AD

TECHNICAL TECHNICAL

SECULAR PERTURBATIONS IN THE ELEMENTS OF THE EARTH'S ORBIT AND ASTRONOMICAL THEORY OF CLIMATE VARIATIONS

By: Sh.G. Sharaf and N.A. Budnikova

NOTICE TO USERS

Portions of this document have been judged by the NTIS to be of poor reproduction quality and not fully legible. However, in an effort to make as much information as possible available to the public, the NTIS sells this document with the understanding that if the user is not satisfied, the document may be returned for refund.

If you return this document, please include this notice together with the IBM order card (label) to:

National Technical Information Service U.S. Department of Commerce Attn: 952.12 Springfield, Virginia 22151

BLANK PAGE

Security Classification							
	UMENT CONTROL DATA - R		amount encout in classified)				
(Security classification of title, body of abstr ORIGINATING ACTIVITY (Corporate author)	Ct and indexing annotation must be		ECURITY CLASSIFICATION				
		Uncl	assified				
eronautical Chart & Information	Center	2b. GROUP	and the strategy of				
REPORT TITLE							
ECULAR PERTURBATIONS IN THE ELEM CLIMATE VARIATIONS.	MENTS OF THE EARTH'S O	RBIT AND A	STRONOMICAL THEORY OF				
DESCRIPTIVE NOTES (Type of report and inclusive		stituta Te	oreticheskoy Astronom				
AUTHORA (First mans, middle initial, last name)	Leningrad, USSR.						
Sharaf, Sh. G. Budnikova, N. A.							
. REPORT DATE	78, TOTAL NO. C	FPAGES	7b. NO. OF REFS				
AT 1071	60		10				
. CONTRACT OR GRANT NO.	98. ORIGINATOR	S REPORT NUM	BER(S)				
5. PROJECT NO.		ACIC-TC-	1681				
¢.	96. OTHER REPO	95. OTHER REPORT NO(5) (Any other numbers that may be ass					
	this report)						
0. DISTRIBUTION STATEMENT			white moloose.				
	Appro distr	ibution 1	ublic release; mlimited				
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACT	VITY				
·							
3. ABSTRACT	Lite Kenne		19,000,000				
The present paper deals with	the actronomical the	orm of cli	mate variations.				
The present paper deals will The tables of secular perturbation years time interval backward and	ons in the earth's ort	ital eleme	ents for 3 x 10°				
1950.0 are given. The secular c							
units) in the earth's latitude 6	5° north and south is	illustrate	d by means of the				
tables and diagrams for the same	interval of time since	e 1950.0 a	in the form				
of the diagrams for the past 3 x	10' years and the fut	ure 1 x 10	years, the				
"equivalent" latitudes being use units. The problem of temperature	d instead of the radia	variation	s in canonical				
tion arriving at the earth's sur	face is discussed. onl	variations	uence of celestial-				
mechanic factors on the sun's ra	diation being consider	red.					
	1	18					
	30,000,000	/					
		· · · · ·					
DD FORM 1473							
		Unclas	ssified ty Classification				

. KEY WORDS				LINK A		LINK		LINK C		
KET WORDS	A Look 1	1	RC	DLE	WT	ROLE	WT	ROLE	WT	
Perturbations, secular Astronomical theory Climate variations Solar radiation			372.2.				1			
	t						ion.			
	•				5	**	1	steres) Steres	•	
						-		• af • •	8016 100	
						1	Per con			
1000-01-0.00									2007s	
iscost a stability derivers									1 8 HD.	
			und r	JIN	einei		JESE	nn sal		
antibal alements has a los anon anserral larread (ro lus coch medation (in "corrector")			310 2 1 53100	142 1498 0-1	inuurte Ionuria ELIDEE	0 25 Ib 0 2 1 9 0 2 1 9	novin	eoloj Statis Statis	а - 91 812/66 95/06	
s illustrated b stand die solo solo il illustrated biographic solo illustrated biographic solo illustrated biographic solo il solo il solo illu solo il solo il					anda ang dasan	1 p'd) 101 pr 617 to	ie est ermait Losse	f ai i bra b galo f		
			epa l		bellag bertag tracije	nacina No de No de	idej Poosu Jacht	inels gli iv me		
			1001114		L'AGB -					
						ssifie Classific				

TRANSLATION

ACIC-TC- 1681

SECULAR PERTURBATIONS IN THE ELEMENTS OF THE EARTH'S ORBIT AND ASTRO-NOMICAL THEORY OF CLIMATE VARIATIONS

(Vekovyye izmeneniya elementov orbity Zemli i astronomicheskaya teoriya kolebaniy klimata)

By: Sharaf, Sh.G. and Budnikova, N.A.

Source: Trudy Instituta Teoreticheskoy Astronomii, Vol. 14, 1969, pp. 48-84, AN SSSR, Leningrad, USSR

Translated by: Walter L. Burton, Technical Translation Unit, May 1971

> Approved for public release; distribution unlimited

TECHNICAL LIBRARY SECTION LIBRARY BRANCH RESEARCH DIVISION AERONAUTICAL CHART AND INFORMATION CENTER ST. LOUIS, MISSOURI 63118

A PARTY OF A

NOTICE

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT DECESSARILY REFLECT THE POSITION OR OPINICN OF THE AERONAUTICAL CHART AND INFORMATION CENTER.

TC DENOTES TRANSLATION CODE SYSTEM UTILIZED BY AERONAUTICAL CHART AND INFORMATION CENTER. WHEN ORDERING A TRANSLATION REFER TO TC NUMBER.

SECULAR PERTURBATIONS IN THE ELEMENTS OF THE EARTH'S ORBIT AND ASTRONOMICAL THEORY OF CLIMATE VARIATIONS

By: Sh.G. Sharaf and N.A. Budnikova

Summary

The present paper deals with the astronomical theory of climate variations. The tables of secular perturbations in the Earth's orbital elements for $3x10^{\circ}$ years time interval backward and $1x10^{\circ}$ years time interval forward from the epoch 1950.0 are given. The secular course of the solar radiation (in canonical" units) in the Earth's latitude 65° north and south is illustrated by means of the tables and diagrams for the same interval of time since 1950.0 and in the form of the diagrams for the past $3x10^{7}$ years and the future $1x10^{\circ}$ years, the "equivalent" latitudes being used instead of the radiation values in canonical units. The problem of temperature changes due to the variations in solar radiation arriving at the Earth's surface is **discussed**, only the influence of celestial-mechanic factors on the Sun's radiation being considered.

Introduction

Problems of variations of the Earth's climate depending on changes of astronomical factors have always been of great interest to astronomers and mathematicians. Mitch, Kroll, Boll, Hargreaves and others have attempted to determine the connection between the climate variations and the change of the form and position of the Earth's orbit in relation to the Sun. However, only M. Milankovitch--a Yugoslavian astronomer, who devoted almost his entire life to this problem (his first studies in this field appeared in 1913, and the last in 1957)--was successful in creating an orderly astronomic theory on the variations of the Earth's climate caused by the solar irradiation and three factors of celestial mechanics: inclination of the Earth's orbit.

The solar constant and the period of the Earth's revolution around the Sun, as values having slight secular variations, are accepted as constant in this theory. In order to characterize the climatic changes for

-1-

TC-15%1

a certain period of time, M. Milankovitch investigated the changes in the total solar radiation obtained for the same period of time by a unit of the Earth's surface at a selected latitude during caloric half-years, determined by him under the condition that the quantity of heat obtained by the unit of area at the latitude φ in any one day of the summer half of the year exceeds the quantity of heat obtained by the same area in any one day of the vinter half.

A comparison of the amount of radiation obtained by the unit of area at the latitude ϕ during one caloric half-year of some year in the geological past against the total radiation obtained by the same area during the same half-year at the present, makes it possible to judge whether the given surface obtained more or less heat during the indicated year in the geological past than at the present; in other words, to judge about climate variations for this period of time.

M. Milankovitch (1934, 1941) constructed tables and graphics of variations in the solar irradiation of the Earth for the 600-thousand-year period backward from 1800; for this purpose he utilized V. Mishkovich's (1931) computations of the secular perturbations in the elements of the Earth's orbit. Not long ago Milankovitch's results were recomputed 'y Woerkom (1958) with new data on secular perturbations in the elements of the Earth's orbit (Brouwer and Woerkom, 1950). He constructed the curves of the summer insolation for latitude 65° of both hemispheres for the period of one million years backward from 1950.

Further study of the astronomic theory of climate undertaken by the Institute of Theoretical Astronomy, AN USSR, on the initiative of the All-Union Geological Institute (VSEGEI), required a computation of the insolation for a longer period of time.

Preparation of the astronomic base of the theory was the first stage of this investigation. Without discussing in detail this part of the study, the basic results of which were published in an article by these authors (Sharaf, Budnikova, 1967), we shall point out that we reviewed and derived trigonometric formulas of the precession which consider the second orders of the eccentricity and inclination of the Earth's orbit,

TC-1681

-2-

and proceeding from the values of astronomic constants in Brouwer's and Woerkom's theory of secular perturbations in the orbit elements of large planets (Brouwer and Woerkom, 1950) accepted by the International Astronomical Union, we determined constants of integration and coefficients in these formulas. We also obtained perturbing values for the inclination of the ecliptic to the equator, the eccentricity and the longitude of the perihelion of the Earth's orbit for a 30-million-year period backward from 1950 at 5000 year intervals.

The present paper deals with the basic results of the second stage of investigations on the astronomic theory of climate variations, i.e., with the computation of insolation at the upper atmospheric boundary for latitude 65° of both hemispheres for a 30-million-year interval backward from 1950. In this case we paid much attention to the derivation of basic formulas of insolation, exposure of the most influential periods, determination of the auxiliary constants and the comparison of our results with the preceding ones. We should also indicate our attempt to determine the connection between the computed rate of the radiation and the observed mean temperatures.

In his studies M. Milankovitch obtained theoretically, after unavoidable simplifications, a simple relation between the insolation variations at the upper boundary of the atmosphere and the temperature variations at the mean elevation of the land. According to Milankovitch the variation in temperature is directly proportional to the variation in the insolation. Some authors, both in the USSR and other countries, think that the proportionality coefficient obtained by Milankovitch is strongly overstated and the insolation variations caused by the factors of celestial mechanics, therefore, are not of great significance in the history of climate. Usually these authors refer to Simpson's study (1940). We were able to prove that Simpson's study contains contradictory assumptions, and his conclusions that the temperature variations do not exceed $1.5 - 2^{\circ}.0$ are not quite true.

Our computations showed a good conformity between the summer variations of the temperature coefficient and the Milankovitch data. In the case of the winter half-year the coefficient proved to be twice smaller

TC-1681

-3-

than for the summer half (Milankovitch's proportionality coefficient is the same for both halves of a year). On the basis of this data it is possible to assert that during the last 3 million years of geological past the summer temperature could have increased or decreased by $5-6^{\circ}$, and the winter temperature by $2-3^{\circ}$.

This paper concists of three chapters and supplements.

Chapter I discusses theoretical problems of the astronomic theory of climate variations.

Chapter II deals with computation of the summer and winter insolation for latitude 65° of both hemispheres for a 30-million-year time interval of the geological past and 1 million years of the geological future. It also has some tables and series.

Chapter III is devoted to critical examination of Simpson's study and to determination of the relation between the insolation variation at the upper boundary of the atmosphere and the temperature variations at the mean elevation of the land.

The supplements contain the graphs illustrating the secular rate of insolation.

The authors express their deep gratitude to A.V. Khabakov, G.S. Ganeshin, I.I. Krasnov and V.A. Zubakov, of the VSEGEI, for their attention to this study, and to R.K. Sardiyev, of the Institute of Theoretical Astronomy AN USSR, for his help in computations and graph preparations.

TC-1681

-4-

CHAPTER I

BASIC IDEAS OF THE ASTRONOMIC THEORY OF CLIMATE VARIATIONS

1. Quantity of Solar Radiation during Astronomical Seasons of the Year

If we designate the mean amount of the radiation obtained by a unit of the earth area at the latitude ? during the time interval from t_1 to t_2 , by W and the mean annual rate of irradiation of a unit of area at the same latitude by w, then

$$W = \int_{t_1}^{t_2} w dt. \tag{1}$$

M. Milankovitch (1939) gives the following formula for determining w

$$w = \frac{1}{\pi} \frac{J_0}{\psi^2} (\dot{\varphi}_0 \sin \varphi \sin \hat{\varphi} + \cos \varphi \cos \hat{\varphi} \sin \varphi_0).$$

Where Jo is the solar constant,

F - latitude of the place,

p - radius-vector of the Sun,

è - Sun's declination,

$$\cos \dot{\varphi}_0 = -\operatorname{tg} \dot{\varphi} \operatorname{tg} \dot{\varphi}, \tag{2}$$

- $\dot{\gamma}_0$ and + $\dot{\gamma}_0$ determine the position of meridians which separate the illuminated part of the parallel $\dot{\gamma}$ from the dark part. The Sun is located at the meridian $\dot{\gamma} = 0$. The illuminated part of the parallel $\dot{\gamma}$ will be equal to $2\dot{\gamma}_0$.

-5-

Let us re-write formula (1) in the form

$$W = \frac{1}{\pi} \int_{t_1}^{t_1} \frac{J_0}{t^2} \left(\dot{\varphi}_0 \sin \varphi \sin \hat{\varphi} + \cos \varphi \cos \hat{\varphi} \sin \dot{\varphi}_0 \right) dt.$$
(3)

With the aid of relation

$$\rho^2 \frac{d\lambda}{dt} = \frac{2\pi a^2}{T} \sqrt{1 - c^2}, \qquad (3')$$

where

a = 1 is the major semiaxis of the Earth's orbit,

). - Sun's longitude,

T - period of the Earth's revolution around the Sun,

e - eccentricity of Earth's orbit;

now let us convert from the independent variable t to the variable λ in formula (3). The new limits of integration, corresponding to t_1 and t_2 , will be λ' and λ'' . Then

$$W = \frac{1}{2\pi^2} \int_{\lambda}^{\lambda^2} \frac{TJ_0}{\sqrt{1-e^2}} \left(\dot{\gamma}_0 \sin \varphi \sin \vartheta + \cos \varphi \cos \vartheta \sin \dot{\gamma}_0 \right) d\lambda.$$
(4)

In order to express ψ_0 and ∂ by λ , we use formulas

$$\sin \delta = \sin \epsilon \sin \lambda$$
, $\cos \phi = - \lg \phi \lg \delta$.

Here ε is the inclination of the ecliptic to the equator.

In the stated theory, values T and J_0 are considered constant. The eccentricity e and the inclination of the ecliptic to the equator ε vary within narrow limits (e from 0 to 0.067, ε from 22°.068 to 24°.568) (Sharaf, Budnikova, 1967). Consequently, in the integration of (4) we can disregard the second power of the eccentricity, assume $\varepsilon = \varepsilon_0 + \Delta \varepsilon$. expand W in series in powers of $\Delta \varepsilon$ and take into consideration only the first-order terms with respect to $\Delta \varepsilon$. Then

$$W = W_0 + \frac{\partial W}{\partial z} \Delta z.$$
 (5)

Wo is determined according to formula (4) in which T, J_0 , e, and ε are considered as independent of λ in the integration, or, in other words independent of time.

Considering that

$$\frac{\partial w}{\partial \dot{\gamma}_0} = 0, \quad \frac{\partial \delta}{\partial z} = \operatorname{ctg} z \operatorname{tg} \delta,$$

we obtain

$$\frac{\partial IV}{\partial t} = \frac{TJ_0}{\pi^2 \sqrt{1-e^2}} \left[\int_{\lambda'}^{\lambda''} (\dot{\varphi}_0 \sin \varphi \cos \hat{c} - \cos \varphi \sin \hat{c} \sin \dot{\varphi}_0) \operatorname{ctg} z_0 \operatorname{tg} \hat{c} d\lambda + \left(\frac{\partial \lambda''}{\partial z} - \frac{\partial \lambda'}{\partial z} \right) \int_{\lambda'}^{\lambda''} (\dot{\varphi}_0 \sin \varphi \sin \hat{c} + \cos \varphi \cos \hat{c} \sin \dot{\varphi}_0) d\lambda \right].$$
(6)

Formulas (4) and (6) show that with the replacement of φ by $-\varphi$ and λ by $\lambda + \pi$ (correspondingly λ' and λ'' are changed to $\lambda' + \pi$ and $\lambda'' + \pi$) the value W does not change. It follows hence that the amount of radiation obtained by the latitude φ for a period when the Sun passes over a segment of the ecliptic's arc $\lambda'' - \lambda'$ is equal to the amount of radiation obtained by the latitude $-\varphi$ during the time interval when the Sun passes over the arc from $\lambda' + \pi$ to $\lambda'' + \pi$.

Let us proceed to the determination of the quantity of heat W obtained by a unit of surface at a given latitude φ during different astronomical seasons. Let W_I, W_{II}, W_{III}, W_{IV} denote corresponding quantities of radiction obtained during spring, summer, autumn and winter by a unit of surface at latitude φ of the northern hemisphere.

In determining values W we should investigate two cases, depending upon whether the latitude φ is located in the non-Arctic or Artic zone.

<u>The non-Arctic zone</u>. In the non-Arctic zone there is a sunrise and sunset every day of the year. During the astronomical spring the Sun's longitude varies from 0 to 90°, and during astronomical summer, from 90° to 180°. Consequently, for determining W_I we should replace λ' with 0, λ'' with $\frac{\pi}{2}$; for determining W_{II} we should replace $-\lambda'$ with $\frac{\pi}{2}$ and λ'' with π in formulas (4) and (6). In this case it is apparent that W_I = W_{II}. If we designate the radiation for the summer half-year by W_S = W_I + W_{II}, we obtain

-7-

$$W_{\bullet} = \frac{TJ_{\bullet}}{\pi^{2}\sqrt{1-c^{2}}} \int_{0}^{\frac{\pi}{2}} (\phi_{\bullet} \sin \phi \sin \phi + \cos \phi \cos \phi \sin \phi_{\bullet}) d\lambda +$$

$$+ \frac{\pi}{180^{2}} \frac{TJ_{\bullet}}{\pi^{2}\sqrt{1-c^{2}}} \left[\int_{0}^{\frac{\pi}{2}} (\phi_{\bullet} \sin \phi \sin \phi + \cos \phi \cos \phi \sin \phi_{\bullet}) d\lambda - \cos \phi \int_{0}^{\frac{\pi}{2}} \frac{\sin \phi_{\bullet}}{\cos \phi} d\lambda \right] \operatorname{ctg} z_{\bullet} (\Delta z)^{\circ}.$$

$$(7)$$

For determining W_{III} and W_{IV} the limits of integration are replaced by π and $\frac{3}{2}\pi$ for the autumn and by $\frac{3}{2}\pi$ and 2π for the winter, respectively, in the formulas (4) and (6). After small transformations, noting that $W_{III} = W_{IV}$, we can write the following for the radiation of the winter astronomic half-year:

$$W_{W} = W_{III} + W_{IV},$$

or

$$W_{\varphi} = W_{z} - \frac{TJ_{0}}{\pi \sqrt{1 - e^{2}}} \left[\sin \varphi \sin \varepsilon_{0} + \frac{\pi}{180^{\circ}} \sin \varphi \cos \varepsilon_{0} (\Delta \varepsilon)^{\circ} \right].$$
(8)

<u>The Arctic zone</u>. The Arctic zone, the latitudes of which satisfy the relations $z > \frac{\pi}{2} - \varepsilon$ in the northern hemisphere and $\varphi < -\frac{\pi}{2} + \varepsilon$ in the southern, has days with surrise and sunset, without sunset, and without sunrise.

The Sun's altitude in the upper and lower culminations is determined by the equalities

$$\begin{aligned} h_{u} &= \frac{\pi}{2} - \varphi + \delta, \\ h_{u} &= \varphi + \delta - \frac{\pi}{2}. \end{aligned}$$
 (9)

Consequently, during the days with sunrise and sunset it should be

-8- TC-1681

$$-\left(\frac{\pi}{2}-\varphi\right) < i < \frac{\pi}{2} - \frac{1}{2} \varphi.$$

For the days without sunset

$$h_{\mu} > 0, \quad \delta > \frac{\pi}{2} - \varphi.$$

For the days without sunrise

$$h_{\mathbf{p}} < 0, \quad \delta < -\frac{\pi}{2} + \varphi.$$

Then in the spring the declination δ will vary: during the days with sumrise and sunset from $\delta_1 = 0$ to $\delta_2 = \frac{\pi}{2} - \gamma$; correspondingly, during this time the Sun will travel in longitude from $\lambda' = 0$ to $\lambda'' = \lambda_1$, where

$$\sin \lambda'' = \frac{\sin \delta_2}{\sin z} = \frac{\cos \varphi}{\sin z},$$
$$\lambda'' = \lambda_1 < \frac{\pi}{2}.$$

During the days without sunset the declination δ varies from $\delta'_1 = \frac{\pi}{2} - \varphi$ to $\delta'_2 = \epsilon$; correspondingly $\lambda' = \lambda_1$, $\lambda'' = \frac{\pi}{2}$.

