
LECTURE NOTES 71-1 OaoJ/44 ~7

JACK K. HALE APPLICATIONS OF ALTERNATIVE PROBLEMS

MAY, 1971

CENTER FOR DYNAMICAL SYSTEMS

1 '~t~b~TED



APPLICATIONS OF ALTERNATIVE PROBLEMS

by

Jack K. Hale
1

Division of Applied Mathematics
Center for Dynamical Systems

Brown University
Providence, Rhode Island 02912

T CLTiTTCAL LIBRARY
BLDG. 305

ABERDEEN PROVING GROUND, YD-,
STEAP-TL

1 This research was supported in part by the National Aeronautics and Space

Administration under Grant No. NGL 40-002-015, and in part by the Air
Force Office of Scientific Research under Grant No. AF-AFOSR 67-0693D,
and by the United States Army - Durham under Grant No. DA-31-124-ARO-D-270.

Approved for public release; distribution
unl~imited. The findings in this report are
not to be construed ss an official Depart-
ment of the Army position, unless so desig.
nated by other authorized documsent&



Table of Contents

Page

1. Introduction ............................................. 1

2. General Theory ........................................... 4

3. Methods of Solution ...................................... 15

4. Periodic Solutions ......... .............................. 21

5. Eigenvalues of Nonlinear Operators ....................... 34

6. Analytic Systems, Regular and Irregular
Singular Points .......................................... 43

7. Partial Differential Equations ........................... 50

8. Admissibility ............................................. 63

References ............................................... 65



APPLICATIONS OF ALTERNATIVE PROBLEMS

Jack K. Hale

1. Introduction. Many problems in analysis and applied mathematics

can be reduced to the solution of equations in a function space or

functional equations. The equations often arise from the desire to

obtain solutions of ordinary or partial differential equations with

subsidiary conditions - periodicity or more general boundary con-

ditions, specified asymptotic behavior, analyticity conditions, etc.

Many of the problems involve a linear operator and a nonlinear opera-

tor which is small when some parameter is small. If the linear

operator has an inverse, conceptually there are no difficulties in

obtaining approximate solutions although practically there may be

many difficulties. At least one can draw on all existina fixed

point techniques. When the linear operator has elements in its null

space, then new concepts must be introduced in order to proceed.

Generally, one relies on some type of "Fredholm" alternative to

determine conditions on the elements of the null space of the linear

operator in order to obtain solutions of the nonlinear problem. For

equations with a small parameter in the nonlinearity, one often ex-

pands everything in a power series in the parameter and equates

coefficients in the spirit of the method of Poincare for obtaining

periodic solutions of ordinary differential equations. On the other

°and, experience over the last twenty years has shown that it is

advantageous to look at these latter questions in a more general way

in order to understand the underlying structure. In fact, proceeding
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in this fashion leads not only to new results but also to other

iterative methods for obtaining approximationsto the solutions.

It is purpose of these lectures to present a general approach

to the solution of functional equations and to indicate how to obtain

the appropriate functional equations for a variety of applications.

Let X, Z be Banach spaces and B: X -- Z be a mapping from

scme subset of X into a subset of Z. The range, domain, and null

space of B will be denoted by R•(B), 9(B), )R(B), respectively.

A projection R in a Banach space X is a continuous linear mapping

ta 1 -ing X into X such that R2 = R. If R is a projection in X,

the range of R will be denoted by XR and the symbol XR will

always denote a subspace of X which is obtained through a projection

operator R. The identity operator will be denoted by I. If R is

a projection in X, then the space X is a direct sum of XR and

XIR and x E X can be written in a unique manner as x = xR + XIR1

with XR ' XR, XIlR ' XIR.

Let A: 9(A) C X -- Z be a linear operator defined in the

subspace 9(A) and N: X - Z be a linear or nonlinear map. The

basic problem is to find an x e 9(A) such that

Ax = Nx. (1.1)

In later sections, we show how this type of equation arises

in the theory of bifurcation in integral equations, partial differ-

ential equations and ordinary differential equations, the theory of



-3-

differential equations with singular points, the theory of boundary

value problems and asymptotics. For the next few pages we will be

concerned primarily with methods of solution for (1.1). The spirit

of the general presentation in Section 2 has its origin in a paper

of Cesari [4]. Personal conversations of the author with

Stephen A. Williams led to the particular formulation given below.

The author is indebted to Robert Glassey and Orlando Lopez for

assistance in the preparation of the notes.



2. General Theory. As we have pointed out, our main purpose is to

solve: Ax = Nx, where A is a linear operator defined on some sub-

space 9(A) of a Banach space X with values on Z and N is a

linear or nonlinear operator.

Let us assume the following:

(Hl) there exist projections U and E such that

(A) XU and = ZE

Clearly this assumption implies A is one-to-one on XI_U n 9(A).

Furthermore, for each x e 9(A), x = xU + xlu, we have Ax = AxIU

because AU = 0 and so the image of x iU n 3ý(A) under A is

SQ(A). This means there exists a linear operator M: M(A) -+X

such that AM = I on M(A), M is onto xi_U n 1(A) and MA I

on xJU n 9(A). Then, for each x e 9(A), we can write:

MAx = MAx + MAx-, x,- = (I-U)x V x e 9(A)

and so MA= I -U on 9(A).

Obviously, the equation Ax - Nx = 0 is equivalent to the

system: (I-E)(A-N)x = 0 and E(A-N)x = 0. Noticing that (I-E)A = 0,

EA = A, MA = I - U we obtain the following:

Lemma 2.1. If (Hl) is satisfied, then there exists a linear operator

M: zE -)9(A) such that AM =I on ZE, MA= I - U on _9(A) and the

equation
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Ax = Nx (2.1)

is equivalent to the system

a) x =Ux + MENx
(2.2)

b) (I-E)Nx = 0.

Any method for the determination of a solution of (2.1) must

take into account Lemma 2.1. In fact, equation (2.2b) says that Nx

must be in the range of A and., if Nx is in M(A), (2.2a) says

that the solution of (2.1) is a particular solution MENx plus an

element of the null space of A.

Lemma 2.1 is basic for many of the known methods for solving

problems which involve a small nonlinearity (say the nonlinearity is

continuous in a small parameter and vanishes together with its first

derivative for the parameter equal to zero). More specifically, one

can fix an arbitrary element y e %(A) and solve the equation:

x = y + MENx (2.3)

for a function x = x *(y). The function x*(y) will be a solution

of (2.1) if y can be determined in such a way that

(I-E)Nx*(y) 0 0. (2.4)
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These latter equations are usually referred to as the bi-

furcation equations or determining equations for (2.1). After

careful study, the method of solution indicated in (2.3), (2.4) will

be seen to be the underlying principle in the papers of Cesari [1 - 3,

11], Hale [1 - 4], Perello [1], Friedrichs [1], Cronin [1], Bartle [1],

Graves [1], Lewis [1, 2], Bass [1, 2], Nirenberg [1], Vainberg and

Tregonin [1], and Antosiewicz [1, 2].

As we shall see later, many different iterative schemes can

be devised for the successive determination of approximations to

x*(y) and y.

Another method for attempting to solve equations (2.2) is

to write them as

a) x IU = NEN(x + x,_U)

(2.5)

b) (I-E)N(xU + xiu) = 0.

For a fixed y e xlU one can try to determine xU = %(y)

so that

(I-E)N(4(y) + y) 0 0 (2.6)

and then determine y so that

y MEN(4(y) + y). (2.7)
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This latter approach is very similar to the one used by Rabinowitz [1]

and Hall [1] for a problem in partial differential equations.

Let us make our second assumption:

(112) there exists a projection S. X ->X with

XsCXIU n °_l(A) and SU = 0.

Of course the assumption implies that US = 0 and so R =

I - U - S is a projection.

Lemma 2.2. Suppose (HI), (H2) are satisfied, R = I - U - S, M is

the right inverse of A as in Lemma 2.1 and x e X is written as

x = xU + xS + xR. Then the equation (2.1) is equivalent to

a) x - MEN(xU + xs + x) = 0

b) xs - SMEN(xU + xS + xR) = o (2.8)

c) (I-E)N(xU + xs + R) =-o

Proof: Lemma 2.1 implies (2.1) is equivalent to (2.2) and SU = 0

implies that ( 2 . 2 a) is equivalent to (2.3a), (2.3b). This proves

the result.

Lemma 2.3. Under the hypotheses of Lemma 2.2, there is a constant

k > 0 such that IRMI < k (or ISMI < kj) if and only if lRxI <

kIAxi (or ISxl < kiAxI) for all x E -9(A).
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Proof: For any z c ZE and x c 9(A) for which Ax = z, we have

RMz = EMAx = R(I-U)x = Rx because RU = 0 (or SMz = SMAx = S(I-U)x

= Sx because SU = 0). The result is now obvious.

Corollary 2.1. If (Hl) is satisfied, then A has a bounded right

inverse M" ZE -- XIU n 9(A) if and only if there is a constant k

such that

I(I-U)x! <k IAx1 for x e 9(A). (2.9)

Furthermore I(T-U)MI < k.

