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ABSTRACT 

A computer procedure for generating line drawings of 

solid objects bounded by quadric surfaces has been developed. 

It embodies an efficient solution to the "hidden-line" prob¬ 

lem, that is, the problem of determining which parts of an 

opaque object are invisible when the object is viewed from 

a given vantage point. The major intended area of appli¬ 

cation is in computer-aided design of machine-made objects. 

A general method of specifying a "quadric object" - 

an object bounded by quadric surfaces - is presented. A 

quadric object Is characterized In terms of generalized, 

view-dependent definitions of "vertices", "edges" and "faces". 

Such a characterization has made it possible to develop a 

hidden-line determination technique that is analogous to one 

that has been successfully applied to polyhedra. 

A view of a quadric object is represented by the or¬ 

thographic projection of surface boundaries visible from 

the given vantage point. The invisibility of a point is 

measured quantitatively by the number of surfaces hiding it. 

Point-by-point visibility determination can be avoided by 

finding the points at which visibility changes; the projec¬ 

tions of these points are the intersections of the projec¬ 

tions of surface boundaries. For conics, the equations of 

their projections may be derived and solved to find the 
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intersections, t>ut piecewise-linear techniques are necessary 

for handling curves represented by higher-degree equations. 

The procedure is implemented in a FORTRAN program, 

which can efficiently generate high-quality line drawings 

of quadric objects of fairly complicated shapes. The proce¬ 

dure can be extended to do perspective drawing and shading, 

and may be used as the basis of a system for interactive 

computer-aided design of solids on a CRT display console. 

í 



V 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS 

ABSTRACT 

LIST OF ILLUSTRATIONS 

LIST OF SYMBOLS 

I. INTRODUCTION 

1.1 Statement of the Problem 
1.2 Basic Definitions 
1.3 Work Done by Others 

II. OBJECT SPECIFICATION AND RENDERING 

2-, 1 Mathematical Specification of a Quadric Object 
2.2 Projection and Frames of Reference 
2.3 Curves Used for Rendering ,. 

ii 

iii 

vii 

viii 

1 

1 
2 
3 

8 

8 
14 
17 

III. A VIEW-DEPENDENT CHARACTERIZATION OF A QUADRIC OBJECT 20 

3.1 Generalized Definitions of Vertices, Edges and 
Faces 20 

3.2 Classification According to Orientation 24 

IV. COMPUTATION OF REAL VERTICES AND SURFACE INTERSECTIONS 30 

4.1 Computation of Real Vertices 30 
4.2 Computation of Points on a Surface Intersection 32 
4.3 Obtaining the Equations of Planes Containing a 

Planar Surface Intersection. 34 

V. EDGE AND PROJECTION COMPUTATION 37 

5.1 Determining Virtual Vertices and Limbs 37 
5.2 Ordering Vertices 38 
5.3 Determining the Front-Face Edges and Their 

Projections | 39 

VI. EDGE VISIBILITY TESTS 42 

6.1 Determining Intersections of Edge Projections 42 
6.2 The Order of Invisibility of a Point 53 
6.3 Propagating the Order of Invisibility Along 

an Edge 53 
6.4 Propagating the Order of Invisibility from 

Edge to Edge 53 



1 U'l! um-ll! lin 

vi 

VII. IMPLEMENTATION 57 

7.1 The Program 57 
7.2 Illustrative Examples 60 

VIII. EXTENSIONS 

8.1 Perspective Projection 
8.2 Shading 
8.3 Higher-order Surfaces 
8.4 A 3-D CRT Sketchpad 

IX. CONCLUSION 

71 

71 
73 
76 
77 

79 

80 X BIBLIOGRAPHY 



mmmm 

vii 

LIST OF ILLUSTRATIONS 

Figure No. 

1 Examples to Illustrate Object Specification 

2 Frames of Reference and the Picture Plane 
for Orthographic Projection 

3 Characterization of a Quadric Object 

4 Orientation of P. on S with Respect to Q 
K r 

3 Ordering Points on a Conic 

6 Changes in the Order of Invisibility along 
an Edge 

7 Chain Elements 

8 Associative List for Finding Chain 
Intersections 

9 Intersection of Two Chains 

10 QUADRAW Main Program Flowchart 

11 Test Object 

12 Normal Views of a Spacecraft 

13 More Views of the Spacecraft 

14 Views of the Spacecraft with the Hidden 

Lines Shown 

15 Stacks of Spheres 

16 Three Simple Objects 

17 A Table of QUADRAW Execution Times 

18 Perspective Projection of P^ 

19 Scanning a Line Drawing for Shading 

10 

16 

21 

25 

40 

43 

46 

48 

49 

61 

62 

64 

65 

66 

68 

69 

70 

72 

75 

1 
1 



viii 

LIST OF SYMBOLS 

Tí 

0-X"Y"Z" 

q"(x",y",z")=0 
r or q>0 

r 

O-XYZ 

or Wp®0 

O-YZ 

qr(x,y,z)»0 
or q^»»0 

Any quadric object 

rth component surface of S 

Vantage point 

Picture plane 

Cartesian frame of reference v;ith respect to 
which an object is specified 

Equation of Sr referred to 0-X"Y"Z" 

"h Vi 

p auxiliary bounding surface 

Frame of reference for a specified view 

Frame of reference in TT 

Equation of Sr referred to O-XYZ 

e, ♦ 

R 

h* »l'Yl' 
1=1,2,3 

Pi 

4ph 

pkph 

Angles of rotation from 0-X"Y"Z" to O-XYZ 

Matrix of rotation from O-X'^'Z” to O-XYZ 

Direction cosines of OX,OY,OZ with respect 
0-X"Y"Z" 

to 

■f* Vi 
point whose coordinates with respect to 

O-XYZ are xk, yk, zR 

Projection of Pk in TT 

Straight line joining Pk and P^ 

Vector extending from Pk to Ph 

iVh' Magnitude of PkPh 

I 



ix 

V V uz 

qr(pk) 

ñ'r<V 

grad qr( Pk) 

r,s 

Vi 

*l,} 
eLj 
m 

F1 
m 

n(Pk) 

Unit vectors with the directions of the 
positive X-, Y- and Z-axes respectively 

Value of qr(x,y,z) at (xk,yk,zk) 

Outward unit normal vector on Sr at Pk 

Gradient of qr(x,y,z) at Pk (qr may be regarded 

as a scalar function of the vector extending 

from 0 to (x,y,z)) 

Intersection of Sr and S8 

Limb of Sr 

a, y. 

1 vertex 

Projection of onto TT 

Edge between and Vj 

The ath edge between and Vj 

Projection of j onto TT 

m*'*1 face 

W. 

Projection of Fm onto TT 

Orientation of Pk on Sr with respect to Q 

Order of invisibility of Pk 

x^h visibility transition point on an edge 



I. HîTRODUCT ION 

1.1 Statement of the Problem 

In computer graphics, techniques for generating pic¬ 

torial representations of three-dimensional objects are of 

fundamental Importance. In most of the existing computer 

drawing algorithms, objects are represented by combinations 

of planar surfaces only; curved surfaces must be approxi¬ 

mated by numerous small polygons. Progress in the develop¬ 

ment of nonplanar-surface algorithms has been slow primarily 

because of the computational difficulties presented by non- 

linear equations. 

