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¥ The contents of this report were prepared to give those engaged
in aircraft flight test an understanding of ine analysis required to
arrive at standardized flight data. Toward that end, considerable
attention was given to the derivation of equations. 1In contrast to
earlier reports, simplifying assumptions were not made; rather, efforts
were made to keep the derivations of all equations as nearly exact as
possible. Emphasis has been placed on climbs and level accelerations
since these tests, particularly for supersonic aircraft, consume a
large part of a test program and require calculations which are much
more lengthy than for other tests. The information in this document
was the basis for the development of uniform digital computer programs
which are being constructed for use in processing flight data and cor-
recting it to standard conditions. These programs have been given the
name Uniform Flight Test Analysis System (UFTAS). (
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This document is a comprehensive collection of equations, ~ :1
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data, and supporting information for use in processing aircraft .

flight data and correcting it to standard conditions. It does

not represent a final effort; as r. w material comes into being,

new sections and revisions to existing sections will be issued.
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ABSTRACT . L

The conténts of this report wexe prepared to give~ghése ‘
engaged in aircraft. flight test an undérstanding{of the analysis
required to arrive at standardized flight data. Toward that é&nd,
‘considerable attention was given to the derivation of equitions.
In contrast to eaiflier reports; simplifyiﬁg’aSSumpt;ongfwefe not
méde; rather, efforts: wWere made ‘to keep the derivations of all
eqilations ‘as nearly exact as: possible. Emphasis has been: placed
on climbs and 1evet;§cg¢ierations since these tests, particularly
for supersonic,aircraﬁf( consume a- large part of a test program:
and require cglcuIaéi¢£§xwhich are much more lengthy than for
other tests. The inf@rﬁ@tion in this document was the basis for
therdevelopmentfof'unifd?mydigiﬁal computer programs which are
being‘cpnstructed‘fbtwuge in processing flight data and correcting
it to standard éoﬁéiti@ns. These programs have béen given the

name Uniform Flight Test Analysis System (UFTAS).
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INTRODUCTION

This document is an outgrowth of the development of uniform
digital computer programs which have been constructed for use in
processing aircraft flight test data and in correcting it to a set
of standard conditions. These programs have been given the name
Uniform Flight Test Analysis Systems (UFTAS) and have as their
basis the equations developed herein.

In contrast to earlier reports (e.g., Flight Test Engineering

Handbook, AF Technical Report No. 6273, by Russel M. Herrington,

et al.) simplifying assumptions were not made; rather efforts were
made to keep the derivations of all equations as nearly exact as
possible. This was doﬁe so that the eguations would remain

valid as airplane speeds and altitudes increase and/or the accuracy
of instrumentation systems is improved. In general, correction
terms in éhe final equations may be deleted when it is found that
their magnitudes are small compared to the accuracy desired in

the end results.

Considerable attention was given to detailing the derivations
and to presenting information to give the rsader an undersganding
of the analysis required to arrive at standardized flight data
rather than incorporating "cookbook" procedures. Although most
of the topics covered are not dependent on the type of power
plant, performance parameters and corrections to standard condi-
tions have been included for jet powered aircraft only. Emphasis
has been placed on climbs and level accelerations since these

tests consume the major portion of a test program, particularly for
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supersonic aircraft. Further, calculation of t&st parameters

and standardization procedures are much more lengthy than for

other tests (e.g., cruise control, turning performance, etc.) .

and, hence, the difficulty in computing standard performance for .

climbs and level accelerations is much greater. The basic

approach is quite simple, however, and is illustrated in figure 1.
Briefly, the method is as follows: first, the performance

parameter, excess thrust, is computed from the aircraft's measured

performance via the equations of motion. Next, the excess thrust

computed from test conditions is corrected to standard conditions.

Finally, standardized climb or acceleration parameters are com-

puted from the standardized excess thrust by means of equations

of motion. .

The section titled Determination of Excess Thrust discusses

in detail the diverse aircraft flight parameters which may be used
in these calculations. For many years readings of airspeed and
altitude from conventional airspeed indicators and altimeters have
been a basis for measuring test performance. The accuracy of
eXcess thrust computed from such readings could be described as,
at best, adequate. Data obtained at low altitudes and speeds are
satisfactory; however, as altitudes and eséecially speeds are in-
creased, the use of airspeed indicators and altimeters as the sole
sources of performance data becomes much inferior to sensitive
accelerometer installations. A precision of less than +0.0lg

in measured flightpath acceleration has been obtained during flight

tests at the Air Force Flight Test Center and improvements arc

vi
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expected. Although not in general use, procedures for calculating
excess thrust from aircraft position measurements (radar, Askania

camera, etc.) have been developed. Accuracy cf excess thrust com-
puted with data from these systems is superior to that from the

airspeed-altitude method.
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The most convenient parameter with which to work in standar-

dizing airplane performance data is excess thrust. Corrections,

y in terms of excess thrust, are most easily derived from equations

of motion. If accelerometers are used, excess thrust can be

2

R AT
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computed from measured acceleration, and it can be related easily

to rate of climb, turning performance, and other performance

parameters.’

2

- In writing the equations of motion to deduce test excess
thrust; (or other performance parameters) the assumption of a flat,

non-rotating earth with a constant gravity field has historically

been made. (See for example, AF Technical Report 6273, Flight Test

‘Engineering Handbook.) To ensure that test performance data are
not degraded, .exact equations. ¢f motion have been written which
account for effects from the earth's rotation and for variation

v in its gravity field. General equations in terms of test excess

thrust are derived in the section, Determination of Excess Thrust,
‘for various flight :parameters. In .preparation for the derivation
of these equations, the coordinate systems employed are described

in the following section, Coordinate Systems and Transformations,

and the properties of the earth used in the derivations are con-

tained in the section, Geophysical Properties. In the next two

sections, informetion may be found on standard atmospheres and on
the basic measurements needed to determine airspeed, altitude,
Mach number, and temperature.

As in the calculation of test excess thrust, formulation of
excess thrust at standard .conditions has been carried out in a

more nearly exact fashion than is found in AF Technical Report

ix
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6273, Flight Test Engineering Handbook. This has been doné to

make certain that accuracy inherent in ‘the test data is not de- .
graded in the standardization process. A detailed derivation
of the equations for extrapolating test excess thrust to standard

conditions appears in the section, Standardization of Excess

‘Th;p;t. ' ;
Once excess thrust for standard conditions has been determined,

‘other parameters. (e.d., time tg'glimb, standard weight, etc.)

follow quite easily for either climbs or level accelerations.

Equations for computing these*ﬁarameters appear in tle section,.

:Stanaardization’of Performance Parameters.
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SUMMARY

e

General information about -coordinate systems is presented,
this is followed by descriptions of the various. coordlnate sys=
tems used in the calculation of excess thrust. Matrices. to.
make transformations from one ax1s system to another are de— . a
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veloped. This is done by flrst treatlng the/general”case ahd :
then the specific cases which are: needed in seétion V, Determina- ,;

tion of Excess Thrust. S , ) S i
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"SYMBOLS USED IN THIS SECTION: -

befinition, 'Units g
diréraft roll angle about the rad '
‘wigd,xwéaxis {airspeed wvector)
«center of gravity pct MAC :
_geométric altitude cf the radar ;f;;iit

_coordirnate origim : e

T Py
=,

. nit vectors along the Xyy,z
axes,,. respe"tlvely

axes transformat;on matrlx for ) -

the. rotatlon throuah the angle
® about the x-axis

multiple akis transformation ——
matrix. ’
aXes labhels or components of a -

"vcctor in: a rectanqular CarteSLan
doordinateé system (appropriate”
subscrlpts denote the partlcular
axes system)

angle of attack ~ rad. -
sideslip angle rad K
‘flldhtpath climb /angle measured rad
from the jeocentric horlzontal
‘plane .
geodetic' latitude of the radar rad
coordinate origin
aircraft geocentric latitude rad
geocentric latitude of the radar rad
coordinate origin
meridian tilt angle of the radar rad .
axes horizontal plane (=§. =-6. ) ‘
D L
r r
=6I ~A6L , the angle hetween the rad
Jr r
radar z_-axis and the equatorial
plane
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g rotation. angles for the :general rad

0"1 ',62 !és

axes. transformation

longitude -of the radar

rad

; Ly coordinate origin ?
K AXy differencs between the rad 3
] ’ aircraft ‘longitude- and the S
longitude of ‘the radar coordi~ g
y nate origin :
b ¢y thé -angle hetween the radar ¥.~axis rad _
3 and truc north ;
i L ‘thg‘angleV3;¥4159¢..‘radians rad ;
f o
- g flightpath heading angle rad
. -measured from true north L
- 1) matrix - 2
i ) - - /
- N N . el !
E L 1T transposé matrix - ¥
?"i ,.I“i-l ‘ inverse matrix -
-  gubseripts
. ;5" ’aircraft’ﬁdﬁy»axés, -
- . ' H
- geocentric- axes -- ‘-
g north~,geocentrlcally-dmrected - 3
o norxzon axes (local geocentrlc)
‘T » radar axes Vi : ' - :
w aircraft wind axes -— ’
);2,3,4 general axés systems ——
{ f ;
- )
= 1§
o ;
.
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1; - In general, -aircraft test data are sensed in & translating
. T\anéjrogdtfng'coordinate systoem. In this case, tc compute the
forces ‘which produce the fotion, the acceleration data nust

be transformed to an inertial coordinate systeri to correct for
such factors as centripetal and Coriolis acceleration. %This 2
section describes the basic coordinate (or axes) systers required
for the expressions and cguations in the other sections of the
doéﬂment, In addition, the necessary coordinate transformation
matrices are developed. _ ’

COORDINATE SYSTEMS

The'qxeé systems used are right-handed rectangular Cartesian

coorGainate systems with axes denoted respectively by the symbols

A L

X, y, and z with appropriate subscripts (See fiqgure 1). The

privi

it s Tl Tl aay

three axes are mutually perpendicular, and the direction of posi-

g

tive rotation about each axis is indicated by the curle¢ fingers

if the axis is grasped by the right hand with the thumb pointing
i the positive linear direction of the axis. For exanple, rota- :

tion about the z-axis would carry the x-axis toward the y-axis. :

The axes system is uniquely specified if the position of the ,
oriagin and the directions 6f two of the three axes are given. ;
The -third axis is then chosen to complete the right hand systemn, g
§

Associated with the axes system is a set of three unit vec- ;
tors, i, j, and k, with the samc subscript as x, y, anc¢ z, i
colinear fespectively with x, y, anéd z, and with the same posi-

tive directions. A vector can ke expressed in component form

R
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Figure 1 General Coordinates

1
H
4
W s
.
!
¥ -
.
l
f ; : )
) L4 L -
3
'
/ .
. . .
I v
! .
\ i
1
. ceas - . R T T e s e ran e e ® MWW A a w7 a eeebmomes - - -
I - . " e “ -
Y Y 'y et . ‘ L e . . s~ . -
it 3 a5 7 £33 e X 9N 5 £yl By o re AR LT A R T L g2 e A RS T S B i ek g v, & - Y
: ’ =2 X A 3 ooy 4 £IX 2 % 2 2 Y S A P g ) 5 vu P LEF g A IR, s e 8 et £ o sy s . "
{ & ; g A & Vi v 5 ,rs‘ PN, g R KA 3 TR R e A TR A MR £ AR e A RN A5 n.,.? 5 ‘w‘.s,),. RO R oY RN E s G S raie 5 3ts




g

/
?

ovtgwec. o

B

Sz,

e > B
Rl

£y

.
B A

s ot

as three scalars multiplied respectively by the unit vectors.
GEOCENTRIC COORDINATE SYSTIM

For the purpose of this document aircraft trajectories
will be considered to be relatively near the earth's surface,
and the center of the earth will be considered an inertial
pecint. The geocentric axes system (xe, Yor ze) (shown in
figure -2) will then be fixed in the carth with its origin
at the geocenter, the ze~axis pointing toward the south pole,
and the xe—axis in the equatorial plane pointing toward the
earth's surface at a spccified longitude. For development of
the radar reduction equations this longitude will he chosen as
the longitude of the radar coordinate origin. The geocentric
axes systenis is then inertial except that it rotates with the
earth.
LOCAL GLOCERTRIC COORDRINATL SYSTIMS

The second coordirate system to he Cefined is the north-,

geocentrically-directed horizon axes systen (xa, YV zo) or

9
local geocerntric-axes system for short (See fiqure 3).

Its origin can be located at either the surface of the earth
(geoid) on the radius line from the ceocenter to the aircraft

co or at the aircraft cg. The xo—axis is directed north and

the zq—axis towvard the geocenter. The yq-axis is then pointing

east. Thesc local geocentric axes are orientcd with respect
to the gcocentric axes by two angles: GI, the aircraft geo-

"3
centric latitude, and AAL, the daifference hetween the aircraft

and radar coordinate oriain longitudGes.
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AIRCRAFT WIND CGORDINATE SYSTLM
‘The third coordinate system to he defined is the aircraft
wind-axes systen (xw, Yo zw) (shown in figqure 4). Its
origin is located at the aircraft cg with the xw-axis orieﬁted
in the direction of the aircraft airspeed vector and the
zw¢a§is directed do&nward in the vertical plane of symmetry
of tﬁe aircraft. The yw—axis is then directed out of the
right :side of the aircraft. The wind axes are oriented with
respéct to the local geocentric axes by three angles: the
flightpath heading angle, o, reasured from true north to the
geocentric horizontal projection of ‘the airspeed vector; the
‘flightpath. climb ‘angle, y, measured from the geocentric hori-
zontal (xgygaplane) to tﬁé~airspeed vector; and the roll angle
about the aiispeed vector, B.. The first two of these angles
represents the aircraft, flightpath orientation with respect to
the airmass. The angles are not the same as the angles of the
flightpath with respect to' the ground if the wind is blowing.
AIRCRAFT BODY COORDINATE SYSTEM
The fourth coordinate system to be defined .is the aircraft
body-axes system (xb, Yy zb) (shown in figure 5),

Its origin is also located at the aircraft cg with the
xb-axis directed forward along the longitudinal axis of the
aircraft and the zb—axis directed downward in the vertical
plane of symmetry of the body. The body axes are oriented

with respect to the wind axes by the sideslip angle and angle

=12
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of attack. The sideslip angle, £, is measured frorm the air-

R v e e

speed vector (xw—axis) to its projéction on the xhzb-plane.
The angle of attack, o, is measured from the projection of l

cthe X, ~AX1is. on the xwyw-plane to the #,-axis itself.

PRI

RADAR COORDINATE:SYSTEM

The final axes system to be described is the radar coordi-
’ﬁéie'éystem (X,.» ¥,.» 2.) (shown in the two views of figure 6), i
Its origin is located at the radar site at an altitude h.o a

longitude AL and a geodetic latitude GD . The x_y_-plane
L. r r'r

s

is oriented with respect to the geocentric horizontal by a

tilt angle AGL in the meridian plane. Usually the tilt angle
r ——
, \ ,
has a negative value such that the xryr—plane is parallel to the ;

geodetic horizontal. Illowever, in general, the radar plane may
not be exactly geodetically horizontal due to local anomolies

in the earth's gravitational field. Also, if there is any error
in the alinement of the radar axes with respect to true north, N

the angle ¢ _ between the x_-axis and the meridan plane will
r r

[
o

be non-zero. If the radar plane is geodetically horizontal AGL :
b .

can be calculated for a given latitude using the geodetic to geo-~

s

centric latitude transformation eguation in Section III.

COORDINATE TRANSFORMATION MATRICES

To illustrate the method by which a transformation matrix
is derived a general three axis rotation will be demonstrated,
and the associated transformation matrices will be developed
for this rotation. Succeeding matrices will then be obtained

by analogy with the general matrices.

I-16
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‘GENERAL AXES. TRANSFORMATIONS

From the geometry of figure 7, which shows -a positive

rotation about the z-axis, thée following equations for the

coordinates (X2, y., 22) din terms of (xi1, yi, 2z1) can be

derived

Ky 4c§56i)xi‘#:1%i”01)y1 ¥ (O)z1 (1)a
Yp = (-sinfy)xy + (cos6))yy + (0)z, {1)b
z) - :(O)XI + (0){1 + (_l)z1 (e

This set of eguations is alt;éi:néteiy expréssed as the matrix

equation X, = MX,, or in component form

X, - cosei sihql? o xl: xl
| = |-siney cosay oflyy| = [Mae)] iy (2)
: zg - - 0 o ].... -z/]-:-i - B z!f-n:

where the subscript z; on M denhotes the axis of rotation, and
8, denotes the angle of rotation. If the rotation were in the
opposite direction (through a negative angle 6; which is
similar to the rotation of (xa2, V2, 22) to (X1, y1, 21) the

signs of the two (sin 8) terms in [Mzi(&ﬂ‘]- would be switched,

but the other terms in the matrix would be unchanged. From

matrix theory the rotation matrix from (x2, y2, 22) to

=11
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i

X1+ Yi, 21) is known to be the inverse of [le (61)] or
[le (61?)]'1. Also, thése transformation matrices can be shown
to be orthogonal, which by definition means that the inverse is

.equal to the transpose: ~[ILI‘Z1 (31)1-1

-—;[le(ean. (The orthog-
onality property further means that the cofactors of each matrix
element must equal the element. This property provides a con-
venient method .of checking any matrix for errors among its
.elements.) If the new axes (X, Y2, 22) are now rotated through
an angle 6, about the y;-axis to form the axes system (x3, y3, 2

then ys=y., and 2z would replace x in figure 7, and x would

replace y; so, by inspectioh we write the second transformation

matrix
- . Lo - -
x§ <:os¢5?2 0 -s!n(i,2 X, X,
IS (3
yal=] 0 1 0 |ly|= [Myz(ozi_] Y,
_;3- _sjn 6 0 cost9.£:i :3.. -zzd

Similarly, if a transformation is made to (X4, Yus: 2Z4) by
rotation through 0; about the xj-axis, then y replaces x and
z. replaces y in figure 7, so that again the transformation

written by inspection is

X4 1 0 0 XB x3
YVy|=| 0 cosoy sindylly, | = [Mx3( 03] Yg (4)
I 24- ] 0 ~sin 03 cos <92 _23- _23~

The total transformation from (%, yi, 21) to (Xu, Yu, 24)

I-19
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3 is then )
‘:'f x4 xﬂ X]j
: - [ 60, (oM, o] v -En(eea y (%)
4 Yy [x3 3][y2 2] 2 1:)] 1 172 3| 1 .
] gl "1
f To make the reverse transformation from (x4, yus, 24) to
4 (x1, Y1, 21) the transpose (inverse) of M(6:, 92, 83) is required. } ;
;? The transpose is obtained by use of the reversal law for the R
i transpose of a product of matrices . i
aT ST T T

| @'(01'92'93_’] = 2,00 y,t05]) Pixytos] (6)

. TRANSFORMATIONS FROM GEOCEMNTRIC TO LOCAL GEOCENTRIC

By analysis of figure 3 it can be determined that two rota- .

tions are required to transform the geocentric axes (xe, Yer ze)

to the local geocéntric axes (xg, yg, zg). First, a rotation

SLORGR et g g S e e s g et

about the ze-axis through the angle (w+ARL) yields the trans-

5 formation matrix which by analogy with [le(el)] is e
H :
] cos(r+ A ) sin(rsar) O]
1 [ (r+ 82 ) s | -sinCr+ 84) cosCrs83) 0 (7) |
3 ;
3 i 0 0 1]

EER A ier

This is simplified by trigonometric identities to the following
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-cosAAL

[ an) = | sinaxg

0

is

n
rcos (-2- -8 i_)

Eﬂyg(-;-— SL)] = 0

o
-sm(-i-—al_)

which simplifies to

[ sin 5,

. Eﬁyg(ﬁl_)] == 0

cos SL

-

@(AAL,SLE] == sinAAL

-Ccos A)\Lcos'o‘L

Viagnw <33

=21

R E A

-sinAAL 0 T
- cosA,\L 0
0 1

. o
0 "S'"(E'sL)

1 0

w
0 cos(-é-- 8L)

1 0
0 sinSL_J

—cosAALsinaL —sinA,\LsinaL

~CoSs AAL

~Ssin AALcos SL

o

formation from geocentric axes to local geocentric axes

—c058L

0

sin 8L__

()

Second, a rotation about the yg-axis thror gh the angle ('n/Z-GL)

yields the transformation matrix which by analogy with [Myz (62)]

%)

(10)

Expanding the matrix product we obtain the matrix of the trans-

(11)

The inverse of this transformation matrix for the reverse trans-

o A 3 et Mg - s i P

[ —

a2

B NP S




formation from local geocentric. to geocentric coordinates. ﬁs

-COSAA, sing | 'sinAXL ec‘osAAL:cos'SL
EA(SL,AALH = | -sinAr sin_ -cosar  -sinAAjcoss (12) _
| ~cosd, 0 :;ina‘_ _-

TRANSFORMATIONS FROM LOCAL GEOCENTRIC TO' WIND COORDINATES

The transformation from the 16ca1 georsentric coordinates to
the aircraft wind -coordinates consists of rotations throigh the
flightpath.heading angle, o, the climb angle, ¥, and the roll
angle, B, in the same sequence and about the same axes éé the ¥
rotations il;ustrated:th?pugh the angles 81, 62, and~93,in the
general three axes transformation. Consequently, the resulting

transformation matrix .is

r r ‘ ar Rt
11 0. 0 :|cosy 0. -sinyl}cose sine 0| g
N Ed(a,y,Ba =| 0 cogB- sinB|} 0 1 0 -sing coso 0 (13)
0 ~sinB cosBjfsiny 0 cosy 0 0 1

b vt Covm -l Yo o

For one application in the section describing the radar reduc-
tion equations only the portion involving the first two trans-
formations through o and vy to an unbanked wind axes -system are

required. Expanding ‘this product first we obtain

rCOSY-COSa cosy'sing ~siny -
Eﬁ(a,}'\a &= | «sing coso 0 « .
(14)
. ‘siny cose sinysing cosy
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Nestt, forining the product to rotate. to the banked wind axes we

obtain the total transform matrix

| -cosycose cosYsing ~siny
~cosBsing cosBcoso
@“"' Y, Ba ™ | +sinBsinycosc  +sinBsinysing sinB cosy (15)
sinB'sing ~sinBcoseo
L +cos B'sinycoso + cosBsinysing cosB casy
[N e

TRANSFORMATIONS FROM.BODY COORDINATES TO WIND COORDINATES

‘The transformation from body coordinates to wind coordinates
requixres two rotations in the negative directions first through
o- and thenn 8 abcut the Y~ and ~zw-axes,respectively.\ The trans-

formation matrix is thén

cosf -sinB Ojjcosa 0 sina
'EM“’B;J = | sing cosg 0| 0 1 0 (16)
0 0

-t

~sina 0 cosa
Vhen the sideslip is neglected the total matrix reduces to the

second one involving :¢ only. When B is included the total

watrix is

cosBcosa  ~sing cosB sina

Eﬁ(q,ﬁﬂ w= | sinpcosa cosf sinBsina (17)
’ ~sina ¢ cosa
1-23
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TRANSFORMATIONS FROM RADAR TO -GEOCENTRIC. COORDINATES

To transform the radar measurements to geéocentric coordinates,

transformations through the two orientation angles (n-—¢r) about

the radar zr-’axis and (m/2-6 r) (where 6r=6L -AGL ) about the

x

r

Yo-axis are required. The resulting matrix is then

[ s |
cos(£-8) 0 ~sintF-8)licos(i~g) sintr-g) 0
Ed(zr-¢r,-'2'-- 55_].. 0 1 0 ~sin(n - ¢ cos(m—g) 0
fin(-’z'-— 8) 0 cos(3- sl 0 0. 1
(18)
Performing appropriate trigonometric substitutions
‘ sin, 0 =~cosd, F-co'SqS, sing, 0
Eg(gb,,a,')] -] 0 1 0 ~sing, -cos¢, 0 } (19)
| cos8, 0  sing, 0 0 1
Multiplying the two natrices ‘together
} | ~cos¢sing,  sing,sing,  ~cosdy,
-C0S$,c0s8,  'sing,cosd, sin’o‘u
-24




SECTION I

0s3 s WEy 2o B e o A 5
> RS Bl A et ot SR n e e e e Giped 2 46T e e

«

- ———

()
u
b=
4
u
A
e
2
[ 8
wl
<
O
(|
5
-
L
o
o
)

S v 5 255, v o o
SRR e S e e S e e s

-1

. . m,
O I B A e v,wcwuw:..u.‘,.f»a pE -
. A

Loy avedsod

e 5 o %Ak A i 2, . N .
ho aiaaisa i T A A e A R e 3et DO T el A Iy
¢ g 2 Ja 7o X e e et i s

<

ey

I R T R P

R i W e SRR




SUMMARY

The usual assumptions that have been made in the past
(a flat, non-rotating earth with a constant gravity field)
lead to significant errors when performance data are acquired
with inertial navigation systems or with accelerometers (such
as two-axis flightpath accelerometer systems). Accelerations
brought about by the earth's rotation, for example, can be
readily sensed by current installations in test aircraft.
Further, the magnitude of the errors caused by these assump-

tions becomes larger as speeds and altitudes are increased.

The more nearly exact equations derived in section V, Determi-

nation of Excess Thrust, make use -of the model of the shape of

the earth, its gravitational field, etc., set down in this

section.
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; SYMBOLS USED IN THIS SECTION

Symbol

‘,,'
R ”
Tt e ety

A el a

9L

QLxg'gLyq'gLZg

¥

B h.

s ko

!
+
,
; hj

TR

TR,

J2,J3,J4

—
£

P
lat
o]

AR ¢ Wt g

Lratest sy

e
(s

AT T B R e
AN =

R 2asiss
—

Definition
earth's flattening

r -r ,
(f = 2—FB)
o]

local effective acceleration
due to gravity

geocentric components of local
acceleration due to gravity

reference acceleration of
gravity

sea level acceleration of
gravity

geocentric components of
acceleration due to gravita-
tional attraction alone

geopqtentiai-altitude in geo-
potential units

geometric (tapeline) altitude

geocentric altitude as shown
in fiqure 2

geodetic altitude as shown in
figure 2

geometric altitude as shown
in fiqudre 2

coefficients of the zonal har-
monics of the earth's gravita-
tional potential

local radius of the earth
polar radius of the earth
equatorial radius of the earth

effective earth radius

time

n-4

Units

dimensionless

ft per sec?
ft per sec?
ft per sec?
ft per sec?

ft per seé?

ft

ft
ft

£t
ft
dimensionless
ft
ft
ft

ft

sec
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Symbol
XY

/Y 02

X
99 9

Definition
Cartesian coordinates

geocentric position coordi-
nates

geodetic latitude
geocentric latitude
longitude

prodict of universal gravi-
tational constant and the

mass of the earth

gravitational potential func-
tion

angular rotation rate of the
earth

Units

£t

rad

rad
rad
£t3 per sec?
£t% per sec?

rad pei sec
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INTRODUCTION. , _ T

In this: section équations for the earth's geophysical
properties are presentéd. The ggoﬁhyéical‘éaramete?s
which are neéeésarY'fdr atmospheric trajectory calcala-
tipﬁs are those which .describe the eéarth's mean sea level
surface, the airéféft!s‘poéifiog relative to that surface,
1he:gravi€atioﬁal attraétiénwbetwéép the éartp\and the
aircraft; and thé earth's rotation rate, which provides
qeptfifugaleélieﬁ fromhths_forpé of gravity. An attempt.
has. been made to present equations which have precigion

comparable to: the general aircraft..equations of motion

PresenteZ in the section, Dété?mina;ion_gﬁ‘Excess Thrust.
Various approximations to- the earth's shape and gravi-
tational field have beén made to simplify the equations of
motion. :ﬁEWevé:;¥wifh»thé introduction of high performance
aircraft intd the Air Forc¢e: inventory ,improved equations

have -beéorie ‘desirable. iligh ‘acciiracy accelerometers and

precise inertial mavigation -systems can sense accelerations

such as tlose induced by the earth's rotation, and they can
sense forces caused: by variation in gravity-with altitude
and latitude. These havigatioh systems must also account

for the' oblate shape Of the: earth \in order to provide accu-

rate position data. The old assufiptions of a flat earth

and constant gravity are no longer adefjuate in most cases.
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Since the advent of artificial earth satellites
a number of refirements in the measurements of the earth's
geophysical nroperties have been made. These precise equa-
tions with slight simplifications have been used in this
section. An attempt has been made to state the important
assumptions and describe the simplifications to allow for

future analysis of the adequacy of the equations.

