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ABSTRACT 

Error rates for square-law combining receivers operating with 

random phase,  non-fading channels are calculated and discussed.    Practical 

applications include the selection of code word parameters and specifying 

the required degree of diversity for receivers with multiple inputs.     Com- 

bining losses and combining inefficiency are examined.    Both binary and 

M-ary signalling are considered. 

Accepted for the Air Force 
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I. Introduction 

In a number of cases of practical interest,   communication 

receivers base their message decisions on the sums of the squares of 

matched filter envelopes.    In particular,   two cases are of immediate interest: 

Case  1 

One of M  messages is to be transmitted.    Each message waveform 

consists of a sequence of N      channel symbols (or  "chips").    Each channel 

symbol may be one of A orthogonal waveforms.     The channel symbols are 

each received with a random (or unknown) phase shift.     The signal structure 

is shown in Fig.   1. 

Case 2 

One of M  messages is to be transmitted.    Each waveform is con- 

structed as in case  1,  but is received by  N,   separate receivers with random 

(or unknown) relative phase shifts. 

II. Receiver Structure 

The first case covers the waveform design problem for the 

random phase channel.     The second case includes diversity combining.    In 

either case the receiver forms the  M   sums: 

2 N 2 
R       =     T      e m   =   (O.M-1) (1) m .      mn v 

n= 1 

where   e       ,   n =     1,N),   are the squares of the matched filter envelopes mn r 

corresponding to the m-th waveform.    For case  1,   N =  N   ,   the sum being 

taken over each codeword.    For case 2,   N =  N,N   ,   the sum being over each 

code word and diversity channel.     (A total of AN,N     matched filters must 

be implemented. )   Hence case 2 corresponds to post-detection combining. 

The receiver then decides which message to announce by choosing the 
2 

one with the largest  R & m 
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Fig.   1.     Waveform structure. 



In this report it will be assumed that the noise added to the signals 

before reception is white (over the band of interest) with double sided 

density  N  /Z   and Gaussian.    Also the noise is assumed independent and of 

equal density on each diversity channel. 

The signals are assumed to be fixed in terms of received energy per 

channel ,   E       ,   but not necessarily equal.    The total received signal 

energy per waveform,      T      E       ,   is assumed to be equal for all messages. 01    r t mn -i o 

n= 1 

The receiver decision variables defined in (1) are not the optimum 

ones.     The optimum decision variables would be: 

N 2,/E 
Ropt   =     F      An  [I  (   M   mn    e       )] . (2) m . l   o    N mn' 

n= 1 o 

However,   computing error probabilities for this form of receiver must be 

done by numerical integration.     The square-law combining (which  R   " 

reduces to for low E       /N  ) gives nearly equal error probabilities,  and 

can be computed much more easily. 

Examining  R   ^    shows that the channels with higher SNR's should be 

given greater weight,   thus leading to maximal ratio  combiners[ 1].    However, 

this refinement will not be studied in detail here,  although the numerical 

results presented later can be used to show that this further departure from 

optimality will not usually cause very large degradations to performance. 

III. Binary Signalling,   M =  2 

The case studied in greatest detail will be the one corresponding 

to one of only two equally likely messages being transmitted.     This will 

include most of the important effects (e.g. ,   combining loss) and also, 

through the use of the union bound,   serves as the basis for understanding 

more complicated waveforms.     Section IV discusses the case for   M > 2. 

A. Error Rate Evaluation 

Lindsey [2]  has derived the error probability for the case 



considered here (and for Rician channels as well).    His Eq.   (51)'   gives the 

probability of error as: 

N E       N-l . n .  E 
P   (E;N) =   [j]     expl-^^]    Z     (•"   ) (f   F( -n, N; -± -jr^) (3) 

o       n= 0 o 

ET        N      Emn where —— =    T     ~~^—»   the total energy to noise density ratio for the 
o        n= 1        o 

waveforms and   F(-n, N;x)   is the hypergeometric function (which in this case 

reduced to an n-th degree polynomial) given as: 

Ff-n  N-x)  ~   1+  — x  +      (-n)(-n+l)       2 (4) t(   n.iN.x)  -   i+   (N)(1!)
X  +   (N)(N+1)(2!)        +"- (   ' 

Figure 2 plots   P?(E;N)   as a function of  ET/N     for various values of 

N.     This figure is most useful for discussing the waveform design problem 

of case  1 above.    E_/N     is equal to  ER/N   ,   the signal-to-noise ratio per 

bit taken over the entire code word and over all diversity channels. 

