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APPLICATIONS OF ALTERNATIVE PROBLEMS

Jack K, Hale

l, Introduction, Many problems in analysis and applied mathematics

can be reduced to the solution of equatioﬁs in a funection space or
functional equations, The equations often arise frém the desire to
obtain solutions of ordinary or partial differential~eqpations with
subsidiary conditions - periodicity of more general boundéry con-
ditions, specified asymptotic behavior, analytiéity conditions, etec,.
Many of the problems involve a linear operator gnd a nonlinear opera-

tor which is small when some parameter is small, If the linear

operator has an inverse, conceptually there are no difficulties in

obtaining approximate solutions although practically there may be
many difficultieg. At least one can draw on all existing fixed
point techniques. When the linear operator has elements in its null
space, then new concepts must be introduced in order to proceed.
Generally, one relies on some type of "Fredholm" alternative to
determine conditions on the elements of the null space of the linear
operator in order to obtain solufions of the nonlinear probiem. For
equations with a small parameﬁér in the nonlinearity, one often ex-
pands everything in a powefr series in tﬁe parameter and equates
coefficients in the spirit of the method of Poincafé for obtaining‘
periodic solutions of ordinar& differential equations. On the other
“and, experiencé over the last twenty years has shown that it is
advantageous to loock at these latter questions in a more general way

in order to understand the underlying structure. In fact, proceeding




in this fashion leads not only to new résults but also to other
iterative methods for obtaining approximationsto the solutions.

It is purpose of these lectures to present a general approach
to the solution of functional equations and to indicate how to obtain
the appropriate functional equations for a variety of applications.

Let X, Z be Banach spaces and B. X - Z be a mapping from
same subset of X into a subset of Z. The range, domain, and null
space of B will be denoted by @2(B), Z(B), R(B), respectively.

A projection R in a Banach space X 1s a continuous linear mapping
taring X into X such that R2 = R. If R is a projection in X,
the range of R will be denoted by XR and the symbol XR will
always denote a subspace of X which is obtained through a projection
operator R. The identity operator will be denoted by I. If R 1is

a projection in X, then the space X 1is a direct sum of X and

R
XI-R and x € X can be written in a unique manner as x = XR + XI-R’
with XR € XR’ XI-R € Xi-R'
Let Al Q(A) CX -»7Z Ve a linear operator defined in the

subspace 2(A) and N: X »Z be a linear or nonlinear map. The

basic problem is to find an x e D(A) such that
Ax = Nx. (1.1)
In later sections, we show how this type of equation arises

in the theory of bifurcation in integral equations, partiai differ-

ential equations and ordinary differential equations, the theory of



differential equations with singular points, the theory of boundary
value problems and asymptotics. For the next few pages we will be
concerned primarily with methods of solution for (1.1). The spirit
of the general presentation in Section 2 has its origin in a paper
of Cesari [4]. Personal conversations of the author with

Stephen A. Williams led to the particular formulation glven below.
The author is indebted to Robert Glassey and Orlando Lopez for

assistance in the preparation of the notes.




2; General Theory. As we have pointed out, our main purpose is to

solve. Ax = Nx, where A 1is a linear operator defined on some sub-
space Z(A) of a Banach space X with values on Z and N is a

linear or nonlinear operator.

Let us assume the following.

(H1) there exist projections U and E such that

NA) =X and P(L) =2
U E

Clearly this assumption implies A is one-to-one on Xy n 9(a).

Furthermore, for each x ¢ Y(A), x = Xy + Xp_yp We have Ax = Axp .

because AU = O and so the image of x .. N 2(A) under A is

(A). This means there exists a linear operator M. Z(A) - X

such that AM =TI on #(A), M is onto x; . N D(A) and MA =T

I.U
on xg N D(A). Then, for each x e Z(A), we can write:

MAX = MAX + MAX, o= X, o= (I-U)x Vx e D(n)

and so MA=T-U on Z(a).

Obviously, the equation Ax - Nx = 0 1is equivalent to the
system: (I-E)(A-N)x = 0 and  E(A-N)x = 0. Noticing that (I-E)A = O,

EA=A, MA =1 - U we obtain the following:

Lemma 2.1. If (H1) is satisfied, then there exists a linear operator

MI Zp - 2(A) such that AM = I on Zgpy MA=TI-U on D(A) and the

equation



Ax = Nx (2.1)

is equivalent to the system

a) x = Ux + MENx

(2.2)

b) (I-E)Nx = O.

Any method for the determination of a solution of (2.1) must
take into account Lemms 2.1. 1In fact, equation (2.2b) says that Nx
must be in the range of A and, if Nx is in HH(A), (2.2a) says
that the solution of (2.1) is a particular solution MENx plus an
element of the null space of . A.

Lemma 2.1 is basic for many of the known methods for solving
problems which involve a small nonlinearity (say the nonlinearity is
continuous in a small parameter and vanishes together with its first
derivative for the parameter equal to zero). More specifically, one

can fix an arbitrary element y € M(A) and solve the equation:
X = y + MENx (2.3)

for a function x = x (y). The function x*(y) will be a solution

of (2.1) if y can be determined in such a way that

(I-B)Nx*(y) = o. (2.1)




These latter equations are usually referred to as the bi-
furcation equations or determining equations for (2.1). After
careful study, the method of solution indicated in (2.3), (2.4) will
be seen to be the underlying principle in the papers of Cesari [1 - 3,
11], Hale [1 - 4], Perelld [1], Friedrichs [1], Cronin [1], Bartle [1],
Graves [1], Lewis [1, 2], Bass [1l, 2], Nirenberg [1], Vainberg and
Tregonin [1], and Antosieﬁicz [1, 21.

As we shall see iater, many different iterative schemes can
be devised for the successive determination of approximations to
x*(y) and 7.

Another method for attempting to solve equations (2.2) is

to write them as

a) X1y = MEN(xU + XI-U)

(2.5)
b) (T-E)N(x + %y ) = 0.

. ; —
For a fixed y e Xy oOne can try to determine x = xU(y)
~so that

(T-EYN(E(y) + ) = O (2.6)

and then determine y so that

v = MEN(xé(y) + ). (2.7)



This latter approach is very similar to the one used by Rabinowitz [1]
and Hall [1] for a problem in partial differential equations.

Let us make our second assumption.

(H2) there exists a projection 8! X »X with

G =
X,C XI_Uﬂ () and SU = 0.

Of course the assumption implies that US = 0 and so R =

I-U-8 1is a projection.

Lemme 2.2. Suppose (Hl), (H2) are satisfied, R=I -U -8, M is
the right inverse of A ag in Lemma 2.1 and x e X 1is written as

X = X+ Ko+ xo. Then the equation (2.1) is equivalent to

Il
O

a) Xp - RMEN(XU + Xg + xR)

1
o

b) Xy - SMEN(XU + Xg + xR) (2.8)

<) (I—E)N(XU + Xg + xR) =0

Proof! Lemma 2.1 implies (2.1) is equivalent to (2.2) and SU = 0

implies that (2.2a) is equivalent to (2.3a), (2.3b). This proves

the result.

Temma 2.3. Under the hypotheses of Lemma 2.2, there is a constant
k>0 such that |RM| <k (or |SM| <Xk|) if and only if |Rx| <

k|Ax] (or |sx] Sk]Ax]) for all x € D(A).




Proof. For any z € Z; and X e 9D(A) for which Ax = z, we have
RMz = RMAX = R(I-U)x = Rx because RU =0 (or SMz = SMAx = S(I-U)x

= 8x because SU = 0). The result is now obvious.

Corollary 2.1. If (H1) is satisfied, then A has a bounded right

inverse M. Zg > X; N () if and only if there is a constant k
such that

[(1-0)x| < k|ax]  for x e D(A). (2.9)
Furthermore | (I-U)M| < k.

Proof. Take S = 0 and apply Lemma 2.5.

This corollary shows in particular that the computation of
the right inverse is unnecessary since a bound can be obtained using

only the known operator A.

The existence of a bounded right inverse for A can often

be deduced from the following result.

Lemma 2.4. If (HL) is satisfied and A 1is a closed operator, then

A has a bounded right inverse.
For a proof, see Nirenberg [1l].

Lemma 2.2 is the simple observation that equation (2.2a) may
be written as two equations by means of the projection operators R, S

and is applicable to problems in which N may not necegsarily be small.



By choosing the operator S appropriately, for a fixed ¥y e XU’

Z € XS, one can attempt to solve the equation

Xg - RMEN(y+z+xR) = 0 for an (2.10)

for an Xp = x§(y+z) and then determine y, z so that

z - SMEN(y+z+x§(y+z)) =0
(2.11)
(I-E)N(y+z+x§(y+z)) =0 .

A special case of this procedure can be traced to the paper
of Cesari‘[h]. Knowing a priori that xﬁ(y+z) is small for vy, z
in some bounded set, then a natural first approximation for the solu-
tion of (2.1) is to let x§ = 0 in (2.11) and solve the resulting
equations. Retracing the steps through which we arrived at (2.11),
one observes that this approximation corresponds to a generalized
Galerkin approximation. The general procedure outlined above can
actually be used as a theoretical way to justify Galerkin's method
(see Cesari [k]).

