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CHAPTER I

INTRODUCTION

Although there is no general agreement on a strict definition of

robustness, most writers implicitly accept a qualitative definition.

A general statement of this definition is as follows: a statistical test

is said to be robust (with respect to an underlying assumption for some

class of alternatives to the assumption and for a fixed sample -ize) if

the nower function of the test (under any member of the class of alter-

native assimptions) is not excessively larger than the power function of

the test under the original assumption for parameter values where the

null hypothesis is true and not excessively smaller where the alternative

hypothesis is true. A great many tests are based on an assumption of

normality of the parent population and robustness with respect to non-

normal parent populations has received by far the most study.

Classically, tests are formulated such that a type I error, rejecting

the null hypothesis when it is true, is the most critical error and prob-

abilities of this type of error are strictly controlled. Very often the

sample size is controlled by physical considerations and, hence, the

probability of the other type of error is beyond the control of the

experimentor. For these reasons, changes in the probability of a type

I error for changes in the assumptions are of more importance than other

points on the power function and most robustness studies have been limited

to the null hypothesis point on the power function. It should be observed

1
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that the central issie is the distribution r," test statistic u-ider the

alternative assumptions being considered. The ,pecific concern in this

work is the density of the one sample t-statistic without the assusmtion

of normality of the parent population.

An annotated bibliography of robustness studies in general has Lbeen

given by Grvindarajulu and Leslie [8]. A survey of robustness studies of

the Student t-tests, both one sample and two sample, has been given by

Hatch and Posten [9]. We will adopt the convention that references to

the Student t-statistic or test have the underlying assumptioa of normality

of the parent population, while references to the t-statistic or test

include no such assumption.

Surprisingly little has been accomplished in deriving the exact

density or mass ftuction of the t-statistic. Rider (151 derived the

density for samples of size 2 for a uniform population as well as the

mass function for various discrete uniform samples of size 2, 3, and 4.

Perlo (14] nas given the density of the t-statistic for samples of size

3 from a uniform parent population. Geary [71 derived the t-density for

double exponential samples and Baker [(] treated the compound normal case

with equal variances; both for sample size 2. Hotelling [10] derived

the tails of -he t-density for samples of size 2 from a Cauchy parent

population. La&erran [!I] derived the t-density for samples of size 2

from an arbitrary density with mean zero by geometric arguments. His

result is derived analytically here without the assumption about the mean

but for parent densities positive on the entire real line and can easily

be derived for the other cases with results presented here.

Various approximations for the t-density have been given. Bartlett

[21, Geary [7], Gayen (6] and others have used the first few terms of an

I
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Edgeworth type A series or a Gra,-charlier series as the density of the

parent populaticn and proceeded to derive the associated t-dens :'t. A

thorough accoutt of many such works is given by Batch and 1osten (9].

Bra.ley [4] worked in quite a different way. He wrote the distributi on

function of the t-statistic as an integral of the joint density of the

observation over the appropriate subset of Euclidean n-space, thn manip-

ulated the n-fold integral. After making simplifying assumptions about

the parent density, similar to those made in this work, he approximated

the t-density with the first few terms of a series representation for

it. He developed a computational technique and illustrated it with

Cauchy and logistic parent populations for sample sites of 2, 3, 4 and 5.

The general approach taken here is to recursively derive the joint

density of the sample mean and sum of squares of deviation about the

sarxple mean. For n > 3, the recursion relation requires an integration

which is accomplished by application of the mean value theorem. This

technique produces exact results for only a certain class of functions

but gives an approximation for others. This type of application of the

mean value theorem to carry out integrals promises to be a powerful

statistical technique with fufther study, which is indicated in Appendix A.

A transformation from this density to the density of the t-statistic is

given here, along with a symmetry property for the t-density.

The formulas derived here are illustrated when a member of the

generalized normal family is the parent density. The approximation of

the t-density is derived for these parent densities for the case where

v = 0 and for all sample sizes. Tables of type I error probabilities are

given for several specific member. of this family for sample sizes

2, 3, *'" , 31



CEIAPTER II

THE RECU1SICH RELATION

Let {X }n be a sequence of independent identically distributed

random variables with density function f where f(x) > 0, a.e. Let

(n) n n n (n) 2
T1 =fnl X. and T = X- T1  Ii=2 i=l

The recursion relations

(n+l) n (n) 1
1 n+ 1 n+-- Xn+

(2.1)
(n+l) (n) n (n) 2T =T + n(T -X
2 2 n+- 1 n+l1

can be verified directly. The superscript on T and T2 will be suppressed

where there is no ambiguity.