DIMENSIONAL PROPERTIES

The strength of the earth's crust is low enough when com-
pared to total earth mass and rotational energy that its gur-
face shape has been forced to assume the approximate form
of a ball of fluid in hydrodynamic equilibrium. Such a
ball of fluid in space (in the absence of surrounding
bodies) would assume a spherical shape under the action of
internal gravity; however, when given a specific rotational
rate about a "polar" axis it would develop a bulge about
its equator and assume the shape of an ellipsoid of rev-
olution.

In actual fact the earth does not have a circular equa-
tor and its density is not uniform. However, for reference
purposes an ellipsoidal surface is defined which approxi-
mates mean sea level. Mean sea level is also approximately
the geoid surface of dynamical balance between gravitational

force and the inertia of the rotating mass (see figure 1),
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Figure 1 The Reference Ellipsoid

EQUATORIAL AND POLAR RADII

The dimensions of the reference ellipsoid are generally
given by stating on eguatorial radius, Lyr and a flattening,
£, defined to be the quotient formed by dividing the equa-

torial radius into the difference between the equatorial

and polar radii:
f o~ (1)

This equation can be solved to yield an expression for the

polar radius in terms of the equatorial radius and earth

flattening:

ro(l1 - f) (2)

e o A Y B L e Sy, T

.
2 A s R,




PR

EARTH RADIUS

Substitution of these radii into the polar coordinate
equation for an ellipse yields a general equation for the
radius of the ellipsoidal surface as a function of the geo-

centric latitude, GL' which is.the angle between the radius

vector and the equatorial plane:

2 2 g
r2 - l'o (l‘f) (3)

(1~ f)2 wszsL + sin28L

' Ore alternate form of this equation is oktained by use of

the trigonometric half-angle formulas and by dividing by
(1-£)2:

2
2. 2 ro

[14 (2?1 4 (1= (=1)1cos28; (4)
Tt T

Another computationally convenient form of this equation
can be obtained by expansion using a Maclaurin series and
appropriate trigonometric substitutions. For example, for

1/f = 298.30 the following expansion yields the same radius

as equation (4) to the nearest foot or better:

r o= 1,(.99832172 + .001676l6cos26L + .0000021100s48L) (5)
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GEODETIC AND GEOCENTRIC ‘LATITUDES .AND ALTITUDES

Having defined the reference ellipsoidal surface of the

earth, we can turn to the problem of measuring an air-

craft's altitude with respect to that éu:fgéea .Foﬁr'élti-

tudes will be defined. An exaggeratéﬂ}illustratibﬁjéfA
thése altitudes is shown in figure 2. The first is ﬁhe
geocentric .altitude which is ﬁerely'thefdist;ncé'me&sured
along an extension of the radius vector fromﬂthevellipSQid
surface up -to the aircraft. This disggnéé.when éégeafto-
the earth radius af’that point gives theysfraith line dis~

tance between the earth's center and che aircraft. The. :geo-

centric altitude is required in the general equations which

\

describ ' dccelerations in the geocentric reference system.

Line of:Force

st hy
—-— — - ’
\“;
Polar constant HF Xy
Axis —= ‘
" .z' R _h ) .v’,; A» N
M R 4 s 'h‘3' H "3.\‘"’ S
' .r \ ‘\ .
\ oy \op. Lk
Equatorial | Plane / I
N 4 / Geold Surface
\-‘ . e

Figure 2 Altitudes Related to the Geoid
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.The ‘second altitude to be defined is the geodetic alti-
tude. This is the straight line distance from the aircraft
to the nearest point on. the geoid (sea level) surface. The
gngle:bexween this ;ine and the equatorial plane is defined

to be the geodetic latitude, ¢ The geodetic altitude is

D
the true altituae’br straight line height of a point above
the earth's surface. By observation of figure 2 one can

see that the differenées~between the geocentric and geodetic
1a%i£ﬁaesiand?51tituées varyland are a maximum near a lati-
tude of 45 degrees. These differences also vary with alti-
tude. 7 , -

A precise eéuatioﬁ for transforming between geodefic and
geocentric iatitudes is presented in reference 1, pp. 96 ff.
Howéver, for aircraft trajectories which generally lie below
150,000 feet, the precise equations can be approximated with
little error by the sea level expression.

This relation between the two latitudes at sea level is
easily derived, The slope of the ellipsoid surface is
obtained by differentiation of its rectangular coordinate

equation:

d 2
oL X (6)
dx 2
l‘o b4 ’

Then since a geodetic latitude line is by definition every-

whea: .» normal to the surface, its slope is the negative
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3 . reciprocal of the surface slope:

. - -l:-o- 2 y - ro 2 [ : 1
-4 tan 8y, "p) = E)-) tan 8y (7)

Substituting for the radii ratio from equation (2) and

a rearranging we obtain the simple exact relation between %
g j the latitudes of a point at sea level:

3 ‘ ‘ tan'd = (1~ f)ztanS (8)

. L D

The maximum difference bhetween the two latitudes is about

— t A maen e

} ©o eleven and one-half minutes of arc or eleven and one-half

g % nautical miles error in position on the earth's surface if

? é the incorrect latitude were to be used. "

g % The relation of equation (8) can be approximated by the ?
¥ % first term of a series (reference 2, p. 485): ! ;
* 8, ~ oy = —(.19323889)sin25p (9)

,g ;; Equékions could also be presented relating the geo-

f% cenitric and geodetic altitudes, but little error results

E% from assuming that they are equal. The difference is one

éz foot or less below 150,000 feet altitude and less than 60

'gv' feet at an altitude of about one earth radius (reference

f, 1, p. 102). The remaining two altitudes as shown in figure

.5’ 2 are described later. X
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GRAVITATIONAL FIELD

By definition the gravitational potential function of

: the earth, ¢, is a scalax quantity such that the partial
derivative of ¢ in a given direction yields the accelera-

tion due to gravity (reference 3, p. 173). For example

in the x direction by definition (=)

2
g“’ s J ’2‘ (10)
X dt

If the earth were a homogeneous sphere, it would have a

central force field with a gravitational potential function

given by
e ,la
¥ . ' (I) - Y T h (11)
. where (r+h) is the distance from the geocenter to a given

point. Differentiation of this function in the (x+h)

direction yields

a
N
F .
e
‘;r?
29
2
e
3
F
B
4
X

d - )il ( Fe ) - - )
d(r+h) d(r+h) r+h (r+h)2
or
2
d(reh) fo (12)

a2 (r+h)2

which is the inverse square law gravity eqguation.
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Since the earth is not a homogeneous sphere nor even
an ellipsoid of revclution, its true potential function
must be obtained by an integration over its entire vol-
ume or alternately as a series solution to ‘the differen-
tial equation of Laplace (reference 4, p. 141). Neglect-
ing the earth's asphericity with longitude (assuming the
shape is an ellipsoid of revolutioﬁ) and only presenting
the first four terms, the series for the earth's potential

is (reference 5, p. 2)

b 22 o 21 _ 2in®
O = __(.r+h)[1+2(r+h)(1 3'sin SL)

Js ro 3 e e 2 .
+_2_(-I'T}-;) (3= 5ain SL)SUISL

- .g.(m) (3 - 30sin”5; +35sin 5 )]

The components of gravitational acceleration in the
local geocentric coordinate system can be obtained by par-
tial differentiation of the potential function in the three

coordinate directions x_, y._., and zg. To perform this

g -9
differentiation the following relations are required:

gy, = o - -0 (14a)
X
g 0%g r+h 05
Jd 1 3P
% T Ty, T " (r+hjsing A (14b)
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Z Zg d(r + h) (14c)
) Performing the differentiation indicated by equation
(14a) we obtain the north component of gravitational accel-
eration: T
to \ To y4 :
gxg - -.(roz)(n_h) [3Jgsindy
--.3— 1'0 - 5'si 2
5 J3(r+h)(1 5sin“8; )
_51 (Jo (3 76in2 .
-514(“_}‘) (3~ 7sin 8L)sméhlc058L (13)
Since the variation of the potential function with longi-
tude has been neglected the eastward component of the gravi-
N tational acceleration is zero:
; gyg = 0 (15b)
Finally, evaluating equation (l4c), we obtain the geo-
centric vertical component of the gravitational acceleration:
g = (i'-'i)(-f‘l-)2[1+..3.J (=9_)(1~3sin®s; ) (15a)
‘ Zg r02 r+h a 2*T+h L
+ 2Jq(=0 )3(3-5‘sin28 )sing ’
3 r+h L L
_5 To o agein2 . 4 (15¢)
> J4(r+h) (3~30sin"8; + 35sin"5p )]
8 These components yield the acceleration due to gravita-

tional attraction alone. To determine the apparent acceler-

ation of a particle at a fixed point with respect to the
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must be included. The components: of tﬁe

Ty
£en

trlfhgar

relief" actually arise as .a result Qf the,gartlg;ggsd~

motion with respect to inertial spacé,»andﬁﬁhéydé%iﬁétion‘-

of these components appears 1n the section, Determlnatlon,

e e e
. oy

of Excess Thrust. For the present purpose: the "centr;fgr

gal relief" comporients will be .added to the gravitational
attraction acceleration components without further coniment.
The resulting centrifugally rélieved geocentric components

of the acceleration are then

8, - =(f )( o ) [3J23m8L - -13(—-——)(1-581n28L)
g o

- ..-14( ) (3 75m ‘o‘L)smaL]cosaL

~ wg2(r+h)cos 8y sin &y " (16a)

By = O | ~ (eb)

Bng - (=X J2( ro )(l 3sin SL)

VT B e 2y e
+ 2J3l(;n-) (3“5811’1 .SL)S"ISL

_5 Ip 4 _ a0in . 4
-é-J4(r+h> (3 ~ 30'sin &p, + 35sin SL)]

- %2( r+ h)cos28L (16¢c)
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o Eﬁéfﬁgéﬁfﬁéé of the resultant ac?ﬁ?ﬁtxggggsto R :

:gggv1t2vat;aupbigﬁrqbove=the.ggrtﬁviséthen: o » i
4 2 . 2k
oo Hep ) + (g, )0 (17) S
|
GEOMFQTJ:'RIC: AND GE@PO‘I‘ENT'IALW.ALTITUDES 3
{ The total gravity cormponents :0f equation (16) have been
‘obtained by summiilg the fihal acceleration contributions . .
i; from gravitational attraction and "centrifugal relief." A j
é, different :approach is taken in. reference 6, p. 5. The total ;
‘§ rpptentialcb? éeopotéﬁtiaifat a point is defined -as the. sum 3
; Qf;tﬁe%gxavitéiional potential and the fictitious. *centrif- ?
é@ ugal force" potential. Theé 1liiiés of gravity force which Ef
g‘ result from this pofential aré by definitiéh~e@ei¥ﬁherewper- %
g pendicular to the surfaces: of constant pctential, and 'since ?
%; the potential surfaces are ellisoids the lines .of force are !
curved (reference 6, figure I.2.4(a)). The curvature is. k
ir .such: that latitude increases with altitude along the line Zf
ﬁi of. force. 3
:; ‘Geometric altitude is defined to-be the cirved distance }é
‘f‘ "measured along a line of force from the zero potential level éy

(approximately sea level) to the given altitude point. %
% It is convenient to define another altitude parametér :
? which is especially useful in the model atmosphere equations ;
;§ of the section, Atmcspheric Environment. This parameter is :
;g
R 1-17
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. with: altitude because of the reduction :in gravity. 4 ~§

xgravity;andktheulatitudé$and-;adiu5no£weachvpoint~albng:

point (reference 6, pp. 6, 7).

physically équivaleiit to the geopotential but has the units y
-of length ‘and is caliea*thé;ggpSEtengig;'gltitudg.. It is 5
defined by the equation ‘ e e
h g » h . o . ,

T 0 & - ) )

where g.. is.thgssfandard“value*offthewréferénée~§eailevel
acce;etat{on dﬁe‘téfgravitg. fn'@qgordanqe’with'its~defin‘
ition the geopotential altitude is also measured. dlong the
.curved‘lineg of force; however, the phyéical'or:éequtﬁic
length of a geopotential foot is not constant: The length

i ;
is a function of the local gravity and. consequéently increases

. The most. precise technique for calculating geopotential
algitudé,requires:a simultaneQQS numerical .integration of .

the differential equations relating the acceleration of

the -curved line of force to the geometric altitude of that

The cgrvatﬁré~of £he line of force is exaggerated in
refecence 6, ané‘£Qr the range of altitudes considered in.
this document the geometric and geopotential altitudes can
be considéred to be measured along straight lines coinciding
with the geodetic altitude lines. The error associated with

this assumption is negligible. Consequently, the three

i-18
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different altitudes, geocentric, geodetic and geometric, can
all be considered equal, and we can speak of the geometric

altitude as being representative of all three,

By an appropriate assumption an equation can be derived
which allows direct calculation of gecpotential altitude
from geometric altitude and vice versa without the necessity
of the numerical integration from sea level up to the given
altitude (reference 7, pp. 217, 218 and 488). The assump-
tion which is necessary is that the.centrifugal‘relief is
not a function of altitude. By analysis of equation (16)
it can be determined that this assumption amounts to less
than one percent error in magnitude of the centrifugal relief
term for altitudes below 200,000 feet. Since the term is a
small fraction of the total gravitational acceleration the
assumption introduces negligible error.

To develop the conversion equation an inverse square law

| gravity field is assumed, but the earth's effective radius,

Re' andssea level acceleration due to gravity are expressed
as a function of latitude to make the resulting equation fit
the actual gravity‘field more closely. For an inverse square
gravity field the acceleration due to gravity is

Re 2
I O (19)
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Substituting this gravity expression into equation (18) and

integrating, we obtain the conversion equation.

81, , Reh )
H = 22(—_-) 20
gr ‘Re-!-h ( )

Equation (20) can easily be solved to obtain the inverse
equation for h as a function of H.
To obtain the expression for R, we first differentiate

equation (19).

2
d R
-——g—[‘. - ...2gSL € -
(Rg +h)’ .

dh

Evaluated at sea level (h = 0), this becores | .

o8y, _2ggp,

dh ho R

and solving for R,

2ggy,
© ag, (21)
oh |hao
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Equations for the sea level gravity and the partial deriva-
tive at sea level are presented in reference (7). Similar
equations can also be derived by appropriate substitution
and differentiation of equation (16).

The value of geopotential altitude at each geometric
altitude as given by the more nearly exact numerical inte-
gration of reference 6 and as given by equation (20) are

identical to the nearest foot up through 188,000 feet.

GEOPHYSICAL CONSTANTS

In order to selec£ a consistent set of geophysical con-
stants a brief study was made to compare the values of
acceleration of gravity as computed by equations (17) and
(19) . Equation (19) was evaluated by using the following
equation for the effective earth radius obtained from
reference 7:

64.344882(1 ~ 0026373 cos 28y + 0000059 cos 285 )

= (22)
3.085462 %1075 + 2.27x10“9coszaD - 2x10“12cos4aD

In order to evaluate equation (17) the constants in
equations (4) anc {16) had to be supplied. The values of
these constants as shown in references 3, 6, and 9 were
substituted, and the accelerations from eguation (17) pro-
duced by each set of constants were compared with those

from equation (19). The set of constants from reference

=21
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9 produced the closest agreement between equations (17) and
(19) . These values were the ones "most used" for orbital
calculations.

The values from reference 6 and those from reference 3
which are more recent, produce accelerations which differ
from those of equation (19). If the values from réference
3 or later values are to be used in equation (4) and (16),
then a new expression for the effective earth radius should
be derived by evaluation and differentiation of equation

(17) in accordance with equation (21). However, it is

believed that the constants from reference 9 are adequate
for aircraft traje.i:ory analysis. These constants are pre-

sented in the following table. .

Constant Value Units

r, 6,378,165 meters )
20,925,738 feet

Mg 3.986032x10'" meters. per sec
1.4077768x10%° ft® per sec?

1/f 298.30 nondimensional

J2 1082.30x10-¢ nondimensional

J3 -2.3x10"°¢ nondimensional

T -1.8x107° nondimensional

Vg 7.2921x10"5 radians per sec

=22
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SUMMARY

The basic assumptions, definitions, and constants which
have been used in generating model atmospheres are presented.

Such an atmosphere provides the norm to which all test data .

are corrected. Information about the wvarious models is also f
presented, together with the concepts of geometric and geo- .

potential altitudes.
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Subscripts
b

SL

SYMBCLS USED IN THIS SLCTIONW

Definition
acceleration due to gravity

local effective acceleration
due to gravity

reference acceleration of
gravity

sea level acceleration of
gravity

georetric altitude
geopotential altitude
temperature gradient, dTa/dH
molecular weight of air ox
Mach number

molecular weight of air at
sea level

ambient pressure

local radius of the earth
universal gas constant
ambient temperature

temperature of the ice point
(273.15°K)

molecular scale temperature
air density
air density ratio, p/pSL

geopotential

base of atmospheric layer

sea level

n-4

Units
ft/sec?

ft/sec’
ft/sec?
ft/sec?

ft

ft

°K/ft
Gimensionless
dimensionless

dimensionless

1b/ft?

deg K
slugs/ft?
dimensionless

ft?/sec?
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ATMOSPHERIC ENVIRONMENT

INTRODUCTION

The physical characteristics of the earth's atmosphere
vary ¢greatly, changing from day to day and with seasons of
the year. The performance of an aircraft is dependent on
the nature of the airmass through which it flies. For
example, the thrust of a turbojet engine increases appre-
ciably with a decrease in air temperature. Therefore some
set of standard conditions must be established in order
for performance data to have some meaning when correlating
data from one flight to another or comparing the perform-
ance c¢f one aircraft tc that of another. When flight test
results are reduced to standard conditions, ideally the
corrections applied ought to be as small as possible to
minimize errvrs due to linear approximations. (Reference

the section, Standardization of Excess Thrust.) This

might imply the use of a reference atmosphere which accu-
rately repres..ated the mean atmospheric properties at the
test site except for the fact that reduction of test data
acquired elsewhare in the world for purposes of comparison
could then entail large soyrections. A compromise between

small corsections and universal applicability requires the

. use of an idealized middle-latitude, year-round mean atmo-~

spheric model.

Hi-5
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MODEL LENVIRONMENT

BASIC ASSUMPTIONS
Since the earliest mcdels of the ;tmosphere were pub-

lished {(circa 1920} the same assumptions, with minor va
iatiens, have be.n made in the range of 0 +o 20,000 meters
(65,600 feet). These have included:

(1) Sea level temperature is 15°C

(2) A constant temperature gradient from sea
level to abont 11,000 meters (36,089 feet), and then

(3) A constant temperature from 11,000 to 20,000
meters
Additionally, it has been assumed that

(4) The air is dry

(5) The atmosphere is a perfect gas so that the

equation of state

~J
e

)

(1)

applies
(6) Hydrostatic eguilibrium exists, assuming that

the atmosphere is static with respect to the earth:

dP. = -pgdh (2)

a
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By combining eguations (1} and {Z} the usual differen-

tic . Eorm of the barometric esguation is obtained

dP g .,
?Zﬂ = -iifzd" (3)

If g is taken to be constant and Ta is replaced by a lin-
ear function of h, equation (3) can be integrated quite
simply to calculate pressures. This procedure was fol-
lowed in tabulating the older atmospheres; however, the
assumption of constant ¢ becomes inadequate as altitudes
are extended and new techniques (discussed in following
paragraphs) were devised.

PRIMARY CONSTANTS

In crder to compute properties of a model atmosphere,
it is necessary to establish values for basic constants
appropriate to the earth's atmosphere. To illustrate,
constants which have been used to form tabular values of
concern in aircraft flight test have been extracted from
reference 4 and appear in table 1., For a more complete
list of constants together with a discussion of their

origin, see reference 4, pages 4 and 5.
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Table 1 - Primary Constants

Symbol Units
By 29.92126 in. Hg
-~ 0.076474 b i3
agL 15 °C
g * 32.1741 ft sec™?
T 273.15 oK
% 1.40 .dimensionless
R 3089.80 ft2sec™? oK

UNIVERSAL GAS CONSTANT
The universal gas constant in the perfect gas law has

1 (degree absolute)¥!. When

the dimensions of energy mole~™
divided by the mass of one mole, the gas constant of air
has dimensions of energy (unit mass)~! (degree absolute)~!.
In the English system of units used in flight test work,
the energy is expressed in ft-lbf, the mass in lbﬁ and

temperature unit in °K so that the gas constant becomes

Cft=1b b ~!°K~! or ft ft-sec™?°K~!. If the gas law is

£ m

written

P, = pgRT

R has tHe dimensions ft °K~!. If the law is wWritten

* Therédopte&'value of g, is '9.80665 meters sec™? which

converted to the English system of units is 32.174049 feet
sec”?, “The above value from -the U.S. 1962 Atmosphere,
referencn 4, has been rounded incorréctly.

Hi-g
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as was done in this report in equation (1) then R has the
dimensions ft2?sec™?°K~}.
SPEED OF SOUND

The speed of sound is by definition the speed of propa-
gation of the wave formed by an infinitesimal pressure dis-

turbance. Such a disturbance very closely approximates an

adiabatic reversible (isentropic) process. Considering this,

the conservation equations for mass and momentum can be com-

bined to give

2 P
a = (Fp—)s

and for an ideal gas

a2 = YRT; (4)

In the ARDC 1959 and the U.S. 1962 atmospheres (references
4 and 6) Y has been taken to be 1.40 exact (to an altitude
of 90 kilometers).
RELATIONSHIPS USED TO DEFINE MODEL ATMOSPHERES

As was previously pointed out, the barometric equation
(equation 3) can be integrated easily provided that a con-

stant value of g is assumed. This was done in the older




K400 el el

26

o
o

ISPV

et s

——

TR e T P A

IR L

phetd q:g‘/f:‘.w B

e

atmospheres, and data were tabulated as a function of tape-

line altitude, h. At the high altitudes to which more

recent models have been computed this assumption is no

longer valid. Further, variation in molecular weight, M,

has been accounted for by writing the perfect gas law in

the form

P.M
p = A

RT,

(5)

See, for example, reference 4, page 5, and reference 6,

page 4. Integration of the resulting barometric equation

becomes quite complex, even when g and M are replaced by

very simple functions of h. To retain the mathematical

simplicity of the equations used for low altitude calcu-

lations, two transformations of variables have been made.

The two new parameters are: gebpotential altitude, H, from

combining g and h, and molecular-scale temperature, TM'

from combining Ta and M. By defining TM as a series of

linear functions of I, integration may »e carried out

exactly as for equations using geometric altitude

stant g.

Hi-10
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Molecular-Scale Temperature

By definition the molecular-scale temperature is

. TM = Ki—- Ta (6)

At extreme altitudes TM is widely different from the

kinetic temperature (reference 4, page 8); however, since
Ty =T, in the altitude range of interest in aircraft
flight test, no further consideration is given to this
parameter.

Geopotential Altitude¥*

The geopotential at an altitude h is the potential
energy of a unit mass at that altitude relative to the
potential energy of the same mass at mean sea level. In
differential form geopotential, ¢, is related to geometric

(tapeline) altitude by

d¢ = g dh (7)

Pt TSR e g e

o L

The force of gravity in equation (7) is the resultant of

e
E

EiiF Eaions e

two forces: (1) the gravitational attraction which derives
9 from Newton's universal law of gravitation, and (2) the

£ centrifugal force (commonly called centrifugal relief) in

* The following information on geopotential altitude per-
. tains to model atmospheres. Additional information may be
found in the section, Geophysical Properties.

;

S
3.
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a refexcnce frame attached to the earth, assuming that the

atimosphere rotates with the earth. Hence, a local value

of g is a function of both vertical displacement* above

the earth's surface and latitude.

Integrating equation (7) the geopotential at an alti-

tude of h is

h
0

In accordance with equation (8) the geopotential alti-

tude is defined as

h
H - 2 . PRy
& 0 &

By introducing the reference gravity, 9dys geopoten-

(9)

tial altitude has the dimensions of length (geopotential

feet in the English system), and is gquivalent to ¢, which

is the amount of work done in raising a unit mass from

* In the U.S. 1962 Atmosphere a refinement is made in that
h is measured along the line of force through the point,

from the equipotential surface for which ¢ = 0 to the
point in question, causing the lines of force to curve
toward the poles., The difference in distance according

to this definition and a straicht line distance is negli-
gible within the 'sensible atmosphere and is, therefore, of

no consequence in aircraft fliaht testing.
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mean sea level to a geometric altitude of h. 2 value of
9,80665 meters sec™2(32.17405 feet sec™?) was adopted for
the ICA0 Standard Atmosphere and for the ARDC 1959 Atmo-
sphere. The samre value was also adopted for the U.S.
Standard Atmosphere, 1962 for a geographic latitude of
exactly 45°. It should be noted that physical displace-
ments between equipotential surfaces separated by a con-
stant amount in terms of geopotential is not constant.
Rather, the physical displacement increases with altitude
because of the decreasing values of g.

In differential form equation (9) is
g.dH = ngh (10)

Substituting equation (10), equation (3) may be written

as

d(ln Pa) = -'—,—dH (ll)

In order to integrate this equation t¢ find geopoten-
tial altitude as a function of pressure, H(Ta) is substi-
tuted. To simplify the procedure, it is assumed that the
atmosphere is made up of layers in which the temperature
varies linearly with geopotential altitude (constant

temperature gradient).

n-13




The general temperature-altitude relationship is then
Ta = (Ta)b + LM( H - Hb) (12)

Substituting equation (12) in equation (11) and integra-

ting produces the following equaticn:

fi¢ ..
ln Pa k] -—R-Irl;‘-ln[(Ta)b'F Lm(H"‘”b)] (13)

Taking (Pa)b to be the pressure at the base of the layer

we have

(Ty)y 8t./R Ly

P [
bT(T,)y + Ly(H=Hy)

a = (Pa)

(14)

when the temperature gradient, LM' is not zero. Following

the same steps with L, = 0 leads to

M

~ g (H-Hyp)

P, = (P —_—
a (Py)y, expl AT}, ] (15)

Properties which appear in the above equations have
been taken from yeference 4 and, after converting units,

are presented in table 2.
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Table 2 - Properties Defining the U.S.
Standard Atmosphere, 1962

Altitude, H Gradient, L | Atmospheric | Atmospheric
' ’ Pressure, P, | Temperature, T,
km feet K /foot in. Hg oK
0.000 29.92126 288.15
~1.98120x107
11.000 | 36,089.24 ° 6.68321 216.65
0
20.000 | 65,616.80 1.61671 216.65
0.30420 x 10
32.000 | 104,986.88 0.25632 228.65
0.85344x 107
47.000 | 154,199.48 0.032750 270.65
0
52.000 | 170,603.67 0.017423 270.65
~0.60960 x1073
61.000 | 200,131.23 0.0053773 252.65

Pressure, Temperature, and Density Ratios

11-15

From the preceding equations, ceneral equations defin-

ing pressurc, temperature, and density ratios may be found.
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From equation (14)

5 . Pa (B, (To)y, 8¢ /RLy

when LM # 0 and, from equation (15)

5 = :;a = (Ppa)bexp - & - Hp)
asL asL R{Ta)

when LM = 0.

