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j 33 ABSTRACT

Herein, we propose a mathematical theory of thermo-viscoplaSticity

which is a synthesis of experimentally observed material behavior on 
one

hand, and the concepts of irreversible thermodynamics on the other.

The underlying principle is that the history of deformaticn is de-

fined in terms of a "time scale" which is not measured by a clock, but

is in itself a property of the material at hand.

The theory is unifying in the sense that theories of plasticity,

viscoela-,Ticity and elasticity can be obtained from it as special cases

by imposing suitable constraints on the material parameters 
involved;

furthermore, it does riot make use of the idea of a yield surface.
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ABSTRACT

Herein, we propoae a mathematical theory of theruo-viscoplasticity

which is a synthesis of experimentally observed material behavior on one

hand, and the concepts of irreversible thermodynamics on the other.

The underlying principle is that the history of defformation Is de-

fined in term of a "time scale" which is not measured by a clock, but

is in itself a property of the material at hand.

The theory is unifying in the sense that theories of plasticity,

viscoelasticity and elasticity can be obtained from it as special cases

by imposing suitable constraints on the material parameters involvedl --

furthersor , it does not make use of the idea of a yield surface.
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Section 1. Lndochronic Theory of Viscoplasticity

A
In currnt theories of plasticity, to explain the observed discontin-

uities in material behavior upon loading beyond the "yield point" and upon

unloading, one has to introduce the concept of a yielr su-face in stress

space as well as a "loading function" to distinguish between loading and un-

loading. Similarly, in the case of viscoplasticity, the existence of a

static stress-strain relation and a yield surface are assumed and the stress

increment, with respect to the static value, is related to the :;train rate,

or more generaljy to the strain history, by a constitutive equat.on.

* However, the fact that the phenomenon of yield is usually a gradual

transition from a linear to a non-linear stress-strain response, makes it

difficult to say precisely where yield has occurred, to the extent that

different definitions of yield are used for this purpose. Three such oefin-

itions, for instance, ire (a) the deviation from linearity in the rela-ion

between some measure of strain and stress (b) the internaction of the
initial part of a s*ress strain curve and the backward linear extrapolation

of the "plastic" part of the curve and (c) a value of "proof" stress

corresponding to an arbitrarily defined value of "oroof" strain.

Though, from an engineering viewpoint, the initial yield surface is not 4
overly influenced by the definition of y[eld, it has been found experimentally

that .ubsequent yield surfaceb of a strain hardening material are influenced

by the definition of yield to an extraordinary degree. (See Appendix I). If

we insist that the increment in plastic :scrain is to be normal to the yield

surface, then, for complex stress histories, each such definition will give

rise to a different plastic strain history. Only one of these can be the

'correct one.



The conceptual di[ficulties that are encountered by the introduction of

the yield surface are completely circumvented by our theory cf plasticity

which is developed on the basis of the observacion that the state of stress

in the neighborhood of a point in a plastic material depends on 1:he set of

all previous states of deformation of that neighborhood, but it does not

depend on the rapidity at which such deformation states have succeeded one

another*.

The independence of stress of the rapidity of succession of deformation

states is achieved by introducing a time scale F which is independent of t,

the external time measured by a clock, but which is intrinsically related to

the deformation f the material.

Of course thcie are many ways of introducing such a time scale. However,

it appears almost mandatory that t should b.2 a monotonically increasing func-

tion of deformation, otherwise two differeni states of deformation could exist

"tsimultaneously" i.e. for the same value of F. Furthermore, a positive rate

dcof change - , of the internal energy density c with respect to & could not be

interpreted unambiguously as a process of increasing E, if d could be negative.

A logical definition** for & is then given by the relation

*In the present Section and in subsequent Sections (with the exception of
Section 2) we shall assume that mechanical changes take place in a constant
temperature environment, such as an isothermal atmosphere. The thermal
changes in the material will, therefore, be mechanically induced and, in
general, will remain small. Conversely, only thermal changes of this nature
will be considered in this paper.

