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S*Y;*-OFS IS

Subharmrnni Ferneratir. *-- a' - -,:-on~enon whic- era.' bean

observed ir acoustic ~vtrs-c -i resu]2 of ther resro-e to

irtense sigrnals. The z rrose of this thesis i~s to develop w

sirrrle 'atheratical mre for th- basic re'thanisr of suh'Isr-

mnric P'enprA-rn and, urnde- -the condi- ,ors arraneei in -z!e

lnboratory, to irvpstirate such, a Dphenomenor exrnernenea) ly

for -neck~.ri the adequcv of tne theoret'cal analysis.

We introd ;ce th _-ubjeCtz with a study on the behavicr

CIf luni:ed syster-s w,.-,.- rass and szring elem~ents. Th-is rar-

tieular Probler. is form~ulated byp consideri.- three cour.2ed

ascillators with a sirrnzp nonlinear elen-.ert whose energy

furcti,r Is rrorortinnal to thp Droduct of tne disracerert

am-] itjdes in thesc trrse oscci) >tors. Ir a ccnser-V~tve

mI'strpzr, the anal"Jsis i in thrr-z ccnst-airts for tne

response to the d_' szurbance. Tha-% is, irn additicn to PrerE:j

conservation, there are relations for the inbalance in enpre~l

exchange arnonp tne os' ao-,and The ar.itlkudes and phasc.-

of the response. Thc.-e corstraints can. ce used to reduce

such a nrnblqim to, quadrature. The phase diagram for de-

scritinp the system's resnnnse indicates that thp hiph fre-

atiency oscillatior Is unstathe and its #-neragy can he easily

divertinr tCo the low freq-.icy -iscillition. This tendency
sup-ests that, for a noriconsorrativt 'rt, n subharm'rnic



oscillation Can be excited and sustained if the energy sup-

plied cnan balance out the enregy losses in. the system.

Based on this model, .te derive the threshold for suharmnoni

nscillation In relation to the nonlinear couplin~g, dissi-

r,atio-i. and deturing parameter of th~e sysTer..

We then discuss subharmordic generation fin distrib~tt~d

systems by examininp, the solutions of the nonli neair wave

equatiorn. We find tlhat the nonlinear rroperty of the meti-nr

c-w. vrqviee a couplinq- effect for signals with distinct fre-

quercies. Tn free Fpace, an intense acorstic wave will forr

a shock- wave and no stubharmonic can be generat-ed, Btut in a

closed system. stich as a rescnator, there is the p':sssibi~ity

for -,ubharmoni~c modes to be excited. The? mathematical analy-

sis for mode-couDlingt in a resonator shows some similarities

with the nonlinear couulinp or the ti-ree oscillators in the

lumDee system. Since a resonator generally poss,_sses many

m~odes, the analysis has been extended to determine a selec-

tion rule for which modes will be excited at a Fiven condi-

';.! n

Experimental invest i~ation of subhannonic generation

is carried out in an interferometer type resonator. Water

is used as the medium that supports the irtense starndinp

wave fo- inducing the nonlinear coupling effect. Be, ause

cavitation is carefully avoided by devassin and filtarinp,

the liquid. we are able -to obtain results that are consistent
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with our theoretical model.

From the results of this research, we reach the cn-

clusion that the subharmonic generation phenomenon is attrib-

uted to nonlinearity in the system and its sustenance also

depends on the loss factor and detuning parameter associated

with the particular subharmonic modes to be excited. In a

water-filled resonator whose linear dimension is larger than

serval wavelenaths, we have found that, in the absence "f

cavitation, the peneration of subharmonics is mainly due to

the nonlinear pronerty of the medium.
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Chapter I

INTRODUCTION

The subharmonic phenomenon has been studied in this

research, with particular emphasis on its existence in acnos-

tical systems. We shall first discuss the nature of sub-

harmonics and review some related work reported in the liter-

ature. We shall then define the purpose of doing such a

stuay.

1. Subharmonics and superharmonies

In a nonlinear system, a response at other than the

driving frequency is often observed. uost often, the fre-

quencies of the response in such a system are related to the

driving frequency by an interger multiplier, and these are

known as harmonic responses. But under certain conditions,

a response with a frequency less than the driving frequency

can also appear. To distinguish between these two phenomena,

the response with frequency less than driving frequency arr

known as subharionics and the others as superharmonics.

Though both subharmonics and superharmonics are phenom-

ena caused oy noniine~rities in a system, they have a differ-

1*"
ent character . Superharonics are a stable response that

* Numerical superscripts corresoond to references listed in
the Bibliography.
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will always occur when there is a driving source in the non-

linear system. Their frequency component is related to the

order of the nonlinearity of the system. On the other hand,

in order for subharmonics to be excited, a certain minimum

driving signal strength is required. The subharmonic oscil-

lation is due to an unstable property of the system and

their sustained excitation depends not only on the intensity

of the driving source but also on the proper phase relation

with the driving source. Except for the degenerate case of

subharmonics of one-half, subharmonies ordinarily exist in

pairs such that the sum of each frequency pair equals the

frequency of the driving signal.

The study of subharmonics and superharmonics in non-

linear mechanical and electrical systems has been carried

out in some detail by Hayashi2 and Ylinorsky 1 . Stern's 3

book on nonlinear systems analysis has extended the non-

linear phenomena into multidimension space vectors. Recent-

ly , Kronauer and Musa4 '5 have done some general analyses on

the synchronization of subharmonics with the excitation for

weakly coupled nonlinear systems,

Early studies of sub- and superharmonic phenomena were

pursued fo: the purpose of minimizing undersirable harmonic

effects in mechanical systems. These analyses generally end

up predicting the conditions for which the system will become

unstable and anharmonic oscillations will begin to grow.
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Later, owing to the application of nonlinear elements in

electrical circuits, it was found that harmonic generation

can be used as a substitution for frequency multiplication

when a direct means for obtaining such a source is not

available. Since the recent development of high intensity

laser beams, utilization of harmonic generation has even

been extended to optics. The object of subharmonics studies

has also been expanded from merely understanding their exist-

ence to research on the property of systems. From compari-

sons with the results of parametric amplifier studies 6 , sub-

harmonic generation seems to have features similiar to the

down-conversion amplifier. According to the Manley-Rowe

relation 6 , high gains of such conversion should be easy to

achieve through the subharmonic generation mechanism, but

its unstable character and very narrow bandwidth have limit-

ed its practical application. Subharmonic generation can

also be employed in frequency dividers if the proper synchro-

nization can be adequately maintained. However, recent

electronic digital techniques have provided a much simpler

arrangement. This makes obsolete the idea of using the sub-

harmonic generation mechanism as a alternate frequency

source.

Tucker 7 , in his study of nonlinear properties in under-

water acoustics, has discussed some possible applications of

subharmonics in forming narrow low frequency acoustic beams.
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In the next section, we shall review some of the work relat-

ed to subharmonic generation in the field of acoustics.

2. Work on Subharmonics in Acoustics

The earlist work related to subharmonics in acoustics

is probably due to Helmholtz He described the phenomenon

in which one can sense a fundamental pure tone when only two

of its harmonics are present. This has been recognized later

as the beating phenomenon whose real cause is not the inter-

P..tion of sound r:,aves t1.'a t.'e non!:ne.: n

the human ear. Lord Rayleigh9 deduced solutions for a

Duffing equation (U + ki + k'u3 + n2 u = 0) and indicated

that, in the presence of a driving force, a response of less

than the frequency of the driving source can be excited.

Work of thi& kind has been studied extensively in the field

of nonlinear mechanics ever since.

The extensive use of sound for underwater communica-

tion, initiated in World War II, has provided a great deal of

research into the generation, transmission, and reception of

sound waves in a liquid. One of the major efforts is to

maximize the range of acoustic information transmission.

However, there are some limitations to such efforts. One of

them is the cavitation problem. When the sound wave pressure

reaches too great an intensity, foggy acoustic streamers

form in front and on the surface of a transducer (this phe-
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nomenon is what we now call "gaseous" cavitation). Such

streamers produce noise detectable by hydrophones. This

noise has a line spectrum containing subharmonics 0  Sub-

harmonics therefore become one of the interesting subjects

in the study of cavitation phenomena. Some investigators1 1'

12 even suggest that the subharmonic can be regarded as an

indication for the occurrence of cavitation.

Tucker 7 has pointed out sove possibilities in under-

water acoustics for the utilization of the nonlinear char-

acter of the med um. One such experimenta', investigation

is the generation of subharmonicsi3. A focused standing

wave system is employed during the investigation for build-

ing up a very strong acoustic field. When the acoustic

pressure reaches a certain level, the subharmonic has been

observae. Such a threshold appears to be correlated with

the gas content of the liquid. When boiled water is used,

those investigators reported that no subharmonics were

observed.

Eller and Flynn14 have focused their study on the non-

linear problem of subharmonics excited by gas bubble oscil-

lations in the liquid. Their analytical results show that

a bubble can be excited to its resonance when it is subjected

to an acoustic field with twice the natural frequency of

such a bubble. Neppirasi 5 did some experimental work along

this line by injecting bubbles of controlable size into a
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liquid. The results indicate that subharmonics are easily

excited arid their intensity is strong when the condition of

Eller and Flynn described above is established, They con-

cluded that subharmonics are generated by bubbles through

the cavitation process.

On a separate front, subharmonics have also been an

interesting subject under discussion in the field of ultra-

sonics. While studying light diffraction patterns produced

by standing waves in a liquid1 6u1 7 ,1 8 ,19, it is observed

that extra dots appear on the regular diffraction pattern

when the sound pressure reaches a certain level. Those

additiona2 dots corresoond to another impcsed standing v'ave

whose wavelength is larger than that of the original driv-

ing signal. Cook2 0 has explained such a phenomenon by

assuming possible wave interaction for subharmonic genera-

tion, but he did not obtain a complete description of the

relation between the frequency of driving signal and the

subharmonics observed. Adler and Breazeale2 1 have inter-

preted this phenomenon differently. They concluded that

the vibration of the boundary of the acoustical interfer-

ometer parametrically excites the subharmonics around the

order of one-half of the original signal, However, such

a hypothesis has ignored two observed experimental facts:

that subharmonics of other order have also been observed1 6 '

17,18,19 and that only at a certain length of the interfer-
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ometer they can be excited16 .

Subharmonic phenomena have been detected in solids

when an acoustic wave is applied to crystals
2 2 ,23 ,24

Luukkala interprets these observations in terms of a phonon

breakdown hypoinesis. The qualitative phenomenlogical argu-

ments he uses seem to support the assumption that the gen-

eral instability of subharmonic signals is caused by exces-

sive energy going into an additionally accessible vibration

mode. These arguments correctly predict the threshold for

one-half subharmonics but are not ccmprehensi',e eiough Lo

include three-phonon interaction.

9allos252 6127 reports observing subharmonics in audi-

tory systems. That such subharmonics also occur in pairs

and that sum of these frequency pairs equals the driving

frequency seems to indicate a similarity with other physi-

cal systems.

3. Scope of This Thesis

The purpose this thesis is to study the basic

principles underlying subharmonic phenomena; no attemnt

is made to explain every aspect of the existing observations.

We use a simplified mathematical model in hopes of obtaining

some fundamental quantitative relations among the important

parameters. In the accompanying experimental work, we not

only try to confirm the theory but also intend to clarify
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some inconsistencies among other reported experimental inves-

tigations. We are concerned with: What is the mechanism

for subharmonic generation? What is the selection rule for

the appearance of a given subharmonic mode? What is a sys-

tematic and practical way to excite subharmonics?

In Chapter II, we study, in a general sense, subharmon-

ic generation in lumped systems. A model of three conserva-

tive oscillators coupled weakly through a nonlinear element

is used for the analysis. Using a first order perturbation

ine Chod, we have found that, besides the energy conservation

law, such a system possesses two more invariants- enough

to reduce the probem to quadrature. The analysis indicates

that the high frequency mode can, under certain conditions,

divert its energy to low frequency modes. By considering,

then the effect of dissipation in the system, we have de-

rived the threshold level of excitation for sustaining such

subharmonic oscillation. The detuning problem, that is when

the frequencies of subharmonics do not exactly match the

driving signal frequency, has also been treated.

We discuss subharmonic generation in distributive sys-

tems in Chapter II'. The response of the system has been

examined for disturbances with a finite travellina speed.

A wave equation is formulated for studying the effects of

all pertinent parameters. We find that, due to the nonlinear

property of the medium, there is a coupling relation among
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signals with distinct frequencies, In a multiresonator, it

becomes mode-coupling which has features similar to the

coupling of oscillators described in Chapter T1. The condi-

tion for forcing excitation of certain subharrnonic modes is

then obtained analytically based on information about the

boundary conditions, detuning parameter, and the dissipation

factor of the system.

The detailed experimcntal set-up is described in

Chapte- IV. The purpose of such an investiqation -s to seek

evidence in supporting of our hypothesis about subharmonic

generation. The liquid used in this experiment, water, has

been filtered and degassed in a controllable manner in order

to get consistent results. Data are collected in terms of

actual acoustical quantities so that an accurate physical

interpretation can be made.

Chanter V presents the conclusions of this research.

We comoac-e our analysis and our experimental results, and

examine va)id.ty of our hypothesis in understanding the

mechanism of subharmonin generation. The direction for the

future work and some possible applications of the subharmonic

phenomenon are suggested.
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Chapter II

SUBHARP4ONIC GENERATION IN LUMPED SYSTEMS

The problem under consideration in this chapter is the

energy exchange among three oscillators. Gilchrist 2 8 , in

his investigation of conservative quasilinear systems with

two degrees freedom, discovered an integral constraint on

the amplitudes of the oscillators. This constraint actually

is an energy conservation law of first orde in a pertur-

bation expansion. An additional constraint on phase and

amplitude variations has been deduced by Kronauer and Musa
2 9

in their study of the exchange of energy between oscillations

in weakly-nonlinear conservative systems.

