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Abst—act

This report is concerned with the theoretical and experimental study
of subharmonic generation in acoustic systems. The generalized formulation
for lumped systems is considered for the case of three oscillators coupled
through a nonlinear element. The resulting analysis indicates that the high
frequency eoscillation is unstatle and its energy can be diverted to low fre-
quency oxcillations; that is, subharmonics are generated. Based on this
mathematical ~odel, the conditioas for sustaining subharmonics are deduced
in terms of the system's parameters. For distributed systems, the quesi~-
linear solution of the nonlinear wave equation, obtained by a two-variable
(two-timing) perturbation method, shows that the nonlinear property of
medium provides a coupling effect for signals of different frequencies.

In a multi-resonant system, certain subharmonic modes, determined by a
selection rule, can be excited by an external scurce, The presgent theory
predicts the threshold for subharmonlc generatior as a function of the
losses, nonlinearity, and detuning parameters of the systea. Experimeatal
measurements of such pheromenz in an interferometer-type resonator, operated
around 1,5 MHZ in water, are consistent with the amalytic results, provided
that cavitation in the medium is carefully avoided.
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Subharmoric generatior. 3o a ~rargmenon which nas beew

observed in acoustic T¥stems 18 o resul™ of their recvonrce o
irtence sigrals., 7The vurrose of this thesis is to develop =

simple mathematical medel for ths basic mechanism of suhrar-
monic generation and, under tre conditione arranged in tre
isroratery, to investirazie suchk 2 prensmenorn exterimentally

for sreckine the adequecy of tne tneoretical znalysis.

¥e intrnduce th: cubjiect with a2 study on the tehavier

cf lunped systers wi%a rasz and sering elemerts. Thris var-
ticular probtler. is Tormulated oy considerire three courled
ascillators withk & siroie nonlinear elemert whose energy
furetinon is vrorvoriinral To the product of tne dismlacemert

arnlitudes 1rn these %rrze oscilizators. Ir a conservztive

ct

hrec censtrairts for tne

syster, “he analysis rezulis in

n

T is, in additicn to enercy

resonnse to the disturkance., Th

]

conservaticn, there zre rela*ione for thz invalance in enersy
exchange amons tne os2-'latn~z, and the amrplitudes 2and vhases
of the resvonsze. These corstraints carn rve used to reduce
such a »roblem tc gquadrature, The phase diagram for de-
scriving the system's resnnnse indicates that the hien fre-
guency oscillatior is unstakle and its onerey can be easily
diverting to the low frequercy ascillation. This tendency

snerests that, for 2 nonconservative svstem, subharmonic
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oscillatisn can be oxcited and sustained if the energy sup-
rlied 2an balance out the energy lossesz ir the system.

Based on this model, we derive the threshnld for sutharmonin
nscillation in relation to the nonlinear coupling, dissi-
vation, 2nd deiuning parameter of the system.

We then discuss subharmonic generation in distributed
systems by exzamining the solutions of *the nonlinear wave
equatior, We find that the nonlinear oroperty of the melium
~an provide a couypline effect for signals with distinct fre-
quercies. In free space, an intense acovstic wave will form
a shoc¥ wave and no subharmonic can be generated. But in a

closed system, such as 2 rezcnator, there is the passibility

for subharmonic modes 1o be excited. The mathematical analy-

sis for mode-ccupling in a resonator shows some similaritiass
with the nonlinear coupnline of the three oscilleztors in the
lumped system. Since 2 resonator generally poss.sses many
modes, the analysis has been extended to determine a selec-
tion rule for which modes will be excited at a ziven condi-
tione.

Experimental investigation of subbarmoanic generation
is carried out ir 2n interferometer type resonator., Water
is used as the medium that supports the irtense standine

vave for inducing the nonlinear couplirg effect. Belause

cavitation is carefully aveided by degassing and filtering

the liquid, we are able t¢ odbtain results that are consistent
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with our theoretical model,

From the results of this research, we reach the ~on-
clusion that the subharmonin generation phenomenon is attrib-
uted to nonlinearity in the system and its sustenance also
depends on the loss factor and detuning parameter associated
with the particular subharmonic modes to be excited.s In a
water-filled resonator whose linear dimension 1is larger than
serval waveleneths, we bhave found that, in the absence »f
cavitation, %the generation of subharmonics is mainly due to

the nonlinear proverty of the medium.




Chapter I

INTRODUCTION

The subharmonic phenomenon has been studied in this
research, with particular emphasis on its existence in acoas-
tical systems. We shall first discuss the nature of sub-
harmonics and review some related work reported in the liter-
ature., We chall then define the purpose of doing such a

stuay.

1. Subharmonics and superharmonics
In a nonlinear system, a response at other than the
driving frequency is often observed. liost often, the fre~
quencies of the response in such a system are related 4o the
criving frequency by an interger multiplier, and these are
known as harmonic responses. PBut under certain conditions,
a response with a frequency less than the driving freguenrcy
can also apprear. To distinguish between these two phenomena,
the response with frequency less than driving freguency are
known as subharmonics and the others as superharmonics.
Though both subharmonics and superharmonics are phe~om-
ena caused by nonlinearities in a system, they have a differ-

*
ent character1 « Superharmonics are a stable response that

#* Numerical superscripts corresoond to references listed in
the Bibliography.
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will always occur when there is a driving source in the non-
linear system. Their frequency component is related to the
order of the nonlinearity of the system. On the other hand,
in order for subharmonics to be excited, a certain minimum
driving signal strength is required. The subharmonic oscil-
lation is due to an unstable property cf the system and
their sustained excitation depends not cnly on the intensity
of the driving source but also on the proper phase relation
with the driving source. Except for the degenerate case of
subharmonics of one-half, subharmonics ordinarily exist in
pairs such that the sum of each frequency pair eguals the
freguency of the driving signal,

The study of subharmonics and superharmonics in non-
linear mechanical and electrical systems has been carried
ocut in some detail by Hayashi2 and Minorskyl. Stern’s3
book on nonlinear systems analysis has extended the non-
linear phenomena into multidimension space vectors. Recent-
1y , Kronauer and Musa“"5 have done some general analyses on
the synchronization of subharmonics with the excitation for
weakly coupled nonlinear systems,

Early studies of sub- and superharmonic phenomena were
pursued for the purpose of minimizing undersirable harmonic
effects in mechanical systems. These analyses generally end
up predicting the conditions for which the system will become

unstable and anharmonic oscillatiocns will begin to grow,



Later, owing to the application of nonlirnear elements in
electrical circuits, it was found that harmonic generation
can be used as a substitution for frequency multiplication
when a direct means for obtaining such a source is not
available, Since the recent development of high intensity
laser beams, utilization of harmonic generation has even

been extended to optics. The object of subharmonics studies
has also been expanded from merely understanding their exist-
ence to research on the property of systems. From compari-
sons with the results of parametric amplifier studiesé, sub=-
harmonic generation seems to have features similiar to the
down-conversion amplifier. According to the lanley-Rowe
relationé, high gains of such conversion should be easy to
achieve through the subharmonic generation mechanism, but

its unstable character and very narrow bandwidth have limite
ed its practical application. Subharmonic generation can
alsc be employed in frequency dividers if the proper synchro-
nization can be adequately maintained. However, recent
electronic digital techniques have provided a much simpler
arrangement. This makes obsolete the idea of using the sub-

harmonic generation mechanism as a alternate frequency

source,

Tucker7

. in his study of nonlinear properties in under-
water acoustics, has discussed some possible applications of

subharmonics in forming narrow low frequency acoustic beams.,
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In the next section, we shall review some of the work relat-

ed to subharmonic generation in the field of acoustics,

2, Work on Subharmonics in Acoustics

The earlist work related to subharmonics in acoustics
is probably due %o HelmholtzB. He described ithe phenomenon
in which one can sense a fundamental pure tone when only two
of its harmonics are present, This has been recognized later
as the beating phenomenon whose real causz is not the inter-
ze.tion of sound vaves Ly ratki- the noni.nerr reznonsc o
the human ear. Lord Rayleigh9 deduced solutinns for a

Duffing equation (U + ku + k'ul + n®

u = 0) and indicated
that, in the presence of a driving force, a response of less
than the frequency of the driving source can be excited.
Work of this kind has been studied extensively in the field
of nonlinear mechanicg ever since.

The extensive use of sound for underwater communica-
tion, initiated in World War II, has provided a great deal of
research into the generation, transmission, and reception of
sound waves in a liquid. One of the major efforts is to
maximize the range of acoustic information transmission.
However, there are some limitations to such efforts. One of
them is the cavitation problem. When the sound wave pressure

reaches too great an intensity, foggy acoustic streamers

form in froat and on the surface of a transducer (this phe-

————



nomenon is what we now call "gaseous" cavitation). Such
streamers produce noise detectable by hydrophones., This
noise has a line specirum containing subharmonicslo. Sub-
harmonics therefore become one of the interesting subjects
in the study of cavitation phenomena. Somne investigatorsll'

even suggest that the subharmonic can be regarded as an
indication for the occurrence of cavitation.

Tucker?

has pointed out some possibilities in under-
water acoustics for the utilization of the nonlinear char-
acter of the med um. One such experimental investigatior
is the generation of subharmon10813, A focused standing
wave system is emplcyed during the investigation for build~-
ing up a very strong acoustic field. When the acoustic
pressure reaches a certain level, the subharmonic has been
observeu, Such a threshold appears to be correlated with
the gas content of the liquid. When boiled water is used,
those investigators reported that no subharmonics were
observed,

Eller and Flynn14 have focused their study on ‘the non-
linear problem of subharmonics excited by gas bubble vscil-
lations in the liquid. Their analytical results show that
a bubble can be excited to its resonance when it is subjected
to an acoustic field with twice the natural frequency of
such a bubble. Neppiras15 did some experimental work along

this line by injecting bubbles of controlable size into a
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liquid. The results indicate that subharmonics are easily
excited and their intensity is strong when the condition of
Eller and Flynn described above is establishked, They con-
cluded that subharmonics are generated by bubbles through
the cavitation process.

On a separate front, subharmonics have also been an
interesting subject under discussion in the field of ultra-
sonics., While studying light diffraction patterns produced
by standing waves in a liquid16’17'18’19, it is observed
that extra dots appear on the regular diffraction pattern
when the sound pressure reaches a certain level. Those
additional dots corresvond to another impcsed standing wave
whose wavelength 1s larger than that of the original driv-
ing signal, Cook20 has explained such a phenomenon by
assuming possible wave interaction for subharmonic genera-
tion, but he did not obtain a complete description of the
relation between the frequency of driving signal and the
subharmonics observed. Adler and Breazeale21 have inter-
preted this phenomenon differently. They concluded that
the vibration of the boundary of the acoustical interfer-
ometer parametrically excites the subharmonics around the
order of cne-half of the original signal. However, such
a hypothesis has ignored two observed experimental facts:

16,

that subharmonics of other order have also been observed

17,18,19 ong that only at a certain length of the interfer-
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ometer they can be excitedié.

Subharmonic phenomena have been detected in solids
when an acovustic wave is applied to crysta1s22’23’2u.
Luukkala interprets these observations in terms of a phonon
breakdown hypotnesis. The qualitative phenomenlogical argu-
ments he uses seem to support the assumption that the gen-
eral instability of subharmonic signals is czused by exces-
sive energy going into an additionally accessible vibration
mode, These arguments correctly predict the threshold for
one~half subharmonics but are rot comprehensive €nougl Lo
include three-phonon interaction.

Dallos25'26'27

reports observing subharmonics in audi-
tory systems, That such subharmonics also occur in pairs
and that sum of these frequency pairs equals the driving
frequency seems te indicate a similarity with other physi-

cal systems,

3. Scope of This Thesis

The purpose vi this thesis is to study the basic
principles underlying subharmonic phenomena; no attemot
is made to explain every aspect of the existing observations.
We use a simplified mathematical model in hopes cf obtaining
some fundamental quantitative relations among the important
parameters. In the accompanying experimental work, we not

only try to confirm the theory but also intend to clarify
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some jinconsistencies among other reported experimental inves-
tigations, We are concerned with: What is the mechanism

for subharmecnic generation? What is the selection rule for
the appearance of a given subharmonic mode? What is a sys-
tematic and practical way to excite subharmonics?

In Chapter II, we study, in a generzl sense, subharmone
ic generation in lumped systems, A model of three conserva-
tive oscillators coupled weakly through a nonlinear element
is used for the analysis. Using a first order perturbation
me thod, we have found that, besides the energy conservation
law, such a system possesses two more invariants-~—- enough
to reduce the protlem to quadrature, The analysis indicates
that the high frequency mode can, under certain conditions,
divert its energy to low frequency modes. By considering,
then the effect of dissipation in the system, we have de-
rived the threshold level of excitation for sustaining such
subharmonic oscillation., The detuning problem, that is when
the frequencies of subharmonics do not exactly match the
driving signal frequency, has also been treated.

We discuss subharmonic generation in distributive sys-
tems in Chapter IIi. The response of the system has been
examined for disturbances with a finite travelling svpeed.

A wave equation is formulated for studying the effects of
all pertinent parameters. We find that, due to thz nonlinear

property of the medium, there is a coupling relation among
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signals with distinct frequencies. In a multiresonator, i:
becomes mode-coupling which has features similar to the
coupling of oscillators described in Chapter 7J. The condi-
tion for forcing excitation of certain subharmonic modes is
then obtained analyticz2lly based on information about the
boundary conditions, detuning varameter, and the dissipation
factor of the system.

The detailed experimental set-up is described in
Chapte~ IV. 7The purpose of such an investigztion ‘s to seek
evidence in supporting of our hypothesis about subharmonic
generation, The liquid used in this experiment, water, has
been filtered and degassed in a controllable manner in order
to get cunsistent results, Data are collected in terms of
actuzl acoustical quantities so that an accurate physical
interpretation can be made.

Chanter V presents the conclusions of this research.
We compare our analysis and our experimental results, and
examine validity of our hypothesis in understanding the
mechanism of subharmonic generation. The direction for the
future work and some possibile applications of the subharmonic

phenomenon are suggested.



Chapter 1I
SUBHARMONIC GENERATTON IN LUMPED SYSTEMS

The problem under consideration in this chanter is the
energy exchange among three oscillators. Gilchrist28, in
his investigation of conservative quasilinear systems wi%h
two degrees freedom, discovered an integral constraint on
the amplitudes of the nscillatorse This constraint actually
is an energy conservation law of first ords in a pertur-
bation expansion. An additional constraint on phase and
amplitude variations has been deduced by Kronauer and Musa29
in their study of the exchange of energy between oscillations
in weakly-nonlinear conservative systems,

In the model of three resonant tanks with a nonlinear
element discussed here, we have derived a third constraint.
This constraint gives an additional relation among the energy
stored in each oscillator and, under a special circumstance,
it can be reduced in the form of the Manley-Rowe relaticnéo
With these three constraints, the behavior of three coubpled
oscillators can be reduced to a problem of quadrature.

We have alsc extended the analysis to the situztion in
which there are dissipation elements in the resonant tanks.
In such a simplified model, the effect of damping imposes a

similer influence on the energy exchange as that of detuning

of the oscillation freguencies. If an external source is
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provided, to make up for the energy loss in the sysiem, a
steady state will be reachede. When the driving intensity
exceeds a certain level, a response with an oscillation fre~

quency less than that of the external source will appear.

1, CGoupling of Three Matched Oscillators

In a linear system containing dissipationless elements
only, there are in general some resommant modes and correspond-
ing normal coordinates, Tranforming to these normal coordie
nates, the system may be described by a set of separated

second order differential equations:

) i"i=0, (2-1)

where wy is the angular resonance frequency pertaining to the
particular mode and Xi is the displacemen® in the corresponds
ing normal coordinates. Any disturbances to the system may
excite some of these modes, The resultant response of the
system is the linear combination of these individval motions.
If the system possesses some nonlinear elements or the
disturbance becomes sc strong that elements lose their linear
property, the system will act quite differently. The non-
linearity will cause interaction among modes, thereby negat-
ing the linear superposition principle, However, if the non-
linear effects are sufficiently weak, we can develop a per

turbaticn expansion. The first order expansion theory is
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known as the quasi-linear approximation.
In the following, we will discuss a system of three

resonant modes witn a single pnonlinear element. Such a

simplified model will illustrate the Vasic mechanism of non-

linear coupling withoutinvolving too many mathematical com-
piications and will provide a framework for understanding
the vhenomena which we shall pursue later.

