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THE TRARSIATIONAL VEIOCITY OF SURFACE SHIFS
AND SUBMARINES: » COMPUTER PROGRAM

By
James R. Britt

ABSTRACT: This paper describes a computer program wricten in FORTRAN IV wvhich
calculstes the peak or maximum translational velocity induced in both submerged
and floating targets by an underwater explosion plane shock wave of arbitrary
pulse shape. The targets, surface ships and submarines, are approximated by an
infinitely long cylinder of a specified radius. The theory, vhich was developed
for submarines, is described briefly and extended to floating targets.

Since the program was originally written to handle pulse shapes produced
by reflections from the ocean bottom, it has the capability of using pulse shapes
vhich have a logarithmic singularity.

EXPLOSIONS RESEARCH DEPARTMENT
NAVAL ORDNANCE LABORATORY
WHITE OAK, SILVER SPRING, MARYLAND



NOLTR T1-65 T May 1971
THE TRANSLATIOMAL VELOCITY OF SURFACE SHIPS AND SUBMARINES: A COMPUTER PROGRAM

This report is part of a comtinuing study of the interaction of the underwater
explosion shock vave with the ocean bottom. The computer program described in
this paper was primarily written to calculate the translational velocity induced
in surface ships by bottom reflected shock waves. These calculations provide a
method of comparing the damage producing potential of the reflections for various
bottom materials. The work was done under the supervision and cooperation of

Dr. H. G. Spay (240).
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DASA-NA 002-20 P, 106 (Energy Focussing and Refraction Effects).

GEORGE G. BALL
Captain, USH

s

C. ARONBON
By Direction

i1



NOLTR T1-65

CONTENTS

1 . momlo’ L] * * (] ] L] [ ] o L] L) L J L L J L] L [ ] L L] L[] L L . L] . L] * .

2. THEORY FOR CALCULATING THE TRARSIATIONAL VELOCITY OF AN INFINITELY
mm m L] . [ ] L] L] . . L4 L L] L 4 L] L 4 * L[] L] L L] * L] L[] L] L L] L4 L] *
2.1 ‘..mim L] [ ] L[] [ ) L] L] . L] L L] [ . L] . L [ ] . L] L] ] [ ] L [ ] L] [ ] L]

2.2 Translational Velocity of a Submerged Cylinder . . . . . .
2.3 Reduced Step Wave Acceleration « . « ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o &
2.4 Translational Velocity for an Arbitrary Wave Shape p(t) .
2.5 Translational Velocity of a Surface Ship . « ¢« ¢ ¢ &« ¢ o &
2.6 Comparison of the Responses of a Target to Exponential and

Supercritical Bottom Reflected Pulses . . . . + « ¢+ « ¢ &

3. COMPUTER PROGRAM FOR CALCUIATING PEAK TRANSLATIONAL VELOCITY .
3.160““1&@".“.@1”1“.000ooo‘cooooo .

3020“°fthemmmoo ¢ 0 6 6 o6 0 o 06 o ¢ & o s & o & »

3.3 Important FORTRAN Sywbols Not Included in the Call to
Swmm L] L] [ ] [ ] L] * [ ] [ ] L] L] * L[] * L] [ ] [ ] L J [ ] [ ] L ] * L)

mm L J [ ] [ ] L] L] L [ ] [ ] L L L] L * L] L] [ ] L * L L] [ L [ [ ) L L] L [ ] L 4 [ ]

APPENDIX A CAICULATION OF THE REDUCED STEP WAVE ACCELERATION A(T) .

APPENDIX B wnmmormmmxlmna........ .

APPENDIX C FORTRAN IV LISTING OF PIV PROGRAM . « ¢« ¢ o o o ¢ o o o o

APPEDIX D SAMPLE PROGRAM OUTPUT POR p(t) = exp (-125t) . . . . . .
ILLUSTRATIONS -

Pigure Title

2.3.1 Reduced Step Wave Acceleration of a Cylinder . . « « ¢ ¢ o ¢ o ¢ o &

2.6.1 Free Vater and Bottom Reflected Pulses Produced by a

mms. [ J L] L4 L L * L ) * L] L L L] L] L] L J L L [ 4 [ ] . L L4 * L] L] L] * L J

2.6.2 Responses of a Cylinder of Radius 22 ft. to Free Water and

mt“n.fwmuﬂhaluc‘dw.lmme o o o o o @ o o o

i1

Page

O 33 & FWPO NN

10

Page
3
p
6



NOLTR T1-65

THE PEAK TRANSIATIONAL VELOCITY OF SURFACE
SHIPS AND SUBMARINES: A COMPUTFR PROGRAM

1. IRTRODUCTION

The peak translational velocity (PTV) of the center of gravity of a naval
ship or submarine induced by underwater explosion shock waves is generally used
to describe the degree of impairment of their mobility and weapon delivery cape-
bilities. The model presently being used to calculate the PTV is that developed
primarily for submarines by W, W. Murray (reference (1)). This model treats the
interaction of an exponentially decaying acoustic plz;.ne wave with an infinitely
long cylinder. For pulses of nuclear dimensions the assumption of plane inci-
dent waves is usually Justified because the ranges considered are large compared to
the dimensions of the ship or submarine.

In the application of Murray's theory to waves vhich have been reflected
from the ocean bottom or refracted by velocity gradients in the ocean one encounters
the need for calculating the PTV for wave shapes other than exponential. One of
the best ways to make such & calculation for en arbitrary wave shape i1s through a
superposition of step wave responuses. Murrsy has calculated the step wave trans-
lational velocity curve and also the step wave acceleration. J. A. Goertner
(1n 8 confidential report) has written a computer program vhich uses Murray's
curves to calculate the PTV for sn arbitrary incident wave by decomposing the
wave into a sum of step waves. This program has been used successfully in cal-
culating the PTV of refracted waves, but is not well suited for bottom reflection
studies.