In the model of three resonant tanks with a nonlinear

element discussed here, we have derived a third constraint.

This constraint gives an additional relation among the energy

stored in each oscillator and, under a special circumstance,

it can be reduced in the form of the .lanley-Rowe relaticn6*

With these three constraints, the behavior of three coupled

oscillators can be reduced to a problem of quadrature.

We have also extended the analysis to the situation in

which there are dissipation elements in the resonant tanks.

In such a simplified mode], the effect of damping imposes a

similar influence on the energy exchange as that of detunine

of the oscillation frequencies. Tf an external source is
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provided, to make up for the energy loss in the system, a

steady state will be reached* When the driving intensity

exceeds a certain level, a response with an oscillation fre-

quency less than that of the external source will appear.

1. Coupling of Three Matched Oscillators

In a linear system containing dissipationless elements

n6.11y, there are in general some resonant modes and correspond-

ing normal coordinates. Tranforming to these normal coordi-

nates, the system may be described by a set of separated

second order differential equations:

d 2 X i  2
i2 i = 02dt2 (-1

where , is the angular resonance frequency pertaining to the

particular mode and Xi is the displacement in the correspond-

ing normal coordinates. Any disturbances to the system may

excite some of these modes* The resultant response of the

system is thq linear combination of these individual motions.

If the system possesses some nonlinear elements or the

disturbance becomes sc strong that elements lose their linear

property, the system will act quite differently, The non-

linearity will cause interaction among modes, thereby negat-

ing the linear superposition principle, However, if the non-

linear effects are sufficiently weak, we can develop a per-

turbation expansion. The first order expansion theory is
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known as the quasi-linear approximation.

In the following, we will discuss a system of three

resonant modes with a single nonlinear element. Such a

simplified model will illustrate the basic mechanism of non-

linear coupling without involving too many mathematical com-

plications and will provide a framework for understanding

the Dhenomena which we shall pursue later.

We consider that the single nonlinear element is an

energy storage device with the energy function given by;

Vn = taX1X 2X3 " (2-2)

where c is a nondimensional quantity with a magnitude of

much less than one, and a is a constant related to the non-

linear element. This might be difficult to realize physi-

cally, but is, mathematically, an appropriative device. The

total Lagrange of the three oscillators with such a non-

linear element is:

22 22 22
a, a x aLX 1  a 2 U)2X2  a x

S 2 2 2 2 2

+ t-XIX2X3 5 (2-3)

where a's and w's are parameters related to the system

elements.

The response of such a system is governed by the

following coupled equations:
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dXt2 11  2 3
d2Xl

+ L 2XI = 6GI 2X3  ,24

dt

dt2  - 3 1 2

where a!s are constants derived by the relation o -

We will at first simplify things by assuming that the

w's obey the relation,

W1 + W2 = )3  (2-5)

In Eq. (2-4) a's are a measure of the interaction amnong X1,

X2 , and X3. Without such coupling, XI, X2, and X will

oscillate independently with angular frequencies w., w2 '

and W 3 respectively. We refer to the matched condition of

Eq. (2-5) as the "sun rule" for angular frequencies of

coupled oscillators.

Since ea I , "O2, e 3 are small quantities, we can

linearize Eq, (2-4) by expanding the variables in terms of

Xi  io + 6Xil +22+' , i = , 2, 3.

t f =t(l + b1e2 + b23 + **''°)

(2-6)t s =t&+ dl e 2 + d263 + *"'*")
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where b's and d's are constants of expansion.

The dependent variable t ic now expressed in two

scales t f and ts . We choose that ts is less than tf by

order of e, thereby describing the response of the system

in two time domains: a fast time scale t f to indicate the

immediate response, and a slow time scale ts to show aver-

aging effects due to the nonlinear terms in the equation.

This mathematical approach has been adopted from the two-

timing perturbation method.
3 0

The differential operators then are changed to:

d a dt f dts C
dT a f dt ts  dt at f at "

d 22  2 dtf)2 + t dts + a2  dts 2
dt2 = + D-2ftt ft ) SSs2(- )

2 2
+ 2E 0- + "'" (2-7)

at1. atfat5
and the X is are now a function of both tf and t

By substituting Eqs. (2-6) and (2-7) into Eq. (2-4),

we can collect together Lerms of the same order as E. The

results are:

Fo- & order:

2X0
tXxlo = o,

at f110=0
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2X2
+ ')2 X2 0  O2

atf
2

(2-8)
and 23 Xo o

at2 + 3

For C
I order:

a2X 1l 2 _2x

at + N1X = 1X20X30 - 2 atfts o,

a x2 1  + 2 _2

;t2 + 02 x2 1  02X1 0X30 - 2 atfats X2 0 , (2-9)

and '2 31+W2x a y
2 31 31 3102

a tf + X3 1  - 2 atfats 730,

and so forth for higher order terms of 4.

The solutions of the differential equations (2-8) take the

forms

x 10= R1 cos ( 1itf +

a 20= R c2 Cos (wo2 tf + /2
) 9 (2-10)

and It C OS30 13° %u3-f p3 ) '#

where the R's and 's are functions of ts and have to be

determined. fn seeking solutions for Eq. (2-9). we sub-

stitute the assumed solutions from Eq. (2-10) into the
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right hand side of Eq. (2-9) as source terms, After ex-

panding terms X1 0 X3 0 , X10X2 0 , and X2 0 X3 0 0 we find that they

contain t'ie same frequency components as the natural fre-

quency of the first order equations. Thia means that the

X ilS would grow linearily with time, which would violate the

assumption that the X terms remain smaller than X terms.

These terns, called secular terms, can be avoided if we set

the excitation components equal to zero. The process of

suppressing the secular terms gives the conditions for

determining the R's and 4's. We then obtain the following

relations from Eq. (2-9):

aR 1 a 1
20o 1 T - - R 2 R3 sin r = 0,

"R2 -" 2 RRsnr=0aR

202  3 + R- RR sin r = 0,

(2-11)

2u) RI + -R2 cos r = 0,

1 at s -- 2 R3 sir0

a_ a2

and 20. 3 3 t s + R cR2 os r = 0,

where 3 R 3 o2r20
where.-~ r 3, - R.R,4cs2.=0
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Since the R's and P's are now functions of ts only, the

partial differential operators can be changed to ordinary

differential operators. By further combining the last three

equations in Eq. (2-11), we have in this first order ap-

proximation four coupled equations to describe the response

of the system.

dR1 1

s - I23 ' sin r = O,

dR 2  02f- aRR sin r = 0,

dR 3(2-12)
t R R sin r = 0,

dt 42 3

addr + 3R 1R 2  a 1R 2R 2R1R csr 0
an dt -~~L~3 3 ~ 2 2 )

Eq. (2-10) indicates that the response is mainly dominated by

the oscillation of the system at its linear resonance frequencies,

and Eq. (2-12) shows how the amplitudes arid phases of such

oscillations are modified slowly in time due to system's

nonlinearities. If the initial conditions are known, the

transient behavior at any instant can be determined by

integrating Eq. (2-12).

From the first three equations ef Eq. (2-12). we will

obtain

(),Rl,)2 (222 3R3 ) 2
+ + 3 3  E, (2-13)

aI 02 03
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where E is a constant,

and (2 R2) (u)2R2.
1  1 2 2) = C, (2-14)

Cr a2

where C is also a constant.

A relation between phase and amplitudes can be also be de-

duced from Eq. (2-12):

R1 R2 R3 cos r = K, (3-15)

where K is a constant. With these constraints in Eqs. (2-13),

(2-14), and (2-15), the response of the system can be inte-

grated out in terms of slow time ts .

There are some physical interpretations associated with

the constraints of Eqs. (2-13), (2-14), and (2-15). Since

the square of amplitude is a quantity for the energy, the

constant E in Eq. (2-13) is related to the total energy ini-

tially stored in the system. Eq. (2-13) is just an expres-

sion for energy conservation and always exists for a con-

servative system.

Equation (2-14) indicates that a certain relation has to

follow for energy exchange between two modes. It depends

on the particular nonlinearity we have assumed for the system.

If the R's are inversely proportional to the angular frequen-

cies, the to's and i's are equal,and the initial condition makes

the constant C equal to zero, Eq. (2-14) will have the form:

A2 A2

S 2 for Ai=U)iR i  i=1,2,3. (2-16)1 (0
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Manley and Rowe6have derived this relation from the property

of a nonlinear capacitor, The constraint expressed by Eq*

(2-14) is, of course, implied to more general cases.

According to the analysis by Kronauer and Musa 29 , the

amplitude and phase relation for a weakly-nonlinear, conser-

vative system is determin6d by the average value of the

incremental Lagrange of the system. As the incremental

Lagrange in the system discussed here is:

= r XIX2 X3, (2-17)

the average value of L can be found by using the results of

Eq. (2-10)t (

(L ) eaX1X2X3 dtf, (2-18)

= &aRIR2 R3 .

Hence the constraint of Eq. (2-15) is due to the incremental

Lagrange of the system with K = a general result of

first order approximation.

The transient behavior of such coupled oscillaticn can

be graphically illustrated by a topological approach as in

Fig. 2-1. The diagram uses three axes to express the mag-

nitude of O 1 Rl , 0O2R2, and 3R3 . Any point in the space

represents a instantaneous state of the system's response,

A surface of constant E is an ellipsoid on this space. 0.,

02# and 03 are singular points and they are stationary

states. However, 03 is an unstable stationary state. Any



w 3 R3

C02R 2

w, R

FIG. 2-1 TOPOLOGICAL CONFIGURATION FOR
COUPLED OSCILLATION



2-12

disturbance around 03 will cause a response with a motion

locus circling around the ellipsoid. This indicates that

the energy associated with the high frequency mode is unstable

and can easily be diverted to the energy in lower frequency

modes. Systems exhibiting such features can be excited

into subharmonic oscillation. W. shall further explore such

phenomenon later.

2. Effect of Detuning on Coupled Oscillation

We now consider the case when the frequencies of the

three oscillators are not exactly matched. The deviation

from Eq. (2-5) can be accounted for by solving a detuning

problem. We can expand the unmatched relation in terms of

the matched condition as follows:

as wi+ W2 / ~

we define { = +E61 ,

602 ='02 +e6 2 ' (2-19)

W c'3 +E63'

and let W I + (J) ,.

where 6's are detuning paranters from their corresponding

modes.

The original coupling equations can be rewritten as:
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d2X~

-- t + to2X =aX X + 2C6
d-t2  - 2"3 iXi

d 2X2 + W2. -4rcJ' Y + 2e6 (-0

dt2 2 2 1 3x 2  (2-20)
d2

and 2 _ 33 X 1X 2 +
dt 2

where we let all a's be the same to simplify the analysis.

Using again ithe two-timing erturbation method, we obtain

the first order solution:

x 1 0 = R I ~s ( t o! t + J6x ,

X20 = R2 o (o tf + Y , (2-21)

and X = R3 COS (U)Itf A 3)

with the auxiliary relations:

ctR1 _ R2 R
d s sir=O0,

dts --- sin r = 0,

(2-22)
dR aH R2  r
ar sin r

dts + 4

an _ r+ ( -3 = 1 ) 0 cos r + 6 =0,
dts r, 7 WRl" R

where 6 6
1 + 62 + 63.

Comparing witr, qs, (2-10) and (2-12), we find that the
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total detuning factor 6 appears in the phase equation only*

We shall analyze its effect through the motion locus in the

phase diagrams.

Changing R'. into new variables, we get:

AI = W10RI A2 = WR 2  A3 = Wi3- (2-23)

The corresponding constraints become:

2 2 2 2
A1 + A 2 + A 3 = E - e' ,  (2-24)

2 22A1 C - C= 2s (2-25)

A AA 3 cos r + 26W'U)A 2 = K, (2-26)

whare we have aefined new constants e and K.

Since these three constraints are directly derived from

Eq. (2-22), the original four variables Al, A2, A3, and r

for describing the state of the system in four-dimension

space can be reduced to quadratire and the time variable can

be found by inte.ratina out such a relation.

The ellipsold diagram of Fig. 2-1 is still appropriate

to represent the response of the system, but, because of

detuning, it is no longer possible to deduce the phase, r,

unam:i9uous1y from that diagrm. That is, detuning makes

possible monotonic phase chanpe ( while with 6 = 0 phase

oscillates periodically ). To observe the phase, we make

a transformation based on the first two constraints, Eqs.
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(2-24) and (2-25), irtroducing a new variable % defined by:

A1  e ( si 2
= - sin2%+ ,

A e sin 2 _- K ) (2-27)

and A3  e cos X .

The variable X is a measure of the extent of energy exchange

from A3 to the A1 and A2 set. The third constraint now

becomes:

e3O)3 .4 Wr .
e --- srn X -7 sin2 - K. ) cos t cos r

+2e2 6U0)'W' cos 2 p c= K . (2-28)

The properties described by Eq. (2-28) can best be

understood by considering four cases. First, we observe

that the parameter k represents a fixed energy imbalance

between oscillators 1 and 2 and is unaltered by an exchange

of energy between this pair and oscillator 3. The parameter

6 of course represents detuning. Fig, 2-2 shows the solution

trajectories ( plots of Eq, (2-28) for various fixed values

of 4< )for the four interesting cases.

Case I. (Fig. 2-2a). With no detuning, the trajecto-

ries remain in a cell of width -a. Since the

imbalance is zero, the full rang of Xis

accessible,
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Case II. (Fig. 2-2b). With detuning, same trajectories

can exhibit steady phase changes Since the

imbalance is zero, the full range of % is

still accessible, although there is no single

trajectory which makes the swing from %=o to

%=./2. Thus we can say that the presence of

detuning acts .o reduce the extent of energy

exchange between oscillators 3 and the 1, 2

set.

Case III.(Fig. 2-2c). With imbalance, the accessible

range of X is reduced. The absence of de-

tuning permits trajectories with maximum ex-

change (subject to the imbalance reduction),

As in Case I, the trajectories are confined

to a cell of width n.