The simplest of the curved surfaces are the quadric 

surfaces. In a Cartesian coordinate system, a quadric sur¬ 

face is the locus of the general second-degree equation of 

the form 

q(x,y,s) - ajX2 + a^ + »./ + ^ + Vz + *6“ 

+ a^ + a8y + agz + a0 - ft < 1’1) 

where the ^ are real numbers, quadric surfaces are so sim¬ 

ple and familiar that they can be readily conceived by a 

designer. An object of fairly complex shape can be repre¬ 

sented by the combination of a few quadric surfaces. Most 

of the mechanical parts in commercial machines have simple 

quadric surfaces. 
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The phenomenon that light is stopped by opaque matter 

plays a major part in our visual experience. If a picture 

of a real object is to reflect this reality, those portions 

of the object that are hidden by itself from an observer at 

a given vantage point should be omitted from the picture. 

Visibility determination is generally regarded as the most 

formidable problem in computer rendering of solid objects. 

The objective of the research reported in this thesis 

was to develop an efficient computer procedure for making a 

line drawing (see Sec. 2.3) of any view of an object bounded 

by qui.dric surfaces, with the hidden parts of the object 

omitted from the drawing. The major application in mind was 

computer-aided design of common machine-made objects. 

1.2 Basic Definitions 

A surface is the locus of a point in three-space whose 

Cartesian coordinates always satisfy one equation. A bounded 

surface is a finite, connected portion of a surface delim¬ 

ited by intersections with other surfaces. A self-bounded 

surface is a surface on which a path of finite length can 

be traced between two arbitrary points on that surface, e.g., 

a sphere or an ellipsoid. An object (a model of a real ob¬ 

ject, in fact) is either a self-bounded surface or a finite 

set of bounded surfaces every one of which is bounded by one 

or more of the other surfaces in the set. Any one of the 
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bounded surfaces of an object is called a component surface 

of the object. A storle-conpartment object is an object 

that divides the three-space into a totally enclosed inte¬ 

rior region and an exterior region extending to infinity. 

A continuous path can be traversed between two arbitrary 

points in the same region without intersecting any one of 

the component surfaces of the object, but any path between 

two points in different regions must intersect at least one 

of the component surfaces. To an observer situated outside ^ 

a single-compartment object, the object appears to be “solid", 

and one side of every one of its component surfaces is never 

visible. A quadric object is a single-compartment object, 

every component surface of which is a bounded quadric surface. 

Let Pk be any point on an object S, and « he the vantage 

point in the exterior region. Pk is said to be Invisible or 

hidden if the straight line qPk pierces at least one of the 

component surfaces of S in at least one point between Q and 

Pk. (This definition implies that all of the component 

surfaces of 3 are opaque). A hidden curve segment or hidden 

line is a curve segment all points on which are hidden. 

1.3 Work Done by Others 

m his work on the reconstruction of a solid object 

from a photograph of the object, Roberts [22] solved the 

hidden-line problem for objects constructed from cubes, wedges 
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and hexagonal prisms. Using a computer to make perspective 

movies, Zajac [31] also had a method for eliminating hidden 

lines for restricted cases of polyhedra. The first general 

and efficient computer algorithms for making line-drawings 

of opaque polyhedra were developed by Appel [1] and Loutrel 

[19] 5 'the former went on to develop a technique for shading 

a line-drawing of a polyhedron and exhibiting the shadows 

cast by the polyhedron [2]. Galimberti and Montanari [14] 

also developed a method similar to Loutrel's. 

Luh and Krolak [20] first used simple quadric surfaces 

to model and draw machine parts. Weiss [28] developed a 

ccopíete procedure for drawing any combination of bounded 

quadric surfaces. These three researchers adopted a point- 

by-point solution to the hidden-line problem: closely-spaced 

points on surface boundaries are computed and a visibility 

test is performed on each point against all the bounded sur¬ 

faces. Davis et. al. [9] used a method called "combinatorial 

gecmotry" to describe and display objects constructed by 

combining a number of simple geometric shapes such as cylin¬ 

ders, ellipsoids and rectangular parallelepipeds. Comba [6] 

dealt with the problem of detecting intersections between 

convex quadric objects. A by-product of his work is a method 

for determining hidden lines, which, though mathematically 

elegant, is less efficient than Weiss' method in general. 
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Coons [7,8] has developed a very powerful mathematical 

technique for specifying and displaying on a CRT console 

free-form" surfaces such as those found on the bodies of 

airplanes, ships, etc. In Coons' method a complicated sur¬ 

face is constructed by smoothly piecing together surface 

patches" specified by boundary curvesj the surface is ren¬ 

dered by the perspective projection of a set of parametrically 

defined curves on the surface. No attempt has been made to 

solve the hidden-line problem for "Coons' surfaces", which 

are essentially sixth-order surfaces. Higher-order surfaces 

have also been treated by Kubert et. al. [18] for the pur¬ 

pose of visualizing any continuous, single-valued function 

of two variables. A portion of the surface defined by such 

a function is rendered by the perspective projection of two 

orthogonal families of curves on the surface. Determination 

of the curve segments hidden by the surface itself is made 

only after the surface has been approximated by planar tri¬ 

angles whose vertices are the points of intersection between 

the two families of curves. 

At present, research is most active on programming 

and hardware techniques for generating shaded or "half-tone" 

pictures of solids on a CRT display screen. By means of 

raster scanning and hardware aids, a photograph-like picture 

of a planar-surfaced structure is displayed in the form of a 
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fine grid of light spots of varied intensities. Such a method 

is not, however, directly applicable to making line-drawings 

of objects with curved surfaces. This trend of research was 

initiated by Wylie et. al. [30], and successive improvements 

on their techniques have been made by Warnock [25*26], 

Bouknight [3] and Watkins [27]. Kelley [17] extended 

Bouknight's method to do shadowing. 

The researchers at the General Electric Electronics 

Research Laboratory took a total-hardware approach [4,11]. 

A large array of special-purpose circuitry (05,000 logic gates 

in 52,000 integrated circuits) was used to build a simulator 

that can display a moving, planar-surfaced spacecraft in 

color; bidder parts are removed as quickly as the vehicle 

turns. 

Watkins [27] made an appropriate classification of the 

existing hidden-line algorithms. According to his claasifi- 

cation, the algorithms belong to either of two major cate¬ 

gories: the "path-of-edges” category and the "sample-space" 

category. In the former category, various methods are used 

to trace along the edges (surface boundaries) of objects 

and determine which portions of the edges are invisible; this 

type of algorithm is represented by the work of Roberts, Appel, 

Loutrel and Weiss. In the latter category, the hidden-line 

problem is solved at discrete points on a two-dimensional 
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picture grid; this type of algorithm is represented by the 

work of Wylie et. al., Davis et. al., Warnock, Bouknight and 

Watkins. The procedure described in this report belongs to 

the path-of-edg^s category. 
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II. OBJECT SPECIFICATION AND RENDERING 

2.1 Mathematical Specification of a ftuadrle Object 

A polyhedron can be conveniently specified in terms of 

its vertices, edges and faces, but to specify a quadric ob¬ 

ject unambiguously Is not so simple, m one form or another, 

a complete specification must contain the equivalent of the 

following information: 

1. The equations of the surfaces from which the 

component surfaces of the object are formed. 

They will be referred to as the "equations of 
* 

the component surfaces". 
'i 

2. The polarity of each component surface, that 

is, an indication as to which of the two sides 

of the surface is on the outside of the object. 

(Note that from the definition of* a quadric ob- 

ject, the inner side is never visible from any 

point outside the object). 

3. The bounds of each component surface, that is, 

a Boolean combination of inequalities specifying 

exactly how the component surface is bounded. 

