AD725744

AFFDL-TR-70-118

AN AUTOMATED PROCEDURE FOR THE OPTIMIZATION
OF PRACTICAL AEROSPACE STRUCTURES

VOLUME [I-PROGRAMMER’S MANUAL

WALTER J. DWYER
ROBERT K. EMERTON
PATRICIA L. SABATELL!

GRUMMAN AEROSPACE CORPORATION

TECHNICAL REPORT AFFDL-TR-70-118, VOLUME Il

DD C
APRIL 1971 r"*
) | ‘
}.JU;..“_-».W g U L3
This document has been approved for putlic release A

and sale; its distribution is unlimited.

Reproducea Dy

NATIONAL TECHNICAL
INFORMATION SERVICE

corated Va 22151

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PA TTERSON AIR FORCE BASE, OHIO

=
et

4
7

NOTICE

When Government drawings, specifications, or other data are used for any purpose
cther than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, spezifications, or other data, is not to be regarded
by implication or otherwise as in any manner licensing the holder or any other person

or corporation, or conveying any rights or permissionto manufacture, use, or sell any
patented invention thet may in any way be related thereto.

.---"-._.-.--'--.-.'_----_I S
Y s Pl
et ¥
51l iyl
el -4

| e T |

. ooy ¢!
‘ 1 ML art X S”.MAL
! ' i

Coples of this report should not be returned umless return is required by security
considerations, contractual obligations, or notice on a specific document.

400-June 1971-CO305-40-71-672

e kst b o R i B gl]

AFFDL-TR-70-118

AN AUTOMATED PROCEDURE FOR THE OPTIMIZATION
OF PRACTICAL AEROSPACE STRUCTURES

- . N
Vo lum& 1)l - PRoGRAMMER'S MmANuaL

WALTER J. DWYER
ROBERT K. EMERTON
IRVING U. OJALVO

GRUMMAN AEROSPACE CORPORATION

This document has been approved for public release
and sale; its distribution is unlimited.

FOREWORD

Volume II of this report was prepared by the Structural Mechanics
Section of tae Grumman Aerospace Co~rporation, Bethpage, New York. It
provides programx;;r's information on the structural cptimization programs
developed under USAF Contract No. F 33615-69-C-1278, which was initiated
under Project No. 5710, "Structural Synthesis and Automated Design", Task
No. 146705. The effort was administered by the Air Force Flight Dynamics
Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base,
Ohio. Dr. Vipperla B. Venkayya (FBR) was the project monitor. The
theoretical development of the automated structural optimization methods
and computer program user's informntion developed under this contract are

presented in Volume I, "Theoretical Development and User's Information".

The project engineer and principal investigator of the present effort
was Walter J. Dwyer, Structural Methods Engineer, Structural Mechanics
Section. The authors wish to thank Frank Nolan, Nicholas Angrisano,

Frank Van Roten and Ciayton Wilkie for their help with the general
organization and writing of the program.

This report covers work conducted from 15 January 1969 to 15 August
1970 and was submitted to the Air Force in August 1970. The contractors
designation for Volume II is ADR 02-01-71.2.

The technical report has been reviewed and is approved.

) Po—e

F‘rancis&lj&;;?t Jr ¥
Chief, Theoretical anics Branch

Air Force Flight Dynamics Laboratory

il

cpdeiaone el B

BT o S

Rl RS S

T L1 ki LT o iy s LR)

o SO T ST i M
- Sl AT AL e TR [
TR . .: 1 P
A |
i '!'

i | : il | - Ay 1 Wy } s e, i
e s e e e GRS

b
.‘_.
i
-
.-‘:;_- he |
v Lt 3
.
i |
'|
]
A]
fi -
i

AFFDL-T«-70-118

ABSTRACT

This volume documents the computer programs described in
Volume I of this report entitled "An Automated Procedure for the
Optinization of Practical Aerospace Structures'. Both the main
structural optimization program and the shell dynamics program are
written in Fortran IV language. This manual contains a description
of the overlay structure, data set arrangement, and subroutines of

both programs.

111

TABLE OF CONTENTS
SECTION PAGE
1 INTRODUCTION . . . & v v & &« o & o 1
2 OVERLAY CHARTS . . + & &« & + « & « o 2
3 DATA SET ALLOCATION« 5
b DESCRIPTION OF SUBROUTINES . . .+ o+ . 4 o . 8
5 PROCRAMMER'S INFORMATION FOR DYNAMIC OPTIMIZATION

PROGRAM » &« &+ « o o « o o o o o o 85

iv

ma——

SECTION 1
INTRODUCTION

This manual documents programming information for the large scale
finite element structural optimization program of Volume I, and the
dynamic optimization study program.

- The first portion conta.ns a description of the overlay structure
and data set allocation for the IBM 360/75 and the IBM 7094 version of
the optimization program. Lengths of each common block, subroutine,
and overlay link are given. All of the subroutines in the program are
then described. The second portion contains flow charts and a
description of the dynamic optimization study program.

O R O A T

T RN SRR

SECTION 2

OVERLAY CHARTS

The following chart is for the overlay structure of the large
structural optimization program as used on an IBM 360/75 with a core
partition of 380,000 bytes, The chart is approximataly to scale and

the lengths of the subroutines and common blocks are given in bytes,
The second overley chart is for the IBM 7C94 version of the program.

SALAd UT SYO0Tq uoumod 2R
g3UFanoIqns Jo y3sudt

we301d uctqezTwyidg Y3 JO UOTSIIL GL/09€ WAI U3 J05 3Ieu) AWTIaAQ

95Tt Doz
glce T
st ovad
M ¢ 10ed
£eT yod
g-€3 10cdd
9962 TOE®
sl Lovad || meuLe XOVIEY
[" ’ | Y07 sowmo)) o
> —J g
9SnE Arls Ww» v
-y . . c
= e 29 9tia |lgesor 9m
e -1 D= . q0ENT ST 261¢ 213 <
[T . 89¢38 §12 oy ot 1d 3
0000t | e R "
-3 ke Mt I m . S
=1 WCXTa =
9 B s Y 0009t EVIX
] O 2faot SIVYa wmm . S1ILY
-y R e ey . .
<10t il dcozt avie 2¢61 guowb...u
212 i 06ET IALTIN 9Tt axeod
i KId L {144 2L418d 9541 2IDT
229 TETe ot PNV 5 ¢ aovor
o%eh 20TEL 7021 KK o 2611 ZRAZHS e | B
ca=1 I 26t oW no2L a1z o4 T
o X, g 507 10£Isd 9591 STuLS o M
ZafT Sy L1102 DIAT 98t SIT1dS e IS
¥ i oo1 TV 129 1 |, D:
C3AT el et Py sa%0d | g 8Ls dNIES
bl bbb ST mcd || CETR MwaEs T
3% oy 0. g —I
iz Lird €
gl oo !
£0T kb 2t 00012 Fii i3
L
[1 i
A
p COLL e €Sl Cx0dS
ont XTULVA 26L ¥ovavn
<y M0« oL XOwW
o ZSENM G 93 rCUIID
% 1IN, 03 TILLw c19 HICI2D
2618 JUAINT. o NSAw eh6 mOHMINd X
28 ony e LIEL2 c=aIINOM 29 4aviine | LeEwoas
e "C e TT TUNS NIV IO

m

weaBold uo}48ZTWI3d0 Y3 JO UOTSIdA ©60L WHI 343 J0J 3I8Y) ABTIaA0

SXVHHY

S s g
g1d TATHD >Ix
JZISNN DAEVE SH STH g ™
HLNGT MINIVd i | | |
DORTHO OLIVMT :
J SELLO IOTTIN
IALTNA 716
| HOOTVM SUAANT
* | HODX0L, ovary | [xowam] | oved| [wom] qomoa_ ZNATIS #1LTIL
; EDD TOSTEd Iim| | 70S9® 084D || IOVID| | OVISY Eﬂ i VLA
WO NLID 1)i | _ | SMIES NIaVO'T
R uznw‘ NISId — SIS TN
| HOTOVE zesmm NIVRES HOIOTA 8008 | | noogn
JHOIEM mHHInu quL ﬂﬁEn AVLCLL annod
DIV P | NIITIS
mmzowm 10d_JOH EVLLr NITHVO
Ivd ST ~ avLe ANIES
LINT'IT v et SSVaD ANANTW ZNEDOV
)) & h L
]
VI
XOVINN
_‘ MOV
| WONTED
| WIGIED
w MOMILI
EVLLAT
ATV

SECTION 3
DATA SET ALLOCATION

The following chart shows the allocation of data sets on an
IBM 369/75 to hold all the blocks of data generated by the large
structural optimization program. A maximum of four files per unit are
used. A total of twenty one data blocks are created., The second chart
shows an alternate data set allocation using cnly seven data sets.

weadodd uoT3ezTwildp 8Yy3 JO UOTSISA GL/0JE dU3 IO0F UOTIBICTTIY 39S BI8Q

HOLVYOS 4nsN Gt
HEVIH HEVIN aevIN
STONTMAIIAA NO
1IOTLIA T -
HOLVEOS SAOMOIIINIOD
SIVIN ¥osA 2t
NOLLOZ1IAq FSHEANT FTONVIUL HIMOT
AIVEN -1 SdviK RIS@ 191
NOIIOFTIHA ICUSANT TTONVIYL HIMOT
GIVIN -1 TIdVIN NgSAI 0T
SHOMODITNIO0D LITIS “WITH SLHTVILENOD HOTLOFETIST
SIVIN SAIVIN 00 VIN NISaT 6
SHSSTILE
SUHEWAN g
s TSIV MISaN
XTHLVW
SSANLITIS TVIALOMIIS NISON 1
AIVIN
HOLVIOS uose €
HOIVMOS ¥0ST 2
Sqvo1 "o°d FAISWOTD
TdVIN Odd VLN OIVIN nisqare T
2 - E TV #
SFT1d LIND LINN

wex3oxd uoT3BzTWId) 3Y3 JO UOTSISA #60L WHI 943 JOJ UOTFBI0TTIV 39S ©38(Q

N SSEANAATIS

FTONYIUL

HSMIANT SNOILOFLLAA HEMOT QHSOJHOOET
SIAVIN QdVIN TTdVIN NISaT ot
SADHODANICO | SISSANLATIS “WHTT | SINIVEISNOD NOILOEILAA
HOIVYOS SAVIN SEAVIN OQdVIN NISTT 6
SUIDNIN SASSTULS
RAVIN ISIVIN NdsaN 8
STONIMEIITA NOTILOFTIAT
QadviN
XTHIVH
SSANLATIS TVEALONNILS
HOIVHOS MIVIN NISTW q
HOIVHOS wose €
HOIVYOS ¥0sI e
SHIGWAN Savo1 *0°d RLIINOHD
RAVIN TdVIN OEJVIN OdVIN NISqr 1
Y 3 e u VN #
SHTIL IIND IINN

T T T

SECTION b

DESCRIPTION OF SUBROUTINES

Each of the subroutines in the structural optimization program
has been reviewed and, where necessary, comment statements have been
added to “he listing. As additional help in understanding the various
subroutines, a short description of each one is presented here. Each
description contains an outline of the algorithm, an explanation of
the suwbroutine input and output, error messages that may arise, the
subroutines called, the variables in the subroutine argument 1list,
and a list of important variables. The subroutines are arranged in
the order in which they appear in the program listing.