We consider that the single nonlinear element is an
energy storage device with the energy function given by:

Vn = eoxlx2X3 . (2-2)

where ¢ is a nondimensional quantity with a magnitude of
much less than one, and ¢ is a constant related to the non-

linear element. This might be difficult to realize physi-

cally, but is, mathematically, an appropriative device. The

total Lagrange of the three osciliators with such a non-

linear element 1is:

L2 A o2 2,2 2,2 2v2
- ale . azxz s a3X3 ) afﬂlxl azwzx2 ) a3u3x3
2 2 2 2 - 2 2
+ ¢0X1x2X3 . (2-3)

where a's and w's are parameters related to the system

elements.

The response of such a system is governed by the

following coupled equations:



i S
WX, = e0.%,%

dtz 171 17273 ¢

x,
—5= + WoX, = €0,X 1, (2-4)

dt *

2

a~X
—2 + (02 =

whers ¢}s are constants derived by the relation g;= %7 .

i
We will at first simplify things by assuming that the

w?s cbey *he relation,
Wy tw, =Wy, (2-5)

In Bq, (2-4) ¢°s are a measure of the interaction among X,
Xz, and X3. Without such coupling, Xl, X5y and X3 will
oscillate independentiy with angular frequenciescql.;dz.
andw3 respectively., We refer to the matched condition of
Ege {2-5) as the “sum rule® for angular freguencies of
coupled oscillators.

Since €Gqyy €0, é°3 are small quantities, we can

linearize Eq. (2-4) ty expanding the variables in terms of

'
x =x +éx- +ezx + LB N N BN N N i= l 2 3
i io il i2 ' v S e
o= 2 3 s 080
tp = H(1 + 2,67 4 be’ + y,
£t = tle+ d€2 + d,ed + °°*F) (2-6)
5 - 1 2 [}



2-5

where b's and d's are constants of expansion,

The dependent variable t i- now expressed in two
scales tf and ts. We choose that ts is less than tf by
order of €, thereby describing the response of the system
in two time domains: a fast time scale te to indicate the
immediate response, and a slow time scale ts to show aver-
aging effects due to the nonlinear terms in the equation.,
This mathematical approach has been adopted from the two-

timing perturbation method. 0

The differential operators then are changed to:

a ., _a % 3 9% R TR
dt 3t, “dt 3ty dt at; It ,
dz ) a2 (dtf)2 N 232 (.tf dts) . a2 (dts)z
dtz Qtfz dt ateaty dt dt atsz dt
2 2
Q- 3
= + 26 . (2-7)

and the Xi's are nov a function of both ty and Ty

By substituting Eqs. (2-6) and (2-7) into Eq. (2-4),
we can collect together .erms of the same order as €, The
results are:

o
For & order:

2
9K

e

X10 = O
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2
%X
20 . .2 _
5oty X0 = O
at,
(2-8)
ane 3%x
———g‘—) +w§ X30 = O
%y
1
For & order:
2
3%x 2
11 . .2 _ 3% .
5 T X5y = 91%0%30 - 2 33T %10,
atf £fY"s
5 YWy Koy = 0X0%30 - 2 353t %20, (2-9)
Qtf s
and — 31 + @, X = g%, X - 2 e ¥
atfz 3 X37 = 93%30%59 5t 3%, 30,

and so forth for higher order terms of <.

The solutions of the differential equations (2-8) take the

forms
ch = Rl cos (aﬁtf + ﬁl),
X0 = Ry cos (wyts + ﬁz). (2-10)
and Xqon = R, COS

fos 4 . AN
4\30 = 1\3 [of vk \ugbf - PBI'
where the R's and £'s are functions of ts and have to be
determined. In seeking solutions for Eq. {2-9), we sub-

stitute the assumed solutions from Ea. (2-10) intc the



right hand side of Eq., (2-9) as source terms. After ex-
panding terms XlOXBO' X10x20' and x20x30, we find that they
contain the same frequency compcnents as the natural fre-
quency of the first order equations, This means that the
Xil‘s would grow linearily with time, which would violate the
assumption that the Xil terms remain smaller than Xio terms.
Yhese terms, called secular terms, can be avoided if we set
the excitation components equal to zero. The process of
suppressing the secular terms gives the conditions for
determining the R's and g's. We then obtain the following

relations from Eg. (2-9):

3Ry 9y .
26)13-{-8--‘2—'R2R3 sinr = 0,
2w, iEg - Eg R.R. sinr =0

2 ats 2 s B !

3R (4]

3.3 : -
2«6 ats 4 5 Rle sin r = 0,

(2-11)
o a#l oy
2 1R1§§; + 5= R2R3 cos r = 0,
aﬁz gy
ZQERZE%— + 5= R1R3 cos r = 0,
28 a
—3 s 2 -

where r = ABgﬂl géz.
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Since the R's and g's are now functions of ts only, the
partial differential operators can be changed to ordinary
differential operators. By further combining the last three
equations in Eq. (2-11), we have in this first order ap-
proximation four coupled equations to describe the response

of the system,

de 9y
_— - E,R., ginr = 0,
dts EBl 273
dR o]

2 2
-_— - R.R, sinr = 0,
dts sz 13

(2-12)

dR c
3 . -
at I&%BR:LRz sin r = Q,

] I,R.R
ln.d} 1 2 u:‘)gj lniéj cos r =0,
2°2

Eq. (2-10) indicates that the response is mainly dominated by
the oscillation of the systemat its linear resonance frequencies,
and Eq, (2-12) shows how the amplitudes and phases of such
oscillations are modified slowly in time due to system's
nonlinearities., If the initial conditions are known, the
transient behavior at any instant can be determined by
integrating Eq. (2-12).

Prom the first three equations cf Bq. (2-12), we will
obtain

@R)% (@RZ  (wR,)?

e (2-13)




where E is a constant,

and (")JRi) (")232)
A1 .22 . (2-14)
1 2

where C is also a constant,
A relation between phase and amplitudes can be also be de-
duced from Eq. (2~12}:

R1R2R3 cos r = K, (2-15)

where K is a constant. With these constraints in Eqs. (2-13),
(2-14), and (2-15), the response of the system can he inte-
grated out in terms of slow time ts'

There are some physical interpretations associated with
the constraints of Eqs. (2-13), (2-14), and (2-15). Since
the square of amplitude is a quantity for the energy, the
constant E in Eq. (2-13) is related to the total energy ini-
tially stored in the system. Eg. (2-13) is just an expres-
sion for energy conservation and always exists for a con-
servative system,

Equation (2-14) indicates that a certainrelation has to
follow for energy exchange between two modes. It depends
on the particular nonlinearity we have assumed for the system.
If the R's are inversely proportional to the angular frequen-
cies, the w'sand ¢'s are equal,and the initial condition makes

the constant C equal to zero, Eq. (2-i4) will have the form:

-~ = =~ ., for Ai=uﬁRi i=1,2,3. (2-16)
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Manley and Roweéhaye derived this relation from the property
of a nonlinear capacitor. The constraint expressed by Eq.
(2-14) is, of course, implied to more general cases.
According to the analysis by Kronauer and Musazg. the
amplitude and phase relation for a weakly-nonlinear, conser-
vative system is determined by the average value of the
incremental Lagrange of the system. As the incremental

Lagrange in the system discussed here is:

g = €aX XX, (2-17)

the average value of £ can be found by using the results of

Eqe. (2-10): T
7= _%_‘5 e0X, X Xy dtg, (2-18)
o
= €OR R R4,

Hence the constraint of Eq. (2-15} is due to the incremental
Lagrange of the system with K ==g%n a general result of
first order approximation.

The transient behavior of such coupled oscillaticn can
be graphically illustrated by a topological approach as in
Fig. 2-1, The diagram uses ‘three axes to express the mag-
nitude ochlRl,cosz, anchBRB. Any point in the space
represents a instantaneous state of the system®s respon
A surface of constant E is an ellipsoid on this spaces 0

02. and 03 are singular points and they are stationary

states. However, O3 is an unstable stationary state. Any
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disturbance around 03 will cause a response with a motion
locus circling around the ellipsoid. This indicates that

the energy associated with the high frequency mode is unstable
and can easily be diverted to the energy in lower frequency
modes. Systems exhibiting such features can be excited

into subharmonic oscillation. We shall further explore such

phenomenon later.

2, Effect of Detuning con Coupled Oscillation

We now consider the case when the frequencies of the
three oscillators are not exactly matched. The deviation
from Eq. (2-5) can be accounted for by solving a detuning
problem. We can expand the unmatched relation in terms of
the matched condition as follows:

as 0y +o.)2;‘u)3,

we define u)i =cdl +€8q,

! =
W3 Twsy Tedy
and let ] +wj =w3,

where 3's are detuning parameters from their corresponding

modes.

The original coupling equations can be rewritten as:



AW S—

< p———-

‘ 2-113

2,
? TNy Bk, meonx, + 266,00
1 - \ 1 ]
} dtz 71 273 171
d?x, )
— Ly = y M -
dt2 + W 2A2 edAlXB + 2e62p2x2 ) (2-20)
2
a X
Pe ._._..2 4 |2‘ =¢eJ Y + 1y
and dtz w 313 Xllz ZebjDBXB .

where we let all O's be the same to simplify the analvsis.
Using again the two-iiming rerturbation metnod, we obtain

] the first order solution:

(4

X0 = Ry =0 (uﬁtf + ﬁl) '
X20 = R2 cos (wétf + 52) , (2-21)

and x30 = R, cos (u%tf > ﬁj) .

A

with the auxiliary relations:

dﬁl _ ORZR? ) -y
dR oR, R
2 13
- sy sinr =0,
dts &u%
(2-22)
dR, ¢®.R
2 172
3T + o sinr = ¢,
3 b}
and R,R K,R R, R
dr 172 23 1
+ { =78 - 1 - 5—72 ) g cosr+ 8 =20,
dts w)'%RB &wiRl w2R2
where & = by + 6, + 60

Comparing witin £as, (2-10) and (2-12), we find that the
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total detuning factor % appears in the phase equation only.
We shall analyze its effect tnrough the motion locus in the

phase diagrams.

Changzing R's into new variables, we get:

— t - -
Ay =WiRy, A, =WiRy, Ay = WiR,. (2-23)
The corresponding constraints become:
2 2 2 _ o 2
A + 45 + A3 = E = e, (2-24)
A2 AZ
Lo 2.c=24% (2-25)
W) W
A ALA, COS r + 28wiw0IAS = K, {2~26)

17273 17273
where we have cefined new constants e and K.
Since these three constraints are directly derived from
Eg. {2-2Z), the original four variables Apr By AB' and r
for describinz the state of the system in four-~dimensien
space can be reduced to quadrature and the time variable car
be found by intesrating out such a relation,

The ellipsold diagram of Fig. 2-1 is still appropriate
to represent the response of the system, but, because of
detuning, it is no longer possible to cdeduce the phase, r,

unam>iguously from that diagranm. hat is, detuning maXes

possible monotonic pnase change { while with 6 = 0O phase
oscillates periodically ). To observe the phase, we make

a transformatior. based on the first two constraints, Egs,
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(2-24) and (2-25), irtroducing a new variable X defined by:

A, = e (- sin2%+ K )%v

1 w3
w5 i -
A, = e -% sin’x - K )%, (2-27)
w3
and A3 = e COS X

The variable X is a measure of the ettent of energy exchange

from A3 to the Al and AZ set. The third constraint now

becomes:
w' [ . wt.wf
e3( —B sinl’x, - -—l—-;—%Ksinzx,- i{z ) cosx cos T
w'z UJ
3
3
2, 319t 2, _
+2e 6«&@% cos"Xx =K , (2~-28)

The properties described by Egq. (2~-28) can best be
understood by considering four cases. First, we observe
that the parameter § represents a fixed energy imbalance
tetween osciliators 1 and 2 and is unaltered by an exchange
of energy betwzen this pair and oscillator 3. The parameter
6 of course represents detuning. Fig., 2-2 shows the solution
trajectories ( plots of Eq. (2-28) for various fixed values
of & )for the four interesting cases,

Case I. (Fig. 2-22), With nc detuning, the trajecto-

ries remain in a cell of width w. Since the
imbalance is zero, the full vang: cof Xis

accessible.



Case 1I,
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(Fig. 2=2b). With detuning, game trajectories
can exhibit steady phase change. Since the
imbalance is zerc, the full range of % is
still accessible, although there is no single
trajectory which makes the swing from =0 %o
Z=w/2. Thus we can say that the presence of
detuning acts to reduce the extent of enersgy
exchange between oscillators 3 and the 1, 2

set.

Case III.(Fig. 2-2c). Wvith imbalance, the accessible

Case 1V,

range of X is reduced. The absence of de-
tuning permits trajectories with maximum ex-
change (subject to the imbalance reduction).
As in Case I, the trajectories are confined
to a cell of width w.

(Fig, 2-2d). With both detuning and imbal-
ance, two effects are seen to reduce the
extent of energy exchange thrcughout the

field. Steady phase change is also common.
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3. Forced Excitation for Subharmonic Oscillation

For systems containing damping elements, a transient
disturbance will not excite and sustain subnarmonic oscil-
lation, because the signal's limited energy will be quickly
dissipated., In general, in order to sustain a steady re-
sponse, a constant energy source should be provided to com-
pensate for the energy loss in the system.

From our study of the transient behavior of a conser-
vative system, we have learnea that the energy in the high
Trequency mode can be easily converied into the energy in
lower frequency modes by some disturbance., We shall now
investigate the criteria for sustaining subhlarmonic oscile
latisn when a constant energy source is applied to the system,

We use the same model for three coupled oscillators but
include a damping element in each oscillator. The original
three oscillation frequencies,(ul. Wyr w3 are not exactly
matched, that isw, +w, %LUB. The external source with
angular frequency«uo has excited two suvbharmonics of angular
frequenciescdi and<0é with the following relation:

W, =W}

LOi =uhy + ebl

’

Wi =w, + &b, ' (2-29)

where §'s are detuning factors for each oscillation mode and
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¢ is a small constant of magnitude less than one.
The mathematical formulation of this prcblem is ex-

pressed in Eq. (2-30):

——-3— + erzj—-l +w0

= + 2ew s
. Xy = eagX X, + 2€

¢ 3%3

d Xl dx1 2
—— & .——+le —-Ecxx .’.2( 6 ’
e ’71&C 1 %1 1%2%5 W %y
2
d X ax
and 2 2 2 _
—5- + eqz——- +tu5 x2 = ealex + 2&u%§2X2 ,
at t
(2-30)

where we have considered that the dissipation fzztors, q’s,
coupling coefficients, o's, and the forcing term due to the
external source, F, are small order terms.

We again use the two-timing perturbation method, expanding
the dependent variable t in a fast scale, tf, and a slow one,

ts. After summing up functions of same order, we have;

for ep orders

2
o 2
- X + WAL =0
2 730 0730 '
atf
32 .
f
2
d ¢2 _ i
and —5 X20 +uJ2 X20 0 s
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for él orders:
AN 2%, = 2——§E——x 4 0.X. Xon 4+ 2008 X
5431 o 431 T ~°3%.3t.~30 T 93%10%20 0°3%30
atf £f s
o .
-qBathBO - F 31n(not s
§3~x + W%y, . = 2—-93—-x + QX Ko & 2008 X
7411 Y91 A1 T et a3t M0 T 91%20%30 1°1%10
atf f%"s
3
’71a€fxlo ,
2 2
and ~S——X.. +W2%%.,. = 2= X, + . Xy Ko + 208X
S22 Tzt atat_ 20 T 92%10"30 2°2%20
f X
-
‘Véatfxzo .
(2-32)
The solutions of Eq. {(2-31) are:
x30 = R3 cos «ootf + 53) )
X;o = Ry cos «uitf % ﬁl) . (2-33)
and X0 = Ry cos wiit. + ﬂz) .

