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ABSTRACT

The endochronic theory of viscoplasticity developed previously

by the author is used to give quantitative analytical predictions on

the mechanical response of aluninum and copper under conditions of

complex strain histories. One single constitutive equation describes

with remarkable accuracy and ease of calculation diverse phenomena, such

as cross-hardening, loading and unloading loops, cyclic hardening as

well as oehavior in tension in the presence of a shearing stress, which

have been observed experimentally by four differemt authors.
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where 0 is a positive constant. Note that 8 > 0 because b2  > 0, as well
dyV

as -r> 0, thus necessitating that f(;) > 0, for a'l 4. As a result of

Lq.'s (2.7) and (2.8),

z = log (1 + S (2.9)

an expression which has been found to give excellent agreement in the cases

of some significant experiments, as will be shown in subsequent Sections.

In the absence of experimental data, the question of the form of the

"relazation" functions X(z) ard u(z) is equally difficult.

There are two simplifying assumptions, however, which lead to a

relation between X(z) and w(z), so that one is left with the problem of

finding the form of only one of these functions. One is that of an elastic

hydrostatic response and the other is the assumption of constant Poisson's

ratio. i-

Efficient use of the first assumption is made by writing Eq. (1.1)

in terms of the hydrostatic and deviatonic components of oij, in which case

z K(z-z') kk dz' (2.10) -°kk

2 Jo u(z-t f) dz' (2.11)
40

where Kz) is the bulk modulus. Elastic hydrostatic response implies that z

Nz) Yfl(z), in which case Eq. (2.10) becomes,

akk =3Kc (2.12)

The assumption of ccn;tant Foisson ratio leads to the conclusion that

W(z) and N(z) differ by a multiplicative constant, and can both be written

S!



in terms of a single function G(z), such that

K(z) -K G(z) (2.13)
0

O(z) 10  G(z) (2.14)

where G(O) = 1.

Ihis assunption has the added advantage that, under condition of

plane stress, or uniaxial strain, the strain in the unstressed direction

is related to the strains in the stressed directions by a multiplicative

constant. Thus the strain increments in the direction of zero stress

may be easily eliminated from the expressionfor d so that the latter may

be expressed solely in terms of the strain increments in the stressed

directions.

3. Crosshardening in lension-torion

It has been observed that in aluminum and copper as well as in other

metals, prestraining in torsion, well into the plastic range, has a signi-

ficant hardening effect on the stress strain curve in tension.

In this Section we shall analyze data by Mair and Pugh, who have

investigated this effect on annealed copper. Their experiments wcrC por-

formed accurately and with care, on very thin circular cylinders which

were twisted well into the plastic region, so that upon unloading there

remained a permanent residual shear strain. The effect of initial shear

prestrain an the tensile response was then obtained by loading the cylinders

in tension.

The constitutive equations pertinent to the above situation are easily

found to be:

6



z
o = J (z-z') de dz' (3.1)

oz  dz
0

2 uz-z, d- dz' (3.2)

where a and E are the exial stress and strain, respectively, and T and

n dre the respective shear stress and tensional shear strain; the moduli

E(z) and w(z) are interrelated through the bulk modulus K(z). Their re-

iating is best expressed through their Laplace transformut

8;' (3.3)

1+

To deal with the effect of cross-hardening analytically, we have

assumed a constant poisson ratio. As a result Eq. (3.3) reduces to the form:

E(z) F. G(z) (3.4)

where

3u

0 -
E -0 (3.5)

Regarding the form of G(z) we have taken the simplest possible view

Iby assuming that

G(Z) (3.6)

Despite these simplifications we have been able to obtain excellent -v

agreement with experimental data that have hitherto lacked analytical

representation.

AnalysiL;

in the tension-torsion test the effect of constant poisson ratio is to

7



2
reduce d2 to the form

d2 2 F (3.7)

where kI and k2 are material constants, not the same as those in En. (1.6).

During torsion (=0),

k 2 n (3.8)

whereas during tension (n=n) and after pretension
0

k n + k C (3.9)

2 0 1

where n is the maximum shear prestrain.

Equation (3.1) may now be written in the form

a 2 E G[z(C)-z(t')] I- dW' (3.10)

(where C k2 no ) when allowance is made of the fact that E 0 in the

range 0 < r < * k~n .  Thus cross-hardening is taken fully into account by

Eq. (3.10), through the shear prestrain parameter oi which appears as a

lower limit on the integral on the right hand side of Eq. (3.10). If,

in particular, we assume that G(M) is given by Eq. (3.6) and use of this

is made in Eq. (3.10) the latter becomes

o = E Lz( )e d,' (311)

The integral in the right hand side of Eq. (3.11) can be evaluated

elicitly by using Eq. (2.9) and noting that during monotonically increasing

extension . Omitting the algebra,In o

L - -----_



0 ( l+8) ) (3,12)Oln t C
1 0

where

a (3,13)

and

C < = + kc (3.14)

Equation (3.12) represents a family of stress strain waves in tension,

in terms of the prestrain parameter o and the "cross-hardening" parameter 0.

