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CHAPTER I

INTRODUCTION

Although there is no general ayreement on a strict definition of
robustness, mest writers implicitly accept a gualitatrive definition.

A general statement of this definition is as follows: a statistical test
is said to be robust (with respect to an underlying assumption for some
class of altermmatives to the assumption and for a fixed sample scize) if
the power function of the test (under any member of the class of alter-
native assumptions) is not excessively larger than the power function of
the test under the original assumption for parameter values where the
null hypothesis is true and not excessively smaller where the alternative
hypothesis is true. A great many tests are based on an assumption of
normality of the parent population and robustness with respect to non-
normal parent populations has received by far the most study.

Classically, tests are formulated such that a type I error, rejecting
the null hypothesis when it is true, is the most critical error and prob-
abilities of this type of error are strictly controlled. Very often the
sample size is controlled by physical considerations and, hence, the
probability of the other type of error is beyond the control of the
experimentor. For these reasons, changes in the probability of a type
I error for changes in the assumptions are of more importance than other
points on the power function and most rcbustness studies have been limited

to the null hypothesis point on the power function. It should be observed
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that the centra:l issue is the distribution ¢ test statistin uider the
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altemative assumptions being considered. The upecific concern in this

work is the density of the one sample t-statistic without the assurption

‘ of nommality of the parent population.

;i; An annotated biblicgraphy of robustness studies in general has keen

- given by Grvindarajulu and ILeslie [8]. A survey of robustness studies of

i the Student t-tests, both one sampie and two sample, nas been given by

‘ Hatch and Posten [9]). We will adopt the convention that references to
the Student t-statistic or test have the underlying assumptioan of normality
of the parent population, while references to the t-statistic or test

e include no such assumption.

Surprisingly little has been accomplished in deriving the exact
density or mass function of the t-statistic. Rider (15] derived the
density for samples of size 2 for a uniform population as well as the

mass functicn for various discrete uniform samples of size 2, 3, and 4.

Perlo [14] nas given the density of the t-statistic for samples of size
3 from a uniform parent population. Geary {7] derived the t-density for
double exponential samples and Baker [1l] treated the compound normal case
with equal variances; both for sample size 2. Hotelling [10] derived
the tails of -he t-density for samples of size 2 from a Cauchy parent
peoulation. Laderman [1l] derived the t-density for samples of size 2
from an arbitrary density with mean zero by geometric arguments. His
result is derived analytically here without the assumption about the mean
but for parent densities pusitive on the entire real line and can easily
be derived for the other cases with results presented here.

Various approximations for the t-density have been given. Bartlett

[2), Geary [7), Gayen [6] and others have used the first few terms of an
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Edgewcrth type A series or a Gram-Charlier series as the density of the
parent peopulaticn and proceeded to deriwve the associated t-dens:tv. A
thorough account of many guch works is given by Hatch and Tosten {9].
Brac<ley [4] worked in quite a different way. He wrote the distribution
function of the t-statistic as an integral of the joint density of the
observation owver the appropriate subset of Euclidean n-space, then manip-
ulated the n~fold integral. Aafter making simplifying assumptions about
the varent density, similar to those made in this wecrk, he approximated
the t-density with the first few terms of a series representation for
it. He developed a computational technique and illustrated it with
Cauchy and logistic parent populations for sample sizes of 2, 3, 4 and 5.
The general approach taken here is to recursively dcrive the joint
density of the sample mean and sum of squares of deviation about the
sarple mean. For n > 3, the recursion relation requires an integration
which is accomplished by application of the mean valuve theorem. This
technique produces exact results for only a certain class of functions
but gives an approximation for others. This type of application of the

mean value theorem to carry out integrals promises to be a powerful

statistical technique with further study, which is indicated in Appendix A.

A transformation from this density to the density of the t-statistic is
given here, along with a symmetry property for the t-density.

The formulas derived here are illustrated when a member of the
generalized normal family is the parent density. The approximation of
the t-density is derived for these parent densities for the case where
u = 0 and for all sample sizes. Tables of type I error probabilities are
given for several specific members of this family for sample sizes

2, 3, ¢+, 31.
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CHAPTER II
THE RECURSION RELATION

- . ®
Iet txn} 1 be a sequence of independent identizally distributed
n:

random variables with density function £ where f(x) > 0, a.2. ILet

m _ -1 ¢ my _ ¢ (n).2
T, =n 0 ] ox, amd 1V = § ox -1V
i=1 i=1

The recursion relations

et _ n_ () 1

= ——==T X

1 n+l 71 n+l “n+l

(2.1)
(m+1) _ (n) . n_ .(n) _ 2
Ty e T T X!

can be verified directly. The superscript on Tl and T2 will be suppressed

where there is no ambiguity.