After eliminating the secular terms in Eq. (2-32), we ‘ind
tne supplemental equations for solutions in Eq. (2-33).

3R d,
5 —l L2
Z*bSEi + YB“bRB + 5 Rle cin r

F cos 53 =0

aRy ¢

1 : =
aﬂi§€; + 7l“ﬁRl - §-R2R3 sinr=20,
naRz . 62 3
2“53?; + 72“532 - -Z--RlR3 sinr=20,
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a3 ¢
_—2 _2 3 =
a”ORBats + 5°R R, cos T + 20b63R3 + F gin 53 0,
2O'R Efl + fiR R, cos r + 2W6.R, = 0 (2-34)
1719t T 277273 171%1 ’
and 2R ¥ + 220 B cos v 4+ 2OLE.R. = O
2'23t, T 27173 29282 = Ve

For transient behavior, we let F = 0, The total energy of

the system to zeroth order is:

202 (@R )2 (WR.)Z
_@iR)TgR))T (gRy)

E
01 o

£ (2‘35)
2 95

By the relations in Eq, (2-34), we have:

SR we e

dE /5 2
at, = " g, (WhRy)

Ra, 2 N 2
- E;(Q3282) - E%(“bRB) .

(2-36)
It is convenient to let §&=7°=ﬂ5=7, then Eq. (2-36) becomest

%% = - JE or E = Eoe'qts . (2-37)
3

This indicates that the total energy will eventually be dis-

sipated. The ellipsoid of Fig. 2-1 will shrink to zero in

the limit of long time.
The forced response can alsc be expressed in terms of
the system's energy by keeping the F term in Eq. (2-36). The

result is:

E%— 2 e qE 4 _gé-z cos ﬁB (2~38)



2-22

There is a competition between the energy dissipated in the
system and the energy supplied from external source, anda sus-
tained driven sscillation will correspond to a balance of
this effect,

Another interesting feature of this nonconservative

system is that the previous constraint,

2 2
wR? IR
c = l_ g 2., {2-39)
1 2

is no longer a constant. By the relations in Eq. (2-34),
we can determine its variation as:

ro2 2
¢ . ¥Ry, TRz
aty N o,

] (2"!&0)

Forql=7é=73=q. it can be further simplified to
%%s = -n¢ or C= coe.’zts . (2-41)
For the steady state (ts-¢-w), C will become zero in this
case of balanced dissipation. Hence Eq. (2-41) gives the
exact condition for the Manley-Rowe relationé.
The response of each frequency component after the

system reaches a steady state can be worked out by letting

in Ba.
y Bg. (Z~-34

-o Vearw

condition for detuning factor 8'a is obtained as:

6
e s (2-42)

2 12

or we can define a new constant A as the ratio of & toiz
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in the following ways
A---gil-=6—2 (2-43)
7 N2
Eq. (2-43) showe that the detuning is proportional te the
dissipation factor and it shifts in same direction according
to whether the driving signal frequency is larger or less

than the sum of two original subharmonic frequencies,

The amplitude of each frequency component is given by:

x[ 7 79,0, -~ - (r;@mg)}’? - (n %63)] .
lowien i, 7, (14407
2
x[%%wiw;zrl{:?lmt@) i (’7?%%)]}% ~ (T3 448 3)} .
and R% = h_f%_?%_;{_l_@_( 14 4AZ) .

(2-ipls)
Since all R's are physical gquantities, they have to be
real values, The minimum intensity of F for Rl and R2 to
appear, or, in other words, the threshold for generating the

gubharmonic compcnents, is determined by:

2
2 BT,
th = Tora,

 + 48211 + 4a®) L (2-45)

———
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Below this threshold, the only significiant response is R3.

which is described by 3

R, = E . (2-1:6)
3wy + we?)?

We see that R3 exhibits a very interesting behavior: it in-
creases linearly with the external driving force and then
stays at a constant value after the threshold for subharmonie
generation is reached. Fig. 2-3a is a typical graphical dis-
play of the change in Rl' Rz, and R3. with respect to the
increase in the intensity of F. Fig. 2-3b shows the experi-
mental data collected by Y. Tsuzuki and M, Kakuish131 in
their observation of the excitation of contour modes of vi-
bravion in AT-cut quartz. The responses of the subharmonics
have been squared in that diagram, so they appear t3 be

linear past the threshold., They fit our mathematical model

and analysis very well.
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Chapter I11I
SUBHARMONIC GENERATICN IN DISTRIBUTED SYSTEME

The effect of intense acoustic waves has been studied
by variocus authors, for example: Ghiron32. Hunt33. and
AndreevBu. They indicated that the nonlinear properties of
the madium as well as convection of the disturpance usually
cause wave distortion during propagation and the generation
of superharmonics of the original signal. Experimental
observation335 have confirmed these analytic predictions.,
However such a theoretical apprcach has failed to supply
an explanation for the phenomenon of subharmonics. We ghall
provide a detailed study of this aspect of the problem.

In order to simplify +the wmathematical operations, the
entire analysis throughout this chapter is based on a one-
dimensional model, Eulerian coordinates are employed in all
derivations to facilitate comparicon of the theoretical re-
sults with the laboratory data from the experimental work
that is described in the next chapter.

We review the formulation of the acoustic wave equation
from the basic conservation laws in the beginning of this
chapter. Ag the primary interest of this study is to look
for the essential contribution to the subharmonic generation
for an intense acoustic wave, the order of magnitude of all

pertinent parameters in the system considered is examined.
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The two-variable method is adopted to fir* an approximate

solution for the nonlinear wave equation. We obtain the

energy exchange relations among three signals when tlreir

frequencies follow a sum rule.

This analysis is then extended to a multiresonator,

and the threshold of exciting a subharmecnic pair is deduced.

We also discuss the effects of detuning and energy dissi-

pation on subharmonic generation,

1. PFormulation of Finite Amplitude Acoustic Wave Motion

The basic laws descriving acoustic wave motion can be

derived from the hydrodynamic eguationse.
Eulerian form, they are*:
Conservation of mass

aer 3fu
at? ax'

=0

Conservation of momentum

o’ . .30 . ap!

In one-dimensional

(3-1)

3t T Yzx? 5%

2,
_Mlau — O' (3_‘2)

ax’z

where p' and u' are the density and the particle velocity

respectively and ' is the coefficient of viscosity which

congigtg of the

shear viscosity y'and ihe

coefficient of dilatation viscesity XN, as defined by the

¥ The primes are used to denote dimensional quantities. Ve
will shortly reduce them to nondimensional variables and

the primes will be dropped.



relation:
Mmoo 2V N, (3-3)

The losses due to viscosity are small, and so are the
losses due to heat conduction. Under these conditions, the
process can be assumed to be adiabatic as far as wave speed
is concerned since the losses affect the speed only quad-
ratically. The state variable p', the pressure, can be ex-
pressed by expanding around the equilibrium state as follows:

p' = P*(Q),

8Q''q ’

v ] 2 s
Po + (22 (Ae')+%_-(-—§—€%)q(ce')2 toseaacs
- L}

p6+c'g(‘\ee) +—%,-_r"(ae')2 devvecrace, (3-4)
¢y is so called the small signal sound speed, [*°* is a non-
linear parameter and ag'=¢'-€) is thedeviation of the den-
sity from the equilibrium state. The subscript q denotes
that the expansion is assumed adiabatic,

Some author536'37. in discussing the nonlinear be-

havior of 2 fluid, write Eq. (3-4) in the form

"' -5 Yech
p' =P(’3+A"“:‘;"O—'+‘§'(—§-:—'-g-')2 Feovsosecese (3,5)
- &0 =
These coefficients are related by
] L]
B Cofl
A-"—'e(’)c"g, B=@'gr"; and Z:.—-Q-(;-:—z—...ooooaoao .

(3-6)



Ll

In the case of an ideal gas, these coefficients can be ro.

lated to the ratio of specific heat ¥ ¢
. B
A =YPFy, B=v({y-1)pl, and 7 =v-1, (3-7)

By using the approximate relation of Eq. (3-4), Eqs.,
(3-1) and (3-2) then can be written in terms of @' and u'as

follows:

2g" . 3e'u!

at! sxt - O
2 2
achu' ag'u' 2 _3(ae 1 alae? Ju’
R R R T TMUNET
(3-8)

In order to make an approximation with regard te the
order of magnitude of various terms in Eq. (3-8), we put
Ec, (3-8) in nondimensional form by adopting the following
scaling parameters:

Independent variables:

Length esececees X cm
Time oeeteeovess T sec
Dependent variables: (3-9)

Partical velocity sesesees U cn/sec

DeT\Sit:{ sS0060c9 9000000680030 eo gm/cm3

Then Eq. (3~8) has the form:
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3
2
UT aeu , UPTZ seu , o213 a(ae) , 1 T TP aae)?
X ot xz 3% x2 3x 2 XZ X
2 2
-2 2u L, (3-10)
X eo X

We denote the nondimensional constants by:

M= LJ% s
2
FaTe
=22, (3-11)
X
2m2
z c'oT
c” = 5 .
X
)\L'
M= =5y e
QGXU
Eq. (3-10) then becomes:
1S 3u
3t TH S =0
2 2
2€u 2 3€u . 2 3A€) | 3(ae)” 2. 3%u  _
M b-fhnu Sx Tt ¢ 3% ZF 5% - MM E—=- 0.
3K
(3-12)

For the case of a propagating harmonic wave where
toth losses and nonl.near effects are small, the natural

scaling parameters to use are:

1” (3-13)
X =~
kr

wherecoé and k; are the dimensional angular frequency and



L}
wave number of the wave,respectively, and‘??- = 06’ Then
‘r

UK!
M = ——% = 97 is seen to be the particle velocity Wach
o S
[
number and ¢ = cé(aﬁ;) = 1, The problem of interest here is
T

when M is small, but not negligibly so. Therefore we intro-

duce the symbol

m

1}

"
0 Ic

(3-14)

Qe

and Eq. (3-12) becomes

3¢ . . 3Cu _
st T€5x " O

it

2 2
1 2 a(a 1.2 3L 2
5%;% + €“u %% + _7é§§l +3ir __%SEl_ - 22 4 - o,
=34

€=M=

0l o
o

«1, (3-15)

2, Wave Equations in Terms of Slow and Fast Variables

To get the explicit expression for € and u as a func-
tion of x and t by solving Eq. (3-1i5) is a rather difficult
mathematical task, An approximate method can be developed
for the case of a small Mach number. PFirst, consider the
linearized invi=rcid form of Ea. (3-15), (Remember. density

is nondimensionalized so e= 1 at equilibrium).



20 22U
2t + € 3X 0,
(3-16)
. 3u 2€ _
€ at'k X 0,

which further reduces to the form of a wave equation.

pa 2

5 - > = 0, (3"’17)

The corresponding solution of Eq. (3-17) has the form
u = f(x-t) 4 g(x+t), (3-18)
where f represents tne wave travelling to the right, a for-
ward wave, and g represents the wave travelling to the left,
a backward wave,
For a simple sinusoidal excitation with an angular
frequency w,

u = A sin (wt-kx+4) + Bsin (wt+kx+®), (3-19)
where A, B, 4, and & are constants which depend on the
initial condition of excitation.,

Eq. (3-19) Cescribes a wave propagating with a con-
stant amplitude., For finite amplitude wave motion, if e
is much less than one, the pnysical picture of Eq. (3-15)
should not ve very different from Eq. (3-16). The convec-
tion, nonlinear parameter and viscosity may just modify
slightly the propagating wave form. Since their effect is
small, it may be considered that the original wave form has
a slow variation in the amplitude and phase, with respect to

time and space, as 1t propagates through the medium. With
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this physical argument, it is possible to divide the inde-
pendent variables into fast and slow components, That is,
we describe the phenomenon in two different domains, fast

and slow, by defining:

o= 1,

ts = &€t,

xp = X, (3-20)
Xg = €Xe

The dependent variables, € and u are now consider tc¢ be func-

tions of tf. ts' Xps and Xge

According to our method of nondimensionalization, ©°
Was normalized by €, and therefore its variztion fromec
will be small (order € or nigher). On the other hand, u
was nondimensionalized by Ur which is a reference velocity
small compared to cé. Therefore the leading variation in u
is of order Go. Then we write the expansions of the depen-

dent varizbles as:

n
i

=1+ Eel + E—zez 4+oe0c0ens

[t
[

ul + Guz 4o02c0000 .

here is no term Uge Th
equilibrium, the fluid is at rest.
The differential operators in term of the new varia-

bles are:
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i
O

9 _ 9 )

5t = ot t €5t
.9 4 -

= + ’ (3-22)

oX axf axs

2 2 2 2

g =2 e e s 22

=) X £o%g %

Substituting Eqs. (3-21) and (3-22} into Ea, (3-15)
we have:

( )(1 +‘E‘@1 + 5 824' ooooo) Pe(—-—--{-e-——.—-)

atf f ax

2 Pod
'(1"’6914' € ez‘f' ocoooc)(u1+€-u2+ c.oqo).—

=
3 seces + o000
é(atf +e at 3 (1 + €€ + & e, + J(uy + eu, )

, =) = 2
+ E'Ziui + €u, + .....)(ﬁz +e§;)(1 + €@, + €, Feoos)

-(v.1 + eu

_Q__ = 2 voee)
2+ .oooo)+ (axf+€axs)(eel+ < ez+

+""‘("‘"‘+@ )(E:Q &'Ze + onooo)z
Xp 1 2
S
2 2
2 /9 8 29
- Eﬂ(a"'x—z + Zeaxfax + € )(u + Euz + oc.oo)
f
(3-23)
In Eq. (3-25), the order 6-1 yields
) =4
- C, * u, = 0,
Stf 1 Xy
(3~24)
) =]
u, + ~ @ Q
&'tf 1 axf 1 '
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t

fary

ke

which can be reduced to a first order wave equation by
eliminating 61.
32 a2

U, -
SX% 1 a3t

2 Lll = 0. (3"‘25)
T

For order ez. we have the following equations:

= [ Ie) o o
=0, + 5@, + — u, + — C,u, + — u, = 0,
atf 2 ats 1 IXsp 2 axf 171 X 2
D = o = o
= U, + = @, uy + =5 Uy + Uyz— u, + = €
atf 2 atf 171 ats 1 1axf 1 X 2
> a3 o2 o
+=—— €, + 52— C7 - M5 u, = 0,
axs 1 23xf 1 axg 1
(3-26)
The corresponding second order wave equation is:
2 ~ 2 2 2
o & Q Q
Uy = —5 U, = =3 .U, = —5 R.,u +-——(u u )
axz 2 at2 2 at2 171 axz 171 atf laxf 1
f £ f f
3
+ i e2 .4 = u, + i u
2 amfaxf 172 ax?atf 1 amfats
i u i © Chy e
SxXpBXg 1 Itex, T 1 0 xBt, "1

(3-27)
The first order solution can be found from Eq. (3-25)., It is
then used to generate source terms in the right hand side of
Eq. (3-27). The higher order solutions can be found in a

similar way. However, thlis only gives the general form
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of the solution, For a particular problem, the initial and
the boundary conditions are required to select the meaningful
solution. In the following sections, pa. iicular cases of

subharmonic generation will be studied in some detzil.

3¢ Interaction of Waves
For certain initial disturbances, the response, in
terms of the particle velocity of the medium, according to

Eq. (3-25), has *the general form:

[
H

-]
n Z, [An cos§ , + By cos(‘,,n} s (3-28)

where A

it

An(xs.ts).

o
it

B (xg1tg),
_ (3-29)
§n =Wty - kX + ﬁh(xs.ts),

S

Suppose the disturbance at x = 0 is mainly dominated

i

n (dntf + knxf + Qn(xs'ts)"

by three distinct signals with angular frequenciescui.cDZ,
and W, related by:
J

Then Eq. (3-28) can be rewritten as
3
. = B -
u, = &, [An cos&, + B, cosén] ,  (3-31)

with a corresponding density:
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en = 51'—'1 l-ﬁ.n coOs % n - Bl’l Coscn] ) (3"32)

-

For nondispersive media, the wave number k's will follow the

seme sum rule as that of angular frequency from Eq. (3-30):

ky + Ky = Ky o (3-33)
AL B, dn’ and @ are only given for the initial condition
Xg = 0, ts = 0, To determine how they change with respect

to time and space (in slow scale) depends on further informa~
tion from the second order wave equation in Eg. (3-27).

