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ABSTRACT

Herein, we propose a mathematical theory of thermo-viscoplasticity
which is a synthesis of experimentally observed material behavior on one
hand, and the concepts of irreversible thermodynamics on the other.

The underlying principle {s that the history of deformation is de-
fined in terms of a "tims scale'" which is not measured by a clock, but
is in 1tself a property of the material at hand.

'fho theory is unifying in the sense that theories of plasticity,
viscoelasticity and elasticity can be obtained from it as special cases
by imposing suitable constrainta on the material parameters involved;

furthermora. it does not make use of the idea of a yleld surfacs.
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Section 1. Endochronic Theory of Viscoplasticity

In current theories of plasticity, to explain the observed discontin-
uities in material behavior upon loading beyond the "yield point' and upon
unloading, one has to introduce the concept of a yield surface in stress

Space as well as a "loading function” to distinpuish between loading and un-

loading. Similarly, in the case of viscoplasticity, the existence of a

static stress-strain relation and a vield surface are assumed and the stress
increment, with respect to the static value, is related to the strain rate,
or more generally to the strain history, by a constitutive equation.
However, the fact that the phenomenon of yield is usually a gradual
transicvion from a linear to a non-linear stress-strain response, makes it
difficult to say precisely where yield has occurred, to the extent that
different definitions of vield are used for this purpose.,

Three such gefin-

itions, for instance, are (a) the deviation from linearity in the relation

between some measure of strain and stress (b) the intercaction of the

initial part of a s*ress strain curve and the backward linear extrapolation

of the "plastic" part of the curve and (¢} a value of 'proof" stress

corresponding to an arbitrarily defined value of 'proof" strain.

Though, from an engineering viewpoint, the initial yield surface is not
overly influenced by the definition of yield, it has been found experimentally
that ._ubsequent yield surfaces of a strain hardening material are influenced

by the definition of yield to an extraordinary degree. (See Appendix I). If

we insist that the increment in plastic :c¢rain is to be normal to the yield
surface, then, for complex stress histories, each such definition will give
rise to a different plastiz strain history.

Only one of these can be the
-:correct one.
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The conceptual difficulties that are encountered by the introduction of
the yield surface are completely circumvented by our theory cf plasticity
which is developed on the liasis of the observavion that the state of stress
in the neighborhood of a point in a plastic material depends on the set of

all previous states of deformation of that neighborhood, but it does not

depend on the rapidity at which such deformation states have succeeded one

another#.

The independence of stress of the rapidity of succession of deformation
states is achieved by introducing a time scale £ which is independent of t,
the external time measured by a clock, but which is intrinsically related to
the deformation - f the material.

Of course thcire are many ways of introducing such a time scale. However,
it appears almost mandatory that & should b a monotonically increasing func-
tion of deformation, otherwise two different states of deformation could exist
"simultaneously'" i.e, for the same value of . Furthermore, & positive rate
of change %% , of the internal energy density € with respect to £ could not be
interpreted unambiguously as a process of increasing ¢, if d§ could be negative.

A logical definition™* for £ is then given by the relation

*In the present Section and in subsequent Sections (with the exception of
Section 2) we shall assume that mechanical changes take place in a constant
temperature environment, such as an isothermal atmosphere, The thermal
changes in the material will, therefore, be mechanically induced and, in
general, will remain small. Conversely, only thermal changes of this nature
will be considered in this paper.

*%¥plternative but less general definitions have appeared irn the litera-
ture. TFor instance, llyushin(l) and later Rivlin{2) defined a "time" s by
the relation ds? = dc;.dC, . However, we have found that this definition is

]

too narrow to describe, quantitatively, material behavior in the plastic
range as will be discussed later. The effect of temperature on £, will at
this time, be considered sufficiently small to be negligible. For a more
vague allusion to this possibility see aiso, Schapery (3),
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a4 Pijkzdciidckl (3.1)

where Cij is the Right Cauchy-Green tensor and Piikﬂ is a fourth order tensor
which could depend on Cij . The positive definite nature of df? requires

that Pijkﬁ be positive definite. In the case of small deformation

2 -
8% = Pyjeede;jdcie

where eij is the small deformation strain tensor and pijkl couls depend on
E...
1]

Actual materials, on the other hand, do, in general, depend on the his-
tory of deformation as well as on the rapidity, or rate, at which deformation
states succeed one another. To describe materials of this type one may con-
struct a theory of viscoplasticity by introducing a time scale £ which is re-
lated to the external time t.