Figure 3 plots   P  (E;N)  as a function of   (l/N)(E„/N  )   the average 

signal-to-noise  ratio per channel symbol or per diversity channel for 

various values of  N.     This figure is most useful for discussing the effects 

of adding additional degrees of diversity. 

Both sets of curves have been accurately computed and plotted and 

are meant to be used for numerical purposes. 

B. Discussion:    Combining Loss 

The curves of Fig.   2 clearly show what is commonly termed 

"combining loss".    That is,  for a fixed value of ET/N   ,  the error rate will 

increase as   N  increases.     Thus for post-detection combining on a non- 

fading channel,   once a certain amount of signal energy is split into a 

number of pieces,   the full energy can never be recovered.     (This is not 

necessarily true for pre-detection combining or for fading channels. ) 

Figure 4 plots the combining loss (in db) versus   N  for several error 

For internal consistency his N and M have been interchanged in meaning. 
Also there is a typographical error:   his exponent should be divided by 2. 
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Fig.   2.     Binary error probability vs total SNR per waveform. 
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Fig.   3.    Binary error probability vs average SNR per channel symbol. 
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Fig.   4.     Combining loss vs number of channel symbols. 



rates.     The combining loss is given by the difference between the   (E   /N   )'S 

required to produce 

P2(E;N)   =   P2(E;1) (5) 

It shows that the combining loss in general: 

1)     increases with  N 

and 2)    decreases when   ET/N     increases (or as   P?(E;N) decreases) 

C. Asymptotic Expressions:    Combining Loss 

A rather simple expression for the error rate,   valid when 

N  is large,   can be derived from central limit theorem arguments.    It is 

not difficult to show that: 

e2 .      =   E,     + N (6) 
In In o 

Var re2,   1    =   N  2 + 2E,    N (7) 1    lnJ o In    o 

assuming message 1 was transmitted. 

Thus when message  1 is transmitted the mean and variance of the 

decision variables are: 

R2   =   ET + NN (8a) 
1 T o 

Var [R2]    =   NN2 + 2N    E^ (8b) L     1 o o     T 

R2   =   NN (8c) 
o o 

Var [R2]    =   NN2 (8d) 1    o o 

The probability of error is given by: 

P2(E:N)   =    Prob   I   Rl " Ro < °1   " (9) 



For large   N both  R     and  R,   will be approximately Gaussian and thus 
2 2 o 1 

(R.   - R   )   will also be Gaussian.    It's mean and variance will be: 1 o 

<R1  " Ro»    =   ET 
(10) 

Var  [R2 - R2]    =   2(NN  2 + N  E^). 1     1 oJ o o    T 

Hence for large   N  the error rate will be: 

/ ET2 

P(E;N)RiQ[/ =i  ] (11) 
Z(NN' + N  E_) 

o       or 

where 2 x 
00 -      

Q(a)   =   -—     r    e    2   dx. (12) 
J2.TI        a 

From Eqs.   11 and  12 an expression can be found for the   E   /N     required 

to produce a given error rate (or a) as a function of  N,  namely: 

E   2 

T 2 
— 5   =   a    . (13) 
Z(NNSNOET) 

Solving, 

E 
aZ   (1 + Jl+^y  ) . (14) 

N «     v*  '  v * •    2 
o a 

A short table for  Q(cv)   is given below: 

_a Q(q) 

1.28 lO"1 

2. 33 lO"2 

3. 10 lO"3 

3. 75 lO"4 

4. 30 lO"5 

4.75 lO"6 



Using Eq.(14) the combining loss (or the E    /N  ) can be predicted for 

large   N.     The results are shown in the curves of Fig.   4 labeled 'asymptotic' 

The agreement for   N =   10   with actual combining loss is within about 1 dB, 

and at  N =  20   the agreement is to within about 0. 5 dB.    For large  N  the 

results will be more accurate. 