When we substitute Egs. (3-31) and (3-32) into the
second order wave equation, Eq. (3-27), to solve for the
second order term of u, we find that tne source terms on the
right hand side of that equation contain the same frequencies
as the natural fTrequencies on the left hand side., This means
that the solution will have terms increasing linearly with
time and space. Such solutions willultimately violate the
original regquirement of €u,Kuy in the perturbation expansion,
Those terms which cause such limitations on perturbation ex-
vansion are called the secular terms., Since the amplitude
and vnase are assumed to be functions of the slow variables
in the case discussed here, the problem can be avoided by
choosing the slowly varying amplitude and phases in order to
mzke the secular terms vanish, This cheice leads to the re-
lation showing how amnlitude and phase change with time and

space {in slow scale) after the initial disturbance.



After some tedious algebraic operations, we

the following results:

204 20, he?a, - G A, sin ¢ =
5t T ax_ T APLR - TWyRRy sin =
3A SA
3 3 2 : =
ats + 5% + }{m3A3 + cw3A1A2 sin r
341 34y -
A ats + A1 3—-——xs + °°"1A2A3 cos v = 0,
g, 3,
34 38
3 23 =
A3 ats + A3 T + °‘“§A1A2 cos r o,
5%; - 5;; +‘}u9181 - 60313233 gin s =
9B, 3B 2 -
5%; - 3;; + ;unzsz - acu28183 sin s =
3B 3B
3 . 2 2 3 =
5T, © 3%, TAW3By ¥ TRy, sin s
3% 3%,
By 5T - By 5;; + caaBzBB cos s = 0,
&,
32 §E§ - 52 a-‘ + gL, B, B, ceg s = 0,
tg X 27173
¢
3%
B, —2 - B, 2 3 =
3 3ts 3 5% ¢ cw381B2 cos s = 0,

0,

0,

0,

Q,

0,

3-13

achieve

(3-34)
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where

G:%(l—rr’),

1

r

By« By - By s (3-35)

S 3, - &

3 1"§2.
In Eq, (3-34), the first six equations are indevendent of
the last six equations., This indicates that there is no

coupling between A , #n'

and B , ¢ . Since, from Eq. (3-29),
An and dn are amplitudes and phases respectively of the for-
ward travelling waves and Bn and éh are amplitudes and
phases respectively of the vackward travelling waves, the
results expressed in Eq. (3-34) show that these two types of
wave propagate independently without interaction,

Yie now iuiiher examine the charact¢r of the forward
wave. to understand the mechanics of wave interaction (the
conclusion will also apply to the case of backward wave).,

The first six equations in (3-34) have a single set
of characteristics in slow space and time with slope unity.

Therefoqg if we introduce the variable

T=1_ - x_ . (3-36)

these equations may be written as:

-~ 2 3w -
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dA p ‘
T ¢t AOoA, - ngAlA3 sin r = 0,
3—3— + }&wB 3 + ow3A1A2 sin r = 0,
gy
A1 v + o’oulAzA3 cos r = G,
dﬁo (3"’3?)
A2 EE; + dc02A1A3 cos r = 0,
a4
-2 4 =
A3 Fta auJBAlAZ cos r = 0,

Although amplitudes and phases change slowly, it is
interesting to see that the slow behavior propagates at the
same speed as the waves themselves. Eq. (3-37) can be
further reduced to

dA

! 2 : -
= +,uw1A1 - 0w1A2A3 sinr = 0,
dAz 2 .
= +/uw2A2 - aw2A1A3 sinr = 0,
ff_j_ (3-38)
g5 F M 3A3 + OUJ3A1A2 sin r = 0,

A.A W, ALA w,A, A

dr , [3 %2 "1 23 21 3lgaosr= 0.

ol

For a nonviscous medium, these coupling equations can be even

simplified to:

1 : =
T - 0'601A2A3 sinrc =0,
dA2




3-14

where

(3-35)

"¢
I
k}k
¢
By
[
]
Na

in Bg., (3-3%), the first six equations are independent of
the last glx equations.s This indicates that there is no

coupling between As ﬁg, and B, én. Since, from Eq. (3-29),

An and Ah are ampiitudes and phases respectively of the for-
ward travelling waves and En and éh are amplitudes and
phases respectively of the backward travelling waves, the
results expressed in Eq. (3-34) show that these two tyves of
wave propagate independently without interaction.

He now further examine the character of the forward
wave to understand the mechanics of wave interaction (the
conclusicn will also apply to the case of backward wavza).

The first six equations in (3-34) have a single set
of characteristics in slow space znd time with slope unity.
Therefore if we introduce the variable

T = tS - xS ’ (3"36)

these equations may be written as:
dA4 2
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dA, .
aT +}kw2A2 - qw2A1A3 sin r = Q,
dA -

3 2 .
iz + }owAB + 6033511\2 sin r

dﬁl

A, e + awlz’sz.j cos T

0,

|
(=}
-

(3-37)

4
L

% owzfxl:‘sz cos r

[« THN o7} I = 1
A

By

Although amplitudes and phases change slowly; it is

7 + a"’JBAIAZ cos T Qe

n,

interesting to see that the slow behavior propagates at the
same speed as the waves themselves., Eg. (3-37) =an be

further reduced to

dA1 2 -

I tLAwiA, - cwlAzAB sinr =0,

dAZ 2 -

T +}xw2A2 - <'5<1s)215111>;3 sinr = 0,

dA 2 $3-38)
_Jdc + }ijAB + dijlAz sinr = 0,

dr EjAlAZ Whxh;  Whhihy _

ar . - - @cosr= 0.

dc L A3 A]_ Az

For a nonviscous medium, these coupling equations can be even

simplified to:

dA1 ]
T - Gw1A2A3 sin r = Q,
iz - aw2A1A3 sin r = 0,
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da

..._l » 3 —-— )
iT 4 Gﬁ?aléz sin r = 0, {3-39)

rl 2 2
dt % A

There are then three constraints, as we have discussed in

Chapter II for three oscillators:

2 2 2 _ .
Al + AZ 4 AB = By
w (
— -~ == 3-40)
Wy w,
A = Ko

1A2A3 cos r
The mathematical sgimil arility between wave interaction and
couvnled oscillators suggests the possibility of using such a
mechanism for subharmonic generation, If we could find a
way to supply power tfo thew3 signal to keep amplitude AB
constant, the condition to excitetul and signal would be
governed by 1

dA] 2

dtT
where v is properly adjusted to beT™ /2,
Then the threshold of a stable subharmonic pair with

angular frequenciescol andcub is determined by

Pogw, (3-42)

A, =
3 ]
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or in original nendimensionalized notatiens i

prﬂofné
3 = elcl [ ] t1 P
0o [hf'@gj . (3-43)
o

A

The correspon . ng pressure will be

21/
by = s (3-48)
{1 * 02]:
cé H
Por wzter, Elg% = 6,5 36,37 and )= 0.01 poiss, the minimum
c.
0

pressure threshold to excite the subharmonic pair with a

1 MHZ signal, accerding to Eq. (3-%4), should be 0,0017 bar.
However, there are two factors to prevent subharmonics from
occurring in real physical situationss the formation of shock
wave and energy spreading into free space., The former is
also caused by convection and the nonlinearity of the medium,
as well as the accumulated effect of superharmonic generation.,
The latter is due to the fact that since the size of the
energy source is finite and in real situations is, of course,
three dimensional, the wave will spread out in part as a
spherical wave. Under those conditions, energy is dispersed
faster than it is converted to subharmor:is, Thus, the phe-~
nomenor: of subharmonic generation will not be observed. To
avoid such limitations, we will analyze in the next section

the situatior: for an intense wave in a closed boundary which



confines the energy spreading. Because only certain modes
will be allowable in a closed boundarv, ws can 2130 eliminate

supetrhamonit generation.

L, MHode-fouvling in a Simple Resonator

In a closed homogenecus region with energy reflection,
there exist resonance modes wvich arc easily excited, We will
vow analyze the mode-coupling induced by the nonlinearity of
the mediux in such a closed region.

If the dimension of the bounded region is small (say,
about 100 wavelength#&) and the dissipation and the ncrlinearity
of the wedium do not make large changes in wave energy in a
single pass. Then we can consider any disfurbance, however
distributed, as causing the build-up of a standing wave in
this closed bounded region. The amplitude and the phase of
such standing waves will change gradually due to the effect
of the noniinearity of the medium*, To examine their be-
havior, we rewrite the two~-variable wave equation derived in

Section 1 by considering slow time as the only slow variable.

- = = @
2 2 !
IXg atf
2 2 2 2
a u 3 u 3 3 3
2 2 )
2 2 27171 2*171 ot 1 )
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2 2 - 2
T a2 2 3 a
+ zétfaxfel + stat_ U axfa'tsél
3
- 25\ —-u, =0, (3"1”6)
axzat, -

General solutions of Eg. (3-%5) are :

-

gl | .
u, = r:ill Al{t)) cos [wntf - k X, + pn(ts)]

+ BA ts) cos Funtf + knxf + én(tsg X '

(3-47)

where by our previous nondimersicnalization,

w, =k, (3-48)
if uy vanisphes a2t boundary Xp = Oy then

[ = . Rn°

At(t) = - BA(t.) , (3-0)

}{n(ts) = én(ts) .
Eq., (3-47) will be in a form of a standing wave ¢

o0
u; = r?:l An(ts) gin [wntf + ,én(i:s)] sin k Xp

(3-50)

The particular values of kn are determined by the end conditien

at x,=Ly thus, if u vanishes at x =L, then kn=nﬁ7L. 1f the
~ -
end termination is taken to be some frequenrcy dependent

complex impedarce, the modal frequencies will not be in-

*Phe effect of moving boundary is discussed in Appendix A.
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tezrally related,

“e now supvose that. in a particular case, there are
only three resonant modes of angular frequencieScul.goz, and
LoB. which have significant anplitude and that these modes
obey *he forgoing sum rule :

= W

W, +w 3 (3-51)

2
Considering these basic modes, we can rewrite solutions for
uy in the form :
3
uy = éil An(ts) sin [oantf + dh(ts)] sin k Xo
(3~52)

with the correspondiug density variations

-~

J
e, = éil A (t,) cos [antf + ﬁg(ts)] cos knXe |

(3-53)
We use the same argument discussed in Section 2 to find the

second order function from Eq. (3-46), By setting the

secular terms equal to zero, we obtain the results

34

1 2 s -
ats +JMOIA1 - 5uiA2A3 sinr=0,
3A, ,

e Co ] —_
55; +}u02A2 - “”éA1A3 sinr =0,
BA.3 2 - o

‘:”?; +.pij3 - "‘“’3"‘1“2 sin r
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4

1
Ay—= ~ G A A, cOS T = 0 (3-354)
1a¢s 17273 ¢
3;52
AZEE; - aa@AlAj cos vr =0,
as
3 =
ABStQ J&6A1A2 cos r=0,
where .
°='§(l+r))|
1"’#3",61"52'

Since the A's and the g's are functions of slow time ts only,
those partial differential operators can be replaced by total
differential operators. After combining the last three equa-
tions in Bq. (3-5%), we have mode-coupling equations for a
closed region (resonator).

dAy 2 :

Eﬁg a)uozA - Ow,A A, sinr = 0
gt T2t whityfis ’
dé 2 (3’55)
EEi +}M03A3 + a“bAlAZ sinr = 0,
WLA- A, W ALA W A A
%%- + ( 3h1 2. 1A2 . 2Al 2)gcosr=0,
s 3 1l 2

Eq. (3-55) shows that mode-coupling in a resonator is similar

to that of oscillaters deseribed in Chapter II provided the
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ceupling parameters in Eq, (2-12) are made equal in all
equations. Since the oscillators are resonance mcdes of the
same¢ medium, as in the resonator, the rssult is less general
than that of separate mechanical oscillators which may have
different impedances and different dissipation.

Por a nonviscous medium, we can obtain, analogous to

Chapter iI, the three censtraints for the ressonator :

2 2 2 _
Al + AZ + A3 = E,
R
— > — = c, (3—5,,{’)
031 (4.)2

AlAZA3 cos r = K.

Sirnice the system is assumed to be lossless, once the
disturbance isr excited, the energy will keep exchanging
among the modes. If we take the dissipation into consider-
ation, the terms cnﬁnn in BEg. (3-55} will cause the distur-
bances to decay and 8o, also, the exchange rate among the
modes., Eventuslly, the resronse will vanish.

The constraints of Eq. (3-56) can be used to illustrate
the resvonse of 2 lossless resonator, We do this by using a
three dimension phase space shown in Fig. 3-1 which is similar
tn Fig. 2-2 but with Al. Ayy and A3 as axes. Since all the
modes have the same impedance, the motion is c¢onfined to a
spherical surface while in Fig. 2-2 the surface is ellipsoidal.

The locus in the pnase space suggests that, in a resonator,



FIG. 3-1 PHASE SPACE FOR MODE-CGUPLING IN A
RESONATOR
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the high freauency meode is quite unstable and its energy
can be easily converted to low frequency modes, With dis-
sipation elements in the resonator, there exisis a thresh-
old for exciting such subharmonic compenentse

In general, there are, in addition to viscous losses,
less mechanisms such as digsipation at the reflecting ends or
radistion losses along the sides of the active interferometer
volume, As long as these losses are sufficiently small, they
may be considered equivalent to an effective loss. Thus in
Ea. (3-55), we replace‘gmﬁAn by 7n ne These coefficients
can be determined directly by small amplitude measurements
of modal decay rate, since under such condition

5%-2 =~ N.A (3-57)

Ther.,, for subharmonics to be excited, we require:

aa A
17"s 1
da A,
and %2-5%-‘2 >0, or J,< °‘“b‘%§f \ (3-59)

with sin r = 1.

We, therefore, arrive at a condition of the minimum threzh-
0ld for subharmonic excitation:

_ e

“g@* . (3-60)

£q. (3-60) indicates that the threshold is inversely propor-

A
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the high frequency mode is quite unstable and its energy
can be easily converted to low frequency modes. With dis-
sipation elements in the resonator, there exists a thresh-
old for exciting such subharmonic components,

In general, there are, in addition to viscous losses,
less mechanisms such as dissipation at the reflecting ends or
radiation losses along the sides of the active interferometer
volume, As long as these losses are sufficiently small, they
may be considered equivalent to an effective loss, Thus in
Ea. (3-55), we replace‘ﬂgﬁﬁn by QhAn’ These coefficients
can be determined directly by small ampiitude measurements

of modal decay rate, since under such conaition

dAn
(.i-f; = - 7?\Aﬂ . (3"57)
Ther.,, for subharmonics to be excited, we require:
dA AL
i1 23
Adt. 0% or <o, (3-58)
17 "s 1
dA A.A
and ) 2 173
X‘;-E_E; >0, or 7(2 < ’-‘0-32 ﬁz s (3-59)

old for subharmonic excitation:

/a0

Ay = —L2b

12
3 ¢ ASE;;— . (3-60)

Eq. (3-60) indicates that the threshold is inversely propor-



ey
e e e e et e ——
m—— i -

3-25

tional to the square root of the product of the subharmonic
paired frequencies. Hence, when the paired subharmonic
frequencies are equal, the required threshold will be mini-
mum, Therefore subharmonics of one~half can be observed
relatively easier provided that the one~half freqguency is

indeed close to the resonance mode of the system.