It appears logical to define ¢ by the relationship

dg? = a?de? + B4dt?

where a and R are scalar material parameters. Henceforth d¢ will be called
an "intrinsic time measure", and 2(g), such that %% > 0 (0<g<=), will be
called an "intrinsic tiﬁe scale".

In our theory, the stress (among ot er properties) is necessarily, a

functional of the strain history, defined with respect to the intrinsic time

scale, the latter being a property of the material at hand. As a result we

have called our theory an endochronic theory of viscoplasticity.

The theory will now be developed in a general thermodynamic framewcrk in

Section 3. Befuore this is done, however, the thermodynamic foundations are

laid in Section 2,
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Section 2. Thermodynamic Foundations -

E The followin;y d¢re the fundamental laws of thermodynamics, which apply E
to all continuous media irrespective of their constitutive properties. (Tur
materials that are solid-like, in the sense that they have a memory of

l their initial configuration, it is more convenient to express these laws in

1 the material coordinate system xl). In differential form, these are the

first law of thermodynamics,

: ‘- iioa i
€ = (Doisu) 1 E..o-nt

i 1t c, (2.1)

the rate of dissipaticn inequality,

oy = (p_/20) t* &y v -nb>o0 (2.2)

and the heat conduction inequality

-h*6,. 2 0 . (2.3)

‘ The symbols in eq.'s (2.1), (2.2) and (2.3) have the following meaning: P
is the internal energy ner unit mass; R and p are the initial and current
mass densities respectively; 1*7 is the stress tensor in the material coor-

‘ i . . i,
dinate system x ; is the right Cauchy-Green tensor, h~ is the heat flux

C..
1)
vector per unit undeformed area in the material system; poQ is the heat supoly
per unit mass; Y is the temperature, vy the irreversible entropy and ¢ and n

are the free energy and entropy, respectively, per unit undefcrmed volume
finally a subscript following a comma denotes differentiation with respect

+o the corresponding material coordinate. A dot over a quantity denotes

material derivative with respect to time. To avoid repetitious statements,

henceforth we shall refer to Cij as the "deformation".




In the case of dissipative materials the stress, the internal energy
and entropv densities (and, therefore, the free energy density) of a material
neighborhood depend on the entire history of deformation and temperature of
that neighborhood.

In the theory o“ irreversible thermodynamics the effects of history are
taken into account by specifying that the stress and free energy density are
functions of the current values of Cii and 9 as well as n additional
independent variablez q , not necessarily observable, called "internal vari-

a
ables', These mav be scalars or componrents of vec*ors or tenscrs in the
material frame; whatever their geometric nature they must remain invariant
with translation and rotation of the spatial system to satisfy the principle

of material indifference, Thus:

v o=y (Cij y 6 qu) (2.4)
1= 13 (Cp s © 5 qy) (2.5)
(4)
It has been shown alsewhere that
ij _ 20 3
1 = Ton (2.6)
o 13
ay
T e b .7
n 5 (2.7)
n_’ﬂ-
by = - = i q, 20 (2.8)

Furthermore the heat flux vector b’ is a funstion of e’i , 6, Cij and

q i.e.,
a

i
h - h (9,).. ’ 6 L} th ] qu) (2.9)

subject to the conditions:




hi = 0, hln,. < 0,
0 v
i =0
Finally eq. (2.1) in conjunction with eq.'s (2.
i 1 s (). . 2 :
' h‘i i a6 ) qa Qn tQ

The remarkable property of the above equations
materials irrespective of their constitution, This
recognized. 1ln fact the constitutive nature of the
the constitutive properties of qn. For example, in
whereas in viscoeiasiic materials qq are given by a

equations of the type,

4G = 5y (g 50 @)

dered in the next Section.

(2.10 a, b)

6) and (2.7) yields

(2.11)

is that they apply to all
has not been generally
material follows from
elastic materials q = 0,

a
set of differential

(2.12).

