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FOREWORD
This document is a comprehensive collection of equations,

data, and supporting information for use in processing- aircraft

flight data and correcting it to standard conditions. It does

not repre'sent a final effort; as n w material comes into being,

new sections and revisions to existing sections will be issued.

The authors are indebted to Mr. William R. Turley, Aerospace

Engineer, who prepare6 the equations on the dynamic response of

vanes which appear in section V, and to Mrs. Barbara L. Smith,

Engineering Technician,, for typing all of the equations.

Prepared by: Reviewed and appreved-by
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EVERETT W. DUNLAP -- • T•D1AS J. CILSupervisory Aerospace Engineer vi -el. USAF
e4eutmander, 6510tb Test Wing

B. PORTE 'OBERT M. WHITE
Captain, USAF R %rigadlor General, USAF
Aerospace Engneer Commander

"6*

Ii --



ABSTRACT
The cont6nts of this report were prepared to give those

engaged in aircraft. flight test an understandingl of the analysis-

required to arrive at. standardized flight data., Toward that end,,

considerable attention was given to thei derivation of equations.

In contrast to eaklier reports, simplifying assumptions •were not

made; rather, efforts- 4wek& made "to keep the derivations of all

equations -as nearly' exact as, possible. Emphasis ,has beend placed,

on climbs and level .-accelerations since these tests, particularly

,for supersonic aircraft, c~nsume a- large part of a test pr6grdam,

and require calculatian§ which are much more lengthy than -for

other tests. The infor6xation in this document was the-basis for

the development of uniform-digit~al computer programs which are

being constructed ,f6o- use in processing flight data and ,correcting

it to standard conditions. These programs have been given the

name Uniform Flight Test Analysis System (UFTAS),.

il|



table of cont6616t6

Page

INTRODUCT'ION -v

SECTioN I. c9oRDiNtE SYSTEMS AND TRANSFORMATIONS. _ ___I-1

SECTION 11. GEOPHYSICALPROPERTIES 1-

SECTION III. AlTMOSPHE9RIC ENVIRONMENT I--,

SECTION IV., FLIGHT PARAMETERS FROM SENSED-ENVIRONMENT

(OiN-BOARD STATIC -AND TOTAL PRESSURE, AND'

TOTALTEMPERATURE) ______________ IV-1

SECTION'V. DETERMINATION OF EXCE'SS THRUST _______1__

-SECTION Vi. 'SADPCLII4B SCHEDULES____________V-

S~~ SECTITON VII. 'STANDARDIZATION OF EXCESS THRUST, V1

SECTIONNVIII. STANDARDIZATION OP PERFORMANCE PARAMETERS, . VI Il"1

BIBL;IOGRAPHY

IIV



INTRODUCTION
This document is an outgrowLh of the development of uniform

digital computer programs which have been constructed for use in

processing aircraft flight test data and in correcting it to a set

of standard conditions. These programs have been given the name

Uniform Flight Test Analysis Systems (UFTAS) and have as their

basis the equations developed herein.

In contrast to earlier reports (e.g., Flight Test Engineering

Handbook, AF Technical Report No. 6273, by Russel M. Herrington,

et al.) simplifying assumptions were not made; rather efforts were

made, to keep the derivations of all equations as nearly exact as

possible. This was done so that the equations would remain

valid as airplane speeds and altitudes increase and/or the accuracy

of instrumentation systems is improved. In general, correction

terms in the final equations may be deleted when it is found that

their magnitudes are small compared to the accuracy desired in

the end results.

Considerable attention was given to detailing the derivations

and to presenting information to give the reader an understanding

of the analysis required to arrive at standardized flight data

rather than incorporating "cookbook" procedures. Although most

of the topics covered are not dependent on the type of power

plant, performance parameters and corrections to standard condi-

tions have been included for jet powered aircraft only. Emphasis

has been placed on climbs and level accelerations since these

tests consume the major portion of a test program, particularly for



supersonic aircraft. Further, calculation of test parameters

and standardization procedures are much more lengthy than for

other tests (e.g., cruise control, turning performance, etc.)

and, hence, the difficulty in computing standard performance for

climbs and level. accelerations is much greater. The basic

approach is quite simple, however, and is illustrated in figure 1.

Briefly, the method is as follows: first, the performance

Parameter, excess thrust, is computed from the aircraft's measured

performance via the equations of motion. Next, the excess thrust

computed from test conditions is corrected to standard conditions.

Finally, standardized climb or acceleration parameters are com-

puted from the standardized excess thrust by means of equations

of motion.

The section titled Determination of Excess Thrust discusses

in detail the diverse aircraft flight parameters which may be used

in these calculations. For many years readings of airspeed and

altitude from conventional airspeed indicators and altimeters have

been a basis for measuring test performance. The accuracy of

excess thrust computed from such readings could be described as,

at best, adequate. Data obtained at low altitudes and speeds are

satisfactory; however, as altitudes and especially speeds are in-

creased, the use of airspeed indicators and altimeters as the sole

sources of performance data becomes much inferior to sensitive

accelerometer installations. A precision of less than +O.Qlg

in measured flightpath acceleration has been obtained during flight

tests at the Air Force Flight Test Center and improvements ar,

VI



expected. Although not in general use, procedures for calculating

excess thrust from aircraft position measurements (radar, Askania

camera, etc.) have been developed. Accuracy of excess thrust com-

puted with data from these systems is superior to that from the

airspeed-altitude method.

~..1] vii



Aircraft ,Equations
Trajectory 9f
Parameies Motion
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Figure 1: Outline of Method f6r Standardization of
Climbs and Level Accelerations.
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The most convenient parameter with which to work in standar-

dizing airplane performance data is excess thrust. Corrections,

in terms of excess thrust, are most easily derived from equations

of motion. If accelerometers are used, excess thrist can be

computed from measured acceleration, and it can be related easily

to rate of climb', turning performance, and other performance

parameters.

In writing the equations- of motion to deduce test excess

thrust, (or other performance parameters) the assumption of a flat,

non-rotating earth with a constant gravity field has historically

been made. (See for example, AF Technical Report 6273, Flight Test

-Engineering Handbook.) To ensure that test performance data are

not degraded, exact equations of motion have been written which

account for effects from the earth's rotation and for variation

in its gravity field. General equations in terms of test excess

thrust are derived in the section, Determination of Excess Thrust,

for various -flight-parameters.. In ;preparation for the derivation

of these equations, the coordinate systems employed are described

in the following section, Coordinate Systems and Transformations,

and the properties of the earth used in the derivations are con-

tained in the section, Geophysical Properties. In the next two

sections, information may be found on standard atmospheres and on

the basic measurements needed to determine airspeed, altitude,

Mach number, and temperature.

As in the calculation of test excess thrust, formulation of

excess thrust at standard conditions has been carried out in a

more nearly exact fashion than is found in AF Technical Report

ix
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6273, Flight Test Engineering Handbook. This has been done to

make certain that accuracy inherent .in the test data is not de-

graded in the standardization process. A detailed derivation

Sof the equations for extrapolating test excess thrust-to standard

Sconditions appears in the section, Standardization of Excess

'Thrust.

Once excess thrust for standard conditions has been determined,

'.other parmeters (e.g., time to climb, standard weight, etc.)

follow quite easily for either climbs or level accelerations.

XEquati6ns for computing these parameters appear in the section,.

Standardization of Performance Parameters.

4
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SUMMARY

General information about -coordinate systemxs is presented;
this is followed by descriptions of toe va ibus, Co6rdinate 6y's
tems used in the calculation of ekxcegs thrust. Mattices, to.
make transformations from one axids •system- to, another are, de-
veloped. This is done by first" ,treatin 4., anhe -a • ••

then the specific cases which are' needed in, sedtion V, Determina-

tion of Excess Thrust.
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"SYMBOLS USED IN THIS SECTION:-

S 0Definition, Unitg'

B -jrcraft rolil angle about the tad
-wind xwraxis (airspeed vector)

cg% center of ,gravity pct MAC

hr -ieombtric altitude cf the rfda .ft
coordinate originw••

i.•j•,k i�U±•u4 vectors along the- z -

axs-,4 respectively
.[Mx ((e) ] axes 'transformat-ion, matrix for

- the rotation through the angle

e about the x-axis'

-MIf(f ,e3,-, -multiple axis transformation

matrix,

Xy !axes labels or components, of -a
•' "•vctor in, a. rectangular Cartesian

doordinat6 system (appropriate
subscriýpits denote the particular
axes• system)-

Sangle of attack rad-

sideslip angle rad

y fiightpath climbiangle measured rad
lfroni\ the, ieocen!;ric horizontal -
'pland,

geodetic' laltitude bf the radar rad
r coordinate origin

6L aircraf;t geocentric latitude rad

6L geocentric latitude of the radar rad
r coordinate origin

ALr meridian tilt angle of the radar radr axes horizontal plane (=6 - 6,(Dr Lr

r =6r-AL6 the angle between the rad,
r Lr Lr

radar z -axis and the equatorial
plane r

r



6e1 21, 6 rotation angles for th~e -general rad'
axes. trAnisformation

Xlongitude-of the radar rid
Lr coordinate origin

AX. difference between the ;ad
L, ~~ai'rcraft."lonhg'tude- and the

lonhgit'ude of 'ýtfie'rd coi
naie origin' rdrcod,

the ýangle between the radar ~x -axis 'rad
r :and tiruc north

Ithe aniglb 3.141,59.,. radians rad

a flightpath heaiding, angle i.ad
ýmeasured'from true north

'Li ~matrix -

~~ transpose matrix -

inverse matrix

Saircraft boy -Axe's.-

horizon axes -(local geocentric)ý

r radar axes -

wai rcraft wind axes, ..

Ii,2, 3,4, general axes sysitemts - I



'INTRODUCTION

In qcneral, aircraft test data are sensed in a translating

an- rotating coordinate system. In this case, to corvpute the

fbrdes 'which produce -the itotion, the acceleration data i:,ust

be transformed to an inertial coordinate system to correct for

such factors as centripetal and Coriolis acceleration. This

section describes the basic coordinate (or axes) syster.s required

for the expressions and equations in the other sections of the

docunent. In addition, the necessary coordinate transformation

matrices are developed.

COORDINATE SYSTEMS'

The axes systems used are right-handed rectangular Cartesian

coordinate systems with axes denoted respectively by the symbols

"k, y, and z with appropriate subscripts (See figure 1). The

three axes are mutually perpendicular, and the direction of posi-

tive-rotation about each axis is indicated by the curled fingers

if the axis is grasped by the right hand with the thumb pointing

th-the positive linear direction of the axis. For example, rota-

tion about the z-axis would carry the x-axis toward the y-axis.

The axes system is uniquely specified if the position of the

origin and the directions of two of the three axes are given,,

The third axis is then chosen to complete the right hand systei,

Associated with the axes system is a set of three unit vec-

tors, i, j, and k, with the same subscript as x, y, and z,

colinear respectively with x, y, and z, and with the same posi-

tive directions.' A vector can be expressed in component form

1-7
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as three scalars multiplied respectively by the unit vectors.

GEOCENTRIC COORDINATE SYSTIM

For the purpose of this doctunent aircraft trajectories

will be considered to be relatively near the earth's surface,

and the center of the earth will be considered an inertial

point. The geocentric axes system (xe, ye, z ) (shown in

figure 2) will then be fixed in the earth with its origin

at the geocenter, the z -axis pointing toward the south pole,
e

arid the x -axis in the equatorial plane pointing toward the
e

earth's surface at a specified longitude. For development of

the radar reduction equations this longitude will be chosen as

the longitude of the radar coordinate origin. The geocentric

axes system, is then inertial except that, it rotates with the

earth.

LOCAL GLOCE-N'TRIC COORDINATL SY STEMS

The second coordinate system to be defined is the north-,

geocentrically-directed horizon axes system (xg, yg, z ) or

local geocentric-axes system for short (See figure 3). I
Its origin can be located at either the surface of the earth

(geoid) on the radius line frort, the cecocenter to the aircraft

ca or at the aircraft cg. The x -axis is directed north and

the z -axis toward the geocenter. The yg-axis is then pointing

east. These local geocentric axes are oriented with respect

to the geocentric axes by two angles- 6L' the aircraft geo-

centric latitude, and AXL' the difference hetween the aircraft

and radar coordinate oriain longitudes. ]
1-9
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AIRCRAFT WIND COORDINATE SYSTEM

-The third coordinate system to be defined is the aircraft

wind-axes system (xw0, Yw' zw) (shown in figure 4). Its

origin is located at the aircraft cg with the xw-axis oriented

in the direction of the aircraft airspeed vector and the

zw7axis directed downward in the vertical plane of synmmetry

of the aircraft. The Yw-axis is then directed out of the

right ;side of the aircraft. The wind axes are oriented with

respect to the local geocentric axes by three angles: the

flightpath heading angle, a, measured from true north to the

geocentric horizontal projection of the airspeed vector; the

flightpath. climb 'angle, y,• measured from the geocentric hori-

,zontal (xgy -plane) to the airspeed vector; and the roll angle

about the airspeed Vector, B., The first two of these angles

represents the aircraft, flightpath orientation with respect to

the airmass. The angles are not the same as the angles of the

flightpath with respect to• the ground if the wind is blowing.

AIRCRAFT BODY COORDINATE SYSTEM

The fourth coordinate system to be defined is the aircraft

body-axes system (xb, Yb' Zb) (shown in figure 5).

Its origin is also located at tbe aircraft cg with the

xb-axis directed forward along the longitudinal axis of the

aircraft and the zb-axis directed downward in the vertical

plane of symmetry of the body. The body axes are oriented

with respect to the wind axes by the sideslip angle and angle

K ,I-12
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of attack. The sideslip angle, 0, is measured from the air-

speed vector (xw-axis) to its projection on the xzbb-plane.

The angle of attack, a, is measured from the projection of

the xb -axis-on the xwyw-plane to the xb-axis itself.

RADAR COORDINATE :SYSTE.1

The final axes system to be described is the radar coordi-

'fia-e system (x, Yr' Zr) (shown in the two views of figure 6),

its origin is located at the radar site at an altitude hr, a

longitude ALr and a geodetic latitude 6Dr The xryr-plane

is 6riented with respect to the geocentric horizontal by a

tilt angle t6L in the meridian plane. Usually the tilt angle
r - -

has a negative value such that the xrYr-plane is parallel to the

geodetic horizontal. However, in general, the radar plane may

not be exactly geodetically horizontal due to local anomolies

in the earth's gravitational field. Also, if there is any error

in the alinement of the radar axes with respect to true north,

the angle r between the x -axis and the meridan plane will

be non-zero. If the radar plane is geodetically horizontal A6L
r

can be calculated for a given latitude using the geodetic to geo-

centric latitude transformation equation in Section III.

COORDINATE TRANSFO•MATION MATRICES

To illustrate the method by which a transformation matrix

is derived a general three axis rotation will be demonstrated,

and the associated transformation matrices will be developed

for this rotation. Succeeding matrices will then be obtained

by analogy with the general matrices.

1-15
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GEN)ýERAL AXES, TNSFORMATiONS

From the -geometry- of figure 7, which shows •a positive
rotation about the z-axis, the following equations for the

coordinates (x 2 , Y2, Z2)ý in terms of (xi,, Y1, zi) can be

derived

- --- '(Cos~ 1)xj, •+t:(•sin-)y 1  + (O)z 1  (1) a

Y2 '(-sin 1 )x, + (cos 1)yi +,( z '(t) b

Z2- O)x 1 + (O)yI + (1)z 1  (1)cd

This set of equations is altbrnately expressed as the matrix

equation X2  MX1 , or in component form

[2 Cosoi sinO1 olx1l x

YI = rsino1 coso, 0 J0 Y [, z1(e1 1J (2)

o o I

where the subscript zj, on M denotes the axis of rotation, and

1, denotes the angle of rotation. If the rotation were in the

opposite direction (through a negative angle e1 which is

similar to the rotation of (x2, Y2, Z2) to (x,, yi, zi) the

signs of the two (,sin 6) terms in [MV (O,)] would be switched,

but the other terms in the matrix would be unchanged. From

matrix theory the rotation matrix from (x 2 , Y2, z 2 ) to

1-17
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'(xl., yl, zi) ii known to be -the inverse of [(z1 (Oi)] or

[M (00:)]-I. Also, these transformation matrices can be shown
Zi

to be orthogonal., which by definition means that the inverse is

equal to the transpose: 0[ 0 (,) ]-=[M (8i) . (The orthog-ZI Zi

onality property further means that the cofactors of each matrix

element must equal the element. This property provides a con-

venient method of checking any matrix for errors among its

elements.) If the new axes (x2 , Y2, z2 ) are now rotated through

an-angle e2 about the y2-axis to form the axes system (X3, Y3, Z3),

then y3 =Y2 , and z would replace x in figure 7, and x would

replace y; so, by inspection we write the second transformation

matrix

x3  cos 02  0 -sin 2 ]x 2 x

Y -3 1 0 IY2 [MY2(02 [Y2 (3)

.z3J sine 2  0 cos t z2  2

Similarly, if a transformation is nmade to (x4, y4, z..) by

rotation through 03 about the x 3-axis, then y replaces x and

z.-replaces y- in figure 7, so that again the transformation

written by inspection is

X 1 0 0 x3 x

Y4 W 0 Cos03 sino 3 Y3 I (03] Y3  (4)

.z4j][ 0 -sino3 Cos 3 JLJ z3.J _z3{

The total transformation from (xi, yi, z,) to (x4, y4, zO)

I-IS



is then

x4  I X

Y4 [ x3103i[My2(02 j[Z 1(0° Y (01 02, d3 Y1  (5)

-,Z 4  zI Zi[

To make the reverse transformation from (x4, yr, Z?4) to

(xj, yl, zi) the transpose (inverse) of M(01, 02, 03) is required.

{• The transpose is obtained by use of the reversal law for the

transpose of a product of matrices

M(01'0 2 0 FAZT - 0 )( (0 (6)

TRANSFOP$IATIONS FROM GEOCENTRIC TO LOCAL GEOCENTRIC

By analysis of figure 3 it can be determined that two rota-

tions are required to transform the geocentric axes (xe, Ye' Ze)

to the local geocentric axes (xg, yg z). First, a rotation

about the ze-axis through the. angle (Ir+A L) yi elds the trans-

formation matrix which by analogy with [M (0H)] is

cos(Or + AL sin(r + AXL 0

[Mze Or+AXL J-r -sin(n+AXL) cos(?7+AXL) j (7)

This is simplified by trigonometric identities to the following

1-20
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-cosAXL -sinAAL 0

-cos~A ol(8)mZ (AL)X L] sinAXL LcosAAL (

0 0 1 _

Second, a rotation about the yg-axis throi gh the angle (7t/ 2 - 6L)

yields the transformation matrix which by analogy with [1Y2 (62)]

is

cos(2.- 8 ) 0 -sin(2-)
2 L 2 L

[myg(!--aL) = 1 0 (9)

sin(.!- aL) 0 cos(z-- 8L)
L 2L 2

which simplifies to

sin 8L 0 -CosaL

Myg(aL)] = 0 1 0 (10)

Cos a 0 sinaL

Expanding the matrix product we obtain the matrix of the trans-

formation from geocentric axes to local geocentric axes

-cosAX L sin t L -sinAX L sin t L -Cos 8L

LL LLL

[M(&AL,aLI == sinAL -o L -cS] (11)

_-cosAXLCOSaL -sinAXLCOS 8L sinl&."j

The inverse of this transformation matrix for the reverse trans-

1-21



formation from local geocentric to geocentric coordinates i~s

CSALS nL 'On AA L dos A\0ALO

M(aL1 AXLI -L] -sinAALSin .LCosAX -sinAXLcoskL

-COSL 0 :sin8L

TRANSFORMATIONS FROM LOCAL GEOCENTRIC TO''WIND COORDINATES

The transformation from the l6cal geoe!ntric coordinates ,to

the aircraft wind coordinates consists of, rotations throiugh the

flightpath heading angle, a, the climb angle, y, and the roll

angle, 1B, in the same sequence and about the .same axes as the

rotations illustrated, through the angles 61,. 02, and 03 in the

general three axes transformation. Consequently, the resulting,

transformation- mazrix is.

M (a, y, Bi CosB- " IC0 0 -sinB, Cos a i 0 (13)

L, -sinBy 0 cosiL 0 0 1]

For one Appliction in the section describing the radar reduc-

tion equations only the portion involving the first two trans-

formations through o and y to an unbanked wind axes -system are

requi red. Expanding this product first we obtain

, sTYcosa cosY'sina -siny

EmS 0I (14)

'sinycosa 'siny'sina COSTy

1-22



NNeXt, f6oming the producdt to rotate. to the 'banked wind axes we

obtainr the total transform matrix

9 9

-cosycosa cosy sin a -'sin y

(a Y BCos B-sina CosB Cosa, sin Bcosy (5

- + sin n BsinyCosa +sinBsinysino
sinBsino --sinBcos Cos B cosy I
+ cosB-sinycaso + cosB sinyslna

TRSFOMIATIONS PROM.BODY COORDINATES TO WIND COORDINATES

'The transformation from body coordinates to wind coordinates V
requires two rotations in the negative directions first through

' and then B about the y.- and Zw-axes,respectively.. The trans-

formation matrix is then

r iF
COSA3 -'sinp 0 Cosa 0 sin a

asip CosP 0 0 1 0 (16)

)L0 0 1 -sifla 0 Cosa-

iThen the sideslip is neglected, the total matrix reduces to the

second one involving -a only. When $ is included the total

matrix is

Cos PCosa -sinp cosp sina

'(a, P] sin Acosa cosp sinflsinfa (17)

L -sina 0 cosa _1

, 1-23
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TRANSFORMATIONS FROM RADAR TO GEOCENTRIC COORDINATES

To transform the radar measurements tO geocentric coordinates,

transformations through the two orientation angles (wr-0) about

the radar zr-axis and (i/2-•r) (where Ar Lr r about the

Ye-axis are required. The resulting matrix is then

cos( j-8r) A --sin(-Y,) cos(,-qsr) sin(, 0

IM.: (P-Or,•-F , 0 1 6 -,sln,,- r) cos ('r, -. O) 0
- [8 -in( L-o 8) 0 1CosL(2- 8,- 0 O. 1

(18)

Performing appropriate triqonometric substitutions

i o8r 0 -Cos8r [ cot Of sr 01
ii(Or, ar] - 1, 0 -isin~r -€os•r 0 (19)

"LCosar o :sindL o :1 1

Multiplying the two matrices together

-cos4/rsin 8 r 'sin Or'sin 8r -cos8r

.Cq'(OrTr] -'sinOr -coSTr 0 (20)

SCOSOrCOSSr 'sincrCOS8r sin8r
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SECTION II

GEOPHYSICAL PROPERTIES
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SUMMARY

The usual assumptions that have been -made in the past

(a flat, non-rotating earth with a constant gravity field)

lead to significant errors when performance data are acquired

with inertial navigation systems or with accelerometers (such

as two-axis flightpath accelerometer systems). Accelerations

brought about by the earth's rotation, for example, can be

readily sensed by current installations in test aircraft.

Further, the magnitude of the errors caused by these assump-

tions becomes larger as speeds and altitudes are increased.

The more nearly exact equations derived in section V, Determi-

nation of Excess Thrust, make use of the model of the shape of

the earth, its gravitational field, etc., set down in this

section.

11-2
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C SYMBOLS USED IN THIS SECTION

Symbol Definition Units

f earth's flattening dimensionless
r -r

(f =

SgL local effective acceleration ft per sec2

due to gravity

SgLxgfgLygfgLzg geocentric components of local ft per sec2

g.. acceleration due to gravity

Sreference acceleration of ft per sec 2
r gravity

gSL sea level acceleration of ft per sec2

gravity

Sgxgg yg,gz geocentric components of ft per sed2

. Z acceleration due to gravita-
tional attraction alone

- geopotential altitude in geo- ft
potential units

h geometric (tapeline) altitude ft

Shi geocentric altitude as shown ft
in figure 2

i h2 geodetic altitude as shown in ft
figure 2-

Sh3 geometric altitude as shown ft
in figure 2

SJ•,J3,J4 cdefficients of the zonal har- dimensionless
monics of the earth's gravita-
tional potential

r local radius of the earth ft

r polar radius of the earth ft

r equatorial radius of the earth ft

R effective earth radius fte
t time sec

S~11-4
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Symbol befinition Units-

xY Cartesian coordinates

XgiygIZg geocentric position coordi- ft9 9 hates

6D geodetic latitude 'rad

geocentric latitude rad

A longitude rad

product of universal gravi- ft 3 perteci
tational constant and the
mass of the earth

gravitational potential fUnc- ftp per sec2

tion

angular rotation rate of the rad pek sec
earth
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INTRODUCTiON,

In this: section, equations fotheah' gephscal

pr~perties are Presenteid'. The geophysicalparamateks

which are nece~sAry- for atmospheric' trajectory 'calcula!-

tiofl3 are those -which -describe the earth's mean sea. level

suirface, the aircraf t'Is posi~tion irelative-to that surface,

the 'gravitatiofial attraction-between the earth and the

airc'rafti and the earthi'srotation rate,, which provides
centrifugalx rlief fromn the force ogavity nat~t

has been made to present equ~ations.,whicqh have pci~ion

comaraletd~the .genieral -aircraft qutosfmtion

,ý>resenteý 'in the secftoný,, D~etriki-nat-ion of Excess Thrust.