WP W T

Program MAIN

a. Algorithm

This program controls the optimization of the structure by calling various

subroutines in the proper sequence as follows

1. call SETUP - this subprogram assigns tape and disk units to hold the
various data blocks which will be generated.

2. cell CARDIN - this subprogram controls the reading and checking of the
input information.

3. call PROCES - the degree of freedom numbers are assigned to the node
points.

4. call INPUT - generate element stiffness and stress matricies.

5. call SBMAIN - solve for deflections and corner forces.

6. call RESIZE - using the corner forces compute the stresses and resize the
structure based on the stress and size constraints.

T. call DRATIO - if there are deflection constraints ,get the largest deflec-
tion constraint ratio.

8. Repeat steps 5 thru 7 until weight increases or the maximum number of
cycles has been performed;then either print. the final stresses or enter
deflection constraint mode with the lightest design yet obtained.

9. If program is entering or is in deflection constraint mode,call DSCALE
which will find the violated degrees of freedom and write them on a
scratch tape.

10. call INVERS - compute as much of the inverse of the stiffness as i1s needed
to compute the gradient.
11. call DLIMIT - resize the members to satisfy the deflection constraints.

12. call SBMAIN, call RESIZE, call DRATIO - analyze structure and compute
stress and deflection constraint ratios

13. Perform steps 9 thru 12 until weight starts to increase or until the
maximum number of cycles 1s reached. At that point print out stresses
of the optimized structure.

b. Input/Output
This program reads in the initial structure and loads,and prints out the

optimum

structure.

c. Error Messages

None

d. Subroutines Required

All

e. Argument List

None

Important Variables

DRATO -
DRATN -
WRATO -
WRATN -
SUIMO -
SUMN -
SFO -
SFN -
SLFAL

0ld deflection constraint ratio
new deflection constraint ratio
0ld stress constraint ratio
new stress constraint ratio
old total structural weight
new structural weight

old scale factor

new scale factor

deflection constraint relaxation factor

10

e A S TS

Subroutine SBMAIN

a. Algorithm

This subroutine controls the stacking of the element stiffness matrix, the
solution of equations routines to obtain the deflections, and the genera-

tion of the corner forces.

b. Innut[Output.

The subroutine analyzes the current structure and places the corner forces

and deflections on tape.

c. Error Messaggs

None

d. Subroutines Required

ASTACK, QFACT, QFSOL, REVERS, QBSOL.,ENMMPY, MULT

e. Argument List

None

f. Important Variables

KORE - size of work area for stacking and solving eqguations

11

Subrout ine SETUP

a. Algorithm

This subroutine was written to collect together all the tape and disk unit
assignments,

o

. Input/Output

There is no input to this program. The output is unit numbers that will
store the different sets of data needed in the program.

c. Error Messages

None

d. Subroutines Required

None

e. Argument List

None

f. Important Variables

Noae

a.

Subroutine SKIPIN

A;gorithm

This subroutine reads cards of data in the input stream until it finds the

blank card at the end of the bloeck.

Input/Output
none
Error Messages

none
Subroutines Required

none

Argument List

none

Important Variables

none

13

Subroutine CARDIN

a. Algorithm

b.

Co

d.

f.

This subroutine reads the label card at the beginning of each block of input
date and,based on the perameter in the label statement, transfers control to
the correct s:broutine to read the data in that group. Also,the instability
table data is read in directly by this subroutine. If, at the end of the
input data there are no errors, control is passed back to the main program.
Othervise execution is terminated.

Input/Output

The label card at the beginning of each type of data is read. Instability
tables are read in.

Error Messages

ERROR IN READING IN STABILITY TABLES,
NUMBER OF LOAD CONDITIONS NOT SPECIFIED.
DUE TO INPUT ERRORS, EXECUTION WILL NOT CONT1NUE

Subroutines Required

SKIFIN, GEOBC, MATRAL, MEMBIN, LOADIN, BOUND, DEFCQN, NUREAD.

Awnt List

Noae

important Variables

LDCOND - number of loading conditions

ITYPED - parameter in the label statement indicating what type of data 1is
about to be read.

I1GO - error switch,0 = no input errors

14

Subroutine GEOBC

Algorithm

This subroutine reads geametry and boundary conditions. If ITYPED equals 1,
geometry and boundary conditione are read from the same card. If ITYPED
equals 2, only geometry is read. If ITYPED equals 3, only boundary conditions
ere read. The x, y, 2nd z coordinates are stored in arruys X. Y, and Z in

the order in which they are read in. If no errors are present in the input
data the corresponding joint number is stored in array JTN@ and the geometry
data is written as a matrix on tape NTAPC. If there are no errors present,
degrees of freedom numbers are assigned to the allowable displacements at

the nodes. A matrix containing the degree of freedom numbers for each node

is written on tepe NTAPBC,

Input [Output

Geometry sud/or boundary conditions are read in. A tape containing the
geometry matrix and a tape containing the boundary condition matrix are

created.

. Error Messages

TWO JOINTS HAVE THE SAME NOIE NUMBER

JOINT NUMBER IS TOO LARGE, MAXIMUM IS ___

MAXIMUM NUMBER OF JOINTS EXCEEDED

BOUNDARY CONDITION FOR NODE __ , COMPONENT __ , IS NOT VALID

. Subroutines Requiired

PUTLAB, PUTROW

Argument List

ITYPED

. lmportant Variables

ITYPED - delcribe.d above

15

MAXJNO - maximum joint number allowed
KORDER - one dimensional array containing node numbers

KOR - running count of the number of joints used
JTNO - Joint numbe:* array

X - x - coordinate of joint

Y - y - coordinate of joint

Z - 2z - coordinate of joint

ICHKSW - error check switch, O if no errors

BUF - buffer for assembling row of geometry or B.C., matrix

I8UF - " " " "o " "o "

K11(J) - number of degrees of freedom of Jjoint J

K11SUM(J) - dzgree of freedom number of first degr‘ee of freedom at node J.
NTAPC - tape number of new tape with geometry matrix

NTAPBC - tape number of new tape with boundary condition matrix

16

b.

C.

d.

Subroutine MEMBIN

Algorithm

This subrogtine reads the material property table, if present, and updates
the stored material property teble. It also reads the member cards and forms
a member pseudo matrix on tape, one row for each member, one humdred loca-
tions per memberﬂ. "I'he member deta cards &are’ arranged' so that input data is
minimized. Standerd values for many of the member parameters are computed
from the material property tables add automatically entered into the proper
"bin" in the row of the member matrix. These values may be overridden by
applying alternate values on additional member cards. More "bins" have been
allocated for member data than is currently being used so the program may be
modified in the Juture with a minimum of programming changes, A sum of the
number of forces in the stress matrix is created.

Input Z Output

The input for this program is the material property table and the member data
cards. The output for this subprogram is the member pseudo matrix residing
on tape number NTAPM,

Error Messages

THE ABOVE MATERIAL UPDATE CARD HAS AN INVALID QUANTITY
MFMBER CARD HAS INVALID CLASSIFICATION

INVALID MEMBER TYPE

MEMBER NO, ____ HAS THE FOLLOWING JCINT REPEATED
BUFF (___) CONTAINS A ZERO VALUE FOR MEMBER NUMBER
MEMBER NO, HAS AN INVALID COMBINATION OF EIASTIC PROPERTIES
MEMBER HAS ELASTIC PROPERTIES MISSING

Subroutines Required

CARDIN, PUTIAB, PUTROW

17

sy

B

TR TRy

e. A;ﬂgnt List

: None

T. Inportant Variables

IBUFF - buffer area for assembling member pseudo matrix

BUF'F - 11 " " " n " ”

MILSUM - total number of corner forces in the structure and length of stress
matrix that will be coustructed later.

ICHECK - error check clue

18

- i ettt Y

Subroutine LOADIN

a. Al.gorithm

b.

Co

d.

The subroutire reads the load cards,one at a time, and checks to see if the
load matrix is in row sort. If the loads are correct,they are written on
tape as a pseudo matrix. The first column of each row is the node number,
the second column the component of the load, and the third thru last colums
contain the loads for each loading condition. Also, the sum of the forces
and moments about the origin in each load condition is printed out to aid in
checking the input data. If no errors are present, subroutine LDGEN is
called to generate the real load matrix using the pseudo loed matrix.

Input/Output

Input to this routine is the input load cards. Output is a load pseudo
matrix and a summary of the applied loads.

Error Messages

NODE NUMBER IS INVALID
COMPONENT IS INVALID

LOAD MATRIX IS NOT IN ROW SORT
LOAD CONDITION IS INVALID

Subroutines Required
PUTIAB, PUTROW,, LDGEN

e. Argument List

)

LDCOND - number of loading conditiouns

Important Variables

LNODE - node number of present load
ICMP - component of present load
EIMI' - wvaluz of present load

19

SUMMKX
SuMMy
SUMZ
SUMF
BUF

total X moment about origin

”" Y " " [

" Z L " "

sum of applied forces in three directions
buffer area for assembling load information to be put on tape

20

b.

C,

d.

€.

f,

Subroutine LDGEN

A;gorithm

This subroutine reads the tape containing the pseudo load matrix created in
LOADIN. Each row is checked against the boundary condition matrix IBC, and
against the list of nodes contained in KORDER, If the load is being applied
tc a strainable node the load is placed in the proper row of the load matrix.
The row is put on tape when a new load is read that does not belong in the
present row. At this point, blank rows sre put on the tape until the matrix
has been indexed down to the point where the new load belongs.