In this paper Murray's theory is described briefly, and a computer program is
explained vhich computes the PTV for an arbitrary wave shape in a somevhat dir-
ferent manner than Goertner's program. The incident pulse used in the program of
this paper may have a singularity of the logarithmic type such as encountered in
supercritical bottom reflections. The PTV is calculated by a convolutio: integral
containing the incident wave shape and the step wave acceleration. The curve of
the step wave acceleration has been recalculated so that the model can be more
closely followed than is possible using Murray's curve. The theory is extended
to surface ships, and the program calculates the PTV for both surfaced and sub-
merged targets.
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2. THEORY FOR CALCUIATING THE TRANSIATIONAL
VELOCITY OF AN INFINITELY LONG CYLINDER

2.1 Assumptions
Murray derived his equations for a rigid and neutrally buoyant cylinder of

radius a. It is assumed that the displacement of the cylinder from its initial
position is small compared to its radius. The equations were derived for athwart-
ship attack; that is, the wave front is parallel to the longltudinal axis of the
cylinder.

2.2 Translational Velocity of a Submerged Cylinder
Let the incident wave be given by

p(t) = rpexp [- (¢ - R/cw)/c] , t > R/cw (2.2.1)

vhere t is the time, R, the distance from the source to the target, G, the time
constant of the exponential shock wave (usually denoted by ), and C.? the sound
velocity of water. The peak pressure of the wave 1is Pp For this exponential
pulse Murray obtained the following equation for the translational velocity of a
tobally submerged cylinder

foty
v(1) = - ¥ i 97 ﬂl&ﬁ'—ll]—-dz, (2.2.2)

oy 2% (2+q) K, (2)

wow Lt

vhere the integration variable z is a complex magnitude and ow is the density of
water. The symbol T denotes the reduced time T = ey t/a., and q is the reduced
redius q = a/ch. For a step wave G becomes infinite, and we have q = O. The
function Ka(z) is the modified Bessel Function of the second kind of the order
two. The path of integration is to be taken in the right half of the complex
plane, hence the constant v must be real and positive. For practical purposes, a
good choice of v is unity.

2.3 Reduced Step Wave Acceleration
Upon differentiating v(7) and setting q = 0, the desired expression for the
reduced step wave acceleration of the cylinder is
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A(T) = ( " Jigslnice -1«’£—~/ zzl(a(z) az . (2.3.1)

This function, calculated by the methol described in Appendix A, is shown in
Figure 2.3.1.

[R) T T

RTAN i
B

"’ | \ |
" t + ‘ —+

Figure 2.3.1 REDUCED STEP WAVE
ACCITFRATION OF A CYLINDER

2.4 Translational Velocity for an Arbitrary Wave Shape p(t)
The reduced step wave acceleration A(T) plays the role of a Green's function

for the problem. The translational velocity V(T) from an arbitrary incident wave
p(t) can be written

L f plaa/c,) AT -4q) aq, (2.4.1)

vy

v(r) =

vhere T = cvt/a.. If the integration variable is changed so that it has the
dimensions of time, V(t) 1s then given by
t

v(t) = o—la J o(u) A(T - cu/a) au . (2.4.2)
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This is the equation used to calculate V(t) in the PTV PROGRAM described in
Section 3.

2.5 Translational Velocity of a Surface Ship

To apply the above equation to the response of a surface ship, two assumptions
are made: (1) the target is considered to be a cylinder floating on the surface
with its axis at the water line. (2) the vertical translational velocity is as-
sumed to be twice the vertical component of the translationel velocity the cylin-
der would acquire deeply subwmerged. The horizontal motion of the ship is not
taken into account.

These assumptions are usually made for calculation o damege to surface
ships, although it is realized that it may be an oversimplification. Elfects
such as cavitation are also ignored. This process is known to occur be’.ow ships
and may be of importance.

Under the above assumptions, the verticel translational velocity of a float-
ing cylinder svhen nubjected to a pressure pulse p(t) is then

vs(t) = 2V(t) cos a, (2.5.1)

and .
v (t) = -ﬁ:?—s-“f p(u) A(T - ¢ v/a) au, (2.5.2)

(o]

vhere @ ig the angle between the plane wave front and a normal to the water sur-

face, scmetimes called the incident angle.
The program described in Section 3 calculates both V(t) and Va(t) and their
maximum values, th. peak translational velocities PTV.

2.6 Comparison of the Responses of a Target to Exponentisl av. Supercritical

Bottom Reflected Pulses.

The experimental data correlating the shock damage from an unde. water explo-
sion to the peak translational velocity, PTV, have been obtained for free water
pulses or for free water pulses cut off by surface reflections. Both of these
pulse shapes are initially exponential. Pulse shapes encountered in the study of
supercritical bottom reflections are not exponentials, and the questiocn arises
vhether the same shock damage recults if the PTV's are the same. Two examples of
these pulses, along with an exponential, are given in Figure 2.6.1. As shown in
Figure 2.6.2 these pulses produce the same FIV on a cylinder of radius 22 ft.

4
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Ignoring the early parts of the responses to the reflected pulses, these curves
have roughly the same shape around the peak as the response to the exponential.
After the peak the cut-off exponential response deviates much more than those of
the bottom reflections. Having the same PTV and similar accelerations, the pulses
of Figure 2.6.1 are expected to cause the same degree of damage. This means that
PTV damage criteria derived for exponential pulses can also be applied to super-
critical bottom reflections and other similar non-exponential pulses.

3. COMPUTER PROGRAM FOR CALCULATING
PEAK TRANSIATIONAL VELOCITY
3.1 General Program Description

The peak translational velocity program or simply the PTV PROGRAM has been
written in FORTRAN IV for the NOL COC 6400 computer. A complete listing is given
in Appendix C. This program cal~ulates the PTV for both surface ships and sub-
marines using the theory described in Section 2.

The PTV PROGRAM 1s composed of seven subroutines: PIV, FV, F1, XMAX, VTAB,
PTAB, and FGI. The package is us d by calling subroutine PTV from a main or
executive program written by the user vhich supplies the pressure time history p(t).

The PTV is obtained frow equations (2.4.2) and 2.5.1). But in order that we
may integrate numerically over a singularity in p(t) at t = ¢ porT=T = c“tc/a,
of the fom lnlt-t I sthe integration variable u is changed as follovs:

for u = t w=(t -u)]'/2
c ]

1/2
for uzt, z-(u-tc)

Equation (2.4.2) then becomes for t > t,

v(7)= 3%5{ - :({:) p(u) A(T - cvu/a)w aw
z(t)
& f p(u) A(T - cwu/a)z dz } (3.1.1)
z(tc)
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vhere T = c“t/a. These integrals are evaluated in FUNCTION FV using the Gaussian
quadrature of FUNCTION FGI. From V(t) we then obtain Vs(t) using equation (2.5.1).