Various app'roximati'ons to-the ea-rth'Is shape' and gravi-
~tatiofial field-have bedni made to simplýify the, equations of-

motion. Hodweveir wjith, the introduction of high performance

aircraft iinto the Air Forcdeinventoryfimproved equations
~~t ~have- bbec1me -desirable. -igaccuracy acceleromeeran

'Precise ihziJ navigration -systems can, sense. accelerations.

such as those lbduipqd 'by. the, earth'S roitation', and' they can

'sense forces da~used by vaiiatibrh, in gravity'with altitude

An~d latitude,. These iiavigatioii system's must also account

for the'ý oblate shape of the~ earthl'n order to provide accu-

rate position data., Thb& old assumiptions- of a flat ear~th

an constanto'ravity 4re no 'longer adeqýu~ate in most cases.



Since the advent of artificial earth satellites

a number of refinements in the measurements of the earth's

geophysical properties have been made. These precise equa-

tions with slight simplifications have been used in this

section. An attempt has been made to state the important

assumptions and describe the simplifications to allow for

future analysis of the adequacy of the equations.

DIMENSIONAL PROPERTIES

The strength of the earth's crust is low enough when com-

pared to total earth mass and rotational energy that its rdur-

face shape has been forced to assume the approximate form

of a ball of fluid in hydrodynamic equilibrium. Such a

ball of fluid in space (in the absence of surrounding 4
"bodies) would assume a spherical shape under the action of

internal gravity; however, when given a specific rotational

rate about a "polar" axis it would develop a bulge about

its equator and assume the shape of an ellipsoid of rev-

olution.

In actual fact the earth does not have a circular equa-

tor and its density is not uniform. However, for reference

purposes an ellipsoidal surface is defined which approxi-

mates mean sea level. Mean sea level is also approximately

the geoid surface of dynamical balance between gravitational V

force and the inertia of the rotating mass (see figure 1).
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1P1

Figure 1 The Reference Ellipsoid

EQUATORIAL AND POLAR RADII

The dimensions of the reference ellipsoid are generally

given by stating an equatorial radius, ro, and a flattening,

f, defined to be the quotient formed by dividing the equa-

torial radius into the difference between the equatorial

I and polar radii:

S r. - rp (1)

r0  -

This equation can be solved to yield an expression for the

polar radius in terms of the equatorial radius and earth

flattening:

rp = r(1 - f) (2) -!
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EARTH RADIUS

Substitution of these radii into the polar coordinate

equation for an ellipse yields a general equation for the

radius of the ellipsoidal surface as a funcLion of the geo-

centric latitude, 6L, which is the angle between the radius

vector and the equatorial plane:

r2 . ro2(l f) 2  (3)

22 232
(1-f)2 cos2L + sin2aL

One alternate form of this equation is obtained by use of

th, trigonometric half-angle formulas and by dividing by

_(1f) 2 :

r2, 2 ro2

1 2] + )2] (4)
1-f 1-f

Another computationally convenient form of this equation

can be obtained by expansion using a Maclaurin series and

appropriate trigonometric substitutions. For example, for

1/f = 298.30 the following expansion yields the same radius

as equation (4) to the nearest foot or better:

r - ro(.99832172 + .001 67 616 cos 2 &L + .000002 11cos48L) (5)

11-9
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GEODETIC AND GEOCENTRIC LATITUDES bAND ALTITUDES

Having defined the reference ellipsoidal surface of the

earth, we can turn to-the problem of measuri.ng an, air-

craft's altitude with respect to that surface. Four alti-

tudes will bc defined. An exaggerateid illustration of

these altitudes is shown in figure 2. The first is the

geocentr-ic altitude which is merely the distancemeasured

along an extension of the radius vector from the ellipsoid

surface up 'to the aircraft. This distane ,when added -to

the earth radius at that point g.ves the 'straight line ,dis-

tance between the earth's center and :he aircraft. The, ggeo-

centric altitude is: required in the general equations which

describ, accelerations in the geocentric reference system.

Line of TForce

Polar, donstant'H•
Axis

'• ' Equatorial- 'Plane

"Geoid Surface

Figure 2 Altitudes Related to the Geoid
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The second altitude to be defined is the geodetic alti-

tude. This is the straight line distance from the aircraft

anglebetween this line and the equatorial plane is defined

to-be the geodetic latitude, 6D. The geodetic altitude is

the true altitude or straight line height of a point above

the earth's surface. By observation of figure 2 one can,

see that the differences-between the geocentric and geodetic

-latitudesand; altitudes vary and are a maximum near a lati-

tude of 45 degrees. These differences also vary with alti-

tude. I

A precise equation for transforming between geodetic and

geocentric latitudes is presented in reference 1, pp. 96 ff.

However, for aircraft trajectories which generally lie below

i•0,000 feet, the precise equations can be approximated with

little error by the sea level expression.

This relation between the two latitudes at sea level is

easily derived. The slope of the ellipsoid surface is

obtained by differentiation of its rectangular coordinate

equation:

d ___rpX (6)
dx 2y

Then since a geodetic latitude line is by definition every-

wh,:! normal to the surface, its slope is the negative

I1-11



reciproca2 of the surface slope:

tan 8D - () 2 y a L (7)rp x (p

Substituting for the radii ratio from equation (2) and

rearranging we obtain the simple exact relation between

the latitudes of a point at sea level:

tan'L - (1 (8)

The maximum difference between the two latitudes is about

eleven and one-half minutes of arc or eleven and one-half

nautical miles error in position on the earth's surface if

the incorrect latitude were to be used.

The relation of equation (8) can be approximated by the

first term of a series (reference 2, p. 485):

8L -8D (.l 9323889)sin28)D (9)

Equations could also be presented relating the geo-

centric and geodetic altitudes, but little error results

from assuming that they are equal. The difference is one

foot or less below 150,000 feet altitude and less than 60

feet at an altitude of about one earth radius (reference

1, p. 102). The remaining two altitudes as shown in figure

2 are described later.

!• ,II-12



GRAVITATIONAL FIELD

By definition the gravitational potential function of

the earth, 0, is a scalar quantity such that the partial

derivative of 4) in a given direction yields the accelera-

tion due to gravity (reference 3, p. 173). For example

in the x direction by definition (-)

aO d 2 x
-- ____ (10)

dx dt 2

If the earth were a homogeneous sphere, it would have a

central force field with a gravitational potential function

given by

r+h (11)

where (r+h) is the distance from the geocenter to a given
point. Differentiation of this function in the (r+h)

direction yields

04) a ( to ) .

a(r+h) a O(r+h) r+h (h)

or

d2(r + h) (12)

dt 2  (r+h)2

which is the inverse square law gravity equation.
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Since the earth is not a homogeneous sphere nor even

an ellipsoid of revclution,, its true potential function

must be obtained by an integration over its entire vol-

ume or alternately as a series solution to the differen-

tial equation of Laplace (reference 4, p. 141). Neglect-

ing the earth's asphericity with longitude (assuming the

shape is an ellipsoid of revolution) and only presentihg

the first four terms, the series for the earth's potential

is (reference 5, p. 2)

jL 1+2J 2( r 1 2 2L)
(r+h) 2 r+h

+ J.3( o- )3(3- 5.-sin2aL)sin L
2 r+h

.- "(-L2..h) 4 (3-30sin2 +35sin 4 L )]
8 r+h L L1

The components of gravitational acveleration in the

local geocentric coordinate system can be obtained- by par-

tial differentiation of the potential function in the three

coordinate directions Xg, yg, and zg. To perform this

differefitiation the following relations are required:

__ 1 oc• (14a)
9Xg aXg r + h aaL

y1 (14b)
aYg (r + h)sin 8L a1A

I1-14
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gzg - - O(r+h) (14c)

Performing the differentiation indicated by equation

(14a) we obtain the north component of gravitational accel-

eration:
ro2• h)4[ 3J2sin a

gx

3 J3( r b G 5.sin 2L

-42 r+h3 7sin2alL sinf]cosL (13)

Since the variation of the potential function with longi-

tude has been neglected the eastward component of the gravi-

tational acceleration is zero:

gy 0 (15b)

Finally, evaluating equation (14c), we obtain the geo-

centric rertical component of the gravitational acceleration:

g t, ro 2 3 2_ )(1 .i2 (15a)

gL [121+ J2( ro)( - 3-sin L
rO ,

+ 2J,( ro )3(3- 5'sin 2 8L)sin&L

8 _J4(r 2h)4(3_3Osin 2 8L + 35sin 4 8L)1 (15c)

These components yield the acceleration due to gravita-

tional attraction alone. To determine the apparent acceler-

ation of a particle at a fixed point with respect to the

11-15
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earth'Is surface the so call1ed, ' ýentttifugal- ~ t-whc

is contributed, to the pArticlep -y-the.erhsrtto.

,Must be included. The components oVf te"etr-g

relief 'actually arise as a resul~t 0 f the varticle' se

motion with respect to ineirtial space,,, -anid' -thederivato

of these components appears in the sectior-, Determination,

of Excess Thrust. For the :pre'sent puI rpose. the "cenftrifu-

gal relief",compofients, will be added to the gravitational'

attraction acceleration comnponents without 'further commtent.

The resulting centrifugally relieved geocentric components

of the acc'eleration are then

Xg r 2 rh'0 (3J 2 sink !,J,2 ri- - snL)

-5j 4  )2 (37-7sin L)-§iflL]cos8L
2 r + hL

- )2 r~~o~sin 8L (16a)

gLyg 0 (16b)

ro) 2 2

7Lz T 1 2 r + h L
r0

- ' ~.4 .:..)(3 -3'in 2 8L)-3 sin 8L )

5- 2 41c

(do2( r +h) cos2 8L(1c



e •hmag#ntude- of' the resultant a-4leton to
"gravity at a point above the earth&;is then:

S [gL,. +(Lzg) (17) [
GEOMETRIC AND GEOPOTENTIAL ALTITUDES

The total gravity components -of equation (16) have beenr

obtained by summuiiig the fIinal acceleration- contributions

-from- gravitational a-ttraction and "centrifugal relief." ,A

different approach is taken in reference 6, p. 5. The total

potential, O'r geopotential At a point is d#efined-,as-the, sum

of the- rravitational potential and the f-ictitious. .centrif-

ugal force", potential. The lines of gravity force which

result. from this potential ard by definition .e.erywhereper-

,pendicular to the surfaces of constant potential, and-since

the potential surfaces are ellisoids -the lines of force are

curved .(reference 6,. figure 1 .2.4(a)). _ecurvatureAis.

-such- that latitude increases -with altitude along the 'line-

-of. force.

Geometric altitude is defined to- be the ctirved distance

?measured• along a line of force from the zero potential level

(approXimately sea level)- to the given altitude point.

It is convenient to define another altitude parameterý

which is especially useful in the model atmosphere equations

of the section, Atmospheric Environment. This parameter is

11-17
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physically equival~nt- to the geopotential buthas the- units

4of length-and is caled'- thei geootential altitude. It is

defined -by the equation

'H - f ddh- (18)

where gr Is, the istandard value of ,the-ý reference- -sea level

acceleration dUe togravity. In accordance with its defin-.

ition the geopotential altitude is also measured. along the

.curved lines of -force; however, the physica -or Igeometric

length of -a geopotential foot is ,not constanti, 'The length

is a function of the local gravity and consequently increases

- with- altitude because of -the,,reduction in gravity.

Theý most. precise technique for calculating geopotential

altitude requires a: simiultaneous numerical ,integration of

the differential equationsrelating the acceleration of

kgravity-.and the lat-it-udeb and- radius- ýof -each pointý- along!

the,-urved line of force to the- geometric altitude of- that

-Point (reference 6, pp. 6,, 7).

-the curvature of -the line of force-is exaggerated in

reference 6, and for the range Of altitudes considered'in

this document the geometric and geopotential altitudes ,can

be considered.-to be measured along straight lines coinciding

with the gepdetic altitude lines. The error associated with

this assumption is negligible. Consequently, the three

Itl
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different altitudes, geocentric, geodetic and geometric, can

all be considered equal, and we can speak of the geometric

altitude as being representative of all three,

By an appropriate assumption an equation can be derived

which allows direct calculation of geopotential altitude

from geometric altitude and vice versa without the necessity

of the numerical integration from sea level up to the given

altitude (reference 7, pp. 217, 218 and 488). The assump-

tion which is necessary is that the centrifugal relief is

not a function of altitude. By analysis of equation (16)

it can be determined that this assumption amounts to less

than one percent error in magnitude of the centrifugal relief

term for altitudes below 200,000 feet. Since the term is a

small fraction of the total gravitational acceleration the

assumption introduces negligible error.

To develop the conversion equation an inverse square law

gravity field is assumed, but the earth's effective radius,

Re, andesea level acceleration due to gravity are expressed

as a function of latitude to make the resulting equation fit

the actual gravity field more closely. For an inverse square

gravity field the acceleration due to gravity is

gL gSL (19)
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Substituting this gravity expression into equation (18) and

integrating, we obtain the conversion equation%

H 'SL( Heh) (20)
gr 'Re + h

Equation (20) can easily be solved to obtain the inverse

equation for h as a function of H.

To obtain the expression for Re, we first differentiate

equation (19).

•, dgaL _Bg e2

(Re +h)

Evaluated at sea level (h = 0), this becom.es

ag 2 gSL
Sdh-Ih0 Re

and solving for Re

"e ( - (21)
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Equations for the sea level gravity and the partial deriva-

tive at sea level are presented in reference (7). Similar

equations can aLlFjo be derived by appropriate substitution

and differezitiation of equation (16).

The value of geopotential altitude at each geometric

altitude as given by the more nearly exact numerical inte-

gration of reference 6 and as given by equation (20) are

identical to the nearest foot up through 188,000 feet.

GEOPHYSICAL CONSTANTS

In order to select a consistent set of geophysical con-

stants a brief study was made to compare the values of

acceleration of gravity as computed by equations (17) and

(19). Equation (19) was evaluated by using the following

equation for the effective earth radius obtained from
reference 7: !

64.344882(1 - .002 6373 COS 2 D + .0000059cos 2 28D (R e =D+0005csD(22)
3.085462 x10-6 + 2.27 x10- cos 2 8D - 2x10-12cos4a D

In order to evaluate equation (17) the constants in

equations (4) anc 116) had to be supplied. The values of

these constants as shown in references 3, 6, and 9 were

substituted, and the accelerations from equation (17) pro-

duced by each set of constants were compared with those

from equation (19). The set of constants from reference

11-21



9 produced the closest agreement between equations (17) and

(19). These values were the ones "most used" for orbital

calculations.

The values from reference 6 and those from reference 3

which are more recent, produce accelerations which differ

from those of equation (19). If the values from reference

3 or later values are to be used in equation (4) and (16),

then a new expression for the effective earth radius should

be derived by evaluation and differentiation of equation

(17) in accordance with equation (21). However, it is

believed that the constants from reference 9 are adequate

for aircraft trajei-ory analysis. These constants are pre-

sented in the following table.

Constant Value Units

r 6,378,165 meters

20,925,738 feet
3 2

3.986032xi0'' meters per sec

1.4077768xi0' 6  ft3 per sec 2

1/f 298.30 nondimensional

J2 1082.30xi0- 6  nondimensional

J3 -2.3xi0- 6  nondimensional

J4 -l.8x10 6  nondimensional

7.2921xi0 radians per sec
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SUMMARY

The basic assumptions, definitions, and constants which

have been used in generating model atmospheres are presented.

Such an atmosphere provides the norm to which all test data

are corrected. Information about the various models is also

presented, together with the concepts of geometric and geo-

potential altitudes.
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SYMBOLS USED IN THIS SLCTION

Symboi Definition Units

S4acceleration due to gravitv ft/secy

local effective acceleration ft/sec 2

due to gravity

gr reference acceleration of ft/sec2

gravity

gSL sea level acceleration of ft/sec 2

gravity

h geometric altitude ft

H geopotential altitude ft

LM temperature gradient, dT a/dH 0 K/ft

M molecular weight of air or dimensionless

M Mach number dimensionless

M0 molecular weight of air at dimensionless
sea level

P a ient pressure lb/ft2

r local radius of the earth ft

R universal gas constant ft2 /se c2°K

T a ambient temperature deg K

T. temperature of the ice point deg K
(273.150 K)

T molecular scale temperature deg K

p air density slugs/ft3

air density ratio, p/pSL dimensionless

S•geopotential f t2 /sece2

subscri 2t

b base of atmospheric layer

SL sea level

111-4I ,
I



ATMOSPHERIC ENVIRONMENT

INTRODUCT ION

The physical characteristics of the earth's atmosphere

vary greatly, changing from day to day and with seasons of

the year. The performance of an aircraft is dependent on

the nature of the airmass through which it flies. For

example, the thrust of a turbojet engine increases appre-

ciably with a decrease in air temperature. Therefore some

set of standard conditions must be established in order

for perfoxmance data to have some meaning when correlating

data from one flight to another or comparing the perform-

ance cf one aircraft to that of another. When flight test

results are reduced to standard conditions, ideally the

corrections applied ought to be as small as possible to

minimize errors due to linear approximations. (Reference

the section, Standardization of Excess Thrust.) This

might imply the use of a reference atmosphere which accu-

rately repres.:.te-d the mean atmospheric properties at the

test site except: o.c the fact that reduction of test data

acquired elsewhere in th-e world for purposes of comparison

could thon entail large corrections. A compromise between

small cor.ections and universal applicability requires the

.use of an idealized middle-latitude, year-round mean atmo-

spheric model.
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MODEL ENVIRONMENT

BASIC ASSUMPTIONS

Since the earliest models of the atmosphere were pub-

lished (circa 1920) the same assui-:ptions, with minor va

iations, have be-n made in the range of 0 to 20,000 meters

(a65,600 feet). These have included:

(1) Sea level temperature is 150C

(2) A constant temperature gradient from sea

level to aboit 11,000 meters (36,089 feet), and then

(3) A constant temperature from 11,000 to 20,000

meters

Additionally, it has been assumed that

(4) The air is dry

(5) The atmosphere is a perfect gas so that the

equation of state

applies

(6) Hydrostatic equilibrium exists, assuming that

the atmosphere is static with respect to the earth:

d Pa- -pgdb (2)



By cotrbining equations (i) and (2) the usual differen-

t>, form of the barometric equation. is obtained

1:' , (3)

If g is taken Co be constant and Ta is replaced by a lin-Ia
ear function of h, equation (3) can be integrated quite

simply to calculate pressures. This procedure was fol-

lowed in tabulating the older atmospheres; however, the

assumption of constant S becomes inadequate as altitudes

are extended and new techniques (discussed in following

paragraphs) were devised.

PRIMARY CONSTANTS

In order to compute properties of a model atmosphere,

it is necessary to establic'h values for basic constants

appropriate to the earth's atmosphere. To illustrate,

constants which have been used to form tabular values of

concern in aircraft flight test have been extracted from

reference 4 and appear in table 1. For a more complete

list of constants together with a discussion of their

origin, see reference 4, pages 4 and 5.

111-7



Table 1 - Primary Constants

Symbol Units
P 29.92126 in. Hg
-SL 0.076474 lb ft-3

taSL 15 C

gr 32.1741 ft sec-2

Ti 273.15 °K

y 1.40 dimensionless

I B 3089.80 ft 2sec- 2 K-1

UNIVERSAL GAS CONSTANT

The universal gas constant in the perfect gas law has

the dimensions of energy mole-1 (degree absolute)F1 .. When

divided by- the mass of one mole, the gas constant of air

lhas-dimensions of energy (unit mass)-' (degree absolute)-.

In the English system of units used in flight test work,

the energy is expressed in ft-lbf, the mass in lb• and

temperature unit in 1K so that the gas constant becomes

ft-lb mb M K- or ft ft-sec-20K-1. If the gas law is

"wri'tten

SP PgBlT

'R has tAe dimensions ft O-K-1. If the law is written

-The adopted value of gr is-9.80665 maters sec-2 which

converted to the English system of units -is '32.174645 feet
sec 2. -The above value fr6 -the U.S. 1962 Abtiosphere,
reference 4, has bbeen rounded linorre6•tly.

S~1ii-8
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Pa p R Ta

as was done in this report in equation (1) then R has the

dimensions ft 2 sec-20K-A.

SPEED OF SOUND

The speed of sound is by definition the speed of propa-

gation of the wave formed by an infinitesimal pressure dis-

turbance. Such a disturbance very closely approximates an

adiabatic reversible (isentropic) process. Considering this,

the conservation equations for mass and momentum can be com-

bined to give

2 (Pa
ap S

and for an ideal gas

2a YRTa (4)

In the ARDC 1959 and the U.S. 1962 atmospheres (references

4 and 6) y has been taken to be 1.40 exact (to an altitude

of 90 kilometers).

RELATIONSHIPS USED TO DEFINE MODEL ATMOSPHERES

As was previously pointed out, the barometric equation

(equation 3) can be integrated easily provided that a con-

stant value of g is assumed. This was done in the older
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atmospheres, and data were tabulated as a function of tape-

line altitude, h. At the high altitudes to which more

recent models have been computed this assumption is no

longer valid. Further, variation in molecular weight, M,

has been accounted for by writing the perfect gas law in

the form

P Pa M
R a

See, for example, reference 4, page 5, and reference 6,

page 4. Integration of the resulting barometric equation

becomes quite complex, even when g and M are replaced by

very simple functions of h. To retain the mathematical

simplicity of the equations used for low altitude calcu-

lations, two transformations of variables have been made.

The two new parameters are: geopotential altitude, 11, from

combining g and h, and molecular-scale temperature, TM,

from combining Ta and M. By defining TM as a series of

linear functions of H, integration may be carried out

exactly as for equations using geometric altitude and con-

stant g.
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Molecular-Scale Temperature

By definition the molecular-scale temperature is

TN! Ti(6)M a

At extreme altitudes TM is widely different from the

kinetic temperature (reference 4, page 8); however, since

TM = Ta in the altitude range of interest in aircraft

flight test, no further consideration is given to this

parameter.

Geopotential Altitude*

The geopotential at an altitude h is the potential

energy of a unit mass at that altitude relative to the

potential energy of the same mass at mean sea level. In

differential form geopotential, D, is related to geometric

(tapeline) altitude by

dD = gLdh (7)

The force of gravity in equation (7) is the resultant of

two forces: (1) the gravitational attraction which derives

from Newton's universal law of gravitation, and (2) the

centrifugal force (commonly called centrifugal relief) in

*The following information on geopotential altitude per-
tains to model atmospheres. Additional information may be
found in the section, Geophysical Properties.
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a refexrnce frame attached to the earth, assuming that the

atmosphere rotates with the earth. Hence, a local value

of g is a function of both vertical displacement* above

the earth's surface and latitude.

Integrating equation (7) the geopotential at an alti-

tude of h is

h¢ = f gL d h( 8

In accordance with equation (8) the geopotential alti-

tude is defined as

t *1
H f dh (9)

gr 0 gr

By introducing the reference gravitv, g9r geopoten-

tial altitude has the dimensions of length (geopotential

feet in the English system), and is equivalent to (P, which

is hhe amount of work done in raising a unit mass from

SIn the U.S. 1962 Atmosphere a refinement is made in that
h is measured along the line of force through the point,
from the equipotential surface for which P = 0 to the
point in question, causing the lines of force to curve
toward the poles. The difference in distance according
to this definition and a straight line distance is negli-
gible within the sensible atmosphere and is, therefore, of
no consequence in aircraft fliaht testing.
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mean sea level to a geometric altitude of h. A value of

9.80665 meters sec- 2 (32.17405 feet sec-') was adopted for

the ICAO Standard Atmosphere and for the ARDC 1959 Atmo-

sphere. The samre value was also adopted for the U.S.

Standard Atmosphere, 1962 for a geographic latitude of

exactly 450. It should be noted that physical displace-

ments between equipotential surfaces separated by a con-

stant amount in terms of geopotential is not constant.

Rather, the physical displacement increases with altitude

because of the decreasing values of g.

In differential form equation (9) is

gr di = gLdh (10)

Substituting equation (10), equation (3) may be written

as

gr
d(InP) .-- IdH

In order to integrate this equation t( find geopoten-

tial altitude as a function of pressure, H(Ta) is substi-

tuted. To simplify the procedure, it is assumed that the

atmosphere is made up of layers in which the temperature

varies linearly with geopotential altitude (constant

temperature gradient).
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The general temperature-altitude relationship is then

Ia (Ta)b + LNI(H-Hb) (12)

Substituting equation (12) in equation (11) and integra-

ting produces the following equation:

gr
InlPa In[ (Ta)b + LM (H - "5)1  (13)

RN1
Tain (Pa to be L

Taking (Pa)b to be the pressure at the base of the layer

we have

Pa - (Pa)b[ (Ta)b Lr_.RL] (14)

(ýTdb + L I(H -H

when the temperature gradient, LM, is not zero. Following

the same steps with LM = 0 leads to

Pa - (Pa)bexp[- gr (H - Hb)
R( Ta)b

Properties which appear in the above equations have

been taken from i:eference 4 and, after converting units,

are presented in table 2.
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Table 2 - Properties Defining the U.S.
Standard Atimosphere, 1962

Altitude, H Gradient, L Atmospheric Atmospheric
Pressure, Fa Temperature, Ta

km feet °K/foot in. Hg 0K

0.000 29.92126 288.15

-1.98120 x 10-

11.000 36,089.24 6.68321 216.65

0

20.000 65,616.80 1.61671 216.65

0.30480 x 10 3

32.000 104,986.88 0.25632 228.65

0.85344 x0

47.000 154,199.48 0.032750 270.65

0

52.000 170,603.67 0.017423 270.65

-0.60960 x10-3

61.000 200,131.23 0.0053773 252.65

Pressure, Temperature, and Density Ratios

From the preceding equations, general equations defin-

ing pressure, temperature, and density ratios may be found.
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From equation (14)

(Pa) (Ta) g,/RLM
( + - -- H (16

PasL PasL (Ta)b + (H-b) (16)

when LM i 0 and, from equation (15)

Pa (Pa)b - gr (H - Hb)

a rj(17)

PaSL PaSL R(Ta)b

when LM = 0.