In spite of the simplicity of Lemma 2.2, it seems to in-
clude the method given by Bancroft, Hale and Sweet [1] as far as the
applications are concerned. To see this, we give a detailed
description of the analogue of Lemma 2.2 in the cited paper. Suppose
(HL) and (H2) are satisfied, A has a bounded right inverse M: Zp =

Xy N Z(A) and let P = U+ §. Then there is a projection
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Q. Z - 72 such that (2.1) is equivalent to the equations

a) x = Px + MONx

(2.12)
b) (I-Q)(A-N)x = 0.

These equations are very interesting because they have the
same form as the equations (2.2) since (2.2b) is equivalent to

(I-E) (A-N)x = 0. It can also be shown that

(I-Q)A = AP, I - Q=1 -E+§ where MZ = X NG(A)

(I-E)Q

n

Q(I-E) = o.

Therefore, if x = Xy + Xg + Xp, R=I-U-8=1I--FP,

then (2,12b) is equivalent to

AXS - QN(XU+XS+XR) =0

(I-E)N(XU+XS+XR) = 0.

Since MZ_ = X N D(A), it follows that (2.12) is equivalent tos
Q

il
(o]

a) Xp - MQN(xU+xS+xR)

Il

b) xg - MAN(xxgex) = O (2.13)

c) (I-Q) (A-N) (xtxg+xy) = 0.
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These equations have the same form as (2.8) except with RM = Mq,
SM = Mé. On the other hand, Lemma 2.3 shows that the norm of these
operators can be estimated in terms of the operator A so that it
is unnecessary to discuss the operator Q.

We now give some sufficient conditions for the solvability

of (2.2a), and for that we need the following assumptions:

(H3) there is a constant k >0 such that |Rx| <

k[Ax] for all x ¢ D(A), vhere R=1I-U - S.

(uk) there are positive continuous nondecreasing

functions a(p), B(P), 0 < p < » such that

[nx] < B(p)

Imx-ny] < a(e)lx-y| for x| <, |y] < e.

For any positive constants c, d let

xeX

v(c)

5(4)

.r- 1%l <¢)

(x e Xg! [x] <4}

Theorem 2.1. Suppose (H1) - (H4) are satisfied, M is the operator

in Lemma 2.1 and ¢, d are such that

|RME|a(e+d) < 1, |RME|B(c+d) < d (2.14)
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Then for any X in V(c), the map
A(*) = RMEN(X + -): Xp =X
is a contraction mapping of S(d) into itself with a resulting unique

fixed point Fx. The function F: V(c) —aXR is continuous. Further-

more, if N has a continuous Frechet derivative, then F has a

continuous Frechet derivative.

Proof. Lemma 2.3 implies |RME| < k|E| is bounded and the result

is now easily verified using the contraction principle.

Theorem 2.2. Suppose the conditions of Theorem 2.1 are satisfied and
F 1s the function given in Theorem 2.1. Then the equation Ax = Nx

has a solution if there exist Xg, ¥; Such that (xS+xU) € V(c) and

a) Xq - SMEN(XU+XS+F(XU+XS)) =0

(2.15)
b) (I-E)N(XU+XS+F(XU+XS)) = 0.

Conversely, if there exists an x such that Ax = Nx, |xp| < 4,

]xU+xS] <S¢, X=X+ Xy + X, then xp = F(x;+x.), where X g
satisfy (2.15). ‘

Proof. This is obvious from Theorem 1 and ILemma 2.2.

The conditions of Theorem 2.2 imply that equations (2.15)
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(the determining equations) are equivalent to the equation Ax = Nx
for the solutions x = x, + x; + X, with ]xR] <4, IXU*XS] <ec.

d conditions on A

It is of interest to determine for given c,

which will ensure that the range of the projection operator S 1is

always finite dimensional. Such a result is contained in.

Theorem 2.3. Suppose X 1is a Hilbert space, A satisfies (H1) and
the set V= {x e (I-U)D(a): |Ax| S‘l} is relaﬁively compact.
Thén, for any k > O, there is a projection 8. X »X with finite
dimensional range and satisfying (H2), (H3). Consequently, if (HY)

is satisfied, then, for any positive constants c, 4 there always

b

exists an S8 such that (2.14) is satisfied and, therefore, the con-

clusions of Theorem 2.2 hold.

Proof: If we call B, the unit ball in Zg, We see thgt M(Bj) =V,
and then M 1is a compact (and hence bounded) operator. Since V

is totally bounded, for any k > O, there is a positive integer n(k)
and a sequence {xj} cv, j= l,E,...,n(k) such that for any =z in
B, there is an X with ]Mz-xj] <k. Let 8 =8(k): X »X be the
projection whose range coincides with the finite dimensional subspace
spanned by {xj} and whose ngll Space is txj,f..,xn(k)]i'GB XU’

where the orthogonal complement is taken on X Since an ortho-

I-U’
gonal projection has norm 1, II-SI < o, where  depends only on TU.
Then, for each z in B, . we have! |(I-S)Mz] = ](I-S)(Mz-xj)] < ka.
Clearly US = SU = 0. Since UM = O, Lemma 2.3 implies (H3) is

satisfied. The remainder of the proof is obvious.
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Theorem 2.4. Suppose the conditions of Theorem 2.3 are satisfied and
there is a sequence of finite dimensional orthogonal projection

operates Sm: XI-U —>XI_U such that XS CiXS

, I = 1,2,... and
m m+1

for any finite dimensional projection operator T. XI—U'_’XI-U and
any € >0, there is an m,(€) >0 such that |(I-5)T| <€ for
m > mo(e). For any constants O < c < d, there is an integer mj >0

such that each Sm for m> m.j satisfies (2.14) and, therefore,

the conclusion of Theorem 2.2 hold.

Proof. Tor any kj satisfying (2.1&) there always exists an § =
S(kl) by Theorem 2.% such that (H2), (H3) are satisfied. Choose
m, so large that ](I-Sm)SM] < 7n where ]E](n+kl) <

‘min {[a(c+d)]'l, d[B(c+d)]'l} for m > ms. Then
(I-sp)M] < (3-8, )84] + [(I-8,) (T-8)M] < m + [(T-8)M] <y + m.

Therefore, 8  satisfies (H2), (H3) with k =Xk, + 1. On
the other hand, the choice of n implies that (2.14) is satisfied
with k = kj + 1. The remainder of the proof is clear.

In the case where the determining equations are finite
dimensional and are obtained by the apﬁlication of the contraction
principle on the operator A in Theorem 2.1, Williams [1] has shown

that it is possible to establish a theoretical connection with the Leray-

Schauder theory and topoldgical degree.
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3, Methods of Solution

Under appropriate hypotheses on A, we have seen in the previous
section that the solution of Ax = Nx can be reduced to the solution of
equations (2.2) or (2.8). Our goal in this section is to discuss in a very
general manner various methods for obtaining approximate solutions of these
equations. An abstract version of this problem is as follows: Suppose
U, V, W are Banach spaces‘and B: UXV->V; C: UXV >W are continuous
operators. The solution of equations (2.2) or (2.8) is a special case of
the following problem: find u ¢ U, v.e V such that the system of equa-

tions

u - B(u,v) =0
(3.1)
C(u,v) =0

is satisfied.
/
If B and C have continuous Frechet derivatives, the classical
iterative method for solving (3.1) is Newton's Method. Let Bu(u,v),
/ s
Cu(u,v), Bv(u,v), Cv(u,v) denote the Fréchet derivatives of B(u,v) C(u,v)
with respect to u,v, respectively. If the linear mapping H(u,v):

UXV->VXW given by
[2(w,v) N, ¥) = [(I-B)o - B¥, Co + Cy¥]

has a bounded inverse for every (u,v) in some bounded set, then Newton's

method is given by
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(uo,vo) givens
(3.2)

(u, v ,q) = (a,v) = L3(u,v )1 Tu -B(u ,v,),0(u,v,)] (0 = 0,1,2,...

Conditions for the convergence of this method as well as error bounds may

be found in Antosiewicz [3].

There are many variants of Newton's method that can be used to ad-
vantage. For example, we could always evaluate the inverse of B at

(uo,vo) in order to eliminate some computations. Another scheme we might

choose is

(uo,vb) givens

(3.3) .

-1
Ugl = Y ” [I‘Bu(un’vn)] [un’B(un,Vn)]S

-1
Vel =V T [Cv(un:vn)] C(un:vn) (n =0,1,2,...);

provided, of course, that the inverse operators exist. Alternatively, we

could attempt the iteration
(UO’VO) givens

(3.4)

Y+l T B(un’vn);

-1
Vel = Vp - [Cv(un,vn)] C(un,vn) (n =0,1,2,...).