The question of how q, are determined for viscoplastic materials is consi-
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Section 3. Constitutive Lquations in Viscoplasticity

i Shasiiniy

From the right hand side of eq. (2.3} and the fact that g, 0 and

dt
dz/dy > G, it follows that
i dq
- %ﬂ— —:3- >0 (v not summed) (3.1)
N %,
dqa
where the inequality is valid unless i 0. It also follows from inequality
dq ) )
(3.1) that - s 4 4 C.. and 0 must be related otherwise Ll and —2 could
dz a ij Bqu dz

be prescribed independently and in such a fashion, that the inequality would

be violated. In this event there must exist 3 set of relations

dqa
a fa(cij » 3g 8) (3.2}
for all a, where the functions fu are material functions.

It must be noted that, as 4 result of eq. (3.2) 1, are indeed functionals
of the histories of deformation and temperature with respect, hiowever, to the
intrinsic time Scaic = which is, itself, a material propertv.

Thus, at least formally, the coastitutive equations of the endochronic
theory of viscoplasticity are now complete in the sense that piven the mate-
rial functions fa,w and h‘:L then for some specified deformaticn and temperature

histories, q, are found from eq. (3.2) and thus )

and n are found from eq's.
(2.6) and (2.7) respectively; similarly hi the heat flux vector is determined
from eq. (2.9).

Ideally, one would like to know the thermomechanical three-dimensional

response of a material over the whole spectrum of mechanical and thermal con-

ditions, i.e., under all variations in strain, strain rate (or more generally,

history of strain) and temperature. However, such a task would be a momentous,

if not an impossible, undertaking; the experimental evaluation of the material
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functions involved, under wide conditions of strain and temperature, would be
;mpractical.

Fortunately the domain of specification of design conditions is usually
limited in scme way; for instance usually, (a) large changes of temperature,
fast rates of loading, but small strains are prescribed; or (b) small changes
in temperature and small rates of loading but large strains and/or displace-
ments prevail. More extreme mechanical as well as thermal conditions are

rarer.

It is reasonable to expect that material behavior would be easier to

describe mathematically over a narrower domain of environmental conditions,

where the appiicability or “correctness" cof such mathematical formulation

-would be casier to check experimentallv.

In what follows we shall consider situations in which the strain in a
material region R as well as the temperature changes relative to a uniform

reference temperature eo are 'small". To make the above statement more pre=-

cise let cij(z‘) denote the history of the strain tensor®, for z <2" <2
where z is some initial intrinsic time. Set
e, (2] e lz”) e, (2} " (3.3)
ij RS ]

and let the supremum of llciﬁ(z')llbe A.
Similarly let 9(z°) be the history of the temperature increment relative
to the reference temperature 8, and let the supremum of [9(z”)| be 8. The

notion of smallness is made precise by stipulating tnat A<<l and 6<<l.

Thus, formally

€ = 6 4+ (3.4)

Al

by




n=n +x (3.5)

Hcij(z‘)ll = A, li)(::‘)ls =8 (3.6)

sup up

To complete the formalism let x be the entropy change relative and a
reference uniform entropy n, » and let oij denote the stress tensor. The re-
ference state is defined by the condition that oij =0, $ =V=x=0, q, = 0.

Under these conditions, eq.'s (2.%) through (2.3) and eq. (2.10b) become,

Vv (e 0 Y, q) (3.7
= 2
935 = B¢, : (3.8)
ij
x = - 3% (3.9)
L _ _ gi L]
Ooy = aqu qu > 0 (3.10)
hy = kg, N '’ (3.11)
hy D, 20 (3.12)

where kij is the thermal conductivity tensor.
Finally eq. (2.11), becomes
h, =0 (34) -2 ¢ 4o (3.13)
i,i o\d aqu a :
It is shown in Appendix II that |a_| and lqal may stag small in the sense
a x

1 and 62 , however small, 4 and é§ can be cho-

sen small enough such that |qa| < §

that given two positive numbers §

a
1

Ar this stage one may obtain the corresponding equation for Q, by

and |éc| < 6; .

linearizing eq. (3.2). However it is physically more meaningful and, a pos-

teriori, more rewarding to examine more closely the rate of change of
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.
irreversible entropy v .