**Alternative but less general definitions hdve appeared in the litera-
ture. For instance, llyushin(l) and later Rivlin(2) defined a "time" s by
the relation ds2 = dC..dC... However, we have found that this definition is

too narrow to describe, quantitatively, material behavior in the plastic
range as will be discussed later. The effect of temperature on t, will at I
this time, be considered sufficiently small to be negligible. F'or a more
vague allusion to this possibility see aiso, Schapery (3).



dC2  P dCidC (3.1)iik i k Y

where C.. is the Right Cauchy-Green tensor and P is a fourth order tensor

which could depend on C... The positive definite nature of d 2 requires

that P be positive definite. In tbe cant of small deformation

~ydc jdc
PijkZdid ke

where ic. is the small deformation strain tensor and Pi k couLL ricpcnd on

ii.
Actual materials, on the other hand, do, in general, depend on the his-

tory of deformation as well as on the rapidity, or rate, at which deformation

states succeed one another. To describe materials of this type one may con-

struct a theory of viscoplasticity by introducing a time scale r which is re-

lated to the external time t.

It appears logical to define by the relationship

d 2 = c
2 d& 2 t B2dt

2

where a and A are scalar material parameters. Henceforth d will he called

dz
an "intrinsic time measure", and z(t), such that > (O<<-), will be

called an "intrinsic time scale".

In our theory, the stress (among ether properties) is necessarily, a

functional of the strain history, defined with respect to the intrinsic time

scale, the latter being a property of the material at hand. As a result we

have called our theory an endochronic theory of viscoplasticity.

The theory will now be developed in a general thermodynamic framework in

Section 3. Before this is done, however, the thermodynamic foundations are

laid in Section 2.

I{
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Section 2. Thermodynamic Foundations

The following tre the fundamental laws of thermodynamics, which apply

to all continuous media irrespective of their constitutive properties. (Ecr

materials that are solid-like, in the sense that they have a memory of

their initial configuration, it is more convenient to express these laws in

the material coordinate system x'). In differential form, these are the

first law of thermodynamics,

= /2) I - h (2.1)

the rate of dissipation inequality,

8 = (p /20) T i C . . - ; - n6 0 (2.2)

and the heat conduction inequality

-h e'i 0 (2.3)

The symbols in eq.'s (2.1), (2.2) and (2.3) have the following meaning: p 0c

is the internal energy per unit mass; o and o are the initial and current

mass densities respectively; ij is the stress tensor in the material coor-

dinate system x i ; C. . is the right Cauchy-Green tensor, h
i is the heat flux

vector per unit undeformed area in the material system; p 0Q is the heat supply

per unit mass; o is the temperature, y the irreversible entropy and * and n

=re the free energy and entropy, respectively, per unit undeformed volume

finally a subscript following a comma denotes differentiation with respect

to the corresponding material coordinate. A dot over a quantity denotes

material derivative with respect to time. To avoid repetitious statements,

henceforth we shall refer to C.. as the "deformation".

I L~. - -



In the case of dissipative materials the stress, the internal energy

and entropy densities (and, therefore, the free energy density) of a material

neighborhood depend on the entire history of deformation and temperature of

tnat neighborhood.

In the theory o irreversible thermodynamics the effects of history are

taken into account by specifying that the stress and free energy density are

functions of the current values of C.. and 8 as well as n additional

independent variablcz q , not necessarily observable, called "internal vari-

ablcs". TbhPA may be scalars or comporants of vec¢ors or tenscrs in the

material frame; whatever their geometric nature they must remain invariant

with translation and rotation of the spatial system to satisfy the principle

of material indifference. Thus:

=p (Ci ,oq) (2.4)

i" ii

] = T (Ckt , , qa) (2.5)

It has been shown elsewhere(4) that

ij 2o q (2.6)ao..0 1C

a4 (2.7)

- > 0 (2.B)aqCL a  -

Furthermore the heat flux vector hi is a function of 8,i , ,ij and

q i.e.,

hi hi
h h (O,i , e , C kq) (2.9)

subject to the conditions:



0, hi .f < 0. (2.10 a, b)
!0~

Finally eq. (2.1) in conjunction with eq.'s (2.6) and (2.7) yields

b n- - - (2.11)

The remarkable property of the above equations is that they apply to all

materials irrespective of their constitution. This has not been generally

recognized. in fact the constitutive hature of the material follows from

the constitutive properties of q . For example, in elastic materials q = 0,
Ga

whereas in viscop±azic materials q are given by a set of differential

equations of the typc,

f (q , C.., A) (2.12).