Case IV. (Fig. 2-2d). With both detuning and imbal-

ance, two effects are seen to reduce the

extent of energy exchange throughout the

field. Steady phase change is also common.
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3. Forced Excitation for Subharmonic Oscillation

For systems containing damping elements, a transient

disturbance will not excite and sustain subharmonic oscil-

lation, because the signal's limited energy will be quickly

dissipated. In general, in order to sustain a steady re-

sponse, a constant energy source should be provided to com-

pensate for the energy loss in the system.

From our study of the transient behavior of a conser-

vative system, we have learned that the energy in the high

frequency mode can be easily converted into the energy in

low'er frequency modes by some disturbance. We shall now

investigate the criteria for sustaining subharmonic oscil-

lation when a constant energy source is applied to the system.

We use the same model for three coupled oscillators but

include a damping element in each oscillator. The original

three oscillation frequencies, al, W2 , 3, are not exactly

matched, that iscoI + W 2 /o . The external source with

angular frequency w. has excited two subharmonics of angular

frequencies O{ and .Ok with the following relation:

) W + $ = + '
0 1 +2

e W ae d g f(2-29)20 = )
2 +e 2 ,

where O's are detuning factors for each oscillation mode and
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6 is a small constant of magnitude less than one.

The mathematical formulation of this problem is ex-

pressed in Eq. (2-30):

-6F sin WOt

d2X 1  dX1  2
2 11 - , iX + 21 3 C-TjlX 1
dt at

and d2X 2  dX2  2
2 + 12,d= +-- X2 = 621x3 + 2 2X2dt cit

(2-30)

where we have considered that the dissipation frztors, ts,

coupling coefficients, a's, and the forcing term, due to the

external source, F, are small order terms.

We again use the two-timing perturbation method, expanding

the dependent variable t in a fast scale, tf, and a slow one,

ts. After summing up functions of same order, we have;

for O order:

a2-~x 3° + w°x 30 o 0

0 , (2-31)

a tf1 + wi-xi° 0

and 22X + 20

tf
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for eI order:

a2 x +W 2~ = -2 x ;a + 2006 X
ad 31 0 1 atfatsX30 + 033020 3 30

f
X - F sin w t

2 2 + + 2, 110
t2X11  1 11 atfa s12X

a x
-qjt-x1 0

2 ___2

and-aX + 2 1  ~
2 21 .W2-21 = t-2at 5t X20. 2XloX30 + 2220

atf .
-72 -fX20

(2-32)

The solutions of Eq, (2-31) are:

X30 = R3 cos (Wotf + 4 3 ) r

X = R cos (tf + 1) (2-33)

and X20 = R2 cos %o4tf + 42) .

After eliminating the secular terms in Eq. (2-32), we find

the supplemental equations for solutions in Eq. (2--33).

2-W, a + q3 oR3 + -RR in r IF Cos 0oats 3 3r2 1os$ 3 =o

;) 1 W{ 1  Sf 0201--+ R".R R sin r= 0
iats  1 1-R 2R3

2TT-s + 72 2 - RI 3 sir=0,
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o t s  Cr3R cos r + 2W063R + F sin 3 0
O3at+ 2 2 033 3

2AjR l + !-R R cos r + 06R= (2-34)
1lat S 2 23 1 1

, 2 a2
and ZcT2!Ls + !-RiR3 cos r + 2)6 2 R2  0.

For transient behavior, we let F = 0. The total energy of

the system to zeroth order is:

(wR 1 )2  (' R2 )2 ( %R3 ) 2

E = + a + a (2-35)

By the relations in Eq. (2-34). we have:

dE = _ j(oL'iRl)2 12  , 2 _ 2(L0oR 3 )22

t s , (1 R1) 2 (a 2R 2)2 3O
(2-36)

It is convenient to let j1=q,=q3=j , then Eq. (2-36) becomes,

dE = E or E = E0 e - li t s  (2-37)
dt s 0

This indicates that the total energy will eventually be dis-

sipated. The ellipsoid of Fig. 2-1 will shrink to zero in

The forced response can also be expressed in terms of
the system's energy by keeping the F term in Eq. (2-36) The

result is:

dE =-I,+ CosF (2-38)

dt 3
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There is a competition between the energy dissipated in the

system and the energy supplied from external source, anda sus-

tained driven oscillation will correspond to a balance of

this effect.

Another interesting feature of this nonconservative

system is that the previous constraint,

Wf~R 2  WOR2

C  =  1 (2-39)

is no longer a constant. By the relations in Eq. (2-34),

we can determine its variation as:

s= .. + (2.40)dt s CI L2

For 11=12=13=q' it can be further simplified to

dC tsSsd = -let or C = C0 e . (2-41)

For the steady state (tS-oo), C will become zero in this

case of balanced dissipation. Hence Eq. (2-41) gives the

exact condition for the Manley-Rowe relation6 .

The response of each frequency component after the

system reaches a steady state can be worked out by letting

a11 the time va-r-iable terms in Eq .(2-110 -to zero- A

condition for detuning factor 8'z is obtained as:

1 = ql (2-42)
2 '2

or we can define a new constant A as the ratio of 6 to
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in the following ways

A= ! = 62 (2-43)

Eq. (2-43) shows that the detuning is proportional to the

dissipation factor and it shifts in same direction according

to whether the driving signal frequency is larger or less

than the sum of two original subharnonic frequencies.

The amplitude of each frequency component is given by:

2= 2'? - 46 3 )2  (l +

and = ai (l2  4)2)

(2-44)

real values. The minimum intensity of F for R1 and R2 to

appear, or, in other words, the threshold for generating the

subharmonic compcncnts, is determined by:

2 44 l O 4A6 2 +l+42

Fth - ia 2 (( 6)l*4).(-5
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Below this threshold, the only significiant response is R3,

which is described by :

R 3= 2 *6 (2-46)
;.)0(13

We see that R exhibits a very interesting behavior, it in-

crease linearly with the external driving force and then

stays at a constant value after the threshold for subharmone

generation is reached. Fig. 2-3a is a typical graphical dis-

play of the change in R1 , R2, and R3, with respect to the

increase in the intensity of F. Fig. 2-3b shows the experi-

mental data collected by Y. Tsuzuki and M. Kaknishi31 in

their observation of the excitation of contour modes of vi-

bration in AT-cut quartz. The responses of the subharmonics

have been squared in that diagram, so they appear to be

liaear past the threshold. They fit our mathematical model

and analysis very well.

ii
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Chapter III

SUBHARNIONIC GENERATION IN DISTRIBUTED SYSTEMS

The effect of intense acoustic waves has been studied
by various authors, for examples Ghiron32 , Hunt3 3 , and

Andreev 34 . They indicated that the nonlinear properties of

the medium as well as convection of the disturoance usually

cause wave distortion during propagation and the generation

of superharmonics of the original signal. Experimental

observations 3 5 have confirmed these analytic predictions.

However such a theoretical approach has failed to supply

an explanation for the phenomenon of subharmonics. We shall

provide a detailed study of this aspect of the problem.

In order to simplify the mathematical operations, the

entire analysis throughout this chapter is based on a one-

dimensional model. Eulerian coordinates are employed in all

derivations to facilitate comparison of the theoretical re-

sults with the laboratory data from the experimental work

that is described in the next chapter.

We review the formulation of the acoustic wave equation

from the basic conservation laws in the beginning of this

chapter; As the primary interest of this study is to look

for the essential contribution to the subharmonic generation

for an intense acoustic wave, the order of magnitude of all

pertinent parameters in the system considered is examined.
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The two-variable method is adopted to fir' an approximate

solution for the nonlinear wave equation. We obtain the

energy exchange relations among three signals when their

frequencies follow a sum rule.

This analysis is then extended to a multiresonator,

and the threshold of exciting a subharmcnic pair is deduced.

We also discuss the effects of detuning and energy dissi-

pation on subharmonic generation,

1. Formulation of Finite Amplitude Acoustic Wave Motion

The basic laws describing acoustic wave motion can be

derived from the hydrodynamic equations. In one-dimensional

Eu]erian form, they are s

Conservation of mass

,a--- -+ x-- = 0 (3-1)

Conservation of momentum

a~+ u,: +_ ' - - -a - =0 , (3-2)

where (' and u' are the density and the particle velocity

respectively and W' is the coefficient of viscosity which

o is t .c of shear i-iscosity i)' and the

coefficient of dilatation viscosity )X, as defined by the

* The primes are used to denote dimensional quantities. We
will shortly reduce them to nondimensional variables and
the primes will be dropped,
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relation:

JUL 2VY+'. (3-3)

The losses due to viscosity are small, and so are the

losses due to heat conduction. Under these conditions, the

process can be assumed to be adiabatic as far as wave speed

is concerned since the losses affect the speed only quad-

ratically. The state variable p', the pressure, can be ex-

pressed by expanding around the equilibrium state as follows:

p, =p,(W ),

p I ( ~ ' a ___/ )2
+' + q . .

- A c ' ) + 2 +'"*'"e'es, (3-4)

c6 is so called the small signal sound speed, r' is a non-

linear parameter and 4' = e'-e6 is the deviation of the den-

sity from the equilibrium state. The subscript q denotes

that the expansion is assumed adiabatic.

Some authors36'37, in discussing the nonlinear be-

havior of a fluid, write Eq. (3-4) in the form

p'= PA + A +B 2
I0 0

These coefficients are related by
c 2  B = ?6a B r

Ae6', B f ' and - ""''
A 21 ai C, 2  6

0 (3-6)



In the case of an ideal pas, these coefficients can be re-

lated to the ratio of specific heat Y

A = YPO, b = Y(Y-1)*', and B - (3-7)

By using the approximate relation of Eq. (3-4), Eqs.

(3-1) and (3-2) then can be written in terms of e and u'as

follows:

'at i XF = O,

__._u ,2 31.j , a(ae, )2  2 ,iu' + u + c,2 -at, ax' 0 ax ... + IF -axe a't 62

(3-8)

in order to make an approximation with regard to the

order of magnitude of various terms in Eq. (3-8), we put

Ec (3-8) in nondimensional form by adopting the following

scaling parameters:

Independent variables:

Length .o....... X cm

Time oeot.goo,,, T sec

Dependent variables: (3-9)

Partical velocity ........ U cr/sec

Density .... ... .... =.. i'0 gm/cm3

Theni Eq. (3-8) has the form:
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_. + UT aeu! = 0,
at X )x

U 4UT Deu .cT3 +2T R. ' 2U2T2 c2._ 3 'e + 'IT~ O, .
U.ga + +. _ _L!u
X at x2  u 2 ax 2 X2 ax

UT2 u = 0. (3-10)

x2 e0 ax 2

We denote the nondimensional constants by:

UT

r "T=o ( 3-i1l)

M 2T2

c2 C 0C - 2

Eq. (3-10) then becomes:

ae + m 4--U = 0,
3t ax

r, C + jvj2u ;ou .2 a(,,) + (ae) 42 2 =0.
t 0-x ax 2 ax ' 2 aax(3-12)

For the case of a propagating harmonic wave where

both losses and nonlinear effects are small, the natural

scaling parameters to use are:

T 1
W~r (3-13)

X = 1
kr

where Wl and k' are the dimensional angular frequency andweeor kr



wave number of the wave respectively, and g- =Then' kr

UK, U
! = - = c- is seen to be the particle velocity Mach

w 0

number and c = '(--) = 1. The problem of interest here is
W r

when N is small, but not negligibly so. Therefore we intro-

duce the symbol

e = U (3-14)
c0

and Eq. (3-12) becomes

@_e Eae- = o

2 a ax"a e2 J  2axx

e M = ur- << 1. (3-15)co

2. Wave Equations in Terms of Slow and Fast Variables

To get the explicit expression for e and u as a func-

tion of x and t by solving Eq. (3-15) is a rather difficult

mathematical task, An approximate method can be developed

for the case of a small Mach numbers First, consider the

linearized invixid form of Eq. (3-15). (Remember. density

is nondimensionalized so e= 1 at equilibrium).
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at ax
(3-16)

C_ 0
at ax

which further reduces to the form of a wave equation.

uu
2 = 0. (3-17)

ax at 2

The corresponding solution of Eq. (3-1?) has the form

u = f(x-t) 4 g(x+t), (3-18)

where f represents tne wave travelling to the right, a for-

ward wave, and g represents the wave travelling to the left,

a backward wave.

For a simple sinusoidal excitation with an angular

frequency w,

u = A sin (&t-kx+$) + Bsin (ut+kx+ ?), (3-19)

where A, B, g, and I are constants which depend on the

initial condition of excitation.

Eq, (3-19) describes a wave propagating with a con-

stant amplitude. For finite amplitude wave motion, if c

is much less than one, the physical picture of Eq. (3-15)

should not be very different from Eq. (3-16). The convec-

tion, nonlinear parameter and viscosity may just modify

slightly the propagating wave form. Since their effect isI!
small, it may be considered that the original wave form has

a slow variation in the amplitude and phase, with respect to

time and space, as it propagates through the medium. With

I
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this physical argument, it is possible to divide the inde-

pendent variables into fast and slow components, That is,

we describe the phenomenon in two different domains, fast

and slow, by definingi

tf =t

t s =C t,

Xf = x, (3-20)

Tha dependent variables, e and u are now consider tc be func-

tions of tf, ts, xf, and xs.

According to our method of nondimensionalization. el

was normalized by e0 and therefore its variation from e.

will be small (order e or higher). On the other hand, u

was nondimensionalized by Ur which is a reference velocity

small compared to c;. Therefore the leading variation in u

is of order eO . Then we write the expansions of the depen-

dent variables ast

= 1 + EeI + e2e +..oo.a (3-21)
U U1 + C- U2 +0.,,.0.

Note that there is no t^m- This signifies that at

equilibrium, the fluid is at rest.