Input z Output

The input is the pseudo load matrix on tape number LOADIN, The output is the
real load matrix residing on tape MAT1

Error Messages

LOAD PIACED ON NODE COMPONENT WHICH IS PRESCRIBED
LOAD SPECIFIED FOR NODE WHICH IS NOT INCLUDED IN B.C.
LOAD PIACED ON NODE COMPONENT WHICH IS NON STRAINABLE

ERROR *¥** NODE COMPONENT ¥ LOAD MATRIX IS NOT IN ROW SORT,

Subroutines Required

PUTIAB, PUTROW, GETDIM, GETROW

Argument List

LOADIN - tape number for input pseudo loed matrix
MAT1 - tape number for real load matrix

I_n_lgorta.nt Variables

LN - loaded node number

LC - loaded component number

KORDER -~ array containing nodes in the order in which they were input
IBC = boundary condition array

el

b,

Ce

d.

Subroutine PROCES

Algorithm

This subroutine reads the geometry and boundary condition matrices and checks
them fér compatibility. The boundary condition metrix is read into core and
a running total on the number of degrees of freedam at each node is kept.
After the boundary condition matrix is read, the geametry matrix is read.
Both are then printed out together so that they may be examinéd for errors.

Input Z Outmt

The geometry and boundary condition matrices are read in and btoth are printed
out for checking.

Error Messages

GEMETRY HAS NODES WHILE B.C. HAS
ERROR *#* GEGMETRY CONTAINS NODE NUMBER NOT FOUND IN B.C.
1/0 ERROR DURING PRE-PROCESSING *** MATRIX GENERATION SUPPRESSED

Subroutines Required

GETROW, GETDIM

Argument List

None

Important Variables

K11 - number of free degrees of freedom for node

22

b.

Ce

d.

€.

t.

Subroutine INPUT

Algorithm

Thie subroutine writes a heading for the member data and calls SPLITZ to
initialize the stress matrix. It then reads a row of the member pseudo
matrix from the tape and prints out the geometric and physical properties

of that member. The subroutine then calls the appropriate finite element
subroutine to calculate the individual element stiffness and stress matrices.
The above operations are repeated for each member, in turn, until the entire
pseudo matrix is read.

Input/ Output

The member pseudo matrix is supplied and a tape containing the element
stiffness matrices and stacking indices used to form the total stiffness
matrix is produced.

Error Messages

MEMBER NO, HAS INVALID TYPE

MEMBER CONNECTS NODE WHICH IS UNDEFINED
INCORRECT MATRIX SUPPLIED FOR MFMBERS -

MATRIX NAME IS .

Subroutines Required

SPLITZ, PUTIAB, GETDIM, GETROW

Argument List

None

Important Variables

NTAPST - tape containing stress matrix for the total structure
NTAPK - tape conteilning stiffness matrix for the total structiure

23

8.

b.

Ce

d.

Subroutine SPLITS

Algorithm

SPLITS computes the stacking indices for the element stiffness matrices by
comparing the nodes of the element to the degree of freedam numbers of the
nodes. All the zeroes are compressed out of the element matrices by calling
ARACE. Next, the band width of the total stiffness matrix is computed by
finding the degree of freedom number of the component of the element stiff-
ness matrix that 1s furthest from the diagonal of the total stiffness matrix.
The weight of the element for unit thickness is calculated by calling UNITWT.
The member number, number of nodes, row and columm indices into the total
stiffness matrix,weight for unit thickness, and member type are written on
tape NTAPES. SSTRES is then called and the program returns to the element

subroutine.

Input/Output

The subroutine uses as input the stiffness matrix and stress matrix from the
element subroutine and produces the stiffness matrix for unit thickness and
the stacking indices on tape NTAPES,

Error Messages

None

Subroutines Required

ARACE, UNITWT, PRINT2, SSTRES

Argument List

STIFF - element stiffness matrix
STRESS- element stress matrix

LIN - number of nodes for the element
MIL - lines of stress output for the member
MOD - maximum degrees of freedom for each node - 3 for membrane elemenis,

6 for bending elements

2L

Jl - Joints of the element
MEMNO - member number

f. Important Variatles

IRI, ICI ~ size of non condensed stiffness matrix
IBANDW =~ bandwidth of structure's stiffness matrix
NTAPE - tape containing information described above

25

8.

be

Ce

d.

Subroutine SSTRES

Algorithm

The element stress (force) matrices for unit design parameters are "stacked"
into a stress (force) matrix for the entire structure. The rows of each
element matrix are entered sequentially into the total array and the colums
are entered according to degree of freedom numbers associated with the ele-
ment. As a result, the total matrix, which is stored on tape, will multiply
the displacement matrix to yield cormer forces (moments) for unit values of
the design parameters. The total array is generated and written in blocks
if not encugh core storage is available,

Inmt[OutEt

Input to this routine consists of element stress (force) matrices that have
had boundary conditions applied to them in SPLITS. The output is the total
matrix for the idealized structure for unit design parameters, written on
tape MATRIX.

Error Messages

None

Subroutines Required

PUTROW

Argument List

SMALL - element stress matrix

MID - maximum number of rows of any element's stress matrix
NODES - number of nodes of the element

MIL - number of rows of the element's stress matrix

MCOL - number of columns of the element's stress matrix
NSTART- index showing where the first colum of the element matrix is
placed in the total stress matrix

26

NGO - number of free degrees of freedom for all -~odes of the element

MATRIX - tape containing "stacked" matrix

KLU = index showing where the first row of the 2l went matrix is placed
in the total array.

f. Important Variables

WK - one dimensional array containing elements of the structure's stress
matrix
MSTART, NKEY - indices used in sorting and placing of the element matrix
into the <{otal array

T

Subroutine ASTAX

a. Algcrithm

This subroutine reads the element stiffness matricies and assoclated
stacking indicies from tape INFILE. These element stiffness matricies
are then multipiied by the element thickness obtained from the member pseudo
matrix on NTAPM. The element area is also entered into the array ARFA so
if the stiffness matrix can not be stacked in ome block, it will not be
necessary to read the member pseudo natrix a second time. The stiffness
matrix is formed in blocks i1n the array WKAREA. The amount that can be
stacked in any one block depends on the band width of the stiffness matrix.
All of the matricies are read into core, one at a time, for the stacking
of each block. The portion of the element stiffness matricies that Jdoes
not belong in the block of the stiffness matrix being stacked is discarded.
There is no limit on the size of the stiffness matrix that may be handled
by this subroutine as long as at least one row of the matrix will fit in

the work area at a time.

. Input/Output

The input to this subroutine is the member matrix and the element stiffness
matricies. The output is the total stiffness matrix.

Error Messages

None

. Subroutines Required

PUTROW, FILTAP, GETDIM, GETROW

. Argument List

INFILE - tape containing element stiffness
MATRIX - tape to contain global stiffness matrix for the sturcture
WKAREA - array used to stack stiffness matrix

IWKPR - same as WKAREA but in fixed point
WORK
ISIZE

same as WKAREA but in single precision
size of WKAREA

28

Subroutine EL1

a. Algorithm

This subroutine generates the bar element stress and stiffness matrices in

global coordinates, for unit cross sectional area.

b. Input [Output

The subroutine uses the coordinates of the node points and the elastic
properties passed thru common as input. The output is the element stiffness
and stress matrices in global coordinates without application of boundary

conditions.

. Error Messages

*** MEMBER NUMBER HAS ZERO LENGTH *¥*#

Subroutines Required

SPLITS

. Argument List

None

. Important Variables

AKG - global stiffness matrix

STG - global stress matrix

COOPD - coorainates of the element node points
AL12 - length of th. element

29

8.

b.

d.

€

f.

Subroutine EL2

A;gorithm

This subroutine generates the beam element stiffness and stress matrices
in glcbal coordinates. An entry point, EL1ll, is present to handle a beam
with one hinged end.

Input [Output

Same as in ELl.

Error Messages

OMEMBER NUMBER __ HAS __ BQUAL TO ZERO *¥*x

Subroutines Required

SPLITS

Argument List

None
Important Variables

AKG, STG, COORD, ALI2 - same as in ELl

CCT - transformation matrix from local to global coordinates.

BETA - angle between the beam's local x-y plane and its principal axis.

XIYY - moment of inertia about local y axis for unit cross sectional area
and zero BETA angle.

XI1ZZ - moment of inertia about local z axis for unit cross sectional area
and zero BETA angie. '

XPOL - polar mament of inertia for unit cross-sectional area and zero BETA

angle.

30

8¢

b.

Ce

d.

Co

f.

Subroutine EL3

Algorithm

Eptry points EL4 and ELMA in this routine handle the isotropic and aniso-
tropic triangular membrane elements. Global stiffness and stress matrices
for a unit thickness are geunerated. Entry points TRI and TRIA generate
local stiffness matrices for isotropic and anisotropic triangles that are
passed back to quadrilateral element routines.

Input z Out_mt

Same as in ELl.

Error Messages

Same as in EL2,

Subroutines Required

SPLITS

Argument List

None

Important Variables

AKG, STG, COORD - same as in ELL

All, A22, A33, +s.- stress-strain coefficients for plane stress element

AX2, AL23, AL1l3 - lengths of triangle's sides

CcT - trarsformation matrix from local to global coordinates.

BETA - angle between local x axis and axis defining directional
nature of elastic properties.

31

8o

b.

Ce

d.

Ce

f.

Subroutine ELS

Algorithm

Calling of the subroutine itself will result in generation of global stiff-
aess and stress matrices for a planar isotropic quadrilateral membrane
element. Entry point ELS5A handles the anisotropic case,

Input/Output

Same as in ELL

Error Messages

Same as in EL2

Subroutines Required

SPLITS

Argument List

None

Important Variables

AKG, STG, COCRD, BETA, CT, - same as in EL3

All, A22, A33, ¢ ¢ & - same as in EL3

XCG, YCG - coordinates of elements centroid, located for purpose of defining
four triangles.

8¢

b.

Co

d.

€,

f.

Subroutine EL6

Algorithm

This routine generates element stifiness and stress matrices
warped 3hear panel.