Proof: Take S = 0 and apply Lemma 2.3.

This corollary shows in particular that the computation of

the right inverse is unnecessary since a bound can be obtained using

only the known operator A.

The existence of a bounded right inverse for A can often

be deduced from the following result.

Lemma 2.4. If (Hl) is satisfied and A is a closed operator, then

A has a bounded right inverse.

For a proof, see Nirenberg [1].

Lemma 2.2 is the simple observation that equation (2.2a) may

be written as two equations by means of the projection operators R, S

and is applicable to problems in which N may not necessarily be small.
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By choosing the operator S appropriately, for a fixed y E XU)

z E S, one can attempt to solve the equation

xR -MEN(y+z+xR) = 0 for an (2.10)

for an xR = x(y+z) and then determine y, z so that

z - SMEN(y+Z+x*(y+Z)= 0

(2.11)

(I-E)N(y-Iz+ *(y-lz)) =0

A special case of this procedure can be traced to the paper

of Cesari [4]. Knowing a priori that xi(y+z) is small for y, z

in some bounded set, then a natural first approximation for the solu-

tion of (2.1) is to let xR = 0 in (2.11) and solve the resulting

equations. Retracing the steps through which we arrived at (2.11),

one observes that this approximation corresponds to a generalized

Galerkin approximation. The general procedure outlined above can

actually be used as a theoretical way to justify Galerkin's method

(see Cesari [4]).

In spite of the simplicity of Lemma 2.2, it seems to in-

clude the method given by Bancroft, Hale and Sweet [1] as far as the

applications are concerned. To see this, we give a detailed

description of the analogue of Lemma 2.2 in the cited paper. Suppose

(Hl) and (112) are satisfied, A has a bounded right inverse M: ZE

XIU n 9(A) and let P = U + S. Then there is a projection
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Q: Z -4 Z such that (2.1) is equivalent to the equations

a) x = Px+ MQNx
(2.12)

b) (I-Q)(A-N)x = 0.

These equations are very interesting because they have the

same form as the equations (2.2) since (2.2b) is equivalent to

(I-E)(A-N)x = 0. It can also be shown that

(I-Q)A = AP, I - Q= I - E + Q where MZ- = X S nf (A)

(I-E)•-- •(I-E) = 0.

Therefore, if x =XU + xS + XR, R =I U - S =I - P,

then (2.12b) is equivalent to

As - Q(N(xs+Xs+) = 0

(I-E)N(xu+Xs+XR) = 0.

Since MZ = x. n 9_(A), it follows that (2.12) is equivalent to:

a) xR - MQN(xu+xs+xR) = 0

b) xs -MS (X+Xs+X) 0- (2.13)

c) (1-.Q)(A-N)((xU+xS+xR) = 0.
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These equations have the same form as (2.8) except with RM = MQ,

SM = MQ. On the other hand, Lemma 2.3 shows that the norm of these

operators can be estimated in terms of the operator A so that it

is unnecessary to discuss the operator Q.

We now give some sufficient conditions for the solvability

of (2.2a), and for that we need the following assumptions:

(H3) there is a constant k > 0 such that IRxI <

kiAxI for all x c 9(A), where R = I - U - S.

(H4) there are positive continuous nondecreasing

functions ca(p), P(p), 0 < p < - such that

INxI < P(p)

INx-Nyl _<a (p)Ix-y] for IxI <_ p, tyl < p.

For any positive constants c, d let

V(c) = [x CxiR: lxi < c)

S(d) = (x c X R Jxj < d)

Theorem 2.1. Suppose (Hl) - (H4) are satisfied, M is the operator

in Lemma 2.1 and c, d are such that

IR•lla(c+d) < 1, 1.v1E1P(c+d) < d (2.14)
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Then for any x in V(c), the map

A() = BMEN(x + .1" XR -ýX

is a contraction mapping of S(d) into itself with a resulting unique

fixed point Fx. The function F: V(c) -ýXR is continuous. Further-

more, if N has a continuous Frechet derivative, then F has a

continuous Frechet derivative.

Proof: Lemma 2.3 implies IRME] < kjEj is bounded and the result

is now easily verified using the contraction principle.

Theorem 2.2. Suppose the conditions of Theorem 2.1 are satisfied and

F is the function given in Theorem 2.1. Then the equation Ax = Nx

has a solution if there exist xs, xU such that (xs+xu) e V(c) and

a) xs - SMEN(x s~x+F(xj+xS)) = 0

(2.15)
b) (I-E)N(xU+Xs+F(xf+xs)) = 0.

Conversely, if there exists an x such that Ax = Nx, JxR1 < d,

1xu+Xs5  L c, x = xR + xU + x., then xR = F(xu+xs), where xu, xS

satisfy (2.15).

Proof: This is obvious from Theorem 1 and Lemma 2.2.

The conditions of Theorem 2.2 imply that equations (2.15)
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(the determining equations) are equivalent to the equation Ax.= Nx

for the solutions x = xR + xU + xS with JxRJ < d, JxU+x.1 L c.

It is of interest to determinefor given c. d conditions on A

which will ensure that the range of the projection operator S is

always finite dimensional. Such a result is contained in:

Theorem 2.3. Suppose X is a Hilbert space, A satisfies (Hl) and

the set V = (x c (I-U)-9(A): JAxJ < 1) is relatively compact.

Th en,, for any k > 0. there is a projection S: X -4 X with finite

dimensional range and satisfying (H2), (B3). Consequently, if (H4)

is satisfied, then., for any positive constants c. d there always

exists an S such that (2.14) is satisfied and., therefore, the con-

clusions of Theorem 2.2 hold.

Proof: If we call B 1 the unit ball in Z E-' we see that M(B VY

and then M is a compact (and hence bounded) operator. Since V

is totally bounded., for any k > 0., there is a positive integer n(k)

and a sequence (x C V.ý j = 1.2.,,,,.,n(k) such that for any z in

Bl,, there is an x with JMz-X i I < k. Let S = S(k): X -ýX be the

projection whose range coincides with the finite dimensional subspace

spanned by (x and whose null space is [xj,, ..'x n(k)] I 'E' Y`U1

where the orthogonal complement is taken on X I-U* Since an ortho-

gonal projection has norm 1, JI-SI < a, where a depends only on U.

Then., for each z in B 1* we have: 1(,-s)mzl = M-s)(Mz-x i )I < ka.

Clearly US = SU = 0. Since 'UM = 0.1 Lemma 2.3 implies (H3) is

satisfied. The remainder of the proof is obvious.
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Theorem 2.4. Suppose the conditions of Theorem 2.3 are satisfied and

there is a sequence of finite dimensional orthogonal projection

operates Sm: XIU->XIU such that XS C XS , m = 12) ... and
m m+l

for any finite dimensional projection operator T: X IU -+X 1_U and

any e > 0, there is an mo(e) > 0 such that J(I-Sm)TI < 9 for

m > mo(9). For any constants 0 < c < d, there is an integer m. > 0

such that each S for m > m. satisfies (2.14) and, therefore,
m -J-J

the conclusion of Theorem 2.2 hold.

Proof: For any k. satisfying (2.14) there always exists an S =J

S(kl) by Theorem 2.3 such that (H2), (H3) are satisfied. Choose

m 1so large that 1(I-Sm)SM] < r where )E] (r+kl) <

mrin t[(c+d)]- d[p(c+d)]-I for m > m.. Then

1(I-S n)M1 < I (I-S m)SMI + I (I-Sm) (I-S)MI <T + I (I-S)MI < k. + 7.

Therefore, Sm satisfies (H2), (H3) with k- = k + r. On

the other hand, the choice of n implies that (2.14) is satisfied

with k = k. + r1. The remainder of the proof is clear.

In the case where the determining equations are finite

dimensional and are obtained by the application of the contraction

principle on the operator A in Theorem 2.1, Williams [1] has shown

that it is possible to establish a theoretical connection with the Leray-

Schauder theory and topological degree.
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3. Methods of Solution

Under appropriate hypotheses on A, we have seen in the previous

section that the solution of Ax = Nx can be reduced to the solution of

equations (2.2) or (2.8). Our goal in this section is to discuss in a very

general manner various methods for obtaining approximate solutions of these

equations. An abstract version of this problem is as follows: Suppose

U, V, W are Banach spaces and B: U X V -4V; C: U X V -4W are continuous

operators. The solution of equations (2.2) or (2.8) is a special case of

the following problem: find u e U, v G V such that the system of equa-

tions

u - B(uv) = 0

(3.1)

C(u,v) = 0

is satisfied.
/

If B and C have continuous Frechet derivatives, the classical

iterative method for solving (3.1) is Newton's Method. Let Bu(u,v),

Cu(u,v), Bv(U,V), Cv(u,v) denote the Frechet derivatives of B(u,v) C(uv)

with respect to uv, respectively. If the linear mapping _(uv):

U X V -4V X W given by

[-(u,,v)](),*)-- [(I-Bu))p - B v, Cu• + Cv*]

has a bounded inverse for every (uv) in some bounded set, then Newton's

method is given by
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(u 0 ,V0 ) given3

(3.2)

(Un+lpVn+l) = (Unvn) - [_(Un,Vn)]-[un-B(unVn),C(UnVn)] (n = 0,1,2,...)