The differential operators in term of the new varia-

bles are:
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-t= t-- + s

- a + a (3-22)ax 49xf ax s

a2 2 a2 2 a2
and -2- + 2C- + .ax 2  axf 2 -faX s  a X2

Substituting Eqs. (3-21) and (3-22) into Eq. (3-15)

we have:
(-a- + + E--- ( O e + C'2 2 + o .) ( f +)

at t 1 e .. aC)xT ax-f ts  f xs

(1 + ee + C2e2 + ..a...)(u 1 + Cu2 + .... ) = 0,

22
(+)((U+ ++ e + .... )(u1  + u2 + +"".)

+ 2 x x+ ! + EU + ..... + +9 2  +....)

+ ( l + e2 + "' ") + , 2+ e2

2af as 1 22

2 2 2C- a 2 + Ee2 ( + GU +..)0
2 , c 2 a 222)- _- ' + ~ )(uI + Eu2 + ..... ) = OW

49xf e s &xs

(3-23)

In Eq. (3-2), the order c. yields

(? I + x u1  0,

(3-24)
@t-- l +  0fl ,

tf1 axf
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which can be reduced to a first order wave equation by

eliminating e.

a2 - -- 2 -u 1 =O. (3-25)

For order e2 , we have the following equations:

t U2 + c3 e2u 1 + a-& u1 + Sx1 uf f f

(3-26).3 U + 1- 1 u+Au1  + 2 1 Au 1  + (5-ku13ix 2 1

The forsodu seon fre waeeutofs

S 2 2 x 1 2 2

OxfDXs u1 + @t@X -I @xts I °

(3-27)

The first order solution can be found from Eq. (3-25). ft is

then used to generate source terms in the right hand side of

Eq. (3-27). The higher order solutions can be found in a

similar way. However, this only gives the gener'al form

a2&2a 24 I--U
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of the solution. For a particular problem, the initial and

the boundary conditions are required to select the meaningful

solution. In the following sections, pa iicular cases of

subharmonic generation will be studied in some detail.

3. Interaction of Waves

For certain initial disturbances, the response, in

terms of the particle velocity of the medium, according to

Eq. (3-25), has the general form:

Un = L=1 [An coskn + Bn cOSInl , (-28)

where An = An (x s,t s),

Bn =Bn ;Cs ItsiBn  Bn(Xs,ts),

n £ntf - knXf + $n(Xs'ts)' (3-29)

ntf + knxf + 'n(xs ' tr ) '

Suppose the disturbance at x = 0 is mainly dominated

by three distinct signals with angular frequencies co1., W 2,

and W related by:

W I + W 2 = 3 (3-30)

Then Eq. (3-28) can be rewritten as

3
n n=1 I n cos.n + Bn c°S '

with a corresponding density:
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[A ncos - B cos . (3-32)
n n= 4 n nI

For nondispersive media, the wave number k's will follow the

same sum rule as that of angular frequency from Eq. (3-30):

kI + k2 = k3 * (3-33)

Anf Bn9 ,n, and % are only given for the initial condition

xs = 0, ts = 0. To determine how they change with respect

to time and space (in slow scale) depends on further informa-

tion from the second order wave equation in Eq. (3-27).

When we substitute Eqs. (3-31) and (3-32) into the

second order wave equation, Eq. (3-27), to solve for the

second order term of u, we find that the source terms on the

right hand side of that equation contain the same frequencies

as the natural frequencies on the left hand side. This means

that the solution will have terms increasing linearly with

time and space. Such solutions willultimately violate the

original requirement of Eu2<<u1 in the perturbation expansion.

Those terms which cause such limitations on perturbation ex-

Dansion are called the secular terms. Since the amplitude

and phase are assumed to be functions of the slow variables

in the case discussed here, the problem can be avoided by

choosing the slowly varying amplitude and phases in order to

make the secular terms vanish, This choice leads to the re-

'ation showing how amplitude and phase change with time and

space (in slow scale) after the initial disturbance.
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After some tedious algebraic operations, we achieve

the following results:

aA 1 _A 1  2

;)t + + ax A - 1 uLA 2 A3 sin r = 0,

'aA2 _A A2 + 2- + A + p.k 2A 2 - w 2 A A3 sin r = 0,

+ s + ,Lkw3 A + 1 3 AA 2 sin r = 0,

A1 i-1 + A, ! + aw A 2A 3 cos r = 0,Iat s  ax s 23

A2 a- + A2 A + 2 A1 A3 cos r = 0,

A - + A 36 + a3AIA cos r = 0, (3-34)3 ats  3 axs

aBI 1  + .k2 B a
at BI- a3 1B2B3 sin s 0,

B 2  'aB2 + ALu 2 B2 - aw 2BB 3 sin s =O,at s  -ax s 2 21 3

ts - !! LU' IWBBs ns 0
a)S 3S

~B C1, 2

B1 ;_ - B1 3 + aw)B 2B3 cos s = 0,

B a2 a 
"2

2 -2 •3it "2 13

B -- B3 T 3_--3 + c'. 3B 1B2 cos s =0,ts a s
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where

r=$3 -'1 -2 (3-35)

s = -3 1 § 2

In Eq. (3-34), the first six equations are independent of

the last six equations. This indicates that there is no

coupling between A n  , and Bn , e n Since, from Eq. (3-29).

An and 6n are amplitudes and phases respectively of the for-

ward travelling waves and Bn and 'n are amplitudes and

phases respectively of the backward travelling waves, the

results expressed in Eq. (3-34) show that these two types of

wave propagate independently without interaction.

!/e now fuL: ther examine the charactc . of the forward

wave to understand the mechanics of wave interaction (the

conclusion will also apply to the case of backward wave).

The first six ecuations in (3-34) have a single set

of characteristics in slow space and time with slope unity.

Therefore if we introduce the variable

T = ts - xs ; (3-36)

these equations may be written as:

dA1  2
- +A12AA 3 sin r = 0,dt yP 1 1 -a 2
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dA2 2 A A
d--- +  Mx 2  2 o 2 AIA3  sin r = 0,

dz+ AA3 A + acW3 A1 A2 sinr=,

d.$1
A1  d r A A2 A 3  cos r = 0,

d4e (3-3?)
A2 -- = + wAA cos r = 0,"2dr W2 A IAll

A3 C+ C°3A A Cos r = 0.
3 d-C U3A 1A2

Although amplitudes and phases change slowly, it is

interesting to see that the slow behavior propagates at the

same speed as the waves themselves. Eq. (3-37) can be

further reduced to

d-{-~ +)kW1°A 1 - C a~lA 2A3 sinl r =0
dA2  2dA2 1A-2 A2 -W I2A A3 sin r = 0,

dA 2 + U A3AIA sin r = 0,

!L+ AKW2 AA+ a~u 3A A snr=0,(-8

dr 3 A 3 1 2 A

d _+ 3  A1 A A a cos r = 0*

For a nonviscous medium, these coupling equations can be even

simplified to:

m:_dA 1 =0
1 - C WlA2 A3 sin r = 0,

diA2d 2 _ ac A A3 sin r = 0O
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where

'= (1 eP) ,

r =(3-35)
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A. and $n are amplitudes and phases respectively of the for-

ward travelling waves and Bn and an are amplitudes and

phases respectively of the backward travelling waves, the

results expressed in Eq. (3-34) show that these two types of

wave propagate independently without interaction,

We now further examine the character of the forward

wave to understand the mechanics of wave interaction (the

conclusion will also apply to the case of backward wave).

The first six equations in (3-34) have a single set

of characteristics in slow space and time with slope unity.

Therefore if we introduce the variable

Vc = ts - xs , (3-36)

these equations may be written ast

dA1 +]A 1A - O~lA 2A3 sin r = 0,

d- j2
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dA2 +e2A2 A o 2 A A3 sin r ,

+ ?- + o AA.sinr O,
-t ,-1 33-,3 .2=o

A ., d -+ ~a w A2 A 3  c o s r 0 ,

A2 L- + aow2 AA 3 cos r 0,

A dr 2 1 A j s-A3  + au.)3A A2 cos r =O

Al.though amplitudes and phases chanmge slowly, it is

in-eresting to see that the slow behavior propagates at the

same speed as the waves themselves. Eq. (3-37) 2an be

further reduced to

dA 1  2
-a wz1JA I caw1A2 A3 sin r = 0,

dA2

dA- + )AW2 A^ - r 2A A sin r = 0,

'43-38)

+ (,A3 + Ow 3 AIA2 sin r = 0,

dr F93AIA2 +aA 2A- ( 2  l cos r 0.

+[ A3  A - A2

For a nonviscous medium, these coupling equations can be even

simplified to:

dA1

d-ca- _C AA2 A3 sin r = 0,

dA2 _d- _ 2 A A3 sin r = 0,

aw



I ~~~~~ ~ --16 --- , oo -o
Ar sin r =0, (3-39)

dr ~)1 2- AA

dr a1 cos r=0.

There are then three constraints, as we have discussed in

Chapter II ft- three oscillators:

2 2 2

A2  A2
.2 = C, (3-40)

AA2A cos r =K.

The mathematical simil arility between wave interaction and

couoled oscillators suggests the possibility of using such a

mechanism for subharmonic generation, If we could find a

way to supply power to the w signal to keep amplitude A-

constant, the condition to excite wI and c signal would be

governed by T

dA1 + 2 A0,

a--' +py)1Al acvA 2 A 3

dA2 +- k2A A 0, (3-41

2 +MA 2  7,02 A]A 3

where r is properly adjusted to belT/2.

Then the threshold of a stable subharinonic pair w2th

angular frequencies WoI and w2 is determined by t

A - ___- (3-42)
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or in original nondimensionalized notations s

3 =ec !(3.43)

The correspor .".g pressure will be s

[ .21

For wa-ter, _ 6,5 36,37 and)S= 0.01 poise, the minimum
C6o

pressure threshold to excite the subharzonic pair with a

1 MHZ signal, according to Eq. (3-44), should be 0,0017 bar,

However, there are two factors to prevent subharmonics from

occurring in real physical situations: the formation of shock

wave and energy spreading into free space. The former is

also caused by convection and the nonl.-nearity of the medium,

as well as the accumulated effect of superharmonic generation.

The latter is due to the fact that since the size of the

energy source is finite and in real situations is, of course,

three dimensional, the wave will spread out in part as a

spherical wave, Under those conditions. energy is dispersed

faster than it is converted to subharmonis, Thus, the phe-

nomenon of subharrnonic generation will not be observed. To

avoid such limitations, we will analyze in the next section

the situation for an intense wave in a closed boundary which



confines the energy spreading. Because only certain modes

will be allowable in a closed boundar, we can also eliminate

superhamoni" generation.

4. fdode-Cou-oling in a Simple Resonator

In a closed homogeneous region with energy reflection,

there exist resonance modes which arc easily excited. We will

now analyze the mode-coupling induced by the nonlinearity of

the medium in such a closed region.

If the dimension of the bounded region is small (say,

about 100 wavelengths and the dissipation and the nonlinearity

of the redium do not make large changes in wave energy in a

single pass. Then we can consider any disturbance, however

distributed, as causing the build-up of a standing wave in

this closed bounded region. The amplitude and the phase of

such standing waves will change gradually due to the effect

of the nonlinearity of the medium*. To examine their be-

havior, we rewrite the two-variable wave equation derived in

Section 1 by considering slow time as the only slow variable.

&2ul a 2 uI

a t

2 2 2 2
a 2 au U? IFu aU U

at 2  2  1  7X2e t a-t f f f
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+~~ .&~ 1e 2-U

2aufax- IUta. xa

- 2-~ u, = 0 (3-J6)

General solutions of Eq. (3-45) are z

00 = A'(t ) aoz - knXfnZi n~ n nf n Pn ( s

+ BA(t s ) cos Iwyntf + knxf + _5n(tsj

(3-47)

where by our previous nondimensionalization,

On = kn (3-48)

If uI vanishes at boundary xf o, then

A(t s ) = _ B'(t s )n5n 5 (3-49)

ffn(ts) = &z (t) .

Eq. (3-47) will be in a form of a standing wave t

Ul =~ An(ts ) sin [Wn tf + n(ts) Isin knXf
n=l

(3-50)

The particular values of kn are determined by the end condition

at xf=Li thus, if u vanishes -t =then kn=ni'L@ If the
A f.-' nfth

end termination is taken to be some frequency dependent

complex impedance0 the modal frequencies will not be in-

*The effect of moving boundary is discussed in Appendix A.
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tegrally relate d.

'Ie now suppose that. in a particular case, there are

only three resonant modes of angular frequencies cal W29 and

W3. which have significant amplitude and that these modes

obey +the forgoing sum rule s
Cal + W2 = w3 " (14-5.".)

Considering these basic modes, we can. rewrite solutions for

uI in the form :

33 A(tsis)- kr~u E A An (ts5) sin [On t f + J n~ sin knxf

(3-52)

with the corresponding density variations

-l f

SAn(ts) cos[Wntf + n(ts)I cos knXf
n=1 I a

(3-53)

We use the same argument discussed in Section 2 to find the

second order function from Eq. (3-46), By setting the

secular terms equal to zero, we obtain the results
aA1 + 2
5ts +_I2AI -iujA2A3 sin r = 0

aAk,
A +, 2  - aL2AIA3 sin r = 0

at- + 2A2

+!c A3 -,.2AAA 2 sin r = 0,sits .



3-21

A a CA A3 cos r = O, (3-54)

A2 - c 2AA 3  cos r = 0

A3!6 - .A-A 2 cos r = 0,

where

-=1 ( 1 + )
r = 2 " -

Since the A's and the 4's are functions of slow time t s only,

those partial differential operators can be replaced by total

differential operators. After combining the last three equa-

tions in Eq. (3-54), we have mode-coupling equations for a

closed region (resonator).

dAI 2
dA =+ tj1A1 - A2 A3 sir r = 0,

dA2 &COA - c.AA3 sin r= 0,
dt s  223

(3-55)
t+--d 2 A 3 + CabAlA2 sin r = 0,

Eq sh o oA i at id___ ( ( e _ 2 - a c os r= 0.
dt s  A 3  AI 1 A 2

Eq, (3-55) shows that mode-coupling in a resonator is similar

to that of oscillators describedJ in Chapter II provided the
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coupling parameters in Eq. (2-12) are made equal in all

equations* Since the oscillators are resonance modes of the

same medium, as in the resonator, the result is less general

than that of separate mechanical oscillators which may have

different impedances and different dissipation.

