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ABSTRACT

The purpose of the present investigation is the deter-
mination of the properties of an intense 10.6-micron laser
beam pi opagating through the open atmosphere in the pres-
ence of wind or slewing, or both. It is shown that the Max-
well equations can, in this problem, be reduced to the study
of the scalar wave equation with a varying index of refrac-
tion. The index of refraction is related to the atmospheric
density; therefore, the density changes in the air due to
beam absorption are related to the absorption coefficient of
the air and to the intensity of the beam, using the linearized
hydrodynamic equations. A detailed discussion of the mech-
anisms of photon absorption by the constituents of the air is
presented. The resultant equation for the scalar wave is a
nonlinear partial differential integral equation which is
solved numerically. The algorithm used for the computer
code is discussed, together with criteria that have been de-
termined to be useful in assessing the accuracy and relia-
bility of the numerical results. The solutions of several
different problems are presented and discussed. In partic-
ular, it is found that (a) beam quality is degraded for water
vapor pressures at or near sea level, and (b) beam slewing
reduces the detrimental effect of water vapor.
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PROPAGATION OF HIGH-ENERGY 10.6-MICRON LASER BEAMS
THROUGH THE ATMOSPHERE

I. INTRODUCTION

The development of the gas dynamic laser has turned the prospect of a cw high-
power laser into a reality. Many applications of these devices involve propagation of the
beam through the atmosphere, and thus an understanding of the various aspects of beam-
atmosphere interactions is required. This report is devoted to a study of one of the non-
linear aspects of the propagation of laser radiation through air, namely, the change due
to absorption of beam energy in the index of refraction of the air, which in turn modifies
the propagation of the beam. Beam energy absorption by an otherwise motionless atmos-
phere induces temperature changes in the medium, which in turn cause a defocusing (or
focusing) of the beam that changes with time. A number of studies have been made of
this phenomenon, which is often referred to as thermal blooming (1-7).

If a steady wind is present with a nonzero component transverse to the beam axis,
the heated air is swept out of the beam and a steady-state ultimately evolves (8). Beam
slewing under suitable conditions likewise gives rise to a steady state. The formulation
and description of these steady states is the problem this report addresses. The exist-
ence and stability of such states is assumed. Theoretical and experimental studies of
cases such as these have been made (9).

Section II of this report presents the formulation of the physical assumptions of the
problem. Section III is a discussion of the techniques used in a numerical solution of the
equations derived in Section H, while Section IV is a discussion of the results of several
numerical solutions, and a presentation of the basic limitations of the algorithm used to
obtain the numerical solutions.

II. FORMULATION OF THE PROBLEM

Outline

An equation which contains the index of refraction of the air is developed to describe
the propagation of the laser beam. The index and the density of the air are related by
the Lorentz-Lorenz law. The air density is in turn related to the heat sources in the air
that arise from beam absorption through the linearized hydrodynamic equations. Finally,
a detailed discussion of the mechanism of absorption of 10.6-micron radiation along the
lines developed by Wood, Camac, and Gerry (10) is included.

Propagation Equation

The wave equation for a harmonically varying electric field in a medium of varying
dielectric coefficient is

V2 E + k 2EE VV . E
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with k = 1c, where , is the angular frequency, and c is the dielectric coefficient. Us-
ing the equation of charge conservation, the divergence term on the right-hand side is
given by

E. E- C E -

If the properties of the medium are such that variations of the dielectric coefficient are
small in a wavelength, the right-hand term may be neglected in comparison with the k 2 E
term in the first equation, yielding simply

V2E + k 2cE = 0

This approximation also implies that the polarization of the field is not changed as it
propagates so that only linearly polarized amplitudes need be considered. Further, since
the principal concern is with a beam which in the first approximation is simply propa-
gating along the z axis, a solution of the form E = ;,(r) exp(ik V' oz) is anticipated,
where P is assumed to be a slowly varying function of z, c, is the dielectric constant of
the medium prior to its interaction with the beam, and ; is a unit vector transverse to
the beam axis. e and co each have an imaginary part that describes beam absorption;
because density changes will be small, c( I) = c ) to an excellent approximation. There-
fore, the equation for qi is

+2ik 2 L v+2
) p k 2(C(r) E 0(r))q= 0

'3z
2  o

where . ()2/= )2 + 32/y 2. In accord with the expectation that P be a slowly varyirg
function of z, the second-derivative term is dropped as being small compared with the
first-derivative term. The equation that describes the laser beam then is

21k -+ ~ 2 (E(r)E(r) 0()2i V12q k 2 -(r o( r )) q, = 0 ()
oz

Equation (1), being essentially a two-dimenslonal Schr6dinger equation with z playing the
role of time, has the quantity

if (P*(xyz) q4(x,y,z) dxdy (2)
Ztconstant

as a constant of the motion.

The energy flux is described by the time-averaged Poynting vector. With the ap-
proximations described above included in the standard expression for the Poynting vector,
the energy flux becomes

P8= Z (3)

where a = 2 . The total power P passing through a plane z = constant is given by

P(Z) esaz ff dx dy .*P (4)

ztconst ant
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is unit vector along z axis. Equation (1), supplemented with a relationship between the
dielectric constant C(r) and the function 4, is the equation to be solved.

Hydrodynamics

The atmosphere will be treated as a perfect fluid; viscous and thermal conduction
effects will be ignored since their consequences can be shown to be negligible in the
cases that will be considered in this paper. The beam will be regarded as an external
heat source described by an energy deposition function , representing the energy de-
posited per gram per second at each point in the fluid. A complete description of the
hydrodynamic system is thus provided by the boundary conditions, the equation of state,
an expression for the internal energy of the fluid, and the hydrodynamic equations of
motion:

dt +p.V -= 0,

dv VP = 0

P -+ pV
dt

pd-t+pVT.v= /Q

= cv'f

= - cv)T

The quantities p, v, p, 5, T, cv , and cp represent the density, fluid velocity, pressure,
internal energy per unit mass, temperature, specific heat at constant volume, and spe-
cific heat at constant pressure, respectively. The operator d/dt stands for the sub-
stantial derivative.

During the course of fluid motion through the laser beam, the temperature chai ge
of a fluid element will, in most circumstances, be small so that the specific heats may
be regarded as constant throughout the flow. Under these conditions, ti-e first, third,
fourth, and fifth of these equations may be combined to yield an expression involving
pressure and density alone:

dp p dp
- -=(,Y- 1) pA

where y - c /cv. Further, because the changes in the pressure, density, and velocity
are expected to be small, the linearized hydrodynamic equations can be regarded as a
good description of the physical system. Let the pressure p,, density po, and velocity
v, of the fluid satisfy the unperturbed exact hydrodynamic equations

d-° tpo 0d'o +  
P0 v 0 =

dv oPo-dt + Vpo0 = 0

dpo P0 dpo

t , - -t 0
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The total pressure, density, and velocity are taken to be

P=Po+P1

P = PO 
+ 

P1

V =V 0 + V 1

The subscripted quantities p 1 , P 1, and v I are taken to be of the first order, and higher
powers of these terms are deemed negligible. Particularizing to the case of a beam in
the presence of a steady uniform wind (vo -constant), the first-order quantities are
taken to satisfy the equations

dp1  -(5

-- + (o5 v )

Po -j- + VP' : 0 (6)

dp- Po dP-- T -T = (i -1) POQ (7)

where, now, the operator d/dt is taken to be

d Dt = 7(8)

The term ypo /p, is c., where c, is the speed of sound in the fluid prior to the perturba-
tions caused by the beam.