(16)

(17)

The general equation for temperature ratio from equa-

tion (12) is

T 1
a _ -

0 = T_ = = [(Ta)-b+LM(H Hb)]
agL asL

(18)

From the perfect gas law 6a = oBa so that from equations

(16) and (18)

By

+ 1

g =

when LM # 0 and, from equations (17) and (18)

Hi-16
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R s s e,

- g (H=Hp)
R('I‘)b

a

o = o expl (20)

when LM =0

Geometric Altitude

In flight test applications the calculation of georet-
ric (tapeline) altitude is frequently required. Geometric
altitudes cannot be computed directly for off-standard
conditions; an integration procedure must be resorted to
using continuous profiles of pressure and temperature.

From dPa/Pa = d(lnPa) equation (3) becomes

g
d(InP,) = -Rth (21)

a

From the inverse-square law of gravitation (reference

equation (19) in the section, Geoohysical Properties)

2
_Re” (22)

L = &L
(Rg +h)?

11




Substituting equation (22) in sguation (21) and rearranging

ah o =B (BeFM200p) (23)
€31, e

Equation (23) may be written in integral form as

hp T, +T n dP,
[dh o= - a"2 oy Bet Myt 2 == (24)
by gL, R, Pay.1 ‘a

and that

Re +h Re+hpy

Integrating equation (24)

T Rt % S 2

T, +T R P
hn = hn-—l + i ( an 2 an—l)( e; hn-l )2 ln Pan-l (25)
EsL, e a,
;
:
Q
3 i-18
;
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Geometric altitudes are found by summing increments as

indicated by equation (25).

STRUCTURE OF THE ATMOSPHERE

The atmposphere has been broken up into four major

regions which are asscciated with physical characteristics

listed in table 3. The names of atmospheric shells and

boundaries used in the table have been adopted by the

World Meteorological Organization.

Table 3 - Description of Atmospheric Shells

Name

Description

Troposphere

Stratosphere

Mesosphere

Thermosphere

The region nearest the earth's surface having a
uniform decrease in temperature with altitude.
The troposphere is the domain of weather where
turbulence caused by convection occurs. At the
tropopause (top of the troposphere) high winds
are common and the highest cirrus clouds are
found.

The region above the troposphere having a con-
stant temperature followed by increasing tempera-
tures, reaching a maximum at the stratopause.
Maximum of atmospheric ozone is found near the
top of this region. Turbulence is infrequent.

Temperature remains constant with altitude above
the stratopause and then decreases. This region
is in radiative equilibrium betweer ultraviolet
ozone heating by the upper fringe of ozone region
and the infrared ozone and carbon dioxide cooling
by radiation to space.

The region of rising temperature above the major
temperature minimum. No upper altitude limit.
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‘COMPARISON OF ATMOSPHERIC MODELS N RLCLNT USE " >Ji§
‘standard -atmospheres which have been used du;iﬁgsrecent ; ‘;j;a Eié
years are: ‘ R S .
(1) iInterndtional Civil Av&éé}@ﬁwo;géﬁigégggni” - ) ’g
‘Standard‘Atmb§phéfé7 1952 aéoptea.sy~£héauaﬁiénal\ﬁéV£§bf§=”’ K Zg

‘Committee for Aeronautlcs and publlshedaln NACA Report 1235

(2) Alr Research and DevelopmentyConmand Hodel

P el Yy

[
LRSS

Atmosphere, 1956

(3). 'U.Sg*Extensidn to- thé ICAO. Standard Atmosphere, ;
1958 * ‘ : ;

(4). ARDC Model Atrosphere; 1959 .,
5) 'U~S}'S£aﬁda£&~Afmésphérey.1962

wAtmosphere wasaadoptedfby the}NACA :on November 20, 1952 and )
,xs contalned 1n NACA Reporu—izas, Standard A@me§?here -' o :
Tables and Da?a for\Altltudes to 65 800 Feet. The equatzons f A
A,of thls report vere, used to eug:nd the.tables to 80y 000 feet
and appear xn reference 2. To an altltude of ‘80;, 000 feet, :
» tles such as 9 6.30, andua~£rom NACA*Report 1235 i o
.are 1dent1cal wzth these in thefARDC«Model Atmcsphere, 1956, h -
gheeu.s. Extensxon, o Lhe ICAO Standard Atmosphere, 1958 and A’Lj A
tﬁe ARDP Model Atmospher e, lqﬁgﬁ ﬁ',’ ,T ‘.' ,::\::., - )
owme lmportant changes were ﬁade in the U S Standard : ;
Atmog@here! 2962, The prlncfﬁal dlfference between the U S% , -f
f e
] |
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"'%éﬁ?QShduﬁggyiogé models is that the altitude at the top
‘§§i;hé¥§tfat9sphere is 65,616.8 geopotential feet in the
'féfﬁé?jznd¥§2j621.o feet in (2}, (3), and (4) from the
Ifé%,éﬁng@ JAbove 65,616.8 feet, the U.S. 1962 Atmosphere
has a:tgmberature gradient of 0.3048°K/1000 fcet as

‘agpiéted,in figure 1.
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Comparison of Temperature Profiles in
Standard Atmospheres

Figure 1
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E: The temperature in the U.S. 1962 atmosphere is 4.4°

g Kelvin higher at an altitude of 80,000 feet; thus, an

E airspeed of 700 knots (for example) at this altitude )

g ) would represcnt M = 1,208 in the 1962 atmosphere and .

ﬁ ) M =1.220 in the others. The difference in temperature

; produces differences in tabulated properties at altitudes

over 65,000 feet {(e.g., 6, §, etc).
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SECTION 1V

FLIGHT PARAMETERS
FROM SENSED
ENVIRONMENT (ON-BOARD
STATIC AND TOTAL PRESSURE,
AND TOTAL TEMPERATURE)
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SUMMARY '
The information in this section on airspeeds, tempera-
tures, etc., is similar to that found in other documents (e.qg.,

AF Technical Report 6273, Flight Test Engineering Handbook),

but has been included for the sake of completeness and to have
a source of basic equations for use in subsequent sections.

In addition, an examination has been made cf the effects of
higﬁ speed on the usual assumptions that air obeys the equation

of state P = pRT and has a constant ratio of specific heats.

.
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SYMEOLS USED IN THIS SECTION

pefinition
speed of sound
airplane 1lift coefficient
acceleration due to gravity
enthalpy
mechanical equivalent of heat

temperature probe recovery
factor

flight Mach number

correction to Mach number for
position error

load factor along the z-axis
ambient pressure

indicated pressure

static pressure

total pressure

gtatic pressure source position

error

impact pressure
universal gas constant
wing area

ambient temperature
total temperature
calibrated airspeed

compressibility correction to
calibrated airspeed
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Units

ft/sec
dimensionless
ft/sec?
BTU/1b
ft-1b/BTU

dimensionless

dimensionless

dimensionless

dimensionless
1b/ft?
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equivalent airspeed
true airspeed

correction for airspeed position
error

airplane gross weight
compressibility factor
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absolute viscosity

air density
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corrected for lag
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INTRODUCTION

Pressure altitude, airspeed, Mach number, and free air
temperature are basic parameters in the performance of air-
craft. Conventional instrunments used to measure these
quantities are the altimeter, the airspeed indicator, the
machimeter, and the free air temperature probe. (Mach num-
bers deduced from altimcter and airspeed readings are pre-
ferred to those fror machmeters.) Relationships of the
basic paramcters to environmental conditions sensed on
board an aircraft (static and total pressures, and total
temperature) are developed in this section. More compre-
hensive derivations of equations and descriptions of the
construction and calibration of instruments may be found
in reference 2. It should be noted that in this reference
the usual simplifying assumptions are made (e.g., constant
ratio of specific heats). These assumptions lead to
errors in calibrated air data when Mach numbers get much
above two. Real aqas effects as they influence calibrated
air data together with ewyuations which may be used at high
supersonic and hypersonic speeds are presented in this

section.
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PRESSURE ALTITUDE

From the general equations relating pressure and alti-

tude (eguations (18) and (19) in the section, Atmospheric

Environment) we have, after substituting constants appro-

priate to the U.S. Standard 1962 atmosphere fron table 2, for

$ = p_/P .
a a’ agp

5, = (1 = 687558 x10701)> 3% (1)
for - 16,40420 < H S 36,089.24 geopotemial feet

5, = 0.223360 exp( = 4.80637 x 107 (H — 36030.24) ] (2)

3

for 36,089.24 £ H £ 65,616.80 geopotential feet

5, = 0054032201 + 1.40688x107°(H ~ 65.616.80) 163 )
for 65,516.80 < I < 104,986.88 geopotential {eet
5, = 0.00856649(1 + 3.73252x107C(H — 104,986.88) 1712012 (4)

for 104,986.88 < H < 154,199.48 geopotential feet

Altimeters are built and calibrated accoroing to these

relationshiprs (or perhaps to another model atmosphere).

Differences in altitude between the various model atme-
spheres are fairly small (referenc~ 1, pages 13 - 15);
however, the standard used for instrument calibration
should be known. If laboratory calibrations are macde using

a model atmosphere other than the onc desired, corrections

| V-1
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equations .and propertles deflnlng the two{atmospheres.

The static pressure sénsed at the static ource of ‘the

éitimeter,;Ps,mmay difiér.slightly‘fxémfﬁhe~atmpéph§ric

préssure, B, because of pressurs ldg and positish error,

These errors are discussed in a Vater :paragraph.

Thé airspeed ipdicatg%rsenSegugheﬂdifferénceubetween
two press ures, total pressire, P., anésstatic-égessnre,
P . ‘The differénce inlpiessh:e:isfcggvenied to a speed
through Bernoulli's cdmpreésible equation for frictionless
adiabatic (isenfrgpig) flow in which airspeed is -expréssed
as the differenceﬂbetweeﬁ‘tgtal and -static. pressures.
Aséuming,that.Rs‘=‘Pa, Bernoulli's equation way be

expressed ‘as

Y.
B ~P
5 R

for subsonic speeds.

With v = 1.40, equation (5) becomes

V 3. w’
e 1402092702 1 , (6)
P, ) a -7

—

At supersonic speeds a detachec shock wave forms in

front of the total pressure probe, and equation (5) is no

V-8
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longér wvalid. 1In this case the Rayleigh supersonic pitot

formula
w» . ...Z_. . 1
3 | [z.r_l(l'zﬂ]y-l r+l yol o ] 7
P 2 a

V,
1*-—y+27(—a£)2

relating total pressure behind the shock to the free stream

ambient (atmospheric) pressure is used. It should be noted

that a9, = Pt‘ - Pa where the total pressure, Pt', sensed

at the pitot head is behind the shock and is not equal to

the free stream total pressure, Pt’ at superscnic speeds.

Substituting 1,45 for y and simplifving, equation (7) becomes
© ;66.92;(%‘)7

' B o™

-1 (8)

Examination of the ahove eguations shows that true Spééd,
'Vt, is dependent on the speed of sound, a, and atmospheric
pressure,dPa, in addition to the differential pressure, d,e
‘Therefo;e, an airspeed indicator measuring differential
pressure can be ‘made to read true airspeed at only one set of
atmospheric conditions, Sea level standard has been selected
arbitrarily, and the dials of airspeed indicators are scaled
so that a given differential pressure will indicate a speed
in accordance with equations (6) and (8) in which sea level

standard and Pa are inserted., This sea level standard value

of V,_ is defined as calibrated airspeed, Ver and is found

t
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from airspeed indicator readings after corrections have

been made for instrument and position errors.

-

Accordingly, equations (6) and (8) may be rewritten as

V .
5“1_ - 11 *0'2(;0‘)2]35 -1 (9)
and
v
166.921(a—°)7
Pig' B V. o SLzs -1 (10)
. asL (7(L)" =117
: AL

EQUIVALENT AIRSPLED

The equivalent airspeed, Ve, is the result of correct-
ing the calibrated airspeed for compressibility effects.
: ’ The airspeed indicator is calibrated to read correctly at
standard sea level conditions and thus has a compressibil-
f ity correction appropriate for these conditions. Wﬁen an
aircraft is operated at altitude, however, the compensation
is inadequate and an additional correction must be applied.

llence, Vc and Ve are related by

V = Ve + AVC (11)

C .

Equivalent airspeed coupled with standard sea level
density produces the same dynamic pressure as the true air-

speed (speed relative to the airmass) coupled with the

Iv-10
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actual air density at flight conditions. Therefore

VI o V2 (12)

e PSL ¢
or
V, = WWo (13)
For subsonic flight, solving equation (5) for Vtz,
2/7 )
Vt2 = 5a2[(-gc3+1)/ ~ 1] (14)

a

Combining equations (4) and (5) from the section, Atmo-

spheric Environment, the speed of sound in & perfect gas

may be expressed as

e
<-’;-%)1/ 2 (15)

: 2 2 2 .
Replacina V_* by Ve /o and a‘c by yPa/pSL.

t

P 1/2
v, - (Zagle, p¥To Y (16)
Pst, Pa

Solving equation (6) for calikrated airspeed:

7P
Vo w1 —Sbde, 171y (17)
PSL a
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The difference between equations (16) and (17) is the com~

pressibility correction, AVC, in equaticn (11). If P, =

Pa calibrated and equivalent airspecds are the same and
SL
AVC is zero regardless of tre maonitude of dge Also, Avc

can be calculated for any altitude and calikrated airspeed

since a value of V_ determines dg-
L &

MACE NUMBER

Mach number is defined as the ratio of true airspeed

to the local speed of sound:

M =

» |ﬁ<

(18)

From Bernoulli’s equation with isentropic flow of a perfect

gas

Y
P —
St (1er=ly2yl (19)
P, 2

This equation relates Mach number to free stream total
and static pressures and is applicable for supersonic as

well as subsonic flight. It should be rememhered, however,

that Pt' rather than Pt is sensed by a pitot probe in super-

sonic flicht.

Substituting 1.40 for y, eguation (19) becores

P

too (1402028 (20)
pa

V=13




The machmeter equation for subsonic £flight is found
by substituting the definition for Mach number in equation

(5)

4
9e Yy ~-1n2 7-1
—_— = [1+——..M ] -
B, 3 1 (21)
Solving for M
-l
2 9 2
M = [}’—1 —p-;'i-l) - 1] (22)
With v = 1.40
1/2
M- st DY (23)

a

For supersonic flight from equation (7)

i _1
Je | @elyy-l_vxl -l (24)
P 2 1-y+2yM2

This equation cannot be solved explicitly for Mach number.

It can, however, be put in the form

L g -
) (Pa+ ry+1)+v =1 12
= ! (25)
2},(}’+1M2 Y+l )7-1

1~y+2yM°

which may be solved by iteration.
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Suhstituting 1.40 for y and rearranging
1/2
Mo~ [0.7766628(3C 4 1)(1 ~ 1)%2) (26)
P, 7M2

~vitds TEMPERATURL

If the air surrounding a temperature probe is brought
to a complete stop adiakatically the resulting temperature,

Tt' if sensed correctly is

T - Ta(1+72-1M2) (27)

For various reasons, such as radiation or heat leakaqe,
most probkes do not recister the full adiabatic temperature

rise. Introducing a proke recovery factor, K, the equation

T - Ta(1+Ky2“'1M2) (28)

may be written to account for a lack of complete adiabatic
temperature risc. The maanitude of K is between 0.95 and
1.00 for most installations and can often be assured con-
stant. Variations with altitude and Mach number should be
expected, howewar., nusticularly at supersonic speeds.
Hethcous for detormining K for a given installatiun are dis-

cussed In referenne 2.

CPLIBRATED AIR DATA AT iIGE SPEEDS

For flight at speeds below Mach 2 it is generally ade-
quate to assume that air behaves as an ideal gas obeying

the equation of state P = pRT and having a constant ratio

-
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of specific heats taken to be y = 1.40. However, at speeds
slightly above Mach 2 and for higher Mach numbers this
assumption becomes invalid. In general it is necessary

to account for real-gas effects where the specific heats
are functions of temperature and pressure, and the egua-

tion of state must be expanded to include the effects of

intermolecular attraction at high densities and dissoci-

ation and ionization at high temperatures and low pres-
sures. A general form of the equation of state includes

the compressibility factor, Z, as follows
P = pZRT {29)

Without the assumption of constant specific heats it is
impractical to obtain an analytic expression for param-
eters such as the total temperatures and pressures in
front of and behind the shock. A method has been employed
to compute these parameters by interpolating air thermo-
dynamic properties from a comprenensive set of tables

(reference 3) and computing the total and behind the shock
conditions using the conservation equations of mass,

momentum, and energy as follows:

PaVs = Y (30)

2
Py + ppVy = Pp+piVy (31)

IV-16
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= h = h (32)
21g 1" e t

h2+

The free stream temperature, pressure, and density are
defined by the ambient conditions at a given altitude, and
the ambient enthalpy and entropy can be interpolated from
the thermodynamic tables of reference 3. The total enthalpy
at each Mach numbher is given by equation (32), and by defi-
nition the total (isentropic) temperature and precssure, T,
and Pt' can be interpolated at this total enthalpy and the
ambient entropy.

The static properties behind the shock can be obtained
by an iterative solution of equations (29), (30), (31), and
(32); and then the entropy behind the shock can be interpo-
lated from the thermodynamic tables. The total temperature
and pressure behind the shock, Tt' and Pt' can then be
interpolated from the same tables as a function of the
total enthalpy and the behind-the-shock entrorpy.

*, and P_' obtained by this

t t
method will generally differ from the values given by equa-

The values of Tt’ Pt’ T

tions (20), (24) and (27). HKowever, these differences in
no way affect the physical operation of the airspeed indi-
cator. Conseauently, the definition of differential pres-
sure d, = P,' - Pa’ and the equations for calibrated air-

t
speed, equations (92) and (10).are still applicable. As an

Iv-11
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illustration of the real gas effects on the values of '1‘t
and Pt a comparison with the values from thc ideal gas
equations is prescnted in figure 2. The real gas tempera-
ture ratio diverces fror the real gas value immediately
above Mach 2. The pressure remains within plus or minus
one percent up past Mach 3 bhut diverges beyond this point.
The differences in calibrated airspeed are not as
large, being much less than one percent up to Mach 5.
Figurc 2 can bc used as a tool to decide when the
real gas method described here should he used for data
reduction, Computer programs have been developed to per-
form these calculations, and a set of tables of tempera-
ture and pressure ratios and calibrated airspeeds has

been produced. These are described in reference 4,

ERRORS IN PRESSURE MEASUREMENT

In addition to the usual instrument error, altimeters
and airspeed indicators are subject to two additional
errors. They arc position error and pressure lag error

and are discussed in the following paragraphs.

POSITION ERROPR
To determine the speed and altitude at which an air-
craft is flying, values of dynamic and ambient pressure

are required as indicated by the preceding equations.

Iv-18
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‘§ The pressures reaistered by a pitot-static system will, :
. in general, differ from the desired values. Distortions . |
4 in flow are -caused by the presence of the aircraft and by the :

syster itself; pressure sénsors are located in a flow field
which is different from the flow field distant fror the air-

craft. The resultinu errcrs are -called position errors.

2

Total Pressure Lrror

:

; At subsonic specds the flow nerturlations aue to the air-

b« .

¢ craft static pressure field are very nearly iséntrobicnané

b

,E hence do not affect the total pressure. Thercfore, as long

A? as the to'al pressure source is not located‘in a wine wake,

;w in a boundary layer, or in a region of local supersonic flow, ’

2?~ the total pressure error due to the position of the total pres- .

< -

g‘ sure head will usually be negligihle:

f. °  Nose boor pitot-static systems are installed on supersonic

f aircraft so that the *otal pressure pickup will be located ‘
;é ahéad of any shock waves formed by the aircraft. .The shock ?
?‘ wave due to the.pickup itself is accounted for by th~e equation ;
.£ agains; which airspged indicators ére calibrated (reference |
. equation {10)). -

‘§ Failure of the total pressure sensor to register the local -

3 pressure may result from the shape of the head, inclination of

i ) . the. flow, or burred or misshépéﬁ‘ﬁitot lips. Since pitot-static )
? . ~ probes are tested in wind tunnels before intallation to assure .

? ) good design and commonly used probes produce no significant

V=20
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errors dve to inclination to the relative wind up to approxi-
mately 20 degrees, there should be no significant errors in
total pressure measurement. In flight test .applications it

is usually presumed that all of the position error oriainates
in the static pressure.-source. The possibility of a total
pressure -exror must, however, be considered¢, and airspeed
calibrations should he investigated to find if position errors

in total pressure do exist.

Static Pressure Error

The static pressure field surrounding an aircraft in
flight is a function of speed and altitude as well as the
secondary parameters: angle of attack, ﬁééh‘number, and
Reyr.olds numker. tHence, it ié{éeldom possikle to f£ind a,
location for the static pressure source where the free strean
pressure will be sensed under all flicht conditions. There-
fbre, an error in the measurerent of the static pressure due
to the pesition of the static pressure source in the aircraft
pressure field will generally exist.

At subsonic speeds it is often possible to find some
position on the aircraft fusclage where the static pressure
error is small under all flight conditions, and flush static
ports are usually installed on the fuselages of subsonic air-
craft. Nose booms are generally installed on supersonic
aircraft to minimize the possibility of total pressure error;

static pressure sensed on a boom has the advantage that in

iv-21
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supersonic flight the bow wave formed by the aircraft is down-
stream of the static pressure ports so that the pressure
measured is unaffected by pressure field of the aircraft.

Mot considering Reynolds number and assuming -that side-

slip angles are small, the functional statement

S
———— W f M,
X ( a) (33)

may be written. Defining the position error, APp, as

= P, -P (34)

equation (33) may be modified to

..i_PE = f(M, a) (35)

a

Since qc/Pa is related to Mach numker only, equation (35),
in terms of indicated values corrected for instrument error,

can be changed to

AP
—L = (M, qc) (36)
Gc;e

or

AP

P~ f(M,CL ) L)
Geie e

IV-22




Since Mo is related to g /Ps and a good appro:sination of

Cic
lift coefficient is

2nZW
CL, = > (38)
aicyMic S paSL

the position error ccefficient may be defined as

Ao orom, V) (39)
Teje %ic

At lov Mach nurbers the effects of compressikility on
pressure error may be considered negligilbile and the pressure
coefficient assumed to be a function of Cr only.

Since

n, W

CL = - (40)

and in the low Mach number range Vc = Ve it can be assumed

that
nZW
CL. = - (41)
pS-LVic S/2
so that
AP, W
P f(ozl) (42)
e, vic

Iv-23




For constant nzﬂ

Ay Y, only (43)

qcic

From subscquent derivations of equations (67) and (70) it

can be seen that

AP
AV, = (P, V) (44)

pc
%

c = f(Vic) orly in the low lMach nurber rance

Since AP /q
P "Cic

from equation (43)

AVpc = f(Vi.) only (45)

for constant nZW in the absence of Mach numher effects.

At higher speeds, when there may be both Mic and CL
ic

effects, airspeed calihkrations may bhe put in the form
D
A“p/qc.

ic
tip booms will usually form a single line for Mach numbers

or AMpc versus Mic' Data from nose booms or wing

greater than about 0.6. At lower speeds variation in n,W/8;.
may be of consequence especially for large airplanes which

have large changes in weight.
For aircraft equipped with nose booms the static pressure
error increases very rapidly with Mach nurber in the vicinity

of Mach one. The bhow wave passes behind the static ports at

iv-24




Mic = 1.03 or so, and the pressurc error becomes quite small
(perhaps zero).

In sumrmary, the form in which data from airspeed cali-
brations is put depends on the type of airspeed system, speed

range, and importance of Mach numnber and weight effects.

Calculation of Calibrated Airspeed and Calibrated Altitude

The three cases noted below are generally used. Equations
for making corrections for position error to both airspeed and
altitude are presented for these three cases assuming that no
error exists in the total pressure source. With this assump-

tion a common value of APp is applied to airspeed and to

altitude.

Case I:
AP n. W
P oa f(Myg 2=) (46)
Te, 8ic

or its alternate

AP,

L = f(Mic,’CLic) (47)

I4c

APp/qc' is readily found at the test conditions and APp from
ic ]

AP

AR, = _Pq, (48)
qc‘ 1C

I\-25
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where S is computed from the mcdified form of equation (9).
ic

V. 93,5
Ic -

Case II: AMpc = f(Mic)

By definition

AP, = P5 - P, (50)

i 1-%_ (51)
ps S

From equation (20) for subsonic flight

92.3.5
AP, 1+0.2M;
_ﬁg Wl (1+ e ) (52)
3. '
s (1+028%)>° ,
Expansion of equation (52) in a Taylor series about M. f
through the first two terms produces
AP LAM; AM 0.7(1 ~ 1.6M;,2) AM .2
P . _~ic7pc . ey (¢ pc (53)
s 14+02M, 2 (1+02M;,)2
From the machmeter equation for supersonic flight
- < 7 .
rt’ ) 166,921 M, (54)
P (i 2-1)28 ]
1v-26
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and

P! 166.921M"

(55)

Following the same procedure that was used with the subsonic

equations

AP T(2M;e” ~ 1) Ay, T(2LMg," - 23.5M;.° + 4) AN, 2

p
(56)
2 2 2
Boo i 2-1) M, (70 2~ 1)
Rewriting egquation (6) as
9 2.3.5
— = (1+02M;.7) -1 (57)
l:',S
and dividing equation (53) by equation (57)
1.4M;, AM 0.7(1-16M;.2)aM,_ 2
*%ec™pe e pc
2 2,2
App . (1+0.2Mic ) (1 + 0.2Mic ) (58)
q : 3.5
fie [(1 + 02M, D) = 1

for M, S 1.0. The equivalent expression for the supersonic

case is obtained by dividing eguation (56) by

Ty, 166.921M;,] L (591

which results from eguation (8), to give

v-21
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7(2M 7~ 1AMy T2t - 23,50 74 )M

2 ¢ 2
AR, Mic(TM;c" = 1) M 2(TM 2= 1)
60
deie 166.921M; . (60
[ - 1]
2 205
(TM;." = 1)
As for Case I, APP is determined from
AP
/_\pp = . P qcic (61)

requiring equations (59) and (49) for subsonic flight. At
supersonic speeds equation (6C) and the modified form of

equation (10)

V.
166.921(f)7
qCIC = PaSL{ V 2 N s - l ; (62)
[7(28)" - 11
a
are uscd,
Case III: Avpc = f(vic)
From the relationship
AR, = (P = B) - (R - F) (63)

Iv-28
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AP_ is

AR, = g = dg, = f(Vo) - f(Vio) (64)

Fron ecuatiors (9) and (49)

3.5
AP, = {[1 + 02(-—-)] - (1 02( ) | (65)
p agL, sl ’

Exranding ecuation (65) in a Tayler series through the first

twvo termes and evaluatirg =2t Vc = Vic

14P,_ Vi
SL 1C 2.5
AP, = — 1+ 0.2( 1°)] AV

pc
aSL 3L

07PSL

V.
[14+02( lc)] 1+ 120a2) Y8, 2 (66)
aSL %L 3L

or divicdine by Avrc

AP 14P, V. V.. 9225
ol S __?_S.Lz_‘f[uo.z(-‘—‘:-)]

a
pc agp. SL
0.7P

. 105 T
+___aq5_‘L_[1+0‘2(XLC.)2] [1~1~l,2(-\-11£--)2]AVpc (67)

2 a a
agp SL SL

Following the same procedure for supersonic £licht,

from equation (10)

V.
166.921 (-ZL-)7 166.921 ( a'c )7

AP, = P, | SL__ _ SLS! (62)

\Y, 2.5
[7(~Caf =1] (7 e )? _1;
3L 3L

1v-29




Expanding ecuation (68) in a Taylor series through the first

two terms and evaluating at Vo = Vic

V.. 6 Vi, 2
7%166.921Poe, (&) 2(%)" -1
AP - SL_ VSL — 18V,
SL (7(=ef - 11
4L
V: . 4 V; 2 2
[14(-2e)* ~ 9(de)® 4 61AV,
. 7x166.921 PaSL ( Vic )5 a& aSL. P (69)
2 3L,

A 4.5
(7(Mey? - 1)
L

or ¢ividing by AV
N

\A ,
1168.45P (—19-6 2(XL°-—)2-1

a
AR, SL " agp { agy, }
AV a \'A 3.5
pe SL [7(~def - 1)

8L

Ve !
(e de oty 614V,

A a
+ 584.224P, (e %L iSL (70)
3 oL asL Vie 2 4.5
gL, [7(2e) - 1]
%SL

APF for Casec III is foundé from

AP
AP, = P AV (71)
P AV PC
pc

APp can be determined as described akbove for each of the

three cases an¢ then used to find both Hc and Vc from uic and

Iv-30
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Ve To calculate Hc, Ps is first found from the appropriate

pressure - altitude relationship (equations (1) throuch (4))

at “ic' Then ambient pressure is corputed from
~ AP (72)

Hc’ corresponding to Pa' may then be found through the same
pressure - altitude relationships.
Vc ray be found in a similar fashion by computing Ia, *
ic
corresponéing to Vic’ fror equation (49) or equation (62);

then impact pressure from

q, = 9q, *+ AFB (73)

Vc' corresponding to Ggr maY be computed from eguation (%) or

from equation (10) throuch an iterative method.