Each inequality expresses the bounding effect 

of another component surface or that of an 

auxiliary bounding surface which is a transparent 

surface Introduced for the sole purpose of elimi¬ 

nating ambiguities. 
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In more precise terms, a quadric object is specified as fol¬ 

lows: 

An object S is composed of N component surfaces de¬ 

noted by S±, i = 1,2,...,N. Each is a portion of a sur¬ 

face represented by an equation of the form of (1.1): 

q^x^z) * 0. i2*1) 

The polarity of Sr is given implicitly by the equation above 

such that grad qr at.every point on Sr is a normal vector 

pointing into the exterior region. Every point on Sr satis¬ 

fies not only (2.1) but also a specified Boolean combination 

of inequalities each of which is either of the form 

qs(x,y,z) o 0, (2-2) 

where qs(x,y,z) » 0 is the equation of Ss bounding Sr, and 

o denotes one of the relational operators =; or of the form 

Wp(x,y,z) o 0, (2.3) 

where w (x,y,z) * 0 is the equation of an auxiliary bounding 
P 

surface bounding Sr. 

In Pig. 1, two sets of simple quadric objects are shown 

in orthographic projection (see Sec. 2.2). The objects in 

Fig. la are all formed by a sphere intersecting an ellipsoid 

of revolution, and they are viewed in such a direction that 

the curves of intersection appear as straight lines. The 

object in Pig. la(i) is specified as follows: 

i 



IC 

( i ) 

A 

2=0 1*0 

1_1 i_T. 
s> 

( i • ) 

( 0 ) 

( iii ) 

AN ELLIPSOID INTERSECTING A SPHERE 

( U 
( m 

( b ) 

cylinders and planes intersecting 
one another 

FIGURE 1 ’ 

examples to illustrate object specification 
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a X2 + y2 + z2 - 9> 

qg = 36x2 + 36y2 + z2 - 2'¿i 

^3 ^ ^2 ^ 

wx = z; 

qi = o 

52 * 

S3: q3 - 0 

A 

A 

A 

q2 = 0; 
> > 

qx = ° A v;1 = 0; 
> < . 

q. « 0 A v/j = 0. 

Very small changes in the preceding specification lead to a 

quite different object shovm in Pig. la(ii): 

*1 
- X2 - y2 - z2 + 9; 

36x2 + 36'/ + z2 - 36; 

W1 ” z; 

¾ 
a 0 A VJ1 o; 

^1: ^i 0 ^ 

S2: (¾ = 0 A qx - 0 A ï 0. 

Note that the polarity of is changed because the inner 

(concave) side of the sphere is now required to be the outside 

of the object. 

The object in Pig. la(iii) is specified by: 

q1 = + S* + z2 - 95 

qg » 36x2 + 36y2 + z2 - 36; 

w1 » z; 

31: 

32: 

^1 
0 A qg a ° A W. 

0 (w1 a 0 V q^ = 0) 

HUMUUIMádUtilttÉáMilkiU 
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Figure lb shows the "end-on" views of two objects each 

of which is formed by the intersection of two parallel planes 

and S2) with a ring of eight circular cylinders (S^ i=3A 

...,10). The axes of symmetry of the cylinders are parallel 

to the direction of view and lie on a cylinder w^ « 0 which 

is an auxiliary bounding surface with such a polarity that 

w1 > 0 outside the cylinder. The two planes are perpendicular 

to the direction of view. Omitting the details, let the equa¬ 

tions of the parallel planes be " 0 and q2 * 0 the equa¬ 

tions of the eight cylinders be q^ * 0, q^ • 0, ..., q^Q “ 0. 

The object shown in Fig. lb(i) is specified as follows, where 

the q^ i-3,4, ..., 10, are required to be less than zero 

outside the cylinders qA ■ 0; 

: qx « 0 A wx £ 0 A q3 £ 0 A q^ £ 0 A ... A q10 £ 0; 

S2: q2 - 0 A £ 0 A q3 £ 0 A q4 £ 0 A ... A q10 £ Oj 

S3: q3 - 0 A J 0 A Qi J 0 A q2 i 0 A q10 S 0 A á 0; 

S4: q4 - 0 A Wj * 0 A qx á 0 A q2 * 0 A q3 * 0 A q5 S Oj 

• / 

S10! ^ - 0 A »I S 0 A ^ i 0 A qs S 0 A qg S o A q3 á o. 

A very different object lb(ii)) results from the following 

specification in which the q^, i“3>^# •••> 10# ar® now required 

to be greater than zero outside the cylinders q^ 0* 
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V Qi - o A (Wj £ 0 V q3 £ 0 V q4 S 0 V v qio ^ 0). 

s2: q2 - 0 A (w. S o V q3 ¿ O V 94 í O V ... V q1Q ^ 0); 

S3: q3 - 0 A w1 à 0 A 91 S 0 A q2 $ 0 A q10 ^ 0 A q4 ^ 0; 

S4: 94 - 0 A w1 i o A qx á O A q2 <¡ 0 « q3 ¿ 0 A q5 à 0¡ 

S10! 4l0 “ 0 A W1 è 0 11 ^ 0 A % S 0 4 99 à 0 A q3 ¿ 0. 

Even from these simple examples one can see that finding 

suitable auxiliary bounding surfaces for specifying a complicated 

object could be quite tricky. The difficulty is due to our use 

of equations that represent whole surfaces to describe bounded 

surfaces. However, the method Just described gives the user 

considerable flexibility in modeling real objects. A language 

such as that designed by Mcllroy [21] for using Weiss' pro¬ 

grams [28] simplifies the task of specifying the equations of 

surfaces, but it cannot help the user in finding the right 

bounds. A common approach to the design of a system for mod¬ 

eling three-dimensional objects is to enable the user to 

construct an object by relating and transforming some basic 

geometric components [5»9]. A most effective means to help a 

user specify an object would be an interactive system that 

allows the user to manipulate and assemble geometric components 

on a CRT display console. Such a system is suggested in Sec. 8.4. 
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2.2 Projection and Frames of Reference 

Perspective projection maps an arbitrary point P in 

space to a point P' on a picture plane TT such that all lines 

PP* intersect in a common point Q which corresponds to the 

vantage point of an observer. Let 0* be a point on TT such 

that 0'Qi.Tr. O'Qis called the line of sight. Orthographic 

projection may be defined as a special case of perspective 

projection with Q at infinity, and with all lines PP' parallel 

to the line of sight. Orthographic projection is uniquely 

specified by the direction of the line of sight, which can be 

expressed in terms of direction cosines referred to a Cartesian 

frame of reference. Although perspective projection best re¬ 

presents objects as we see them, orthographic projection 

offers the advantage that distances along parallel lines in 

an orthographic view can be measured with a constant scale. 

In other words, orthographic projection shows the true 

relative dimensions of parallel lines on an object. The 

procedure presented in this report is based on orthographic 

projection, but it can be readily adapted to perspective pro¬ 

jection as described in Sec. 8.1. 

Let 0-X"Y"Z" be the Cartesian frame of reference with 

respect to which an object is defined. Using OQ as the line 

of sight, an orthographic view of the object can be specified 

by an azimuth angle 9 and an elevation angle^e^of the vantage 
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point Q, and by an angle of twist Y about OQ. Consider another 

frame of reference O-XYZ which initially coincides with 0-X"Y"Z" 

and which moves with Q. For a specified view, O-XYZ is suc¬ 

cessively rotated through angles 9, e, Y about the Z, Y and 

X axes, respectively. We choose the YZ-plane to be the picture 

plane and O-YZ to be the picture reference axes (see Fig. 2). 