To determine the materiai parameters in Eq. (3.12) we note that in the

absence of shear prestrain (Co 0),

E (1+8 1 ) -3
O 1n -{3. - (1+81 }) (31

8n

where 8 k 8.

It may be verified that as c 0 0, = E°c i.e. is the initial shape

of the stress-strain curve. Also as c increases, a tends symptotically to I
the linear expression

0(i.+S (3.16)

There is ample justification for calling 0 the c-oss-hardening parameter.

Indeed in the limit of 8 % 0, and using Eq. (3.9) Eq. (3.12) becomes:

oEo (1-. a )

which is independent of ; in other wirds cross-hardening cannot take I
place when 8 0, as pointed out earlier.

I1
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If L is the slope (tangent modulus) of the asymptotic straight line, I
then

Et
n 0 E (3,17)

Also, as shown in Fig. 1, if one extrapolates backwards the asymptotic

straight line to intersect the stress axis one obtains an intercept c

from which 81 is determined by the relation

E
al = _L (3.18) 1

0
0

Similarly integration of Eq. (3.2) yields an equation analogous to

Eq. (3.16); this is I
S 2 - (l+02n)

"n }  
C.19)

2

where 82 = k2S. Thus, 82 and u0 may be determined f,,om Eq. (3.19).

Finally we observe from Eq. (3.12) that the intercepts ao' in the

presence of shear prestrain t are given from the expression

a C (18) a (1+Bn o ) (3.20)0 0 0 0 20

Equation (3.20) was used to confirm the self-consistency of the theory.

However Eq.'s (3.12), (3.1) and (3.19) can only yield the ratio (2)

122
but the constants k and k2 cannot be evaluated. In this sense, and for

these experiments one may choose k2 arbitrarily; we chose k2 = 1.

Experimental data obtained by Mair and Pugh that illustrate the effect

of cross-hardening are given in Fig. 2.

Curve 0 is the virgin stress strain curve for the type of copper they

used. The circles on the curves A, B and C are experimental points corres-

10



ponding to initial shear prestrains of .25x10"2, l.5x10
2 and 3x10 "2

respectively.

6 2 ~ 3,2From curve 0, E a 14x10 lb/In, 8 r 53x0 n = 46. With
0

k2 = 1, Eq. (3.20) was used to give k 1.00. The curves A, B and C

were then calculated and plotted as shown. Without a doubt the agree-

ment between th-orv and experiment is remarkable.

4. Repetitive loading-unloading cycles

The tensile strain history c(c) corresponding to a typical tensile

loading-unloading sequence is shown in Fig. 3. We use the terms "straining"

and "unstraining" in the following sense:

The ranges 0 C < C1 C2 -- 3' << 5  C1 
-  represent straining

in tension.

The ranges C < "2"C3 <-- C < CA, C5 C C C represents unatraining in

tension.

The ranges 4A C C c < C , represent straining in
compression.

The ranges 74 < C < B (5 • C < C7, C8 < C •  D represent unstralning in

co~npress ion.

Points on the C-axis denoted by Cr (r-l,2...) represent points of j
discontinuity in d, Drough about by reverting from straining to urstraining

histories, or vice-versa.

A perusal of exper; nv. i). data on copper, shows that the constitutive

equation of the metal varies depending on tts previous history of manufacture

and subsequent annealing. The single term form of G( ) that explained Mair

and Pugh's ddta (2) so well was found inadequate to explain data by Lubahn (3 )

1_1
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(4)

and by Wadsworth

We fou ever, that the adoption of a single extra term for

G(z) sufficies to describe quantitavely broad trends of their data. In

effect we took

G(z) E1  + G2e - Z  (4

or

E(z) = L + E e'az  (4.211 2

de.
Let C (w = 1.2.... ) be the last point of discontinuity in - Then using

Eq's. (2.9), (3.11) and (4.1) and in the range r4 M C

MiB )rfl
a = (l 0C)a +(i)- 12 , TOMr-l-- +E c (4.3)

0 1+307 -)

The quantities , may be evaluated explicitly in terms of c (the values

of strain corresponding to 4r) by the formula

( :2k s (-1)1 + k( (44)

The effect of E on the unstraining characteristics ia remarkable,1 -

especially since its effect on the shape of the straining part of the

stress-strain curve is minimal. Let the history c(z) be one of continuous

straining. Then Eq. (4.3) becomes:

E2 (1+01 )
a E C + 2 1 1-(l1+8 )-n (4.5)nO1

From Eq. (4.5) we obtain the following relations in the notation of

Section 3,

12



El I + 2 = E (4.6a)

S ( 0 4.6b)

I

E, s o Et  (4.6c)

Equations (4, 6 ,1 c' do not suffice foi- the determination of the four

un - ., terial constants El, E2 , n. 01. It has been found that a fourth

reiation can be qU e i ':y considering the "unloading" portion of the stress-

strain history.

f'.g. U, siows :,e stress-strain relation for a uniaxial specimen

whicl, naN bfee strdine4 in tension to a strain value c whereupon it is

unloaded ar.nd comorjsseC until the final strain is zero.

hq i ain-Intr'nsic time measure history c(c) corresponding to the

above stress-st" in history is also shown in Fig. 5.