The question of how % are determined for viscoplastic materials is coyisi-

dered in the next Section.

A
A
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Section 3. Constitutive Lquations in Viscovlasticitv

From the right hand side of eq. (2.8) and the fact that dt> 0 and __

dz/dL > 0, it follows that

dq
~ - > 0 (. not summed) (3.1)

q dO

where the nu ivaid unIess 0. It also follows from inequality
wher theinEquality isvai7

dqd
(3.1) that , q Ci and n must be related otherwise and could

dz Iq dz

be prescribed independently and in such a fashion, that the inequality would

be violated. in this event there must exist a set of relations

dq
d' L f l( C q8 6) (3.2)

for all a, where the functions f are material functions.4

It must be noted that, as a result of ep. (3.2) q are indeed functionals

intrinsic time scuic z which is, itself, a material property.

Thus, at least formally, the constitutive equations of the endocnronic

theory of viscoplasticity are now complete in the sense that given the mate-

rial functions f , and h' then for some specified deformation and temperature j
histories, q are found from eq. (3.2) and thus Ti and n are found from eq's.

ai
(2.6) and (2.7) respectively; similarly h the heat flux vector is determined

from eq. (2.0). 1-

Ideally, one would like to know the thermomechanical three-dimensional

response of a material over the whole spectrum of mechanical and thermal con-

ditions, i.e., under all variations in strain, strain rate (or more generally, -

history of strain) and temperature. However, such a task would be a momentous.

if not an impossible, undertaking, the experimental evaluation of the material

_ _ 'P
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functions involved, under wide conditions of strain and temperaturewould be

impractical.

Fortunately the domain of specification of design conditions is usually

limited in some way; for instance usually, (a) large changes of temperature,

fast rates of loading, but small strains are prescribed; or (b) small changes

in temperature and small rates of loading but large strains and/or displace-

ments prevail. More extreme mechanical as well as thermal conditions are

rarer.

It is reasonable to expect that material behavior would be easier to

descpibe mathematically over a narrower domain of environmental conditions,

where the applicability or "correctness" of such mathematical formulation

-would be easier to check experimentally.

In what follows we shall consider situations in which the strain in a

material region R a3 well as the temperature changes relative to a uniform

reference temperature 0 are "small". To make the above statement more pre-

cise let E..(z') denote the historv of the strain tensor*, for z < z' < z
13 0- -

where z is some initial intrinsic time. Set
0

ll ()l )Ic (Z) F (3.3)

and let the supremum of 1IEi.(z)Ilbe A.

Similarly let *(z') be the history of the temperature increment relative

to the reference temperature 0 and let the supremum of 5(z')I be 6. The
0

notion of smallness is made precise by stipulating that A<l and 6-1.

Thus, formally

L o + e (3.4)
0

ij (C.. - 6..)

ij.. .'-3



q4

n + X (3.5)

sup sup (.)

To complete the formalism let X be the entropy change relative and a

reference uniform entropy n0 , and let aij denote the stress tensor. The re-

ference state is defined by the condition that o. . = 0, = =  0, q = 0.
1]

Under these conditions, eq.'s (2.4) through (2.9) and eq. (2.lOb) become,

* ) p (Cij q ,L (3.7)

= .(3.8)

X 0 (3.9)
i

eo¥ - a " 0 (.1.10)

h. k. 0 (3.11)

where k.. is the thermal conductivity tensor.
13

Finally eq. (2.11), becomes

h = e A q + (3.13)