Input/Output

Same as in ELl,

Error Messages

*** MEMBER NUMBER ___ HAS EQUAL TO ZERO ¥
*** MATRIX __ OF MEMBER ___ IS SINGULAR #¥*

Subroutines Required

VECTOR, SREVN2, SPLITS

Argument List

None

Important Variables
AKG, STG, COORD - same as in ELl.
G - shear modulus of elasticity.

for the

AA, BB - - vectors connecting opposite cormers of warred qusd element-

used to determine location of .eference plune
ALPHA - flexibility coefficient determined from equilibrium

considerations for the shear panel (Ref. 30)

33

Subroutine EL8

a. Al_.gorithm

Element matrices for the warped quadrilateral membrane element are generated.
Entry point EL8A handles the anisotropic element.

b. Inmt[Outgut

Same as in ELl.

¢. Error Messages

THE VARIABLE GAM IN EL8 HAS THE FOLLOWING INCORRECT VALUE >k
% MEMBER NUMBER HAS EQUAL TO ZERO *#*
#+* MATRIX ___ OF MEMBER IS SINGULAR ##*

d. Subroutines Required

VECTOR, SREVN2, SPLITS, TRI (E.P.), TRIA (E.P.)

e. Argument List

None

f. Imgortant Variables

AKG, STG, COORD, BETA - same as in EL3

CC - coordinate transformation from global to reference plane coordinates.

A,B - vecters connecting quad's opposite corners - us:d to determine loca-
tion of reference plane.

34

&.

b.

t.

Subroutine SREVN2

Algorithm

Within some of the finite element subroutines, the need arises to obtain the
inverse of a matrix of small order, say 7 x 7. This routine obtains the
inverse through the Gauss-Jordan elimination scheme with partial pivoting.
It returns the inverse in the position of the original mstrix.

Inpgtz Output

Input consists of a small order matrix while the output consists of its

inverse.

Error Messages

None

Subroutines Required

None

Argument List

A - elements of matrix to be inverted

M order of matrix A

LOC - location of largest element in absolute value within each column of A
MID - dimension or maximum value of M

NIX - error indicator; if, upon return, NIX is not equal to zero, a column

(or row) of A is all zeroes.

Important Variables

Same as argument list.

Subroutine VECTOR

a. Algorithm

This subroutine is capable of performing many operations with vectors. Upon
setting proper clues in the calling statement, it will compute the dot
product or cross product of two vectors, compute the distance between two

points, or normalize a given vector,

b. Input z Outg‘ 0

The input consists of two vectors, A and B, upon which various operations
are performed. Output is a resultant vectcr, C.

c. Error Messages

None

d. Subroutines Required

None

e. Argunent List

A,B - input vectors
C - resultant vector
KIU - index determining operation, i.e. dot product, cross product, normal-

ization, etc.

f. Important Variables

Seme as argument list.

36

Subroutine ARACE

a. Algorithm

This subroutine eliminates rows and/or columns of the element stiffness or

stress matrix A, according to the boundary conditions associated with

the element.

b. Input[OutRut

This subroutine receives the element stiffness and stress matricies thru

common and returns thru common the condensed matricies.

c. Error Messages

None

d. Subroutines Required

None

e. Argument List

A

TROWA
ICOLA -
JI -

LIN -
MOD -

ISWITCH

JR -
JC -

f. Important

matrix to be reduced

number of rows of A

number of columns of A

array containing the ordering of the element nodes as they appear
in the input geometry

n'mber of Jjoints in the element

taree or six - depending on how many degrees of freedom the element
has at each node

1l - erase columns

2 - erase rows

3 - erase rows and columns

number of rows in array containing A

number of columns in array containing A

Variables

See argument list

37

Subrout ine QFACT

a. Algorithm

This subroutine reads the pogitive definite symmetric stiffness matrix and
sets up 1indicies for the subroutine QCHOL to get the lower triangle of an

L LT decomposition one row at a time.

b. Input/Output

This subroutine receives the names of the stiffmess and lower triangular

matricies and uses them together with there sizes to control QCHOL.

c. &ror Messages

###% ERROR .
#%%##% ERROR - DIMENSIONS READ FROM LABEL OF TOTAL STIFFNESS MATRIX INDICATE
THAT THE MATRIX IS NOT SQUARE #i##

d. Subroutines Reguired

GETDIM, PUTLAB, QCHOL

e. Argument List

MA - total stiffness matrix tape name

MI. - tape name for inverse of lower triangle
M1l - scratch tape

M2 - scratch tape

f. Important Variables

KORE - size of array used for working storage
M - size of stiffness matrix

38

Subroutine QCHOL

a. Algorithm

This subroutine performs the factorization of th: stiffness metrix under the
control of QFACT. The factorization is done in blocks. If the end of the
matrix fits in core the clue KEY is set to O.

b. Input/Output

The subroutine receives the stiffness matrix in blocks from the calling
routine QFACT, and returns the lower triangle factorization on the tape ML.

c. Error Megsages

None

d. Subroutines Required

UNPACK, GETROW

e. Argument List

A - work area
X - vector to hold one rowv of stiffness matrix
L(K) - number of elements from the first zero element in a row, to

the diagonal

M - size of stiffness matrix

NU - row number of first row being processed on this pass.
KORE - size of work area

ML - tape to hold lower triangle

MI - tape with the input matrix

MO - scratch tape

KEY - clue, last time thru KEY = O

KEE - clue for delivering output

NIX - error return

WORST - cancellation factor
NAME - pname of stiffness matrix

f. Important Variables

See argument list

39

Subroutine QPASS

. Algorithm

QPASS dummy reads over the required number of rows of the lower triangle
decomposition of the stiffness matrix to aid ir zoning for the forward

solution.

. Input [Output

This asubroutine uses the starting point NU for the zoning of the forward
solution, and a scratch array T into which a row at a time of the lower

triangle, residing on ML,1is to be dummy read.

. Error Messages

None

. Subroutines Required

None

Argument List

NU - starting point in zoning forward solution
ML - tape containing lower triangle

T - scratch array

Important Variables

See argument list

Lo

Subroutine QFSOL

a. Algorithm

QFSOL sets up and manages the zoning for the forward solution of

L L'ly = 2 using L, and y, getting Z.

b. Input/Output

This subroutine uses the lower triangle decomposition of the stiffness
matrix residing on ML,and the applied loads on MY,to produce the Z matrix
on MZ,

c. Error Messages

‘;*** ERROR %

d. Subroutines Required

CETDIM, PUTLAB, QFOR, QPASS

e. Argument List

ML - tape with lower triangle

MY - e with arplied loads

! .ape to receive the Z matrix
M; - scratch tape

M2 - scratch tape

f. Important Variables

See argument list

L1

Subroutine QFOR

a. Algorithm

QFOR actually computes the forward solution of Tx = 1

1y = Z.

by QFSOL every time that the available core must be zoned.

). InEut(Outgut

It is called

This subroutire uses the lower triangle decomposition of the total stiffness

matrix,residing on ML,and the applied loads on MY, to produce the inter-

mediate Z marrix on MZ.

c. Error Messages

None

. Subroutines Required

GETROW, UNPACK, PUTROW

. Argument List

EZZt"‘N'—]

MIDZ
ML
MZ
MI
MO

scratch arrays

scratch arrays

scratch arrays

number of rows in lower triangle
number of load cases

zoning clue

number of free degrees of freedom
tape containing lower triangle

tape to contain intermediate Z matrix
scratch tapes

scratch tapes

Important Variables

See argument list

b2

g g SR

Tusos e Lot gt o

Subroutine QBSOL

a. Algorithm

QBSOL solves the equation LT X =2 to obtain X vhich is the matrix of
nodal deflections. In general QBSOL only manages the solution; the actual
computations are done in QBAC. If JDEFL is non zero,the deflections are
printed out.

b. Input/Output

This subroutine uses the Z matrix on MZ and the lower triangle matrix on MB
to produce the deflections on MX,

c. Error Messages

#*#% ERROR I

d. Subroutines Required

GETDIM, PUTLAB, QBAC

e. Argument List

MB - tape containing lower triangle

MZ - tape containing Z matrix

MX - tape to contain deflection matrix
M1
M2 scratch tape

scratch tape

f. I-portant Variables

See argument list

43

T

T r— e

a’

b.

i)

Subroutine QBAC

Algorithm

QBAC, when called by QBSOL, actually computes the backward solution of the
T
equation L'X = Z, thus obtaining the matrix of nodal deflections X.

Input(OutEut

This subroutine uses the intermediate Z matrix in i1everse order’residing on
MZ, and the lower triangular matrix in reverse order on MB, to produce the

deflections on MX, also in reverse order.

Error Messages

None

. Subroutines Required

GETROW, UNPACK, PUTROW

Argument List

T - scratch arrays

B - scratch arrays

X - scratch arrays

L - scratch arrays

M - number of rows in lower triangle
N - number of load cases

MU - zoning clues

KORE - imount of available storage

MB - tape contairing lower triangle in reverse order
MX - tape to create nodal deflections in reverse order
MI - scratch tapes

MO - scratch tapes

Important Variables

See argument list

Ly

AR IGATE U N L ATy s s

Subroutine REVERS

. Algorithm

This subroutine is used to reverse the order of a matrix on a tape when the
matrix will not fit in core. The subroutine reads the matrix into the array
BUFFER. When the array is full, the subrputine keeps reading the matrix

in, putting the new rows into BUFFER on top of the old rows until all the
matrix is read in. At this time the array will contain the end of the
matrix which is then written out in reverse order onto tape MAT2. The first
matrix is then again read in until the last row read® onto MAT2 is reached
Then the portion of the matrix in BUFFER is read out backwards onto MATR.
This continues until all the matrix on MAT1 has been reversed and put on
MAT2.

. Input/Output

The subroutine uses a matrix on tape MAT1 as input, and puts out the same

matrix in reverse order on MAT2.

. Error Messages

None

. Subroutines Required

GETDIM, PUTLAB, GETROW, PUTROW

. Argument List

MAT1 - tape containing matrix to be reversed

MAT2 - tare containing reversed matrix

Important Variables

See argument list

L5

Pllecian o ron o

Subroutine QFSIN

. Algorithm
T =
QFSIN sets up and manages the zoning for the forward solution of L X=L lI=Z.

Using the lower triangle’L’and an identity matrix I, the intermediate

matrix is computed.