The general equation for temperature ratio from equa-

tion (12) is

0 --- LTa- = 1[T +LM(H-Hb)] (18)

o -Ta I 1 T~TaSL TaSL

From the perfect gas law 6a = Goa so that from equations

(16) and (18)

gr(Ta~ ]RT---+ 1

or r ab RM (19)
(Ta)b + LM(H - Hb)

when LM • 0 and, from equations (17) and (18)
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I a Ubepli- gr (H-Hb)
=- ab exp[ (H -(20)R (Ta)b

when LM = 0

Geometric Altitude

In flight test applications the calculation of geomet-

ric (tapeline) altitude is frequently required. Geometric

altitudes cannot be computed directly for off-standard

conditions; an integration procedure must be resorted to

using continuous profiles of pressure and temperature.

From dPa/Pa = d(inPa) equation (3) becomes

d(lnPa) = - -"Ldh (21)
RTa

From the inverse-square law of gravitation (reference

equation (19) in the section, Geophysical Properties)

gL = SL (Re 2 2 (22)

(Fie +h)2
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Substituting equation (22) in equation (21) and rearranging

dhi = a (Re'h)2 d(lnPa) (23)
gSLa Re

Equation (23) may be written in integral form as

hn Tan Re + hIn_1 2an dPa
f dh = R).- -a (24)

hn_1 2 Re an.1 a

with the assumptions that the temperature is constant at

Tan + Ta_1
T aaavg 2

and that

Re+h Re + hn. 1
R R

e e

Integrating equation (24)

S +T Re +h(25)

gSL 2 Re Pan
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Geometric altitudes are found by summing increments as

indicated by equation (25).

STRUCTURE or THE ATMOSPHERE

The atmposphere has been broken up into four major

regions which are associated with physical characteristics

listed in table 3. The names of atmospheric shells and

boundaries used in the table have been adopted by the

World Meteorological Organization.

Table 3 - Description of Atmospheric Shells

Name Description

Troposphere The region nearest the earth's surface having a
uniform decrease in temperature with altitude.
The troposphere is the domain of weather where
turbulence caused by convection occurs. At the
tropopause (top of the troposphere) high winds
are common and the highest cirrus clouds are
found.

Stratosphere The region above the troposphere having a con-
stant temperature followed by increasing tempera-
tures, reaching a maximum at the stratopause.
Maximum of atmospheric ozone is found near the
top of this region. Turbulence is infrequent.

Mesosphere Temperature remains constant with altitude above
the stratopause and then decreases. This reqion
is in radiative equilibrium between ultraviolet
ozone heating by the upper fringe of ozone region
and the infrared ozone and carbon dioxide cooling
by radiation to space.

Thermosphere The region of rising temperature above the major
temperature minimum. No upper altitude limit.
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-COMlPARISON- OF kATOSIPHERICd'1MODELS IN :R`ECE4T, 'USE-

-Standarda atmospheres gVhich 'have -b~endh %u seid-during recn
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'thpr~~riessuh 'a ,~~da -ltoi ~NAC- -Report. '1235
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the ARDCC Model Atmosphere, 919-59
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Atm~osphere, 1962. Te pincip 4dfference-.-betfke'dn..the ,U, S
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19,62 andk previous' models is that the altitude at the top

of thestratos;phere is 65,616.8 geopotential feet in the

I form~er"and---82, -21.O0 feet in (2) , (3) , and (4) from the

lRitabove-. Above 65,616.8 feet, the U.S. 1962' Atmosphe.xe

has a temperature gradient of O.30480K/1000 feet as

d~epicted, in figure 1.

I STRATOPAUSE
-150f

w100-
~ j STRATOSPHERE-

$202

6561
W-J.

120J

TROPOSPHERE

0 (.lood8  200 220 240 260 (C)280

TEMPERATURE (0Dk)

Comparison o2A Temperature ýPkofiles in
Standard Atmospheres

Figure 1



The temperature in the U.S. 1962 atmosphere is 4.40

Kelvin higher at an altitude of 80,000 feet; thus, an

airspeed of 700 knots (for example) at this altitude

would represcnt M = 1.208 in the 1962 atmosphere and

M =1.220 in the others. The difference in temperature

produces differences in tabulated properties at altitudes

over 65,000 feet (e.g., 0, 6, etc).

1
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SECTION IV

FLIGHT PARAMETERS

FROM SENSED

* ENVIRONMENT (ON-BOARD

STATIC AND TOTAL PRESSURE,

AND TOTAL TEMPERATURE)
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SUMMARY

The information in this section on airspeeds, tempera-

tures, etc., is similar to that found in other documents (e.g.,

AF Technical Report 6273, Flight Test Engineering Handbook),

but has been included for the sake of completeness and to have

a source of basic equations for use in subsequent sections.

In addition, an examination has been made of the effects of

high speed on the usual assumptions that air obeys the equation

of state P = pRT and has a constant ratio of specific heats.
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SYMBOLS USED IN THIS SECTION

Symbol Definition Units

a speed of sound ft/sec

CL airplane lift coefficient dimensionless

g acceleration due to gravity ft/sec2

h enthalpy BTU/lb

j mechanical equivalent of heat ft-lb/BTU

K temperature probe recovery dimensionless

factor

M flight Mach number dimensionless

AM P correction to Mach number for dimensionless

position error

n load factor along the z-axis dimensionless

za ambient pressure lb/ft 2

aP. indicated pressure lb/ft 2

P static pressure lb/ft2

P total pressure lb/ft-

APp static pressure source position lb/ft2

P4 error

qc impact pressure 
lb/ft 2

R universal gas constant ft 2/seczcK

S wing area 
ft2

Ta ambient temperature deg K

Tt total temperature deg K

Vc calibrated airspeed ft/sec

AVVc compressibility correction to ft/sec

calibrated airspeed
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Symbol Definition Units

Ve equivalent airspeed ft/sec

Vt true airspeed ft/sec

AV PC correction for airspeed position ft/secerror

W airplane gross weight lb

Z compressibility factor dimensionless

a angle of attack rad

y ratio of specific heats: C p/Cv dimensionless

6a ambient pressure ratio dimensionless

Spressure lag constant sec

absolute viscosity lb-sec/ft 2

p air density slugs/ft 3

Subscripts

ic indicated corrected for instrument
error

z corrected for lag

s static

SSL sea level

t total
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INTRODUCT ION

Pressure altitu-Je, airspeed, mach number, and free air

temperature are basic parameters in the performance of air-

craft. Conventional instruments used to measure these

quantities are the altimeter, the airspeed indicator, the

machmeter, and the free air temperature probe. (Mach num-

bers deduced from altimeter and airspeed readings are pre-

ferred to those from machmeters.) Relationships of the

basic parameters to environmental conditions sensed on

board an aircraft (static and total pressures, and total

temperature) are developed in this section. More compre-

hensive derivations of equations and descriptions of the

construction and calibration of instruments may be found

in reference 2. It shoulY be noted that in this reference

the usual simplifying assumptions are made (e.g., constant

ratio of specific heats). These assumptions lead to

errors in calibrated air data when Mach numbers get much

above two. Real gas effects as they influence calibrated

air data together with equations which may be used at high

supersonic and hypersonic speeds are presented in this

section.
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PRESSURE ALTITUDE

From the general equations relating pressure and alti-

tude (equations (18) and (19) in the section, Atmospheric

Environment) we have, after substitutinq constdnts appro-

priate to the U.S. Standard 1962 atmosphere from table 2, for

6a a a/PaSL"

,,,,(15. 59(1)

a - 6.87558 x10 " 
()

for - 16,404.20 -- I ,' 36,089.24 geopotential feet

-a 0.223360 exp[- 4.80637 x 10-5 ( H - 360S 9.24) 1 (2)

for 36,089.24 < 11 < 65,616.80 geopotential feet

a 0,0540322(1 + 1.40688x10-(lI 65.616.80)(316)a (11 - 6 61 .0 ]- -V(3)

for 65,,516.80 II < 104,986.88 geopotential feet

a -0.0085664911 + 3.7325S x1(4(11 - 104,986.88)]- 12. 20 12 (4)

for 104,986.88 < H _< 154,199.48 geopoteitill feet

Altimeters are built and calibrated accoroing to these

relationships (or perhaps to another model atmosphere).

Differences in altitude beteen the various model atmo-

spheres are fairly small (reference 1, pages 13 - 15);

however, the standard used fox instrument calibration

should be known. If laboratory calibrations are made using

a model atmosphere other than the one desired, corrections
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-cpan, be eAsi-lj mpade throughb the, genieral IT-r~e-sure-&` it

equpations and "propertie~s definin§ý.fhe 'wo 4~~~he

-The static pressure, sonsed, -at the sic 'sob)6c' of 'the

altimeter., P, may differ sligh~tly tfroiiiite a~tmoi~phi~ric,

'press.ure, a'because of presigurp- l1ag andpogiti& drrok,.

Thesd errors ate discussed ing .1; laejpAragrAth.

-,C -LIBRATtD -AIRýSPEED

I'The airs~peied ,'ndpicato-r senses.,the .dif ference, between
ýtWq ýpre~ssures;- total ýprcssure, ~, arid, static preýssure,

'P.The difference 'in pressure is-converted to a speed

through Bernoulli's compregsible equa~tion for fr-iction-less

adiabatic (isentropic) flow in which airspeed is -expre.ssed

as the di ff erence betweeni total And, sttic, pressures.

-Ascs-uming. thatý Ps P a Bernoulli ~s- equation- -m-~ay be

expressed 'a's

P____ qc _ IY.1i)]1- 1 5
-2aa

for subsonic speeds.

With y=1.40, equation (5) becomes

- _ '[.1 + 0 .2(Vt )2]3.5 * (6)
p a

Pa -

At supersonic speeds a detache6. shock wave forms in

front of the total pressure probe, And equation (5) is no

IVF



longer valid. In this case the Rayleigh supersonic pitot

formula

[Y + 1(Vt) 2]M 1 A[Y-+1 .. l (7)

aa

-relating total pressure behind the shock to the free stream

ambient (atmospheric) pressure is used. It should be noted

that q = Pt' - P where the total pressure, Pt'' sensedc t a

at the pitot head is behind the shock and is not equal to

the free stream total pressure, Pt' at supersonic speeds.

Substituting 1.,40 for y and simplifying, equation (7) becomes

166.921 (--qc .a -1 (8)

Pa [7U(-t)2 - 1 2.5
a

Examination of the above equations shows that true sp'eed,

is dependent on the speed of sound, a, and atmospheric

pressure, P , in addition to the differential pressure, q0 ". a

Therefore, an airspeed indicator measuring differential

pressure can be-made to read true airspeed at only one set of

atmospheric conditions. Sea level standard has been selected

arbitrarily, and the dials of airspeed indicators are scaled

so that a given differential pressure will indicate a speed

in accordance with equations (6) and (8) in which sea level

standard and P are inserted, This sea level standard valuea

of Vt is defined as calibrated airspeed, Vc, and is found
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from airspeed indicator readings after corrections have

been made for instrument and position errors.

Accordingly, equations (6) and (8) may be rewritten as

P - [1 + 0. 2 (Vc )2]35- 1
PaS L aRL

and

166.921 (Vc )7

qc aSL (10)

PaSL tT(V•--.)2- 112'
aSL

EQUIVALENT AIRSPEED

The equivalent airspeed, Ve, is the result of correct-

ing the calibrated airspeed for compressibility effects.

The airspeed indicator is calibrated to read correctly at

standard sea level conditions and thus has a compressibil-

ity correction appropriate for these conditions. When an

aircraft is operated at altitude, however, the compensation

is inadequate and an additional correction must be applied.

Ilence, Vc and Ve are related by

V0  Ve +Av0  (11)

Equivalent airspeed coupled with standard sea level

density produces tie same dynamic pressure as the true air-

speed (speed relative to the airmass) coupled with the
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actual air density at flight conditions. Therefore

Vt2 P VeP2ShL (12)

or

Ve vt•/ (13)

For subsonic flight, solving equation (5) for Vt

Vt 5a (-•i) 2/ - 11 (14)

Pa

Combining equations (4) and (5) from the section, Atmo-

spheric Environment, the speed of sound in a perfect gas

may be expressed as

a Il.-a)1/2 (15)
P

Replacina Vt 2 by Ve 2/O and a2a by yPa/PSL:

Ve [Pat(qc +L 1)27- 2 1 11/ 2  (16)

PSL Pa

Solving equation (6) for calibrated airspeed:

VIC O aS , L Ipa+1)2/ _ 1)1112 (17)

IV 1/2
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The difference between equations (16) and (17) is the con-

pressibility correction, AV , in equation (11). If P =
c a

P calibrated and equivalent airspeeds are the same anda SL

AV is zero reaardless of tl'e magnitude of q Also, AV

can be calculated for any altitude and calibrated airspeed

since a value of V.C determines q

MACHY NUMBER

Mach number is defined as the ratio of true airspeed

to the local speed of sound:

M it (18)
a

From Bernoulli's equation with isentropic flow of a perfect

gas

y

Pt . (i+y-IM2)Y- (19)

aP 2

This equation relates Mach numl.er to free strearm total

and static pressures and is applicable for supersonic as

well as subsonic flight. It should be remembered, however,

that Pt' rather than Pt is sensed by a pitot probe in super-

sonic flight.

Substituting 1.40 for y, equation (19) becomes

Pt (1 +0.2M2)3.5 (20)

Pa
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The machmeter equation for subsonic flight is found

by substituting the definition for Mach number in equation

(5)

y

q . [1 + y-IM 2 ]y- 1 (21)
%P 2

Solving for M

y-1

M -[ . - (22)

With y = 1.40

M = 15[(-L + 1)2/7. 1] 1/2 (23)
Pa

For supersonic flight from equation (7)

Y' 1
qc (y IM 2 )Y-( 7 + 1 )Y-1 1 (24)

Pa 2 1 - Y+2yM2

This equation cannot be solved explicitly for Mach number.

It can, however, be put in the form

(q_ +l)(y+i)+ y -1 1/2
M = [ Pa ]1

M (25)

2y(Y +_I M2  Y+1 )Y-1

2 1 -y+2yM 2

which may be solved by iteration.
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Substituting 1.40 for y and rearranging

M - [0.7766628(13 L+ 1)(1 i)5/231/2 (26)
Pa 7M2

¶ i TEMPERATURL

If the air surrounding a temperature probe is brought

to a complete stop adiabatically the resulting temperature,

Tt, if sensed correctly is

Ta(l + y M2 ) (27)2

For various reasons, such as radiation or heat leakage,

most probes do not register the full adiabatic temperature

rise. Introducing a probe recovery factor, K, the equation

T, = Ta(1 + KY- JM2 ) (28)2

may be written to account for a lack of complete adiabatic

temperature rise. The magnitude of K is between 0.95 and

1.00 for most installations and can often be assumed con-

stant. Variations with altitude and Mach number should be

expectsil, howev,-r. ':_-t:'.1lar'y at supersonic speeds.

Ilethcds Cor det._'rmining R for a given installatiun are dis-

c.ussed in referenCe 2,

'!,LiBRATTED AIR DATA AT IhIGHI SPEEDS

* For flight at speeds below Mach 2 it is generally ade-

quate to assume that air behaves as an ideal gas obeying

the equation of state P = pRT and having a constant ratio

"• IV-it
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I

of specific heats taken to be y = 1.40. However, at speeds

slightly above Mach 2 and for higher Mach numbers this

assumption becomes invalid. In general it is necessary

to account for real-gas effects where the specific heats

are functions of terperature and pressure, and the equa-

tion of state must be expanded to include the effects of

intermolecular attraction at high densities and dissoci-

ation and ionization at high temperatures and low pres-

sures. A general forr. of the equation of state includes

the compressibility factor, Z, as follows

P pZRT (29)

Without the assumption of constant specific heats it is

impractical to obtain an analytic expression for param-

eters such as the total temperatures and pressures in

front of and behind the shock. A method has been employed

to compute these parameters by interpolating air thermo-

dynamic properties from a comprehensive set of tables

(reference 3) and computing the total and behind the shock

conditions using the conservation equations of mass,

momentum, and energy as follows:

p2V2 = PVI (30)

P2  P2 2 (31)
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2 VI 2h2 + V2 h + (32)
2Jg 2Jg

The free stream temperature, pressure, and density are

defined by the ambient conditions at a given altitude, and

the ambient enthalpy and entropy can be interpolated from

the thermodynamic tables of reference 3. The total enthalp~y

at each Mach number is given by equation (32), and by defi-

nition the total (isentropic) temperature and pressure, Tt

and Pt, can be interpolated at this total enthalpy and the

ambient entropy.

The static properties behind the shock can be obtained

by an iterative solution of equations (29), (30), (31), and

(32)i and then the entropy behind the shock can be interpo-

lated from the thermodynamic tables. The total temperature

and pressure behind the shock, T t' and P t' can then be

interpolated from the same tables as a function of the

total enthalpy and the behind-the-shock entropy.

The values of Tt, Pt, Tt,' and Pt' obtained by this

method will generally differ from the values given by equa-

tions (20), (24) and (27). However, these differences in

no way affect the physical operation of the airspeed indi-

cator. Consequently, the definition of differential pres-

sure qc = Pt' - Pa' and the equations for calibrated air-

speed, equations (9) and (10) are still applicable. As an
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illustration of the real gas effects on the values of T
t

and Pt a comparison with the values from the ideal gas

equations is presented in figure 2. The real gas tempera-

ture ratio diverges froir the real gas value immediately

above Mach 2. The pressure remains within plus or minus

one percent up past Mach 3 but diverges beyond this point.

The differences in calibrated airspeed are not as

large, being much less than one percent up to Mach 5.

Figure 2 can be used as a tool to decide when the

real gas method described here should be used for data

reduction. Computer proqrams have been developed to per-

form these calculations, and a set of tables of tempera-

ture and pressure ratios and calibrated airspeeds has

been produced. These are described in reference 4.

ERRORS IN PRESSURE MEASUREMENT

In addition to the usual instrument error, altimeters

and airspeed indicators are subject to two additional

errors. They are position error and pressure lag error

and are discussed in the following paragraphs.

POSITION ERROR

To determine the speed and altitude at which an air-

craft is flying, values of dynamic and ambient pressure

are required as indicated by the preceding equations.
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The pressures r.ecTistered by a pTit6t-static system will,

in general, differ from the desired values. Distortions

in flow are -caused by the presence of the aircraft and by the

system itself; pressure sensors are located in a flow field

which is different from the flow field distant fror. the air-

craft. The resultina errors are -called position errors.

Total Pressure Error

At subsonic speeds the flow perturiations due- to the air-

craft static pressure field are very nearly isentropic and

hence do not affect the total pressure. Therefore,, as lolyg

as the to'al pressure source is not located in a wins -Mke,

in a boundary layer, or in a region of local supersonic Ul'o%.,,

the total pressure error due to the position of the total pr;es-

sure head will usually be negligihle.

Nose boor• pitot-static systems are installed on supersonic

aircraft so that the total. pressure pickup will be located

ahead of any shock waves formed by the aircraft. The shock

wave due to the pickup itself is accounted for by thM equation

against which airspeed indicators are calibrated (reference

equation ilO)).

Failure of the total pressure sensor to register the local

pressure may result from the shape of the head, inclination of

the- flow, or burred or misshap'en'pitot lips. Since pitot-static

probes are tested in wind tunnels before intallation to assure

good design and commonly used probes produce no significant

IV-20
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errors due to inclination to the relative wind, up to approxi-

mately 20 degrees, there should be no significant errors in

total pressure measurement. In flight test applications it

is usually presumed that all of the position error originates

in the static pressure;-source. The possibility of a total

pressure -error must, however, be considered, and airspeed

calibrations should be investigated to find if position errors

in total pressure-do exist.

Static Pressure-Error

The static pressure field surrounding an aircraft in

flight is a function of speed and altitude as well as the

secondary parameters: angie of attack, Mach -number, and

Reynolds number. Hence, it is seldom possible to find a,

location for the static pressure source where the free str•ara

pressure will be sensed under all flight conditions. There-

fore, an error in the measurement of the static pressure due

to the position of the static pressure source in the aircraft

pressure field will generally exist.

At subsonic speeds it is often possible to find some

position on the aircraft fuselage where the static pressure

error is small under all flight conditions, and flush static

ports are usually installed on the fuselages of subsonic air-

* craft. Nose booms are generally installed on supersonic

aircraft to minimize the possibility of total pressure error;

static pressure sensed on a boom has the advantage that in
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supersonic flight the bow wave formed by the aircraft is down-

stream of the static pressure ports so that the pressure

measured is unaffected by pressure field of the aircraft.

Not considering Reynolds number and assuming that side-

slip angles are small, the functional statefaent

Ps - f(M, a) (33)
Pa

may be written. Defining the position error, AP , as

APp - Ps - Pa (34)

equation (33) may be modified to

APP = f(M, a) (35)
Pa

Since qc/Pa is related to Mach number only, equation (35),

in terms of indicated values corrected for instrument error,

can be changed to

APp _ f(Mic, aic) (36)qcic

or

AP = f(Mic,'eLic) (37)
qic
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Since .ic is related to qc ic/P and a good approxin:ation of

lift coefficient is

ic Ln (38)
i M. 2SP

ic ic SL

the position error coefficient may be defined as

AP nzW
cic 8ic

At low Mach nurnhers the effects of compressibility on

pressure error may be considered negligible and the pressure

coefficient assumied to be a function of CL only.

Since

nzW
CL z (40)

PSL V8
2S /2

and in the low Mach nuriber range V c V it can be assured

that

nzW
CLic - z (41)

PS.L Vic 2 S/2

so that

P f(flZ) (42)q c1,c Vi c
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For constant nz1

APp f(Vic) only (43)

qcic

From subsequent derivations of equations (67) and (70) it

can be seen that

AV = f( vV) (44)qci c

Since AP /qi = f (V. ) only in the lov, Eiach number rance
p - c Ic

from equation (43)

AV f(Vic) only (45)

for constant nzW in the absence of Mach number effects.

At higher speeds, when there may be both IF and CLic
IC

effects, airspeed calibrations may be put in the form
AP p/qc or AM versus Mic. Data from nose booms or wing

p ic PCC
tip booms will usually form a single line for Mach numbers

greater than about 0.6. At lower speeds variation in nzW/Sic

may be of consequence especially for large airplanes which

have large changes in weight.

For aircraft equipped with nose booms the static pressure

error increases very rapidly with Mach number in the vicinity

of Mach one. The bow wave passes behind the static ports at
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tic = 1.03 or so, and the pressure error becomes quite small

(perhaps zero).

In summary, the form in which data from airspeed cali-

brations is put depends on the type of airspeed system, speed

range, and importance of Mach number and weight effects.

Calculation of Calibrated Airspeed and Calibrated Altitude

The three cases noted below are generally used. Equations

for making corrections for position error to both airspeed and

altitude are presented for these three cases assuming that no

error exists in the total pressure source. With this assump-

tion a common value of AP is applied to airspeed and to
p

altitude.

Case I:

Epp .(46)

qc. f •ic Z
1ciic i

or its alternate

APP f(Mic,'CL ) (47)
qqc

AP p/qcic is readily found at the test conditions and AP from

AP -- qc, (48)
Sqc ic

IV-25
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where a is computed from the modified form of equation (9).ýcic

qcc " SL1[+0.2 (ic)213S 11 (49)
qic PS'a

Case II: AMpc = f(M.i)PC ic

By definition

Ap- - - Pa (50)

which can be written as

1- P a (51)
PS PS

From equation (20) for subsonic flight

APp 1- (1 + 0.2Mic2) 3  (52

SP (1 +0.2M2) 3 5

Expansion of equation (52) in a Taylor series about M

through the first two terms produces

APP W 1.4Mic AMpc 0.7 (1 - 1,6 Mic ) AMp2
__ +c C~ (53)

Ps I + 0.2Mic 2  (1 + 0.2Mid)2

From the machmeter equation for supersonic flight

"501) 1 M.7rt i= s.92!. ic
-- .(!1 4)

PS (7Mic 2 _ 1)2.5
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and

Pt5  166.921 M7

Sa (7M2 - 1)2.5 (55)

Following the same procedure that was used with the subsonic

equations

APp .7(2Mic12_)AMpc 7(21Mic 4_23.5Mic2 +4)AMPC2

S Mic7Mic 2_ ) M ic 2 )2 2

Rewriting equation (6) as

P- (1 +0.2Mi2)35 - 1 (57)

and dividing equation (53) by equation (57)

1.4talcAMPC 0.7(1 - 1.6Mic2 )A ap2

APp (1 + 0.2 mic) (1 + 0.2mic2)58

qric [(I + 0.2Mic 2) 3.5 -I

for Mic ý< 1.0. The equivalent expression for the supersonic

case is obtained by dividing equation (56) by

qcic 166.921 Mic7

-PS- (7 ~2_-1) 2.5 -i( 9

which results from equation (8), to give
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7(2Mic 1)AM 7(21Mic 4 23.5Mc2 +4)AMPc 2

AP Mic(7Mic2 1) Mic 2 (7 Mic2 1)2

qcic 166. (60)
[ - i]

2 2.5
(7Mic2 - 1)

As for Case I, AP is determined fromP

A Pp - qc (61)
icc

requiring equations (59) and (49) for subsonic flight. At

supersonic speeds equation (60) and the modified form of

equation (10)

166.921 12-)
qcac (62)

a

are useO.