" (n)

Suppose fn(tl, tz) is the joint density of Tl and T(n)

2 7 “n+l
is independent of (xl, Xor *** xn) and hence, is independent of

2 ]
(n) (n)
T1

and 'I'2 + Therefore, the joint density of T(n) T(n) and X is

1 " 72 n+l
fn(tl, tz)f(xn+l) + Using the relations in (2.1), we can transform
(n) (n) (n+1) (n+1)

[Tl ' 'I‘2 ’ Xn+1] * ['1‘1 ' T2 ¢ U} with the auxiliary variable being
defined by U = T](_n) - xn+l . The inverse of this transformation is
4
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inj {nri) 1
i'im = T; Yo p+i U
= {n} (n#l) n 2
I =T ntl 0
_ ontl) n
1= T ael O
and the jacobian is J = -1 . Then the density of [T"“D énﬂ.j . 3] is

bo - By - )
f(t +n+1 2 n+1“)£t 11-!-1u

-eo<t1<m,t2>o .
and the density of [T (n+1)' :,2(n+1)] is
_ 1 n_ 2 _n_
£ e1(Erty) -.’“ fn(tl togw vy )f(t vy )du '

s
=<t <@, t,>0

where S is the open interval

S = (- ‘f(n+1)t2/n . (n+1)t2/ﬁ') .

In order to make the range of integration independent of t2 and to

put the recusion relation in a more useful form we can transform

u= o‘/(n-&-l)tz/n v .

(n+1) and T(MD is

Then the joint density of Tl 2

¢ m————— %

3
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CHAPTER I1IIX

APPLICATION OF THE RECURSION RELXATION

For n = 2, the sample mean and sum of s uares of deviaticm can be

expressed as Tl = 2()(1 + x )} and 'r -(xl - x2)2 . The transformation is

not 1-1 and the sample space must be brcken down intn the subspaces

A = {"‘1’ %0 | % 2 xz}
A, = {(xl. x) | % < ng .

On Al, the inverse transformation is

Xl = '1‘1 + ‘/T2/2 . Xz = Tl - 2/2

with Jl = -1/\/2'1'2 . On AZ’ the inverse transformation is

- ‘/rz/z P X, =T+ L2
with J2 = l/\/2‘1‘2 . Then

f(t,t)-/"t ft+‘,

o<ty <®,t, >0 . (3.1)
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The only changes required in (3.1} for parent densities that are positive
on (a, b) or (0, »}) are changes in the limits on tl and t? . For den-
sities positive on (a, b), a < tl <band 0 < /t-; < /z-min(tl-a, b-tl) .

For densities positive on (0, »), 0 < tl <® and 0 < /1_;;< 2 ¢

1" These

results are also proven by Craig [5].

Applying the relation (2.2} we have

1 3(l-u2)
£(t, £) = ﬁ; (1-u?) 712 ¢ e, +
-1 ‘\,/—

- V- 2-)
xft1+/£; [———u-Jidu.

v /6 Ji
J
Let
a13(u) S S \/;.-uz
6 /2
a23(u) -u_ L l—u2 (3.3)
/6 /2
2
a33(u) = uy3
then we can rewrite f3 (tl' tz) in the more compact form
1 3
£t e =B a2 f[t + /L a, (u)]du . (3.0
1" "2 i=1 1 2 i3
...l ==

If we further restrict f to be everywhere continuous, the integrand is
the product of compositions of continuous functions on the interval

(-1, 1). Hence, the integrand is a continuous functicn on (-1, 1) that
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is unbounded at the end points. Then for each fixed (tl, tz) we can apply
the modified mean value theorem for integrals, a statement and proof of

which is given in Appendix A, to say there exists E3e (-1, 1) such that

i 2,-1/2 3

= - A

£a(t,, £,)) = 2/3 (1 - £ 1{ f[tl + a13(§3)] , (3.5)
3 3,

where 2 ai3(£3) =0 and ) ai3(€3) = 1 are easily verified identities
1 1l

ing3,asweliasthefact:that -1<ai <1 fori=1, 2, 3.

3
The existence of a value 63 is guaranteed for each (tl, tz) » hence,

5;3 = 53(f, t,, t2). The part of the integrand involving £ in (3.4) can

3 t
mf /Ez— +a ).
1 ft; *

For densities that are symmetric about zero and sufficiently smooth,

1

be written

tl//i:; large moves the range of integration out in the tail of thn
density and the multiplicative factor tends to play a smairer role as the
ratio increases. Then for smooth densities symmetric about zero

£3 =] £3[f, Itl//t_:-z_ |] . Also, for densities that can be written with

a scale parameter, the scale can be made large and the mass concentrated
about zero so that the ratio tl/ﬂ; is always large and hence, £3 xR 53(f)
since Tl//'l—‘; is a scale invariant random variable. In any case, we will
treat 53 as a constant and derive the values of the coefficients {ai3}
from other considerations. Then the following res-lts will be exact

only for the class of density functions where 53 is independent of t1

and t2 . For the clars of densities where £3 is not indepcndent of tl
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and t2 results that follow will yield approximationg for the densities
of crl, Tz) and T .

Suppose we have recursively derived, for all integers up to and

including n,

= < t. <@ , & >0 (3.6)

where

= ———t 3, 1-§ , 1=1,2, ** , n-1

a,

in m i,n~1 n

nn n n
n n 2
La =0, La =1. (3.7)
1l 1

Axd for each i < n , Ei is the constant whose existence is guaranteed by
the mean value theorem. Applying the recursion relation (2.2), we have
i-4

n n-2 1 $ n-3
SNn-2 g2, 2 2 2y 2
fn+l(tl' t2) = 2 yn+l I; Q1 €i) t2 J'..]_ (1-u™)

n 1 (
xNl £ £+ /E;[_J___ + a, 1—u2 f(tl + /Ez— [—u‘/n%]) d
1 Ynintl) in j

<t <o, t >0 . (3.8)




1

Then we define

Yn{n+1)
n
Al nelW =~ 0 Vﬁ (3.9)

and rewrite (3.3) as

n i~4) n-2
_ n-2 2,2 2
fn+1(tl' tz) =2 Vn+l I; {1 £i) t2

1 n-3
273 n+l =
x i(l—u) I]i. £le, + /ry 8, L (W]gdu,
-1

<t <@, t >0 .