It is interesting to note that for large  N: 

1    ET2 2 
N(^ TT'  

= Za • (15) 

o 

Since   (l/N)(E_/N   )   is the average SNR per channel symbol,   Eq.   (15) 

indicates that the ultimate combining loss is dominated by the quadratic 

small signal suppression effect associated with square-law detectors [3] . 

D. Discussion:    Combining Inefficiency 

The curves in Fig.   3 (P   (E;N) vs.   SNR per channel) reveal 

a similar combining loss mechanism when combining diversity channels. 

For example,   the curves for  N =   1   and N =  2  are always less than 3 dB 

apart.     The conclusion must be that combining two equal strength channels 

is less efficient than having a single channel with twice the energy.    The 

same holds true for any other pair of curves.    It can also be seen that the 

curves diverge as   (l/N)(E   /N   )   increases.     Ultimately the curves will be 

spaced at intervals of   10 log N db from the   N =   1   curve since the 

probability of error will be dominated by the exponential in Eq.   (3).     Thus 

for large   (l/N)(ET/N   )   the combining inefficiency approaches 0 db.     This 

value is nearly reached for   (l/N)(E_/N   )   >   10 dB. 

E. Asymptotic Expression:    Combining Inefficiency 

Equation (13) may be solved a different way to give the 

required degree of diversity as a function of the SNR per channel as follows: 

2a2[l + (l/N)(E   /N  )] 

N   =    V- <16> 
[(1/N)(E_/N )]' 

10 



Hence for large N it can be predicted that the required number of 

channels varies nearly inversely with the square of the SNR per channel 

when     the SNR per channel is small. 

IV. M-ary Signalling 

When M-ary signalling is considered,   finding tractable and 

exact expressions for the probability of error is considerably more difficult 

than the binary case.    Lindsey [2]  has solved this problem (but does not 

give numerical results) for orthogonal waveform sets (A =  M).     When non- 

orthogonal waveforms are used,   such as those derived from algebraic codes, 

bounding the error probability often gives satisfactory results. 

The most familiar bound is the union bound [ 4] ,   namely: 

P(E |m   )  =  P     . (R2  > R2   or  R2  > R2  . . . R2     .   > R2 |m   ) 1     o robv    1 o 2 o M-l o '     o 

M-l • (17) 
<;   F        P     ,    (R      > R    |m   ) ,       rob       m o '     o m= 1 

where it is assumed message   0   is sent.     The union bound is always too 

conservative,   predicting a required SNR greater than that actually needed. 

A lower bound to the error rate can be found by considering errors 

occuring among triplets of signals  (see  [4],   pg.   361): 

M_1 2 2 
P(E |m   )  :>    F       P     ,(R      >R    |m) v     r   o .       rob m o '    o 

i= 1 

M_1 i_1 2           2 2            2 
-    F F P    U(R    > R  , R > R   |m  )   .                                  (18) r  _ .    , rob     i          o j           o'    o i = 2 j= 1 J 

The first term above is  seen to be identical to the union bound,   Eq.   (17). 

The second term represents a first correction term to the union bound. 

In the Appendix it is shown that when 3 message waveforms are 

mutually orthogonal (or for certain other special cases): 

11 



P~(E;N)   =   P     .   (R2   > R2,  R2   > R2 |m   ) 
3 rob       1 o       j o '     o' 

at 3 t o) 
,   N 2E 2(N-1) N        .    - -E 

*[4l     expl-^]     r (    „     )(4)  F(-n;N,3jsi).       (19) 
o       n= 0 o 

The above bound is shown plotted in Fig.   5 as a function of  E   /N     for 

various values of N.    (Note that a different scale from Fig.   2 has been used 

in order to accommodate the interesting regions. ) 

Together with the plots in Fig.   2 a reasonable estimate of the M-ary 

error probability can be found.    If the M-signals are not mutually orthogonal, 

then the union bound (derived from Fig.   2) is all that can be generally   easily 

applied.    If the signals are mutually orthogonal and equally likely the 

following can be used to bound the error probability,   P(E;N,M): 

(M-1)P2(E;N) - ^M" i^M~Z^ P* (E;N)   <   P(E;N,M)    <   (M-1)P2(E;N)   (20) 

where   P_ (E;N)  is the bound in Eq.   (19). 