It is shown in Appendix II that InCL and 14 J may stay small in the sense
a and

that given two positive numbers 6 1 and 62 , however small, A and 6 can be cho-

sen small enough such that q I < 6and 141 <
Ia 1 CL

At this stage one may obtain the corresponding equation for qa by

linearizing eq. (3.2). However it is physically more meaningful and, a pos-

teriori, more rewarding to examine more closely the rate of change of
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irreversible entropy y •

From eq. (3.10),

dy 0 dq(314
o dz aq dz -(

It follows from eq.'(s) (3.14) and (3.2) that - may be expressed as a func-

tion of dq o- , g-- , subiect to the condition that dy 0 whenever
dq d-
dq 0 for all a . Thus, if we expand 0 d in a Taylor series and ignoredz- o d'z naTyoseesndgor

terms of order higher than 0(62)* and observe the inequality (3.10), thereby -

eliminating the linear terms in the expansion, then

dy dqdo
o z ba dz dz

Eq.'s (3.14) and (3.15) are simultaneously satisfied if _

dq_+ b = d (3.16)
Dqa bs6 dz

With eq. (3.16) the constitutive description of a viscoplastic material is

now complete.

Explicit Constitutive Equations -

Explicit constitutive equations for viscoplastic materials under condi-I

tions of small strain and small changes in temperature are obtained by ex- - I
panding ;P in eq. (3.7) in Taylor Series and omitting terms of order higher

than 0(62); * linear terms must vanish to satisfy the initial conditions.

Before the expansion is carried out, however, it appears desirable to

regard q not as scalars but components of second order tensors. This, as

will be shown, obviates certain difficulties which arise with the represen-

tation of fourth crder tensors. For instance, in Ref. (4), we were faced 1
*6 is the largest of 61 and 6a. Also, 6 is the largest of 6, A and 6 a.

ai 1 2 1

ii



with having to assume, without proof, that a fourth order tensor C ijk such

that,

CijkZ = Cjikf = Cijlk = Cktij

is given by the series

c a ija a akt (3.17)
ijk 2' a

where a.. are second order symmetric tensors and a are scalars. Problems
13a a

such as this are obviated by giving the internal variables a tensorial char-

acter. Thus the free energy density and other thermodynamic quantities are

now functions of cj , i and n internal variables q,. (a = 1, 2 . ... n),

where qij are symmetric second order tensors, with respect to the material

system X. " In this notation, eq.'s (3.13) through (3.16) now read,

h = a- -- q +Q (3.18)

i i

o dz .a dz -(
"3-iJ

y E a

zdz a ijkZ i Z (3.20)*

and

b€*a dkZ = 0 (3,21)

3qa ijke dzij
(a not summed)

?tExpansaions of the tyne bd _ kZ and aS a a
ijkZ dz dz a ijkt qij qkl reduce to

the above form. See Ref. 5.
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Furthermore, in view of my previous discussion,

Aijk ij B ijke q" Cijk qij q

+ Di. C.j . E? a .qij + ; F _ 2  (3.22)
1] 1) ii i.

Though, in principle, eq.'s (3.8), (3.9), (3.18), (3.21) and (3.22) are

sufficient for the derivation of explicit constitutive equations, we shall

obtain these only for isotropic material, so as to keep the algebra at a

mininmum. For such materials

A ijk =A 1 6kt + A2 6ik 6 i

ijk B1 i k 2 ik 6

ijkZ 1 ij 6kt 2 ik jt

C? C a6 6 C 6 6
lijk 1 ij 6kt +2 ik j

D.. D 6.. (3.23 a-f)

E?. =E 6..
1) 1]

k., k 6..1] i]

b L a6 6 b C& 6 6
ijk£e I ij k +2 ik j.

It is worth noting that here we consider materials which are "stable"

in the sense that straining of the reference configuration under isothermal

conditions will increase the free energy density . Thus Aijke and C' iijkt
i and

are positive definite. As a consequence A , A2 , C1 and C2 are all positive.