Again the mean value theorem can be applied to provide the existence of

€n+l€ [-1, 1) which is assumed to be independent of tl and t2, using the
n

conditions stated following equation (3.5). The identities z 3 b1l < 0
n 1 ’

and ) 8> =1 can be verified directly.
1 i,n+l

Then by the strong principal of finite induction, the density of
(Ti' '1'2) is given by (3.6) and the recursion relation for the coefficients
{ain} in terms of the constants {Ei} is given by (3.7) for all values of

n > 3. Ifwe take vacuous products to be 1, (3.6) is valid forn > 2 .
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CHAPTER 1V

THE DENSITY OF THE t-STATISTIC

The appropriate form of the t-statistic is

/n T

1= —2 = AeD 7T
T
2
n-1

Using the auxiliary random variable U = VE;', we are transforming

(Tl, T2) + (T, U). The inverse of the transformation is

H
l

L ntn-11"2 yr

and the jacobian is J = [n(n--l)]-l/2 2U2 . Then the density of the

t-statistic is

n-1 n i:é- ® n \
Qn(t) = 2 I (1-5?) 2 un-l m £ [—-—-L:_ + ain]u du ,
V-1 i=3 o 0 i=1 \l/n(n-1)
-0 £ £ < ’ (4.1)

where {ii} and {ain} are defined in the previous chapter.

12
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13

Qn(t) is an even function whenever f is an even function. This
will be verified by the fact that for every n > 2, fn(cl, tz) = fh(.tl’ tz)
for all tl and t2, which will first be established by inducticn. Since
f is an even function, the prcperty holds for n = 2 from (3.1). Supposing

the property holds for n, applying (2.2}, we have for all t, and t

p ML,
1 e
- 15 3 SV - " —2
1t 8 SV 5 fn(tl i e ))f(tl M )d“ y

-1

Then with the change of variable u -+ ~u, we see the propertv holds for
n+l and hence the property holds for n > 2 .

The density of (Tl, /553 = (X, ¥) is 2yfn(x, yz) and we have, since

Y > 0,

00 -ty
pr{% < ‘t} = Pr{x < -~tY} = S s 2y (x, yz)dxdy .
0

-0

Then using the symmetry property of fn and making the change of variable

X * ~X, we have

Pr{—-< -t} = Pr{%-z t! , for all t .

Hence, Tl//gz' is a symmetric random variable and Qn is an even function.
Comparing Qn(t) and Qn(-t) in (4.1), one implication of this
symmetry might be that {ainli =1, 2, *** , n} = {-ainli =1, 2, *** , n}
for some f's. When this implication is not true, the set {ain} that is
symmetric about zero could be used to approximate the t-density with Qn

normalized to make it a density function, since the symmetric set of

PO

a5
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coefficients does make Qn an even function. This approximation could
also be applied to parent densi. 2s that are not even functions. The

coefficient set {ain} that is symmetric is dispersed on the interval

(-1, 1) and hence would be a reasonable approximation of the true coeffi-

e
ARV

cient set in the absence of additional information about the true set.
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CHAPTER V

DETERMINATION OF SYMMETRIC {ain}

By the relation (3.7), we can see that the coefficient set

I' = oo - - - _2
{ainll 1, 2, . n} has the property ajn a (aj,n-l ai,n-l) 1 En
for i,3 =1, 2, *** , n-1 and hence any ordering of {ai n-lli =1, 2,

se¢ , n~1} must give the same ordering of {ain|i =1, 2, *** n-1; . When
we have solved for £ and {a, } we will order {a, } and then we
n-l l’n"l 1,1‘1"1

will have only threce considerations to determine the position of an in
the order. For n = 2k+l, the (k+1)St valve in the completely ordered
set must be zero, i.e., ak,n =0, akvl,n = 0 or an,n =0 . Forn = 2k,
the extreme values in the completely ordered set must differ exactly in
sign, i.e., a; = -a ;. ¢ &y = T¥n rora, = -an-l,n .

For n = 3, the coefficients are given, as functions of 53, by (3.3)
and the conditions above vield the solutions £3 = 0, -/372, /372 . All
three values of £, yield the coefficient set {aiB} = {l//f, 0, -1//5} .