5. Modes of a Composite Resonator and the Selection Rule
for Subharmonic Generation

The results of the previous analysis indicate that a
resonator containing a nonlinear medium can provide a mecha-
nism for subharmonic generation., We have shown that if a
resonator has three resonance modeso:i, Loé.(dﬁ, and ini-
tially there is a strong signal in the mode with angular
frequency'a%. then scme transient disturbance may cause
other modescoi orcoé to appear suddenly. Such a disturbance
may be weak, but the energy in modecué will provide a

source for modescui and cué through the nonlinear coupling

effect provided the&né =cui +<ué condition is approximately

met,

For a simple one-dimensicnal resonator of Length L
with the boundary conditions p® = 0 or u* = 0 at both ends,

the angular frequency of the fundamental mode is

b= T (3-61)



and any integer multiple of L06 will still be a resonance
mode of such a system. Therefore, there are many possibili~-

ties for modes that satisfy the condition u% = <ﬂ{ + 0.

However, inr practical situations, some means must be pro-
vided for a driving source. The actual corngtruction of a
resonator is very complicated. Fig, 3-2 illustirates one
simnlified arrangement,

To find the resonance modes of this composite reso-~
nator, we not only have to know the boundary conditions on
both endg but we also have to match the acoustic impedance
at the interface due to two different media to provide the
continuity of pressure and particle velocity. Such re-
quirements result in a characteristic equation for modes of
this composite resonator*:

R(tan kD + tan k'H) + tan k’S

2

- R® %an k&D tan k&H tan k'S = 0 (3-62)

where R is ithe ratio of wall impedance to medium impedance,
the k's are wave numbers in the corresponding region, ard
D, H, and S are the thickness of the two end walls and the
length of the actual resonator, respectively. Eq. (3-62)

can be rewritien in nondimensional form:

# Bq. (3-62) is derived in detail in Appendix B.
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FIG. 3-2 A THREE-SECTION COMPOSITE RESONATOR
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f* £ f?
R(tan = 7 + tan =5 o) + tan =5 =
fé fﬁ fé
° N3
- R%(tan i%~ﬂ)(tan i; m)(tan 3% m) = 0, (3-63)
4 h s

vhere £

Nlo

3o
1l
njo N o
B Bl 8l

| -
and fs =

correspond to the fundamental resonance frequeacy of each
individual region, respectively. Exact analytical solution
for the roots in Eq. (3-63) are impossible to obtain, How-
ever, such 2 transcendantal functiion does show that the
modes of this type resonator are not necessarily integrally
related, as in the case of the simpie resonator., Hence,
there may be only a limited number of modes that will meet

t - 1 | ] 3 3
the 0.)3 = oJl + w2 conditione.

After the modes of a resonator are determined either
by numerical methods or from exverimental measursments, a
gravhical method can be used as selection rule for modes

which can be excited as subharmonics., Fig. 3-3 showsc»i

end(ﬁé used as vertical and horizontal axes respectively.
The vertical and the horizontal parallel lines are drawn
from resonance frequency points on the(ﬂi and W) axes. An
inclined line connects the point on the vertical axis at

uﬁ =<u§ and the point on the herizontal axis atcué =(n§.
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Any intersection point of three lines gives the modes with

the condition&oé =(pi +(u§. Fig 3-3a is the case for a

simple resonator. It indicates that all the modes have the
integer relation and there are many intersection points which

will satify the condition ““5 = ggi + Wi Fig, 3-3b is an

example for the composite resonator described in Fig. 3-2.
As the figure shows, there are only limited number of modes

meeting the conditiontné = (wi + cué.

This graphical method can be extended to more compli~
cated situationg. Modes of a given resonator can be de-
termined either through numerical solution or by actual
experimental measurement. This information can be plotterr
on a graph. The closeness of intersection will be one of
the important factors determining the possibility of gener-
ating subharmonics in the system. Any intersection point
close to the inclined line may also be a mode that can be
excited if the driving source is intense enough (the detuning
problem will be further discussed in next section). Another
effect, associated with dissipation, is that there will be
some dispersion. That is, at high frequencies the sound
speed in the medium will vary with frequency. Condition
gvé = eui + Lﬁ% does not necessarily mean k3 = kl + ic2e
This makes it more difficult to excite high irequency sub-

harmonics,
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6. Detuning for Forcing Excitation of Subharmonics in a
Resonator
If three modes with angular frequencies Wi @, and
003 in a resonator do not exac%ly match according to the sum

rule of Eq. (3-51), we then define a detunig factor § 's ass

Wor = %y *+ €6y,
Woy = Wy + &by, (3-64)
W3 # Ldl + W,

but wOB = w01 4 (}JOZ.

The solution of the first order wave equation of Eq. (3-45)

is agsumed 1o be:

3
— s . - r\
u = nél An(ts) Sln[}“Ontf + ﬁg(ts)] sin kg Xee (3-65)

for the standing wave in the resonator.

The A's and 4's are functions of slow variable ts and can be

determined by eliminating the secular terms in the second
order equation of Eq. (3-46), The following is the result

for a dissipaticnless resonator:

|5

ts + cAlAzubB sinr = 0,

Q,

&

l

o,



———

dA2
E?; -G AlAjlbz sin v = 0,

=
w
) o
A

+ 63A3 + oAlAéub3 cos r =0, (3-6€)

S

[=%
[

2.

=
7
T

+ 61A1 + 6A2A3u)()l cos r =0,

u

£
N

.4
T + 62A2 + aAlAjubz cos r = 0,

N
Q"
©

where all nctations are defined as previously.
Eq. (3-66) indicates that the detuning factors &6's only
appear in the phase equation. According to the analysis in
Section 2, Chapter II, the effect of the detuning factors
¢'s is to impose a limitation on the range of energy ex-
change among the modes,

For a dissipative resonator, we have to provide an
ex*ternal source for compensating the losses. Suppose such
a source is supplying energy at one end of the resonator
by displacing the boundary at x = 0 with a particle velocity

of U6 cos (“bBt)‘ As the standing wave in a resonator is

the combination of forward and backward travelling waves,
the propagation of the particle velocity U5 by reflecting
tack and forih inside the resonator will build up the ampli-
tude of a standing wave. 1If the frequency of the driving

sourcewc3 happens to be one of the resonance modes of the



e

3-33

resonator, for each round *rip the travelling wave propa-
gates, the amplitude of the standing wave will innvease by

2UA, In mathematical expression, we haves

ALY 2UY
A‘Id = Lz (3"6?)
2 33 '

where L* is the length of %the resonator, 06 is the sound
speed and L'/ba corresponds to the time taken for a wave
travelling acrc<s the resonator.

If the frequency of the driving source is only near
the resonance mode of the resonator, then there will be some
phase shift for th2 standing wave during the building up
process. We can consider that the travelling wave contains
in-phase and out-phase components with respect to the origi-
nal standing wave. Fig. 3-4 is a vector diagram showing
such relations. The in-phase component increases the amplie-
tude for the resulting standing wave while out-phase compo-

nent shifts their phase relation. That is, for each round

trip,
Aff’i ) 2U6 cos A2
AT' 2 ll_;. .3 3
o0 (3-68)

A g 2 U(')/AZ

el :
AT - TTer Sin 4.

-
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Pig. 3-4 Build up the Standing
Wave in the Resonator

By changing to the nondimensional notation in slow
rime scale, we can incorporate the relation in Eg. (2-63)
into Eq. (3-66) to describe the response of the fercing

excitation of subharmonic modes in a dissipative resorator.

The results are:

5 .
at, + 73A3 + dAlAéQOB gin r - G, cos ﬁa = 0.
dA1 .
3%; + 71A1 - °A2A§”01 sin r = 0,
dA2
EE; + 72A2 - OAiABQbZ sinr =0,
i .
A3 Tty 4 63A3 + oAiAéan cos r + GU, sin 53 = 0,

1l 6.A, v 3ALAW ., cos T = 0,
A1 dts + 171 273701
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i, 8 (3-69
where G =wr°£')

T
For stzady state, when the intensity of waves in the resonator
is not strong enough to cause the nonlinear effect (¢ = 0),
the amplitude of the standing wave in the resonator can be

deduced from Eq. (3-69},

GU
Ay = Y ,
3 2
M5 %3 (3-70)
Al = 0,
AZ = 0.

For a strong external exitation, the coupling caused by the
nonlinearity of medium will result in a different set of

steady~state amplitudes of modes in the resonator:

2 (Mo + 6282
A3 2 ¢
G Wy Wh2
2 _
Ay =152,
and Ag = irha,
where a = -—;—2—-1-———-; [(']3 - 53A)2 + (1 ‘»Az)
1%z

-
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T 2 MR
Since amnlitudes are resl quantities, a minimum value of UO
is required for A1 and A, to appear. That threshold for
subharmonic seneration is given by:

2 Ml + sha +e?)

U
TH 0202w

(3-72)
01%%2

As the threshold is inversely proporiional to the sauare
root of the product of subharmonic frequency pairs, it will
be a minimum when ‘they are egual (“bl = Luoz).

In general, only the acoustic pressure is accessible
for actual measurement, If(ubB component is taken as a
reference for monitoring the occurrence of subharmonics, we
can modify A3 in Eq. (3-71) in term of oressure and express

it as a function of the original parameters as:

1] 2 ¥
P = ..._.._____._(seoc'o - (.._:!: 1 & .\':.i.._ .6_2....)% {(3-73)
il [PL] ¥ 1 4
WL rey H % a2
c'%

where Ql' and Q2 are the quality factor associzted with modes

coi. andt*% respectively.
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Chapter IV

EXPERIMENTAL INVESTIGATION ON SUBHARMONIC GENERATION
IN AN ACOUSTIC RESONATOR

In this chapter, we describe the experimental set up,
procedure and results of an investigation on subharronic
generation in an acoustic resonator.

The acoustic resonator used in this experiment is con-
structed in the form of an interferometer with two quariz
crystals as ‘the resonator boundariss, One cf the crystais
is also used as a transmitting transducer to supply the
driving signal into the resonator and the other serves as a
detector in monitoring the response of the system, A c¢alie
brated acoustic prove smaller than the acoustic wavzisngth
of the signal in the medium has deen employed for absolute
aceustic pressure measurements during the experimental invese-
tigation,

Throughout the entire experiment, distilled wat¢er has
served as a medium, It has been filtevred and degassed
before use. The whole acoustic resonator is enclosed in a
sealed container =o that cuntamination of water during the
eXperimental process can be reduced to a minimum,

The experimental system can be operated in the frequen.
cy range from 1 MHZ to 5 MHZ, although detailed siudies in

observing subharmonics are only carried out around ths re-
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gion of 1,5 MHZ, which is the natural resonance frequency of
the transmitting quartz crystal., As the validity of using
the acoustic probe is limited in measuring of absolute
acoustic pressures at high frequency, the subharmonic pheno-
menon is only considered for gqualitative reference when the
crystal is driven around 4.5 MHZ, the third harmonic of its
natural frequency,

Data concerned with actual modes of the resonator, the
leoss factor associated with each mode, and the signal thresh-
old for exciting subharmonics at various resonator lengths
and at different signal frequencies ars recoréed., Such ‘rfor-
mation nhis been compared with the theoretical analysis dis-

cussed in the previous chapiers.

1, Conditions for the Experimental Investigation of Sub-
harmonic Generation

According to the previous anaiysis, there are two
necessary conditions for subnarmonics to be excited. One
is that the system should contain the subharmonic modes and
the other is that the high intensity acoustic wave should be
built up to provide the necessary nonlinear coupling mech-
anisme

with this consideration, an interferometer type resc-~
nator is adopted for our experimental investigation cof sub-

harmonic generation. In general, the interferometer pos-
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sesses many resonance modes., If one such resonance mode is
excited by a external source, a high intensity standing wave
can easily be achieved., Any modes whose frequencies are

" below the external driving signal can ther be considered sub-
harmonic modes. Arother advantage for using an interfer-
ometer as a resonator is that the end reflectors can be utile
ized as transducers tec provigde a means of supplying the 4riv-
ing signal or detecting the system's response. Since there
is no side boundary %o enclose the interferometer, only one
type of mcde exists in such a rescnator. In the case that
the wavelength of the acoustic wave in the medium is much
smaller than the dimension of the end refiectors, the inter-
ferometer 11} act almogt as a one-dimensional resonator,

The desigr of interiercmetar depends very much con its
operating frequency. Most interferometers usged for experi-
mental observation of subharmenics are in the freguency
vange 3 MHZ to 5 mﬁzié'i7'18’19'38. The advantage of apply-
ing high frequency signal for subharmonic generation is that
the threshold for exciting subharmonics is lower according
to the inverse relation between the signal frequenecy and
the threshold derived in our previous analysis, Eq. (23-£0)
gy 11I. An additional reason for working in this fra-
quency range is that a ham radio transmitter can be easily
modified for the driving signal power source, But there are

some disadvantages to using high frequency signals, The



important one is that the absolute instantaneous acoustic
pressure will be difficult to measure without causing scat-
tering effects. (The wavelength in that frequency range will
he less than 0,03 ¢m in water,) The laser beam diffraction
method, employed by previous experimenters as a . :ans of
detecting the acoustic wave, does not directly give the
absolute acoustic pressure and it involves elaborate equip-
ment and alignment. A second handicap for driving the inter-
ferometer at high frequercies is that a thinner gquartz
crystal plate has to be used for the transmitting transducer.
This presents the difficulty of mounting the crystal for
direct coupling with the medium. A common practice is to
cement the crystal nn a metzl plate for making a comrosite
transdueer39. Our preliminary tests of such an arrangement
shows that when an intense signal is applied to the compos-
ite transducer, the cement between crystal and metal plate
seems o change its adhesive force, and a nonlinear response
beging to appear. In some cases, even subharmonics are vre-
sented, They are very stable aad can not be affected by just
changing thz length of the interferometer.

Surveying the current literatures. we found that it is
ha,

. . .
W Pl
nossible to make an acoustic probe of sis
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. This corresponds to the wavelength of a 5 WMHZ acoustic
vave in water. Then the proper highest frequency that should

be used without causing seriously scattering effects will be
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around 1.5 MHZ, which requires a 0,19 cm thick quartz plate
for the transmitting transducer in the interferoneters
Quartz of such thickness is strong enough to be used as the
reflecting wall in the interferometer, This solves the prob-
lem by avoiding the complication of using a comwncsite trans-
ducer, A much lower freguency quartz is chosen for the
other reflecting wall of the interferometer for two reasons:
first, it will have better sensitivity in detecting the sub-
harmonic components; second, its thickness will allow for a
knife edge mounting for the crystal, thereby reducing me-
chanic losses.

In our first pilot interferometer composed of 1,5 MHZ
and 600 KHZ quartz crystal plates as the reflecting walls of
the interferometer, the Q (quality factor) of such a reso-
nator measured during preliminary test was about 103. Ac-
cording to the relation derived in Chapter IIT, Eq. (3-73),
an acoustic pressure amplitude of at least 15 bars is needed
for exciting subharmonics for this Q.

An acoustic standing wave with this intensity will also
cause cavitation in ordinary wateruz. To avoid the compli-
cation of the cavitation phenomenon during the observation
of subharmonics, we decided to process the liquid before
using it in the interferometer. The threshoid for cavitation
will increase after the liquid has been purified through a

degassing and filtering process. Hence, the subharmonic



4.6

threshold will Ye less than the cavitation threshold.

We also designed a system to enclose the interfercometer
so that the treated liquid would not be subsequently contami-
nated, This involves the elaborate construction of a sealed
system, As we do not find that previous experimenters speci-
fied how they have treated the liquid nused in their investi-
gation of subhermonics, we hoped that our effort to make the
whole test system a closed one would provide some new and
interesting information,

There are other advantages to using a low driving
signal frequency in the resorator. Since the wavelength of
acoustic wave in the water is longer. the mechanical align-
ment for parallelism of the two reflecting plates is easier
and there are less appreciable detuning drifits due to temper-
ature changes in the interferometer.

Based on the above consigerations, our final design
of the test system for observing subharmonic generation
phenomena possesses the follewing special femtures:

(a) The acoustic transducers which also sexve as
reflecting walls for the interferometer are directly zoupled
to the medium in the resonatore

(b) The medium used in the resenzior hias been care-
fully filtered and degassed to a high purity. Cavitation is
avoided in the range of tests used for obzerving the subhar-

monic phenomenon.
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(¢) An acoustic probe smaller than half a wavelength
of the acoustic wave in water can be calibrated for recerd-
ing the instantaneous acoustic pressure.