. Input/Jutput

This subroutine uses the lower triangle decomposition of the stiffness matrix,

residing on ML to produce the Z matrix on MZ.

*. Error Messages

LE RN ERR\R L 2 & 3

. Subroutines Required

GETD M, PUTLAB, QFIN, QPASS

. Argunent List

Ml - tare containing lower triangle

MZ. - tarve to receive Z matrix
Ml - scratch tare

M2 - scratch tape

Izportant Variables

See :rgument list

46

.
S —

Subroutine QFIN

a. Algorithm
1

T =
QFIN actually computes the forward solution of L'X = L "I = Z. It is called
by QFSIN every time that the available core must be zoned.

b. Input/Output

This subroutine uses the lower triangular decomposition of the total stiff-

ness matrix, residing on ML to produce the intermediate Z matrix on MZ.

c. Error Messages

None

d. Subroutines Required

GETROW UNPACK, PUTROW

e. Argument List

- scratch arrays

- scratch arrays

- scratch arrays

- number of rows in lower triangle
- zoning clues

- zoning clues

tape containing lower triangle

- tape to contain the Z matrix

- scratch tape

Brgarazn=n
]

- scratch tape

f. Important Variables

See argument list

b7

Subroutine MULT

Algorithm
This subroutine multiplies together two matrices , neither of which fit in

core storage, to form a new matrix C = [A]{ B]. One rowof A is read
into core at a time, and as much of the B matrix as will fit is read in.
The subroutine becomes rather slow if all of the B matrix will not fit,

The subroutine MULT only controls the tape manipulation and storage. The
actual multiplication is carried out in the called subroutine MMPY.

Input /Output

The subroutine reads in the A and B matrices and outputs the answer martix,C.

Error Messages

¥k DIMENSION ERROR NG

Subroutines Required

GETROY, MMPY, GETDIM, PUTROW

Argument List

MAT1 - A matrix

MAT2 - B matrix

MATANS - C matrix, product of A and B
MI'EMP1 - scratch tape

MTEMP2 - scratch tape
MAT NAM
IPRINT

name of answer matrix C

1 for intermediate output, zero for no intermediate output

Important Variables

See argument list

Subroutine ENMMPY

Algorithm

This subroutine multiplies together two matrices stored in core to produce
the partial product of two larger matrices that do not fit in core. The
multiplication is carried out in packed form. That is, strings of zeros
are not multiplied explicitly. The storage for this subroutine is con-

trolled by MULT.

Ingut{OutEut

This subroutine receives two matricies from the caliing routine MULT and
returns with the product matrix.

Error Messages

None

Subroutines Required

None

Argument List

BUFFER - array containing row of matrix
IBUFF - same as BUFFER but interpreted as fixed point

DBUFF - double precision answer matrix.

Important Variables

See argument list

L9

.

Subroutine PUTLAB

a. Algorithm
PUTLAB is a subroutine which will put a matrix label on a programmer

chosen data set.

b. Igput/Output

The subroutine receives from the calling routine tne matrix name, and size,
and the unit numoer. If NAMLST is set to 1, tne program will print out

this same information.

c. Error Messages

Noue

d. Suoroutines Required

FILTAP

e. Argument List

NTAPE - unit wnicn will nold tne matrix

MATNAM - matrix came
JROWZ - number of rows of the matrix
JCOLS - number of columns of the matrix

f. lmportant Variables

See argument list

50

Subroutine PUTROW

a. Algorithm

This routine will put out a row of a matrix on the unit specified
and in the format designated by IPACK.

utive elemeuts.

b. InputZOutEug

The subroutine receives a row of a matrix from the calling routine and writes

it on the specified unit in either packed or unpacked form.

. Error Messages

Noue

. Subroutines Required

PACK, UNPACK

Argument

List

NTAPE
TPACK
BUFFER
ICOUNT

unit which will hold the row of the matrix
if set to 1, put out packedl ros
array holding row to be written on tape

wvumoer of elements to pe written;if O or -1l,write end of file

. Important Variables

See argument list

Pe

The row cousists of ICOUNT consec-

Subroutine GETDIM

. Algorithm

This subroutine will get the label of a matrix from the specified data set
and if NAMLST is set to 1, print out the label information.

. Input/Output

Using the information supplied by the calling routine this subroutine will

position the tape and read the matrix label from the specified data set.

. Error Messages

None

. Subroutines Required

FILTAP

. Argument List

MATRX - tape unit to be read for label
MATNAM - matrix name

KROW - rows in the matrix

KCOL - columns in the matrix

Important Variables

See argument list

52

Subroutine GETROW

. Algorithm

This subroutine will cbtain the next row of the matrix on the specified unit
and store the row in a BUFFER.

Input/Cutput

This program reads a row of the matrix from the specified unit for use by the

calling routine.

. Error Messages

None

. Subroutines Required

PACK, UNPACK

. Argument List

NTAPE - tape unit number from which the row of the matrix is to be read
IPACK - O, return row in packed form
-1, return row in unpacked form
BUFFER - array to contain a row of the matrix
ICOUNT - number of words in the row

Important Variables

See argument list

23

a.

e.

f.

Subroutine PACK

Aigorithm

This subroutine is used to pack rows of a matrix so they may be written on a
data set in an efficient manner. This is done by representing strings of
zeroes by a single fixed point negative integer where the value of the
integer represents the number of zeroes in the string. Non-zero numbers
are preceeded by a fixed point number indicating the number of non-zero
numbers that follow. A single zero in a string is represented explicitly.
For example given the following row of a matrix:
0.,0.,1.,2.,0.,5.,7.,0.,0.,0.,0.,0.,0.,,
it would be packed to beccome
-2,5,1.,2.,0.,5.,7.,-6

Input/Output

The subroutine receives a row of a matrix and returns to the calling routine

a nacked row.

Error Messages

None

. Suvroutines Required

None

Argument List

IFIRST - row to be packed

ICOUNT - number of elements in the row to be packed. In the example this
would be 13.

IOUTPT - packed row returne? to calling routine

JOUTCT - number of elements in the packed row returned to calling routine.

In the example this would be 8,
IWORD - value of first word in packed row;in the example this would be -2

Important Variables

See argument list
54

IR T TR MR T TR SRR T R P SN TR T P e 1 BLLF iy ada b A S Ll

Subroutine UNPACK

a. Algorithm

Trhis subroutine unpacks rows of matrices that have been packed by the PACK

subroutine .

b. Input/Output

Using a packed row of a matrix,the subroutine generates a row of a matrix

with explicit zeroes.

c. Error Messages

None

d. Subroutines Required

None

e. Argument List

IFIRST - row of the matrix to be uhpacked

ICOUNT - length of the packed row

IOUTPT - unpacked row of the matrix returned to the calling routine
IOUTLT - length of unpacked row

NLZERS - number of leading zeroes

f. Important Variables

See argument list

25

Subrout ine PRINT?2

a. Algorithm

PRINT2 will print out all element stiffness and stress arrays when the
IDEBUG clue is set to 1.

b. InEutZOutgut

This subrcutine prints out the element stiffness or stress matrix CCC in

wallpaper output format.

c. Error Messages

None

d. Subroutines Required

None

e. Argument List

CCC - matrix to be printed out

ANAME - matrix name (AKG or STG)

BNAME - matrix name (AKG or STG)

INAME - member number

II - rov dimension of actual matrix to be outputted

JJ - column dimension of actual matrix to be outputted
IWALL - number of columns of matrix to be printed across page
ISWTCH - clue to indicate wallpaper printout

JR - row dimension of CCC

JC - column dimension of CCC

f. Important Variables

See argument list

56

Subroutine BOUND

. Algorithm

This subroutine processes the condensed boundary conditions and forms the
matrix IBC. This matrix is then passed to the subroutine GEOBC where the
boundary conditions are matched against the geometry.

. Input/Output

This subroutine reads the condensed boundary conditions and passes the

boundary condition array to the subroutine GEOBC.

5 _E_rror Nessages

FRROR MESSAGE *** NUMBER OF JOINTS SPECIFIED () IS TOO LARGE
ERROR MESSAGE *** JOINT NUMBER IS GREATER THAN SIZE OF MATRIX

Subroutines Required

GEOBC

. Argument List

None

. Important Variables

IBC - boundary condition array

5T

Subroutine DEFCON

Algorithm

This subroutine reads the deflection constraints and forms a deflection
constraint matrix on tape NTAPDC. The constraints are checked to see if
they are admissable and,finally,the constraints are printed out with an
appropriate heading.

. Input/Output

The data block containing the deflection constraints is read. After read-
ing and checking, they are prin:od.

. Error Messages

##* ERROR ###* DEFLECT.ON CONSTRAINT PLACED ON A FIXED DEGREE OF FREEDOM -
NOIE COMPONENT

Subroutines Required

PUTLAB

Argument List

None

. Important Variables

NTAPDC - tape to contain deflection constraints
LDOF - degree of freedom number

58

Subroutine DSC/LE

Algorithm

This subroutine scales the deflections by multiplying the deflections of the
feasible design by the current value of the constraint.relaxation factor

and then checks the constraints against the allowable deflections. If the
scaled deflections exceed the allowable deflection, the difference 1is
printed out and written, together with the degree of freedom and load case
information, on tape NTAPDD.

Input/ Output

The subroutine matches the deflections on NTAPD to the deoflection constraints
on NTAPDC end writes the violated constraint differences on NTAPDD.

. Error Messages

None

. Subroutines Required

PUTLAB, GETDIM, GETROW

. Argument List

None

Important Variables

1C - load case
NVDOF - number of violated degrees of freedom
DIFF - difference between allowable and actual deflection

29

Subroutine RESIZE

a. Algerithm

This is the main subroutine for resizing,using the nodal stress method. The
subroutine starts by reading the array NTABD and NTABR from tape or creat-
irg them if the subroutine is being executed for the first time. These
arrays are used for determining how the corner forces from the corner

force tape should be summed to create the nodal forces. In the small core
version of the program (7094) this information is generated and then stored
in the member pseudomatrix in order to be able to equivalence the NTABD array
with the TFORCE array. After the creation of these tables, the member

tape is rewound and the first row of the member pseudomatrixis read. Using
the information in the member data to control the reading of the corner

force tape, the corner forces are entered into the array TFORCE thru the
subroutine FCAPG and the shear flows are written on a scratch tape. There
is a separate section of code for each of the element types in the structure.
This subroutine also controls the computation and printing of the shear flows

and beam moments.