Since the steady-state case is the solution of interest, the hydrodynamic quantities
at a fixed point in space are taken to be independent of time. Therefore all partial time
derivatives of these quantities vanish, and the equations of motion reduce to

Vo p1 + p V v, = , (9)

poVo , vI + VP I 0 (10)

Vo • (pI -c' ,) = (?-1) po. (11)

The last equation may be integrated to give

0

P1 (- 1 ds pQ(r+sv)+ P 1 (12)
Vocs - C

2

where ;o is a unit vector along the direction of the wind velocity and the integral is
along the path of motion of a fluid element. The path is parameterized by the path length
s which is taken to be zero when the fluid element is at the point r. By elimination of
the density and velocity in favor of the pressure, a differential equation for the pressure
change alone is easily obtained:
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V0 ) 2] ( 1- 1)
.v2 (c ) I • * -o2 (13)

An estimate of the contribution of the pressure term to the density can be obtained by
ignoring the pressure gradient along the beam axis and the gradient perpendicular to the
wind velocity; then

p(r) -  ) V cis p0o (r t s;,)

V02 fo(14)
-S C 2 ) s

Restricting wind speeds to values much smaller than the speed of sound, the pressure
term may ciearly be ignored, and the density change of air at any point r is given by

0

p,(r) 0- 2) j(IS po ( + s;,) (15)VOCs 2 
f

Equat~on (15) shows clearly that a zero wind speed is not tenable in this treatment; a
steady state cannot be achieved without the wind as a mechanism for removing the heated
air from the beam. Furthermore, Eq. (15) car be used as a means for estimating tie
limits that must be placed upon the beam intensity, wind velocity, and absorption coef-
ficient for the linearized treatment used here to retain its validity. If beam absorption
leads instantaneously to heating, then the quantity po0 becomes aI, where I is the beam
intensity. The integral may be approximated by 2 ain where I is an average power dis-
tribution along a line across the laser face through the center, and a is the beam radius.
Then, if the density change must be less than 2, to preserve the validity of the lineariza-
tion of the hydrodynamic equations, 1, a, and vo must together satisfy the inequality

ala I I S (H6)V0  
2(y- 1 )

In this formulation of the propagation of a laser beam in the presence of a steady
wind, there exists a reflection symmetry in the fluid variables and the beam intensity
tlu'ough a plane encompassing the beam axis and a line parallel to the wind velocity.
This symmetry has considerable utility in the numerical solution of the problem.

Important applications may be envisaged wherein the laser beam is required to
rotate about an axis perpendicular to the beam ais; such motion, referred to henceforth
as beam slewing, can be brought within the framework of a steady-state calculation sim-
ilar to the discussion above. Beam slewing in an otherwise stationary atmosphere will
not lead to a steady state, in part because there is no mechanism for removing the heated
air in the vicinity of the laser face, even though the slewing does so further downrange.
Therefore, the initial conditions will be functions of time. A steady state can be achieved
by the introduction of a mechanism for removing the heated air from the vicinity or the
face of the laser; such a mechanism may be modeled in a wide variety of ways, three of
which will be briefly discussed here.

In a coordinate system rotating with the laser, the hydrodynamic equations assume
the form

=-
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(LI 4 V - Vp - 2x v - 0 x (1x 0 (18)

SV. p = 2L + V 1 (Y-l),Q (19)

where ' is the fluid velocity measured relative to the rotating reference frame, p and.
represent the pressure and density, respectively, while Q is the angular slewing rate,
which is orthogonal to the beam direction. These equations, when linearized, assume the
forms, for the steady state,

(Vo , )P - PoV v, (20)

(VV)v1 + Ox V Vp 1  (21)
p0

(v0 I) (p_ C 5
2 P,) ( - 1)pOQ (22)

while the zeroth-order quantities satisfy equations of the form of Eqs. (17)-(19) with the
heating term dropped. An exact solution of the (nonlinear) zeroth-order equations is
provided by

vo  - x r (23)

where wo is a velocity vector parallel to 0. For nonvanishing wo, this solution corre-
sponds to a wind along the lewing axis, and this wind serves as a mechanism for remov-
ing the heated air from the laser face. In the rotating coordinate system, a fluid particle
is moving in a spiral path about the slewing axis, and its trajectory is given by

r(s) = 0  + yo COSv- sin

-YO sin + Zo COS (24)VO V0/

while the magnitude of the fluid velocity is (wo2 f 02 z )l1 2 and is a constant for a given
fluid element. Under these conditions, Eq. (22) may ja integrated to give

0____, p l(r(s))

PI( r( S) =- ()- 1) 1ds'poQ(r(s')) 4

V 0 CS
2  

0CS

+ I['(ro) P i(r() (25)

The point ro may be chosen to represent a point in space where the beam has not
arrived, so that the density and pressure changes there vanish; hence the factor in
brackets in Eq. (25) may be set equal to zero. An expression for the pressure change
alone may be derived in much the same manner as before. Again, the contributions of
the pressure term can be shown to be negligible provided that vo c ,5 ; however, with
slewing present, v. can become quite large for long distances down the beam. There-
fore, the linearization of the hydrodynamic equations will be valid only for restricted
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distances zM downbeam for which zM << c,/Q. Within these limitations, the solution for
the density change is given by

p,(r) = _ -1) f ds' p°Q(r(s')) , (26)
V0 C

2  0

Vo = (w0
2 f 2z2) 1 1 2  (27)

On the basis of the above solution, three models can be described.

1. The velocity component wo is nonvanishing. As previously mentioned, a wind of
this type serves as a device for removing the heated air from the laser face, allowing a
steady state to be achieved, and permits an arbitrary number of rotations of the laser
about its slewing axis. This solution has the disadvantage that the symmetry described
at the end of the formulation of the steady-wind solution is lost, and therefore doubles
the computational effort in a numerical solution of the problem.

2. Set the velocity component w. = 0, and do not allow the axis of revolution to go
through the laser face, but instead let it be at a distance D behind it. Then the rotation
itself removes the heated air from the laser face; all that is required is that the steady
state set in prior to one complete rotation of the laser about the slewing axis. If a dis-
tance R down the beam axis is measured in terms of z, the distance from the laser face,
then

vo = Q(D+ z)

= v + Cz (28)

This method has the advantage, from the standpoint of numerical computation, of pre-
serving the symmetry that reduces computation times.

3. Again, set the velocity component w. = 0; in the rotating reference frame,
rigidly attached to the laser, set up a fan that blows air at a velocity vo at right angles
to the beam axis and the slewing axis, in addition to the slewing velocity, for a fixed dis-
tance D down the beam axis. Then vo in Eq. (27) is replaced by

o  -+ Oz , 0 < z < DI( 
9vo = (29)

Q z D D<z

which, in for ,, is similar to the second model for slewing. This model also preserves
the desired symmetry.

The model used in calculations here will be the second model. All three models
admit a new parameter, in addition to the slewing rate !0; solutions will therefore be
dependent upon the value of the parameter. This parameter dependence is expected to
be discernible, but not of vital importance.
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Absorption of 10.6-Micron Radiation By Air; Kinetic Cooling

The constituents of air that are the principal absorbers of 10.6-micron radiation are
water vapor and carbon dioxide. Pressure broadened levels of water vapor make it an
effective absorber of infrared radiation throughout a broad band that includes 10.6
microns, while carbon dioxide absorbs principally through the inverse laser transition.
These processes have been briefly discussed by Wood, Camac, and Gerry (10) and have
been applied in a study of CO 2 laser propagation in geometrical optics by Wallace and
Camac (11). Because of its importance to the character of the results, a detailed dis-
cussion of the absorption mechanism is presented here.