Convergence criteria and error bounds are easily obtained for each of the

above methods.
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A case of (3.1) that occurs quite frequently in the applications is

when N = €N, where € is a small real parameter satisfying 0 < |€] <&

O.
Ir Hl) and H?) are satisfied for S =0 and if N is locally Lipschitzian,
then we can see that the conditions of Theorems 2.1 and 2.2 are satisfied

for 80 sufficiently small. Therefore, there exists a function

F: V(c) X [-E:o,eo] > Xy
such that F(x;,€) is continuous in xy,€, and satisfies F(xy,0) = 0.
Thus system (2.1) has a solution if there is an Sl >0, Sl < SO, for which

the equation
(3.5) (I-B)N(xy + F(xp€)) = 0

has a solution xy = xy(€) for 0 < le| < €.

If N has a continuous Frechet derivative ﬁi, then F(x%,€) has

Xys
. . . . . . o]
continuous derivatives in xy,€. Therefore, if there exists an ¥y such

that

a) (I-E)W(xp) = 03
(5.6)
b) (I-E)ﬁ?(xg) has a bounded inverse,

then the implicit function theorem implies the existence of a solution xtfe)
. .. . . 0
of (3.5) for |€| < €, €, <& §ufflclently small, satisfying xU(O) = e

Thus, equation (2.1) has a solution
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X = xU(e:) + F(XU(S),E!) for |€| <e,.

A rather natural way to calculate the solution x for this special

case is to use a variant of (3.4)3; namely,

&
]

n = Ut Wy € Xp o, V) e Xy (n =0,1,2,...)3

u. =0, v. = x23
o~ 7o v
(3:7)
W = SMEﬁ(un+vn);

Vo vn-e[(I—E)ﬁx(x%)]-l(I-E)ﬁ(vnﬂln_'_l) (n =0,1,2,.00)

It is fairly easy to show that this method converges for ]8] sufficiently

small (see Lazer [1] for a special case).

If N is analytic in some region, then the function F(XU,B) will
be analytic in an appropriate region, and condition (5;6) will imply the
solution xtﬂe) is analytic in some region. An cbvious way to obtain

the power series expansion of x = xt{a) + F(xiﬁe),e) in € is to simply
let

o]

k L]
x = k§o 1EH F =My Wy € X g vy € Xy

and try to determine the coefficients successively. These coefficients

must satisfy

(308) U.k+l = fk(uo,.,.,uk, ‘\TO,...,Vk);
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(I-E)ﬁg(xg)vk+l = gk(uo,...,uk, vo,...,uk) (k = 0,1,2,0..)3
where the fk’ 8y are some given poiynomial functions of their arguments.
Condition (5°6) implies that these equations can be solved. This is the
natural generalization of the Poincaré,procedure for obtaining periodic
salutions of ordinary differential equations.

In general, the method (5.7) is probably a more accurate way to
obtain the solution, but (3.8) is certainly very simple.

We conclude this section with a brief description of the notion of

guasilinearization. We have seen that the equation Ax = Nx iseguivalent

to the system

If we let XU = v, XI-U = u, the system becomes

u-MEN( u+v) = Os

(I-E)N(u+v) = 0.

For solution, we use the modified Newton method:

-1
U T - [I-MENX(un+vn)] [un-MEN(un+vn)];

<
i

el = ¥ - LI-B)N (u v )1 T-E)N(u +v ) 3
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i.e.,

u g = ME{NX(un+vn)[un+l-un] + N(un+vn)],

-v, 1+ N(un+vn)} = 0.

(I—E){[Nx(unwn)](vn+l

This last system is equilvalent to

[A-ENX(un+vn)]un+l E[N(un+vn)-NX(un+vn)un];

(T-E)N (u +v )v, 5 = (T-B)[N(u +v ) - N_(u +v )v 1.

Thus whenever I = E, the pair of equations above reduces to a single equa-

tion. In such an event, we have quasilinearization (see Antosiewicz [3]).
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4. Periodic Solutions. To illustrate how to formulate specific

problems in the above manner, consider the equation
x = Bx + ef(t,x) (k.1)

where f(t+2m,x) = f£(t,x) is an n-vector continuous in (%t,x), B
is an n X n constant matrix and € 1s a small real paramter.
Our problem is to find 27-periodic solutions of (k.1).

To formulate this in abstract terms, let X = Z be the
Banach space of continuous 2W;periodic functions with |x| =

sup |x(t)] for x ¢ X. For any x € X with X continuous let
O<t<2T

(Ax) (t) = %(t) - Bx(t), -w<t < o, (k.2)
and for any x € X, let
(Nx) (t) = ef(t,x(t)), -w<t < o (L.3)

Finding 27-periodic solutions of (4.1) is now equivalent to

finding an x € X such that

Ax = Nx, (L.1)

with A,N defined in (4.2), (4.3).

The set M(A) is the set of all 27-periodic solutions of the
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unperturbed equation.:

X - Bx = 0. (L.5)

Therefore, it is a finite dimensional subspace of X and admits pro-
jection by an operator U, SR(A) = XU. If J 1is the set of integers
j such that (B-jI) is singular, el,...,eP are a basis for the

hag J
eigenspace of j and x~ 2 x_ exp(ikt), then Ux = 2 xgexp(ikt)
| ke © keJ

where xg is the projection of X, onto the span of the vectors

e’...,e .
1 pk

The classical Fredholm alternative states that the equation
X-Bx=y, yeX (h“6)

has a solution x € X if and only if

2T
é z(t)y(t)dt = O (%.7)

for all row-vectors z for which 2z' € X (' = transpose) and
zZ + zB = 0. (+.8)
Since the linear subspace spanned by such =z! is finite

dimensional, if follows that GP(A) = X, for some projection E.

To check (H3), we see that for any x ¢ D(A), x ~ X, xkelkt
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X~ ikxkeikt,and hence 7, kelxk]2 < . Then

| (T-0)x] =| k}Zé‘.J(ikI-B)'l(ikI-B)xgeikt] <

_1I2)1/2 2)1/2

2, | (ikI- iKT-B)x|
(ml( I-B) @ | (ikI-B)x; |

<M ]Ax|] for some constant M.

Consequently, the previous theory implies (if f£(t,x) has a continuous

first derivative with respect to x) for any c < d, there is an

80 > 0 such that for any fixed u € XU, ]u] < ¢, there is a unique

solution F(u,e) € XI_U of

Av = EN(u+v)

for 0 < |g] < €, and F(u,e) is continuously differentiable in wu,€.

The bifurcation equations are then given by
(I-E)N(u + F(u,e)) = O. (4.9)

Since MN(A) = X; 1is finite dimensional, it is more con-
venient to write the bifurcation equations in terms of a wvariable in
some Euclidean space. If o = Gpl,...,Qd) is a basis for N(A)

then u = ¢a for some d-vector a, and the bifurcation equations

become

2T
< M(%-T-Té ]Ax(t)]gdt)l/2 <
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a(a,e) % (1-E)N(0a+F(0a,€))

1
o

(4.10)

If f(t,x) is analytic in x in some region, then F(u,€)
is analytic in wu,€. One can show that if there is an ao guch that

G(a,,0) = 0
(k.11)
aet[Z (ay,0)] # 0

then there is a solution a(g) of (4.10) for € small, which is
analytic in €. One could, therefofe, obtain the solution in powers

of € by substituting in the original equation

k
X = kgoxre , X =0a + v, v o€ X o (4.12)

and determining a ,v, §o that the equation (4.1) is satisfied. This
/
is the classical Poincare perturbation procedure for obtaining periodic

solutions of (4.1).

Of course, any of the other methods mentioned before give
other iterative schemes. In particular, the analogue of (3.7) for
this speclal case and hypothesis (h.ll) wag given by Lazer [1].

In many applications, condition (h.ll) may not be satisfied
and therefore the above iterative procedures fail. However, it is

sometimes possible to diséuss the qualitative properties of the

determining equations (h.lo) without any successive approximations.
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We mention only the classical problem of Liapunov on the existence
of two parameter families of periodic solutions of Hamiltonian sys-
tems. One can show without successive approximations that the
bifurcation equations are identically zero (see Hale [4]).

One point about the above procedure that has been neglected
is the precise determination of the projection operators:- U and E.
There are many ways to choose these and each gives a different form '
for the approximating equations. We mention only one way.

If ¢ is the n X & matrix whose columns are a basis for
the 2m-periodic solutions of (4.1) and ¥ is a d X n matrix whose
rows are a basis for the 2r-periodic solutions of (4.8), define the
nonsingular 4 X 4 matrices C,D by

ar or
C=/ o (t)o(t)dt, D=/ ¥(t)y (t)at
0 0

and projection operators U,Q on X by:

1 e
Ux = %a a=C [ o'(t)x(t)at
0
1 @ar
Qx= ¥'b b=D"" [ ¥(t)x(t)dt,
0

then

Xy = N(A), Xp g = RL), E=1 - Q.
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To illustrate the application of the above ideas to a problem
involving no small parameter, we consider the following problem of
Lazer and Sanchez [1]. Suppose x 1is an n-vector, X 1is the space
of L2 n-vector‘functions of period 2r, p € X, H. E° -R is a func-

tion with continuous second derivatives satisfying.