Ingut [Outgut

This subroutine uses the member pseudomatrix, the nodal geometry and the

corner force matrix to generate the nodal forces for use in NUSIZE.

Frror Messages

ERROR AT MEMBER DATA LABEL

ERROR AT MEMBER FORCE LABEL
ERROR READING MEMBER DATA MATRIX

COMAP. INTERFACE ERROR RETURN
ERROR AT COORDINATE DATA LABEL
ERROR READING COORDINATE MATRIX

60

A el

d. Subroutines Required

PUTLAB, GETDIM, GETROW, FILTAP, FCAPG, PUTROW, RTAPE, LENTH, SFTAPE, NUSIZE
TABDG, PAGES, CRINT

e. Argument List

None

f. Important Variables

MEM - member number

NTYP - member type

NI thru NL - nodes of the element

BAREA - area of bars or beams

THICK - thickness of planar elements

E - Young's modulus

NTABD - array containing the topology table

XMEM 61 - tensile allowable stress

XMEM 82 - compressive allowable strese

KLUT - clue to control searches for cap forces,shear flows,bending
moments,and warp loads.

NJTS - number of joints in the structure

61

Subroutine TABDG

. Algorithm

This subroutine generates the force direction table for cap forces or warp
loads. For each node in the structure, the nodes connected to it are placed

in the array NTABD. Up to twenty nodes may be connected to each node.

Input ZOutgut

All input and output is done thru common.

. Error Messages

#+# TN SEARCH CYCLE (KLUT) = FOR MEMBER NO. 20 COLUMNS EXCEEDED
IN TABLE FOR DIRECTION TO

. Subroutines Required

None

Argumert List

None

Important Variables

NNOD - node we are at
NDIR - node we are going to

Subroutine CRINT

a. Algorithm

This subroutine prints out the cap and warp loads and the shear flows at
the end of the optimization procedure,

b. Input/Output

Depending on the input value of KLUT, the subroutine prints the proper heed-

ings and values for the cap forces and shear flows.

. Error Messages

None

d. Subroutines Required

None
e. Argument List
None

f. Important Variables

KLUT - less than 5, rrint out cap forces
equal to 6, print out shear flows
equal to T, print out warp loads

63

Subroutine PAGES

. Algorithm

This subroutine places a date and page number at the top of a page during
the printing out of the cap forces and shear flows.

X IgpuE[Qutput

See Algorithm

. Error Messages

None

. Subroutines Required

None

. Argument List

None

. Important Variables

None

64

Subroutine FCAPG

a. Algorithm

This subroutine sums cap and warp loads and controls the resizing of the
structure by zones. The subroutine receives the cap force and, from the
NTABD and NTABR arrays, computes the row number in TFORCE into which the
force should be summed. Because the cap force from the corner force matrix
ir for unit thickness, it is first multiplied by the element thickness. The
row number into TFORCE is checked to see if that protion of TFORCE is in
core. If it is not in core, the cap force is held in a local array and a
previous zone of the structure is resized, using scratch member and shear
flow tapes ccntaining the members and shear flows that go with the portion
of the structure in the zone being resized. Then the rows of TFORCE in
core are moved up in the array and the previous zume of TFORCE is discarded.
The summary of cap forces then proceed,

b. Input[Output

The subroutine receives the corner force row and places it in TFORCE. Also the
scratch member matrix QM, and shear flow matrix QS, is formed.

c. Error Messages

None

d. Subroutines Required

PUTLAB, CRINT, NUSIZE

e. Argument List

None

f. Importent Variables

KR - row number in TFORCE

QM - scratch member matrix tape number

QS - scratch shear flow tape number

TF - array containing geometric data associated with TFORCE
NLC - number of load conditions

65

b.

Subroutine RTAYE

a. Egor ithm

RTAPE reads rows of the corner force matrix. If the row being read represents
a shear flow, it is written on tape QS. The number of rows read for each call
to RTAPE is determined by the input value of NREAD.

Input Z Output

The subroutine uses the input value of NREAD to determine how many rows of
the corner force matrix should be read. The last row read is passed back
to the calling subroutine

c. Error Messages

END OF FORCE MATRIX REACHED WHEN SEARCH CYCIE (KLUT) = FOR MEMBER
TYPE .
COMAP INT. ERROR RETURN FROM SUB. RTAPE

Subrout ines Required

GETROW, PUTROW

. Argument List

None

. Important Variables

NREAD « number of rows of corner force matrix to be read.

QS - scratch shear flow matrix

a.

Subroutine WEIGHT

Algorithm

This subroutine computes the weight of the individual members in the

structure.

InEEtZOutEEt

The node points and type of element is reud in and the weight of the element
for the 0ld thickness and for the new thiclrness is returned to the calling
routine,

Error Messages

None

Subroutine Required

None
Argggsnt List
None

Egportant Variables

WNEW - weight of element for new thickness
WOLD - weight of element for old thickness
DEN - density of element material

67

Subroutine LENGTH

. Algorithm

This subroutine computes the perpendicular length from the line NI- NJ to
the node NK by forming the cross product of the vectors (NJ - NI) and
(NJ - NK) and dividing by the length of (NJ - NI).

. Input[Output

The subroutine receives the three node points as input and returns the perpin-

dicular length to the calling routine.

. Error Messages

None

. Subroutines Required

None

. Argument

List

NI, NJ -

NK -

H -
COORD -

nodes on the line from which the perpendicular distance is to be
found

the node off the line - the perdendicular distance is from this
node to the line

perpendicular distance

coordinate array

. Important Variables

See argument list

T o PSRV

Subroutine ORTHOG

a. Algorithm

This subroutine converts non-orthogonal stresses to orthogonal stresses.

b. Input[OutEut

The subroutine receives the non-orthogonal stresses and the angle between

the direct stresses and returns the orthogonal stresses.

c. Error Messages

None

d. Subroutines Required

None

e. Argument List

XN1 - stress in swept direction

XN2 - stress in direction at angle to XNl
XN35 - non-orthogonal shear stress

BETA - angle between XN1 and XN2

f. Important Variables

See argument List

69

Subroutine NUSIZE

a. Alsorithm

This subroutine computes the new sizes of the elements by using the nodal
forces in TFORCE, the shear flows on the scratch shear flow tape, the allow-
able yield stresses,and the instability tables. The elements are read from
the member pseudo matrix one row at a time, The program then checks the
member type and transfers to the proper section of code to resize that type
of element. At each node, using the nodal forces in TFORCE and the shear
flow from the scratch shear flow tape, the orthogonal stresses at the corner
are computed. These stresses and the allowable stresses are then used in the
arithmetic assignment statement ERATIO to compute the stress ratio at

the corner. The stress in the corner in the local element X direction is
then checked against the instability table and the most critical is chosen
for resizing the corner. All the corners/ends of the element are then
averaged to obtain a new thickness. The ratio of old thickness to new thick-
ness is use to define the stress ratio scale factor. The element stresses
are printed out the last time thru the subroutine.

b. Ingut[OutEut

The subroutine creates a new member tape with the resized element thicknesses
in place of the original thicknesses.

c. Error Messages

None

d. Subroutines Required

GETDIM, STABIL, WEIGHT, GETROW

e. Argument List

None

T0

b 8 I_mgorta.nt Variables

SUMOLD « running sum of the old structural weight

SUMNEW - running sum of the new structural weight

KSTAB - stability table number

DISTIJ - distance from I to J

POVERA - stress in a bar

GXY(M) - shear stress for load case M

H(M) new thickness for a bending element

TF(I,1) - stiffness at a node in direction of force I (E times A)

TF(1,2) - sum of the lengths perpendicular to the force direction I of all
the direct stress carrying elements contributing forces in
direction 1

TF(I,3) - ExA of all the bars and beams along force direction I

71

. Important Variables

Subroutine NUREAD

Algorithm

This subroutine reads a given set of tables into a singly dimensional array
of common storage. These tables are used for the calculation of allowable
stress as £¢ function of applied stress and/or shear in subroutine DINTK.

. Ingut{OutEut

This subroutine reads in the instability tables and forms common block INTERP.

. Error Messages

None

. Subroutines Required

None

Argument List

NUMI'B - 1 for first call to NUREAD
K for replacing table K
MANDAN - O for initial read, 1 for table replacement
NG error return, O if no errors
L1(K) - maximum number of Xi's in table K
L2(X) - maximum number of Y{'s in table K
NUMPTS - number of table entries preceeding table K

See argument list

T2

Subroutine STABIL

Algorithm

This subroutine calls the proper instability table for the member being
resized and returns the allowable stress to the calling routine.

Input /Output

The subroutine receives the table number and stress from the calling routine
and returns the allowable stress.

. Error Messages

¥%*ERROR IN INTERPOLATION ROUTINE - NG =

Subroutines Required

DINTK

Argument List

NUMI'BL - table number

ARGl - abscissa of instability table

ARG2 - shear flow in two dimensional tables
¥CT - value of the allowable stress

Important Variables

See argument list

T3

b.

Subroutine DINTK

orithm

This subroutine performs table look ups and linear interpolations for func-

tions of

one and two variables,

Input /Outtut

The values of the independant variables and the table number are suppiied by
the calling routine. Tle allowable stress is returned.

Error Messages

None

Subroutines Required

None

Argument List

Ll -
Le -
NUMPTS -
KODE -
NLH1BL -
N2H1BL -
ARGl -
ARGZ2 -~
NUMIBL -
L3 -
FCT -

number of x;'s in table

number of y;'s in table

number of table entries preceding table K
dummy array

dumny array

dummy array

x

1

number of first table of the tabular system to which x and y are
assigned

number of functions for which values are deaired, usually 1

the interpolated value returned to the calling routine

error return, should be 0, set to 3 if the function was off the table

NG
I.ggortaut Variables

See argument list

Th

Subroutine UNITWT

Algorithm
This subroutine computes the weight of the individual member of the struc-
turc, for unit value of the design parameter. The value is put on the tape

along with the element stiffness matrix, and is used in DLIMIT. The code
in this subroutine is similar to that in subroutine WEIGHT.

Input /Output

The node points and type of element is read in and the weight of the eliement
for unit thickness is returned to the calling routine.