We can discriminate between €§ = 0 or 3/4 by requiring Q3(t) to be a

density function. For n = 4, the coefficients are given by (3.7) and the

conditions above yield £4 =0, -Y3/5 , ¥3/5 . The values €4 = v¥3/5 , -¥3/5

yield the coefficient set {3//56 , 1//20 , -1//20 , -3//55.§ and the
value €4 = v yields the coefficient set {1//5 , 0,0, -1//5} . We will
assume that En # 0, n > 4, and handle the other cases later. By inspec-

tion of these casecs, we can set up the induction hypotheses

15
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Y3 (n-2i+
2 = 3 (n-2i+1) , i=1,2, *+ , n
¥ (n-1)n(n+l1)
2 3
gk =m I3 k = 3’ 4' R ¢ ) . 7 (501)

The coefficients {ai n+1} are given by (3.9) but as functions of
14

g

n+l Considering the cases n, an even and an odd integer, separately,

the conditions yield the solutions §n+1 =0, V3/(n+2) , -/3/(n+2) and

for §n+1 # 0. the coefficient set

_ Y3 (n-2i+2)
ai n+l
’ Yn(nt+l) (n+2)

'i=1,21...,n

/3 _(n) £ -‘/:i:
Yn (n+l) (n+2) ntl n+2

a =
n+l,n+l

-/3 (n) £ ‘/ 3
/(1) (ni2) n+l n+2

In either case, the induction hypotheses (5.]) are verified for the case

where En #0, n>4. when En #0, n<n  and En =0, n> Ny the

0

coefficients for n, are duplicated with n-n, additional values of zero.

Additional cases, where the £'s are zero with some irregular spacing, can

be handled recursively.

[PPSR



st

%
28
E

aﬁ"'

S T
Y SINT

oosgRa e soR

B

NeETy

]

23
2
7
&
3
Z
n

mtmrs®
R

T
3

S R LY

s
%
ki
E
T
5
p:
=
“23
P
43
f

Sy

0
o
;.
1
I
7
s
¥
-3
4
[
‘
e
i

CHAPTER VX
THE GENERALIZED NORMAL DISTRIBUTION

The generalized normal distributica has been considered by various

writers in connection with robustness studies. The density is

2

34,8 am—
8 -1 )
2 -y
£xfu, 6, 8) ={2 % r|ZE)s e:tp!-%' 3‘;3! .
{

@0 <x<wo ,~l<p<cl,m<cpyc= ,ag>0 .

Due to the scale invariance of T, we will consider ¢ = 1, withcut loss of
generality. We will further consider the null case where u = 0, and £ is

an even function. Applying (4.1) we hawe

2} afE)
o W)

| n t 148
(i) =c (BY{) | —— + a. ’ (6.1}
*n n 1 /n(n~}) m‘
where
n i-4
(1+s)r[n{i;§-”n (1-£%) 2
. 1
3
cn(B) = " .
- n
o1 (2]
Since % must be an even function, we also have
2 148
le . 148 n( 2
(t|8) = c_(B) —_— - a, . (6.2)
& 1] Awn °
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Many of the rcbusiness studies that have beern mads have led people
to conclude that kurtosis of the parent pcpulation is the prirmary factor
determining the usefulness of using the Student t-distribulicn a5 an
aprraximation of the dersity of the t-statistic for the pepnlzticn under
consideration. This generaiized normal density not only 13 3 ane parameter
variation of the nor=a® density, but that e parameter is alsoc a kurtosis

parametexr. The kurtosis of the generalized normal is

r -1-;%:-[5“—;‘1)]

AR

which is an increasing fumcticn of £ .

The aormal density corresponds to 8 = 6 . With this valve we can

simplify (6.1} and compare the result with the normal theory t-3ensity

to see that
. n-1
n 2 }_2_1 q 2
E (1-£)) =
3 i oM 2r(n21)

and hence, forn > 3,

n-4 r ___n-2)
n - 2;.(n«l
2

givec a sequence of valves {En} satisfying the vonditions of Chapter III.
Therefore, the normal dersity is a merber of the class of densities where

Qn(t) is the exact density of the t-statistic.
= t 2/1'!'8
When 2/{1#B) is an even integer > 2, we can expand }{——— + a,

vn (n-1) m

by the hinomial theorem. Since Qn is an even function, the (_zificients
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of all odd powers of t must be zexo. The sciutians of Ea:nso are
1

{n =0, td% which are the values that produse the cymmetxic constants

discussed in the previcus chapter. Clearly, these symmetric constants have

2k+1
2

n
the progerty that } a.
3 im

we can ccepare (6.1} and (6.2} to see that

n 2k+#1 = e 2k+35.
L ra =] ———- a. (6.3)
1] /nin-1} 1| /am-D

is 2n identity in t . For k = 0, we canr ¢o throush s tedious prccess of

letting t//n(n-1) take walues between the a.in's to show that the set of

ccefficients {a, } must be symmetric. Fork > i, we can let

t//nla-1) > r_-ax“ aini} and expand the terms by the binomizl tncorem. Com-
i

paring terms in (6.3) we can again see that =0 fork=1, 2,°*-,

and hence that the symmetric set {a:.m} sust be the proper cne. Then the
symmetric set of constants must apply for all 8 # 0 such that 2/(1+#8) is
an integer.

The set of symeetric coefficients was used in {4.1) for the values
of 8 where 2/(2+3) = 1, 4/3, 3/2, 7/3, 5/2, 4, 16 . The appropriate valves
of E,§ = 0, 3/4 where used to numerically integrate Qn(tl.%) , since this
must be a density function. Heither of the values cave a density functicn.
This shows that £(x{0 ° §) is not in the class of parent densities for

which (4.1) is the exact t-density, but (4.1) does represent an approxi-

mation for this density.