Omitting superfluous algebra, the coupled thermomechanical constitutive
U7kk

equations take the fol"-wing form in terms of the hydrostatic stress a a

the deviatoric stress te-sor a.. , the increment in temperature , the

ijJ
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hydrostatic strain t kk , the deviatoric strain tensor ei. and the

entropy increment X ; in terms of the above notation:

z ae,.

s.. 2 P (z-z') -- 1- dZ' (3.24)
3z

0

z kk azs@

K(z-z') --- dz' + (z-z') T dz' (3.25)
Jz Z

0 0

-x ,,
z  kk ;3

-X D(z-z') -- dz' + F(z-z') dz' f3.26)
z z
0 0

where,

H( C2  2 C

B0 BaI B0  B0  -X zK (z) (A - o_ 3)8(z) °  o e 0 (3.27)

C 0 C.
o 0

E
K(z) = (D-A 0 0 ) H(z) + 0 e a (3.28)

0 C C C

CC C

0 0

(z) = E H(z) + (3.30)

A 13OA1+i BO= 1/3 (3B I+ B2 CO 1/3~ 3CI + C2 ) 3.31)

1 2

The heat conduction equation is similarly found to be:

dt z sZkk
d k 9 i - Ck(Z-Z') " , dz' o - o z D(z-z') a -- dz'

z z
0 0

i
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+ q+. + Ib2 qij qij (3.34)

where

C - - 0 F(z) (3.35)
V 0

and r-,pf over a quantity implies differentiation with respect to z. The

lower limit z denotes the intrinsic time of the reference state.

( f

I i=

_d1~~i
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Section 4. Endochronic Theory of Plasticity and its Relation to Present Theories

Our theory of plasticity, which is a rate independent endochronic theory,

is obtained by replacing the time measure dC by dt. The time scale now becomes

z(M), but the form of the constitutive equations remains unaltered. In parti-

cular, the "linear" form of our theory is obtained by setting

dd = Pijkt dcij dc kZ (4.1)

where Pijkt is a positive definite fourth order material tensor. We repeat

the constitutive equations of the linear theory, in the particular case when

the deformation is isothermal so that a comparison may be made with current

theories. When 0 0, then eq.'s (3.24) and (3.25) become,

z ae..

* 2 U (z-z') (l dz4 (.2)
z

*k - 3 zK(z-z') ack dz' (4.3)

z
0

where z a z().

If the material behaves elastically under pressure (so-called plasti-

cally incompressible) then K(z) is a constant and in this case

'kk 314kk (4.4)

Whereas,

s 2 J u (z-z' ) deij(z' ) (4.5)

0

Let now u (W) consist of a single exponential term i.e.

(z): u 0e (4.6)--



r3

516

In this event

5 ij 2u a del (Z') (4.7)
z

0

The integral eq. (4.7) is reducible to the differential equation

ij 2w 0 i 2 u0 ij

Now, y ds may be identified as the "elastic" component of deviatoric
2u 0 ii

strain of classical plasticity. If one follows the traditional definition

of "plastic strain" deijp given below, i.e.,

deP= d - dc. (49)

then in view of eq. (48)

de P d z (4.10)ij 2u 0 ii

But these are the Prandtl-Reuss relations. Hence our present theory contains

these relations ar a special case. Where then does it differ from this theory?

It does in the interpretation of the proportionality coefficient dz. In the

Prandtl-Reuss theory dE may be positive negative or zero, and in fact, z has

been identified with the yield surface, i.e., plastic action is assumed to

Occur when dz , o, where

Z = z(sij) (4.11)

but that dei is zero whenever

dz < o (4.12)

In the present theory dz is always positive if the mate'ial is deforming (it

is zero only when deformation does not take place). Thus always,
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dz > o ('4.13)

Furthermore dz is not given by eq. (4.11) i.e. it is rot related to soma

yield surface but its definition is entirely kinematic. Thus, no yield

phenomenon or surface are postulated here. One obtains the stress response

by merely monitoring the history of strain.

Also the theory admits a further generality since a(z) need not consist

of a single exponential term.

