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ABSTRACT

The endochronic theory of viscoplasticity developed previously
by the author is used to give quantitative analytical predictiocns on
the mechanical response of aluminum and copper under conditions of
complex strain histories. One single constitutive equation describes
with remarkable accuracy and sase of calculation diverse phenomena, such
as cross-hardening, loading and unloading loops, ¢yclic hardening as
well as oehavior in tension in the presence of a shearing stress, which

have bean observed experimentally by four different authors.




where B is a positive constant, Note that 8 > 0 because bzu > 0, as well
dy

as —yr > 0, thus necessitating that f(g) > 0, for a1 ¢, As a result of

Eq.'s (2.7) and (2,8),

z = %log (1 + BZ) (2.9)

an expression which has been found to give excellent agreement in the casas

of some significant sxperiments, as will be shown in subsequent Saections.

In the absence of expsrimental data, the question of the form of the
"pelarxation" functions A(z) and u(z) is equally difficult.

There are two simplifying assumptiors, however, vwhich lead to a
relation between A(z) and u(z), so that one is left with the problem of

finding the form of only one of these functions. One is that of an elastic

hydrostatic reaponse and the other is the assumption of constant Polsson’s

ratio,

Efficient use of the first assumption is made by writing Eq. (1.1)

in terms of the hydrostatic and deviatonic components of aij’ in which case

z
Iy * 3 / K(z-z') ackk dz!' (2,10)
) SZ'

w

z °¢;
- ¢! . ]
8i3 * 2 4/; ulz-t") - dz (2,11)

where K 2) is the bulk modulus,
NZ) = KH(Z).

Elastic hydrostatic response implies that

in which case Eq, (2,10) becomes,

9 ° 3)(‘)« (2.12)

The assumption of corn:tant foisson ratic leads to the conclusion that

pu(z) and Kz) differ by a multiplicative constant, and can both be written
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in terms of a single function G(z), such that
K(z) = Kg G(z) (2.13)
u(z) = Mg G(z) {(2.1m)

where G(0) = 1,

This assumption has the added advantage that, under condition of
plane stress, or uniaxial strain, the strain in the unstressed direction
is related to the strains in the stressed directions by a multiplicative
constant, Thus the strain increnents in the direction of zero stress
may be easily eliminated from the exprassionfer df so that the latter may
be expre¢ssed solely in terms of the strain increments in the gtressed

directions,

3, Crosshardening in lapsion-torsi

It has been observed that in aluminum and copper as well as in other
metals, prestraining in torsion, well into the plastic range, has a signi-
ficant hardening effact on the stress strain curve in tension,

In this Section we shall analyze data by Mair and Pugh, who have
investigated this effect on annealed corper., Their experiments werc per-
formed accurately and with care, on very thin circular cylinders which
were twisted well into the plastic region, so that upon unloading there
remained a permanent residual shear strain., The effect of initial shear
prestrain on the tensile response was then obtained by loading the cylinders
in tension.

The constitutive equations pertinent to the above situation are easily

found to be:
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E gty de . ~
£(z-2") red dz (3.1)
o

H
H
3

TR

z d
Tz 2 / u(zez') 3%' dz' (3,2)
°

where o and € are the «xial stress and strain, respectively, and t and
n are the raspective shear stress and tensional shear strainj the moduli
E(z) and u(z) are interrelated through the bulk modulus K(z), Their re-

iating is best expressed through their Laplace transforms:

= 8u
E = —_ (3.3)

1+ =
K

To deal with the effect of cross-hardening analytically, we have

assumed a constant poisson ratio, As a result Eq. (3,3) reduces to the form:

E(z) = EOG(Z) (3.4) 3
where é
u :
E = —O-—- (3.5)
[o] Uo
3Ko z

Regarding the form of G(z) we have taken the simplest possible view

o vl

by assuming that

Dol e

G(z) = %2 (3.6)
Despite these simplifications we have been able to obtain excellent
agreement with experimental data that have hitberto lacked analytical

representation,

Analxsis

In the tension-torsicn test the effect of constant poisson ratio is to
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reduce dc2 to the form