Thus the X-axis always coincides with OQ. The coordinates of 

a point with respect to 0-X"Y"Z" and to O-XYZ are related by 

the rotational transformation 

z 

where 

cosepcose 

R« -costpsinesinY -sinçpcosY 

-cos^sinecost -HslnçainY 

sintpcose 

-s imps in es in y +cosq>cosY 

-sintpsinecosY -cosepsinY 

sine 

cos es in Y 

cos ecosY 

(2.5) 

The projection of a point (x'^y",z") is simply (y>z)» To 

transform the equation of a surface referred to 0-X"Y"Z" into 

an equation referred to O-XYZ, the inverse of (2.4) is required: 

(2.6) 



FIGURE 2 

FRAMES OF REFERENCE AND THE PICTURE PLANE 
FOR ORTHOGRAPHIC PROJECTION 
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-1 T 
where R and R denote the inverse and transpose of R, 

respectively. Let q'^x'^y'^z") «* 0 be the equation of a 

surface referred to 0-X,,YnZ,,, By substituting (2.6) into 

this equation the transformed equation q(x,y,z) » 0 is obtained. 

Although it is more natural to specify a direction of 

view by <p, e and Y, teost mathematical relations in analytical 
\ , 

geometry are expressed in terms of direction cosines. An 

equivalent form of R is :, 

(2.7) 

where Xx, X2, \í2» Y2í ^ ^3^ ^3' Y3 are respectively 

the three sets of direction cosines of the X-, Y-, and Z-axes 

with respect to O-X^Z". The direction cosines are related 

to (p, e and y simply by equating corresponding elements of 

the matrices in (2. 5) and (2.7). The rotation from O-X^Z" 

to O-XYZ simplifies the task of deriving the formulae for view 

computation. 

2.3 Curves Used for Rendering 

Two types of curves on an object convey the essential 

information about the shape of the object; the view-independent 

^From this point on, unpriced symbols will be used in place of 
primed symbols (q^x^y^z", etc.) except where distinction is 
necessary. 

R « 

X1 ^1 Y1 

X2 y2 

x3 u3 v3 
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curves of intersection between component surfaces and the view- 

dependent curves that are the apparent ("natural") boundaries 

of the component surfaces. These two types of curves are 

usually used to represent an object in a line drawing. 

Surface Intersection 

The intersection of two surfaces is the locus of the 

point whose coordinates satisfy the equations of the two 

surfaces. The intersection of two quadric surfaces may 

consist of a single continuous section or two disjoint sec¬ 

tions each of which is continuous. Each continuous section 

of an intersection may be a closed curve called a circuit, or 

an unbounded open curve. The intersection of two quadric 

surfaces is said to be planar if it (or each of its disjoint 

sections) lies entirely in one plane; the intersection is 

nonolanar (or twisted) if no section of it lies entirely in 

one plane. We are interested only in those segments of a 

surface intersection that actually exist on a given object, 

that is, those segments on which the coordinates of all points 

satisfy not only the equations but also the bounds of the two 

intersecting component surfaces. The intersection of Sr and S 

is denoted by 1^. Ir#8 iß to be protrusive (recessive) 

if qs(Pk)*0 (q8(Pk)*0) for all Pfc on Sr in the immediate 

neighborhood of ^ and qr(Ph)^0 (qr(?*)*>) for all Ph on 

S in the immediate neighborhood of s. For example, 
8 
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in Fig. Ib(i) is a protrusive intersection, whereas 1^4 in 

Fig. rb(ii) is a recessive intersection. The object specifi¬ 

cation scheme described in Sec. 2.1 does not allow for any 

surface intersection that is partially protrusive and partially 

recessive. 

Limb 

For a given Q, the apparent boundary of a surface is 

the locus of the point P on the surface such that PQ is always 

tangent to the surface. Following the suggestion by Comba [6], 

we shall call this locus the limb of the surface - a term used 

by astronomers. The limb of Sr is denoted by Lr. Every point 

on Lr must satisfy qr-0, the bounds of Srand the equation 

3 • grad qr - 0, (2,8) 

where 3 - For a quadric surface, (2.8) is the 

equation of a plane, called the polar plane of q, with respect 

to S . (We shall refer to it as the “polar plane of Sr , Q 

implied). Hence lyrf a quadric surface is always a conic 

For orthographic projection as defined, u ■ ux, a unit vector 

in the positive direction of the X-axis, and thus (2.8) becomes 

2a X + aj,y + agz + a^ « 0. (2>9) 

If ax - aj, - a6 - 0, no Lr exists for the given Q. 
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III. A VIEW-DEPENDENT CHARACTERIZATION OP A QUADRIC OBJECT 

A quadric object raay be characterized in terms of " 

generalized, view-dependent "vertices", "edges", and "faces", 

which can be classified according to their orientation with 

respect to a given vantage point. Such a characterization 

makes it possible to develop analogues to Loutrel's technique 

for determining hidden lines on polyhedra [19]. To illustrate 

the definitions and classification given in this section, a 
I 

quadric object is shown in Fig. 3 with the hidden lines dashed. 

The midsection of this object is an ellipsoid of revolution 

(Sg) which intersects a sphere (S^ above and a paraboloid of 

revolution (S^) below. The paraboloid is cut by1 two planes, 

and Sy which also intersect each other. The object is 

specified such that 0Z"isthe axis of revolution of each of the 

three quadric surfaces, is parallel to the X"Y"-plane and 

S5 is parallel to the X"Z"-plane. The view angles for the 

orthographic projection shown in Pig. 3 are: 7°* 19°# 0°. 

3.1 Generalized Definitions of Vertices. Edges and Faces 

Vertices 

There are two types of vertices on a quadric object: 

real vertices and virtual vertices. 
.-—.. — .... 1 —. 

A real vertex is a point of intersection of three or 

more component surfaces. Its coordinates satisfy the equations 
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and bounds of all the component surfaces that form it. It Is 

the only view-independent element in our definitions. 

A virtual vertex is a point at which the intersection 

of two component surfaces meets the limb of one of the two 

component surfaces. In other words, it is a point of inter¬ 

section of two component surfaces and the polar plane of one 

of the two component surfaces. Its coordinates satisfy the 

equation of the polar plane and the equations and bounds of 

the two component surfaces. It is possible for a virtual 

vertex to coincide with a real vertex. In Fig. 3* Vg a 

real vertex formed by Sj^ and S^. and Vg are virtual 

vertices formed by Sg and the polar plane of Vy is 

a virtual vertex formed by and the polar plane of 

Edges 

There are two types of edges on a quadric object: 

real edges and virtual edges. 

A real edge is either: 

1. a circuit of a surface intersection on which no 

vertex occurs, or 

2. a segment of a surface intersection between two 

vertices, V^, Vj, on which no vertex other than 

and Vj occurs. 
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A virtual edge is either; 

1. an entire limb (a circuit) on which no vertex 

occurs, or: 

2. a segment of a limb between two vertices, V^, 

Vj, on which no vertex other than and Vj 

occurs. 

An edge between two vertices, and Vj, is denoted by 

More than one edge may share the same pair of vertices. When* 
y. 

ever distinction is necessary, the a (by arbitrary designa¬ 

tion) edge between and Vj is denoted by In Pig. 3* 

gl 2 is a real edge and E^2 is a virtual edge. 

