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THE TRARSIATIONAL VELOCITY OF SURFACE SHIPS 
AMD SUBtARINES:    A CCMPOTER BROGRAM 

James R. Brltt 

ABSTRACT: Thl« paper describes a ccaputer program vrloten in FORTRAN IV vhicfa 

calculates the peak or ■axlmim translatioaal velocity induced in both submerged 
and floating targets by an underwater explosion plane shock wave of arbitrary 

pulse shape. The targets, surface ships and submarines, are approximated by an 

infinitely long cylinder of a specified radius. The theory, vhicfa vas developed 

for subnarlnes, is described briefly and extended to floating targets. 

Since the program mas originally written to handle pulse shapes produced 

by reflections from the ocean bottom, it has the capability of using pulse shapes 

vhlch have a logarithmic singulnrity. 
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THE TRAHSIATIOWIL VELOCTR OF SURFACE SHIPS AHD SUEMARIMES:    A COMPUTER HROGKAM 

Tbls report is part of a continuing stxidjy of the interaction of tta« underwater 

explosion shock vave with the ocean botton.   The computer program described in 

this paper «as primarily written to calculate the translatlonal Telocity induced 

in surface ships by bottom reflected shock vaves.    These calculations provide a 

method of comparing the daoage producing potential of the reflections for rarious 

bottom materials.   The work was done under the supervision and cooperation of 

Dr. H. 0. Snay (2U0). 

This study was supported by the Defense Atonic Support Agency through Task 

DASA-KA 002-20 P. 106 (Energy Focussing and Refraction Effects). 

0. BAU. 

c. utosmtm 
*r Direction 

11 



HOHER 71-65 

OORFEnS 
Pftge 

1.   mroorocTioir  1 

2. THEORY FOR CALCULATIHG THE TRABSlATIOWO. VELOCITY OF AN INFINITELY 
LONG CYLINUER  2 
2.1 Aastoqptions  2 
2.2 Tranelational Velocity of a Subaerged Cylinder  2 
2.3 Reduced Step Ware Acceleration  2 
2,k Tranelational Velocity for an Arbitrary Ware Shape p(t)  3 
2.5 Translatlonal Velocity of a Surface Ship  k 
2.6 Coaparlson of the Recponees of a Target to Exponential and 

Supercritical Bottoa Reflected Pulses  k 

3. COMPOTES FROGKAM FOR CALCUIATUIG PEAK TRARSLATIOlftL VELOCITY  7 
3.1 General Program Description  7 
3.2 Use of the FTV PROGRAM  9 
3*3 Important FORTRAN Symbols Not Included In the Call to 

Subroutine PTV  10 

REFERENCES  13 

APPENDIX A     CALCUIATION OF THE REDUCED STEP WAVE ACCELERATION A(T) . , A-l 

APPENDIX B     OONVEROENCB OF THE IMTEGRAIfi B- AND E  B-l 

APPENDIX C     FORTRAN IV LISTIBS OF PTV HtOGBAN  C-l 

APPENDIX D     SAMFU PROGRAM OUTPUT FOR p(t) - exp (-125t)  D-l 

ILLDBTRATIONB 

Figure                        Title Page 

2.3.1 Reduced Step Ware Acceleration of a Cylinder  3 
2.6.1 Free Water and Bottoa Reflected Pulses Produced by a 

ICET Charge  5 
2.6.2 Responses of a Cylinder of Radius 22 ft. to Free Water and 

Bottoa Reflected Pulses Produced by a 10KF Charge  6 

111 



NOMR 71-65 

THE PEAK TRANSIATIOUAL VEIOCrTY OF SURFACE 
SHIPS AND SUB4AKNES:    A CQMPUFFR mOGRAM 

1.   nrraorocTioN 

The peak translatlonal velocity (PTV) of the center of gravity of a naval 

ship or submarine Induced by underwater explosion shock vaves Is generally used 

to describe the degree of impairment of their mobility and weapon delivery capa- 

bilities.    The model presently being used to calculate the PTV Is that developed 

primarily for submarines by V. W. Murray (reference (l)).    This model treats the 

Interaction of an exponentially decaying acoustic plane wave with an Infinitely 

long cylinder.    For pulses of nuclear dimensions the assumption of plane Inci- 

dent waves Is usually Justified because the ranges considered are large compared to 

the dimensions of the ship or submarine. 

In the application of Murray's theory to -waves v*iich have been reflected 

from the ocean bottom or refracted by velocity gradients In the ocean one encounters 

the need for calculating the PTV for wave shapes other than exponential.    One of 

the best ways to make such a calculation for an arbitrary wave shape Is through a 

superposition of step wave respouses.    Murray has calculated the step wave trans- 

lational velocity curve and also the step wave acceleration.    J. A. Goertner 

(in a confidential report) has written a computer program which uses Murray's 

curves to calculate the PTV for an arbitrary Incident wave by decomposing the 

wave into a sum of step waves.    This program has been used successfully in cal- 

culating the PTV of refracted waves, but Is not »ell suited for bottom reflection 

studies. 

In this paper Murray's theory is described briefly, and a computer program Is 

explained -uhlch computes the PTV for an arbitrary wave shape in a somewhat dif- 

ferent manner than Goertner's program.    The Incident pulse used In the proGram of 

this paper may have a singularity of the logarithmic type such as encountered in 

supercritical bottom reflections.    The PTV Is calculated by a convolutloi   Integral 

containing the Incident wave shape and the step wive acceleration.    The curve of 

the step wave acceleration has been recalculated so that the model can be more 

closely followed than is possible using Murray's curve.    The theory Is extended 

to surface ships, and the program calculates the FN for both surfaced and sub- 

merged targets. 
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2. THEORY FOR CALCUIATING THE TRANS IATIONAL 
VELOCITY OP AN INFINITELY LONG CYLINDER 

2.1 Assumptions 
Murray derived his equations for a rigid and neutrally buoyant cylinder of 

radius a.    It is assumed that the displacement of the cylinder from its initial 
position is small compared to its radius.    The equations were derived for athvart- 
ship attack; that is, the vave front is parallel to the longitudinal axis of the 
cylinder. 