2 u(a 2 n
NI <uI< GEETEEl) < Ml < (+1)°I for all a €E .

14
A matrix 1s greater (strictly greater) than zero if it is positive

(positive definite), The problem is to discuss the existence of a

2r-periodic solution of

% + grad H(x) = p(t) (L4.15)

The case n =1 was first treated by Loud [1] and generalized by

Lazer and Leach [1]. For the n-dimensional case, we have the fol-

lowing

Theorem. Under the above conditions, the equation (4.15) has a 27-

periodic solution.

Proof. We only indicate the essential ideas of the proof and the
reader can consult the original paper for details. Let A. E?(A)(:

’ d?x(t!
X »X Dbe defined by (Ax)(t) = , b e (~0,0), and N: X »X
dt

be defined by Nx(t) = -grad H(x(t)) + p(t), t € (-w,»). Then
R@Q) = X; is the set of constent functions in X.

The operator A obviously has a bounded right inverse M
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and without loss in generality, we can assume UM = O. Therefore,
finding 2m-periodic solutions of (4.15) is equivalent to Ax = Nx

which in turn is equivalent to

a) x = Ux + M(I-U)Nx (h.16)
b) UNx = O.

If x=y+32,yeX y, 2 €Xy then (L.16) is equivalent to

a) ¥ = M(I-U)N(y+z)

(4.17)
b) UN(y+z) = O.

The first step of the proof is to show that for any 2z € XU’
there is a unique solution F(z) of (4.17a). This is accomplished
in the following manner:. For any p such that (I-pM) has a bounded
inverse, equation (k.17a) is equivalent to

y = (T-u00) "M (T-0)N(y+z) - uy] S5 (T-0) e (v, 2).

Using methods very similar to those of the Hilbert-Schmitt
. . 1 .
theory of Fredholm integral equatlons and for u = E'(“N+l + “N)’ it
is then shown that the operator (I-uM)_lMG(-,z) is a contraction
for each z. This depends upon the fact that M 1is completely con-
tinuous and has a complete orthonormal system of eigenvectors and

that the Gateaux derivative G'(x) of G satisfies
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o) <3 () - ¥l

In the process of the proof of the contraction one also ob-
tains that F(z) 1is globally Lipschitzian in z, with Lipschitz
constant L and |F(z) . z| < Lo for some constant q. Therefore,
UN(F(z) + z) is globally Lipschitz in 2z with Lipschitz constant K.

The next step is to show that the function y(z) = UN(F(z) + 2z)
satisfies z:v(z) »® as |z| 2, and for any r for which z.v(z)
>0 on V= {Z |Z] = r}, there is an € >0 such that |z - ey(z)|
< [22| =1 on V. This implies the map z - €r(z) takes IBV -V
~and a known theorem in En implies there is zy € oV such that
Zg - ST(ZO) = 2., that is, Y(zo) = 0. This proves the theorem.

We now indicate the method of Cesari [4] for the justifica-

tion of the Galerkin procedure for finding periodic solutions of

ordinary differential equations. This method applies to general non-

linear problems and involves choosing a projection operator S as

in Lemma 2.2,
Let X %De the Banach space of continuous 2r-periodic func-
tion with the topology of uniform convergence and let A. 2 (a)

X »X be defined by (Ax)(t) = %% , =@ <t < o For a given continuous

function g. R X E- —aEn, g(t,x) locally Lipschitzian in x,

g(t+em,x) = g(t,x) for all t,x, let N: X »X be defined by (Nx)(t) =
g(t,x(t)), =0 <t < w.

The equation

i(5) = g(t,u(t)) (4.18)
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has a 2m-periodic solution if and only if there is an x e X such

that
Ax = Nx. (4.19)

It is clear that R(A) = Xy 1s the set of constant functions
21
in X and U may be chosen as (Ux)(t) = %ﬁ [ x(s)ds, ~w< t < o,
’ 0

Also, ZR(A) = X; A bounded right inverse M for A is defined

U
for any =z € XI g 28 the unique solution of mean value zero of the
equation (Ax)(t) = %(t) = z(t), - < t < w. Clearly M: Xy ™ Xy
‘UM = 0.

Any x € X has a Fourier series
T ikt

) . 2
x(t) ~ . 2. akelkt, B, = %ﬁ [ T x(t)at.
= 0

For any given integer m > 0, let Sm: X - X be defined by

(8x)(t) = X akelkt. (4.20)
0<|k|<m
One easily sees that SmM = MSm for all m > 0 and Lemma 2,2
implies that equation (k.19) is equivalent to
¥ = M(I-P )N(y+z)

BlA(y+2)-N(y+2)] = 0 |
(+.21)

FP,=1U+ Sm, yeX L, ze€X

I—Pm %n
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Using the definition of ﬁm’ M, Parseval's inequality and Schwarz's

inequality one easily shows that

he(z-B el < v s, rin) = en)MP( 2 W),
k|{>m

Since y(m) -0 as m — w, one can use the contraction
principle to prove for any c¢ >0, 4 > 0 that the conditions of

Theorem 2.1 are satisfied for m sufficiently large. Thus for m

sufficiently large, the equation (4.18) has a 27-periodic solution

if and only if there exists a z e X such that
P
m

B_(a-W) (2+7(2)) = O. (4.22)

In words, the above remarks imply the following. there is

always an integer m such that one can fix

= 3 . eikt
z(t) ]k]s@ X

and determine a function x = F(z) + z in such a way that the Fourier
series of the function' v(t) = x(t) - g(t,x(t))
ikt

contains only the
harmonics e~ , |k| <m. The determining equations (4.22) involve

the determination of the 2y, ]k] < m, in such a way that the remaining

Fourier coefficients of v(t) vanish.

Now to determine the existence of a periodic solution using
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this method, one must determine first how large m must be in order
to apply the contraction principle and then try to show the existence
of a solution of the detefmining equations (4.22) even though they
involve the function Fz which can only be known approximately. One
usually proceeds in the following manner. first obtain an a priori
bound on F(z) as |F(z)| <& for same constant 8 . Then try to

show the equation
B (A-N) (y+z) = O

has a solution for every function y eX _  with ]y] < §m.

I-Bm

To show this latter property is satisfied one naturally looks

at the problem for y = Q,
Pm(A'N) (z) = 0,

which is the mﬁh Galerkin approximation to the solution. An index
argument can sometimesg be used to complete the investigation. For
some applications see Cesari [4], Locker [1, 2].

In the limited space we have here, we give a simpler applica-

tion due to Knobloch [1l]. Consider the system of second order differ-

ential equations

¥+ f(t:y::\.’-) =0
£(ti2m,7,2) = £(t,5,2) (1.23)

Y= (Fyyeres¥y)y £= (£,..4,5)
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and assume that £(t,y,z) is bounded in (%t,y,z) and globally

Lipschitzian in y,z and there exist e < Bi such that

fi(t,y,z) <0 if y. <a.

£:(t,y,2) >0 if y, >B,, i=12,...m.

We assert that the above hypotheses imply that (4.23) has

at least one 27-periodic solution.

In fact, repeating the same process ag above with (ay) (t) =

¥(t), (Wy)(t) = -£(t,y(t),y(t)), one concludes that there is an integer

0y and a function F. X 6 -X _ such that F is continuous and
Pn I-Pn
0 0
equation (h.23) has a 27-periocdic solution if and only if there exists
a ueX, satisfying ﬁn (A-N)u = 0. These equations are equivalent
P 0]
"o
to
emr
4 def .2 1 . .
gj(a) =" -i"ay - »= é f(t,u(t) + Fu(t), a(t) + F(a(t))at = 0
der 1 2T | o< il zmg
B() € g [ £(6,u(t) + Fa(t), 8(s) + Fa(r))at = 0
if -
ikt
u(t) = 2 ae | and &= (a_ ,...,a_j,85,8,,...,8 )
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In the space of vectors a, let us consider now a box
around the origin with faces parallel to the planes aj = 0,
o< il <ny

on opposite faces to the plane aj = 0. For these faces fixed, move

and such that gj(a), 0 < |j| < m, takes opposite signs

the other faces so far apart that go(a) takes opposite»signs on
these latter faces, Mirando's version of the Brouwer fixed point
theorem now implies there is a zero of éll the functions gj,
0<|J| < ny, in the box. This proves the result.

Further interesting applications of these technigues to

periodic solutions of ordinary differential eQuations may be found

in the papers of Mawhin [1-3].
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5. Eigenvalues of Nonlinear Qperators

Let X be a Banach space and C: Z(C) C X »X be a linear

operators let also B: X - X be an operator such that B(0) =0 and B

%
has a continuous Frechet derivative B'., Then, Bx = Dx + {x, with D

B'(0), 2(0)

0, Q'(0), and in fact,

|ax-ay| <B(p)x-y] for |z, |y <o,

where B(0)

0.

