
AFFDL-TR-70-118 

AN AUTOMATED PROCEDURE FOR THE OPTIMIZATION 
OF PRACTICAL AEROSPACE STRUCTURES 

VOLUME ll-PROGRAMMER'S MANUAL 

WALTER J. DWYER 

ROBERT K. EMERTON 

PATRICIA L. SABATELU 

GRUMMAN AEROSPACE CORPORATION 

TECHNICAL REPORT AFFDL-TR-7Ü-118, VOLUME II 

APRIL 1971 

This document has been approved for public release 
and sale; its distribution is unlimited. 

D D C 
ni! i i ■ 

f '" :: I | 

A 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

AIR FORCE FLIGHT DYNAMICS LABORATORY 
AIR FORCE SYSTEMS COMMAND 

WRIGHT-P/ TTERSON AIR FORCE BASE, OHIO 

/erf 
i 



NOTICE 

When Government drawings, specifications, or other data are used for any purpose 
ether than in connection with a definitely related Government procurement operation, 
the United States Government thereby incurs no responsibility nor any obligation 
whatsoever; and the fact that the government may have formulated, furnished, or in 
any way supplied the said drawings, specifications, or other data, is not to be regarded 
by implication or otherwise as in any manner licensing the holder or any other person 
or corporation, or conveying any rights or permission to manufacture, use, or sell any 
patented invention that may in any way be related thereto. 

Copies of this report should not be returned unless return is required by security 
considerations, contractual obligations, or notice on a specific document. 

•100-June  19?l-r.O10S-40-71-672 



AFFDL-TR-70-118 

AN AUTOMATED PROCEDURE FOR THE OPTIMIZATION 
OF PRACTICAL AEROSPACE STRUCTURES 

WALTER J. DWYER 

ROBERT K. EMERTON 

IRVING U. OJALVO 

GRUMMAN AEROSPACE CORPORATION 

This document has been approved for public release 
and sale; its distribution is unlimited. 



FOREWORD 

Volume II of this report was prepared by the Structural Mechanics 

Section of the Grumman Aerospace Corporation, Bethpage, New York.    It 

provides programmer's information on the structural optimization programs 

developed under USAF Contract No.  F 33615-69-C-1278, which was initiated 

under Project No.  5710, "Structural Synthesis and Automated Design", Task 

No.   146705.    The effort was administered by the Air Force Flight Dynamics 

Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, 

Ohio.    Dr.  Vipperla B. Venkayya (FBR) was the project monitor.    The 

theoretical development of the automated structural optimization methods 

and computer program user's information developed under this contract are 

presented in Volume I, "Theoretical Development and User's Information". 

The project engineer and principal investigator of the present effort 

was Walter J. Dwyer, Structural Methods Engineer, Structural Mechanics 

Section.    The authors wish to thank Frank Nolan, Nicholas Angrisano, 

Frank Van Roten and Clayton Wilkie for their help with the general 

organization and writing of the program. 

This report covers work conducted from 15 January I969 to 15 August 

1970 and was submitted to the Air Force in August 1970.    The contractors 

designation for Volume II is ADR 02-01-71.2. 

The technical report has been reviewed and is approved. 

Franc is ViL^Vanlfk Jr 
Chief, Theoretical M&Cnanics Branch 

Air Force Flight Dynamics Laboratory 

ii 





AFFDL-TWO-118 

ABSTRACT 

This volume documents the computer programs described In 
Volume I of this report entitled "An Automated Procedure for the 
Optimization of Practical Aerospace Structures". Both the main 
structural optimization program and the shell dynamics program are 
written In Fortran IV language. This manual contains a description 
of the overlay structure, data set arrangement, and subroutines of 
both programs. 

iii 



TABLE OF COWTEKTS 

SECTION PAGE 

1 INTRODUCTION  1 

2 OVERLAY CHARTS    2 

3 DATA SET ALLOCATION  5 

k                 DESCRIPTION OF SUBROUTINES  8 

5 PROGRAMMER'S INFORMATION FOR DYNAMIC OPTIMIZATION 
PROGRAM  85 

iv 



SECTION 1 

INTRODUCTION 

This manual documents programming information for the large scale 

finite element structural optimization program of Volume I, and the 

dynamic optimization study program. 

The first portion contains a description of the overlay structure 

and data set allocation for the IBM 360/75  and the IBM 709^ version of 

the optimization program. Lengths of each common block, subroutine, 

and overlay link are given. All of the subroutines in the program are 

then described. The second portion contains flow charts and a 

description of the dynamic optimization study program. 

/ 



;■ 

SECTION 2 

OVERLAY CHARTS 

The following chart is for the overlay structure of the large 

structural optimization program as used on an IBM 360/75 with a core 

partition of 380,000 bytes.    The chart is approximately to scale and 

the lengths of the subroutines and ccranon blocks are given in bytes. 

The second overly chart is for the JEM 709^ version of the program. 



;' o p r 

«  « « « 

( 1 L - 

a ^ =1 t-i 4 (•" jgasssr 
*    f   *    a   •    * 

35 a as p h « a 6 

:J K. B. o o ^ b 'i 

5 

fOtOvC  H  CJ >A A 
rH (H r^ ^ H r^ H 

O 

oHo > Mat, 

< I- 

53 

•     »0 J 

SSsHiggiMiüs T IT o <.■> J' . 1 ^ dS K ie t. i: 11 

-O _» CO ro 

M td M I 

•"^   ^S 

w • J u u S 

r 

? 

c o 
■p 

V 
J3 
•P 

V. 
O 

§ 

I 

V 
Xi 

u 
o 

I 
I 
I 



a 
s & fe 

C5 M O U Ü 0 p 

§nU 

WS 1-3 

äo 

ö 

i « S 

— | 

a 

§ 

3 

I 
v. 
o 
c 
o 
ea 

I 

s 
S 

^ 



SECTION 3 

DATA SET ALLOCATION 

The following chart shows the allocation of data sets on an 

IBM 360/75 to hold all the blocks of data generated by the large 

structural optimization progra».   A maximum of four files per unit are 

used.    A total of twenty one data blocks are created.     The second chart 

shows an alternate data set allocation using only seven data sets. 



en 

CM 

n 

| 

i 
03 

§   s 

95        S       § UM 

cu       m        j- oo        <^ Pi ?i 

K 

CO 

i 

lO 

I 
o 

ß o 
•H 
■P 
0) 
N 

■ä 

O 

a 
"S 
c o 
CO 

I 
c o 

8 



m 5! 

CO 

a 
H 

CM 
a 0 

w 

^ 

a ü 

eg 

o 
Ä 
c 
o 

•H 
•p 
(0 

-P 

a« 
a» 

o 
c 
o 

•H 
09 g I 
I 
H 

V 
XJ 
+> 

I 
a 
o 
•H 
-p 
«i o I 

+> 
V 

CO 

at 
+> n « g S g 

En 

g 
CVJ oo CO ON s 



SECTION U 

DESCRIPTION OF SUBROUTINES 

Each of the subroutines In the structural optimization program 

has been reviewed and, where necessary, comnent statements have been 

added to the listing.    As additional help in understanding the various 

subroutines,  a short description of each one is presented here.    Each 

description contains an outline of the algorithm, an explanation of 

the subroutine input and output, error messages that may arise, the 

subroutines called, the variables in the subroutine argument list, 

and a list of important variables.    The subroutines are arranged in 

the order in which they appear in the program listing. 



Program MAIN 

a. Algorithm 

This program controls the optimization of the structure by calling various 

subroutines in the proper sequence as follows: 

1. call SE1DP - this subprogram assigns tape and disk units to hold the 

various data blocks which will be generated- 

2. call CARDIN - this subprogram controls the reading and checking of the 

input information. 

3. call PROCES   - the degree of freedom numbers are assigned to the node 

points. 

k.    call INPUT - generate element stiffness and stress matricies. 

5-     call SBMAIN - solve for deflections and corner forces. 

6. call RESIZE - using the corner forces compute the stresses and resize the 

structure based on the stress and size constraints. 

7. call DRATIO - if there are deflection constraints ,get the largest deflec- 

tion constraint ratio. 

8. Repeat steps 5 thru 7 until weight increases or the maximum number of 

cycles has been performed;then either print the final stresses or enter 

deflection constraint mode with the lightest design yet obtained. 

9. If program is entering or is in deflection constraint mode,call DSCAIE 

which will find the violated degrees of freedom and write them on a 

scratch tape. 

10. call INVERS - compute as much of the inverse of the stiffness as is needed 

to compute the gradient. 

11. call DLIMIT - resize the members to satisfy the deflection constraints. 

12. call SBMAIN, call RESIZE,  call DRATIO - analyze structure and compute 

stress and deflection constraint ratios 

13. Perform steps 9 thru 12 until weight starts to increase or until the 

maximum number of cycles  is reached.    At that point print out stresses 

of the optimized structure. 

9 



"• 

b. Input/Output 

This program reads In the initial structure and loads,and prints out the 

optimum structure. 

c. Error Messages 

None 

d. Subroutines Required 

All 

e. Argument List 

None 

f. Important Variables 

DRÄTO - old deflection constraint ratio 

DRATN - nev deflection constraint ratio 

WRATO - old stress constraint ratio 

WRATN - new stress constraint ratio 

SUMO > old total structural weight 

SUMN > nev structural weight 

SFO  - old scale factor 

SFN  - nev scale factor 

SLFAL - deflection constraint relaxation factor 

10 



Subroutine SBMAIN 

a. Algorithm 

This subroutine controls the stacking of the element stiffness matrix, the 

solution of equations routines to obtain the deflections, and the genera- 

tion of the corner forces. 

b. Input/Output 

The subroutine analyzes the current structure and places the corner forces 

and deflections on tape. 

c Error Messages 

None 

d. Subroutines Required 

ASTACK, QFACT,  QFSOL,   REVERS,  QBSOL.,ENMMPY, MULT 

e. Argument List 

None 

f. Important Variables 

KORE - size of work area for stacking and solving equations 

11 



Subroutine SETUP 

a. Algorithm 

This subroutine was written to collect together all the tape and disk unit 

assignments. 

b. Input/Output 

There is no input to this program. The  output is unit numbers that will 

store the different sets of data needed in the program. 

c Error Messages 

Rone 

d. Subroutines Required 

None 

e. Argument List 

None 

f. Important Variables 

None 

12 



Subroutine SKIPIN 

a. Algorithm 

This subroutine reads cards of data In the Input stream until It finds the 

black card at the end of the block. 

b. Input/Output 

none 

c. Error Messages 

none 

d. Subroutines Required 

none 

e. Argument List 

none 

f. Important Variables 

none 

13 



■ 

Subroutine GftRDIN 

a. Algorithm 

This subroutine reads the label card at the beginnlog of each block of input 

data and,based on the parameter in the label statement, transfers control to 

the correct subroutine to read the data in that group.    Also »the instability 

table data Is read In directly by this subroutine.    If, at the end of the 

input data there are no errors, control is passed back to the main program. 

Otherwise execution is terminated. 

b. Input/Output 

The label card at the beginning of each type of data xs read.   Instability 

tables are read In. 

c. Error Messages 

ERROR IN READING IN STABILITY TABLES. 