Water molecules, upon absorption of one photon of 10.6-micron radiation, are ex-
cited to the (010) vibrational state. The stored energy is released to the translational
modes by collisional deexcitation of this state; the principal molecules in the deactiva-
tion collisions are oxygen and water vapor. The deactivation time is so short compared
to all hydrodynamic processes in the propagation problem that it may be regarded as
zero. Hence, the energy deposition rate may be written as

poQ(r.t) = aH2oI(rt) + po '(r,t) (30)

where p0 Q' is the energy deposition rate due to all other constituents of air.

Figure 1 is an energy level diagram showing the principal lower vibrational levels of
C0 2 , N2, and H20. The excited levels of the various molecules are populated according
to Boltzmann statistics; therefore CO 2 molecules in the (100) state are always present
and beari photons may be absorbed, leaving the CO2 molecules in the (001) state.

The reaction

C0 2 (001) + N2 -t CO 2(000) + N* + 18 cm-1  (31)

is very rapid due to resonance between the levels of CO 2 and N*, the characteristic time
being of the order of 10- 7 sec. The system of carbon dioxide molecules is thus dis-
placed from a thermal equilibrium distribution with an excess of molecules in the ground
state and the (001) state, and a deficiency in the (100) level. The latter state will be re-
populated principally by collisions of the type

C0 2 (010)+C 2 (010) CO 2 (100) + CO 2 (000) - 54 cm " 
. (32)

This reaction proceeds faster than all others that tend toward the same final state be-
cause of resonance. The energy removed in this reaction comes from the translational
modes. Reaction (32) tends to deplete the supply of (010) levels, but these are replen-
ished through the process

CO2 (000) + CO 2 (000) ' CO2 (000) + C02 (010) - 667 cm- . (33)

The absorbed energy in Reaction (33) once again comes from translation. Two reactions
of type (33) must occur for every one of the type indicated by Reaction (32) to maintain
the CO 2 in thermal equilibrium. The removal of energy from the translational modes by
Reactions (32) and (33) cools the CO 2 molecular system, and, concomitantly, the air.
Because the reactions subsequent to the photon absorption that are described above occur
so rapidly as to be almost instantaneous, the rate of energy removal from the transla-
tional modes is governed by the rate at which photon absorption occurs. Therefore the
contribution of the CO2 molecules to P0Q' is given by
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2500--

(001) (V=l)
2349 2331

2000-

-.1 r (v.1) (010)

1500-- 1595

(100) _ 0_"" 1388 138 -56 ,
(02 0)

3

1000-

(01'0)
667

500--

0- (000) (000) (000) (VO) (VO) (000)
C0 1 1V.) C02(V1.) -C02() -N. 0. H,10(V,)

VIBRATIONAL MODES

Fig. 1 - The principal lower vibrational energy levels
of the major constituents of air-C02, N 2, 02, and
H 20-are shown, with the 10.6-micron laser transition
explicitly marked. The 10.6-micron photon energy is
designated as &),.

7i %, 6 CO0 (r, t) . (34)

Reaction (31) is populating the N* above the equilibrium level; simultaneous with the
C02 collisions, N* is undergoing collisions of the form

S2 N2 + 02 + E00 1 - 18 cm- 1

and (35)

+ H 20- N2 + H20+ Eoo 1 -18cm "
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which tend to depopulate the excited level N*. In addition to Reactions (35), depopulation
may go via excited states of 02 and H20, and Reactions (35) will be understood to sym-
bolize both. When water vapor is present in any significant amount, deactivation of nitro-
gen proceeds primarily along the second route; since the water vapor content of air is a
variable quantity, both reactions must be included.

Let S N* represent the excess number of N* molecules at time t over the equilibrium
number at some point r in the beam. Its time rate of change is given by

d 8N* = CO2 I(rt)

dt 2 I,

-SN* {/I N 2 .N 2 No 2 + /3N20.N21 2 oNH02 } (36)

where the quantity 6 is the reaction constant for the reactions indicated by the subscripts
(12), and No 2 is the number density of 02 molecules, and N1120 the number density of
water molecules. In terms of a reaction time r, the above equation may be rewritten as

d S-" I(r,t) - SN* (3)
dt 2N 2 2 (37

where

1 I P(0 2 ) 1 P(1120)
" "N*O P 'N*H 0 P (38)

2 2 2

P(0 2) and p(H 20) are the partial pressures of 02 and H20, respectively, P is the total
pressure, and TNJO2 and 'rN*H20 are the reaction times for Reactions (35). The deriva-
tive is the substantial time derivative and, for the steady-state case, the solution to the
above equation becomes

0Saco 2 ro_
SN*(r) =- J ds I(r+so)e (39)2 V o i % co ( 3 9

The number of energy-releasing transitions per second is SN2/' and the rate of
energy release is

6 0 0 1 a~ 0

-j-o' V o f o s I (r + s f) vo°  (4 0 )

The total energy deposition rate is obtained by combining Eqs. (30), (34), and (40)

10

PoQ ( al 10 - ac , c°2o Ir

; s
o o l a C 0 2 V o , -

+ ds I(r+ So) (41)hwy Vo'r =c
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This last result, taken together with the steady-state solutions of the linearized hydro-
dynamic equations, yields, after evaluation of some integrals,

p(r)= 
p,(r)

(y~r) 0

a ds 1- 8 C0 I(r +s o) (42)

where

a aco2 + aH20 (43)

and

- oo1 aco2
twi, a (44)

In addition, the fact that

-0 " ioo = %,(45)

has been incorporated 
into Eq. (42).

The quantities aco 2 and aH2 0 for air are related (13, 14) to the partial pressures of

C02 and water vapor, temperature, and total pressure by

1 S 970

ao=1.44 Xic, 3 295) 10 T CM-1  (46)c2 T

and

aIf20 = 4.32 X 10- 11 p(H 20)IP + 19 3 p(if 20)] cm 1  (47)

The absorption coefficient of water vapor in air used here has been determined empiri-
cally only in the temperature range of 230 C to 260C; therefore, Eq. (47) has a limited
temperature range of validity that must be borne in mind.

If the deactivation time 7- of nitrogen were zero, then there would be no delay be-
tween the time of photon absorption and the appearance of the photon energy as heat.
This is manifest in Eq. (42) where the term in the integrand that involves r would not be
present, and the density change p, would always be negative, i.e., the air always expands
in the presence of the beam. Since r ia general does not vanish, varying amounts of heat-
ing and/or cooling may take place. For the case of no water vapor in the air at all,
aM20 = 0 and 3 = 2.441, while 7 assumes its maximum value. Thus, for large velocities,
i.e., for vo such that vo0 " a/,r throughout the beam, the factor (1 - ') in the integrand multi-
plying the intensity becomes -1.44, so that p, > 0 and the beam absorption causes cool-
ing. For lesser wind speeds and increasing water vapor content, the physical situation
will be intermediate to these two extremes, but it should be noted that there can be no
net cooling when al20 > 1.44 aC0.
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The density change, as expressed in Eq. (47) (with the pressure term neglected), is
related to the wave function q by Eq. (4):

v~c~ 0

The e glectric constant 6(r) is related to the index of refraction by

,(r) = n2 . (49)

and the index of refraction is a function of density through the Lorentz-Lorenz law

n 2
-

n 2 + 2- Np (50)

In Eq. (50), p is the absolute density and N is the molecular refractivity. Since po and
p1 are both small quantities, Eq. (50) may be rewritten, ignoring quadratic terms in
p, , as

n 2 -n
2  = 3NP, (51)

With Relations (51) and (48) included, Eq. (1) becomes
2

2ik + + V
Z~Z

3N(-- l)ak2  eids I- Se V (5r)
0C2 f ds17 0 ) (52)V 0 C :

which is the fundamental equation to be solved for the description of the propagation of a
laser beam in the presence of a steady wind. The boundary conditions involve only the
specification of the function q on the plane z = 0. Equation (52) is clearly nonlinear and
is not tractable from an analytic standpoint. Therefore it is solved by numerical
computation.