Eqtiaticn (4.3) in conjunction with the above history yii ds the

relation, at c 0:

n_
2(l+c I -

a 0 a (l+8c) - - } (4.7)o (l+c)n

If the value of . is sufficiently large (in the case nf copper this value

3 cwas found to be 50xlO , or so) then a is given very nearly by the
0

expression

a = a o(1+26c ) = (1+20 c (4.8)
0 a 0 1

The constant can now be obtained from Eq. (4.8) and the constants E,

E, and n can be found from Eq's. (4.6a-c).

We illustrite the points made in the above discussion in rig. 6 where stress 4

13
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strain curves for three different materials are given when these are

subjected to the same strain history shown in l ig. 5.

The constants for these materials are given in the following table,

2  n

1 0 6.4XAO6  .4xlO2  25

6 62 .2'4x10 5.9x1O 0 -

6 6 2
3 .12xlO 6.02x3O .2xlO 50

What is remarkable is that changing B results in these materials having

indistinguishable stress-strain curves during straining but wildly

differing ones during unstraining.

In Fig. 7 we illustrate an attempt to predict analytically the

loading-unloading-loading response of copper in simple tension. The

solid lne is an experimental curve obtained by Lubahn (3 ) for a copper

specimen which had already undergone similar strain cycles. We have assumed,

however, that these have a negligible effect in the response shown because

they occured sufficiently far in the distant "past".

The triangular points shown, were obtained theoretically from Eq. (4.3)

by assuming that the specimen was continually extended (without unstraining)

until the strain c = 51.6x10 -3 was reached. The unstraining-straining

cycle was then applied.

Despite the fact tha c E(z) was approximated by two terms, as in

Eq. (4.2) the agreement between theory and experiment is remarkable. Trhe

constants employed were, ao= 6xlO 3 , El = .125x106, B c .02xlO 3, n = 160.

In fact we are not aware of another instance where an attempt was made

to describe such experimental data analytically by means of one single

14
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constitutive equation. in addition we can say with assurance that the

observed difference between theory and observatton can be reduced further

by including more exponential terms in the series representation fo- E(z).

We touclude this 6ection by considering the effect of work hardening under

cyclic straining. In particular we shall examine the work of WadeworthI
(4 )

and show that cur theory again provides an excellent analytical basis for

hi6 results.

In this work single copper cryst".Ls were tested under conditions of

unidxial cyclic strain; The data was presented in terms of the resolved

shear stress and strain in the plane of slip.

-ig. 8 gives the first few cycles of his straining program, in which

a crystal was cycled under fixed limits of resolved shear Atrain of 7xl0 .

The "peak stresses" corresponding to the extreme values of tensile and

compressive strain increased monotonically with the number of cycles.

In Fig. 9 the values of peak tensile and compressive stresses have been

plotted by Wadsworth against ldnj. Ir is rather interesting that he

felt that such a plot was meaningful, without further elaboration on this

pcint. Of course idnl, but for a scalar fa, tor, is our intrinsic time 4

measure.

The history of the resoived shear strain versus 4 is shown in Fig. 10.

From tils Figure it follows that &i = (2m-l)Ak . Equations (4.6c) and (4.8)

were now utilized to find 0'< I which we denote by 81. and E It was found

that 61 Z 12.3 and El Z 2x10 9 d At this point n could not be determined
cm

because the initial slope of the stress-strain cu-ve corespondLnA to E< E

could not be evaluated accurately.

|iiever letting 1 11 it was found that as m -, Lq. (4.3) A
M =rl'



yields the asymptotic expression:

I nOt A + E A (4.9)

Hence, from the tensile experimental curve of rig. 4 of Ref. , n could

be determined explicitly and was found to be equal to 225. For this value
1

of n the term n was found to be negligible for m > 1.