From eq. (3.10),

3q dz =" (3.14)

It follows from eq.'(s) (3.14) and (3,2) that %% may be expressed as a func-
dqa dy

tion of I cij and 9 , subject to the condition that = ° 0 whenever

dq

3;3 = 0 for all a . Thus, if we expand 0o %% in a Tavlor series and ignore

terms of order higher than 0(6§)* and ohserve the inequality (3.10), thereby

eliminating the linear terms in the expansion, then

dq_ da
dy a ‘8
— — e 3'
eo dz baB dz d= (3.15)

EqQ.'s (3.1%) and (3.15) are simultaneously satisfied if

dq
L (3.16)
q, af dz

With eq. (3.16) the constitutive description of a viscoplastic material is

now complete.

Explicit Constitutive Equations

Explicit constitutive equations for viscoplastic materials under condi-
tvions of small strain and small changes in temperature are obtained by ex-
panding ¢ in eq. (3.7) in Taylor Series and omitting terms of order higher
than 0(82); * linear terms must vanish to satisfy the initial conditionms.

Before the expansion is carried out, however, it appears desirable to
regard A not as scalars but components of second order tensors. This, as
will be shown, obviates certain difficulties which arise with the represen-

tation of fourth crder tensors. For instance, in Ref. (4), we were faced

- a
*Gu is the largest of Gi and 6;. Also, & is the largest of &, A and 61.
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with having to assume, without proof, that a fourth order tensor C'jkl such
i

that,
Ciske = ikt = Cijex ® Ckeij

is given by the series

ai j Qakzg
Cijkﬂ = g 3 (3.17)

[+ 3
where aija are second order symmetric tensors and a  are scalars. Problems
such as this are obviated by giving the internal variables a tensorial char-
acter, Thus the free energy density and other thermodynamic quantities are
now functions of cij » 9 and n internal variables qg. (a =1, 2 . .. . 1),

a . . .
where qij are symmetric second order tensors, with respect to the material

system xi . In this notation, eq.'s (3.13) through (3.16) now read,

hi,i =6, 3 — qij +Q (3.18)
qi'
]
a
dq..
dy . v 13, , (3.19)
o dz a dz -
Q. .
1 5
o X o pp®  ag%. aq®
o dz aijk!lE%ij a%k( (3.20)%
and
dq0
w oL e X (3.21)
3% ijk€ dz
q..
1)

(a not summed)

a 8
dq.. dq
4 . asd ij kL aB a B
‘Expansions of the type bijkﬂ iz T and Aijk£ qij qkﬂ reduce to

the above form, See Ref. 5.




Furthermore, in view of my previous discussion, -
- a a a a .
V= A o0 €is Sep * Bioe Sig 9p *ECike 93§ ke -
+D,.9¢,, +E3,9q%, + WFr92 (3.22)
i3 i) i ij = *

Though, in principle, eq.'s (3.8), (3.9), (3.18), (3.21) and (3.22) are
sufficient for the derivation of explicit constitutive equations, we shall
obtain these only for isotropic material, so as to keep the algebra at a

minimum. TFor such materials

Ao T RS + A8, 8 : L

ijk 1 iy k£ ik “ie
a -

Blie = BL 835 Ske * B2 ik S
a - a

Cijne = C1 %15 S * C2 S5k S5
D.. =DS&,, (3.23 a-f)
ij ij

%, =£t%s,,

ij ij

k.. =k3s..

ij ij

a = a

Pijke = Py 655 Ske * b &5 k %52

It is worth noting that here we consider materials which are "stable"
in the sense that straininy of the reference configuration under isothermal

T s : - a
conditions will increase the free energy density ¢ . Thus Aijk£ and Cijk(

R

s P a a cas
are positive definite. As a consequence Al ’ A2 s C, and C_ are all positive.

1 2
Omitting superfluous algebra, the coupled thermomechanical constitutive
equations take the follrwing form in terms of the hydrostatic stress ¢ = —gh R

