Wells, M., 1965, "Algorithm 251: Function minimization", Comm.

ACM 8, 3, 169-170. (7.1)

van Wljngaarden, A., Zonneveld, J. A. & Dljkstra, E. W., 1963,

"Programs AP200 and AP230 de serle AP200", edited by

T. J. Dekker, The Mathematical Centre, Amsterdam. (1.2, k,l)

Wilde, D. J., 1961», "Optimum seeking methods", Prentice-Hall,

Englewood Cliffs, New Jersey. (1.2, k.S, 5.3, 5.7, 7.1, 7.5)

Wilde, D. J. & Beightler, C. S., 1967, "Foundations of

optimization", Prentice-Hall, Englewood Cliffs, New Jersey.

(7.1)

Wilde, D. J., see Avrlel & Wilde (1966).

Wilf, H. S., see Ralston & Wllf (1960, 1967).

Wilkinson, J. H., 1963, "Rounding errors In algebraic

processes", HMSO, London or Prentice Hall, New Jersey.

U.2, 6.3, 7.2)

Wilkinson, J. H., 1965a, "The algebraic eigenvalue problem",

Oxford Unl. Press, Oxford. (7.2, 7.U)

311

Wilkinson^ J. H., 1965b, "Error analysis of transformations

based on the use of matrices of the form I-2WWMM
/ In Rail

(1965). (7.J»)

Wilkinson, J. H,, 1967, "Two algorithms based on successive

linear interpolation". Tech. Report CS 60, Stanford Unl.

(1.2, k,l, k.2)

Wilkinson, J. H., 1968, "Global convergence of QR algorithm".

Proceedings of IFIPS Congress, 1968. (7.«»)

Wilkinson, J. H., see Peters & Wilkinson (1969), Golub &

Wilkinson (1966), Martin, Reinsch & Wilkinson (1968),

Bowdler, Martin, Reinsch & Wilkinson (1968).

Winfleid, D. H., 1967, "Function minimization without

derivatives by a sequence of quadratic programming

problems". Report 537, Engineering & Applied Physics

Division, Harvard Unl. (7.1)

Wlrth, N. & Hoare, C, 1966, "A contribution to the

development of ALGOL", Comm. ACM 9, 6, '»13-'t31. (1.1, k.k,

5.6, 6.6, 7.9)

Witzgall, C, 1969, "Fibonacci search with arbitrary first

evaluation". Report Dl-82-0916, Boeing Scientific Research

Labs., Seattle, Washington. (1.2, 5.3, S.k)

Wolfe, P., 1959a, "The secant method for simultaneous

non-linear equations", Comm, ACM 2, 12, 12-13. (7.1)

Wolfe, P., 1963, "Methods of nonlinear programming" In "Recent

advances In nonlinear programming", edited by Graves &

Wolfe, McGraw Hill. (7.1)

312

Wolfe, P./ 1969, "Convergence conditions for ascent methods",

SIAM Review 11, 226-235. (7.1)

Zadeh, L. A. (ed.), 1969, "Computing methods In optlmlzitlon

problems". Vol. 2, Academic Press, New York. (7.1, 8)

Zangwlll, W. I., 1967a, "Minimizing a function without

calculating derivatives", Comp. J. 10, 293-296. (7.1, 7.3)

Zangwlll, W. I., 1967b, "Nonlinear programming via penalty

functions", Mgmt. Sei. 13, 3W-358. (7.1)

Zangwlll, W. I., 1969a, "Nonlinear programming: a unified

approach", Prentice-Hall, Englewood Cliffs, New Jersey. (7.1)

Zangwlll, W. I., 1969b, "Convergence conditions for nonlinear

programming algorithms", Mgmt. Sei. 16, 1. (7.1)

Zehnder, C. A., see KünzI, Tzschach & Zehnder (1968).

Zeleznlk, F, J., 1968, "QuasI-Newton methods for nonlinear

equations", J. ACM 15, 265-271. (7.1)

Zonneveld, J. A., see van Wljngaarden, Zonneveld & DIjkstra

(1963).

Zoutendljk, G., 1960, "Methods of feasible directions",

Elsevier, Amsterdam & New York. (7.1)

Zoutendljk, G., 1966, "Nonlinear programming: a numerical

survey", J. SIAM Control I», 19U-210. (7.1)

Zoutendljk, G., 1970, "Nonlinear programming, computational

methods", in Abadie (1970). (7.1)

313

■*—^——^■— ■ ■ II ■! lmmltmmmm^^^^^^^^^^

|