Faces 

A ring of edges is a set of edges joined end to end 

such that every edge in the set joins exactly two other edges 

in the set and that no subset has this property. A border 

of S is either a ring of edges on or a single edge on S 
r r -1 

that is an entire circuit. A face, Fm, on Sr is the whole or 

a portion of Sr bounded by one or more disjoint borders of Sr 

such that a continuous paCh can be traversed between two 

arbitrary points on Fm without crossing the border(s). Two 

faces may share the same border. An example of a face (F1) 

on the object shown in Fig. 3 is the portion of S1 bounded by 

the border that may be represented by an alternating sequence 

of vertices and edges: (V^, E-j^* ^2* ^1,2' • 

♦ 
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3.2 Classification According to Orientation

Th« faces, ele.es and vertices of a quaJric object are 

classified according to their orientation with respect to a 

specified vantage point. The purpose of such classification 

is to reduce the amount of coeqputatlon that Is required for 

the tlne-cons;inlng visibility tests described In Sec. VI.

The actual procedure for determining and classifying vertices 

and edges is described In Sac. V. Let be a point on S^. 

The cutward unit normal vector to 3^ at Pj^ Is:

grad qr(Pjt)

Igrad q^CPu)!

The orientation of Pj^ on S^. with respect to Q Is defined as;

Br'V - (3.1)

Where

If 3jj*Kj.(Pjj)>o,

if

If (3.2)

1 (3.3)
|*r*d q,(P|j)l

Pj^ is said to be front-oriented, orthogonally-oriented or 

back-oriented on S^. with respect to Q according as a,(Pjt) i» 

equal to +1, 0 or -1, respectively. In the two-dimensional 

illustration In Pig. P^^, Pg »nd P^ are respectively back-, 

orthogonally- and front-oriented on S^ with respect to ^

*



Q 

i 

FIGURE 4 

ORIENTATION OF .P^ ON Sr WITH RESPECT TO Q 
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Face Classification 

Loutrel [19] took much advantage of the property that 

the orientation of an entire face of a polyhedron is determined 

by the direction of a single normal vector on the face. On a 

quadric surface, the direction of a normal vector to the surface 

varies over the entire surface. However, the faces of a quadric 

object can be classified according to orientation by virtue 

or the following property: 

Front-oriented points and back-oriented points 

cannot coexist on a face of a quadric object. 

Proof: Let us assume that there exist two points and P2 

on F , which is a part of S„, such that one of the two points 

is front-oriented while the other is back-oriented. Fm is 

continuous within its border(s), and the direction of the 

outward normal vector to Fm varies continuously over Fm. 

Choose a continuous path on Fm between,P1 and P2 such that it 

does not meet the border(s) of Fm anywhere. Then, in order 

that and Ar(P2) ®ay have opposite signs there must be 

a point P^ on that path where A^P^) - 0, which can occur 

only on a virtual edge. In other words, a virtual edge not 

on the border’ of Fjjj is found on Fm. Hence the definition of 

a face is violated. Q.E.D. 

A front (back) face of Sr is a face on which all points 

ate front-(back-) oriented except possibly on the border of the 
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face where orthogonally - oriented points may occur. A back 

face is invisible. A front face may be totally visible, or 

partially or totally hidden from view by other faces. Since 

a back face (the inner side of it, actually) is hidden by one 

or more front faces, any point hidden by a back face must also 

be hidden by one or more front faces. Therefore, the hiding 

effect of a back face on any other face need not be considered. 

A component surface may consist of a single front face, or a 

single back face, or both a front face and a back face. In 

Fig* 3/ the visible portion of is a front face, whereas 

the irrisible portion of is a back face. 

* 

Edge Classification 

On a virtual edge j in Lr, ^(P^) “ 0 for all on 

E¿ j. On a real edge E^ j in s' MPk) or Äs(pk) is the 

same for all P^ on E^ j except possibly for or Vj. This 

property of Invariant orientation follows directly from our 

definitions of edges and orientation, and is significant in 

that the orientation of an entire edge can be determined by 

testing only one point on it. 

A real edge Ei j in Ir ß is of Class if and only if 

there exists P^ other than and Vj on E^ ^ such that 

MVs0 A MVS0 (3.4) 



,( 
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A real edge E. , in I e is of Class H. if and only if 
1 > J r >s 1 4 

there exists other than and Vj on j such that 

(3.5) Ar(Pk)>0 A As(Pk)>0. 

A real edge E, , in I e is of Class m if and only if 
j-jJ r>B - 

there exists other than and on E^ such that 

(3.6) 

and that „ is recessive. 
r,s 

A real edge E. . in 1,. „'is of Class if and only if 1^ j Tsa J 

there exists Pk other than and Vj on Ej^^j such that (3.6) is 

true and that 1,. 0 is protrusive, 
r, s 

A virtual edge is always of Class H^. 

Since an edge is the intersection of two front faces, 

it may he called a front edge. Since an edge is the inter¬ 

section of two back faces, it may be called a back edge. An 

Hg or edge is the intersection of a front face and a back 

face, and hence may be called a boundary edge. An edge is 

said to be potentially visible whenever the invisibility of 

the edge cannot be established'by considering only the surfaces 

forming the edge. H1 and Hg edges are invisible, whereas 

and edges are potentially visible. In Fig 3> *it2 con,fcain8 

four edges: an edge, 2» 8111 Hi edße> E9,io' 811(1 two ¾ 

edges, g and %2,10' E5,7 in ^^3,4 is 8 real H3 ed8e* *±,2 

in L1 is a virtual edge. 

i 

4 
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The classification of an edge E1 ^ may be considered a 

local visibility test, as it does not involve component surfaces 

other than the surface(s) forming 

Vertex Classification 

A front (back) vertex is a vertex that is (front-) back- 

oriented on all the surfaces forming it. A boundary vertex is 

a vertex that is orthogonally-oriented on at least one of the 

surfaces forming it. Front vertices and back vertices are real 

vertices whereas a boundary vertex may be either real or virtual. 

Back vertices are invisible, but front vertices and boundary 

vertices are potentially visible. On the object in Fig. 3* 

both Vg and Vg are the intersections of and S^; 

Vg is a back vertex, whereas Vg and all the other vertices 

on the object are boundary vertices. 



IV. COMPUTATION CF REAL VERTICES AND SURFACE INTERSECTIONS 

Since in most design applications, many views are usually 

desired of an object, it is advantageous to separate the com¬ 

putation task into two parts: the per-object computation and 

the per-view computation. The per-object computation, which 

may be regarded as "preprocessing" for the subsequent per-view 

computations, is described in this section. The per-view 

computation is described in the two succeeding sections. It 

is not necessary to compute points on a planar intersection 

in space because the equation of its projection can be obtained 

and used for the computation of each view. To prepare for the 

per-view computation for planar intersections, the equations 

of the planes containing the intersections are obtained. The 

projection of a nonplanar surface intersection is, however, 

a quartic curve in general, and it is practically infeasible 

to use the equation of such a curve for view computation. Thefe-* 

fore, on each nonplanar surface intersection, closely-spaced 

points are computed, and for the computation of each view, the 

projections of the points are used instead of the equation of 

the curve of projection. 

4.1 Computation of Real Vertices 

The real vertices formed by three or more component 

curfaces may be computed by solving the equations of three of 

the surfaces simultaneously. Although there are many good 
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methods for solving systems of nonlinear equations, none of 

them is efficient or reliable for finding all solutions without 

initial approximations supplied by the user. Therefore, we 

resort to the classical method of Sylvester [23]. By the 

successive elimination of two variables from the three equations, 

a resultant equation in one variable is obtained. Subroutines 

for finding all roots of a polynomial equation of one variable 

without requiring the user to supply initial trial values can 

be found in many computer program libraries [15]. However, if 

all three equations are of the second degree, the computation 
X y. 

of the coefficients of the 16 degree resultant equation and 

the subsequent solution of the equation would be extremely 

time-consuming. In such cases, vertices can be determined in 

the process of computing points on a surface intersection 

(see Sec. 4.2). Vertices formed by three or more curved surfaces 

rarely occur on machine-made objects for the simple reason that 

it is very difficult to make such a joint with ordinary machines; 

most of them are formed by planes and no more than two curved 

surfaces. 