III. COMPUTATIONAL METHODS

Transformation to Scaled Variables

Equation (52) is scaled for purposes of numerical computations. Let a be a length
characterizing the initial beam profile in a direction transverse to the beam axis. New
coordinates i, y, and are defined by

X= x/a

y/a (53)

= z/ka
2
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A dimensionless wave function f is introduced by putting

f (5.(54)

where P is the total luminous power output of the laser. The constant of the motion,
given by Eq. (2), can be stated in terms of f by the requirement that

I 2di d = 1 (55)
C- consant

Combining Eqs. (53) and (54) with Eq. (52), the equation for the scaled amplitude f is

2i -f + V1 2f - fie(ka82 )C f ds G - I 2  0 o (56)

where

3N(-- 1) k2 aP(: •(57)
CS2 V0

(When a slewing beam is being studied, vo in Eqs. (56) and (57) is to be replaced by
vo + oz.)

Because Eq. (56) is parabolic, specification of the amplitude at the plane ; = 0 de-
termines the function everywhere else; in particular, the values of f at any point in a
given plane t = constant can be determined. The technique to be used for a numerical
computation of solutions of Eq. (56) will be the replacement of Eq. (56) by an appropriate
difference equation which will be used to solve for the solution at successive planes sep-
arated by distances limited only by considerations of accuracy and stability. The method
of proceeding from plane to plane is referred to as "marching." (Because of the char-
acter of the boundary conditions of the problem and of the difficulties encountered in the
numerical solution of hyperbolic equations by difference techniques, the approximation of
neglecting the second derivative of (P with respect to z, used to derive Eq. (1), is essen-
tial to a numerical solution of the problem. Marching does not work for hyperbolic
equations.)

Since a partial differential equation does not uniquely determine a corresponding
difference equation, there are many candidates for the difference equation to be used in
the numerical computation. Each candidate must meet the requirements of convcrgence
(to insure that the solution of the difference equation converges to the solution of the dif-
ferential equation for any in the limit that AR and 6 vanish) and of stability (which
assures, to a limited degree, that the numerical solution of the difference equation re-
mains reasonably close to the exact solution of the difference equation.)

Harmuth (15) has shown that a simple forward differencing of the linearized version
of Eq. (56) (obtained by replacing the integral by its upper bound) is unstable for all
choices of step size and mesh sizes AR, A7. A symmetric differencing, or "two-point
predictor," is stable, however, for a nonempty domain of the parameters , A , A-.
For integration in , therefore, the derivative in t is replaced by
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-I -. a (58)

while the algorithm for the linearized version of Eq. (5G),
2 f 2f

2 + 6 + + m = 0 (59)
.a Zj2 ZY2

is taken to be

2i[f ' ' + )2 f ' ' -Z _]

- (67)2

-M(R..0 -.(60)

In Eq. (59), m is taken to be the maximum value of the integral in Eq. (56).

The stability and convergence properties of the linear algorithm given in Eq. (60),
which are necessary (but not sufficient) conditions to the stability and convergence of the
nonlinear algorithm, may be studied (16) by examining the Fourier components of all
soluticns to Eqs. (59) and (60). If a plane wave solution to Eq. (59) is taken as

f U(t) eip e q  (61)

then

U( ) : " i(p 2+q2 /3M) /2 (62)

Assuming a solution of the form given by Eq. (61) for the difference Eq. (60), the U ()
now has two solutions (as opposed to one for the differential equation):

U,(t) = (iB ± ) -B-) A /2  (63)

where

/ sin 2(pA R/2) sin 2(qAy/2) ,6M
B = 2At "q 2 . 6M"

2 g2 4

It is necessary to show that there exists a linear combination V(t) of the two solutions
given in Eq. '63) that converges to Eq. (62) in the limit where A , A , and L vanish ir
some specified order and, to insure stability, that V( t) has the property that it grows as

.,lim V(t)~- 0 (-L) • (64)

Ati
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If (tx)2 and (6 )2 are required to vanish in proportion to &A, then it can be shown that

lim U+( )= C -i(p 2 q 2 "AM ) t
! 2

At-"0

while the solution u_ (t) fails to converge. The convergence of the solution of the differ-
ence equation to that of the differential equation can be assured if there exists a means
of suppressing all those Fourier components of the type UQ.(). The unwanted solution in
the general case may be suppressed by a "careful" specification of the function f at the
plane t = 0 and at the plane C = 6 . By "careful," one means that the specification at
t= 6 must be at least as accurate (17) as a Taylor's expansion about t = 0 to the same
order as the predictor algorithm. In this case, the algorithm is accurate to order (, ) 2 ,

as is demonstrated that

f( + - f( - ) + ( I (A ) 2 f+ o(A3)

2At f") + A2 Tt _

'af
T +- 0 "(At3)  •( 5

Thus at t = A, the data must be specified as

p2

( )2 Z2f
f f() + A (0) + - -i.(0) (66)

where

2i L(0) -V f(R,O) - /3f(X, ,o) s S = (1 8057) 1 e 2  (67)

and Z2f (0)/Zt2 must be similarly specified.

Since the unwanted solution has been suppressed by the above device, the test for
linear stability need only be applied to the wanted solution, and, indeed, may be appli.ad
to its Fourier components which are primarily characterized by the function U+ (Q). The
stability requirement on u+Q() given by Eq. (64) demands of B that

IiB+ / I . (68)

Since B is a real number, if B > 1, Eq. (68) can never hold. A marginal stability is
achieved only if B < 1. The conditions of stability, in terms of 6 , A , and Aj, divide
into three categories:

/3M +!/; . + 1 _ _ 1
4 - 2 A2  2 4 2 (69)

< A/M (1

2 AY-2 "4- 4 2
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With a prescribed choice of AR and A the numerical solution of the difference equation
will be unstable unless AC is chosen to satisfy the three conditions in Eq. (69). Since the
first condition is the most stringent of all three restrictions, choosing A in accord with
it will ensure the desired stability.

The intrusion of /3M into the stability conditions given in Eq. (69) may be viewed in a
different light. The solution of Eq. (59) may be written in the form

f 2

where g is a solution of the equation

2i + Vg= 0

In order that a numerical solution of the equation be satisfactory, the oscillations, in C,
of the exponential factor must be sampled by at least six points per oscillation. Thus,
step sizes 6 must be chosen so that

/3M < 2n/3 - 2

which is the same as the last condition of Eq. (69).

All the above considerations apply, of course, only to the linear approximation. Not-
withstanding the choice of M as the maximum of the integral, the predictor was found to
be incapable of suppressing a nonlinear instability for values of /3 of interest even though
the first criterion of Eq. (69) was well satisfied. In order to damp the nonlinear growth,
a simple two-point corrector (18) was applied in conjunction with the predictor. Writing
out the terms of order AC3 explicitly, the predictor and corrector are taken as

Zf( ) (A )3 3f()
f(P)k +A ) =f(C-A ) + 2AC-

ZC 3 3

and

1+ UPA ) [fP(+A ) -)f(C)] (A ) 3  3 f(r)
f(A) m( + (70)

When A is taken small enough, the third derivatives in both of the expressions of Eq.
(70) become equal in value; the correct value of f at the plane f 64 is then taken to be
that linear combination of the corrector and predictor that eliminates the terms of order
6 C3, that is,

f(C+,9) - 0.2f(P)( 4 ) + 0.8f(c)( +I6) (71)

In Eq. (70), the first derivatives are evaluated by the use of the algorithm that relates
these derivatives to the transverse derivatives and the heating integral at the plane ,
just as Eq. (61) does so at the plane which is the face of the laser. This form of the algo-
rithm has been found to be sufficient to suppress the nonlinear growth and has been used
in this work.