The eigenvalue problem is the followings Does there exist u % 0
and x #0 such that Cx = pBx?

We say that “O is a bifurcation point if for any € >0 and

any p >0 there is a p in Iu-uol <€ and x #0, |x| <p such that

Cx = uBx.

If we write the equation as (C-pOD)x = (u-uO)Dx + Qx and
(¢ - uOD) has a bounded inverse, then there can be no bifurcation at uo.

In fact, x = (C-uOD)"l[(u-uo)Dx + Ox] and the contraction principle implies
a unique solution of this equation for lu—uol <&, |x <p if € and
p are small. Since x =0 1is a solution, Ko cannot be a bifurcation

point. Therefore, to have a bifurcation, (C—uoD) nust not have a

bounded inverse.

If we call A =C-pD, N = (u—uO)D + uQ we are going to assume
as before that RN(A) = Xy H(A) = X; for some projections U and E,

and that A has a bounded right inverse M, with UM = O. For example,

if ¢C=1I and B is completely continuous, this hypothesis is always

satisfied. For this latter situation (C = I and B completely continuous)
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Krasnoselskil [1] has proved by using rotation of a vector field that there
exists always a bifurcation at ub if the generalized eigenspace of A
is of odd dimension. We show that the techniques mentioned before can be
used in the more general situation to attack this problem, but will only
be able to conclude that bifurcation exists (under an additional weak
hypothesis on A) if dim N(A) = L. |

As before, the equation Cx = uBx is equivalent to Ax = Nx, and

hence it is equivalent to the system

(5.1) a) x = Ux + MENx

b) (I-E)Nx = 0.

If we call x = y+z, y € Xp g 2 € Xy (5.1) can be written as

(5:2) a) y = MEN(y+z)

b) (I-E)N(y+z) = O.

For any positive constants ¢ and d 1let

V(e) = {x‘e Xyt x| <e}, Q) = {x e xz |x] <4, Ux = 0}.

Theorem 5.1. There exist eo > O, do > 0 such that for every 0 < ec

a< dO’ there exists a unique continuous funetion Ty V(e) x {Iu-uol <

)

eo} - X such that, F(O,H) = 0,

F(X,1) € S4d) for X% ¢ V(e) and |u-u0| <e

0
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F(X,m) = MEN(F(X,1)+X), |p-n| < e

Furthermore, x = X + F(%,p) satisfies Cx = uBx if and only if

~o
x satisfies

(I-E)N(X+F(X,n)) = 0

The function F(%,u) has a continuous first derivative with res-

pect to X,y and there is a constant a such that |F(0,u)| < alu-uol.
x

Proofs From the definition of N, we have N(0) = 0 and |Nx-Ny| <
|ulB(e+a)| x-yl + [p-p Dl x-31 < [lulB(2d)) + [D|{u-n |l »-y for
|5l <oy Il <4, 1o + 1yl Sesd 229, el <<

The contradiction principle gives the result that there exist

dy >0, &5 >0 and F(%,u), X e v(e), Iu—uol < e, such that

0

F(X,1) = MEN(F(x,n) + X).

The continuity and differentiability of F(z,u) also is obtailned
from the contraction principle and the differentiability of N with res-

pect to x and u. The fact that X must satisfy the bifurcation equa-

tion is clear,

To prove the last assertion of the theorem observe the equality

implies that

F(X, 1) =.MEN(F(§,u) + %)

T, (X,n) = MEN_(F(X,n) + X) (FUK,0) + 1)



_37_

But N = (u-uO)D + Q'(x), with Q'(0) =0 and so

F1(0,1) = ME(u-~p )D(FL(0,1) + I),

and then if lu-uol is small, we have F'

F1(0,1) = (h-py)T(K),
b’s
where T(n) 1is a bounded linear operator for which we can find a.bound in-
dependent of p if I“'“Ol is small,

From the above theorem, the problem remaining is to solve the bi-
furcation equation. Suppose now that the subspaces N(A), and (I-E)D N(A)
are one dimensional., For C =I and D completely continuous, this latter
condition is not a restriction., For C a self adjoint partial differential
operator, D = I and X one of the usual Sobolev spaces, it is also not

a restriction.

Let @ and V be a basis for N(A) and ‘(I-Eﬂ)ng), respectively.

If X = ap, then the bifurcation equations ares

(@]
[}

(I-B)N(x+P(X,1)) = (I-E)N(ap+F(ap,u))

(I-E)[ (u-ty) D(ap+P(a0,1)) + u(ap+F(ap, 1)) ]

(h-u) pav + (b-u,) (I-E)DF(ap,u) + p(I-E)Q(ap+F(ap,n)),

where p¥ = (I-E)Dp, p £ 0. If we let




-38-

(I-E)DF(a0,u) = VT(a,u)

R(I-E)Q(ap+F(ap,k)) = ¥8(a,u)

the bifurcation equations are equivalent to

(5'5) (l‘l-p'o)Ba‘ + (IJ.—IJ.O)P(a:,IJ-) + B(a')“') =0

From Theorem 3.1, there are constants k, @, and a continuous func-

tion ¥(r), r >0, ¥{0) = 0, such that the followihg inequalities holds

| D(2,m)] < K| F(ap,u)| < Kla]ao||u-u,| + v(|ap])-|ap]| ],
| 8(a,)] < k[(lap| + |F(ap, DI a0 + | F(a,n)]]

< ke(lewl + [F(a0,0)] )1 a0 +alap|-|u-uol + v(|apl) ]

From these properties we have the bifurcation equations are equivalent to

(for any a £ 0)

o= kg - (i) I\(;;“) - 5(;‘;“)

where Eizlﬁl and E&SLEl are continuous as a =0 and go to zero as

a =0, b=, (actually continuously differentiable)., The implicit func-
tion'theorem implies there exists a u(a) satisfying the bifurcation equa-

tion for a and Iu—uol small enough. Also p(a) =u; as a —»0. We

thus have the followings

Theorem 5.2. Under the above hypothesis on the simple eigenvalue Hos

there always is a bifurcation at pu = “O‘

We can find the solution iteratively as:
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Vo =0 Hy =Hg

yn+l = MEN(yn + aw)
Iy o}
i =p -~ (4 - n(a) - n(a) n=0,12,...
n+l 0 n o ap " ap rr
where
(I-E)9 = ¥p

(I-E)Dy, = V' (a)

b (T-E)(apry ) = v8 (a).

These ideas are closely related to the paper of H. Keller [1], where the

author studies the equation:
Lu + Ag(A,x,u) =0, x € D, Bu = 0, x ¢ OD,

L elliptic operator of order 2m, B linear of order m,
Another application of these ideas can be seen in the work of J. B.

Keller [1]. To see this, consider the equation

a) [I(t)ut]t + f(u,t,A) =0 t, <t <t

(5.4) au (b)) +Bju(t)) =
b)

\
(@

2 2
Oéut(t2) + Bgu(te) 0, oy #0, oy + By # 0.

where u(t) is a scalar function and I(t) is positive and continuously
differentiable while f has derivatives with respect to A, u up through

order three which are continuous in some rectangle uy Susu,,
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M SAS Ay, b < B < By
Assume (5.4) has a solution uo(t,x) for M SA< Ay, u <

uo(t,x) < w,. Also, assume the linear variational problem at M\, has a

nontrivial solution, i.e., there exists a solution ¢ of

(Tv,), + 2,(8,(t,3), A )7 = 0
(5.5) alvt(tl) + 5lv(tl) =0

Oévt(tz) + Bov(t,) = 0.

Then necessarily @(tl) =0 (since ¢(t;) = 0 would imply @t(tl) =0
and, by uniqueness, ®(t) would be zero). Also the first boundary condi-
tion says that @t(tl) can be determined from @(tl), and so there is only

one linearly independent solution of (5.5).

t
Let us normalize it by putting [ %mzdt = 1, The problem is to

Y

find conditions under which there are solutions of (5.4) near A

]
&

other than the given solution uo(t,x).