2.2 Translational Velocity of a Submerged Cylinder 
Let the incident vave be given by 

p(t) - Pp exp   [- (t - R/cv)/G] , t > R/cw    (2.2.1) 

vhere t is the time, R, the distance from the source to the target, G, the time 
constant of the exponential shock vave (usually denoted by 0), and c , the sound 
velocity of water.    The peak pressure of the vave is p-.    For this exponential 
pulse Murray obtained the following equation for the translational velocity of a 
totmlly submerged cylinder 

l»+v 
T(1) E_i        f        83 U(T-1).L it ,    (2.2.2) 

"S*     -tlv  '3 <^) ^2 M 

vhere the integration variable z is a complex magnitude and 0   is the density of 
water.    Ihe symbol T denotes the reduced time T » c   t/a, and q is the reduced 
radius q = a/c G.    For a step vave G becomes infinite, and we have q = 0.    The 
function K (z) is the modified Bessel Function of the second kind of the order 
two.    The path of integration is to be taken in the right half of the complex 
plane, hence the constant v must be real and positive.    For practical purposes, a 
good choice of v is unity. 

2.3   Reduced Step Wave Acceleration 
Upon differentiating V(T) and setting q * 0, the desired expression for the 

reduced step wave acceleration of the cylinder is 
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pvcvx dv _ -i    ^   expfzCT-li] 
»1'O+V z Pp   '   dT " -i-+V Z^Jl) 

dr .        (2.3.1) 

This function, calculated by the methol described in Appendix A, is shovn in 

Figi^xe 2.3.1. 

1       is      11      n 11     i.i     1.1 
m. r • M/t, 

li 41 

Figure 2.3.1   REDUCED STEP WAVE 
ACCUSATION OF A CTfUDIDE» 

2*k   Trauttslational Velocity for an Arbitrary Wave Shape p(t) 
The reduced step wave acceleration A(T) plays the role of a Green's function 

for the problem. The translational Telocity V(T) fron an arbitrary Incident wave 
p(t) can be written 

^"dr   /   P(Wc)    A{T-q)    dq , i2,k.l) 0 c 

«here T ■ cwt/a• If the integration variable is changed so that It has the 

dimensions of time, V(t) is then given by 

t 
V(t) '71   f  p(u) A(T ' Cwu/a) du '      (2.U.2) 
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This Is the equation used to calculate V(t) In the FTV PROGRAM described In 
Section 3. 

2.5   Translstlonal Velocity of a Surface Ship 
To apply the above equation to the response of a surface ship, two assumptions 

are made:    (l) the target Is considered to be a cylinder floating on the surface 
with Its axis at the water line.    (2) the vertical translstlonal velocity Is as- 
sumed to be twice the vertical component of the translatlonal velocity the cylin- 
der would acquire deeply sübnerged.   The horizontal motion of the ship Is not 
taken Into account. 

These assumptions are usually made for calculation of damage to surface 
ships, although It Is realized that It may be an oversimplification.    Effects 
such as cavltatlon are also Ignored.    This process Is known to occur be^ow ships 
and may be of Importance. 

Under the above assumptions, the vertical translatlonal velocity of a float- 
ing cylinder vhen subjected to a pressure pulse p(t) Is then 

V (t) - 2V(t) cos a , (2.5.1) s 

and 

Vg(t) = |-££LJl J  p(u) A(T . c^u/a) du , (2.5.2) 

Where ft Is the angle between the plane wave front and a normal to the water sur- 
face,  sometimes called the Incident angle. 

The program described In Section ^ calculates both V(t) and V (t) and their 

maximum values, th^ peak translatlonal velocities FTV. 

2.6    Comparison of the Responses of a Target to Exponential am Supercritical 
Bottom Reflected Pulses. 
nie experimental data correlating the shock damage from an unde, «tter explo- 

sion to the peak translatlonal velocity, FTV, have been obtained for free water 
pulses or for free water pulses cut off by surface reflections.    Both of these 
pulse shapes are Initially exponential.    Pulse shapes encountered In the study of 
supercritical bottom reflections are not exponentials, and the question arises 
whether the same shook damage ictults if the FTV's are the same.    Two examples of 
these pulses, along with an exponential, are given In Figure 2.6.1.    As shown In 
Figure 2.6,2 these pulses produce the same FfV on a cylinder of radius 22 ft. 

k 
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FIG. 2.6.2   RESPONSES OF A CYLINDER OF RADIUS 22 FT. TO FREE WATER AND 
BOTTOM REFLECTED PULSES PRODUCED BY A 10 KT CHARGE 
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Ignoring the early parts of the responses to the reflected pulses, these curves 

have roughly the same shape around the peak as the response to the exponential. 

After the peak the cut-off exponential response deviates much more than those of 

the bottom reflections. Having the same PTV and similar accelerations, the pulses 

of Figure 2.6.1 are expected to cause the same degree of damage. This means that 

PTV damage criteria derived for exponential pulses can also be applied to super- 

critical bottom reflections and other similar non-exponential pulses. 

3. COMHfTER roOGRAM FOR CALCUIATING 
PEAK TRANSIATIONAL VELOCITY 

3.1 General Program Description 

The peak translations! velocity program or simply the PTV PROGRAM has been 

written In FORTRAN IV for the NOL CDC 6U00 computer. A complete listing is given 

in Appendix C. This program calculates the PTV for both surface ships and sub- 

marines using the theory described In Section 2. 

The PTV PROGRAM Is composed of seven subroutines: PTV, FV, Fl, XMAX, VTAB, 

PTAB, and FGI. The package Is us d by calling subroutine PTV from a main or 

executive program -written by the user vhich supplies the pressure time history p(t). 

The PTV Is obtained from equations (2.U.2) and 2.5.1),    But in order that ve 

may Integrate numerically over a singularity In p(t) at t • t , or f • T =ct /a, 
IK C C    w c 
t-t I,the integration variable u Is changed as follows: 

for uit      w»(t-u) 
c        x c 

for u^t      z=(u-t)   . 
c c 

Equation (2.U.2) then becomes for t > t 

v(t  ) 
V(T)= r^T \ '     fC       P(u) A(T - c u/a)w dw 

:T)- v{■: v(0) 

2(t) 

+    / p(u) A(T - CWU/A)Z dz I (3.1.1) 

«(tc) 



NDI/PR 71-65 

«here T > c t/a. These integrals are evaluated In FUNCTION TV using the Gaussian 

quadrature of FUNCTION POI. From V(t) ye then obtain V (t) using equation (2.5.I). 