It is convenient (19) to make a change of variables in order to map the whole trans-
verse plane into a finite region. The following transformations were chosen:
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= In [6 (4 - )] (72)
= In [771(4- 71) .

The transverse Laplacian, in terms of the new variables e and 7), now becomes

e.2(4_- e) aIf (4 - 2e)(4 - e) Df

16 Ze2 " 16 a

7?2 (4 -_72) Z2f (4 -27))(4- -,) Bf  (3
16 772 16 (73)

In terms of these new variables, the conserved quantity (see Eq. (54)) takes the form

f4 4 f rf f .2

de d7 =-6 - (74)
0

The left-hand side of Eq. (74) is monitored throughout every run as a check on the sta-
bility and convergence of the algorithm.

Laser beams whose transverse dimensions vary considerably with z present prob-
lems of simpling for numerical schemes with fixed transverse mesh size. In Appendix
A, a formulation of the propagation problem is presented in terms of coordinates that
will automatically take into account the change in the beam size. The stability and con-
vergence criteria developed in this section may be applied to the equations of Appendix A
with little modification.

IV. RESULTS OF NUMERICAL COMPUTATIONS

Accuracy Criteria

The computer code described in Section III has been run successfully for a large
number of initial parameters. Because exact analytical solutions of the full nonlinear
problems were lacking, criteria were needed for determining whether a given run led to
correct results or not. Since comparisons with the exact solutions could be the only
valid check on the numerical solutions, the computer code was applied to problems to
which exact results were known. These solutions are discussed in Appendix B. Such
checks provided a testing ground for certain parts of the numerical procedures used and
served as a test bed for studying the effects of parameter such changes as step sizes,
mesh sizes, focused coordinate systems, etc. These comparisons provided the necessary
minimum level of confidence in the chosen algorithm needed to proceed with the nonlinear
problems.

This section is devcted to a description of the criteria that were and are used to
establish run quality, the characteristics of reliable and unreliable runs, and a delinea-
tion of the potential sources of error. These are illustrated by the presentation of some
of the results obtained with the computer code.
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Run Quality Criteria

Run quality is a function of the downrange distance z; a given run may be good up to
one value of z, then poor thereafter. Clearly it is desirable to have runs of high quality
for as large a value of range as possible.

It has been shown that the quantity

E "f IfI 2 dx dy

is a constant of the motion. The ratio

E(z) - E(0)8E(z)/E - 50E(0)

provides a quantitative measure of numerical accuracy in numerical solutions. This
quantity was determined, for the runs to be described later in this section, at selected
intervals downrange, but in this report, its value will be given only at the last oife or two
values of z before run termination. Since SE/E generally (but not always) increases
with z, the final numbers are indicative of the accuracy upbeam.

A second qualitati-,e measure of the validity of a calculation is the frequency with
which the oscillations in the real and imaginiary parts of the amplitude are sampled by
the mesh. To each run, usually at the final one or two z values reported, a Run Quality
Factor (RQF) is assigned according to the following conditions:

Sampling Characteristics Run Quality Factor

Sampling nowhere exceeds 6 to 8 points of POOR
the mesh per oscillation.

Small amplitude oscillations sampled BORDERLINE
poorly; large amplitude oscillations sam-
pled at least 6 to 8 times.

Large and small oscillations are sampled GOOD
at least 6 to 8 times.

Large and small oscillations are sampled EXCELLENT
better than 8 times.

Figdres 2 and 3 show a plot of the real part of the amplitude at the mesh points taken
from a typical set of runs demonstrating the sampling for different RQF's. Run quality
factors are helpful in discussing run characteristics, but they must be used with caution
since they can be misleading. An RQF of POOR may in fact be describing the oscillations
quite faitlifuily; but usually poor runs, when continued downrange, lead rapidly to very
large values of r/E. A run with an RQF of EXCELLENT may be suffering from aliasing
and, in fact, be quite poor; cases such as these may often be detected by looking at RQF
as a function of z.

Further, RQF's are often difficult to assign; they are a function of mesh size as
well, and they supf j a degree from subjective interpretations. A cruder pair of
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6106; P *210 6 watts; a 25 cm; f z 1.0 kin; L 1.2 kin;
L = .05 rad/sec;p(H2 0)= 12 torr; v; = 1000 cm/sec.

Fig. 2 - Sampling quality of the real part of the amplitude along the line of sym-
metry graphically displayed for Run Quality Factors BORDERLINE and POOR.

categories such as acceptable runs and unacceptable runs may in some instances be sat-
isfactory. Experience shows that POOR runs ar3 unacceptable, while BORDERLINE,
GOOD, and EXCELLENT runs are acceptable.

A third and very important criterion of run quality is provided by the appearance of
isoirradiance contours in a beam cross section as a function of z. For a run of high
quality, these contours evolve smoothly from concentric circles (for an initially rota-
tionally symmetric beam) to crescent-shaped curves. Runs of poor reliability generally
betray themselves by the development of straight lines about which the crescent patterns
are forced to evolve. These lines, which are not isoirradiance contours, and hence are
not plotted, run parallel to the mesh lines or at 450 to the mesh lines. There are two
principle reasons for such development. First, in the case of a small f ratio, the initial
amplitude will contain many oscillations in the aperture plane. A fine mesh is needed to
sample these sufficiently frequently for a good description. Since a rectangular mesh is
used, sampling along the 450 lines is less frequent than along the mesh lines themselves.
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5257; P :106 watts; a :25 cm; f :2.0 km; L :2.4 kin;
1 : .05 rad/sec;p(H20): 12 torr; v. : 1000 cm/sec.

Fig. 3 - Sampling quality of the real part of the amplitude graphically
displayed for Run Quality Factors EXCELLENT and GOOD.

Mesh sizes that provide adequate sampling at the laser aperture may prove inadequate at
some distances downbeam, and errors are introduced into the numerical solution.

In the vacuum case, the errors possess a 900 rotational symmetry. When wind is
present, the symmetry in the errors deteriorates and is masked to some degree by the
aberrations due to heating. These effects are illustrated by the contour plots of Figs.
4 and 5. Figure 4 shows two vacuum runs for a Gaussian beam focused at 1 km; the
mesh number was 31 x 61 in both cases, but the sampling of the oscillations was altered
by using two different coordinate systems.* The contours in the top row were calculated
with Q = 1.5 km, while tiose of the bottom row were calculated with 9 = 1.12 km. In the
first case, the beam is sampled well enough by the mesh at the laser aperture, but as the
beam converges toward the focus, the sampling becomes poorer. In the second case,
improvement is achieved for two reasons:

*See Appendix A for a discussion of focused coordinate systems and the significance of the param-
eter 2 mentioned in the above paragraph.
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1. The beam is being specified on spherical surfaces, on which phase oscillations
are small since the surfaces more closely approximate surfaces of constant phase than
planes do.

2. The mesh size shrinks in about the same proportion that the beam does, so that
the beam is sampled with the same thoroughness downrange as it is at the aperture.