Error Messages

None

Subroutines Required

None

Argument List

None

Important Variables

None

[P

(Y

Subroutine DINTK

Agorithm

Thie subroutine performs table lcok ups and linear interpolations for func-
tions of one and two variables.

Input /Output

The values of the independant variables and the table number are supplied by
the calling routine. The allowable stress is returned.

Error Messages

None

Subrout ines Required

None

Argument List

number of x;'s in table

Lz - number of y;'s in table

NUMPTS - number of table entries preceding table K
KODE - dummy array

N1H1B4 - dummy array

N2H1B4 - dumy array

c
-
]

ARGl - x

ARG2 - Y

NUMI'BL - number of first table of the tabular system to which x and y are
assigned

L3 - number of functions for which values are desired, usually 1

FCT - the interpolated value returned to the calling routine

NG - error return, should be 0, set to 3 if the function was off the table

Important Variables

See argument list

T

e,

Subroutine UNITWT

Agorithn

This subroutine computes the weight of the individual member of the struc-
ture, for unit value of the design parameter. The value is put on the tape

along with the element stiffness matrix, and is used in DLIMIT. The code
in this subroutine is similar to that in subroutine WEIGHT.

Ingut ZOut put

The node points and type of element is read in and the weight of the element
for unit thickness is returned to the calling routine,

Error Messages

None

Subrbutines Required

None

Argument List

None .

Important “ariables

None

™

p—

Error Messages

None

Subroutines Required

GETROW, PUTROW, GETDIM, PUTDIM

Argument List

None

Important Variables

NSTART -

NGO -

SFO -

SCFAC -
XKINV -
DEIMAX -

starting location for the stacking of the element stiffness

matricies into the global stiffness matrix
gsize of the blocks of the element stiffnessmatrices that are to

be stacked into the global stiffness matrix starting at NSTANT
wdal deflections
0ld scale factor needed to move design to the boundary of the

feasible space
constraint relaxation factor

element stiffness matrix for unit thickness
average area change for each member

76

Subroutine DRATIO

a. Algorithm

This subroutine reads the deflections from tape NTAPD and the deflection
constraints from tape NTAPDC. For those deflections that are constrained,
the ratio of actual deflection to allowable deflection is formed. The
largest ratio is saved, and becomes the deflection constraint ratio, for use
in determining the scale factor needed to reach a feagible design.

b. InputZOutRut

The deflection and deflection constraints are read in and the deflection
constraint ratio is returned to the calling program.

c¢. Error Messages

None

d. Subroutines Reguired

GETDIM, GETROW

e. Argument List

None

f. Important Variables

DRATN - new deflection constraint ratio

CMA - allowable maximum deflection
CMIA - allowable minimum deflection

7

b.

C.

d.

f.

Subroutine EL1S

Agorithm

This routine generates stiffness and stress matrices in global coordinates
for the triangular plate bending element. Entry point FLTRI generates
the local stiffness which is passed back to the quad routine (EL16).

Input/Output

Same as in EL1

Error Message
###% MFMBER NUMBER HAS EQUAL TO ZERQ ¥+

Subroutines Required
PRINT2, SPLITS

Argument List

None

Important Variabies

AKG, STG, COORD, BETA, CT - same a8 in EL3

AX2, AL23, AL13, All A22, A33 ... - same as in EL3

Al, A2, A3, Bl, B2, B3 - projections of triangle's sides ontn its local
x and y axere ~ used in conjunction with the area
coordinate formulation

T - Matrix relating nodal displacements to curvatures within a subelement.

-

b.

Ce

d.

€.

f.

Subroutine EL16

Algorithm

This routine generates element matrices for the quadrilateral bending element,
It calls PLTRI four times to assemble four triangles into a quad with interior
degrees of freedom included., These are subsequently condensed out of the
local stiffness matrix before transformation to global coordinates.

Input [Output

Same as in ELl

Error Messages
Same as in EL1S.

Subroutines Required

PLTRI (E.P.), SREVN2, PRINT2, SPLITS

Argument List

None

Important Variables

AKG, STG, COORD, BETA, CT - same as in EL3
XCG, YCG - local coordinates of element's centroid.

Subroutine DLIMIT

a. Algorithm

DLIMIT performs the calculations necessary to form the new member matrix in
the deflection constraint mode., The first half of the subroutine forms

bOJ/BAi = fK]-lkiG in two steps. First, up to 1500 rows of the deflec-

tion matrix are read into core in the array called D. Next, the element
stiffness matricies are read in one at a time along with the stacking
indicies and unit weight for each member. The deflection matrix is then
pre-multiplied by the element stiffness matrix in packed form. If at any
time, the deflections that are needed to perform this multiplication are
not in core, an additional 750 rows are read in and the first half of those

currently in core are discarded. As the product kiG is formed for each

member it is written out on to a scratch data set. After thelast product
has been formed, the first violated degree of freedom is read from a
scratch data set; and the corresponding row of the inverse of the stiffness
matrix from a second data set. This row is now scaled and post multiplied
by the result of kiﬁ, for all the members in the structure., The result is
called DERV(NM,M). NM 1s the member number and M is the load condition.
This quantity is really aG/BAi- It isnext converted to 36/dW by dividing

by the weight for unit thickness. The changes in thickness for the various
members are then calculated and the sum of the changes in each member for the
various load conditions, with violated degreec of freedom are added together
This sum is then divided by the number of load conditions with violated
degrees of freedom; resulting in the average change in each member. This
average change is then added to the original area to produce a new member

thickness.

b. Input ZOutput

This subroutine uses as input the member matrix on unit NTAPM, the deflec-
tion matrix on unit NTAPD, the pertinent rows of the stiffness matrix in-
verse on unit NTAPIS, the deflection differences on unit MIADDD, end the
element stiffness.

80

Error Messages

None

Subroutine Required

GETROW, PUTROW, GETDIM, PUTDIM

Argument List

None

Important Variables

NSTART -

NGO

SFO

SCFAC

XKINV

DELMAX

starting location for the stacking of tne element stiffness
matrices into the global stiffness matrix

slze of the blocks of the element stiffness ma .rices that
are to be stacked into the global stiffness matrix starting
at NSTART

nodal deflections

old scale factor needed to move design to the boundary of

the feasible space
constraint relaxation factor
element stiffness matrix for unit thickness

average area change for each member

81

Subrout ine INVERS

a. Algorithm

INVERS calls all the routines which are involved in the computation of the
inverse of the total stiffness matrix. It takes advantage of the fact that
the lowver triangle decomposition of the stiffness matrix is saved from the
previous stress analysis.

b. Input/Output

This subroutine uses the lower triangle to create the rows of the inverse
up to and including, the lower degree of freedom that has consiraints placed
on it. It stores only those rows that correspond to constrained degrees

of freedom.

c. Error Mescages

None

d. Subroutines Required
SECOND, QFSIN, REVERS, QBISOL

e. Argument List

None
f. Important Variables

A - scratch array used by all solution routines.
NTAPIT - tape containing lower triangle

NTAPIS - tape containing needed rows of the inverse

82

Subroutine QBiSOL

a. Algorithm

QBISOL solves the equation LTX = Z to obtain X which is the inverse of the
total stiffness matrix. In general, QBISOL only manages the zoning of the
solution; the actual computations are done in QBAC.

b. I_nzut[Output

This subroutine uses the Z matrix on MZ and the lower triangular matrix on
ME, both in reverse order, and produces the required rows of the inverse in

reverse order on MX.

c. Error Messages

##% % ERROR %

d. Subroutines Required

GETDIM, PUTLAB, QIRAC

e. Argument List

MB - tape containing lower triangle

MX - tape containing Z matrix

MX - tape to contain needed rows of inverse
Ml - scratch tapes

M2 - scratch tapes

f. Important Variables
See argument list

83

Subroutine QIBAC

a. Algorithm

QIBAC is called by QBISOL and performs the same function in obtaining the
inverse as QBAC does iu calculating the nodal deflections. The one exception
lies in the fact that only those rows of the inverse, up to and including

the lovest degree of freedom that has constraints placed on it, are calcul-
ated and only the rows corresponding to constrained degrees of freedon are

saved in reverse order on MX.

b. Ingut[Output

This subroutine uses the intermediate Z matrix on MZ and the lower triangular
decomposition of the total stiffness matrix on MB, both in reverse order, to

proguce the required rows of the Inverse in reverse order.
c. Error Messages
None

d. Subroutines Required

GETROW, UNPACK, HOTDOT, PUTROW

e. Argument List

T - scratch arrays

B -~ scratch arrays

X - scratch arrays

L - scratch arrays

M - number of rows in lower triangle

N - number of columns in 2 matrix (M = N)
MU - zoning clue

KORE - work area

MB - tape to contain needed rows of inverse in reverse order
I - scratch tape

M¢ - scratch tapes

e. Important Variables

See argument list

8k

Section >

Programmer's Information for Dynamic Optimization Program

Introduction

This program, for minimum weight design of dynamically loaded
shells, contains four main subprograms:

SABRE - finds mass and stiffness matrices

DRAST - finds displacements for dynamic solution
MAXST - finds maximum stress for each element
@PTMIZ- calculates new thicknesses

This programmer's section explains the revised program. Descriptions
of the calling sequence, tape usage, array usage,’program counters
and clue definitions, as well as flow charts of selected routines,
are presented., References from the SAB¢R 3A-DRASTIC programs should
be used concurrently with this section since some routines have
undergone only limited modification from their originsl form.

‘Program Variables and Corresponding Engineering Symbols

R¢ - o material mass density
R1 - ry radius at station one
R2 - I, radius at station two
21 - Zl height at station one
2 = Z2 height at station two
ALY - slant height

s
El - E Young's modulus

GNU1 - ¥ Poisson's ratio

TO - ¢t initial time of integration
T - t final time of integration

DT - At integration time step

ESl - €5y meridional strain at station one
ES2 - €50 meridional strain at ststion two
ET1 - €o1 circumferential strain at station one
ET2 = €o0 circumferential strain at station two

85

shear strain at station one

EST1 - 501

EST2 - 5 o2 shear strain at station two

CsyT - Xs1 meridional rotation at station one

Cs2 - Xg2 meridional rotation at station two

cTlT - Xgl circumferential rotation at station one
CT2 = Xgo circumferential rotation at station two

CST1 = xsel twist rotation at station one
CST2 = XSGZ twist rotation at station two

Calling Sequence and Flow Charts

The following array indicates the program's subroutine calling

sequence,

MAIN
SABRE
INPUT
ELMAMS
MMPRT3
BIGMAT
ELKO08
ELEMTA
FUNCTI
MATL12
MMPLT3
MMFRT3
BIGMAT
DRAST
INHARM
START
BPUND
FACT¢R
BETAIN
F@RCE
S@PLTRS
STRESS
PR@DUC
PUNCHY
MAXST
SIGMA
gPTMIZ

Detrils on the flow of operations and the transfers of control between
the main program and the four subprograms are contained in the following
flow charts.