Thus ior the history in rig. 10, Eq. (4.3) gives

m 12r10 n r~l

m2,1, a i. A1  I ( -1) + ' (4.10)

The above equation can be simplified further for large values of m. In

particular for m > 50, it was found that the series in the bracket on the

right hand side of Eq. (4.1C) degenerates into the geometric series

mrl ('tr

where

U l+C2rn+l)$ 6 (4.12)

Equation (4.10) may now be written in an asymptotic form in terms of the

absolute value of the shear stress as followst

IT l+8(2m+1)6 +ro ( -1 +E A (4.13)Im 0 l+U 1

For very large values of m (m >> n) Eq. (4.13) simplifies further andIL
becomes

nB.t A

1 (414)

16



Thus,

LimITm( no, T A +t E 1 A (4.15)

In Fig. 11 a plot has been made of the theoretical relation between

ITm and mA obtained from Eq. (4.13). The experimental points obtained

by Wadsworth are also shown. The following coments are in order. Though

our theory does give values for T which are different in tension from those

in compression, the difference is not as graat as the experimental data

indicate, and is too small to be plotted on the scale shown, However, the

theoretical curve lies very close to, and is in fact bounded by the exper-

imental points, which indicate a deviation between the values of compressive

stress and those of tensile stress which increases with m but Is never greater

than 5.5%.

This is the first time that a theory of plasticity has provided a national

explanation for the phenomena of cyclic hardening.

5. Tensile response in the presence of initial shear stress

In Section 3 we obtained a theoretical prediction of the effect of

prest,'ain in torsion on the stress strain curve in tension. In this Section

we shall examine theoretically, in the light of our endochronic theory, the

effect of initial constant prestress in torsion on the stress-strain curve

in tension. To do this, we have assumed, just as we did in Section 3, that

L(-) dnd Ij(z) are proportional to some relaxation function C(z), and further-

more that G(z) consists of a single exponential term i.e. it is given by

Eq. (3.6). Thus

E(z) L e "  (5.1)

17
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In the light of Eq. (5.1) and bearing in mind Eq. (2,9), the constitutive

Lq.s (3.1) and (3.2) can be reduced to the differential equationsUm

dc C A d(Lo  +.-I (5.2)

dn o + dv (53)i

where, as in Section 3,

2 2 2
dC kdc + kdn (5.4)

1. 2

As mentioned above the test to be discussed consists of applying an initial

0 0stress x corresponding to an Initial strain no; then keeping i constant,

t a axial strain c is applied and the axial stress a is measured. The object

at hand is to deduce from Eq.'s (5.1-5.4) the relation between a and c, -

(5)
and compare with the experimental data obtained by Ivey

To accomplish this we proceed as follows. From Eq. (5.4) it is clear

that the axial straining process begins at C = where

Co = k n°  (5.5)
0 2o0

dT

During this process dr 0, so that from Eq. (S,3)

dn = aT d (5.6)

Equations (5.4) and (5.6) now combine to show that during the axial straining

process#p

d 2 k2 dc2 + k22 (5.7)

At this point we introduce the variable 0 such that

18
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1 
(5.8)

Als le ( I)= k w  x a = B andc =(ka°/2o) Then, in terms of 6 and

as a result of Eq. (5.7)

.... = dcU o 6)- 
(s.8)

Equation (5.8) may be integrated subject to the initial condition that-at

k 2 no z 0; or, P = 80 = kno £ a 0.
2 0 0

Equation (5.2) may now be integrated with respect to e to yield

E 0 
2 2

(+ ) ) 01) 1dO (5.9)o

We introduce now a change of variable by the relation I

I + 8 e c cosht 
(5.10)

whereupon Eq. (5.9) becomes: II

E C
0 n - ( nn-2
xcoeh n-os - oh 0)do' (S.L)

where before, n 1 + a

Now, I A
coshn dx Jcosh x dx + . oshn'lx sirx (5.12)

Since for asymptotically larbe n (say n > 0 n-o

from Eq. (5.12) that in this instance

(cosh x - coshn' n) dx - in coshn ln sinhx (5.13) 
A

n

19
-4 -



ri

The result of Eq. (5.13) can be utilized to .btain a closed form solution

for c which now becomes,

E c cosh0 n-l .

Equation (5.8) may also be integrated with respect to * to yield

C = c ( F(#) F(4o ) 1 (5.15)
0

where

F(W) ! sinhO - tan- (sinho) (5.16)

Thus o and c are related parametrically through * and 0 such that

(1'1 kn )
o cosh (- c (5.17)

The relation between a and c has been calculated with the following values

of the constants:
E

k = 1, 0 17.4xlO 3 b/In2 2 20, n = 33.
1

The result was compared with one of Ivey's experiments in which t0 = 4xlO3

-~ -3
Ib/m', no = 2,35x0" . The predicted and experimental stress-strain

responses compare very favorably. See rig. 12.

Conclusion

On the evidence of the results presented above it appears that the

endochronic theory of plasticity can predict accurately the mechanical

response of metals under complex straining histories. The full implications

of the theory will be investigated further in our future look.

20
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