The A(T) curve vhich has been calculated by the procedure of Appendix A is 

stored in the arrays QQX and QQY in FUNCTION Fl. The reduced time T is in QQX and 

A in QQY. Itie function A(T - c u/a) is evaluated from these arrays by quadratic 

interpolation in FUNCTION VTAB. Similarly p(u) is determined by interpolation in 

VTAB of the arrays QX and QY vhich hold the time t in seconds and the incident 

pressure in psl. Near the singularity at t » t the FUNCTION PEAB performs the 
c 

quadratic interpolation for the pressure. 

The convergence of the integrals in equation (3«l.l) is made possible because 

lim   w In t - t  - lim   z In t-t  ■ 0.    (3.1.2) 
u-t cu-t     lcl 

c c 

As implied in equation (3.1.1) the variables v and z are used for integration 

over the whole range of T, Little difficulty is encounterec, in the numerical 

integration if the pressure pulse p(t) has no rapidly changing, high amplitude 

contributions far from the peak at T » c t /a. 
,    c   w c 

The values of V(t) and V (t) depend on the previous pressure history. Since 

A(T) is very small for T > 8, the integration range is restricted to at most from 

u=T-8tou»T. Thus if significant rapidly changing pulses occur sway from 

T by about T « 8, the FTV PROGRAM can be applied to each peak separately since 
c 

the target response from one pulse is essentially damped out before the arrival of 

the next pulse. The actual FTV can then be found from the maximum of these results. 

The maximum or peak values of V(t) and V (t), the PTV's, are obtained as fol- 

love.    An initial search for a maximum velocity is made from some t = t to t = t.. 

The values of t , t , and the number of steps are prescribed by the user in the 

call to subroutine FTV. Then several iterations are made around this maximum. 

Subroutine XMAX determines the maximum value of the translational velocity, but 

subroutine FTV controls the iteration and makes the calls to FUNCTION FV vhich 

sets up the integration for V(t). Iteration terminates >*ien the relative dif- 

ference between the two largest absolute values of V(t) is less than .001. If the 

iteration does not converge after five cycles. Iteration is also terminated and a 

warning is printed. In either case values of the FTV for submerged targets, the 

maximum of V(t), and for floating targets, the maximum of V (t), are returned to 
B 

the main program. 

8 
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3.2 Use of the PTV IBOORAM 

To use the FTV PROGRAM subroutine package a main program must be set up by 

the user to supply the Incident pulse p(t). The time In seconds and the pressure 

In psl must be stared In the arrays QX and QY as mentioned previously In Section 

3*1* When the pressure history Is short compared to the target transit time a/c , 

the FTV Is likely to occur at a time beyond the last value of the pressure history. 

Thus to provide for extrapolation beyond the end of the actual pressure history 

the first unused storage of the QX array should be set to some very large value 

as 1.0E20, The corresponding QY storage should be set to zero or some other 

appropriate asympto 1c value of p(t). 

The QX and QY arrays are transferred to the FTV PROGRAM by COMMON storage. 
The statements COMMON /QXY/QX,QY and DIMENSION QX(lOOO), QY(lOOO) must be In the 

main program. In & ibr out Ines FTV and Fl the additional common storage Is used: 

CGMMON/QIS/IS. This statement Is not needed In the main program. 

Once the pressure history has been defined, the peak transnational velocity 

Is then obtained by calling subroutine FTV as follows: 

GALL FTV (TIMER2, T3, Tk,  T5, RAD, PTS, OPTION, COSA, RHOW, CWAT, T, V, VS). 

IHFOT The following variables are Inputs to subroutine FTV: 

TIMER2        Time t In seconds of the singularity or peak of the Incident 

pulse. For a simple exponential pulse set TIMER2 ■ 0. The  pres- 
sure at a singularity should be set to some number with absolute 

value greater than 1.0E20 as a signal to the Interpolation 

subroutine PTAB. 

T3 Signals the approach of the singularity of the Incident pulse 

p(t). If there is no singularity set T3 ■ TIMER2. When there 

is a singularity, T3 should have a value such that there are in- 

cluded at least two points of the QX array on each side of the 

singularity in the time interval T3 < t < 2t - T3. c 

Ik Smallest time t at vhich the translatlonal velocity is to be o 
calculated. If the peak of p(t) occurs at or near zero, use 

T^ « 0. In other cases Tk  (and T5 below) can be determined by 

remembering that the translatlonal velocity at time t is calcu- 

lated using the pressure history of the interval t - öa/c to t. w 
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T5 

RAD 

PTS 

OPTION 

COSA 

RHOW 

CWAT 

oirrFvr 
OPTIO' 

T 

V 

vs 

Largest time t, at >dilch the translatlonal velocity is to be 

calculated. 

The cylinder radius a In feet. 

The number of times at vhlch the translatlonal velocity Is to be 

calculated In the Initial search for the HTV. This search Is 

made In the time Interval Tli : t - T5. The maximum value PT3 

can be is 50. 

Controls printing In subroutine PTV. There  Is no printing if 

OPTION > 0. There is printing if OPPION a  0. 

cos a. Bee Section 2.5 for an explanation of a. 

Density of water 0 In gm/cm . 

Sound velocity of water c in ft/sec. 

1   following variables are oi'tputs returned to the main program. 

,  these results are printed out in subroutine PTV. 

When 

Time t in seconds. The time of the PTV I3 returned to the main 

program. 

The translatlonal velocity V(t) in ft/sec of a submerged target. 

The  PTV is returned. 

The translatlonal velocity V (t) in ft/sec of a floating •'Target. 
8 

The PTV is returned. 

A sample print out for a pressure pulse p(t) = exp ( - 125t), or p(t) = 

exp (- T) when a/c « .008, is shown in Appendix D. The Input to subroutine PTV 

is included in the print out. 

3-3 Important FORTRAN Symbols Not Included in the Call to Subroutine PTV 

Dimensioned Variables 

SUBROUTINE PTV 

QX, QY 

QQX, QQY 

Time in seconds and pressure in psi of the incident pulse. 

These arrays must be defined in the user's executive program. 

Reduced time and reduced acceleration of step wave. These arrays 

appear in FUNCTION Fl. 

10 



IS(1) 

IS(2) 

G 

0(1). 