Not all the points obtained by solving the equations of 

the surfaces are vertices of the object. A vertex must satisfy 

the bounds of all the component surfaces forming it. 

Wherever possible, the relative positions of the computed 

vertices along the surface intersections of the object are noted. 
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For example, if V1 is the only vertex formed hy S2 and 

and V2 is the only vertex formed by S2, and then must 

be Joined to V2 by I2#3. However, if two or more vertices are 

formed by either or both of the two groups of component surfaces, 

the interconnection among these vertices must be determined by 

other means (see Secs. 4.2 and 5»3)» 

4.2 Computation of Points on a Surface Intersection 

A simple and efficient method is used to compute closely 

and evenly-spaced points on a surface intersection. The 3-D 

Cartesian space is partitioned by three sets of parallel planes 

represented by: 

X » ms, y » ms, z » ms, (4.1) 

where m - ±1, x2, ±3, ..., and S is the chosen resolution. We 

want to find points in which a surface intersection pierces 

these planes such that the distance between two consecutive 

points does not exceed a specified limit (e.g. 26). Suppose 

that, having started from a vertex, we have already computed k 

points on Ir g. Pk+1 is the next point to be determined. Since 

6 is small compared to the radius of curvature of 8 at any 

point, the direction of Pk_1Pk is used to estimate the direction 

of P^PTV. If the magnitude of the x-component of Pk-1Pk is 
K K+J. 

larger than that of the other two components, xk+1 is calculated 

as follows: 

I 
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xk+l = xk + fi*SIGN(xk - 
(4.2) 

X, is then substituted into qr = 0 and qs = 0 to obtain two 
K+x 

equations in and zk+i: 

fr(yk+l' Zk+1) “ 0î ^^k+l' zk+l) “ ^ 
(4.3) 

These two equations can be solved simultaneously by Newton’s 

method, using yk and zk as the initial approximations for 

yk+^ and zk+^ respectively. It is possible that may have 

such a sharp bend at Pk that it fails to intersect 

In that case, there is no solution for (4.3) near the initial 

approximation, and we must try the y or the z direction instead. 

The process of computing points on Ir^s by this method is called 

"tracing”. 

If real vertices have been determined on Ir^g by the 

method described in Sec. 4.1, they are used as the starting and 

end points for tracing Ir#s. Otherwise, starting points can be 

obtained by cutting 1^s with a suitable plane which can be 

given in the input object specification. Undetermined vertices 

on I can then be found while I s is being traced. After 

I has been traced, the interconnections among all the vertices 
r,s 

on Ir s have also been established. 

* At the starting point of a trace, there is no preced¬ 

ing point with which to estimate the direction of IriS* Hence 

the second point ?2 must be found by trying one by one of the 

six planes (of (4.1)) closest to and surrounding P-^. 
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A method [27] has been developed to generate a repre¬ 

sentation of each segment of g as a 3-D chain - a sequence 

of incremental vectors joining nodes of the 3-D grid formed by 

the planes (4.1)i the nodes closest to s are chosen for the 

chain. If the grid is sufficiently fine, the projection of a 

3-D chain gives the appearance of a smooth curve in a drawing. 

This method is very efficient as no iterative solution of 

simultaneous equations is required. However, for visibility 

tests, we need the exact points on 1^s* A chain representation 

may nevertheless be useful for quick display of a surface inter¬ 

section without hidden-line elimination. 

4.3 Obtaining the Equations of Planes Containing a Planar 
Surface Intersection____—- 

The projection of a section of a planar intersection 

between two quadric surfaces is a conic. The equation obtained 

by eliminating x between the equations of the two surfaces is, 

in general, a quartic equation. It is actually the product of 

the equations of the projections of two sections one of which 

may be an imaginary conic in some plane. In order to obtain 

the quadratic equation representing the projection of a section 

of a planar intersection rather than the entire surface inter¬ 

section, the equation of the plane containing that section must 

be determined. To accomplish this we make use of the following 

theorems which, together, express the conditions for the existence 
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of a planar Intersection between two quadric surfaces. 

THEOREM 1. [10,24] Let = 0 and q5 » 0 be the equations of 
two quadric surfaces. The equation 

Qi - Hq2 « 0 (4.4) 

represents for all real values of k a quadric surface 
passing through all the points common to q, » 0 and 
q2 » 0. 

THEOREM 2. [10] If the rank of the discriminant matrix of a 
quadric surface is less than 3, the locus of the 
equation of the quadric surface consists of two planes. 
[The discriminant matrix of a quadric surface 
represented by an equation q = 0 of the form of 
(1.1) is defined as r 

pi V2 V2 V2" 
D » ¡alj/2 Cg Cj^/2 c0/2 

cq/2 cc/2 c^/2 

c7/2 Cg/2 C9/2 c0 

(4.5) 

where the c^, i = 0,1, ..., 9, are the coefficients 
m qr « 0. ) 

THEOREM 3. [10] if the sum of the (n-1)-rowed principal minors 
of a singular symmetric matrix vanishes, its rank is 
less than n-1. 

Let q3 * Qi - *q2 * 0, and let a±, bi, Ci, i«0,l, .,., 9, 

be the coefficients of the terms of resPectlvely. Then 

Ci » ai - Kbi, i « 0,1,...,9 (4.6) 

and by Theorem 1, q3 » 0 contains the intersection of the quadric 

surfaces represented by qi 0 0 and q2 ■» 0. By Theorem 2, if the 

locus of q3 » 0 is to consist of two planes, the rank of D, its 
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discriminant matrix, must be less than 3* Since D is symmetric. 

Theorem 3 can be used lo express this condition as: 

|D| - 0; (4.7) 

Z D.. * 0, (4.8) 
i=l 11 

where |D| is the determinant of D and Di, is the principal 

'oh 
minor of order 3 obtained by striking out the i° row and the 

ith column of D. If we form D by substituting (4.6) into 

(4.5), then (4.7) becomes a fourth-degree equation in K and 

(4.8) becomes a third-degree equation in -. Therefore, the 

existence of a common real solution to (4.7) and (4.8) 

guarantees that the intersection between the two quadric sur¬ 

faces is planar. Ylith the value of n thus obtained, (4.4) can 

be factored into the linear equations of the two planes con¬ 

taining the intersection. The plane that contains an unwanted 

section of the intersection (according to specified bounds) 

is rejected. 
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V. EDGE AND PROJECTION COMPUTATION 

The first step in the computation of a view is to 

transform the coordinates of all the real vertices and the 

equations of all the surfaces to refer to O-XYZ (see Sec. 

2.2). The next step is to determine virtual vertices and 

limbs. From the surface intersections and limbs we obtain 

the edges of the front faces and the projections of these 

edges, which will then undergo the edge visibility tests de¬ 

scribed in Sec, VI. As mentioned in the preceding section, 

a limb or a planar urface intersection need not be traced; 

an edge from such a curve can be represented by the equations 

and bounds of its projection. The set of techniques for 

handling untraced edges is deemed "analytical1 , whereas the 

set of techniques for handling traced edges is deemed 

"piecewise-linear". 

5.1 Determining Virtual Vertices and Limbs 

Of the three surfaces forming a virtual vertex, at 

least one is a plane - the polar plane of one of the surfaces. 

Therefore, virtual vertices can alwayr be determined by 

solving simultaneous equations (see Dec. 4.1). Virtual ver¬ 

tices on a traced segment of surface intersection, I , can 
r, s' 

also be found by a simple search for points at which ôq^ôx 

or aqs/ax vanishes or changes sign. 