The A(T) curve vhich has been calculated by the procedure of Appendix A is
stored in the arrays QQX and QQY in FUNCTION Fl. The reduced time T 1s in QQX and
A in QQY. The function A(T - cvu/a.) is evaluated from these arrays by quadratic
interpolation in FUNCTION VTAB. Similarly p(u) is determined by interpolation in
VTAB of the arrays QX and QY vhich hold the time t in seconds and the incident
pressure in psi. Near the singularity at t = tc the FUNCTION PTAB performs the
quadratic interpolation for the pressure.

The convergence of the integrals in equation (3.1.1) is made possible because

U W 1n|t -t | = lm 2 lnlt-t | = 0. (3.1.2)
u-t ¢ u- t ¢

As implied in equation (3.1.1) the variables w and z are used for integration
over the whole range of 7. Little difficulty is encountereé in the numerical
integration if the pressure pulse p(t) has no rapidly changing, high amplitude
contributions far from the peak at T = cwtc/a.

The values of V(t) and V.(t) depend on the previous pressure history. Since
A(T) 1s very small for T > 8, the integration range is restricted to at most from
u=7Te-8¢t us=1T, Thus if significant rapidly changing pulses occur away from
Tc by about T = 8, the PTV PROGRAM can be applied to each peak separately since
the target response from one pulse is essentially damped out before the arrival of
the next pulse. The actual PTV can then be found from the maximum of these results.

The maxiwum or peak values of V(t) and Vs(t), the PIV's, are obtained as fol-
lows. An initial search for a maximum velocity is made from some ¢t = ¢ . tot = t].'
The values of to, tl’ and the number of steps are prescribed by the user in the
call to subroutine PTV. Then several iterations are made around this maximum.
Subroutine XMAX determines the maximum value of the translational velocity, but
subroutine PTV controls the iteration and makes the calls to FUNCTION FV wvhich
sets up the integration for V(t). Iteration terminates when the relative dif-
ference between the two largest absolute values of V(t) is less than .00l. If the
iteration does not converge after five cycles, iteration i1s also terminated and a
varning is printed. In either case values of the PIV for submerged targets, the
maximum of V(t), and for floating targets, the maximum of vs(t), are returned to
the main program.
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3.2 Use of the PTV PROGRAM

To use the PTV PROGRAM subroutine peckage a wain program must be set up by
the user to supply the incident pulse p(t). The time in seconds and the pressure
in psi must be stored in the arrays QX and QY as mentioned previously in Section
3.1. When the pressure history is short compared to the target transit time a/cw,
the PTV is likely to occur at a time beyond the last value of the pressure history.
Thus to provide for extrapolation beyond the end of the actual pressure history
the first unused storage of the QX array should be set to some very large value

as 1.0E20, The corresponding QY storage should be set to zero or some other
approrriate asympto’ ic value of p(t).

The QX and QY arrays are transferred to the PI'V PROGRAM by COMMON storage.
The statements COMMON /QXY/QX,QY and DIMENSION QX(1000), QY(1000) must be in the
main program. In cabroutines PTV and F1 the additional common storage is used:
COMMON/QIS/IS. This statement is not needed in the main program.

Once the pressure history has been defined, the peak translational velocity
is then obtained by calling subroutine PTV as follows:
CALL PIV (TIMER2, T3, T4, T5, RAD, PTS, OPTION, COSA, RHOW, CWAT, T, V, VS).
INPUT The following variables are inputs to subroutine PTV:

TIMER2 Time tc in seconds of the singularity or peak of the incident
pulse. For a simple exponential pulse set TIMER2 = O. The pres-
sure at a singularity should be set to some number with absolute
value greater than 1.0E20 as a signal to the interpolation
subroutine PTAB.

T3 Signals the approach of the singularity of the incident pulse
p(t). If there is no singularity set T3 = TIMER2. When there
is a singularity, T3 should have a value such that there are in-
cluded at least two points of the QX array on each side of the
singularity in the time interval T3 < t < 2tc - T3.

% Smallest time to at vhich the translational velocity is to be
calculated. If the peak of p(t) occurs at or near zero, use
Th = 0. In other cases T4 (and TS5 below) can be determined by
remembering that the translational velocity at time t is calcu-
lated using the pressure history of the interval t - .Ba/cw to t.
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TS Largest time tl at which the translational velocity is to be
calculated.

RAD The cylinder radius a in feet.

PTS The number of times at which the translational velocity is to be

calculated in the initial search for the PI'V. This search 1is
made in the time interval T4 - t < T5. The maximum value PTG
can be is 50.

OPTION Controls printing in subrcutine PTV. There is no printing if
OPTION > O. There is printing if OPLION x« O.

COSA cos 0. See Section 2.5 for an explanation of c.

RHOW Density of water o in gm/cm3 .

CWAT Sound velocity of water c_ in ft/sec.

OUTPUT " ¢ following variables are ouvtputs returned to the wain program. When

OPTIC™ , thege reszults are printed out in subroutine PTV,

T Time t in seconds. The time of the PI'V i3 returned to the main
program.

v The translational velocity V(t) in ft/sec of a submerged turget.

The PTV is returned.

Vs The translational velocity Vs(t) in ft/sec of a floating *arget.
The PTV is returned.

A sample print out for a pressure pulse p(t) = exp ( - 125t), or p(t) =
exp (- T) when a./cw = ,008, is shown in Appendix D. The input to subroutine PIV
is included in the print out.

3.3 Important FORTRAN Symbols Not Included in the Call to Subroutine PIV

Dimensioned Variables
SUBROUTINE PTV
WX, QY Time in seconds and pressure in psi of the incident pulse.

These arrays must be defined in the user's executive program.

QQX, QQY Reduced time and reduced acceleration of step wave. These arrays
appear in FUNCTICN F1.