For astronomical summer

$$\delta'_1 = \epsilon, \ \delta'_2 = \frac{\pi}{2} - \gamma; \ \lambda' = \frac{\pi}{2}, \ \lambda'' = \pi - \lambda,$$

for the days without sunset and

$$\delta_1 = \frac{\pi}{2} - \varphi, \ \delta_2 = 0; \ \lambda' = \pi - \lambda_1, \ \lambda_2'' = \pi$$

during the days with the sunrise and sunset. For the astronomical autumn

$$\hat{\mathbf{a}}_1 = \mathbf{0}, \ \hat{\mathbf{a}}_2 = -\frac{\pi}{2} + \varphi; \ \lambda' = \pi, \ \lambda'' = \pi + \lambda_1$$

TC-1681

-9-

or

during the days with sunrise and sunset and

$$\delta_1^{\prime\prime} = -\frac{\pi}{2} + \varphi, \quad \delta_2^{\prime\prime} = -\epsilon; \quad \lambda' = \pi + \lambda_1, \quad \lambda'' = \frac{3}{2}\pi$$

for the days without sunrise. For the astronomical winter

$$\delta_1'' = -\epsilon, \quad \delta_2'' = -\frac{\pi}{2} + \tau; \quad \lambda' = \frac{3}{2}\pi, \quad \lambda'' = 2\pi - \lambda,$$

for the days without sumrise and

$$\delta_1 = -\frac{\pi}{2} + z, \quad \delta_2 = 0; \quad \lambda' = 2\pi - \lambda_1, \quad \lambda'' = 2\pi$$

for the days with sunrise and sunset.

By substituting the obtained values of the limits λ' and λ'' in equations (4) and (6) and considering that during the days without sunset $\psi_0 = \pi$, and during the days without sunrise $\psi_0 = 0$, we obtain the following for the latitude φ of the Arctic zone of the northern hemisphere

$$W_{\bullet} = \frac{TJ_{0}}{\pi^{2}\sqrt{1-c^{2}}} \left[\int_{0}^{\lambda_{1}} (\psi_{0} \sin\varphi\sin\theta + \cos\varphi\cos\delta\sin\psi_{0}) d\lambda + \pi\sin\varphi\sin\epsilon\cos\lambda_{1} \right] + \frac{TJ_{0}}{\pi\sqrt{1-c^{2}}\log^{2}} \operatorname{ctg} \varepsilon (\Delta\varepsilon)^{\circ} \left[\int_{0}^{\lambda_{1}} (\psi_{0}\sin\varphi\sin\phi+\cos\varphi\cos\delta\sin\psi_{0}) d\lambda + \pi\sin\varphi\sin\epsilon\cos\lambda_{1} - \cos\varphi\int_{0}^{\lambda_{1}} \frac{\cos\psi_{0}}{\cos\delta} d\lambda \right],$$

$$W_{\bullet} = W_{\bullet} - \frac{TJ_{0}}{\pi\sqrt{1-c^{2}}}\sin\varphi\sin\epsilon - \frac{TJ_{0}}{\pi\sqrt{1-c^{2}}}\sin\varphi\cos\epsilon(\Delta\varepsilon)^{\circ}.$$
(11)

As was already indicated, $\sin \lambda_1 = \frac{\cos \varphi}{\sin z}$ and Δz is expressed in parts of a degree. Let us designate initial values of W_s and W_w by W_s^o and W_w^o and the coefficients of Δz by ΔW_s and ΔW_w . Then

$$W_{\bullet} = W_{\bullet}^{\circ} + \Delta W_{\bullet} \Delta z, \qquad (12)$$
$$W_{\bullet} = W_{\bullet}^{\circ} + \Delta W_{\bullet} \Delta z. \qquad (12)$$

Formulas (7) and (8) for the non-Arctic zone yield:

$$W_{\phi}^{0} = \frac{TJ_{0}}{\pi^{2}\sqrt{1-e^{2}}} \int_{0}^{\frac{\pi}{2}} (\phi_{0} \sin \phi \sin \theta + \cos \phi \cos \theta \sin \phi_{0}) d\lambda,$$

$$W_{\phi}^{0} = W_{\phi}^{0} - \frac{TJ_{0}}{\pi\sqrt{1-e^{2}}} \sin \phi \sin \theta$$
(13)

and

$$\Delta W_{\bullet} = \frac{\pi}{180^{\circ}} \operatorname{ctg} z \left[W_{\bullet}^{0} - \frac{TJ_{0}\cos\varphi}{\pi^{2}\sqrt{1-e^{2}}} \int_{0}^{\frac{\pi}{2}} \frac{\sin\psi_{0}}{\cos t} d\lambda \right],$$

$$\Delta W_{\bullet} = \Delta W_{\bullet} - \frac{\pi}{180^{\circ}} \operatorname{ctg} z \left(W_{\psi}^{0} - W_{\bullet}^{0} \right).$$
(14)

For the Arctic zone we have from formulas (10) and (11)

$$W_{g}^{o} = \frac{TJ_{0}}{\pi^{2}\sqrt{1-e^{2}}} \left[\int_{0}^{\lambda_{1}} (\dot{\varphi}_{0} \sin \varphi \sin \hat{e} - \frac{1}{e} \cos \varphi \cos \hat{e} \sin \dot{\varphi}_{0}) d\lambda + \pi \sin \varphi \sin \hat{e} \cos \lambda_{1} \right],$$

$$W_{g}^{o} = W_{g}^{o} - \frac{TJ_{0}}{\pi\sqrt{1-e^{2}}} \sin \varphi \sin \hat{e}$$
(15)

and

$$\Delta W_{\bullet} = \frac{\pi}{180^{\circ}} \operatorname{ctg} \varepsilon \left[W_{\bullet}^{\circ} - \frac{TJ_{\circ} \cos \varphi}{\pi^{2} \sqrt{1 - e^{2}}} \int_{0}^{1} \frac{\sin \psi_{\circ}}{\cos \psi} d\lambda \right],$$

$$\Delta W_{\bullet} = \Delta W_{\bullet} - \frac{TJ_{\circ}}{180^{\circ} \sqrt{1 - e^{2}}} \sin \varphi \cos \varepsilon,$$
(16)

or

$$\Delta W_{0} = \Delta W_{0} + \frac{\pi}{180^{\circ}} \operatorname{ctg} \varepsilon (W_{0}^{0} - W_{0}^{\circ}).$$

On the basis of the assumptions regarding J_0 and T, values W_0^0 , W_0^0 , ΔW_0 , and ΔW_0 will be constant for a given latitude. In order to determine them according to formulas (13) - (16), we can utilize the expansion of the integrands in series in terms of powers of small values,

as this is done by M. Milankovitch. However, with an increase of 9 these series converge slowly; therefore, it is more expedient to use one of the methods of quadrature for the integration.

Formulas (13) - (16) were obtained for the latitude \mathfrak{P} of the northern hemisphere. However, it was indicated above that formulas (4) and (6)-from which we proceeded in the derivation of formulas (13)- (16)--are such that with the replacement of \mathfrak{P} by $-\mathfrak{P}$ and λ by $\lambda + \pi$ the value W does not change. From this we can draw a conclusion that a unit of surface at any latitude of the southern hemisphere obtains as much radiation during its astronomical summer half-year as a unit of surface at the same latitude of the northern hemisphere during its astronomical summer half-year. This situation is also true for the astronomical winter half-year.

Consequently, if we designate the amount of radiation obtained by a unit of surface at the latitude $\frac{1}{2}$ of the southern hemisphere during the astronomical summer and winter half-years by \widetilde{W}_S and \widetilde{W}_u , then

$$\overline{W}_{s} = W_{s}^{\circ} + \Delta W_{s} \Delta z, \qquad (17)$$

$$\overline{W}_{s} = W_{s}^{\circ} + \Delta W_{s} \Delta z, \qquad (17)$$

The amount of radiation obtained by a unit of area at the latitude φ during the entire year T will be

$$W_T = W_* + W_u = W_*^2 + W_u^2 + (\Delta W_* + \Delta W_u) \Delta \varepsilon.$$

According to formula (17),

$$\tilde{W}_T = W_T.$$

 $W_{s}^{0}, W_{w}^{0}, \Delta W_{s}, \Delta W_{s}, \Delta W_{s}$, contained in formula (17), are determined by the same formulas (13) - (16). However, it should be pointed out that although $W_{s} = W_{s}$ and $W_{s} = W_{s}$, the thermal conditions at the same latitudes during the analogous astronomical half-years in the northern and southern hemispheres will be different. According to Kepler's second law, the Sun passes over equal segments of arc at different sections of the ecliptic during different time intervals. Thus, at present the heat

-12- TC-1681

flux during a summer day in the northern hemisphere is smaller than in the southern hemisphere.

Let the duration of the summer and winter half-years be designated by T_s and T_w ; the corresponding values for the southern hemisphere will be \overline{T}_s and \overline{T}_w .

Evidently,

$$T_s + T_s = T, \quad \bar{T}_s = T_s, \quad \bar{T}_s = T_s.$$

With an accuracy up to the first order, with respect to the eccentricity of the Earth's orbit e we can write

$$T_{o} = \frac{1}{2} T \left(1 + \frac{4c}{\pi} \sin \Pi \right),$$

$$T_{w} = \frac{1}{2} T \left(1 - \frac{4c}{\pi} \sin \Pi \right),$$

$$T_{v} - T_{w} = T \frac{4c}{\pi} \sin \Pi,$$
(18)

where II is the longitude of perihelion of the Earth's orbit, counted from the point of the vernal equinox of the date.

Formulas (12) and (17) together with formulas (13) - (16) make it possible to determine the amount of radiation obtained by a unit of area at a given latitude of the northern or southern hemisphere during astronomical half-years in any year of the geological past or future. In this case W_s , W_w , W_s , W_w will be functions of the variation in the inclination of the ecliptic to the equator ε and of values constant for a given latitude and a given half-year.

However, a comparison of values W_s , W_w , \overline{W}_s , \overline{W}_w obtained according to formulas (12) and (17) for a selected year of the geological past against the magnitudes of these values for the current period W_w^0 , \overline{W}_w^0

which, in turn, change in terms of time. Consequently, the duration of astronomical half-years also does not remain constant in terms of time. Thus, values W_{μ} , W_{ν} ,

For comparison we can draw on other values, namely the mean tension of solar radiation. The mean tensions of solar radiation w_{\star} and w_{w} for the summer and winter astronomical half-years at a selected latitude of the northern hemisphere are determined by the relations

$$w_s = \frac{W_s}{T_s}, \quad w_w = \frac{W_w}{T_w},$$

and similarly for the southern hemisphere

$$\bar{w}_{\bullet} = \frac{\bar{W}_{s}}{\bar{T}_{\bullet}}, \quad \bar{w}_{s} = \frac{\bar{W}_{s}}{\bar{T}_{s}},$$

or otherwise

$$\bar{w}_s = \frac{W_s}{T_w}, \quad \bar{w}_w = \frac{W_w}{T_s}.$$

If we use formulas (12) and (18) and limit ourselves to the firstorder terms with respect to the eccentricity e and variation in the inclination of the ecliptic to the equator Δs , we obtain

$$w_{s} = \frac{2}{T} W_{s}^{0} \left(1 + \frac{\Delta W_{s}}{W_{s}^{0}} \Delta z - \frac{4}{\pi} e \sin \Pi \right),$$

$$w_{w} = \frac{2}{T} W_{w}^{0} \left(1 + \frac{\Delta W_{w}}{W_{w}^{0}} \Delta z + \frac{4}{\pi} e \sin \Pi \right),$$

$$\bar{w}_{s} = \frac{2}{T} W_{s}^{0} \left(1 + \frac{\Delta W_{s}}{W_{s}^{0}} \Delta z + \frac{4}{\pi} e \sin \Pi \right),$$

$$\bar{w}_{w} = \frac{2}{T} W_{w}^{0} \left(1 + \frac{\Delta W_{s}}{W_{w}^{0}} \Delta z - \frac{4}{\pi} e \sin \Pi \right).$$
(19)

Formulas (19) indicate that the variations in the inclination of the ecliptic to the equator equally influence the mean radiation tension of the similar astronomical half-years for a selected latitude of the northern and southern hemispheres. The variation in the duration of astronomic half-years, the difference of which is proportional to e sin Π , exerts an opposite influence in the hemispheres.

Thus, the same latitudes of the northern and southern hemispheres obtain different mean radiation tensions during identical astronomical half-years. The mean annual radiation tension will be

$$\boldsymbol{w}_{\tau} = \frac{1}{T} \left(W_{s} + W_{\omega} \right) = \frac{1}{T} \left[W_{s}^{0} + W_{\omega}^{0} + \left(\Delta W_{s} + \Delta W_{\omega} \right) \Delta \varepsilon \right],$$

$$\boldsymbol{w}_{\tau} = \frac{1}{T} \left[W_{s}^{0} + W_{\omega}^{0} + \left(\Delta W_{s} + \Delta W_{\omega} \right) \Delta \varepsilon \right].$$
(20)

2. Amount of Radiation in Caloric Half-Years

The variations of values w_{μ} and w_{μ} --which depend on variations of the eccentricity, longitude of the perihelion and the inclination of the ecliptic to the equator in time--characterize the secular rate of the irradiation and make it possible to judge the climate changes caused by fluctuations of the elements of the earth orbit.

In his astronomic theory of climate variations M. Milankovitch prefers to use the second value for the characteristic of the secular climate variations, namely the variations of the amount of radiation obtained by a unit of area at a given latitude during the caloric half-years. Unlike astronomic half-years, Milankovitch's caloric half-years are determined in the following manner.

Assuming that the period of the Earth's revolution around the Sun is a stable, constant value, i.e., the sidercal as well as the tropical year has an unchangeable duration, Milankovitch divides the year into

-15-

two equal parts, such that one of the half-years, which he calls summer, encompasses all the days when the sum of daily radiation at a given latitude is larger than in any of the other (winter) half-year. Such half-years are called caloric.

The difference between the caloric and the astronomic half-years consists in the fact that during the astronomic half-years the Sun passes along 180° of the arc of the ecliptic and in the summer astronomic halfyear the duration of any day is longer than the duration of any day of the winter half-year. The caloric half-years last one-half of the time necessary for the Earth to revolve around the Sun, and during any day of the summer half-year the irradiation intensity of a unit of a given surface is larger than the irradiation intensity of the same surface during any day of the winter half-year.

The amount of solar irradiation for a unit of area during caloric half-years at a given latitude, determined for a certain date of the geological past or future, can be directly compared with the quantity of solar irradiation of the same area, during the same caloric halfyear, determined for the present, since these insolations will refer to the same time intervals.

In order to determine the amount of radiation obtained by a unit of area at the latitude φ for the summer and winter caloric half-years (let us designate these values for the northern hemisphere by Q_S and Q_W , and for the southern hemisphere by \overline{Q}_S and \overline{Q}_W), it is necessary to determine the coordinates of the origin of the caloric half-years.

The total daily radiation W_{τ} , obtained by a unit of area at the latitude φ , with the Sun longitude λ and the day duration τ will be

$$W_{\tau}(\lambda) = \frac{\tau J_0}{\pi \phi^2} (\dot{\varphi}_0 \sin \varphi \sin \hat{\phi} + \cos \varphi \cos \hat{\phi} \sin \dot{\varphi}_0),$$

since $p = \frac{1 - e^2 i}{1 - e \cos(11 - \lambda)}$, then with an accuracy to the first power of eccentricity

-16-

$$\frac{1}{2^2} = 1 - 2e \cos{(\Pi - \lambda)}.$$
 (21)

Then

$$W_{\tau}(\lambda) = \frac{\tau J_0}{\pi} \left[1 - 2e \cos\left(\Pi - \lambda\right) \right] (\psi_0 \sin \varphi \sin \hat{\varphi} + \cos \varphi \cos \hat{\varphi} \sin \psi_0).$$
(22)

Let λ_1 and λ_2 be the Sun's longitudes at the moments of the beginning of the summer and winter caloric half-years. From the determination of the caloric half-years at the moments of their beginning, the diurnal totals of radiations should be equal, i.e.

$$W_{z}(\lambda_{1}) := W_{z}(\lambda_{2}), \tag{23}$$

and, on the other hand, the beginning moments of the caloric half-years should be separated from each other by a six-month time interval, equal to $\frac{T}{2}$.

We have

$$dt = \frac{T}{2} \frac{s^2}{\pi \sqrt{1-c^2}} d\lambda.$$

If we substitute here the value p^2 from (21) and limit ourselves to the first power of eccentricity, we can write

$$\frac{T}{2} = \int_{\lambda_1}^{\lambda_2} dt = \frac{T}{2\pi} \int_{\lambda_1}^{\lambda_2} [1 + 2e\cos(11 - \lambda)] d\lambda.$$
(24)

If we solve equations (23) and (24) simultaneously for λ_1 and λ_2 we can obtain the coordinates of the beginning of the caloric half-years.

The integration of (24) yields

$$\pi = \lambda_2 - \lambda_1 - 2c \sin(\Pi - \lambda_2) + 2c \sin(\Pi - \lambda_1).$$
 (25)

It is apparent that λ_1 and λ_2 differ from each other by about 180°. Let us introduce new designations: $\lambda_1 = \lambda', \lambda_2 = \pi - \lambda''$. Then formula (25) will be rewritten as follows:

$$\lambda^{\prime} + \lambda^{\prime} = 2c [\sin (11 - \lambda^{\prime}) + \sin (11 + \lambda^{\prime})].$$
 (26)

Formula (26) indicates that the sum $\lambda' + \lambda''$ will be a small value, on the order of the Earth's eccentricity.

Let us turn to formula (22).

The beginnings of the caloric half-years can fall only on days with sunrise and sunset.

Then

and

$$\psi_0 = \frac{\pi}{2} + \lg \varphi \lg \delta + \frac{1}{6} \lg^3 \varphi \lg^3 \delta + \dots,$$

$$\sin \psi_0 = 1 - \frac{1}{2} \lg^2 \varphi \lg^2 \delta - \frac{1}{6} \lg^4 \varphi \lg^4 \delta - \dots$$

By substituting the obtained values ψ_0 and sin ψ_0 in (22) we have

$$W_{\tau}(\lambda) = \frac{\tau J_0}{\pi} \left[1 - 2c \cos\left(\Pi - \lambda\right) \right] \left(\frac{\pi}{2} \sin\varphi \sin\vartheta + \frac{1}{2} \cdot \frac{\sin^2\varphi \sin^2\vartheta}{\cos\varphi \cos\vartheta} + \cos\varphi \cos\vartheta + \cdots \right),$$

$$W_{\tau}(\lambda) = \frac{\tau J_0}{\pi} \left(\frac{\pi}{2} \sin\varphi \sin\vartheta + \cos\varphi \cos\vartheta + \frac{1}{2} \cdot \frac{\sin^2\varphi \sin^2\vartheta}{\cos\varphi \cos\vartheta} - \pi e \cos\Pi \sin\varphi \sin\vartheta \cos\lambda - \frac{\pi e \sin\Pi \sin\varphi \sin\vartheta \sin\vartheta - 2e \cos\Pi \cos\varphi \cos\vartheta + \cdots \right),$$

$$(27)$$

 λ' and λ'' are small values, as are declinations δ' and δ'' . If we limit ourselves to the first-order values with relation to c, λ' , λ'' , δ' , δ'' we obtain from (27)

0

$$W_{\tau}(\lambda') = \frac{\tau J_0}{\pi} \left(\frac{\pi}{2} \sin \varphi \sin z \sin \lambda' + \cos \varphi - 2e \cos \Pi \cos \varphi \right)$$
$$W_{\tau}(\lambda'') = \frac{\tau J_0}{\pi} \left(\frac{\pi}{2} \sin \varphi \sin z \sin \lambda'' + \cos \varphi + 2e \cos \Pi \cos \varphi \right).$$

Hence

$$W_{\tau}(\lambda'') - W_{\tau}(\lambda') = \frac{\tau J_{\phi}}{\pi} \left[\frac{\pi}{2} \sin \varphi \sin z \left(\sin \lambda'' - \sin \lambda' \right) + 4e \cos \Pi \cos \varphi \right] = 0$$

and, consequently,

$$\sin \lambda'' - \sin \lambda' = -\frac{8e\cos \varphi}{\pi \sin \varphi \sin \varepsilon} \cos \Pi.$$
(28)

Because λ'' and λ' are small, their sines can be replaced by arcs.

Then

$$\lambda'' - \lambda' = -\frac{8e\cos\varphi}{\pi\sin\varphi\sin^2}\cos\Pi, \qquad (29)$$

Hence,

$$\lambda' = 2e\left(\sin \Pi + \frac{2\cos\varphi}{\pi\sin\varphi\sin\varphi}\cos \Pi\right),$$

$$\lambda'' = 2e\left(\sin \Pi - \frac{2\cos\varphi}{\pi\sin\varphi\sin\varphi}\cos \Pi\right).$$
(30)

Values λ' and λ'' are functions of the elements of the Earth orbit: the eccentricity, longitude of the perihelion, and inclination of the ecliptics to the equator, which in turn are time functions. In addition, λ' and λ'' also depend on the local latitude φ . Thus, λ' and λ'' vary with time and with the change of the latitude of the place. The caloric half-years are not determined in the equatorial zone.