(n) (n
Suppose fn(t 1 , t2) is the joint density of TT1 and Xn+I

is independent of (XI X2, X n) and hence, is independent of

(n) (n) h(n)nd
Tl )and Tn . Therefore, the joint density of-i ' T2 Xn+1

f (tI, t2 )f(X n+i . Using the relations in (2.1), we can transform

[T ' -2, T n+l]) [T1  , T2  , U] with the auxiliary variable being

1  T2  nn1 nnl

defined by U = T (n) Xn The inverse of this transformation is

4



(n 1 nl n U2
2 - -

X T(n+l) n
n+1 Ti n+l

• - (n+1) _(n+7. ] i
and the jacobian is J -1. Then the density of T) 1 is

nn~ 2 f u (t. n
fn(t1+n u + t2-n-'1 f t2 n+1 u)•

- 1 < t 2 0

and the density of [T(n+l) s,(n+l)

f t -- n u) ft n

n+l (t1 2 (t + -I U t2  - 2)( 1 t - u)du

J>0
"t 1 t< t , 2 > 0 ,

where S is the open interval

S V(n;T)t2 /n Vn

In order to make the range of integration independent of t 2 and to

put the recusion relation in a more useful form we can transform

u = v(nT)t2/n v *

Then the joint density of-T(n+l) and T2(n+l) is
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-- < l [ I2 t 2 1- (2.2)



CHAPTER III

APPLICATIOf OF THE MCUNSIO5 RELXTION

For n = 2, the sample mean and stun of Squares of deviation can be

1 X2
expressed as T, 2 + X2) and T2  -XI . The transformation is

not 1-1 and the sample space must be broken down into the subspaces

AI= 1  (X1 , X2 ) X ! X21

A2 = (X1 , X2 ) X1, < X21

On A1 , the inverse transformation is

XI = T1 + jT2/2 , X2 = T1 - N2/2

with Jl = -i/2 2 . On A2, the inverse transformation is

2 2T
X1T =T - 1/ • 2 = T1+ t2/with J2= i/W "Then

f 2 (t 1 , t 2  V2i t 12 f t 1+1JV .f2t1 I),V 2

-CO < t<O, t2 > . (3.1)

7



The only changes required in (3.1) for parent densities that are positive

on (a, b) or (0, -) are changes in the limits on tI and t 2 . For den-

sities positive on (a, b), a < t1 < b and 0 < 2 < V2min(tF-a, b-tFI

For densities positive on (0, -), 0 < t1 < c and 0 < vf< f2t tI These

results are also proven by Craig (51.

Applying the relation (2.2) we have

f %(t' F3' (1- 2 ( -2'1/2 f t + r-
31' t2)u l/ 1( 2 6

(3.2)

Let

a 1 3 (U) + u2

a23 (u) V6- U L _u (3.3)

232

a 3 3 (u) u

then we can rewrite f 3(tl' t2) in the more compact form

29-1/2 3{ f 3 (t, t2) = /3 (1-u2) :6 f[t1 + 2 ai3(u) du (3.4)

If we further restrict f to be everywhere continuous, the integrand is

the product of compositions of continuous functions on the interval

(-l, 1). Hence, the integrand is a continuous function on (-I, 1) that
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is unbounded at the end points. Then for each fixed (t 1 , t 2 ) we can apply

the modified mean value theorem for integrals, a statement and proof of

which is given in Appendix A, to say there exists E3£ (-1, 1) such that

2%-1/12 3r t-a(f (tl, t) = 2F3 (1 - -/ fit 1 + a.3 (• 3 ) (3.5)312 12

3 3
where • ai 3 ( 3 ) = 0 and • a23(• 3 ) = 1 are easily verified identities

in 3 1 as well as the fact that - < a i3 < I for i = 1, 2, 3.

The existence of a value E3 is guaranteed for each (t 1 , t 2 ) , hence,

E3 = 3 (f, tit t2 ) The part of the integrand involving f in (3.4) can

be written

(Ft 1
1 t2

For densities that are symmetric about zero and sufficiently smooth,

tl/t-2 large moves the range of integration out in the tail of the

density and the multiplicative factor tends to play a smal.Ler role as the

ratio increases. Then for smooth densities symmetric about zero

E3 ; j 4f' Itli/t2 i] . Also, for densities that can be written with

a scale parameter, the scale can be made large and the mass concentrated

about zero so that the ratio t //tF is always large and hence, E % E3(f)

since T i/TI is a scale invariant random variable. In any case, we will
1 2

treat E3 as a constant and derive the values of the coefficients {a i

from other considerations. Then the following resuilts will be exact

only for the class of density functions where E3 is independent of t

and t2 . For the class of densities where E is not independent of t



10

and t2 results that follow will yield approximations for the densities

of (T1 , T2 ) and T .