♦ 
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After all the virtual vertices on a limb are found, 

L„ can be traced by the method of Se• 4.2 as the intersection 
r 

of Sr and its polar plane. However, since Lr is planar, it 

can be handled by analytical techniques. 

5.2 Ordering Vertices 

The interconnections among the vertices on a traced 

curve are already established. On an untraced, planar curve, 

the interconnections among the vertices on the curve can be 

determined by ordering the projections of the vertices along 

the projection of the curve in a counterclockwise sense. This 

method requires, first of all, getting the equation of the 

curve projection. Let denote the projection of and g 

the projection of I _. The equation of (the curve containing) r, a 

1^. is obtained by eliminating the variable x between q^, » 0 

and iqy/ax »0. If either or both of qr « 0 and qs ■ 0 are 

linear, elimination is made between these two equations. If 

both q_ * 0 and q_ » 0 are of the second degree, elimination 
i O 

is made between one of these equations and the plane containing 

Ir s (see Sec. 4.3). 

The equation of a curve projection may represent a pair 

of straight lines, such as the projection of the limb of a 

cylinder. In that case, the equation is factored into two 

linear equations. The vertex projections can be separated and 

ordered on each of the tv/o straight lines by a simple sort of 

i « 
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the y or z coordinates. 

If a curve projection is a conic, vertex projections 

can be separated and ordered by sorting on the single-valued 

8-gÇtj.ons of the conic. A single-valued section of a 2-D 

curve is a continuous section of the curve such that there 

is a one-to-one correspondence betttfeen y and z values on 

this section and that no portion of the curve larger than and 

containing this section possesses this property. A conic may 

have up to four single-valued sections, each of which is as¬ 

sociated with a unique combination of the signs of dz/dy and 

d2z/dy2. The sections are numbered 1,2,3 and 4, corresponding 

to the four sign combinations (-,+), (+,+), (-,-) and (+,-), 

respectively. The point of connection of two single-valued 

sections is an extremum, where dz/dy or dy/dz vanishes. In 

Pig. 5j a tilted parabola has two extrema, and K,, and 

three single-valued sections: sections 4,1 and 2. Vj^ and 

Y4 lie on secti°n 4, lies on section 1 and V¿ lies on 

section 2. The counterclockwise order of V£, V£, and 

is: V£, V¿, V^, Vg, which is taken as the order of V^, v^, 

Vg and in space. 

5.3 Determining the Front-face Edges and their Projections 

‘be the counterclockwise sequence 

of vertices on a surface intersection or limb. On every ■ 

curve segment between V1 and Vi+1, i = 1,2, ... n-1, an 

ï I 
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arbitrary point is tested. If Pk does not satisfy the 

bounds on the surfaces forming the curve, the (mathematically 

defined) curve segment between and Vi+1 does not actually 

lie on the object. If satisfies the bounds, its orienta¬ 

tions are determined to classify Ei i+1 as described in Sec. 

3.2. The edges are discarded, but all the other classes 

of edges are retained. 

Let E^j denote the projection of E^^ 1. If Ei j is a 

traced edge, E| j is represented simply by the y and the z 

coordinates of the list of points computed for .. If E. j 

is not traced, EJ ^ is represented by: 
J 

1. The equation of the curve containing EJ ., 
J 

2. The y and the z coordinates of ^ and Vy 
3. The numbers of the single-valued sections that 

are contained partially or wholly in EJ ., in 
■W J 

counterclockwise order along the curve 

To reduce the computation required for finding edge 

projection intersections (see Sec. 6.1), the maximum and mini¬ 

mum y and z values on each edge projection are determined. 

For a traced E. ., the maxima and minima on EJ . are found in 

the process of computing the transformed coordinates of the 

points on E^ For an untraced E1 j, the maxima and minima 

can be obtained from the y and z coordinates of and 

the extrema, if any, that occur on EJ .• 
1 J J 
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VI. EDGE VISIBILITY TESTS 

Having determined the edges a,nd their projections, we 

the hiding effect of front faces on potentially visible edges. 

Only the projections of the visible edge segments will be 

drawn. The order of invisibility of a point P^, den'oted by 

n(Pk), is defined by Loutrel [19] as a non-negative integer 

equal to the number of front faces hiding P^ from Q. An edge 

segment every point on which has an order of invisibility of 

zero is visible. The principle of the method to be presented 

is illustrated in Pig. 6. Consider a point P moving along an 

edge E. ... o(P)changes only where QP intersects a boundary 
Aj J 

edge at a point between Q and P; the change is +1 at where 

P just begins to hide behind the front face, the border of 

which contains the boundary edge; the change is -1 atW2 where 

P just comes out from behind the front face. There is no change 

in n(P) when QP intersects a front edge between P and Q because 

P is then simultaneously coming out from behind one front face 

and going behind another. The points on E^ j where n(P) 

changes are called '''-transition points. The projections of 

these points are the points of intersection of E¿ j with the 

projections of boundary edges. 

6.1 Determining Intersections of.Edge Projections 

Finding the intersections of the projections of edges is 
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the most time-consuming part of visibility computation for a 

quadric object. A simple envelope test is first performed on 

edge projections to detect certain non-intersecting cases. 

The envelope of an edge projection is a rectangle whose sides 

correspond to the maximum and minimum values of y and z on the 

edge. Let YMIN^j, ZMIN^j,^YMAX^j, ZMAXi,j denote respectively 

the minima and maxima of y and z values on The edge pro¬ 

jections Ei and E' ^ cannot intersect if their envelopes do 
* i* j a,d 

not overlap. The nonoverlapping condition can be expressed as 

follows : 

YMIN1#J>YMAXaíl) V ZMIN^ ^ZMAX^ V YMIN^^YMAX^V ZMI^^MAX^ 

(6.1) 

Let E. j be an untraced edge in a planar surface 
Xß J 

intersection I 0 and Ea * be an untraced edge in a planar 
rj s u 

intersection The intersection of EJ ^ and E' h can be 

determined by solving the equations of the projection of Ir^s 

and I simultaneously. If both equations are of the second 
IA j V 

degree, Sylvester's method of elimination is used. Let 

be a solution to the equation pair. ( y^ z^) is immediately 

rejected as an intersection if it falls outside the envelope 

of either EJ ., or E2 Otherwise, it is tested for boundedness 

as follows. Let x1 be a common solution of qr(x,yk,zk) = 0 and 

qs(x,yk,zk) » 0, and x2 be a common solution of qu(x>yk*zk) ° 0 

and qv(x*yk,zk) = 0- If (xi>yk>zk) satisfies the bounds of Sr 
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and Sg and satisfies the bounds of Su and Sv, then 

(yk,zk) is an actual intersection of E| j and E¿ If either 

of the edges, say y is a virtual edge, the polar plane of 
S„ takes the place of S . 
r s 

The intersections of the projections of two traced edges, 

E, ^ and E_ are determined by comparing the y and the z 
i, j a,o 

coordinates of the list of points representing E, ^ with those 

representing E& An associative list method is devised that 

requires essentially one pass through each point list to find 

the intersections, if any, of the two edge projections. 