the deviatoric stress te-czor Oi5 s the increment in temperature 39 , the

Wbt i o

Jit] -
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hydrostatic strain Ckk , the deviatoric strain tensor eii and the
entropy increment x ; in terms of the above notation:
z 3ei.
i3 z 2 fz v (z-2') 3;71 dz (3.24)
o
kA 9z z
K(z-2') -k dz' + Dlz-z2') 22, 4z’ (3.25)
J Jz 9z
z 2z
) °
aw _ [® €y ) 2 )
-y = SO¥ o ot v -2t — v (3.
X * 33 fz D(z-2") o d2' ¢+ Jz F(z=-2") L dz 3.26)
o 0
where , o i
a_.a a .a '
B, B B, B -p Z
2 u(z) = (A, - 2—2) H(z)+ ] 22 &° (3.27)
2 a c® a c®
2 2
B: By ‘; B -A.z
K(z) = (A -] —=) Hz)+] — e (3.28)
a C
o] 0 i
Ba Ea Ba Ea -Aaz
D(z) = (D - ] ——) H(z) + ) e (3.29)
a a
a C a C
o
Ea a Eu Eu -Aaz
F(z) = (F -} ) H(z) + § e {3.30)
a a
a C a C
o c
A0 z 1/3 (BAl + AQ) s Bo= 1/3 (3B1 + BQ) . Co = 1/3 (3Cl + C2) (3.31)
< ¢
o Z —— s A T e— (3.32)
e @ @ o
2 o
a _ a a
bo = 3bl + b2 (3.33)

The heat conduction equation is similarlvy found to be:

9z
dt 3 [ Y s [ G
az k S,ii = '5-2— Iz CV( z=-2') E' dz' - eo 32 . D(z-2') ] dz

(o) [+]

il b GG i bl

L

Lk il ik

smsind 2 Lttt et st i

et Jj‘\l Ll

sl sl i, wimutal
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(3.34)

(3.35)

and .a r-of over a quantity implies differentiation with respect to z. The

lOwer.limi; z, denotes the intrinsic time of the reference state.
- i

" a “a
+ Q+ )b, q.. q
s E 1 i1 7))

/

, where

i
Cv-'f L) = - 90 F(z)
o0
{
P {
‘ (
{ PR } -
v ! N i
{ { .
o
/ R \
o\ (
i I ( i
i \_ {
i \
( \
(

al ol
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Section 4. Endochronic Theory of Plasticity and its Relation to Present Theories

Qur theory of plasticity, which is a rate independent endochronic theory,
is obtained by replacing the time measure df by df. The time scale now becomes
z(€), but the form of the constitutive equations remains unaltered. In parti-

cular, the "linear'" form of our theory is obtained by setting
d£2 = p; de, . de (4.1)
ijke "Tiy Tk

where pijkc is a positive definite fourth order material tensor. We repeat
the constitutive equations of the linear theory, in the particular case when
the deformation is isothermal so that a comparison may be made with current

theories. When 3 = 0, then eq.'s (3.24) and (3.25) become,

z de. .
sij = 2 J u(z-z') 5;%1 4z’ (4.2)
:o o€
g = 3 J K(z-z') asz dz! (4.3)
z
°

where z = z(E).
If the material behaves elastically under pressure (so-called plasti-

cally incompressible) then K(z) is a constant and in this case

Iy = suekk (4.4)
Whereas,
2
- et '
Sij = 2 Jz u (z=2') deij(z ) (4.5)
o

Let now u (z) consist of a2 single exponential term i.e.

u(z) = uoe'“ (4.8)
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In this event

s., = 2 Iz a(z-2") 4o (g1) (4.7)
Qo

The integral eq. (4.7) is reducible to the differential equation

a

de., = o4 2 .
®i4 * 7200 9% Si5 * 3.0 dsyg (4.8)

Now, = ds,, may be identified as the "elastic' component of deviatoric
2u 0 ij

strain of classica. plastiecity. If one follows the traditional definition

of "plastic strain" de,.P given below, i.e.,
i3

dey,P = deyy - de, (4.9)

then in view of eq. (u48)

.
deij : 555 dz sij (4.10)

But these are the Prandtl-Reuss relations. Hence our present theory contains
these relations as a special case. Where then coes it differ from this theory?
It does in the interpretation of the proportionality coefficient dz. In the
Prandtl-Reuss theory d& may be positive negative or zerec, and in fact, z has

been identified with the yield surface, i.e., plastic action is assumed to

occur when dz ~ o, where

z = z(sij) (4.11)

but that deijp is zero whenever
dz < o (4.12)

In the present theory dz is always positive if the material is deforming (it

is zero only when deformation dces not take place). Thus always,
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dz > o (u.13)

Furthermore dt is not given by eq. (#4.11) i.e. it is rot related to some
yield surface but its definition is entirely kinematic. Thus, nc yield
phenomenon or surface are postulated here., One obtains the stress response
by merely monitoring the history of strain.