For instance u (z) may be of the form

W (z) =Wu 0  +U I e -  
. (4.14)

In this case, however, the differential form of eq. (4.7) becomcs:

2(v 0 + U I ) deij + 2u 0 a e., dz = dsij + a s.j dz . (4.15)

The shear modulus u, at z = 0, (initial modulus), i; (u 0 +u l )  The

I"plastic" components of the deviatoric shear strain teusor are given from

eq. (4.9), i.e.,

de -L dz s.. 211 .. (4.16)
Ij 2 I 13 0 j

Note that eq. (4.16) does not satisfy the Frandtl-Reuss relaL. ons, which are

also violated if one adds more exponential terms to the right hand side of

eq. (4.14). In fact these relations will be satisfied if and only if u (z)

is given by eq. (4.6), i.e., u is represented by a single exponential term

only. This situation is not particularly disturbin. Peters et Als (40 )

carrietd out experiments on thin walled 14S-T4 aluminum alloy cylinders bv

loading these in combined compression and torsion and found that the Prandtl-

Reuss relations were not satisfied, for this particular metal.
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Conclusions

A theory has been presented here, the scope of which is wide enough to

allow a rational phenomenological description of mechanical behavior of

materials under various histories of strain arid temperature. In particular,

the viscopiastic behavior of materials is formulated mathematically, without

recourse to the dichotomy of the deformation history in plastic and elastic

parts and without the recessity of introducing discontinuities in material

behavior, such as yield surfaces.

The theory merely asserts that, to every history of deformation gradient

and xemperature of a neighborhood there corresponds a unique state of btress

in that neighborhood. An entirely nove) feature of the theoty is that these

histories are defined with respect to a time scale, which itself is a mate-

rial propertV.

in this paper, we have merely presented the framework of the theory

without actually evaluating the material functions involved, through the use

of experimental data. This, however, will be done in Part II of this paper,

where it will be shown that the theory describes experimentally observed

plastic behavior of metals with a remarkable degree of accuracy.

Stipulation

This manuscript is submitted for publication with the understonding that

the United States Government is authorized to reproduce and distribute re-

prints for governmental purposes.
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Appendix 1

The following is a short Account of the experimental work on (a) the

effect of the definition of yield on the shape of the yield surface and (b)

of the work on viscoplasticity. Thi referrnces given are by no means exhaus-

tive and the author wishes to apol' ize 1o people of whose work he is not

currently aware.

In Fef.'s C and 7, aluminum alloy tubes** were subjected to shear pre-

strain by twisting well into the plastic region by a nredetermined amount.

The yield surface correspondinp to this degree of prestrain was established

by loading the tubes in combined tension and torsion.

In Ref. 6, Naghdi found that subsequent yield surfaces distorted in the

direction of the shear axis with a pronounced Bauschinger effect in shear

but there was no effect on the yield stress in tension (i.e. the yield locus

did not change in the vicinity of zero shear stress).

On the other hand, in Ref. 7, Ivey observed that the yield surface, in

addition to distortion, underwent a large amount of translation in the direc-

tion of the shear axis, so that for large prestrains the origin of the stress

space was outside the yield surface. However, '. was in agreement lith

Naghdi in that the presence of shear prestrain did not affect the yield stress

in tension. Both a,thors used deviation from linearity in a stress strain

diagram as a definition of yield.

(8)Mair and Pugh to check the absence of "cross effect", carried out

their own experiments on copper with a high degree of isotropy. |Powever they

used a different definition of yield, this being the point of intersection

of the initial straight part of the stress-strain curve with a backward linear

extrapolation of the "plastic" part of the stress-strain curve.
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Their results varied significantly from those of Ivey and Waghdi. They

found that expansion and distortion of the initial locus took place with a

stro,)g cross effect between shear and tension. Also a pronounced Bauschinger

effect in torsion was found with large initial positive pretorsion. These

authors also observed pronounced "plastic" unloading in shear.