PRESSURL LAC ERROR

Pressure gages such as airspeed indicators and altimeters

are subject to pressurc lag errors when airspeed or altitude

are changing. Pressure at the source differs from that regis-

tered by a pressure measuring device because of:
(1) pressure drops in tﬁbing resulting from viscous
friction between the moving air and the walis of thc
tubing

(2) inertia of the air in the tubing

NOT REPRODUCIBLE
v-31
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(3) pressure drops across orifices and restrictions

(4) acoustic lag, i.e., the time required foir a pressure
disturbance to travel the length 6f the tubing, and

(5) instrument damping, inertia, and “riction

Since an altimeter is an absolute pressure measuring
instrument the effeéct of lag on indicated altitude readings.
is fairly obvious. For example, during a climb the indicated:
altitudg tends to be less than the actuyal altitude; an air-
syeeéd indicator, being a differential prggstxe gage is affected
by lags in both total and static pressures so that the error
may be either pusitive or negative. ‘

Since the error in both pressures is in the saﬁe'direc-
tion the net effec on impact pressure and hépce calibrated
airspeed is compensating. Corrections to altitude éré, in
genera;,<bf more consequence tﬂan corrections. to airspeea,

From the above list of factors which affect the indicated
pressure iniég_airSpeed system it is .apparent that a'compléte
mathematical tréatmentgéf’fﬁéﬁresponsecto varying pressure
would be prohibitly complsi. It has been found, however,
that lag can be attributed largely to viscous friction and
that the system can be adequately gescribed by the equation

4R

- AR = PG (72)

where A is the time by which the indicated pressure lags ‘.

Iv-32
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behind

that

(1)
{2)

(3)

(4)

(5)

(6)

the source pressure, Use of this eqguation assumes

the rass of the air in the system iz zexd
the ratc of change of the applied pressure is ncarly
constant

“laminar flov exists (Tor this to be true it is neces-

‘sary that the Reynclds nurber be less than 2000; in

typigal airspeed systems a value of 500 is seldow
exceedn~d inmflight.)

the pressure lég is small compared with the applied
pressure (This is génerally thé case; however, at

very high altitudes this assumption becoles critical.)
the acoustic lag is negligible (This assurption can be
easily checked by computing acoustic lag from the
lencgth of tubinc and the speed of sound in the tubing
and compraring it to A from eguation (74)).

the pressure drop across the orifices ard restrictions
is negligihkle (This is true only if a minimum of such
restrictions exist so that the tuhing is ncarly a swmooth,

straight "pipe" of unifori diameter.)

For a constant ratez of change of applicd pressure,

P(t) = (a@p/dt)t and equation (74) may be solved as

TR
}\%i:i- + Pi = P . - 0\\0\%\ (75)
WOt
iv-33
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3 From dinensional analysis it can be shown that, for a 14
: particular installation, 1
? 7
£ 3
< ) .
o A e & {76) 3
. P |
2 -
, et o e 3
lience if the lac constant is obtained -at one value of p/P :
: it may be extrapolated to other values by the expression :
= ;
T 2 —F. (77) :
2 H2F] :
3 o
E Usually, exrerimental data are used to compute a sea level
}-;;
e . lag constant from which the lac constant at any values of
23 ‘ .
4 ‘ - and P can be obtained, using the equation
B,
e '
( P
» o= oag b L (78)
3 ‘ ks, P -
b With the lag constants for the static and total pressure sys-
-
i tems known, the error in altimeter and airspeed indicator read-

3 ings due to pressure lag can be calculated for any set of test

3 conditions.

2

A Corrections to Altitude

ﬁ The lag constant for the static pressure system, AS, can

k. be defined from equation (75) as

A P, P, AP, :
k< sp ~ Ts s

f‘ ’ A, = —= - L (79)

- dPsz/dt dPSg /dt )
k: V=24 )

At . N P NN TIAN b o]
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With the approximation that di’s /dt = dp_/dt equation (79)

1)
beconmes
M i (80
y dB,/dt )
From the assumption of hydrostatic equilibrium
dPy; = -pgdH; (81)

Then from equations (80) and (8l1l) the altimeter lag correction

is

AH: . Ay il (82)

S #sn O
The altimeter lag correction can be evaluated from the experi-
mentally determined value of A.., u, /M (a function of
SL Hic SL
temperature from fiqure 3), 68 corresponding to Hy o and
dHic/dt the rate of change of observed altitude corrected for

instrument erzor.
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Cecrections to Airspeed

Lag in both the total and static pressure systems may be

. accounted for by

sy S Ay o 4 e

DRRRRUIOY

Gc, = Ty = Fsy (85)

.
VRN AN

The error in impact pressure due to lag is, by definition

pi

Mo = Tejey ™ Yo (86)

—
IR H GEde

P L 2y R 1

which may be stated as

AR R LSS

Mgy (R, = R') ~ (B ~ F) (87)

S R R L Y

. It follows from equation (75) that

S
™~

Y dP, |
VL . ) 88 -
Aincg M dt A dt (88)

YT ——p
EES AR S

Differentiating equation (85) with respect to time

T AL I5,

oo | dF 0By

dt dt

(89)

Faees o

i e

Lo Ao

Substituting equation (89) in equation (88)

. dag, dP
Mg, = )\t_—&dt - (g - '\t)——z‘dt (90)
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. With the approximations

chicg, a dq..
dt dt
and
dP52 - dp§
dt dt
equation (90) becomes
A A-—-—-d%ic (A “___dps
i g tade T s T MU (1)

« Differentiating equation (81)

dB, = - pgdH;, (92)

S

and differentiating the subsonic airspeed equation (equation

(49))
dgg, = 1'4:§~Vi°[1 ; 0.2(%)2]2'5d\§c (93)
Dividing by 4t
id‘:.c.is. - 1'4p352‘*vi°[1 +o.2(:'i° 2 j‘fic (94)
agl SL

iv-38

T RN S\ (PP AR WP L S RO Y

[ ORI

P

-

csA A L mIRNT T amea

e, £ AT A T A R Y AOA L

L

ke




Y
TR R

P SRS

U ek

RS CRR S st gy /4
v

RN

D Tt T PR TG

R o)

AL T

ks KL T® A ety
TR0 2, T A ATV T

-
AN

Differentiating equation (88) and substituting together
with equations (89) and (30) in equation (87) the airspeed

indicator correction expressed as a finite difference is

, (A¢ = A)pg ic
AVic = )\t‘d—vlg + > ' dt
2 dt 1.4P, v o (95)
—5Ly (1 4+ 0.2(-2))
2 a
SL

3L

for V;., < ag

With the supersonic airspeed equation, equation (59)

dH; .
AV: Y dVie + (s = Adre dt
3738.11(2&) [2(=2&)" ~ 11
3L 3L
. Vi
[7(%)2 _ 1]3.5

SL

Indicated airspeed corrected for instrument and lag error,

Vicz' may be found from the above equations and

vicz = Vi + AViCQ

As in the case of the altimeter, As = XSL(uHic/uSL)(l/GS);

similarly

A= N
SL psr, Pg+ q
Sc

TR gy,

.
v
e
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SUMMARY
Excess thrust has a number of advantages to recommend it
as a basic parameter in defining the performance of an aircraft. .
For example, corrections in terms of excess thrust, are most

easily derived from equations of motion, and procedures common

to both climbs and level accelerations may be set up using
excess thrust as a basis for arriving at the desired parameters
in both cases. Various means of computing excess tarust are
available. The advantages and disadvantages of each are dis- i

cussed, and the equations for computing it are derived in detail.
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SYMBOLS USED IN THIS SECTION

Definition

components of accel-
eration

acceleration factor
acceleration factor
associated with
eneray height

roll angle about the
airspeed vector

BCL/aa
drag

net thrust

local effective acnelera-

tion due to gravity

reference acceleration
«due to gravity

components of accel-
eration of gravity

tapeline éititudg
'QfésSufeﬂaititudé:
eniergy: heiaht
unit vegrors

thrust angie of inci=
déence

moment of inertia. about

y axis

'-I

coefficients of ‘the
zonal harmonics of the
earth's gravitational
potential

distance from vane to
airoraft cg

V=6

Units

ft per sec?

dimensionless

dimensionless

rad

per rad
1b

b

Tt per sec”

£t per sec

ft per sec

rad

Slug;ft?

kY

dinensionless

dimensionless
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L ift
M £light Mach number
D, en, /N components of load
y 2 factor
p roll rate
Pa anbient pressure
o] pitch rate
q dynamic pre.éire
r local xadius o¥ ina
- . earth
r ; B ~yaw rg;e :
r, B : _eqhéggfiai radius of
- the earth
s ) ' Laplace -operator
Sv characteéristic area of
vane
t o time~
v horlzontul .component of
9 ajircraft speed relative
“to. ‘e ‘ground
Vi inertial speed
Ve true airspeed
Vw wind speed
Vi alrcraft velocity
® nduced by the earth'
rotatlon
W airplane gross weight
X:Y,2 Cartesian coordinate
system (subscripts
denote particular axes
system) .
-0 angle of attack

V-1

R

ib
dimensionless

dimensionless

rad per sec
1b per ft?
rad per sec
1b per ft?
fr

rad per sec

ft-

£t per sec

ft per sec
ft pgf\sec
ft per sec

it per sec

1b

rad
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Ao‘bcom bending

A
%q

Ac

Ao

Ar;

change in sensed angle
of attack dre to bcom
bending

change in sensed angle
of attack due to pitch
rate

change if sensed anglc
of attack dus to upwash

change in sensed angle
of attack due to dynamic
lag

flightpath -climb angle
measured from the geo-
centric horizontal
plane

‘aircraft gecdetic lati~
__tude

alrcraft geocentric lat-
itude .

misalinement angle
damping ratio

-difference between the
aﬂrcraft longltude and
the longltude of the

radar coordlnate origin

product of the un1versa1
qrav1tat10oal constant
aﬁﬁf&be mass of- the‘earth

fiivhtpath heading angle
measured from- true north

vehlcle ground-track
headinag ‘angle measured
from true north

‘bank angle

anals between radar
x“ axis and true north

direction from which the

wind blows (from true
north)
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rad

rad
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rad
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-~ *Subscripts

;"f‘:? ‘

\sv’r

frequency

undamped natural
frequency

rotational welogity of

wind-axes sys® s

angular velocity of the

eagth

body axes

center of gravity

geocentric axes

local-geocentric

indicated corrected for

instrument -exror
neasured
maximun value
radar axes

vane

wind akes
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axes-

rad pey sec

rad p=r seo

rag per sec

rad per sec
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GENERAL DISCUSSION OF TE VARIOUS MEYTHODS

hirplane performance data can be determined by sewveral
different methods requiring different instrumencaticn,

These methods, which have received varying degrees of use, - .

ceea t it o2

a. Airspeed-aititude

L. Accelerometer %

‘c. Position measarement g

i

. ‘d. Time history of dynamic pressure §§

. 2, Rateé of~climbriﬁ61qa§9r ‘conuected to totai pressure gé
£, BAir temperaiure‘thermomgtér B — : §§

b

Methods: 4, e and £ are-described-in-roference 1 and in ¢ R

% pﬁag;er 7 of féference élﬁut‘axe eégiu@éd‘frqm furthet -digcus=, ‘é
; " sion $ince they havevnever'receivédeppuiépAécéégﬁance. Of the ) if
i - : - , - §:
E xemaining three, the ajrspeed-altitude method. has been widely %
g used for -many years;. .acceleicmeters have been used during éi
: numerous flight test programs; pozition measur~mént (e.g., f
; radar) has.been émployed in .some isolated instances. ;@
E The most .convenient parameter with which to work in ;j
standardizing -airplane performance data is excess thrust. %ﬂ

]

‘Corrections, in terms of excess thrust, are most easily {i

| . derived: from equations of motion. BExcess thrust can be . %
related e&asily to rate of climb, turning performance, and f

vV-10
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other performance parameters. Standardizatiom procedures
common to both climbs and level accelerations may be set
up using test excess thrust as a basis for arriving at the
desired standard parameters in both cases. Equations
defining test excess thrust are derived in subsequent para-
graphs for the three methods, a, b, and c, starting from

the same basic equations of motion.

Since the gquality of standarized data can be expected
to be no better than that of the test data, some observa-
tions in regard to the calculation of excess thrust are set
gown for the three méthods.r Advantages and disadvahtages

of éach are considered.

ATRSEEED=ALTITUDE: METHOD

‘Thé: bulk of the peérformancs test proyrams which have

peéen eondwst2d up to. tiie present time havé made use of

-geaéuggﬁents.gf airspeed, altitude, and time {usually an

airspeed. irdicator, and altimeter, and a clock mounted on
a ﬁhpt&wpaneli tv gather performance data. 'This~uxéhdd
hag beeh in rouc.ne useé since the early 1956'5. Several
gchemes for processing the data have been tried. The one

in most comison use in later years for both climbs and accel-

ecations has been i ¢ompute total energy as a function of

time, then curve fit and differentiate to find rae of change

of energy (or excess thrust).

vV-11
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The chief merits of the airspeed-altitude method are (1)
the instruments are slways available since they are needed
on board any test aircraft as a part of its test instrumenta-
tion system. Hence “spec al" instrumentaticn {(-'iz sensitive
accelerc "eters} or around based .ositioning equipment is not
needad, and {2) the instruments are very reliable and usually
quite consistent in behavior so that relatively little data
comparegé to sensitive accelerometer systems should be lost
because of instrument malfunction. Their reliability is also
generélly superior to that of position measuring equipment
since contact with an aircraft is occasionally lost due to

excessive range, clouds, etc.

The airspeed-altitude method of calcuiating eXégssfthrust
has been found to be &he‘iéast—accurate of the~methods
described. (See referericé Sy‘w‘é‘isgr’example)«a There .are several
factors swhich cdntxibﬁferto the inaécuf&cy of this method, éhe
most important being the errors in determining true airspeed
and tapeline rate of climb: due to errers in amkient tempera-
ture, pressure lag during climbs, readability of instruments,
stc. The reason these erroxs are so important is because

excess thrust is computed by diffeventiating specific energy,

E/W (energy height, M)

v-12
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and any errors in these parameters are amplified by the
differentiation process. Also, the magnitude of the time
interval used for curve fitting and differentiating to
obtain rates of change of specific energy (and consequently
excess ihirust) may have a decided bearing on the results.
If small intervals are used, spurious variations: are intro-
duced into the calculation of excess thrust. On the other
hand, when excessively large intervals are dged, variations

which actually existed are eliminated, or at ieast reduced

in size.

Another disadvantage of the airspeed-altitude method is
that corrections for wind gradients are needed which are
frequently quite sukstantial for climbs. In contrast only
relatively minor corrections for variations in normal load
factor~are required to standardize climb performance when

usiné any of the other methods.

As flight speeds and altitudes increase, the accuracy
inherent in the airspeed-altitude method becomes worse.
Above a Mach number of, say, two, other means of obtaining

excess thrust should be used, if possible.
ACCELEROMETER METHOD

Flight tests to evaluate the practicability of measur-

ing longitudinal accelerations by means of a sensitive

V-13
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accelerometer were conducted in the‘mid—l950'5a (See

referénce 4.) Sensitive accelerometers were installed in

category test aircraft for use as a prime source of per- -

formance data starting in the early 1960‘s. Accuracy of
the data recorded during these days was comparable to that
acquired with airspeéd-altimeter measurements; however,
with improvements in accelerometers, installation design,
and means of recording, -data from accelerometers are at
present, decidedly more .accurate than that from the airs

speed-altitude nethod.

Two different types of installation have been: tried.
'In the first, a sensitive accelerometer has been mounted
.of .a vane (similar to that used to measure ingle of :3itack)

so that the sensitive axis of .the accelerdmeter remains

/ ejative
A /'}wgéag—

-Aécelerometer
. Package

Figare 1’

FLJGHTPATF ACCELEROMETER 'SYSTEM
v-14
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alxned with théilééal,airflow. ‘Unfortunately, the upwash
1§ngle caused by the presence of ‘the pitot head and perhaps
fﬁé nose- of ihe~§ircraft is significant, and accurate cal-
ibrations must be made in order for the desired component
of acceleration .along the airplane's velocity vector to
be found,“Secondary effects which may be of consequence
if the pitch angle ig changing rapidly are due to pitch
raté, pitch accelerations, and dynamic effects causing

a lag in the :position of :the vane. These effects can be
expected to be negligible during level accelerations and
prqbgbiy during c¢limbs but may require minor corrections
to measiired .accelerations during roller coaster maneuvers
or other tests when pitch rates are high. In the second
type of installation, a sensitive accelerometer is hard-
mounted at or near the airplane's center of gravity. 1In
this case -the location of the sensitive axis -of the accel-
erometer must be very well known. Furthexr, the accelera-
tion:-must :be resolved through: the :angle -of -attack -and :cor-
rections ‘have totbe made to it similar to those described

'or the vane mountad accelerometer.

The most attractive features of the accelerometer
method are that load factor, N, along the flight path is
obtainéd, after making the corrections and axis transfor-

mation described above. The resultant force is the engine
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affected greatly by wind gradients. RAlso, instantaneous:
values are recorded, and uncertainties. incurred by .data
smoothing and differentiation reguiréd by the otlier nethods:

are avoided.,

Thé reliability of the flightpath accelerometer is
better than that of position measuring equipment (radar
‘and' Askania camera) since thr iaccelerometer is carried
with the aircraft &nd ‘theré is no danger .of incomplete
flight coverage; however, experiénce has :shown the flight-
path accelerometer to be less reliable than the airspeed-

altitude instruments. .

The: most recent accelerometer installations have been
a: two-axis accelerometer system: which' measures -normal
‘load f£actor as well as load factor along the ‘flight paths
This makes for a ¢onsiderable,imp;OVémgnt in :the -accuracy
of the resultant acceleration: along thé: flight path
together with an improved normal load factof for use in

the standarization equations,
In addition to one- and. two-axis accelerometer .systeéns,

three-axis accelerométer data from an inertial navigation

system have been used with marked success as a prime source

V-16
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mounted on a stabie platform has the considerable advantage

that neither upwash angle not angle of attack need be
known if orientation angles to locate the acceleration
comporients ‘are: known; theéy are generally availablé from on-
board: computers in aircraft which have :inertial navigation
systems as standard equipment. Drawbacks to- the use of
these systems: are: additional compléxity with attendant
maintenance requirements, -and need for pre-flight and post-
flight checks. Also, operable navigation systems have not
been installed, in general, in aircraft used ‘for category

performance testing.

POSITION MEASUREMENT METHOD

* Radar and Askania camera data have been .ised to com-
pute performance information in only isolated instances,
although both have yielded satisfactory results .(reference
3} ‘'Since ‘the data from both ssources are used in the
same way, except for procgssing of ‘rawdata to. f£ind posi-
tion and vVelocity -components;, they are discussed together.

The accuracy in both cases. depends primarily on the
quality of the: track.ag data, which in turn depends on
suchrfactgrsﬁas numbey, .of recording stations, range, ele-
vation angle, etc. As in: the aitsgeed?&ltitudé method,
‘any errors. in tracking data are amplified in the differ-

‘entiation: process required to compute excess thrust.
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Tha /accuracy inherent in these .systems, -however, will
produce excess thrust of higher quality"thaﬁ=wiil the
airsjeed-altitude method. N gerious disadvantage may be

that foverage is: not always available, .éspecially for

‘high performance aircraft. Also, data turnaroind time

may be excessive.
Like the accelerometer method, 6nly slight Gorgecr
tions £6r wind gradients (for normal. load factor) aié

needed.. .

Table 1 shows a rating of each method frow ‘the stand:
point. of ucduracy, reliability, aircraft edquipvent required
(the least amount being considered best)..and data pro-
:cessing effort {least required by engineering. personnel

considered best). -

Table 1 - Comparison of Methods for Calculating,
' " Excess Thrist — '
1 Rating| Accuracy | Reliability.  :Aircraft Equipment | ‘Data‘Processing |

_} . Required _ U Bfest

-

e g

1 1 | Plight Path |  Airspeed: Askenia It R
’ Accelerometer |*  Altitude Aske ?@ adar

2 Askania | Flight-Path Hadar . ‘Flight Path
“Accelerometer . . 1 Accelerometyy

3 Radar X Radar , Flight’Path Askaniga N
Accelerométer

{
d

4. Afrspeed- | Askania : Alrspeed- |’ Airspeed- Y.
Altitude ' A Altitude Altitude \
[ . Ve on \ - - .y
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EQUATIONS OF MOTLON

Conponents of the earth's -gravitational. attraction taken

from the section, Geophysical Propertie§, are

. ke T, .4.
g - - (— (+] :
Ex, (‘rb2 W2 [3 Jq sin 8y,

- 302 1-'sszn’26L>

28;,)sin BL] cos dy, (L)

and

.‘ l’r
g = (P
g rd

3 To. - 25
T L 2l ) (1 - 3 sty

¢

P r+h _ %8 ~ 55125, )sin .

=55, (e y43 = 30 sin2 4nd 5 41
& I4lpp) (83— 30sin? 5y, +35sin%5y,))

(2)

in a north-, -geocentrically-directéd system. Because of
théwéarthks«équétoriaiﬁbglg97~gi ‘is'aiwaYS“poiﬁtéd“gowafd
the -equator (i.e., toward ithe soutn in the uorthern hemi-
éphere~an41toward the north in the southern hemisphere).

g, is assumed to be zero and g, is directed toward the

Y
earth's center. By transforming these components of

.

gravitational attraction: through the angles o, y, and B,
A}
‘the resultant along the velocity vector is found. The

longitudinal equation of motion in the wind-axes system

v-19
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is, then, for the gerieral ¢ase in banked flight
Fpeos(a +ip) ~ D %(gzsjn)’:r-zgg‘cochOSa)f R
roE g ’ A 3) :
= _VL v, S.
&r ax&" ;
- < 'g‘

‘Similarly, in the ldteral direction we have

%V_ [gxs =~ cosBsing + sinB sin) ;osp’)], + egzssiri,B cosY ,
r |

- (4) ¥

= — 8 !

T & Vv '

As pointed. out in~derivingv@y (equation (47)), ‘the
w T ’
lateral acceleration tends to produce a sideslip but that

effects on aircraft pexrformance can be safely ignored. \
Theé normal -equation. of .motion in the direction ¢f the

l1ift is ’ A

A e

L +Fysin(a+igp) - -‘—vi[g (sinBsing +cosBsih* c0so)+¢g cosBéos}'] ' !

L) g; Xs s E Z) . i

t g ('5) ;

‘ Tw-:(:: a ') - ‘ ' ;

In most £light tests the bank andle is kept small and :
can be assumed to be zerd. For this case the loagitudihal -

and. nctmal eqiiations redice ‘to-

Focts(a +ip) ~ D= ﬂ-f:(‘ggsih'%'—‘: 8, €08} c0s0)
' & g '3 ‘ (6)

8 Xw

and
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L+ Fy sln(g +ip Y -i ( gzaosy + 8xgs!nf7coso) (7)

It 18 conveniént to combine gravitational attraction
and’ aircraft acceleration by defining load: faGtors along
the: airspeed vector .and along the lift vectdr. Acceler-

-ometers sgnSQ the‘_ste}ié;ad factors directly. 'Along the

airspeed Vector the load fagtor is

§ R
B = Lig, sy ~ag s (8)
n ‘m  wme (B SIY —~-g,COBYCOSO + 8y -2
Fw & Bzl = Exgo Xy

In the vertica]&féiff‘e’étion along the lift vector, the
‘load factoy i T

\ L (g, 087" -
nzw - gig;gggos;}é+gx:in7cosa azw) (9)

Equations (6) and (7) may then be rewritten as
Fpeos(a+ip) =D = .y W (10)

and

L+Fpsin(aiip) = 10,y (11)
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" In the wind~axes system the airspeed, V

AIRSPEED-ALTITUDE. METHOD

Precise derivations of equations are made which may be

used with on-board measurements of airspeed and altitude

‘to give excess thrust. The magnitude of some of the terms:

iz quite small, -and considering the inaccuracies in con-
ventiignal instruments, they may be safely: eliminated. If,
however, improved instrumentation becomes available, -use

of the precise equations may be found desirable. '

DERIVATION OF GENERAL EQUATIONS

Inertial Velocity in Wind-Axés System

Referring to figure 4 in the section,(Coordinate Sys=-

tems and Transformations, the inertial velocity may be

expressed: as

LIRS LA (12)

N e

forming transformations, first through the angle ¢, then
through y and B, the velocity due to the earth's rotation

'y

is
0

[Vm.] = [M]“V:ae(r +r,|:7),c058L'

(13)
0

1 e o cosy 0 —siay|| cosec sinc O
where ([M] = [0 cosB saB|| 0 1 0 ~sinc coss O

0 -sinB cosB|l'siny 0 cosy 0 0 1

V-2
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The product of the matrices coriposing [M] is shown in equation:

(15) of the section, Coordinate Systems and Transformations.

Ih<expanded’form equation (2) becomes

vm » we(r +h) cosSL[cos.)’slnai + (siny sino sinB 4 cosocosB)j
0 »
. ‘ (14)

+ (sinysingcosB — coso sinB) k)
The velocity due to local winds as obtained from rawinsonde
data is found by making transformation through ‘the angles o,
Y, and B, as above so that

=V cosy '
[Vl = [M]| 2V siny ‘ (15)

L o

Expanding as before

YV, = [~V cosycosycoss ~ szjmllépsysina]‘i- + ‘[-Vwoomll(éinyeosasinm ~ sinocosB)

-V ,siny (siny sino sinB + éosaeosB)]-j- + [~V ;cosy(cosa siny cosB + sinc sinB)

- V. siny (siny:sing cosB - .éosc sinB)1k’ ., (le6)

Equation (16) may be simplified to become

Vw - =V, {cosy coslyy~ ) T + [siny sinB cosly) - 0) + cosB sin(yy ~ 0)]j

+ [sinycosBeos{y) - 0) ~ sinB sin(¥ - 0)] i} (17)
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. Adding terms as indicated by equatizn (12) the inertial .