The arc through which the Sun passes during a caloric half-year will

be a segment of arc from $\lambda_1 = \lambda'$ to $\lambda_2 = \pi - \lambda''$, and during the winter caloric half-year from $\lambda_2 = \pi - \lambda''$ to $\lambda_1 = 2\pi + \lambda'$. In order to determine Q_s and Q_v it is necessary to substitute these values in the integration limits in formula (4). We divide the arc segment from λ' to $\pi - \lambda''$ into three parts:

$$\lambda_1 = \lambda', \lambda_2 = 0; \lambda_2 = 0, \lambda_3 = \pi; \lambda_3 = \pi, \lambda_4 = \pi - \lambda'';$$

analogously the segment of arc from $\pi - \lambda''$ to $2\pi - \lambda''$ is divided into the following parts:

$$\lambda_1 = \pi - \lambda'', \lambda_2 = \pi; \lambda_3 = \pi, \lambda_6 = 2\pi; \lambda_6 = 2\pi, \lambda_7 = 2\pi + \lambda'.$$

Then

$$Q_{n} = W(\lambda', \pi - \lambda'') = W(\lambda', 0) + W(0, \pi) + W(\pi, \pi - \lambda'')$$

or, since

 $W(0, \pi) = W_{\mu}, W(\pi, \pi - \lambda'') = -W(\pi - \lambda'', \pi), W(\lambda', 0) = -W(0, \lambda'), W(2\pi, 2\pi - \lambda') = W(0, \lambda'),$

then

$$Q_{n} = W_{n} - W(0, \lambda') - W(\pi - \lambda'', \pi),$$

$$Q_{n} = W_{n} + W(\pi - \lambda'', \pi) + W(0, \lambda').$$

We designate W $(0, \lambda') - W(\pi - \lambda'', \pi) = K$, then

$$Q_{\bullet} = W_{\bullet} - K,$$

$$Q_{\bullet} = W_{\bullet} + K.$$
(31)

According to formula (4),

-20-

$$K = \frac{TJ_0}{2\pi^2 \sqrt{1 - e^2}} \int_{0}^{1} (\dot{\gamma}_0 \sin \varphi \sin \hat{\sigma} + \cos \varphi \cos \hat{\sigma} \sin \dot{\gamma}_0) d\lambda + \frac{TJ_0}{2\pi^2 \sqrt{1 - e^2}} \int_{0}^{1} (\dot{\gamma}_0 \sin \varphi \sin \hat{\sigma} + \cos \varphi \cos \hat{\sigma} \sin \dot{\gamma}_0) d\lambda.$$
(32)

As was already pointed out above, λ' and λ'' are values on the order of the eccentricity; then, as usual, by limiting ourselves in the integrands to the second-order values with relation to λ' and λ'' , (32) may be written

$$K = \frac{\tau J_0}{2\pi^2 \sqrt{1 - e^2}} \int_0^{\infty} \left(\frac{\pi}{2} \sin \varphi \sin e \sin \lambda + \cos \varphi\right) d\lambda + \frac{\tau J_0}{2\pi^2 \sqrt{1 - e^2}} \int_0^{\infty} \left(\frac{\pi}{2} \sin \varphi \sin e \sin \lambda + \cos \varphi\right) d\lambda.$$
(33)

After integration of (33) we obtain

$$K = \frac{TJ_{\alpha}}{2\pi^{2}\sqrt{1-c^{2}}} \left[\left[-\frac{\pi}{2}\sin\varphi\sin\varepsilon\cos\lambda + \cos\varphi\lambda \right]_{0}^{2} + \left[-\frac{\pi}{2}\sin\varphi\sin\varepsilon\cos\lambda + \cos\varphi\lambda \right]_{-\lambda''}^{2} \right] = \frac{TJ_{\alpha}}{2\pi^{2}\sqrt{1-c^{2}}} \left[-\frac{\pi}{2}\sin\varphi\sin\varepsilon(\cos\lambda' - \cos\lambda'') + \pi\sin\varphi\sin\varepsilon + \cos\varphi(\lambda' + \lambda'') \right],$$

finally

$$K = \frac{TJ_0}{2\pi^2 \sqrt{1-e^2}} \cos \varphi \left(\lambda' + \lambda''\right);$$

by substituting here the value $\lambda' + \lambda''$, we have

$$K = \frac{2TJ_0\cos p}{r^2 \sqrt{1-c^2}} c \sin II, \qquad (34)$$

or

$$K = mc \sin[1],$$

-21--

where

$$m = \frac{2TJ_0\cos\varphi}{\pi^2\sqrt{1-e^2}}.$$
 (35)

Consequently,

$$Q_{e} = W_{e} - mc \sin \Pi, \qquad (36)$$

$$Q_{e} = W_{e} - mc \sin \Pi, \qquad (36)$$

and for the southern hemisphere

$$\begin{array}{l} Q_{\bullet} := W_{\bullet} + mc\sin \Pi, \\ Q_{\bullet} := W_{\bullet} - mc\sin \Pi. \end{array}$$

$$(37)$$

The quantity of heat obtained by a unit of area at the latitude φ of the northern hemisphere during one caloric half-year will differ from the quantity of heat obtained by a unit of surface at the southern latitude during the same caloric half-year:

$$Q_{\bullet} - Q_{\bullet} = -2me \sin \Pi,$$

$$Q_{\bullet} - Q_{\bullet} = 2me \sin \Pi.$$

The differences are proportional to $c \sin \Pi$; however, since the coefficient m contains $\cos \varphi$, the differences will not be the same for all latitudes.

3. <u>Secular Variations in Solar Irradiation of the Earth Surface,</u> <u>Caused by Variations in the Elements of the Earth's Orbit</u>

Formulas (19) make it possible to determine the mean summer and winter irradiations obtained by a unit of area at the latitude \Im during a time unit for the moment t of the geological past or future:

$$\boldsymbol{w}_{o} = \frac{2}{T} W_{o}^{0} \left(1 + \frac{\Delta W_{s}}{W_{o}^{0}} \Delta z - \frac{4}{\pi} c \sin \Pi \right),$$

$$\boldsymbol{w}_{w} = \frac{2}{T} W_{w}^{0} \left(1 + \frac{\Delta W_{w}}{W_{w}^{0}} \Delta z + \frac{4}{\pi} c \sin \Pi \right),$$

$$\boldsymbol{w}_{o} = \frac{2}{T} W_{o}^{0} \left(1 + \frac{\Delta W_{s}}{W_{o}^{0}} \Delta z + \frac{4}{\pi} c \sin \Pi \right),$$

$$\boldsymbol{w}_{o} = \frac{2}{T} W_{o}^{0} \left(1 + \frac{\Delta W_{w}}{W_{w}^{0}} \Delta z - \frac{4}{\pi} c \sin \Pi \right),$$
(38)
$$\boldsymbol{w}_{o} = \frac{2}{T} W_{w}^{0} \left(1 + \frac{\Delta W_{w}}{W_{w}^{0}} \Delta z - \frac{4}{\pi} c \sin \Pi \right).$$

For the initial moment $t = t_0$ formulas (38) will be rewritten as follows:

$$\boldsymbol{w}_{o}^{0} = \frac{2}{T} W_{o}^{0} \left(1 - \frac{4}{\pi} e_{o} \sin \Pi_{o} \right),$$

$$\boldsymbol{w}_{o}^{0} = \frac{2}{T} W_{w}^{0} \left(1 + \frac{4}{\pi} e_{o} \sin \Pi_{o} \right),$$

$$\boldsymbol{v}_{o}^{0} = \frac{2}{T} W_{o}^{0} \left(1 + \frac{4}{\pi} e_{o} \sin \Pi_{o} \right),$$

$$\boldsymbol{w}_{o}^{0} = \frac{2}{T} W_{o}^{0} \left(1 - \frac{4}{\pi} e_{o} \sin \Pi_{o} \right),$$

$$\boldsymbol{w}_{o}^{0} = \frac{2}{T} W_{w}^{0} \left(1 - \frac{4}{\pi} e_{o} \sin \Pi_{o} \right).$$

(39)

The change of value w during the period t - t_o will be presented in the following form

$$\Delta w_{o} = \frac{2}{T} \left[\Delta W_{o} \Delta z - \frac{4}{\pi} W_{o}^{o} \Delta e \sin \Pi \right],$$

$$\Delta w_{o} = \frac{2}{T} \left[\Delta W_{w} \Delta z + \frac{4}{\pi} W_{o}^{o} \Delta e \sin \Pi \right],$$

$$\Delta \overline{w}_{o} = \frac{2}{T} \left[\Delta W_{c} \Delta z + \frac{4}{\pi} W_{o}^{o} \Delta e \sin \Pi \right],$$

$$\Delta \overline{w}_{o} = \frac{2}{T} \left[\Delta W_{w} \Delta z - \frac{4}{\pi} W_{w}^{o} \Delta e \sin \Pi \right].$$
(40)

Having computed in a series of moments the values $\Delta w_{a}, \Delta w_{a}, \Delta w_{a}, \Delta w_{a}$, Δw_{a} , ω_{a} , ω_{a

-23-

In order to characterize the secular rate of solar irradiation of the Earth we can also use other relations, as was already mentioned.

Formulas (36) and (37) make it possible to determine the quantity of heat obtained by a unit of area at the latitude $\frac{1}{7}$ during one caloric half-year in the epoch t.

.

$$\begin{array}{l}
\left\{ Q_{\mu} = W_{\mu}^{0} + \Delta W_{\mu} \Delta z - me \sin \Pi, \\
Q_{\mu} = W_{\mu}^{0} + \Delta W_{\mu} \Delta z + me \sin \Pi, \\
Q_{\mu} = W_{\mu}^{0} + \Delta W_{\mu} \Delta z + me \sin \Pi, \\
Q_{\mu} = W_{\mu}^{0} + \Delta W_{\mu} \Delta z - me \sin \Pi, \\
\end{array}$$

$$(41)$$

For the initial moment $t = t_0$ formulas (41) will be rewritten as follows

$$\begin{array}{l}
Q_{r}^{0} = W_{s}^{0} - mc_{0} \sin \Pi_{0}, \\
Q_{r}^{0} = W_{r}^{0} + mc_{0} \sin \Pi_{0}, \\
\bar{Q}_{s}^{0} = W_{s}^{0} + mc_{0} \sin \Pi_{0}, \\
\bar{Q}_{s}^{0} = W_{s}^{0} + mc_{0} \sin \Pi_{0}, \\
\bar{Q}_{w}^{0} = W_{r}^{0} - mc_{0} \sin \Pi_{0},
\end{array}$$
(42)

The secular insolation variations during caloric half-years for the time interval t - t_0 will be

$$\Delta Q_{s} = \Delta W_{s} \Delta z - m \Delta c \sin U_{s}$$

$$\Delta Q_{w} = \Delta W_{w} \Delta z + m \Delta c \sin U_{s}$$

$$\Delta \bar{Q}_{s} = \Delta W_{s} \Delta z + m \Delta c \sin U_{s}$$

$$\Delta \bar{Q}_{r} = \Delta W_{w} \Delta z - m \Delta c \sin U_{s}$$
(43)

Having computed, as above, in a series of moments $\Delta Q_s, \Delta Q_s,$

It is not necessary to discuss here in detail the theory of secular

-24-

perturbations of the orbit elements of large planets.

In our study, <u>Secular Variations in the Elements of the Earth's Orbit</u> <u>Influencing the Climate of the Geological Past</u> (Sharaf, Budnikova, 1967), we gave a short review of the existing theories and showed appropriate formulas and series for determining $\Delta \varepsilon$ and $\Delta \varepsilon \sin \Pi$ during long intervals of time. Here, we consider it useful to give numerical coefficients of series and arguments for the basic values which influence the insolation, namely for the inclination of the ecliptic to the equator ε , the eccentricity of the Earth's orbit e, and e sin Π .

The series for these values will be of the following form:

$$\varepsilon = h^* + \sum A_i \cos (a_i t + b_i),$$

$$\varepsilon \sin \Pi = \sum C_i \sin (c_i t + d_i),$$

$$\varepsilon = F_c + \sum F_i \cos (f_i t + g_i).$$
(44)

Values h^* , A_i , a_i , b_i are given in Table 1; values C_i , c_i , d_i - in Table 2 and F_0 , F_i , j_i , g_i - in Table 3. Tables 1 - 3 also contain values of periods of corresponding terms T_i (in milleniums).

As was already pointed out, the insolation variations depend on variations of ϵ . $c \sin \pi$, which can be presented in the form of a sum of trigonometric functions of time with different periods and coefficients. Consequently, insolation depends primarily on trigonometric functions with different periods. A greater influence will be exerted by the terms with greater coefficients in terms of absolute value.

Thus, in the expression for ε there are 5 terms, the coefficients of which are larger than 0°.050 (see Table 1, i = 1 to 5); the basic period will be a period of about 41000 years. Because of commensurability of these five terms, there appears another period of about 200000 years.

In the expression e sin II attention should be drawn to 4 addends (see table 2, i = 2 to 5) the coefficients of which are larger than 0.0050. A period of about 20,000 years will be the most considerable period of e sin II.

Six addends are influential in the eccentricity (see table 3, i = 10 to 12, 18, 19, 25); the coefficients of the remaining terms are smaller

than 0.0050. Here we can speak about periods of 100,000 years, 425,000 years, and because of commensurability of 5 terms--a 1,200 - 1,300 year period.

Table !

		21932080	28.6	- 23:31689	25			1	1
	0.0121 85937		28 G			+090226 27.567	101937703	15.9	- 0.0000
		"P		- 0.05597	26	0.0159 75971	67.45563	22.5	- 0.0.00
	0.0088 04608		29.5	- 0.06965	27	0.6223 17883	255.46937	1 16.1	0.00:43
1		257.12937	40,9	- 0.82889	28	0.0229 35978	142.72568	15.7	0.0000
	0.6601 1:2019	298,48202	39.5	- 0.13976	29	0.0200 67816	85,960.96	17.9	0.05683
1	0.0068 62951	129.97361	52.5	- 0.16777	30	0.0265 85910	333.22127	17.4	0.0877
	0.0132 04864	316,98735	27.3	0.000 Ki k	31	0.0003 80351	61.22079	916.5	0.67.01
1	0.0128 22059	201.21766	26.0	+ 0.00101	32	0.0637 61680	124.19143	95.7	0.0014
	0.0251 32576	42.64160	14.3	- 0.0xxx04	33	0.0034 53269	32.83878	105.2	0.0102
	0.0213 71873	280.2.8802	14.8	- 0.0FKX2	31		252.34719	61.1	0.0822
1	0.0176 09216	154.25874	20.4	- 0.0399	35	-0.0KER 28576	64.32345	563.8	- 11.627 8
1	0.0182 20038	236,96404	19.8	- 0.0025	:lai	-0.0023 81329	62.97084	1(41.5	0.0017
1	0.0137 25903	257.94722	26.2	- 0,0:040	37	0.0020 72918	21.61799	117.2	0.6662
1	0.0247 52225	341.42081	14.5	- 0.00010	38	-0.0053 22985	191.12640	67.6	- 0.0.RE
1	0.0213 70855	278.45017	16.8	- 0.00117	39	-0.0010 18928	3.14266	353.3	- 0.000
1	0.0246 79307	319.80282	16.6	- 0.00019	40	-0.0003 08411	318.64735	1167.3	- 0.0037
1	0.0194 29239	150.29441	18.5	- 0.00025	41	1 0.0019 41656	128.15576	185.4	0.0.147
1	0.0257 71152	338.3.815	14.0	0.00001	42	-0.0014 00256	3 40.14202	81.8	- 0.0001
	0.0209 90544	217.22938	17.2	- 0.00147	43	-0.0050 18351	52.88171	71.7	- 0.(KXXX
	0.0212 98956	258,58203	16.9	- 0.06025	44	0.0022 50068	169.50841	160.0	0.00.07
	0.0160 48888	89.07362	18.9	- 0.00032	45	-0.0040 91845	341.49467	\$5.0	- 0.000
	0.0253 £3801	277.08736	14.2	- 0.0.501	- 46	-0.0017 00940	94.22436	76.4	- 0.04221
1	0.0179 17627	195.61139	2.1	- 0.00302	47	-0.0003 41913	171.98626		- 0.0:840
1	0.0156 67559	26,10298 214.11672	23.0 16.4	0.00377	48	-0.0003 60008	284.72595	51.7	- 0.0000

Table 2

1	*1	di	r	C; • 107	1	¢i	di	r , '	Ce - 107	
6					30	- 020248 55974	96207716			
ï	- 020155 28730	94923211	23.2	39162	31	0.0276 29194	204.55820	14.5		3515
1 2	0.0100 51356	198.94779	22.4	163395	32	0.0278 16414	217.20212	13.0		2264
3	0.0188 24582	337.42892	19,1	- 104345	33	0.0240 09075	288,70345	12.9	-	3219
34	0.0110 11806	320.16275	18.1	-118347	31	0,0305 30785	21.50006	15.0		3979
	0.0152 01167	31.57408	23.7	183400	35	0.0235 71131	31.07536	11.8		613
567	0.0217 20177	127.47059	16.6	28261	36	0.0229 91688		15.3		96
7	0.0147 66523	133.94599	24.4	4427	37	0.0174 87365	328,12337 192,86693	15.7		
8	0.0141 87080	70,99500	25.4		35	0.0370 52495		20.6	-	2 26 32
9	0.0006 82757	295.67756	41.5		39		120.49648	9.7	÷	32
ő	0.0282 47887	223.33711	12.7		40	0.0246 41749	32.70113	14.6		142
ï	0.0280 95018	115.51291	12.8	+ 1471	41	0.0251 64385	137.42081	14.3		593
2	0.0286 17654	220.26855				0.0279 37602	275.91091	12.9	+	379
3	0.0313 90871	358.74972	12.6	223	43	0.0251 24825	258.64177	:2.8	-	538
4	0.0315 78094		11.5	+ 142	43	0.0213 17486	330,05610	14.8		Gassi
5	0.0277 70755	341.48355	11.4	- 202	44	0.0358 39196	65,95261	11.7		103
ä		52.89488	13.0	+ 250	45	0.6238 79542	72.42801	15.1	÷	16
	0.0342 92465	148.79139	10.5	39	46	0.0177 95776	234.15958	20.2		4
3	0.0273 32811	155.26679	13.2	+ 6	47	0.0373 60906	161.84913	9.6		5
8	0.0212 49645	316.99836	16.9		-48	0.0223 91682	223.16572	16.1		183
1	0.0408 14175	244.68791	8.8	+ 2	49	0.0223 14318	527.92140	15.7		764
0	0.0277 14067	54.32212	13.0	67	50	0.0256 \$7534	106.40253	14.0	+	45%
1	0.0282 37303	159,04780	12.7	279	51	0.0258 74757	89.120236	13.9	<u> </u>	694
-	0.0310 10519	297.52893	11.6	+ 178	52	0.0220 67419	160,54769	16.3		855
	0.0311 97742	280.26276	11.5	- 25.3	53	0.0285 89129 [256.41120	12.6		132
1	0.0273 50505	351.67409	13.1	- 313	54	0.0216 20174	262.91966)	16.6		21
ā	0.0639 12114	87.57080	10.6	48	55	0.0210 50022	199,96761	17.1		1
	0.0269 52459	tel.obilian)	13.4	+ 8	56	0.0155 45709	64.05117	23.2	Ξ	6
7	0.0248 68694	255.77757	17.3	- 21	57	0.0351 10839	352.34072	1		67
	0.0404 33824	183.46712	8.9	- 3	58	0.0287 43594	51.20942	12.5	±	6
2	0.0243 33328	351.35148	14.8	850	59	0.0292 56230	155.93514	12.3	-	24