As an example,   suppose  N =   10  channel symbols and there are 16 

orthogonal signals,  M =   16.    At a SNR per bit,   E   /N    = 9 dB,  the total 

waveform SNR will be  E„/N    =   15 dB (4E-/N  ).    From Fig.   2 one finds 

P  (E;10)  =  4.5 x 10"   .    From Fig.   5 one finds   P"  (E;10)  =   3. 5 x 10"   . 

Hence from Eq.   20 the error rate is bounded by: 

2.58xl0"4   < P(E;10, 16) < 6.75 x 10"4 

which is equivalent to an uncertainty of about ±.2 dB as seen from the slope 

of Fig.   2. 

Generally speaking,  the union bound increases in accuracy for lower 

error rates and/or smaller signal sets.    When the estimated error rate 
_3 

is below about 10     ,  however,  the accuracy appears to be quite good. 

12 
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The union bound approximation,   depending solely on  P?(E;N),   indicates 

that the combining losses and inefficiencies in the M-ary case behave 

essentially the same as the binary case.    Hence,   the discussion and 

asymptotic approximation of the last section can be applied here also. 

Finally,  it should be noted that the curves of Figs.   2,   3 and 5 are 

dominated by the exponential term in their respective expressions at high 

SNR.    Hence if one needs values for higher SNR's than those appearing on 

the curves,   they may be extrapolated safely for a few more dB with the 

appropriate exponential factor. 
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APPENDIX 

A Bound on   P  (E;N) 

Lindsey's Eq.   (41) can be expanded into the following two sums when 

the triplet of message waveforms are mutually orthogonal: 

P     , (R2 > R2   or  R2  > R2 |m   ) 
rob      1 o 2 o '     o 

„1.N ,      1  ET1^"1 .N+n-l-.l.n^.        „ T, ..     ., 
=   2[7]    exp[-- — ]£       (      n     )(-I)   F(-n;N,-—) (A-l) 

o    n= 0 o 

rl.N       ,    2ET2'N_1)      (N+n-1)! ,ltn^;       KT   "ET\ 
-[3]    exp[-3 —]    L c

n    (N-l)!   (3}   F('n;N' 3N~} 

o      n= 0 o 

where   c     is the coefficient of  x     in: n 

N-l    k   2 2(N-1) 

t   T     h]       =      r Cnxn- (A"2) 
k=0 K- n=0 

It is always true that: 

P     ,  (R2  > R2   or   R2 > R2 |m   ) 
rob      1 o 2 o '     o 

=   P     ,  (R2 > R2 |m   ) + P     ,  (R2  > R2 |m   ) (A-3) 
rob      1 o1     o rob      2 o1     o v 

-   P     ,  (R2  > R2,   R2  > R2 |m   ). 
rob      1 o        2 o '     o 

The first two terms in   (A-3)   form the sum of the binary error probabilities 

from Eq.   (3) which in turn can be identified with the first summation in (A- 1). 

Hence the second summation of (A-l) is equal to the last term of (A-3) which 

is   P0(E;N).    It now remains to find   c   . 
3 n 

It is not too difficult to show that: 

15 



n    1       1 
S0iT-(^I7T n*N"1 

c     = (A-4) 
N- 1 1 1 
T "7   •    ;     ... n > N-l  . 
i = n-(N-l)   l!        (n"l)! 

Looking back to the summation in (A-l),   what is needed is: 

v     J L_       (N+n-l)! 
(N+n-1). f=0 i!      (»-4)'   "       (N"1)' 

JT 1 !_ lN±Eliil n > N_!    . 
i=n-(N-l)   l!   (n"l)!     (N"1)! 

If each term in the above sum is multiplied and divided by (n !),   each term 

is seen to be equal to   ( )(• ).    Hence the summations can be put into the 

form: __,       , 
(N+n-l)Zn n*N-l 

(N+n-l)!   _ p 

Cn    (N-l)! „A      . n-N (A   b) 

(N+n_1)[2n-2E     (n)]        n>N-l. 
n i=0  x 

Since an upper bound to   P~(E;N)   is sufficient to lower bound  P(E;N), 

the summation in (A-6) will be ignored.    The leads to the upper bound given 

in Eq.   (19) which is very similar in form to   P?(E;N),   thus simplifying the 

computations considerably. 
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