: velocity in the wind-axes system becomes
_V.l = [V~ V, cosycos(y~0) + wglr + h)cosBLcos)’sinO].i-+ {-‘Vw[Sipy sinB cosiy) - a? e
“ , - L
3 + cosB sin(y ~0)] + w,fr + h)cosd; (sinYsinosinB + coso cosB)}s .
4 ) i
. s
‘ + {-—V“'[sinycosB cos(y ~ g) ~ sinB sin(y) - g)] L
i3 {18) §
p.iv s
+ wfr + h) cosd; (sinY sinc coeB — cososinB) 1
E ’ !
b ‘
2 where the earth's radius, r, from equation (5) in section .
. Geophysical Properties, is ' g
R: ‘ v )
|
;!
: r = 20.925781x106(0.99832172 + .00167616cos20;, + 00000211 cos4dy).  (19)
.
34 :
!
g Inertial Accelerations in Wind-Axés System
; : —— = | , .
& ‘Since accelerations must be expressed in an inertial
g ! system so they can be related to changes in excess thrust,: .
|
L : the following equation is used:
10 '
Y ! - ‘ L]
g:~ Yimetial "~ X |vindaxes | Cind- axes. ""‘;'
¥ . sydtem system ‘system
- (20)
:
i: \ . dﬁ |
A y ; ¥ -— 1 3
F @ First, the term B lwindaxes LS evaluated by expressing the
. . system
wvelocity in the wind-axes sytem as
—» ) Vl - in + Vyj + Vzk (21)
: .
,',
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Tiie acceleration becomes
+V, 7+ \"Zi (22)
which may be found by differentiating equation (18):

\"x - \"t - \.Iwcosyeos(l/l ~a) + V [ysinycos(y-a) + (¢ L o)cosy sin(y ~ o)}
+ w.(t ¥ l\)cos3Lcos)’sina + wQ(r + h)- 8.Lsin5LcosYsino - }.’cOSSLsianino

¢
+ 50098Lcos)’ccso) 123)

\'/y " - \olw[g"‘ysingcos(tll -0} + cosBsin(¢ ~0)] ~ Vw[):cosy sinBeos(if - o)
+~§'§inygosﬂcos(l// -0 - (¢ - o)siny sinBsin(y - o) -~ B sinB sin(¢) - o)
+(y = 0)cosBeosl{y - o)] + coe(r i h) cosdy (sinYsino sinB + coso cosB
- o+ h)éLsinBL(si.n}’siw sinB + coso cosB) +wy(r + h) cosd; ( }.’cos}’sinasinB

{(24)

+-osinycososinB + ésinysinocosB - osinccosB - l.leosasinB)

\‘{z - - \.Iw[sinyeosB cos(yy - o) — sinBsin(y~0)] ~ V, [ycosycosBeos(y) - o)
| - I.S‘siny sinB cos(y - o) ~ (¢ = o)sinyosB sia(y) = o) ~ B cosB sin(t/ - o)
~ (= o)sinB coslu - 0)] + wgfe + ) cosdy (sinVsing cosB — cososinl)
~ 0yt + W3] sind; (sin¥sinccosB — coso sinB) +wyr + b)cosdy (VeosVsing cosB

(25)

+ dsinycosocosB - BsinysinosiaB + osinosinB - B coso cosB)

V-25

e e e

i e e A it Moo

R R

P

o e by e
. o PR

-




B AR L (T I N W A QWA Y TN P i CTEREIAR g TN TN RN AL Y T T e
B e TN .

If no rate of roll exists,* as may be expected during per-
formance flight testing, ﬁ, may be set equal to zero and

equations (24) and (25) reduced to the following: .

V, = - {'“[siny sinBcos(yy - o) + cosBsin(yy = o)) -~ V, [ycosysinBeos(yy - o)

y
-yl o)siny sinB sinly ~ o) + (¢ Z o)cosBeos(y) ~ )] + cue(r + h)cosSL(sin)’sina sinB
+ cosocosB) ~ wfr+ h)b‘.Lsin5L(sin}’sinoainB + cosg cosB) + “’0(' + b cosdy ( YcosYsinosinB
+ ositycososinB ~ g sinocosB)
(26)
{Iz - -\.’“[sinycosBcos(L’l - a) - sinBsin(y -~ 0}] - Vw[);cosycosBcos(t/l -0)

- (¢ - o)sinycosBsin(yy - o) - (¢ 2 a)sinBeos(yp ~ )] + c.)s!'r ; h)cosd; (sinYsino cosB
- cososinB) ~ wﬁ(r v h)SLsinSL(sin}’sinacosB ~ cososinB) + we(r + h)cos&L().’cos)’sinocosB

+ OsinycosocosB + gsinosinB) (27) .

Next, referring back to equation (20), it is necessary to
define the rotational velocity of the wind-axes system.
This is first determined in the north, east, down systen,

denoted by the subscript g:

o, = o+ :\)cosaL - }"sinaﬁ.g +(Yeoso — éL)Tg + [o- (wg+ 2 sinSL]Ig (28)

w

*B has no influence on a_ , a_ , or a_ . This can be
o Yy 2w

shown by retaining terms which contain B in equations (23)

and (25) as well as in subsequent equations which define

w_ . All terms containing B then vanish due to cancella-

tfon of terms.

V-26
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wi&h the rotational velocity due to a rate of roll set

eqﬁkl to zero.
\

Transfyrming, as before, to the wind-axes system

-("’Wx- (wg+ ;\)cosﬁL- y sing

owy | = M) ycosg ~ éL o (29)
Wy, o~ (w0+;\)sin6L '

b \\ -l

A}

Performing the matrix multiplication

o, = (e ot N cos&L - }"sinc]cos}’eoso + [}:cosa - SL]oosYsina

X
- [GX (“’e+ .)‘) sinSL]sin}’ (30)

o, = [((ue+ ;\)cos&{‘ - }:sina](sin}’cosasinB — singcosB) + (Yeoso 51‘)(sin}’sinoainB
y \
+ eoaacosB)\‘\-;- (6 ~ (e, + ) sindy JcosyainB (31)
“\

o, = [(w$+ » cosd) — }"sino](cosasin}’eosB + sinosinB) + ( Ycoso — éL)(sin}’sina cosB
Z

- cososinB) + {0 ~ "w°+ ;\)sinﬁL]cos}’coaB (32)

Simplifying equations (30), (31) and (32) we have

Oy ™ (wg+ ;\)'(eosSLcos}’cosa + sindy sin)) — éLcos}’sina — Gsiny (33)

V=21
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w = (@, + AMcosdy sin¥cosa sinB — cosd sinc cosB — sind; cosYsinB) + }.’cosB
wy ® L L L

- éL(sln}’slnasinB + coao cosB) + o cosYsinB ‘ (34) -

Ou, = (w. + :\)(cossLeosa sinYcosB + cossLe,ina sinB — sind; cosYcosB) — YsinB

- 5L(sianinacoaB — cos0osinB) + 0 cosYcosB (35)

Again referring back to equation (20), to evaluate the '
acceleration due to the rotation of the wind-axes system

we hav>

0,xV = Ouy “’wy @y, (36) .
V. v v
X Yy Z

Components of acceleration are

\' V.

3 = © -
Wy wy 'Z w, 'Y (37) !
a = v —
wy “’wz X “’wx Vs (38) 1
awz = Ow, Vy - “’wy Vy (39)

vV-28
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Substituting terums from equations (18), (30), (31), and

(32) we have

8, = oglu+ N + hXcosSLsinSLcos}'cosa - coszsLsin)’) —Vw(w‘+ » [cosy sin(yf a)sln&L
~ sinYcosdy siny] + )'lwo(r + hleosdy sinYsino — c'mo(r + h)cosd; cosYeoso

- ;'szinycoe(lﬁ-a) + 5\'wsinycos|/z + th.roosysln(;lz-a) (40)

2, = Wog+ A cosdy coso sinYcosB + cosd; singsinB — sind cosYcosB) ~ Vt}.’sinB

-~V 8'L(sin}'sina cosB — cosg sinB) + Vt;wos}'eosB + Vylog+ Nleos(y - o) sind| cosB
— coeYcosd; sinysinB — sinYsin() — 0)sindy sinB] + V,,ycosycosiy ~ o) sinB

- V“_éLcos}’cos;bslnB - V,olcos(yy - 0)cosB = sinysin(v ~ o) sinB!

+ gl + Ale + B) [~ sino cosd) sindy cosB + cos¥cos 5y sinB + sinYcosc cosd; sindy sinB)

- }"wo(r + hlcosy sino cosdy sinB + éwe(r + h)(sino cosdy cosB - sinYcoso cosdy, smB)(41)

%, = -V‘[(cua+ ;.)(cosSLsin}’cosasinB ~ coed] sing cosB - sind| cosYsinB) + YeosB
- éL(sln}’sinasinB + cosgousB) + OcosYsinB] — Vw(we+ A [cosysin¥ cosSLcosB
+ cos(y ~ 0)r.nd} sinB + sinYsin(y —a)sinSLcosB] + ofo,+ Ae + b cosy (cosYcosd; cosB
+ sino sindy sinB + sinYcoso sindy cosB) ~ Vwa.Lcos}'cost[;oosB + th.r[cos(gb -0)vind
+ sinysin(y - o)cosB] + Vw)'fcosy cos{y) - o)cosB - iws(r + h)cosy sino cosSLcosB

- 6%(:' + h)cosBL(sinaslnB + sinYcoso cosB) (42)

To obtain total accelerations in the I, 3, and X, direc-

tions, as indicated by equation (20), we combine terms as

follows:

v-29
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- ¥ 43
.xw . * nwx {43)
IR AN (44)
azw- \’z + .wz L g /(45)

From equations (23) and (40)

. w- i’t - \.’wcosycos((/l -0) + waZcmay si'n(gb »Aa) + cog(r +h cosSchsYsind
- ofrt h)él‘sinﬁLcosYsina + vwéL sinYcostl) -Vw(cuo+ 3 [cosy sinlyy ~ v) sind,

~ sinYoosd| siny] + © XE Ne+h) (cosdy sind| cosYcoso = coszﬁLsin}’) (46)

Combining equations (24) and (41)

" Vileg + Y (cosdy cososinYsinB + cosd; sing sinB — sindy cosYcueB) - Vj sinB
~ V.5, (si¥sinccosB — cososinB) + 5 cosycosB + V,(wp+ Ales(ys - o)sindy cosB
~ cosYcosd sinBsiny — sinYsin(y ~ 0)sindy sinB] - Vw5LooeYeos¢sinB
- i’w[ﬁnysinBeos(v,’: ~0) + cosBsin(y -0l + V, ¢ siny sin(yy - o) sinB
~ coslyp - o}cosB] + [wgfe " hcosd; ~ wyle +h) éLsiwb‘LJ(ain}’sinaalnP + cosocosB

+ o)e(wei- :\)(r + ) (~sino cosb‘;isimsl‘cosﬂ + L-osYcos25LsinB + sln}'cosacosﬁLs!naLsinB)

(47)
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Equations (25) and (42) yield

R

[ B , . 7»
azw x - t)'/eosB 3 V;b‘L{s;in)’siab sinB + cosqcosB) — V,ocosysinB -, vt(("‘o"' A siny cosc cosSLsinB

~ singcosd; coaB. cosYsind; sinB) - \"w[sinycos(t// -0)eosB - sla(y ~ 0" 5inB]
2 an:’fi gny sia{ty - loosB + cosly) ~ o) sinB] - Vylowg + M lcosy siny cosdy cosB
+ cos(yf ~ a)ainﬁl‘sinB + sinysin(yf — o)sinBLcosB] + we(r +h cosdy (sinYsing cosB
- cosorsin) - wr + h)éLsinSL(sinysinacosB — cososinB) +w,'wg - Ml + b) cosdy ¢

*(coaYcosd| cosB + sinosindy sinB 4 sinYcososindy cosB) — VwéLcos}’cost//eosB (48)

The lateral acceleration, ayw, will tend to produce a
sidesliy, the magnitude of which will depend on the
aerodynamiz characteristics of the airplane. The resulting
increase in drag, even in extreme cases, will be slight,
and the effect of aY on aircraft performance can be

w
safely ignored.

Equations (46) and (48) may be modified to more easily
compute accelerations in the X, and 2z, directions based on
on-board measurements of airspeed and altitude. 1In doing
this the parameters Vw, ¥, §j and A will be replaced by

more basic¢ quantities.

In the preceding derivations accelerations have been

expressed in terms of parameters in a geocentric reference

V-3l
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system. The flightpath climb angle in a geodetic reference
system, however, is desired. From equation (9) of the zec-

tion, Geophysical Properties,

8, = &p=—0.19323889sin235p (49)

with angles expressed in degrees. Equation (49) can then
ke used to relate the greocentric': and geodetic flightpath

climb angles by an extension of the relation illustrated

in figure 2.

GEOCENTRIC, ')
HORIZONTAL,

PLANE

&

o ol o
GEODETIC 2\ %ﬁ%%]
ggikZEONTAL 7 ///////////// %

W

DOWN

Figure2 GEOCENTRIC FLIGHTPATH ANGLE FOR GEODETIC
HORIZONTAL FLIGHT
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y = rp+ (§~8p)cosc (50)
or substituting eguation (42)
Yy = yp—0.19323889sin23pcosg (51)
Therinverse equation for geodetic climb angle is
Yp = Y+0.19323889 sin2 8, cosc (52)

where the geodetic latitude, GD , can be replaced by the

geocentric latitude, §;, with little loss in accuracy.

From the definitions of geocentric and geodetic
climb angles the following equations for rate of climb

are

=e

= Vsinyp {53)

+r ] Vtsin)’ (54)

Te

Next, the ground speed may be expressed as

v-33
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‘ Vs = (VicosYcosg ~ Vycos l/l)-l-g

g + (Vtco:’.."sinaaszim/;)]-g (5%9)
{ The heading angle of an airplane's ground track, cg,
4

3 is then .

é»

~1 VicosYsino - Vg siny

i - 1 14 w

B % tan VicosYcoso — Vy cos ¢ (56)
i which may be used to evaluate the rates of change of
] latitude and longitude.

Vg cosg,

L r + h (57)

[« 2]
u

R

and

ko
1’ 1
3
-
Y
9
i3
By
f
5.
pt
-

o ',:.‘;‘
>e

Vg sin O

(r + h)coséy,

(58)

E W ) P
S I S

-

- In the preceding derivations leading to a, and a,
W W
(equations (46) and (48)) winds have been specified in a

Koty

Bt
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geocentric reference system. As an aid in the following
development it will be assumed that the wind can be con-
sidered either geocentrically or geodetically horizontal
without error. The wind speed and wind direction deriva-

tives may then be expressed through chain differentiation

as
o dV, dav,
—W - —¥
Vy s a5 h m Vtsin)’D (59)
and

AN
L}
(=22

(60)

The geodetic climb angle can be replaced by a geocerntric

climb angle in keeping with the assumption noted above.

Introducing these expressions into equations (46) and

(48) we obtain directly

V-3%




e g = o e a——— r——

dv, dy
Y ~- aT-Vtsin}'Dcos)'cos(n/: -0) + Vwa-ﬁ—vtslnybcos.}'sln(nﬁ -a)

vV, cos
+ wG,Vts!n)'c.cs}'ccsSlena - wg(r+h)(-§_;_h_;,§sinb‘l_‘cos}'sino

V., coso V, sineg
+ V, -2 EBsinycosy — Vol 0+ el & _]°
Y 1 +h v we (r+h)cos‘6L]

*[cosysin(y ~ o)sind, — sinycos gy siny ]

V, sine
+ gl wg + o h)cosSL](r +h)(cos 8y sindy cosYcoso

—~ cos? 8y, sin?). (61)

cos ag

o A"/
- V,YcosB +V, -& (sinYsino sinB + cosocosB)
t t r+h

V.. V, sinc
= ViocosysinB — V,(wg + J——-——E—)(sinchSocossLsinB

(r+ h)cosSL

- sinocosSLcosB - cosYsin BLsinB)

dv,
- -arvtsin)'D[sin}'cos(g(z-o)cosB-sm(u/;-o)sinB] )

+ ng-ilk Vtsin}'D[sln}'sln(lﬁ — 0)cosB + cos(y — g)sinB]

. vV, sin
- Vylog+ 8" % )[cosysin ¥ cosdy cosB ~ cos(y - o)sinB
(r + h)cosdy,

+ sinysin{ ¢~ o) sindj cosB] + wg Vysiny cosdy (sinysingcosB

Vg sin og
—cosesinB) =~ wg(t+h) i 2indy (sinysingcosB ~ cososinB)

V, sing
+ wglwg+ —E—L )(r+h)cosdj (c s¥rosdy cosB + singsindy sinB

(r+h)cos8L

iny i B) v Vgcosag

+ sinycososind; cosB) — V, S &

osindy, ¥ re )

. (62) :
V-3§
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By combining terms, substituting trigonometric identities,

and rearranging, equation (50) is reduced to

o \/ dv, dy
ay = Y -Etsinzy[-aw'cos(x/' = 0) =~ Vy g5 sin(y ~ )]

+ vw:g[sinycos(¢ -—ag) - cOS}’t&DSLSiH(l/I —‘O)Slnag]

r+
- we(Vgsin og — VycosYsino)sinycos gy, + wg Vg sin 5y, cos )’sin(o-g ~ 0}
= gV [cosysing; sin(y - o) - sinycos Jy siny ]

+ mg(r-rh)(cos&L sin§; cosycoso ~ cos28L siny) (63)

where Yp Was replaced by y in the wind gradient terms.

In most cases the bank angle is kept small, and it
can be assumed that sin y = 0 and cos Yy = 1. With this
assumption equation (62) can be reduced by combining
terms, making substitutions for trigonometric identities,

and rearranging to

. 4V, dy
8, = —%Y - Vtslnz}’[Th—wcos(x/' ~0) = Vysin(y ~ )]
Vi V. A\"AY
8 o5 - ~ W E ‘cosycos
t T Eh (og ~ o) r+h’ (‘!’“08)

+ sinytan & sin(y -—u)sinag]

+ wchSSL[Vtsino+(Vtsin2}'slnu +Vgcos}’sinog)]

~ wgVy[cosysiny cosdp +sinysin(y - o)sindy, |

+ wg Vysinysin gy sin(og ~ 0)

+ wg(r+h)(cos}'cosz'6L + sin)’cos'o‘LsinSLcOSa) (64)

V=31




A

»
ppe
s

where Y, was again replaced by y in the wind gradient

e

R terms.

2

‘%

-% The terms containing the products [mevw], [wQ(V931ncg
14‘

i - vtcosysino)] and [wgvgsin(og - 0)] in equations (20) and
4 (21) can be neglected with little error. 1If they are

3 dropped the equations reduce to

{ . v av, dy

2 - -t ¥ cos - - V,, w— ~

’, V-3 sin2y [~ (4 ~0) = Vy=—sin(y ~o)]

é ] + V""'Vg[i ¥ cos( ,) ytand; sh ing, ]
"3 nycos ~ an -

4 — hs Y —og) + cos Lsin(y —o)sing,

?, ///z ‘ o (65)
e + wez(r + h)(cns by cosycoso — coszéBLsinY)

3 and

. av, | dy

. azw = -~y - Vtsinz}’[—d—hﬂcos(tp —-0) - Vy, T sin(y - o)l

: %V, Vv, V

R t - . _w
.l..’ + -;;—%COS(Og o) T;—-}%[COS}’COS(!/I - O’g)

3 o

3 + sinytandy sin(y = o)sing,])

‘ + w@coébL[Vtsino + (Vtsinz)’sino + Vgcos)’smog)]

4

iy

E + wg(r-+h)(cosYcosz6L + sin¥ycos§y sin by, cose) (66)
i«

1 ENERGY HEIGHT

¥ In the early days of aviation, a climb amounted chiefly
to increasing an airplane'’s potential energy with changes

in kinetic energy being quite small in comparison. As
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maximum speeds of airplanes increased, particularly after
turbojet engines came into being, it became common prac-
tice to account for changes in kinetic energy when com~
puting instantaneous rates of climb and determining "best
climb" schedules. The concept of energy height (frequently
called specific energy) was introduced by German engineers
during World War II and gained world-wide acceptance in

dealing with the performance of aircraft powered by turbo-

jet engines.

Energy height is found quite simply by considering the
total energy to be the sum of the potential and kinetic

energies. That is

v,2 (67)

2gr

E = Total energy = WHc+

where total energy is arbitrarily referenced to Hc =0
and Vt = 0. Hc is used to compute potential energy,
recalling that geopotential altitude is equivalent to the
amount of work done in raising a unit mass from mean sea
level to a geomriric altitude of h. Energy height is,
then, the total energy per pound (in the English system)

of weight. Thus

™

\)
Hp = Hy+ —— (68)
2g
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which is independent of aircraft mass. In its classical
form energy height has been defined as h + VE/Zg; however,
when using a model atmosphere in which geopotential rather
than geometric altitude is employed, H, in geopotential
feet should be used as a measure of potential energy.
Energy height is useful in optimizing climb performance.

It is energy height which must be gained mostly rapidly
(rather than altitude) to minimize time tc climb since
potential and kinetic energies are readily interchangeable.
Also, energy height has been used (reference the section

Standard Climb Schedules) as an independent variable in

“optimum" schefules during which altitude is not monotonic
N

increasing. Differentiating equation (68) we have

Py . Vi o .
Hp = Hg + _.E.Vt (69)
g
It should be noted that accelerations arising from varia-
tions in wind and from the earth's rotation as seen in

equation (46), for example, are not accounted for in equa-

tion (69).

As in equation (10) of the section Atmospheric

Environment

g!.dHc = gL dh (70)

vV-40
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so that eéuaéiéh (69) may Be rewritten as

8 Vi o ¢ :
By = —-Lh+ —LV, (71)
&y &

LOAD FACTORS

The accelerations from equations (65) and (66) are
substituted into equations (8) and (9) to obtain general
éqfuationé to describe load factors in terms of geocentric
parameters. The gravitational and centrifugal relief

terms are grouped together:

1{[ : 2 2
n = = {[g.~aw(r+h)cos*d; ]siny
Xy gl 28 © ) L

- [g"s— mez(r +h)cos dp, sinSL]cos Ycoso

. v dv, dy
t w
+ V, = —3in2y{ ~—= N -V, = s -~
t sin2y( cos{y o) W sn(xp a)l

vy, V,
+ r:’._&h [Sinycqs(¢ _gg)-;-cos}'tanSLsin(xp —U)Sinag]} (72}

and
N, o= .é.{[gzs— wgz(r+h)c0528L]cos)’
r
+ [gxs—- wez(r+h}cosaLsinb‘L]sin}'cosv
+ VY o+ Vtsinzy[%:—vicos(:ﬁ —-0) ~ V, %i:—sin(./, - o))
- %‘%l&cos(ag-ah :’4”:%5[0057008(¢ -~ 0g)
+ sinytandp sin(y —o)sinog] ~ wgcosdy [Vysino

+ (Vtsinz)’sina + Vgcos}‘slnog)]} (73)
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where the geocentric components of the acceleration

due to gravitational attraction (gx and g, ) are computed

g
from equations (1) and (2).

With zero wind equations (72) and (73) reduce to

1 2 2
nxw - .?r.{[gzs- wg (1 +h)cos 81, 1siny
- [gxs- wez(r+h)cos$len8L]cosycoso+\.It}
and
1 2 2
nz'}v - .g_r.{[gzs- wg (r +h)cos“dy Jeosy

+ [gxs- a)$2(r +h)cos§; aindy jsinycoso

2
. A"/
+ WY - ;-f-l; cosy —~ ZwQVtcos 8!.. siua]

(74)

(75)

Since the local centrifugally relieved acceleration

due to gravity is approximately normal to the geoid,
equations (72} through (75) can be rewritten including

the total resultant gravity vector, 9y,

1 oY inz)'[-—-—de os(y — o)
“w & {gLsn)'D+ t 2 dh ’
ay VvV,
- Vw—a—h—sin(ulz -~0)] + ﬁ[sin}'cos(;{; ~0g)

+ cosytan §y, sin(y ~o)sino, ]}

V-42
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. qav,
n, = .él..{gL cosyp + V¥ + Vtslnz}’[ E! c0s(y -~ o)
. h

dy ViV

t'g
-V, ——sin - -
¥ dh (4 =) r+h

cos(ag-a)

v,V
+ ;{—f[cos}'cos(r/) —0g) + sinytandy sin(y —o)sing,]

- wscossL[Vtslna + (Vtslnz}’sina + Vgcos}'sinag)]} (77)

For zero wind

e, - .glr.(gLsin}'D + V) (78)

and

2
\'
thcos}' - 2w®VtcosﬁLsina) (79)

n, - -é-(chosYD + Vt)" - —
The load factors of eguations (72) through (75) are not
exactly egqual to those computed with equations (76)
through (79) because of the approximations in the
derivations including neglect of the differences in the
roll and heading angles of an aircraft when referenced

to the geocentric insteaa of the geodetic horizontal

plane.

It is frequently convenient to relate the longitu-

dinal load factor, n, , to energy height. This may be
W
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done as follows: by rearranging equation (69) and sub-
stituting equation (33) we have
;\ [ ]
: HE .
5, T LtV (80)

Since the right hand side of this equation appears in
equations (76) and (78), the left hand side can be intro-

duced into these equations to produce

B v av, dy
com B op XAl “btenay[—Feos(y —o0) = Vg ——sin(y —~o
g, el {T totn2y[—Foos(y - o) = Wy ——sin(y - )]

v, V :
+ rvi_hg[sinycos(,/, -0g) + cosytandy sin(y -—o)sinog]} (81)
and for zero wind

n, = JE (82) '

ACCELERATION FACTORS

Equation (71) can be rearranged to produce equations
for geometric rate of climb, h, in terms of either alti-
tude or energy height. Two different acceleration
factors result. First, expanding Vt by the chain rule,

assuming h # 0, equation (71) becomes
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Ay i (83)

Solving for h

*

He
Vv, dV; (84)
g, dh

= e
]

g
—E(l +
e

The denominator is defined as the acceleration factor,
Af, and is used with any of the continuous climbs described

in the section, Standard Climb Schedules.

v, 4V
A, = by 1Y (85)
gr g]’_, dh

With no wind, this provides the following equation for

rate of climb using equation (82)

nwat (86)
Ag

h =

The second acceleration factor is useful when climb
cata are standardized at constant energy height (reference
in

option 4, page 9, Appendix I). Again expanding Vt

equation (71) but assuming ﬁE #0
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Solving for n

Er Vi dVy o2
CrAk = (88)

The acceleration factor is, then

With no wind we have from equation (82)

(90)

e
#

Ay, Vi
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ACCELEROMETER METHODS

In the preceding paragraphs the general equations for

computing inertial accelerations and excess thrust of an
aircraft were developed for the airspeed-altitude method.
Using this method a number of individual terms must be
evaluated in order to cbtain the total accelerations and
resulting forces (e.g., airspeed derivative, rate of climb,
wind gradients, Coriolis accelerations, centrifugal relief).
Evaluation of some of the terms involves numerical differ-
entiations, and the results are dependent on the numerical
data editing and differentiation methods. In addition the
basic parameters airspeed and altitude, obtained with con-
ventional instruments, have limited accuracies which are
degraded due to complications of position error and pressure
lag. Also, it is difficult to evaluate wind gradients pre-
cisely because cf uncertainties about fluctuations of atmo-
spheric conditions with time of day and with distance from
the aircraft flicht corridor. The same numerical problems
of data editing and differentiation are also encountered
when weather balloon position coordinates are successively
transformed to wind velocity and aradients.,

In light of these uncertainties, methods have been
develoy.ed to measure an aircraft's accelerations more
directly using accelerometers. These methods are not with-

out their own problems, but they do, in general, provide
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much superior values of excess thrust. Accelerometers sense
the inertial or total acceleraticns acting on an aircraft
and their readings can be converted directly into forces

by multiplying by the aircraft weight. Consequently, two

of the major problems of the airspeed-altitude method can

be eliminated; data editing and differentiation, as well as

measurement of atmospheric winds, are not required.