Suppose we have recursively derived, for all integers up to and

including n,

f 1t 2, 2 n 'tJI

i •< t I < t , 2 > 0 (3.6)

where

a. En + a. 1-ý ,2 -

in
nin n ;+ain-_1,i= 2"on-

n - n 2
a in = 0 an = 1 • (3.7)1 in

4Ad for each i < n , Ei is the constant whose existence is guaranteed by

the mean value theorem. Applying the recursion relation (2.2), we have

f ( t 2 ) = -n-2 r 2 2 -

x•l 1 2+ (3 2a f +1

1 n
- f<t tI < •t-- n 2du

< 38
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Then we define

a i•~ (u, nN1U i= 1, 2, -* -, n

ai,n+() •n -(n+l) )

(u) =- (3.9)
n+l,n+lU = -

and rewrite (3.8) as

n+l 1 2 3
fl(tlt1 = 2 n-2 nni-

1 n .aI + . n+l(u)]j du

i- pu f~1  d

-• < t 1 < It 2 > 0

Again the mean value theorem can be applied to provide the existence of

[-l, 1] which is assumed to be independent of t and t2 , using then

conditions stated following equation (3.5). The identities . ain+l -- 0
n 1

and 1 = 1 can be verified directly.
1
Then by the strong principal of finite induction, the density of

(Ti, T 2) is given by (3.6) and the recursion relation for the coefficients

{a. in terms of the constants {.i is given by (3.7) for all values of
in >t

n >3. If we take vacuous products to be 1, (3.6) is valid for n >2.



CHAPTER IV

THE DENSMIT OF THE t-STATISTIC

The appropriate form of the t-statistic is

AnT-1/

Using the auxiliary random variable U = r 2,we are transforming

22

T = n(n-l)]- 1/2 U T

T 2 U2

-1/2 2
and the jacobian is J f n(n-1)] 2U .Then the density of the

t-statistic is

n-i n 2 2 - n
-Qt) 2 (1-&.) 2 n if 1 f([7 t + ain]udu

n vrri: i=3 1  0  ~ i=l n(ý

-~ -~t <~ (4.1)

':where {i. and {a in are defined in the previous chapter.

12
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Qn(t) is an even function whenever f is an even function. This

will be verified by the fact that for every n > 2, fn(c 1 , t 2 ) = fn(-tl, t 2 )

for all tI and t2' which will first be established by induction. Since

f is an even function, the property holds for n = 2 from (3.1). Supposing

the property holds for n, applying (2.2), we have for all t 1 and t2

f t2 ,~n+t (l-u2)) f t + UC du
fn+1 1-t1, t"? n 2  -u =(n1 ) 2, t

Then with the change of variable u-1 -u, we see the property holds for

n+l and hence the property holds for n > 2

The density of (TI, VT-) = (X, Y) is 2yf (x, y2 ) and we have, since
2 n

Y > 0,

Pr -P rty -t 0It 2f (x, y 2)dxdy

Then using the syrmetry property of f nand making the ch'ange of variable

x ÷ -x, we have

Prx2i < -t PrX t , for all t

Hence, T I/FT2 is a symmetric random variable and Qn is an even function.

Comparing Qn (t) and Qn (-t) in (4.1), one implication of this
symmtry might be that {aini = 1, 2, }, n= {-a. Ii = 1, 2, ' , n}

{.in in

for some f's. When this implication is not true, the set {ain} that is

symmetric about zero could be used to approximate the t-density with Qn

normalized to make it a density function, since the symmetric set of



14

coefficients does make Qn an even function. This approximation could

also be applied to parent densi, as that are not even functions. The

coefficient set a. i} that is symmetric is dispersed on the interval
in

(-l, 1) and hence would be a reasonable approximation of the true coeffi-

cient set in the absence of additional information about the true set.

1 I



CHAPTER V

DETERM4INATION OF SYMMETRC [ain

By the relation (3.7), we can see that the coefficient set

{a.n i = 1, 2, , n} has the property a. -a. = (a. - a l_-t22

in' jn- in 3,n-1 i,n-l 1-n

for i,j = 1, 2, , n-i and hence any ordering of {a. nli = 1, 2,

".,n-l} must give the same ordering of {ainli = 1, 2, --- n-lj . When

we have solved for n-1 and {a i,nI} we will order {a i,nI and then we

will have only three considerations to determine the position of a in

the order. For n = 2k+l, the (k+l)st value in the completely ordered

set must be zero, i.e., a,n = 0, akl,n = 0 or a n,n= 0 . For n = 2k,

the extreme values in the completely ordered set must differ exactly in

sign, i.e., aln , aln =-ann , or ann = -anl,n

For n = 3, the coefficients are given, as functions of t3, by (3.3)

and the conditions above yield the solutions t3 = 0, -/3/2, /3/2 . All

three values of 3 yield the coefficient set {ai 3} = {i/v2, 0, -1/F}.