NUMBER OF LOAD CCHDITIONS NOT SPECIFIED. 

DUE TO INPUT ERRORS, EXBCITTIOK WILL NOT COMTINUE 

d. Subroutines Required 

SKIPIN,  GBOBC, MATRAL,  MEMBIN,  LQADIN,  BOUND,  DEFCON,  NUREAD. 

e. Argument List 

None 

f. Important Variables 

LDCGND - number of loading conditions 

ITYPED . parsmster in the label statement indicating what type of data is 

about to be read. 

IGO       - error Bvitch,0 - no input errors 

ll» 



Subroutine GEOBC 

a. Algorithm 

This subroutine reads geometry and boundary conditions.     If ITYPED equals 1, 

geontetry and boundary conditione are read from the same card.     If ITYFED 

equals 2, only geometry Is read.    If ITYPED equals 3, only boundary conditions 

are read.    The x, y,  znd z coordinates are stored In arruys X.   Y, and Z In 

the order In which they are read In.     If no errors are present in the    input 

data the corresponding Joint number la stored In array JTTi0 and the geometry 

data Is written as a matrix on tape IfTAPC.    If there are no errors present, 

degrees of freedom numbers are assigned to the allowable displacements at 

the nodes.    A matrix containing the degree of freedom numbers for each node 

Is written on tape NTAPBC. 

b. Input/Output 

Geometry &nd/or boundary conditions are read In. A tape containing the 

geometry matrix and a tape containing the boundary condition matrix are 

created. 

c. Error Messages 

TWO JOINTS HAVE THE SAME KOEE NUMBER 

JOINT NUMBER IS TOO LARGE, MAXIMUM IS  

MAXIMUM NUMBER OF JOINTS EXCEEDED 

BOUNDARY CONDITION FOR NDEE ,  COMPONENT 

d. Subroutines Required 

PUTLAB,  PUTROW 

e. Argument List 

rnPED 

f. Important Variables 

VTYPED -  described   ab^ve 

IS NOT VALID 

15 



7J- rf*--»^ 

- 

MAXJNO - maximum Joint number allowed 
KORDER - one dlmens iooal array containing node numbers 

KOR - running count of the number of Joints used 
JTNO - Joint numbe::" array 
X - x - coordinate of Joint 
Y ~ y " coordinate of Joint 

I - T -  coordinate of Joint 

ICHKSW - error check switch, 0 if no errors 
BUF - buffer for asBembling row of geanetry or B.C. matrix 
-r j. fp II II II II    It H "      «I II 

Kll(j) - number of degrees of freedom of Joint J 
KliSUM(J) - dagree of freedom number of first degree of freedom at node J. 
NTAPC - tape number of new tape with geometry matrix 
NTAPBC - tape number of new tape with boundary condition matrix 

16 



■ 

Subroutine MEMBIN 

a. Algorithm 

This subroutine reads the material property table, if present, and updates 

the stored material property table. It also reads the member cards and forms 

a member pseudo matrix on tape, one row for each member, one humdred loca- 

tions per member. The member data cards are arranged so that input data is 

minimised. Standard values for many of the member parameters are computed 

from the material property tables and automatically entered into the proper 

"bin" in the row of the member matrix. These values may be overridden by 

applying alternate values on additional member cards. More "bins" have been 

allocated for member data than is currently being used, so the program may be 

modified in the future with a minimum of programming changes. A sum of the 

number of forces in the stress matrix is created. 

b. Input/Output 

The input for this program is the material property table and the member data 

cards. The output for this subprogram is the member pseudo matrix residing 

on tape number HTAPM. 

c. Error Messages 

THE ABOVE MATERIAL UPDATE CARD HAS AN INVALID QUANTITY 

MEMBER CARD HAS INVALID CIASSIFICATION 

INVALID MEMBER TYPE 

MEMBER NO.  HAS THE FOLLOWING JOINT REPEATED 

BUFF ( ) CONTAINS A ZERO VALUE FOR MEMBER NUMBER  

MIMBER NO,  HAS AN INVALID COMBINATION OF EIASTIC PROPERTIES 

MEMBER HAS EIASTIC PROPERTIES MISSING 

d. Subroutines Required 

CARDIN, PUTIAB, PUTRCW 

17 

' 



e* Argument List 

None 

f. Ijportant Variables 

IBUFF - buffer area for assembling member pseudo matrix 
gypY    _    M      MM        11 ||        If        If 

MIIßUM - total number of comer forces in the structure and length of stress 

matrix that will be coustructed later. 

ICHECK - error check clue 

18 



Subroutine LOADIN 

a. Algorithm 

The subroutine reads the load cards, one at a time, and checks to see if the 

load matrix Is In row sort. If the loads are correct »they are written on 

tape as a pseudo matrix« The first column of each row is the node number, 

the second column the conponent of the load, and the third thru last columns 

contain the loads for each loading condition. Also, the sum of the forces 

and moments about the origin in each load condition is printed out to aid in 

checking the input data. If no errors are present, subroutine LDGEN is 

called to generate the real load matrix using the pseudo load matrix. 

b. Input/Output 

Input to this routine is the input load cards. Output is a load pseudo 

matrix and a summary of the applied loads. 

c. Error Messages 

NODE NUMBER IS INVALID 

COMPONENT IS INVALID 

LOAD MITRIX IS NOT IN ROW SORT 

LOAD CONDITION IS INVALID 

d. Subroutines Required 

PUTIAB, PUTROW., LDGEN 

e. Argument List 

LDCQND - number of loading conditions 

f. Important Variables 

LNODE - node number of present load 

LCCMP - component of present load 

ELMT - valu? of present load 

19 



SUMMX - total X moment about origin 

SUMMY -  "  Y  "     "    " 

SUME -  "  Z  "     "    " 

SUMF - sum of applied forces in three directions 

BUF  - buffer area for assembling load Information to be put on tape 

20 



Subroutine LDGEN 

a. Algorithm 

This subroutine reads the tape containing the pseudo load matrix created in 

LCADIN. Each row is checked against the boundary condition matrix IBC, and 

against the list of nodes contained in KORDER. If the load is being applied 

to a strainable node the load is placed in the proper row of the load matrix. 

The row is put on tape when a new load is read that does not belong in the 

present row. At this point, blank rows ere put on the tape until the matrix 

has been indexed down to the point where the new load belongs. 

b. Input/Output 

The input is the pseudo load matrix on tape number LQADIN.    The output is the 

real load matrix residing on tape MAT1 

c. Error Messages 

LOAD PIACED ON NODE   COMPONENT  WHICH IS PRESCRIBED 

LOAD SPECIFIED FOR NODE  WHICH IS NOT INCLUDED IN B.C. 

LCAD PIACED ON NODE   COMPONENT WHICH IS NON STRAINABLE 

ERROR *** NODE   COMPONENT  *** LCAD MATRIX IS NOT IN RCW SORT. 

d. Subroutines Required 

PUTIAB, PUTROW, GETDIM, GETRCW 

e. Argument List 

LQA.DIN - tape number for input pseudo load matrix 

MAT1 - tape number for real load matrix, 

f. Important Variables 

LN - loaded node number 

LC - loaded component number 

KORDER - array containing nodes in the order in which they were input 

IBC        - boundary condition array 

21 



Subroutine PROCES 

a. Algorithm 

This subroutine reads the geometry and boundary condition matrices and checks 

them for compatibility.    The boundary condition matrix la read into core and 

a running total on the number of degrees of freedau at each node is kept. 

After the boundary condition matrix is read, the geonetry matrix is read. 

Both are then printed out together so that they may be examined for errors. 

b. Input/Output 

The geometry and boundary condition matrices are read in and both are printed 

out for checking. 

c. Error Messages 

GECMETro HAS NODES WHII£ B.C. HAS   

ERROR *** GECMETro COMTAINS NODE NUMBER NOT FOUND IN B.C. 

I/O ERROR DURING PRE-PROCESSING *** MATRIX GENERATION SUPPRESSED 

d. Subroutines Required 

GETRCW, GETDIM 

e. Argument List 

None 

f. Important Variables 

Kll - number of free degrees of freedom for node 

22 



Subroutine IKPUI 

a. Algorithm 

This subroutine writes a heading for the member data and   calls SPLITZ to 

Initialize the stress matrix.    It then reads a row of the member pseudo 

matrix from the tape and prints out the geometric and physical properties 

of that member.    The subroutine then calls the appropriate finite element 

subroutine to calculate the Individual element stiffness and stress matrices. 

The above operations are repeated for each member,  in turn, until the entire 

pseudo matrix is read. 

b. Input/Output 

The member pseudo matrix Is supplied and a tape containing the element 

stiffness matrices and stacking indices used to form the total stiffness 

matrix Is produced. 

c. Error Messages 

MEMBER NO.  HAS INVALID TYPE  

MEMBER CONNECTS NODE WHICH IS UNDEFINED 

INCORRECT MATRIX SUPPLIED FOR MEMBERS - 

MVTRIX NAME IS . 

d. Subroutines Required 

SPLITZ, PUTIAB, GETDIM,  GETRCW 

e. Argument List 

None 

f. Important Variables 

NTAPST - tape containing stress matrix for the total structure 

NTAPK - tape containing stiffness matrix for the total structure 

23 



Subroutine SPLITS 

a. Algorithm 

SPLITS computes the stacking Indices for the element stiffness matrices by 
comparing the nodes of the element to the degree of freed an numbers of the 

nodes.    All the zeroes are compressed out of the element matrices by calling 

ABACE.    Next, the band vidth of the total stiffness matrix is computed by 

finding the degree of freedom number of the component of the element stiff- 

ness matrix that is furthest from the diagonal of the total stiffness matrix. 

The weight of the element for unit thickness is calculated by calling UNITWT. 