Conditions for the convergence of this method as well as error bounds may

be found in Antosiewicz [3].

There are many variants of Newtont s method that can be used to ad-

vantage. For example, we could always evaluate the inverse of •_R at

(u 0 ,v 0 ) in order to eliminate some computations. Another scheme we might

choose is

(uo,vo) given;

(5.3) Un+1 = un - [IBu( unvn)] l unB( unvn)])

Vn+l = vn - [Cv(UnVn)]-lC(unVn) (n 0,1,2,...)•

provided, of course, that the inverse operators exist. Alternatively, we

could attempt the iteration

(u 0, VO) given3

(3.4) un+l = B(un,Vn);

v vn - [Cv(Un,Vn)] - 1 C(Unvn) (n = 0,1,2,...).
n+1n n

Convergence criteria and error. bounds are easily obtained for each of the

above methods.
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A case of (3.1) that occurs quite frequently in the applications is

when N = 8N, where F is a small real parameter satisfying 0 < li _< g.

If Hl) and H5 ) are satisfied for S = 0 and if N is locally Lipschitzian,

then we can see that the conditions of Theorems 2.1 and 2.2 are satisfied

for e0 sufficiently small. Therefore, there exists a function

F: V(c) X [-gogo] -X IU

such that F(xu,e) is continuous in Xue, and satisfies F(xu,O) = 0.

Thus system (2.1) has a solution if there is an e1 > 0, e 1 < e0 , for which

the equation

(3-5) (I-E)N(xU + F(Xu,e)) = 0

has a solution xU = xu(e) for 0 < lei < el.

If N has a continuous Frechet derivative Nx, then F(xue) has

continuous derivatives in xUe. Therefore, if there exists an xU such

that

a) (I-E)N(xo) = 0;

(3.6)

b) (I-E)TT(x ) has a bounded inverse,

then the implicit function theorem implies the existence of a solution x4e)

of (3.5) for 191 _<el, e < eo sufficiently small, satisfying xu(O) (

Thus, equation (2.1) has a solution
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x =xU() + F(xu(g),e) for eg1 < e

A rather natural way to calculate the solution x for this special

case is to use a variant of (3.4); namely,

x n u n n+vn n u n E XI= 0v2 EXU.)n

u= 0, v0  xU;o

(3.7)
Un+1 = MEbN(un+vn);

Vn+1 = vn-e[(I-E)Rk(x')] (I-E)T(vn+Un+l) (n = 0,1,2,...).

It is fairly easy to show that this method converges for Ili sufficiently

small (see Lazer [11 for a special case).

If N is analytic in some region, then the function F(YU,e) will

be analytic in an appropriate region, and condition (3.6) will imply the

solution x48) is analytic in some region. An obvious way to obtain

the power series expansion of x = x4g) + F(xu(e),e) in e is to simply

let

00

ko k k, Xk = Uk+vk, uk XIU; vk Uk=O

and try to determine the coefficients successively. These coefficients

must satisfy

(0 f O,,v0 vTy )

(3.8) u k+1 fk(Uo,...uk, Vo,...,vk)
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(I-E)Nx(Xu)vk+1 = gUk, vo,...,Uk) (k = 0,1,2,...);

where the fk' gk are some given polynomial functions of their argunents.

Condition (3.6) implies that these equations can be solved. This is the
/

natural generalization of the Poincare procedure for obtaining periodic

solutions of ordinary differential equations.

In general, the method (3.7) is probably a more accurate way to

obtain the solution, but (3.8) is certainly very simple.

We conclude this section with a brief description of the notion of

quasilinearization. We have seen that the equation Ax = Nx isequivalent

to the system

xI-U = MEN(xU + xlU)

(I-E)N(xU+xiu) = 0

If we let xU = V, xiU = u, the system becomes

U -M(u+v) = 0;

(I-E)N(u+v) = 0.

For solution, we use the modified Newton method:

Iun+1 = Un _ [(I-_ENx(Un+Vn)(]-i[ nMEN(un++v) ];

V n+l v Vn _ [ (iE)N x(U n +vn)]-l1(iE)N(U n +vn)
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i.e.,

U n+1= MEN (u n+v )[u Un+l-Un] + N(un+vn)yJ;

(I-E)tQN x(U n+Vn)]Vn+l-Vn1 + N(u+vn)] = 0.

This last system is equivalent to

( [A-EN (un+vn)]Un+i = E[N(Un+vn)-N (un+vn) Un)

(I-E)Nx(Un+v)vn1 = (I-E)[N(un+Vn) - N (Un+Vn)Vn].

Thus whenever I = E, the pair of equations above reduces to a single equa-

tion. In such an event, we have quasilinearization (see Antosiewicz [3]).
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4. Periodic Solutions. To illustrate how to formulate specific

problems in the above manner, consider the equation

-= Bx + Cf(t,x) (4.1)

where f(t+2wTx) = f(t,x) is an n-vector continuous in .(t,x), B

is an n x n constant matrix and e is a small real paramter.

Our problem is to find 2w-periodic solutions of (4.1).

To formulate this in abstract terms, let X = Z be the

Banach space of continuous 2vw-periodic functions with ]xI =

sup lx(t)1 for x e X. For any x c X with i continuous let
O<t<2w

(Ax) (t) = i (t) - Bx (t) , -* < t < -,ý (4.2)

and for any x E X, let

(Nx) (t) = f (t, x(t)),- < t < -o. (4.3)

Finding 2w-periodic solutions of (4.1) is now equivalent to

finding an x e X such that

Ax = NX, (4.4)

with A,N defined in (4.2), (4.3).

The set %(A) is the set of all 2wr-periodic solutions of the
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unperturbed equation:

S- Bx = o . (4.5)

Therefore, it is a finite dimensional subspace of X and admits pro-

jection by an operator U, %(A) = XU. If J is the set of integers

j such that (B-jI) is singular, ell...,e p are a basis for theW i U

eigenspace of j and x - 7, xk exp(ikt), then Ux Z xkexp(ikt)
k= -o kcJ

U
where xk is the projection of xk onto the span of the vectors

e l l . . . e e P k *

The classical Fredholm alternative states that the equation

k-Bx = y, y e X (4.6)

has a solution x c X if and only if

27
f z(t)y(t)dt 0 (4.7)
0

for all row-vectors z for which z' c X (I = transpose) and

+ zB- 0. (4.8)

Since the linear subspace spanned by such z' is finite

dimensional, if follows that .- (A) = XE for some projection E.

o hikt
To check (H3), we see that for any x c O~(A), x - Zx.ke
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S - , ikxkeikt, and hence 2 •k2 I, 2 < .. Then

I(I-U)xl =I (ikI-B)- (ikI-B)xke <

kýJ

( I(ikI-B) -12)1/ (Z lkI-B) U12)1/ M( 1 27 ii2 1/2
$ f <x(t) A dt)t <

kýJ 0

<MIAx1 for some constant Ml.

Consequently, the previous theory implies (if f(t,x) has a continuous

first derivative with respect to x) for any c < d, there is an

O > 0 such that for any fixed u e XU, lul < c, there is a unique

solution F(u,g) G XIU of

Av = EN(u+v)

for 0 < JJ _< eo and F(u,g) is continuously differentiable in u,e.

The bifurcation equations are then given by

(I-E)N(u + F(u,g)) = 0. (4.9)

Since 9T(A) = XU is finite dimensional, it is more con-

venient to write the bifurcation equations in terms of a variable in

some Euclidean space. If 0 = (CP1 ..."d) is a basis for 91(A)

then u = Oa for some d-vector a, and the bifurcation equations

become
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G(a,e) d (I-E)N(Da+F(0a,9)) = O. (4.10)

If f(t,x) is analytic in x in some region, then F(u,e)

is analytic in u,.. One can show that if there is an a0 such that

G(ao,O) = 0

(4.11)
det[-7 (ao,O)]/ 0

then there is a solution a(e) of (4.10) for e small, which is

analytic in 9. One could, therefore, obtain the solution in powers

of 9 by substituting in the original equation

iCo

x xrek la Vk, Vk C XIU (4.12)S~k=O

and determining 'aKvk So that the equation (4.1) is satisfied. This

is the classical Poincare perturbation procedure for obtaining periodic

solutions of (4.1).

Of course, any of the other methods mentioned before give

other iterative schemes. In particular, the analogue of (3.7) for

this special case and hypothesis (4.11) was given by Lazer [1].