To phrase this problem in the language of bifurcation of a non-

linear operator, let X be the Banach space of the continuously dif-

ferentiable functions on [tl’tEJ satisfying the boundary conditions (5.ub)

with the topology of uniform convergence of the funection and its deriva

tive. Tt

C: I(C) CX-X%, (Ccu(t) = (Tuy)y, t, <t <ty
(5.6) |

B: X=X, ' (B»Xu)(t) = -f(u(t),t,A), t, <t <t
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The above hypotheses imply that uo(-,x) € X ié a solution of
(5.7) Cu = B,u

for Xl <A< Xg and, for A = Ab’ the equatibn'

(5.8) (C—Bko(uo(-)b))u =0

has a one dimensional subspace of solutions spanned by ¢. The problem is

to find conditions on BX which will ensure that (5.7) has solution

0

# uo(-,X) for each A in a neighborhood of A=A
This 1s not exactly a special ase of the problem discussed at the

beginning of this section, but the ideas used there are easily adapted to

this situation., If we let u = uo(-,k) + v, then equation (5.6) becomes

(5'9) [C'Bio(uo(.)xo))]v = Bx(uo(',k)+v) - BX(UO(',X)) - Bib(uo(.,xo))v

or v satisfles the differential equation

(5.10) (Ivt)t + fu(uo(t: XO),‘E,A.O)V = ‘f(uo(t)h)"'vxt:)\'))"' f(uo(t: A)st, 1)

-+ fu(uo(t,xo),t,ko) Ve

and the boundary conditions (5.4b). If

= - B! .
A C BAO(?O( ,Xb)),

Nv = Bh(uo(-,h)+v) - Bx(uo(')x))._ Bib(uo(')xo))v

then (5.9) is equivalent to Ax = Nx. Furthermore, N(A) = Xy =
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{ueX: u=a for some constant a}; R(A) = XI-U ={ueX: f Emu = 0}.

The funection Nv has the form

v
Nv = [f % * fuk]()"o-)")V “fwE

where_thé functions are evaluated at some intermediate points between
uo(-,x),h and uo(-,xo), Ay- Therefore, N has the same form as the N
discussed at the beginning of this section., The self-adjointness of the dif
ferential operator implies Theorem 5.1 may be applied to obtain the bifur-

cation equations in the form of (5.3). Calculating the constants in (5.3)

for this particular case, the bifurcation equations are

a[p()»—)»o) +Ta + «+.] =0

2 2
(5.11) p = £ (fuuuo)‘l + fux)cp at
1
t
I = f 2f qut
uu
Yy

where all functions in the integrand are evaluated at uo(t,xb),t,ko.
Consequently, if p. # 0, T' # 0, the implicit function theorem im-
plies there is a solution of (5.4) different from uo(-,x) in a neighbor-
hood of A = XO.
An interesting paper on determining the stability of bifurcating

solutions by using Leray-Schander degree has been written by Sattinger [1].
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6. Analytic Systems, Regular and Irregular Singular Points.

In this section, we indiéate the manner in which some of the classi-
cal results on the existence of analytic solutions of linear differential
systems with or without singular points can be obtained using the above
procedure. The presentation follows closely the paper of Harris, Sibuya
and Weinberg [1]. The exploitation of the procedure for more complicated
solutions has not been but should be undertaken.

Suppose D = diag(dl,...,dn) where each dj is a positive integer,

d d

D l,...,t n), B(t) is an n X n matrix analytic at t = 0, with an

7 o= (t
absolutely convergent power series for ltl < S,

Qur problem is to find necessary and sufficient conditions for the

existence of analytic solutions of the equation
6 D.
(6.1) | 5 = B(t)y

To phrase this problem in the language of Section 2, let X De the
set of all n-vector valued functions x(t) whose components have ab-

solutely convergent power series expansions for |t| <06, >0, TFor

(o]
xeX, x(t) =X xktk, define
k=0

ey 5 X k
BTN

With this norm, X is a Banach space.

For any x € X, let A: X »X be defined by

(ax)(t) = Px(s), 1] <8
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Then, R(A) = X (Ux)(t) = %, |t| < &, is the set of constant
functions in X and H(A) = {y e Xz y = th, x in X}.

If we define QO: X=X by

dl-l K dn-l K
(QDX)(t) = col( X X, t 000, Z x, b ), |t] <3
k=0 1 k=0 n
where x, = COl(xkl""’Xk ) then Q, is a projection on X and R(A) =
n
XI—Q . Purthermore, a right inverse M of A on H#(A) is given by
O .
% k+1 0 'tk
=0 kl+dl k+1 k=0 kn+dn k+1
1-4 1

-5
l,...,B ™|x|. Therefore M is bounded.

and |Mx| < max(®
If N: X »X is defined by (Nx)(t) = B(t)x(t), |t] < & then N

is a bounded linear operator and findiﬁg a solution of (6.1) in X is equi-

valent to finding an x € X such that

(6.2) Ax = Nx
From Lemma 2.1, (6.2) is equivalent to:

a) ¥ = M(I-Q)N(y+2)
(6.3)

b) QDN(y+z) =0, yveXip 2eXy
If the linear operator M(I-QD)N are a contraction operator, then
(6.3a) would have a unique solution y = Fz where F: X; =%y isa

bounded linear operator. A solution of (6.1) would then be determined by

solving the finite set of linear equations QDN(Fz+z) = 0. Unfortunately,
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this operator may not be a contraction., To obtain a contraction we pro-
ceed as in Lemma 2.3. For r >0 an integer, let 8. X -»X be the pro-

r+l
jection operator defined by (s x)(t) = X xkﬁk, It} <.
k=1

If R, = I-U-S, then it is easy to see that

RrM(I'QD) = M(I-Q‘D+rI)

and, furthermore, from Lemma 2.3 that (6.2) is equivalent to

a) v = M(I-QD+rI)N(V+u)
(6.4)

b) QD+rI(A-N)(v+u) =0, V€ th, u e XI-RT'
It also follows immediately from the definition of M +that there

isa B >0 such that
(6.5) IM(1-qp, D < B/(r+1)

Consequently, for r sufficiently large, the operator M(I-QD+rI)
is a contraction. Therefore, for any fixed polynomial u of degree r,
there is a unique solution Fu of (6.k4a) with F: X;.g —¥; & bounded
linear operator. This implies that the equation (6.1) Eas anranalytic solu~

tion if and only if the polynomial wu can be chosen so that

(6.6) QD+rI(A-N)(Fu+u) =0
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Equation (6.6) is a polynomial vector equation with the jth com-

ponent of degree dj+r-l for the n(r+l) coefficients of the vector

n
polynomial u of degree rj that is, these are at most nr + 24,

j=1Y

linear homogeneous equations for nr+n unknowns., Therefore, there are

n

at least n - X dj linearly independent solutions.
J=1

ing theorem of Perron-Lettenmeyrs

This proves the follow-

n
Theorem 6.1, Equation (6.1) has at least n - 2,4
J=1

3 linearly independent
analytic solutions for |t| < &,

Now let us consider the case of the regular singular point (dj =1

for all j). 1In this case, Qrr= Q(r+l)I = U+ ; that is, U et

represents the vector polynomial of degree r consisting of the first

(r+l) terms of the expansion of x. Theorem 6,1 gives no information in

this case, but we still may draw some conclusions. The function (A-N)Fu

has a power series expansion beginning with terms of degree (r+l)., There-

fore, equation (6.6) is equivalent to
(6.7) - (U+Sr)(A-N)u =0

r ] :
If u= k;gukﬁk, B(t) = kEgBktk’ |t|] < 8, then equation (6.7) is

equivalent to the system of linear equations

k

(6.8) (kI-BO)U.k = JEIlBjuk-j, k = O,l,o-o,r’ u

-1 = 0.

Equations (6.8) are the equations for the first r+l coefficients
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of a formal solution u(t) = X uktk of
k=0

(6.9) th = B(t)u

Consequently we have proved:

Theorem 6,2, Any formal solution of (6.9) is an analytic solution.
Let us now discuss the existence of solutions of (6.9) of the form

u(t) = tAV(t) where v € X. Then
tv = [B(t) - AIlv(t)

Let n, be the dimension of g}(Bo—kI) and let Nk be the number

of linearly independent solutions u of the above form. The determining

equations corresponding to (6.8) are

k
[(k+M)I-B 1vy = 2 B.v

k = O,l’.o-,r
=19

k~j’

oo
if v(t) = katk. Clearly N, <mn, +n +e.. and N, >N

k=0 A A A+l A A+l
We now show that NX<2 nk. Without loss in generality, we can as-
sume A =0 and B, is in Jordan canonical form. Each vector in 9}(BO)

corresponds to a zero row of Bp and the corresponding dj may be reduced

to zero, Therefore, Theorem 6.1 implies at least n - (n-ng) = oy solu-

tions analytic at t = O. This proves
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Theorem 6.3, max(nh

,nx+l,...) SN

AT

BO = 0, that is, system (6.9) has no singular point, then there is  funda-

A F e toeee . In particular, if

mental system of solutions analytic at t = 0, If BO-kI is a nonsingular

for each positive integer k, then NO =1, and, in fact, for any

9}(30) there is a solution u(t) of (6.9) with u(0) =

L'l0€

Uye

Similar results can be obtained by the same methods for nonlinear
systems tDk(t) = £(t,x(t)) (see Harris [1]).

A more complete discussion of (6.9) is obtained by trying to find
a fundamental matrix solution of (6.9) of the form U(t) = E(t)tG, where

G is a constant n X n matrix and P(t) is an n X n matrix analytic

at t = 0. We indicate how some information is easily obtained from
B
Theorem 6,1, If G = By then U = Pt O 4 matrix solution of (6.9) im-
plies
(6.10) tP = B,P - PB + Bl(t)r; Bl(O) = 0.