For a nonviscous medium, we can obtain, analogsus to

Chapter I1, the three constraints for the resonator :

A2  2 A2 -A1 + A2 + A3 = E.

21 2A c, 
3

AlA2 A3 cos r = K.

Since the system is assumed to be lossless, once the

disturbance is excited, the energy will keep exchanging

among the modes. if we take the dissipation into consider-

ation, tie terms 2 A in Eq. (3-55) will cause the distur-

bances to decay and so, also, the exchange rate among the

modes, Eventually, the response will vanish,

The constraints of Eq. (3-56) -an be used to illustrate

the resonse of a lossless resonator. We do this by using a

three dimension phase space shown in Fig. 3-1 which is similar

to Fig. 2-2 but with Al, A2 , and A3 as axes. Since all the

modes have the same impedance, the motion is confined to a

spherical surface while in Fig. 2-2 the surface is ellipsoidal.

The locus in the pnase space suggests that, in a resonator,
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FI.3-1 PHASE SPACE FOR MODE-COUPLING IN A
RESONATOR
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the high frequency mode is quite unstable and its energy

can be easily converted to low frequency modes. With dis-

sipation elements in the resonator, there exists a thresh-

old for exciting such subharmonic components.

In general, there are, in addition to viscous losses,

less mechanisms such as dissipation at the reflecting ends or

radiation losses along the sides of the active interferometer

volume. As long as these losses are sufficiently small, they

may be considered equivalent to an effective loss. Thus in

Eq. (3-55). we replace 2A by qnAn. These coefficients, ) Aco n nn hs

can be determined directly by small amplitude measurements

of modal decay rate, since under such condition

d = - InAn (3-57)

dt s n

Ther., for subharmonics to be excited, we requiree

1 dAl A2 A.__ ld s >> 0, or aui = 0€la 0-3"5e)
Aldt5  1 A 1

and 1 dA2  AIA(

with sin r = 1.

We. therefore. arrive at a condition of the minimum thresh-

old for subharmonic excitations

A3 = a / (3-60)

Eq. (3-60) indicates that the threshold is inversely propor-
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the high frequency mode is quite unstable and its energy

can be easily converted to low frequency modes. With dis-

sipation elements in the resonator, there exists a thresh-

old for exciting such subharmonic components.

In general, there are, in addition to viscous losses,

loss mechanisms such as dissipation at the reflecting ends or

radiation losses along the sides of the active interferometer

volume. As long as these losses are sufficiently small, they

may be considered equivalent to an effective loss, Thus in

Eq. (3-55), we replace MO32nAn by InAne These coefficients

can be determined directly by small amplitude measurements

of modal decay rate, since under such conaition

dAndta (3-57)
dt s I5

Ther, for subharmonics to be excited, we require:
1 dAl1 A 2A
A >> 0, or = 9"' , (3-58)

A 1dt5  (1 ' A,

and 1 dA2 AA 3>>t 0, or (3-59)A2

with sin r = i.

we, hereore, a. a a..ndti of the minimum thresh-

old for subharmonic excitations

A 3 (3-60)

Eq. (3-60) indicates that the threshold is inversely propor-
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tional to the square root of the product of the subharmonic

paired frequencies. Hence, when the paired subharmonic

frequencies are equal, the required tireshold will be mini-

mum. Therefore subharmonics of one-half can be observed

relatively easier provided that the one-half frequency is

indeed close to the resonance mode of the system.

5. Diodes of a Composite Resonator and the Selection Rule

for Subharnonic Generation

The results of the previous analysis indicate that a

resonator containing a nonlinear medium can provide a mecha-

nism for subharmonic generation. We have shown that if a

resonator has three resonance modesW{9 e , wt , and ini-

tially there is a strong signal in the mode with angular

frequency W', then scme transient disturbance may cause

other modes w or - to appear suddenly. Such a disturbance

may be weak, but the energy in mode w vill provide a

source for modes o and WO through the nonlinear coupling

effect provided theJ' + W' condition is approximately

met.

For a simple one-dimensional resonator of Length L

with the boundary conditions p- = 0 or u' = 0 at both ends,

the angular frequency of the fundamental mode is

rc(Co (3-61)
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and any integer multiple of w6 will still be a resonance

mode of such a system. Therefore, there are many possibili-

ties for modes that satisfy the condition ,Is = W1, + c.

However, in practical situations, some means must be pro-

vided for a driving source. The actual construction of a

resonator is very complicated. Fig. 3-2 illustrates one

simnl fled arrangement,

To find the resonance modes of this composite reso-

nator, we not only have to know the boundary conditions on

both ends but we also have to match the acoustic iipedance

at the interface due to two different media to provide the

continuity of pressure and particle velocity. Such re-

quirements result in a characteristic equation for modes of

this composite resonator t

R(tan k1D + tan k.H) + tan k'Sw
- R2 tan kwD tan kwH tan k'S = 0 (3-62)

where R is the ratio of wall impedance to medium impedance,

the k's are wave numbers in the corresponding region, ard

D, H, and S are the thickness of the two end walls and the

length of the actual resonator, respectively. Eq. (3-62)

can be rewritten in nondimensional form:

Eq, (3-62) is derived in detail in Appendix B.
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FIG. 3-2 A THREE-SECTION COMPOSITE RESONATOR
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f' f' f

R(tan f- r + tan Llf v ) + tan X. it

- R2 (tan fT ')(tan il a)(tan IL rr) 0 (fh s

where fo= 9-

f C W

-2H

and f =C

correspond to the fundamental resonance frequency of each

individual region, respectively. Exact analytical solution

for the roots in Eq. (3-63) are impossible to obtain. How-

ever, such a transcendantal function does show that the

modes of this type resonator are not necessarily integrally

related, as in the case of the simple resonator. Hence,

there may be only a linited number of modes that will meet

the (oi = cWi + W21 condition.

After the modes of a resonator are determined either

by numerical methods or from exnerimental measurements, a

graohical method can be used as selection rule for modes

which can be excited as subharmonics. Fig. 3-3 shows Wi

z.nd 0; used as vertical and horizontal axes respectively.

The vertical and the horizontal parallel lines are drawn

from resonance frequency points on the o) and Wo axes. An

inclined line connects the point on the vertical axis at

c# =-1 and the point on the horizontal axis ati -3 =WJ3,
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FIG. 3-3 SELECTION RULE FOR SUBHARMONIC
GENERATION MODES BY GRAPHICAL
ME', HOD1
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Any intersection point of three lines gives the modes with

the condition a = wj +W.. Fig 3-3a is the case for a

simple resonator. It indicates that all the modes have the

integer relation and there are many intersection points which

will satify the condition u = Loi + w'. Fig. 3-3b is an

example for the composite resonator described in Fig. 3-2.

As the figure shows, there are only limited number of modes

meeting the condition c0' = (A.1 + W .

This graphical method can be extended to more compli-

cated situations. Modes of a given resonator can be de-

termined either through numerical solution or by actual

experimental measurement. This information can be plott-4

nn a graph. The closeness of intersection will be one of

the important factors determining the possibility of gener-

ating subharmonics in the system. Any intersection point

close to the inclined line may also be a mode that can be

excited if the driving source is intense enough (the detuning

problem will be further discussed in next section). Another

effect, associated with dissipation, is that there will be

some dispersion. That is, at high frequencies the sound

speed in the medium will vary with frequency, Condition

_oi = ,.I + ,' not necessarily mean k, = k + k2 ,

This makes it more difficult to excite high frequency sub-

harmonics,
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6. Detuning for Forcing Excitation of Subharmonics in a

Resonator

if three modes with angular frequencies £01. 2 and

Wo3 in a resonator do not exactly match according to the sum

rule of Eq. (3-51), we then define a detunig factor 6 's ass

L001 = " * " l ,

W002 = W02 + r 62

W503 = 3+ 613 ,  (3-64)
03 "3+C

but W 03 = W01 + W0 2.

The solution of the first order wave equation of Eq. (3-45)

is assumed to bet
3

U __ An(t s ) sin[cJOtf + n(t)j sin konXf. (3-65)

for the standing wave in the resonator.
The A's and 's are functions of slow variable ts and can be

determined by eliminating the secular terms in the second

order equation of Eq. (3-46). The following is the result

for a dissipationless resonator:

!2+ CAIA2 0 sin r = 0,
dts 1e0

dA
dt A A W sin r =0,St230



dA2
d -oAaA A sinr = 0,

3 t + 3 A3 + IAAO 3 cos r =0, (3-66)
A1 d 1e3 o

A d 1 +6 A + aA2A cos r =0,
+ 1 1 A2A3 0 1

Ad2 - + 6 2 A2 + oAiA3 uj 2 cos r = 0.

where all notations are defined as previously.

Eq, (3-66) indicates that the detuning factors 6's only

appear in the phase equation. According to the analysis in

Section 2, Chapter II, the effect of the detuning factors

6's is to impose a limitation on the range of energy ex-

change among the modes.

For a dissipative resonator, we have to provide an

external source for compensating the losses. Suppose such

a source is supplying energy at one end of the resonator

by displacing the boundary at x = 0 with a particle velocity

of U cos (w,03 t). As the standing wave in a resonator is

the combination of forward and backward travelling waves,

the propagation of the particle velocity U' by reflectinra

back and forth inside the resonator will build up the amn i-

tude of a standing wave, If the frequency of the drivina

source W G3 happens to be one of the resonance modes of the
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resonator, for each round trip the travelling wave propa-

gates, the amplitude of the standing wave will inrrease by

2U. In mathematical expression, we havev

AA.92 2%O
= -L (3-67)

where L' is the length of the resonator, c' is the sound

speed and I,'/c corresponds to the time taken for a wave

travelling acro- the resonator.

If the frequency of the driving source is only near

the resonance mode oT the resonator, then there will be some

phase shift for the standing wave during the building up

process. We can consider that the travelling wave contains

in-phase and out-phase components with respect to the origi-

nal standing wave. Fig. 3-4 is a vector diagram showing

such relations. The in-phase component increases the ampli-

tude for the resulting standing wave while out-phase compo-

nent shifts their phase relation, That is, for each round

trip,

Cos sAhT' 2 L

0(3-68)

_T__
= - 2 U'/ s

AT ~ ' 2 L/ sin

/-I* e
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2U; 416 sin $!;

A 2U cos

Fig. 3-4 Build up the Standing
Wave in the Resonator

By changing to the nondimensiona] notation in slow

rime scale. we can incorporate the relation in Eq. (3-68)

into Eq. (3-66) to describe the response of the fercing

excitation of subharmonic modes in a dissipative resorator.

The results are:

dt q3 A3 + aA1 A o 3 sin r - GJ0 cos .3 O0

dA1
t + q1 A1 - OA2 A3 WO 1 sin r = 0,

dA2
+ q2 A2 - IAIA36'0 2 sin r = 0,

A 4 + A + CA A cos r + GU 0 sin
3 dtl 633 1 ?03 sin =5

A1 d 6 A + aA2A(A. cos r = 0,
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L2  2 2 A + A A cos r = 0, (3-69)

2dt s  l 2 1 0

where G =rC

L

For steady state, when the intensity of waves in the resonator

is not strong enough to cause the nonlinear effect (0 = 0),

the amplitude of the standing wave in the resonator can be

deduced from Eq. (3-69),

A GU0
+6 2

Al = O

A2 = 0.

For a strong external exitation, the coupling caused by the

nonlinearity of medium will result in a different set of

steady-state amplitudes of modes in the resonatort

A2 = (71'12 + 62 62)_
3 a2w 01w02A2 2a,

1 = 12

.2
and A2 = qi a ,

where a = I 73- 6 ) +(
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0G Uo0102 2 6I2 2  67l l( +A 2) -r " 3 j -( "3 3 ) , (-l

61  62 61 +62

l '72 1t '?2

Sinne amrlitudes are real quantities, a minimum value of U0

is required for A1 and A2 to appear. That threshold for

subharmonic generation is Fiven by:

2+ 6 2)(1 +P'2
U G2 2 (3 01_2 (3-72)

As the threshold is inversely proportional to the square

root of the product of subharmonic frequency pairs, it will

be a minimum when they are equal (W0 1 = W02).

In general, only the acoustic pressure is accessible

for actual measurement. If W03 component is taken as a

reference fcr monitoring the occurrence of subharmonics, we

can modify A3 in Eq. (3-71) in term of pressure and express

it as a function of the original parameters as:

8 c v2

ep10 _(' !i

3TH 1 + 0 0 1 1

c1
2

0

where QV and Q2 are the quality factor associated with modes

W and aa respectively.
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Chapter IV

EXPERIMENTAL INVESTIGATION ON SUBHARMONIC GENERATION

IN AN ACOUSTIC RESONATOR

In this chapter, we describe the experimental set up,

procedure and results of an investigation on subharmonic

generation in an acoustic resonator.

The acoustic resonator used in this experiment is con-

structed in the form of an interferometer with two quartz

crystals as the resonator boundaries. One of the rystals

is also used as a transmitting transducer to supply the

driving signal into the resonator and the other serves an a

detector in monitoring the response of the system, A oali-

brated acoustic proJe smaller xhan the acoustic wavelength

of the signal in the medium has been employed for absolute

acoustic pressure measurements dtring the experimental inves-

tigation.

Throughout the entire experiment, distilled water has

served as a medium, It has been filtered and eegassed

before use. The whole acoustic resonator is enclosed in a

sealed container so that contamination of water during the

experilmental process can be reduced to a minimum.