In many applications, condition (4.11) may not be satisfied

and therefore the above iterative procedures fail. However, it is

sometimes possible to discuss the qualitative properties of the

determining equations (4.10) without any successive approximations.
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We mention only the classical problem of Liapunov on the existence

of two parameter families of periodic solutions of Hamiltonian sys-

tems. One can show without successive approximations that the

bifurcation equations are identically zero (see Hale [4]).

One point about the above procedure that has been neglected

is the precise determination of the projection operators U and E.

There are many ways to choose these and each gives a different form

for the approximating equations. We mention only one way.

If 0 is the n x d matrix whose columns are a basis for

the 2wT-periodic solutions of (4.1) and T is a d x n matrix whose

rows are a basis for the 2w-periodic solutions of (4.8), define the

nonsingular d x d matrices C,D by

2w 2w
C = f 1' (t)0(t)dt, D = f T(t)¶' (t)dt

0 0

and projection operators UQ on X by:

12w

Ux = Oa a = C f DT (t)x(t)dt
0

Qx= T'b b = D- 1 f ¶(t)x(t)dt;
0

then

XU = 9(A), XiQ = Q(A), E = I - Q.
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To illustrate the application of the above ideas to a problem

involving no small parameter, we consider the following problem of

Lazer and Sanchez [1]. Suppose x is an n-vector, X is the space

of L2 n-vector functions of period 2Tr, p C XI H: E -*R is a func-

tion with continuous second derivatives satisfying:

2 ý2H(a)1 2 n
NI < IýI (. C p.N+lI < (N+l) I for all a E E

A matrix is greater (strictly greater) than zero if it is positive

(positive definite). The problem is to discuss the existence of a

2w-periodic solution of

R + grad H(x) = p(t) (4.15)

The case n = 1 was first treated by Loud [1] and generalized by

Lazer and Leach [1]. For the n-dimensional case, we have the fol-

lowing

Theorem. Under the above conditions, the equation (4.15) has a 27w-

periodic solution.

Proof: We only indicate the essential ideas of the proof and the

reader can consult the original paper for details. Let A: O(A) C

X -4X be defined by (Ax)(t) = t and N X X
dt,

be defined by Nx(t) = -grad H(x(t)) + p(t), t e (--yo). Then

9(A) =XU is the set of constant functions in X.

The operator A obviously has a bounded right inverse M
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and without loss in generality, we can assume UM = 0. Therefore,

finding 27w-periodic solutions of (4.15) is equivalent to Ax = Nx

which in turn is equivalent to

a) x = Ux + M(I-U)Nx (4.16)

b) UNx = 0.

If x = y + z, y C XIU, z c XU, then (4.16) is equivalent to

a) y = M(I-U)N(y+z) (4.17)

b) UN(y+z) = 0.

The first step of the proof is to show that for any z e XU•

there is a unique solution F(z) of (4.17a). This is accomplished

in the following manner: For any ý. such that (I-p.M) has a bounded

inverse, equation (4.17a) is equivalent to

y = (I-pM)-M[(I-U)N(y+z) - pLy]dJ f(I-p)-MyG(y,z).

Using methods very similar to those of the Hilbert-Schmitt

theory of Fredholm integral equations and for p. = 1 +I+ N), it

is then shown that the operator (I-pM)-IMG(.,z) is a contraction

for each z. This depends upon the fact that M is completely con-

tinuous and has a complete orthonormal system of eigenvectors and

that the Gateaux derivative G (x) of G satisfies

T _7 ' T I.. ..... A •.'f L-iDEARY
305
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IG'(x)l < £(N+l) 2 -

In the process of the proof of the contraction one also ob-

tains that F(z) is globally Lipschitzian in z, with Lipschitz

constant L and JF(z) - zi < La for some constant a. Therefore,

UN(F(z) + z) is globally Lipschitz in z with Lipschitz constant K.

The next step is to show that the function r(z) = UN(F(z) + z)

satisfies z.y(z) -*4 as IzJ -J and for any r for which z-y(z)

> 0 on V = (Z: IZi = r1, there is an 9 > 0 such that ]z - .(z)l

2 2
<i = r on V. This implies the map z -cy(z) takes &V-*V

and a known theorem in En implies there is z0 e 4V such that

z0 - ey(z 0 ) = zo; that is, y(Zo) = 0. This proves the theorem.

We now indicate the method of Cesari [4] for the justifica-

tion of the Galerkin procedure for finding periodic solutions of

ordinary differential equations. This method applies to general non-

linear problems and involves choosing a projection operator S as

in Lemma 2.2.

Let X be the Banach space of continuous 2w-periodic func-

tion with the topology of uniform convergence and let A: 9(A) C

dx
X -+X be defined by (Ax)(t) = , -• < t < •. For a given continuous

function g: R X En -4 En, g(t,x) locally Lipschitzian in x,

g(t+2, x) = g(t,x) for all tx, let N: X - X be defined by (Nx)(t) =

g(tx(t)), -w< t < c.

The equation

ý(t) =g(t,•(t)) (4.18)
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has a 2v-periodic solution if and only if there is an x E X such

that

Ax = Nx. (4.19)

It is clear that 9%(A) = XU is the set of constant functions
2v

in X and U may be chosen as (Ux)(t) = 7 f x(s)ds, -o < t < o.
0

Also, Q(A) = XIU. A bounded right inverse M for A is defined

for any z e XIU as the unique solution of mean value zero of the

equation (Ax)(t) = i(t) = z(t), -o < t < -. Clearly M: Xi_ -+XI_,

UM= 0.

Any x E X has a Fourier series

x) ikt 1 - ikt, ak f e x(t)dt.k=-co = 0

For any given integer m > 0, let Sm: X -3 X be defined by

(SmX)(t)= ake ikt (4.20)

One easily sees that SM = MSm for all m > 0 and Lemma 2.2

implies that equation (4.19) is equivalent to

y = M(I-P)N(y+z)

P [A(y+z) N(y+z) 0
(4.21)

p =u+ sm., EX z X
I-P

mm
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Using the definition of Pm, M, Parseval's inequality and Schwarz's

inequality one easily shows that

1M(I-m)xI < y(m)Ixl, y(m)= (2r)/2( k-- Ikl>m

Since y(m) -+ 0 as m-+ o, one can use the contraction

principle to prove for any c > 0, d > 0 that the conditions of

Theorem 2.1 are satisfied for m sufficiently large. Thus for m

sufficiently large, the equation (4.18) has a 2wr-periodic solution

if and only if there exists a z e X such that
Pm

'•,(A-NT)(z+F(z)) = 0. (4.22)

In words, the above remarks imply the following: there is

always an integer m such that one can fix

z(t)= z zkeikt

and determine a function x *F(z) + z in such a way that the Fourier

series of the function v(t) = k(t) - g(t~x(t)) contains only the

iktharmonics e , Iki < m. The determining equations (4.22) involve

the determination of the Zk, M k] < m, in such a way that the remaining

Fourier coefficients of v(t) vanish.

Now to determine the existence of a periodic solution using
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this method., one must determine first how large m must be in order

to apply the contraction principle and then try to show the existence

of a solution of the determining equations (4.22) even though they

involve the function Fz which can only be known approximately. One

usually proceeds in the following manner: first obtain an a priori

bound on F(z) as IF(z)_< 5 m for some constant m. Then try to

show the equation

Pre(A-N)(y+z) = 0

has a solution for every function y e X with _l m 6M.
I-> -

m

To show this latter property is satisfied one naturally looks

at the problem for y = 0,

P (A-N)(z) = 0,

which is the mth Galerkin approximation to the solution. An index

argument can sometimes be used to complete the investigation. For

some applications see Cesari [4],, Locker [1, 2].

In the limited space we have here, we give a simpler applica-

tion due to Knobloch [i]. Consider the system of second order differ-

ential equations

Y f(t,y,•) = 0

f(t+27f,y,Z) = f(t,y,z) (4.25)

Y = (Yl,'".,Ym), f = (fl,..., )
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and assume that f(t,y,z) is bounded in (t,y,z) and globally

Lipschitzian in y,z and there exist a. < •i such that

f.(tyz) < 0 if Yi < a.

fi(t,y,z) > 0 if Yi > Pil i = l,2,...m.

We assert that the above hy-potheses imply that (4.23) has

at least one 2w-periodic solution.

In fact, repeating the same process as above with (Ay)(t)

Y(t), (Ny)(t) = -f(t,y(t),r(t)), one concludes that there is an integer

n0  and a function F: X - XI such that F is continuous and
I -pno n0

equation (4.23) has a 2w-periodic solution if and only if there exists

a u c X, satisfying P n (A-N)u = 0. These equations are equivalent

to

Sg.(a) def .2 1 2w1

= -j aj - f 2 I(tu(t) + Fu(t), -6(t) + F(ta(t))dt = 0

S2v 0 < JI <I n.
go(a) def f f(t,u(t) + Fu(t), A(t) + F-a(t))dt = 0

0 77 0

if

u(t) k aoke ikt and a = (an ,...,a-laOal,...,ano
(kann0 0 0
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In the space of vectors a, let us consider now a box

around the origin with faces parallel to the planes a. = ,O

0 < iJi < no and such that g.(a), 0 < Jj i mn, takes opposite signs

on opposite faces to the plane a. = 0. For these faces fixed, move

the other faces so far apart that g0 (a) takes opposite signs on

these latter faces. Mirando's version of the Brouwer fixed point

theorem now implies there is a zero of all the functions g.,

0 < KJj • no, in the box. This proves the result.