Case III: AV = f(Vic)
PC i

From the relationship

Ap (Pt' Pa) -(Pt' -Ps) (63)
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NOT REPRODUCIBLE

AP is

APp -qcic = f(Vc) - f(Vic) (64)

From ecuatiors (9) and (49)

V 3.5 V
P = PaSL'[1 + 0.2((VC ) - [1 + 0.2(Vic)2135 1 (6 5 )aSL aSL

Expanding eauation (65) in a Taylcr scries tl:rolr.Ih tl:e first

two terms and evaluatipq :,.t V = V.C iC

1.4 PaSL Vic V 22.5
AP [1 + 0.2( "c.)22 AVpc

aSL2 aSL

0.7 PaSL V: 21.5 2 V
+ "-' L11+0.2(Vic)2] [1+1.2( Vic)2]AV 2 (66)

aSL aSL aSL

or dividing by AVpc

Ap 1.4 NL 2 2.5
-P = aSL [1 + 0.2( -`c-)]I
AVpc aSL 2  aSL

0PV21.5 V.i2

+ 0'[L[ 1 + 0.2( _ + 1.2(-3-)c AV (67)
2 aSL aSL

aSL

Followinc, the same rrocedure for supersonic fli(It,

from equation (10)

V 7 V.7
166.921 (V-C) 166.921( LC)

a SL aSLa~p VasL 2.5 V _ 2.5 (''
[7(Lc ) 2 11]* [7( Vic )2 _ 11].

aSL aSL
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Expanding ecuation (68) in a Taylor series through the first

two terms and evaluating at Vc= Vic
(Vic

7x166.921PasL() 2(Vc 2
AP paL aSL I aSL 1hV

aSL ( 7 ( Vic)2 1] 35

aSL

)*4 V* ýi 2 2
[14(Vic )4 a(i )+ 6]AVPC

+7x166921PaSL V! 5 aSL aSL (6q)

2 aSL [ 7 (Vic )2 1 ]4,5

aSL

or dividing by AVpc

1168.45P (Vi) 6 2(Vic )2_ 1
APp aSL aaSL

__________ SL

V aSL V2 3.5
APC SL[7(V)-1

aSL

V4 Vic2
(14( " )4- 9( " ) + 6]AV C

+ 584.224P (VPc)5 aSL aSL (70)
"'SL aSL Vic 4.5aSL 2 SL - 1]

SLSL

AP for Case III is found fromP

APp ,, APPNpc

A PC

AP can be determined as described above for each of the
P

three cases and then used to find both Hc and V from Ii. and
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V. To calculate i!c, Ps is first found from the appropriateic,

pressure - altitude relationship (equations (1) through (4))

at 1.i. Then arhient pressure is computed from
ic*

SPs A P- (72)

1c, correspondinq to P a' may then be found through the same

pressure - altitude relationships.

Vc may be found ii, a similar fashion by computing qC.'

corresponding to Vic, from equation (49) or equation (62);

then impact pressure from

qc q + API (73)= cic •

Vc, corresponding to qc' may be computed from equation (9) or

from equation (10) througth an iterative method.

PRESSURE LAG ERROR

Pressure gages such as airspeed indicators and altimeters

are subject to pressure lag errors when airspeed or altitude

are changing. Pressure at the source differs from that regis-

tered by a pressure measuring device because of:

(1) pressure drops in tubing resulting from viscous

friction between the moving air and the walls of the

tubing

(2) inertia of the air in the tubincr

NOT REPRODUCIBLE
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(3) pressure drops across orifices and restrictions

(4) acoustic lag, i.e., the time required for a pressure

disturbance to travel the length of the tubing, and

(5) instrument damping, inertia, and ,riction

Since an altimeter is an absolute pressure measuring

instrument the effect of lag on indicated alt'ituda readings

is fairly obvious. For example, during a climb the indicated,

altitude tends to be less than the actua1 altitude; an air-

S steed indicator, being a differential pressure gage is affected

by lags in both total and static pressures so that the error

may be either positive or negative.

Since the error in both pressures is in the sake 'direc-

tion the net effec on impact pressure and hence calibrated

airspeed is compensating. Corfections to altitude are, in

general, of more consequence than corrections to airspeed.

From the above list of factors which affect the indicated

pressure in an airspeed system it is apparent that a complete

mathematical treatment-6f tH6. response. to vary-ing;* preissure

would be prohibitly complex. It has bcen found, however,

that lag can -be attri.buted largely to viscous friction and

that the system can be adequately Cescribed by the equation

P W (74)
dt

_~'

where . is the time by which the indicated pressure lags',"
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behind the source pressure. Use of this equation assumes

that

(1) the rass of ;the air in the system is zero

f(2) the rate of change of the applied pressure is noarly
con.stant

(31) -laminar flow,. exists (For this to be true it: is neces-

-sary that the- Reynolds number be less than 2000; in

typical airspeed systems a value of 500 is seldom,

exceeded in _flciqt.)

(4) the pressure lag is si;,all conpared with the appliedJpressure (This is generally the case; however, at

very high altitudes this assumption becoi,•es critical.)

(5) the acou'stic lace is negligible (This assurption can be

easily checked by computing acoustic laq from the

length of tubing and the speed of sound in the tubing

and comraring it to X from equation (74)).

(6) the pressure drop across the orifices and restrictions

is negliqible (This is true only if a minimum of such

restrictions exist so that the tubing is nearly a smooth,

straight, "pipe" of uniform diameter.)

For a constant rate of change of applied p.ressure,

P(t) = (dP/dt)t and equation (74) may be solved as

X2dL+p P p (75)

tv-3
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From dimensional analysis it can be shown that, for a

par~ticular installation,

A a(76)p

"Hence if the lag constant is obtained &t one value of p/P

it may be extrapolated to other values by the expressiqn

A 1 11lP2

- (77)
X 2  4L-P

Usually, experimental data are used to compute a sea level

lag constant from which the lag constant at any values of v

and P can be obtained, using the equation

SPSL (78)PSL P

With the lag constants for the static and total pressure sys-

tems known, the error in altimeter and airspeed indicator read-

inqs due to pressure lag can be calculated for any set of test

conditions.

Corrections to Altitude

The lag constant for the static pressure system, s', can

be defined from equation (75) as

X___P__ (79)
d Pst,/d t dPs' /dt
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With the approximation that dP /dt = dP /dt equation (79)

becomes

Xs = -"" (80)
d Ps/dt

From the assumption of hydrostatic equilibrium

dPS - -pgdHic (81)

Then from equations (80) and (81) the altimeter lag correction

is

dHic
AHic XS dt (82)

Replacing P s/Pa with s' equation (78) may be written as

X )sSL/Hic 1 (83)
PSL as

The altimeter lag correction can be evaluated from the experi-

mentally determined value of XSL, PHic/PSL (a function of

temperature from figure 3), 6s corresponding to H ic, and

dlic /dt the rate of change of observed altitude corrected for

instrument error.
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The indicated altitude corrected for instrument and lag

errors is then

'1iZ ic + Allic, (84)
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I
Cc~crections to Airspeed

Lag in both the total and static pressure systems may be

accounted for by

qcco -t (85)

The error in impact pressure due to lag is, by definition

Aqc. = qjc- cic (86)

which may be stated as

Aqcic. (Et; - O ')- (PsZ - Ps) (87)

It follows from equation (75) that

Aqc1cA = IdPtz- xs Idt (88)
Stdt (8

Differentiating equation (85) with respect to time

d~ qccP• d Pst (89)

dt dt dt

Substituting equation (89) in equation (88)

Aq - (xs - t) dt- (90)
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With the approximations

Aic dq.

d t dt

and

d PS d--

dt d t

equation (90) becomes

dqcic.
Aq • t - -t)dt (91)

Differentiating equation (81)

d = - pg dHic (92)

and differentiating the subsonic airspeed equation (equation

(49))

1.4 VVc 2 2.5d qc - a i [c 1  + 0.2( -i ) I d2dVic
c2 aSLi (93)aSL SL

Dividing by dt

d qc. 1.4P Vv 2 2.5 dV.
,ý'4PaSL Vic Vic, (94)i

[i + 0.2(- )2] (
at 2 aSL t t
aSL
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Differentiating equation (88) and substituting together

with equations (89) and (90) in equation (87) the airspeed

indicator correction expressed as a finite difference is

d ~(As - Xt) Pg dic
dVic

ICE ut M 21.4 2. 2 2.5
LVcLV I + o.2( . .-) I

aSL2 aSL

for Vic < aSL

With the supersonic airspeed equation, equation (59)

dHic
R~ic (,\s - XtdPg •i

Aj atV. 6 V! 2 (96)3738.11 ( Vic )[2( Vic ) -l

aSL aSL

[7(V----c) 2 1 .3.5

aSL

Indicated airspeed corrected for instrument and lag error,

Vick, may be found from the above equations and

Vic£ C Vic + AViC 2  (97)

As in the case of the altimeter, Xs = XSL( iH /SL) (i/6s);

similarly

tSLHic PasL (98)At XtL SL PS + q cic
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SECTION V

DETERMINATION OF

EXCESS THRUST
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SUMMARY

Excess thrust has a number of advantages to recommend it

as a basic parameter in defining the performance of an aircraft.

For example, corrections in terms of excess thrust, are most

easily derived from equations of motion, and procedures common

to both climbs and level accelerations may be set up using

excess thrust as a basis for arriving at the desired parameters

in both cases. Various means of computing excess thrust are

available. The advantages and disadvantages of each are dis-

cussed, and the equations for computing it are derived in detail.
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SYMBOLS USED IN THIS SECTION

Symbol Definition Units
ax~aypaz components of accel- ft per sec 2

eration

Af acceleration factor dimensionless
acceleration factor dimensionless

AfE associated with

energy height

B roll angle about the rad
airspeed! vector

CL actia per rad
a

D drag - lb

F net thrust Ib.n

local effective acrýel-efa-- pet seftption due to gravity

gr reference acceleration- ft per sec2

4due to gravity

gx~gyg•conmponents of accel-; ft per seceration of gravity

h tapeline altitude ft

cpressue- a-Ititude6 ft4

enerqy heinht f-t

thrust -•nglbe of inci;" rad-
dence

I moment of-inertia about- sluggft 2

y yAxi s

j -imensionless

J2,J3,J4 coefficients of the dimensionless
zonal harmonics of the
earth's qravitational
potential

distance from vane to Itva~ircraft 6g •
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Itf
Llift lb

M flight Mach number dimensionless
components of load dimensionless

nx'ny'nzfactor

p roll rate rad per sec

Pa ambient pressure lb per ft 2

q pitch rate rad per sec

dynamic pxq* ýýre lb per ft 2

r local radius . ft

earth

r --yaw rate rad por sec

ro • equaokoial radius of ft
the earth

s Laplace operator - - -

S characteristicafea of ft2
vane

t time sec

V h6oriontal component of ft per sec
g aIrcr&f*t speed- relative

V1  inertial-speed ft per sec

V irue airspeed ft per sec

Vw wind speed ft per sec

V, eircraft velocity ft per sec
Tndtuced-by the earth'srotation

W airpl~n-e gross weight lb

x,y,z CartesiLn coordinate a ngeh

system ((sqbscripts
denote particular axes
system)

a angle of attack rad
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Aaombending chancre in sensed angle rad

Aabco ~of attack due to boom
bending

Aachance in sensed angle rad
q ~of attack due to pitch

rate

Aa U chancre i i sensed. -angle r a d
of attack due~ to upwash

Aca change in sensed angle rad
of attack due to dynamic
lag

y flightpath climb angle rad
measured from the geo-
centric horizontal
plane

6* Dair~craft gecdetic lati- rad
D - _tude[

6 aircraft geocentric lat- rad
itude

ma rsalnement angle6 rad

A amoivn6 ratio dimfens-ionless

-dif f erece 'b.etween ,the ,rad
cirarft, long~ituide ahd

ifi 'of, ithed nIv,ý-te.s"

o4product.othinesa ft3 pei -sec3
gr~itaiphl consitant

a~i ~b~mass of- teb ,earth

-f l 3iv;htwith, heading angle .raýd
'Impa*urd from- trqxe nrt

aVehicle grolund-track ra'd
g hipading -angle- mea's ured

fromt true iiorth

4 ban-. ancleý rad'

O ancale b~tweeii radar rad
X(,-a.,Us and true north

Aikectidn from which the
wind blows (from true
north)

V-8



�frequency rad per sec

n =damped natural rad per sec
frequency

W rotational 'eoity of rad per secwind-a-es sys -?.-i,

angular velocity of the rad per sec
earth

S-.....Subscripts

L b body axes

" -c center of gravity ..

I e- geocentric aNxes

g local-geocentric axes_ -

ic indicated corrected ~fr oI
°c instr-nent. er6r

.measured-

6 maximum value

Siidcif A-xes

:v vane

:. IW wind axes I
;0t '•Il
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GENERAL DISCUSSION OF ThE VARIOUS MI�TIiODS

Airplane performance data can be determined by several

I different methods requiring different instrumen�aticm.

These methods, which have received varying degrees of use,

are:

I �r b. Acceleroiv.�ter

c. Position meas�.ireinent

d. Timo� history of dynamic pre�sure L
e�, Rate of climb indica�or co�i�e&�d to totai pressure

f. Air temperature thermometer

Methods d,. e,. �iid f are' des c.xib�d in �fer�nce 1 and in

4' Chapter 7 �of refe�ence 2 but ��re excluded from furthe� discus-,

sion since they have never received popuJ�r acceptance. Of the ]

xernai'ning three, the airs peed-a�ltitude method ha� been widely

�used for xi�any years; -acc�ler�cme�e�s have ,been used duri'ng�

�numerous flight test programs; pozition measu�m�nt (e.g.,

radar) has been employed an .some isolated instances.

The most convenient parameter with which to work in

standard i zirig �airplane performance data� is excess thrust.

Corrections, in terms' of excess thrust, are most easily

derived� from equations of motion. Excess thrust can be

related easily to ratc of climb, turning performance, and
I�1

II
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other performance parameters. Standardization procedures

common to both climbs and level accelerations may be set

up using test excess thrust as a basis for arriving at the

desired standard parameters in both cases. Equations

I defining test excess thrust are derived in subsequent para-

graphs for the three methods, a, b, and c, starting from

the same basic equations of motion.

Since the quality of standarized data can be expected

to be no better than that of the test data, some observa-

tions in regard to. the calculation of excess thrust are set

down for the three methods. Advantages and disadvantages

of each are considered.

lj

AIRSflEED.ýALTITUDE:MIETHoQD %

"The: bulk of Adhe performancz test programs wh-ich have

1been .crndi.t-ed, up to the present timc have *made use ofImeas-rert5 ý ckf airspeed, altitude, and time (.usually an

airspeed ,id ator, and altimeter, and a, clock mounted on

a photo_-panel) tc gather performance data. This ",,th-d h

Shas been in roti.;.ne use ,since the early 1950's. Several

Schemes for processing the data have been tried. The one

in most dormzonn ue in later years for both climbs and accel-

ezations has been to Compute total energy as a function of

time, then curve fit and differentiate to fin&, rate of change

of energy (or excess thrust).

V-11,•iji
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The chief merits of the airspeed-altitude method are (1)

the instrutments are abways available since they are needed

on board any test aircraft as a part of its test instrumenta-

tion system. Hence "spec a!" instrumentation (-iz sensitive

accelero eters) or ground based :,ositioning equipment i< not

needed, and (2) the instruments are very reliable and usually

quite consistent in behavior so that relatively little data

comparcd to sensitive accelerometer systems should be lost

because of instrwtaent malfunction. Their reliabflAity is also

generally superior to that of position measuring equipment

since contact with an aircraft is occasionally lost due to

excessive range, clouds, etc.

The airspeed-altitude method of calculating excess thrust

has been 'f-und to be the least-accurate of the methods

described. (See refererici 3, Thr examnple). There •are several

factors ;which contribute to the inaccuracy of 'this method, the

most important being the errors in determining true airspeed

and tapeline rate of climb: due to errors in ambient tempera-

S�ture, pressure lag during climbs, readability of instruments,

etc. The reason these errors are so important is because

excess thrust is computed by differentiating specific energy,

E/W (energy height, l1E)

E Vt 2E = HE H + 2
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and any errors in these parameters are amplified by the

differentiation proces. Also, the magnitude of the time

interval uead for curve fitting and differentiating to

obtain rates of change of specific energy (and consequently

Sexcess thrust) may have a decided bearing on the results.

If small intervals are used, spurious variations, are intro-

duced into the calculation of excess thrust. On the other

hand, when excessively large intervals are used, variations

which actually existed are eliminated, or at least reduced

in size.

Another disadvantage of the airspeed-altitude method is

that corrections for wind gradients are needed which are

frequently quite substantial for climbs. In contrast only

relatively minor corrections for variations in normal load

factor are required to standardize climb performance whent
using any of the other methods.

As flight speeds and altitudes increase, the accuracy

inherent in the airspeed-altitude method becomes worse.

Above a Mach number of, say, two, other means of obtaining

excess thrust should be used, if possible.

ACCELEROMETER METHOD

Flight tests to evaluate the practicability of measur-

ing longitudinal accelerations by means of a sensitive
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accelerometer were conducted in the mid-1950's. (See

reference 4.) Sensitivc accelerometers were- ins-talled in

category test aircraft for use as a prime source of per-

formance data starting in the early 19601,s. Accuracy of

the data recorded during these days was comparable to that'

acquired with airspeed-altimeter measuremefits; however,

with' improvements in accelerometers, installation design,

and means of recording, data from accelerometers are at

present, decidedly more' accurate than that from the airl

,speed-aItitude method.

Two different types of installation have been tried.

in thef first, a sensitive accelerometer has been mounted

,on a vane (similar to that used to measure Angle of :£'ta'6k)

so that the sensitive axis of the accelerometer remains

7 Relative

--Axis~if Roetiffa

-Atc*I~Meter-
.Package •• s~o

l Flipmre 1,

FLIGHTPATH ACCELEROMETER 'SYSTEM

"v-144 ~* ~ ,^,
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alined with the -localaiirflow. Unfortunately,, the upwash

angle caused by- the presence of the pitot head and perhaps

-the noseoof the -aircraft is significant, and accurate cal-

ibrations must be made -in order for the desired component

of acceleration-along the airplane's velocity vector to

-be found. 'Secondary effects which may be of consequence

if the pitch angle is changing rapidly are due to pitch

rate, pitch accelerations, and dynamic effects causing

a lag in the p6psition of the vane. These effects can be

expected to be -negligible during level accelerations and

probabiy during Climbs but may require minor corrections

to measured accelerations during roller coaster maneuvers

or other tests when pitch rates are high. In the second

type of installation, a sensitive accelerometer is hard-

mounted at or near the airplane's center of gravity. In

this case the location of the sensitive axis -of the accel-

erometer- must be very well known. Further, the accelera-

-t-ion-,mustbe resolved through the -angle- of -attack -and -cor-

rections have to be made to it similar to those described

fpr the vane mount:d- -accelerometer.

The most attractive features of the accelerometer

method are that load factor, nx, along the flight path is

obtained, after making the corrections and axis transfor-

mation described above. The resultant force is the engine

V-15
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thrust minus the airplane, dkag l( ) heither 6f ýwhich- -are

affected greatly by wind gradients., ,Alsq, ihstantaneOus-

values are recorded, ahd uncertainties, incurred by, .data

smoothing and differentiation required b•' the other methods,

are avoided.

The reliabi•ity of the flightpath -ccelerorneter is

better than that of position measuring equipment (radar

and Askania camera) since t h, iaccdlerometer is carried

with the, aircraft- and ,the6re is no danger ,of incomplete

flight coverage; however,, experience has shown the flight-

path accelerometer to be less reliable than the airspeed-

altitude instruments.

The, most recent accelerometer installations have been

a. two-axis accelerometer system-.which measures -normal

"load fad6r -We-ll as load fI6t6r alongý the fIight -path-

This makes fo: a considerable improvement in the •accuracy

of the resultant acceleration. along theb flight, path

together with an improved normal load factor, for use in

the standarization equations.

In addition to one-, and, two-axis .acceleromeiter systes,

three-axis accelerometer data, from an inertial navigation

system have been used with marked success as a prime source

of performance information. Data from a three-axis system
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-mounted on a stable, platform has the Cbnsiderable advantage

that neither upwash angle nor angle of attack need be

known if orientation angles to locate •the accelera;tLondfi

components are, known; they are generallý available from on-

board; computers in aircraft which have inertial nayigation

,systems as standard eqtiipment. Drawbacks to the use of,

these systemsiare: additional complexity with attendanft

maintenance requirements, ,and heed for pre-flight and post-

flight checks. Also, operable navigation systems have not

been, installed, in general, in aircraft used for category-

performance testing.

POSITION MEASUREMENT METHOD,

Radar and- Askania camera data' haVe been .osed to cb.,-

pute performance information "in only isolated instances,

alth6ugh. both have yielded sAtisfactory results (reference,

3).,i Since ,the data from both -sources are used in the

same way, exit 1ot ýprocesjsng of raw -data: to, -find posi-.

tion and veiocity components:, they are discussed together.

The accuracy in both cases depends Prtimarily on the

quality of th& trackang datal, which in turn depends on

such :factors •as number -of recording stations, range, ele-

vation anigie, etc. As in the airspeed"altitude method,

Cany errors, in tracking data are amplified in the differ-

entiation- prqcess required to compute excess thrust.

' p
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Th,-',accuracy inherent in these :system63, .howeVe*,, will,

produce exce~ss thrust of higher quality than willth

air s-,eed- atitude method. A s-.erious disadv~ndtage mtay ýbe

that coverage is not always available, espec"ially for6

.high,ýkirfbrmance aircraft.. AlIsoý e ata turnarouind time,

may be excegsive,.

Like the accelerometer method, only slicjht. cokrec-

tions ioi vind gradients ('for normal, -load, fAt6tr)I! Ake

needed.,

Table i -shows a rating of eachn mrethod froia ýthe stand~-;

Point. of ýaccuracy,, reliabi'lity, .4ircraf~t equipi.',entreu~

(the least ainoiit being considered bdst),-,. and data, po,-

-,cessing effort (,,least reqpaired by engineering peksonnel

considered best)

Table 1 - Compaio f ehd for caicuiatingo

Excddssý -Thkistý

'Rating Accuracy Reliability. Arrf Equipment Data'ýProcessthig
______ ___________ ____________ equire'd Efi'rt'

1 Flight Path Airspeed- A'aiiRadar
Accelerometer Altitude

2 Askanta PlightPith #adar.PihtPt
Accelerometer Acceieromeet+~

'43 Radar Radar FliightPath skni

4. Airspeed- Askania Aiispddd- Airspeod -
Altitude - Altifud6 Altitude



EQU AT IO'N S JOFM'O0TIO N

Components of the earth's -ravitational. attraction taken,

from the section, Geophysical Prbpertiets, are

FX _(-••)( 0o [43 J2 sin 8Ll

3 1 -5 s;2 !
2 4,4

- .5J 4(rhr°)23' - 7sin2"8L)sin8Llcos8L ()}

and /

44./

- -r +h
+ 023(• 13 (3 -5gsln2aL)SinaL

S.. .. " • '4'r' h )(3- 3 si' L +35Sin4 0L'J (2)

in a north-, geocentricakly-directed system. Because of

the -earth'is-. equatori'ai .buiuge-, # igs- always- po init&d- towad

he equator (i.e., toward�t�he soutin in, the northern hemi-

sphere and toward the north in the southern hemisphere).

is assumed to be zero and g, is directed toward, the

,earth's center. By transforming e components of

gravitational attraction' through the angles a, y, and B,

,the resultant along the velocity vector is found. The

longitudinal equation of motion in the wind-axes system

V-19
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;s, then, for the general calse in banked f light,

gr g- 4 3)

W a
gr xwI

Similarly, in the lateral diiection~we have

W, x co s -sino1- +sitB sin ;o so' 4- ggsifiB codY
9r.- 19 g J

As pointed' put in- deriving. a (equation '(41)) 'the
'yw

lateral acceler~ation tedfidato produce -a ideslip bu ha

effects on aircraft, pe--fokmance can be saf-ely ignioredý.

The. normal equation. o'f -motion- in the direction of the.

lif t is

L-+Fnsln(a + IT)- !. Cxsintsinar +cos~sRglA Cso~o+ gzcosBdosl
gi xij ('5)

In most flight tests the bank.A anile is kepit smali and

can 'be Assumed tob er6., For 'fhi('s case the longitudinal

and, ni~tmal equiations redu-e 'to

Fn rob (6)') ý cs&

9 g

and
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L + n1%s(A + (T 9 !(gCos Y + gx S1nY Cosoa) (7)T r gv

ti is convenient to comfbine geivitAtidhal. attraction

and aircraft accletiertion. by Oefinih - load Ziitois along 1

the, airspeed vector -,and 'aong the lift, vect6.t- Acceler~r

:ometers sense these lJoad fad-ors direc~tly .. 'Alon4, the

airspeed Vector- the*-loAd, faiio is

l~g~iny.gbosycosor+i ~ ~'8

In the vertical dire~ction along the lift vector,, the

'load factor, is

n, -~(ticoY+ gxsin Yco s a- az (9)

Eiquations (t) and (7) miay then be rewritten as

and

I~K1 L,+Fn sin (a iT) f 2 W (1
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AIRSPEED-ALTITUDE METHOD

Pcecise derivations of equations are made which may be

used with on-board measurements of airspeed and altitude

to give excess thrust. The-magnitude of some of the terms

is quite small, :and: considering the inaccuracies in con-

ventidnal instruments,, they "may be safely; eliminated. If,,

,howeveki, improved instrumentation becomes available, use

of the precise equations may be found desirable.