The member number, number of nodes,  row and column indices into the total 

stiffness matrix,weight for unit thickness, and member type are written on 

tape NTAPES.    SSTRES is then called and the program returns to the element 

subroutine. 

b. Input/Output 

The subroutine uses as input the stiffness matrix and stress matrix from the 

element subroutine and produces the stiffness matrix for unit thickness and 

the stacking indices on tape NTAPES, 

c. Error Messages 

None 

d. Subroutines Reciuired 

ARACE, UNITWT, PRINT2, SSTRES 

e. Argument List 

STIFF - element stiffness matrix 

STRESS- element stress matrix 

LIN      - number of nodes for the element 

MIL     - lines of stress output for the member 

MOD     - maximum degrees of freedom for each node - 3 for membrane elements, 

6 for bending elements 

24 



JI   - Joints of the element 

MEMNO - member number 

f. Important Variables 

IRI, ICI - size of non condensed stiffttess matrix 

IBANIW  - bandwidth of structure's stiffness matrix 

NTAPE   - tape containing information described above 

25 



Subroutine S8TREE 

a. Algorithm 

The element stress (force) matrices for unit design parameters are "stacked" 

Into a stress (force) matrix for the entire structure* The rows of each 

element matrix are entered sequentially Into the total array and the columns 

are entered according to degree of freedom numbers associated with the ele- 

ment. As a result, the total matrix, vhlch Is stored on tape, will multiply 

the displacement matrix to yield comer forces (moments) for unit values of 

the design parameters. The total array Is generated and written In blocks 

If not enough core storage Is available. 

b. Input/Output 

Input to this routine consists of element stress (force) matrices that have 

had boundary conditions applied to them In SPLITS.    The output Is the total 

matrix for the Idealized structure for unit design parameters, written on 

tape MATRIX. 

c. Error Messages 

None 

d. Subroutines Required 

PUTROW 

e. Argument List 

SMALL - element stress matrix 

MID     - ifftTHmmn number of rows of any element's stress matrix 

NODES - number of nodes of the element 

MIL      - number of rows of the element's stress matrix 

MCOL    - number of COIUBBOB    of the element's stress matrix 

NSTA-RT- Index showing where the first coluam of the element matrix Is 

placed In the total stress matrix 

26 



NGO       - number of free degrees of freedom for all ^odes of the element 
MATRIX > tape containing "stacked" matrix 
KLU       - index showing where the first row of the <il ment matrix is placed 

in the total array» 

f. Inporfcant Variables 

WK - one dimensional array containing elements of the structure's stress 

matrix 
MSTART, NKEY - indices used in sorting and placing of the element matrix 

into the 'otal array 

27 



Subroutine AgTAQC 

a. Algorithm 

This subroutine reads the element stiffhess aatricies and associated 

stacking indlcles    from tape INFILE.    These element stiffbess matricles 

are then multiplied by the element thickness obtained from the member pseudo 

matrix on NTAPM.    The element area is also entered into the array AREA so 

if the stiffness matrix can not be stacked in one block,   it will not be 

necessary to read the member pseudo matrix a second time.    The stiffness 

matrix is formed in blocks in the array WKAREA.    The aunount that can be 

stacked  in any one block depends on the band width of the stiffness matrix. 

All of the matricles are read into core, one at a time,  for the stacking 

of each block.    The portion of the element stiffness matricles that does 

not belong in the block of the stiffness matrix being stacked is discarded. 

There is no limit on the size of the stiffness matrix that may be handled 

by this subroutine as long as at least one row of the matrix will fit in 

the work area at a time. 

b. Input/Output 

The input to this subroutine   is the meaner matrix and the element stiffness 

matricles.    The output is the total stiffness matrix. 

c. Error Messages 

None 

d. Subroutines Required 

PUTROW,   FILTAP,   OTTDIM,   GETROW 

e. Argument List 

INFILE - tape containing element stiffness 

MATRIX - tape to contain global stiffness matrix for the sturcture 

WKAREA - array used to stack stiffness matrix 

IWKPR    - same as WKAREA but  in fixed point 

WORK      - same as WKAREA but  in single precision 

ISIZE    - size of WKAREA 

28 



Subroutine ELI 

a. Algorithm 

This subroutine generates the bar element stress and stiffness matrices in 

global coordinates, for unit cross sectional area. 

b. Input/Output 

The subroutine uses the coordinates of the node points and the elastic 

properties passed thru common as input.    The output is the element stiffness 

and stress matrices in global coordinates without application of boundary 

conditions. 

c. Error Messages 

*** MEMBER NUMBER    HAS ZERO LENGTH **** 

d. Subroutines Required 

SPLITS 

e. Argument List 

None 

f. Important Variables 

AKG     - global stiffness matrix 

STG     - global stress matrix 

COOPD - coordinates of the element node points 

AL12    - length of th.   element 

29 



Subroutine ELg 

a. Algorithm 

This subroutine generates the beam element stiffness and stress matrices 

In global coordinates.   An entry point, EL11,  is present to handle a beam 

with one hinged end. 

b. Input/Output 

Same as In ELI. 

c. Error Messages 

■*-a-**MEMBER Nl^IBER  HAS  EQUAL TO ZERO **** 

d. Subroutines Required 

SPLITS 

e. Argument List 

None 

f. Important Variables 

AKG, STG, COORD, ALI2   - same as in ELI 

COT    - transformation matrix from local to global coordinates. 

BETA > angle between the beam's local x-y plane and its principal axis. 

XIYY - moment of inertia about local y axis for unit cross sectional area 

and zero BETA angle. 

XIZZ - moment of inertia about local z axis for unit cross sectional area 

and zero BETA angle. 

XPQL - polar moment of inertia for unit cross-sectional area and zero BETA 

angle. 

30 



Subroutine EL3 

a. Algorithm 

Entry points ELh and ElM In this routine handle the Isotropie and aniso- 

trop ic triangular membrane elements«    Global stiffness and stress matrices 

for a unit thickness are generated«    Entry points TRI and TRIA generate 

local stiffness matrices for Isotropie and anisotropic triangles that are 

passed back to quadrilateral element routines. 

b. Input/Output 

Same as In ELI. 

c. Error Messages 

Same as In EL2. 

d. Subroutines Required 

SPLITS 

e. Argument List 

None 

f. Important Variables 

AKE, STG, COORD     - same as In ELI 

All, A22, A33,  ...- stress-strain coefficients for plane stress element 

AX2, AIß3, AL13     - lengths of triangle's sides 

CT - transformation matrix from local to global coordinates. 

BETA - angle between local x axis and axis defining directional 

nature of elastic properties. 

31 



Subroutine ELö 

a. Algorithm 

Calling of the subroutine itself will result in generation of global stiff- 
ness and stress matrices for a planar Isotropie quadrilateral membrane 
element.    Entry point EL5A handles the anisotropic case. 

b. Input/Output 

Same as in ELI 

c. Error Messages 

Same as in EL2 

d. Subroutines Required 

SPLITS 

e. Argument List 

None 

f. Important Variables 

AKG, STG, COORD, BETA, CT, - same as in EL3 

All, A22, A33,  ... - same as in EL3 

XCG, YOG    - coordinates of elements centrold, located for purpose of defining 

four triangles. 

32 



_ BQUAL TO ZERO *** 

IS SINGUIAR *** 

Subroutine EL6 

a. Algorithm 

This routine generates element stifl'ness and stress matrices for the 

warped shear panel. 

b. Input/Output 

Same as In ELI. 

c. Error Messages 

♦** MEMBER NUMBER  HAS 

*** MATRIX  OF MEMBER  

d. Subroutines Required 

VECTOR, SREVK2, SPLITS 

e. Argument List 

None 

f. Important Variables 

AKG, STG, COORD - same as In ELI, 

G - shear modulus of elasticity, 

AA, BB - - vectors connecting opposite comers of warped quad element- 

used to determine location of reference plane 

ALPHA - flexibility coefficient determined from equilibrium 

considerations for the shear panel (Ref. 30) 

33 



Subroutine EL8 

Algorithm 

Element matrices for the warped quadrilateral membrane element are generated. 

Entry point ELdA handles the anisotropic element. 

b.  Input/Output 

Same as in ELI. 

c-  Error Messages 

**♦ THE VARIABLE GAM IN EL8 HAS THE FOLLOWING INCORRECT VALUE 

*** MEMBER NUMBER   HAS  EQUAL TO ZERO 

MATRIX OF MEMBER IS SINGUIAR *** 

d. Subroutines Required 

VECTOR, 3REVN2, SPLITS, TRI  (E.P.), TRIA (E.P.) 

e. Argument List 

None 

f. Important Variables 

AKG, STG, COORD,  BETA - same as in EL3 

CC   - coordinate transformation fron global to reference plane coordinates. 

A,5 - vectors connecting quad's oppoaite corners - used to determine loca- 

tion of reference plane. 

3h 



Subroutine SREVW2 

a. Algorithm 

Within some of the finite element subroutines, the need arises to obtain the 

inverse of a matrix of small order, say 7x7.    This routine obtains the 

Inverse through the Gauss-Jordan elimination scheme with partial pivoting . 

It returns the inverse in the position of the original matrix. 

b. Input/Outyut 

Input consists of a small order matrix while the output    consists of its 

inverse. 

c. Error Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

A      - elements of matrix to be inverted 

M      - order of matrix A 

LOC - location of largest element in absolute value within each column of A 

MED - dimension or maximum value of M 

NIX - error indicator; if, upon return, NIX is not equal to zero, a column 

(or row) of A Is all zeroes. 

f. Important Variables 

Same as argument list. 

35 



Subroutine VECTOR 

a. Algorithm 

This subroutine is capable of performing many operations vlth vectors. Upon 

setting proper clues in the calling statement, it will compute the dot 

product or cross product of two vectors, coopute the distance betveen tvo 

points,  or normalize a given vector. 

b. Input/Outpnt 

The input consists of two vectors, A and B, upon which various operations 

are performed.    Output is a resultant vector, C. 

c. Error Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

A,B - input vectors 

C      - resultant vector 

KLU - index determining operation,   i.e.    dot product,  cross product, normal- 

ization,  etc. 

f. Important Variables 

Same as argument list. 

i 

36 



Subroutine ARACE 

a. Algorithm 

This subroutine eliminates rows and/or columns of the element stiffness or 

stress matrix A,   according to the boundary conditions associated with 

the element. 

b. Input/Output 

This subroutine receives the element stiffness and stress matricies thru 

ccomon and returns thru common the condensed matricies. 

c. Error Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

A - matrix to be reduced 

IFOWA      - number of rows of A 

IOOLA     - number of columns of A 

JI - array containing the ordering of the element nodes as they appear 

in the  input geometry 

LIN - n-miber of Joints in the element 

MOD - tnree or six - depending on ho,/ many degrees of freedom the element 

has at each node 

ISWTTCH - 1 - erase columns 

2 - erase rows 

3 - erase rows and columns 

JB    - number of rows in array containing A 

JC    - number of columns in array containing A 

f. Important Variables 

See argument list 
37 



Subroutine QFACT 

a. Algorithm 

This subroutine reads the positive definite synmotric   etifföees matrix and 

sets up  Indicies for the subroutine QCHOL to get the lower triangle of an 
T 

L L   decomposition one rov at a time. 

b. Input/Output 

This subroutine receives the names of the stiffness and lover triangular 

matrlcles and uses them together with there sizes to control QCHOL. 

c. Error Messages 

♦*♦♦ ERROR   ♦»** 

**** ERROR -  DIMENSIONS READ FROM LABEL OF TOTAL STIFFNESS MATRIX INDICAOE 

THAT THE MATRIX IS NOT SQUARE **** 

d. Subroutines Required 

GETDIM,   PUTLAB,  QCHOL 

e. Argument List 

MA - total stiffness matrix tape name 

MI, - tape name for inverse of lower triangle 

Ml - scratch tape 

M2 - scratch tape 

f. Important Variables 

KORE -  size of array used  for working storage 

M       -  size of stiffness matrix 

38 



Subroutine QCHDL 

a. Algorithm 

This subroutine performs the factorization of ths stiffness matrix under the 

control of QFACT.    The factorization is done io blocks.     If the end of the 

matrix fits In core the clue KEY is set to 0. 

b. Input/Output 

The subroutine receives the stiffness matrix in blocks from the calling 

routine QFACT,  and  returns the lower triangle factorization on the tape ML. 

c. Error Messages 

None 

d. Subroutlnea Required 

UNPACK,   GETOOW 

e. Argument List 

A -  work area 

X - vector to hold one row of stiffness matrix 

UK) - number of elements from the first zero element in a row,  to 

the diagonal 

M - size of stiffness matrix 

NU - row number of first row being processed on this pass. 