Further interesting applications of these techniques to

periodic solutions of ordinary differential equations may be found

in the papers of Mawhin [1-3].
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5. Eigenvalues of Nonlinear Operators

Let X be a Banach space and C: -9(C) C X -*>X be a linear

operator; let also B: X -->X be an operator such that B(O) = 0 and B
/

has a continuous Frechet derivative B'. Then, Bx = Dx + ýIx, with D =

B'(0), y9(0) = 0, 92'(0), and in fact,

I x-nyl P (p)Ix-yJ for Ixi, lyl < P,

where P(O) = 0.

The eigenvalue problem is the following: Does there exist 0 0

and x ý 0 such that Cx = pBx?

We say that p0 is a bifurcation point if for any e > 0 and

any p >0 there is a it in IP-Pol <e and x ý 0, lxi < p such that

Cx = IBx.

If we write the equation as (C-ýi 0D)x = (p-Lo)Dx + Qx and

(C - 0D) has a bounded inverse, then there can be no bifurcation at p0"

In fact, x = (C-IoD) 1[(ii-po)Dx + Qx] and the contraction principle implies

a unique solution of this equation for lp-01p < e, lxi < p if e and

p are small. Since x = 0 is a solution, p0  cannot be a bifurcation

point. Therefore, to have a bifurcation, (C-1 0 D) must not have a

bounded inverse.

If we call A = C-p 0 D, N = (p-ýo0 )D + i-2 we are going to assume

as before that 91(A) = XU, R(A) = XE for some projections U and E,

and that A has a bounded right inverse M, with UM = 0. For example,

if C = I and B is completely continuous, this hypothesis is always

satisfied. For this latter situation (C = I and B completely continuous)
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Krasnoselskii [1] has proved by using rotation of a vector field that there

exists always a bifurcation at i0 if the generalized eigenspace of A

is of odd dimension. We show that the techniques mentioned before can be

used in the more general situation to attack this problem, but will only

be able to conclude that bifurcation exists (under an additional weak

hypothesis on A) if dim 9Z(A) = 1.

As before, the equation Cx = IIBx is equivalent to Ax = Nx, and

hence it is equivalent to the system

(5.1) a) x Ux + MENx

b) (I-E)Nx = 0.

If we call x = y+z, y e XIU, z I XU, (5.1) can be written as

(5.2) a) y = IEN(y+z)

b) (I-E)N(y+z) = 0.

For any positive constants c and d let

V(c) = (x E XU: I _< c), S'(d) -x E X: Ix _< d, Ux = 0).

Theorem 5.1. There exist e0 > O, d0 > 0 such that for every 0 < c,

d _< do 0there exists a unique continuous function Fs V(c) X tik-ý101

e ) --- X such that, F(O,P) = 0,

F(x,ýL) E _V'(d) for x E V(c) and I .- iol _< e0

and
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F(x,p.) = NEN(F(x, )÷x), l-ix < eo.

Furthermore, x = x + F(xIi) satisfies Cx = pBx if and only if

x satisfies

(I-E)N(ý+F(ý,l)) = o

The function F(x,.) has a continuous first derivative with res-

pect to xi.± and there is a constant a such that I F'(0,•)I _<1 ýl-101.
x

Proofs From the definition of N, we have N(0) = 0 and jNx-Nyj <

I Lj(c+d)Ix-yj + lI -ýojIDIIx-yI < [IIIP(2do) + IDII ..-pO ] Ix-yl for

Ixj _< c, I y _< d, Ixj + I _< c+d < 2d, I0L-Ji0i _ eo.

The contradiction principle gives the result that there exist

do >0, e0 >0 and F(xp), x E V(c), I -L0 _< e0  such that

F(x,p) = MEN(F(x,±) + x)

The continuity and differentiability of F(x,•) also is obtained

from the contraction principle and the differentiability of N with res-

pect to x and P. The fact that x must satisfy the bifurcation equa-

tion is clear.

To prove the last assertion of the theorem observe the equality

implies that

F(X,±) = MEN(F(xp,±) + ')

F' (•,i•) = MEN•x(F( JI) + x) (F,'Cp) + I)
x x
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But Nx = (L-Po 0 )D + n'(x), with W'(O) = 0 and so

F1,(O,ý) - ME(p-• 0 )D(F:1(O,ý.) + I),
x x

and then if jp-L0 is small, we have F'

0 =
x

where T(p) is a bounded linear operator for which we can find a bound in-

dependent of [A if I -p0l is small.

From the above theorem, the problem remaining is to solve the bi-

furcation equation. Suppose now that the subspaces T(A), and (I-E)D 9Z(A)

are one dimensional. For C = I and D completely continuous, this latter

condition is not a restriction. For C a self adjoint partial differential

operator, D = I and X one of the usual Sobolev spaces, it is also not

a restriction.

Let Cp and * be a basis for %(A) and (I-E)D91(A), respectively.

If = acp., then the bifurcation equations are:

0 = (I-E)N(x+F(x,IA)) = (I-E)N(asp+F(arp,[))

= (I-E)[(p-io)D(ap+F(arL)) + p(arp+F(aCpp))1

= ([--[O)pa* + (p-pO)(I-E)DF(apji) + 4(I-E)n(ac+F(ap, i)),

where p* = (I-E)Dp, p 0 0. If we let
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(I-E)DF(ar..L) *r(a.=)

the bifurcation equations are equivalent to

(5.3) (p-ý 0 )Pa + (p-io)0(a,I4) + 5(a,p) 0 0

From Theorem 5.1, there are constants k, a, and a continuous func-

tion r(r), r > 0, r(0) = 0, such that the following inequalities hold:

Pr(a,•)I kiF(•p•p) <__ k[oaIapII I-I + y( I ap)'Iarp I,

I•(a,ii)l <k[(lap I + iF( aqp, .)I)[lapI + IF( , )l]

<P(1c1 + IF(acp,)I)[Iarp +i l'lp-oij + y(I ap) cp1

From these properties we have the bifurcation equations are equivalent to

(for any a 0o)

" r(oa, "-) a, .

ap ap

where ) and 6(ap) are continuous as a = 0 and go to zero asa a

a -*0, --)P0 (actually continuously differentiable). The implicit func-

tion theorem implies there exists a p(a) satisfying the bifurcation equa-

tion for a and Ip-p01 small enough. Also •(a) -> p.0  as a -*0. We

thus have the following,

Theorem 5.2. Under the above hypothesis on the simple eigenvalue Pop

there always is a bifurcation at p = p0.

We can find the solution iteratively as:
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yoO, " 0 -- 0

Yn+l = MEN(Yn + acp)

rn(a) 8n(a)

•n+1 =0 (n-'0) ap ap

where

(I-E)I~p = •

(I-E)Dyn = nrn(a)

ýL(I-E)91(ac+yn ) -- *an (a).

These ideas are closely related to the paper of H. Keller [1], where the

author studies the equations

Lu + Xg( X, X) = 0, x E D, Bu = 0, x c 6D,

L elliptic operator of order 2m, B linear of order m.

Another application of these ideas can be seen in the work of J. B.

Keller [1]. To see this, consider the equation

a) [I(t)ut]t + f(ut,X) = 0 tI_< t < t2

(5.4) alut(tl) + PlU(tl) = 0b)2

a2 ut(t 2 ) + P2 u(t 2 ) = oil O, 0 2 + P2 ý 0.

where u(t) is a scalar function and I(t) is positive and continuously

differentiable while f has derivatives with respect to X9 u up through

order three which are continuous in some rectangle uI _< u < u2,
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X1• < '-2, tl -< t _t2

Assume (5.4) has a solution u0 (t,X) for XI X < X2 , uI<

u0 (tX) < u2 . Also, assume the linear variational problem at X0 has a

nontrivial solution, i.e., there exists a solution qp of

(Ivt)t + fu(U0 (t"X 0 ),tpx 0 )v = 0

(5.5) clvt(tl) + P1v(t 1 ) = 0

C62 vt(t 2 ) + P2 v(t 2 ) = 0.

Then necessarily p(tl) = 0 (since cp(tl) = 0 would imply (pt(tl) = 0

and, by uniqueness, ýP(t) would be zero). Also the first boundary condi-

tion says that Ct(tl) can be determined from cp(tl), and so there is only

one linearly independent solution of (5.5).
t

Let us normalize it by putting f 2q dt = 1. The problem is to
t1

find conditions under which there are solutions of (5.4) near X = X0

other than the given solution u0 (tX).