DERIVATION OF GENERAL EQUATIONS

Iniertial. Velocity in Wind-Axes System

,Referring to figure 4 ifi .the section, Coordinate Sys-

tems and Transformations, the inertial velocity may be

bexpressed' as

V1 Yt Y ui'+k iVW (12)

In the wind-axes system the airspeed, Vt, is vtJ. Per-

forming transformations, first through the angle a, then

through y and B, the velocity' due to the earth's rotation

is

E V = (M] fjr +-h)cOaaL
0 (13)

1i 0 01 cosy 0 -slay COW. Slina

where [M] L coaB8 o 1 0 coa 6
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The product of the matrices com~pdi~ng [M] is shown in equation;

('15) of the section, Coordinate Systems and Transformations. $
In expanded, form equation (2) becomes

V - cw (r +hWcos8 Ljcosyswinu+ (slu}'sinasiaB + oogoooaB)j

+ (siyslnvcoA4)- cosasInB)k]

The 'velocity due to local winds as obtained froim rawinsondej

data is foun'd by making transformation through -the' angles a,

Yand B, as above so that

-V WCOs&I

[VI] [ M] KIn (15

L oi
Expanding as before

V,, (-v~coso&cosycosa - Vsuiwkcosy sisalT + I-V~coso&(siiycososintl - sinorCOA3)

V- Vsiun (stay sina sinB + cosaco9B)]j + [-V,-ýcoso(cosa~siny cosB +sinawsinB)

-V- asonIsiny~siuaCOBB -6coaainB)Jt -* (16)

Equation (16) mnay be simplified to become

-- V~ {cosy cos(0'- a)T + Esiny siuB os(oti-a)+ cosS sin(o&-o]

+ (smnycosBeos( - a) -sinB sin(ua- a)] l (17)
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Adding terms as indicated by equation !(2) the inertial

velocity in the wind-axes system becomes

V1 [Vi- V.,cosycosiO-an + wO,(r+h)cos8LcosYsinorII+ N.W(rLYinvnBCObf;,-Uc)

+ cosf sin(O - o)] + co(r+ h)coS8L(sinYsinsinB + coseosB)}T

+ {-V•[•inycosB coA(e -ci) - siuBs •n(¢f'-ci)]

I. ( 18)

+ jrFh) cosBL(sinYsinacosB - cosco sinB)

where the earth's radius, r, from equation (5) in section

Geophysical Properties, is

r 20.925781x106 (0.99832172 +÷ .00167616c6s28' + .00000211 cos 48L) (19)

Inertial Accelerations in 'Wind-Axes System

Since accelerations must be expressed in, an inertial

system so they can be related to changes in excess thrust,-

the following equation is used:

*Ineirtial_ _dt __ ae ii~~x

system system 'syeem
(20)

First, the term atiiu&:axes is evaluated by expressing the
•: syetem

-velocity in the wind-axes sytem as

V - T + vyT + vJ (21)
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Tle acceleration becomes

d - W j +iyT+ iz (22)

which may be found by differentiating equatioiA (18):

41E~t-w~syc~l-o)+ V1j(}Sinycos(O-a) + (01o)COSYSiO/-0)]

+ o.(r 4 .IuWcoskLcosYsinc7 + o),r+ h)(- hLS~ 8 ~YI~'-YO 8 SN~D

+ ;COS
8 LCOSYCO~a) (3

" -Y -i eYl~csOa+ coaB sin(,k - o)1 V,,[;cosy slnBcos(O& o)

+Bi.IanyeOSBCOS(iP-c) - (0&.osinysinB-sn(Ob-a) - B -inB sin(O - a)

+(O'aco~cs(-a1 ,(+bd)cOsLsinYsinasinB + cosacosB

(%o(r +h)b sin8L(sinYsinsinB +coscacosB) +w,(r + h) cos8 Lýcssnsn

(24)
a+.ýsinycoaosinB + BsluysinacosB - osino'cosB - BeosasinB)

Yz -i.(9[snycosBco (-c') -sinBsin(O~-a)1 V.JtcosycosIlcos(Ob-U)

- B'iny sinB cos( - a) (0 1 )sinybosB sba(o-o) - cosB sin(t! - a)

-0 (#-sinB cos(O -o)] + ca (r h)cosSL~sinysinccosB - cosasinBl

-e~ + h)8#jsin8L(sinYsinacosB - Cosa sinB) +,co,(r + hWcosaL(cosYsinacosB

* -. (25)
+ oeinlycowom.B-BslnyainoainB + oisinatB - BosacosB)
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If no rate of roll exists,* as may be expected during per-

formance fliqht testing, B, may be set equal to zero and

equations (24) and (25) reduced to the following:

y - - + cosBsin(O - a)] - Vj[ycosysinBcos(O - a)

- ( -O)sin)ysinBsin(0-0) + (0 -"a)eosBcos(O -a)] + wO(r + b)cosaL(sinrsino'sinB

+ cosocosB) - (e(rt+ h)iLsinf L(sinYsinOsinB + cosoeosB) + e + h)cosaL(ycosysinasinB

+ as.'.:y-csosinB - ýsinacosB)

(26)

- -'[sinycosBcos(v1 - a) - sinBsin(ot - a)] - VYw(cosycosBcos(O - a)

- (0• .)sinycosBsin(O - a) - (0 - )sinBcos(b - a)] + jr + Wh)coskL(sinYsina cosB

- cososinB) - &,(r i-)aLsinkL(sinYsinocosB - cosasinB) + wjr + h)sW c0L( cosYsinacosB

+ ýsinycosoeosB + ;sinsinB) (27)

Next, referring back to equation (20), it is necessary to

define the rotational velocity of the wind-axes system.

This is first determined in the north, east, down system,

denoted by the subscript g:

w + Ats 'rSfL-in]g + (YcOsc- - + [W-(we+A)SIn8L]•g (28)

• has no influence on ax , a ,or az . This can be
w Yw

shown by retaining terms which contain B in equations (23)
and (25) as well as in subsequent equations which define
w . All terms containing B then vanish due to cancella-
tion of terms.
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wih the rotational velocity due to a rate of roll set

equ\' 1 to zero.

Transf rming, as before, to the wind-axes system

IWy ;C]sa (29)

Performing th matrix multiplication

Wx - (+ )Ocos8L -Snrcoyoa 
(30) LIOYS

E - We(G+A ain 8 L]sinY (0

0) WY [(o,'+ X)COs - Ysina](sinYcosorsinB - sino'cosB) + MYona -6)snsnsn

+ coeocosB)*+ [ (o- + (31)Lco~sn

4) Vw I,+ 1) 'oL - Ysin aI(coecs asnYcosB + sin a sinB) + (Y~coso' - &L)(sinYsina cosB

- voscIaB) + - w,O+ )sin8L~cosYcosB (2

Simplifying equations (30), (31) and (32) we have

6) (w+)cnLo~oo +o~i SDLI)- LOYIa - e~siny (33)
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0) V A(,+)0(cos8. sinycosasluB -cos
8~uinacosB - in8t coeYsinB) + cosB

- 0LsinYsinasinB + coeorcosB) +a ~coYsinB (34)

W" (w+ )(cos8LcosdgsinYcoeB +cos 8 LoinasinB - slU8LcosYcOB) - YsWnB

- WsinYsinac~osB - coasasnB) + ýcosYcosB (35)

Again referring back to equation (20), to evaluate the

acceleration due to the rotation of the wind-axes system

we hav,- V {X
0

Wy(6

'C Y Z _

Components of acceleration are

'wVz .O)W VY (37)

z Wx

a, O6, OW V, OjWX Vz (39)

az =W V ccWy (9
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Substituting terias from equations (18), (30), (31), and

(32) we have

a0  O,(WO+ 1)(r +hxCOSS3 L~iULCOSYCOSa - COS27 o~Y -VW,(cAJ+ !)(cosy SWO( -iO)aIU8L

- at YcbeLeinolb + ;(.r+ k)me8LsInYsiua - ý%r+ hWcoaOLcosYcosa

; V,,9auycoxOa(~.) + hVeinycoso + Vw~cosysin(Ob-a) (40)

Vt(wo*+ MCOosLcosasinYcosB + cs&Lsi1CsinB - siaLcosYcosB) - V1 SinB

VtiL(sinyainorcosB -cosas'inB) + VtcosYcooB + V ((Oe+A)[Coe(0&-a)Sn8 cOmB

- oO6YcoUoS~lWJifsiB - anYsin(@ - c)sin8L~inR] + V,;cosyco-,,A- cu) slaB

- A4coEYcososi1IB -. V,;tcosM - a) casB - slay sln(ik - a) slaB!

+ . 1 )(r . h) (-9incosLi jcs+ cosYcos 28sBsicoasLsnLnI

- yo(r +h)eosyhlnacoos8,pmnB+ ý%( + h)(slnaccosaLcoeB - siflYcosacos8LsInB)( 4 l)

80z -"J~ce+. (oS~i~cssiB cosLsiDaorosB s18incoaYsinB) VcosB

-8rjsiaYsinasinB + cosaovjsB) + acoaslsnB] - Vw(w, + ') [cosyslnRb CoSaLCOaB

+ coe(,P - a) r,, 8 L8lnB 4, sinYsin(t(, -cvOsin8 LcosBJ + wjowe + )d* + h) cos&L(cosYcos 8 L~cosB

+ sinor sin8LslnB + siIIYcosu siI 8LCOSB) - NLcsYcos~tpomB + VNý{cos(O - 6, inB

+ slnysln(o/ - a)coaB] + V.ýCosy cos(O - o)cosB - ;wo.(r + bhcosysina cos~jLcosB

.e-,( + cos&L(sinasinB + slnYcosqcosB) (42)

To obtain total accelerations in the 'r, 'J and R, direc-

tions, as indicated by equation (20), we combine terms as

follows:
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ax - X+4 (43)

yw Y y

a z +

From equations (23) and (40)

a- - Vcosycoq(v.-o) + V eoSYsiIt-M O1O + wjr~b)0o.OLc(OssInd

x w

- wj~h)8s~a8cos~iaa VW8 ~hYCS~& V~, (a+ 1) [oosy siai(O - jI) sWL - I
sN,(r W nkcs]'n *+ h)k (ncOe~SinO o~oa-c

IROklu +coa( %+ ) (r + h o9sn8oYoa-c82 fy) (46)

Combining equations (24) and (41)

a YW %'t((,e+ 1) (coe8 cos~asinYsinB + cosk'aLsino B - sha&LCosycoeB). VtainB

- Vl8L(slnYsinucosB-cosca~inB)+ Vt~cosycosB + V,,(*,+!)[cos(& - )SID&LcOSB

- cosycos8LsinBohi o- aiYsiu(Ob- a)siin8LsirB - VW5iLco9Ycos9&sinB

- VkWnysinBcos(O~- or) + cosBBsin(O4 -v)] + V,ý 1ndsinyi(O&-Oa sInB

- com(O- a) cosBJI + [w,9r~h)cos8L- wg + b) Lsin8LI(sinYsina8itp + ,.-OsorcosB

+0 w(co +A)(r+h)(-sinaceos8.ýsin8~OB"vyo 28LiB+snoaoSLUjpfp

(47)
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Equations (25) and (42) yield

-atV cosB a-ý VtL( inYs ni sinB+cosocosB)- Vt cosyisiB - Vt(,% +MAXsinymSOcosOL8inB

j - siflcrcoesLmesoe- cosYfinBLsinB) - V,[sinycos(i - o)cosB - s(- u ( ia ]

\\ + %V i 4nySWOf(: - alCoksa + cos(O -o)SInB] - Vw((OO+ 1) [cosy Cný coS8 LCOSB

S. co - o)sinas +si+inYsin(b - a)sin&LCOsB] + (j,(r •- h) cos8L(SinYs8nacOsB

co-rsinB) - c,,(r + h)8 LS L(sinYsin cosB- cosasinB) inor,0je " )

(cotYcoaeLC°osB + sinacsin8LsinB +"; sinYcosasinmLcOSB) - 4w8LcOsyCOsbcosB (48)

The lateral acceleration, ay., will tend to produce a

sideslip, the magnitude of which will depend on the

aerodynamui- characteristics of the airplane. The resulting

increase in drag, even in extreme cases, will be slight,

and the effect of a on aircraft performance can be

safely ignored.

Equations (46) and (48) may be modified to more easily

compute accelerations in the xw and zw directions based on

on-board measurements of airspeed and altitude. In doing

this the parameters w' p, 6' and I will be replaced by

more basic quantities.

In the preceding derivations accelerations have been

expressed in terms of parameters in a geocentric reference
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2 systenm. Tlhe flightpath climb angle in a geodetic reference

system, however, is desired. From equation (9) of the sec-

tion, Geophysical Properties,

a• 8L = 8 D - 0 . 19323889sin28D (49)

- with angles expressed in degrees. Equation (49) can then

be used to relate the geocentric and geodetic flightpath

climb angles by an extension of the relation illustrated

in -figure 2.

GEOCENTRIC

GEOCENTRIC,
HORIZONTAL

m•! •CGEODETIC
HORIZONTAL

•! PLANE

DOWN

Figure 2 GEOCENTRIC FLIGHTPATH ANGLE FOR GEODETIC

HORIZONTAL FLIGHT
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Y " YD + (4-- 8D)CO~s (50)

or substituting equation (45?)

y yD - 0.19323889 sln2 8D cosa (51)

The Inverse equation for geodetic climb angle is

YD Y + 0.19323889 sin2 6D cosa (52)

where the geodetic latitude, 6D, can be replaced by the

geocentric latitude, ko with little loss in accuracy.

From the definitions of geocentric and geodetic

climb angles the following equations for rate of climb

are

S Vt sin YD (53)

and

h+ Vt sin Y (54)

Next, the ground speed may be expressed as
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V ( VtCOSYCOso - VwCOSO)sg

+ (VtcosYsin a-Vws-lnJ)Ji g (55)

The heading angle of an airplane',s ground track, ag,

is then

- Vfcos ysinua- Vw slný
tan1  9 wsn

aVtcosYcosa'- VwCOS (56)

which may be used to evaluate the rates of change of

latitude and longitude.

-co g (57)L r + h

and

Vg sin g(

(r + h)cosaL (58)

In the preceding derivations leading to ax and az

(equations (46) and (48)) winds have been specified in a
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geocentric reference system. As an aid in the following

development it will be assumed that the wind can be con-

sidered either geocentrically or geodetically horizontal

without error. The wind speed and wind direction deriva-

tives may then be expressed through chain differentiation

as

Vw dV dVw
"W dh d-h-- VtsinYD (59)

and

-'Vt sin YDd- h d h (60)

The geodetic climb angle can be replaced by a geocentric

climb angle in keeping with the assumption noted above.

Introducing these expressions into equations (46) and

(48) we obtain directly
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aVx VtilDOSCst - a) + Vwl Vtsnyl~ sysn~ -a)

w VVt sin yososyios(

& ~~~~+ ) aVt sin y %Os yCGS L sina - o 0(r+h ~ oasn8cssn
(r ih)

+wV9 Cosa 9 i sV9 sina
r + h 5 ~ 0 5  - Vwfto+ (r +h)cos8L

-[cosysin(ob - a)sin 8 L -sinycos 8L sino

+ (0,0's+ - gia + h)(Cos 8 Lsln 8 LCosY Cos a(r +h Cos 8

-cos
2 8L sin Y). (1

and

VCosa
az - VtYcosB + Vt V9 9snsasin + coso'cosB)

w r +h

- Vt ýCos ysin 13 - v 0.+ V. sinag snYCse oBsn
+(r + h)casBL

4 - sin a coskeosB - cosYsink8sinB)

dV

dh ts YD[sin}'cos(OP- a)cosB -sin(q - a)sinB]

+ VWgf VtsinYD~sinYsin(o -a)cosB +COS( &a)stnB]

V sina
VW V&(D, + - 9 9 1 I--Cos ysin 0 cas8LcosB - cosg - a~sinB

(r + h)cos8L

+i sin y sin ( '-a) sin8LcosB]I + we, Vt sin Y cos8L(sinYsin a COS1

V. sin a
- cosusInB)- (de( + h) g vin8L(sinYsinacosB - CosasinB)

+ ,(, hvcos 8 La 9 )(rs+LcosB +sinasin&ksinB

cosB VwV 9Cosa
+ sin Y Cosa sink~B (r + g)

(62)
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By combining terms, substituting trigonometric identities,

and rearranging, equation (50) is reduced to

"a Vt vtsin2Y[--j' COS(' b -cs ) - Vw'- sin(0.-)]xdw

+ -! g[fsin ycos( & - %g) - cos Ytan8 •sin(tp - a )sinf lg]r+h

- Oj( Vg sin f - Vt cos Ysin a) sin Y cos SL + we Vg sin 8L cos Y sin f(g - a)

-- Vw~cOs)sin8Lsin(O -a) -, sinYcos8LsintI.

+ 02(r+h)(cos8Lsin&Lcosycosa- cos2aLsinY) (63)

where y was replaced by y in the wind gradient terms.

In most cases the bank angle is kept small, and it

can be assumed that sin y = 0 and cos y = 1. With this

assumption equation (62) can be reduced by combining

terms, making substitutions for trigonometric identities,

and rearranging to

-Vt - Vtsin2y[!Y-'hcos(,, -_a) - VwLdh

Vt Vg -a) VwVg-+ r +'--q-c r ---5 --.. cosycos(• , %
r +h 9 r+h'c

+ sinYtan8Lsin(O -u)sinag]

+ cO cos 8 L [ Vtsin a + (Vt sin 2 Y sin u + Vg cos y sin ag)

W9- Vw[ cosL Ysin 0 cOs8L+sinYfsin(p a)sin8L]

+ acVgsln•slYsiLsin(9- a)

+ ( 2 (r+h)(cosyco.2L + sinYcosL sinkLcoso) (64)
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where yD was again replaced by y in the wind gradient

terms.

The terms containing the products [twVw], [w (Vgsinmg

- Vtcosysina)] and [w$Vgsin(ag- a)] in equations (20) and

(21) can be neglected with little error. If they are

dropped the equations reduce to

Vtn4V £d~w(Ot a) Vw -0sin(/ - a)]
xW2 Mdh

+ gn -a) + cosYtan-S n([p -OiV ISr + h 9Ls

(65)
+ i2(r• h)(csLcosycosO - cos 2 LsinY)

and

az Vt; _ vtsiT.2y[ dXwcosco a w '-i(aw dh dh•Vt}'- tsnydhwo( •o- Vw d-sin(¢ -a)]

+ +r!hcos(ag-a°) - V- [cosycos(O .-ag)
r + h 9 r +h

+ sinYtan&Lsin(o1 - a) sinlagl

+ COCOsn 8Li[VtsinO + (Vtsin2Ysin o + Vg cos Ysinfl )]

i- 2(r+h)(cosycos24  + sinacos8LslnSbcosc) (66)

ENERGY IIMIGHIT

In the early days of aviation, a climb amounted chiefly

to increasing an airplane's potential energy with changes

in kinetic energy being quite small in comparison. As
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maximum speeds of airplanes increased, particularly after

turbojet engines came into being, it became common prac-
tice to account for changes in kinetic energy when com-

puting instantaneous rates of climb and determining "best

climb" schedules. The concept of energy height (frequently

called specific energy) was introduced by German engineers

during World War II and gained world-wide acceptance in

dealing with the performance of aircraft powered by turbo-

jet engines.

Energy height is found quite simply by considering the

total energy to be the sum of the potential and kinetic

energies. That is

E - Total energy - WHc + W v 2  (67)
2 gr

where total energy is arbitrarily referenced to Hc = 0
and Vt = 0. Hc is used to compute potential energy,

recalling that geopotential altitude is equivalent to the

amount of work done in raising a unit mass from mean sea

level to a geomrtric altitude of h. Energy height is,

then, the total energy per pound (in the English system)

of weight. Thus

HE H + Vt 2  (68)E2 gr
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which is independent of aircraft mass. In its classical

form energy height has been defined as h + V2/ 2g; however,t

when using a model atmosphere in which geopotential rather
than geometric altitude is employed, Hc in geopotential

feet should be used as a measure of potential energy.

Energy height is useful in optimizing climb performance.

It is energy height which must be gained mostly rapidly

(rather than altitude) to minimize time tc climb since

potential and kinetic energies are readily interchangeable.

Also, energy height has been used (reference the section

Standard Climb Schedules) as an independent variable in

"optimum" scheufles during which altitude is not monotonic

increasing. Differentiating equation (68) we have

AE H+ V (69)E ,

It should be noted that accelerations arising from varia-

tions in wind and from the earth's rotation as seen in

equation (46), for example, are not accounted for in equa-

tion (69).

As in equation (10) of the section Atmospheric

Environment

grdHc g dh (70)
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IIIi
so that equation (69) may be rewritten as f

HE - + -7 (71)
gr gr

LOAD FACTORS

The accelerations from equations (65) and (66) are

substituted into equations (8) and (9) to obtain general

equations to describe load factors in terms of geocentric

parameters. The gravitational and centrifugal relief

terms are grouped together:

n{[g-" •e2(r+h)cos28L]sinY

- [ g 1 '- 2 (r+h)cosL sinSL]cosYcosa

2 dh dh

+ Vwg[sinycos(o -- ag)+Cosytan8Lsin(0 -- a)slnag] 72
r+h -

and

n - {[g_- O,2 (r+h)cos 28L cosy
nzw gr

+ [g•-. 2 (r + h)cos8L sin8L I sinYcos a

+ Vt + Vtsin2y(--•W cos(•& -- a) - Vw - oa)]
dh d a

VtVg Cscos(Ug - a)+ VWVg[cosycos(o -ag)

+ sinytan8Lsin(o -u)sinao ] - wocosL[Vtsina

+ (Vtsln 2Ysina + VgcosYsin ag)]1 (73)
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where the geocentric components of the adceleration

due to grtvitational attraction (gx and gZ ) are computed

from equations (1) and (2).

With zero wind equations (72) and (73) reduce to

1L{z J2(r+ h)cos 2 8L]sinY

- [gX9- (2(r+h)cos8Lsin 8L]CosYCos + 't (74)

and

SgLI[gz,-- a 2 (r+h)cos 28L]OOsy

+ [gx$-- 0W2 (r +h)cosoLsinSL]sinyc~so

+. VtY Vt- -jcs2 2VtcosoLsinoJ

" j - t cos Y - 2a, tC s8 " 0(75)

Since the local centrifugally relieved acceleration

due to gravity is approximately normal to the geoid,

equations (72) through (75) can be rewritten including

the total resultant gravity vector, gL:

n-. .. LsinYD+vý - itsin2Yr-dVcOs(O. - a)
n. gI LL 2 dh

-dsi VwV9 [sinYos(0 -Vg)
- Vr-•-sin(b - + r+h

i. cosYtan8Lsin( b -oa) singl (76)
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and

nZw gL cosY,) + + Vtsin2 Y Cos( -- ')

Vw -ýLin(o- a)) - V)] cos(g - o)
A r r+h

+ -!w1[CosYcos(O -ag) + stnYtan8 7 sin(O -a)slnalg
r+h

- acos8L[VtsIna + (Vtsin 2 Ystna + Vg cosYsina'g)] (77)

For zero wind

"- 1(gLs1nYD + Vt) (78)nw gr

and

V~2
n -- .(gLcosyD + VtY - -cosy - 2 4)VtcoskLsino) (79)nw gr r + h

The load factors of equations (72) through (75) are not

exactly equal to those computed with equations (76)

through (79) because of the approximations in the.

derivations including nieglect of the differences in the

roll and heading angles of an aircraft when referenced

to the geocentric instead of the geodetic horizontal

plane.

It is frequently convenient to relate the longitu-

dinal load factor, nx , to energy height. This may be
-w
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done as follows: by rearranging equation (69) and sub-

stituting equation (33) we have

r HE gLsinYD + Vt (80)
. 1

Since the riqht hand side of this equation appears in

equations (76) and (78), the left hand side can be intro-

duced into these equations to produce

nX HE irtsn2Y[dV~esV 'sn
w Vý- -r fI 2 dh wh

+ ý---i[sinvcos(o -- g) + cosYtan8Lsin(o -()sln ] 181)
r+h )

and for zero wind

n HV (82)

ACCELERATION FACTORS

Equation (71) can be rearranged to produce equations

for geometric rate of climb, A, in terms of either alti-

tude or energy height. Two different acceleration

factors result. First, expanding Vt by the chain rule,

assuming A • 0, equation (71) becomes
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Iz
F + L (83)
gr gr dh

Solving for h

h Vt (84)

grhL - -

The denominator is defined as the acceleration factor,

Aft and is used with any of the continuous climbs described

in the section, Standard Climb Schedules.

Af - I + nL-t) (85)
f 9L dh

With no wind, this provides the following equation for

rate of climb using equation (82)

nxw Vt (86)
h-

At

The second acceleration factor is useful when climb

data are standardized at constant energy height (reference

option 4, page 9, Appendix I). Again expanding Vt in

e (71) but assumingv-45
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HE L + tfI (87)
gr gr dHE

Solving for

Sg_.r l 11 vt dVt) E
"L dHE (88)9L gL

The acceleration factor is, theniI
- 9L "gr d- ) (89)

With no wind we have from equation (82)

AfE nx Vt (90)
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ACCELEROMETER METHODS

In the preceding paragraphs the general equations for

computing inertial accelerations and excess thrust of an

aircraft were developed for the airspeed-altitude method.