G(2) 

0(3) 

G(k) 

0(5) 

0(6) 

A, C 
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Index for the beginning of the interpolation search in QQX array. 

Index for the beginning of the Interpolation search in QX array. 

Array for transferring to PUJK7PI0NS TV and Fl variables in the 

integrand of V. 

Time t 

t 
c 

Signal for FUNCTION Fl. In equation (3.1.1) 0(i») « - 1.0 for 

the first integral and +1.0 for the second integral. 

1/2 

1/2 

the maxinun) V(t) 

Non-  ^nsioned Variables 

(tc - T3) 

w(0) » 

Storage for time and V(t). Used by subroutine XMAX to determine 

= C(M) and the next largest value C(Ml). 

SUBROUTINE PPV 

DI 

M 

Tl, T2, VI, V2 

VS1 

FUNCTION FV 

N - 18 

NN, Nl, NNN 

Incretcsnt of time. 

See A and C above. 

Temporary storages of A(M), A(M1), C(M), C(M1). 

Value of V (t) \«»en V(t) - C(Ml). s 

Tlie integrations of equation (3.1.1) are performed using a four 

point Gaussian quadrature per subinterval of Integration. N is 

the maximum number of subintervals allowed for the total inte- 

gration Interval. 

The number of subintervals of integration used. NN is used if 

the total integration interval does not include t . Nl and NNN 
c 

are used if t Is included: Nl for the Integration variable 

u ^ T and NNN for u > T . 
c c 

t - 8c /a used to restrict integration to the interval 

T - 8 to T. 

11 
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ZI, 7.2,  Z3     Limits of Integration in equation (3.1.1). In the calls to 

FUNCTION PGI the first variable is the lover limit of integra- 

tion, the second is the upper limit. 

FV The sum of the integrals of equation (3.1.1). 

FUNCTION Fl 

Z Integration variables w and z. 
X Time corresponding to integration variable u. 
XD Reduced time equal to c •  (t - u)/a. 
P Interpolated pressure at time X. 
Fl Integrands of equation (3.1.1). 

12 
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APPENDIX A 

CALCUIATION OP THE REDUCED STEP WAVE ACCELERATION A(T) 

In order to evaluate A(T) from equation (2.3*1) it is necessary to transform 

the Integral in the complex plane to a real Integral.   Murray has accomplished 

this transformation by using a series expansion ^4ien T IS small, up to about T ■ 1, 

and contour Integration at larger values of T.    However, to obtain a more accurate 

A(T), we have used the more direct approach explained below. 

The Integration variable z can be written z = x + iy for x and y real.    If 

the integration path is taken along the line x ■ Y ■ 1| z becomes z = 1 + iy.    The 

complex functions in the integrand of A(T) can then be separated Into their real 

and Imagiup-ry parts: 

t2 • (1 - yp) + 12y , 

exp [Z(T-I)] * exp (t-l) COS [y\'T-l)] ♦ 1 exp (T-1) sin [y(T-l)] , 

and K2(z) • Re(K2) + 1 Im(K2) , 

where Re(K ) and Im(K ) denote the real pert and the imaginary part of K (z). 

Ejqallcit expressions from vhich Re(K2) and Im(K ) can be obtained will be given 

later. On substituting the above functions in A(T), equation (2.3.1), and then 

separating real and imaginary parts of the Integrals one obtains 

A(T). «x. h.Di J h'°- ii£ß * h '* ij^n ^ 
"^ E.2 + E 2 

00 

+ 1 f   E1 sin [y(T.l)] . E2 cos [y(T.l)]    ^ ^      (A>l) 

Ej* + E^ 

where 

and 

E1 - (1 - y2) Re(K2) - 2y Im(K2) (A.2) 

E2 • (1 - y ) lJn(K2) + 2y Re(K2)    . (A.3) 

A substitution of -y for y in equation (A.l) shows that the Integrand of the 

first Integral of A(T) is even and the Integrand of the second Integral is odd. 

A-l 
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Hence the second Integral is zero and A(T) IS a real function uhlch can be 

written 

A(T) - f .^ (T-l) / V" [lr(Tl)] * I* ^ [y(T-l)]- ^ • ^ 
Ei + V 

For y < 15 we have calculated K_(z) from the expression 

K-fz) = f exp ( - z cosh *) cosh 2* d* .        (A.5) 

o 

Separating the exponential Into Its real and Imaginary parts and substituting 
z » 1 + ly, we obtain 

K2(z) ■ J    exp ( - cosh i) cos (y cosh *) cosh 2i d* 
o 

- 1     exp (  - cosh *) sin (y cosh i) cosh 2$ d* . (A.6) 
o 

Substitution of this expression for K (z) Into equations (A.2) and (A.3) yields 
the following expressions for E.. and E 

• 1 

(1-y2) U + 2y zJ l^ d» (A.?) El 

E2 » J [2jr U - (l-y2)zj   ^ d$ (A.8) 

>*iere: U ■ cos (y cosh $) 

Z = sin (y cosh *) 

U. ■ exp (- cosh O cosh 2*. 

These integrals converge very rapidly because of the expression U.which approaches 

zero like exp (- exp *) for about $ = U or larger. It is shown in Appendix B that 

the error in truncating the integration in E. and E at * = U.5 is less than 1 

part in 10 . 
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Even though the Integrals converge rapidly, they become Increasing more 

difficult to evaluate numerically as y increases because of the oscillatory fac- 

tors U and Z.    At about y = 15 an asymptotic expansion for evaluating K-.Cz) 

becomes more practical. 

For y between 15 and 1000, the following asymptotic expansion (reference {?)) 

of K (z) is used 

K (.) « (#/2 exp (.x) [ 1 + ^ * i^lll^) + ...] .    (A.9) 2 ^^ LI.  öz 2,  ^8z)2 J 

vhere again z ■ 1 + iy. Near y » 15 nine terms of the series in brackets are 
u 

used, i.e., the lowest ordered tern used is of the order l/z .    Retaining nine 
.9 

terms insures that the series truncation error for y = 15 is less than 2 x 10    . 

Between y ■ 15 and y ■ 1000 fewer terms are needed for larger y; however, a suf- 

ficient number of terms   are retained so that the truncation error is less than 

that at y ■ 15. 