=0 fork=90,1, 2, -+ . tshen 2/7(143) = 2k+1,
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The set {£n} , with the associated set of coefficients (ain} , was
fitted sequentially for the values of 8 given above in such a way as to
make the integral of Qn(tEB) closest to i . The sample sizes considered
were n = 2, 3, *** , 31 and, of course, for n = 2 the density of Qz(tlfs)

is exact for ail 8 . The set {£n} used was €x21 = 3/(n+l) except for

* y 3 ! = = £ = = =
the 8's where 2/(1+8) < 2 and in this case, €7 510 13 5,19 529 0
were the only changes.
Tne tables that follow are tables of
o (t|8)at
- t, (n-1) °
aln, B) = ~ ' (6.4)
Qn(tls)dt

vhere ta(n-l) is the critical pecint of the Student t-density for a normal
parent pooulation. The ’ca(n-l) were taken from [12], for the five decimal
place accuracy, where available and from [13], othexwise. a is interpreted
as the true probability of a type I error under the approximation Qn (tl R)
when a was the advertised probability and the false assumption of normality
was utilized. The computer progran that was used to carry out the cal-

culations is listed and explained in Appendix B.




TABLE 1
2
T4 = 1
n-1 a=.100 a=.050 a=.025 a=.010 a=.005
1 »08129 «03962 »01969 «00786 «00393
2 .083885 ,03705 .01707 »00651 .00321
3 10313 .04453 «01801 «00620 .00291
4 «11142 «05186 02237 200675 .00296
5 «11945 +05812 «C2620 .00831 «00336
6 09308 «04741 02211 +00778 .00341
7 «11256 «05742 «02652 ~01143 «00497
8 12572 «07042 ,03744 +01439 .00647
9 +09688 «05148 «02760 »01103 .00529
10 + 11456 « 06460 «03424 »01440 »00608
11 «13114 «07277 .04011 «01692 «00872
i2 « 10234 +05411 .02889 .01214 .,00615
13 «11645 «06465 »03498 «01544 «00827
14 « 12540 .06987 «03948 «01828 «00966
15 « 13046 .07618 .04405 02012 .01085
16 «14016 +08252 «04719 02175 «01185
17 14570 «08531 +04888 «02301 +01268
18 » 118903 .06603 «03672 .01651 00904
19 « 12571 207091 .039078 +01857 «01003
20 « 12967 .07412 «04259 .01961 01069
21 « 13223 .07695 «04360 «02015 .01112
22 « 13677 +07853 .04467 02102 «01169
23 « 13763 «07917 «04562 .02161 .0121¢9
24 « 13855 «038067 +04667 02250 «01273
25 »13011 ,08134 «04762 «02304 .01322
25 « 14047 ,08307 «04870 «02395 «01372
27 « 14290 +08472 .05021 02466 «01429
28 « 11954 06776 «03850 «01822 01027
29 12415 .07087 «04079 «01947 .01105
30 « 12768 «07392 04263 «02048 oN1155
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TABLE 2

2 _4
48 3
n-1l a=,100 a=.050 a=.025 a=,010 u=.005
]
1 .08936 «04395 .02188 .D0874 00437 i
2 «09323 «04220 «02006 00778 +D0385
3 «10125 «04637 »02074 . 00759 »00365
4 « 10652 « 05066 .02314 ,007090 .20370
5 « 11082 .05425 .02542 00800 .C03¢e8
6 ,090771 .04866 .02330 .00855 .00293
7 « 10771 .05458 02724 .01049 .004182
8 » 11485 .060623 .03100 .01199 ,00562
¢ « 10044 .03165 .02646 .01045 .N0594
10 « 10926 05801 .020094 01214 L0030
11 « 11717 .06237 .03276 .01244 00672
12 « 10336 .05355 ,02766 .01130 00565
13 .11010 «05839 .03058 .01232 0657
14 11406 «06153 .D3288 01412 00725
15 + 11833 .06462 .03496 .01505 «20780
16 » 12260 «06741 « 03647 «01580 .00825
17 . 1254323 . 06399 .03743 01627 .00869
18 « 11317 .06049 ,03219 .012378 .00719
19 «11601 .06251 .03351 .N1457 00761
20 11806 .06409 .03471 .01510 .00794
21 «11965 .06548 .03543 .01549 .00819
22 » 12157 06644 .03605 .01590 .00846
23 « 12248 06709 .036061 .01024 00870
24 . 12322 06783 03716 .01661 .00323
25 « 12332 ,00336 . 03766 .016990 «00914
26 12460 .06014 .03817 .01724 .00924
27 « 12565 .0689090 ,03874 ,01754 .00954
28 11541 .06259 .03393 ,01502 .003805
29 .11691 06368 .03472 «21545 «00822
30 «11330 .06481 .03543 .01583 .QN852