If we look at this equation as an equation for the n2 components

p of P, then

(6.11) tp = Cyp + Ci(t)p, c,(0) =o0.

If no two eigenvalues of BO differ by a positive integer, then
no eigenvalue of C0 is a positive integer and Theorem 6.3 implies there

are as many linearly independent solutions of (6.11) as dim SR(CO).
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Furthermore, any pj € SR(CO) yields a solution p of (6.11) analytic
at t =0 and p(0) = Pye From the definition of p and C, the
corresponding to P =I is in ER(CO). Therefore, (6.10) has a solution

P analytic at t =0 and P(O) = I. This gives the classical

Theorem 6,4, If no two eigenvalues. of B, differ by a positive integer,

then there is a fundamental solution U of (6.9) of the form U(t) =
B
P(t)t O where P is analytic at t =0 and P(0) = I.
Golomb [1l] has given some interesting results on the expansion of

fundamental solutions of (6.1) even in the case of irregular singular points,

The approach applies to even more general equations and the ideas are very

closely related to those of Section 2,
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7. Partial Differential Equations.

In this section, we indicate

how the above ideas have been used to discuss some particular problems
in partial differential equations. We do not treat the most general
situation, but try to bring out the main ideas and give appropriate

references for more sophisticated results.

Consider the wave equation in one dimension:

u, - u_ = e(t,x,u,u,,u ), where
st " Uxx ¥y Uy U Uy )
(7.1)
g(t,x,u,p,q) = -g(t,-x,-u,-p,q) = g(t+am,x,u,p,q) = g(t,x+2m,u,p,q)

2 .
for all (t,x,u,p,q) € (p) = {(t,x) € R = (-w,0)x(-w,o); |u| +
|p|] + |a] < p}. The problem is to determine conditions on g which

will ensure that equation (7.1) has a solution u(t,x) satisfying

u(t+2m,x) = u(t,x+2m) = u(t,x) = -u(tyx); (t,x) e B, (7.2)

Due to the form of g any solution satisfying (7.2) will also satisfy
u(‘t,O) = U.('t,'TT).= 0, te ('°°:°°); x e [0,m]. (75)

Therefore, we are solving for 2r-periodic solutions in t of the

vibrating string with ends fixed at x =0 and x = T.

Let R = (-w,o) and define
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T = {p: R - R; ¢ continuous, ¢ (t+2m,x) = @ (t,x+2T) = @(t,x)
= —Cp('t,—X)};
W= {p. R - R, ¢ continuous, ¢(t,x) = p(x+t) - p(-x+t),
p(tem) = p(6));
* 2

C, = {p: R >R, ¢ and P, continuous},

Cy = {p: R~ - R, ¢ continuous together with derivativesup through

order 2},

= . = *
X=TNCy 2=TnCT,

All topologies in these spaces are those of uniform convergence, and

norms will be desiginated by I'IT’ ]-]W, I-]i, ]-]2, ].IX’ ]‘|Z’

respectively. Define operators A,N, and Q by

Al D(A)y C X >z (Au)(t,x) =u, -u

t xx’

1]

N: X -7, (Nﬁ)(t,x) eg(t,x,u(t,x), ut(t,x), ux(f,x)); (7.4)

2T : 1 T :
g ®(s,x+t-8)ds - 7= é @(s,fx+t-s)ds.

N

Q: T -1, (Qp)(t,x)

It is easy to see that @ i1is a projection of T onto TQ = W. We
can also consider Q +to be a projection on X and Z, and as such,
it is clear that N(A) = XQ' Finding a solution of (7.l1) is equivalent

to finding a u e Z(A) such that
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Au = Nu. (7.5)

The following lemmas give more detailed properties of the

operators @Q and A.

Lemma 7.1, For any ¢ € T, the following are equivalent:
i) o € Ty qr
2T
ii) | o(s,y-s)ds = 0 for all y;
0

2T T
Ciit) [ [ o(t,x)r(t,x)dxdt = 0 for all Y in TQ = W.
0 O
Proof;
(1) => (ii1): If o €Ty g then (Q)(t,x) = 0 implies
(@) (t,-t) = 0; i.e.
2T : am

] o(s,-s)das = [ o(s,2t-s)ds for all t.
0 0

Therefore

L

T 21 - 2r L
0 = (@) (5,0

2 [ o(s,-s)ds ;5; (/) ©(s,2t-s)dt)ds
0 0O ©

2m 1 T eTr
2] 05,808 - 5 /([ 0(s,26-8)an)as
0 0

ar 2T 1 21r-s
2 é ?(s,-s)ds - é (Eﬁ [ o(s,u)du)ds
-8

T
2] o(s,-s)ds
O .
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since ¢(s,-u) = «p(s,u). This proves (ii).
If (ii) is satisfied, then clearly (i) is satisfied. To
prove the equivalence of (ii) and (iii), suppose v(t,x) =

p(x+t) - p(-x+t) and observe that

2T T 2m t+T
[ Joe(t,x)[p(x+t) - p(-x+t)laxdt = [ [ o(t,y-t)p(y)dyat
0 O 0 t-1
T | 2T
=[ |] o(t,y-t)dt|p(y)dy
-m |0
Lemma 7.2. Z(A) = ZI-Q and A has a bounded right inverse
M. ZI-Q _)XI—Q'

Proof{ For any ¢ € Z, consider the function

t x+t-6

Ult,x) =5 [ [ o(e,¢)aede,
0 x-t+0

which belongs to C,, and satisfies Uy - U =0, U(t,x+2m) = U(t,x),

U(t,-x) = -U(t,x). To prove that R(A) = Z it is sufficient to

I-Q’

show that U(t,x) = U(t+2m,x) if and only if ¢ e Z A straight-

I-Q°
forward calculation using the fact that ¢(t,-x) = -@(t,x) gives

27 x+27+t-9
J I o (6,t)dt|ds
0 3{_21T-t+6

U<t+27r’x) =

N -

1 t+27rF-}£+t_a |
=5/ J ¢ (6,8)de|do
0 | X-1+6 '
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2T x+t-6 t X+t-2m-6

=51 [ olet)atde + 5[/ 9(6,8)dta
0 x-t+6 0 x-t+271+8

2T x+t-6

=3/ [ o(e,£)atde + ult,x).
0 x-t+6

Therefore, U(t+2m,x) = U(t,x) if and only if

for all +t,x. This is equivalent to requiring that Wt(t,x) =0 =
Wx(t,x), for all x,t, and that V¥ 1is zero at one point. Using the

fact that o¢(t,-x) = -p(t,x), we obtain

Wt(t)x) = ’(Qp)(t,x);

1 2T
\Vx(t;x) = (qp)(t;x) + Fé Cp(G,—X+t-9)d9;
V(t,t) = -v(t,-t).

i

Since ¥(0,0)

to  (qp)(t,x)

0, ¥(t,x) = 0 is equivalent, by virtue of Lemma 7.1,

h

0. This proves that (A) = Zp o Teking Mp =

(U-QU)p, the remainder of the lemma is obvious.

Lemma 7.2 implies that Au = Nu is equivalent to

u = Qu + M(I-Q)Nu,
QNu = 0.
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We can prove the following theorems by a straightforward application

of the contraction principle.

Theorem 7.l. Suppose g has continuous first and second derivatives
with respect to x,u,p,q in Q(p) and let 0 <a<b<p be given
positive constants. Then there is an € > 0 with the following

property. corresponding to each Y e X, =WN C2, IT]X < a, and to

Q
each ¢, |e| < e, there is a unique function I' = I'(v,e) in X,
Qr'= 7, ]PIX < b, continuous together with its first derivatives in

T,€, satisfying I'(y,0) = v, P;(Y30) =TI, and
- Pxx = eNI' - €eQNT.

Theorem 7.2. Under the hypotheses of Theorem 7.1, if there is an

¢, < € @and a function 7v(e) in X, ]Y‘(e)IXE a, |e|l < e, such

that

anr(r(e),e) = 0, 7 (7.6)

then I'(y(e),e) is a solution of (7.1) for |e| < e,. Conversely,
if (7.1) has a solution u(e) e X, continuous in e for |e| <,
|u(e)]X <b, IQu(e)IX <'a, |e] <e,, then u(e) = I(v(e),¢), where

v(e) = Qu(e) and T(r(e),e) satisfies (7.6).

Equations (7.6) are the bifurcation equations and a solution

v(e) of (7.6) is necessary and sufficient (as described in Theorem 7.2)
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for the existence of a solution of (7.1) for e small. A more

convenient form for equations (7.6) is obtainable from Lemma 7.1.

More specifically, equations (7.6) are equivalent to

H(y,e) = 0, T =TI(y,e);, where
(1.7
2T

def
2r H(r,e) (v) 5" [ e(s,y-5,0(s,¥-5),I (s,y-5),T, (s,y-58))ds (0 <y < 2m)
0

The explicit formulae for H(y,0) and H;(Y)O) are

2T

2T H(y,0) (v) é g(s,v-s,7(s,¥-8),7, (s,¥-5),7,(s,y-5))ds;  (7.8)

it

2

- |
2mHy (1,0)A] (¥) (f) [e,0(s,5-5) + g A (s,7-8) + g A (s,y-5)]ds (T7.9)

where A is an arbitrary element of X and the arguments of gu,

gp,gq are the same as in (7.8).