The results of Szczepinski and Miastkowski tend to confirn, the find-

ings of Mair and Pugh )
. Their results, moreover, were significant in other

respects. Specifically, using the proof strain to define yield, they studied

aluminum alloy sheets under biaxial tension with the intention of finding

the effect of prestrain on the shape of the yield surfaces. They observed,

migration, distortion, expansion and sometimes rotation of the initial yield

locus.

(10)
Similar conclusions* can be drawn from Szczepinski's paper as well

(17)

as liiastkowski and Szczepinski's ), in which tubular brass specimens were

subjected to combined axi3l and circumferential stress.

Initial and subsequent yield loci were plotted when yield was defined

(a) as departure from lir.earity or (b) when it was set to correspond to a

certain proof strain. In particular, when definition (a) was used, subse-

quent yield loci did not contain the initial locus, but when (b) was used,

with proof strain set at 0.5% subsequent loci contained the initial locus.

Attempts to describe the change of the yield locus with prestrain, by

(13)
simple models have not proved satisfactory. Batdorf and Budianski )

,

suggested that after prestrain, the yield locus is the minimum surface

* In this connection, see also work of the same general nature by
Brt(1 2 )"

Bertsch and Findley(11) and Hu and ratt(

i
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through the point of prestrain and the initial yield locus. This model

however does not account for the Bauschinger effect. The kinematic hardening

(14)
rule** proposed by Prager , was partially successful, in so far as it can

be of value only when the stress-strain curve of a material in simple tension

(15)
is bilinear 1 . Otherwise subsequent shapPe of yield locus must be defined

in terms of a parameter that depends on the !istory of strain (1 5 ) to obtain

realistic unloading behavior.

A more realistic model is the one by Hodge (16 ) which includes transla-

tion, expansion and distorsion of the yield surface. This model covers all

contingencies but does not include the history of stress on the shape and

position of the yield locus.

However, every definition of yield gives rise to a different yield sur- I
face. If we insist that the increment of plastic strain is tc be normal to

the yield surface, then, for a complex but specific loading history, each

such definition will give rise to a different p:astic strain history. Only

one of these can be the correct one.

Philip's(15)
So it appears that through Zisenberg's and Phillivs mathematical

description of a yield surface has been most promising, we must be prepared

to question, if necessary, whether the concept of yield point and yield

surface are the only way by which plastic effects may be described, especially

in view of the fact that these may take place immediately following the ini-

tiation of deformation of material, though they may be negligible in the

region of small strains. This would agree with the point of view that dis-

locations (and, therefore, plastic behavior) originate immediately upon

initiation of the loading.

*S See also Ref. (19).
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Viscoplast icitv

The need for the develoT)ment of the theory of viscoplasticity arises

from the recognition of the strain rate sensitivity of metals under dynamic

loading.

The difficulty in trying to synthesize a rational "rate" theory from

experimental observations, a priori, lies in the fact that under dynamic

conditions the inertia effects are significant. In the absence of a consti-

tutive theory, these effects cannot be calculatcd,* Therefore, in the case

of dynamic theories, such as viscoplasticity, theory and experiment must

advance together.

The literature abounds with data on the subject of strain rate sensiti-

vity, particularly in one dimension.(20- 30) Lindholn (3 2 ) carried out dynamic

experiments in one and two dimensions in an attempt to generalize results

which were arrived at, by consideration of thermally activated processes and

their relation to dislocation theory in metals. See Ref.'s 35-40.

An early attempt at a theoretical viscoplastic constitutive equation in

one dimension is due to Malvern.(3 1 ,32 ) This equation assumes the existence

of a "static" stress-strain relation and then relates the --tress increment,

with respect the static value, to the strain rate.

Modifications and generalizations of Malvern's equation were made by

Lubliner( 33 ) who included a limiting maximum stress-strain curve, and by

(314) (35)
Perzyna(  , Perzyna and Wojno who proposed a multiaxial generalization

' Constant strain rate experiments would appear to be an exception, by

being less susceptible to inertia effects. However, Ref. 38 tends to negate

this. Long specimens give different responses to short ones, under the same

conditions.
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for finite strains, assuming the additivity of the elastic and plastic strain

components and by Perzyna who used concepts of internal coordinates and

irreversible thermodynamics to eliminate the above assumptions and to Dut the

theory on sounder foundations.