To phrase this problem in the language of bifurcation of a non-

linear operator, let X be the Banach space of the continuously dif-

ferentiable functions on [t 1 , t 2 ] satisfying the boundary conditions (5.4b)

with the topology of uniform convergence of the function and its deriva

tive. Let

C: g-(C) C X -*X, (Cu)(t) = (Iut)t, tI < t < t2,

(5.6)

Bk: X X), (B.Xu)(t) = -f(u(t),t,X), tI <t <t 2.
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The above hypotheses imply that u0(.,X) E X is a solution of

(5.7) Cu = BXu

for X X -< X2 and, for X = X0. the equation

(5.8) (C-Bk (UO(.,o))u = 0

has a one dimensional subspace of solutions spanned by cp. The problem is

to find conditions on B which will ensure that (5.7) has solution
X

SU0 (-,X) for each X in a neighborhood of X = X0

This is not exactly a special ase of the problem discussed at the

beginning of this section, but the ideas used there are easily adapted to

this situation. If we let u = u0 (.,X) + v, then equation (5.6) becomes

(5.9) [C-B1o(uO(.,X 0 ))]v • (uo(.,X)+v) - BX(uo(.,X)) -BX 0(Uo(.,Xo))V

or v satisfies the differential equation

(5.10) (Ivt)t + fu(Uo(t,Ao),t, Xo)V =-f(u 0 (t,X)+v,tx))+ f(Uo(t,X),t,X)

+ fu(uo(tXo),t, Xo) v.

and the boundary conditions (5.4b). If

A C C - Bo(uo(.,-XO)),

Nv B(Uo(u.,X)+v) - BX(u-(.,X)) - Bo (uO(.,Xo))v
tA0

then (5.9) is equivalent to Ax = Nx. Furthermore., 91(A) = XU
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t 2

Nv = u[f f ](xo-x)v -t V
v UOX + fux(

where the functions are evaluated at some intermediate points between

Uo(.,X),6 and uo(-.,X0 ), X0 . Therefore, N has the same form as the N

discussed at the beginning of this section. The self-adjointness of the dif

ferential operator implies Theorem 5.1 may be applied to obtain the bifur-

cation equations in the form of (5.3). Calculating the constants in (5.3)

for this particular case the bifurcation equations are

a[p(X-> 0 ) + ra + ... ] = 0
t22

(5.11) p =f (fuuUOk + fux)p2dt
t 1

r f ft fuuIdt

t1

where all functions in the integrand are evaluated at Uo(t,x 0 ),t,x .

Consequently, if p ý o, P ý o, the implicit function theorem im-

plies there is a solution of (5.4) different from u0 (.,X) in a neighbor-

hood of X = Xo"

An interesting paper on determining the stability of bifurcating

solutions by using Leray-Schander degree has been written by Sattinger [1].
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6. Analytic Systems, Regular and Irregular Singular Points.

In this section, we indicate the manner in which some of the classi-

cal results on the existence of analytic solutions of linear differential

systems with or without singular points can be obtained using the above

procedure. The presentation follows closely the paper of Harris, Sibuya

and Weinberg [1]. The exploitation of the procedure for more complicated

solutions has not been but should be undertaken.

Suppose D = diag(dl,...,dn) where each d. is a positive integer,
tD ( .d d a

= (t,...9t n), B(t) is an n X n matrix analytic at t = 0, with an

absolutely convergent power series for Itl < 5.

Our problem is to find necessary and sufficient conditions for the

existence of analytic solutions of the equation

(6.1) tD D B(t)y

To phrase this problem in the language of Section 2, let X be the

set of all n-vector valued functions x(t) whose components have ab-

solutely convergent power series expansions for Itl < 6, 6 > 0. For
0o

x G , x(t) = x ktk, define
k=O

00

-I = > 2l Xk l6k
k=O

With this norm, X is a Banach space.

For any x e X, let A: X-4X be defined by

(Ax)(t) = tD (t), t Itl <
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Then, T(A) = XU, (Ux)(t) = x 0 , It[ < 5, is the set of constant

functions in X and Q(A) = E X: y = tD x x in X).

If we define X- X by

d -1 d t-1

(%'x)(t) =col( Z Xk t,., Xn kt) Iti<
k=O 1 k=O n

where x = col(Xk ,...,Xk ) then D is a projection on X and •(A) =

n

X IQ0. Furthermore, a right inverse M of A on Q(A) is given by

0 t tk
(Mx)(t) = (kZ0Xk +dl k+-- '' Z ,xk +d

k=O 1 k--O n n

l-d 1  1 -8n

and IMXI <max(5 ,..., 5 n)IxJ. Therefore M is bounded.

If N: X -*X is defined by (Nx)(t) = B(t)x(t), ItI < 6, then N

is a bounded linear operator and finding a solution of (6.1) in X is equi-

valent to finding an x e X such that

(6.2) Ax = Nx

From Lemma 2.1, (6.2) is equivalent to:

a) y = M(I-%)N(y+z)

(6.3)
b) QD~ ~ ) = 0 ., y E XI _U, z e XU

If the linear operator M(I-%)N are a contraction operator, then

( 6 .3a) would have a unique solution y = Fz where F: XU -* XlU is a

bounded linear operator. A solution of (6.1) would then be determined by

solving the finite set of linear equations QDN(Fz+z) = 0. Unfortunately,



-45-

this operator may not be a contraction. To obtain a contraction we pro-

ceed as in Lemma 2.3. For r > 0. an integer, let Sr: X -*X be the pro-r+l k I j < .
jection operator defined by (SrX)(t) = Etk Iti .

k=l

If Rr = I-U-Sr, then it is easy to see that

RrM(I-r) = M(I-%+rI)

and, furthermore, from Lemma 2.3 that (6.2) is equivalent to

a) v = M(I-QD+rI)N(v+u)

(6.4)

b) % +r(A-N)(v+u) = o, v E X, u E x-R
r r

It also follows immediately from the definition of M that there

is a P > 0 such that

(6.5) [M( I-Q+ri)l /rl

Consequently, for r sufficiently large, the operator M(I-Q+ri)

is a contraction. Therefore, for any fixed polynomial u of degree r,

there is a unique solution Fu of ( 6 .4a) with F: XIR -ýXR a bounded
r r

linear operator. This implies that the equation (6.1) has an analytic solu-

tion if and only if the polynomial u can be chosen so that

(6.6) %+ri(A-N)(Fu+u) = 0
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Equation (6.6) is a polynomial vector equation with the jth com-

ponent of degree d.+r-l for the n(r+l) coefficients of the vector

3 n

polynomial u of degree r) that is, these are at most nr + Z d.
j=- 3

linear homogeneous equations for nr+n unknowns. Therefore, there are
n

at least n - E d. linearly independent solutions. This proves the follow-
j=l a

ing theorem of Perron-Lettenmeyr:

n
Theorem 6.1. Equation (6.1) has at least n - Z d. linearly independentj=l J

analytic solutions for Itl < 8.

Now let us consider the case of the regular singular point (d 1

for all j). In this case, QD+rI= Q(r+l)I = U+Sr that is, %+rIx

represents the vector polynomial of degree r consisting of the first

(r+l) terms of the expansion of x. Theorem 6.1 gives no information in

this case, but we still may draw some conclusions. The function (A-N)Fu

has a power series expansion beginning with terms of degree (r+l). There-

fore, equation (6.6) is equivalent to

(6.7) (U+Sr)(A-N)u = 0

r
If u = •uktk, B(t) = IBktk, ItI <8, then equation (6.7) is

k=O k=O
equivalent to the system of linear equations

k
(6.8) (kI-BO)uk E B.uk ., k = O,1,...,r, u 1 - 0.

J~l -0

Equations (6.8) are the equations for the first r+l coefficients
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Co

of a formal solution u(t) - Z ukt k
k=O

(6.9) ttL = B(t)u

Consequently we have proved:

Theorem 6.2, Any formal solution of (6.9) is an analytic solution.

Let us now discuss the existence of solutions of (6.9) of the form

u(t) = t v(t) where v E X. Then

tv = [B(t) - XI]v(t)

Let n% be the dimension of SR(B 0 -UI) and let NX be the number

of linearly independent solutions u of the above form. The determining

equations corresponding to (6.8) are

k
[(k+?)I-BO]vk = ZB.vk , k = r

00

if v(t) = vktk. Clearly N. < n. + n,+ 1 +... and N. > N>+1.k=O

We now show that N. ? n.. Without loss in generality, we can as-

sume X = 0 and B0 is in Jordan canonical form. Each vector in 9Z(B 0 )

corresponds to a zero row of B0  and the corresponding d. may be reduced

to zero. Therefore, Theorem 6.1 implies at least n - (n-no) = n0  solu-

tions analytic at t = 0. This proves
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Theorem 6.3. max(nnkl,...) _X NX _ n. + + .... In particular, if

B0 = 0, that is, system (6.9) has no singular point, then there is funda-

mental system of solutions analytic at t = 0. If B -kI is a nonsingular

for each positive integer k, then N = no and, in fact, for any uO E

SR(B 0 ) there is a solution u(t) of (6.9) with u(O) = u0 .