The integral for A(T) from y « 1000 to infinity is calculated from an approxi- 

mate equation obtained by neglecting terms of order l/y    or smaller compered to 

one.    Prom equation (A.9) the approximate relation for K (l + iy) is obtained 

■I/2 

K2(l+ly) * [^J    ' exp (-1) [cos (y**)    - i sin (y+*)] [l - ^], (A.IO) 

vhere 

C08 * ^/g(1 + iy5 and sln ♦ Ä7i(:i _ |F) * (A,11) 

Substituting the real and imaginary parts of K.^ from equation (A.IO) into equations 

(A.2) and 

obtained: 

(A.2) and (A.3) and neglecting terms of order l/y , the following relations are 

l/2 
E1 « j^J    ' exp (-1)  [-y13 cos (y + *) + ^ y sin (y + ♦)]    , (A.l?) 

E2 « [—1       exp (-1) [y2 sin (y ^ *) + ^ y COö (y + it.)]    , (A.13) 

and 

Ej2 + E2
2 « § y3 exp (-2)    . (A.HO 
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Combining the above equations vlth equation (A.U), the remainder R(a) of the A(T) 

Integral from y « a to infinity is 

R(a) *r|T      exp (T)  |" y'^2 fö aln  (Ty * ♦) - cos (ry + *)j dy    ,        (A.15) 
a 

vdiere the trignometrlc relations for the sine and cosine of the sum of two angles 

have been used and where the lover ordered terms have been neglected. For the 

numerical computations a « 1000 is used. 

Using similar manipulations as above and substituting cos $  and sin 4 from 

equation (A.ll), R(a) can be written 

R(a) * —Tp exp (T) j y"3/2 [(l + g) sin -ry - (l - g) cos Ty] dy.   (A.l6) 

a 

Integration by parts can then be used to obtain 

R(a) -^fj^   JO« - 9T) [a'l/2 (8in at - cos at) +/aFTT (l - S(aT) 

- C(aT))]    + I a'3'2 [sin aT + cos at] \  , (A.l?) 

vhere S(aT) and c(aT) are commonly called Presnel's integrals and are defined 

at at 

s(aT) .-i- r£ÜUSdxandC(aT) . JL   |£2SJ£dx   . (A.aß) 
/?n       v/x" /2n   ä   /x" o o 

These integrals have the following asymptotic expansions (see reference (3)): 

^-^♦•••] ^ 
cos z 
/&%    L*Z      (2z) 

2     yiSra    L        (2z)2        (2z)^ J 

A-l» 



HOIZTR 71-65 

sin z fe-T^f*-]    • (*•*» f^z   L"  (22)- 

Substitution of the above equations into equation (A. 17) gives 

a1^* (2aT)2  (^TT 

+ (sin ar + cos at) [i-^. . i^l5- + ...) + |_J| .        (A,2l) 

In sunmary, to evaluate A(T) from equation (A.4) E and £ , vhlch are defined 

by equations (A.2) and (A.3)/ are given by equations (A.7) and (A.8) for 0 < y £ 15 

and obtained from equation (A.9) for 15 ^ y s 1000. The integral from y ■ 1000 to 

infinity is R(a), equation (A.21), vhere a «« 1000. The A(T) curve shown in 

figure 2.3*1 «as calculated by the above method on the HOL 191 7090 computer. A 

table giving the A(T) array to six decimal places is contained in the DATA state- 

ment of FUNCTION Fl of the FORTRAN listing of the PTV fROORAM vhlch is given in 

Appendix C. 
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APPENDIX B 

CONVERGENCE OF THE HOTEORALS £    AND E^ 

It Is the object of this section to shov that the Improper Integrals, equa- 

tions (A.7) and (A.8), used to obtain E. and E    are convergent.    We also obtain 

an upper bound on the error introduced by stopping the integration to infinity at 

a finite value of the integration variable I1. 
It is commonly proved in text books of Integral calculus that improper inte- 

grals of the form of E. and £   ere convergent if the Integral of the absolute 
value of the integrand Is convergent.   The converse does not necessarily hold. 
Denote the Integrand of E1 by E' and that of E   by E  •.    Since in general 

la ± b I ' I aj + |b I, j sin a|    1, | cos a |   si, and |ab | = |a| lb ; we obtain 

V| -|[(i-y2) u + 2y z]  t^l 

< (1 + y2 + ^) exp (- cosh $) cosh 2$. (B.l) 

This result also holds for   E '  .    Since 

cosh 2$ ■ [exp (2$) + exp (-2^)]/2 < exp (2*), 

the above inequality can be simplified to 

I E^ I < (1 + y2 + 2y) exp (2* - cosh *) . (B.?) 

At ♦ « U,5, cosh » ^ U5.OX  Hence for 4 ^ 1».5 we find 2i  - cosh t < - 36 ■ - 8#. 
Expression (B.2) becomes for * ? 4.5 

E^ < (1 + y2 + 2y) exp (- 80 . (B.3) 

Integrating this expression leads to 

eo a» 

f E^ d» < I" E1
, d« < I (1 + y2 + 2y) e"36 .       (B.l») 

For the range y < 15 in which £. is calculated from equation (A.7), we can be 

assured that 
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c 
E,' Ai <lx lO"13 f. _x 

1 , (B.5) 
U.5 

vhlch shovs Integrating to $ > U.5 Is quite sufficient because the value of E I 

in this range of y is about 1 to 10. Since E' has no singularities in 0 i * < I1.5 

and since the integral fron ^ » ^.5 to Infinity is finite (and very small) we can 

conclude that E is convergent. 

All of the steps after expression (B.l) hold for E as veil as E.. Conse- 

quently, the inequality (B. 5) holds also for E and convergence follows. 
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APraNDK C 

FORTRAN IV LISTIMG OP PTV PROGRAM 

C «#»#«      HTV   P^ObMAM      tt«««* 

C 
SUBWCOl INF,   MTV(TIMI:R<?,T.^.T4»T^^WAntPTs^0PTIUlM,C0Sa^RHnw^CWAT. 