2
We can discriminate between t3 = 0 or 3/4 by requiring Q3 (t) to be a

density function. For n = 4, the coefficients are given by (3.7) and the

conditions above yield t = 0, -/3/5 , 35 . The values 4 = 31 , -/3/5

yield the coefficient set {3/326 , 1/120 , -1//20 , -3/62O and the

value =4 = yields the coefficient set jl//2 , 0, 0, -l//2} • We will

assume that F , 0, n > 4, and handle the other cases later. By inspec-

tion of these cases, we can set up the induction hypotheses

15
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/3 (n-2i+l)
a. = , i 1 , 2, "-,nVn (n-1) n (n+!)-

2 3
k =+1 ' = 3, 4, "" , n . (5.1)

The coefficients {a i,+I} are given by (3.9) but as functions of

En+l "Considering the cases n, an even and an odd integer, separately,

the conditions yield the solutions n+l= 0, (3/(n+2) , -!3/(n+2) and

for n+l 0 ; the coefficient set

a3 (n-2i+2) i , 2,
a i,n+l -n(n+l) (n+2)

r (n) =
/n (n+1) (n+2) 'n+l - 2n2

a n+l,n+l 
-Y'3 (n) 

3

An(n+1) (n+2) n+l = +2

In either case, the induction hypotheses (5.1) are verified for the case

where n i 0, n > 4 . When n 0, n<n 0 and n = 0, n > no, the

coefficients for n0 are duplicated with n-n 0 additional values of zero.

Additional cases, where the ý's are zero with sone irregular spacing, can

be handled recursively.

I



CHAPTER VI

THE GLNERALIZED NORMaL DISTRIDUTIOM

The generalized normal distribution has been considered by various

writers in connection with robustness studies. The density is

f(XlM, Gi 28) e

- <X< ,-.< 0 < 1 , -•<p<•,a> 0.

Due to the scale invariance of T, we will consider a = 2, witheut loss of

generality. We will further consider the null case where u = 0, and f is

an even function. Applying (4.1) we have

2 11+81
n t , 2

Q~(I 8 =a.S (6.1)

where
i-4

(l+ 8 ~r n~)]T (-
co8) = H
cn3

4/1- rn(30

Since n must be an even function, we also have

2
n' t 2

(t = I t a. (6.2)1 n (nnl

17
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Mamy of the robustness studies that have been made have led people

to comclude that kurtosis of the parent pculaticn is the primay factor

detezmining the usefulness of using the Student t-distribuLSon ds an

aproxiwttcn of the dezsity of the t-'sttistic for the pcpVl.'-lio under

;]msideratim. This gener&iized normal density not only is a one parameter

vadatiaon of tht normal density, but that one paraeter is also a kurtosis

parameter. The kurtosis of the geeralized normal is

r2 3(1[)
IC =

which is an increasing finctica of 0 -

The normal density corresponds to S = 0 With this value we can

simpify (6.1) and compare the result with the normal theory t-Jensity

to see that

i4 n-1

3 P2r 2jj-l

andhence, for n > 3,

2_2 __ 2
4n-~ 2- (!-'

2?

gives a sequence of values {n satisfyLi.g the conditions of Chapter II.

Therefore, the normal density is a member of the class of densities where

n(t) is the exact density of the t-statistic. 2/1+8

Mhen 2/(1+0) is an even integer > 2, we can expand 11 t + a.

by the binomial theorem. Since is an even function, the . afficients
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in

II

of all odd pw-ers of t rest be zero. The solutions of ,• a.3 = 0 are

=n 0, + •iddk~ are the values t.hat produ.•e the £'y•ntrc constants

discussed in the prev~ious dhapter. Clearly, these symetric constants have

the property that _ an = 0 fork =0, 1,2, --. 1•en 2/(1+4 =2k+1,
I

we can cccpare- (6.11 and (6.2) to see that

+ a 12i = n - 1 (6.3)
In (n-1)1

is an identity in t . For k = 0, we can go through a tedious prccess of

letting t/( take values between tha a. 's to show that the set of
lettig t/n (n takein

caefficients f a. 'I ust be symetric. For k > 1, we can let
in

2hr t/~~ > maxf a ain and expand the terms by the binomial tneoren. Cmr-
i

paring terms in (6.3) we can again see- that a 2k+- = 0 for k = 1, 2,--,r

in

slymetric set of constants must apply for an 8 9f 0 such that 2/(1+8) is

an integer.

The set of svmmetric coefficients was used in 14.1) for the values

of 8 where 2/(I+8) = 1, 4/3, 3/2, 7/3, 5/2, 4, 16 . The appropriate values
2

of &3 = 0, 3/4 where used to numerically integrate Qn(tl$), since this

must be a density function. Neither of the values gave a density function.