Similar results can be obtained by the same methods for nonlinear

systems t D (t) = f(t,x(t)) (see Harris [l]).

A more complete discussion of (6.9) is obtained by trying to find

a fundamental matrix solution of (6.9) of the form U(t) = P(t)t G, where

G is a constant n X n matrix and P(t) is an n X n matrix analytic

at t = 0. We indicate how some information is easily obtained from
Bo

Theorem 6.1. If G = BO, then U = Pt a matrix solution of (6.9) im-

plies

(6.10) tP = B0 P- PB 0 + Fl(t)P, Fl(O) = 0.

2
If we look at this equation as an equation for the n components

p of P, then

(6.11) tj = C0p + Cl(t)p, Cl(O) = 0.

If no two eigenvalues of B. differ by a positive integer, then

no eigenvalue of C is a positive integer and Theorem 6.3 implies there

are as many linearly independent solutions of (6.11) as dim 91(Co).
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Furthermore, any p0 c 9Q(Co) yields a solution p of (6.11) analytic

at t = 0 and p(O) = pO. From the definition of p and CO the p

corresponding to P = I is in W(CO). Therefore, (6.10) has a solution

P analytic at t = 0 and P(O) = I. This gives the classical

Theorem 6.4. If no two eigenvalues.of B0 differ by a positive integer,

then there is a fundamental solution U of (6.9) of the form U(t) =

B0
P(t)t where P is analytic at t = 0 and P(O) = I.

Golomb [1] has given some interesting results on the expansion of

fundamental solutions of (6.1) even in the case of irregular singular points.

The approach applies to even more general equations and the ideas are very

closely related to those of Section 2.
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7. Partial Differential Equations. In this section, we indicate

how the above ideas have been used to discuss some particular problems

in partial differential equations. We do not treat the most general

situation, but try to bring out the main ideas and give appropriate

references for more sophisticated results.

Consider the wave equation in one dimension:

utt - Uxx = Eg(tx, uutux), where
(7.1)

g(t,xupq) = -g(t,-x,-u,-pq) = g(t+2-,xupq) = g(t,x+2v,u,p,q)

R2
for all (t,x,u,p,q) E 11(p) =(t,x) 6 R (R-,2)x(--,-); lul +

jp1 + jqj < p). The problem is to determine conditions on g which

will ensure that equation (7.1) has a solution u(t,x) satisfying

R2
u(t+2w,x) = u(tx+2w) = u(t,x) = -u~tx) (t,x) R . (7.2)

Due to the form of g any solution satisfying (7.2) will also satisfy

u(tO) = u(tw).= 0, t e (--,-), x e [O,71]. (7.3)

Therefore, we are solving for 27w-periodic solutions in t of the

vibrating string with ends fixed at x = 0 and x =

Let R = (-oo) and define
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T= (T:R R; continuous, q (t+2w-,x) = cp(t,x+2w) = cp (t,x)

W = •cp. R2 -R; q continuous, cp(t,x) = p(x+t) p(-x+t),

p(t+2w) =p(t);

C = (cp: R2 -4R; cp and cpx continuous);

C2 = (P" R: -> R; q continuous together with derivatives up through

order 2),

X = T n C 2; Z =T n C1.

All topologies in these spaces are those of uniform convergence, and

norms will be desiginated by 1I'V I'lW, I'i, '1H2, 1 i-6, I 'Iz,

respectively. Define operators A ,N, and Q by

A: 92(A) C X -- Z; (Au)(t,x) = utt - xx

N: X->Z; (Nu)(tx) = eg(t,x,u(t,x), ut(t,x), ux(tx)); (7.4)

27r 27r
Q: T -*T; (Qp)(tx) = 7 f cp(s,x+t-s)ds - 7 f q(s,-x+t-s)ds.

0 0

It is easy to see that Q is a projection of T onto TQ= W. We

can also consider Q to be a projection on X and Z, and as such,

it is clear that 91(A) = XQ. Finding a solution of (7.1) is equivalent

to finding a u e 92(A) such that
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Au = Nu. (7.5)

The following lemmas give more detailed properties of the

operators Q and A.

Lemma 7.1. For any p c T, the following are equivalent:

i) q e TIQ,

2w"

ii) f cp(s,y-s)ds = 0 for all y;
0

iii) f f wp(t~x)v(t,x)dxdt 0 for all r in T= W.
0 0

Proof:

(i) => (ii): If p c TIQ, then (Wp)(t,x) = 0 implies

(W•(t)-t) 0 ; i.e.

27T 2w"

f qp(s,-s)ds = f cp(s,2t-s)ds for all t.
0 0

Therefore

T2727 4v
0 = f (P )(t,-t)dt = 2 f q(s,-s)ds •f (f 0 (s,2t-s)dt)ds

0 0 00

27r ~ 27 271

2 f rp(s,-s)ds - f (f qp(s,2t-s)dt)ds
0 0  0

27" 27r 2w-s
= 2 f qp(s,-s)ds - f pf c(su)du)ds

0 0 -s
27

= 2 f cp(s,-s)ds
0
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since cp(s,-u) = -q(su). This proves (ii).

If (ii) is satisfied, then clearly (i) is satisfied. To

prove the equivalence of (ii) and (iii), suppose y((t,x)

p(x+t) - p(-x+t) and observe that

27 7 27 t+wT
f f c(t,x)[p(x+t) - p(-x+t)]dxdt = f f (p(t,y-t)p(y)dydt
0 0 0 t-7

= f f2(t,y-t)d p(y)dy

-0

Lemma 7.2. Q(A) = ZiQ and A has a bounded right inverse

M: ZI-Q XI-_Q*

Proof: For any qp e Z, consider the function

1 t x+t-e
U(tx) = f f cp(e,E)dde.,

0 x-t+e

which belongs to C2, and satisfies Utt -Uxx = ,U(tx),

U(t,-x) = -U(tx). To prove that Q(A) = ZIQ it is sufficient to

show that U(tx) = U(t+27T,x) if and only if qp c Z A straight-

forward calculation using the fact that cp(t,-x) = -4(t,x) gives

U(t+2T, X) 0 1 (eV,)d de

f t+27T[x:+t-e (e , E )dE de

0 ot+e
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2v x+t-e 1 t x+t-27r-e
i f f q(el)d•de + . f f P(e, )ad4e
0 x-t+e 0 x-t+2v+e

27 x+t-e
1 f f p0(e, )dce + u(tx).

0 x-t+e

Therefore, U(t+27,x) = U(t,x) if and only if

Sdef 1 27 x+t-elr(t,x) =e Z pe~)~~

0 x-t+e

for all tx. This is equivalent to requiring that *t(t,x) = 0 =

*x(t~x), for all xt, and that * is zero at one point. Using the

fact that cp(t,-x) = -qp(tx), we obtain

*t(t,x) =

I 2v
*1x(t,x) = (Qp)(t,x) + :.f cp(e,-x+t-e)de;

0

Since *I(0,0) = 0, 4r(t,x) 0 is equivalent, by virtue of Lemma 7.1,

to (QP)(tx) = 0. This proves that q(A) = ZiQ. Taking Up =

(U-QU)cp, the remainder of the lemma is obvious.

Lemma 7.2 implies that Au = Nu is equivalent to

u = Qu + M(I-Q)Nu,

QNu = 0.
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We can prove the following theorems by a straightforward application

of the contraction principle.

Theorem 7.1. Suppose g has continuous first and second derivatives

with respect to x,u,p,q in n(p) and let 0 < a < b < p be given

positive constants. Then there is an e1 > 0 with the following

property: corresponding to each y c XQ W c C2 , IrIX <a and to

each e, lei < el, there is a unique function r = r(r,e) in X,

Qr = r, Irx < b, continuous together with its first derivatives in

r,e, satisfying r(ro) = r, p(jO) = I, and

r tt - IPWxx = -EQN- '.

Theorem 7.2. Under the hypotheses of Theorem 7.1, if there is an

G2 < Cl and a function y(e) in XQ, 1y(c)IXK a, lEI c I 2' such

that

S= 0, (7.6)

then P(y(e),e) is a solution of (7.1) for lel e2. Conversely,

if (7.1) has a solution u(e) e X, continuous in e for lel L c2,

lu(e)lX < b, IQu(e)IX Sa, 16I SE 2 , then u(c) = r(y((),e), where

r(e) = Qu(e) and satisfies (7.6).

Equations (7.6)'are the bifurcation equations and a solution

y-(E) of (7.6) is necessary and sufficient (as described in Theorem 7.2)
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for the existence of a solution of (7.1) for e small. A more

convenient form for equations (7.6) is obtainable from Lemma 7.1.