The functions H,H% are continuous mappings from X into

Q
the space Pl of continuously differentiable 27-periodic functions.
Thus we can apply the implicit function theorem to obtain a solution
of (7.7) and thereby a solution of (7.1). More specifically, if

there is & ¥, € X, ]YO]X < a such that

H(v,,0) = O;
0 (7.10)

i ~1.
[HY(Yb’O)] : Pl —aXQ

is bounded then there will be a solution of (7.7) for € small.
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Remark 7.1. Since
(@) (t,%) = H(r,€) (x+t) - H(r,e) (-x+t),

we could apply the implicit function theorem directly to QNI', ob-
serving that the mean values of the functions in the domain of the
inverse of the derivative operator are unimportant. This remark is

convenient in the applications.

To see the nature of the bifurcation equations and especially

the functions in (7.8), (7.9), we consider only one exemple. Let us

examine the equation
3
u - = €[u +butcu +£(t,x)] (7.11)

where b,c are constants, b # 0, and f(t,-x) = -f(t,x). The func-
tions H(r,0), H;(T)O), in (7.8), (7.9) are given by
r(t,x) = p(xert) - p(-x+t); A(t,x) = q(x+t) - q(-x+t);
2
H(1,0)(3) = »' (v) + [43em(p ) Ip(y) + oF” (v) - em(x’) + h(y);

(H(r,0)) () = ' (¥) + [b+6en(s7)]a(y) - Se[m(x°q) - 2m(pa)];

2T
1
h(y) = = £ f(s,y-s)ds, 0<yc<eam

21
where ' = d/dy, m(p) = %ﬁ /| o(y)dy and we have assumed without loss
0
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of generality that m(p) = m(q) = 0. For c sufficiently small
one can show there is a p such that the éonditions (7.10) are
satisfied and, thus, there is a solution u € X of (7.11) (see Hale
(31).

Many more problems of the above type have been considered
for equation (7.1l) and for even more general equations. We have only
tried to indicate the procedure and refer the interested reader to the
papers of Cesari [6-9], Rabinowitz [1], Vejvoda [1-3], Hall [2],
Napar stek [1], and Petrovanu [1,2] for even more complete results

ag well as additional references.

As another illustration, we briefly describe the ideas in
the paper of Landesman and Lazer [1]. Let D be a bounded domain in
R® and let
iJ

n
o )
A= L et
i,j=1 7i J
be a second order, self-adjoint uniformly elliptic operator on D,
that is, each a’d = adt  is assumed to be real, bounded and measurable

on D‘ and there is a constant ¢ > 0 such that

noo. no,
Y a Jgig. >c Lt
i:j=l J = =

o
for all x € D and for all real gj. Let Hl be the closure through

the {real) inner product
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<u,v> = [ (u-v+ux-vx)dx
D

of Cl functions with compact support in D; let HO = LQ(D) where,

for f,g e HO’

<f,g>b = é fedx.

For h € Hb, o >0 constant, and g! R - R bounded and continuous,

the problem is to determine a weak solution of

Au + ou + g(u) = h(x), x € D;

2

(7.12)
u(x) = 0, x € . '
That is, if
n i3
B(u,v) = Z [ a7, v ax,
i,j=1 D 177
0
we seek a u € Hi such that
def
(@,Au) = B(@;u) = <¢,h~0“-g(u)>o- (7.13)

0
for all ¢ € H). For any u e H,, let Nu=h - g(u). Equation

(7.13) will be written symbolically as

(A+oI)u = Nﬁ. (7.1k4)
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With the representation (7.13) for the operator A, we can

0
consider Al 9(A) = H; C Hy »H,. A special case of the result of

Lendesman and Lazer [1] is the following:

Theorem 7.3. Suppose MN(A+qI) is one-dimensional and w is a

basis for M(A+oI), w(x) >0 for x e D, ]w[o = 1. Assume also

that g(s) - g(»), g(-s) » g(-») as s - o, g(w), g(-«) finite,

and

g(-=) < g(s) < g(=), s € (- ). (7.15)

A necessary and sufficient condition for the existence of a weak

solution of (7.12) is

g(..oo) < <h,W>o < g(»). (7.16)

Sketch of Proof. The Riesz representation theorem and Rellich's

compactness theorem imply that R(A) = Hy and that A has a
completely continuous right inverse §S: Hy —>Ho. Equation (7.1k4) is

equivalent to the equation
u = -aSu - S[g(u) - h].

Since § is symmetric, one easily obtains <w,g(u) - h>, = 0, and,

from the fact that w(x) >0 in D, this implies
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g(_oo) < <h,W>O < g(oo)

is necessarily satisfied.
The proof of sufficiency is much more complicated and usesg

the ideas mentioned in Section 2. Let 'ER(A+aI) = HOQ’ where @ is
the orthogonal projection through <-,o>o onto the subspace spannéd

by w. The operator A + oI has a completely continuous right in-

verse M. XC,I-Q _>XO,I-Q'

to the equations

Equation (7.14) is, therefore, equivalent

u = Qu + M(I-Q)Nu,

(7.17)
0.

QNu

If we let Qu = aw, where a 1is a scalar, then these equations can

be written as

aw + M(I-Q)Nu def G, (u,a)

o
I

(7.18)

a=a - <WNu,w> def Gy (u,a).

0

If we let G = (Gl’GE)’ then finding a fixed point of G in HO X R
is equivalent to solving the problem. The difficult part of the
proof remains. By using the hypotheses on g and some careful
estimates, the authors show by means of Schauder's theorem that a

fixed point of G exists.

Using techniques more closely related to those of Lazer and
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Sanchez [1] discussed in Section h, Landesman and Lazer have
also proved the following interesting result: Suppose D is a
domain whose boundary is regular enough for the existence of the

Green's function for the boundary value problem
M = h(x), x €D, u(x) = 0, x € D,

where A 1is the n-dimensional Laplacian and h 1is Holder continuous

on D. Suppose that for o <a< Oy there exists no nontrivial

solution of

M+ ou=0, xeD, u(x) =0, x € D.

It is then concluded that for F a real-valued Cl function on R

satisfying o < Fr(u) < Qp for all wu, and for h Holder continuous

on D U d, the boundary value problem

M+ F(u) = h(x), x €D, u(x) =0, x ¢ D,

has a unique solution.

For other results on elliptic boundary value problems using

the ideas of Section 2, see Cesari [10].
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8. Admissibility. In this section, we indicate in a few remarks how

the important concept of admissibility as defined by Antosiewicz [2]
subsumes the ideas of Section 2. Suppose X,Y are Banach spaces, F

is a vector space with at least the structure of a complete topological
vector space, G 1is a subspace of F with at least the gtructure of

a Banach space with the topology of G being finer than_that induced
by F. ILet u. X »F be a hamomorphism, v E »F 1is a continuous,
linear transformation, wi G —» Y is a continuous transformation. The

first problem is to find an x ¢ X, g € G, such that
g = u(x) +v eow(g). (8.1)

We say (Y,G) is admissible (relative to the pair of linear
transformation (u,v) if, for any y € Y, there is an x ¢ X such
that u(x) + v(y) € G. An application of the closed graph theorem

gives

Lemma 8.1. If (Y,G) is admissible, there exists a p > 0 and for

each y ¢ Y a point x ¢ X such that u(x) + v(y) ¢ G and

Whax) + vl < vl

Lemma 8.1 is basic for the discussion of the existence of
solutions of the nonlinear problem (8.1) when w is small in same

sense. More specifically, for any given g € G, one can find an
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x € X such that H(g) = u(x) +vew(g) e G and H: G -G will be

continuous. If one can find a subset Go of G such that H. GO —)Go

and H has the fixed point property, then there will be a solution of
(8.1) in Go. A result of this type is given by Antosiewicz [2].
Applications of this idea to the theory of asymptotic behavior of
solutions of ordinary differential equations may be found in Hartman
and Onuchic [1l]. Implications in ordinary differential equations of
an hypothesis of admissibility on the behavior of the solutions of a
homogeneous equation may be found in Massera [1], Massera and
Schaffer [1].

It is easily seen that the problem of Section 2 is a special
case of the general problem considered here. Suppose X,Z

are Banach

spaces A,N as in Section 2, R(A) = X, R(A) = Zy- Then Ax = Nx

is equivalent -to the system

a) x = Ux + MENx

(8.2)
b) (I-E)Nx = O.

If Y=%4(),X=G=F, u="U, v=M, w=EN, then the set (Y,X)

is admissible by construction and the first equation (8.2a) ie a special

case of (8.1).

The concept of admissibility is a sweeping generalization of
the Fredholm alternative and will continue to have significant applica-

tions to differential equations.
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