KORE -  size of work area 

ML -  tape to hold lower triangle 

MI - tape with the input matrix 

MO - scratch tape 

KEY -  clue,   last time thru KEY - 0 

KEE -  clue for delivering   output 

NIX - error return 

WORST - cancellation factor 

NAME - name of stiffness matrix 

f •  Important Variables 

See argument list 

39 



Subroutine QPASS 

a. Algorithm 

QPASS dummy reads over the required number of rove of the lower triangle 

decomposition of the stiffness matrix to aid  in zoning for the forward 

solution. 

b. Input/C)utput 

This subroutine uses the starting point NU for the zoning of the forward 

solution, and a scratch array T into which a row at a time of the lower 

triangle, residing on ML, is to be dummy read. 

c Error Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

NU - starting point in zoning forward solution 

ML - tape containing lower triangle 

T - scratch array 

f. Important Variables 

See argument list 

ho 



Subroutine QFSOL 

a. Algorithm 

QFSOL sets up and manages the zoning for the forward solution of 
T    -1 
L X = L y = Z using L, and y, getting Z. 

b. Input/Output 

This subroutine uses the lower triangle decomposition of the stiffness 

matrix,residing on ML,and the applied loads on My,to produce the Z matrix 

on MZ. 

c. Error Messages 

***# ERROR   **** 

d. Subroutines Required 

GETDIM,  PUTLAB, QFOR, QPASS 

e. Argument List 

ML - tape with lower triangle 

M'1' - J »e with applied loads 

I'        .d,pe to receive the Z matrix 

MJ - scratch tape 

M2 - scratch tape 

f. Important Variables 

See argument list 

hi 



Subroutine QFOR 

a. Algorithm 

T    -1 
QFOR actually computes the forward solution of L X = L y = Z. It is called 

by QFSOL every time that the available core must be zoned. 

b. Input/Output 

This subroutine uses the lower triangle decomposition of the total stiffness 

matrix,residing on ML,and the applied loads on MY, to produce the inter- 

mediate Z matrix on MZ. 

c. Error Messages 

None 

d. Subroutines Required 

GETROW, UNPACK, PUTROW 

e. Argument List 

T - scratch arrays 

Z - scratch arrays 

L - scratch arrays 

M - number of rows in lower triangle 

N - number of load cases 

NU - zoning clue 

MIDZ - number of free degrees of freedom 

ML - tape containing lower triangle 

fC - tape to contain Intermediate Z matrix 

MI - scratch tapes 

MO - scratch tapes 

f. Important Variables 

See argument list 

U2 



^MMMHMKiainrMFm 

Subroutine QB30L 

a. Algorithm 

T QBSOL solves the equation    L   X = Z    to obtain X which is the matrix of 

nodal deflections.    In general QBSOL only manages the solution; the actual 

computations are done in QBAC.    If JDEFL is non zero,the deflections are 

printed out. 

b. Input/Output 

This subroutine uses the Z matrix on MZ and the lower triangle matrix on MB 

to produce the deflections on MX. 

c. Error Messages 

**** ERROR   **** 

d. Subroutines Required 

GETDiM, PUTLAB, QBAC 

e. Argument List 

MB - tape containing lower triangle 

MZ - tape containing Z matrix 

MX - tape to contain deflection matrix 

Ml - scratch tape 

M2 scratch tape 

f. I'^ortant Variables 

See argument list 

^3 



Subroutine QBAC 

a. Algorithm 

QBAC, when called by QBSOL, actually computes the backward solution of the 
T 

equation L X = Z, tnus obtaining the matrix of nodal deflections X. 

b. Input/Output 

Thla subroutine uses the Intermediate Z matrix in reverse order residing on 

ML, and  the lower triangular matrix in reverse order on MB,to produce the 

deflections on MX, also in reverse order. 

c. Error Messages 

None 

d. Subroutines Required 

GETROW, UNPACK, PUTROW 

e. Argument List 

T - scratch arrays 

B - scratch arrays 

X - scratch arrays 

L - scratch arrays 

M - number of rows in lower triangle 

N - number of load cases 

MU - zoning clues 

KORE - imount of available storage 

MB - tape containing lower triangle in reverse order 

MX - tape to create nodal deflections in reverse order 

MI - scratch tapes 

MD - scratch tapts 

f. Important Variables 

See argument list 

U 



Subroutine REVEBS 

a. Algorithm 

This subroutine Is used to reverse the order of a matrix on a tape when the 

matrix will not fit In core. The subroutine reads the matrix Into the array 

BUFFER. When the array is full, the subroutine keeps reading the matrix 

In, putting the new rows Into BUFFER on top of the old rows luitll all the 

matrix Is read In. At this time the array will contain the end of the 

matrix which Is then written out in reverse order onto tape MATS. The first 

matrix is then again read in until the last row read* onto MAT2 Is reached 

Then the portion of the matrix In BUFFER Is read out backwards onto MAT??. 

This continues until all the matrix on MATl has been reversed and put on 

MAT2. 

b. Input/Output 

The subroutine uses a matrix on tape MATl as Input, and puts out the same 

matrix in reverse order on MAT2. 

c. Error Messages 

None 

d. Subroutines Required 

GETDIM,  PUTLAB,  GETROW.  PUTROW 

e. Argument List 

MATl -  tape containing matrix to be reversed 

MAT2 -  tape containing reversed matrix 

f. Important Variables 

See argument list 

^5 



Subroutine QFSIN 

a. Algorithm 

QFSIN sets up and manages the zoning for the forward solution of L X=L I=Z. 

Using the lover triangle L and an identity matrix I, the intermediate Z 

matrix is computed. 

b. InputAXitput 

This  subroutine uses  the lover triangle decomposition of the stiffness matrix, 

residing on ML,to produce the Z matrix on MZ. 

c. Error Messages 

»»•»   ERROR     ♦♦»* 

d. Subroutines Required 

GETD M,  PUTLAB,  QFIN,  QPASS 

e. Argument  List 

MI - tape containing lover triangle 

MZ - tare to receive Z matrix 

Ml - scratch tape 

M2 - scratch tape 

r. Important Variables 

See >.rgument list 

46 



Subroutine QFIN 

a. Algorithm 

T    -1 
QFIN actually computes the forward solution of L X = L I = Z. It is called 

by QFSIN every time that the available core must be zoned. 

b. Input/Output 

This subroutine uses the lower triangular decomposition of the total stiff- 

ness matrix,  residing on ML to produce the intermediate Z matrix on MZ. 

c. Error Messages 

None 

d •   Subroutines Required 

GETROW    UNPACK,  PUTROW 

e. Argument List 

T - scratch arrays 

Y - scratch arrays 

Z - scratch arrays 

M - number of rows in lower triangle 

NU - zoning clues 

L - zoning clues 

NL - tape containing lower triangle 

MZ - tape to contain the Z matrix 

MI - scratch tape 

MD - scratch tape 

f. Important Variables 

See argument list 

^7 



Subroutine MULT 

a. Algorithm 

This subroutxne multiplies together two matrices , neither of which fit in 

core storage, to form a new matrix C = fA]]" B] . One row of A is read 

into core at a time, and as much of the B matrix as will fit is read in. 

The subroutine becomes rather slow if all of the B matrix will not fit. 

The subroutine MULT only controls the tape manipulation and storage. The 

actual multiplication is carried out in the called subroutine MMPY. 

b. Input/Output 

The subroutine reads in the A and B matrices and outputs the answer martix C. 

c. Error Messages 

*•**-* DIMENSION ERROR  **** 

d. Subroutines Required 

GETRCW,  MMPY,  GETDIM,  PUTROW 

e. Argument  List 

MAT1 - A matrix 

MAT2 - B matrix 

MATANS - C matrix,   product of A and B 

MTEMPl - scratch tape 
NfrEMP2 - scratch tape 
MATNAM - name of answer matrix C 

IFRINT - 1 for  intermediate output, zero for no interiiediate output 

f. Important Variables 

See argument   list 

U8 



Subroutine EWMMPY 

a. Algorithm 

This subroutine multiplies together two matrices stored in core to produce 
the partial product of two larger matrices that do not fit in core.    The 
multiplication is carried out in packed form.    That is, strings of zeros 

are not multiplied explicitly.    The storage for this subroutine is con- 

trolled by MUI/T. 

b. Input/Output 

This subroutine receives two matricies from the caljJ.ng routine MULT and 
returns with the product matrix. 

c. Error Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

BUFFER - array containing row of matrix 

IBUFF - same as BUFFER but interpreted as fixed point 

DBUFF - double precision answer matrix. 

f. Important Variables 

See argument list 

1*9 



Subroutine FUTLAB 

a. AlRorlthm 

PUTLAB is a subroutine which will put a matrix label on a programmer 

chosen data set. 

b. Input/Output 

The suoroutlne receives from the calling routine tue matrix name, and size, 

and tne unit numoer. If NAMLST is set to 1, tne program will print out 

tnis same information. 

c. Error MessaRes 

None 

d. SuuroutInes Required 

FTLTAP 

e. Argument List 

rfTAPE - unit wnicn will nold tne matrix 

MATNAM - matrix name 

JROWC - number of rows of the matrix 

JCOLS - number of columns of the matrix 

f. Important Variables 

See argument list 

50 



Subroutine PUTROW 

a. Algorithm 

This routine will put out a row of a matrix on the unit specified 

and in the format designated by IPACK. The row consists of ICOUNT consec- 

utive elements. 

b. Input/Output 

The subroutine receives a row of a matrix from the calling routine and writes 

it on the specified unit in eitner pacKed  or unpacked form. 

c. Error Messages 

None 

d. Subroutines Required 

PACK, UNPACK 

e. Argument List 

NTAPE - unit which will hold the row of the matrix 

IPACK - if set to 1, put out packel ro- 

BUPFER - array holding row to be written on tape 

ICOUNT - uumoer of elements to be written; if 0 or -1,write end of file 

f. Important Variables 

See argument list 

'•- 



Subroutine GETDIM 

a. Algorithm 

This  subroutine will get the label of a matrix from the specified data set 

and   if NAMLST is set  to 1, print out the label information. 

b. Input/Output 

Using the  information supplied by the calling routine this subroutine will 

position the tape and  read  the matrix label from the  specified data set. 

c. Error  Messages 

None 

d. Subroutines Required 

FILTAP 

e. Argument  List 

MATRX - tape unit to be read  for label 

MATNAM - matrix name 

KROW - rows in the matrix 

KCOL - columns in the matrix 

f. Important Variables 

See argument list 

52 



Py-Mi.-HT"'^,nT^^,™'-r-,~5'   '  '"■■ 

Subroutine GETROW 

a. Algorithm 

This subroutine will obtain the next row of the matrix on the specified unit 

and store the row In a BUFFER. 

b. Input/Output 

This program reads a row of the matrix from the specified unit for use by the 

calling routine. 

c. Error Messages 

None 

d •  Subroutines Required 

PACK,  UNPACK 

e. Argument List 

OTAPE    - tape unit number from which the row of the matrix Is to be read 

IPACK   - 0, return row In packed form 

-1, return row In unpacked form 

BUFFER - array to contain a row of the matrix 

ICOUNT - number of words   In th^ row 

f. Important Variablea 

See argument list 

53 



Subroutine PACK 

a. Algorithm 

This  subroutine is used to pack rows of a matrix so they may be written on a 

data set  in an efficient manner.    This is done by representing strings of 

zeroes by a single fixed point negative   integer   where the value of the 

Integer represents the number of zeroes in the string.    Non-zero numbers 

are  preceeded by a fixed point number indicating the number of non-zero 

numbers that follow.    A single zero in a string is represented explicitly. 