Using this method a number of individual terms must be

evaluated in order to obtain the total accelerations and

resulting forces (e.g., airspeed derivative, rate of climb,

wind gradients, Coriolis accelerations, centrifugal relief).

Evaluation of some of the terms involves numerical differ-

entiations, and the results are dependent on the numerical

data editing and differentiation methods. In addition the

basic parameters airspeed and altitude, obtained with con-

ventional instruments, have limited accuracies which are

degrAded due to complications of position error and pressure

lag. Also, it is difficult to evaluate wind gradients pre-

cisely because of uncertainties about fluctuations of atmo-

spheric conditions with time of day and with distance from

the aircraft flight corridor. The same numerical problems

of data editing and differentiation are also encountered

when weather balloon position coordinates are successively

transformed to wind velocity and aradients.

In liaht of these uncertainties, methods have been

developed to measure an aircraft's accelerations more

directly using accelerometers. These methods are not with-

out their own problems, but they do, in general, provide
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much superior values of excess thrust. Accelerometers sense

the inertial or total accelerations acting on an aircraft

and their readings can be converted directly-into forces

by multiplying by the aircraft weight. Consequently, two

of the major problems of the airspeed-altitude method can

be eliminated; data editing and differentiation, as well as

measurement of atmospheric windsd. are not required.

ACCLLEROMETER INSTALLATIONS

Sensitive accelerometers have been installed on test

aircraft and have produced excess thrust data of signifi-

cantly better precision than similar data from measurements

of airspeed and altitude. (See reference 5, for example.)

Vane Mounted

With an accelerometer mounted on a vane (similar to an

angle of attack vane to keep it alined with the local flow),

excess thrust could be found immediately, knowing aircraft

weight, from

F eX ý nXwW W( 
1

The local flow, however, is not coincident with the airplane's

velocity vector because of upwash, pitch rate, etc. (Correc-

tions are derived in subsequent paragraphs.) Further,

mechanical misalinement of the sensitive axis of the acceler-

ometer relative to the vane may be expected. Hence, the
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I

sensitive axis of the accelerometer is displaced from the

local flow at the vane (and, therefore, the longitudinal

axis of the vane) by the misalinement angle, ea. Since

accelerations in the wind-axes must be found in order to

"compute excess thrust, transformations through the angle

m and other correction angles are required. Thesema.

transformations are carried out in a later paragraph under

Errors in Measured Accelerations.

Fixed cg Mounted

Rather than installing a two-axis accelerometer system

on a vane, it may be hard mounted near the aircraft's cen-

ter of gravity. This has the advantage that errors in

measured accelerations caused by changes in attitude ar'

made negligible; however, since these corrections are gen-

erally small and can be made easily, thpadvantage is a

slight one. If load factors are measured with acceler-

ometers located near the center of gravity, they must be

transformed through any misalinement angle representing

the displacement of the sensitive axis of the longitudinal

accelerometer from the airplane body axis ana through the
angle of attack. This permits loads in the direction of

and normal to the velocity vector to be found.

The sources of error in the position of a vane to which

an accelerometer system is attached also exist in measured

angle of attack when sensed by a vane. They appear also
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in values obtained from a pressure sensing device with the

exception of dynamic response. To avoid degrading the

accuracy inherent in the accelerometer system, correc-

tions for the errors described in the following para-

graphs should be made and angle of attack should be

accurately known (to within, say, 0.1 degrees) when

using an accelerometer system mounted near the airplane's

center of gravity.

ERRORS IN MEASURED ANGLE OF ATTACK

Angle of attack is generally sensed with a vane

mounted on a nre boom well ahead of the aircraft. The

accuracy of the sensed value (angular displacement of the

relative wind from the airplane body axis) is adequate.

Substantial corrections, however, must be applied in

order to find true angle of attack. These corrections

arise from: bending of the boom, pitching velocity (which

adds a component aof velocity to the vane not experienced

by the airplane's center of gravity), upwash (created by

the presence of t~he boom, nose of the airplane, and its

wing), and lag in the vane position caused by rapid motions

abo'it the pitch axis.

Angle of attar' has been determined less frequently

through e differential pressure sensing device attached to

the boom to obtain AP/qc, which can be related to indicated

angle of attack. Corrections similar to those described
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for the angle of attack vane need to bit made for this sort

of installation with the excepcion of dynamics response.

Boom Bending

Loads from aerodynamic forces and from irnertia cause

bending of the boom which results in errors in the

measured angle of attack since the position of the vane

is referenced to the axis of the boom. Bending from aero-

dynamic loads is usually negligible although it may be

estimated from data contained in reference 6. Adjustments

to boom bending for loads due to inertia may be made from

a calibration of static deflections of the boom when loaded

with weights to represent inertial forces experienced in

flight.

Upwash

The largest correction to be made in finding true angle

of attack generally stems from upwash. As previously

pointed out, upwash is generated by the boom, the nose of

the airplane, and the wing. The upwash is most pronounced

at high angles of attack and decreases with lift coefficient.

At supersonic speeds effects of fuselage ana wing disappear,

of course. Upwash generated by the boom may be measured in

a wind tunnel.

Two-dimensional incompressible flow theory has been used

to compute the effects of upwash at low speeds. Figure 3,
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taken from reference 7 page 16, shows the results of such

computations. Indicated in the figure are variations in

angle of attack from the boom itself and from the fuselage,

assumed to be a blunt circular cylinder.

In reference 8 equations are presented which may be

used to estimate the effects on angle of attack of the

fuselage and wing. Effects of the fuselage are found using

potential theory, considering the fuselage to be a half

rotational body; influence of the wing is computed assuming

a bound vortex in the quarter-chord line of the wing sec-

tion and solving for the induced vertical velocity with a

Biot-Savart equation. Estimated upwash angles have been

computed using references 7 and 8 and compared to in-flight

calibrations obtained with an A-37B (rAference 9). Corre-

lation of the estimated angles with those from the calibra-

tions was reasonably good. In flight test applications,

however, it is desirable to measure upwash angles from

flight data and construct a calibration of upwash angle,I uy as a function of lift coefficient.

Dynamic Response

An angle of attack vane system* constitutes a torsional

spring-mass-damper mechanical system having an undamped natural

*The vane system includes any internal mass balancing, transducer
elements, accelerometer package, etc., in addition to the aero-

* dynamic lifting surface.
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frequency and damping ratio that describe its dynamic response

charactexeistics. The output of such a system will have errors

that are due to signal amplitude and phase-lag characteristics

which are functions of the frequency relationship of the exciting

signal and the natural frequency of the vane system as well as

its damping ratio.

Equations are derived below which may be used to correct

for errors in sensed angle of attack. The same equations may

also be used to find errors in the position of vane-mounted

accelerometers.

Response to Sinusoidal Inputs

An anele of attack vane system is shown schematically

in figure 4. a,-ar'plane x-body axis

Figure 4 Angle of Attack Vane System

About the vane pivot, taking cos Aa = 1

LV " - IC (92)

which may be rewritten as

[a V- (93)

V-64



Rearranging-

jSvAj2CL'aac j iSVCL Aa,, + + + - a•(a +I -

Ty Vt+ Iy I2C Vt ( 9 4)V

Equation (94) is a second order differential equation

describing a system whose dynamic characteristics are

given by

SS~,ACL,0 .7P SV. 2C
- [ _M[ a (95•n [y -,M Iy(95)

ly Iy

-nzSv 
2 CLa 0.7PaM2 SvA 2 CLa

lyV IyV (96)

and

_:Loin (97)
2 Vt

It should be noted that the natural frequency and

damping of the sytem are not unique properties but are

dependent on Mach number and altitude. Thus these prop-

erties must be computed for each flight condition at

which data are to be collected.

Since the angle of attack vane system is approximately

represented by a second-order dynamic system, the first

method for correcting angle of attack for dynamic lag
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will assume a sinusoidally varying angle of attack. This

is a fairly realistic assumption for an aircraft engaged

in roller coaster maneuvers. Under these circumstances,

then, in Laplace notation considering only the error due

to lag

2K w
a 2 2 (98)s+ 2CcnS + 0n

-+

where K is a fixed gain, usually 1.0.

Rearranging this equation and introducing jw for the Lap-

lace operator, s, yields

K... , tn Ke [(99)
aic __ _ _ _ __ _ _ _ __ _ _ _

a r 2]
- (2)2 1 +)2

This relationship defines the amplitude and phase relation-

ship between the two sinusoidal oscillations in a and aic.

Solving equation (99) for a we have

.•2½

(1 (6I)2]2 + (2• ) 2 2C 0'(On On J tan-I ~

a aiK e [1-(•n)2) (I00)

k 'On

Introducing for mic the expression

aic aicosina)t (101)
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where aic is the maximum amplitude of aic, it is possible
i0

to rearrange the above equations so that a solution is

given for Aac.

Aa.) - aicorsi?(ot + Y7) (102)

where

2 + (2 A-)2 j2 ]2 + ( e)

r - + K K n

2cositan -(Con)2 (103)

and
2 ~

tan-1 (O

_[1(A_.)] 2 + (2 4. •)- 2.O (104)

Cn cos [tan- 1  *)nf
K 1 -(-t))2
K (ýýq

There exists another method for finding Aa for the

case where sinusoidal inputs may be assumed and which

involves fewer calculations. Given, as before, that the

angle of attack vane is a second order system with an

undamped natural frequency of oscillation, wn, and a

damping ratio, c, the indicated angle of attack is given

by

4-51

r



aj0 (t)K Kaosin(wt-9 )

a ( _)212 + (2 > )21 (105)
'on OnJ

where K is, as before, a constant gain (usually 1.0) and

a is the maximum amplitude of a.

Making use of trigonometric identities

a1c(t) K (sinoitcoso- coswotsino)
{wI - (--)2]2 + (2 'n)21 (106)

where

S- tan-1 '

1- 1 _ (107)
(on

By rearranging the terms in this equation and making small

angle approximations (cos * =1 sin * =

[1(n)2 12 + (2C-2-
a(t) K 'n ] [ajc(t) + alco OCOs't] (108)

K0

In the above equation wt describes the sinusoidally

varying a. This is generally not known since a is not
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known; however, it can be inferred through knowledge of

aic (t) and a small correction to t. When aic(t) = 0, it

can be shown that tan wt = *, where wt describes a(t),

rather than a ic(t).

Since t = (11w) tan-1 0 when aic (t) = 0, it can be

used to correct the time associated with the observed

angle of attack, aic (t) so that the expression for a(t)

becomes

{i+ (6L) 2]2 +
a(tc) - aic(taic) + aico0Cosb0(taic + At)

(109)

where

aic(tai) = indicated angle of attack at any time, ti

a = maximum amplitude of observed angle of attack
0ic

t= time from a reference value of the indicated
angle of attack

At = incremental time correction to t a
(1/w) tan- 1 0ic

* = phase lag angle between alt ) andaic(t ic
aic (a ) '

Response to Random Inputs

The previous discussion was concerned with correcting

indicated angle of attack when a sinusoidal variation of
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the input had been assumed. In the more general case, as

in a climb, the angle of attack is changed in a series of

quasi-step inputs which are aimed at keeping the aircraft

on a desired climb schedule. In correcting the indicated

angle of attack in this case, a somewhat more complicated

process is used. Since the angle of attack vane system

is a second order system, its input-output relationship

is given by

2

a -(s K oi
a -2 - (110)a s2 + 2 S + •

If the operations indicated by the above Laplace-

transform expression are performed, the following expres-

sion in the time domain results:

a(t) 4atc( 2C naic(t) + Cn aic(t)]

In general it will be necessary to operate on the

indicated angle of attack time history, aic(t), with a

computer program designed to give first and second

derivative information about a variable. One such program

is called DIRSIT and is described in reference 12. In

general, both first and second derivative corrections to II
indicated angle of attack time histories should be made
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since omitting the correction for the second derivative

can, in some cases, cause the end result to be as much in

error, but in a different sense, as having made no connec-

tion at all.

Pitch Rate

The aircraft airspeed vector expressed in the wind-

axes is, referring to figure 5

- Vti (112)

/ b

v'/ vane

X2

Iya

Aircraft cg TY

zwA

FIgure 5 Orlentallon of Van@

To compute the vane airspeed vector, V' it is assumed

that the Xb axis passes through the vane. The following

equation may then be written (reference 10, page 440):
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ýV M Vt +Zb X iv (113)

W.ien an aircraft is subjected to a pitch rate there

will be a difference between the true airspeed of the

aircraft's center of gravity and the local airspeed of

a vane on a nose boom. Since the vane alines itself with

the local flow, the angular alinement error is the angle

between the aircraft airspeed and the vane airspeed

vectors.

To ,.)mpute the vane airspeed vector, Vv, the follow-

ing equation is used (reference 10, page 440)

wherc the body angular velocity is

-= pTb + Qb + q rb (114)

Recogni'ing that

•v =vib (115)

we may write

4i

V Vt P q r (-16)

V-62



Expanding the determinant

V Tt+ [-Ivrb- lvqkbi (117)

To express the velocity in the wind-axes system a trans-

formation is made through a in the negative direction.

Making use of the matrix

r cosa 0 sina

0 1 0

sin a 0 cosaJ

.taken from the section, Coordinate Systems and Transfor-

mations, te vector in brackets in equation (117) becomes

0 1 Ivr ,vr

L-sina 0 cos aj L - Pv•VqcOsa_

Tr. t.- iind-axes, equation (117) becomes

aV vt7 + -V • nj + ,vrT- PVqcosa,, (119)
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Adding componenta in equation (119)

Vv - (Vt - Ivqsina)i + P"vr" - vqcosak (120)

Remembering that the unit vector W is positive downward

and the angle, Aaq, is positive upward

ta . -(- kqcosa) (121)q Vt - Zvqsin'a

or

Aa. - tan- 1 Zvqcosa
Vt_- Qvqsina (122)

Since a is not known, an iteration procedure has to be

used to compute Aaq. In the first iteration the correc-

tions described above are added to the indicated angle of

attack so that the angle

aic + Aau + Aa + Aaboom bending

is substituted in place of a in equation (122).

True Angle of Attack

True angle of attack is determined by adding corrections

for the errors described above (boom bending, upwash, dynamic
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response, and pitch rate). If a pressure sensing device is

used, dynamic corrections may be ignored since there are no

moving parts. Upwash corrections are generally the largest,

particularly at low speeds. Corrections for dynamic response

and pitch rate are frequently not required but may be sizable

during roller coaster maneuvers, and during climbs,

especially for high performance aircraft. If values of pitch

rate and pitch acceleration are needed, they are best obtained

by direct measurement with on-board instrumentation. In the

event that the instrumentation is not available, the required

data may be computed using equations derived under the

heading, Attitude Rates, in the paragraph, Errors in Measured

Accelerations.

ERRORS IN MEASURED ACCELERATIONS

Two types of accelerometer installations have been con-

sidered: one in which the accelerometers are attached to a

vane located on a nose boom and the other with the acceler-

ometers hard mounted an the aircraft near its center of

gravity. In both cases a mechanical misalinement should be

considered. For accelerometers on a vane the sensitive axis

of the longitudinal accelerometer may not coincide with the

axis of the vane. Similarly, for cg mounted accelerometers,

the sensitive axis of the accelerometer may not coincide with

the airplane's body axis, xb.
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In addition to accounting for mechanical misalinement,

axis transformations must be made to find load factors in

the wind-axes system. For vane-mounted accelerometers the

rotation is made through the net angle which results from

combining errors due to boom bending, upwash, dynamic lag,

and pitch rate. In the case of fixed cg mounted acceler-

ometers the rotation is made through the angle of attack,

but the same errors must be evaluated since they are used to

compute angle of attack (excepting dynamic lag when angle of

attack is determined from a differential pressure instrument).

With accelerometers on a vane, accelerations are induced

at the vane by angular attitude, rates and accelerations which

are not experienced by the accelerometers when located at

the center of gravity. If the accelerometers are on board

the aircraft near the center of gravity similar accelera-

tions are generated, but the distance from the center of

gravity to the accelerometer should be small enough to

make the'induced accelerations negligible. However, they

should not be eliminated arbitrarily but only after inves-

tigation of the particular situation shows these induced

accelerations to be trivial.

An additional source of error is incurred with acc~eler-

ometers on a vane. Dynamic lag resulting from rapid con-

trol inputs affects the alinement of the vane (as well as

an angle of attack vane) relative to the local flow.
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Mechanical Misalinement

It is inevitable that there will be some angular mis-

alinement between the axes of a vane and the sensitive axes

of accelerometers (both normal and longitudinal) attached

to the vane. Considering the construction of the acceler-

ometer system, it is generally secured as ,wo-acceler-

ometer package with their orthogonality well enough con-

trolled so there is little error. Also, since acceleration

in the y-direction is not measured, misalinement from rotar

tion about the z-axis is not taken into account. The prin-

cipal source of misalinement is, then, an angular rotation

of the accelerometer case about the vane axis as illustrated

in figure 6.

accelerometer

axesj

XISCma •'S~t• a

Figure 6 Vane Misalinement Angle
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Components of acceleration along:40d notmal to the

vane are found by transforming through the angle m to

obtain -

SnVx - nXmCOB"a - nzSifEma (123)

and

n - nzjjsema + nxmstnema (124)

where the subscript m refers to measured values. In order

ti.. retain the accuracy inherent in sensitive accelerometers,

it is necessary to know the magnitude of ema quite well. To
illustrate, suppose the nx = g,. nm 1 g, and em 1degree. nXv, arising from the component of nm is 0.01745g.

Since this is several times the accuracy which may be

achieved in the measured quantities, the misalinement angle

should be known to within about 0.1 degrees.

Use of a sensitive accelerometer to measure normal

load factor is desirable in computing n (and hence
Sv

nx) particularly for climbs or other maneuvers duringS~Xw

which there are significant changes in normal load factor.

A similar misalinement angle shouldbe expected when

.I the accelerometer system is mounted near the center of

gravity of the airplane. In this case the misalinement

angle is the angular displacement of the sensitive axis

of the longitudinal accelerometer from the airplane's body

axis, xb. An axis transformation similar to that indicated
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by equations (123) and (124) is made to obtain load factors

in the body axes.

nxb M nfmCOSema - n z sinema (125)

and

nz a nl CO•Sma + n XMSflnema (126)

Observed Load Factors in the Wind-Axes System

It is necessary to make axes transformations through

the angle between the sensitive axes of the accelerometers

and the wind axes for both types of accelerometer systems

considered. This might be done by making the transforma-

tion through a single angle in both cases. The resultant

load factors have been found, however, by first transform-

ing through the misalinement, ema' as indicated in equations

(123) through (126). In the case of vane-mounted acceler-

ometers, then, an additional transformation through the

angle

Aae a+Aau + Aa. + Aa (127)
e Aboomn bending t q

is required, and observed load factors in wind axes become

nw nxvcosanet -nz sinAaet (128)

and

nz, n COSA%et + nxsin nAaet (129)
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The load factors in equations (128) and (129) are in

the wind-axes system but have not been corrected for

induced accelerations derived in the following paragraph.

For accelerometer systems hard mounted near the cge

the desired load factors may be found immediately by making

a transformation through the angle of attack, which is

computed from

a * aic + Aaboom bending + Aau + a.* (130)

We have, then

n = n -- n sina (131)

and

azwn nxb slna+ Zbosa (132)

Accelerations Induced from Attitude Rates

The acceleration at the vane referenced to that at the

cg is, from reference 10, page 443

• -a + +[d] X2V + 2acbX[ v] + v bX((bX 9v) (133)

where the body-axes system is moving and the terms in the

brackets represent derivatives within the moving system.
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Since the axis of the vane is assumed to lie on the xb

axis, the first and second derivatives of Lv are zero.

[d~v a [ d2 1  ar 0 (134)

dtib Ldt 2

Evaluating the remaining terms

[dtb b + 4Jb + •kb (135)

[b b 'b k

dL b " [ r( (°)+ b + (kvr-)Jb (k b (136)

and ib(bX J) kb •

• l~V, vr - E~vq .

" -'(q2 + r2)Tb + XvqP]'b + tvprib (3I :

Substituting equations (135) and (137) in equation (133) }

a V "acg + k'V[-(q2+r2)7b + (Pq+;)-Jb + (Pr-4T)kb] (138) !

Transforming the components to the wind-axes system, as

in equation (118) v-il
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COS a 0 sin a 12+ r2 )

10 1 0 I 4r

I

L-sina 0 cosaJv(Pr -: )

[Iv[-(q 2 +r 2 )cosa + (Pr--4)sina]1

"Z,£(qp + 'r) i(139)
XLv[(q +2)sina + (pr--Qcosa] ]

4L

The final equation for acceleration in the wind-axes is

v cg !+ Iv[-(q2+r2)cOsa + (pr--)sina]T + (QP+hJ

+ [(q2 +r2 )sina + (pr- )cosa]k1 (140)
I(4

The induced acceleration is made up of the terms,in

equation (114) representing the difference between the

acceleration at the vane and that at the center of gravity,

Corrected Load Factors in the Wind-Axes System

When induced accelerations as defined in equation (140)

become large enough to have significant effects on load

factors, it becomes necessary to caiculate load factors

at the cg in terms of the load factors measured by the accel-

erometers located on a vane.

The correction to load factor is

1--(acg - a') (141)
gr
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so that, from equations (128), (129) and (140) the load

factors along and normal to the airplane's velocity vector

are

n -. v n•SAet _ nz sinAanet + U [(q2+r2)cosa - (pr-b)sina] (142)

and

2IT

n Z n•S co8Ae + fe nxvSinnet + .V [(q 20 +" 2 )sina + (pr - 6)cosa] (143)

Since these corrections are not usually needed for

accelerometers located near the cg, load factors for this

sort of installation may be found from equations (131) and

(132).

If the corrections to load factors described above (and

to angle of attack for pitch rate) are made, the best way

to obtain the attitude rates and attitude accelerations is

to measure them directly with rate gyros and angular accel-

erometers. Any other Pmthod involves differentiation which

will magnify any errors arising from inadequate instrumen-

tation, calibration, data reduction technique, etc. Despite

these limitations, corrections can be made by use of equa-

tions presented in the following paragraph although it is

iterated that the results can be expected to be inferior to

direct measurements.
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Computed Attitude Rates

To develop body rate equations we begin with the angular

velocity of the wind-axes (reference 11, r:tge 22) including

only the changes in heading and climb angle, and adding roll

rate BIT,

Wv = (B - ýsiny)i + (ycosB + ýcosysinB)T

+ (-ysinB + ýcosYcosB)T (144)

Next we add the rate of change of the angle of attack to

obtair the angular velocity of the body axes

bw (B- asinY)T + (a + cosB + acosYsinB)j

+ (--ysinB + &cosYcosB)k (145)

Finally, to obtain the body roll, pitch, and yaw rates we

transform the components of equation (145) to the body-axes

system. The transform matrix is, from the section, Coordinate

Systems and Transformations, the inverse of that in equation

(139).

Fcosa 0 -sin B-- sinY 1
= 1 0 + -cosB - 5cosYsinB

sina 0 cosaj ) sinB + &cosYcosB

(B- sinY)cosa - - sinB + ýrcosYcosB)sila_

= Y- cosB + ycosYsinB

asiny)sina + (-ysinB + (146)

V-74



Equating the vector components of equations (114) and (146)

p = (B - osinY)cosa - (- sinE ýcobYcosB)sina (147)

q = a + YcosB + ýrcosYsinB
(148)

r = (B - esiny)sina + (-ysinB + ocosYcosB)cosa (149)

The parameters in these equations can all be computed

from airspeed, altitude, and angle of attack except for B,

B, and o. To evaluate these unknowns B is assumed to be

zero; then the other two parameters can be obtained by

reference to the equations of motion along the wind y- and

z-axes. The accelerations along these axes are, neglect-

ing smaller order terms, from equations (47) and (48)

ay w Vt(cosYcosB - YsinB) (150)

and

a = -- Vt(YcosB + rcosYsinB) (151)

The components of the local gravity can be obtained by

transforming the component

L gL ig (152)
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in the local geoctntric-axes system into the wind-axes

system. Applying the transformation matrix from the section,

Coordinate Systems and Transformations, results in

9L = gL(-sinYi + cosysinsi + cmsycosBk) (153)

Recalling that the normal load factor is positive

upwards opposite to the positive z-axis, the total load

factor at the cg is

ncg = nx 1 + nIy- nzk (154)

The vector equation for load factor in terms of air-

craft acceleration is

ncg = _-(a-cg- L) (155)gr

Substituting the components from equations (150), (151),

(153) and (154) in equation (155) and picking out the y

:nd z components

n k[ Vf(.)-cc-:YcosB - Y'ri•B) - gkcosYsinB] (156)nyw ,

and

n7-w 1 [Vt()cosB + rcosysinB) + gLcosYccsB] (2.57)
gr

With the assumption of zero sideslip the side load

factor must be zero. Theretore, from equation (156)
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Vt(,C'8yc'B - YsinB) -gcosYsirB (158)

Equaz4on (158) can be solved for tan B to give

tanB - (159)

gLcosY + Vty

Rearranging equw 3.;-. (157)

gLCcosYcO• B ..-- nsB = (Vt~cosY)sinB (160)grzw

Solving equation 0-59) for (Vt;cosy), substituting into

equation (160), and multiplying by cos B

n zwcoSB - (gkcosY + Vty)cos 2 B = (gLCOSY + VtY)sin 2 B (161)

Since cos 2 B + sin 2 B = 1, equation (161) reduces to

cosB + (162)
grnew

Multiplying cosB of equation (162) times tanB of equation

(159) the following results

sin B Vt cos Y
gnZW
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or solving for

,r sinB (163)

Vtcos)'

From triaonometry

sinB = ( -coshBY (164)

so that

sinB [ I (LfsY + Vt 2 (65)
gr nzw

Substituting into equation (163) and rearranging

I •grnz) - (gLCOSY +! ty-
""-- (166)

Vt cos}'

Equations (162) and (16(6) provide the required values of

B and o to suZ., "titute into the attitude rate equations,

((147) through (149)'. The pitch angular acceleration,

q, required in equations (1421 and (143) can be obtained

from time differentiation of q in equation (148). These

sin B and 6 become negative when

g-+ ) 2 < 0.
gr nz w
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equations include the true normal load factor, which can

be approximated satisfactorily by the weasured value.