The experimental system can be operated in che frequen.

cy range from I MHZ to 5 MZ, although detailed studies in

observing subharmonics are only carried out around the re-



gion of 1.5 hIHZ, which is the natural resonance frequency of

the transmitting quartz crystal. As the validity of using

the acoustic probe is limited in measuring of absolute

acoustic pressures at high frequency, the subharmonic pheno-

menon is only considered for qualitative reference when the

crystal is driven around 4.5 tMHZ, the third harmonic of its

natural frequency.

Data concerned with actual modes of the resonator, the

loss factor associated with each mode, and the signal thresh-

old for exciting subharmonics at various resonator lengths

and at different signal frequencies are recorded. Such 4rfor-

mation has been compared with the theoretical analysis dis-

cussed in the previous chapters.

1. Conditions for the Experimental Investigation of Sub-

harmonic Generation

According to the previous analysis, there are two

necessary conditions for subharmonics to be excited. One

is that the system should contain the subharmonic modes and

the other is that the high intensity acolistic wave should be

built up to provide the necessary nonlinear coupling mech-

anism.

With this consideration, an interferometer type reso-

nator is adopted for our experimental investigation of sub-

harmonic generation. In general, the interferometer pos-
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sesses many resonance modes. If one such resonance mode is

excited by a external source, a high intensity standing wave

can easily be achieved. Any modes whose frequencies are

below the external driving signal can ther be considered sub-

harmonic modes. Another advantage for using an interfer-

ometer as a resonator is that the end reflectors can be util-

ized as transducers to provide a means of supplying the driv-

ing signal or detecting the system's response. Since there

is no side boundary to enclose the interferometer, only one

type of mode exists in such a resonator. In the case that

the wavelength of the acoustic wave in the medium is much

smaller than the dimension of the end reflectors, the inter-

ferometer rill act almost as a one-dLmensional resonator.

The design of interferometer depends very much on its

operating frequency. Most interferometers used for experi-

mental observation of subharmonics are in the frequency

range 3 M1HZ to 5 14HZ 16, 1 7 ,18, 1 9 ,38 . The advantage of apply-

ing high frequency signal for subharmoni. generation is that

the threshold for exciting subharmonics is lower according

to the inverse relatior between the signal frequency and

the threshold derived in our previous analysis, Eq. (3.-60)

ChaOt."er 11. An additional reason for working in this fre-

quency range is that a ham radio transmitter can be easily

modified for the driving signal power source. But therp are

some disadvantages to using high frequency signals. The
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important one is 'that the absolute instantaneous acoustic

pressure will be difficult to measure without causing scat-

tering effects. (The wavelpngth in that frequency range will

bo less than 0.03 cm in water.) The laser beam diffraction

method, employed by previous experimenters as a 2.ans of

detecting the acoustic wave, does not directly give the

absolute acoustic pressure and it involves elaborate equip-

ment and alignment, A second handicap for driving the inter-

ferometer at high frequercies is that a thinner quartz

crystal plate has to be used for the transmitting transducer.

This presents the difficulty of mounting the crystal for

direct coupling with the medium. A common practice is to

cement the crystal on a metal plate for making a composite

transducer39 . Our preliminary tests of such an arrangement

shows that when an intense signsl is applied to the compos-

ite transducer, the cement between crystal and metal plate

seems to change its adhesive force, and a nonlinear response

begins to appear. In some cases, even subharmonics are ore-

sented. They are very stable and can not be affected by just

changing the- length of the interferometer.

Surveying the current literatures, we found that it is

.... +_ - . 4 ... .o D ,. L e about " 0,
41 This corresponds to the wavelength of a 5 MHZ acoustic

wave in water. Then the proper highest frequency that should

be used without causing seriously scattering effects will be
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around 1.5 MHZ, which requires a 0.19 cm thick quartz plate

for the transmitting transducer in the interfero.e:ter.

Quartz of such thickness is strong enough to be used as the

reflecting wall in the interferometer. This solves the prob-

lem by avoiding the complication of using a comucsite trans-

ducer. A much lower frequency quartz is chosen for the

other reflecting wall of the interferometer for two reasons:

first, it will have better sensitivity in detecting the sub-

harmonic components; second, its thickness will allow for a

knife edge mounting for the crystal, thereby reducing me-

chanic losses.

In our first pilot interfarometer composed of 1.5 MHZ

and 600 KHZ quartz crystal plates as the reflecting walls of

the interferometer, the Q (quality factor) of such a reso-

nator measured during preliminary test was about 103 Ac-

cording to the relation derived in Chapter III, Eq. (3-73),

an acoustic pressure amplitude of at least 15 bars is needed

for exciting subharmonics for this Q.

An acoustic standing wave with this intensity will also

cause cavitation in ordinary water 4 2 . To avoid the compli-

cation of the cavitation phenomenon during the observation

of subharmonics, we decided to process the liquid before

using it in the interferometer. The threshold for cavitation

will increase after the liquid has been purified through a

degassing and filtering process. Hence, the subharmonic
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threshold will be less than the cavitation threshold,

We also designed a system to enclose the interferometer

so that the treated liquid would not be subsequpently contsmi-

nated* This involves the elaborate construction of a sealed

system, As we do not find that previous experimenters speci-

fied how they have treated the liquid used in their investi-

gation of subharmonics, we hoped that our effort to make the

whole test system a closed one would provide some new and

interesting information,

There are other advantages to using a low driving

signal frequency in the resonator, Since the wavelength of

acoustic wave in the water is longer, the mechanical align-

ment for parallelism of the two reflecting plates is easier

and there are less appreciable detuning drifts due to temper-

ature changes in the interferometer.

Based on the above considerations, our final design

of the test system for obseriving subharmonie generation

phenomena possesses the following special featurest

(a) The acoustic transducers which also serve as

reflecting walls for the interferometer are directly coupled

to the medium in the z'esonatorp

(b) The medium used in the r.sonator has been care-

fully filtered and degassed to a high purity, Cavitation is

avoided in the range of tests used for observing the subbar-

monic phenomenon.
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(c) An acoustic probe smaller than half a wavelength

of the acoustic wave in water can be calibrated for record-

ing the instantaneous acoustic pressure.

(d) The system can be operated in a pulsed mode

for studying the transient behavior of subharmonic genera-

tion.

Fig. 4-1 is the block diagram of whole testing system.

In next section, each component will be described in detail.
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2. Apparatus

The actual apparatus used in this experiment for the

investigation of subharmonic generation can be seen in the

photograph of Fig. 4-2. According to function, we can

divide the apparatus into three subsystems: resonator, the

liquid purification equipment, and electronic instruments.

Some items are a,( pted from available commercial products

but most equipment is designed and constructed only for our

special purpose in this experiment. Each subsystem's func-

tion and construction is described below:

(a) The Resonator

The construction of the resonator is shown by the

sketch in Fig. 4-3. It mainly contains an interferometer

with two x-cut quartz crystal plates as its boundary walls.

The space between these two walls can be adjusted from 0 to

13 cm. The fine adjustment is controlled by a micrometer

which only can cover a range of 2.5000 cm. An additional

coarse adjustment is provided for larger space changes.

One of the quartz plates, which we use as a trans-

mitting transducer to supply the acoustic signal to the

resonator, is a disc of 2.54 cm in diameter and 0.19 cm in

thickness whose natural resonance frequency in air is 1.5

MHZ. One side of this disc is plated with gold on chrome and

the other side is plated with the same material but is left

with a 0.0625 cm wide blank annulus on the edge. This disc
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is mounted on a brass housing with an open hole of 2.2 cm in

diameter so that the large part of the plated surface will

be in direct contact with the liquid in the resonator. A

plexglass ring is used on the other side of the quartz disc

for pressing it against the brass housing. Silicon grease

is applied around the Gdge of the quartz disc before ins~al-

lation so that there is a good seal between disc and brass

housing to prevent a leak, Electrical contact with the back

face of the quartz disc is made with a soft spring which is

soldered to a BNC connector. During operation, the signal

is introduced through the BNC connector and the brass housing

end the front surface of the quartz disc are at ground poten-

tial.

A much thicker quartz disc is used for the other

boundary wall of the interferometer and acts as a detector

for the system's responses This disc also has a diameter

of 2.54 cm and is clamped on the knife edge of a brass ring

which can be mounted on an another brass nousing, Between

the knife edge and the circumference of the quartz disc,

stycast 2850 FT (manufactured by Emerson and Cuming, Inc.)

is used to avoid possible leakage. One side of this unit is

vacuum deposited with silver as the front surface of the

boundary wall, The other side of the quartz disc is plated

with gold on chrome and touches a soft spring which serves

as one of the electrodes after this unit is mounted on a
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brass housing. An 0 ring is inserted between the brass

housing and the detecting quartz unit for leakage prevention.

We have made several such units with various natural reso-

nance frequency quartz discst 1 MHZ, 600 KHZ, and 360 KHZ.

They are easily interchangeable. The housing of the de-

tecting unit is a part of a brass telescope which has a mi-

crometer to adjust its length.

Both transmitting transducer and detecting unit are

mounted separately on 2 cm thick brass plates. A pyrex

2ylinder, 10 cm in3ide diameter and 15 cm in length, with

two teflon gaskets is inserted between these two brass

plates to form a container. The whole unit is fixed on a

steel frame. There are three adjustment bolts for the

alignment of the parallelism between the transmitting

transducer and the detecting unit, An inlet and an outlet

are provided for this container for filling and circulating

the liquid. Fig. 4-4 is the photographical close view of

the actual arrangement.

An acoustic probe is also placed inside the pyrex con-

tainer for absolute acoustic pressure measurements The

active tip of this probe is about 0.05 cn in diameter and

has a microdot connector on its end (fMiicrodot Inc#, part

No. 032 0015 0001). This unit is then attached to a 035 cm

diameter brass tubing going through the mounting plate with

an 0 ring as , sealing element. The probe tip is detachable;



4-14

NlOT REPRODUCILE



0
00

0 l

E' E93 0- -- Q

-c i
- I-

-~ a
C .- - -

2 ~ C)>,<

.E I- 0

8F.-0 - pl

Cr)
OZ-

28 -



4_16

the Picture in 1,,ig, 4-51 shows its a' tual size-

The construction of the acoustic- probe is shownm in thn

detailed sketch in F.ig. 4 _- 'a. The tin is BaTiOl powder

melted on a 0.02 cm diameter nJlatinlim, wire by a microfl1,mp

torch (manufactured. by lMicroflame Inc.). The main frame of

the probe is 0,055 cm diameter stainless tubinsr covered wit-'

i layer of t'.E. 01.yptal (1201 Red Enamiel), The externaL sur-

face of the probe's main frame is coated with E-Kote 40

silver paint (manufactured by Epoxy Products CoA. to serve

as an eiectrod? for the 7orobe. The BaTj0., tin is polarized

with 30 V Pic at 130 C.

The sensitivitcy of siich a probe with the nres mpllfiepr

is s.hout 23 my per bar. The! valibration procedure for thr,

n~rcbv will be described later. Eupet enr~n3

investigation, the container with its int-rfecometer is con-

nected throtuh Tyron Vacuum Tiubirr, 3/9" in inside diameter

(made by Morton Plastics arnd Synthetics )ivisIon), to the

ancessories for the liqju5d eleanin-~ nrocess. F~ir. 4j-6 show-,

the detailed arrangement-.

Two Iiiiilinore Filters (manufactzirq'i hy fi..MiDorp Fl'i-

ter C-', o-F 5.0 m~cron po-e size are used -n the cleanin'T

syst%,m, One is for trapping the contaminant before the

liquid get~s into tne system the otler is inzser-ted ;- the
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system for closed-loop filtering.

A Fisher Airejector is adopted as a vacuum pump for

degassing the liquid in the system. Such a simple arrange-

ment can easily reach a vacuum less than 30 mm Hg. The

vacuum is monitored by a pressure gauge (made by Marshalltown

MFG. Co.).

Circulation of the liquid around the system is pro-

vided by a micro-bellows pump (manufactured by Research

Appliance Co. serial No. 619616 4648). During the actual

experimental investigation of subharmonics, the operation

of the pump is stopped in order to avoid the possible inter-

ference caused by the vibration.

(c) Electronic Instruments

We have two signal generators for use as the signal

sources in this experiment. The General Radio 1001-A, which

covers a range from 5 KHZ to 50 MHZ, is used to check the

resonance modes of the interferometer. The other, General

Radio 1211-B Unit Oscillator, mainly serves as the signal

input to the power amplifier for the transmitting transducer.

This oscillator can be modulated by an external source through

its power supply. We have built a SG. gate in conjunctioJ,

with a General Radio Unit Pulser 1217-A to modify it as a

pulsed signal generator. The transient behavior of subhar-

monic generation in the interferometer can be studied by

such conversion.
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The pcwcr amplifier was originally designed and con-

structed by Barger 4 2 for his research work on acoustic cavi-

tation. This amplifier can be driven to 400 watts output

with a 1 V rms input signal and has the half power points at

12 KHZ and 1,5 MHZ. We find it quite suitable for driving

the quartz transducer of the interferometer at a high impe-

dance level, A General Radio Variable Inductor type 107-J

is used to tune out the stray capacity in its output cir-

cuit.

During preliminary studies on subharmonic generation

phenomenon, we have employed a Lysco 600-S ham transmitter

as a power source. The output stage of this transmitter is

a beam power pentode 807 which can deliver maximum power up

to 50 watts, A regulated power supply, Lamda model 71, is

used as the plate voltage supply for the pentode to adjust

the output level, A matched network has to be insered

between the transmitter and the quartz transducer to obtain

optimal results. This arrangement was solely for qualitative

studies of subharmonics when the quartz transducer is oper-

ated around its third harmonic, 4.5 MHZ3

During the experimental investigal'ion, the frequency

of the driving signal is checked by a Hewlett-Parkard 5244I

Electronic Counter 0

For par&llelism alignment of the interferometer, the

signal is provided by a Hewlett-Parkard type 161 Pulse Gener-



ator. The alignment procedure will be described later.