This shows that f(xjO 8) is not in the class of parent densities for

which (4.1) is the exact t-density, but (4.1) does represent an approxi-

4mation for this density.
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The set {•n} , with the associated set of coefficients {a.in , was

fitted sequentially for the values of B given above in such a way as to

make the integral of Q (tl B) closest to 1 . The sample sizes considered

were n = 2, 3, - 31 and, of course, for n 2 the density of Q (tjý)
2

is exact for all . The set {E } used was Cn 3/(n+l) except for
n n

the 's where 2/(I+B) < 2 and in this case, & = =0

were the only changes.

The tables that follow are tables of

S(n-z) (t[ 1) dt

( (n, 8) = , (6.4)

i _ % (t i, )dt

Iwhere te (n-i) is the critical point of the Student t-density for a normal

parent population. The t a(n-1) were taken from [12], for the five decimal

place accuracy, where available and from [13], otherwise. a is interpreted

as the true probability of a type I error under the approximation Qn(tIB)

when a was the advertised probability and the false assumption of normality

was utilized. The computer program that was used to carry out the cal-

culations is listed and explained in Appendix B.

1_
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TABLE 1

2
SI1+8

n-I a=. 100 ct=.050 a=. 025 a=.01i0 a=.005

1 .08129 .03962 .01969 .00716 .00393
2 .08885 .03705 .01707 .00651 .00321
3 ,10313 .04453 .01801 .00620 .00291
4 .11142 .05186 .02237 .00675 .00296
5 .11945 .05812 .C2620 .00831 .00336

6 .09308 .04741 .02211 .00778 .00341
7 .11259 .05742 .02952 ,01143 .00497
8 .12572 .07042 .03744 .01439 .00647
9 .09688 .05148 .02760 .01103 .00529

10 .11456 .06460 .03424 .01440 .00698

11 .13114 .07277 .04011 .01692 ,00872
12 .10234 .05411 .02889 .01214 .00615
13 .11645 .06465 .03498 .01544 .00827
14 .12540 .06987 .03948 .01328 .00966
15 .13046 .07618 .04405 .02012 .01085

16 .14016 ,08252 .04719 .02175 .01185
17 .14570 .08531 .04888 ,02301 ,01268
18 .11893 .06603 .03672 .01651 .00904
19 .12571 .07091 .03978 .01857 .01003
20 .12967 .07412 .04259 .01961 .01069

21 ,13223 .07695 .04360 .02015 .01112
22 .13677 .07853 .04467 .02102 .01169
23 .13763 ,07917 ,04562 .02161 .01219
24 .13855 .03067 .04667 .02250 .01273
25 .13911 .08134 .04762 .02304 .01322

26 .14047 .08307 .04870 ,02395 .01372
27 .14290 .08472 .05021 .02466 ,01429
28 .11954 .06776 .03850 .01822 .01027
29 .12415 .07087 .04079 .01947 o01105
30 .12768 .07392 .04263 .02048 ,01155
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TABLE 2

2 4
1+8 3

n-I a=.100 a=.050 a=.025 a=.010 a=.005 I

1 .08'936 .04395 .02188 .00874 .00437i
2 .09323 .04220 .02006 .00778 .00385
3 10125 .04637 ,02074 .00759 .00365
4 .10652 .05066 .02314 .00799 .00370
5 .11082 .05425 .02542 .00890 .00398

6 .09771 .04366 .02330 .00855 .00393
7 .10771 .05458 .02734 .01049 .00483
3 .11485 .06063 .03100 .01199 .00562
9 .10044 .05165 .02646 .01045 .00504

10 .10926 .05801 .02994 .01214 .0 05 3

11 .11717 .06237 .03276 .01344 .00673
12 .10336 .05355 .02766 .01130 .00565
13 . 1i010 .05839 .03058 .0123 3 .00657
14 .11496 .06153 .0328.9 .01412 .00725
15 .11833 .06462 .03496 .01505 .00730

16 .12260 .06741 .03647 .01580 .00825
17 .12543 .06899 .03743 .01637 .00860
is .11317 .06049 .03219 .01373 .00719
19 .11601 .06251 .03351 .01457 .00761
20 .11806 .06409 .03471 .01510 .00794

21 .1965 .06548 .03543 .01549 .00819
22 .12157 .06644 .03605 .01590 .00846
23 .12248 .06709 .03661 .01624 .00870
24 .12322 .06783 .03716 .01661 .00393
25 .12382 .06,39 .03766 .01690 .00914

26 .12460 .06914 .03817 .01724 .00934
27 .12565 .06990 .03874 .01754 .00954
28 .11541 .06259 .03393 .01502 .00805
29 .11691 .06368 .03472 .01545 .00832
30 .11330 .06431 .03543 .01583 .00352
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TABLE 3