(a) The system can be operated in a pulsed mode
for studying the translent behavior of subharmonic genera-
tion,

Pig. 4-1 is the block diagram of whole testing system.

In next section, each component will be described in detzil.
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2., Appsratus

The actual apparatus used in this experiment for the
investigation of subharmonic generation can be seen in the
photograph of Fig. 4-2. According to funciion, we can
divide the apparatus into three subsystems: resonator, the
liquid purification equipment, and electronic instruments,
Some items are a’ spted from available commercial products
but most equipment is designed and constructed only for our
special purpose in this experiment. Each subsystem's func-
tion and construction is described below:

(a) The Kesonator

The censtruction of the resonator is shown by the
sketch in Fig. 4-3. It mainly contains an interferometer
with two x-cut gquartz crystal plates as its boundary walls.
The space between these two wails can be adjusted from 0 to
13 eme The fine adjustment is conirolled by a micrometer
which only can cover a range of 2.,5000 c¢m. An additional
coarse adjustment is provided for larger space changes.

One of the quartz plates, which we use as a trans-
mitting transducer to supply the acoustic signal’to the
resonator, is a disc of 2,54 ecm in diameter and 0,15 em in
al resonance Ifreguency in alr is 1.5
MHZ. One side of this disc is plated with gold on chrome and
the other side is plated with the same material but is left

with a 0.0625 cm wide blank annulus on the edge. This disc
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is mounted on a brass housing with an open hole of 2,2 cm in
diameter 8o that the large part of the plated surface will

be in direct contact with the liquid in the resonator. A
plexglags ring is used on the other side of the quartz disc
for pressing it against the brass housing. Silicon grease

is applied around the edgz of the quartz disc before insvai-
lation so that there is a good seal between disc and brass
housing to prevent a leak. Electrical contact with the back
face of the quartz disc is made with & seft spring which is
soldered to a BNC connector., During operaticn, the signal

is intrcduced through the BNC connector and the brass housing
and the front surface of the quartz disc are at ground poten-
tial,

A much thicker quartz disc is used for the other
boundary wall of the interferometer and acis as a detector
for the system's response. This disc also has a diameter
of 2,54 cm and is clamped on the knife edge of a brass ring
which can be mounted on an another brass nousing. Between
the knife edge and the circumference of +he quartz disc,
gtycast 2850 FT {manufactured by Emerson and Cuming, Inc.)
is used to avoid possible leakage., One side of this unit is
vacuum deposited with silver as the front surface of the
boundary wall., The other side of the quartz disc is plated
with gold on chrome and touch2s a soft spring which serves

ag one of the electrodes after this unit is mounted on a



brass housing. An 0 ring is inserted vetween the brass
housing and the detecting quartz unit for leakage prevention,
We have made several such units with various natural reso-
nance frequency quartz discs: 1 MHZ, 60C KHZ, and 360 KHZ.
They are easily interchangeable. The housing of the de-
tectirg unit is a part of a brass telescope which has & mi-
crometer to adjust its length.

Both transmiti{ing transducer and detecting unit are
mounted separately on 2 cm thick brass plates. A pyrex
2vlinder, 10 cm In3ide diameter and 15 cm in length, with
two teflon gaskets is inserted between these ‘two brass
plates to form a container, The whole unit is fixed on a
steel frame. There are three adjustment bolts for the
alignment of the parallelism between the transmitting
transducer and the detecting unit, An inlet and an nutlet
are provided for this containrer for filling and circulatin
the liquid, Fig. 44 is the photographical close view of
the actual arrangement,

An acoustic probe is also placed inside the pyrex con-
tainer for absolute acoustic pressure measurement., The
active tip of this probe is about 0,05 cn in diasmeter and
has a microdot connector on its end (tiicrocot Inc., part
No, 032 00i5 00(G1). This unit is then attached to a 0,5 cm
diameter brass tubing going through the mounting plate with

an ¢ ring as 2 sealing element., The probe tip is detachable;
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the picture in Fig., B-5b shows its antuzl size,

The construction of the acoustic probe is shown in the
detailed sketch in Fuig., 4~%a, The tip is BaTi0, rowder
melted on a 0,02 cm diameter vlatinum wire by a microflsme
torch (manufactured by liicroflame Inc.). The main frame of
the probe is 0.055 cm diameter stainless tubine covered wit»
1 Jayer of C.E. flyptal (12171 Red Enamel). The external sur-
face of the probe's main frame is coated with E~Kote 40
silver nairt (manufactured by Epoxy Products Co.) to serve
as an electrods for the vrobe., The BaTiOe tip is nolarized
with 30 V DC at 130°C,

The sensitivity of such a grobe with the nreamplifier
is zbout 23 mV per bar. Thn calibration nrocedure for the
prebe will be described later.,

{(b) The Linquid Purificatior Equipment

To control the nurity of the liquid under exmwerimenial
investigation, the container with its intarferometer is con-
nected through Tygon Vacuum Tubir~, 3/9" in inside diameter
(made by Norton Plastics and Syrthetics Division), to the
accessories for the liquid ~cleanin~ process. Fig., -6 shows
the detailed arrangement.,

Two killipore Filters (manmfactured ty millivore Fil-
ter Cn,) of 5.0 micron pore size are used ‘n the cleanin~
aystoeme One is for trapping the contaminant before the

liquid #2ts into tne system the other is ingerted i~ the
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system for closed-loop filtering.

A Fisher Alrejector is adopted as a vacuum pump for
degassing the liguid in the system, Such a simple arrange-
ment can easily reach a vacuum less than 30 mm Hg, The
vacuum is monitored by a pressure gauge (made by Marshalltown
MFG. Cos)e

Circulation of the liquid around the system is pro-
vided by a micro~bellews pump (manufactured by Research
Appliance Co. serial No., 619616 4648), During the actual
experimental investigation of subharmonics, the operation
of the pump is stopped in order to avoid the possible inter-
ference caused by the vibration.

(c) Electronic Instruments

We have two signal generators for use as the signal
sources in this experiment. The General Radio 1001-A, which
covers a range from 5 KHZ to 50 MHZ, is used to check the
resonance modes of the interferometer, The other, General
Radio 1211~B Unit Oscillator, mainly serves as the signal
input to the power amplifier for the transmitting transducer.
This oscillator can be modulated by an external source through
its power supply. We have built a SCR gate in conjunctiion
with a General Radio Unit Pulgser 1217-A to modify i< as a
pulsed signal generator. The transient behavior of subhar-
monic generation in the interferometer can be studied by

such conversion,
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The powcr amplifier was originally designed and cone
structed by Bargeruz:for his research work on acoustic caviw
tation, This amplifier can be driven to 400 watts output
with a 1 V rms input signal and has the half power points at
12 KHZ and 1.5 MHZ. We find it quite suitable for driving
the quartz transducer of the interfercmeter at a high impe-
dance level, A General Radio Variable Inductor type 107«J
is used to tune out the stray capacity in its output cir-
cuit,

During preliminary studies on subharmonic generation
phenomenion, we have employed a Lysco 600-S ham transmitter
as a power scurce. The output stage of this transmitter is
a beam power pentode 807 which can deliver maximum power up
to 56 watts., A regulated power supply, Lamda model 71, is
uged as the plate voltage supply for the pentode to adjust
the output level, A matched network has to be inser.ed
between the transmitter and the quartz transducer to obtain
optimal results. This arrangement was sclely for qualitative
studies of subharmonics when the quartz transducer is oper-
ated arcund its third harmonic, 4.5 MHZ.

During the experimental investigation, the frequency
of the driving signal is checked by a Hewlett-Parkard 52441
Electronic Counter,
Por parallelism alignment of the interfercmeter, the

signal is provided by a Hewleti-Parkard type 161 Pulse Gener-
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ator. The alignment procedure will bve described later.

There are two separate channels for detecting the re-
sponse of the sysitem., The acoustic probe is mainly for
absolute acoustic pressure measurement. It has a self con-
tained battery operated preamplifier for eliminating ground-
ing and noise problems. Fig., -7 shows its circuitry which
has about 50 dB gain, The output of this preamplifier can
be fed directly to the scope to display the waveform.

Another channel is provided by the quartz disc wall in
the interferometer, Since this detector has nigh sensitivity
to the subharmonics, its output is directly connected to a
scope, Tektronix type 565 Dual-Beam Oscillascope, and a wave
analyzer, Hewlett-Parkard model 310A., The wave analyzer
also serves as a filter for picking up the particular subhar-
moniz component, The fraauency of this eubharmonic is then
measured by an another electronic counter, Hewlett-Parkard
model 523B.

Voltage and current probes, both manufactured by
Tektronix, are employed to monitor the output waveform of
the power amplifier so that we can be sure that no distorted
gignal drives the iransmitting transducer during experimental

investigations,

3. Experimental Procedure

In investigating the subharmonic generation phenomencon,
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quantitative measurements can be made of two important pa-
rameters: the driving signal threshold for exciting the sub-
harmonics and the frequency components of the excited sub-
harmonics. These parameters depend on the physical property
of the medium as we have concluded in the previous analysis.
However, in the actual experimental si*uation, the results
are also effected by the way the system is set up., We will
mention some of our experiences during preliminary test

in the early experimental stage before describing the actual
procedure we finally adopted for data collection.

Without any treatment of the water used in the reso-
nator, we found it was almost impossible to excite subhar-
monics with some air bubbles attached to the face of the
boundary walls of the interferometer. However, even after
those bubbles are removed, either externally or by seli
dissolution, the excited subharmonics appear to be very un-
stable. Further increases in the driving signal intensity
only seem to extinguish the existence of subharmonics. This
peculiar phenomenon was finally explained when we discovered
that gaseous cavitation was occurring along the path of the
acoustiic standing wave in the interferometer. Tiny gas
bubbles, whicn can be observed by shining collimated light
on them, are dancing around. Sometimes they aggregate to-
gether to become a larger bubble and then move away by

buoyancy forces. Such activities, we believe, will absorb
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more acoustic energy and interfere with the resonance modes
of the interferometer so that the threshold of excitines sub-
harmonics is increased, makes the sustenance of subharmonrics
more difficult. In the low frequency range, the threshold
for acoustic cavitation is lower than the subharmonic thresh-
old and therefore the observation of subharmonics becomes
more difficult, Hence we reached the conclusion that we
should control the water used in the exper.ment tc avoid the
interfering effects of gaseous cavitation.

Because the energy of the intense acoustic wave is
abscrbed in the rescnator, we have observed that subharmonics
become unstable due to temperature changes during a long
period of operacion. A 2°c change in temperature has be re-
corded after about 5 hours continual operation. We have
overcome this problem by using pulsed signals to reduce the
heat generated in the water.

Our initial experience with the instruments has re-~
vealed some misleading data from the quantitative messure-
ments., Ore of them is that the quartz disc serving as the
boundary wall of the interferometer can only be used as a
detector for the system's response. Thig is a very conven-
ient way to monitor subharmonic phenomena but, as the re~
sponse of the particular quartz dise is frequency dependent,
it is not 3 proper way to take quantitative data., A

similar situation also amnlies to the transmitting trans-
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ducer., The acoustic intensity inside the interferometer is
not necessarily proportional to the voltage across the
quartz plate but depends on others factors such as alignment
and tuning of the interferometer, separation of two boundary
walls, the natural resonance frequency of the quartz disc,
the condition of radiative beam spreading. and losses due to
the viscosity of the liquid, etec. This is true even when
different quartz orystal discs are used with the different
driving signal frequencies, since their thickness and condition
for mounting are changed, The mounting loss plays an im-
portant role in the final intensity of an acoustic wave in
the resonator. It becomes totally impreper to relate a set
of applied voltages on the quartz discs *c the true acoustic
intensity in the interferometer. For this reason, we devel-
oped a small acoustic prote for abselute pressure measure-
ment,

Alignment of the two boundary walls of the interfero-~
meter is very critical for investigating the subharmonic
phenomenon. The threshold for exciting subharmonics and the
frequency components of the excited sutharmonics will be
altered greatly just by manipvlating the parallelism of two
boundary walls, In order tc obiain consistent expe: imental
results, we set up a standard alignment procedure, which
will be described later, before collecting the data,

The following is a detailed description of the experi-
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mential procedure we have adopted:

(a) Calibration of The Acoustic Probe

The acoustic probe is primarily designed for use at
high frequencies, Since measurements of input current to
the transducer at this freguency range is not very accurate,
the reciprocity method for calibration becomes unsuitable
under present conditions, A simple method is agopted from
the current literaturéuia

In studying the propagation of a finite-amplitude
wave in a 1iquid, one of the established results is that
2 sinusoidal wave at the source of radiation will become
a sawvooth at some distance away from the source. This
distance can be expressed in terms of wave parameters and

vroperties of the medium by the relation:

k.Pc3
(¥ + 1)v ,

| el

(4-1)

where A is the wavelength, € is the density of the liquid,
¢ is the sound speed, p is the pressure amplitude of the
acoustic wave, and Y is the nonlinear parameter of the
liquid (about 6,5 for water). In the case of spherical
wave divergence in the far field region, the variation of
the ampiitude of the formed sawtooth wave with the distance

from the source is determined by the equation:
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_ Po e
Py = X (y+1)p T x |, (4-2)
1+ _SL_“_g_Q_ in X
oc %o

where f is the frequency, and Py and p, are the amplitudes
of the sawtooth at disitznces X, and x from the source respec-
tively. This relation can be rewritten in the form of ratios

po/rx, and xc/x to obtain the absolute pressure amplitude

P, ass

PoXo - 1) ch

Py X (Y+1)fxo in

p, = ( . (&e3)

Mk

o

Once the pressure is known, we can easily compute the sensi-
tivity of the acoustic probe from its electricai output
signal.

The calibration of the probe used in this experiment
is carried out in an anechoic tank which has the dimensions
75 cm wide, 125 cm long, and 75 cm in depth. A 0,254 cm
thick P27-4 disc of 2 cm in diameter (manufactured by Clevite
Co.,) is used for the transmitting transducer. The resonance
frequency of this disc is about 760 KHZ. For calibrating
the precbe at high frequencies, we used the second harmonic
component of the distorted wave as the reference, With the
preamplifier, the sensitivity of the probe around 1.534% [he

is 23 mv/bar,
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(b) Treatment of Water

The arrangement and equipment for the treatment of
water used for the experimental investigation is shown in
Figs 4-6. The container is first evacuated partially by
the Airejector so that the water can be sucked in through
the inlet filter. After the water has completely filled
up the system, we then shut o5ff the inlet and at same time
close the system by proper turning of a three way valve,
The water can be continvaily filtered through the in-line
filter by the forced circulation due to the micro-hellows
pump.

The degassing orecess is done afier the water has
gone through the filter several times. A 30 mm Hg is
generally reached during the final stage of degassing,
Then we open up the relief valve for the system and the
hydrostatic pressure in the container returns to atmos-
pheric,

This nrocess is repeated at the beginning of each
measurement ard at the beginning of each day so we car he
sure that no frrther contamination, possibly caused by
corrosion and leakage of the components, will deteriorate
the system.

During the experiment, we stop the cirecwlating pumr to
avoid possible interference from vibration., A focusad beam

of light from a 100-watt projector lamp iz usad to aid in
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the visual detection of possible gas bubbles in the inter-
ferometer. With this arrangement, we are able to ob-
serve subharmonics at 1.5 MHZ without the occurvence of cavi-
tation.