ACCELEROMETER INSTALLATIONS

Sensitive accelerometers have been installed on test
aircraft and have produced excess thrust data of signifi-
cantly better precision than similar data from measurements

of airspeed and altitude. (See reference 5, for example.)

Vane Mounted

With an accelerometer mounted on a vane (similar to an
angle of attack vane to keep it alined with the local flow),
excess thrust could be found immediately, knowing aircraft

weight, from

w (91)

The local flow, however, is not coincident with the airplane's
velocity vector because of upwash, pitch rate, etc. (Correc-
tions are derived in subsequent paragraphs.) Further,
mechanical misalinement of the sensitive axis of the acceler-

ometer relative to the vane may be expected. Hence, the
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sensitive axis of the accelerometer is displaced from the
local flow at the vane (and, therefore, the longitudinal
axis Of the vane) by the misalinement angle, €na® Since
accelerations in the wind-axes must be found in order to
compute excess thrust, transformations through the angle
€na and other correction angles are required. These
transformations are carried out in a later paragraph under

Errors in Measured Accelerations.

Fixed cg Mounted

Rather than installing a two-axis accelerometer system
on a vane, it may be hard mounted near the aircraft's cen-
ter of gravity. This has the advantage that errors in
measured accelerations caused by changes in attitude aro
made negligible; however, since these corrections are gen-
erally small and can be made easily, thgiadvantage is a
slight one. If lcad factors are measurgg';ifh acceler-
ometers located near the center of grévity, they must be
transformed through any misalinement angle representing
the displacement of the sensitive axis of the longitudinal
acCelerometer from the airplane body axis ana through the
angle of attack. This permits loads in the direction of
and normal to the velocitxﬁyector to be found.

The sources of error iA:the position of a vane to which

an accelerometer system is attached also exist in measured

angle of attack when sensed by a vane. They appear also
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in values obtained from a pressure sensing device with the‘
exception of dynamic response. To avoid degrading the
accuracy inherent in the accelerometer system, correc-
tions for the errors described in the following para-
graphs should be made and angle of attack should be
accurately known (to within, say, 0.1 degrees) when

using an accelerometer system mounted near the airplane's

center of gravity.

ERRORS IN MEASURED ANGLE OF ATTACK

Angle of attack is generally sensed with a vane
mounted on a nxze boom well ahead of the aircraft. The
accuracy of the sensed value (angular displacement of the
relative wind from the airplane body axis) is adequate.
Substantial corrections, however, must be applied in
order to find true angle of attack. These corrections
zrise xrom: bending of the boom, pitching velocity (which
adds a compcnent of velocity to the vane not experienced
by the airplane's center of gravity), upwash (created by
the presence of the boom, nose of the airplane, and its
wing), and lag in the vane position caused by rapid motions
abo1t the pitch axis.
' Angle of attack has been determined less frequently
through ¢ differential pressure sensing device attached to
the boom to obtain AP/qc, which can be related to indicated

angle of attack. Corrections similar to those described
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for the angle of attack vane need to b: made for this soxt

of installation with the excepcion of cynamics response.

Boom Bending

Loads from aerodynamic forces and from inertia cause
bending of the boom which results in errors in the
measured angle of attack since the position of the vane
is referenced to the axis of the boom. Bending from aero-
dynamic loads is usually negligible although it may be
estimated from data contained in reference 6. Adjustments
to boom bending for loads due to inertia may be made from
a calibration of static deflections of the boom when loaded

with weights to represent inertial forces experienced in

flight.

Upwash

The largest correction to be made in finding true angle
of attack generally stems from upwash. As previously
pointed out, upwash is generated by the boom, the nose of
the airplane, and the wing. The upwash is most pronounced
at high angles of attack and decreases with lift coefficient.
At supersonic speeds effects of fuselage ana wing disappear,
of course. Upwash generated by the boom may be measured in
a wind tunnel,

Two-dimensional incompressible flow theory has been used

to compute the eifects of upwash at low speeds. Figure 3,
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taken from reference 7 page 16, shows the results of such
computations. Indicated in the figure are variations in
angle of attack from the boom itself and from the fuselage,
assumed to be a blunt circular cylinder.

In reference 8 equations are presented which may be
used to estimate the effects on angle of attack of the
fuselage and wing. Effects of the fuselage are found using
potential theory, considering the fuselage to be a half
rotational body; influence of the wing is computed assuming
A bound vortex in the quarter-chord line of the wing sec-
tion and solving for the induced vertical velocity with a
Biot~Savart equation. Estimated upwash angles have been
computed using references 7 and 8 and compared to in-flight
calibrations obtained with an A-37B (reference 9). Corre-
lation of the estimated angles with those from the calibra-
tions was reasonably good. In flight test applications,
hcwever, it is desirable to measure upwash angles from
flight data and construct a calibration of upwash angle,

Aau, as a function of lift coefficient.

Dynamic Response

An angle of attack vane system* constitutes a torsional

spring-mass-damper mechanical system having an undamped natural

*The vane system includes any internal mass balancing, transducer
elements, accelerometer package, etc., in addition to the aero-

dynamic lifting surface.
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frequency and damping ratio that describe its dynamic response
charagteristics. The output of such a system will have errors
that are due to signal amplitude and phase-lag characteristics
which are functions of the frequency relationship of the exciting
signal and the natural frequency of the wane system as well as
its damping ratio.

Equations are derived below which may be used to correct
for errors in sensed angle of attack. The same equations may
also be used to find errors in the position of vane-mounted

accelerometers.

Response to Sinusoidal Inputs

An ancle of attack vane system is shown schematically

in figure 4 ./Lv /.T,:me x-body axis

Vane

T —

> =
"—- 4 774' Ada)
- vane pivot

~ g

Figure & Angle of Attack Vans System

) ——— ’

About the vane pivot, taking cos A“w =1

LA = 1, ©2)
which may be rewritten as
a5,0] dlta~ap) + L(a-ao)) = 1,8
La c Vt c ic (93)
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Rearranging

4 o as"‘ezc.:r-'a . ESV.QCLG a -———-—aSVCLa(a + 4 a)

,- © a + __,______,_.____ai F — o = N

fe AL © ly Iy i (94) §
E .
& Equation (94) is a second order differential equation

%

e

i describing a system whose dynamic characteristics are

~§ given by

i

.
)

. s, dcy, v 0.7P, 8, dcp,

,, W, = [__..____._I ] = M[ ; 1 (95)

“ y Y

-!

4 ;
%‘ .
¥ - 2 2 2

: 200 gs, 4%y, _ 07PM s, 4%¢y,,

n I,V LV (96)

i

4 ’

and

€= Sren

ai| ool cet

It should be noted that the natural frequency and

damping of the sytem are not unique properties but are

dependent on Mach number and altitude. Thus these prop-
erties must be computed for each flight condition at
which data are to be collected.

Since the angle of attack vane system is approximately
represented by a second-order dynamic system, the first

method for correcting angle of attack for dynamic lag
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will assume a sinusoidally varying angle of attack. This
is a fairly realistic assumption for an aircraft cengaged

in roller coaster maneuvers. Under these circumstances,

then, in Laplace notation considering only;the error due

to lag

2
Kwn

Hetsy w
a

2 (98)

s + 2¢wys + wnz

where K is a fixed gain, usually 1.0.

Rearranging this equation and introducing jw for the Lap-

lace operator, s, yields

2¢ 2.

-jum“l

(99)
Ke [1—<g-1-1)2]

2 b
[1- (291 4+ (2 2_2}
{ o) {8

This relationship defines the amplitude and phase relation-
ship between the two sinusoidal oscillations in a ard acr

Solving equation (99)‘for a we have

2 v
1~ (2921 + (2 ELF} 4 e
{[ (“’n) 4 o, ften 1 @
a 2 Qi - e

5 :
s [1__(%;)] (100)

Introducing for a; . the expression

aic = aicosinwt (101)
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where “ico is the maximum amplitude of o;,» it is possible

to rearrange the above equations so that a soiution is

given for Aaw.

Aa, = aicorsin(wt-r 1) (102)

where

02
(-2 + (202 %)" [[1 PR e &
R [lq— “n “n “n n

K K
2L %
- 2cos[ta.n“l “n 2])] (103)
1 - (2
@
and o
2l2..
gah
-2y
A 1 (“’n)
n = tan I
1 -
{[1-—(%—)]2+ (24-2"—,-)2}% 2{ L (104)
n ” R ms[tan"l L 2]
1 —(%t)

There exists another method for finding Aa, for the
case where sinusoidal inputs may be assumed and which
involvgs fewer calrulations. Given, as before, that the
angle of attack vane is a second order system with an
undamped natural frequency of oscillation, Wor and a
damping ratio, f, the indicated angle of attack is given

by
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16
{[1 - (%_)2]2 + (2{%; 2} (105)
n

aje(t) =

where K is, as before, a constant gain (usually 1.0) and

¢_ is the maximum amplitude of a.

o)
Making use of trigonometric identities
Ka,
ajo(t) "= A(sinmtcos¢ ~ coswtsing)
- (2272 @ y2
[ - carf v aeev} (106)
where

“n
© \2 (107)

By rearranaing the terms in this equation and making small

angle approximations (cos ¢ = 1 sin ¢ = ¢)

(- 4 2z |
a(t) = 1 - 1 [aic(t)+aic0¢coswt]

(108)

In the above equation wt describes the sinusoidally

varying a. This is generally not known since o is not
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known; however, it can be inferred through knowledge of
“ic(t) and a small correction to t. When aic(t) =0, it
can be shown that tan wt = ¢, where wt describes a(t),
rather than aic(t).

Since t = (1/w) tan™"!¢ when a;(t) =0, it can be
used to correct the time associated with the observed

angle of attack, aic(t) so that the expression for a(t)

becomes
{[1 + (2922 (2&-)2}'/’
alt, ) = “n i {a (t. ) + ay, ¢pcosla(t +At)]}
%e K fetlage” ™ Mo %e
(109)
where

a, (t ) = indicated angle of attack at any time, ta

ic ic
LT = maximum amplitude of observed angle of attack
o
ta = time from a reference value of the indicated
ic angle of attack
At = incremental time correction to ta
(1/w) tan™ !¢ ic
¢ = phase lag angle between a(ta ) and
aic(ta ) ic
ic

Response to Random Inputs
The previous discussion was concerned with correcting

indicated angle of attack when a sinusocidal variation of

V=53
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the input had been assumed. In the more general case, as
in a climb, the angle of attack is changed in a series of

quasi-step inputs which are aimed at keeping the aircraft .

et D B R Lue e

on a desired climb schedule. In correcting the indicated i

angle of attack in this case, a somewhat more complicated

Cor s o e a

process is used. Since the angle of attack vane system

YIS

is a second order system, its input-output relationship

is given by

2
Koy,

%ic
—3(s) = 5 3 (110)
@ s” + 2{ws + v,

P e VEGAAD e L

SO I NP ST =S

If the operations indicated by the above Laplace-
transform expression -are performed, the following expres-

sion in the time domain results:

=,

a(t) = 1 laic(t) + chn&ic(t) + wnzaic(t)]
Ka)n2

(111)

o e Tt A

In general it will be necessary to operate on the
indicated angle of attack time history, aic(t), with a
computer program designed to give first and second
derivative information about a variable. One such program
is callea PIRSIT and is described in reference 12, 1In

general, both first and second derivative corrections to

indicated angle of attack time histories should be madzs

V-60
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since omitting the correction for the second derivative

7,
e

Sy
Sy

. can, in some cases, cause the end result to be as much in
> error, but in a different sense, as having made no connec-

tion at all.

e Pitch Rate

; The aircraft airspeed vector expressed in the wind~-

3 axes is, referring to figure 5

E

i Vt - VtI ( 112 ) :
E i
s 5
N ":3 . 45‘,
) f
. Aireraft cg —// i Yw é
fuf :
'.. é
3 3
1 i
: Zw |
Figure § Orientation of Vane

]

,f : To compute the vane airspeed vector, V&, it is assumed

ﬁ that the Xy, axis passes through the vane. The following

,i\ - -

7 equation may then be written (reference 10, page 440):

51:

k V=61
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g V, = Vi +apxd, (113) -

When an aircraft is subjected to a pitch rate there

1 will be a difference between the true airspeed of the
i aircraft's center of gravity and the local airspeed of
K a vane on a rose boom. Since the vane alines itself with
E
X the local flow, the angular alirnement error is the angle
‘v 0y .
:fi o * :
s between the aircraft airspeed and the vane airspeed
3 vectors.
(? To r.)mpute the vane airspeed vector, V;, the foilow-‘
;ﬁ ' ing equation is used (reference 10, page 440)
“3: -
;ﬁ where the body angular velocity is
“-;b = DTb + QJ_b + l"k-b (114)
£ |
v Recognizing that 5
N ;
|
) ’
i3
;é ve may write
; Vy = Vi +1 P q r (116)
b 4, o o
! '
B
[,
!
g
L V-§2
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Expanding the determinant

(1
Dd

Vv s ;it + [Ivr]_b - .ﬂvqib] (117)

To express the velocity in the wind-axes system a trans-
formation is made through o in the negative direction.

Making use of the matrix

-sina 0 cosa

.taken from the section, Coordinate Systems and Transfor-

mations, the vector in brackets in equation (117) becomes

cosa 0 sina 0 - "‘vqsina
0 1 0 .ﬂvr = oyt (118)
~sina G cosal |- 9vq - *,qcosa

Tn ¢k~ jind-axes, equation (117) becomes

Vv = Vt-i: + [~ 9'vqsina.1' + gvrf - zvchSai{-] (119)

v--63




Adding components in equation (119)

Vv = (V, - i‘,vqsina)T + r,vr.j- - zvqcosa'l; - (120)

Remembering that the unit vector k is positive downward

and the angle, Aa_, is positive upward

q
~(~ 9vqcosa)
tanAaq = V, = L,qsina {(121)
or
\
A tan—l qucosa
%Q ~ V- ryasing (122)

Since o is not known, an iteration procedure has to be

used to compute Auq. In the first iteration the correc-

tions described above are added to the indicated angle of

attack so that the angle
a3 + Aey + Aay + Aopsom bending

is substituted in place of o in equation (122),

True Angle of Attack

i
True angle of attack is determined by adding corrections

for the errors described above (boom bending, upwash, dynamic

V-6




SRR i 2

e a2 .,
FEREA L UVEAER

LD

i
PRI

WV OAT

Vs

i S a8 3 R _—
T R A A e RPN RO LR SV A S B g g CANN AT T

g
ek’

L

AL IS

EZEEAtL

3.0 ) G AR I
SR S R GO R S R e e

(s ss

A LR TR -
R N S R e &

s
2

response, and pitch rate). If a pressure sensing device is
used, dynamic corrections may be ignored since there are no
moving parts. Upwash corrections are generally the largest,
particularly at low speeds. Corrections for dynamic response
and pitch rate are frequently not required but may be sizable
during roller coaster maneuvers, and during climbs,
especially for high performance aircraft. If values of pitch
rate and pitch acceleration are needed, they are best obtained
by direct measurement with on-board instrumentation. In the
event that the instrumentation is not available, the required
data may be computed using equations derived under the

heading, Attitude Rates, in the paragraph, Errors in Measured

Accelerations.

ERRORS IN MEASURED ACCELERATIONS

Two types of accelerometer installations have been con-
sidered: one in which the accelerometers are attached to a
vane located on a nose boom and the other with the acceler-
ometers hard mounted in the aircraft near its center of
gravity. 1In both cases a mechanical misalinement should be
considered. For accelerometers on a vane the sensitive axis
of the longitudinal accelerometer may not coincide with the
axis of the vane. Similarly, for cg mounted accelerometers,
the sensitive axis of the accelerometer may not coincide with

the airplane's body axis, Xy o

V-65




In addition to accounting for mechanical misalinement,
axis transformations must be made to f£ind load factors in
the wind-axes system. For vane-mounted accelerometers the
rotation is made through the net angle which results from .
combining errors due to boom bending, upwash, dynamic lag,
and pitch rate. In the case of fixed cg mounted acceler- g
ometers the rotation is made through the angle of attack, | '
but the same errors must be evaluated since they are used to
compute angle of attack (excepting dynamic lag when angle of
attack is determined from a differential pressure instrument).

With accelerometers on a vane, accelerations are induced
at the vane by angular attitude rates and accelerations which
are not experienced by the accelerometers when located at

the center of gravity. If the accelerometers are on board 3

the aircraft near the center of gravity similar accelera-
tions are generated, but the distance from the center of
gravity to the accelerometer should be small enough to
make the“induced accelerations negligible. However, they

should not be eliminated arbitrarily but only after inves-

s S e £ BBt mant s

tigation of the particular situation shows these induced
accelerations to be trivial.

An additional source of error is incurred with acceler-
ometers on a vane. Dynamic lag resulting from rapid con-
trol inputs affects the alinement of the vane (as well as

an angle of attack vane) relative to the local flow.

TR 2 < ATk G o
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~ Mechanical Misalinement

It is inevitable that there will be some angular mis-
alinement between the axes of a vane and the sensitive axes
of accelerometers (both normal and longitudinal) attached
to the vane. Considering the construction of the acceler-
ometer system, it is generally secured as . :wo-acceler-
ometer package with their orthogonality well enough con-
trolled so there is little error. Also, since acceleration
in the y-direction is not measured, misalinement from rota-
tion about the é-axis is not taken into account. The prin-
cipal source of misalinement is, then, an angular rotation
of the accelerometer case about the vane axis as illustrated

in figqure 6.

accelerometer

€ma

Figure 6 Vane Misalinement Angle
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Components of acceleration along-and noxmal to the

vane are found by transforming through the angle €na to

- -

obtain B

By, = Px COSEny = Ny sineyg (123) -

v

and

nzv = anOOSGn;‘a + n,‘mSinema (124)

where the subscript m refers to measured values. In order
t.. retain the accuracy inherent in sensitive accelerometers,
it is necessary to know the magnitude of €na quite well. To

illustrate, suppose the n, = 0g, n, = lg, and €na = 1

a
is 0.01745g.

xm Zm

degree. n, . arising from the component of n,
v m
Since this is several times the accuracy which may be

SR AU D U o 1, S NI S NS AT E5 i K raP e E BV Dot at o ¥4 G P« 1A Skt 2 aed e B n o 4 S \\\\,.- N

SN T irer s

achieved in the measured quantities, the misalinement angle
should be known to within about 0.l degrees.
Use of a sensitive accelerometer to measure normal

load factor is desirable in computing n

xv' (and hence

nxw) particularly for climbs or other maneuvers durigg

which there are significant changes in pormal load factor.
A similar misalinement angle should be expected when

the accelerometer system is mounted near the center of

gravity of the airplane. In this case the misalinemeht

angle is the angular displacement of the sensitive axis

of the longitudinal accelerometer from the airplane's body

axis, Xy An axis transformation similar to that indicated

V-68
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by equations (123) and (124) is made to obtain load factors

in the body axes.

ng, = ny cos€my = “zmsmema (125)

and

nzb = nzchSEma + nmeinema (126)

Observed Load Factors in the Wind-Axes System

Jt is necessary to make axes transformations through
the angle between the sensitive axes of the accelerometers
and the wind axes for both types of accelerometer systems
considered. This might be done by making the transforma-
tion through a single angle in both cases. The resultant
load factors have been found, however, by first transform-

ing through the misalinement, €__, as indicated in eguations

ma
(123) through (126). In the case of vane~mounted acceler-
ometers, then, an additional transformation through the

angle

Ao s . A + Aa.u + Aa.w + Aaq (127)

net %oom bending

is required, and observed load factors in wind axes become
n, , = nxv°°SAanet - “zvsmAanet (128)
and

2ot nzvco'SA"'net + nvainAanet (129)

w
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The load factors in equations (128) and (129) are in
the wind-axes system but have not been corrected for
induced accelerations derived in the following paragraph.

For accelerometer systems hard mounted near the cg.

the desired load factors may be found immediately by making

- a transformation through the angle of attack, which is

computed from

a = % * Aa’boom bending * Aa’“ * Ao..m (130)
We have, then
L y, COSG. = By sina (131)
and
n = n, sina +n, cosa (132)
Zy X 2y

Accelerations Induced from Attitude Rates

The acceleration at the vane referenced to that at the

cg is, from reference 10, page 443

2 - -

- dc 9 d - - |as -

a g B A + .._(.‘.)E] xf,v + Zwbx — + &)'bx(c'ﬁbx lv) ('133)
a2 | ¢t o

where the body-~axes system is moving and the terms in the

brackets represent derivatives within the moving system.

vV-10
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Since the axis of the vane is assumed to lie on the Xy

axis, the first and second derivatives of I; are zero.

- 2™
[dzv .[dﬂ.,, . (138)

at2

dt

Evaluating the remaining terms

Lpl . BT+, * iy (135)

at |,
h b K
do - . . . " S\T 5k
b
Zv 0 0
b b Kk
and Bbx(abxiv) = |p a :
.

s ~t (T + g aply *oaeprk,  (137)

Substituting equations (135) and (137) in equation (133)

By = g t A 0=(+), + (pa ey + (or-Dk,]  (138)

Transforming the components to the wind-axes system, as

in equation (118)
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2

cosa 0 sina -9v(q2 + r2)
0 1 0 f,{ap + )

—sina 0  cosa l_lv(pr -

lv[--(q2 +r2)cosa + (pr—q)sinal
= | 2(ap + ) (139)

2v[(q2 +r2)sina + (pr—q;cosal

The final equation for acceleration in the wind-axes is

i, = Ecg + lv{[ ~(q® +r2)cosa + (pr=qQ)sinall + (qp +8)]

. (@ e2ysing + (pr_a)cosa]i'} (140)

The induced acceleration is made up of the terms in
equation (114) representing the difference between the
acceleration at the vane and that at the center of gravity,

cg

Corrected Load Factors in the Wind-Axes System

When induced accelerations as defined in equation (140)
become large enough to have significant effects on load
factors, it becomes necessary to céiculate load factors
at the cg in terms of the load factors measured by the accel-
erometers located on a vane.

The correction to load factor is

Lz, -5 (141)
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so that, from equations (128), (129) and (140) the load
factors along and normal to the airplane's velocity vector

are

2

n - nxv°°5A“net - “zvsmA“net + -E:L[(q2+r2)cosa - (pr—q)sina] (142)

Xw

and

2' [ ]
Ny = “zv°°SA“net + “vai“A“net + .g_rl[(q2+=3)sina + (pr = a)cosal (143)

Since these corrections are not usually needed for
accelerometers located near the cg, load factors for this
sort of installation may be found from equations (131) and
(132).

If the corrections to load factors described above (and
to angie of attack for pitch rate) are made, the best way
to obtain the attitude rates and attitude accelerations is
to measure them directly with rate gyros and anqular accel-
erometers. Any other mathod iﬂvolves differentiation which
will magnify any errors arising from inadequate instrumen-
tation, calibration, data reduction technique, etc. Despite
these limitations, corrections can be made by use of equa-
tions presented in the following paragraph although it is
iterated that the results can be expected to be inferidr to

direct measurements.
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Computec Attitude Rates

To develop body rate eguations we begin with the angular
velocity of the wind-axes (reference 11, 5ixge 22) including

only the changes in heading and climb angle, and adding roll

rate Bi,

w0, = (B ~ &siny)T + (YcosB + &cosYsinB)j

+ (—7YsinB + &cosYcosB)k (144)

Next we add the rate of change of the angle of attack to

obtair the angular velocity of the body axes
@ = (B=&siny)T + (&+YcosB + ocos¥sinB)j
+ (~7sinB + &cosYcosB)k (145)

Finally, to obtain the body roll, pitch, and yaw rates we

transform the components of equation (145) to the body-axes

system. The transform matrix is, from the section, Coordinate

Systoms and Transformations, the inverse of th:zt in equation

{(139).
[cose 0 —sina| |B — &siny
[wb} = 0 1 0 & + YcosB + &cosYsinB
sina 0 cosaj | - YsinB + &cosycosB
(B — &sinY)cosa ~ (— YsinB + &cosYcosB)sina

L4 .
= & + YcosB + gcosYysinB

L(é ~ &sinysina + (—YsinB + &cosYcosB)cosa (146)

vV-14
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Equating the vector components of equations (114) and (146)

p = (B — &siny)cosa — (—ysinB - GcosycosB)sina (147)
= &4 0 sinB

q a + YcosB + gcosy (148)

r = (1'3 — osinY)sina + (—-}.'sinB + ocosycosB)eosa (149)

The parameters in these equations can all be computed
from airspeed, altitude, and angle of attack except for B,
é, and 0. To evaluate these unknowns B is assumed to be
Zzero; then the other two parameters can be obtained by
reference to the equations of motion along the wind y- and

z-axes. The accelerations along these axes are, neglect-

ing smaller order terms, from equations (47) and (48)
ayw = Vt(écos}’cosB -~ }"sinB) (150)

and

B, = — Vi (YcosB + scosysinB) (151)

The components of the local gravity can be obtained by

transforming the component

Bo= ek, (152)

V-15
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in the local geocentric-axes system into the wind-axes
system. Applying the transformation matrix from the section,

Coordinate Systems and Transformations, results in

EL = gL(-sin}’T + cosysinBj + cosYcos BK) (153)

Recalling *hat the normal load factor is positive
upwards opposite to the positive z-axis, the total load

fz-tor at the cg is

n = Nl + ny}_-—- n,k (154)

The vector equation for load factor in terms of air-
craf: acceleration is

1 — —
cg = E;‘(acg - g) (155)

n
Substituting the components from equations (150), (151),
{153) and (154) in equation (155) and picking out the y

znd 2z components

n, = LIV, (scciveosB ~ ¥SinB) = gy, cosYsinB] (156)
w g
and
nZW = _1_[Vt(}"cosB + ocosysin8) + chosYcosB] (157)
&r

With the assumption of zero sideslip the side load

factor must be zero. Theretore, from equation (156)

V-18




Vt(éfJ?S}’COE.B - )7sinB) = chos)/sir;B (158)

Equacion (158) can be solved for tan B to give

V,gcosY
{anB = t2 - (159)
gLCOSY+VtY

Rearranging equa: iwni. (157)

gn, = chosycosg."::'f'nnsB = (V,ocosY)sinB (160)
w

Solving equatinn (1592) for (Vtécosy), substituting into

equation (160), and mul%tiplying by cos B

"

. U
g,nzwcosB ~ (gpcos? + Vt)')coszB = (gpcosY + ViY)sin“B (161)

Since cos?B ¢+ sin’B = 1, equation (161) reduces to

»

g, cosYy + VY

cosB =

(162)

Erflyy,

Multiplying cosB of equation (162) times tanB of equation

(159) the foilowing results

_Vt cosy .