10
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Index for the beginning of the interpolation search in QQX array.
Index for the beginning of the interpolation search in QX array.

Array for transferring to FUNCTIONS FV and Fl variables in the
integrand of V.

Time ¢

cu/a

t
c

Signal for FUNCTION F1. In equation (3.1.1) G(4) = - 1.0 for
the first integral and + 1.0 for the second integral.

hc-mfk

w(0) = tc1/2

Storage for time and V(t). Used by subroutine XMAX to determine
the maximumlv(t)l = C(M) and the next largest velue C(M1).

Non- ‘.ensioned Variables

SUBROUTINE PTV
or

M
T, T2, V1, V2
Vsl

FUNCTION FV
N =18

NN, N1, NWN

Increxw:nt of time.
See A and C above.
Temporary storages of A(M), A(M1), C(M), c(ML).

Value of Vs(t) vhen V(t) = c(M1).

The integrations of equation (3.1.1) are performed using a four
voint Geussian quadrature per subinterval of integration. N is
the maximum number of subintervals allowed for the total inte-
gration interval.

The number of subinterveals of integration used. NN is used if
the total integration interval does not include tc. Nl and NNN
are used if tc is included: N1 for the integration variable
uf-'rcandNNNforu>.1'0.

t - 8c“/a used to restrict integration to the interval
T-BtOT.

1
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FUNCTION F1
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Limits of integration in equation (3.1.1). In the calls to
FUNCTION FGI the first variable is the lower limit of integra-
tion, the second is the upper limit.

The sum of the integrals of equation (3.1.1).

Integration variables w and 2.

Time corresponding to integration variable u.
Reduced time equal to c - (t - u)/a.
Interpolated pressure at time X.

Integrands of equation (3.1.1).
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APPENDIX A
CALCUIATION OF THE REDUCED STEP WAVE ACCELERATION A(T)

In order to evaluate A(T) from equation (2.3.1) it is necessary to transform
the integral in the complex plane to a real integral. Murray has accomplished
this transformation by using a series expansion vhen T is small, up to about T = 1,
and contour integration at larger values of 7. However, to obtain a more accurate
A(T), we have used the more direct approach explained below.

The integration variable z can be written z = x + iy for x and y real. If
the irtegration path is taken along the line x = y ~ 1, z becomes z = 1 + iy. The
complex functions in the integrard of A(T) can then be separated into their real

and imagiiery parts:

= (1-y0) vz,
exp [z(7-1)] = exp (7-1) cos [y{7-1)] + 1 exp (1-1) sin [y(1-1)] ,
and Ky(z) = Re(K,) + 1 Im(K)) ,

vhere Re(l’.e) and Im(l(e) dencte the real part and the imaginary pert of Ka(z).
Explicit expressions from shich Re(Kz) and Im(Kz) can be obtained will be given
later. On substituting the above functions in A(7), equation (2.3.1), and then
separating real and imaginary parts of the integrals one obtains

a(r) = & "(1_12{ f EL cos [y::'r;l)] +2Eiain [y('r-l)]
- 1 2

. 1} E, sin [y('r-l)] - Eg_coa [y('r-l)] ay , (A.1)

T2
E,*E,
vhere
2
E, = (1 - y°) Re(Ka) -2y Im(l(a) (A.2)
and
E, = (1-y°) In(K,) + 2y Re(K)) . (A.3)

A substitution of =y for y in equation (A.l) shows that the integrand of the
first integral of A(T) is even and the integrand of the second integral is odd.

A-1
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Hence the second integral is zero and A(T) is a real function which can be
written

1) } Eypeos (L] * By atn [v(mU] o L at)

2 2
+
(o] El E2

A(T) = 2 exp (7

For y < 15 we have calculated Kz(z) from the expression
.-}

l(e(z) = f exp ( - z cosh §) cosh 2% % . (A.5)
o

Separating the exponential into its real and imaginary parts and substituting
z =1 + iy, we obtain
*
Ka(z) = ‘ exp ( - cosh &) cos (y cosh 3) cosh 2% a%
o
[ -}
-1 J exp ( = cosh ¢) sin (y cosh &) cosh 2% d3% . (A.6)
o]

Substitution of this expression for Ka(z) into equations (A.2) and (A.3) yields
the following expressions for E, and E

1 2

E, = [ ‘(1—y2) U+ 2y z) u, as (A.T)
(o]

E, = [z v- 2] u e (A.8)

o
vhere: U = cos (y cosh $)

Z = gin (y cosh &)

U, = exp (- cosh %) cosh 2%,

These integrals converge very rapidly because of the expression Ulwhich approaches
zero like exp (- exp ) for about & = 4 or larger. It is shown in Appendix B that

and E_ at § = 4.5 18 less than 1

the error in truncating the integration in El 5

part in 101'3 c

A-2
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Even though the integrals converge rapidly, they become increasing more
difficult to evaluate numerically as y increases because of the oscillatory fac-
tors Uand Z. At abcut y = 15 an esymptotic expansion for evaluating Kz(z)
becomes more practical.

For y between 15 and 1000, the following asymptotic expansion (reference (2))
of xa(’) is used

2 P 2
162, 06 062) L ] o)

1/2
K (z) = (Z) e (-2) 1+ 375 A

vhere again z =1 + 1y. Near y = 15 nine terms of the series in brackets are

used, i.e., the lowest ordered term used is of the order 1/28. Retaining nine
terms insures that the series truncation error for y = 15 is less than 2 x 10'9,
Between y = 15 and y = 1000 fewer terms are needed for larger y; however, a suf-
ficient number of terms are retained so that the truncation error is less than
that at y = 15.