1   TfViVS) 
C 
C THIS   SUMP«U6KAM   CONTROLS   Tnt   TTF.RATION   F OW   Trtf   PtAK 
C THAN'SLATIOUAL   VELüCITv.   HTv,      IT    IS   THE   ONLY   «iDHHOUTlNt   OF   THF 
C PTV   P«(;(iKAM   WHICH    IS   CALLtO   F PUM   THE    MAIN   PHO(,wAM. 
C 

ÜIMFKSION   UX(1000J»QY(ln00j»IS(?) 
ÜIMFNSIUN   (i(6) 
DIMENSION   A(bO)tCCSO) 
COMMON   /(JXV/iJXfQY 
COMMON   /(JIS/IS 

C 
C 

IF(0PT1ÜN,«T ,0.)    GO   TO   1») 
WRITE (6»b8()) 
WRITE (6 f 600)    TlMLH<ef TifT^»Tb»PAüfPTS»OPTIÜN,COSA«RHO«»»CwA7 
WRITE(6»690) 

C 
C 74,?l<»b/   IS   A   UNITS   CuNvtRSlUM   FArTf»W 

10   VCs2.*/^.<ei4S7/RHCw/KA0 
NsPTS 
T=T* 
ÜTsdb-l )/KLOAT(N-l) 
IF(TtLE.O,;    NsN-1 
IFd.LF.O.)    TsUT/?. 
IS{l)s^ 
IS(?)sJ 
ü(?)sCwAT/kAl) 
G(1)=TIMLH^ 
ö(S)=SG;KT (TIMf.W2-TJ) 
ü(f>)sSüHT (T1MKH?) 

C INITIAL   SEAKCM   FUH   MAXIMUM   VL|0CITY 
UO   4 0    1=1tN 
ö(I)sT 
\/5VC*FV (rt) 
A(I)=T 
ClI)=V 
VS=?.«COSA«V 
IF (OPT KJN.Lt .0. )    WWlTKdSfbiU)    T,V,VS 
T = T*()T 
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M-    CONTl^Ut 
C ITF-WMJO.^  f u^   PTV 
C UKTFn^lNt   THd   MAXIMUM   VpLUrlTv   FRf|M   C   AKKAY 

CALL    «^AA(CtN»MtMl) 
A^sA(Ml) 

C2«r(«l) 
A(l »sA(M) 

C(U«C(M) 
A ( / ) r /1 / 
C(^)sC^ 

TsAfJ >-i.M»ÜA 
1F(T*LE.0#>     fsDA/H, 
L»T = iJA/^. 
DO   45   1S3.1U 

ü(l)=T 
vsv^•^ v(0) 
A(I)=7 
C(r)=v 
VSJBZ.*CÜSA»V 

IFtOPIlU.M.L t.O.)    *miMftf6jO)     T.V.VS 
TsT*nT 

4b   COMTINLt 
fJ=10 
IF(IAHS{I>1-MI ) .LT,3)    hO   JO   Sb 
T=A(?)-Ü.H»Ua 
IF(T,I H.Ü.)    T=ÜA/b. 

DO   SO    IsU.lh 
ü(l)=I 
\/*VC»Fv (b) 
A(T)rT 
C(n«V 
VSs?,«COSA«\/ 
IF (OPTION,LL.(I.)    *H1 rr(M6lO»    T«V,V«i 
T=T*ur 

h^   CONTIxOh 

S5   CONTlM.t 
DO   75   OJslfh 
CALL   «"AX(CtNtM.Ml) 
IF (Jj.LT. i)    tif)   TO   h^ 
IF(4HS( (C(M)-r(Mi) )/c c')»»i r.o.ooi)  «in TO 110 
IFUJ.MJ.».))    GO   TO   IPO 

T1=A(M) 
T^aA(MJ) 

*2aC.{>*\ ) 
A(y)rI I 

C(«)) = v'l 
C(ln)=v? 
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11 = 1 
DO 7 0 1=1»M 
T«Tl*m«FLOAT((I-10)/^«Tl) 
IF (T .Lt. Ü.ft) Ü0 TO b4 
lj{l)«r 
VsVC«»-v ((i) 
VSs^,»Cl)SA«V 
00 TO 6b 
WHKN T IS l.hSS THAW /t^O SKT TO /FRO. 

6«» T s O.l» 
V s 0.Ü 

6b IF (OPTION «LF;. 0,0) wRift (6,61ü) TiVtVS 
A(I)«T 
C(T)sV 
IIs-I»II 

M   CONMNUL 
7S   CONTlNljfc 

110   VsCd^) 
TsA(M) 
VSs?.«COSA«C(M) 
IF (Oft lON.Lfc, .0.)    WHirF(Afb?Ü)    A(M),C(M)»VS 
HETUHN 

1^0   »/sC(^) 
rsA(^) 
\/S = ?.»COSA«t (M) 
VSls2,«CÜSA«C(Ml) 
WRITE (6 t*» JO)    TtV»VStA(Ml ) tC(Hl) ,y/sl 
«ETtjRfv 

S«!)   FOMMAT (lHl,lü)(»30HTKA\SLATTONAL   VFLOCjTY   PHOüRAM   ) 
h'M   FORMAT(lH0«bX»ObHIIKWATTUN   FOP   PEAK   TRANSLATIONAL   VELOCITY   PTV   // 

1   I?X»9hTlMK(StC)tflX,l6HvKLnClTY(FT/StC)    »3X.25HVERTICAL   VELOCITY(F 
^^/tiFC)    /2yx.l6HTAHGtl   SllHMt>Jüf Ü.7x»l7HTARßtT   AT   SURFACE   ) 

bül)   FORMAT (lHüfbX,2.3HIf(MUr   TO   SObpOUTTNE   PTV   //   lOXf 
1 45HTrvEK2,TJ,U»Tb»KAOfHTStUpriOM,CUSAfRHÜ»«tf>AT   //lPbEU.5/ 
2 lP5El*.b   ) 

610   FORMAT nP3Ki?2. 6) 
6^t)   FORMAT ( lH0f6X»i0H«««««««»«*»»»»##«»»#   i^X » JHPTVt IQX »aMPTV// 

1    lP1t?2.6) 
h.^u   FORMAT (lM0f«2H««*   WARNlMli   ITERATION  DID   NOT   CONVERGE   •••   «5Xf 

1   aSHMAxlMU.-I   AKÜ  NEAREST   VALUE   ARE   GIVfN  // 
1    l^X.yHTlMr (SFC)tflXfl6HvtL0ClTy(FT/SEC)    •3Xf^bHvERTICAL   VELOCTTY(F 
2T/SEC)    /iWX,l6HTAHGPT   SljMMFRÖF U» 7x . 1 7HTARGET   AT   SURFACE   / 
3 (lP3E?i?.6)) 