't 2 2 2
dg” = kl de + k2 d" (3.7
where kl and k2 are material constants, not the same as those in Ea. (1.,6).
! During torsion (¢=0),
§ = k2n (3.8)

whereas during tension (n=n°) and after pratension

i =
: 14 k2n° + klc (3.9)

where n, is the maximwn shear prestrain,

Equation (3,1) may now be written in the form

4
t o = Eo J/P GLz(z)-2z(g")] 2%5 dac' (3.10)
4
o

(where c°= k2n°) when allowance is made of the fact that € = 0 in the
range 0 < § < kzno‘ Thus cross-hardeaning is taken fully into account by
Eqs (3.10), through the shear prestrain parameter §oo which appears as a
‘ lower limit on the integral on the right hand side of Eq. (3.10), If,

in particular, we assume that G(Z) is given by Eq, (3,6) and use of this

is made irn Eq. (3,10) the latter becomes

N1 /‘ REICONE- T (3.11)

)
%
The integral in the right hand side of Eq., (3,1.1) ¢can be evaluated
explicitly by using Eq. (2.9) and noting that during monotonically increasing

extension %%‘ =k « Omitting the algebra,

1
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where :
n=1 +% (3.13)
and
Gyt =8, + ke (3.14)

Equation (3.12) represents a family of stress strain waves in tension,
in terms of the prestrain paramster ;o and the “cross-hardening" parameter® B,

To determine the material parameters in Eq. (3.,12) we note that in the

absence of shear prestrain (co =0),

EO(1+Blc) -1
c = ——————{l - (l#B c) } (3‘15)
g8 n 1
1l
where Bl s le.

ke BB

AL AL 51 MRS 8 il 1 b e

It may be verified that as ¢ + 0, o = Eoc i,e, Eo is the initial shape

of the stressestrain curve, Alsc as c¢ lncrecses, ¢ tends symptotically to

the linear expression

g = EO (l+sl£) (3.16)

Bln

* There is ample justificaticn for calling 8 the cross-hardening parameter,

Indeed in the limit of 8 = 0, and using Eq. (3.9) Eq. (3.12) becomes:

E

0 = E:; (1-87%%)

which is independent of Co in other wcrds cross-hardening cannot take

place when 8 = 0, as pointed out earlier,
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If Et is the slope (tangent modulus) of the agymptotic Straight line, E

then

t
ns 53 (3.17)
t

Also, as shown in Fig., 1, if one extrapolates backwards the asymptotic
straight line to intersect the stress axis one obtains an intercept o

from which Bl is determined by the relation

Et

Pe) <

Similarly integration of Eq. (3,2) yields an equation analogous to 3

Eq. (3.16); this is

2uo(l+82n -n

T =T{l - (1+B2n) } (2.19)

where 82 = kze. Thus, 82 and u, may be determined f..om Eq. (3.19).

M O s i

Finally we observe from Eq. (3.12) that the intercepts °o' in the

presence of shear prestrain co are given from the expression

o)

' = H = R
g 9, ( +BCO) 9, (l+B2n°) (3.,20)

Equation (3,20) was used to confirm the self-consistency of the theory.
k

However Eq.'s (3,12), (3,1 ) and (3.,19) can only yield the ratio (Ei)
2
but the constants k, and k2 cannot be evaluated, In this sense; and for

these experiments one may choose k2 arbitrarily; we chose k_ = 1,

2
Experimental data obtained by Mair and Pugh that illustrate the effect

of cross-hardening are given in Fig. 2,

Curve 0 is the virgin stress strain curve for the type of copper they

, L .
ottt sttt ettt 2 vttt et e ot o el b sl

used. The circles on the curves A, B and C are experimental points corres-

10




ponding to initial shear prestrains of .25x10’2, 1,5%102 and 3x10”2

respectively.,

From curve 0, £ = 16x10° 1b/1n%, 8. = ,5310%, n = u6, With
k2 =1, Eq. (3,20) was used to give k = 1,00, The curves A, B and C
were then calculated and plotted as shown. Without a doubt the ajree-

ment between th~orv and axperiment is remarkable,

4, Repetitive loadin‘-unlondinafcyclcs

The tensile strain history e(g) corresponding to a typical tensile
loading-unloading sequence is shown in Fig. 3. We use the terms "straining"
and "unstraining" in the following sensei

The ranges 0 < & < &, §,< L€ 8gy £ &8¢ & &

5 °p <_{ represent straining

1

in tension,

The ranges Cl<_c< .2.C3< g < CA' 4

55- L < CC represents unstraining in

ot e ol

tension,

The ranges cA < i< Cu' CSL < ¢ s 0= ze represent straining in

6° 7=
compression,
The ranges gy LB CB’ TS B Bge §g 8 &y represent unstraining in
compression,

Points on the g-axis denoted by cr (r=1,2,.4:) represent points of
discontinuity in de. broughi about by reverting from straining to unstraining

13

histories, or vice=-versa.