For example given the following row of a matrix: 

O.,0.,l.,2.,0.,5-,T.,0.,O.)0.,0.,O.,0,, 

It would be packed to become 

-2,5,l.,2.,0.,5.,7-,-6 

b. Input/Output 

The subroutine receives a row of a matrix and returns to the calling routine 

a packed row. 

Ci Error Messages 

None 

4. Sucroutlnes Required 

None 

e. Argument List 

IFIFST - row to be packed 

ICOUNT - number of elements In the row to be packed.  In the example this 

would be 13. 

IOUTPT - packed row returne'!? to calling routine 

IOUTCT - number of elements In the packed row returned to calling routine. 

In the example this would be 8. 

IWORD - value of first word in packed row: in the example this would be -2 

f. Important Variables 

See argument list 

5h 



..11 nHWOWUt.  -i   i ».lipilWJIUWPMWI-U        "■y 

Subroutine UNPACK 

a. Algorlthn 

This subroutine unpacks rows of  matrices   that have been packed by the PACK 

subroutine • 

b. Input/Output 

Using a packed row of a matrix, the subroutine generates a row of a matrix 

with explicit zeroes. 

c. Error Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

I FIRST - row of the matrix to be ufipacked 

ICOUNT - length of the packed row 

I0UTTT - unpacked row of the matrix returned to the calling routine 

I0UTLT - length of unpacked row 

NIZERS - number of leading zeroes 

f. Important Variables 

See argument list 

55 



Subroutine FRINT2 

a. Algorithm 

PRINT2 will print out all element stiffness and stress arrays when the 

lELBUG clue  is set  to 1. 

b. Input/Output 

This subroutine prints out the element stiffness or stress matrix CCC in 

wallpaper output format. 

c. Error Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

CCC - matrix to be printed out 

ANAME - matrix name (AKG or STG) 

BNAME - matrix name (AKG or STG) 

INAME - member number 

II - row dimension of actual matrix to "be outputted 

JJ - column dimension of actual matrix to be outputted 

IWALL - number of columns of matrix to be printed across page 

ISWTCH - clue to indicate wallpaper printout 

JR - row dimension of CCC 

JC - column dimension of CCC 

f. Important Variables 

See argument list 

56 



wiawwJ.wlJWiw «-i""'.-    ii J Ji nw^rvm,»,. - i' f ■»ijym 

Subroutine BOUND 

a. Algorithm 

This subroutine processes the condensed boundary conditions and  forms the 

matrix IBC.  This matrix is then passed to the subroutine  GEOBC where the 

boundary conditions are matched against the geometry. 

b. Input/Output 

This subroutine reads the condensed boundary conditions and passes the 

boundary condition array to the subroutine GEOBC. 

c. Error Messages 

**♦  ERROR MESSAGE ♦** NUMBER OF JOINTS  SPECIFIED ( )   IS TOO LARGE 

*** ERROR MESSAGE ♦** JOINT NUMBER    IS GREATER THAN SIZE OF MATRIX 

d. Subroutines Required 

GEOBC 

e. Argument List 

None 

f. Important Variables 

IBC - boundary condition array 

57 



Subroutine DEFCOH 

a. Algorithm 

This subroutine reads the deflection constraints and forms a deflection 

constraint matrix on tape IfTAPDC.    The constraints ar* checked to see if 

they are admissable and,finally,the constraints are printed out with an 

appropriate heading. 

b. Input/Output 

The data block containing the deflection constraints is read.     After read- 

ing and checking, they are prlncjd. 

c Error Messages 

•*• ERBOP •*•* DEFIZCTxDN CONSTOAINT PLACED ON A FIXED DEGREE OF FREEDOM - 

NOEE   COMPONENT   

d. ftabroutines Required 

POTLAB 

e. Argument List 

None 

f. Important Variables 

NTAPDC - tape to contain deflection constraints 

LDOF     - degree of freedom number 

58 



Subroutine I>SCfl£ 

a. Algorithm 

This subroutine scales the deflections by multiplying the deflections of the 

feasible design by the current value of the ccmstraint-relaxation factor 

and then checks the constraints against the allowable deflections. If the 

scaled deflections exceed the allowable deflection, the difference is 

printed out and written, together with the degree of freedom and load case 

information, on tape NTAPDD. 

b. Input/Output 

The subroutine matches the deflections on OTAPD to the deflection constraints 

on WTAPDC end writes the violated constraint differences on NTAPDD. 

c Error Messages 

None 

d. Subroutines Required 

PUTLAB,  GETDIM, CETROW 

e. Argument List 

None 

f. Important Variables 

LC        - load case 

NVDOF - number of violated degrees of freedom 

PIFF    - difference between allowable and actual deflection 

59 



Subroutine RESIZE 

a. Algcritha 

This is the main subroutine for resizing,using the nodal stress nethod.    The 

subroutine starts by reading the array NTABD and NTABR from tape or creat- 

ing them if the subroutine is being executed for the first time.    These 

arrays are used for determlninK how the corner forces from the comer 

force tape should be summed to create the nodal forces.    In the small core 

version of the program (709U) this information is generated and  then stored 

In the member pseudomatrix in order to be able to equivalence the NTABD array 

with the TFORCE array.    After the creation of these tables, the member 

tape is rewound and the first row of the member pseudomatrix is read.    Using 

the information in the member data to control the reading of the corner 

force tape,  the comer forces are entered  into the array TPORCE thru the 

subroutine FCAPG    and the shear flows are written on a scratch tape.    There 

is a separate section of code for each of the element    types  in the structure. 

This subroutine also controls the computation and printing of the shear flows 

and beam moments. 

b. Input/Output 

This subroutine uses the member pseudomatrix, the nodal geometry and the 

corner force matrix   to  generate    the nodal forces for use in NUSIZE. 

c. Error Messages 

ERROR AT MEMBER DATA LABEL 

ERROR AT MEMBER FORCE LABEL 

ERROR READING MEMBER DATA MATRIX 

COMAP. INTERFACE ERROR RETURN 

ERROR AT COORDINATE DATA LABEL 

ERROR READING COORDINATE MATRIX 

60 



.■iiill.iii.iP .iii»-jiiliiikB.7WWIP»»«|f»"W|WUJli'.ut   -i' >J>   iffmum-'vyumiwm***^- -         -  ■" 

d. Subroutines Required 

POTLAB, OEJIDIM, GETROW, FILTAP, FCAPG,   PUTROW, RTAPE, LENTH, SFTAPE,  NUSIZE 

TABDG, PAGES, CAINT 

e. Argument List 

None 

f. Important Variables 

MEM - member number 

NTYP        - member type 
lil thru NL - nodes of the element 
BAREA      - area of bars or beams 
THICK      - thickness of planar elements 
E - Young's modulus 
WTABD      - array containing the tocology table 
XMEM 6l - tensile allowable stress 
XMEM 82 - coopressive allowable stress 
KUfr        - clue to control searches for cap forces, shear flows,bending 

mcments,and warp loads. 
NJTS        - number of Joints in the structure 

61 



Subroutine TABDG 

a. Algorithm 

This subroutine generates the force direction table for cap forces or warp 

loads.    For each node  In the structure, the nodes connected to it are placed 

In the array WTABD.    Up to twenty nodes may be connected to each node. 

b. Input/Output 

All  Input and  output Is done thru common. 

c. Error Messages     - 

♦♦•   IN SEARCH CYCLE (KLUT)  =   FDR MEMBER NO.   20 COLUMNS EXCEEEED 

IN TABLE FOR DIRECTION   TO   

d. Subroutines Required 

None 

e. Argument List 

None 

f. Important Variables 

NNOD - node we are at 

NDIR - node we are going to 

62 



pwyp^i" y w<i, hpm ipww^ '•-".'''■ vrii '•wwg w,1 ».j^ t-■■ ^ ^ 

Subroutine CRINT 

a. Algorithm 

Bils subroutine prints out the cap and warp loads and the shear flows at 

the end of the optimization procedure. 

b. Input/Output 

Depending on the Input value of KLUT, the subroutine prints the proper head- 

ings and values for the cap forces and shear flows. 

c. Error Messages  

None 

d. Subroutines Required 

None 

e. Argument List 

None 

f. Important Variables 

KLUT - less than 5* irint out cap forces 

equal to 6, print out shear flows 

equal to 7; print out warp loads 

63 



Subroutine PAGES 

a. Algorithm 

This subroutine places a date and page number at the top of a page during 

the printing out of the cap forces and shear flows. 

b. Input/Output 

See Algorithm 

c. Error Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

None 

f. Important Variables 

None 

6U 



Subroutine FCAPG 

a. Algorithm 

This subroutine sums cap and warp loads and controls the resizing of the 

structure by zones. The subroutine receives the cap force and, from the 

NTABD and NTABR arrays, computes the row number in TFORCE into which the 

force should be summed. Because the cap forct from the corner force matrix 

IF for unit thickness, it is first multiplied by the element thickness. The 

row number into TFORCE is checked to see if that protion of TFORCE is in 

core. If It is not In core, the cap force is held in a local array and a 

previous zone of the structure is resized, using scratch member and shear 

flow tapes containing the members and shear flows that go with the portion 

of the structure in the zone being resized. Then the rows of TFORCE in 

core are moved up In the array and the previous zone of TFORCE is discarded. 

The summary of cap forces then proceed. 

b. Input/Output 

The subroutine receives the corner force row and places it in TFORCE. Also the 

scratch member matrix QM, and shear flow matrix QS, is formed. 

c. Error Messages 

None 

d. Subroutines Required 

PUTLAB, CRINT, NUSIZE 

e. Argument List 

None 

f. Importent Variables 

KR - row number in TFORCE 

QM - scratch member matrix tape number 

QS - scratch shear flow tape number 

TF - array containing geometric data associated with TFORCE 

NLC - number of load conditions 

65 



■ ■-"^■PPffnw7?Fim^p.jTffw,w t »^.„Mwrtrrv™* ip^l'WTJ^wnmTWV.n^'IW ■™^~r*<7Wr^™T7^rvm^wi!-w'ry\WIif™' 

Subroutine RTAPE 

a. Algorithm 

RTAPE reads rows of the corner force matrix.    If the row being read represents 

a shear flow, it is written on tape Q3.   The number of rows read for each call 

to RTAPE is determined by the input value of NREAD. 

b.  Input/Output 

The subroutine uses the input value of NREAD to determine how many rows of 

the comer force matrix should be read.    The last row read is passed back 

to the calling subroutine 

c Error Messages 

♦»♦ END OF FORCE MATRIX REACHED WHEN SEARCH CYCIE  (KLÜT)  -    FDR MEMBER 

  TYPE  . 