-27-

Table 2 (continued)

i	c,	. d;	T,	C,	- 107	i	¢;	d ;	T _i	С,	• 107
						00	0.0070 60/70	186,13537	66.9		-
60	090320 29447	294941627	11.2	-	15	96 97	-0.0053 82472 ± 0.0001 21851	321.45181	2954.4	÷	2 26
61	0.0322 10670	277.15010	11.2	÷	22 27	98	-0.0194 43279	33.76226	18.5	-	32
62	0.0284 09331	348.56143	12.7		4	99	-0.0064 15711	204.25001	56.1		142
63	0.0349 31041	84.45794 90.93334	10.3	-	i	100	-0.0069 38347	99.53423	51.9		593
64	0.0279 71357		12.9	Ξ	:	101	-0.0097 11563	321.05310	37.1	÷	379
65	0.0293 517.89	298.46077 43.19545	12.3	-	4	102	-0.0098 98787	338.31927	36.4	<u> </u>	538
66	0.0298 74325 0.0326 47541	181.67658	11.0	=	3	103	-0.0000 91448	265,90794	59.1	-;-	666
67	0.0326 44.941	164.41041	11.0		4	104	-0.0126 13158	171.01143	28.5	-1	103
68	0.0290 27426	235.82174	12.4	+	4	105	-0.0056 53504	164.53603	63.7	÷	16
69	+0.0355 49135	331.71825	10.1	_	i	106	± 0.0004 30262	2.80446	836.7		4
70	-0.0029 62442	287.09869	121.5	+	53	107	-0.0191 34898	75.11491	18.8		5
71	-0.0034 85078	182.37301	103.3	T	223	108	-0.0086 65779	34,75150	41.5		183
72 73 74 75 76	-0.0062 58294	43.89188	57.5		142	109	-0.0091 88415	290.02582	39.2		764
13	-0.0064 45518	61.15805	55.9	+	202	110	-0.0119 61631	151.51469	30.1	÷-	488
14	-0.0026 38179	349.74672	136.5	+	250	111	-0.0121 48854	168.81086	29.6		694
15	-0.0021 59889	253.85021	39.3	-	39	112	-0.0083 41516	97.39953	43.2	<u> </u>	858
÷77	-0.0022 (0235)	247.37481	163.6		6	113	-0.0148 63226	1.50302	24.2	•	132
78	+0.0038 83531	85.64324	92.7	<u> </u>	2	114	-0.0079 03571	355.02762	45.5		21
79	-0.0156 81509	157.95309	23.0	4	2	115	-0.0073 24129	57.97961	49.2	÷	1
80	-0.0033 42794	225.87790	107.7		67	116	-0.0018 19806	193.29605	197.8	· -	6
81	-0.0038 65429	121.15222	93.1		279	117	-0.0213 \$4936	265,60650	16.8	<u> </u>	7
82	-0.0066 38616	342.67109	54.2	+	178	118	-0.0023 23866	222.76524	154.9		6
83	-0.0068 25869	359,93726	52.7	1 -	253	1 119	-0.0028 46502	118.03956	129.5	-	21
84	-0.0030 18531	288,52593	119.3	+	313	120	-0.0056 19718	239,55843	64.1	-	15
85	-0.0095 40241	192,62942	37.7	•	48	121	-0.0058 06942	356,82460	62.0	-1 -	22 27
86	-0.0025 80586	186,15402	139.5	÷	S	122	-0.0019 19003	285.41327	180.0	-	27
87	0.0035 03179	24.42245	102.8		2	123	0.0085 21313	189.51076	42.2	·	4
88	-0.0160 61951	96.73290	22.4		3	124	-0.0015 61659	183.04136	230.5	-	. 1
89	-0.9967 24122	162.90726	53.5	1	850	125	-0.0017 05771	110.02555	211.0		1
- 90	-0.0072 46758	58,18158	49.7		3545	126	-0.0022 28407	5.29987	161.6		• 4
91	-0.0100 19975	279.70045	35.9	+	2264	127	-0.0050 01624	226,81874	72.0		3
92	-0.0102 07128	296,96662	35.3	-	3219	128	-0.0051 88847	244.08491	69.4		4
.93	-0.0063 99859	225.55529	56.3		3979	1 129	-0.0013 81508	172.67358	200.6	-	4
94	-0.0129 21569	129,65878	27.9		613	130	-0.0079 03218	76.77707	45.6	-	1
95	-0.0059 61915	123.18338	60.4		96						

Table 3

1	1i Ii	\$ i	T,	F ₁ · 107	i	· fi	8i	T,	F ₁ · 107
0	T			309167	23	-090101 41825	41975130	35.5	- 411
Ŷ	-0:0005 22636	255927438	688.2	20697	24	-0.0094 23305	114.06181	28.2	+ 496
	-0.0032 95852	116,79319	109.2	÷ 13217	25	+0.0038 07339	288.58867	94.6	- \$\$000
	-0.0034 83076	134.05936	103.4	- 18791	26	-0.0027 14371	192.69216	132.6	- 13562
ž	0.0003 24263	62.64803	1110.2	- 23231	27	-0.0042 45283	186.21676	84.8	- 2124
1	-0.0061 97447	329.75152	58.1	3580	28	0.0048 24726	249,16875	74.6	- 55
ř	-0.0007 62208	320.27612	472.3	561	29	+0.0103 20049	24,48519	34.9	+ 584
2	0.0013 41550	23.22811	268.3		30	-0.0092 36081	96.79564	29.0	- 706
:	-0.0008 45973	158.54455	52.6	$+ 15 \\ - 154$	31	-0.0065 21710	264.10349	55.2	- 10766
0	-0.0127 19157	230,85500	28.3	- 186	32	-0.0004 37944	257.62800	822.0	· 2626
	-0.0027 73216	221.51887	129.8	- 55147	33	0,0010 17387	320,58008	353.8	\div 68
10		238,78504	121.6	- 78402	34	0.0065 21710	95,89652	55.2	- 723
11	-0.0029 60440		425.1	- 96927		-0.0130 43420	168,20097	27.6	- 873
12	+0.0068 46899	167.37371	63.4	14938	36	1 .1 0,0069 59654	353,52460	51.7	395
13	-0.0056 74811	71.47720			37	0.0075 39097	56,47659	47.8	1
14	+0.9012 84843	65,02180	280.2		38		191,79003	27.6	
15	0.0018 64286	127.05379	193,1		39	$\pm 0.0130 43429$ $\pm 0.0065 21710$	264, 10318	55.2	. 135
16	-1-0.0973 68609	263.27023	48,9		40	-0.0005 79442	62.95199	621.3	
17	-0.0121 96521	335.58068	29.5	+ 778				59.2	1 17
18	-0.0001 87223	17.26617	1922.8	- 50068	41	+0.0060 \$3766	198,26813		
19		305,85484	129.4	61808	42	-0.0134 81364	270,57888	26.7	+ 2
20	-0.0029 01595	209.95833	. 124.1	9539	43	+0.0055 04323	135,31644	63.4	
21	1.0.0040 5S060	203.48293	88.7	1494	44	-0.0140 60807	207.62689	25.6	
22	0 0046 37502	266.43492	77.6	4 39	45	-0.0195 65130	72.31045	18.1	· ·

CHAPTER 2

COMPUTATION OF SECULAR VARIATION IN THE SOLAR IRRADIATION OF THE EARTH DURING A LONG PERIOD OF TIME

4. Tables of Secular Variations in the Elements of the Earth's Orbit

We computed the perturbed values of $e \sin \Pi$, $e \cos \Pi$, e, e for a 30-millionyear period backward from 1950 with an interval of 5,000 years. In addition we computed the perturbed values of $\Delta(e \sin \Pi)$ and $\Delta \epsilon$ for time segments amounting to 100,000 years with 1,000-year intervals. Because of the large volume of tables the results of these computations were given in our paper (Sharaf, Budnikova, 1967) in the form of graphs, representing the disturbed values of the eccentricity of the earth orbit and the inclination of the ecliptic to the equator. Here we consider it useful to present a part of the computed tables, namely those which contain the recular variations of Π and ϵ for a period of 100 thousand years backward from 1950 with ϵ 1,000-year interval (see Table 4). Here

 $\Delta(e\sin\Pi) = e\sin\Pi - e_0\sin\Pi_0, \ \Delta z = z - z_0.$

The initial values e sin π and ε for the moment 1950.0 will be

 $c_0 \sin H_0 == 0.016454, c_0 == 2314457.$

In Table 5 are given $\Delta(e \sin H)$ and Δz values for 3 million years backward from 1950 with a 5,000-year interval. In Tables 4 and 5 $\Delta(e \sin H)$ is expressed in radians, and Δz in degrees.

-29-
таблица 4

. . .

t	(e sin II) ک	Δε		Δ (e sin Π)	Δ:	1	∆ (e sin II)	71
			- 34	-0.028296	-0.8649	- 68	-0.001970	-1.107
- ï	0.000676	0.1310	- 35	-0.027373	-0.7184	- 69	0.002832	-1.141
- 1	-0.000266	0.2583	- 36	-0.025930	-0.5572	- 70	0.006203	-1.153
- 3	-0.002782	0.3786	- 37	-0.024096	-0.2858	- 71	0.007820	-1.144
	-0.000665	0.4888	- 38	-0.021989	-0.2.33	- 72	0.007510	-1.115
- 5	-0.0:1567	0.5855	- 39	-0.019713	-0.03:0	- 73	0.005258	-1.065
	0.017033	0.6669	- 40	-0.017350	0.1431	- 74	0.601211	-0.997
	-0.022551	0.7299	- 41	-0.014971	0.3093	- 75	-0.001339	6.911
- 5	-0.027601	0.7726	- 42	-0.012637	0.4635	- 76	-0.010978	-0.511
- 0	-0.031709	0.7937	- 43	0.010408	0.0022	- 17	-0.018206	-0.597
- 10	-0.031(91	0.7919	- 44	0.608351	0.7227	- 78	-0.025474	-0.572
	-0.035693	0.7669	- 45	-0.000547	0.8223	- 79	-0.032231	-0.439
- 12	0.035210	0.7185	- 46	-0.005087	0.8993	- 80	-0.037956	-0.300
- 13	-0.032099	0.6474	- 47	-0.004076	0.9524	- 51	-0.642204	-0.158
- 14	-0.020570	0.5546	- 48	0.003625	0.926S	82	-0.044629	0.010
- 13	-0.024962	0.4420	- 49	-0.003\$36	0.9\$45	- 33	-0.045012	0.124
- 10	-0.019712	0.3118	- 50	-0.004796	0.9636	- 84	0.043279	0.259
- 17	-0.014306	0.1668	- 51	-0.006552	0.9190	- 85	-0.039502	0.387
- 18	0.009235	0.0106	- 52	-0.009103	0.8521	\$6	-0.033204	0.505
- 19	1 -0.004942	-0.1532	- 53	-0.012379	0.7645	- 87	-0.026811	0.611
- 20	-0.00178!	-0.3201	- 54	-0.016241	0.6583	85	-0.018787	0.70
- 31	0.60/a)*6	0.4858	- 55	-0.020469	0.5261	- 89	-0.010299	0.779
- 22	0.0(6358	-0.6456	- 56	-0.024780	0.4007	- 90	-0.001987	0.837
- 23	-0.000704	-0.7948	57		0.2550	- 91	0.005532	0.870
- 24	0.002904	-0.9280	- 58	-0.032284	-0.1023	- 92	0.011072	0.85.
- 25	6.006233	-1.0438	- 59	0.031770	-0.0540	- 93	0.015926	0.892
- 21	-0.010076	-1.1359	- 60	-0.035996	0.2106	- 94	0.017903	0.865
- 27	-0.614160	-1.2020	- 61	-0.035752	-0.3640	- 95	0.017363	0.824
- 25		-1.2401	62	-0.033941	0.5111	- 96	0.014246	0.757
- 19	-0.021702	-1.2486	- 63	-0.020610	0.6457	- 97	0.008685	0.671
- 111	-0.021632	-1.2271	- 64	-0.025948	-0.7740	- 98	+0.0010:0	0.560
- 21	0.020782	-1.1761_	- 65	-0.020282	-0.8844	- 99	-0.00826	0.444
- ::2	-0.023000	-1.0971	- 66	-0.014052	0.9779	-100	-0.015468	0.307
- :3	-0.628571	-0.9923	- 67	0.007769				

NOT REPRODUCIBLE

TC-1681

NOT REPRODUCID

	0(10	UC	IB	LE	
г р		111				

-31-

				TADIO	.,			
1	$\Delta (e \sin \Pi)$	٤٢	1	∆ (e sin II)	ەن.	1	Δ (e sin iI)	7:
0	<u> </u>		- 325	0.015385	092106	- 650	-0,029609	0?5394
- š	-0.011567	+095858	- 330	-0.028161	- 0.4411	- 655	-0.0.2834	
- 10	-0.034491	0.7919	- 335	-0.044759	0.6971	- 660		0.4908
- 15	-0.024962	+-0.4420	- 310	-0.014899	+0.4179	- 665	0.000177	0.5942
- 20	-0.001781 -0.006233	-0.3201 -1.0438	- 345 - 350	+0.005100 0.014008	-0.2053 -0.7654	-670 -675	-0.052293 -0.044492	+0.3151 0.1887
$- 25 \\ - 30$	-0.024632	-1.2271	- 355	-0.029569	-0.9024	- 680	40.022858	-0.6343
- 35	-0.027373	-0.7184	- 360	-0.017668	-0.5569	- 685	-0.018015	-0.7635
- 40	-0.017350	+0.1432	- 365	-0.012961	+0.0209	- 690	-0.054697	-0.5214
- 45	-0.006547	0.8223	370	-0.019460	0.4884	- 695	-0.054663	-0.0738
- 50	-0.004796	0.9636	-375	-0.011268	0.6167	- 700	+0.01433	+0.2929
- 55	-0.020469 -0.035996	-0.5361 -0.2106	-380 -385	-0.006487 -0.027436	+0.3593 -0.1647	-705 -710	+0.023272	0.35)5
-60 -65	-0.020282	-0.8844	-390	-0.033106	-0.7121	- 715	-0.036118 -0.052246	-0.158° -0.2311
- 70	+0.006203	-1.1536	- 395	0.000874	-0,9960	- 720	-0.005344	-0.5546
- 75	-0.004339	-0.2119	- 400		-0.8277	- 725	+0.011401	-0.6243
- 80	-0.037956	-0.3006	- 405	-0.035113	-0.2551	- 730	-0.022252	-0.4035
- 85	-0.039502	+0.3877	- 410	-0.036019	-0.4301	- 735	-0.035212	-0.0183
- 90	-0.001987	0.8375 0.8240	-415 -420	+0.000088	0.8548	- 740	-0.0(3033	+0.3227
- 95 - 100	+0.017363 -0.018468	-0.3072	-420 - 425	-0.000664 -0.031461	-+0.1822	-745 -750	-0.007893 -0.021731	0.4334 -1-0.2310
- 105	-0.055548	-0.4915	- 430	-0.027306	-0.6142	- 755	-0.014509	-0.2167
-100	-0.025166	-1.1169	- 435	-0.002139	-1.1524	- 760	-0.005826	-0.0867
- 115	± 0.022868	-1.1414	- 440	0.014693	-1.0926	- 765	-0.027705	-0.8891
- 120	-0.030418	-0.5282	- 445	-0.031488	-0.4893	- 770	-0.002479	-0.6519
- 125	-0.059153	-0.3034	- 450	-0.010661		- 775		-0.0833
- 130	0.040102	$0.3163 \\ 0.7225$	-455 -460	± 0.000932 ± 0.025405	0.7442 0.7380	-780 -785	0.004262	-0.4956
- 135 - 140	+0.003056 -0.010028	0.1155	- 465	0.038895	-0.3002	-785 -790		0.7406
- 145	-0.018899	-0.5994	- 470	-0.007138	-0.3145	- 795	40.038 12	-0.0682
- 150	-0.030148	-0.9576	- 475	0.011770	-0.7823	- 800	-0.0 5037	-0.6253
- 155	-0.030039	-0.7680	- 480	-0.025396	-0.8783	805	0.042858	1.04037
- 160	-0.001530	0.2226	- 485	-0.049362	-0.5881	- 810	-0.032693	-0.8335
- 165	+0.012138	+0.3i28	- 490	-0.010438	-0.0923	- 815	± 0.010121	-0.3312
- 170	-0.018117 -0.054428	$0.5635 \\ 0.4440$	-495 -500	+0.018630 -0.016349	+0.3498 0.5124	- 820 - 825	-0.006892	-0.2293
-175 -180	-0.030378	+0.0271	-505	-0.049314	+0.3212	- 830	-0.042002 -0.020771	$0.5859 \\ 0.6078$
-185	+0.022728	-0.5044	- 510	0.02:366	-0.1322	- 335	0.010011	0.2971
- 190	-0.010135	-0.8950	- 515	0.009155	-0.5931	- 840	-0.016037	-0.2232
- 195	-0.051138	-0.9004	520	-0.012361	-0.7694	- 845	-0.040.04	0.7220
- 200	-0.053214	0.4439	- 525	-0.030263	-0.5334	- 850		-0.9303
- 205	+0.007981	+0.2692 0.8349	-530 -535	-0.018446 -0.017466	0.0347 0.4031	-855 -860	4.0.012934	0.6990
-210 -215	+0.028668 -0.023113	0.8924	-540	-0.019563	0.5049	- 865	-0.020386 -0.047813	-0.1383 -0.4217
- 220	-0.062912	-0.3407	545	-0.001152		- 870	-0.015198	0.6441
- 225	-0.025798	-0.5583	- 550	-0.004037	-0.3244	- 875	-1-0.014955	4.0.3917
- 230	+0.024597	-1.2542	- 555	0.043204	-0.7583	- 880	-0.014484	-0.1734
- 235	+0.000163	-1.2646	- 560	-0.037954	-0.8229	- 885	-0.014722	-0.6903
- 240	-0.048427	-0.5839	-565 -570	+0.017660	-0,4781	- 890	0.017893	-0.8116
-245	-0.037558 -0.000452	+0.3200 0.9103	-570 -575	-0.013982 -0.050013	+9.0666 0.5078	- 895 - 900	+0.005419 -0.017642	0.4845
-250 -255	+0.005108	0.9195	- 580	-0.057163	0.6216	-905	-0.028430	0.3879
- 260	-0.013461	+0.4098	- 585		+0.349S	- 910	-0.010898	0.4052
- 265	-0.030670	-0.3215	- 590	-0.031060	-0.1869	- 915	-0.010382	0.1133
- 270	-0.034829	-0.9016	- 595	-0.031243	-0.7268	- 920	-0.029037	-0.3010
- 275	-0.012566	-1.0664 -0.7718	-600 -605	0.004235	-0.9775	- 925	0.001128	-0.6266
- 280	+0.013716 -0.002623	-0.1718 -0.1826	-610	-0.010520 +0.026905	-0.7835 -0.2390	-930 -935		0.6286
-285 -290	-0.053630	-0.4173	= 615	-0.012708		- 940	-0.038956 -0.047756	0.4777 0.0372
- 295	-0.035490	0.7420	- 620	-0.050583	0.7156	- 945		1.0.3990
- 300	+0.019534	+0.6160	- 625	-0.027592	0.6402	- 959	. 0.024508	0.62:)7
- 305.		+0.0697	- 630	+0.003472 ·	-+-0.1737	- 955	-0.041139	0.4497
- 310	-0.045770	-0.6169	- 635	-0.005551	-0.4510	- 960	-0.001475	-0.1088
- 315	-0.049211 +0.005346	-1.0151 -0.8409	- 640	-0.019940 -0.021717	0.9018	- 965	-4-0.001663	0.7825
- 320							1.0000121	-1,1410
				ALDI F	"	1		

Table 5

Table 5 (continued)