(3q)Though, in his last treatment, Perzvna abandoned the additivity of

plastic and elastic strains, he still retained the concepts of yield stress

(and yield surface) and the hypothesis of a datum plastic stress strain rela-

tion, with respect to which "strain history" is to be related to the "excess"

stress through the internal coordinates.

Our theory differs from Perzyna's theory in this respect.

We close by mentioning that, with the exception of the papers by

(39)Perzyna )
, only a moderate research effort has been made in the area of

coupling between a viscoplastic and a thermal process. However, Chidister

(25) (27) (37)
and Malvern Lindholm and Trozera, Sherby and Dorn considered

the effect of a change in uniform temperature on viscoplastic behavior, with

a view to confirming some results of the dislocation theory.

_______________Ii
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Appendix II

The form of eq. (3,22) for isotropic materials, according to eq,'s (3.22

a-e), is

S A1  J + A2 ijEij + B'ciiqjj + B2 Ej qij
I2 ii j 1

Ca q0i qj + 3 C q'j ql. + Dc + E Qqi i
S2 i jji

+ F5 2  
(A.2.1)

As a result eq.'s (3.8) and (3.9) yield:

°1J.A 1 6Ij £kk + A2 ii + Bl Eij qkk + B2 q'j

+ D$6.i (a sunmed) (A.2.2)

-X = Dc.. + E qai + F (a summed) (A.2.3)

On the other hand,

B a ~C 6 +Ba c + Ca 6j qQa 1 kk ij 2 ij 1 ij kkSqj

+ CQ qj + EQ 6.. ( not summed) (A.2.3)

Hence, use of eq. (3.21) in accordance with eq. (3.23f) yields a set of first

order differential, equations for qij; these can be expressed as a set for

q and another for the deviatoric part of qlj, which we denote by plj. Thus
in the notation of eq.'s (3.31) and (3.33)

dqa
Ba + Ca q E b' q kko kk o kk + E o d = 0 (A.2.4)

B0 eij + C' pj + bd = 0 (A.2.5)2 2ii +p.b 2.**
2 - Q

- ~ I
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In both ea.'s (A.2.4) and (A.2.5) a is not summed. It follows from the

above two equations that

S0B Z-z r (z')dz' - ' (z - z ' ) -(Nz ) d z '  (A.2.6)

qkk b a b a  - k ba

0 0 0 0

Pj B2  2z  eU(z-z')eij(z')dz (A.2.7)
j b "2 fz

wherse XC and pa are given by eq. (3.32).

In the light of the tensorial notation that we have adopted for the

internal variables, let
ie1j', AI ' : o  (A.2.8)

ijsup sup0

where, l ij11= Ic. *ijl , etc. Evidently *

12 = A2 + .1 A2  (A.2.9)
1 3 o I

Then as a result of eg.s (A.2.7) and (A.2.8)

H 1 i

Iqkk < CB -  o a (A.2.11)

C a
a B0 0 E-

where as before sup

Also from eq. (A.2.5),

(ba)
2  112 (B

2
)1 11ei. 112  (C

2
)
2 1lriH 2  

(A.2.12)

+ 2B C p.. C..

However, since

p1. e.i . i 11 1e.. 11 (A.2.1.3)
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it follow:s from (A.2.12) that

Also as a result of eq. (A.2.4)

b ld---{ <_ 2 B al o + 2 E 
a  (A.2.15)

:1 z 1 02~ 0 21~ ~. ~

At this point we order our internal variables as shown,

1 2 m 1 2 m
Pij ' Pij ...... Pij qkk I qkk .... kk

Let q. be a typical internal variable. Then, whether it belongs to -.he p-

group or the q-group above, as a result of eq.'s (A.2.10), (A.2.1l), (A.2.14)

and (A.2.14), given two positive members 61 and 82, however small, we can

choose A and a1 (and therefore A) and 6 such that

q 6 and jd..

- -- 2
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