ny
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TABLE 3
2 _3
148~ 2
n-1 a=.100 a=.050 a=.025 «=.010 =.005
1 .09258 «D4573 .02279 .00911 »00455
2 .00512 .04442 .02141 .00838 .004 16
3 - 10070 04722 .02194 00824 .00400
4 . 10450 .05033 «02360 .00855 .00405
5 . 10748 .N52%4 02520 .00919 .00426
6 00896 »04013 .02379 .00393 00420
7 » 10559 .05327 .02655 .01025 .N0484
8 . 11744 05716 .02390 .01125 .00537
0 . 10107 .05142 .02602 .01027 00469
10 . 10633 .05556 .02835 .01139 .00559
i1 .111¢1 .05847 .03019 .01226 «00611
i2 . 10304 »,05284 .02690 .0100¢2 .00544
13 .10741 05565 .02889 .01191 .N0603
14 « 11079 «053813 .03041 012732 . 00647
15 «112311 «D60 14 223173 .01333 00682
16 « 11573 .06139 .03270 .01382 .00710
Y7 » 117623 .06295 .03335 .01418 00732
13 « 10994 .05770 03016 .01264 .00630
19 011169 .052306 .03098 01311 L0676
20 11205 03099 03172 .01347 .00607
21 +11416 .060309 «03223 .N1374 .00714
22 .11536 .06156 .03267 .01409 00731
23 « 11605 .06205 .03305 .01423 .N0N746
24 + 11661 .06255 .03341 .01446 N0761
25 . 11709 06207 +03275 .01465 .00774
26 . 11763 .N6344 .03407 .01486 .0078%6
27 .11828% 06391 .03441 .N1503 .00767
28 « 11209 .05648 03155 ,01357 .00713
29 11231 .06009 .N3199 .N13%1 0N723
30 . 11362 06074 .N3240 .01404 .00740
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TABLE 4

A A

1+8 3
n-1 a=.100 a=.050 «=.025 a=.010 a=.005
1l .10361 05220 ,02615 .01047 .00523
2 . 10268 205298 .027032 .N1096 .ND0551
2 . 10003 .N5160 02668 .01103 00561
4 .00802 05012 .02588 .01082 .00556
5 +00649 .04388 .0N2508 .01048 .00542
6 ,00533 047901 .02440 .01014 .00524
7 .06450 .04715 .N23284 .00083 .00507
8 .00383 .04653 .02338 .00957 .00401
9 .06326 .04603 .02200 .00934 .00477
10 .09231 .04562 .02269 .0NA15 .00465
11 .00244 .04528 .02242 .09890 .00455
12 .09212 .044908 .02219 .00885 .00446
13 .00184 .04473 .N2199 .00873 .00438
14 .00161 .04451 02182 .N0363 .N0421
15 .00141 .04432 02167 .00353 .00425
16 00121 .04415 .02154 .00845 .00420

17 «09106 .04400 .DN2142 00833 .00415 !
18 .00091 .04338 «02132 .N0831 .00411
10 .00079 .04375 .N2122 00825 .00407
20 .090068 .04364 .02114 .00820 .004023
21 .09056 .04354 .02106 00815 .00400
2 00047 .04345 .02099 .00810 .00397
23 . 00037 .04336 .02002 .00806 . 00304
24 ,09030 .04329 .(02086 .008%02 .003202 |

25 00023 .N4322 .02081 .0079¢ .003a0
26 .00015 .04315 .02075 .00795 .0033%
27 .09009 .04300 .02071 007902 .0038¢6
28 .N9003 .N4304 «02066 .DN7]¢ +003%3
20 .08008 .D4268 .N2062 .N0787 L0N382
30 ,030092 .04294 .02058 .N0784 .00380

24
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TABLE 5

2.3

148 2
n-1 o=.100 a=.050 a=.025 o=,010 o=.005
1 .10512 .05315 02666 «01067 «00534
2 .103%6 .05428 .02795 .01140 .00574
3 « 10013 .05233 .02743 .01159 .00539
4 .09724 .05022 02629 .D11190 «20532
5 .09505 .04847 02515 .01070 .00561
6 ,00343 .04708 .02418 .01021 .00536
7 .09215 .04599 .02339 .N0973 .00511
8 .00117 .04510 ,02274 .00941 .00488
9 .N9035 .04439 02220 ~N0909 .00469
10 L03670 .04379 02175 .N0882 .00452
11 .08G14 .04320 02137 .00360 .00438
12 ,(08368% «04257 .02105 .00340 .00425
13 .08827 .04251 .02077 .00822 .00415
14 »08793 .04219 02052 .N0808 .00405
15 .N3762 .04192 .02032 .00795 .00397
16 .N8735 .04168 .02013 .00733 .00339
17 »038712 .04146 .01966 00774 .00383
18 .08690 .04127 .01981 .00764 .00377
19 .03672 .04109 .N01968 .00756 00371
20 .03655 .04093 .01956 .00749 00360
21 .,08638 .04079 .01945 .00742 .00362
22 .03625 .04066 .01924 .00735 .00358
23 ,03611 .04054 .01925 .00730 .00354
24 .038699 .04043 .01917 .00724 .00351
25 ,0%589 .04033 .01909 00720 .00343
26 .03577 .04023 .01901 .00715 .00345
27 ,03563 .24014 .01R8G5 .00711 .00342
28 .08560 04007 .01888 00707 .00340
29 .0%8552 .03909 .01882 00703 »J0337
30 .N8544 .N3192 ,N1877 .00700 .00335