INERTIAL NAV'IGATION SYSTL&t-

Ai. "*.ertial nav.jqation system from -..hich ar-e obtain,-ýd

the output from, a three-axi, accelerometer syste.. anr

sufficient orientation anqies to find components in the

wind-axis system has a very important advantaqe over the

accelerometer installations previously described. That is,

the need for makina corrections for boom bending, upwash,

dynamic lag, pitch •xate or for induced acctlerations in

values sensed by accelerometers mounted on a vane are

eliminated. Since the inherent accuracy of Che orientation

angles defining the position of the three-axis accelercmnetex

system is superior to conventional angl-e of attack measure-

ments and the uncertainties assoc4"ted with above correc-

tions are eliminated, comnpo~ted load factors in the wind-axes

from an inertial naviqation system can be expected to be

significantly more accurate than those from the accelerometer

systems previously described.

Comparative disadvantages of an inertial navigation

y.:t-m may be: increased preflight checkout time, poorer

reliability with increaseu maintenance, and higher cost

(presuming that the test aircraft has not been equipped

with an operable system).
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Because of the variety in desiqn of inertial nay-i-

gation sy-sems, the orientation of the a.celerometeir

(Ipends on the specific system being used. hence, the

axes transformations to obtain load factors in wind-axes

are not presentea.

RADAR MLTIIOD

Lquations are presented which may be used with data

from radar (%r position data front sone other source such

as Askania cameras) to compute load factors and hence

excess thrust.

Figura 7 hiows the radar system lociated with respect

to the geocentric coordinate system in tie-- of -e ,i -

centric latitude, 6L' the heightf above the reference

ellipsoid, ; the anguiar deviation of the xr axis from

true north.

Xr ýr~aroriginz hr

Figure 7 Radar System
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The origin of the radar system in geocentric ýoordinates

is given by

Xel - (r + hd)cosaL (167)

Ye o I 0 (168)

and

Ze' (r + hr)sinaL (169)

r, repeating equation (5) from the section Geophysical

Properties, is

r = r,(.99832172 + .00167Gi3cos28 + .00000211cos46L) (170)

As may be seen by figure 7, rotations of (,r +1800) and

dL a,.,e necessa-yy to aline the radar system with tLe geocentric

5jstem. These rotations result in a rotation matrix given by

F- sinLcos Or sinfl'L-'' - cosaL

:M(r + 17, k)I s!nr -cOS~r 0 (171)

Cos-coscOs~r cosSLsinr sinkl -
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The position of an aircraft in geocentric coordinates

is obtained by addition of the rotated radar coordinates

to tile components of the radar origin in geocentric

coordillates:

Y IM(.. . Yr + Y (172)

zen, J LtzrJ [Z

Since xe ', Ye' , ze', and (M(Or+ r. L)] are constants,

the transformations of aircraft velocities and accelera-

tions are given by

Zem

(173)

The components of velocity and acceleration are deter-

mined from a smoothing ana differentiating process of the

position data.

Since the itr. Yr' Zr system is attached to the earth-.

and rotates with it at an angular rate of w,, accelerations
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due to w. are generated. In order to find inertial accel-

erations which may he related to forces acting on the air-

craft and to load factors, equations (174) through (176)

are uaec3;

Me Xem (0, 2 2 y'Ci w %1 4
- xci-Xe (,, +2Y CL)74)

Ye Yem &mWO 2-J' (1n5 "

and

- (176)II
Next, the above accelerations are transformed to local

geocentric wles. This is accomplished by use of the matrix

found in the section, Coordinate Systems and Transformations,

and results in

X- cos AALsink - sinl ALSi"t&L -cosa&: X,

1 L sinAAL COsAAL [e (177)

Sz L e°SAALCOsk - sinAALCOSLu sinkt L (177)

V-8$
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AXL is the difference between the aircraft longitude and the

longitude of the radar coordinate origin as shown in figure

3 of that section.

Gravitational attractions as computed from equation (15)

of the same section may be readily added to the accelerations

from equation (177) and load factors computed:

-X-g = (*g - gg) (178)
nxg g

y Y9 T Yg (179)

and

Z -g __ - gz) (180)
nzg g

Transformation into wind axes but at zero bank angle

is accomplished by means of the matrix [M(a,y)] expressed

in equation (14) of the section, Coordinate Systems and

Transformations:

n O[m( o, Y)] ny Y9 (181)

The angles o and y when computed from radar data for

use in equ~tion (181) require a knowledge of wind speed
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and direction as a function of time. Velocities in local

geocentric axes are found through the same rotation matrix

that was used with accelerations in equation (177):

jXgin coSAXLsin - snAXLsinfL - COS8 L Xem

"" I sinAAL -cosAXL 0 ;e (182

J L.Zgmn . "c°SAXLC°S 8L -- silnXALCCS•r sif&L_ .Zero

Velocities in the wind axes become

iw = ing + V,.cos& (183)

;w Ygm + VwCoSb (184)

and

S 4Zg (185)

with the assumption that winds are in the local geocentric

system.

Aircraft velocity with respect to the airmass is

V• 2
Vt = (xw + y 2 + w2½ (186)

The two angles, y, and o, for use in equation (181)

become
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Ssin- 1  w (OP")vt

and

a - tan-1..,. (188)xw

Bank angle may be defined as

B = t - 1 ywI (189)
nzws

A rotation may then be made through B to obtain load fac-

tors in banked flight. Performing the transformation the

load factors become, with the aid of equation (189)

Snxw nxw,, (190)

nyw= 0 (191)

and

nz -U (nyw, + z., (192)
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STANDARD CLIMB SCHEDULES
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SUMMARY

Various standard climb schedules are considered (e.g.,

a segment at constant calibrated airspeed followed by one at

constant Mach number). Equations are given to compute the

break altitude or juncture of these segments. Climb speed

derivatives from which acceleration factors may be computed

are derived for each schedule.
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SYMBOLS USLD IN ThIS SECTION

S•bol Definition Units

a speed of sound knots or
ft/sec

Af acceleration factor dimensionless
AfE acceleration factor associated dimensionless

with energy height

gr reference acceleration due to ft/sec2

gravity

g local effective acceleration due ft/sec2

L tc gravity

H pressure altitude ft

HE energy height ft

P flight Mach number dimensionless

P ambient pressure in. Hg

9c impact pressure in. Hq

Vc calibrated airspeed knots

V e equivalent airspeed knots

Vt true airspeed knots

Sa ambient pressure ratio dimensionless

Sa ambient temperature ratio dimensionless

Sair density ratio dimensionless
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INTRODUCTION

It is desirable to present aircraft performance during a

continuous climb for an arbitrary (standard) climb schedule;

generally the one which the pilot was attempting to follow.

Since climb schedules cannot be followed precisely, il'rge

deviations in rates of change of potential and kinetic energies

occur, although the sum of the two can usually be expected to

change quite uniformly. In order to find rates of climb along

an arbitrary climb schedule, acceleration factors together with

climb potential (rate of climb for zero acceleration along the

flight path) are used as described in the section, Standardiza-

tion of Performance Parameters. The information required to

define standard schedules and to compute acceleration factors

is presented in the following paragraphs.
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STANDARD CLI!' SCiILDULLS

DL.CRIPTION OF S'PA',DAPD SCiihDU'LLS

In standardiziihr :,ircraft rerformance durina continuous

clipbs, it is desirable tc r'a'e correcticns to an arl,itrary

(standarL) cliwbh scl-ecule; generally t1 :e one which the pilot

was attemptinn to follo:. Since cliri- schedules cannot he

followed precisely and climb potential may vary rapidly with

speed, large corrections may result. The largest corrections

should be expected when clirbing at a hiah subsonic speea

(typical of best climb speed for .iCl'. performance aircraft)

where drag increases very rapidly when !Nach num-ýbers exceecd

those for best clirl).

Four standard climb schecules are consicaered. These are:

(1) Initial secw'ent at constant V with the remainrer0

at constant "

(2) True sreec specified as a function of altitude -

for any arbitrary schedule with altitude montonic

increasing (test and standard altitudes taken to

be ecual)

(3) Initial seanent at constant 7 with the rer.ainder

at constant ?,A

(4) True speed specifieu as a function of altitude -

for any arbitrary schedule with altitude permitted

to decrease but with HE monotonic increasing (test

and standard energy heights takei. to be equal)
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Constant Mach number, constant Vc, and constant Ve climbs are

not listed since they can be considered as special cases of (1) or

(3). Equations pertaining to the standardization of climb perfor-

mance along each of the above schedules are derived in the follow-

ing paragraphs.

BRLAK ALTITUDL

For schedules %I) or (3) it is convenient, when using a

digital computer, to loaC in desired standard values of speed

and Mach number and have the intersection of the two segments

of the schedule (break altitude) computed.

constant M

Altitude break
-- altud•e

7con stckt
cVor V e

Mach Number

Figure 1 Break Altitude
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To do this, cowbinations of V less than or more than aSL

and subsonic and supersonic Ž1ac2" numbers r.must he considered.

(Reference figure 2.) If Vc > aSL then, of course, M > 1.0

so that ti-c combination Vc > aSL and M < 1.0 cannot exist.

Lreak altitudes for the three rer1,aininq com.binations of V andc

M are derived as follows:

/ Case T

Case I: as i:L
V C5SL m 1.0" Hc 1.0 Cas e MI:

VC > SL
7  > <11.0

1.0
M

Figure 2 Combinations of Vc and M

CASL I (Vc < a(L, M < 1.0)

Substituting y = 1.40 in equation (21) of the section,
Flight Parameters from Sensed Environment.

qc = [.1 + 0.202]3.5-

aP

To find the conmmon value of ac/P aauc hence the Lreak altitude

V 1-8



the above equation is equated to the corresponding relation con-

taining calibrated airspeed

- [ +0.2 (X.V]c (2)Pa Taj~ a SL

which follows from equation (9) of the section, Flight Parameters

from Sensed Environment.

Aa + 0.2(L..)2]3.5 1J (1+0.2M2). 5 1 (3)

From which

1 +0.2(ac )2]3.5 1

1a= 23.-5 (4)

(I + 0.2M2• 3 5- 1

6a can then be easily converted into altitude. For example,

from equation (14j in the section, Atmospheric Environment, for

the troposphere in the U.S. 1962 atmosphere

1 -�a1/5.2559

H a

6.87558 x10- 6
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CASE II (Vc < aSL, V > 1.0)

Following the same procedure, from equations (2) and (8)

from the section, Flight Parameters from Sensed Environment.

[1+ 0. 2 ( (a )2]15- 1
a SL 

(6)
166.921 M 1

(7M 2 _ 1)2.5

CASE III (V > acL, M > 1.0)

As before, frorn equations (9) and (10) of the same section

166.921( V )7
aSL -1

[7( Vc) 2 i] 2.5
8a a•SL 7 (7)

166.921 M I

(7M2 _ 1)2.5

The break altitude for a constant V - constant M schedule

can be found more readily. Equation (13), also from the same

section, ..-aL, *e resLaLed as

Ve - aM v (8)

The velocity of sound in a perfect gas is proportiondil to the

square root of the texiperature so that

a__ . ý 0(9)
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From the perfect gas la,..,, 6 a ae a- Substituting this relation-

ship and equation (9) in equation (8)

a (10)Ve SL M'V6a

Solving for 6 a

8a
a SL M

The break altitude may then be computed, as for the con-

stant V c - constant M schedule, from equation (5) or other

appropriate 6 a H relation for a given atmospheric layer.

Equation (11) is valid ,for all values of M and Ve.

AIRSPEED-MACII NUMBER RELATIONISLIPS

The airspeed - Mach number relationships which are needed

for climbs are presented below. For example, when using sched-

ule (1), Mach numbers at the test altitudes along the constant

V c portion of the climb are desired; conversely, when a con-

stant Mach number is specified the corresponding calibrated

airspeeds are des'Lred.

The equations that were used to determine break altitudes

for the same combinations of V c and M are used to calculate

both V c and M.
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CALIBRATED AIRSPEED AND MACII NUMI)LR (Vc < aSL, M < 1.0)

Vc is, solving equation (3)

aSL'~{8a(10.2)~1]+ 1}12/7 Y2 (12)

and M is

" 9"Vc ,2) 3.5[,[1+0.2(:Z/ -SL +12/7 I)Y

M / [ aSL +- + 1 (13)M \t aa

CALIBRATED AIRSPEED AND MACII NUMBER (Vc < aSL, it > 1.0)

Solving equation (6) Vc is

~c - uS--V({..7 - 1 • + 112/7  )

and M is

M 1669{[1 +0.2( )23.5 + )] (15)IS1I

In this case an iterative solution for N must be made since equa-

tion (7) cannot be solved explicitly.
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CALILRATLD AIRSPEED AND M,1ACE NUMBULR (Vc > aSL' r-1 > 1.0)

Sol~yvng.,eqvatipp (7)" for Vd

Vc aSL .9 15a 166.921M.5 , [ . (16)
(7M SLP

In this case also, Vc must be found througt, an iterative proceCure.

M from equation (7) is

166..921 .,(VC 1/7
aSL_ 1\5/2

66918a7V 2_12.5 1(7 -1 )

a SL J(17)

here again an iterative proceLdure is needed to.fJic 1.,.

Ve may be found for t]he re;.,aininq schedules by first con-

verting Ve or Vt to .' and then usinrr ecuation (12), (14),

or (16) as appropriate.

CLIHF. ,5PEF:D DERIVA•ZIVL, dV,/dl;__ _ __ _ __ _ _ C '

The acceleration factors discussed in the section, Standardiza-

dion of Performance Parameters, and defined by the equations

Af .L(I \+Ut ) (18a)gr gr dH1

and
"1-.r(

AfE = (r - CIL 8!*)

are of importance in establishina climlb ver~ormance. With tn;.,

rate of climb alonc the standard clim~b schedule nmay be found

from standardized excess th.'ust. Values of c':t/CI for tlle

v -1c



various combinations of v and Mi. are derived in the following

paragraphs for a constant Vc.

CLIMB SPEED DLRIVATIVr, dVt/dh;c, (Vc < aSL, M < 1.0)

From differentiation of the relation Vt = aM

dV M..a1 (19)
dVt %Mda M (19)

d7He dHc dHe

Since Vc/asL is constant with respect to the differentiation

indicated, the termi

[1 + 0.2 (Lc-)2] 1aSL

in equation (13) may be replaced K1 to give

M - T5[(1+ 1)2/7-I] (20)
Ba

Differentiation with respect to Ic produces

5K1 d'a
dM dHc
dH-- " 7 2  (K + 1) (21)
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Equation (21) might be used, substituting it in equation (19);

a more simple form may be derived, however. From the definition

cof KI

2+ + (22)
5 Ta

Substituting in equation (21)

' ~ ~~~5[(l + 0.2M2)3"5- l-- S (2"a

d M ._- - ( 2

- 78aM(1+0.2M2)Z'

But

1 dL a d(In8a)
8a dHc dHc

so that substitution in equation (19) produces

d Vt 23,,5"dVt M da. 5a[(l+O.2M2) - d(In~a) (24)

dHc dHc 7M(I + 0.2M 2)' d i~c

The derivatives da/dhc and d(kn 6 a)/dlic are presented in subse-

quent paragraphs.
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CLIUTE SPLED DERIVATIVL, dVt/dhc, (V c < aSL' D > 1.0)

Lquation (15) may be rewritten as

7 K • + 1)(7M 2 2.5 (25)
166.921 M . ( )(' 1..I)

Differentiating and collecting terms

dL[7 x166.921M 6 - 05M(! + IV(M 2  1)'-]

(26)

K _1(7TM2_ 1)2.5 d(Insa)
Ta dHc

Substituting for K1 from equation (25) and rearranging

166.921M7_ (7M2_ 1)251 7M - 1)2-d(InS.
dM dHc (27)
dHC 1168.45M6 (2M2 - 1)

Substituting, as before, in equation (19)

d'4 -M±~~ a[16.92M7-(M2 1)2*5](M2)dl~a(V [6. 21M' -(7~ (28dHc dHc 1168.45M 6 (2M 1) dHc (28)
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CLIMB SPEED DERIVATIVE, dVt/dlic, (Vc > a

Rewriting equation (17)

I
7 1 ]' 11+ .,2.5

166.921M7 -72.5 - 1)(7M2_ (29)

or

166.921M7 - (j2 + IX7M2 _ 1)2.5  (30)
sa

where

166.921 ( )

K2 2 - 1 (31)
U aSL

Since the form of equation (30) is the same as that of equa-

tion (25) the same final equation for dVt/dHc will also apply
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in this case. Repeating equation (28)

dVt M da a(166.921M 7-(7M2 -1) 2 .5 ](7M2 -1) d(In8a) (32)

dHc dHc 1168.45M 6 (2M2 1 1) dHC

CLIMB SPEED DERIVATIVE, dVt/dH c, (Ve not constant)

Values of dVt/dhc during a climb at constant Ve (as during

schedule (3)) may be found from differentiation of Vt = Ve/Ivr-

to obtain

dVt Ve, do (33)
dHe 2 o/ 2ZdlHe

Por the cases where Vt is specified as a function of lIc

(schedules (2) and (4)) dVt/dHc or dVt/dHE must be found by

numerical differentiation since they cannot be calculated by

analytic means.

When 2Iach nimber is maintained constant equation (19)

reduces to

dVt - M da (34)

dHc dHc
C

and values of da/dI c, as for constant Vc climbs, are found

from the following equations.
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SPLLD OF SOUND DLRIVATIVE, da/dHc

The following equations are given as an aid in computing

cIVt/6c1 and are to be used in eacations (24), (28), and (32).

Differentiating equation (4) from the section Atmospheric En-

vironrment, with respect to Hc

da 1 (yR)/ dTa (35)
dHc 2 'a d-Hc

Substituting equation (12) from the section Atmospheric Environ-

ment, with H replaced by Hc and LM for dTa/dHc

d a LM[YR]
dC2] " T a)b+LM(Hc-Hb (36)

Substituting constants appropriate to the U.S. 1962 atmosphere

d a 0.0651520 (37)

dHc (288.15 - 0.0019812 Hd)

in units of feet/sec/foot for -16, 4 04 . 2 0<Hc< 3 6 ,0 8 9 . 2 4 feet

dad-0 (38)

for 36,089.24 < h < 65,616.80 feet
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d a 0.0100234 (39)dHc (916.65 + 0.00030,48( Hc .. b)]

for 65,616.80 < j < 104,986.8f feet and

da 0.0280641
dc r228.65 + 0.0008534(fIc- Hb)]A (40)

for 104,986.88 < L < 154,199.48 feet

PnrSCURL RATIO DLRIVATIVL, d(kn 6a)/C1c

The followinc equations are aiven as an aid in computing

dVt/Qhc and are to Le usecd in equations (24), (28), and (32).

iation (16) from the section, Atmospheric Environment,

may , rewritten as
=+a LM 9-S/R LM

8a __ ( 1+ (H -Hb) SL (41)
PaSL (Ta)b

or taking the logarithm

Ia= 5SL In (ab I + L-- (Hc- Hb)] (42)
RLM PaSL (Ta)b
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Differentiating with respect to hc .

f l" -S ( 4 3 )

dHC R(Ta)b 1 LM(H H)]
(Ta )b

when LM P 0.

Taking logs of equation (17) from the section, Atmospheric.

Environment

lna ,In(Pa)b -SL(Bc- Hb)(
PaSL R (Ta)b

Differentiating with respect to II

d(ln~a) _S'L (45) L

dH B(Ta)b(

when LM = 0.

Substituting constants appropriate to the U.S. 1962 atiuosphere

d(In8a) 0.361374 x10-4[ 16]

d1c I - 6.875586 x 10-(6 Hc (46)

in units of feet-I for -16,404.20 < Hc < 36,080.24 feet

d(ln8a) -0.480637x10-
4  (47)

dHe

for 36,089.24 < I < 65,616.80 feet
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d(In~a) 0.803 x 1-4[ 1 (8

(d - I480637x + 1.40688 xL- 6(H.- 65,616.80)

for 65,616.80 < I. < 104,986.88 feet and

d~rl 5a) 14
'['+ i" 104,986.88)] (9dl0 -0"455412x10- (49)dHc6
3.35100 14968)

for 104,986.88 < 11 < 154,199.48 feet

DENSITY RATIO DERIVATIVE, do/dHc

The following equations are listed to provide assistance

in computing dVt/dHc when Ve is constant, as in equation 33.

After differentiating equations (19) and (20) from the section,

Atmospheric Environment, we have, after substitution of

appropriate constants from the 1962 atmosphere

d - - 0-6 3.2559 (501dH- 2.92618x 105( 1 - 6.87558 x 1050C

in units of feet- 1 for -16,404.20 5 H _< 36,089.24 feet

d.I_ - -- 1.42785x110- 5 exp[ - 4,80 637 x10 5 (Hc - 36089.24)] (51)

for 36,089.24 -5 H -< 65,616.80 feetc
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d . ,. _3.55517x 0-.6  + 1.40688x10--6 Hc 65616.8)1-36.1634 (52)

dHc

for 65,616.8 Hc < 104,986.88 feet and

do _ 5.31944x 10 -7 + 3.73252x10 -6(Hc_ 104986.88)]-14.2012 (53)

dHc

for 104986.88 -S H _5 154,199.48 feet.
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SECTION VII

STANDARDIZATION OF

EXCESS THRUST
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SUMMARY

Standard excess thrust is found by extrapolating to a set

of standard conditions using a Taylor series expansion. From

a functional statement defining excess thrust and the equations

of motion, partial derivatives of excess thrust with respect

to each of the independent variables have been found. The

terms are collected into an equation which may be used for

both climbs and level accelerations. This has been done for

first order terms, which, it is expected, will generally be

sufficient; second order terms have been derived so that they

may be included if their magnitude warrants it. The standardi-

zation equation cannot be solved directly, and an iteration

procedure is needed. A description of it is included.
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I.F

SYMBOLS USED IN TIlS SECTION

Symbol Definition Units

CD airplane total drag coefficient dimensionless

CL airplane lift coefficient dimensionless

cg center of gravity pct MAC

Fe engine ram drag lb

Fex excess thrust lb

F gross thrust lb

Fn net thrust lb

g acceleration due to gravity ft/sec2

gr reference acceleration due to ft/sec2

gravity

h tapeline altitude ft

Hc pressure altitude ft

iF thrust angle of incidence rad

M flight Mach Number dimensionless

n load factor along negative dimensionless
Sw wind z-axis

Pa ambient pressure in. hg

q dynamic pressure lb/ft 2

r local radius of the earth ft

S wing area ft 2

t time sec

Ta ambient temperature deg K

Vt true airspeed knots

W airplane qross weight lb
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a angle of attack rad

Y flightpath climb angle measured rad
from the geocentric horizontal
plane

YD flightpath climb angle measured rad
from the geodetic horizontal
plane

6 aircraft geocentric latitude rad

0 flightpath heading angle rad

10 angular velocity of the earth rad/sec

Subscripts

standard day conditions

t test day conditions

dot denotes first derivative of a
quantity with respect to time
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I.

INTRODUCTION

The test excess thrust, computed by one of the methods out-

lined in the section, Determination of Excess Thrust, is extrapo-

lated to a set of standard conditions. In the following analysis,

excess thrust is taken to be sensitive to the following parameters:

(1) temperature, (2) weight, (3) Mach number, (4) pressure or alti-

tude, (5) normal load factor, (6) power setting, and (7) center of

gravity. Of these variables the first five obviously have a bear-

ing on thrust and/or drag and hence on excess thrust. Adjustments

to excess thrust for changes in power setting would not be made in

most cases but might be desirable for a variety of reasons; for

example, a correction may be needed to account for a power lever

which has been improperly riaged. Inlet total pressure ratio

was not included as an independent variable since it uas consid-

ered to be a function solely of Mach nunber, which has been

treated as an independent variable. This assurption can, in

general, be made quite satisfactorily. As speed is increased

and a Mach number of perhaps three is reached, total pressure

ratio may become a function of other variables as well as Mach

number. In this event, appropriate functional statements,

depending on the particular installation, need to be written

and corrections to excess thrust made for variations in total

pressure ratio.

Standardization of excess thrust is accomplished by first

expanding excess thrust in a Taylor series about the test day
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point through the first order terms. Then the development of

expressions for the partiai derivatives of excess thrust with

respect to each of the variable test conditions is presented.

Next, the equation for the standard excess thrust in terms of

flight test data is developed. Finally, a mcre precise equa-

tion for standard excess thrust is derived by following the

above steps but carrying the Taylor series expansion through

the second order terms.