Also the theory admits a further generality since u(Z) need not consist
of a single exponential term.

For instance u (z) may be of the form

u(z ) =u o tH le-uz . (u.14)

In this case, however, the differential form of eq. (4.7) becomes:
. . = . . . 4.
2(u o *t U 1) dei] +2uga JE dxz dsij 4+ a si] dz (4.15)

The shear modulus u, at z = 0, (initial modulus), is (u ot l). The

""plastic" components of the deviatoric shear strain tensor are given from

eq. (4.9), i.e.,

deP, - 2
elj 2 u

d . - Y (4.16)
z Si] 2y 0 eij

1
Note that eq. (4.16) does not satisfv the Prandtl-Reuss relations, which are
also viclated if one adds more exponential terms to the right hand side of
eq. (4.14). 1In fact these relations will be satisfied if and only if u (z)
is given by eq. (4.6), i.e., u is represented bv a single exponential term
only. This situation is not particularly disturbing. Peters et Alstuo)
carried out experiments on thin walled 1uS-T4 aluminum alloy cylinders bv

loading these in combined compression and torsion and found that the Frandtl-

Reuss relations were not satisfied, for this particular metal.
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Conclusions

A theory has been presented here, the scope of which is wide enough to
allow a rational phenomenological description of machanical behavior of
materials under various histories of strain and temperature. In particular,
the viscoplastic behavior of materials js formulated mathematically, without
recourse to the dichotomy of the deformation history in plastic and elastic
parts and without the necessity of introducing discontinuities in material
behavior, such as yield surfaces,

The theory merely asserts that, to every history of deformation gradient
and temperature of a neighborhood there corresponds a unique state of stress
in that neighborhood. An entirely novel feature of the theoty is that these
histories are defined with respect to a time scale, which itself is a mate-
vial property.

in this paper, we have merely presented the framework of the theory
without actually evaluating the material functions involved, through the use
of experimental data. This, however, will be done in Part II of this paper,
where it will be shown that the theory describes experimentally observed

plastic behavior of metals with a remarkable degree of accuracy.

Stipulation

This manuscript is submitted for publication with the understsnding that
the United States Government is authorized to reproduce and distribute re-
prints for governmental purposes.
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Appendix 1

The following is a short account of the experimental work on (a} the
effect of the definition of yield on the shape or the yield surface and (b)
of the work on viscoplasticity. The references given are by no means exhaus-
tive and the author wishes to apologize te people of whose work he 1s not
currently aware,

In Rel.'s € and 7, aluminum alloy tubes®% were subjected to shear pre-
strain by twisting well into the plastic regfion by a nredetermined amount.
The yield surface corresponding to this degree of prestrain was established
by loading the tubes in combined tension and torsion.

In Ref. €, Haghdi found that subsequent yield surfaces distorted in the
direction of the shear axis with a pronounced BRauschinger effect in shear
but there was no effect on the yield siress in tension (i.e. the yield locus
did not change in the vicinity of zero shear stress).

On the other hand, in Ref. 7, Ivey observed that the yield surface, in
addition to distortion, underwent a larpe amount of translation in the direc-
tion of the shear axis, so that for large prestrains the origin of the stress
space was outside the yield surface. However, ' . was in agreement w~ith
Naghdi in that the presence of shear prestrain did not affect the yield stress
in tension. Both authors used deviation from linearity in a stress strain
diagram as a definition of yield.

Mair and Pugh(s) to check the absence of "cross effect", carried out
their own experiments on copper with a high degree of isotropy. However they
used a different definition of yield, this being the point of intersection
of the initial straight part of the stress-strain curve with a backward linear

extrapolation of the "plastic' part of the stress-strain curve,

A
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Their results varied significantly from those of Ivey and Naghdi. They
found that expansion and distortion of the initial locus took place with a
stroug cross effect between shear and tension. Alsoc a pronounced Bauschinger

effect in torsion was found with large initial positive pretorsion. These

authors also observed pronounced '"plastic" unloading in shear.

The results of Szezepinski and Miastkowski(g) tend to confirm the find-

ings of Mair and Pugh(a).