COMAP INT. ERROR RETURN PROM SUB. RTAPE 

d. Subroutines Required 

GETROW,  PUTOCW 

e. Argument List 

None 

f. Important Variables 

NREAD - number of rows of corner force matrix to be read. 

QS   - scratch shear flow matrix 

66 



Subroutine WEIGHT 

a. Algorithm 

This subroutine computes the weight of the Individual members in the 

structure. 

b. Input/Output 

The node points and type of element is reud In and the weight of the element 

for the old thickness and for the new thickness is returned to the calling 

routine. 

c. Error Messages 

None 

d. Subroutine Required 

None 

e. Argument List 

None 

f. Important Variables 

WNEW - weight of element for new thickness 

WOLD - weight of element for old thickness 

DEN - density of element material 

67 



^7WW'"--i—^ 

Subroutine LENGTH 

a.  Algorithm 

This subroutine computes the perpendicular length from the line NX- NJ to 

the node NK by forming the cross product of the vectors (NJ - NX) and 

(NJ - NK) and dividing by the length of (NJ - NX). 

b• Xnput/Output 

The subroutine receives the three node points as input and returns the perpin- 

dicular length to the calling routine. 

c. Error Messages 

None 

d. Subroutines Required 

None 

e. Argument  List 

NX,   NJ - nodes on the line from which the perpendicular distance is to be 

found 

NK - the node off the line - the perdendlcular distance is from this 

node to the line 

H - perpendicular distance 

COORD    - coordinate array 

f. Important Variables 

See argument list 

ee 



"llln|l,»BTPi"l"J»"l.i"|f|i 1 i»»tlllil.JW»wi II'II»W^I.|||<II ||^I^WI■l'^^l>ulP|Fll^|.^|l^,J|■l^-^^»lll'■.■'WllWi'll^llll"^'^^i^lll"'■'l■■'■'. Jiii»r«"" •'•" -'il"»" ' 

Subroutine ORTHOG 

a. Algorithm 

This subroutine converts non-orthogonal  stresses to orthogonal stresses. 

b. Input/Output 

The subroutine receives the non-orthogonal stresses and the angle between 

the direct stresses and returns the orthogonal stresses. 

c. Error Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

XN1    - stress in swept direction 

XN2    - stress in direction at angle to XN1 

XNj    - non-orthogonal shear stress 

BETA - angle between XN1 and XN2 

f. Important Variables 

See argument List 

69 



Subroutine NUSIZE 

a. Algorithm 

This subroutine computes the new sizes of the elements by using the nodal 

forces in TFORCE, the shear flows on the scratch shear flow tape, the allow- 

able yield stresses,and the Instability tables. The elements are read from 

the member pseudo matrix one row at a time. The program then checks the 

member type and transfers to the proper section of code to resize that type 

of element. At each node, using the nodal forces In TFORCE and the shear 

flow from the scratch shear flow tape, the orthogonal stresses at the corner 

are computed. These stresses and the allowable stresses are then used in the 

arithmetic assignment statement ERATIO to compute the stress ratio at 

the corner. The stress in the corner in the local element X direction is 

then checked against the instability table and the most critical is chosen 

for resizing the corner. All the comers/ends of the elemant are then 

averaged to obtain a new thickness. The ratio of old thickness to new thick- 

ness is use to define the stress ratio scale factor. The element stresses 

are printed out the last time thru the subroutine. 

b. Input/Output 

The subroutine creates a new member tape with the resized element thicknesses 

in place of the priglnal thicknesses. 

c. Error Messages 

None 

d. Subroutines Required 

GETD1M, STABIL, WEIGHT, GETROW 

e. Argument List 

None 

* 



..,-fr.TJ--iT;| \womjr ^ii^r''r^T-^rn-^*frKf.'V n .www*".' '" .    : ..,,...        .   . , .   - , ,     , 

f. Important Variables 

SUMOLD - 

SUMNEW - 

KSTAE - 

DISTIJ - 

POVERA - 

GXY(M) - 

H(M) 

TF(I,1) - 

TF(I,2) - 

TF(I,3) - 

running sum of the old structural weight 

running sum of the new structural weight 

stability table number 

distance from I to J 

stress In a bar 

shear stress for load case M 

new thickness for a bending element 

stiffness at a node In direction of force I (E times A) 

sum of the lengths perpendicular to the force direction I of all 

the direct stress carrying elements contributing forces In 

direction I 

ExA of all the bars and beams along force direction I 

71 



Subroutine NUREAD 

a. Algorithm 

This subroutine reads a given set of tables into a singly dimensional array 

of common storage.    These tables are used for the calculation of allowable 
stress as E function of applied stress and/or shear in subroutine DINTK. 

b. Input/Output 

This subroutine reads in the instability tables and forms common block INTERP. 

c. Error Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

NUMTB    - 1 for first call to NUREAD 
K for replacing, table K 

MANDAN - 0 for initial read, 1 for table replacement 
NG - error return, 0 if no errors 
LI(K) - maximum number of X-^'s in table K 
L2(K) - maximum number of Yj/s in table K 
NUMPTS - number of table entries preceeding table K 

f. Important Variables 

See argument list 

72 



Subroutine STABIL 

a. Algorithm 

This subroutine calls the proper Instability table for the member being 

resized and returns the allowable stress to the calling routine. 

b. Input/Output 

The subroutine receives the table nvanber and stress from the calling routine 

and returns the allowable stress. 

c. Error Messages 

**»ERROR IN INTERPOLATION ROUTINE - NO =   

d. Subroutines Required 

DINTK 

e. Argument List 

NUMTBL - table number 

ARG1 - abscissa of Instability table 

ARG2 - shear flow In two dimensional tables 

i<'CT - value of the allowable stress 

f. Important Variables 

See argument list 

73 



Subroutine DDfTK 

a. Algorithm 

This subroutine performs     table look ups and linear interpolations for func- 

tions of one and two variables. 

b. Input/Outrut 

The values of the independant variables and the table number are supplied by 

the calling routine. The allowable stress is returned. 

c. Error Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

LI - number of x^'s in table 

Lü - number of y^'a in table 

NUMPTS - number of table entries preceding table K 

KODE - dumny array 

N1H1BU - dunrny array 

N2H1BU - dummy array 

ARQl - x 

AHOH  ■ y 
NUMTBL • number of first table of the tabular system to which x and y are 

assigned 

L3    - number of functions for which values are desired, usually 1 
FCT   - the interpolated value returned to the calling routine 

NO    - error return, should be 0, set to 3 if the function was off the table 

f. Important Variables 

See argument list 

TU 



WMi^ii.W" ^■w"^ryi."ty«.f^*y.<wtig*ii^'^" ••1^=^ 

Subroutine UNUVT 

a. Algorithm 

This subroutine computes the weight of the Individual member of the struc- 
ture, for unit value of the design parameter.    The value is put on the tape 

along with the element stiffness matrix, and is used in DLIMIT.    The code 
In this subroutine is similar to that in subroutine WEIGHT. 

b. Input/Output 

The node points and type of element Is read in and the weight of the element 

for unit thickness is returned to the calling routine. 

c. Error Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

None 

f. Important Variables 

None 

75 

/ 



Subroutine DDfTK 

a. Algorithm 

This subroutine performs      table Icok ups and linear Interpolations for func- 

tions of one and two variables. 

b. Inpot/Output 

The values of the independent variables and the table number are supplied by 

the calling routine. The allowable stress is returned. 

c. Error Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

LI    - number of x^'s in table 

Lü    - number of y^s in table 

NUMPTS - number of table entries preceding table K 

KODE  - dummy array 

N1H1BU - dummy array 

N2H1BU . dummy array 

ARG1  - x 

AR02  " y 
NUMTBL - number of first table of the tabular system to which x and y are 

assigned 
L3 - number of functions for which values are desiredj usually 1 
FCP        - the Interpolated value returned to the calling routine 
NG - error return, should be 0, set to 3 if the function was off the table 

f. Important Variables 

See argument list 

T^ 



. ■ ■ ■ -   ■  -  . 

a. 

Subroutine UNITWr 

Algorithm 

This subroutine computes the weight of the Individual member of the struc- 
ture, for unit value of the design parameter.    The value is put on the tape 

along with the element stiffness matrix, and is used in DLIMIT.    The code 
in this subroutine Is similar to that In subroutine WEIGHT, 

b. Input/Output 

The node points and type of element Is read In and the weight of the element 

for unit thickness Is returned to the calling routine. 

c. ßrror Messages 

None 

d. Subroutines Required 

None 

e. Argument List 

None 

f. Importat.* Variables 

None 

75 

/ 



■ 

c. Error McsBages 

None 

d. Subroutines Required 

GETROW, PUTROW,  GETDIM,  PUTDIM 

e. Argument List 

None 

f. Important Variables 

NSTART - Qtarting location for the sticking of the element stiffness 

natricles Into the global stiffness matrix 
NGO       - size of the blocks of the element stiffness matrices     that are to 

be stacked into the global stiffness matrix starting at NSTANT 

D -  nodal deflections 

SPO       - old scale factor needed to move design to the boundary of the 

feasible space 
SCFAC   - constraint relaxation factor 

XKINV   - element stiffness matrix for unit thickness 

DELMAX - average area change for each menaber 

76 



i.Wiii.iWWJU«M>»i!fi     "    "• "■'. 

Subroutine DRATIO 

a. Algorithm 

This subroutine reads the deflections from tape NTAPD and the deflection 
constraints from tape NTAPDC,   For those deflections that are constrained, 
the ratio of actual deflection to allowable deflection Is formed.    The 
largest ratio is saved, and becomes the deflection constraint ratio,  for use 
In determining the scale factor needed to rep.ch a feasible design. 

b. Input/Output 

The deflection and deflection constraints are read in and the deflection 

constraint ratio Is returned to the calling program. 

c. Error Messages 

None 

d. Subroutines Required 

GETDIM, GETROW 

e. Argument List 

None 

f. Important Variables 

DRATN - new deflection constraint ratio 

CMA  - allowable maximum deflection 

CMIA - allowable minimum deflection 

77 



Subroutine EL13 

a. Algorithm 

Thia routine generates stiffness and stress matrices in global coordinates 

for the triangular plate bending element.    Entry point PLTRI generates 

the local stiffness which is passed back to the quad routine (ELl6). 

b. Input/Output 

Sane as in ELI 

c. Error Message 

»♦♦ MEMBER NUMBER  HAS  E^UAL TO ZERO **« 

d. Subroutines Required 

PRINTS SPLITS 

e. Argument List 

None 

f. Important Variables 

AKG, STG, COORD, BETA, CT - same as in EL3 

AX2, AL23, AL13, All A22, A33 ... - same as In EL3 

Al, A2, A3, 31, B2, B3 - projections of triangle's sides onto its local 

x and y axer    - used in conjunction with the area 

coordinate formulation 

T - Matrix relating nodal displacements to curvatures within a subelament. 