Figure 5 shows a run with atmospheric heating present, but with an inappropriate
choice of focused coordinate system. The outermost contours betray the poor sampling
on the left (the wind moves from left to right), but the aberrations of the beam due to
atmospheric heating mask this effect on the downwind side. Secondly, contours may show
an evolution about lines parallel to the mesh axes; such development arises, in part, for
reasons of physics. Any numerical scheme for solving Eq. (56) must rely on a mesh
which samples only a part of space; a beam initially confined to that part of space cov-
ered by the mesh will ultimately grow in size unless self-trapping should occur. This
growth occurs both for vacuum beams and for beams traversing a medium. Unless the
mesh is chosen so as to be able to accommodate this increase in size, a point will be
reached in the calculation where the beam amplitude in the outer regions of the mesh is
large, and poor sampling or boundary conditions will begin to manifest themselves in the
solution. The isoirradiance contours become very complicated and show definite square
edges, reflecting the presence of the edges of the mesh; for this reason, we describe
such a situation by the phrase "the beam has hit the edges of the mesh." Run quality at
such downrange distances deteriorates completely, reflecting poor sampling, and insta-
bilities arise leading to large values for SE/E. Figure 7 shows the isoirradiance con-
tours for such a case, which will be discussed below in greater detail. In some instances,
the options made available by the parameter V in the focuscd coordinate systems enable
the deterioration of the run to be postponed to larger values of z. However, the condi-
tions imposed upon the value of V to improve sampling at the aperture for beams of small
f ratio run counter to those arising from the need to avoid having the beam hit the edges
of the mesh. In cases where neither condition may be relaxed, the computer code cannot
be relied upon to describe the correct physical situation. Modifications of the code that
will allow Q to vary with z in an appropriate manner appear to be a way of handling
situations such as these, but such changes have not yet been incorporated into the
program.

Numerical Results

Results of particular numerical solutions of the problem of laser beam propagation
through a nonturbulent atmosphere are now presented. The numbers attached to a given
computation serve to designate it; the particular characteristics of the beam at the aper-
ture are specified, followed by the run quality characteristics (SE/A and RQF) at one or
more distances downrange. The figures show the isoirradiance contours at selected
downrange distances. (In these figures, the scale of each of the plots is set by the size
of the first of the plots; the contours represent 90% of peak intensity, 80% of peak inten-
sity, etc., from the inside out. The actual value of the peak intensity and the deflection
of the peak intensity point from the beam axis are data available from the computations
in general, but in some of these early results shown here, they were not.) A paragraph
is devoted to a discussion of the results in each case. It is emphasized here, and in the
examination of individual runs, that not all of the solutions presented here are to be
regarded as acceptable. Indeed, unacceptable numerical results are presented to illus-
trate the characteristics of erroneous solutions that may arise from an uncritical use of
the numerical proceaures described in this report.
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FOCUSSiD POPAGAMION IN CONSTAT INDLX ?&DIUM

Solid curves arc exact analytical results
Points (-0-) are computer results
Arrows ( ) Indicate minimum waist points

0

a-Ii I ,0

i2 3 Li 5 6

DISTANCE FROM LASER FACE (KM)

Fig. 6 - Comparison of computer results with analytical results obtained from the theory of
propagation of a focused laser beam in vacuum; a = 10 cm.

The graphs in Fig. 6 show light rays emanating from a point at the laser aperture
where the power is 30% of the central intensity. The runs here are in vacuum to check
the linear aspects of the code. The solid curves are analytical results, the points rep-
resent the computer results, and the arrows point to the waist of the beam. The agree-
ment between theory and numerical computation is excellent. The runs in Fig. 6 were
made with 2 1.5 f in all cases. Because the beam diverges to the right of the waist
points, while the focused coordinate system continued to converge, the beams ultimately
hit the edges of the mesh. The quantities SE/E, at the focal distances for the cases
shown, were 6×0 - 4 , 7x10-4 ,8×10 -4 , and 2×0 -3 for the cases f = 1, 2, 3, and 4 km,
respectively, while for f = 5 and f =6 kin, SE/E was 2 ×10 -3 just short of the focal point
in each case.

No-Diffraction Runs

No figure is provided here. The rationale for these runs is provided in Appendix B.
These runs are made to check the nonlinear aspects of the code. This is done by drop-
ping the Laplacian term in the wave equation, which is equivalent to saying that refrac-
tion dominates the character of the beam propagation. Such runs might be termed high-
power runs, or no-diffraction runs, or the geometrical optics limit. The resultant
equation, while still nonlinear, may be solved exactly (see Appendix B) to give the result
that the intensity profile does not change downbeam. This result was confirmed by
computation with the code by circumventing the subroutines thn t compute the Laplacian.

Q f -
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Run No. 3346, shown in Fig. 7, has the same parameters as those of the next two
runs, illustrated in Figs. 8 and 9. This sequence of runs, together with the vac .um run
for 2 km, shown in Fig. 6, illustrates the potential sources of error that may be encoun-
tered in these numerical computations as discussed earlier in this section. With no prior
knowledge of the extent to which the beam would bloom, or diverge, because of the heat-
ing, a first guess was made that the choice of focused coordinates used for the vacuum
case would work here. The first indication that this assumption was erroneous was pro-
vided by the isoirradiance contours at z = 1.0098 km; the maximum linear distance of
the 0.3 isophote from the horizontal center line is the same as it was at the laser aper-
ture while, for a vacuum run as seen from Fig. 6, it is only one-half as large. Thus, the
heating effect is preventing the focusing of the beam, as it would otherwise do in vacuum.
The coordinate system, on the other hand, is still converging so the beam will approach
the edges of the mesh. At z = 1.2108 km, discernible flattening of the contours at right
angles to the wind direction is perceived and become more pronounced at z = 1.4117 km.
The structure at this point cannot be believed, even though SE/E = 7 x 10- 4. (For this
run, the RQF was not available. A reasonable guess can be made from the rapid varia-
tions of intensity across the beam that RQF here is POOR.) Succeeding isophote plots
demonstrate the total deterioration of the run. At z = 1.6127 kin, SE/E _ 10208, while
at z = 1.8337 km, 8E/E = 5.91.

It is importanit to note that the patterns at z = 1.6127 kin, which so clearly show the
unacceptable run quality, could easily have been missed had the computer been com-
manded to plot at slightly different z values. If fewer isoirradiance contours had been
used, the plots at z = 1.2608 km and 1.4117 km would have shown less complexity and
could then have been readily interpreted as complicated diffraction patterns. However,
such interpretations were avoided by use of the 8E/E and RQF's.

The initial data shown in Fig. 8 are the same as the previous run; %owever, 2 = CO,
i.e., ordinary Cartesian coordinates were used, while (N.,Ny) = (31,61).

Because the previous run was so clearly in error, it became necessary to do the
computation again. Since the beam did not appear to be focusing, Cartesian coordinates
were used. At z = 2 km, SE/E = 7 x 10-5, but no RQF's were available in this early run.
However the contours at z = 2.0 km show considerable flattening on the wind side of the
beam. Beam deflection into the wind was enough to cause concern about poor sampling,
so it was therefore decided that the run was UNACCEPTABLE.

Run No. 3353 of Fig. 9 is a repeat of the above two runs, but with 2 = -2 km. This
choice of Q was taken because the coordinate system would then be slightly diverging,
giving the beam more space in which to diverge. The differences between the isoir-
radiance contours at z = 2 km in this case and in the previous run are quite pronounced.
The squaring of the pattern as seen in Fig. 8 is gone, and the contours on the wind side
,re less compressed. The value SE/E = 2 x 10 here, and the RQF was GOOD. It ap-
pears that the run could be further improved by choosing k slightly closer to zero; how-
ever, this would sacrifice accuracy at the center of the beam for the same total number
of mesh points. With the NRL computer, increasing the number of mesh points is not
possible.