END 
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FUNCTION   FV(G) 
C 
C     THIS SLHPHOGRAM SETS UP THE InTEGPATlON FOP 
C     THE TPANSLATIüNAL VELOClTr V 
C 

DIMENSION »4(b) 
EXTFRNAL Fl 
DATA N/1H/ 

C 
NNaFL()AT(N)»Q(l)»G(2)/H, 
NNsMAXO(NN*H) 
NNsMlNO (INJNfN) 
X«G(l)-a«/G(2) 
IF(X,Gl,Ü(j) ) (,0 TO 43 
ZlaG(M 
IF(X,ßT,0.) Zl»SOPT(Ö(J)-.X) 
IF (G(l) .GT.GO) ) GO TO 41) 
6(4)s-UÜ 
Z2=SQPT t6(3)-G(l)) 

C     INTEGPATION FOP T ,LE, TlHFP? 
FV«-FbI(2l.Z2,WN»Fl,ti) 
PETU«N 

<»0 ZPaf). 
ZJaSÜPT(0(1)-R(3)) 
IFCGCn.tvJ.O.) GO TO kb 
«i(4)«-l,0 
rJl«2l/(2l*/3)*FLOAT(NN)*2.o 
UNN«?V(Z1*ZJ)«FLOAT(NN)*2,0 

C     INTEGWATIO'J KOP INTF.PVAL WHICH INCLUDES TIHtK? 
VU-FGl (21»Z2tNliFl»6) 
U{4)«1.0 
V2BF6I(Z2,73»NNNfFltG) 
FV»V1*V2 
PETUNN 

«♦J Z2sSQPT (X-ft(J) ) 
ZJsSüPT(0(1)-G(3)) 

«♦3 G(4)al.Ü 
C     INTF6PATI0N FOP T LAPGER THAN TlMFR«» HUT THL 
C     INTERVAL JOtS NOT INCLUnL Tl-^FP?. 

FVsFGI(Z2«ZitNN,Fl*G> 
PETURN 
ENi) 
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C 
c 
c 
c 
c 

c 
c 
c 

FUNCTION   fl(Ztb) 

THIS   S(jHP«oe«AM CALCOLATtS   THf   PWOOUCT   INCIDENT  PRESSUWE   • 
HtüUCfcli   STfP   wAVt   ACCeLpHATlOM  BY  CALLING   THfc   INTERPOLATION 
PROGRANS   VTArt   ANÜ   PTAH. 

DIMENSION   OX(1000)tQY(lnüO)ilS(2) 
ÜIMFNSIUN   G(b) fQQXd^O) ,UQy(l?U) 
COMMON   /1JXY/<)X»0Y 
COMMON   /(JIS/IS 

REnijCKf;   STtP   WAVE   ACCP.LFKATIOM  OF  A   CYLINOER 

?.0 

3*3 

:F(^(«).GT.O.) 
X*G(3)-if«/ 
liO   TO   30 
X-G(3)*2«Z 
XÜ»(G(1)-<)»G(2) 
IF(7.«T.G(S))   60   TU   3S 
PaPTAH(Xt(JX»UY»IS(i>) ) 
Gü   TO   4 0 
Pav/TAHUt'JXtUYflSC*') ) 
F1=7«^«VTAH (XOtQQX»Uyv»TS(1 ) ) 
HEHiRN 
END 
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SUHHGUIINE   XMAX(ütNtM«Ml) 

C 
C 
C     THIS SOBPfiuGRAM OETF.RMINES THF LOCATIONS OF THE TWO LARGEST 
C     ABSOLUIt VALUES OF MEMBERS OF THE 9 ARRAY, 
C 
C 

DIMENSION H(bO) 
xsAHSced) > 
M«l 
uo 10 1«<?.N 
IF(A8S(b(I) ) .LT.X) 6Ü To If) 
Ms I 
X»AflS(H(M)) 

1Ü CÜNTINOL 
Ml.l 
IF(M.EQ,1) MXBZ 
X*A8S(B(M1)) 
UO   ?0 I=?«N 
IF(ABS(B(1)).LT.X) GO Tn 2o 
IFd.F.G.M) GU TO 20 
MUI 
XrABS(b(Ml)) 

2Ü CONTlNLt 
RETURN 
END 
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FUNCTION   VTAö{X»Y.ZtK) 

THIS SLBPROGHAH PERFORMS A SECOND ORÜER LAGRANQIAN INTERPOLATION 

THE INDEPENDENT VARIARLF IS STORED IN THE Y ARRAY IN INCREASING 
ORDER.   THE DEPENDENT VARIABLE IS STORED IN THE Z ARRAY. 
X IS THE POINT AT WHICH THE FUNCTION IS TO Öt FVALUATPD, 
K IS ThE NUMdER OF THE ELEMENT IN THE Y ARRAY WHICH IS FIRST 
COHPAREU WITH X. 

DIMENSION Y(lOOO)fZ(1000) 
IF(X»Lfe»0,) GO TO bO 
UU 10 1*K»1000 
J»I 
IF(Y(I).eT,X) GO TO 20 

10 CONTINLE 
?0 J«MAX() Of J-l) 

DO 30 IslflOUO 
IF(Y(J).tT.X) GO TO 40 
JaJ-1 
IF(J,LT.3) 60 TO 40 

3U CONTINUE 
40 Ksj*l 

IF(?(J).EO.Z(K)) GO TO *0 
L«J-1 
Aa(X-Y(K))/(Y(J)-Y(L)) 
Ca(X-Y(L))/(Y(K)-Y(J)) 
IF((A.LT.-S.0).OR,(C.GT.S.n)) Go TO 60 
B«(X-Y(J))/(Y(K)-Y(L)) 
VTAfi«C«(B«/(K)-A»Z(J))*A*B»Z(| ) 
RETURN 

bO   VTAH«0. 
RETURN 

tO   VTAB«Z(J)*(X-Y(J))<MZtK)-Z(J))/(Y(K)-Y(J)) 
RETURN 
END 
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FUNCTION   PTAH(XtYfZfK) 