TAYLOR SERIES EXPANSION OF EXCLSS THRUST-FIRST ORDER TERMS

The two equations of motion resulting from force balances

along and normal to the airplane's velocity vector are basic

to derivatives in the fQllowing paragraphs. Excess thrust,

from the longitudinal equation of motion is*

Fex = Fcos(a + iF- qSCD (1)

and the equation of motion normal to the fliqhtpath is

qSCL - nzW - Fg sin(a +iF) (2)

Equation (1) is examined to determine a functional rela-

tionship for excess thrust. It is well known that net thrust

depends on ambient temperature, Mach number, and pressure (alti-

tude). Power setting, w, is also included so that changes in
*The excess thrust is, properly, FgCOS(a+iF)-F-qSC. This is

quite a satisfactory approximation, however, and imnDlifies the

following derivations.
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power lever angle or other measure of power setting can be made.

Hence, F = f(Ta, M, P a 7Q). Both CL and CD may be expressed

as functions of a, M, and cq (CL=f(a, M, cg) and C D=f(c, M, cg))

with the center of gravity included to account for changes in

trim drag. It is more convenienit, however, to express drag

coefficient as CD=f(CI, M, cc). From these relationships

n zW - F~ s n a i )e u t o
together with q=0.7P aM2 and C- n s from equation

(2) , excess thrust may be completely dJefined by the functional

-tatement

Fex ' f(Ta, W, M,PPa'nz1'cg) (3)

A Taylor serie. expansion of the excess thrust about the test

day point results in the expression for standard excess thrust:

dF aFeFoxs = Fext + 'xt as -Tat) s- LW

+ ýFet(M F,,xt_
amext( - Mt) + (9P Pas -Pat)

+ M s t a

aFex aFex+ anzt)+ (s t)
an a(z
d Fex

+ a-- -(Cgs-Cgt) + higher order terms (4)
dcg

Magnitudes of the higher order terms are less than those of

the first order terms but will, at some test conditions, be

significant. The partial derivatives in equation (4) are
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evaluated first, and then attention is given to the second

order terms.

VARIATION OF EXCESS THRUST WITH TEST CONDITIOMS

The partial derivatives in equation (4) are found by

differentiating equation (1) w.:Ith respect to each of the

independent variables. It is important to note that, in each

case, the normal equation of motion (eauation (2)) provides

a constraint on the equation for excess thrust. The arale of

attack must vary in such a manner that both equations are sat-

isfied simultaneously.

Temperature

To determine how excess thrust varies with temperature,

the relationship q=o.7PaM2 is used and the partial derivative

of equation (1) taken with respect to temperature:

aFex cos(a + F)LOUF da P M2saCDaT fl ÷laI) 0.P M
aTa na aT

The reason thrust varies with ambient temperature is well

known; however, the dependence of angle of attack and drag

coefficient on temperature requires an explanation.

Figure 1 shows a component of thrust in the direction

of the lift vector. If the thrust is varied, then the angle

of attack must vary to adjust the lift to the new condition.

The changes in angle of attack and lift cause a chanqe in the

induced drag similar to that caused by a weight change.
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chain rule differentiation of a = f(CL, N, cg) with M and ca

held constant produces

- =a, dCL
S- -(6)aTa OCLATa

and similarly

aCD 0CD aCL (7)
dTa aCL OTa

s f b dffe tng t a

T -sin(a+ iFO) F- Fn +cos(a+ iFq J (9)

a a a

Again using the transformation expressed by equation (6):

sin(a + iF),Fn
aCL T (10)

a qS + FncoS(a + iF)daL
aCL

The equation for the variation of excess thrust with temperature

is found by substitutinq equation (10) in equation (8).
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aFex + Fn + sin dF D

cos(a + iF)a ÷ in(a + F Fsi(a)+iF)÷+ qS3--(
s FsCL

Weight

The partial derivative of excess thrust with respect to weight

using equation (1) as the expression for excess thrust is

aFex _ Fnsin(a+iF )W - qS a (12)
aw

Again transforming variables through chain rule differentiation

with M and co constant:

aa aa aC L

a= W CaW (13)

and

aCD aCD aCL (14)

Substituting these transformations into equation (12) and

rearranging:

aFex +F sin(a+iF)+q SacL aTC (15)

-WC°

The partial of the lift coefficient with respect to ýveight is

found by differentiating equation (2).

q =- n -F Oa
a z cOs(a + iF) (? (16)
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Substituting equation (13) in equation (16) we have

aCL nz
F(17)
W •-cos(a + IF) + qS
aC L
oa

The general expression for the variation of excess thrust

with weight from equations (17) and (15) is

I ~aCD"I
aFex " Fnsin("a iF)+_qSa'D-(1

dWIFg cos(a + iF~ + qSi a

Mach Number

Inserting the relationship q=0.7PaM2 in equation (1)

and differentiating, we have

aFex aFn aa 2qSCoD qS (19)
am am cos(a÷ iF)- Fnsin(a+MF)am M am

Holding cg constant, (' is a function of M and a, but a is 1.
deperdent on M so that

CD - fMFa(M, a2

Differentiation of equation (20) with respect to M yields

aCD aCDI M + CD a

a'm - I a-M-M T. Im M

which reduces to

aCD CD1 acD, a
aM- M a a maI--?MD (21)
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Differentiating equation (2)

2C~qS SaCL aF La
"' + q -- sin(a + iF) + F cos(a + iF) (22)

Equations similari to (20) and (21) may be written with CL

in place of CD, Substituting in equation (22)

m aqS S(a- la+ a- m-c L IM ) -- _ sin(a+iF) F + coSF9 Co iF)aal

(23)

Solving for am

aa M2CqS + qS-M'I + --- sin(a +irda- " -m a aCm (24)

Fgcos(a + iF)+ qS M

Substitution of equation (21) in equation (19) yields

aFex aFn 2CDqS aCD F aCDI1 Saa

am aCs M + d -MlIa - Lýnsin(a+iF) + a-IMj a--M

(25)

Finally, after substitution of ecauation (24) in equation (25)

OFex aFn 2CDqS

aM aM M aM-Ia

2F CD L M + qS aT LI + d-M-sin(a+ iF)

+ [Fn s;n(a 4 iF )+ -ý-Dl ]q -- a aC a
da IMF. cos (a +iF) q Sa IM

(26)

VI11-14



Pressure

Taking the derivative of equation (1) with respect to

pressure

c•vFex os a n_- qSCD aCD (27)
cFs(a+iF)- ' Fnsin(a+iF) a Pa

'p ap'a aa Pa apa

Substituting the transformation of variables produced by the

same method as previously used

a.a aa aCL (28)
aPa aCL ýPa

and

aCD ýCD aCL (29)
OPa aCLaPa

results in

OFex aFn qSCD IFsin(a.i)aa + qS C (30)
aP-"a" cos(a+iF )oPa a aiC L q.L a 30

The partial derivative of lift coefficient with respect to

pressure is evaluated from the equation of motion normal to

the flightpath. Differentiating equation (2)

-ac qSCI aF . aa ,L,qS- + -= -~ -- sina+iF)-FgcoS(,,÷lFJ)----
aPa Pa aPa a

ViI-15
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Using the transformation

aa aCL (32)
aPa aCLaPa

equation (31) becomes, after rearranaing

qSCL
-.- Lsin(a+iF)+ PaCL ONa Pa

• ja (33)
a~a Fg cos(a + iF a--+ qS

Substituting equation (33) in equation (30) we have the

general expression for the chanqTe in thrust with pressure.

aFex aFn qSCD
-- cos (a + iF)

aPa aPa Pa

Fnsin(a+ iF) a qSC+
aa sin(a 

-F +SFgcos("+ iF)+qCL aa

L Jda -a j
(34)

It may be more convenient to maake the tr&n•iformation

Fn Fn aHc (35)
aPa ac aPa

3H
and substitute in equation (34) with c beinq evaluated

from the appropriate altitude - pressure relationships.

For example, differentiatinq

Pa aSL(1- 6.87558x10 6 H )5"25591 (36)
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taken from the U.S. Standard Atmosphere, 1962, for altitudes

below the tropopause

0Hc 13.0703

a (1 - 6.8755Sx10 6  )4"25591 (37)

in the units of feet/lb per square foot.

Load Factor, n z

Differentiating equation (1) with respect to normal load

factor yields

aFex - Fn'sin(a+ iF)a-a qs(CD
an anz a (38)

Proceeding as before

Oa da LCL (39)
nz CL anz

and

oCD aCDaCLS. . . .(40)
anz aC L nz

equation (38) becomes

---- = -aCL .sCD 3CLor., ,n sinla +iF)ýa- qOCL (41)

aCLLanz aCLanz

3cL
The term -L is evaluated by taking the partial derivati-c of

z
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equation (2)

qS CL- - W-F cos(a+iF aa (42)
anz anz

From which

aCL W
an- COS(aanI;)+qS (43)

daCL

Substituting equation (43) .in equation (41)

dFex Fn'sin(a +iF)+ qS ',_D'

. .a - (44)
an- I ISFncos(a + iF )+ qS -- a

Power Settin"

The expression for the partial of excess thrust with respect

to power setting is developed by taking the partial of equation

(1) with respect to f,

aFex )OFn F .sa qCD
-= c +1F(a)iF -- Fdsin(a+iF)L - qSan (45)

Expressions for the following charne of variables may be written

following the methods used in the preceding derivations:

_a aa aCt (46)
5 C L an

VI1-18
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and

aCD OCD OCL
alT " ~acL a(47)

equation (45) becomes

aFex Cos( aF aa aCD] CLF)- Lrnstn(a+iF)aa L q~anL-

The variation of lift coefficient with power setting is deter-

mined by taking the partial derivative of equation (2) with

respect to power setting.

qsC _ -"Osin(a+ iF)- Fgcos(a+iF)La (49)

Substituting equation (46) and rearranging

aF9
3CL -asin(a+ iF)

FO -- COS(a + iF ) qS (50)

The variation of excess thrust with power setting becomes,

after substitution of equation (50) in equation (48)

saCD

S (Fnsi51(a+iF)+q5a)Fgaex cos(a+ iF)Fn + a + aiF) (1
Ow IT FgCos(a + iF) + qSC-
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Trim Drag

Differentiatinq eauation (2) with respect to cg yields

aFex - - Fnsin(a + iF)a - qSacD (52)

cOc" acg q , cg

As previously stated CD = f(a, m, cg). Since trim, dracr cor-

rections are made at constant Mach nunber the functional rela-

tionship

CD - f cg, a(cg] (53)

may .'e set down. The partial derivative of CD with respect to cg

then becomes

aCD aCD, OCDJ da+ (54)

acg 3acgla da Cg acg i

Substituting in equation (52)

o e x )a__ae= -F nsin(a+iF)' -- qS (SQ= + -__..h) (55)
,)cg -cg acg la da Icqicg

From diffe:-entiation of equation (2)

+ a - ('a) = - F s+(56)
dcg la + 'cg .cg acg

Solvina for _.

VIH-20



-g -C(57)

cg F9 cos(a +iF) + q S .OICg

Substituting equation (57) in equation (55)

Fn in(a+ V+ SaCDI

Fex a-a' cg OaCL) SCD1  (58)
-qS -I -q J 58

AOcg F cos(a+ )+ qSCLcg la cg a
9 aa

1!ý-IDARDIZED EXCESS THRUST

An examination of the preceding derivations shows that the

term 'Csnai~+SED IMc
Fnsinla + iF)+ qS Ta c

Fcos(a+iF)+q S ýC- c
S da'M,Cg

occurs in each of the equations for the partial derivatives.

Setting this term equal to A and summing up the corrections as

indicated by equation (2) we have

aFFn aF

Fexs ext [cos(a+ VF n + Asin(a + iF)<](Ta Tat)

An(W-W Fn 2CDqS OCD
- Anz(Ws - Wt) + {m"coss(a + V M - al

MA C +qS sMCLI aF Msin(a +iFV st
m" am q la +ami a s t

)OFn alic qSCD Falglc
+ os (a +i V aa P + Aacp. Sin(a +iV

+ -{P1,) +f Oqsa +iF)aFn + A Fg sin (a +iF] 7 t)

LSCL (paCl -p a g

AWt( nzt) q + [AqS i - q S.-D (cgs - cgt)- ns - + acg 1a]

(59)
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Equation (59) can be simplified by considering the total

change in net thrust caused by changces in temperature, Mach numn-

ber, and pressure. The total change in net thrust is

Fn s- Fnt = FnITas, MsPas- Fn ITat, Mt,Pat (60)

or

OFn Tat) + aFn M Fn p Pat)
Fns- Fn t = m--(Ta- T -M(Ms-Mt)+- aa (61)

The change in net thrust may be determined from' the engine r.anu-

facturer's specifications, from computer programs constructed by

the engine manufacturer, or from flight test data.

Substitution of equation (61) in equation (59) results

in

Fexs = Fext+ COS(a+ iF( Fns - Fnt) + Asin(a+ iF)(Fgs 9 Fgt)

S2CDqS 2 CL qS ,LG-
- Anz (WS- Wt) + M + A- - + qS(A'21-

C-MCDI 1 qSCDp AqSC~p-- ( Pt
- i) (M Mt) + (-. + A )( Ps P

A C S t a a at

AW(nti - nzt) + qSag - qS--,j](cgs- cgt)

(62)

TAYLOR SERILS EXPANSIOI1 OF EXCESS '1]IRUST-SLCOND ORDLR TERMS

Restating equation (4) but carrying the expansion through

the second order terms, we have, onittinq power settina
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Fex - Fext + OTa a -Tat + - - a eaex W t) +-e M t)

+OF OFx cgFex(p P + Oe( n n)+ _ _ct
+ p a - at Onz z Zt acg1Ia 2 e+ T-ox. (Ta - T a) + 2-_(T - a)W-wt

a2O 2 a5  atTaaW a5  T)Ws t

+2 a 2L z( Tas -Tat)( Mzs -nt) + 02Fa.ag - Ta)cg - c

a2 
A aa2

22O3TF-x (Ta -T)(Pa - at + 21ex:( S wt) -cgzt)

a 2F a ~~0Fex(m t

aw~~~~ ~ MQxn (w t(cs-ctacgOM2n

+ 2a FF 2
:-LX-( s- Mtd)( Pac Ptg5 2M m t)(n

Oa2  t
+ 2 8Fe 02 Fx a)

+ 2 ý-Fe-Pa - Pat)( nz -ni) + 2--Pa -Pa (cgs - cgt)0a Oana s t paacg a5 as

+ ''xnz s- ) +2 On Ocg (n n )Cgs- cgt)

a2

Ocg c2) (63)

Before evaluating the partial derivatives, it should be

noted that the total chanqe in net thrust, as identified in
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equations (60) and (61) for first order terms, should

also include the followinqT terms

22F 2 F2 02 F 2
2F

n(a T at)n 2 ( Ms - Mt)2, P-F( - P 2), d Fn (T -T) - Mt),
OTa2  aTas apa a s Tas at)M

02 F 2 Fnna( (T - T)(P - Pa ) and -p( Ms - Mt)(Pa - Pat)
a a ? p a s a s P tO c? a

Evaluation of the partial derivatives using equations (1)

and (2) would become quite involved. Since the magnitudes

of the second order- terms are less than those of the first

order terms, the equations of motion can be reduced to

Fex Fn - qSCD (64)

and

qSCL = nzW (65)

and the partial derivatives found much more easily and with

little loss in accuracy. With these simplifications the second

partial derivatives are (derivations have not been included) as

listed below.

a2F 0 dF n
OZex =2F-

dTa2  aTa2

V11-24
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O2 Fx

I. 82F

ex -

da 2 ex a 2 Fn~

daadnz a

a F ac 2
ex n~

a~8W2  aca 19P

Fex 0

a Fex 0C
d8Wacg c CI

a2aL 2 J
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e3 F e x n qJ 4 ý2 1 2 C L ' C D 0 + 2+ ; 0 ( 2 C
6M2  ML CL M2 M CL M M M2

2 2 2 ~~2a2Fex a2 Fn qS FaCDr aC2CD

aMOPa Mdpi - [MLa I C L2  M J

.7MS 2CD + 2C + M C C
aCL am LL

NOTE: This correction can be icnored for clirbs and level

accelerations where either AM or AP =0. It will take on some
a

value when both M and P are correcteci as during an 'optimum
a

climb.'

SOCL 2C
Fex (aL 2CLa D

zMn aM CL M a;

a2 Fex q+CD acg

aMdcg +~cgC OdM -Ci
0g~~~cg~ = Q cglCL •

d2Fex a2 Fn qSCL2 02 CD
'pa2 aPa2 + 2 2 rL

Pa ()CL

a2Fex CLW a2CD

FPaa nVz Pa aI=CL
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a 2 1ex .qS1aL +CD CL dcg CL

Pa c'9 P 1 Ta OCL
a~aaa -C qSL

a2Fex W2 a2CD
=n• qS aC2

(9n, O CL

cC

Onz Ocg wdcg ICL

02Fex -- (

acg "a 2 I'CL

Standard excess thrust may be computed by substituting the

partial derivatives listed above in equation (63) to find

the second order terms. It should be remembered that the total

change in net thrust is

F -F Tat aF. dFfl(

1aFn a 2Fn(Mn+s n OT as at + 1TM s -Mt) + Pa Pa

1a2n a2F
2 2

+ -- F )2 -d - PTat + aj-(MT - t)
2aT

a2F 2
+_2_( Pas Pat) + a2F -nT (Ms M)

2 dPa~a at TaM a 5  t

3FU
aa Tas - Tat)( Pa. - + - na(Ms - M)( Pas )

dadpa tM a ~ pa a Pat)

(66)

Kence only the remaining second order terms in equation (63)

need be added to equation (62) to find standard excess thrust

for an expansion through the second order terms.
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The macnitudes of the second order terms .can be expected to

be less than those of the first order terms, Lilt they will be

of consequence in some instances. It is suqgested that for

installations having an accuracy of O.Ola or less in nx consid-

eration be given to inclucinc, second order terms in the stan-

cardization equation. Thev can Le safely iqnored when using

the airspeed-altitude method since errors introduced by this

method are larger tian the a.aoDitude of the second order terms.

ITERATIOMJ PROCUDURES

Equation (62) cannot be solved directly since (during

climbs) standard normal load factor depends on y5 YS y, and

standard weicrht, which must be determined from the fuel consumed.

The fuel consumed, in turn, depends on ie normal load factor.

Procedures are siLprlified for level accelerations since ys=O.

Further, trin draa corrections are --elated to center of cravity

position which may be a function of weiaht, as when automatic

fuel sequencina is used. hence, iteration procec=ures are

reauired to fine standarC values of nornPal load fItor, weight,

ancA perhars center of aravitv position. It should Le noted that

several test points at least must -E operated or. at one timne in

order that nunmerical differentiation to ol-tain y and consequently

n way bI carrie(. out.z

For rnurroses of illustratio", the 1.asic stejq in the iteration

nrocedure for stý.ncarfization of a continuous climb are laid out

in the followino chart.
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F Computed from airspeed-

ext altitude, acceleration, age.

, !C~ Computed with eq-n 62F xn but with nz$ =nzt and
Ws - Wt for first cycle or otherarbitrary

tolerances
ye is onz < .001 yes

SSn4 
Sn.1

no

no Wn n 1 yes

Fen1 F ex A

V2
Compute standard fuel flow: 

1t f 'r(gLc°SYD +Vjs tsnzs hs o Mt
' s 2 w(eVts cos 8L. sinuas)

• t from test climb data

W t *,tW f fdY
g'[ .. to sCompute: Ys d Thh

FIntegrate time to climb Numerically compute:

n Wftj fI tMsf =IIZin mb h d ta hs Ywvs ~:~is i
Vts taken from • -Transform YDs to Y's

standard climb schedule (reference page 17, Appendix I)
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SECTION VIII

STANDARDIZATION OF

PERFORMANCE PARAMETWERS

I
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SUMMARY

Once standard excess thrust has been found, the remaining

calculations to compute other performance parameters of interest

are relatively simple. Equations to determine the basic

parameters for climbs and level accelerations have been included

in this section.
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SYMBOLS USED IN THIS SLCTION

Siymbol Definition Units

Af acceleration factor dimensionless

* E acceleration factor associated dimensionless
with energy height

ex excess thrust lb

FU fuel used lb

gL local effective acceleration ft/sec2

due to gravity

gr reference acceleration of gravity ft/sec2

h geometric altitude ft

U c pressure altitude ft

11 energy height ft

n x load facýtor along the x-axi~s dimensionless

NAMT nautical air miles traveled - - I

[•GMT nautical ground miles traveled - - -

r local :r~x-ius of the earth ft

t time sec

Vt true airspeed ft/set

W airplane gross weight aL

W airplane gross weiaht lb
engine start

TV f fuel flow lb/sec

YD flightrath clirb anole nreasured rad

from the geodetic horizontal
plane

Subscript

s standaid day conditions
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STANDARDIZATION O01 PERFORMANICE PARAMETERS

Once excess thr. ;t has been corrected to standard

conditions an iteration procedure is used to find the para-

meters of concern for both clirbs and level accelerations.

The basic steps in the iteration proceuure are shown for

a clii- in the section, Standardization of zxcess Thrust.

A si•.ilar prcocecdure woulc be useca fcr 'it v-il accelerations

although fewer steps are required since v 0 and excess

.nrust goes into increasing kinetic energy only.

CLIMB PARAMETERS

In addition to the need for iteration i:r-ceaiures noteu

Sabove for both clirms and accelerations, an additional

complication arises when ceneratinq cliLr W paraieters. it

has been accepted practice, historically, to Geterrnine clin..

parameters as a function of altituue, beginning at sea

level. An aircraft may be at several thousand feet,

however, before a pilot is able to intercept the cesireu

climb schedule. hence, it is not possible to collect

test aata throuah a range of altitudes ir-Ir.eaiatelv avove

sea level. Since clin b perforrance at sea level is useful

for making comparisons with other aircraft and to &tanc.ara

Aircraft Characteristics Charts, it must be extrapolateu

to sea level, recognizing that thc flicrht condition is

impossible and that the data is fict.::ious.
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So obtain clitab perform.ance at sLa level tCie rate of

climib is extrapolated to sea level; other param.eters are

then deduced from rate of clinmb. The steps necessary for

finding standardized rate of cliub might be carried out

entirely in a diqital comruter; perhaps using a curve fit

of available rate of clirb data and extending it to sea

level with the aia of thrust and drag data. Due to un-

certainties in mieasurea rates of climb, particularly at

the lowest test altitudes, the extrapolation may not

produce valid results. Hence, it may be preferable to

interrupt the computer program to estaiblish rate of climb

manually and then restart th proq.an:, continuing with

the stay.dardization process.

Rate of Climb

An aircraft's cliNIb potential is defineu by

Fexvt
W

and represents the rate of climb which woulC be achieved by

an ti.':plane climbing at a constant true speed. Ii a climb

is made at other than a constant true .n,&.ed, the rate of

change of kinetic energy rust be acc;ounted for to finu rate

of climb. This is done throuah the acceleration factor, Af,

and thc rate of climb is, at standard conditions

FexsVts - Vts

AfW A
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where

g- Vj• dVt

"9r gr d

'Ine acceleration factor is derived as follows. Rate

of change of energy height may be stated as

Vt dVt
I1E Hc + Tr"'h h (3)

and also as

FexVt
HE - w (4)

x'rom equation (10) of the section, Atmospheric Envirornent

gr •

Combining equations (3) , (4) , and (5)

g~l Vt dVt.E H (6)

from which the acceleration factor is taken to be as defined

by equation (2). This acceleration factor is useful for

climbs described in the section, Standara Climb Schedules,

during which altitude is monotonic increasing. For the case

VIA-i
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where altitude is permit.tec: to decrease, corrections are made

mt cronstant values of II and the acceleration factor takes the

form

Agr Vt dVt

AfE is found by defining rate of change of eneray height as

Vt dVt

E dHFE()

Solving for II
CI

Vt dVt (9)

Substituting equation (5)

Lgr Vt dVt • (10)

= L g' dHE),'E

or

AfEAE (11)

VIII-8



Time to Climb

Once h has been established time to climb follows

easily from

dh 
(2

for continuous climbs and

t -- (13)
HE

HtEI

for optimum climb schedules which use energy height as an

independt.•,. variable.

Distance

Distance, conventionally shown in terms of nautical air

miles traveled, is

NAP T Vt sC°S sdt (14)

The NAVIT differs sligtly from the distance traveled alonq

the earth's su~rface, par-iA ular.y for aircraft flying at

extreme altitudes (e.g., a!out 0.4% at an altitude of 80,000

feet). The ground distance is

NGMT Vts)"S r (it

ti

Vill-$



Fuel Used and Weight

The quantity of fuel used is coinpute- simply by inte-

grating the standardized fuel flo.,:

rt
FU ] Wfdt ( -)I fI

Weicht during a climb) is based on the aircraft gross weight

at engine start and the fuel allowance for taxi, takeoff,

and acceleration at sea level to the cliixb schedule. Standard

weight during the course of a cliwib is, then

ws = Wes - (fuel allowance) - FU (17)

LEVEL ACCELERATION PARA20TERS

The sane paraaelters (tiie, distance, and fuel used) are

desired in the presentation of a( .eleration performance. After

standardizet& excess thrust as a function of Niý,ch nunber or

true speeo has been establi.;heC the acceleration can be found

Fe:cs

vt" grw

S S

and the tiive to accelerate frord

Vt

B'I

Vlil-la ,A-
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The (`0i16ance traveled ,s computed Ps for climbs. With

y 0 distance over the earth is

NGMT V dt (20)= • Vts r + hs

itI

Fuel used, as for clirb.s, is determuined during the standardiz-

ation process. Repeating equation (16)

ft
FU ] Wf dt (21)

ni

F 1Vlll-u
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