2 3
1+8 2

n-I a=. 100 a=.050 a=. 0 25 a=.010 a=. 005

1 .09258 .04573 .02279 .00911 .00455
2 .09512 .04442 .02141 .00838 .00416
3 .10070 .04732 .02194 .00824 .00400
4 .10450 .05033 .02360 .00855 .00405
5 .10748 .05294 .02520 .00919 .00426

6 .09896 .04913 .02379 .00393 .00420
7 .10559 .05327 .02655 .01025 .00434
8 .11'344 .05716 .02890 .01125 .00537
9 .1010'7 .05142 .02602 .01027 .00499
10 .10633 .05556 .02S35 .01139 .00559

11 .11191 .05847 .03019 .01226 .00611
12 .10304 ,05284 .02699 .01092 .00544

.10741 .05595 .02889 .01191 .00603
14 .111070 .05813 .03041 .01273 .00647
15 .11311 .06014 .03173 .01333 .00632

16 .11573 .06139 .03270 .01382 .00710
17 .11763 .06295 .03335 .01413 .00732
13 .10994 .05770 .03016 .01264 .00650
19 .11169 .05396 .03098 .01311 .00)676
20 .11305 .05999 .03172 .01347 .00697

21 .11416 .06089 .03223 .01374 .00714
22 .11536 .06156 .03267 .01400 .00731
23 .11605 .06205 .03305 .01423 .00746
24 .11661 .06255 .03341 .01446 .00761
25 .11709 .06207 .03375 .01465 .00774

26 .11763 .06344 .03407 .01486 .00796
27 .11923 .06391 .03441 .01503 .00797
28 .1120') .05948 .03155 .01357 .00713
29 .11231 .06009 .03199 .013391 .0072-8
30 .11362 .06074 .03240 .01404 .00740
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TABLE 4

2 7
1+$ 3

n-I c=.100 =. 050 c=.025 a=. 0 10 c=. 005

1 .10361 .05220 .02615 .01047 .00523
2 .10268 .05298 .02703 .01096 .00551
3 .'10003 .05160 .02668 .01103 .00561
4 .09802 .05012 .02588 .01032 .00556
5 .09649 .04388 .02508 .01048 .00542

6 .09533 °04791 .02440 .01014 .00524
7 .09450 .04715 .02384 .00983 .00507
8 .09383 .04653 .02338 .00957 .00491
9 .09326 .04603 .02300 .00934 .00477
10 .09281 .04562 .02269 .00915 .00465

11 .09244 .04528 .02242 .00899 .00455
12 .09212 .04498 .02219 .00,85 .00446
13 .09184 .04473 .02199 .00873 .00438
14 .09161 .04451 .02132 .00,363 .00431
15 .09143 .04432 .02167 .00853 .00425

16 .09121 .04415 .02154 .00845 .00420
17 .09106 .04400 .02142 .00333 .00415
18 .09091 .043S8 .02132 .00831 .00413
19 .09079 .04375 .02122 .00325 .00407
20 .09063 .04364 .02114 .00820 .00403

21 .09056 .04354 .02106 .00815 .00400
22 .09047 .04345 .02099 .00910 .00397
23 .09037 .04336 .02092 .00806 .00396
24 .09030 .04329 .02086 .00902 .00392
25 .09023 .04322 .02081 .00799 .00390

26 .09015 .04315 .02075 .00795 .003Sq
27 .09009 .0430Q .02071 .00792 .00386
28 .09003 .04304 .02066 .007(. .00313
29 .08998 .04298 .02062 .00737 .003',2
30 .03992 .04294 .02059 .00734 .00380

1L
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TABLE 5

2 3
1+S 2

n-I a=.100 a=.050 a-=.025 a-=.OO a=.005

1 .10512 .05315 .02666 .01067 .00534
2 .103R6 .05428 .02795 .01140 .00574
3 .10013 .05233 .02743 .01150 .00539
4 .09724 .05023 .02629 .01119 .005,92
5 .09505 .04947 .02515 .01070 .00561

6 .09343 .04709 .02418 .01021 .00536
7 .09215 .04599 .02339 .00973 .00511
3 .09117 .04510 .02274 .00941 .00488
9 .09035 .04439 .02220 .00909 .00469

10 .03•97() .04379 .02175 .00882 .00452

Ill .08914 .04330 .02137 .00960 .0043S
'12 .0836S ,04297 .02105 .00840 .00425

13 .0827 .04251 .02077 .00823 .00415
14 .08793 .04219 .02053 .00808 .00405
15 .01762 .04192 .02032 .00795 .00397

16 .01735 .04108 .02013 .00783 o00339
17 .09712 .04146 .01996 .00774 .00383
is .03690 .04127 .01931 .00764 .00377
19 .08672 .04109 .01968 .00756 .00371
20 .03655 .04093 .01956 .00749 .00366