C 
C 
C     THIS SUBPROGWAM PERFOMMS A StcOND ORÜtR LA6HANGIAN INTERPOLATION 
C     WITH PROVISIONS FOR HANnLlNG A SINGULARITY. 
C     FUNCTION ARGUMENTS ARE THt SAME AS IN VTAB • 
C 
C 

OIMFNSION Y(loüO) .zanun) 
IF(X.Lt,0,) GO TO bi) 
UO 10 IsK.lOOO 
Jal 
1F(Y(I).GT.X) GO TO 20 

10 CONTINLE 
c'U JSMäXü (3« J-l) 

UO 30 1=1.1000 
IF(Y(J).LT.X) GO TO 40 
Jsj-l 
IF (J.LT.3) GO TO 40 

30 CONTINUE 
40 Jsj*l 

JJsJ 
C 
C     THF FOLLOWING THREE STATEMENTS PROVIDE FOR EXTRAPOLATION 
C     AROUMJ A SINGULARITY. 
C 

IF(ABS(?(J)) .GT.I.ÖE20)jJsj-i 
IF{APS«/(J-l)) .6T,1,0E?0)JJ3J*1 
IF{«JJ.Eu.J).AND.(AHS(Z(J-2)).LT,l.öE?0)) JJ*J-l 

J=JJ 
Ksj4l 
IF(7(J).EU.Z (K)) GO TO 60 
L = J-1 
A=(x-Y(M)/(Y(J)-Y(L)) 
Cs(X-Y(L))/(Y(K)-Y(J)) 
IF((A.LT.-b.O) .OR.(C.OT.b.O)) GO TO 60 
Hs(x-Y(J))/(Y(K)-Y(L)) 
PTAH = C«<H«Z(K)-A*Z(J))*A«ti»Z(| ) 
RETURN 

Su PTAHsO. 
RETURN 

M) PTA^s7(J)*(X-Y(J))»(Z(K)-Z(J))/(Y(K)-V(J)) 
RETORi^ 
tNf) 
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FUNCTION  FGKA.B.K.F.P) 

C     THIS SUbPHOGRAM INTEGRATES IMF FUNCTION F BETWFEN THE LIMITS 

C     K JUBINTERIALS! F0ÜR-P0INT ÖA,,SSIAN QUADRATURE IN EACH OF^HE 
c 
c 

UI^ENSION V(4)»W(2),SUM(4)eP(i) 
ÜATA-V/ -.«611363115940531—339981043584856, 

I .319961043584856,.861116311594053 / 
ÜATA W/ .347854845137454,.652145154863546 / 
SUM(1)=0.Ü 
SUM(2)sO,0 
SUM(3)aü.O 
SUM{4)sO,0 
H»(8-A)/FLt)AT(K) 
H2aH/2, 
AA«A«H2 
00   ?0 L=1,K 
00   10 1=1,4 
X«H2»V(I)*AA 

JO SUM(I)«SUM(I)*F(X,P) 
20 AAsAA^H 

FÖI«H2«(W(1)#(SUH(1)*SUM(4))+W(2)#{SUM(2)*SUM(3))) RE TURN 
ENf) 
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APPENDIX D 

SAMPIE PROGRAM OUPRJT FOR p(t) ■ exp (-125t) 

TRANSLATIONAL   VELOCITY   PHOÖHAM 

INPUT   TC   SUBROUTlNt   PTV 

TIMERitT3.T4tTbtRADtPTS»OPTIONfCOSA.RHOwiCwU 

0* 0. 
b.0000OE*ÜÜ        0. 

0. 
B.66030E-01 

7,84oOOe'0? 
I .00000E*00 

2,20000E*01 
<i.00000E*03 

ITERATION   FOR   PEAK   TRANSLA1IÜNAL   VELOCITY   PTV 

TIME(SEC) 

9.flÜ000 
2.94000 
4.90000 
6.Hfe000 
3.92000 
1.37200 
2.35200 
3,33200 
4,31200 
5,29200 
6,27200 
7,25^(10 
b,09600 
1,46040 
6,27200 
1,33200 
7,44800 
1,21520 
8,62400 
1.09760 
5,33120 
7.21280 
5,56640 
6,97760 
5.8Ü160 
6,74240 
6,03680 
6.50720 

0E-03 
OE-02 
OE-02 
OE-02 
0t-03 
OE-O? 
OE-02 
OE-02 
OE-02 
OE-02 
OE-02 
OE-02 
0t-03 
OE-02 
0E-Ü3 
0f-02 
OU-03 
OE-02 
OE-03 
OE-02 
0E-Ü3 
OE-03 
OE-03 
OE-03 
OE-03 
OE-03 
OE-03 
OE-03 

«»«««««««•«««««»«««« 

6, 742400E-03 

VELCC1TY(FT/SEC) 
TARGET SUBWERGEÜ 

6.787638E-03 
7,162470E-04 
6,096742E-05 
5.26Ü610E-06 
6,28H036E-03 
4,843787E-03 
l,5l4464E-03 
4.347603E-04 
l,271495E-04 
3,734903E-05 
1,097Ü70E-05 
3.222820E-06 
7,17Bb32L-03 
4,4b3ia6t-03 
7,547924E-03 
5,039151E-03 
7,532047E-03 
5,63756lE-03 
7,246194E-03 
6,233134E-03 
7,28999lE-03 
7.56029lt-03 
7.381641E-03 
7,57b902E-03 
7,454637E-03 
7,580778E-03 
7,509650E-03 
7.57l3b()E-03 

FTV 

/,SHi)7^HE-03 

VERTICAL VELOClTY(FT/SEC) 
TARGET AT SURFACE 

1.175660E-02 
1.2405H3E-03 
l,055992E-04 
9,lll692E-06 
1.089126E-02 
8.389729E-03 
2.623143E-03 
7,530309E-04 
2,202306E.04 
6,469076E-05 
1,900192E-05 
5.582117E-06 
1.243365E-02 
7,730505E-03 
1.307146E-02 
8,720112E-03 
1,304596E-02 
9,764594E-03 
1.255oa4E-02 
1,079616E-02 
1.262670E-02 
1.309488E-02 
l,278S45E-02 
1.312365E-02 
1.2911B8E-02 
1.313036E-02 
1.300716E-02 
l,31l403E-02 

PTV 

1.313036E-02 

D-l 