78 



wi«ty«JM*;» ill■wgig, aj,.W|ljL.i+m I'J.«W .<tW>JWWrW-^"'- : -'■T 

Subroutine ELl6 

a. Algorithm 

This routine generates element matrices for the quadrilateral bending element. 

It calls PLTRI four times to assemble four triangles into a quad with interior 

degrees of freedom Included.    These are subsequently condensed out of the 

local stiffness matrix before transformation to global coordinates. 

b. Input/Output 

Same as in ELI 

c. Error Messages 

Same as in EL15. 

d. Subroutines Required 

PI/TRI (E.P.), SREVN2, PRINK, SPLITS 

e. Argument List 

None 

f. Important Variables 

AKG, STG, COORD, BETA, CT - same as in EL3 

XCG, YCG - local coordinates of element's centroid. 

79 

■-■ ivfeuMMtt 



■    . 

Subroutine DLIMIT 

a. Algorithm 

DLIMIT performs the calculations necessary to form the nev member matrix In 

the deflection constraint mode.    The first half of the subroutine forms 

aöVaA.    ■    CK]~ K.Ö    in two steps.    Firsty up to 1500 rows of the deflec- 

tion matrix are read into core in the array called D.    Next,  the element 

stiffness matricies are read  in one at a time along with the stacking 

indicles and unit weight for each member.    The deflection matrix is then 

pre-multiplled by the element stiffness matrix in packed form.     If at any 

time,  the deflections that are needed to perform this multiplication are 

not in core, an additional 750 rows are read  in and the first   half of those 

currently in core are discarded.    As the product k.6 is formed for each 

member it is written out on to a scratch data set.    After the last   product 

has been formed,  the first violated degree of freedom is read from a 

scratch data set; and the corresponding row of the inverse of the stiffness 

matrix from a second data set.    This row is now scaled and post multiplied 

by the result of k 6, for all the members in the structure.    The result is 

called DERV(NM,M).    NM is the member number and M is the load  condition. 

This quantity is really 36/aA..    It is next   converted to aö/öW by dividing 

by the weight for unit thickness.    The  changes in thickness for the various 

members are then calculated and the sum of the changes in each member for the 

various load conditions, with violated degrees of freedom are added together 

This sum is then divided by the number of load conditions with violated 

degrees of freedom; resulting in the average change in each member.    This 

average change  is then added to the original area to produce a new member 

thickness. 

b* Input/Output 

This subroutine uses as input the member matrix on unit NTAPM,  the deflec- 

tion matrix on unit WTAPD, the pertinent rows of the stiffness matrix in- 

verse on unit NTAPIS, the deflection differences  on unit MDADDD,  and the 

element stiffness. 

80 



>.^ii i.-my^ip,^.i.wJ»iuMW^**-W!M^IJV^^ 

c. Error Messages 

None 

d. Subroutine Required 

GETROW,   RJTROW,  GETDIM,   RJTDIM 

e. Argument List 

None 

f. Important Variables 

NSTAPT -  starting location for the stacking of tne element stiffness 

matrices Into the global stiffness matrix 

NGO        -  size of the blocks of the element stiffness ma,rices that 

are to be stacked  Into the global stiffness matrix starting 

at NSTART 

D -  nodal deflections 

SFO        - old scale factor needed to move design to the boundary of 

the feasible space 

SCFAC    - constraint relaxation factor 

XKINV   - element stiffness matrix for unit thickness 

DELMAX - average area change for each member 

81 

/ 



l^w-S^;i
1''*w

,^a-pj^«¥s«*^«w«.-s 

Subroutine IMVERS 

a. Algorithm 

INVERS calls all the routines which are involved in the computation of the 

Inverse of the total stiffness matrix. It takes advantage of the fact that 

the lover triangle decomposition of the stiffness matrix is saved from the 

previous stress analysis. 

b. Input/Output 

This subroutine uses the lower triangle to create the rows of the inverse 

up to and including, the lower degree of freedom that has constraints placed 

on it.  It stores only those rows that correspond to constrained degrees 

of freedom. 

c. Error Messages 

None 

d. Subroutines Required 

SECOND, QFSIH, BEVERS, QBISOL 

e. Argument List 

None 

f. Important Varisbles 

A - scratch array used by all solution routines. 

NTAPLT - tape containing lower triangle 

NTAPIS - tape containing needed rows of the inverse 

82 



Subroutine QBxSOL 

a. Algorithm 

T 
QBISOL solves the equation L X * Z to obtain X which Is the Inverse of the 

total stifftaess matrix.    In general, QBISOL only manages the zoning of the 

solution; the actual cooputations are done In QBAC. 

b. Input/Output 

This subroutine uses the Z matrix on MZ and the lower triangular matrix on 

MB, both In reverse order, and produces the required rows of the inverse In 

reverse order on MX. 

c. Error Messages 

♦*** ERROR **** 

d. Subroutines Required 

GETDiM, PUTLAB, QTCAC 

e. Argument List 

MB - tape containing lower triangle 

MX - tape containing Z matrix 

MX - tape to contain needed  rows of inverse 

Ml - scratch tapes 

M2 - scratch tapes 

f. Important Variables 

See argument list 

83 



!' J ■ i-^+Äm^^pi.if^HJURii^uLJii^ijiJiitigii^..^ug^.jppiji»! 1^1^ •- .^.^..-y^T^»^ r-r^ggy 

Subroutine QIBAC 

a. Algorithm 

QIBAC is called by QBISOL and performs the same function in obtaining the 

inverse as QBAC does iu calculating the nodal deflections.    The one exception 

lies in the fact that only those rows of the inverse, up to and including 

the lowest degree of freedom that has constraints placed on it, are calcul- 

ated and only the rows corresponding to constrained degrees of freedom are 

saved In reverse order on MX. 

b. Input/Output 

This subroutine uses the intermediate Z matrix on MZ and the lower triangular 

decomposition of the total stiffness matrix on MB, both in reverse order, to 

prcouce the required rows of th« inverse in reverse order. 

c. Error Messages 

None 

d. Subroutines Required 

GETROW,  UNPACK,  HOTDOT, PUTOOW 

e. Argument List 

T - scratch arrays 

B - scratch arrays 

X - scratch arrays 

L - scratch arrays 

M - number of rows in lower triangle 

N - number of columns in Z matrix (M ■ N) 
MU - zoning clue 

KOBE - work area 
MB - tape to contain needed rows of Inverse in reverse order 

III - scratch tape 

M0 - scratch tapes 

e. Important Variables 

See argument list 

8k 



—1.11 ■ 

Section 5 

Prograamer's Information for Dynamic Optimization Program 

Introduction 

This program, for minimum weight design of dynamically loaded 

shells, contains four main subprograms: 

SABRE - finds mass and stiffness matrices 

DRAST - finds displacements for dynamic solution 

MAXST - finds maximum stress for each element 

j^PTMIZ- calculates new thicknesses 

This prograraner • s section explains ths revised program. Descriptions 

of the calling sequence, tape usage, array usage, program counters 

and clue definitions, as well as flow charts of selected routines, 

are presented. References from the SAB0R 3A-DRASTIC programs should 

be used concurrently with this section since some routines have 

undergone only limited modification from their original form. 

Program Variables and Corresponding Engineering Symbols 

RjZ)  - p material mass density 

Rl • rl radius at station one 

R2  - r2 radius at station two 

Zl  - Zl height at station one 

Z2  - Z2 height at station two 

ALY - s slant height 

El  - E Young's modulus 

GNU1 - V Polsson's ratio 

TO  - t 
o 

initial time of integration 

Tl  - \ 
final time of integration 

DT  - At integration time step 

ESI - eSl meridional strain at station one 

ES2 - eS2 meridional strain at station two 

ET1 - eei circumferential strain at station one 

ET2 - efto circumferential strain at station two 

85 



EST1 

EST2 

CS1 

CS2 

CT1 

CT2 

CST1 

CST2 

-    c, sei 
ese2 
*51 

x61 
-   x 92 

shear strain at station one 

shear strain at station two 

meridional rotation at station one 

meridional rotation at station two 

circumferential rotation at station one 

circumferential rotation at station two 

twist rotation at station one 

twist rotation at station two 

Calling Sequence and Flow Charts 

The following array indicates the program's subroutine calling 

sequence. 

MAIN 
SABRE 

INPUT 
ELMAM8 

MMPRT3 
BIGMAT 
ELK08 

ELEMTA 
FUNCTI 

MATL12 
MMPLT3 
MMPRT3 

BIGMAT 
DRAST 

DJHARM 
START 

BETAIN 

B0ÜND 
FACTOR 

F0RCE 
S0LTRS 
STRESS 
PR0DUC 

PUNCHY 
MAXST 

SIGMA 
0PTMIZ 

DetPils on the flow of operations and the transfers of control hetween 
the main program and the four subprograms are contained in the following 
flow charts. 

86 



' 

>*HWffmuwi  ii.ijiiiiwijwimwwuFii'-'jiTWffTP wi^irp^T^.PTwr^i,*"1" "ium.iimiv»fm}mm\*mwrmmvn'>****i 

SUBROUTINE MAIN 

Find Stress 
Elements 
CALL mST 

Optimize 
Thickness 
CALL OFTMIZ 

^f Print A  ^ /^Read TN 
^^He«dlng/  ^1 HGROUP/ 

Get ."Vnamlc 
Displacements 
CALL DRAST 

£0 
NG = 1 

Get Mass 
And Stiffness 

Matrices 
CALL SABRE 

If 
INDIC ■ 0 

MK - 1 

MK = MK + 1 NG = MG + 1 

i I 

37 



SUBROUTINE SABRE 

Entry LIM = 1 

® 

Read Input 
Data 

Call INPUT 

Construct 
Indexing 
Vector 

msc 

Start Loop 
To Assemble 
Mass Matrix 

DO K = 1, NELEMS 

I 

Initialize 
Mass Matrix 

To Zero 
BIGMK(I)  = 0.0 

Find Number 

NTSRMS 
«-     Of Terms   •- In Mass/Unit area 

Find Density 

RHO . RO * THICK 

CALL 
EIMAM 8 

CALL 
BIGMAT 

Kf =YK(LI) 

1 

Print 
'Mass Matrix! 

JI0MK(1,I) 

Yes 

Start Loop 
To Compute 
Stiffness 
Matrices 

DO LIM = 2,NYK 

Initialize 
Stiffness 

Matrix To Zero 
BIGMK(LIM,I)  = 0, 

Start Loop 
To Assemble 
Stiffness 

Matrix 
DO I = 1,NELEMS 

CALL 
EI1C08 

CALL 
BIGMAT 

( Return  j <g     "      ^Loop 

88 



.^^^...„.upp^pwyp.u m,»i-v*F<vm<il>wim*wl" '■-■■w"Wi"»w-i"wi..l..»Mi>^t3,>r^^. 