The integral for A(T) from y = 1000 to infinity is calculated from an approxi-

mate equation obtained by neglecting terms of order 1/y2 or smaller compared to
one. From equation (A.9) the approximate relation for K2(1 + iy) is obtained

K (1+y) ~ [_-.5,71_]1/2 exp (1) [cos (y+y) - 1 sin (y+)] [1 - %3], (A.10)

vhere

i 1 1 1

cos ¥~ == (1 + =) and sin ¥ = 1 -=). A.11

75 2y) and sin ¥ 72 ( Qy) ( )
Substituting the real and imaginary parts of K. from equation (A.10) into equations

2
(A.2) and (A.3) and neglecting terms of order 1/y2, the following relations are

obtained:

1/2 =
e[S e (D [V rr )+ Fyan b w] , (Ra2)
n 1/2 e 3_{1'
Ee ~ [.Q_y.] exp (-1) [y sin (y + ‘}l) + T Yy cos (y + ‘h)] ’ (A'13)
and
E12 + E22 nu'g' y3 exp (-2) . (A.1L)
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Combining the above equations with equation (A.4), the remainder R(a) of the A(T)
integral from y = a to infinity 1s

®
R(a) ~[§]3/2 exp (7) | y3/2 [g}l- atn (1y + ¥) - cos (1y + *)] &y , (Aa5)
a
vhere the trignometric relations for the sine and cosine of the sum of two angles
have been used and where the lower ordered terms have been neglected. For the
numerlcal computations a = 1000 is used.
Using similar manipulations as above and substituting cos * and sin ¢ from

equation (A.11), R(a) can be written
2 Ly | =3/2 .
R(a) ~ T—T37—2- exp (7) | vy [+ g—;) sin Ty - (1 g—;{-) cos Ty] dy.  (A.16)
a
Integration by parts can then be used to obtain

R(a) ~e_§3é_7_2 {(“ - 97) [5-1/2 (sin aT - cos aT) +/2n7 (1 - S(aT)

- C(aT))] + g s3/2 [sin aT + cos aT] } ’ (A.17)

shere S(a7) and C(aT) are commonly called Fresnel's integrals and are defined

aT aT
s(at) = —=- f% dx and C(aT) =/1_ | °;'_" ax . (A.18)
X an X

o

These integrals have the following asymptotic expansions (see reference (3)):

o) mgesinz [y Ld 2o, ]

Vo (22)°  (ez)'
e P A.
Ve [22 (22)3 ] =

od_go8z |, 13 L1357
2 k (22)2  (22) ]

A=l
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in z [1 1.3 ,
- /__2;'7’ ['2? - =Y + ] . (A.20)

Substitution of the above equations into equation (A.17) gives

~ EXPLT h - s - ¢cos8 aT -kj—--l... Hl oo
R(e) ~ S {0 - 97) (stn o - con o L)

+ (sin aT + cos aT) [—]*" - 3o, Shle ) 1t %]}- (A.21)

2aT (2a.1' )3

In sumary, to evaluate A(T) from equation (A.L) E, and E,, vhich are defined
by equations (A.2) and (A.3), are given by equations (A.7) and (A.8) for 0 <y < 15
and obtained from equation (A.9) for 15 <y < 1000. The integral from y = 1000 to
infinity is R(a), equation (A.21), vhere a = 1000. The A(T) curve shown in
figure 2.3.1 was calculated by the above method on the NOL IMM 7090 computer. A
table giving the A(‘r) array to six decimel places is contained in the DATA state-
ment of FUNCTION F1 of the FORTRAN listing of the PTV PROGRAM wvhich is given in
Appendix C.

A=5
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APPENDIX B

CONVERGENCE OF THE INTEGRALS El AND E2

It is the object of this section to show that the improper integrals, equa-
tions (A.7) and (A.8), used to obtain E, and E, are convergent. We ulso obtain
an upper bound on the error introduced by stopping the integration to infinity at
e finite value of the integration variable %.

It is commonly proved in text books of integral calculus that improper inte-
grals of the form of E'.I. and E2 are convergent if the integral of the absolute
value of the integrand is convergent. The converse does not necessarily hold.
Denote the integrand of EJ. by El' and that of E_ by E,'. Since in general

|a:!:b| < lal + Ibl, | sin ali l,l cos al <1, and Iub|= |a||b|; ve obtain
,Efl -I[(l-y2)0+arz] "1|
< (1+y2 + 2y) exp (- cosh %) cosh 2%. (B.1)

This result also holds for E2' . Since

cosh 2% = [exp (2¢) + exp (-22)] /2 - exp (2%),

the above inequality can be simplified to
|E1'| < (1 + y2 + 2y) exp (2% - cosh &) . (B.?)

At & = 4.5, cosh & ~ 45,0L. Hence for ¢ 2 4.5 we find 2% - cosh & < = 36 = - 89,
Expression (B.2) becomes for & 2 4.5

By < (1+y° +2y) ep (- 8Y) . (8.3)

Integrating this expression leads to

[ E,' a% < [ &' ae <%’-(l+y2+2y) 36, (B.4)
4.5 4.5

For the rangs y < 15 in vhich E
assured that

1 1s calculated fram equation (A.T), we can be

B-1
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o
It

-13
l El' d¢ <1l x10 , (B.5)
4.5

vhich shovs integrating to ¢ = 4.5 1s quite sufficient because the value of |E1|
in this range of y is about 1 to 10. Since El' has no singularities in 0 < & < 4.5
and since the integral from % = 4.5 to infinity is finite (and very small) we can
conclude that El is convergent.

All of the steps after expression (B.l) hold for E_ as well as E,. Conse-

2 1
quently, the inequality (B.5) holds also for E_ and convergence follows.

2

B~-2
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APPENDIX C
FORTRAN IV LISTING OF PTV PROGRAM

#aped  PTV PROGRAM dangt

SURRCUTINE PTV(TIMERZ4TA0T4e T8 eRANDIPTSUPTIUNSCOSAIRHOWSCWAT
1 TeveVvs)

THIS SUHPRUGRAM CONTROLS THE T1TFERATIUN FUR THF PEAK
TRANSLATIOHAL VELOCITYe PTVe IT 1S THE ONLY SURROUTINE OF THF
PTV PRGGRAM WHICH IS CALLED FpuM THE MAIN PROGKAM,

DIMENSION QX (1000)sGY(1000)915(2)
DIMENSTIUN G(6)

DIMENSLION A(50) ¢C(%0)

COMMON /ZWXY/QXeQY

COMMON ZQIS/IS

IF(OPTIUNGGT 0e) GO TO 10

WRITE (£¢580)

ARITE (6¢600) TIMERZsTIoT4oTHIRADIPTSIOPTIONSCOSASRHOW ¢CWAT
WRITE (64590)

T4,21487 1S A UNITS CONVERSIUNM FACTOR
VC=22 4R /74e21497/RHCW/RAD

N=PTS

T=Ta

DT=(TS=1)/FLOAT (N=])

IF(TelEoOsi nNaN=1

IF(T'LFOOQ, T=UT/2.