25




n-1 a=.100 a=.050 0=.025 a=.010 a=.C05
1 «11349 05398 .02983 .01197 .00590
2 11074 .06206 .03382 .01447 .00743
3 10170 .05718. .03222 01472 .00794
4 .09334 .05170 .02912 .01265 .G0760
5 08763 04701 02612 01225 .N0691
6 08275 .04321 .02356 .01093 .00617
7 .07838 .04015 .02144 .00977 .00549
8 07575 .03765 .01970 .N0880 .N04%9
9 .07318 .03560 .01827 00700 .00439

10 .07104 .03390 .01707 00731 .00397
11 06925 .03246 +01606 .00674 .00361

12 06771 03124 01521 00625 00232
13 06638 03013 .01447 .00534 .00305

14 .06523 .02027 .01334 .00548 .00283
15 06421 .02347 01328 .00518 .00264

16 06331 02776 01280 .00491 .00247

17 06252 02713 01237 «00467 .00233
18 «06180 02657 01198 .00446 .00220

19 .06116 02607 .01164 .00427 .00208

20 «06053 .02561 01133 00411 .00108

21 .06005 .02520 .01105 .00396 .00189

22 «05957 02482 .010890 .00382 .00131

23 «05612 .02448 01057 .00370 .00174

24 03872 .02416 .01036 .00358 0167

25 .05324 .02387 .01016 .00348% .00161

26 05799 «02360 .00908 .00339 00156

27 05767 .02335 .00982 .00330 .00150

28 .05737 .02312 «00966 .00322 .00146

20 .05709 .02290 .00952 00315 .00142

30 05682 02270 .00939 .00308 .00138
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TABLE 7
2
T T
n-1 o=.100 a=.050 a=.025 a=.020 a=.005
1 «12187 06730 .03534 .01442 .00724
2 +1151G 06036 .04007 .01946 .01065
3 + 10222 .06194 .03781 01935 «01139
4 .08037 .05286 .03290 01724 .01048
5 03024 .04668 .02%19 .01479 .00900
6 .07167 .04059 .02410 01252 00771
7 06440 .03547 .020606 »01057 00647
8 .05820 ,03117 01778 +30%393 .00542
9 .05287 .02754 .01538 00757 .00455
10 0427 .02446 .01338 .00645 .00383
11 .04428 .02184 .01169 .00552 .00324
12 ,04070 .01960 01027 00474 .00275
13 .03771 01766 .00907 .00410 .002234
14 .03501 .0150¢ .00804 .00355 .00201
15 .03260 .01453 .0071é .0N310 00172
16 .03045 .01325 .00640 .00271 .00149
17 .02853 .N1212 +00575 .00228 .00129
18 .02631 .01113 .00518 .00210 .00112
19 .02525 .01025 .00468 00136 .00008
20 .023%4 .0N047 .00424 .00165 .00086
21 .02256 +00876 .00386 .00147 . 20076
22 .02130G .00814 .00352 .D0132 .00067
23 .02032 .00757 .00322 .0D0118 00059
24 .01935 00706 .00295 .,00106 .00053
25 .01345 .00660 00271 00096 .00047
26 01762 .006 1S .00249 .00086 .00042
27 .01685 .00580 .00230 00073 .00037
28 01615 .00545 .00213 00071 00034
29 .01549 .00512 00107 00065 .000230
30 .014938 .004%4 .00183 .00059 00027
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“HRPTER VIX

- COSCLUSIONS

As was previcusly mci.-cwd, many authcrs have concluded that kur-

Z tosis is of primary importance in the robustness of the Student t-test.

With our azppri:imation, we mitht extend this to say that for varent poc-

ulaticns w'th kXurtosis > 3, which is the normal dernsity value, the tests

are optimistic i1 the type X cr.or propabilities; that is, the ieal 2

s
ke
*
9
£y
Je

valuz is larger than the advertised value. For parent populations with
4 kurtosis < Z the tests are conservative; that is, the real ¢ value is
5 smaller than the advertised value.
5 Box and Tiao [3] concluded that the Student t-test is a good approxi-

mation for all members of the generalized normal family. They used Bavesian
techniques with specific families of prior densities for # and § in their
work. The present work seems to reinforce their conciusions since the same

conclusions follow from very different approaches.
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It should be observed that the conclusions stated here are based on

VIR

an approximation of the t-density for a particular family of parent den-

sities. Purther, the approximation was thoroughly investigated for only

AR AT ¢

a few members nf this family and nc estimate is given of the mecisicn

of the approximation.
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XEPERDIX A

For the sake of cospleteness, the mean-valoe thecorem in its standard

PRURTPUTRPIIIET § ST S T e

form is:stated. 7The proof is omitted sirce it cam be foud in most

eletentary calcuius textkoois.

Theorex: If ¢ is a ccctinucus function on the interval {a, b}, thes
+b
there 2xists £cia, 5! soch tkhat ! aix)dx = (&-alg{s) .
a

The slighntly modified version of this theoream that is appiied for equation

(3.5) is as follows.