The contours show that the beam reaches a minimum size at approximately 1.2 km
and diverges for larger values of z. Since the computer printout also included phase
angle at each mesh point, the assessment that the beam is no longer focusing beyond 1.2
km could be verified by the behavior of the phase angle as a function of radial distance
from the beam center. Phase angle should increase with radial distance for a diverging
beam, and this was indeed the case here.



NRL REPORT 7293 2

zN

'-1

/ 0 o C

I- L x-

C4 0 '

~N\ ~ 0 - 0I g 1L



28 AITKEN, HAYES, AND UlRICH

I '. 1i'4/ "

-/ -

1- 1.4117 2 .. ,/ RUN # 3353 (ACCEPTABLE)
//"-/ / P = 105 watts;

rO 10 0,/ee;

a = 10 CM; (31,61);

A : 0.0 rad/see;

f 2 kin; . -2 kin;
J = 0 (pure heating);

d x .67 X 10- cm 1 .

Fig. 9 - Run No. 3353.

The deflection of the peak intensity along the line of symmetry of the contour plot is
plotted against range z in Fig. 10. Deflection at small z grows quadratically with z, as
geometrical optics predicts. At 1.8 kin, the deflection curve show a rather severe change
in slope. This appears to be due to a rapidly changing shape in the profile and to the fact
that the beam is sampled a finite number of times.

Beam deflection, measured in the above fashion, is a crude measure of the location
of the beam. It is quite conceivable that, with the growth of diffraction peaks along the
line of symmetry, the deflection itself can show an abrupt discontinuity while the beam
configuration is changing in a smooth and continuous fashion. Therefore the position of
the peak intensity point along the central line indicates the beam displacement in a
qualitative sense only.
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Fig. 10 - Beam deflection vs downrange distance for Run No. 3353.

The value of the peak intensity along the line of symmetry in a cross section of the
beam is plotted vs range z, in Fig. 11. The peak intensity is seen to reach a maximum
at 1.2 km. The decrease thereafter is related directly to the divergence of the beam.

The isoirradiance contours of Run #1155 are shown in Fig. 12. At z = 1 kin,
6E/E = 1 x 10 - 3 and the RQF is EXCELLENT. The sharp corners of the interior contours
can be eliminated by using a finer mesh. Slewing and kinetic cooling are present. At a
range of 1 kin, vor = 30 cm, while the beam size is reduced to about 6 to 10 cm in diam-
eter. Thus, even with a large amount of water vapor present, the air is swept out of the
beam before the excited nitrogen molecules decay to add to the heating, reducing the
overall heating effect by .6. The high shwig rate further diminishes the heating. Al-
though the calculation was not carried further. it :s clear that diffraction will cause the
beam to spread at larger ranges.

Beam deflections were less than 1 cm at all ranges up to 1 km in this run.

Plotted in Fig. 13 are the isoirradiance contours at the focal point for runs which
have identical parameters, except water vapor pressure, to demonstrate the effect on a
focused beam of the kinetic cooling phenomenon. All figures are drawn to the same scale.
An absolute scale is shown below the left-most figure. The peak intensitics, from left to
right, are 3140 watts/ cm, 490 watts/cm 2 , and 640 watts/cm. The peak intensity value
for the central figure is lower than that of the right one because of the development of
two strong maxima in the beam. In contrast, the 1/c radius of a diffraction-limited beam
(shown as a dashed circle centered on the beam axis, indicated by a small cross) is 1.65
cm, with a peak intensity of 11,250 watts/cm 2.
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DISTANCE FROM LASER FACE (KM)

Fig. 11 -Peak intensity in beam vs downrange distance for Run No. 3353.
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V7

li //

5c

P(H20) = 2.25 Torr. p(H20) = 4.00 Torr. p(R 20) = 12.00 Torr.

Fig. 13 - Comparison of the effects of water vapor pressure p (H 20) on a focused beam.

The parameters that characterize the above runs, apart from water vapor, are
P = 105 watts; a = 10 cm; v, = 200 cm/sec; 0 = 0.00 rad/sec; f = 1 kin; and (N., Ny) =

(31, 61).

Run #3145, whose contours are shown in Fig. 14, was chosen with parameters to
match the run reported by Wallace and Camac (11), who studied laser propagation using
geometrical optics. They presented their contour plot at z = .6 km. The two figures,
with the different normalizations accounted for, are in detailed agreement. Beyond this
point, at 798 km, the beam, which was initially collimated, is undergoing self-focusing.
(At z = 798 m, ,E/E = 3x 10- 1 and RQF is EXCELLENT.) The next figure can only be
regarded as a qualitative representation of the phenomenon because the beam is collaps-
ing to too small a configuration to be handled by the mesh size used in the computation.
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Appendix A

FOCUSED COORDINATES

In numerical computation of solutions to Eq. (56), sufficiently small mesh sizes to
describe the oscillations of the amplitude in the transferse directions are imperative.
If, for focused beams, a fixed transverse mesh is used, there may be insufficient sam-
pling in the vicinity of the focal region, especially for short focal lengths where the spot
size, in vacuum at least, is certainly small. Variable mesh sizes may be achieved by
using angular coordinates on concentric spherical surfaces as follows:

As was done in Section III, construct a right-handed coordinate system whose origin
is at the center of the laser face, whose plane ties in the xy plane, and whose z axis is
the direction of propagation. Downbeam a distance X0 p1zce the origin of a second right-
handed coordinate system, with its z' axis pointing back towards the laser (see Fig. Al).

X Y

LASER P -""
APERTURE ,

Y X

Fig. Al - Relationship between three coordinate
systems used in the discussion of focused coordi-
nates.

With respect to this system construct the customary spherical polar coordinates; the
coordinates of a point P in space will thus be characterized by (x, y, z) or by ( r#, a', (').
The Helmholtz equation in terms of the latter variables is

1 )2] 1 8 i 2 .
)2 ) '(r' - + s in --' 1 k2etp 0 ( t

2r' (r')2 sin6 6' Z' (r,)2 sin22 (Al)

For a wave propagating along the positive z direction we put

- ixr ' - -

2 (A2)
r#
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where

=ko'/
2 + ia/2

into Eq. (Al) and derive an equation for Pt which will involve B20/Z( r ,)2 and k Z0/Br'.
Dropping the second space derivatives as was done in the derivation of Eq. (1) and carry-
ing only lowest order terms in the absorption coefficient, the equation for 4) becomes

-2ike' t/ _ 1 1 sin ,' 1 
o r' (r,)2 [sjn6' a' BO' sin 2

G'

+ k2(g(') - ESr)) t = 0 (A3)

At points between the focal point f of the beam and the laser face, the amplitude 4)
will usually be small for all but small values of 0'. Carrying only the lowest orders of
0', Eq. (A3) is closely approximated by

-2jkEg 2/2 ad + 1 LZ(B 1 '6 -V0 r
'  

(r,)2 a' Z ( ,)2 39.2]

+ k2 (6(r) - 60)) P 0 (A4)

A coordinate transformation

x 0' cosq', 9 6-' sin ' (A5)

converts Eq. (A4) into

,1/2 - + ( D2\4--  +  ,2 k) 2( ( r)- r))q,= 0 ( 6-2i'kt' - - f k (M

( 2 
7 ~ 2)

which is quite similar in form to Eq. (1). The quantities , and 9 are angular coordi-
nates on spheres of radius r' in the transverse directions, as seen from the origin of
the primed coordinate system.