1	(c sin II) د	Δ٤	1	∆ (e sin II)	Δε	1	∆ (e sin II)	Δ:
- 975	-0.028306	-0.8939	-1300	-0.024121	-0.8539	-1625	0.004809	-0.8071
- 980	-0.064618	-0.1623	-1305	-0.017036	-0.1531	-1630	-0.007743	-0.4577
- 985	-0.015453		-1310	-0.005560	+0.5422	-1635	-0.024564	+0.0758
- 955)	0.025083	0.9424	-1315	-0.026631	0.8380	-1640	-0.029416	0.4609
- 995	-0.005051	0.6967	-1320	-0.034216	+0.6077	-1645	-0.014658	0.4751
-1000	-0.045810	+0.0153	-1325	+0.001459	-0.0083 -0.6927	-1650	-0.002341	+0.1139
-1005	-0.032056 -0.001011	-0.7113 -1.0800	-1330 1335	-0.009070	-1.0960	-1055 -1660	-0.012502 -0.029680	-0.4121 -0.7831
-1010 -1015	-0.003780	-0.9289	-1340	-0.046970	-1.0063	-1665	-0.023585	-0.7643
-1020	-0.015988	-0.4034	-1315	0.007029	-0.4593	-1670	-0.002978	-0.3660
-1025	-0.022217	-0.1964	-1350	+0.018561	+0.2776	-1675	-0.008639	+0.1727
-10:30	-0.033836	0.6021	-1355	-0.032214	0.8398	-1680	-0.027773	0.5516
-1035	-0.023219	0.6613	-1360	-0.054999	0.9356	-1685	-0.022270	0.5749
-1010		+0.3498	-1365	-0.013920	+0.4757		-0.006423	+0.2255
-1045	0.006044	-0.2153	-1370	+0.019882	-0.3505	-1695	-0.015247	-0.3363
-1050	-0.054196	-0.7677	-1375	-0.008712	-1.0958	-1700	-0.026395	-0.8292
-1055	-0.051143	-0.9810	—1 380	-0.045858	-1.2880	-1705	-0.011978	-0.9777
-1060	-0.025310	-0.0847	-1385	-0.030635	-0.7926	-1710	-0.006159	-0.6744
-1065	-0.026696	-0.0382	-1390	+0.002751	-0.0616	-1715	-0.025174	-0.0634
-1070	-0.053725	+0.5505	-1395	+0.002040	0.7507	-1720	-0.027314	+0.5353
-1075	-0.086590	0.7063	-1400	-0.620497	0.9137	-1725 -1730	-0.007388 -0.005200	$0.8054 \\ \pm 0.5925$
-1080	0.007729	-+-0.3221	-1405 -1410	-0.032405	-0.5085	-1735	-0.022175	-0.0174
-1085 -1090	0.033894	0.3676 0.8987	-1415	-0.028597 -0.009112	-0.8274	-1740	-0.027020	-0.705!
-1095	0.02:083 0.059589	-0.8968	-1420	0.009606	-1.0002	-1745	-0.015899	-1.0681
-1100	-0.013352	-0.3834	-1425	-0.012282	-0.6716	1750	-0.007398	-0.8905
-1105	0.015665		-1430	-0.053178	-0.0864	-1755	-0.010606	-0.3090
-1110	0.009716	0.6356	-1435	-0.035456	0.4226	-1760	-0.022241	+-0.3075
-1115	-0.034577	0.5485	-1440	0.023780	0.5975	-1765	-0.028766	0.6285
-1120	-0.027147	-0.0871	-1445	-0.018052	+0.3635	-1770	-0.016818	0.5344
-1125	-0.012699	-0.4867	-1450	-0.052655	-0.1561	-1775	-0.000944	+0.1270
-11:30	-0.009238	-0.8778	-1455	-0.059736	-0.6763	-1780	-0.009347	-0.3585
-1135	-0.000S26	-0.8950	-1460	0.012011	-0.8794	-1785	-0.030764	-0.6811
-1140	-0.016192	-0.5229	-1465	-0.029022	-0.6178	-1790	-0.030115	-0.7075
-1145	-0.037888	$\div 0.0798$	-1470	-0.032380	-0.0380	1795	-0.006878	-0.4532
-1150	0.027598	0.6368	-1475	-0.060165	4-0.5094	-1800 -1805	+0.004281 -0.017764	-0.2926
-1155	0.011770	0.8582	-1480 -1485	-0.018298 -0.018530	0.6955 + 0.3941	-1810	-0.042312	0.4073
-1160	+0.007742	+0.5702 -0.1623	-1490	-0.000039	-0.2526	-1815	-0.026101	0.2070
-1165 -1170	-0.046148 -0.048824	-0.9748	-1495	-0.038034	-0.8775	-1820	+0.010023	-0.2235
-1175	-0.014434	-1.3445	-1500	-0.040211	-1.0846	-1825	-0.002307	-0.6299
-1180	0.016450	-0.9761	-1505	-0.008222	-0.7243	-1830	-0.040202	-0.7229
-1185	-0.045662	-0.0894	-1510	0.009294	-0.0105	-1835	-0.010192	-0.4056
-1190	-0.047531	0.7502	-1515	-0.009322	-0.6421	-1840	± 0.000220	-0.1182
-1195	-0.004451	1 1.0631	-1520	-0.036773	0.8860	-:845	+0.009294	0.4913
-1200	-0.009907	+0.7155	-1525	-0.038838	0.6002	-1850	-0.020340	0.4627
-1205	-0.030196	-0.0641	-1530	-0.008515	-0.0779	-1855	-0.039598	0.0440
-1210	-0.032962	-0.8157	-1535	0.015127	-0.7994	-1860	-0.026110	-0.5005
-1215	-0.005452	1.1210	-1540	-0.011906	-1.1638	-1865	-0.000171	-0.8214
-1220	-0.011078	-0.8712	-1545	-0.053143	-0.9632	-1870	+6.004411	-0.7299
-1225	-0.026060	-0.2838	-1550	-0.032319	-0.3243	-1875	-0.023408	-0.3160 +0.4641
-1230	-0.013374	+0.3049	-1555	+0.020540	+0.3889 0.8112	-1880 -1885	0.045886	0.4788
- 1235	0.005060	0.6339	-1560 -1565	-0.040796 -0.046869	0.7522	-1890	+0.015793	0.5163
-1240 -1245	-0.024367 -0.031703	+0.5829 +0.1746	-1570	-0.050114	+0.2521	-1895	10.000475	-0.2727
-1245	-0.000435	-0.4145	-1575	± 0.004136	-0.4360	-1900	-0.044564	-0.1741
-1235	-0.003692	-0.8733	-1580	-0.015353	-0.9448	-1905	-0.041918	-0.6612
-1200	-0.027183	-0.8982	-1585	-0.027831	-0.9919	-1910	+0.003348	-0.9179
-1265	-0.039426	-0.4277	-1590	-0.041787	-0.5667	-1915	0.013784	-0.8254
-1270	-0.007401	+0.2570	-1595	-0.014771	+0.0649		-0.025576	-0.2925
-1275		0.7138	-1600	-0.000130	0.5445	-1925	-0.048281	+-0.3778
-1250	-0.022044	0.6380	-1605	-0.009400	0.6275	-1930	-0.021272	0.7959
- 1285	-0.036670	-0.0467	-1610	-0.022282	+0.2876	-1935	+0.011641	0.7045
-1290 -1295	-0.011155	-0.7009	1615	-0.027931 -0.019201	-0.2782 -0.7363	-1940 -1945	+0.000412 -0.036978	+0.1356 -0.5813
	-0.004472	-1.0954	-1620					

5. Труды ИТА, вып. XIV

.

NOT REPRODUCIBLE

...

-32-

Table 5 (continued)

1 -	∆ (e sin 11)	Δz	,	∆ (e sin II)	Δ1	1	Δ (e sin II)	7:
-1950	-0.037992	0.9994	-2270	+0.029454	-0.5361	-2590	-0.036921	±0,3143
-1955	-0.004645	-0.8784	-2275	-0.013338	-1.0729	-2595	-0.006261	-0.3606
-1960	-0.004780	-0.3611	-2280	-0.061986	-1.0900	2600	-0.000841	-0.9401
-1965	-0.016366	+0.1876	-2285	-0.052421	-0.6132	-2605	-0.023745	-1.0414
-1970	-0.033274	0.4750		+0.021205 +0.025521	+0.0809 0.6558	-2610 -2615	-0.023660 -0.010137	-0.5837 -0.1466
-1975 -1980	-0.029109 -0.008512	0.4240	-2295 -2300	-0.037347	0.8626	-2620	-0.020488	0,7199
-1985	+0.005121	-0.2384	-2305	-0.059338	-+-0.6022	-2625	-0.021692	0.8363
-1990	-0.014625	-0.5328	-2310	0.013876	-0.0402	2630	-1-0.000237	-0.4470
-1995	-0.043267	-0.6362	-2315	+0.018732	-0.7739	-2635	-0.002491 -0.045406	-0.2518
-2000	-9.025810	-0.4868	-2320	-0.006422 -0.039896	-1.1872 -0.9983	$-2640 \\ -2645$	-0.035205	-0.0020 -1.1507
-2005	+-0.011855	-0.1268 +0.2651	-2325 -2330	-0.034849	-0.3009	-2650	-0.022886	_0.8650
-2010 -2015	-0.001581 -0.040897	0.4427	-2335	_0.008172	+0.4774	-2655	-0.008835	-0,1925
-2020	-0.034735	+0.2489	-2340	-0.005118	0.8804		-0.060049	+0.5153
-2025	0.000619	-0.2462	-2345	_0.005610	0.6958	-2665	-0.049564	0.9037
-2030	-0.000541	-0.7290	-2350	-0.032362	+0.0447 -0.6764	-2670 -2675	+0.022262*	0.7751
-2035	-0.026676	-0.8307	-2355 -2360	-0.044410 -0.010061	-0.0704 -1.0196	-2675 -2680	+0.022491 -0.046089	± 0.1677 ± 0.6225
-2040 -2045	-0.928891 -0.012472	-0.4376 +0.1875	-2365	-0.010001 -0.024496	-0.7971	-2685	-0.054140	-1.1437
-2050	-9.009141	0.6212	-2370	-0.011514	-0.2029	-2690	+0.003943	_1.0671
-2055	-0.010014	0.5923	-2375	-0.065487	+0.3725	-2695	0.013734	_0.4506
-2060	-0.018841	+0.1275	-2380	-0.036427	0.6155	-2700	-0.024555	+0.3018
-2065	-0.017243	-0.4882	-2385 -2390	-0.032944 -0.015269	-0.4265 -0.0772	-2705 -2710	-0.039932 -0.020681	0.7478 0.6722
-2070 -2075	-0.018303 -0.018493	0.8914 0.8724	-2390 -2395	-0.060627	-0.6229	-2715	-0.006125	0.1617
-2073 -2080	-0.018155 -0.011043	-0.4829	-2400	-0.051038	-0,8996	2720	-0.009602	-0.4941
-2085	-0.010217	+0.0544	-2405	0.019093	-0.7278	2725	-0.011879	-0.8352
-2090	-0.023476	0.4987	-2410	-0.016015	-0.1846		-0.026959	-0.7649
-2095	-0.026790	0.6751	-2415	-0.038813 -0.043673	+0.4283 0.7608	-2735 -2740	-0.037003 -0.011979	-0.3509
-2100 -2105	-9.010000 -0.004350	+0.4964 -0.0082	-2420 -2425	-0.008554	0.6024	-2745		0,4325
-210.3 -2110	-0.022717	-0.6462	-2430	-0.000244	-0.0073	-2750	-0.009639	0,4110
-2115	-0.026063	-1.0794	-2435	-0.014863	-0.7565	-2755	9.062971	-0.0884
-2120	-0.009392	-1.0041	-2140	-0.020622	-1.1894	2760	-0.035984	-0.3793
2125	-0.013346	-0.4084 +0.3650	-2445 -2450	-0.022812 -0.023837	-1.0034 -0.2939	-2765 -2770	+0.035555 +0.011201	-0.7424 -0.7670
-2130 -2135	-0.023563 -0.011353	0.8561	-2455	-0.000929	+0.5147	-2775	-0.060400	-0.3923
-2140	-0.007663	0.7854	-2460	+0.002084	0.9755	-2780	-0.040529	-0.1890
-2145	-0.029777	+0.1985	-2465	-0.016606	0.8594	-2785	+0.029140	0.6335
-2150	-0.029349	-0.5526	-2470	-0.043154	+0.2247	-2790	-0.020845	0.6515
-2155	+0.004158	-1.0029 -0.8994	-2475 -2480	-0.024358 +0.014579	-0.6086 -1.4866	-2795 -2800	-0.048167 -0.050648	+0.1854 -0.5280
-2160 -2165	-0.00000S	-0.3767	-2485	-0.004064	-1.1775	-2805	-0.002622	-1.0481
-2170	-0.037616	+0.1974	-2490	-0.049652	-0.5976		-0.007606	-1.0180
-2175	+0.005297	0.5102	-2495	-0.031774	+0.2062	-2815	-0.024177	-0.4534
-2180	-0.010738	0.4538	-2:00		0.7985	-2820	-0.028525	+0.2754
-2185	-0.030554	+0.1087 -0.3360	-2505	-0.000557 -0.044260	0.8943 0.4614	-2825 -2830	-0.019106 -0.017650	$0.7453 \\ 0.7398$
-2190 -2195	-0.047213 -0.011139	-0.6645	-2515	-0.029532	-0.2741	-2835	-0.009382	-0.3080
-2200	4.0.013698	-0.7086	-2520	0.007463	-0.9089	-2840	-0.001998	0.3079
-2205	-0.012936	-0.4235	-2525	-0.013113	-1.0777	-2845	-0.022282	-0.8060
-2210	-0.041750	+0.0622	-2530	-0.036885	-0.7000	-2850	0.042142	-0.9673
-2215	-0.028386	0.4818 0.5657	$-2535 \\ -2540$	-0.009320 -0.001688	-0.0321 -0.5288	$-2855 \\ -2860$	-0.014490 +0.018565	-0.7379 -0.2293
-2220 -2225	-0.001339 -0.000596		-2545	-0.031439	0,6898	-2865	-0.011573	40.3317
-2230	0.017401	-0.4426		-0.034738	+0.3858	-2870	-0.056380	0.6841
-2235	-0.030011	-0.9746	-2555	-1-0,003467	-0.2097	-2875	-0.030565	0.6363
-2240	-0.030891	-0.9924	-2560	+0.002264	-0.7558	-2880	-0.024268	+0.1710
-2245	-0.003204	-0.4361	$-2555 \\ -2570$	-0.038876 -0.035602	-0.9181 -0.5882	-2885 -2890	-0.002790 -0.056343	-0.4904
-2250	+0.013626 -0.013457	+0.3393 0.8480	-2570 -2575	0.005008	0.0302	-2890 -2895	-0.033348	-0.9515 -0.8982
$-2255 \\ -2260$	-0.0154.57	0.8010	-2580	0.004288	0.5593	298 30)	-1-0.02(8098)	0.0708
-2265	-0.035459		-2585	0.032568	0,6839	2905	-0.003988	-1.0.2558
	1	ļ			ļ			

NOT REPRODUCIBLE

-33-

The second way and a second se

TC-1681

Table 5 (continued)

;	د (c sin II)	\$2	1	∆ (e sin II)	Δε	. 8	Δ (e sin Π)	۵s
2910 2915 2925 2925 2925 2935 2940	-0.046304 -0.025645 +0.007255 -0.017725 -0.035452 -0.006763 -0.002198	$\begin{array}{r} 6.5769 \\ + 0.4290 \\ - 0.0416 \\ - 0.5054 \\ - 0.6757 \\ - 0.5034 \\ - 0.1561 \end{array}$	2945 2950 2955 2960 2965 2970	0.031242 0.028413 -+0.000430 0.03968 0.035544 0.026642	$\begin{array}{r} \div 0.1543 \\ 0.2982 \\ \div 0.2364 \\ -0.0145 \\ -0.3781 \\ -0.6884 \end{array}$	2975 2980 2985 2990 2995 3000	0.000313 0.009492 0.031208 0.019414 0.001596 0.018907	0.7299 0.3932 0.1786

5. Auxiliary Tables

In order to determine values W_{x}^{0} , W_{x}^{0} , ΔW_{x} and ΔW_{x} , formulas (13) and (14) were obtained in section 1 for the latitudes of the non-Arctic zone, and (15) and (16), for the Arctic zone. The Simpson formula was used in the integration. Values W_{x}^{0} , W_{x}^{0} , ΔW_{x} and ΔW_{x} were obtained for latitudes from 30° to 80° with a 2°.5 interval. Values W_{x}^{0} , $W_$

with 1° increment of ϵ . These values were computed for the inital moment $t_0 = 1950.0$. Values Q_{μ}^{ν} , \bar{Q}_{μ}^{ν} , \bar{Q}_{μ}^{ν} , \bar{Q}_{μ}^{0} , determined according to

formula (42) in canonical units, are given in Table 7.

Table 6

Ŷ	Wo	Wa	WT	ΔW_{*}	ΔW_{μ}	in	ę	W.	11/0	W ⁶ _T	ΔW.	ΔW.,	m
30° 32.5 35 5.7.5 40 42.5 45 47.5 50 52.5 55	10584 16510 16410 76284 40132 15955 15555 15552 15525 15528 14751	10250 9705 9145 8573 7590 7368 6193 5586 4979 4375	26834 26215 25555 24557 24527 24527 29353 22553 21726 20576 20077 19126	97 111 125 140 154 169 184 169 215 202 249	$\begin{array}{r} -157 \\ -165 \\ -167 \\ -171 \\ -174 \\ -176 \\ -176 \\ -176 \\ -176 \\ -175 \\ -175 \\ -173 \\ -168 \end{array}$	47549 47094 16060 16077 15523 14040 14020 13090 13090 130920 12356 11623	57.5 60 62.5 65 67.5 70 72.5 75 77.5 80	14462 14107 12873 12501 12855 13185 12047 12037 12850 12783	37%0 3107 2037 2110 1652 1282 566 702 484 308	18242 17364 16510 15701 15007 14467 14613 13639 13034 13091	208 288 312 340 355 420 444 402 478 490		10588 10132 9357 3564 7754 6034 6034 6034 5245 4058 3519

Table 7

٣	ę.	Q.w	Q.	Q.,	?	Q,	Qu	Q.	Q17
30.0	16294	40539	16872	9961	57.5	14283	3959	14642	3600
32.5	46229	5956	46792 40087	9423	60.0	14000	3364	14334	3030
35.0 37.5	16137 16020	9418 8838	10684 16549	8872 8309	62.5 65.0	13719	2791	14027 13731	24SC 1969
40.0	15877	8245	16287	7735	67.5	13227	1780	13483	1524
42.5	15709	7644	16201	7152	70.0	13071	1396	13299	1168
45.0	15519	7034	15991	6562	72.5	12947	1000	13147	865
47.5	15307	6419	15758	596S	75.0	12851	788	13023	616
50.0	15075	5S00	15504	5371	77.5	12778	556	12022	412
52.5 55.0	14825 14500	5182 4560	15231 14942	4776 4184	\$0.0	12725	366	12841	250

6. <u>Computation of Insolation for a Thirty-Million-Year Time</u> <u>Interval Backward</u>

Secular variations in the total radiation obtained by a unit of area at a given latitude in a caloric half-year, for the time interval from a certain year in the geological past till the present, are determined according to the following formulas (see section 3):

$$\Delta Q_{e} = \Delta W_{e} \Delta z - m\Delta (e \sin \Pi),$$

$$\Delta Q_{e} = \Delta W_{e} \Delta z + m\Delta (c \sin \Pi),$$

$$\Delta \bar{Q}_{e} = \Delta W_{e} \Delta z + m\Delta (e \sin \Pi),$$

$$\Delta \bar{Q}_{e} = \Delta W_{e} \Delta z - m\Delta (e \sin \Pi).$$

(45)

Values with a dash refer to the southern latitude.

Table 8

•	NQ.	∆Q _K	۵ą,	۵Q.,	1	۵Q.	∆Q#	.ي7د	∆Q.,	t	40.	50.	<u>م</u> وَ.	ΔΫ.
$\begin{array}{c} 0 \\ 5 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 0\\ +298\\ +3655\\ +-942\\207\\207\\ +-302\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\207\\ $	$\begin{array}{c} 0 \\ -179 \\ -291 \\ -291 \\ -291 \\ -291 \\ -291 \\ -291 \\ -291 \\ -291 \\ -291 \\ -291 \\ -291 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -292 \\ -2$	$\begin{array}{c} 0 \\ +109 \\ -256 \\ -1124 \\ -679 \\ -124 \\ -579 \\ -124 \\ -579 \\ -124 \\ -579 \\ -124 \\ -589 \\ -124 \\ -589 \\ -124 \\ -589 \\ -224 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -287 \\ -$	$\begin{array}{c} 0\\ + \\ 199\\ 160\\ 321\\ + \\ - \\ 199\\ 321\\ + \\ - \\ 123\\ 321\\ + \\ - \\ 123\\ 321\\ + \\ - \\ 285\\ 291\\ 535\\ 285\\ 291\\ 245\\ 333\\ 448\\ 3021\\ + \\ - \\ 285\\ 291\\ 535\\ 285\\ 333\\ 442\\ 550\\ 442\\ 512\\ 510\\ 1 \\ - \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$	$\begin{array}{c} - 213 \\ - 220 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\ - 225 \\$	$\begin{array}{r} +592\\ +555\\ +658\\ +216\\ 315\\ 209\\ 255\\ +255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -255\\ -2$	$\begin{array}{c} -306\\ -580\\ -153\\ +963\\ -580\\ -155\\ -344\\ -963\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -145\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\ -150\\$	$\begin{array}{c} +406\\ +425\\ -411\\ -216\\ -425\\ -425\\ -425\\ -252\\ -425\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\ -252\\$	108 108 21 12	$\begin{array}{c} -430 \\ -435 \\ -440 \\ -445 \\ -445 \\ -445 \\ -445 \\ -445 \\ -445 \\ -445 \\ -445 \\ -445 \\ -1445 \\ -1445 \\ -1445 \\ -155 \\ -155 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55 \\ -55$	$\begin{array}{c} + 25 \\ + 374 \\ - 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 405 \\ + 215 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ + 145 \\ $	$\begin{array}{c} -2555288201000019415929554825920855882355255011\\ +1111111111111111111111111111111111$	+1553574558857 +1555574558857 1 + 1 + 1 + 1	-1 - 51 -1-103

NOT REPRODUCIBLE

-36-

(Continues on the following page)

Table 8 (continued)

NOT REPRODUCIBLE

.

.