A perusal of experinui 1) data on copper, shows that the c¢cnstitutive
equation of the metal varies depending on its previous history of manufacture
and subsequent annealing, The single term form of G(;) that explained Mair

(2) (3)

and Pugh's data so well was found inadequate to explain data by lubahn

11
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and by Hadsworth(“).

Wwe fou ;aver, that the adoption of a single extra term for

G(z) sufficies to describe quantitavely broad trends of their data. In
effact we took

E, + G, 22

&(z) = E + G, (8.3

or

E, + E.¢" %

E(z) 1 2 s, 20

Let % {m = 1,2.,..) be the last point of discontinuity in %%. Then using

Eq's, (2,9), (3.,1) and (4,1) and in the range IR

(148 )"
g s (l+3C)0 }("l)m - —-—‘1——-— + 2 ‘£! ("l)r‘*l Tg—“-r }PE [ 4 (“03)
°\ (148)" re- *ee .

The quantities {_may be evaluated axplicitly in terms of <. (the values

of strain corresponding to cr) by the formula

r 8=1 r
&, @ 2kl sgl (-1) € * kl('l) €

4.4
" ( )
The effect of El_on the unstraining characteristics 14 remarkable,

especially since its effect on the shape of the straining part of the

stress-strain cmrve is minimal. Let the history e(z) be one of continuous

straining. Then Eq. (4,3) becomes:

E (l+81a) -n X
[« El € + -—-‘;-B-——( l‘(lfBlC) } (“.5.

1

From Eq, (4,5) we obtain the following relations in the notation of

Section 3,

12
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: ¥ =

Ll + 2 Eo (4 ,6a)
2 =0 (4,6b)
;] + ;)ul : Et (“QGC)

Equations (4,ba ¢ do not suffice for the determination of the four

_unk= . material constants El. E2. n, Bl. It has been found that a fourth

reration can be gbt:iiue: Sy considering the "unloading' portion of the stress-

strain history.,

r‘g. ¥, shows -.e stress-strain relation for a uniaxial specimen

whici. nas beern strained in tension to a strain value e_ i whereupen it is

1
unloaded ard comorisse. until the final strain is zervc.

t { he .t A;n-;ntr‘nuic time measurs history ¢(f) corresponding to the
above stress-strip hisfory is also shown in Fig. 5,
Equatica (4,3) in conjunction with the ahove history yi¢ ds the

relation, at € = 0

2(1+acl)“-1
os oo(l+8c)( 1l e e}

Py (4,7)
(1+8¢)
1f the value of € is sufficiently large (in the case of copper this value

was fourd to be SOxlO-a, or so) then ooc is given very msarly by the

expression

[«

0 = -0 (1+4287.) = ~ o (1428 ¢ ) (4,8)
° o 1 ] 11

The constant Bl can now be obtained from Eq. (4,8) and the constants El'

E, and n can be found from Eq's. (4.6a-c),

We illustrite the points made in the above discussion in Fig. 6 where stress

13
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strain curves for three different materials are given when these are
subjected to the same strain history shown in Vig. 5.

The constants for these materials are given in the following table:

El E2 8 n
1 0 6.1ux10° Lux10° 25
2 . 24x10° 5,9x0° 0 -
3 J12a0® 6.02x)0° . 2x10° 50

What is remarkable is that changing B results in these materials having
indistinguishable stress-strain curves during straining but wildly
differing ones during unstraining.

In Fig. 7 we illustrate an attempt to predict analytically the
leoading-unloading~loading response of copper in simple tension. The
solid l'ne is an experimental curve obtained by Lubahn(a) for a copper
specimen which had already undergone similar strain cycles. We have assumed,
however, that these have a negligible effect in the response shown because
they occured sufficiently far in the distant '"past".