21 .08638 .04079 .01945 .00742 .00362
22 .03625 .04066 .01934 .00735 .00359
23 .03611 .04054 .01925 .00730 .00354
24 .08600 .04043 .01917 .00724 .00351
25 .0R589 .04033 .01909 .00720 .00348

26 .0577 .04023 .01901 .00715 .00345
27 .0"568 .04014 .01•95 .00711 .00342
28 .08560 .04007 .01898 .00707 .00340
29 .0552 .03999 .01982 .00703 .00337
30 .03544 .03092 .01977 .00700 .00335
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TABLE 6

2 2

n-i a=. 100 a=.050 a=.025 0=. 10 a=. C05

1 .11349 .05198 .02983 .01197 .00599
2 .11074 .06206 .03332 .01447 .00743
3 .10170 .05718. .03222 .01472 .007941
4 .09334 .05170 .02912 .01365 .00760
5 .08763 .04701 .02612 .01225 .00691

6 .08275 .04321 .02356 .01093 .00617
7 .07898 .04015 .02144 .00977 .00549

.07575 .03765 .01970 .00880 .004,9
9 .07318 .03560 .01827 .00799 .0043)

10 .07104 .03390 .01707 .00731 .003971

11 .06925 .03246 .01606 .00674 .00361
12 .06771 .03124 .01521 .00625 .00331
13 .06633 .03013 .01447 .00534 .00305
14 .06523 .02927 .01334 .00548 .00283
15 .06421 .02347 .01323 .00518 .00264

16 .06331 .02776 .01280 .00491 .00247
17 .06252 .02713 .01237 .00467 .00233
18 .06180 .02657 .01198 .00446 .00220
19 .06116 .02607 .01164 .00427 .00208
20 .06053 .02561 .01133 .00411 .00198

21 .06005 .02520 .01.105 .00396 .00189
22 05957 .02482 .01080 .00382 .001-1
23 .05912 .02448 .01057 .00370 .00174
24 05872 .02416 .01036 .00358 .00167
25 .05934 .02387 .01016 .00349 .00161

26 .05799 .02360 .00998 .00339 .00156
27 .05767 .02335 .00982 .00330 .00150
28 .05737 .02312 .00966 .00322 .00146
29 .05709 .02290 .00952 .00315 .00142
30 .05692 .02270 .00939 .00303 .0013-'I



gi

27

TABLE 7

22 = 16
1+8

n-1 a=.100 a=.050 cx=.025 a=.02.0 a=.005

1 .12187 .06730 .03534 .01442 .00724
2 .11510 .06936 .04097 .01946 .01065
3 .10222 .06194 .03781 .01935 .01139
4 .09037 .05386 .03290 .01724 .01048
5 .03024 .04668 .029319 .01479 .00909

6 .07167 .04059 .02410 .01252 .00771
7 .06440 .03547 .02066 .01057 .00647
8 .05820 .03117 .01778 .00393 .00542
9 .05237 .02754 .01533 .00757 .00455
10 .04-27 .02446 .01338 .00645 .00383

ii .0442S .02184 .01169 .00552 .00324
12 .04079 .01960 .01027 .00474 .00275
13 .03771 .01766 .00907 .00410 .00234
14 .03501 .015q9 .00904 .00355 .00201
15 .03260 .01453 .00716 .00310 .00172

16 .03045 .01325 .00640 .00271 .00149
17 .02353 .01212 .00575 .00238 .00129
is .026S1 .01113 .00518 .00210 .00112
19 .02525 .01025 .00468 .00196 .00090
20 .023R4 .00947 .00424 .00165 .00086

21 .02256 .00876 .00386 .00147 .00076
22 .02139 .00314 .00352 .00132 .00067
23 .02032 .00757 .00322 .00118 .00059
24 .01935 .00706 .00295 .00106 .00053
25 .01345 .00660 .00271 .00096 .00047

26 .01762 .00613 .00249 .00036 .00042
27 .01685 .00530 .00230 .00073 .00037
23 .01615 .00545 .00213 .00071 .00034
29 .01549 .00513 .00197 .00065 .00030
30 .014138 .00494 .00183 .00059 .00027



-oaiTER V11

:o.C•5Toe•S

As was previously rai ,. cn:d, many authcrs have cocluad that kur-

tosis is of p.t- -ary importzace in the robustness of the Student t-test.

With our pprw atioan, we mi ýht extend this to say that for parent pop-

ulations w~th kurtosi; > 3, Wtich is the normal density value, the tests

axe optimistic i-n the type I cr,.or probabilities; that is, the zea2 c-

valua is larger rhan the advertised value. For parent populations with

kurtosis < 3 the tests are conservative; that is, the real a value is

smaller than the advertised value.