Start Print Read :
Heading NGROUP j‘@

SUBROQUTINE MAIN

Find Stress
Elements jemg-

Get Jynamic

CALL DRAST

CALL MAXST

Displacements |egd

NG =1

l

Optimize
Thickness
CALL OPTMIZ

Get Mass

And Stiffness < INDIC = O

Matrices
CALL SABRE

MK = MK + 1

87

NG = NG + 1

MK =]

_SUBROUTINE SABRE

C
o[e e | [S
LIM = 1 Data —* Vector
“;' Ieit" ::
Start Loop Initialize Find Number Find Density
To Assemble Mass Matrix Of Terms jw—In Mass/Unit area
Mass Matrix To Zero NTERMS RHO = RO * THICK
DO K = 1, NELEMS| |BIGMK(I) = 0.0

)

Is

7

CALL CALL
EIMAM 8 [| BIGMAT
KY =YK(LI)

!

Loop On K
Satiafied

No

Start Loop

LI = LIM - 1

To Compute
Stiffness

mdl
Matrices

i Start L
Initialize rt Loop
Stiffness To Assemble

Matrix To Zero [™) S;;Igrije(ss
BIGMK(LIM,I) = O. .

DO LIM = 2,NYK

CALL
ELKO8

CALL

BIGMAT

88

SUBROUTINE DRAST

NPl =1
DEGTOR =.017k
User Inputs
Damping
‘ Matrix
Start Loop Yea
On Hermonics
DOIBJ = 1, NYK
AIL = IL{IBJ)

AIIAN = AIL*ANGLE*DEGTOR
SININ = SIN(AILAN)
COSIN = COS(AILAN)

o

COSI = COSIN
SICO = SININ

f

NS1ZE-1
NS1ZE+]

Zero Out
Damping
Matrix
DAMPS(I) = 0.

Print : To
T1,DT,NDTOUT

COSI = SININ
SICO = COSIN

. T

COSI = NP1
SICO = NP1

Rewind ID1 =2
ID1,ID2 e =1

CALL | |camn [_| CALL CALL
INHARM START BETAIN [| PUNCHY

89

Satisfied
17

SUBROUTINE STRESS

gP - 1;;. Set Up Array Compute Strains
Q= o Containing | | Eg) ESp FT1,ET2,ESTL,
SN = SINA Displacements EST2,CAPS1,CAPS2,CAPT],
CN = COSA B(1)-B(3) CAPI2,CAPST1, CAPST2

/" Read (1D2)
il QDI,DM,..DDE Yes

Write (ID1) Compute Strains
ES1,E32,... ES1,ES2 ET1,ET2,FST1,
..,C8T1,CST2 EST2,(CS1,C82,CT1,CT2, ——
CST1,CST2 =
Y | DD? =0 No
DD12 = 0.

90

SUBROUTINE MAXST

Start Loop Start Loop
—e On Intervals j—es On Elements Read ID1
DO I = 1,MAR DO J = 1,NELEMS {ES1...CST2
CALL Calculate Store Values
SIGMA o~ Fiber (e H = 'I'HICK(J) = Of Straine
Stresses In Array
I SVE
VAIMX(KK) = TME(KK)
Stresses y B —ed MAXEL(KK) = I
DO KK = 1,NELEMS STGEFT(KK) s | (.)
VAIMX(KK) = Store Twelve
SIGEFF(KK) Value;nof SVE
J AVAL
Store Twelve
TE(KK) = T ot Value;nof SVE | MAXEL(KK) = I
AVAL

91

SUBROUTINE SIGMA

Find Effective

Compute Middle ‘Stress Outer Surface

Entry Surface Stresses

SSP,SSM, STP, o
STM,SSTP,SSTM SIGORF 'Jsspz»fsmrz -1, *SSP*SSM+ 3#SSTP

Find effective
Stress Inner Surface
SIGEFF(I)
pn—|
=SIGOEF
SIGIEF - |SSMP+STM -1, ¥SSM¥STM+3%SSTMC

SIGEFF(I)
=SIGIEF

SUBROUTINE @PTMIZ

NREPET = O
PI2 = 6.28
ALP,PAR, Start Loop
KPUN To Compute
RESIZE PARAM.
Find DO I = 1,NELEMS
SCALE FACTOR Print RESIZE
| BETA = PHI, . "I PARAMETER PHI [*]
Start Loop Yes
To Compute PHI(I) = 0 L
Scaled Thickness |4

DO I = 1,NELEMS

No

No

Compute
RESIZE
PARAMETER
PHI(I)

HBAR(I) = HBAR(I) =
BETA*THICK () THICK(I) : 1

No| RADAVG(I) =

RL(I)+R2(I) [-=tSUM = 0.0

2.0

WATE(I) =
PI2*RADAVG(I)*RO(I)

*HBAR{ I)*ALY(I)*386.4 CCP
SUM+WATE(T) O

Start Loop

Yes To Compute
- (1) = Weigﬁt
T

DO I = 1,NELEMS

93

SUBROUTINE @PTMIZ (cont.)

Punch Cards
With Scaled
Thickness HBAR

Print
Scaled Thickness
HBAR

INDIC = 1 —.l Print :SUMWAT

O—

Start Loop Store Scaled
To Compute Thickness

- New Thickness [*] orLDTH I) =

DO I = 1,NELEMS HBAR(I)

THICK(I) = No
(1. -ALP)*THICK(I)
+THICK(I)*PHI (I)*ALP

Yes

Print
Iteration No.

Punch Carda
With Scaled
Thickness HBAK

Punch Cards
With Lowest

INDIC = 1

9k

TaE Usgge

Two scratch tapes are used in this program, ID1 and ID2, ith
value 1 or 2. One is used to store the element strains calculated
for each required time step for the first harmonic. When str
for the next harmonic are computed, the tape is read back, a ©+ =ation
over the harmonics is performed in core, and the results are strred
on the second tape. This "flip-flop" procedure continues until the
sum of all harmonic strain components for each element, for all
specified tim2 steps, are stored on tape. This tape manipuiation takes
place in subroutine STRESS. The finel tape, tape 1 or tape 2 depend-
ing on the number of harmonics, is rewound. In MAXST, the strains are
read from the tape, fiber stresses are computed from these, and SIGMA
is called to find the effective stress for each eiement, for all time
steps.

Array Usage

Certain arrays are of particular significance in this program.
Double arrays use their first subscript as the factor determining
usage, while the second subscript denotes the dimension for that
array. Therefore, the following list will denote a double array by
its first subscript in defining its usage.

BIGMK (7, 2610)
BIGMK (1) - contains mass matrix
BIGMK (2),..., BIGMK (5) - contains stiffness matrices for
up to four harmonics
BIGMK (6) - work area for integration
BIGMK (7) - contains damping matrix
Unless user inputs damping matrix, BIGMK (7)

contains zeros.

95

X(3, Lok)

X(1) - contains displacements from integration
X(2) - contains velocities from integration
X(3) - contains accelerations from integration
SIGEFF (100) - holds values of effective stress for each
element for any given time step
VALMX (100) - stores maximum value of effective stress for

each element for all time steps
stores strains associated with the maximum
effective stresses for all time steps for all

AVAL (100, 12)

elements (corresponds to values of stress in
VALMX). The first subscript is the elemert
number; the second subscript is the dimension
holding the twelve strains, ES1, ES2,...,CST2.

Program Counter and Clue Definitions

NG - The number of the current problem. When NG > NGR;&JP,
program is finished.

MK - The iteration number, Case is complete when it
converges or when MK=NMAX.

INDIC If INDIC = O, iterations for case continue. If INDIC = 1,

case has been completed, program continues with next
case, if any.

IDl, ID2 - Tape numbers, 1 or 2, for scratch data sets. For
further information see "Tape Usage."

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is claseilied)

1. ORIGINATING ACTIVITY (Corporate author)

Air Force Flight Dynamics Laboratory (¥BR)
Wright Patterson Air Force Base, Ohio 45433 2B efrour

28. REPORT SECURITY CLASSIFICATION

Unclassified

3. REPORTY TITLE

AN AUTOMATED PROCEDURE FOR THE OPTIMIZATION OF PRACTICAL AEROSPACE STRUCTURES
VOLUME IT PROGRAMMER'S MANUAL

4. DESCRIPTIVE NOTES (Type of report and inclusive datea)

8. AUTHORI(S) (First name, middle initial, last name)

Walter J. Dwyer
Robert K. Emerton
Patricia L. Sabatelli

8. REPORT DATE

Feb. 1971

78, TOTAL NO. OF PAGES

96

7b. NO. OF REFS

None

8a. CONTRACT OR GRANT NO.

F 33615-69-C~1278

b. PROJECT NO.

d.

9a. ORIGINATOR'S REPORT NUMBER(S)

AFFDL-"R-70-118 Volume II

9b. OTHER REPORT NO(S) (Any other numbers that may be asasigned

this report)

10. DISTRIBUTION STATEMENT

Distribution of the document is unlimited.

1. SUPPLEMENTARY NOTES

S IE

/

12. SPONSORING MILITARY ACTIVITY

3. ABSTRACT
\

z

-
i

¢ "€
This vo‘&:ume documents the computer programs described in Volume I of this report

entitled "An Automated Procedure for the Optimization of Practical Aerospace
Structures'. Both the main stru.tural optimi.ation program and the shell dynamics

program are written in Fortran IV language.
the overlay structurc, data set arrangement,

This manual contains a description of
and subroutinas of both programs.

)

DD '&V..1473

UNCI ASSIFIED

Security Classificaticrn

sy = *,%Wm

“Security Classification

V4.

KEY WORDS

LINK A

LINK B

LINK C

ROL E wY

ROLE LAS

ROL E

wWT

Structural Optimization
Finite Element Method
Automated Design

Security Classification