Their results, moreover, were significant in other
respects. Specifically, using the proof strain to define yield, they studied
aluminum alloy sheets under biaxial tension with the intention of finding

the effect of prestrain on the shape of the yield surfaces. They observed,

migration, distortion, expansion and sometimes rotation of the initial yield

locus.
. S oLt (10)
Similar conclusions® can be drawn from Szczepinski's paper , as well
as YWiastkowski and Szczepinski's(l7), in which tubular brass specimens were

subjected to combined axial and circumferential stress.

Initial and subsequent vield loci were plotted when yield was defined
(a) as departure from lirnearity or (b) when it was set to correspond to a
certain proof strain. In particular, when definition (a) was used, subse-

quent yieild loci did not contain the initial locus, but when (b) was used,

with proof strain set at 0.5% subsequent loci contained the initial locus.
Attempts to describe tae change of the yield locus with prestrain, by
simple models have not proved satisractory., Batdorf and Budianski(la),

suggested that after prestrain, the yield locus is the minimum surface

* In this connection, see also work of the same general nature by

Bertsch and Findley(ll) and Hu and Bratt(l?).

— -



21

through the point of prestrain and the initial yield locus. This model

however does not account for the Bauschinger effect. The kinematic hardening

(14)

rule%#® proposed by Prager , was partially successful, in so far as it can
prop y y ’

be of value only when the stress-strain curve of a material in simple tension

is bllinear(ls). Otherwise subsequent shapes of yield locus must be defined

(15)

in terms of a parameter that depends on the .istory of strain to obtain

realistic unloading behavior,

A more realistic model is the one by Hodge(ls) which includes transla-
tion, expansion and distorsion of the yield surface. This model covers all
contingencies but does not include the history of stress on the shape and

position of the yield locus,

However, every definition of yield gives rise to a different yield sur

face. If we insist that the increment of plastic strain is tc be nmormal to

the vield surface, then, for a complex but specific loading history, each

such definition will give rise to a different p.astic strain history. Only

one of these can be the correct one.

So it appears that through Zisenberg's and Phillio's(ls)

mathematical
description of a yield surface hLas been most promising, we must be prepared

to question, if necessary, whether the concept of yield point and yield
surface are the only way by which plastic effects may be described, especially
in view of the fact that these may take place immediately following the ini-
tiation of deformation of material, though they may be negligible in the
region of small strains. This would agree with the point of view that dis-
locations (and, therefore, plastic behavior) originate immediately upon

initiation of the loading.

%% See also Ref. (19).

e e e
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Viscoplasticity

The need for the development of the theory of viscoplasticity arises
from the recognition of the strain rate sensitivity of metals under dynamic
loading.

The difficulty in trving to synthesize a rational 'rate' theory from
experimental observations, a priori, lies in the fact that under dynamic
conditions the inertia effects are significant. 1In the absence of a consti-
tutive theory, these effects cannot be calculatcd.* Therefore, in the case
of dynamic theories, such as viscoplasticity, theory and experiment must
advance together.

The literature abounds with data on the subject of strain rate sensiti-

(20-30) (32)

vity, particularly in one dimension. Lindholn carried out dynamic

experiments in one and two dimensions in an attempt to generalize results
which were arrived at, by consideration of thermally activated processes and
their relation to dislocation theory in metals. See Ref.'s 35-U40.

An early attempt at a theoretical viscoplastic constitutive equation in

(31,32)

one dimension is due to ifalvern. This equation assumes the existence

of a ''static! stress-strain relation and then relates the stress increment,
with respect the static value, to the strain rate.

Modifications and generalizations of Malvern's equation were made by

(33)

Lubliner who included a limiting maximum stress-strain curve, and by
(3u) (35)

Perzyna , Perzyna and Wojno who proposed a multiaxial generalization

®* (Constant strain rate experiments would appear to be an exception, by
being less susceptible to inertia effects. However, Ref., 38 tends to negate
this. Long specimens give different responses to short ones, under the same
conditions.
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for finite strains, assuming the additivity of the elastic and plastic strain

39 . .
components and by Perzyna( ) who used concepts of internal coordinates and

irreversible thermodynamics to eliminate the ahove assumptions and to put the
theory or. sounder foundations.