The triangular points shown, were obtained theoretically from Eq. (4.3)
by assuming that the specimen was continually extended (without unstraining)
until the strain e = S:&..sxlo'3 was reached, The unstraining-straining
cycle was then applied.

Daspite the fact thac E(z) was approximated by two terms, as in
Eq. (4.2) the agreemsnt between theory and experiment is remarkable, The

constants employed were, 9= sx103, E, = .l25x106, B = .02x103, n = 160.

1
In fact we are not awvare of another instance where an attempt was made

to describe such experimental data analytizally by means of one single

14
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constitutive equation, 1In addition we can say with assurance that the
observed difference between theory and obhservetion can be reduced further
by including more exponential terms in the series representation for E(z).
We ¢onclude this Section by considering the effect of work hardening under
cyclic straining. In particular we shall examine the work of Wadsworthﬁ(h)
and show that owr theory agaln provides an excellent analytical basis for
hie results,

In this work single copper crystuis were tested under conditions of
uniaxial cyclic strain; The data was presented in terms of the resolved
shear stress andé strain in the plane of slip.

ig., 8 gives the first few cycles of his gtraining program, in which
a crystal was cycled under fixed limits of resolved shear strain of 7x10-3.
The "peak stresses' corresponding to the extreme values of tensile and
compressive strain increased monotonically with the number of cycles,

In rig. 9 the values of peak tensile and compressgsive stresses have been
plotted by Wadsworth against [dn]. 1Ir is rather interesting that he
feit that such a plot was meaningful, without further elaboration on this
pcint. Of course !dn|, but for a scalar fa.tor, is our intrinsic time
measure,

The history of the resoived shear strain versus { ls shown in Fig, 10,
From this Figure it fcllows that & = (2m-l)Akl. Equations (4,5¢) and (u4,8)
were now utilized to find Bkl, which we denote by Bl, and El. It was found

that 8, = 12.3 and E, = 2x10° YD

1 1 . At this point n could not be determined

cm
because the initial slope of the stress~strain cu~ve corresponding to & El

could not be evaluated accurately,

livWwever letting v 2 ‘lz*cn‘ it was found that as m + =, Eq, (4,3)

i

[¥a}

(™)

b 9 b s

ol M ol 8 s S
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Wkl




yields the asymptotic expressgion:

T = nBr A+ El A (4.9)

Hence, from the tensile experimental curve of Fig. y of Ref, y , n could

3
3
M
H
i

be determined explicitly and was found to be squal te 225, For this value

of n the term TTéFE—T n was found to be negligible for m > 1,
m

Thus tor the history in Fig, 10, Eq. (4.3) gives

n [l+(2r-l)8 A

T s 1 [1+8, (2mel)al (=122 - 1 ] n ( l)”*l . (4,10)
m+l o PRt ~1) ol 3;73;:333;3; - +E,r

' The above equation can be simplified further for large values of m, In
particular for m > 50, it was found that the series in the bracket on the

right hand side of Eq, (4.1C) degenerates intc the geometric series

m r u
ply (FW) o~ - (4,11)

whera

§l+(2m-l)BlA n
us l+t2m+l5816 }

(4.,12)

Equation (4,10) may now be written in an asymptotic form in terme of the

absolute value c¢f the shear stress as follows:

. 2
lrml =(1+8(2mel)o k(-1 + oo HES (4,13)

For very large values of m (m »>> n) Eq. (4,13) simplifies further and

becomes

[t ]z ==~ s+ g8 (4,14)

16




Thus,

Lim'rm[ e nBlro A+ ElA (4,15)

m -+

In Fig. 1) a plot has been made of the theoretical relation batween

[rml and md odtained from Eq, (4.13), The experimental points obtained

by Wadsworth are also shown. The following comments are in order. Though

our theory does give values for “m which are different in tension from those

in compression, the difference is not as grasat as the experimental data

indicate, and is too small to be plotted on the scale shown, However, the

theoretical curve lies very close to, and is in fact bounded by tha exper-
imental points, which indicate a deviation between the values of compressive
stress and those of tensile stress which increases with m but is naver greater

than 5.5%,

This is the first time that a theory of plasticity has provided a natiomal

explanation for the phenomena of cyclic hardening.