Table. 8 (continued)

													cunt.	nuna)
:	∆Q,	ΔQ	ΔQ,	∆Q _e r	1	10.	∆Q _æ	ΔQ,	۵0,	t	32.	5.00	۵Q,	ΔQ.
	$\begin{array}{c c} & & & & \\ & & -87 \\ & -234 \\ & -90 \\ & +226 \\ & $	$\begin{array}{c} -75\\ +57\\ -10\\ -219\\ -308\\ -184\\ -57\\ -159\\ -109\\ +10\\ -95\\ -305\\ -201\\ -82\\ -90\\ -124\\ +10\\ +29\\ -208\\ -209\\ -161\\ \end{array}$	$\begin{array}{c} -415\\ -316\\ -222\\ -184\\ -95\\ +36\\ +217\\ -521\\ -462\\ -150\\ -15\\ -50\\ +22\\ -462\\ -150\\ -15\\ -507\\ -436\\ -283\\ -32\\ -283\\ -32\\ -32\\ -32\\ -32\\ -211\\ \end{array}$	$\begin{array}{c} +253\\ 139\\ 122\\ 201\\ 196\\ 68\\ 6\\ 6\\ 157\\ 349\\ 295\\ 78\\ 53\\ 171\\ 121\\ 28\\ 172\\ 326\\ 222\\ 135\\ 224\\ +169\\ -35\end{array}$	-1910 -1945 -1955 -1955 -1969 -1965 -1969 -1970 -1975 -1980 -1985 -1990 -1995 -2000 -2005 -2010 -2015 -2010 -2015 -2025 -2035 -2040 -2045	$\begin{array}{c} -58\\ +119\\ -15\\ -259\\ -164\\ +2047\\ 393\\ +118\\ -393\\ +118\\ -561\\ +551\\ +155\\ +155\\ +104\\ +382\\ -89\\ -253\\ -352\\ +98\\ +171\end{array}$	$\begin{array}{c} 1\\ -12\\ -246\\ -204\\ +67\\ +85\\ -463\\ -301\\ -301\\ -391\\ -391\\ -391\\ -994\\ -162\\ +117\\ +46\\ -404\\ -327\\ +35\\ +94\\ -127\\ -194\\ -127\\ -194\\ -139\end{array}$	$\begin{array}{c} +150\\ +515\\ -665\\ -339\\ -82\\ -665\\ -123\\ -306\\ -123\\ -306\\ -396\\ $	$\begin{array}{c} -29\\ +338\\ 446\\ 147\\ 3\\ 117\\ 227\\ +97\\ +57\\ -15\\ +190\\ 448\\ +280\\ -18\\ +296\\ 267\\ 25\\ 84\\ 329\\ 300\\ 84\end{array}$	-2205 -2270 -2275 -2250 -2255 -2295 -2295 -2295 -2309 -2305 -2315 -2310 -2315 -2320 -2325 -2330 -2335 -2330 -2355 -2350 -2355 -2350 -2355 -2365 -2365 -2370	$\begin{array}{r} +383\\ +435\\ -479\\ +405\\ +249\\ +614\\ 723\\ +05\\ -421\\ +319\\ +105\\ 233\\ 255\\ 235\\ 235\\ 255\\ 202\\ +1261\\ +30\end{array}$	$\begin{array}{c} -332\\ +317\\ +244\\ -399\\ -374\\ +172\\ -169\\ -425\\ -551\\ -114\\ +254\\ +254\\ +254\\ +254\\ -221\\ -128\\ -63\\ -133\\ -282\\ -298\\ +397\\ +397\\ -74\end{array}$	$\begin{array}{c} -225\\ + 69\\ -251\\ -902\\ -658\\ +210\\ +412\\ -26\\ -303\\ -133\\ -104\\ -459\\ -303\\ -104\\ -459\\ -344\\ +159\\ -262\\ -610\\ -438\\ -168\\ -168\\ -168\\ -61\\ -168\\ -168\\ -61\\ -168\\ -61\\ -168\\ -61\\ -168\\ -61\\ -168\\ -61\\ -168\\ -61\\ -168\\ -61\\ -168\\ -61\\ -168\\ -61\\ -168\\ -61\\ -168\\ -61\\ -68\\ -61\\ -68\\ -68\\ -68\\ -68\\ -68\\ -68\\ -68\\ -68$	$\begin{array}{r} +275 \\ -187 \\ +16 \\ 663 \\ +524 \\ -192 \\ +215 \\ +215 \\ +435 \\ +124 \\ +435 \\ +124 \\ +199 \\ 403 \\ 335 \\ +12 \\ -151 \\ +272 \\ 442 \\ +210 \\ +113 \\ +124 \end{array}$
-4739 -1735 -1740 -1745 -1755 -1755 -1755 -1755 -1765 -1776 -1775 -1785 -1785 -1785 -1785 -1785 -1895 -1895 -1895 -1895 -1825 -1829 -1825 -1829	$\begin{array}{c} 247 \\ +184 \\ -9 \\ -249 \\ -249 \\ -44 \\ +295 \\ 460 \\ 326 \\ +51 \\ +41 \\ +317 \\ -95 \\ +252 \\ 501 \\ +295 \\ -162 \\ -234 \\ +98 \end{array}$	$\begin{array}{c} -117\\ -188\\ -145\\ -6\\ +45\\ -53\\ -227\\ -322\\ -209\\ -23\\ -36\\ -189\\ -172\\ -4\\ +44\\ +985\\ -411\\ -249\\ +113\\ +107\\ +256\end{array}$	$\begin{array}{r} +157\\ -106\\ -471\\ -506\\ -96\\ -196\\ -85\\ -32\\ +38\\ +38\\ +38\\ +32\\ -202\\ -409\\ -213\\ +18\\ -42\\ -223\\ -154\\ +194\\ -500\\ \end{array}$	$\begin{array}{c} -27\\ +192\\ 317\\ 266\\ 171\\ 129\\ 153\\ 170\\ +79\\ -7\\ +124\\ 316\\ 314\\ 114\\ -30\\ +116\\ 313\\ +109\\ +57\\ -57\\ 432\end{array}$	-2059 -2055 -2065 -2065 -2070 -2075 -2089 -2085 -2099 -2095 -2109 -2109 -2109 -2109 -2109 -2109 -2109 -2109 -2109 -2109 -2109 -2109 -2109 -2109 -2109 -2109 -2109 -2115 -2120 -2135 -2149 -2145 -2159	$\begin{array}{c} 111\\ 2310\\ +204\\ -18\\ -147\\ -139\\ +06\\ 371\\ 460\\ 255\\ +34\\ -255\\ +34\\ -262\\ -25\\ +326\\ -389\\ 333\\ 323\\ +378\\ +63\\ -378\\ \end{array}$	$\begin{array}{c} -153\\ -299\\ -176\\ -89\\ -49\\ -52\\ -36\\ -94\\ -262\\ -311\\ -146\\ -36\\ -116\\ -116\\ -166\\ -201\\ -126\\ -201\\ -216\\ -201\\ -218\\$	$\begin{array}{r} -134\\ -134\\ -314\\ -455\\ -259\\ -68\\ -259\\ -68\\ -31\\ +83\\ -40\\ -415\\ -501\\ -422\\ -256\\ -78\\ +196\\ -2187\\ -439\end{array}$	$\begin{array}{c} 3\\ 655\\ 146\\ 207\\ 2654\\ 154\\ 80\\ 140\\ 147\\ 26\\ 38\\ 274\\ 457\\ 202\\ 164\\ +158\\ -29\\ +231\\ 318\\ \end{array}$	$\begin{array}{r} -2375 \\ -2389 \\ -2395 \\ -2395 \\ -2395 \\ -2409 \\ -2405 \\ -2405 \\ -2415 \\ -2425 \\ -2425 \\ -2425 \\ -2425 \\ -2435 \\ -2435 \\ -2435 \\ -2450 \\ -2455 \\ -2450 \\ -2455 \\ -2450 \\ -2475 \\$	$\begin{array}{r} 658\\ +522\\ -137\\ +527\\ +397\\ +397\\ +397\\ +412\\ -209\\ +475\\ 633\\ +278\\ -447\\ +101\\ +228\\ -147\\ +101\\ +200\\ 314\\ 447\\ +2\end{array}$	$\begin{array}{c} -637\\ -357\\ -239\\ -2442252\\ -25252443252\\ -2525244335272\\ -2525244335272\\ -2525244335272\\ -2525722\\ -2525272\\$	$\begin{array}{c} -431\\ -102\\ -327\\ -105\\ -7313\\ -743\\ +74\\ -186\\ -115\\ +132\\ -285\\ -358\\ -285\\ -582\\ -582\\ -582\\ -582\\ -582\\ -582\\ -582\\ -582\\ -359\\ +15\\ -203\\ -203\\ -416\end{array}$	$\begin{array}{c} 516\\ +11 + +11 + 5956\\ +11 + + +11 + 5958\\ +11 + 5958 \\ +12 + 5958 \\ +12 + 5958 \\ +12 + 5958 \\ +14 + 5$
- 1835 - 1840 - 1845 - 1855 - 1855 - 1869 - 1875 - 1879 - 1875 - 1880 - 1875 - 1880 - 1875 - 1895 - 1999 - 1995 - 1990 - 1915 - 1920 - 1925 - 1935	$\begin{array}{c} 206\\ 88\\ 87\\ 332\\ 354\\ +54\\ -279\\ -287\\ +92\\ 419\\ 347\\ 41\\ 89\\ 323\\ +134\\ -352\\ -399\\ +119\\ 453\\ +149\\ \end{array}$	$\begin{array}{c} +127\\ -102\\ -413\\ -242\\ +72\\ -29\\ -361\\ -279\\ +144\\ +218\\ -183\\ -459\\ -279\end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} +393\\ -10\\ -149\\ +118\\ 334\\ 2855\\ 101\\ 208\\ 373\\ +126\\ -188\\ -37\\ +405\\ 439\\ +36\\ -18\\ +255\\ 367\\ +85\\ -186\end{array}$	-2155 -2160 -2165 -2175 -2189 -2195 -2199 -2195 -2199 -2195 -2295 -2295 -2295 -2295 -2295 -2295 -2295 -2295 -2295 -2295 -2295 -2295 -2295 -2295	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} +158\\ +109\\ -1304\\ -346\\ -437\\ -275\\ -363\\ -14\\ +275\\ -363\\ -362\\ -362\\ -362\\ -362\\ -395\\ -159\\ -159\\ -159\\ -159\\ -218\\ -593\\$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 86\\ 109\\ 396\\ +298\\ -107\\ -147\\ +219\\ 145\\ +76\\ -31\\ +162\\ 350\\ +384\\ -20\\ +203\\ 375\\ 386\\ +123\\ -158\\ +12\\ 399\\ \end{array}$	$\begin{array}{r} -2480 \\ -2485 \\ -2485 \\ -2495 \\ -2595 \\ -2595 \\ -2595 \\ -2515 \\ -2525 \\ -2525 \\ -2535 \\ -2535 \\ -2535 \\ -2535 \\ -2535 \\ -2555 \\ -2555 \\ -2555 \\ -2555 \\ -2575 \\ -2575 \\ -2585 \\$	$\begin{vmatrix} -529 \\ -366 \\ +222 \\ 342 \\ 140 \\ 536 \\ +460 \\ -373 \\ -255 \\ +78 \\ 69 \\ 166 \\ 504 \\ +429 \\ -101 \\ -276 \\ +29 \\ +103 \\ +103 \\ +153 \\ 512 \end{vmatrix}$	$\begin{array}{c} +239\\ +232\\ +352\\ -297\\ +1032\\ +235\\ +2297\\ +235\\ +2297\\ +235\\ +2297\\ +235\\ +225\\ +235\\ +255\\ +$		$\begin{array}{c} 198\\ +298\\ +299\\ +299\\ +104\\ +298\\ +299\\ +104\\ +298\\ +105\\ $

Table 8 (continued)

1	20.	20.	SQ.	sq.,	1	20.	20	20.	۵Q.	1	4Q.	۵Q.	<u>مۆ.</u>	1 2Q
-2590	-423	-354	-209		-2730	- 37	-130	-483		-2870	-+-716	-506	-250	
-2595	- 69	- 10	-177	98	-2735	198	-274	-436	360	-2875	-489	-339	- 45	-18
-2004	-313	+107	-327	121	-2740	1-149	-119	- 57	+ 87	-2880	-150	+187	+266	-29
	-152	- 76	-558	330	-2745	-20	+114	+314	-220	-2885	-191	- 81	-143	3
-2610	+ 4	-132	-402 - 37	274 69	-2750	+223	-133	57	+ 33	-2890		1-367	-807	51
-2615 -2620	420		- 37	88	-2755	569	-550	-509	528	-2895	- 20	-177	-592	
2625	496	-313	17 74	+109	-2760 -2765	÷179 =557	-262	-437	+354	2900	-298	+217	+ 46	-1:
2634)	150	- 52	154	- 56	-2770	-357	+394	+ 51	-214	-2905	+121	- 65	+ 53	÷
2035	- 05	+ 10	-107	+ 52	-2775	-460	-189	-165	-3 + 642	-2910	594	-467	-201	3
2640	+ 82	-279	-696	499	-2780	-489	-447	-359	1401	-2915	+348	-254	- 56	+1
2645	- 53	-170	-703	-450	-2785	- 34	-173	-466	-327	-2920 -2925	- 76	- 67 - 91	- 48	-
2650	-491	+301	- 59	- 91	-2790	+ 43	100	1.401	-258	-2930		-219	-531	+2
2655	142	- 99	+ 10	- 53	-2795	475	-435	-349	+289	-2935	$+ 71 \\ -113$	÷ 3	-229	1
"tick)	689	-577	-339		-2800	+254	-370	-614	498	-2940	- 34	T ö	- 72	
2665	732	-534	-115	-314	-2805	-379	149		105	-2945	+321	-287	-215	2
2670	- 73	- 97	-455	-285	-2810	-412	-189	-282	59	-2950	345	-279	-141	+2
2675	-136	-173	-250	-213	-2815	+ 53	-152	-361	262	-2955	77		- 85	-
2680	183	-319	-607	+471	-2820	338	-277	-150	211	-2960	1 35		- 48	- 1
2685	- 75	-325	-853	603	-2825	418	-255	- 90	73	-2965	+158	-241	-416	3
2690	-397	164	-329	+ 96	-2830	403	-241	101	61	-2970	 - 6	-144	-462	5
2695	-288	+190	- 18	- 80	-2835	185	-117	25	43	-2975	-246	- 86	-252	
2700	+313	-247	-107	+173	-2840	- 88	+ 20	-122	54	-2980	- 53	- 33	-215	1 1
2705	607	-433	- 87	251	-2845	- 83	- 93	-465	289	-2985	+328	-289	-206	2
2715	107	-259 - 72	$+ \frac{52}{3}$	95 32	-2850	+ 34	-245	-692	481	-2990	384	-244	+ 52	÷
2720	-101	= "	÷ 3 -215	113	-2855 -2800	-127	- 34	-375	+214	-2995	245	- 96	-217	-
2725	-182	= 1	-386	203	-2865	-237	+187 -139	+ 81	-131	-3000	236	-188	- 78	-1
				-00		212	-100	- 14	+ 59		1		1	

.

. • .

Table 9

:	20.	2Q.	sQ.	٦Ğ٣		sQ.	2Q.,	۵Q.	∆Q _w	1	2Q.	2Q.	-Q.	∆Q̃#
	$\begin{array}{c} 0 \\ \div & 39 \\ 900 \\ 153 \\ 223 \\ 298 \\ 373 \\ 442 \\ 565 \\ 565 \\ 565 \\ 565 \\ 565 \\ 547 \\ 503 \\ 442 \\ 305 \\ 547 \\ 503 \\ 442 \\ 305 \\ 547 \\ 503 \\ 442 \\ 305 \\ 547 \\ 503 \\ 442 \\ 305 \\ 547 \\ 503 \\ 442 \\ 305 \\ 547 \\ 503 \\ 442 \\ 305 \\ -547 \\ 503 \\ 442 \\ 305 \\ -547 \\ -100 \\$	0 - 40 - 23 - 113 - 113 - 113 - 227 - 282 - 330 - 309 - 389 - 248 - 207 - 143 - 225 - 309 - 389 -	$\begin{array}{c} 0\\ +51\\ 86\\ 105\\ 109\\ 109\\ 109\\ 109\\ 109\\ 109\\ 109\\ 109$	$\begin{array}{c} 0\\ -22\\ -29\\ -222\\ -28\\ -28\\ -28\\ -28\\ -204\\ -46\\ -199\\ -215\\ -204\\ -156\\ -204\\ -156\\ -103\\ -28\\ -54\\ -59\\ -75\\ -103\\ -54\\ -59\\ -75\\ -103\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28\\ -28$	-25 -27 -27 -27 -27 -27 -27 -27 -27 -27 -27	$\begin{array}{c} -301 \\ -288 \\ -267 \\ -229 \\ -207 \\ -174 \\ -133 \\ -52 \\ -174 \\ -133 \\ -52 \\ -117 \\ 158 \\ 198 \\ 233 \\ 266 \\ 204 \\ 318 \\ 266 \\ 204 \\ 318 \\ 336 \\ 250 \\ 359 \\ 365 \\ 368 \\ 369 \\ 360 \\ 3$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} +224\\ 267\\ 306\\ 338\\ 260\\ 372\\ 374\\ 266\\ 347\\ 321\\ 290\\ 253\\ 213\\ 347\\ 321\\ 290\\ 253\\ 213\\ 416\\ -25\\ -52\\ -416\\ -44\\ -65\\ -81\\ -88\\ -88\\ -88\\ -86\\ -56\\ -56\\ -56\\ -56\\ -56\\ -56\\ -56\\ -5$	$\begin{array}{c} -52\\ -53\\ -55\\ -55\\ -55\\ -55\\ -55\\ -55\\ -55$	$\begin{array}{r} +368\\ 266\\ 363\\ 858\\ 348\\ 334\\ 334\\ 281\\ 281\\ 286\\ 182\\ 117\\ +44\\ -42\\ 127\\ -213\\ -291\\ -360\\ -413\\ -457\\ -444\\ -408\\ -350\\ -274\\ -182\\ -81\\ \end{array}$	$\begin{array}{c c} -182 \\ -199 \\ -219 \\ -261 \\ -261 \\ -263 \\ -261 \\ -288 \\ -291 \\ -288 \\ -289 \\ $	230	$\begin{array}{c} - 26 \\ + 13 \\ - 25 \\ 59 \\ 110 \\ 163 \\ 216 \\ 205 \\ 334 \\ 350 \\ 353 \\ 341 \\ 350 \\ 353 \\ 341 \\ 281 \\ 239 \\ 105 \\ 152 \\ 115 \\ 152 \\ 115 \\ 87 \\ 71 \\ 84 \\ 111 \\ 148 \\ 241 \\ 103 \\ 241 \\ \end{array}$

Table 9 (continued)

1	\$2.	∆Q ₁₀	<u>ي</u> ود	۵Q,	1	76°	30.	42.	ع م <u>م</u> رد ا	1 22.	30*	<u>يو.</u>	są.
22222222	+ 23 126 223 507 427 439 470	4918日293 1111111111	-413 -425 -425 -415 -387 -383 -383 -205	288 329 350 351 370 291	\$6 \$7 \$8 \$9 91 92 93	+462 428 401 153 202 254 205 168	$\begin{vmatrix} -351 \\ -204 \\ -247 \\ -183 \\ -109 \\ -39 \\ -9 \\ +28 \end{vmatrix}$	-22 + 79 177 268 345 405	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	136 155 184	+ 47 49 + - 39 +	4:20	-259 -249 -214 -156 - 78 - 78 - 17 121

Thus, having all the data contained in formula (45), we can determine the deviation of the quantity of heat at a given parallel for any year of the geological past from the amount of heat falling on this parallel at the present moment.

According to formulas (45), proceeding from Table 6 and secular perturbations $\Delta(e \sin \Pi)$ and $\Delta \epsilon$ obtained by us, we computed values ΔQ_s , ΔQ_s ,

a - is the northern hemisphere, b - is the southern hemisphere. Time in intervals of 1,000 years up to 1950 is set along the abscissa axis.

The graphs of Supplement 1 contain the secular rate of the summer, winter and annual insolations in canonical units for the latitude 65° of the northern and southern hemispheres for a 3-million-year time interval backward.

According to formulas

$$Q_{n} = Q_{n}^{n} + \Delta Q_{n},$$

$$(46)$$

We can determine the amount of irradiation obtained by a unit of area at a selected latitude during a caloric half-year of a certain year of the geological past. On the basis of values $\Delta Q_s, \Delta Q_w, \Delta \overline{Q}_s, \Delta \overline{Q}_w$ obtained by us and Table 7, we computed Q_s , Q_w , \overline{Q}_s , \overline{Q}_w for the latitude 65° encompassing a 30-million-year time period backward from 1950, with 5,000-year intervals. We converted from values Q_s , Q_w , \overline{O}_s , \overline{O}_w to the equivalent latitudes. An equivalent latitude is determined as follows. Let us assume that during a certain year of the geologic past t_1 a unit of area at the latitude $\overline{\gamma}$ obtained during one caloric half-year a total radiation equal to Q_1 . At present the same amount of radiation during the same caloric halfyear is obtained by the latitude φ_1 . Consequently, during the t₁th year the latitude $\overline{\gamma}$ obtained as much radiation as the latitude φ_1 obtains now. The thus obtained latitude φ_1 is called the equivalent latitude.