IS(1)=¢

1S(2)=}

G(2)=CwAT/rAD

G(3)=TIMERY

G(5)=SGRT(TIMLR2=TJ3)
G(A)=SGRT(TIMER?)

INITIAL SEARCH FUN MAKXIMUM VE| OCITY
DO 40 [=)eN

G(1)y=T

VayCHFv (G)

Ally=T

Cliy=vVv

VS=2,%C08A%Y

IF(OPTIUNGLE e} WRITH (Re610) TyV,aVs
T=TeDT

C-1
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40 CONTINLE
ITERATION FOUR PTV
DETFRMINE THE MAXIMUM VFLUCITY FkO4 C ARKAY
CALL XVMAAK(CoiNoMgM])
A2=a(m])
C2=c (M)
A(1)yzA (M)
Cly=C M)
A(P2)sqar
C(”)=Cr
DA=IT
I:A‘),-loH“UA
IF(TuLEeDs) T=DA/Y,
UT:DA/?.
00 45 )1=3,10
L(ly)=1
Vaveekvio)
A(I)=T
Ciny=v
VE=p,4C0S5a#y
IF(OPTIUNGLEoNMe) wRIIF(A16)0) ToV,Vs
T=TeNY
4% CONTINLE
N=10n
IF(IAHS(M-MI)OLTOS) GO TY 85
T=A(2)=0,R%DA
IF(Tol"ooo) T=UA/S .
LVY=NnA/3.
DN g0 1I=1])el6
Bil)=1
VEVC#Fv (06)
A(1)=T
C(r)y=v
VS=2,#C0OSA#Y
IF(OPTION LE oN1e) WHITH(£e610) TeVevs
T=Ts0T
) CONTInNUE
N=16
89 CUMTI““&
D) 78 JJs1leb
CALL XMAK{CoNeMeM])
IF (JuelTa3d) GO TU &2
IF(akS(C(M)=C(ML))/C (M) el Tane01) GO TO 110
[F(JJdebany GO TU 120
7Y N=1n
Tl=A (M)
Te=A (M)
Vi=C (1)
Ves=_E (1)
A(gy=11
A(lI0)=1Z
Ct9)y=vi
Ctla)=ve



NOLIR T1-65

DT=ARS(T1=12)/5,
I1=}
D() 70 l:l.“
T=T1+D1#FLOAT((I=10)/72%1])
IF (71 bbb e Vo) GO T 64
G(1y=T
V=VyCoFkv(06)
VS=2,%C0SA®Y
GO 7O 66
WHEN T IS LLESS THAN Zkkn SFT TO ZFRO.

64 T = 0l
V = 0.0

b IF (CPTION oLEe 0.0) wWRITE (6.610) ToveVs
A(lIr=T
Ctr)=v
Il=al®]]

7d CONTINUE
7% CONTINLE

11V V=G (M)
T=A (M)
VE=z2,4#(0SA#C (1)
IF(ORT)IONGLE eNe) WHITF (£s620) A(M)HyC(M)4VS
RETURN

129 ve=C (V)
T=a (M)
VS=2 . #COSA#C (M)
VS1=2,%C0Sa%C (M])
WRITE(E9HI) TeVeVSeA(MY)eCIMY) VSl
RETIRN

56 FORMAT (1H1 e 10X e30ONTRKANSLATTIONAL VELOCITY PROGRAM )

G99 FORMAT (1HD «9XesSHITERATIUN FOUB PEAK TRANSLATIONAL VELOCITY PTV 2/
1 12Xs9rTIME (SEC)9BX916HVELNCITY (FT/SEC) 93Xe25HVERTICAL VELOCITY (F
2T/SEC) /29Xel6HTARGET SUHMERGEDeTX9)THTARGETY AT SURFACE )

000 FORMAT (1H0 DX 23HIMNPUT TO SUBROUTINE PTV /7 10X,

1 4SHTINMERR s T3,T49T5eRALGHTSIURTIUNGCUSAYRHOWICWAT Z/1PYSEL4,S/
2 1P5Elae.5 )
6lU0 FORMAT (IP3E22,.0)
Q) FORMAT (1HND 96X 4 20HURERHA RN RERBLRBRa00% JOX o JHPTV ¢ 19X e IHPTV//
1 1PIE722.0)
63y FORMAT (JHO o4 2H®#% wARNING JTTERATION DID NOT CONVERGE ##*# ,5x,
1 3spMAXIMUL AND NEAREST VALUE AKRE GIVEN //
1 12X 99K TIME (SFC)eBXelAHYELOCITY(FT/SEC) o3Xe25HVERTICAL VELOCTITY (F
2T/SEC) /29X9 l6HTARGET SUBMFRGFDeTX e 1 THTARGEY AT SURFACE /
3 (1P3EC2e6))

END
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FUNCTION FV(G)

THIS SUHRPROGRAM SETS UP THE IMTEGRATION FOR
THE TRANSLATIONAL VELOCITY V

DIMENSION G (b)
EXTERNAL F1
DATA N/18/

NN=FLOAT (N)#®#G(1)®*G(2) /R,
NN=MAXQ (NNeH)

NN=MTNO (NNoN)

X2G(l)~8./G(2)

IF(X4616e6G(3)) GO TO 43
ZiaG(h)

IF(Xet3T406) Z1ZBSART(G(3)=X)
IF{G(1)aGToG(3)) GO To 4V
Gl4)z=1,0

22=S0RT(G(3)=G(1))
INTEGRATIUN FOR T L,LE, TIMFRZ?
FV2aFO] (21422¢1NN9F)406)

RETURN

Z?:ﬂ.