Loy
.n
g Zy

V-1




L
or solvina for o

By
o = ¥ sinB (163)
Vt cos Yy

From trigonometry

o %
sinB = (1—~cos“BY

{164)
*
so that
ar cosY + V,¥ oY
sng - (1~ (BT L (165)
8 Nz,
Substituting into equation (163) and rearranging
> .0
. [Cgn, )7 = (g cosy ¢ A2
o = — - (166)

Vt cosy

Eguations (162) and (l6¢) provide the regquired values of
B and 0 to sul.titute into the attitude rate equations,
((147) through (149)° . The pitch angular acceleration,
é, required in equations (142) and (143) can be obtained

from time differentiation of g in equation (148). These

———— - e a% e cee m o mem e e & e

sin B and ¢ Lecome negative when

1 - y' < 0.

g.n.
r l.w

gy cosY * VY. e

vV-18
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equations include the true normal lcad factor, which can

be approximated satisfactorily by the weasured value.

INCRTIAL NAVIGATION SYSTLMO

An inaertial navigation system fxow which axe obtained
the output {rom a thrse-axiz accelerometer systan ana
sufficient orientation angies tc find components in the
18 & very important advantage over the
accelerometer installations previously described. That is,
the need for makinu corrections for boom bending, upwash,
dynaiic lag, pitch vate or for induced accelerations in
values sensed by accelerometers mounted on a vane ars
eliminated. Since the inherent accuracy cof the orientation
angles defining the position of the three-axis accelercmeter
system is superior to conventional angl: of attack measure-
ments and the uncertainties associated with above correc-
tions are eliminated, compited load factors in the wind-axes
from an inertial navigation system can be expected to be
significantly more accurate than those from the accelerometer
systems previcusly described.

Comparative disadvantages of an inertial navigation
system may be: increased preflight checkout time, poorer
reliability with increased maintenance, and higher cost
(presuming that the test aircraft has not been equipped

with an operable system).

V-18
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Because of the variety in design of inertial nay%w
gation systems, the orientation of the accelerometers
uapends on the gpecific system being used. Lence, the

axes transfonrmaticns to obtain load factors in wind-axes

are not presented.

RADAR METHOD

Lguvations are presented which may be used with data
from radar {or position data from sone other socurce such
as Askania cameras) to conpute load factors and hence
excess thrust.

Figurs 7 gshows the radar system located with respect

¢

to the gwocentric coordinate system in itesms of wie geo -

A

centric latitude, § the heiqghlt above the reference

LI
ellipsoid, zna the enguiar deviation of the X, axis from

true north.

true north

equator

Ve Y

Figure 7 Radar System
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The origin of the radar system in geocentric .oordinates

is given by

xe’ = (r + h.)cosdy,
ye' ™ 0

and
ze' 2 —(r + hr)sinSL

(167)

(168)

(169)

r, repeating equation (5) from the section Geophysical

Properties, is

r a2

ro(.99832172 + .00167618coszdy, + .00000211 c0s4 9y )

(170)

As nay be seen by figure 7, rotations of (¢r+180°) and

¢. are necessary %0 aline the radar system with tle geocentric

e

Bystam.
-~ sindy cos ¢, sindy s o,
M(p+m ) = -~ £ing, ~ cosg,
)
L-— cosdp cosg.  cosdy sing,

v-81

These rotations result in a rotation matrix given by

bt 00581_:]
0 ,\
sin’o‘h

(171)




The position of an aircraft in geocentric coordinates
i5 obtained by addition of the rotated radar coordinates
to the components of the radar origin in geocentric

coordipates:

[. Yo 1 ip 1 ‘9.]
| it} l
H {

¥ s AM(opta S ¥ |+ | ¥ (172)

m
. , - 2
‘o : L r %o

Si ! ' ' +1.6&, o
Since X't Yo'o 25"y and [M(¢r _LL)] are constants,

the transformations of aircraft velocities and accelera-

tions are given by

,r iom X
Ve | = MMCSrm oI (173)
i» zom g

The components of velocity and acceleration are deter-
mined from a smcothing ana difierentiating process of the
position data.

Since the oo Y z, system is attached to the eartr

rl

and grotates with it at an angular rate of We 7 accelerations

v-82
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due to w, are gensrated. In order to find inertial accel-

arations which may e related to forces acting on the air-
craft and to loxd factors, equations (174) through (176)

are wsed:

(1 1 9 -
X - X =X, w- + 2V, w 174
e ®m e @ v ey e )
¥ =y, =¥ wl= 2%, @ {175;
¢ em em ® em @
and
*° »
- Z - 2 (176)
e em
Next, the above accelerations are transformed to local

geocentric ares. This is accomplished by use of the matrix

found in the section, Coordinate Systems and Transformations,

and results in

§g] —cos M sind;,  —sinA\sing;, -~ cosdy, 'ie
T .
Yol = sinAAf, — c0sAA[ 0 Yo (177)
ir'.g ~ cosAAjcosd,  ~ sinAM cossy, sindy 'ie
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AXL is the difference between the aircraft longitude and the
longitude of the radar coordinate origin as shown in figure
3 of that section.

Gravitational attractions as computed from equation (15)

of the same section may be readily added to the accelerations

from equation (177) and load factors computed:

n, = L(X, - g) 178
Xg = Xg = e, (178)
n = Ly (179)
Vg g ©

and
n, = =-l(Z, - g,)
% g © g (180)

Transformation intc wind axes but at zero bank angle
is accomplished by means of the matrix [M(o,y)] expressed

in equation (14) of the section, Coordinate Systems and

Transformations:

" A
hxw. llxg
| o= (Mo ny, (181)
L nzw.- ...nzg p

The angles ¢ and y when computed from radar data for

use in equition (181) require a knowledge of wind speed
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i and direction as a function of time. Velocities in local
: geocentric axes are found through the same rotation matrix
: that was used with accelerations in equation (177):
1
‘ .
]
2PN B ) ar.
xgm — cosAMp sindy —~ 8inAAp sindy, — cosdy, xem
J'Igm - sinAXp, ~ cosAXp, 0 Yer (182)
z -~ cosA); cosd ~ sinA); ccs sin$ z
e || cosAdy,cosdy, L.Cosy, L || %o
{
? Velocities in the wind axes become
Xy = igm + V,cosy (183)
Yo = Slgm + Vwcos¢ (184)
f and
Zy = Zg (185)

with the assumption that winds are in the local geocentric
system.

Aircraft velocity with respect to the airmass is

Vo= (R 4,2+ ;:wz)l,é (186)

The two angles, vy, and o, for use in equation (181)

becone
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w -
Y = sin (1e7)
)
and
o = tanilw (188)
iW

Bank angle may be defined as

1
B = t 1w (189)
nzw‘

A rotation may then be made through B to obtain load fac-
tors in banked flight. Performing the transformation the

load factors become, with the aid of equation (189)

nxw = nxwo (190)
“yw = 0 {191)
and
2
nzw - { nyw'2 + nzw' )}é (192)
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SECTION VI

STANDARD CLIMB SCHEDULES
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SUMMARY
Various standard climb schedules are considered (e.g.,
a segment at constant calibrated airspeed followed by one at
constant Mach number). Equations are given to compute the
break altitude or juncture of these segments. Climb speed
derivatives from which acceleration factors may be computed

are derived for each schedule.
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SYMBOLS USED IN TEIS SECTION

Definition

spzed of sound

acceleration factor

acceleration factor associated

with energy height

reference acceleration due to

gravity

local effective acceleration due

tc gravity
pressure altitude
energy height
flight Mach number
ambient pressure
impact pressure
calibrated airspeed
equivalent airspeed
true airspeed

ambient pressure ratio
ambient temperature ratio

air density ratio

vi-4

Units

knots or
ft/sec

dimensionless

dimensionless

ft/sec?
ft/sec?

ft

ft
dimensionless
in. Hg

in. Hg

knots

knots

knots
dimensionless
dimensionless

dimensionless
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INTRODUCTION

It is desirable to present aircraft performance during a
continuous climb for an arbitrary (standard) climb schedule;
generally the one which the pilot was attempting tc follow.
Since climb schedules cannot be.followed precisely, large
deviations in rates of change of potential and kinetic energies
occur, although the sum of the two can usually be expected to
change quite uniformly. 1In order to find rates of climb along
an arbitrary climb schedule, acceleration factors together with
climb potential (rate of climb for zero acceleration along the

flight path) are used as described in the section, Standardiza-

tion of Performance Parameters. The information required to

define standard schedules and to compute acceleration factors

is presented in the following paragraphs.
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STANDARD CLIML SCHLDULLS
DL&CRIPSION OF STANDARD. SCHEDULLS
In standarcizine »ircraft rerformance Gurinag continuous
clirls, it is desiralle tc wmave correcticns to an arclitrary
(stanuarc) cliwb sci-ecule; generally e one whicl the pilot
was attemptine to follew. Since clirph schedules cannot ke
followed preciselv ard climb potential may vary rapidly with
speed, large corrections may result. fThe largest corrections
should ke expected when clirbing at a hiach subsonic speea
(typicai of best clinbk speed for Liol perforniance aircraft)
where drag incrcases very rapialy when lach nurbers exceed
those for best clirb.
Four stancard climb schecules arce consicered. These are:
(1) 1nitial seacvent at constant Vc with the remainuer
at constant ™
(2) True sreec specificd as a function of altitude -
for any arlitrary schedule with altitude montonic
increasing (test and standard altitudes taken to
e equal)
(3) Iritial seoment at constant Ve with the remairnder
at constant ™
(4) True sreeu specifieu as a function of altitude -
for any arbitrarv schedule with altitucde permitted
to decrease but with Hg monotonic increasing (test

and stanGard energy heights taker. to be equal)
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Constant Mach number, constant Vor and constant Vo climbs are
not listed since they can be considered as special cases of (1) or
(3). Equations pertaining to the standardization of climb perfor-
mance along each of the above schedules are derived in the follow-
ing paragraphs.

BRLAK ALTITUDL

For schedules (1) or (3) it is convenient, when using a
digital computer, to load in desired stanaard values of speed
and Mach number and have the intersection of the two segments

of the schedule (break altitude) computed.

constant M

Altitude break
 oltitude

constant

c® Ve

Mach Number

Figure 1  RBreak Altitude
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: To do this, combinations of Vc less than or more than a1,

it

and subsonic anc supersonic Magh nunbers rust he considered.

(Reference figure 2.) If Vg > ag, then, of course, M > 1.0

TR L I T

sc that the combination Vc > acr, anc M < 1.0 cannot exist.

¥

vreak altitudes for the three remaining conbinations of Vc and

!t are derived as follows:

é
/ / / NI
Case II: -
CoseI VCSOSL//'
v, <°s._ M=110 /
He M<10 \ // S/osem: —
// |y
////:/// /1//// //////// //’////
1.0
M

Figure 2  Combinations of V, and M

CASL I (V, < ag;, M < 1.0)

Substituting y = 1.40 in equation (21) of the section,
Flight Parameters from Sensed Environment.

-gf - [t 02wy (1)

To find the comnmon value of qc/Pa and hence the lreak altitude
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the above equation is equated to the corresponding relation con-

taining calibrated airspeed

which follows from ecuation (9) of the section, Flight Parameters

from Sensed Environment.

ﬂ1+au%iﬁrj-1} - (1+02M)>% 1 (3)

colr—a

a

From which

V .
[1 + 0.2(._C.")2]3 5.1
5, = = (4)
(1+02M2%%_1

Ga can then be easily converted into altitude. For example,

from equation (14) in the section, Atmospheric Environment, for

the troposphere in the U.S. 1962 atmosphere

1/5.2559
1-3,"

6.87558 x10™ 6

Ao = (5)
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CASL II (V, < agp, M > 1.0)

Following the same procedure, from equations (2) and (8)

from the section, Flight Parameters from Sensed Environment.

[1 . 0.2(.\10..)2]3‘5- 1
5, = °SL
166.921M7
(7M2—- 1)2.5

(6)

CASE III (Vc > 3oy M o> 1.0)

As before, from equations (8) and (10) of the same section

V
166.921(2%)’
sSL
\'/ 2.5
7(:2)2 - 1]
5, = SL (7)
166.921M° 4

(TM2% - 1)%°

The breal altitude fcr a constant Ve - constant M schedule

can be found more realily. Iquation (13), also from the same

section, .iav e restated as

Ve = aM\/—(;- (8)

The velocity of sound in a perfect gas is progorticual to the

sauare root of the temperature so that

a. - Vg (9)
’sL
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From the perfect gas law 6a = oea. Substituting this relation-

lship and equation (9) in equation (8)

Mg iR vl (L b g

Ve = ag M5, (10)

TR

Solving for Ga

a = agi M (11)

The break altitude may then be computed, as for the con-
A stant Vc - constant M schedule, from eguation (5) or other
appropriate Ga - h relation for a given atmospheric layec.

; Equation (11) is ﬁalid;for all verlues of M and V..

AIRSPEED-MACH NUMBER RELATIONSLIPS

The airspeed - Mach number relationships which are needed

for climbs are presented below. For examnple, when using sched-~

ule (1), Mach numbers at the test altitudes along the constant
Vo portion of the climb are desired; conversely, when a con-
stant Mach number is specified the correspondinag calibrated
airspeeds are desired. |

The equations that were used to determine break altitudes
for the same combinations of Vc and M are used to calculate

both Vc and M.
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CALIBRATED A1RSPEED AKD MACH NUMBLR (Vc < Ay, M < 1.0)
- %g -

V. is, solving equation (3)

. 2 %
Ve = aSLﬁ<{Sa[(l+0.2Mz)3»s-—l] +1) 7 -1)2 .1
and M is
(14+02(xe2>5 ) y
([ ag]. 21\
M = \/b(l . — 4 l} - l> (13)
a

CALIBRATED AIRSPEED AND MACH WUMBLR (V, < agy, f1 > 1.0)
Solving equation (6) V, is
7 9/7 %
V. = a. V515 |166.921M _ _1}4+1} -1 (14)
¢ SL a 2 110.5
(7TM“~1)*

and M is

1/7
[166.921(8a{[1 02052 |77 = 1)+ ) -1 (15)

In this case an iterative solucion for M must be macde since egua-

tion (7) cannot be solved explicitly.
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CALIERATED AIRSPEED AND MACH NUMBER (Vc > agy,? M > 1.06)

Solving,equatien (7). for Vg

1 V 2 05 1/7 - ..:.’ 'O
- , 166.921M" ._ | 1} Ve 2 ) c
e "SL<1651921{68[ 2. )% E [(aSL) 7). e

(7M

.

-\
~

In this case also, vV, must be found throuah en iterative procecure.

M from egquation (7) is , b ‘

Vv -
_ 166.921 (=)
.‘t),{{ S

e aseen 4 : . .3 L, - e - 1/7 L R
SR IE .l‘_. . A81. —1.+1(7M2—.1)5/2 S L
168 5215,

Vv 2.5
JACRL 1]
SL (17)

here again an iterative procedure is necdec to .fina i, -

Vc may be founc¢ for the remaining schedules by first con-
e o S N Ty

verting Ve or Vt to M ana tlen usino ecuation (12), (14),

or (16) as appropriate.

+

CLIME SPEFL DERIVATIVL, AV, /dli,
.

'
4

The acceleration factors discussed in the section, Standardiza-

tion of Performance Parameters, and defined by the equations

N (15a)
=g
8r 8 Qe
and' ) . ) »
b Ly _ \tdvt
AfE = ‘Ez(l gr-“‘dHE‘
(18%)

are of importance in establishina climh verformance. With thean,

rate of climb along the standard climb schecdule ray be found

from standardaizea excess th.oust.

Valucs of CTt/CXC ior the
W-§3




various cormbinations of Vc ancd i1 are derived in the following

paragrarhs for a constant Ver

CLIMB SPLED DLRIVATIVL, th/dHc, (Vc < aSL' M < 1.0)
From differentiation of the relation Vt = aM
hLowde 0 (19)
dH, dH, dHL

Since Vc/a. is constant with respect to the differentiation

SL
indicated, thzs term

[1 N 0.2(§°—L)2]3"5 -1

S

in equation (13) may be replaced Kj to give

1
M - \/E[g-h 1)2/7-1]/2 (20)

a

Differentiation with respect to l produces

d
51{1_8_3..
& e (21)
K
dH, 7882M(3-1- + 1)5/7
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Equation (21) might be used, substituting it in equation (19});

a more simple form may be derived, however. From the definition

of Kl
M, )3 LS (22)
5 5,

Substituiting in equation (21)

3.5 ds
5[(1 +0.2M9°° 1]—2
dM di, (2?)
————— - —— 2.5
dH, 75,M(1 +0.2M%)

But

1 d&;  d(Insy)

85, dH, an

o

so that substitution in equation (19) preduces

35
dV | yda _sal(1+02M%) 7 — 1) d(nsy) (24)
—
dHe  dHe gy a02n))™ dHe

The derivatives da/dhc and d(fn Ga)/dnc are presented in subse-

quent paragraphs.
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» SPLED DE : M > 1,
CLIME SPLED DERIVATIVL, dV, /dh_, (V, < ag M > 1.0)

Lquation (13) may be rewritten as

K 1]
146.921M7 = (?l 7M. ) (25)

a

Lifferentiating and collecting terms

.4’_“_[7 x166.921 M6 — 25M(EL 4 1)7m? = 1)]‘5]
dH, 8,
(26)
- —-l-(l(7M2-1)2'5 d(Inaa)
5 dH,
Substituting for K; from equation (25) and rearranging
2.5 d )
[166.921M7-(7M2—1) ]<7M2-1)-—“"—§21
dM 4 dH, (27)
dH, 11€8.45M8 (2M2 - 1)
Substituting, as before, in equation (19)
dv. 7 2 2.5 2
t o yda_ _ a[166.921M' — (TM" = 1)""J(TM"~1) d(In5,)
dH, dH, 1168.45M5 (2M% — 1) dH, (28)
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CLIMB SPEED DERIVATIVE, th/dHc, (Vc > agyr M> 1.0)

Rewriting equation (17)

166921M° = (%-

1es921( e )7
|

\Y
a [7(3-&)2- 1]

oY

166.921M° = (‘;_2 £ 17TM2= 1)

a

where

166.921 (~e-)"
L _

Ky =

.

[7(:&) = 1]
SL

Since the form of equation (30) is the same as that of equa-

tion (25) the same final equation for avy/dH, will also apply

vi-11
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(29)

(30)

(31)




in this case. Repeatiﬂg equation (28)

d%  yda _ allesoaM’ - (7ME- )R TME-1) dlns)) (35
dH, dHe  1168.45M%(2M2 - 1) dH,

CLIMB SPEED DERIVATIVE, th/dﬁc, (Vc not constant)
Values of th/dHc during a climb at constant Ve (as during

schedule (3)) may be found from differentiation of V, = ve//E"

to obtain

LAY Ve. do (33)

dH, 9,3/2dH,
Mor the cases where v, 1s specified as a function of Lig

(schedules (2) and (4)) av /di, or dVy/dHg must be found by

numerical differentiation since they cannot be calculated by
analytic means.

when Mach number is maintained constant equation (19)

reduces to

V| yda (34)
dH, dH,

and values of da/dnc, as for constant Vc climbs, are found

from the following equations.

Vi-18
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SPLED OF SOUND DLRIVATIVEL, da/dHc

———-

The followinyg eguations are given as an aid in computing
dv,/dl, and are to be used irn equations (24), (28), and (32).

Differentiating equation (4) from the section Atmospheric En-

vironment, with respect to H,

da _ LyRAdT, (35)
dH, 2T dH,

Substituting equation (12) from the section Atmospheric Environ-

ment, with H replaced by Ho and Ly for dT,/dHc

da Ly YR ¢
dH, 2 |(T,), +Ly(H, - Hy) (36)

Substituting constarts appropriate to the U.S&. 1962 atmosphere

da 0.0651520 37
1
dH (268.15 ~ 0.0019812H )"

in units of feet/sec/foot for -16,404.20<H,<36,089,.24 feet

da
—_— = (
aH, (38)

for 36,089.24 < L < 65,616.80 feet

vi-19
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|
i da 0.0100234 (39)

3 dH
c (216.63 +0.0003048(HC-H5)]%

for 05,616.80 < o < 104,986.8¢ feet and

B el DTS

AREA PR L ke Xl f ac ot b L gt

da  0.0280641
- (40)
Mo ro8.65 +0.0008534 1 - 1) 1

for 104,986.88 < hc < 154,19¢.48 feet

PRUSCURE RATIO DLRIVATIVL, d(fn éa)/dhc

———— . 2. S ot S Sein

The followinc equations are civen as an aid in computing

TP ST

dv, /ak_ and are to Le used in equations (24), (28), and (32).

* mation (16) from the section, Atmospheric Environment,

may . : rewritten as

: (P.) i g
b2 = == b[1+ M (Hc—Hb)] oL/ (41)
Py U (T, |

T R TR

or taking the logarithm

TTRTTRRT X7

(R,)
Ins, = = SLiy ab[u Ly (Hc—Hb)} (42)
| Ly B | (T,
é -
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Differentiating with respect to hc

- -
p—

- (43)

when L* # 0.

Taking logs of equation (17) from the section, Atmospheric

Environment
(P) (H,-Hyp)
Ins, = In ab _ L e7 b (44)
PaSL R(T})b
Differentiating with respect to I
d(Ilns ,
(Ins,) . __ &I (45)
when Ly = 0.

Substituting constants appropriate to the U.S. 1962 atwosphere

d(Ins -
((m" a) . 03613742107 1 _ \
c 1 - 6.875586 x 10" S H_ (46)
in units of fee’c_l for -16,404.20 < H, < 36,080,724 feet
d(1 -
Unda) _ 0.480637 x107% (47)
dH,

for 36,089.24 < ﬁc < 65,616.8C feet

Vi-21
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d(1 - .
Ande) 048063751207 1 {48)
dHe I +1.40688 x 107 °(H_ ~ 65,615.80)

for 65,616.80 < Lc < 1c4,%86.88 feet and

d(1n8a)
“dH

- —0455412x10" 16 (49)
1 +3.73252x 1075 (H, — 104,986.88)

C

for 104,986.86 < I < 154,199.48 feet

DENSITY RATIO DERIVATIVE, dc/dHc

The following equations are listed to provide assistance
in computing th/dHc when Ve 1s constant, as in equation 33.
After differentiating equations (19) and (20) from the section,

Atmospheric Environment, we have, after substitution of

appropriate constants from the 1962 atmosphere

d -
H—H‘f- - —2.92618x1079(1 — 6.87558% 10

c

-5 3.2559 1
2 (50

1

in units of feet ~ for -16,404.20 £ H, £ 36,089.24 feet

do 5

do L _1.42785%10 Yexpl —4.80637x10"
aH,,

for 36,089.24 £ Hg £ 65,616.80 feet

(H, ~ 36089.24)] (51)
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do " -3.55517x10"6[1 + 1.40688x10"6( H, ~ 65616.8)]—36'1634 (52)

dH
(]
for 65,615.8 < H, < 104,986.88 feet and

d - —14.
42 | _ssieax10” 1 + 3.13252x10(H, ~ 104986.88) ] %012 {53)

dH,
for 104986.88 < H, £ 154,199.48 feet.
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SECTION VII

STANDARDIZATION OF
EXCESS THRUST
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SUMMARY
Standard excess thrust is found by extrapolating to a set
of standard conditions using a Taylor series expansion. From
a functional statement defining excess thrust and the equations

of motion, partial derivatives of excess thrust with respect

to each of the independent variables have been found. The
terms are collected into an equation which may be used for
both climbs and level accelerations. This has been done for
first order terms, which, it is expected, will generally be
sufficient; second order terms have been derived so that they
may be included if their magnitude warrants it. The standardi-
zation equation cannot be solved directly, and an iteration

procedure is needed. A description of it is included.
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SYMBOLS USED IN THIS SECTION
Definition
airplane total drag coefficient
airplane lift coefficient
center of gravity
engine ram drag
excess thrust
gross thrust
net thrust
acceleration due to gravity

reference acceleration due to
gravity

tapeline altitudé
pressure altitude
thrust angle of incidence
flight Mach Number

load factor along negative
wind z-axis

ambient pressure

dynamic pressure

local radius of the earth
wing area

time

ambient temperature

true airspeed

airplane gross weight
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Units
dimensionless
dimensionless
pct MAC

1b

ib

1b

1b

ft/sec?

ft/sec?

ft

ft

rad
dimensionless

dimensionless

in. hg
1b/ft?
ft

ft?
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angle of attack

flightpath climb angle measured
from the geocentric horizontal
plane

flightpath climb angle measured
from the geodetic horizontal
plane

aircraft geccentric latitude
flightpath heading angle

angular velocity of the earth

standard day conditions

test day conditions

dot denotes first derivative of a

quantity with respect to time
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INTRODUCTION

The test excess thrust, computed by one of the methods out- .

lined in the section, Determination of Excess Thrust, is extrapo-

lated to a set of standa;d conditions. In the following analysis,
excess thrust is taken to be sensitive to tﬂe foliowing parameters:
(1) temperature, (2) weight, (3) Mach number, (4) pressure or alti-
tade, (5) normal load factor, (6) power setting, and (7) center of
gravity. Of these variables the first five obviously have a bear-
ing on thrust and/or drag and hence on excess thrust. Adjustments
to excess thrust for changes in power setting wquld nét.be ﬁadé in
most cases but might be desirable for a variety of reasons; for
cxample, a correction may be needed to account for a power lever
which has been improperly riagged. 1Inlet total pressure ratio
was not included as an independent variable since it was coneid-
ered to be a function solely of Mach numrber, which has been
treated as an indepencdent variable. This assunption can, in
general, be made quite satisfactorilv. As speed is increased
anéd a Mach number of perhaps three is reached, total pressure
ratio may beccme a function of other variables as well as !ach
number. In this event, appropriate functional statements,
depending on the particular installation, necd to be written
and corrections to excess thrust made for variations in total
pressure ratio.

Standardization of excess thrust is accomplished by first’

expanding excess thrust in a Taylor series about the test day
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point through the first order terms. Then the development of
expressions for the partial derivatives of excess thrust with
respect to each of the variable test conditions is presented.
Next, the equation for the standard excess thrust in terms of
flight test data is developed. Finally, a mcre precise equa-
tion for standard excess tﬁrust is derived by following the
above steps but carrying the Tayior series expansion through
the second order terms.

TAYLOR SERIES EXPANSION OF EXCLSS THRUST-FIRST ORDER TERMS

The two equations of motion resulting from force balances
along and normal to the airplane's velocity vector are basic
to derivatives in the fqQllowing paragraphs. Excess thrust,

from the longitudinal equation of motion is*

Fox = F,cosla+ ig) - q5Cp (1)

and the equation of motion normal to the tlightpath is

9SC_ = n,W - ngin(a+iF) (2)

Equation (1) is examined to determine a functionzl rela-
tionship for excess thrust. It is well known that net thrust
depends on ambient temperature, Mach number, and pressure (alti-

tude). Power setting, w, is also included so that changes in

*The excess thrust is, properly, Fgcos(a+iF)-Fe—qSCD. This is
quite a satisfactory approximation, however, and simplifies the

following derivations.
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power lever angle or other measure of power setting can be made.
Hence, F .= f(Ta, M, Pa' 7). Both Ch and C, may be expressed
as functions of o, M, and cg (CL=f(a, M, cg) and CD=f(a, M, cq))
with the center of gravity included to account for changes in
trim drag. It is more convenient, however, to express drag
coefficient as CD=f(CI, M, ca). From these relationships

n, W - ngin(a +if)

as
(2) , excess thrust may be completely defined by the functional

together with q==0.7PaM2 and C| = from equation

statement

Foy = f(T, W, M, Py, ny 7 cg) (3)

A Taylor serie: expansion of the excess thrust about the test

day point results in the expression for standard excess thrust:

dF dF
- 2T S ~Xtw W,
F ok Fext*aTa (Tag = Tap + 5o g = W)
JF JF
ext Xt _
i s =My SRy - Py
IFey aFex( |
+ a"—nz (n.‘_,S - nZt) + ——817 mg = M
JF
+ 5E§Z(CQS - cgy) + higher order terms (4)

Magnitudes of the hicher order terms are less than those of
the first order terms but will, at some test conditions, be

significant. The partial derivatives in equation (4) are

Vii-8
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evaluated first, and then attention is given to the second
order terms,
VARIATION OF EXCESS THRUST WITH TLST CONDITIOKS

The partial derivatives in equation (4) are found by
differentiating equation (1) with respect to each of the
independent veriables. It is important to note that, in each
case, the normal eaguation of motion (eauation {Z)) provides

a constraint on the eguvation for excess thrust. The anale of

attack must vary in such a manner that hoth eguations are sat-

isfied simultaneocusly.