(¢) Alignment of The Interferometer

The arrangement for alignment of the interferometer is
shown in Fig., 4-8a, The transmitting transducer is ener-
gized by a 10 microsecond, 50 volts DC pnulse, This pulse
will excite the quartz disc in the transducer and an acoustic
wave will radiate out into the water inside the interfero-
meter, The pulsed wave will be picked up again by the itrans-
mitting transducer after it has reflected back from the
other boundary wall of the interferometer. This reflected
signal can be detected with a tuned tank connected to the
transmitting transducer and displayed on the oscilloscope.
if the repetition rate of the UC pulse is slow compared to
the time required for wave traversal across the interfero-~
meter, the successive reflected pulsed signals will also be
detected by the scope. By mnonitoring the amplitudes of those
reflected pulses, we can align the reflected wall of the
interferometer with ite adjusting screws. The best alignment
for the parallelism of the boundary walls is obtained when
the amplitudes of pulsed signals become a maximum and de-
crease exponentially according to the time sequence of their

arrival, This alignment proceduce is not affected by the
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length of the interferometer., A typical picture cf the
response signal on the oscilloscepe is shown by Fieg, 4-8b
after the interferometer has been aligned. The decrease
in the amplitudes of the successive pulses also gives the
information about the quality factor (Q) of the resonator
at the given resonance freguency.

(d) Excitation of Subharmonics

A strong standing wave can be established when we
drive the interferometer at one of its resonance modes.
This is accomplished by adjusting the length of the inter-
ferometer with the micrometer for a given input signal or
changing the signal frequency for a fixed length interfero-
meter. By increasing the signal input to the transmitting
transducer of the interferometer, subharmonics may bte ob-
served from the respons2 of the detecting quartz disc after
the intensity of the acoustirc wave inside the interferometer
exceeds a certain level, A typiczl resvonse of such subhar-
monic generation in the time domain *s3 displayed in Fig. 4-9z
from the picture taken on the oscilloscope. The frequency
components of such signals can be further analyzed through
the wave analyzer; the exact frequency is read from the elec-
trenic counter, The meter on the wave analyzer also records
the relative intensity of the particular subharmonic compo-
nent,

The frequency range of the wave analyzer covers from



g~

Ly
s
S
S
&
I~
Finput = 1599.2kHz = fipn = 15448 khiz
foup = 799.6 kHz foup = 1154.5 kHz
390.3 kHz
' (.2v/cm, 1us/cm) (.2v/em, 1us/cm)

(o) SUBHARMONIC RESPONSES

= 1544.8 kHHz
b= V184,58 kM2
= 390.3 kHz
(.2 v/cm, Sms/cm) (2v/cm, Sms/em)
(b) GROWTH OF SUBHARMOHNICS

FIG. 4-9 OBSERVATION OF SUBHARMOMICS




4-32

1 KHZ to 1.5 MHZ. Sometimes, at high driving signal levels,
more than one subharmonic pair can be cbserved.

For gathering information about the threshold for
subharmonic generation, we used long pulse train of the driv-
Eng siqnal appl}ed to the interferometer. The actual growth
of the subharmonic acoustic wave can be displayed on the os-
cilloséope, ench as the one shown on Fig 4-9b, From that
Qicture. the point where the wave starts to break and sub-
h%rmontcs begin to appear can be easily determined. If
ﬁhis response is measured using the cutput of the acoustic
grobe, ‘the level at ‘the break point is the threshold for
subharmonic excitation.

' (e) Measurement of the Sysiom Parameters of the

t

f Interferometer

i

For comparing the experimental data and the theoretical
;nalysis, information concerning the actual condition of the
interferometer is examined to explore its relation with the
mathematical model of the ideal resonator. Two parameters
have been recorded as the quantitative measurement of the
p?ysical condition of the interferometer. The first parame-

?r is the actual resonance modes of the interferometer at a

t
given experimenéal condition. The other is the dissipation
factor associated with each resonance mode.,

A simple way has been adopted for measuring the reso-

nance modes of the interferometer. A variable signal fre-
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quency generator is directly connected to the transmitting

transducer of the interferometer, By changing the frequency

of the input signal, we observe the amplitude response from
the detector at one of the voundary wallis. The frequency
£t which the response amplitude is maximum is <the resonance

mode frequency.

For determining the dissipation factor at each mode,
we just measure bandwidth of the half-power points of the
response amplitude trom the detector at that particular
mode ,

A nondimensional quantity, quality facwor Q, can also

be computed from knowledge of the bandwith by the rela%ion:
— A ———— ’ -
Q - Bw 4 (4’ 4)

4, Experimental Data

In orcer to verify some of the theoretical predictions,
we have kept two things in mind: the experimental condition

under investigation and the physical parameters for subhar-

monics to be excited. The experimental data are recorded

for the purpose of clarifying how good the theoretical
analysis is for a real physical situation. Those data are
obtained from a typical interferometer which has 1.5 MHZ and
360 KHZ X-cut quartz discs for its boundary walls.

(a) The Resonance Modes of the Interferometer

Table 4-1 lists resonance modes of an interferometer
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for a spacing of 3.58 cm at 26°C. The calculated modes are
based on model described in Chapter III, section 6, and com-
puted from a computer. The constants for the characteris%ic

eguation of Eq. (3-%63) used during computer programming are:

R = 10,2702
fd= 1500.,0
fs= 360,0
fh= 21,0

The measured values are obtained experimentally from the
interferometer used in subharmonic observation., The proce-
dure of such data taling has been already described in the
previous section,

The gquality factor, Q, associated witn the resonance
r~des is also recorded as a reference to indicate the sig-
nification of such a particular mode.

(b) Threshold for Subharmonic Excitation

There are two parameters for setting up the experiment
for observing subharmonics: one is the length of the inter-
ferometer and the other is the driving signal frequency.

m‘\ﬂ
-l

ots in Fig. 4-10a are the data for the subharmonic

€L

threshold with different lengths of the interfercmeter; Fig.
L.10b is a record showing a general tendency of the subhar-
monic threshold to change as a function of the driving zignnl
frequencies., Those data are taken without adjusting other

references of the whole experimental system, Since the
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subharmonic frequency components change with interferometer
length and driving signal frequency, those experimental
points do not have the same frequency components. However,
the general tendency of the minimum threshold for exciting
the subharmonics can be indicated by the solid lines in
those figures.,

(¢c) Amplitude and Frequency Components of Subharmonics

Two sets of experimental conditions have been carried
out in a detailed stvdy of the amﬁlitude and frequency com-
oonents of the observed subharmonics. Fig. 4-11a‘shows. for
a case of subharmonic of one-half, that the change in sub-
harmonic amplitude measured from the wave analyzer as the
driving signal intensity increases., Sometimes. under dif-
ferent conditions, more than one pair of subharmonics
appear. Fig. 4-11b is an example of such a circumstance.
The frequencies are measured by an electranic counter whose
accuracy is about + 5 HZ in our present measuring range,
Precision of the data on the reading of subharmonic fre-
quencies is dominated by the stability of the signal gen-
oT our équipment, is about + 10 HZ. EHence,

the frequency data can be valid up to + 15 HZ.
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5. Discussion of the Experimental Results

Some physical explanations of the threshold of sub-
harmonic generation are gleaned from the data concerning
changes in the threshcld as a function cf length of the
interferometer as snown in Fig, 4-10a. When the distance
between the boundary walls of the interferometer is small,
the loss is dominated by the transducer mcunting loss which
is independent of the interferometer’s length. However,
the amount of medium, which provides the nonlinear coupling
mechanism, is proportional to the space between the boundary
walls of the interferometer. These two factors make the
threshold for exciting the subharmonics decrease with the
length of the interferometer, as is clearly indicated from
the experimental data. When the length of the interfero-
meter becomes very large, the experimental results show
that the subharmonic generation threshold increases with
the length of the interferometer. This is due to the in-
fluence of the other losses such as the viscosity of the

medium, beam spreading, etec., which are a function or length.

The fact that subharmonics becomes 50 difficult toc excit

[0
[
©

T

[3A

[&]

for short spacings is evidence that the vibration h

@)

boundary walls does not provide an important contribution
to the nonlinear coupling responsible for subharmonic genera-
tion,

In Appendix A, we have carried out a detailed analysis
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comparing the order of magnitude of the nonlinear couvling
due to the boundary and to the nonlinear rroperty of the
mediun.,

The change in fthreshcld for subharmonic generation
with driving signal frequency, as indicated in Fig. 4-10b,
covers a quite large range and does not follow a2 simnle
relation., This is due to the reason that other factors,
such as dissipation and detuning parameters, should also be
taken into consideration,.

Information about the quality factor, @, of the
interferometer associated with resonance modes can be used
to calculate the threshold for subharmonic generation ac-
cording to the analysis in Chapter ITf. From Eq. (3-73),

the simplified result for water without detuning is:

3
- 15 X 10
PTH - (L""5)

/4,

where PTH is the acoustic pressure in bars, Ql' and Q2 are

the quality factors associated with subharmonic modes 1 and 2
respectively, Based on the data of Table 4-1, the calculated
minimum threshold is 5.8 bars which is close to what we have
measured in Fig. 4-10.

Though the interferometer nossesses many resonance
modes, in general only a few pair of subharmonics are eener-

ated during experiments. This can be explained by noting
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that, in addition to the threshold, those modeg also have

to meeta matching condition; that is, the sum of their fre-
quencies should also equal to the frequency of the driving
signal. We use the data set of the resonance modes from Table
L-1 to check such a situation. Fig., 4-12 is dotted with
points corresponding to the sum of frequencies for a pair

of subharmonic modes inthe range from 1575 KHZ to 1635 KHZ.
Two horizontal lines are drawn for the resonance modes at
15495,3 and 1618.2 KHZ. A highly intense wave can be estab-
lished if we drive the interferometer at these frequencies,

We see that there are actually only few points near these

two lines; in another words, not many subharmonic pairs

will be excited. The vertical distance between those poir.sto
the lire gives magnitude of the resultant detuning and numbers inpa-
renthesis are the geometric means of the quality factors associated
with those particular subharmonic pairs. Points far from -

the line may be excited only if a much stronger signal is pro-
vided. However, the final amplitude of the excited subhar-
monic will depend, not only on the quality factor for that
particular mode, but alsc on its detuning from the actual
resonance, vYnen more than one subharmonic pair is excited,
their amplitudes will be inversely proportional to the loss
and the detuning. The experimental results shown in Fig.
t~11b give such evidence, (Because ~f ambient temperature

changes due to the different times for data collection, there
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are frequenty shifts for the resonance modes in Fig, 4-10
from the origiral modes recorded in Table 4~1, However, we
can still identify them by the general direction of the
shift. The corresponding subharmonic pairs for Fig. 4-11
are labeled with s, s;, s,, in Fig, L.i2, We can see that,
as 844 S, both have high Qs and are close to the driving
signal frequency, they can appear at the same time, Since
the condition for measuring the resonance frequencies is not
the same, we do nct attempt to use these data to calculate
the threshold and subharmonic intensity for the fact of
detuning).

The change in subharmonic amplitude with driving signal
intensity illustrates a surprising discrepancy from results
reported by Bamberglé. According to his observations, once
the subharmonic is excited, its amplitude will level off
regardless of how intense the driving signal is and finally
it will disapovear altogether after a further increase in
driving signal intensity. We feel that our results differ
from his because we have avolded cavitation during our ex-
periments. Since gas bubbles consume energy through the
cavitation process, their presence will certainly orevent
further increase in the amplitude of subharmonics. This
character may be a way to differentiate between subharmonic

generation with cavitation and without cavitation,
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Chapter V
SUMMARY

1, Conclusions

The work reported here has been an attempt to develop
a mathematical analysis of subharmonic generation in acoustic
systems and to check experimentally the adequacy of the theo-
retical description of such a phenomenon.

The principal conclusions of this thesis are the
following:

(a) Subharmonic oscillation is a manifestation of sys-~
tem instability. The analysis of its behavior can be ob-
tained by first assuming its existence and then determining
the conditions under which i* occurs. The two-variable (two-
timing ) perturbation method has been a very useful mathe-
matical tool in carrying out this study.

(t) In a conservative system of three oscillators
with a single nonlinear element whose energy function is
V=X1X2X39ji‘thesumf&equency of two oscillators is close to
the third one, there exist three integral constraints. Ry
using these constraints in the relevant four-dimensional
phase space we can obtain a single trajectory to describe
the system's motion.and the time variable can be found by an
integral along that trajectory.

(c) For a dissipative system, subharmonics can be

fm———



excited by a sufficiently strong external source, since the
nonlinearity of the system nrovides the counling mechanism
for energy conversion to the lower frequencies. The losses
in the system and detuning from the exact frequency matching
condition play comparab’e roles in determining the threshold
required for subharmonic excitation.

(d) Subharmonics always appear in pairs except in the
degenerate case of the subharmonic mode one-hali, In a2 dis-
tributed system, such as the acoustic irterferomeier, more
than one pair of subharmonics may be excited provided they
meet the frequency sum rule and the driving source is in-
tense enough. According to the theory, for a medium with
frequency independent losses, the subharmonic of one-half
has the lowest threshold fcr excitation for a given detuning.

(e} Subharmonic generatiun has been observed exneri-
mentally in an acoustic interferometer. Because cavitation
was carefully avoided during the investigation, the exweri-
mental results, such as the threshold level, and the specific
subharmonic modes excited, are consistent with the theoretvi-

cal predictions.

2., Future Work
The theoretical study of subharmonic generation can
be further studied for nonlinear element with other form

of energy functions. For exzmple, if the thiee oscillator
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model possessec a secord energy function, then there will

be an aiditionzl phase variable and one of the three origi-
nal constraints dces not hold anymcre. Therefore, the orob-
lem ¢an not be reduced to quadrature. The existence of

s ther types of constraints remains to be determined.

The one-dimensionzl model for the distributed system
should be extended to three-dimensions. This will permit a
more realistic comparision of th2cry and experiment.

Such an approach will also allow decomposition cf the wave
number vectors to cover the more general case when the prop-
erties of the medium becomes dispersive.

On the experimental front, it seems that “{empera-
ture control of the container will be necessary if more
precise quantitative measurements are desired. A 0.2° Genti~-
grade change will cause 0.6 KHZ shift in frequency for
modes around l.5 HMHZ 'with +the present set-up.

Liguids other than water can also be used for observing
subharmonic generation. The experimental data will supply
the information on the nonlinearity associated with differ-
ent liquids. However, purification and possible cavitation
deserves investigation before considering the meaning of the
experimental measurements.

It may be interesting o extend the investigation to
subharmonic generation in a solid medium resonator. With-

out the complications of cavitation, such nonlinear phe-
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nomsens may provide a different practical methed of energy conversion.
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: R'sin(wit’-k'x’fd)

Pig. A-1

Wher. waves reflected from a vibrational boundary, their
amplitudes and phases will change according to the boundary
conditions. Here we are discussing such effects and make a
comparision with the interaction due to the nonlinearity of
med ium,

Fig. A-1 shows that a wave with the particle velocity
of A] sin @nit' + kix') is incident on a rigid boundary
whose surface moves harmonically with a disnlacement as
E’ sin (wé't:')c A reflected wave can be found by matching
the boundary conditions, in this case, it iss

R sin (Wjt' - kix' + 4*) , (A-1)
where R* = 'Ai .
£ = 2k &' sinwét' .

Asy  sin (Bsina) = 2J,(B)sina - 245(8)sin3a + **°°°7,
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TalB) = () [mlnz - TR ‘%)Z SRR I
t3-21j

we can exnand the reflected wave by conzidering *he “ire?

order tcrm of g’ nnly (%’ is a small quantizv):

R™ sin ¢Oit' - Kkyx* + $')

= - Af =in {wt* - kix') cos (2§'k]sinwit’)

- At Pt _ e let in (P2 teiriote v
Aj cos (Wit kjx ) sin 2% kisirwl )

r
= - Ai sin (w}'t' - l»‘{x') LJO(ZKis') 3 2<72(2}:i3§' RURFIVES

+ lnooclOJ + Ai cos (w{t’ - kix’) [ZJ](ZREE')?J (}J,g'fl

R,

- 4] sin &»i?' - k;x') - A ces &o;t' -k

]

x2ki§'sin a%t'

- Al =ir ItY -kix') - KIB'AT [sin(witt - witt 4 <]t

+ sin (Wit +wit’ - kix')] .