233SLRT(G())=G(3))
IF(G(3)ebWeDe) GO TO 4%
6(6)3-1.0
N1Z21/7(21¢23)#FLUAT(NN)42e0
WNN=223/(21+23)%FLOAT (NN)+2,0
INTEGRATION FOR INTERVAL WHICH INCLUDES TIMER?
ViswFGl (Z)eZ24N1eF1ly0)
V(4)=],0
V2eFGI(22¢739NNNsF 1 +6)
Fvaylev?

RETURN

22=SQRT (X=G(J3))
23=SCRT(G(1)=6G(3))

6(4)21.0

INTEGRATION FOR T LARGER THAN TIMFRZ RUT THL
INTERVAL OOES NOT INCLUNL TIMER?.
FVESFGI (L2el23eNNF 1 9G)

RETURN

BN
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FUNCTICN F1(Z4b)

THIS SUBPROGRAM CALCULATES THf PRODUCT INCINENT PRESSURE #
REDUCE! STEP wAVE ACCELFRATIUN BY CALLING THE INTERPOLATION
PROGRAMS VTAB AND PTAW,

DIMENSION (X(1800) QY (1000)91l5(2)
DIMENSTION G(b)eQAX(120),QQY (120}
COMMCN /ZQXY/ZQX9QY

COMMGN /0IS/ZIS

REDUCE! STEP WAVE ACCELFRATIOM OF A CYLINDER

DATA (QUX(T)e]=1s106) /Nav,01P5:.n259,037544050,.0T754,100,
e 1”50 el900alT50020008,2290.2859N 0275003000 3294,.3500,.,375
eb10Nw o225 48509 o075 50U 527545509 ,5754486004,6255.650
sb TS s aTU0 e 7203 a 70 0TI BUN2eBP2954sR50 0 a8T754.9009,925+:3500
.975!] .ﬂlhl.ﬂbfl.lﬂvl.‘lbilni"ﬂil-25t1.3011|35-].4l}!1.#b|
1,500 e550lablp)laBSelaTU0)eToal RNel B8501,9041,9502,004
E.ﬁﬁu:.lth:’-1512.201?.?b1?-3ﬂ|?‘.]5g£.¥ﬂ lan'ﬁblﬁ.ﬁﬂl;ﬂ'.‘)b!
oDl ebHelallUslaT592AUIR2aB502,9093,0003alU0s3,203.303,6,
.‘1,513.'!:1.‘!. TrJ.HtJ.ﬂrﬂ.ﬁi#.?ik.‘n#.bl#.ﬂib-llrﬁ-?S:E.bn!
E.Tﬁlﬁuuﬁqbgahlﬁgﬁi?.uif-qiﬂ,ﬂ Vi

DATA (GUY(I)eImisd0) # Nels «19P1939:PT7593504337694443TALB0
s h4BHRI6Y S02]1891,5440000e5T7T7349,6041119.6255899,642701
ehRB 1439 hBARBOTH ATENTUe o6 T7165 4 AHERLZ 2 BBLNT0 s 683955,
AH24521 0797211675904 0ehT11275,6694295,6591209,652078»
eP446535,6303159),62T7T7T309e61B8755, ,60% 444y ,5998444,589999,
a5 TG94y o HE TIN5 174 e e S%HO] 34 5383729 .5277774.917151
e R0ED LNy (0 99ABT 1o 4AD2HL 00004715y 4436179 ,.4229TTe 402964y
s JHIG4 Ty o 364406091, 346N429e32AP1Hy 31100849 .2944244,2TB4&T]
e 2831529 .20H4065,,2304049.22094N0, 2081244 ,195RR1 /

DATA (GGY(I)eI=6lel06) 7 «184219,,1731229.1625734,152555
s 1430519134041 +,.129%009e]1 17435, 1098019102590, 095TH2
sDAGAE]L o IR VT 7TAHO0ReaNTE2P424 0671909 ,0624534,057999,
s NS3HIHY N49R9T 4 0462219039556y 1337254, VU2BAITy, 024209
eNZ03ABy 1170880, 0181TTeanllT12e, 0095994 ,00/T9%4,006260
20038639 ,0021T724,00100099400023040,0n026Ts=0,000619¢
=0, 0007T4e=0,000808s=0_00076T7s=0,0N0A0s=0,0NNK0A"
=0,0008304=0,0002979=0,0UN208 /

WL L =~ WP Bl B

=W & -

—~ A U B e e

TF(Ata)aGT 0a) GU TO 20
X=G () =LY

G0 TC 30

X=5(3)+2%]

AD=(G(l)=X)#G (2)
IF(7.G1.6(S)) 60 TU 3%
PSPTAB(XeQreQYyIS(2))

GO T7C 40
PesVTIAB(XeQXeQY9]IS(2))
Fl=z2ePaVTAR(XD)sQAXeOUWYsTS(1))
RETIIRN

£ND
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SUBRCUTINE XMAX (BeNgMeMY)

THIS SUBPROGRAM DETFRMINES THF LOCATIONS OF THE TwO LARGEST
ABSOLUTE VALUES OF MEMBERS OF THE 8 ARRAY,

DIMENSION B(50)

X=ABS (KR (1))

M=)

DO 10 1s2eN
IF(ABS(B(I)) LT X) GO To 1o
M=1

X=ARS (B (M))

CONTINUE

Mls]

IF(M,EQ.L) M1=2
XzARS (B (M]1))

DO 20 I=2eN

IF (ABS(B(1)) oLTeX) GO T 20
IF(1.,EG,M) GU TO 20

Ml=1

X=ABS (b (M]))

CONTINUE

RETURN

END
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FUNCTION VTAB(XeYeZeK)
THIS SUBPROGRAM PERFORMS A SECOND ORUER LAGRANGIAN INTERPOLATION

THE INDEPENDENT VARIARLF IS STORED IN THE Y ARRAY IN INCREASING
ORDER . THE DEPENDENT VARIABLE IS STORED IN THE 2 ARRAY.