There are two separate channels for detecting the re-

sponse of the system. The acoustic probe is mainly for

absolute acoustic pressure measurement. It has a self con-

tained battery operated preamplifier for eliminating ground-

ing and noise problems. Fig. 4-7 shows its circuitry which

has about 50 dB gain. The output of this preamplifier can

be fed directly to the scope to display the waveform,

Another channel is provided by the quartz disc wall in

the interferometer. Since this detector has high sensitivity

to the subharmonics, its output is directly connected to a

scope, Tektronix type 565 Dual-Beam Oscillascope, and a wave

analyzer, Hewlett-Parkard model 310A. The wave analyzer

also serves as a filter for picking up the particular subhar-

mo3 conponent, The frequency of this subbarr..onc is then

measured by an another electronic counter, Hewlett-Parkard

model 523B.

Voltage and current probes, both manufactured by

Tektronix, are employed to monitor the output waveform of

the power amplifier so that we can be sure that no distorted
signal drives the transmitting transducer during experimental

investigations.

3. Experimental Procedure

In investigating the subharmonic generation phenomenon,
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quantitative measurements can be made of two important pa-

rameterst the driving signal threshold for exciting the sub-

harmonics and the frequency components of the excited sub-

harmonics. These parameters depend on the physical property

of the medium as we have concluded in the previous analysis.

However, in the actual experimental situation, the results

are also effected by the way the system is set up. We will

mention some of our experiences during preliminary test

in the early experimental stage before describing the actual

procedure we finally adopted for data collection.

Without any treatment of the water used in the reso-

nator, we found it was almost impossible to excite subhar-

monics with some air bubbles attached to the face of the

boundary walls of the interferometer. However, even after

those bubbles are removed, either externally or by seli

dissolution, the excited subharmonics appear to be very un-

stable. Further increases in the driving signal intensity

only seem to extinguish the existence of subharmonics. This

peculiar phenomenon was finally explained when we discovered

that gaseous cavitation w-as occurring along the path of the

acoustic standing wave in the interferometer. Tiny gas

bubbles, whicn can be observed by shining collimated light

on them, are dancing around. Sometimes they aggregate to-

gether to become a larger bubble and then move away by

buoyancy forces. Such activities, we believe, will absorb
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more acoustic energy and interfere with the resonance modes

of the interferometer so that the threshold of excitnr sub-

harmonics is increased, makes the sustenance of subharmonics

more difficult. In the low frequency range, the threshold

for acoustic cavitation is lower than the subharmonic thresh-

old and therefore the observation of subharmonics becomes

more difficult. Hence we reached the conclusion that we

should control the water used in the exper_.ment to avoid the

interfering effects of gaseous cavitation.

Because the energy of the intense acoustic wave is

absorbed in the resonator, we have observed that subharmonics

become unstable due to temperature changes during a long

period of opera-ion. A 20 C change in temperature has be re-

corded after about 5 hours continual operation. We have

overcome this problem by using pulsed signals to reduce the

heat generated in the water.

Our initial experience with the instruments has re-

vealed some misleading data from the quantitative measuYre-

ments. Org of them is that the quartz disc serving as the

boundary wall of the interferometer can only be used as a

detector for the system's response. This is a very conven-

ient way to monitor subharmonic phenomena but, as the re-

sponse of the particular quartz disc is frequency dependent,

it is not a proper way to take quantitative data. A

similar situption also annlies to thp transmitting trans-
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ducer. The acoustic intensity inside the intprferometer is

not necessarily proportional to the voltage across the

quartz plate but depends on othez factors such as alignment

and tuning of the interferometer, separation of two boundary

walls, the natural resonance frequency of the quartz disc,

the condition of radiative beam spreading, and losses due to

the viscosity of the liquid, etc. This is true even when

different quartz crystal discs are used with the different

driving signal frequencies, since their thickness and condition

for mounting are changed, The mounting loss plays an im-

portant role in the final intensity of an acoustic wave in

the resonator, It becomes totally improper to relate a set

of applied voltages on the quartz discs to the true acoustic

intensity in the interferometer. For this reason, we devel-

oped a small acoustic probe for absolute pressure measure-

ment.

Alignment of the two boundary walls of the interfero-

meter is very critical for investigating the subharmonic

phenomenon. The threshold for exciting subharmonics and the

frequency components of the excited subharmonics will be

altered greatly just by manipulating the parallelism of two

boundary walls. In order to obtain consistent expeimental

results, we set up a standard alignment procedure, which

will be described later, before collecting the data.

The following is a detailed description of the experi-
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mental procedure we have adopted%

(a) Calibration of The Acoustic Probe

The acoustic probe is primarily designed for use at

high frequencies. Since measurements of input current to

the transducer at this frequency range is not very accurate,

the reciprocity method for calibration becomes unsuitable

under present conditions, A simple method is adopted from

the current literature1 j1 ,

In studying the propagation of a finite-amplitude

wave in a liquid, one of the established results is that

a sinusoidal wave at the source of radiation will become

a savmooth at some distance away from the source. This

distance can be expressed in terms of wave parameters and

properties of the medium by the relation:

1 x P c3 (41

.(Y+ )p

where X is 'the wavelength, P is the density of the liquid,

c is the sound speed, p is the pressure amplitude of the

acoustic wave, aid y is the nonlinear parameter of the

liquid (about 6.5 for water). In the case of spherical

wave divergence in the far field region, the variation of

the amplitude of the formed sawtooth wave with the distance

from the source is determined by the equation:
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p0  xo
Px X (Y+1)pof x- (4-2)

1+ In X

PC Xo

where f is the frequency, and Pc and pX are the amplitudes

of the sawtooth at distauces xo and x from the source respec-

tively. This relation can be rewritten in the form of ratios

Po/rx , and x./x to obtain the absolute pressure amplitude

Po ass

-c(PX I) (Jc3

SPx x  (Y+l)fxo in

Once the pressure is known, we can easily compute the sensi-

tivity of the acoustic probe from its electrical output

signal.

The calibration of the probe used in this experiment

is carried out in an anechoic tank which has the dimensions

75 cm wide, 125 cm long, and 75 cm in depth. A 0.254 cm

thick PZT-4 disc, of 2 cm in diameter (manufactured by Clevite

Co.) is used for the transmitting transducer. The resonance

frequency of this disc is about 760 KHZ. For calibrating

the probe at high frequencies, we used the second harmonic

component of the distorted wave as the reference, With the

preamplifier, the sensitivity of the probe around 1.534 IMhZ

is 23 mv/bar.
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(b) Trentment of Water

The arrangement and equipment for the treatment of

water used for the experimental investigation is shown in

Fig. 4-6. The container is first evacuated partially by

the Airejector so that the water can be sucked in through

the inlet filter. After the water has completely filled

up the system, we then shut off the inlet and at same time

close the system by proper turning of a three way valve.

The water can be continually filtered through the in-line

filter by the forced circulation due to the micro-bellows

pump.

The degassing process is done after the water has

gone through the filter several times. A 3u mm H9 is

generally reached during the final stage of degassing.

Then we open iip the relief valve for the system and the

hydrostatic pressure in the container returns to atmos-

pheric.

This process is repeated at the beginning of each

measurement ard at the begining of each day so we car be

sure that no further contamination, possibly caused by

corrosion and leakage of the components, will deteriorate

the system.

During the experiment, we stop the circulating pumr to

avoid possible interference from vibration. A focused beam

of light from a 100-watt projector lamp it used to aid in



the visual detection of nossible gas bubb]er in the inter-

ferometer. With this arrangement, we are able to ob-

serve subharmonics at 1.5 M;HZ without the occurrence of cavi-

tation.

(c) Alignment of The Interferometer

The arrangement for alignment of the interferometer is

shown in Fig. 4 -8a. The transmitting transducer is ener-

gized by a 10 microsecond, 50 volts DC pulse. This pulse

will excite the quartz disc in the transducer and an acoustic

wave will radiate out into the water inside the interfero-

meter. The pulsed wave will be picked up again by the trans-

mitting transducer after it has reflected back from the

other boundary wall of the interferometer. This reflected

signal can be detected with a tuned tank connected to the

transmitting transducer and displayed on the oscilloscope.

if the repetition rate of the DC pulse is slow compared to

the time required for wave traversal across the interfero-

meter, the successive reflected pulsed signals will also be

detected by the scope. By ronitoring the amplitudes of those

reflected pulses, we can align the reflected wall of' the

interferometer with its adjusting screws. The best alignment

for the parallelism of the boundary walls is obtained when

the amplitudes of pulsed signals become a maximum and de-

crease exponentially according to the time sequence of their

arrival. This alignment proceduce is not affected by the



I-,--Interferomater
JPulse Generator

HP- 161

Unit Pulser
6 R-1217-A 19rOscilloscope~

(a) ALIGNMENT SET-UP

NOT REPRODUCIBLE

Misalignment Alignment

(b) OSCILLOSCOPE DISPLAY

FIG.4-8 ALIGNMENT OF THE INTERFEROMETER



4-30

length of the interferometer. A typical picture of the

response signal on the oscilloscope is shown by Fig. 4-3b

after the interferometer has been aligned. The decrease

in the amplit;des of the successive pulses also gives the

information about the quality factor (Q) of the resonator

at the given resonance frequency,

(d) Excitation of Subharmonics

A strong standing wave can be established when we

drive the interferometer at one of its resonance modes.

This is accomplished by adjusting the length of the inter-

ferometer with the micrometer for a given input signal or

changing the signal frequency for a fixed length interfero-

meter. By increasing the signal input to the transmitting

transducer of the interferometer, subharmonics may be ob-

served from the respons, of the detecting quartz disc after

the intensity of the acoustir wave inside the interferometer

exceeds a certain level. A typical response of such subhar-

monic generation in the time domain 4z displayed in F'ig. 4-9a

from the picture taken on the oscilloscope. The frequency

components of such signals can be further analyzed through

the wave analyzer; the exact frequency is read from the elec-

tronic counter, The meter on the wave analyzer also records

the relative intensity of the particular subharmonic compo-

nents

The frequency range of the wave analyzer covers from
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1 KHZ to 1.5 MHZ. Sometimes, at high driving signal levels,

more than one subharmonic pair can be observed.

For gathering information about the threshold for

subhatmonic generation, we used long pulse train of the driv-

ing si nal applied to tjhe interferometer, The actual growth

of the subharmonic acoustic wave can be displayed on the os-

cilloscope, such as the one shown on Fig 4-9b. From that

ictura, the point where the wave starts to break and sub-

h armoncs begin to appear can be easily determined. If

this response is measured using the output of the acoustic

robe, the level at the break point is the threshold for

subharmonic excitation.

(e) Measurement of the Sysniaz Parameters of the

Interferometcr

For comparing the experimental data and the theoretical

analysis, information concerning the actual condition of the

interferometer is examined to explore its relation with the

mathematical model of the ideal resonator. Two parameters

have been recorded as the quantitative measurement of the

physical condition of the interferometer-, The first parame-

ter is the actual resonance modes of the interferometer at a

given experimental condition. The other is the dissipation

factor associated with each resonance mode.

A simple way has been adopted for measuring the reso-

nance modes of the interferometer. A variable signal fre-
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quency generator is directly connected to the transmitting

transducer of the interferometer. By changing the frequency

of the input signal, we observe the amplitude response from

the detector at one of the boundary walls. The frequency

s't which the response amplitude is maxN.imum is "the resonance

mode frequency.

For determining the dissipation factor at each mode,

we just measure bandwid'th of the half-power points of the

response amplitude from the detector at that particular

mode. A nondimensional quantity, quality factor Q, can also

be computed from knowledge of the bandwith by the rela;ion

Q -- (4-4)

4. Experimental Data

In order to verify some of the theoretical predictions,

we have kept two things in mind- the experimental condition

under investigation and the physical parameters for subhar-

monics to be excited: The experimental data are recorded
for the purpose of clarifying how good the theoretical

analysis is for a real physical situation. Those data are

obtained from a typical interferometer which has 1.5 MHZ and

360 KHZ X-cut quartz discs for its boundary walls.

(a) The Resonance Modes of the Interferometer

Table 4-1 lists resonance modes of an interferometer
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for a spacing of 3.58 cm at 260C. The calculated modes are

based on model described in Chapter III, section 6, and com-

puted from a computer. The constants for the characteristic

equation of Eq. (3-63) used during computer programming are:

R = 10.2702

fd= 1500.0

f = 360.0

f h= 21.0

The measured values are obtained experimentally from the

interferometer used in subharmonic observation. The proce-

dure of such data taking has been already described in the

previous section.

The quality factor, Q, associated witn the resonance

rndes is also recorded as a reference to indicate the sig-

nification of such a particular mode,

(b) Threshold for Subharmonic Excitation

There are two parameters for setting up the experiment

for observing subharmonicss one is the length of the inter-

ferometer and the other is the driving signal frequency.

The dots in Fig. 4-10a are the data for the subharmonic

threshold with different lengths of the interferometer; Fig.

4-10b is a record showing a general tendency of the subhar-

monic threshold to change as a function of the driving signil

frequencies, Those data are taken without adjusting other

references of the whole experimentFl system. Since the
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subharmonic frequency components change with interferometer

length and driving signal frequency, those experimental

points do not have the same frequency components. However,

the general tendency of the minimum threshold for exciting

the subharmonics can be indicated by the solid lines in

those figures.

(c) Amplitude and Frequency Components of Subharmonics

Two sets of experimental conditions have been carried

out in a detailed study of the amplitude and frequency com-

ponents of the observed subharmonics. Fig. 4-11a shows, for

a case of subharmonic of one-half, that the change in sub-

harmonic amplitude measured from the wave analyzer as the

driving signal intensity increases. Sometimes. under dif-

ferent conditions, more than one pair of subharmonics

appear. Fig. 4-11b is an example of such a circumstance.

The frequencies are measured by an electronic counter whose

accuracy is about + 5 HZ in our present measuring range.