Box and Tiao [31 concluded that the Student t-test is a good approxi-

mation for all members of the generalized normal family. "They used Bayesian

techniques with specific families of prior densities for U and 0 in their

work. The present work seems to reinforce their conclusions since the same

conclusions follow from very. different approaches.

It should be observed that the conclusions stated here are based on

an approximation of the t-density for a particular family of parent den-

sities. Further, the approximation was thoroughly investigated for only

a few members of this family and no estimate is given of the grecision

of the approximation.
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For th*! sake of ccpIess, the nen-vaUwl tbeo m in its stanad

forn is, stated. 7he prood is cdtted sine it cm be fomd in nst

eleientary calcalms texrko~1s.

Theoze=: If g Is a ccetlinuou fatmtion ca t1%- interval (a, bi, then

there exists ýe [a, b] such that )a a(x)cx (-b-a'g(~ý)

The slightly modified version of this theorem that is stpiied for equation

(3.5) is as follows.

Theorem: If q is a continuou function on the interval (04 b)

lir g (x) = =- and g(z)dx < ,then te re existsx • a X -0,b a

ý c (a, b) such that g(xidx = (b-a)g(F1 ) = (b-a)gq( 2) where

•1 " 2"

Proof: Since g is continu on (a, b) and positively vmbounded at the

endpoints, g is bo•nded below on (a, b). Hence, g has an absolute

sin.mm an (a, b), that is, there exists rxF-(a, b) such that

g(x) > g( ) for all xc(a, b). Then

a
Supposeg (xaiyhld n(~ ) adx c(Aid. 1) unt

Suppoe• equaaity holds in (A.1) and consider t.he functicn

h (x) = g(x) - (n), which is bounded below by zero and continuous

on (a, b) and positively unbounded at the end points. We can

29



g zO q(mO a
*d.ic is clealy i•ssbe. Ssece,

-(. - ~ ) (7•.2)

Simc 9 is continwio~ g takes on alI valms ff;~) * am)d theze

exsf C c-n b)ad ý a, 0), such~ that the cmzditIcms of the

theamm are sa.is fied

The a•pplicatic of these t-~o tbeoress is actually a direct corollary

and seeral questicas introuced in these carollazies The exact

"situati•u•acd sme of the _msticas, which are basicaly matI:entical in

natuI-, need to be specified. Let t be a p-di-ensicual vectx-r and

q: R R 1 be suitably cmatinuos. The mean-v3i2 theoren guarantees

the existence of e: - R- Rhee g(t, uldu = aft, &(t)J and
P ia

a (t) < b . Cbviously, the cptinal situatica is to be able tc exhibit

a E, for the particular g. Itxen tCzis is not possible facts sudh as the

variation of !, the differentiability of E or even the continuity of E,

given sets zf conditiais .- g, wu11d be useful.



The c=MP-c-er pw~rM Msed to ealalate the pz*iiiS iv im

the tables wa rm om a OMM~ 2M for eac 13 conshe eZmith

tine wa3 sl1btly usfer I. mnuteI. Th pZrog3 qiw base is wst crtl~s

for the rcice, bct it is inu a fom gemza1 e~coo to acoe "

ccwsideratic~s of the xzrallized acz~ma distritcrtic with p 0 .

T'he tr asfb=3ticrg x was~i wade co mak the zw~j of

inteqa~m*-ca fii-dte- ,ihet u :s the cri~i=a varz!*blc of iiztegratice. ThSe

finctioi given irk S6-2) was factored zElioty iamd the cafficientas

b. a - Ahal wr secd.
in i

IGaLV -, GUr2, C, FCT, ANS, SJOL
DDLgSIM~ VISO0) B=rA( ) PR39( ) E2(31)

DATA T/(ta,(fl-1) values)
DnA B~hSvalues to be emzsidered3
DA~TA 3/(' values, an=2,-*,31 with. -2=0)
DO 5F4=1, (no. of 6 values)

K=G
BE-TA=-E-ATAS (14)
B() )=1.GO:)
B (2) -B (1''
DO 421=2, 31

IF(!N.LE.2) GD TO 2
J=N*-l
DO 1 I-1,J

B (N) (DN- 1) t (E (11!
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EO 3 J-2, (no. of cas being ciaered)

3 CM~w=

I= I=IOw33z 14,3) Ifl, in* of als +1FO, ))

K-3bo.of W's)

S-V

DOCS' pagjxIn U, X, Y, WC=, BzA B

T-VBSO/ *S(-1)

~ETURS

(eA 4S(F=r, M, ILL, MRS) is a 48 point Gauss-legandre integration

sofroutine where !'CT carries the fuiction values, MI. is the i~popr Uinit

of integration, LL is the lower lizit of integration and ;2:S returns the

value of the integral. GOWSAIW is a ftrnicticn that calculates the natural

logarithza of the ga~a ft-uctiwx of x, using Bernoulli numbers.
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