X IS THE POINY AT wWHICH THE FUNCTION IS To Bt FVALUATFD,

i 1S TmE NUMBER OF THE ELEMEWNT IN THE Y ARRAY WwHICH IS FIRST
COMPARED WITH X,

DIMFNSION Y(1000)9Z(1000)
IF(XeLto0o) GO TO 50
VO 10 1=Kp1000
Js1
IF(Y(]1)eGT,X) GO TO 20
10 CONTINLE
20 JsMAXO (39J=1)
DO 30 I=1,1000
IF(Y(J) el TeX) GO TO 40
J=Je1
IF(JeLTe3) GO TO 40
30 CONTINLE
40 K= Jel
IF(2(J) 0EQe2Z(K)) GO 10 40
L= =]
Az (X=Y(K))/Z(Y(J)=Y (L))
C=(X=Y(L))/IY(K)=Y(J))
IF(‘AQLTO'SQO)OORQ(COGT.SOO)) GO 1O 6n
Ba(X=Y(J))/(Y(K)=Y (L))
VTABSC#* (B#72 (K)=A%2(J))earRBe2() )
RETURN
50 VTAR=0,
RETURN
60 VTAREZ (J) ¢ (X=Y(J))®(2(K)y=2Z(J))/(Y(K)=Y(J))
RETURN
END
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FUNCTION PTAH(XeYoZ oK)

THIS SUBPROGRAM PERFURMS A SECOND ORDER LAGRANGIAN INTERPOLATION
WITH PROVISIONS FOR HANNLING A SINGULARITY.
FUNCTION ARGUMENTS ARE THt SAME As IN VTAR

DIMENSION Y(1000)eZ(1000)
IF(XeLteOs) GO TO S0
DO 10 I=Kel000

J=1

IF(Y(])eGToX) GG TO 29
CONTINUE

JEMAX(O (3eU=1)

DO 30 I=141000
IF(Y(J)eLToX) GO TU 40
J=Je1

IF (JeLTe3) GU TO 40
CONTINUE

J=Je+l

Jd=J

THF FOLLOWING THREE STATEMENTS PROVIDE FUR EATRAPOLATION
AROUND A SINGHLARITY,

IF (ABS(7(J)) «GT,1,0E20) yJ=y=2
IF{ARS(Z2(J=1))eGTa1,0E20)JJadel
IF‘(JJ.&UQJ’.A“DO(ARS(Z(J'Z)).L10100E20)) JJsJ=1

J=JJ

K=Jgs+1

IF(2(J)eEN2(K)) GO TU 40

L=J=])

Az (X=Y(K)) /(Y ({J)=Y (L))
Cs(X=Y(L))/Z(Y{K)=Y(J))
IF((AoLTo'boU)QORo(CoGT.SOQ)) GO TO 60
B (X=Y(J))/Z{Y(K)=Y (L))

PTas=Co (B2 (K)=A%2(J))eatuel ()

RETURN

PTAR=0,

RETUKRM

PTARZZ2 (J) ¢ (K=Y (J))®(2(Ky=L(JIV/ (Y (K)=Y(J))
RETURN

N
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FUNCTION FOIL(AsBoeKsF 4P)

THIS SUBPROGRAM INTEGRATES THF FUNCTION F BETWEEN THE LIMITS
A AND R USING A FOUR=POINT GAISSIAN QUADRATURE IN EACH OF THE
K SUBINTERVALS,

UIMENSION V(4)9sW(2)9SUM(4) (P())

DATA.V/ -.Hbl136311594053!0.33998]0435848569
1 03399810435848560.861136311594053 /

DATA W/ .34785484513745490652145154862546 /
SUM(1)=0.60

SUM(2)=20,60

SUM(3)=040

SUM(4)=20,0

H= (B=A) /FLOAT (K)

H2=H/2,

AAzA+HZ

DO 20 L=1+K

D0 10 I=lys

X=H24V (1) +AA

SUM(I)=SUM(]) +F (X4P)

AA=AA+h
FGI:HZ‘(W(I)*(SUM(I)OSUM(4))*W(?)'(SUM(2)0SUM(3)))
RETYRN

END

C-9
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APPENDIX D

SAMPLE PROGRAM OUTFUT FOR p(t) = exp (-125t)

TRANSLATIONAL VELOCITY PRUGRAM
INPUT TC SUBRQUTINE PTV
TIMER2oT3eT4sTS9RADPTSsOPTIONyCOSASRHOWICWAT

0, 0. 0. 7¢84000E~02 2.,20000E+01
5.00000E+00 0. B.66030E=01 Y.00000E+00 5.00000E+03

ITERATICN FOR PFAK TRANSLATIONAL VELOCITY PYTV

6o 742400E=-03

e80T THE=03

D-1

TIME (SEC) VELCCITY(FT/SEC) VERTICAL VELOCITY(FT/SEC)
TARGET SUBMERGED TARGET AT SURFACE
9.800000E=03 6.787638E=03 1.175660E=02
2.940000E=02 7.162470L=04 1,260583E-03
‘0.9000005-02 6009b7“?5-05 1.0559925-04
6.H460000E=02 5«260610E=06 9,111492E=06
3.920000k=03 628803603 1,089126t=02
1.372000E=02 4.843787E=03 8.389729E«03
2.352000E~02 1e514464E=03 2.623143E-03
3,332000E=02 4,347603k=04 7.530309E=04
4,312000E=02 1,27149%E=04 2,202306E-04
5.292000E=02 3.734903E=05 6,469n076E=-05
6,272000E=02 1,097070E=05 1,900192t=05
7.252000L=027 3,222820EL=06 5.582117E=06
5.056000c-03 7.178532L~03 1,243365E-02
1.450400E=02 4,463186L=03 7.730505E-03
6,272000E=03 7¢5479264L=-03 1.307346E=02
1,332800F=07 $¢039151L=03 8,728112E=03
T448000L:=03 7.532047E=03 1,304596E=02
1.215200t=02 5+637561E=03 9,764594E=03
8,624000E-03 T6246194E=03 1,255084E=-02
1.087600E=02 6233134L=03 1,079616E=02
5,331200E=03 7.289991E=03 1.262670E=02
7.212800E=03 7.560291E=03 1,309488E=02
5.566400E=03 7.381641E=-03 1,278545E=02
6.977600E=03 7¢576902E=03 1.,312365E=02
5.801600E=03 7,454637E=03 1,291188E=02
6.742400E=03 75807 78BE=03 1,313n36E=02
6,0368B00E=03 74509650E=03 1,300716E=02
6.507200E=023 7¢9571350E=03 1.311403E=02
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