Fig. 1 shows solar irradiation of a unit of area at the latitude 65° of both hemispheres, reduced to the equivalent latitude, for the 100,000-year period backward from 1950 (the computations were carried cut with an interval of 1,000 years).

The graphics of Supplements II and III give the summer and winter insolations for the same latitude 65°, reduced to the equivalent latitude, for a 30-million-year time interval backward from 1950.

In addition, Supplement II contains also the curves of the addends $\Delta W_{\mu}\Delta \epsilon$ and $m\Delta (e \sin \Pi)$ of the first and third of formulas (45) and the curves of the perturbed values of the eccentricity e. The given curves cover a 3-million-year period up to 1950.

The periodicity which depends upon the basic period of the ecliptic inclination to the equator in 41 thousand years is clearly traced on these curves. The peak amplitudes follow the maximums and minimums of the eccentricity. A period on the order of 1200-1300 years is also traced.

7. Comparison of the Results of Three Investigations

In his investigations Milankovitch (1939; Milankovitch, 1941) gives a curve of the summer insolation for 65°N for a 600,000-year period up to 1850. In his insolation computations Milankovitch was using the computations of V. Mishkovich (1931) who, proceeding from Le Verrier's theory of secular perturbations of the elements of orbits of large planets corrected for the new values of planet masses, determined the perturbed values of the orbit elements. In order to determine the precession values Mishkovich used the Laplace formulas accurate to the first power of the eccentricity and the inclination of the Earth's orbit. He used the Le Verrier-Mishkovich theory of secular perturbations in the elements of the Earth's orbit and constants of the Bessel precession as the basis for determining the constants of integration and coefficients in these formulas.

In 1950 Brouwer and Woerkom advanced a new theory of secular perturbations in the elements of large planets (Brouwer and Woerkom, 1950). They accepted new mass values and took into consideration the second-order effect caused by the long-period inequality in the motion of Jupiter and Saturn. Proceeding from this theory, Woerkom (1958) computed perturbed values of the eccentricity and the longitude of the perihelion of the Earth's orbit for one million years backward from 1950. He obtained the position of the pole with relation to the 1950 stationary ecliptic by numerical integration, and then this value was transformed for the mean

-42-

203 200

TC-1681

-

0.05

0.04

position of the non-stationary colliptic. In the calculation of the precession we took into consideration only the mean value of the position of the point of the vernal equinox. On the basis of these results and by utilizing the Q_S^0 , \bar{Q}_S , $\dots Q_S$, m values obtained by Milankovitch, Woerkom (1958) constructed the curves of the summer insolation for the latitude 65° of both hemispheres for one million years backward from 1950.

As mentioned above, we obtained the insolation curves by proceeding from the perturbed values of inclination of the ecliptic to the equator, the eccentricity and the longitude of the perihelion of the Earth's orbit obtained by us.

We based the computation of these values on Brouwer's and Woerkom's theory of secular perturbations in the elements of orbits of large planets; in order to determine the precession values we used our trigonometric precession formulas (Sharaf, Budnikova, 1967), in which we accepted the recent values of astronomic constants recommended by the International Astronomical Union.

In Fig. 2 are given curves of the solar insolation for 65°N, obtained by Milankovitch, Woerkom and us. As the curves show, despite some differences in the initial data, the results of the three investigations agree rather well.

8. Computation of Insolation for One Million Years Forward

The determination of the insolation variation under the influence of the celestial-mechanical factors and for the geological future is also of great interest.

We computed the perturbed values of the inclination of the ecliptic to the equator, the eccentricity and longitude of the perihelion for one million years forward from 1950 with an interval of 5000 years. The graphs of Fig. 3 and 4 show perturbed values of the eccentricity and the inclination of the ecliptic to the equator. Table 10 contains secular variations

_44-

e sin Π and ε for a period of one million years forward from 1950, with and interval of 5000 years.

The values ΔQ_x , ΔQ_x , $\Delta \overline{Q}_x$, $\Delta \overline{Q}_y$ for the latitude 65° for one million years forward are given in Table 11.

1	e sin II) (e sin II)	ند		Δ (c sin Π)	٦٢	:	Δ (e sin Π)	7: 7:	*	Δ (e sin II)	בר בר
			0	0.000.04	-0.9:00	510	-0.001870	-0.0303	765	-0.034943	0.3520
. 5			235	-0.039038	-0.7059	515	-0.045281	-0.0053	7.0	-0.020171	0.4352
	-0.018871	-0.5935	: 260	0.014397	-0.1497	520	-0.037560	0.5680	775	-0.005222	0.1955
10	-0.027366	-0.8636	205	± 0.011335 ± 0.008135	-0.4433	525	0.012361	0.7356	780	-0.016724	0.2163
15	-0.014646	-0.0915 -0.2285	275	-0.045504	0.7473	530	-6.009960	0.4173	785	-0.016834	-0.0686
20	-0.012473	-0.233	280	-0.038870	0.5925	535	-0.038564	-0.1578	790	0.003944	-0.7715
25	-0.018852	+0.2532	1285	-0.007504	-0.0448	540	-0.041321	-0.7093	795	-0.021044	-0.5552
30	0.014623	0.5170 0.4311	290	-0.011637	0.6165	545	-0.002411	-0.0457	800	0.040305	-0.0849
35	-0.012138	+0.0164	205	-0.020385	1.6264	5.0	+0.002010	-0.3089	\$05	-0.003049	-0.4748
10		-0.5383	200	-0.030127	-0.9507	555	-0.010505	-0.1070	\$10	-0.010083	0.7455
45	0.020010	-0.0162	305	-0.013737	-0.4418	560	-0.025704	± 0.2014	815	-0.022850	4-0.5946
30	-0.0073-6	-0.3415	310	0.003699	-0.2076	565	-0.021798	0.3763	· \$20	-0.052840	-0.15:16
55 60	-0.017099	-0.3019	315	-0.007234	0.6591	570	-0.020338	0.2279	825	-0.010764	-0.93.6
-65	-0.027000	-0.3907	320	0.037844	0.7024	575	-0.000548	-0.0901	\$30	-0.017042	1.2355
70	-0.021151	0.8201	225	-0.035814	-0.3290	550	-1:0.602015		835	-0.023307	-0.6014
15	0.005945	0.7236	1 339	-0.000726	-0.2695	585	-0.035495		\$ 810	-0.045153	4-0.6097
SO	-0.6 % (3	0.1015	325	0.008707	-0.7767	54.0	-0.047393	-0.5488		-0.010399	0.7483
55	-0.020126	-0.0090	340	-0.027634	-0.9133		-0.000755	-0.2025	1 850	0.004922	0.9700
5.	-0.031 ies	-1.1370	345	-0.043091	-0.0214	600	-0.024687	-0.2352	\$55	-0.022845	0.6143
55	-0.010316	-1.0496	350	-0.012372	0.0074	605	-0.024266	0.4088	8:00	-0.030881	-0.1007
icu.	-0.002195	-0.3917	355	-0.010048	-0.2524	610	-0.064600	+0.3744	835		-0.8018
105	-0.0.1776	+0.3712	\$ 360	-0.012007		615	-0.022521	-0.1190	\$70		-1.1166
110	0.020203	0.8301	205	-0.039771	0.2084	620		-0.7007	1 875	-0.023590	0.9347
:15	-0.0351.84	0.7931	370	0.025625		025	0.000126	-0.9669	1 880		0.0328
(2)	-0.015101	-0.3142	1 375		-0.5068	030	0.002914	-0.6958	885		-26.2717
125	0:001740	1 -0.3645	: 330	-0.008415	-0.6740	635	-0.041156	-0.0508	1 890		0.7392
1.0	-0.007419	-0.9117	1 285	-0.032020		640	0.021311	+0.5529			0.7995
1:5	-0.011011	-1.0553	1 300	-0.020324	-0.1539	645	.20.014718	0.7619	1 900	-0.0292330	1 - 0.2841
140	-0.001108	-0.7261	295	-0.005457	-0.2230	659	-0.040520	0.4807			-6.3155
14.5	1.0.0000022	-0.1007	: 400	-0.018271	0.3903	655	-0.045881	-0.1189			-0.9922
150	1	-0.4914	405	-0.024006	-0.2395	650	-0.006431	-0.708!	013		-1.1287
1.55	1 -0.005-12	0.7552	410	-0.005170	-0.1660	065	0.003125	-0.5864	020		-0.6343
160	1 0.01.112.17	0.5111	415	-0.011213	0.5956	- 370	-0.012445	-0.8398			-0.1590
165	-0.00723	-0.0.77	1 420	-0.029439	-0.7847	675	-0.022442	-0.3631	92	1 -0.003246	0.7313
17	1 C.011000	-0.0675	: 425	-0.018522	-0.5322	680	-0.031187	0.2113			0.7450
175		-0.9532	430	-0.001693	-0.0259	685	-0.027262	0.6449	946		1 -0.2165
18.1		0.7303	435	-0.010588	+0.4413	69.)	0.001471	0.7273	1 017	1 -0.000424	$ \begin{array}{c} +0.2195 \\ -0.4972 \end{array}$
135	-0. 2075	-0.1571	440	-0.025650	0.5866	005	-0.011899	0.40CS		-0.017045	-0.9560
1:15	-0	0.3781	# 445	-0.015029	0.3217	1 700	-0.037300	-0.2414		5 -0.015401	-0.8337
195	1	0.5615	450	-0.003856	: -0.200S	1 705	-0.057134	-0.8879			-0.3118
Sec.	-0.013011	1 0.3157	1 455	-0.02 +125	-0.7102	1 710	-+0.002399	-4.1297		5 -0.026146	
1.5	-0.011:146	0.1871	1 400	-0.021452	0.0002	1 715	-0.030494	-0.7747	1: 117.)1 -0.043478	0.5.8).
$\frac{1}{210}$	-0.020215	-0.6000	465	-0.007002	-0.0889	1 720	-0.029:95	10.0359			0.5125
215	1.000 6535	;0.7576	. 470	-0.015352	-0.2065	725	-0.060046	+0.6171		1 4-0.022995	-0.000
22.1	1.0.000038	-0.5016		-0.029073	2-0.3028	1 7:30)	-0.016786	0.7958			-0.477
22.5		-0.6249	480	0.017210	0.6120	: 735		0.4280	i trik		-0.907
2. 11	11.11 (25.15	1 40.3751	1 485	1-0.002317	0.5555	740	-0.005118	-0.245	i 199.	5 -0.014034	1 -0.941
	Second Land	6.5117	490	-0.011733	0.2209	: 745	-0.054575	-0.7888		0	-0.505
24.1	1		495	-0.040578	-6.3575	1 75.	-0.030879	-0.8741		1	1
:15	· ···· · · · · · · · · · · · · · · · ·	-6.1812	500	-0.026319	-0.8093	1 755	+0.012516	-0.5107			. Na antar
250		0.6561			-1.0107			and the second		1	

Table 10

-45-

Table. II

!	75.	ΔQ_{re}	ąکړ ا	$\Delta \bar{Q}_m$	t	76.	ΔQ.0	۵ą,	$\Delta \bar{Q}_{w}$	t	75.	$\Delta Q_{\mu\nu}$	۵ą.	1Q.,
$\begin{array}{c} 0 & 5 \\ 10 & 5 \\ 20 & 5 \\ 30 & 5 \\ 50 & 5 \\ 50 & 5 \\ 50 & 5 \\ 50 & 5 \\ 9 & 5$	$\begin{array}{c} 0\\ -41\\ -249\\ 299\\ 251\\ +249\\ 299\\ 1+223\\ +223\\ +223\\ +223\\ +223\\ +223\\ +223\\ +225\\ +224\\ 352\\ +225\\ +224\\ 352\\ +225\\ +255\\ +255\\ +255\\ +255\\ +255\\ +255\\ +255\\ +$	$\begin{array}{c} -174\\ -362\\ -175\\ +418\\ -464\\ 209\\ -4482\\ -4482\\ -4482\\ -4482\\ -209\\ -138\\ -209\\ -138\\ -488\\ -155\\ -215\\ -469\\ -34\\ -34\\ -34\\ -34\\ -34\\ -34\\ -34\\ -34$	$\begin{array}{r} + 100 \\ - 269 \\ - 29 \\ - 449 \\ - 466 \\ - 183 \\ - 114 \\ - 205 \\ - 205 \\ - 54 \\ - 273 \\ - 96 \\ - 675 \\ - 647 \\ - 147 \\ - 46 \\ - 156 \\ - 156 \\ - 79 \\ - 316 \\ - 79 \\ - 316 \\ - 582 \\ - 268 \\ + 103 \end{array}$	$\begin{array}{c} 0\\ +239\\ 209\\ 135\\ 166\\ 19\\ 210\\ 65\\ 210\\ 66\\ 19\\ 189\\ 220\\ 66\\ 101\\ 189\\ 210\\ 66\\ 101\\ 189\\ 210\\ 66\\ 101\\ 189\\ 210\\ 66\\ 101\\ 189\\ 210\\ 66\\ 101\\ 189\\ 210\\ 66\\ 101\\ 189\\ 210\\ 66\\ 101\\ 189\\ 210\\ 17\\ 487\\ 288\\ 215\\ 17\\ 487\\ 288\\ 215\\ 14\\ 14\\ 287\\ 288\\ 215\\ 14\\ 14\\ 287\\ 288\\ 215\\ 14\\ 14\\ 287\\ 288\\ 215\\ 14\\ 14\\ 14\\ 287\\ 288\\ 215\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14$	$\begin{array}{c} 335\\ 345\\ 359\\ 355\\ 359\\ 365\\ 375\\ 385\\ 390\\ 405\\ 415\\ 420\\ 385\\ 390\\ 405\\ 415\\ 420\\ 385\\ 390\\ 405\\ 415\\ 420\\ 425\\ 445\\ 445\\ 445\\ 450\\ 505\\ 515\\ 525\\ 535\\ 555\\ 555\\ 555\\ 555\\ 555\\ 55$	$\begin{array}{c} -339\\ -74\\ +162\\ -73\\ -462\\ -73\\ -462\\ -281\\ -462\\ -281\\ -462\\ -281\\ -462\\ -288\\ -216\\ -288\\ -288\\ +107\\ -288\\ -216\\ -288\\ -288\\ +107\\ -288\\ -288\\ -107\\ -288\\ -288\\ -107\\ -288\\ -288\\ -107\\ -288\\ -2$	+118 -454 -346 +115 -403 -403 -379	$\begin{array}{r} -37\\ -420\\ -235\\ +34\\ -328\\ -776\\ -369\\ +370\\ +370\\ +385\\ -181\\ -433\\ -256\end{array}$	407 407 141	$\begin{array}{c} 670\\ 675\\ 689\\ 695\\ 700\\ 715\\ 725\\ 740\\ 755\\ 745\\ 755\\ 765\\ 775\\ 755\\ 765\\ 775\\ 755\\ 75$	$ \begin{array}{r} 573 \\ +217 \\ -166 \\ +44 \\ -245 \\ -198 \\ \end{array} $	$\begin{array}{r} -304\\ -489\\ -489\\ -489\\ -489\\ -489\\ -489\\ -445\\ -37\\ -31\\ -31\\ -31\\ -412\\ -255\\ -444\\ -186\\ -186\\ -494\\ -49$	$\begin{array}{c} -313\\ -825\\ -482\\ +180\\ -221\\ -70\\ -140\\ -224\\ -70\\ -410\\ -410\\ -410\\ -410\\ -410\\ -410\\ -410\\ -410\\ -410\\ -410\\ -25\\ -350\\ -3$	$\begin{array}{c} 2176\\ \pm 1.1 \pm 2.1 \pm 2.1$

-46- NOT REPRODUCIBLE

TC-1681

.

Supplement IV gives the summer and winter insolations for the latitude 65° of the hemispheres, reduced to the equivalent latitude, for a period of one million years forward from 1950.

Fempl (1958) computed insolation variations $(\Delta Q_{\omega}, \Delta Q_{\omega}, \Delta \bar{Q}_{\omega}, \Delta \bar{Q}_{\omega}, \Delta \bar{Q}_{\omega})$ for various latitudes for a period of 100,000 years forward. His results agree well with ours for this period of time and the latitude 65°.

Fig. 4. Perturbed values of inclination of the ecliptic to the equator.

Time in milleniums from 1950 is given along the abscissa axis .

CHAPTER III

RELATION BETWEEN THE SOLAR IRRADIATION OF THE EARTH AND TEMPERATURE

In his monographs M. Milankovitch (1939, 1941) studied in detail the influence of the atmosphere on the quantity of heat obtained by the earth surface from the Sun and derived the relationship between the temperature at the level of the mean elevation of the continent and the insolation.

Both in the USSR and other countries, an opinion is expressed in numerous studies, devoted to the problems of climate variations, that the temperature variations caused by the insolation variations were con-

siderably overstated by M. Milankovitch, and the insolation variations caused by variations in the elements of the orbit and the axis of the rotation of the Earth are not of great significance in the paleoclimatalogy.

These remarks concerning the astronomic theory of climate variations are primarily based on a part of Simpson's study (1940) which criticizes Milankovitch's conclusions. Therefore, we consider it useful to discuss Simpson's study in detail and attempt to find a connection between the insolation variations and the variations in real temperature.

9. Variation of Temperature of the Earth's Surface Caused by Variation of Solar Irradiation (According to Milankovitch)

M. Milankovitch (1939) assumes that: 1. The surface of the Earth is uniform (continuous land) and entirely smooth; 2. The Earth's atmosphere is stationary, the air is viewed as an ideal gas; 3. The conditions of absorption and reflection, atmospheric conditions of seasonal variations do not endure.

Under these conditions and after unavoidable simplifications Milankovitch derived a formula yielding the relationship between the temperature at the level of the mean elevation of the land and solar irradiation:

$$c\Theta^{\dagger} = \frac{1}{2}(1-A)(1+kM)W.$$
 (47)

Here: \bigcirc is the mean absolute temperature of the lower layer of the air, corresponding to the half-year under investigation, at the latitude \bigcirc during a selected year of the geologic past t; W is the quantity of radiation (in calories) obtained by a unit of surface (1 cm²) at the atmospheric boundary in a unit of time (1 min) during the same half-year at the latitude \bigcirc , in the epoch t; $^{\sigma}$ is the Stefan-Boltzmann constant; A is the albedo (with consideration of the reflection of the atmosphere); k is the coefficient of absorption for the sun's thermal radiation in the atmosphere, M is the mass of air located above a surface unit.

For the initial moment t_0 the values contained in formula (47) are designated by Θ_0 , A_0 , k_0 , M_0 , W_0 ; then

$$\mathbf{s}\Theta_{\mathbf{0}}^{*} = \frac{1}{2} \left(1 - A_{\mathbf{0}}\right) \left(1 + k_{\mathbf{0}} M_{\mathbf{0}}\right) W_{\mathbf{0}}.$$
 (48)

Assuming that M does not change in terms of time; that the variation of the k value can be caused only by an increase or decrease of the quantity of vapor or carbon dioxide in the air and therefore k can assume the mean value $k = k_0$; and then passing from the absolute temperature \odot to the temperature in degrees Celsius

$$\Theta = 273^\circ + u$$

we obtain for the difference of temperatures between the epochs t and to

$$\Delta u = \frac{1 + k_0 M_0}{8s (273)^3} [(1 - A) W - (1 - A_0) W_0].$$
(49)

If we limit ourselves to the investigations of the areas of the earth surface which were not buried under the continental ice during the geological past, we can assume $A = A_0$, then

$$\Delta u = n \Delta W, \tag{50}$$

here

$$n = \frac{1 + k_0 M_0}{8 \sigma (273)^3} (1 - A_0).$$

By assigning to the quantities contained in n their mean values

$$\Lambda_{0} = 0.40, k_{0} = 0.0025, M_{0} = 1033.3, \sigma = 0.76 \cdot 10^{-19},$$

we obtain $\Delta u = 173.8 \Delta W$, or considering that

$$\Delta W = \frac{1.94}{50000} \, \Delta Q,$$

where $\triangle Q$ is expressed in canonical units, we have

$$\Delta u_{s} = \frac{1}{150} \Delta Q_{s},$$

$$\Delta u_{w} = \frac{1}{150} \Delta Q_{w},$$

$$\Delta u_{T} = \frac{1}{2} (\Delta u_{s} + \Delta u_{w}).$$
(51)

10. Connection Between the Temperature Variation and Insolation (According to Simpson)

Simpson (1940) assumes that the coefficient $\frac{1}{150}$ in Milankovitch's formulas (51) is incorrect, since it was computed proceeding from the mean values A_0 , k_0 , M_0 , σ , i.e., values which thus far cannot be determined with sufficient accuracy. According to Simpson, because of the complexity of meteorological causes of the climate variations only empiric methods can assist in the solution of this problem.

He suggested another method for determining the connection between the temperature and the insolation variations. Here is a brief explanation of his conclusions.