SUBROUTINE DRA3T 

I Entry j~m NP1 = 1 
DBQTOR -.017^ 

NSZL1 = NS1ZE-1 
NSZP1 = NS1ZE+1 

Read : TO 
Tl,DT,NDrOUT 

\ , /    Print : 
T /""iTipr^NI 

To 
NDTOUT 

User Inputs 
Damping 
Matrix 

Start Loop 
On Harmonics 

DOIBJ = 1, NYK 

AIL = IL(IBJ) 
AIIAN • AIL«ANGLE*DEGTOR 

SININ « SIN (AIIAN) 
C03IN = C03(AIIAN) 

COSI = NP1 
SICO - NP1 

f     Rewind 
V   ID1,ID2 

COSI = COSIN 
SICO = SININ 

i 
COSI = SININ 
SICO = COSIN 

i 

CALL 
INHARM 

1  
IDl = 2 
ID2 = 1 

CALL 
START 

CALL 
"BETAIN 

89 



■ 

SUBROUTINE STRESS 

(  Entry \-m 

RP 
RQ 
3N 
CN 

Rl 
R? 
3INA 
C03A 

Set Up Array 
Containing 
Displacements 

B(lKB(9) 

Compute Strains 
ES1,ES2 ,EP1,ET2, ESTI, 

EST2 ,CAPS1,CAPS2 , CAPT1, 
CAFr2,CAPSTl,CAPST2 

Write (IDI) 
E31,E32,... 
..,C3T1,CST2 

Compute Strains 
ESl,Ea2 ,ET1,ET2 ,EST1, 
E3T2fC3l,CS2,CTl,CT2, 

CST1,C3T2 

<t 
Read (11)2) 

DD1,DD2,..DD12 

DD1 - 0 
DD2 « 0 

• 

DD12 - 0. 

Return 

90 

"•**«««!i»-«w«ys» 



T^^r^^-^-r-T^fn^«, Wp^ii IM ij« J! i .■rKarrrrwrrtr "~r^m 'J^^" ■■■■■ 

SUBROUTINE MAXST 

0? - TO 

1 
Start Loop 

On Intervals 
DO I - 1,MAR 

1 
Start Loop 

On Elements 
DO J » 1,NELEMS 

HReadIDl\ 
!ESl...CSKy 

CALL 
SIGMA 

Calculate 
Fiber 

Stresses 
■•- H - THICK(J) 

Store Values 
Of Strains 

In Array 
SVE 

L Start Loop 
To Save MAX. 

Stresses 
DO KK = 1,NELBMS 

VAIMX(KK) . 
SIGBPT(KK) 

VAIMX(KK) •■ 
SiaBFP(KK) 

TME(KK) 
= TO MAXEL(KK) « I 

Yes Store Twelve 
Values of SVE 

In 
AVAL 

TME(KK) - T 

Store Twelve 
Values of SVE 

In 
AVAL 

91 



-f jiMiiii.i.ii.il.umwiiiiiiiDinniiii^i i Mltii.Rmiill^H.llWjIllllil^liyjj^^ n, jm 

SUBROUTINE SIGMA 

Compute Middle 
Surface Stresses 

SÖP,SSM,STP, 
STM,SSTP,SSTM SIGOEF 

Find Effective 
Stress Outer Surface 

" JsSP2+STI^-l. »SSP^SSM+SäSSTP2 

!^ 

If 

SIGEFF(I)  \m 
=SIGOEF 

Find effective 
Stress Inner Surface 

SIGIEF USSM2 +STM2 -1. *SSM»STM+ 3*SS!nr 

SIGEFF(I) 
=SIGIEF 

92 



■ uj Mv.i^wrwimi}i,jml.miwxi\.i^imiWmmm^nm^,nmi,ii.i» ' i] " ,i ^w^'^miw.-rm-^.^^wn^^r- 

SUBROUTINE ^PTOgg 

( Entry V* NREPET = 0 
PI2 = 6.282 

Yes 

Read: 
SEGAL 

ALP,PAR, 
KPUN 

y^ APrint :   SEGALj 
"^       ALP, PAR, 

0 

Find 
SCALE FACTOR 
BETA = PHI^ 

L^ Print : BETA H 

Print RESIZE 
PARAMETER PHI 

Start Loop 
To Compute 

Scaled Thickness 
DO I = 1,NELEMS 

1-1 
Start Loop 
To Compute 
RESIZE PARAM. 

DO I = 1,NELEMS 

Compute 
RESIZE 

PARAMETER 
PHI(I) 

HBAR(I) = 
BETA*THICK(I) 

HBAR(I) = 
THICK(I) 

Yes 

Yes 

RADAVG(I) « 
R1(I)+R2(I)  f-»(SUM = 0.0 

2.0 

SUM = 
SUM+WATE(I) 

WATE(I) = 
PI2*RADAVG(I)*R0(I) 

*HBAR(l)*ALr(l)*386.U 

Yes 

SÜMWAT = SUM 

SI 
Start Loop 
To Compute 

Weight 
DO I = 1,NELEMS 

93 



1 /&n**vf*£-w .■■■-•■■■ . ■     - . ; - 

SUBROÜTIRE ÖPTtaZ (cont.) 

No 

" 

Punch Cards 
With Scaled 

Thickness HBAR 

Print :3UMWAT 

3AVWAT 
SUMWAT 

©■ 1 

Yes S        Print 
KHJN = 0\«fci Scaled Thickness 

?     X        V HBAR 

Start Loop 

To Compute 
New Thickness 

DO I - 1,NELEMS 

Store Scaled 
Thickness 
OIDTH(I) ' 
HBAR(I) 

THICK(I) - 
(l.-ALP)*THICK(l) 

+THICK(I)*PHI(I)*ALP 

No 

Print 
Sealed THICK 

HBAR 

Punch Cards 
With Lowest 
ickness 0: 

INDIC 

Punch CardaN 
With Scaled    L 

Thickness HBAy 

* m ['Return   M 

<* 



^^prw"-.--^ .^w^ T!m^wi.j.'yy. ^■■■■■^^ig^i!j.'^*-!M'- 

Tape Usage 

Two scratch tapes are used in this program, IDl and W2,    Ith 

value 1 or 2. One is used to store the element strains calculated 

for each required time step for the first harmonic. When str i 

for the next harmonic are computed, the tape is read back, a  -"ation 

over the harmonics is performed in core, and the results are stored 

on the second tape. This "flip-flop" procedure continues until the 

sum of all harmonic strain component"? for each element, for all 

specified tims steps, are stored on tape. This tape manipulation takes 

place in subroutine STRESS. The  finrl tape, tape 1 or tape 2 depend- 

ing on the number of harmonics, is rewound. In MAXST, the tttrains are 

read from the tape, fiber stresses are computed from these, and SIGMA 

is called to find the effective stress for each element, for all time 

steps. 

Array Usage 

Certain arrays are of particular significance in this program. 

Double arrays use their first subscript as the factor determining 

usage, while the second subscript denotes the dimension for that 

array.    Therefore, the following list will denote a double array by 

its first subscript in defining its usage. 

BIGMK (?; 2610) 

BIGMK (l) - contains mass matrix 

95 

BIGMK (2),..., BIGMK (3) - contains stiffness matrices for 

up to four harmonics 

BIGMK (6) - work area for integration 

BIGMK (7) - contains damping matrix 

Unless user inputs damping matrix, BIGMK (7) 

contains zeros. 



X(3, ^OU) 

X(l) 

X(2) 

X(3) 

SIGEFF   (100) 

VALMC   (100) 

- contains displacements from integration 

- contains velocities from integration 

- contains accelerations from integration 

- holds values of effective stress for each 

element for any given time step 

- stores maximum value of effective 'Stress for 

each element for all time steps 

AVAL (100,  12)    -    stores strains associated vith the maximum 

effective stresses for all time steps for all 

elements  (corresponds to values of stress in 

VALMC).    The first subscript  is the element 

number; the second subscript is the dimension 

holding the twelve strains, ESI, ES2,...,CST2. 

Program Counter and Clue Definitions 

NG 

MK 

INDIC 

ID1,   ID2 

- The number of the current problem.    When NG > NGPjÄJP, 

program is finished. 

- The iteration number.    Case is complete when it 

converges or when MK=NMAX. 

- If INDIC = 0, iterations for case continue.     If INDIC = 1, 

case has been completed, program continues with next 

case, if any. 

- Tape numbers, 1 or 2, for scratch data sets.    For 

further information see  "Tape Usage." 

>6 



.ii. ji . jii »i.ji^.J.iiyai|]WijiWyi|iW.piiii^i»ii'yLi .i.   ■»■■innuiaiiami.i » 

UNCLASSIFIED 
Security Cla»s»fic«tion 

DOCUMENT CONTROL DATA -R&D 
(Security clmtsHlcmlion ot (/(/«, body ol abtlract and indexing annolallon musl be entered wfrro Ihm overall report la clatallled) 

I. ORIGINATING ACTIVITY (Corporate author) 

Air Force Flight Dynamics Laboratory (FBR) 
Wright Patterson Air Force Base, Ohio 45^33 

2a, REPORT  SECURITY   CLASSIFICATION 

UnciLassifled 
2b.   GROUP 

3.   REPORT   TITLE 

AN AUTOMATED PROCEDURE FOR THE OPTIMIZATION OF PRACTICAL AEROSPACE STRUCTURES 
VOLUME II    PROGRAMMER'S MANUAL 

4. DESCRIPTIVE NOTE« (Type ol report and inclusive date») 

t-  AUTHOR(S) fF(r«» name, middle Initial, laal name) 

Walter J. Dwyer 
Robert K. Emertön 
Patricia L. Sabatelli 

0    REPORT  DATE 

Feb. 1971 
7a.   TOTAL  NO.  OF PAGES 

96 
7b.   NO.  OF  REFS 

None 
•a.   CONTRACT OR  GRANT NO. 

F 33615-69-0-1278 
b.   PROJECT  NO. 

d. 

»a.  ORIGINATOR'S  REPORT NUMBER(S) 

AFFDL-r.R-70-ll8      Volume II 

ab. OTHER REPORT NO(S) (Any other number» that may be eaalgned 
thia report) 

10.   DISTRIBUTION  STATEMENT 

Distribution of the document id unlimited. 

II.  SUPPLEMENTARY  NOTES 

U-      -L    //'    V 

12.  SPONSORING MILITARY   ACTIVITY 

\3.   ABSTRACT 

This voitune documents the computer programs described in Volume I of this report 
entitled "An Automated Procedure for the Optimization of Practical Aerospace 
Structures''^.    Both the main stru_tural optimisation program and the shell dynamics 
program are written in Fortran rr language.    This manual contains a description of 
the overlay structurt, data set arrangement, and subroutines of both programs.  C^.   * 

% 

00.^1473 UNCl OSSIFIED 
Security Classification 



  TO™*« ■.,-^-.^^,^n-.T-^ro^,^,J,.,|,,J,,,1y||W|WT^   ,,^^ff|,ya^w^^HW|M||UJ,|,M 

Security CUaalflcatlon 

• 4. 
KKV WONOt 

LINK A 

NOLK    WT WT ROLE 

Structural Optimization 
Finite Element Method 
Automated Design 

Security Classification 