Theorem: If g is 2 coatinuwous Iunction on the interval (z, b) «
b
lim lim .
x> 23X = 90 =;and Sag(x)dx<°= «» then there exists
€,s §,€(a, D) such that S gixidx = (b-a)gis;} = (b-2)g(%,) where
- a

¥ <

¥

1l 2 -

Proof: Since 7 is continucus on {a, b) and positiwvely mmbounded at the
endpoints, g ic vounded below on fa, b). Hence, g has an absointe
=iaimm on f{a, b), that is, there exists rnc (a, b) such that

g(x) > g(n} for all xc(a, b). Then

1 b
gn) < -~ s g(x}dx . (A.1)
a

Suppcse eguality holds in (A.1) and consider the function
hi{x) = g{x) - ¢(n}, which is bounded below by zerc and continuous

on (a, b) and positively unbounded at the end points. We can

29
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easily verify tkat
Sbl!(zidzsa M
2
wkich is cliearly impossible. Sexmce,
s .
gi=} “oon 1 gix}dx . (n.2)
Since g is contiruous, g takes oo <12 values [zin), =) and there

existe ils(n.. b) amd Ezt{'i. n), such that the coediticns of the

theorsm are satisfied.

The applicaticn of these w0 thecvems is actually a direct corollary
and several questions zre introduced in these csrollaries. The exact
situaticn and some of the cuestioms, which are basically mathematical in

nature, nced to Se specified. Let ¢t be a p-dimensicpal wector and

g: R o1 + R be suitably coatipnuous. The mean-v2iue theorem cuarantees
b
the existence of Z: Ro-b B where S g(t, uv)du = gft, £(t)] and
= a

2 < &(t) <b . doviously, the optimal situaticn is to be able tc exhibit
a £ for the particoiar ¢. Wen this is not possible facts such as the
variation of ¢, the differentiability of £ or ever the continuity of &,

given sets of conditions .- g, would be uwseful.




RRPENDIX B

The compoter progran osed to caiculate the probabilities cives ip
the fables wis ru o a TRIVAC 1I08. For each £ comsidernd, the rmming
tine was slightly under 1 minote. The progzam giver Dere is mot optimal
for the rachine, bxt it is in a form general eacagh to acormmodate most
consideraticns of the gereralized morwal distribzrion with p =0 .o

The traasformztice x > ¢/{i+u) was nade TO nake the zarnge of
integration finite wheze u is the corigimal wariable of iztegratiom. The
finction given in (6.1) was factored slightly and the coefficients

b, = a. inin-1}) were used.
in in

DBLE PRECISICN T, BETA, BETAS, PROB, GIRIX, 3, E, XIP, DN,

lGxi, G2, C, FCZT, Ans5, U-

DIMEXNSICE T{150) BETA( ) PeO8{( } E(31)

OOl 32T, B, B(31)

EXTERNAL PCT

DATA T/(t,(n-1) vaives)

DETA ERTAS/(8 values to be comsidered}

DETA E/(E;, values, n=2,+++,3]l with £,=0}

DO 5%=1, (no. of 3 values)

¥I2=1.0D0

=0

BETA=EBEATAS (4)

B(1)=1.C20

B(2)=-B(1;

no 4&=2, 31

DN=DBILE {¥)

IF{K.1E.2) GO TO 2

=N-1

DG 1 1=1,3

B(I)=E(N)+B (X} *DSQRT ( (DN* (2-E(N) *E(N) }) /7 {D&~2))
1 CONTINUE

B(N)=-(DN-1j* (£ (N}
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2 EXI=GMET (EX* (I+3=TR) /2)
CIA2e~-ER*SIVRII ( { SHBETA) /2)
XIP=XTP4EXR ( ( ZK-2) /3) SOLG(1-E{N) *E(X) } )
C=XIP*{ {RRBETR) /4) *pEG { {38 /2) *DLo5 (%) + { {1B~1) /2)
IMDIOGEER-1F 4+ GNP GIND
CRLL, QTR 48(PCT, 1.000, 0.090, AXS)
EFOB{1)=28C30S
O 3 5=2, (z9. of a’s beimg cansidexed}
CLaT (XFJ«1} /(T (K#3-2)+13
CRIL CERRD 43(FCT, 1.€2C, T, ANS)
FROB(Z1=CIpNS /FPA0B (1}
2 oI
WHITE(E, 1050i%, (PPOB(J), I=1, (on. of 2's +1})
1000 o (3x, I4, 10x, ino. cf a’s +1)P20.5,/)
E=% {po. of a's)
£ oINS
S CEhTimE
SToEF
EXD

FENCTION POT{E)
DOUBLE PRECISICE 9B, X, ¥, FCZ, BEYA, B
CoMMO BEYA. %, B(31)
TY=0.000
=0/ (2~0Ti
ED 1 I=1,%
Y=DRBS OFB(E) )
PCY=TEXP{ (2/{1+BETR) ) *u20G(Y) JAFCY
1 COBTIEE
FR=0EXP (- (* (24BETA) 2) 620G (FCY) ) 7 ({(1-5) =2 (1-0) }
FEYUEN
EXT

CIAD £84{FCY, UL, LL, 2NS) is a 48 point Gauss-legerndre integration
swroutive where PCT carries the fupction values, UL is the vorer limit
of integration, LL is the lower lixit of intecration and AXS retums the
value of the integrail. @¥AIN(X) is a fimcticn that calculates the natural

logaritha of the ga=mz fimcticn of x, using Bemoulli nutbers.
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