5, Tensile response in the presence of initial shear stress

In Section 3 we obtained a theoretical prediztion of the effect of

prestirain in torsicn on the stress strain curve in tension, In this Section

we shall examine theoretically, in the light of our endochronic theory, the

effect of initial constant prestress in torsion on the stress-strain curve

in tension, To do this, we have assumed, just as we did in Section 3, that

A A Tt 1o s i Dt

E£(z) and u(z) are proportional to some relaxation function 0(z), and further-

more that G(z) consists of a single exponential term i,e, it is given by

Eq. (3.6). Thus

E(z) = L P (5.1)

-l vt B
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In the light of Eq. (5.1) and bearing in mind Eq. (2,9), the constitutive

Eq.s (3,1) and (3.2) can ba reduced to the differential equations

E de _ w0 dg

o T TTE'ET (.2
dn _ at dr
2u°3-c- * YTET +a-c—' (5.3)

where, as in Section 3,
2 _ 2 2
d¢” = kldc + kzdn (5.4)

As mentioned above the test to be discussed consists of applying an initial
stress t1° corresponding to an initial strain Mot then keeping ° constant,
a axial strain € is applied and the axial stress o is measured, The object
at hand is to deduce from Eq.'s (5,1-5,4) the relation between o and ¢,
and compars with the experimental data obtained by Ivey(5).

To accomplish this we proceed as follows. From Eq. (5.4) it is clear

that the axial straining process begins at { = &y wheve

¢, = k2no {5.5)

During this process %% = 0, so that from Eq. (5,3)
at® d
= 6
dn !U:v I:éz (5.6)

Equations (5.4) and (5,6) now combine to show that during the axial straining

process,
o 2 2
2 2 .2 2 ,ax dg
di” = k,© de ¢ k., (g (5.7)
1 2B esg)?

At this point we introduce the variable 6 such that

18




(5.8)

Also let ‘R2'>= k, le =8 and ¢ 2 (kcr°/2u°). Then, in terma of ¢ and
L

a3 a result of Eq. (5,7)

( --—-—,°2 } ; (5.8)
do (1 - = de 5,8
{ (l*Ble)

Equation (5,8) may »e integrated subject to the initial condition that at

¢ = k2no. € = 0; or, & = eo = kno, €= 0,

Equation (5.2) may now be integrated with respect to 6 to yield

E ) .
O T e / (1+8,6*) (a/8,~1) (1+ele')2-c2 de'  (5.9)
(1+Ble)(a/cl) 8,

We introduce now a change of variable by the relation

l+ 8.6 =c coshe

. (5.20)

whereupen Eq. (5.9) becomes

Ec ¢
v o Ny _ n-2 , .
0 = —-—-———TB /O\ (cosh ¢ cosh ¢ )d¢ (5.11)

D=
1 cogh [ o
where @8 before, n = 1 + %— .
1
Now,
J/'coshnn dx = ﬂ%ﬁ cosh ™% dx + %. 208h™" *x sinx (5.12)
Since for asymptotically larbe n (say n > 30}, 2%£ ~ 1, it follows
from Eq. (5,12) that in th;s instance
(cost™ « coshn"n) dx ~‘% coshn'ln sinhx (5.13)

19
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The result of Eq, (5.,13) can be utilized tc obtain a closed form solution

for ¢ whichk now becomes,

Eoc cosh¢° n-l
o = a-l-n- {sirﬂw - (W) SinhOo} . (5,14)

Equation (5,8) may also be integrated with raespect to ¢ to yleld

=S s
¢ = Bl{r(g) F(s) ) (5.15)
where
F(¢) ¥ sinhé - tan"t (sinhé) (5.16)

Thus o and ¢ are related parametrically through ¢ and % such that

(1+8.kn )
¢, = cosh” (--?i-g_ ) (5.17)

The relation between o and ¢ has been calculated with the following values

of the constants:

E
k=1, 0, =g2= =17.ux10° b/1n2, 8 = 20, n = 33.

The result was compared with one of Ivey's experiments in which 1 = 1ux103
n -
1b/m", n, = 2,35x10 3. The predicted and experimental stress-strain

responses compare very favorably. See Fig, 12,

Conclusion

On the evidence of the results presented above it appears that the
endochronic theory of plasticity can predict accurately the mechanical
response of metals under complex straining histories, The full implications

of the theory will be investigated further in our future look,

20
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Fig. 3. Typical loading - unloading - lcading sequence
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