More specifically, equations (7.6) are equivalent to

H(-, E) = o, r = r(y, ,); where (7.7)

2V H(,E)(Y) df g(s,y-s,r(s,y-s),rt(sy-s),rx(s,y-s))ds (0 < y < 2w)
0

The explicit formulae for H(r,0) and H'(y,0) are

27w
2 V H(y,0)(y) = f g(sy-sT(s,y-s),•t(s,y-s),-r(S,y-s))ds, (7.8)

0

2v
2v[Hr.(y,0)A](y) = f [guA(s,y-s) + apAt(s,y-s) + gqA(Sy-s)1ds (7.9)

0

where A is an arbitrary element of X and the arguments of gul

gp, gq are the same as in (7.8).

The functions HJH' are continuous mappings from X. into

the space PI of continuously differentiable 2w-periodic functions.

Thus we can apply the implicit function theorem to obtain a solution

of (7.7) and thereby a solution of (7.1). More specifically, if

there is a YO C XQ, 1Y01X < a such that

H(yro,O) = o; (7.10)

[H(•,O)] 1 :) P1 , -X

is bounded then there will be a solution of (7.7) for E small.
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Remark 7.1. Since

(oM)(t,x) = H( ,e)(x+t) - H(-,E)(-x+t),

we could apply the implicit function theorem directly to QNW, ob-

serving that the mean values of the functions in the domain of the

inverse of the derivative operator are unimportant. This remark is

convenient in the applications.

To see the nature of the bifurcation equations and especially

the functions in (7.8), (7.9), we consider only one example. Let us

examine the equation

utt - uxx = £[ut+bu+cu3+f(t,x)] (7.11)

where b,c are constants, b 0., and f(t,-x) = -f(t,x). The func-

tions H(y,o), HI(r,o), in (7.8), (7.9) are given by

y(t,x) = p(x+t) - p(-x+t), A(t,x) = q(x+t) q(-x+t),

H(y',O)(y) = pl(y) + [b+3cm(p 2)]p(y) + cp 3(y) - cm(p3 + h(y);

(Hý(y,O)A)(y) = q'(y) + [b+6cm(p 2)]q(y) - 3c[m(p 2q) - 2m(pq)];

1 2v
h(y) f f(s,y-s)ds, 0 < y < 27;

0

2w
where I d/dy, m(f) = C f (y)dy and we have assumed without loss

0
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of generality that m(p) = m(q) = 0. For c sufficiently small

one can show there is a p such that the conditions (7.10) are

satisfied and, thus, there is a solution u c X of (7.11) (see Hale

[31).

Many more problems of the above type have been considered

for equation (7.1) and for even more general equations. We have only

tried to indicate the procedure and refer the interested reader to the

papers of Cesari [6-9], Rabinowitz [1], Vejvoda [1-3], Hall [2],

Naparstek [1], and Petrovanu [1,2] for even more complete results

as well as additional references.

As another illustration, we briefly describe the ideas in

the paper of Landesman and Lazer [1]. Let D be a bounded domain in

Rn and let

n ..
A= 2 a

i,j=l i

be a second order, self-adjoint uniformly elliptic operator on D;

that is, each a = a is assumed to be real, bounded and measurable

on D and there is a constant c > 0 such that

n n
Z a ýi F,.

i,j=l -- j=l

0
for all x c D and for all real j.. Let HI be the closure through

the (real) inner product
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<u, v>1 = f (u.v+u xxv)dx
D

of C1 functions with compact support in D; let H0 = L 2(D) where,

for f~g E HO,

<f,g•o f fgdx.
D

For h c HO. a > 0 constant, and g: R -4 R bounded and continuous,

the problem is to determine a weak solution of

Au + au + g(u) = h(x), x G D;

(7.12)

u(x) :o, x E D.

That is, if

n
B(Uv) E f a1 u v dx,

ij=lD i D

we seek a u e H1  such that

(cp,Au) d-ef B(p,u) = <p,h-au-g(u)>O. (7.13)

0for all cp e HI. For any u e HO• let Nu = h - g(u). Equation

(7.13) will be written symbolically as

(A+aI)u = Nu. (7.14)
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With the representation (7.13) for the operator A, we can
0

consider A: 9(A) = H1CH0 •HO. A special case of the result of

Landesman and Lazer [1] is the following:

Theorem 7.3. Suppose SR(A+czI) is one-dimensional and w is a

basis for SR(A+cI), w(x) > 0 for x e D, jw1o = 1. Assume also

that g(s) -- g(oo), g(-s) -4 g(-o) as s -+ w, g(oo), g(-oo) finite,

and

g(-00) < g(s) < g(..), s E (-00:0). (7.15)

A necessary and sufficient condition for the existence of a weak

solution of (7.12) is

g('•) < <h•, w>0 < g(H)" (7.16)

Sketch of Proof: The Riesz representation theorem and Rellich's

compactness theorem imply that M(A) = H0 and that A has a

completely continuous right inverse S: H0 -HO. Equation (7.14) is

equivalent to the equation

u = -aSu - S[g(u) - h].

Since S is symmetric, one easily obtains <wg(u) - h> = 0, and,

frem the fact that w(x) > 0 in D, this implies
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is necessarily satisfied.

The proof of sufficiency is much more complicated and uses

the ideas mentioned in Section 2. Let T(A+aI) = HOQ, where Q is

the orthogonal projection through <,.> 0 onto the subspace spanned

by w. The operator A + cI has a completely continuous right in-

verse M: XO, IQ -+X IQ. Equation (7.14) is, therefore, equivalent

to the equations

u = Qu + M(I-Q)Nu;
(7.17)

QNu = 0.

If we let Qu = aw, where a is a scalar) then these equations can

be written as

u = aw + M(I-Q)Nu d=f Gl(u,a) (7.18)

dlef
a=a - qu 0 G2 (u,.a).

If we let G = (G 1, G2), then finding a fixed point of G in Hx X R

is equivalent to solving the problem. The difficult part of the

proof remains. By using the hypotheses on g and some careful

estimates, the authors show by means of Schauder's theorem that a

fixed point of G exists.

Using techniques more closely related to those of Lazer and
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Sanchez [1] discussed in Section 4, Landesman and Lazer have

also proved the following interesting result: Suppose D is a

domain whose boundary is regular enough for the existence of the

Green's function for the boundary value problem

Au = h(x), x 6 D, u(x) = 0, x C ;

where A is the n-dimensional Laplacian and h is Holder continuous

on D. Suppose that for I there exists no nontrivial

solution of

Au + au = 0, x C D; u(x) = 0, x E 2D.

It is then concluded that for F a real-valued C function on R

satisfying ai <F' (u) L a2 for all u, and for h Holder continuous

on D U ýD, the boundary value problem

Au + F(u) =h(x), x E D; u(x) = 0, x C 2D;

has a unique solution.

For other results on elliptic boundary value problems using

the ideas of Section 2, see Cesari [1O].
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8. Admissibility. In this section, we indicate in a few remarks how

the important concept of admissibility as defined by Antosiewicz [2]

subsumes the ideas of Section 2. Suppose XY are Banach spaces, F

is a vector space with at least the structure of a complete topological

vector space, G is a subspace of F with at least the structure of

a Banach space with the topology of G being finer than that induced

by F. Let u: X -+F be a homomorphism, v: E -+F is a continuous,

linear transformation, w: G -4 Y is a continuous transformation. The

first problem is to find an x e X, g c G, such that

g = u(x) +v Ow(g). (8.1)

We say (YG) is admissible (relative to the pair of linear

transformation (u,v) if, for any y E Y, there is an x e X such

that u(x) + v(y) E G. An application of the closed graph theorem

gives

Lemma 8.1. If (Y,G) is admissible, there exists a ýt > 0 and for

each y e Y a point x c X such that u(x) + v(y) E G and

['1lu(x) + v(y)ll < IyIYl.

Lemma 8.1 is basic for the discussion of the existence of

solutions of the nonlinear problem (8.1) when w is small in some

sense. More specifically, for any given g e G, one can find an
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x c X such that H(g) = u(x) +vow(g) e G and H: G -ýG will be

continuous. If one can find a subset G of G such that H: G0 -- G0

and H has the fixed point property, then there will be a solution of

(8.1) in Go. A result of this type is given by Antosiewicz [2].

Applications of this idea to the theory of asymptotic behavior of

solutions of ordinary differential equations may be found in Hartman

and Onuchic [1]. Implications in ordinary differential equations of

an hypothesis of admissibility on the behavior of the solutions of a

homogeneous equation may be found in Massera [1], Massera and

Schliffer [1].

It is easily seen that the problem of Section 2 is a special

case of the general problem considered here. Suppose X,Z are Banach

spaces A N as in Section 2, 91(A) = XU, •(A) Z Then Ax = Nx

is equivalent to the system

a) x = Ux + MENx

(8.2)
b) (I-E)Nx = 0.

If Y =Q(A), X = G = F, u = U, v= M. w =EN then the set (YX)

is admissible by construction and the first equation (8.2a) is a special

case of (8.1).

The concept of admissibility is a sweeping generalization of

the Fredholm alternative and will continue to have significant applica-

tions to differential equations.
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