Though, in his last treatment, Perzvna(3q) abhandoned the additivity of
plastic and elastic strains, he still retained the concepts of yield stress
(and yield surface) and the hypothesis of a datum plastic stress strain rela-
tion, with respect to which "strain history" is to be related to the "excess"
stress through the internal coordinates,

Our theory differs from Perzyna's theory in this respect.

We close by mentioning that, with the exception of the papers by

g)’ only a moderate research effort has been made in the area of

Perzyna(3
coupling between a viscoplastic and a thermal process. However, Chidister

"
and Malvern(QS), Lindholm(z') and Trozera, Sherbv and Dorn(37), considered

the effect of a change in uniform temperature on viscoplastic behavior, with

a view to confirming some results of the dislocation theory.




24

AEEendix II

The form of eq. (3.22) for isotropic materials, according to eq.'s (3.22

a-e), is

vw=kA ¢ + X% A

+ B“c.

€ €,.€ G+Bu e
1 %1i%55 2 %1351 T T1%11%95 T P2 44 944

S+ DScj:s + Euﬂq‘;i

a a x a a
* Ry ag; a5y + %y aps ags

+ % Fd2 (A.2.1)

As a result eq.'s (3.8) and (3.9) yield:

. o a a
%35 T AL 855 S * Apeyy t By il qp

+ D96ij (a summed) (A.2.2)

Y _ a a
~X -a-g- = Dcii + E Q;; ¢ F9 (a summed) (A.2,3)

On the other hand,

a a
kk %i5 ¥ By €39 % €y 655 gy
+ ¥ 6ij3 ( not summed) (A.2,3)

Hence, use of eq. (3.21) in accordance with eq. (3.23f) yields a set of first
order differential equations for q;‘j; these can be expressed as a set for

q:k and enother for the deviatoric part of q(;.j’ which we denote by p:j. Thus

in the notation of eq.'s (3.31) and (3.33)

o
dq
a a a o a kk
= 2.1
Bockk“'coqkk*s +bodz 0 (A.2.4)
o o _a a dpi'
- .2.5
B, &5 * <, iyt b, 37 0 (A )

,
I“‘*W'}““;\\h“@-hhllﬂllll.mull‘ [T
, ,




In both ea.'s (A.2.4) and (A.2.5) a is not summed, It follows from the

above two equations that

[+3
B z ot a z ot
q;k =~ 2 I .)‘u(z z') € . (z')dz' - -E—— I elu(z z )-3(2')d2.' (A.2.86)
a bk a
b t 4 b z
o [} o (o]
a
B Z
p? = - ..2. J ;pu(Z-Z')e._(z.)dz' (A.2.7)
ij 2 Mg i3
2 []

where Xu and o, are given by eq. (3.32).
In the light of the tensorial notation that we have adopted for the

internal variables, let

I [ [ i
€, . =8, [, .| = Ay (€00 = A (A.2.8)
31 gy A 1 e R S P
where, ||c1]]| = Icij l]| , etc Evidently ,
82 = A2 l 2 2.
Al + 382 (A.2.9)
Then as a result of eg.s (A.2.7) and (A.2.8)
' a |Ba|
,pij <'22l s (A.2.10)
CG
a 2
B |al
a [ E
el 2o r B (A.2.11)
c
o )
where as before |9 =
sup
Aiso from eq. (A.2.5),
w22 || 25120 522 []e.. |2+ €22 2 (A.2.12)
2 dz = Y ij a Pig seene
+ 282 ¢2 | p,. .. |
a a ij "ij
However, since
| oas ey | Lo ] e |] (A.2.23)
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it follows from (A.2,12) that

bo 2Py <284, |p® (A.2.14)
2 ||dz 1 2 te
Also as a result of eq. (A.2.4)
a
dq
a kk a a
b l@m | <2 |B| 8 *+ 2|E l s (A.2.15)

At this point we order our internal variables as shown,

1 2 m ., 1 2 m
pij'pij--.-o-pij,qkk,qkk..--Qkk‘

Let q, be a typical internal variable. Then, whether it belongs to “he p-
group or the g~group above, as a result of eq.'s (A.2,10), (A,2.11}, (A.2.14)

and (A.2.14), given two positive members 61 and 62, however small, we can

choose Ao and Al (and therefore A) and & such that

o

dq,
<6, and IH—

_562.
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