(A=3)
The ampliiudes of new fraquency comnonents ﬁu% «cui) and

&u% +t0i) appear as:
*
l: klh'AQ
Bp'= 2154

and in the nondimensional notation defined in Chapter 1l!', 1%

A 1Y
\a=r g

becomes:

3
A, = cWBA, . (A-4)

However, the vibrating boundary will alsc radiste
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an zeotctic warse whose purticle velocity ‘iss

Ui = 2;“5 cos;oét‘. (4-6)
Thiz wave will interact with the reflected wave Ay ir the
LaGiv: possTsTes 2 nonlinear propertye. According to the
an-1%11=% in Chapter I11, 2 new {requency conponent of w3 + Wy
or w3 - oy will aruear with a relation as:

T TSR s (A-7)
or, for one dirensionz2l problem,

_ .1 -
A, = €(2+i )'*92“’3%"11' . (2-3)
t

vhere I is the distance in wavelengtns travelled by the two

interacting waves.

Comparing Eqs. (A-7) ana (A-5), we have:

An - re e s T
20 arwmio v
A:‘: _I” (J.’l . (A"‘9)

Since W, and W, are in same order and [* is about 6.5 for water,
Eq. (4-9) indicates that A2 is L times larger <han A;. This

is proof that the nonlinear effect due to medium has

more influence in the generating new frequency corponents

than a vibrational boundarye.




Ajrrndix B
= 1FATIOL CF A2 CYaRaUTERISTIC EQUATION FOR Twe

s30T A LL WDUES L. THE THREE-SECTICH CCNFOSITE RESOLATOR

L0 Tesoyrhoz modes of 2 certain resonator car be de-
termircr, frap ite boundary —onditions. Howsver, for the one

iirer sanal reoneior showr in Fig, 3-2, the transrission

)

c1.y @as wneky fer seiving such a oroblem.

Conr:-ide» o-1r section of tne conmvosite rescrator 28 2
nart 7 2 transmission line, Since the wall gt right side
is terniprated 1% a nressure release surface (v = 0}, th

ecouxtic impedance it repracents to the left wiil ve:

Tl = a@eps Tam woen 5=1)
i NuTw T e 8=2
where =11 the notations are defined as before.

*he middle section (medivm) will transfer Z1 to its

left si1de with 3 new impedance value as:

Z, + je'c' tan k'S

1 "
= &ip? -~ -2
¢te e'ct + le tan k'S ° (B-2)
The resultant impzdance appearing at the left wall will

then becowe:

2, %+ je'e! tan k'D

2 Vv 8
~F' \ 7 N [3 (3“3)
v €y * e, tan koD

Az ik 12f1 wall also ierainates with a nressure ro-

lease aourinee, at  resonane, we chould have:




g

Z3 =0, {8-1)

With the relations of Egs. (B-1). (8-2), (R.3), ard
(e-4), we get:
2

[R{tan k!'D + tan K?H) + tan ¥*S ~ R® tan k'D ian k'H tan k*S]
W w L W 3

/(R - R? tan KSH tan k'S - R tan k'H tan k2D - tan k'S

x tan k;D)
=0 ) (B"'S)
or simply,
- : 11 2 . .
R(%an kiD + tar s&ﬁ) + tan k'S « R® tan ¥}D tan kH
X tan k'S
=0, ” (B-53

which is just the characteristic eguation (3-63).

N
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Abvendix £
COWFUTER PRCGRAL FOR THE NUWERICAL
SOLJTIOXN CF THE CHARACTERISTIC EQUATION
PR A THREE SECTION COUPCSITE RESONATOR

The resonance frzacuency £ of 2 one dimensionzl three

N

ectior rasonzator, accordins to the discussicn in Chapter iiJ,
shoitid satisfy the equation:
. £ i £
R{ tan 3 7 + tan 3 = )+ tan= o
I X
w h 5

-than%ﬂtan-f‘:ﬂta.n-gﬁ =0, (C-1)
- *d “h s

where all nofrzitisme are datTined za pre\rinuc1lr=
For a given resonator, the resonance modes czn be determined
by finding “he rcots of Eg. (C-1). We =zdopt tre Hewtion-

e

09 . .
Raphsor fermwla - for the numerical ccmputation,

First, we define a func*iocn as :

T T <
P(f) = R{tan 3T+ %an 3 ) + tan 3 7
d h S
2 £ T £
- R™ tan = @ tan & o tan = 4
Ty fh T o (C=2)

and DERF(f) = Qﬁéil .

The roots of Eq., (C-1) ¢an then be found from Ea, (C~2) by

*

the iterative method:

F(x_:L
X591 %5 " DERF( X1 (C-3)
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Table €-1 lists the conputer program for carrying out
the actval compuiation process of Eq. (C-3}. &s fs is nmuch
sSmaller than fh and fé, the separation between two succes-
sive roots will not exceed £ We use 0.65£8 for the ini-
tial value cduring iteration,

In this vrogram, the region near singular points of
the tangent funciions is avoided to prevent the computer irom
overflowing. Any missed roots are determined by interpclating
fror their neighboring roots.

Notations uxed in the program Tollow closely to what
are defined in Fig. 3-2. The final output solution Y(I) is
the frequency of the resonance mode in units of XHZ, and G(I)

is the actuzd value of the funcihior F{f) when £=Y(I),




ey

AETA6 SR
17 en& 2273 1) o ENATE “EN,TIvERD
47 EXef, FRaTCLLe
CIFOMT.LY N DD o
[ A KIS OF 2 RESWATMX -
Exyreser FCY
SIN XX Y1203),%0200)
wRETF 06,5958
B9 FERIRT CIHL)
190G RZ37 154173 ENNSE00) FOLFHLES K
WRETE (&,3913 TDeENFS,R
101 FIRYAY (377.1,68,.5)
033.1€15¢865387FD
He3.1615C28820/F R
$33.1415525538/F8
AeSFCeS20M/FS
€3 LIf 1=1,200
(18310
110 SeS1a
Yi1Iv=-Cu059FS
. i=2
131 YUI-29eYUI=1300, 50058
122 M=) a¥L I=35 03,01 055
. | L3 20
232 Islel
ASTaY{1-100C L50F8
123 Laz8Ten
¥uXSYon
~ 3 16 Jelel5,2
aje2.1425628536/2)
oal-y
v I¥sl~y
BIS=R8SLL15)
Alv=apiq2v}
IFILIULZ. 1 E-55) €3 T2 J12
IFIL2Y.RE0L.S~270 G2 12
103 CCuTirusz
AxTARMIXST*%)
- ALleiB3(32
IFELL,GS.1.E4745 €0 jO 112
e T2NITSToi)
23=385(5)
IFILA8.5C.0.507¢3 53 1C 112
2¢C CaLL SIR"!-ﬂode-ﬂoFsaf‘FuFCf.XSTol-E'CszcaoISBl
YiX)ny.
GEl)nF
FIYII-15=P{15) 258,321,111 N
320 Tavif) -v(i~3)
IFI=.C K. FS) YELIsgYaisoXei=LNdrs
IFE3-A3 102,102,407
WO& JRISL (L2061 LRevEED,CU52 02,50
ACL 7NM2T (1X,1342Ke5L0145X,Z14.5)
<07 35 Ty 1
scC E?J’

<
SUBRIYTINE nl&;lx.o.u.s.i.F.csﬁr.;cr.zsr.ers,xsxa.xsa:
—. §£&=0 B - . -

X»XS¥

T =X

Skl FCTUTOLD:H S sRyFyCERF)

10 F o200 2EPS -

00 & I=1,IEKD

IFIF 32 7,1

FFIDERS 12,342

DXsE/2E> F

. $P23,]413614536/85.25)

42X« 235 (DX)
IFLACX,35,$P) GXalX852) /40X
X=X~35X
TileX
. CALL FZTUTIL.00MH S FoCERF}
- IlaEPS

A=ADSIX)

1F(A=1,04,%,3

TOLeTiiea

IFERSS? 2X21=TULSS. 540

(FLA5(E)-TOLFIT, T,

Lanriny

15 2}

RETURN

17942

PiTYaRN

ens

SULRIUTIIE FCT(XoOeMySoR,F,DERF)

1. r-°-l‘zn(r~d)or;utx~ulaollh(ztsa-vvonIIAN(n-Dl!'ifiuixsnil’(7l*l!
1e5))

20 UE“--3'(OI!CQS(X'u)t'l?orllCCS(x’H)l"ZlOiI(COSIX'S)lc'?-"’Z‘I(0[
xtu':(xtn))vv;)o(rant;-ul1'(r5wtx's)lo«rtuzxoo;l~(u!(:05(x-ﬁl)'ttlo
l(:¢3010$))0t7L¥£x-ﬁl)-xflﬁlx'ula‘(Sl((OSlx'S!IO'Zl)

HETUR
Lan

N e

D Ve

VA4
/7739.5Y50h 1 ¢

1562, 0708 2146 jh .ok
T EARAY B TN 3 { A F AN

(4T



gy

2,

3.

b,

Se

9.

1o,

11,

13,

B-1

BIBLIOGRAPHY

N. Minorsky, Nonlinezr Oscillations (D. Van Nostrand Co.
Inc., New York, 1962),

C. Hayashi, Nonlineur Oscillations in Physical Systesms
(McGraw-Hill Book Co., New York, 1G6L),

Te Eo Stern, Theorv of Nonlinear Networks and Systenms
{(Addison-Wesley, Reading, Mass. 1965).

R. E. Kronauer and S. A. dusa, "Necessary Conditicnis for
Subharmonic and Superharmionic Synchronization in Weakly
?gn%é?ear Systems, " Quart. Appl. Math. 2%, 153-160

360},

S. A, Kusa and R. E., Kronauer, “Sub- and Superharmonic
Synchronization in Weakly Nonlinear 3Systems: Integral
Constraints and Duality,” Quart. Appi. Math. 25,
395-k1k (1958).

J. M. Manley and H. E. Rowa, "Some General Prcperties of
Nonlinear Elements--Part 1, Ceneral Energy Relations,”
PI‘OG. I.R.E. .lg_}_. 9015"'913 (1956).

D. G+ Tucker, "The Explecitation cf Non-linearity in
Underwater Acoustics," J, Sound. Vib. 2, 429-434 (1965).

K. L. P. Helmholtz, Sensations of Tone (Dover
Publications, Inc., New York, 19%4).

Lord Rayleigh, Thz Theory of Sound (Dover Publications,
Inc., New York, 195k),

R. Esche, "Untersuchung der Schwingungskavitation in
Plunssikeiten,” Akust. Beiheite, 4, 208 (1952).

P. Desantis, D. Sette, and F. Wanderiingh, "Cavitation
Detection: The Use of The Subharmonics,® J. Acoust.
Sco; Am. L2, 31L-.516(L) (1047),

P. W. Vaughn, *Investigation of Acoustic Cavitation
Thresholds by Observation of the Pirst Subharmonic,"
Ja SOL‘,ndo Viba z, 236-2""6 (1968)&

Do Jo Dunn, M. Kuljis, and V. G. Welsby, "Nonlinear
Effects in a Pocused Underwater Standing Wave Acoustic
System,” J. Sound, Vib. 2, 471-4?6(1965§.




——

1’*.

17.

18,

19.

21,

22,

23.

24,

25,

A, Eller and H, G. Flynn, "Generation of Subharmonics
of Order One~Half by Bubbles in a Sound Field,"
J. Acoust. Soc. Am. k6, 722-727 (1969).

E. A. Neppiras, "Subharmonic and Other Low-Frequency
Emission from Bubbles in Sound-Irradiated Liquids,"
J. Acoust. Soc. Am. 46, 587-601 (1969).

J. A. Bamberg, "Subharmonic Generation in an Acoustic
Faory-Perot Interferometer,* Technical Report No, 16,
¥1t§a?onics Laboratory, Michigan State University

1907 °

A, Korpel and R. Adler, "Parametric Phenomena Cbserved
on Ultrasonic Waves in Water," Appl. Phys. Lett., 7,
106-108 (1965).

W. Re McCluney, “An Investigation of Subharmonic
Generation in an Ultrasonic Resonant Cavity,"
Technical Report No. 2, Ultrasonics Laboratory, The
University of Tennessee (1966).

Ching-Tu Chang and i. 4, Breazeale, "A Study of the
Ultrasonic Spectrum in a Resonant Cavity,” Technical
Report No, 3, Ultrasonics Laboratory, The University
of Tennessee (1967).

B. D: Cook, "Progress in Nonlinear Acoustics,® Dept.
of Physic, Michigan State University (Private
Communication).

L. &dler and M. A, Breazeale, *Generation of Iractional
Harmonics in a Resconant Ultrasonic Wave System, "
J. Acoust. Soc. Am. 48, 1077-1083 (1970).

M. Luukkala, "Fine Structure of Fractional Harmonic
Phonons! Phys. Letiers, 254, 76-77 (1967).

M, Luukkala, "Threshold and Oscillation of Fractional
Phonons{ Phys. Letters, 25A, 197-198 (1967).

#. Luukkala, "On the Instability of Phonon Breakdown,™
Annales Academize Scientiarum Fennicae, Series a, Vi.
Physica, 306 (1969).

P. J. Dallos and C. 0. Linnell, "Subharmonic Components
in Cochlear-Microphonic Potentials,” J. Acoust. Soc.




26,

27,

28,

29

30.

31.

32.

35.

36.

37.

38,

P. J. Dallos and C. 0. Linnell, "Even Order Subharmonics
in the Peripheral Auditory System," J. Acoust. Soc.
Am. 40, 561-564 (1966).

P. J. Dallos, "On the Generation of 0Odd-Fractional
Subharmonics, " J. Acoust. Soc. am. 40, 1381-1391 (1966).

A. 0, Gilchrist,; "The Free Oscillations of Conservative
Quasilinear Systems With Two Degrees of Freedoms,“
Int. J. Mech, Sci, 3, 286-311 (1g61).

Re E. Kronauer and S, A. Musa, "The Exchange of Energy
between Oscillations in Weakly-Nonlinear Conservative
Systems," J. Appl. Yech., ASME., 33, 451-452 (1966).

G. F. Carrier and C. L., Pearson, Ordinary Differential
Edquations (Blaisdel, Waltham, Mass. 1968).

Y. Psuzuki and M. Kakuishi, "Parametric Excitation of
Contour Modes of Vibration in AT-Cut Quartz." Proc.
I‘EQECEC’ _iig 463 (1967).

E. F. Ghiron, "Anomalies in the Propagation of Acouslic
?aves)of Great Amplitude," Alta Frequenze; 4, 530
1935).

F. V. Bunt, "Note on the Exact Equation Governing the
Propagation of Sound in Fluids," J. Acoust. Soc.
Am, 27, 1019-1039 (1955},

N, N, Andreev, "Concerning Certain Second-Order
Quanties in Acoustics, ™ Soviet Physics-Acoustics 1,
2-11 {1957).

W. Keck and R. T. Beyer, "Frequency Spectrum of Finite
Amplitude Ultrasonic Vaves in Liquids," The Physics of
Fluids, 3, 346-352 (1960),

Re I. Beyer, "Parameter of Nonlinearity in Fluid,"
Je. Acoust. Soc. Am., 2_2_' 719 (1960).

L. Adler and E. A. Hiedemann., "Determination of the
Nonlinearity Parameter B/A for Water and m-Xylene,”
J. Acoust. Soc. Am. 3%, L10 (1962).

L. Adler, "Parametric Generation of Ultrasonic Waves:
Linear and Nonlinear Phenomena," Technical Report
No. 7, Ultrasonics Laboratory, The University of
Tessessee (1970).




39.

ko,

hi,

L2,

t$=d}

T, F, Hueter dnd.R He Bolt, Sonics, John Wiley and
Sons, Inc., New York, (1955),

E. V, Roemanenko, "M1n1ature Piezvelectric Ultrasoniz
Receivers, " Soviet Physics-Acoustics, 3, 342 (1957).

L., D, Rczenberg, Sources of High-Intensity Ultrascund,
Translated from Russian by James S. Wood, Plenum
Press, New York, (1969).

J. Barger, "Threshnlds of Acoustic favitation in Water,®
Technical Memorandum No. 57, Acoustics Research
Laboratory, Harvard University (1964).

K, S, Kunz, Numerical Analysis, (McGraw-Hill Book
Company, ITnc., New York, 1957)