If a is a characteristic transverse linear dimension (say beam radius) characteriz-
ing the initial laser beam profile, then 00 a/f is a corresponding characteristic
angular dimension. Scaling the variable and 9 with this quantity, a new pair of varia-
bles and 9 are introduced:

X - Y (A7)

For those points in space where the amplitude is significantly different from zero, the

variable r' may be related to the propagation distance z, to lowest order in o', by

r' = f - z

and z is related to t by Eq. (53). In terms of the variables x, -, and t, Eq. (A6)
becomes
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2i 1 V't + k 2 a 2 (c( 0_ (r)) p,- 0

while the intensity I now takes the form

P C_ k a 2a U *
7a2 (1- ka 2v) 2  (A9)

The index of refraction is related to the amplitude P by

k.2a( d((l- e (0i2" (AlO)( 2 .
The variables , -, and may be related to the original variables x, y, and z by

ay I- y= Z = .a2 Al

In the limit that k--co, all previous results are recovered.

The solution to the boundary value problen posed by the differential equation [Eq.
(A9)] requires the specification of the function on the spherical surface that goes through
the point x = y = z = 0. On such a surface, the amplitude of a Gaussian beam focused at
a distance f is given by

7T V 0 C f (A12)

To describe the oscillations in the real and imaginary parts of the amplitude that

are due to the last factor in Eq. (A12), a transverse mesh size of appropriately small
dimensions must be chosen. The larger the beam dimensions, the smaller this mesh size
must be; the mesh size will also be correlated with the f ratio of the beam. For values
of f near f, such oscillations can be reduced considerably; for f z f, they vanish. If one
is not intei ested in the behaviour of the beam as far as the focal point, this latter choice
of i is the appropriate one. Larger values of 2 are required to study the beam in the
vicinity of the focal length, since the denominators of the second and third terms (see Eq.
(AlO)) in the wave equation (Eq. (A8)) vanish at z = f, and the approximations on which
the equation was based are no longer valid.

The numerical value of the quantity f is determined by the problem itself. It is con-
venient, in practice, to attempt a numerical solution with fixed mesh size. If the results
show a strong focusing of the beam, the numerical results can be made more reliable by
redoing the computation with f chosen slightly larger than the focal length. If the heat-
ing causes severe blooming in spite of the initial focusing, it may prove necessary to use
a negative value of 2 so that the coordinates are defocusing.

An alternative derivation of Eq. (A9), which is much simpler than the above but has
less immediate geometrical significance, is obtained by putting
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1 - and I 1 ,1 - ka 2 V I - ka 2 "f y (A13)

so that

f xy, , =f ( ,), ( ,), ) (A14)

g.ving the equation

2i + 2i (l-ka+ / ) 2I- ka 2 /f _k /j) 1

+ k~a2 (E-E 0 ) = 0 (A15)

The first-derivative terms are eliminated by defining a new amplitude 1P by

-i 1-2 (1ka2l) (- 2  2))-xp x( , , (A 16 )

I - ka 2/j

P is then the amplitude in Eqs. (A9)-(A11). The equivalence of the two derivations is
clear.



Appendix B

ANALYTICAL RESULTS

The computer code can be checked, in part, by comparing computer solutions of
known problems with analytical results. The analytical results presented here provide
a check on two different aspects of the code.

Vacuum Propagation

The vacuum propagation of a laser beam is described by Eq. (1) with 3 set equal to
zero. The solution of the resultant equation is

P(p, z) - 2 f (B)

The integration is carried over the plane z = 0, and ((/po) is the amplitude specified at
the face of the laser. For a Gaussian beam whose power is normalized to unity and
whose intensity is reduced from its central value by a factor of e at a radial distance a,
and which is focused at a distance f down the beam axis,

and

rP -' , . P72 7, /13(- * (I- (B3)q)(i ' - - i( -- /f) 2[ 2 *(i_- o/j)2] - 2 ( - /)

The intensity of the beam is given by

I .z)-exp[ - ,2/( 2 i)2)]B4
I( p, Z) = - (134)

Ta 1[ 2+2 + 42]

In Eqs. (B2), (B3), and (B4), 72 (x 2 .y 2)/a 2 , 4- z,/ka 2 , and V f/k. 2.

A collimated beam is obtained from the limit of infinite focal length:

-21
''6" ,0) .ex (B5)
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exp +

S 1- 2(z+)2) 2 
(_3]

CXp[ - ,2/( 1 + 2)] (B)
'(P1 7) va 2 1+ 2) (7

By comparing the numerically computed solutions for these cases with the analytical
results, those portions of the code that deal with the linear parts of the equation are
checked, and the linear stability and convergence of the algorithm can be ascertained.

High-Energy Beams

When the absorbed power in the central portions of the beam near the laser face is
large, the nonlinear term in Eq. (56) will be much larger than the Laplacian term. Such
a state of affairs is local only, since the opposite must hold in the wings of the beam.
For this local region, however, Eq. (56) may be approximated by

2i 7 - /3e-kn~a f ds (Ie ° " o)fI2 = 0 . (B8)

From Eq. (B8) and its complex conjugate, it may easily be shown that

f- f 2 
= 0 (B9)

Hence the integral is independent of the variable , and therefore Eq. (B8) may be inte-

grated directly to give

Lr ( ka 2 V 1. ° 0
f(p, ) =f( ,0) exp[-(-_ ds ( - be ) I f( + S*oO)2 (BIO)

Equation (B8) and its solution (B10) prove useful in two ways. Regardless of how
good the approximation of dropping the Laplacian in any one specific case may prove to
be, those portions of the computer code that deal specifically with the Laplacian may be
bypassed, solving Eq. (B8) instead of Eq. (56). Thus, a check is provided on the formu-
lation and accuracy of the code in treating the nonlinear portions alone. Also, for high
values of ,, the oscillations of the amplitude as a function of ', induced by the heating,
must be sampled at least six times per oscillation to be certain of accuracy. Dropping
the cooling portion of the integral and using a Gaussian beam, this condition yields a
restriction on stop size of

/5A < I (Bli)

which was found, in practice, to be necessary indeed, as was discussed in Section IV.



Appendix C

EFFECTS OF THERMAL CONDUCTION

In this appendix, the size of the thermal conduction terms, which have not been in-
cluded in the analysis, will be estimated, and their neglect justified. Thermal conduc-
tivity, which provides a mechanism for energy transfer in addition to the hydrodynamic
motion, changes the energy conservation Eq. (7) to

d p , d piV2 p K V 
2  

-_ 2 p)- o

- -v -dt PoCp ( -

The effect of the added terms is estimated using the solution obtained by neglecting them.
The pressure and its gradients are negligible in any case, so only the density terms are
considered; replacing the V2 term by derivatives along the wind where maximum changes
occur, and pQ by a I, the ratio of the conduction term to the transport term then is

I ~~(K/PoC )V2
pl g Id

Vo P = o I dl

V0 P1  poc-Pvo Ti Tx

The factor (I/I)(dI/dx) determines a characteristic inverse length appropriate to our
estimate; this length can be estimated from the output intensity profiles at the smallest
cross section of the beam and is about 1 cm in the most severe cases. Using the appro-
priate thermal constants for air, and for a wind speed of 200 cm/sec, the above ratio is
of the order of 10-'; when slewing is included, the ratio is even smaller. The effects of
thermal conduction in the cases presented are negligible since this estimate provides
only an upper limit to these effects; each case must, however, be considered separately.
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