Temperature

To determine how excess thrust varies with temperature,
the relationship q=o.7PaM2 is used and the nartial derivative

of equation (1) taken with respect to temperature:

L dF aC
ex . n . R da 2 D
—— -l _F —_— - 0.7P —=
T cos(a+|F) T nSIn(a+IF) T 0 aM T (5)

The reason thrust varies with ambient temperature is well
known; however, the dependence of angle of attack and drag
coefficient on temperature requires an explanation.

Figure 1 shows a component of thrust in the direction
of the lLift vector. If the thrust is varied, then the angle
of attack must vary to adjust the lift to the new condition.
The changes in angle of attack and lift cause a change in the

induced drag similar to that caused by a weight change.

Vii-10
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Chain rule dif{ferentiation of a = f(CL, M, cg) with M and ca

held constant produces

da_ _ Qa acL

—_—= da = {
dCy 9T, 6)

- _ 2= (7)
aTa aCL aTa
Eyuation
JF doF da dCp|aC
ex ig)==0 — |F sin(a+ip)—=— + qS—2| =L (8)
T, cos(a-e-lF)a_l_a [:nsm a+ip aCL+q OCL]aTa

The partial of the lift coefficient with respect to temperature
is found by differentiating the equation of motion normali to

the flight path:

aC aF
as=h = -sina s ip) S0 - Fncos(anF)g_i;. (9)

a a

Again using the transformation expressed by equation (6):

. . IFy
sin(a + ip)e—=—
Ly . A - (10)
a7 iy9a
a qS+Fncos(a+|F)aCL

The equation for the variation of excess thrust with temperature

is found by substituting equation (10) in equation (8).
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ac
oF IF 9F, Fsin(a+iz)+qS =L
S o cosla s i)l 4 sina i) AL I (11)
a “ta a Fgcos(a+ip)+qS?_L
va
Weight

The partial derivative of excess thrust with respect to weight

using equation (1) as the expression for excess thrust is

dF . . da aCD
é_w;gl( = —FnSIn(a-blF)-(-?W - qS:;-W- (12)

Again transforming variables through chain rule differentiation

with M and co constant:

da _ da_ 30
W " aC oW (13)

and

aCD GCD (9CL
FTRER T (14)

Substituting these transformations into equaticn (12) and

rearranging:
JF Fa .. . aCD GCL
cex _ _j.n. S 2| —=L
T aCLsnn(a+|F)+q 5, | oW (15)
L()a J

The partial of the lift coefficient with respect to weight 1is

found by differentiating equation (2).

9C . Jda
qséWl- - nz“FQCOS(a+lF)5W (16)
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Substituting equation (13) in equation (16) we have

aCL n

—— = z

ow F (17)
3 i S
aCLcos(a+|F)+q
da

The general expression for the variation of excess thrust

with weight from equations (17) and (15) is

aC
. Fnsin(a+iF)+qSé-a—D

oF

—&X . - n

W . SacL z (18)
Fgcos(a+ip)+q o

Mach Number

Inserting the relationship q=0.7PaM2 in equation (1)
and differentiating, we have
oF aF da__295Cp

aC
ex i)~ F.si i y%e - qS =P
T s costa+ip) - Fysina+ip)oy T 9 0

(19)

Holding cg constant, Ch is a function of M and a, but o is

dependent on M so that
Cp = f[M,a(M)] (20)

Differentiation of equation (20) with respect to M yields

aCD aCD M aCD da
M " oM laam T aa Imam
which reduces to
aCD GCD 0CD| da 3
W AW et 3a MW (21)
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Differentiating equation (2)

2Cy qS$ aCy oF g da
£ o= |z Gj i i i e
T +anM 7 5'"‘“+'F)+Fgc°5(a*"F)aM (22)

Equations similar to (20) and (21) may be written with Cj

in place of CD’ Substituting in equation (22)

2C qS$ oCL| | da i‘aF 3
S{(—= —=| ) = — | —85j i F (a+ip)—
i+ (aM R M2 E sinla +ip) + Fgcos aHF)aM]
(23)
. a0
Solving for T
‘ZCLqS OCL oFg | .
da M * anM . + P sin(a +ir)
E (24)

. aC
Fgcos(a +ip)+ ng;——lM

Substitution of equation (21) in equation (19) yields

JF JdF 2ChgS dC !
Zex . In ie)—mo2D> 459D
T T COS(a+IF q

M oM la

da_
aM

[ acD'
—~ |F_si i —Y
Lns'"(‘”"F) + - MqS

(25)

Finally, after substitution of ecuation (24) in equation (25)

aF JF 2Ch0S aC
Cex . Ln ic). 22D s D
T P cos{a+ig) m raf
—5 +anM . + v sin(a + ip)

aC
+ Fnsin(a+iF)+—-—D’ qS
da IM . aCy
Fgcos(a+ip) = qSéTM

(26)
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Pressure

v ——t————

Taking the derivative of equation (1) with respect to

pressure
oF, oF . 1éa_ 4SCp 9Cp

ex . i n . i PSR - q$s (27

5. cos(a+|,:)aPa Fnsm(a+|F)aPa P q 7P, )

Substituting the transformation of variables produced by the

same method as previously used

da _ da_9CL (28)
aPa aCL aPa

and
aC dCp aC
-0 . _EQ.7£= (29)
aPa a0y dPy

results in

JF oF, qSC [ .\ da aCplaC
ex ic).n D i da_ ZDIZZL (30)
—£X = cosla+ip)=" - —— - |Fsin(a+ip)s + qS (
Fap, = 7P, n ac, * PPac | ap,
The partial derivative of 1lift coefficient with respect to
pressure is evaluated from the equation of motion normal to

the flightpath. Differentiating equation (2)

Sac. + a5y ansin( ig) = Fqcosiusip {31)
—— — = -— — a - —
e, F R, 3P, Fi=7e F'ap,
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Using the transformation

da da aCL ‘
ry - (32)
P, aCLOPa

equation (31) becomes, after rearranging

oFy o asCy
i b—‘;:-sm(a-np)w- P,
JP

(33)

a F9°°5‘““F’3‘%L+ qs

Substituting equation (33) in equation (30) we have the

general expression for the chande in thrust with rressure.

dF JoF SC
—&X - cos(a+ip)= - qP D
r?Pa 3Pa a
. . 9Cp
FnSIn(a+|F)+qSé-a— o . qSCL
- —dsin(a+ip)+
. 9C} 110P4 Pa
Fgcos(a+|F)+an
a

(34)

It may be more convenient to make the transformation

Fy Oy e (35)
aP, oM, 9P,

3H
and substitute in equation (34) with .8_59_ being evaluated
a

from the appropriate altitude -~ pressure relationships.

For example, differentiatinag

6., ,5.25591 (36)

Py = Pao (1-6.87558x10°

H
SL c)

a
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taken from the U.S. Standard Atmosphere, 1962,

below the tropopause

oH, 13.0763
a (1~ 6.87555x10°

6, ,4.25591

He)

in the units of feet/lb per square foot.

Load Factor, n,

for altitudes

(37)

Differentiating equation (1) with respect to normal load

factor yields

o d o BATILIAE ST SEUAR M AE A i RIS s 2D R

LV R PRL . IS VIR PRRNMENS B2

eute e e e L

CCIONE S SR o

i e

Craa kT S K DALY Bt B ML AN IR,

FLRENE WP W S S P

—&8X . ~F sin(a+ip)= - ¢S—
an, n F an, an, (38)
Proceeding as heforc
da _ da_ 90y (39)
anz aCLanz
and
oy | apicy (10
3nz aCLanz
eguation (38) becomes
Fex = cintaeicr?e L _ 059D CL (41)
P A SR T M ol
'z L%z Loz
ac
- The term S is evaluated by takinc the partial derivati-c of
z
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equation (2)

aC
gS—Lt . w-F cos(a+ip)§f—. (42)
an, 9 an,

From which

aCL W
an, T da . (43)
Fgl2. e
gacLCOS(aq- Fl+qS
Substituting eguation (43) in equation (41)
0CD
Fosinla +ig)+qS—
n F
g,Fsz - - da__ |y, (44)
nl‘v

. aCp
Fqcos(a+ |F)+q5£—

Power Setting

The expression for the partial of excess thrust with respect

to power setting is developed by taking the partial of eguation

(1) with respect to =,

dF ey

. . y9Fn i : yOa éc[}
= = c0.;(a+!F)(-9-;-——FnSln(a+lF)5; - QS —= (45)

Expressions for the following chanae of variables may be written

following the methods used in the preceding derivations:

da da_ 9y (46)

= o omncasmos

on aCL dn
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and

aCp aC|.

BCD
or = aCL on (47)

equation (45) becomes

oF oF 9 aCp| aC
—ex —n_ ic)9% V] el 8
P cos{a+ i|:)6h7 Fosin(a+ 'F)acl_ + ancL 7 (48)

The variation of lift conefficient with power setting is deter-

mined by taking the partial derivative of equation (2) with

respect to power setting.

aC daF,
s —t . -5—gsin(a+ip)- Fgcos(a-!-ip)g% (49)

on g

Substituting equation (46) and rearranging

oF
b;-gsin(a-o-ip)

da .
phodil 50)
Fgachos(aHF)-t-qS (50)

The variation of excess thrust with power setting becomes,

after substitution of equation (50) in equation (48)

aC
Fosin(a+ip)+qs—2 -
OFex cos(a+ig) =" 4 i : 9a ?-Egsin(an ) (51)
on F BCL dn F

da

Fgcos(a+ip)+qS
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?rim Drag

Differentiating eauation (1) with respmect to cg vields

oF 9 aC

ex ; . a D

—= = —-F_ sin(la+ip)e—=~qS— (52
dcq nsthta+ g dcg a dcg )
As previously stated C_ = £(a, M, cg). Since trim drag cor-

D
rections are made at cornstant Mach nunber the functional rela-~

tionship

Cp = f[cg, a(cg)] (53)

-

may .~e set down. The partial derivative of CD with respect to cg

-
¥

then becomes

0CD 8CD' dCp

— ———

da
dcg  degla da (54)

cg dcg

Substituting in eguation (52)

JF, A aC aCr. .
Tex . _F sin(a+ip)ii - qSt—B| +I4H Ta, (55)
Jeg dcg dcg la  da lcylcyg

From differentiation of equation (2)

aCL ‘)CL Ga da

(=L Uore, L CF i)Y (56)
3eg la + 7 cgacg) gcos(a+'F>acg

Solvina for aa_

) - dca
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ab L
Aa_ acJ

=T aC (57)
deg F cos(a+|F)+qS——Li g

Substituting equation (57) in equation (55)

3CD

o s2%0]

aFex ns n(a+iF)+q 9 cgq SaCD (58)
a2g aCL deg la g acg la

Fg cos(a+ ip)+ qS;?:z—

DARDIZED EXCESS THRUST

An examination of the preceding derivations shows that the

term

Fqasin( ) S-——
St a+||: + q 3a lMcg

aCy

a

F cos(a+ip)+ an

8 M,cg

[—

occurs in each of the equations for the partial derivatives.
Setting this term equal to A and summing up the corrections as

indicated by equation (2) we have
IFy, aFg
Fexs = Fext + E:os(a + i) 5?;- + Asin(a + i ) 57 ]( T, Tat)

ZCDqS GCD
TR

iFg . .
Lt m9sm(a+ IFE]}(MS ~ Mp)

dF , ati sC aF aH
+ {:os(aup) bhD) + A|: g £ sin(a + i)

oF
- Anz(Ws-—Wt) + {a—Mn-COS(a+ ig) -

a

2Cy qS C
L9, 45Tt

A
* M M

aH P, ~ P, oH, 9P,

qSC aF, oF g i .
* =5 ]}(P - P, )+ E:os(a+|;:)-—"—-+A5;— Sln(a+IF§](ns— m)

a

aC aC
- Awt(nz - nz) + [Aqsa gLa - qSECBQ;](ch— ¢gy)
(59)
vil-21




Equation (59) can he simplified by considering the total
change in net thrust caused by changes in temperature, Mach num-

ber, and pressure. The total change in net thrust is

F. - F = F - F (60)
s Nt n TagMsPa n Tap Mt Pa,
or
JF JF oF
Fp = Fp o= —=0(T, -~ T.) + —L(M - M) + =R(P, ~ P_)
s Tt a'ra( as” tay Tgm o sT UC T GR tTasT Tay (1)

The change in net thrust meay be determined from the engine manu-
facturer's specifications, from computer programs constructed by
the engine manufacturer, or from flight test data.

Substitution of equation (61) in equation (59) results . %
in

Fox, = Fexg* cosCa+ ip)(Fy ~Fp) + Asin(as i) Fg ~ Fg)

ZCDqS ZCLqS ‘9CL
- - - . A —=
Anz(WS Wy o+ [ m + A T + qS¢ Tl
aCD qSCD qSCL
- —= M- M - - A P, -~ P
Em aﬂ( S t) + ( Pa 4 Pa ¢ ag at)
3CL 8CD|
- AW - ) AgqS—s} - qS—=} | ( - Ccgy)
(nzs zy [ 4 dcg la a dcg 'z €9s ~

(62)

TAYLOR SERILS LXPANSIOL! OF LXCLSS 'THRUST-SLCOND ORDLR TERMS

Restating equation (4) but carrying the exvansion through

the second order terms, we have, onitting power settina

Vil-22
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Fay = Fey
eXg
+
+

Before

noted that

Z:ex”as_ Ta) + %';_f_X(ws.. W 4 j:;-—x(M - My
Z';ex(p - Pat) + g-::z_x(nzs— nzt) + g-g?‘(cgs- cay)
%E%?(Tas— To) + ZG:E;(T ag = Ta) (Ws ~ Wp
2??3’;“(7 = Ta) (Mg = Mp) + zjo:aP (Tag = Ta)(Pa = Pp)
ziz,rFe;n (Tag = Ta) (nz = nz) + 2;':3" (Tag = Ta)( cgs ~ cop

a’'z

2 2
dF 2 d°F
EX(W. - W,) 2 (W -W -
o s ¢+ 53 M( (Mg ~ My)
2 2
d F Jd°F
2 —EX (W~ W - £X - -
awaP X_( t)(PaS Pat) + ZaWanz(WS wt)(“zs nzt)
2 2
9“Fex 9" Fox 2
zawa (Wg ~ Wcgg - cgy) + o) (Mg ~ Mp
2 2
doF 9°F
2 .eX - ex - -
aM&P(M Mt)(Pas Pat) + ZaManz( M Mt)(”zs nzt)
2 2
oF d°F
9% Tex o ex _p Y
Macy (Mg ~ Mplcgg — cgp) + o2 (Pas Pat)
a
2aZF (Py ~ Py ) ) 2%x
aPaan:_ ag ™ Tapzg T Mz * ZaP acy as ~ Fa (69 = cap
2
d°F 2 d
ex
(n, =-n,) 2—X (n_ ~n,) -
anzz zg ™ "z, + any0cg nzS nzt;(cgS cgy)

2
J°F
X(cgg ~ cgt)z]

acgz

(63)

evaluating the partial derivatives, it should be

the total change in net thrust, as identified in
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equations (40) ang (61) for first order terms, should

also include the following terms

2 2 2 2
d°F 2 J°F 2 O°F 2 3°F

—T, -T.), B(M ~ M)S, —(P, -P, ), =D (T, - -
()Taz ag at (7M2 S t (7Paz dg a4 ()TaaM( ag Tat)(Ms Mt)l
2 2

J°F J°F

n
(T, ~T, P, =P.), —l - P -
IT,aP, 3s 2 Fag = Fas and aMaPa(MS M) (Fa = Pay

Evaluation of the partial derivatives using eguations (1)

and (2) would become quite involved. Since the magnitudes

of the second ordei;- terms are less than throse of the first

order terms, the eauations of motion can be reduced to

Fex = Fn=14aSCp (64)

and

qSCL = n, W (65)

and the partial derivatives found nuch nore easily anc with
little loss in accuracy. With these simplifications the second

-

partial derivatives are (derivations have not been included) as

listed below,
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3T, oW

2
9" Foy

3T, oM

2
d Fay

3T, 3P,

9" Fex

aTa an,

dWdcg

o*F,

aT_ oM

2
aFy

dT, 9P,

CL

:
:
!
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d
3 Cp
: 2F aF aC 2c T c
; L ["0%‘ ~ZbD) 10 “”“ZCL”ZD]
g M oW MoM 1, w2 acCiim oM lc M M2
i 2 2 2 2
: 0Fey  _ OFy _g_s_ig_ol acD(ch)
M 3P, dMaP;  PyloM le, " 5c 2 M
aC
J a(a'&"g)l
D L
+ IMS|-2Cp + 2—=2C + M c |
D 5, L " ]CLL |

NOTE: This correction can be ignored for climbs and level
accelerations where either AM or APa=O. It will take on some

value when both M and Pa are corrected as during an 'optimum

climb."”
OCD
2 I ===) 2
(o] Fex - - 8CL _ ?_(‘:.l__a CD
()M'lanz aM CL M aCL
LN,
2
aC b
2 A =—=2)
O Fex . _ 452 %] , _dcg
2 2 2.2
d Fex . é Fn qSCL d CD
2 2 2 2
ap, 3P, P aC,

0Pa(7nz Pa aC
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. dCp
2 a{—)
2 0 Fay B s|L dCp _F_l.- geg Ic
4 . 9P, dcg P, dcg I Py aC,
- aZFex wZ GZCD
anz qS aCLz
aC
2 A =0
9 Foy W aCy
anzacg an CL
3 2 2
P L ast
4 dcg deg? CL

3 Standard excess thrust may be computed by substitutina the
partial derivatives listed above in equation (63) to find
f’: the second order terms. It should be remembered that the total

change in net thrust is

dF, oF,

F, —F, = —(T, =T,) + —FM.~M) + (P, =P

; ns~ oy = 5T TagT Tay) + gy Ms =M+ 55 (Fa = Fap
2 2
3 J°F 3°F,
; 2 AT, -Ta)2+l-—-2-“—(Ms-Mt)2
s 2 2
. 19°F, 2 JF
$ == (P, ~P,) 0 - -
; + ZaPz( ag ay + aTaaM(Tas Tat)(Ms Mt)
9 a

2 2

a°F a°F

—L_(T, —-T. )P, - I - -

¢ aTaaPa( ag at)( 2 Pat) + amaPa(MS Mt)(Pas Pat)

(66)

TV TR S

Lence only the remaining second order terms in equation (63)

need be added to eauation (62) vo find standard excess thrust

SaeIEEN S ML

for an expansion through the second order terms.

e
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The maanitudes of the second order terms .can be expected to
he less than those of the first order terms, kut thev will be .
of consequence in some instances. It is suggested that for
installations having an accuracy of 0.0lc or less in n, consid-
eration be given to includine second order terms in the stan-
carc¢ization equation. '“Thev can Le safely ianored when using
the airspeed-altitude method since errors introduced by this
method are larcer tran the raonitude of the second order terms.

ITERATION PROCLDURLS

Equation (62) cannot be solved directlv since (during
climbs) standard normal load factor depernds on \ Qs’ and
standard weicht, which must be determined from the fuel consumed.
The fuel consumed, in turn, depends con . normal load factor.
Procedures are simplifieéd for level accelerations since ?s=0. .
Further, trim drag corrections are _-elated to center of cravity
position which may be a furction of weiaht, as when automatic
fuel sequerncing is used. Lence, itecration proccaures are
requireé to finc standard values of normal load fa.tor, weight,
ana perhars center of aravitv position. It shoulu e roted that
several test points at least must he operatcd orn at one time in
order that numerical differcntiation to obtain Q anG consequently
n, way ke carriec ovut.

Por rurrosces of illustration, the hesic steps in the iteration
nrocecure for stindarcizetion of a continuous clime are laid out

in the following chart. .
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Rl

o Computed from airspeed-

ex; altitude, acceleration, eto.
O—
Y
F Computed with egn 62

€Xspi but with nzo=nz, and
Wg = W; for first cycle

F, =
€%n-1

Fexn

or other
arbitrary
tolerances

'

Compure standard fuel flow:

S

Wfs = wff, + th r

T M H -wfl'r M H. ¢
sg cs'”s o e B AL

1 ]
N, =c={(gcos¥ny + VY.~
2z g L Ds t’s r

-2 “’@Vts cos SLS sing,)

S

t from test climb data
Integrate standard fuel flow /— from te mo da J
t
N 2
Wg=Wo~J Wp at i .
s o} f . dy
L to, 'S Compute: ¥g = T hg
. Integrate time to climb Numerically compute:
Fe . % sin’! h
L el 2 — Y oo S ¢ Se dvs
7w s= A Dy~ Ty = [ “hgdh TN
n f ts hsy
V, taken from E ‘/'I‘— Transform yp, to Vs
szgndard climb schedule (reference pagse 17, Appendix I)
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SUMMARY
Once standard excess thrust has been found, the remaining
calculations to compute other performance parameters of interest
are relatively simple. Equations to determine the basic
varameters for climbs and level accelerations have been included

in this section.
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Symbol

=%

NAMT

WGMT

W

W
es

v

SYMEBQLS USED IN THIS SECTION
Definition
acceleration factor

acceleration factor associated
with energy height

excess turust
fuel used

local effective acceleration
due to gravity

reference acceleration of aravity

geonetric altitude

pressure altitude

energy height

load factor along the x-axis
nautical air miles traveled -
nautical grouncd miles traveled
local rolius of the earth

time

true airspeed

airplane gross weicht

airplane gross weicht at
engine start

fuel flow
fligktpath clirdb angle neasured

fror the geodetic horizontal
plane

standard day conditions
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Units
dimensionless

dimensionless

1b
b

ft/sec

ft/sec
ft
ft
ft

dimensionless

ft/sex
1L
Ib

1t /sec
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STANDARDIZATION O PERFORMANCE PARAMETERS

Once excess tiir.:t has keen corrected to standard
concditions an iteration prucedure is used to find the para-
meters of concern for both clirl>s ana level accelerations.
The basic sters in the iteration procedure are shown for

a cliil in the section, Standerdizarion of uLxcess Thrust.

2 siwilar procewure woulc be usea feor . vol accelerations
although fewer steps are required since v, ¢ 7 and excess
wnrust goes into increasing kinetic energybonly.
CLIMB PARAMETERS

Ir addition to the ncec for iteraticn prucedures noteu
above for both clirlks and accelerations, an addéiticnal
complicaticn arises when cereratino clinp paré&@ters. it
has been accepted practice, historically, to aetermine clinb
paramcters as a function of altituce, heginning at sea
level. An aircraft nay be at several taousanda feet,
however, before a pilot is able to intercept the cesired
climb schecule. hencé, it is not possilkle to collect
test aata throuch a range of altitudes irmeciately apove
sca level. Since clirb nerforrance at sea level is usefnul
for naking conprarisons with other aircraft and to Stemcard
Aircraft Characteristics Charts, it must be extraprmlateu

to sea level, recognizing that the flicht condition is

ipossible and that tiie data is fictilious.

Viil-6



70 obtain climb performance at sca level the rate of
ciimb is extrapolated to sca level; other parameters are
then deduced from rate of clinb. The steps necessary for
finding standardized rate of cliwb might be carried out
entirely in a digital corruter; perhaps using a curve fit
of available rate of clirb data and extending it to sea
level with the aic of thrust and drag aata. Due to un-
certainties in measured rates of climb, particularly at
the lowest test altitudes, the extrapolation may not
produce valid results. lience, it may be preferable to

interrupt the computer program to establish rate of climb

manually and then rcstazt th: progoan, continuing with
the star.dardization process. .
Rate of Climb ’

An aircraft's clindb potential is defineu by

and represents the rate of climb which would e achieved by
an wivplane climbing at a constant true speed. If a climb
is made at other than a constant true fuced, the rate of
change of kinetic energy must be accouiated for to finu rate

of climb. This is done throuah the acceleration factor, A

fl
and the rate of climb is, at standard conditions
P \'% n, V
ﬁs - GXS tS - XS t'S (l)
viii-§




where

& v, dv
Ay = =214 Jf2ltsy £2)
gr gr d‘l

ine acceleration factor is derived as fo.lows. Rate

of change of enerqgy height may be stated as

v +.‘.’i.‘f‘_’£;, (3)
e = He * g T

and also as

ﬁE = W (4)

i, (5)

Combining equations (3), (4), and (5)

. 8L, Vy dvy
Hp = "g—r‘(l + E;E\h (6)

from which the acceleration factor is taken to be as éaefined
by equation (2). This acceleration factor is useful for

climbs described in the section, Standara Climb Schedules,

during which altitude is monotonic increasing. For the case

vill-1



wher: altitude is permitteu to decrease, corrections are made

at oonstant values of IIE and the acceleration factor takes the "

form
g Vi dav
L g dipg
A

) . Vv, .
Hy = H + = H
B c gr dHE B

Solving for Hc

. ) v, dV,
H = Ho(l — ==~ =)
c E gr d.lE

Substituting equation (5)

S PP 3
gL, g dHg " E
or
h = ApgHp

Vii-8

(7)

£E is found by defining rate of change of eneray height as

(8)

(9)

(10)

(11)
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Time to Climb

Once hs has been established time to climb follows

dh
/ ﬁ (12)

for continuous clinbs and

/ -

for optimum climb schedules which use energy height as an

easily from

independcernt variable.
Distance
Distance, conventionally shown in terms of nautical air

miles traveled, is

Nawy = Vtscos}'sdt (14)
"
The NAMT differs slightlv from the distance traveled along
the earth's surface, partitularly for aircraft flying at
extreme altitudes (e.g., avout 0.4% at an altituae of 80,000

feet). The ground distance is

NGMT = VtSCGS"s —— dt (15)
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Fuel. Used and Weight

The quantity of fuel usei is computew sinply by inte-

grating the standardizeG fuel flow:

FU = We at (7

Weicht during a clinb is basec on the aircraft gross weidght
at engine start and the fuel allowance for taxi, takeoff,
and acceleration at sea level to the clink schedule. S&tandard

weicht during the course of a clisb is, then

W. = W_. - (fuel allowance) ~ FU (17)

es

LEVEL ACCEI.ERATION PARAMETERS

The same parameters (tire, distance, and fuel usedld) are
desired in the presentaticn ¢f ac¢-.eleration performance. After
standardizec excess thrust as a funcrion of Mach number or

true speec has been established the acceleration can be found

from
F..
\',“ _ ¢ e.(s
Tty row, (18)
ana the tire to accelerate from
vt
S
th
S
t = —_ (19)
Vt «
\Y
'sl
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The ~isitance traveled is conputed 23 for climbs. With

v = 0 distance over the earth is

%
t

I
r
jl Vts;-T-h—s' dt {20)

Y

NGMT

[]

Fuel used, as for clirbs, is determined during the standardiz-

ation process. Repcating equation (16)

E

t

FU

Wfsdt (21)
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