Let u_1 , u_2 be the mean air temperatures of the warmest and coldest months, respectively, at the latitude P for any year of the geologic past t; Q_s , Q_y - total radiation (in canonical units) obtained by a unit of area at the latitude P during caloric half-years in the epoch t.

Values pertaining to the present time to are provided with a superscript zero.

We designate

$$R = Q_{s} - Q_{m},$$

$$Y = u_{1} - u_{2},$$

$$\Delta u_{1} = u_{1} - u_{1}^{0},$$

$$\Delta u_{2} = u_{2} - u_{2}^{0},$$

$$\Delta R = R - R^{0},$$
(52)

Simpson assumes that the mean temperature of the warmest month u_1 can be identified with the mean summer temperature, and the mean temperature of coldest month can be identified with the mean winter temperature; that the difference between the summer and winter insolation for any place and for any date varies in the same proportion as the difference between the summer and the winter temperature, and the ratio of variation between the summer and the winter temperatures is directly proportional to the ratio of variation between the summer and the winter temperatures and the winter variations. That is,

$$\begin{array}{c} u_{2} = u_{1}, \\ u_{m} = u_{2}, \\ \frac{R}{R^{0}} = \frac{Y}{Y^{0}}, \end{array}$$
(53)

$$\frac{\Delta u_{s}}{\Delta u_{w}} = \frac{\Delta Q_{s}}{\Delta Q_{w}}.$$
 (54)

(55)

On these assumptions Simpson obtains the following formulas, connecting the temperature variation with the insolation variation:

$$\Delta u_{s} = \frac{Y_{0}}{R^{0}} \Delta Q_{s},$$

$$\Delta u_{w} = \frac{Y_{0}}{R^{0}} \Delta Q_{w}.$$
(56)

By substituting here values Q_{s}^{0} , Q_{s}^{0} , ΔQ_{s} , ΔQ_{s} , ΔQ_{s} , ΔQ_{s} , from Milankovitch's (1939) tables, and by replacing u_s and u_w with observed mean temperatures of the warmest and coldest months for the corresponding latitudes, Simpson computed Δu_{s} and Δu_{s} for a number of years of the geologic past and compared these values with Δu and Δu_{s} computed according to Milankovitch's formulas (51). The comparison shows that Δu_{s} and Δu_{w} obtained according to Simpson's method are about 3 times smaller than the values computed according to Milankovitch's formulas. In Simpson's computations Δu_{s} and

 Δu_{ω} do not exceed 1.5-2°.0 for the deepest insolation peaks. Hence Simpson arrives at a conclusion that Milankovitch's coefficient $\frac{1}{160}$ is highly overstated.

-51-

However, this is not quite so.

Formulas (54) and (55) as well as (56) are correct only when the conditions discussed in section 9 are observed. Consequently, these relations will be true only with substitution of "fictitious" temperature values obtained theoretically. Naturally, the truly observed mean temperatures do not satisfy these conditions. It is sufficient to say that meteorological conditions are different during the summer and winter; the snow cover changes the albedo value sharply. Thus, it can be ascertained that Simpson's reasonings contain not quite acceptable assumptions.

11. Relation Between Solar Irradiation and the Observed Temperature

A number of authors give tables of mean latitudinal temperatures. Usually the mean temperatures of the warmest and the coldest months of the year are determined. With the aid of Milankovitch's formulas (139, p. 171) it is possible to pass from the mean temperatures of the warmest and the coldest months of the year to the mean temperatures of the summer and winter half-years.

The Milankovitch formulas yield

$$\begin{array}{l} v_{a} = 0.822u_{1} - \frac{1}{4} - 0.478u_{2}, \\ u_{w} = 0.822u_{2} - 0.478u_{2}, \end{array} \right\}$$

$$(57)$$

In T.F. Betlyayevay article (1960) a table is given for the monthly distribution of mean temperatures for the latitudes every 5° from -70° to $+80^{\circ}$. D.I. Stekhnovskiy (1962) gives mean temperatures of lands and oceans for the same latitudes, also every 5° .

On the basis of T.F. Batlyayeva's and D.I. Stekhnovskiy's data we computed the mean values of summer and winter temperatures for all latitudes of continents and oceans (see Table 12).

In Fig. 9 are given the curves of distribution of the mean temperature by zones for all the latitudes and mean temperatures of lands and oceans at a given latitude.

-52-

T. . . 1 . 12

e 11 12	8	. 24	8	22	8	8	33	5	\$	23	8	37	22	8	24	ព	13	5	8	23	2	R	8	6	-		•1	-	•	-	
	22.73	-18.78	10.53	- 0.55	+ 0.19	1.55	4.91	7.24	II.26	15.28	18.31	21.27	23.39	23.19	26.21	26.45	26.72	26.22	25.38	23.48	21.97	11761	17.63	18.65	H.49	8.08	1.81	1.87	- 2.65	8.07	-15.76
*	- 12H	- 2.42	+ 2.63	6.85	5.21	8.93	90.09	12.46	17.25	20.62	22.69	24.43	23.71	26.61	26.93	26.63	26.78	26.68	26.42	23.72	21.73	22.03	20.87	17.73	15.21	10.93	7.17	1.113	+1.05	- 1.43	1.73 -
*	-23.20	-23.18	-21.57	-18.75	-13.01		- 6.71	- 1.28	+ 6.22	HL69	13.73	19.61	22.43	24.87	27.23	· 27.41	26,87	26.33	24.78	23.70	29,87	18.76	15.62	12.17	10.67	66.196	1.0.1	22	1	62.6	23.37
v	- 4.30	- 3.02	+ 1.67	6.05	8.81	жн.	14.21	18.63	22.58	26.51	28.23	28.69	29.77	28.73	28.07	27.09	27.13	27.02	26.32	36.00	25.83	25.84	23.63	21.83	30.33	16.04	12.39	6.7.9	1	- 1.81	- 9 .53
:		39.53		-16.21	9.78	- 5.37	- 2.21	+ 2.52	8.57	13.69	12.71	30.57	23.23	23.09	38.43	36.70	36.61	24.25	25.22	23.87	21.71	62.61	17.15	14.50	11.55	8.468	11.1	1,1,57	206	1788 ····	100.5
÷	- 1,62	- 2.37	+ 1.92	6.21	8.8	10.27	12.61	15.08	20.03	23.21	25.19	38.23	26.97	27.21	11.17	36,70	38.29	26.76	341S	23,903	24.399	73.71	21.65	18,10	14,200	10,02	7.33	1.93	1.100	- 1.3	ET
¥	¢2		6.3	8.9	6.6	0.11.0	ΥH	13.9	6.81	22.1	6.82	23.3	36.3	27.0	21.2	36.7	36,8	38.4	23.1	23.5	21.2	18.9	16.6	13,8	10.6	11	3.8	1	5 2 -	- 9.3	-13.3
5	1,12	-23.3	-14.2	- 2.6	- 12	- 0.5	1. 3.5	5.8	976	13.8	171	20.4	23.0	24.8	36.0	26.4	36.7	29.8	36.7	36.2	25.5	23,8	31.3	18.6	15.6	П.7	67	53	6.1	1.0.5	1.1 -
Ŧ	ţ,	2	8.1	12.9	13.4	17.5	30.0	24.2	37.1	30.6	31.7	11	31.8	8.02	28.3	27.0	27.2	26.2	21.3	27.9	5.61	16.8	1	9.5	8,0	geo	1.7	2	1	-12.0	-31.2
	-36.8	-31.3	28.0	-23.6	21.6	17.0	- 12.5	- 6.8	+ 1.7	7.6	12.3	17.1	20.4	23.8	0.12	27.5	26.8	27.2	27.0	27.4	27.2	37.8	23.3	31.5	0722	16.0	16.6	3,0	1	4.0	- 5.7
-		-23.5	-21.3	12.4		- 9.7	- 6.3	1	+ 3.4	10.8	15.0	0.01	22.2	24.5	24.2	26.7	28.7	36.1	21.9	23.3	29.8	13.2	15.9	13.5	10.6	13	3.8	<u>n</u> +	- 2.9	- 9.8	1212
1	n,7	2.4	7.6	12.4	13.4	971	16.7	1.61	23.2	25.9	27.4	27.3	28.0	27.8	27.5	26.7	28.2	26.9	26.7	26.5	23.9	23.9	22.9	1.61	15.9	H.7	N.1	4.5	1.9	5.0.5	6.5
p.	80 [°] c. III.	12	2	8	3	13	50	45	63	8	R	13	20	13	9		0	3 м. п.	10	12	20	33	00	17	64	5	30	13	69	5	62

4

In section 5 (Table 7) we determined the totals of radiation Q_s and Q_w , obtained by the latitude φ during one caloric half-year for $t = t_0 = 1950.0$, expressed in canonical units. Q_s and Q_w differ from the mean quantities of radiations W_s and W_w only by a constant multiplier.

Let us assume that the variation of the mean observed temperature by latitudes corresponds to the insolation by latitudes, and the deviations in mean temperatures, which depend on geographic conditions, are of an accidental nature. We assume that such a relation is also preserved for the geological past.

Then the mean temperature and insolation can be considered as connected by a functional relation of the following type

$$\begin{aligned} a_s + b_s \Delta Q_s &= u_s, \\ a_r + b_s \Delta Q_s &:= u_s, \\ \end{aligned}$$
(58)

here

$$\Delta Q_{\mu} = Q_{\mu} - Q_{\mu}^{\mu}, \quad \Delta Q_{\mu} = Q_{\mu} - Q_{\mu}^{\mu},$$

 Q_s^o , Q_s^o are insolations at our selected latitude $\varphi_a = 65^o$; a_a , b_a ,

We compile two systems of 12 conditional equations, corresponding to latitudes from 25 to 80° every 5°, for the northern hemisphere. The other system pertains to the winter half-year.

Similarly, for the southern hemisphere we also compiled two systems, but consisting of 10 conditional equations, corresponding to latitudes from 25° to 70° with 5° intervals.

We substitute 3 variants of the mean seasonal temperatures (of all the lands and oceans) in the right parts of these conditional equations. We designate: as the mean summer and winter temperatures of the entire latitude ; peratures at the latitude ; temperatures of the cceans at the latitude . Values with a dash pertain to the southern hemisphere.

-54-

TC-16A1

Fig. 5. Distribution of the mean temperature for the entire latitude u, land u' and oceans u" by latitudinal zones.

Tables 13-16 contain the conditional equations and the systems of normal equations that correspond to them (v, v', v'') are the values of discrepancies).

The solution will be as follows:

1	r]	FREBREER 975		1	1	222255888888
	v* · 10-2	0.00171 0.0023 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001			v" . 10-2	1050507 +0.0003 -0.0230 -0.0200 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.0000 -0.0000 -0.0000 -0.000
	v . : 0 - 1	NARKENSESSA			v' · 10-2	10200- 1000- 10000
	v. 10-2	1020105 			v . 10-2	102000 102000 102000 10200 100000 100000 1000000
le 1	n** · 10-2	0.15273 0.1555 0.0155 0.0175 0.00000000000000000000000000000000000	0.027	Table 16	a ² . 10 -2	
Table	n". 10-1	02220 81/20 62/10	10.17129	Tal	a". · 10-•	0,2517 0,00725 0,00725 0,00725 0,1077 0,1077 0,1077 0,1077 0,1077 0,1077 0,1077 0,1077
					u4.10-2	-05200 -07520 -0757 -07570 -00
	· · · · ·	-0.1585 -0.1759 -0.1759 -0.1759 -0.1759 -0.1759 -0.1550 -0.1500 -0.1550 -0.150			6. WI	-0.0502 0 0.0002 0.2215 0.2215 0.2215 0.2215 0.2762 0.2762 0.2762
			e k		÷.	
	8	22898888\$\$ 9 88	991105-30 1-00-06100-0000		Ş •	ลัยธ ะเสรรรสส
	s. 10-2	0.0239 0.0107 0.0007 0.0000000000			<i>م</i> ر. 10-2	-00122 -00127 -00157 -00157 -00152 -00152 -00152 -00152
	e. 				r. (1) - 5	1050165 - 0.0222 - 0.0222 - 0.0252 - 0.0352 - 0.0222 - 00
	. D 2	102010 10200 100000 100000 100000 100000 100000 100000 100000 1000000			z-01 · a	1000- 10
Table 13	u", · 10-2	-0.2367 -0.0272 -0.0275 -0.0275 -0.0275 -0.0275 -0.0275 -0.0276 -0.02765 -0.2765 -0.2765	1223 1223 1223 1223	Table 15	a [*] , 10-2	2010 2010 2010 2010 2010 2010 2010 2010
T 3	u.,.10-2	01000 2000 2000 2000 2000 2000 2000 200	0.2739 (5	Tal	a'. 10-2	0.2003 0.01250 0.01250 0.01250 0.01250 0.01250 0.01250 0.01250 0.01250 0.01250
	u. · 10-2	-0.0062 -0.025 -	124214		$\bar{n}_{s} \cdot 10^{-2}$	and some second
		-0.0721 -0.0728 -0.0708 -0.0708 -0.0710 -0.0710 -0.0710 -0.245 -0.245 -0.245 -0.245	0.359.00		6,.10	-0.0432 0.20003 0.1211 0.1213 0.1213 0.2200 0.2503 0.2503 0.2503 0.2503 0.2503 0.2503
,	a,		1.4516		ā,	Raid dia kan din din kan din mana kan din ang
	<u>-</u>	- %85888889898			8-	888888985 8

• This conditional equation, like the previous one, will have only two variants of the right hand part.

0.5520

0, 1700

S.M.20 2.N.52

ant.

0.23370

LASSIC U

1227.1

10 1.7387 0.34193

1.5724

£373.1

LE/Ran o

2.002

e. Herry

* This conditional equation will have only two variants of the right hand part. At the latitude 60 S there is no land. Therefore, we have here two systems of normal equations.

-56-

$$u_{s} = 2.94 + 0.007412\Delta Q_{s} \pm 1.98, \\ u_{s} = 3.17 + 0.008365\Delta Q_{s} \pm 1.78, \\ u_{s} = 2.38 + 0.006569\Delta Q_{s} \pm 2.65, \end{cases}$$
(59)

$$u_{a} = -15\%40 + 0\%03943\Delta Q_{a} \pm 0\%87, u_{a} = -19.58 + 0.004189\Delta Q_{a} \pm 1.07, u_{a} = -8.58 + 0.003399\Delta Q_{a} \pm 4.37,$$
 (60)

$$\begin{aligned} \hat{a}_{*} &= -3.97 \pm 0.007623\Delta Q_{*} \pm 2.04, \\ \hat{a}_{*}^{*} &= -4.03 \pm 0.008916\Delta Q_{*} \pm 1.43, \\ \hat{a}_{*}^{*} &= -3.00 \pm 0.007085\Delta Q_{*} \pm 1.95, \end{aligned}$$
 (61)

$$\vec{u}_{*} = - 9?17 + 0?003456\Delta Q_{*} \pm 5?4?, \vec{u}_{*} = -14.80 + 0.003669\Delta Q_{*} \pm 4.21, \vec{u}_{*} = -28.04 + 0.003299\Delta Q_{*} \pm 2.26.$$
 (62)

For the purpose of control, 6 additional systems of 7 conditional equations corresponding to the latitudes from 20° to 80° with 10° intervals were compiled; they are of type

$$a_{s} + b_{s} \Delta Q_{s} = u_{s},$$

$$a_{w} + b_{w} \Delta Q_{v} = u_{w},$$

$$a_{y} + b_{x} \Delta Q_{r} = u_{r},$$

In their right hand parts we substituted the mean temperatures of the entire latitude, obtained from the Meynardus tables (Simpson, 1940). Following is the solution of these problems:

$$u_{*} = 2942 + 09007966\Delta Q_{*} \pm 1980, u_{*} = -17.3 + 0.004096\Delta Q_{*} \pm 1.50, u_{*} = -8.24 + 0.005252\Delta Q_{*} \pm 1.94,$$
(63)

TC-1681

-57-

$$\begin{split} \dot{u}_{\mu} &= -5.06 + 0.008205 \Delta Q_{\mu} \pm 2.21, \\ \dot{u}_{\mu} &= -17.0 + 0.004268 \Delta Q_{\mu} \pm 5.48, \\ \dot{u}_{\mu} &= -11.9 + 0.005580 \Delta Q_{\mu} \pm 3.40. \end{split}$$
(64)

The great significance of the mean square error for equations of the northern hemisphere in the winter half-year, in the case where the ocean temperature is under investigation, is explained by a sharp jump of temperature from $\varphi = 60^{\circ}$ to $\varphi = 65^{\circ}$ (see Supplement IV) under the influence of the Gulf Stream.

If the conditional equation referring to the 65th parallel is excluded from the compilation of the normal system, the value of the mean square error will decrease while b_w will remain almost unchanged (see solution (62)).

The comparatively large values of mean square errors for the equations of the southern hemisphere in the winter half-year are explained by a nonuniform distribution of lands and oceans. There is 71 percent of land along parallel 70° S, and not more than 9 percent between 65° S - 35° S. If the conditional equation pertaining to the latitude 70° is excluded from the compilation of the normal system, than we obtain the following solutions

$$\vec{u}_{w} = -5\%9 + -6\%02\%032\langle \vec{v}_{w} \pm 1\%2, \\ \vec{u}_{w}' = -5.20 + -6.002\%82\langle \vec{v}_{w} \pm 1.20, \\ \vec{v}_{w}' = -6.87 + -0.002\%82\langle \vec{v}_{w} \pm 1.8 \rangle$$
(65)

As it appears from (59) and (61), the coefficient of proportionality b_g varies in the northern hemisphere from 0.0065 to 0.0084 and in the southern hemisphere from 0.0071 to 0.0089. It is larger for land and smaller for oceans. There is almost no difference between values b_g for the northern and southern hemispheres. On the average the value of the coefficient $b_g = 0.0075$ is very close to the value 0.007, determined theoretically by M. Milunkovitch.

-58-

In the case of the winter half-year the value of the coefficient b_W varies from 0.0034 to 0.0042 in the northern hemisphere and from 0.0028 to 0.0037 in the southern. Here there is also no difference in b_W for the northern and southern hemisphere; in the winter the influence of the distribution of land and oceans exerts a lesser influence. The mean value of the coefficient of proportionality b_W is 0.0037, i.e., half as much as for the fummer half-year.

In the course of three million years of the geological past it is possible to notice an increase or decrease of temperature by $5 - 6^{\circ}$ in the summer and $2 - 3^{\circ}$ in the winter.

50-1681

BIBLIOGRAPHY

Batyayeva, T.F., 1960: "Karty mnogochislennykh mesyachnykh znacheniy temperatur vozdukha na urovne morya dlya zemnogo shara" (Maps of Multiple Monthly Values of the Air Temperatures of the Earth's Globe at the Sea Level) <u>Meteorologicheskiy byulleten</u>'. Supplement. TsIP.

Woerkom, A., 1958: "Astronomicheskaya teoriya izmeneniya klimata." (Astronomic Theory of Climate Variations) In the book <u>Izmeneniye Klimata</u>. IIL, Moscow.

Milankovitch, M., 1939: <u>Matematicheskaya klimatologiya i astronomi-</u> <u>checkaya teoriya kolebaniy klimata</u> (Mathematical Climatology and Astronomic Theory of Climate Variations). GONTI, M. -L.

Stekhnovskiy, D.I., 1962: <u>Baricheskoye pole zemnogo shara</u> (The Earth's Baric Field). Gidrometizdat, M.

Sharaf, Sh.G. and Budnikova, N.A., 1967: "O vekovykh izmeneniyakh elementov orbity Zemli, vliyayushchikh na klimaty geologicheskogo proshlogo" (Secular Variations in the Elements of the Earth's Orbit, Influencing the Climate of Geological Past) <u>Byullcten' ITA</u>, 11, 4 (127).

Brouwer, D. and A.J. J van Woerkom, 1950: "The Secular Variation of the Orbital Elements of the Principal Planets". Astr. Pap., 13, 2.

Fempl S., 1958: "Variations séculaires d'insolation de la Terre" (Secular Variations in the Insolation of the Earth). Notes et Travaux de la section d'Astronomie de l'Institut mathématique Academie serbe des Sciences. 2, 10-20 (Notes and Proceedings of the Astronomy Section of the Mathématic Institute, Serbian Academy of Sciences. 2, 10-20.

Milankovitch, M., 1941: Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem (The Law of Insolution of the Earth and Its Application to the Problem of the Ice Age), Belgrade.

Mishkovich, V.V., 1931: "O sekulyarnym neyednachinama astronomskihk elementa Zeml'ine putan'ye" (Secular Variations in the Astronomic Elements of the Earth's Orbit) <u>Srpske kral'yevske akademiye.</u> 143, First Chapter, 70, Belgrade.

Simpson, G.C., 1949: "Possible Causes of Change in Climate and Their Limitations." <u>Proc. of the Linn. Soc. of London</u>, 152,2

Submitted for Publication 25 June, 1958

-60-