Precision of the data on the reading of subharmonic fre-

quencies is dominated by the stability of the signal gen-

erator Wh.;ch, for our equipment, is about + 10 HZ. Hence,

the frequency data can be valid up to + 15 HZ.
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5. Discussion of the Experimental Results

Some physical explanations of the threshold of sub-

harmonic generation are gleaned from the data concerning

changes in the threshold as a function of length of the

interferometer as shown in Fig. 4 -10a. When the distance

between the boundary walls of the interferometer is small,

the loss is dominated by the transducer mounting loss which

is independent of the interferometeris length. However,

the amount of medium, which provides the nonlinear coupling

mechanism, is proportional to the space between the boundary

walls of the interferometer. These two factors make the

threshold for exciting the subharmonics decrease with the

length of the interferometer, as is clearly indicated from

the experimental data. When the length of the interfero-

meter becomes very large, the experimental results show

that the subharmonic generation threshold increases with

the length of the interferometer. This is due to the in-

fluence of the other losses such as the viscosity of the

medium, beam spreading, etc., which are a function of length.

The fact that subharionics becomes so udifficult to excite

for short spacings is evidence that the vibration of the

boundary walls does not provide an important contribution

to the nonlinear coupling responsible for subharmonic genera-

tion.

In Appendix A, we have carried out a detailed Rnalysis
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comparing the order of magnitude of the nonlinear couolin-

due to the boundary and to the nonlinear Property of the

mad ium.

The change in threshold for subharmonic generation

with driving signal frequency, as indicated in Fi. 4-1.0b,

covers a quite large range and does not fo]low a sirrnle

relation. This is due to the reason that other factors.

such as di.ssipation and detuning parameters, should also be

taken into consideration.

Information about the quality factor, Q, of the

interferometer associated with resonance modes can be used

to calculate the threshold for subharmonic generation ac-

cording to the analysis in Chapter HIf. From Eq. (3-73).

the simplified result for water without detuning is:

TH 1 5 X10 3  (4-5)
PTH = / ~Q]Q2

where PTH is the acoustic pressure in bars, Q1 , and are

the quality factors associated with subharmonic modes 1 and 2

respectively. Based on the data of Table 4-1, the calculated

minimum threshold is 5.8 bars which is close to what we have

measured in Fig. 4-10.

Though the interferometer Possesses many resonance

modes, in general only a few pair of subharmonics are jener-

ated during experiments, This can be explained by noting
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that, in addition to the threshold, those modes also have

to meeta matching condition; that is, the sum of their fre-

quencies should also equal to the frequency of the driving

signal. We use the data set of the resonance modes from Table

4-1 to check such a situation. Fig. 4-12 is dotted with

points corresponding to the sum of frequencies for a pair

of subharmonic modes in the range from 1575 KHZ to 1635 KHZ.

Two horizontal lines are drawn for the resonance modes at

1595.3 and 1618,2 KHZ. A highly intense wave can be estab-

lished if we drive the interferometer at these frequencies*

We see that there are actually only few points near these

two lines; in another words, not many subharmonic pairs

will be excited. The vertical distance between those poirsto

the lire gives magnitude of the resultant detuning and numbers in pa-

renthesis are the geometric means of the quality factors associated

with those particular subharmonic pairs. Points far from

the line may be excited only if a much stronger signal is pro-

vided. However, the final amplitude of the excited subhar-

monic will depend, not only on the quality factor for that

particular mode, but also on its detuning from the actual

resonance. When more ihan one subharmonic pair is excited,

their amplitudes will be inversely proportional to the loss

and the detuning. The experimental results shown in Fig.

4-11b give such evidence. (Because -f ambient temperature

changes due to the different times for data collection, there
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are frequenLy shifts for the resonance modes in Fig. 4-10

from the original modes recorded in Table 4-1. However, we

can still identify them by the general direction of the

shift. The corresponding subha.mionic pairs for Fig. 4-11

are labeled with s, s1, s 2 , in Fig. 4-12. We can see that,

as s1, s2 both have high Q's and are close to the driving

signal frequency, they can appear at the same time, Since

the condition for measuring the resonance frequencies is not

the same, we do nct attempt to use these data to calculate

the threshold and subharmonic intensity for the fact of

detuning).

The change in subharmonic amplitude with driving signal

intensity illustrates a surprising discrepancy from results

16reported by Bamberg1 . According to his observations, once

the subharmonic is excited, its amplitude will level off

regardless of how intense the driving si.gnal is and finally

it will disapear altogether after a further increase in

driving signal intensity. We feel that our results differ

from his because we have avoided cavitation during our ex-

perimenTs. Since gas bubbles consume energy through the

cavitation process, their presencc ill certainly prevent

further increase in the amplitude of subharmonics. This

character may be a way to differentiate between subharmonic

generation with cavitation and without cavitation.
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Chapter V

SUMMARY

1. Conclusions

The work reported here has been an attempt to develop

a mathematical analysis of subharmonic generation in acoustic

systems and to check experimentally the adequacy of the theo-

retical description of such a phenomenon.

The principal conclusions of this thesis are the

followingt

(a) Subharmonic oscillation is a manifestation of sys-

tem instability. The analysis of its behavior can be ob-

tained by first assuming its existence and then determining

the conditions under which il occurs. The two-variable (two-

timing ) perturbation method has been a very useful mathe-

matical tool in carrying out this study.

(b) In a conservative system of three oscillators

with a single nonlinear element whose energy function is

V=X1 X2X3 3 if the sum frequency of two oscillators is close to

the third one, there exist three integral constraints. By

using these constraints in the relevant four-dimensional

phase space we can obtain a single trajectory to describe

the system's inotioneand the time variable can be found by an

integral along that trajectory.

(c) For a dissipative system, subharmonics can be



excited by a sufficiently strong externna source, since the

nonlinearity of the system nrovides thn counling mechanism

for energy conversion to the lower frequencies. The losses

in the system and detuning from the exact frequency matching

condition play comparab'e roles in determining the threshold

required for subharmonin excitation.

(d) Subharmonics always appear in pairs except in the

degenerate case of the subharmonic mode one-half. In a dis-

tributed system, such as the acoustic irterferometer, more

than one pair of subharmonics may be excited provided they

meet the frequency sum rule and the driving source is in-

tense enough. According to the theory, for a medium with

frequency independent losses, the subharmonic of one-half

has the lowest threshold fcr excitation for a given detuning.

(e) Subharmonic generatiLn has been observed experi-

mentally in an acoustic interferometer. Because cavitation

was carefully avoided during the investigation, the exreri-

mental results, such as the threshold level, and the specific

subharmonic modes excited, are consistent with the theoreti-

cal predictions.

2. Future Work

The theoretical study of subharmonic generation can

be further studied for nonlinear element with other form

of energy functions. For example, if the three oscillator
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model possesses a secornd energy function, then there will

be an additional phase variable and one of the three origi-

nal contr-aints dces not hold anymcre. Therefore, the prob-

lem can not be reduced to quadrature. The existence of

zhertypes of constraints remains to be determined.

The one-dimensional model for the distributed system

should be extended to three-dimensions. This will permit a

more realistic comparision of theory and experiment.

Such an approach will also allow decomposition of the wave

number vectors to cover the more general case when the prop-

erties of the medium becomes dispersive.

On the experimental front, it seems that tempera-

ture control of the container will be necessary if more

Drecise quantitative measurements are desired. A 0.20 Centi-

grade change will cause 0.6 KHZ shift in frequency for

modes around 1.5 1MHZ with the present set-up.

Liquids other than water can also be used for observing

subharmonic generation. The experimental data will supply

the information on the nonlinearity associated with differ-

ent liquids. However, purification and possible cavitation

deserves investigation before considering the meaning of the

experimental measurements.

It may be interesting to extend the investigation to

subharmonic generation in a solid medium resonator. With-

out the complications of cavitation, such nonlinear phe-
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nomena may provide a different practical method of energy con7ersion.
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Appen- Ix A

REFLECTION FROM,, A V .' ATIONA! 6OUNDARY

xif=iV sin~O.1 -&
3

1/ R Sin(t'k'x')$

,lR' sin("t Ix,~j

Fig. A-I

Wher. waves reflected from a vibrational boundary, their

amplitudes and phases will change according to the boundary

conditions. Here we are discussing such effects and make a

comuarision with the interaction due to the nonlinearity of

medium.

Fig. A-I shows that a wave with the particle velocity

of Aj sin (cOzt' + klx4) is incident on a rigid boundary

whose surface moves harmonically with a displacement as

I' sin ( t')e A reflected wave can be found by matching

the boundary conditions, in this case, it is:

R' sin (wit' - kix' + ') , (A-1)

where R' = -A ,

= 2kj ' sinit',

Ass sin (Psina) = 2Jl(I)sin. - 2J 3 ( )sin3a +



r o (si (B) = J0(0 + 2(A)c_,z2_ + 2o_(0

n 2.fn - )'fTr --Tl 2

wae can exnand the reflected wave by crtsIderinr

order trr of ' nnly (' is a small quantitv):

R" .in Wit' - kixg + 01)

- A' sin (eu.t' - k x') cans (2Z'k sit)

A COS (EOt' - k xt) sin

A t.

- A sin (cs.it' - )Yjx') Po'k~) cik ~ 2A

+ " &'] + A{ cos (Pit' - k~x') [2J1 2kk' -'A, ct ;

AI sin (wit' - klx') - A* cos (wit' - k;x)

* k sin at

-1i" (wit' -kjx') -k14A ' [;in(wt' - wit-

+ sin (wi.t' +it' - k'x')]

(A-3)

The amplitudes of new frequency comopnts (w -eo{) W t .

4 LO) anpear as:

and in the nondimensional notation defined in Chapter I'!, it

becomes:
*

A2 = -)A 1 . (A- ')

However, the vibrating boundary will a1sc rad.8te
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an aco'zwtie wa~e ihose p~rticle velocity 'is:

UT ICosWIT'. (A-6)3 Oj 3
ThI- i .ve will interact with the reflected wave AI if the

erii-; poss-s-ss.a a nonlinear property. According to the

an.i. in Ch-zpter IMX, a nzw frequency component of C3 + cc
o W3 - o will eear with a relation ass

dAl

,dxY V(1 r ,i- (A-7)

or. for one dinensional problem,

A2 = V(*+ X.o2aAIL (A-8)

where L is the distance in wavelengths travelled by the two

interacting wares.

Comparing Eq3, (A-7) and (A-5), we have:

A2  . (.r.
A2 - aj A9

Since W. and (0, are in same order and f' is about 6.5 for water,

Eq. (A-9) indicates that A2 is Ltimes larger than A2 . This

is proof' that the nonlinear effect due to medium has

more influence in the generating new frequency components

than a vibrational boundary.
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[AT.,e !H C^AARiAtTEIS-TI'C PQ;)ATIO*. FOR T1 Eh

.~2 . hs~C~OSITE ilESON-ATOP

r~s~-. ~modes cf a certain resonatnr car be d' -

teriiv-,. fr t 1-ts t-nuf-r-y riz-n tions. However, for the one

-Or-r ;!i rs -or: mor shcwmr in Fir-. ?-2, th'e trans-ission

!Z1 ~ ~jca-. fcr stolvinsr suich a o'roblem..

Cor--idp ' section ol tnpe cojnrosite rescrator ss a

par (*, tran~jnjssjon line. Since -the wall at rirht side

is "tc rrated ii, a oressure release surface (D 0), th.,e

5cou~imi~pkd-ace it represents to the left will be:

where --ll the nntations are defined as before.

The mniddle section (7medjun) will transfer Z1to its

left side with a now impedance value as:

sc je'c' tan K'S

Tphe resittant imtt~dari' e appearing at the let wall will
th n hcco -ri: 

z + P1cI t n M

2,W ev,, jZc tankD

A-, thrp iqft1 also 1,cnrminaitev with a nreiurp re-

~e'r ~f~coat Lcesona-&e, we sho'i1'i havr-t
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z3 = 0. (B-4)

With the relations of Eqs. (B-1): (i-?): (.-3):

(t-41., we get-

[.R(tan kwD + tan kw*H) + tan MS - R2tan k_,D tuan kP1 tan k 'SI

/(R R2 tan k.,H tan k'S - R tan k,. tar kD - tan k'S

- , (B-5)

or simply,

R(tan kWD + tar k'R) + tan IC'S - R2 -can k,*D tan k

%tan k'S

-0, -o

which is just the characteristic equation (S-63),
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CG"P'7 YTER PPOIGRAL'. FOR THiE MUERICAL

SOLJT(ON OF T1.1E CIARAYTERI STIC EQUATON

F,'R A TRLREE SECION CO.PCSITE RESONATOR

The resonance frequency -f of a one din-nsion.l th-ee

section resonator, accordina to the disc'issicn in Chapter HI,

shonld sstisfy the equation:

R( tan +tan + tan 
h AS

- 2 "{a %n f  f .
Rtan w -tan aT tan r = 0, (C-i).Ld h s

where all ngn±sti~, -ww =r ifni :

For a given resonator, the resonance modes can be determined

by finding the roots of Eq. (C-i). We adopt the Newton-

Raphsor ferm3va - for the numerical computation.

First, we define a function as

f
F(f) = R(tan iT + tan + tan r

R R2 tan -f 1 tan f I tan Ifsf
fd fh f (

and DERF(f) = dF-f)

df

The roots of Eq. (C-1) can then be foond from Eq. (C-2) by

the iterative method:

F(xi)i
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Table C-i lists the computer program for carrying out

the actual computation process of Eq. (0-3). As fs is much

smaller than fh and f., the separation betheen two succes-

sive roots will not exceed fs. We use 0.65f, for the ini-

tial value during iteration.

In this program, the region near singular points of

the tangent functions is avoided to prevent the computer from

overflowing. Any missed roots are determined by interpclating

from their neighboring roots.

Notations used in the program follow closely to what

are defined in Fig. 3-2. The final output solution Y(I) is

the frequency of the- resonayice mode in units of KHZ, and G(I)

Is the actulz value of the functior Flf) when f=Y(I)o
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