The list of y and z coordinates of the points on each 

edge is first converted into a 2-D chain [12], A 2-D chain is 

a sequence of concatenated vectors, called the elements of the 

chain, each of which extends from one node to another of a 

mesh in a 2-D square grid. As shown in Fig. 7, the eight 

possible combinations of directions and (relative) magnitudes 

of chain elements are designated by the numbers 0 through 7, 

called the values of the chain elements. The nodes on the chain 

are called chain points. For the purpose of drawing, the mesh 

size is determined by the desired picture resolution. All 

coordinates are normalized so that they lie between zero and NR, 

the maximum number of resolution units on either axis (e.g., 

Np « 512). Conversion to chain is achieved simply by rounding 

off the coordinates of each point to the nearest node of the 

i 

i 
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picture grid. If two successive points fall on the same node, 

no chain element is generated; however, if they are more than 

one mesh apart, interpolation is made to generate the necessary 
« 

chain elements between them. 

The chain representing one of the edge projections whose 

intersections are to be found, say EJ ., is linked to an 
J 

"associative store" of NR cells as follows. All the chain 

points whose z coordinates equal k are linked by pointers to 

the kth cell of the associative store. As shown in Fig. 8, a 

pointer is stored in the kth cell, pointing to the first of a 

pointer-linked list of chain points in ascending sequence of 

the y coordinates of the chain points. A zero would be stored 

in the k cell if there were no chain point whose z coordinate 

equals k. Having thus linked the chain of E,' to the associ- 
Iß J 

ative store, we test the chain of E' . point by point to look 

for its intersections with the chain of EJ ,. Let P be the 
th ^ J ® 

m point in the chain of E^ and zm = k* A search is made 

through the list of chain points of EJ ^ that are linked to 
th « 

the k cell. One of the following situations may occur: 

1* ym eQuals y coordinates of one of the chain 

points of E^jj a nodal intersection is found. An 

example of a nodal intersection is shown in Ftfi. 9a. 

y« differs from the y coordinate of a chain pöint m j 

of E^j by one. A "nearness flag", NEAR , id set 
/ 

/ 

I 

2. 
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such that NEARm - +1 o»- -1 »wording as yn is 

greater or smaller than the other y coordinate, 

respectively. If a nearness flag has been set for 

and that NEAVl ^ & P.onnodal 
section has been detected. An example of a non- 

nodal intersection is shown in Pig. 9b. If 

NEAR^-NEAR,, or if NEAVi haS "0t 6660 Set’ 

there is no intersection yet. 

3. yffi differs from the y coordinates of all the chain 

points United to the ltth cell by more than one. 

There is no intersection. 

After a chain intersection has been detected, the points in 

the point list of E1(3 and Ea>b corresponding to the Intersection 

are United to each other via an entry In a list of edge pro¬ 

jection intersections. Since an intersection of two chains 

is not, in general, exactly the intersection of the curve, 

represented by the chains, the chain intersection is used only 

a. a very good estimate of the exact point in the visibility 

test described in Sec. 6.3* 

Xf E is a traced nonplanar edge and E1>j is an un¬ 

traced planar edge, a "hybrid" method can be used to find their 

intersection. Let f(y,s) - 0 be the equation of the curve 

containing Ei>;). At every point PB on the chain representing 

-, that falls within the envelope of E^y f(ym' V 18 
a, to 



and the chain evaluated. A possible intersection between 

E¿ t occurs at Pm if f(ym, zm) » 0, or at a point between Pm_1 

and Pm if f(ymiZm) and fíy^, have opposite signs. The 

derivatives of f(y,z) at this point are then evaluated to 

determine if the point actually lies on The equation of 

the general conic is : 

f(y,z) = a1y2 + a2z2 + + a4y + a5z + a6 = 0. (6.2) 

f(y,z) at every chain point can be evaluated incrementally, 

using the value of f(y,z) at the preceding chain point. Let 

V and be the y and z increments respectively of a chain 
i > 

element of value i, and let the chain element P^FJ have the 

value i. is evaluated incrementally as follows: 

■ 'm-l' + (2alvi+ a3í:i>ym-l+*2a2C 

+ [»!( '’i)2-'- a2(C1)2+ 03(^)(^)+ *n\+ »5C1) 

- f(yn-l' Vl)+ «I*1 )ym-l+ «2(1)Vl+ g3(1)' (6-3) 

where g^, gg and 83 are functions whose values do not depend 

on the y and z values, and need be evaluated once only for 

each i, i = 0, 1, ..., 7» 

On a computer for which arithmetic operations are 

considerably slower than operations such as comparison and data 

fetching, a more efficient alternative to the hybrid method is 

to obtain the chain representation of j and then determine 



the intersections of two chains fcy the associative list method. 

Freeman and this author [13] have developed a simple algorithm 

for generating a chain representation of a section of a curve 

represented ty f(y,t) ■= ?. It makes use of a common property 

of curves that the immediate neighborhood of a curve is 

"polarised" into one region in which f(y,z) is positive and 

another region in which f(y,z) is negative. Guided by the sign 

of fty.z), successive chain points are determined by selecting 

nodes of the square grid that lie "closest" to the curve, close¬ 

ness being measured by |f(y,s)| evaluated at the nodes. f(y,s) 

is evaluated incrementally toy (6.3)« 

Yet another alternative to the hybrid method is to trace 

all curves, convert their projections to chains, and then find 

the projection intersections. This has the advantage that no 

separate procedures are required for handling planar and non- 

planar curves. 

It may seem that the computation time for determining 

, edge projection intersections would increase very rapidly with 

the number of edges. Let »E be the number of edges. If we 

had to determine the intersections of all the edge projections 

with one another. Indeed HE(HE - D/2 intersection determinations 

would be required. But the actual number of necessary inter¬ 

section determinations is always very much smaller than that. 

First of all, a large number of edges are usually eliminated as 

i 
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edges. No intersections need be determined between edges 

of the same face. Envelope tests rule out many more possible 

intersections. Furthermore, edge classification enables us 

to test only the and H3 edges against the Hg and H3 edges. 

6.2 The Order of Invisibility of a Point 

A point Pk is hidden by the front face of a component 

surface Sr if and only if:'. 

1. qr(x,yk,zk) = 0 has real roots, and 

2. one of the real roots, x^, satisfies the following 

conditions : 

a. xh > xk, that is, (xh,yk,zk) lies between Pk 

and Q, 

b. (xh,yk, zk) satisfies the bounds of Sr, and 

c. (xh,yk,zk) is front-oriented on Sr. 

fi(P, ) is equal to the number of front faces hiding PR. Of 

course, if (yk*zk) does not fal1 inside the envelope of the 

projection of the front-face border on Sr, we know Pk is not 

hidden by that front face without further testing. o(Pk) is 

not defined if QPk intersects any boundary edge. If QPk 

intersects a front edge, only one of the faces forming the 

edge will be counted in determining o(Pk). 

6.3 Propagating the Order of Invisibility Along an Edge 

A constant-fi segment on an edge E^ j is a segment between 

two neighboring n-transition points on j* The order of 
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invisibility of any point on a constant-fi segment is said 

to be the "n of the segment." To determine the n of every 

cons tant-ii segment on we can start at a point PQ on 

find 0(Po), and going toward or Vj, increment or 

decrement Q at the o-transition points. PQ may be any point 

whose projection, P¿, does not lie on the projection of a 

boundary edge. Let W^W^,.... W^, be the intersections between 

E. * and the projections of boundary edges, encountered from 
J 

P1 to VI. To determine the o-transition points on E. A between 

PQ and Vj, væ examine each W^, starting with . Let a 

boundary edge of F„, whose projection, E' intersects E.' j at 

W^. Suppose the line of view through intersects j at 

Wt, and Ea b at Wj (see Fig. 6). For Wt to be an o-transition 
^ a. y. 

point, must lie betxieen Q and W^. Let WT, the t o-transition 

point on E, 4 betv/een P^ and V,, be caused by F,,. Take two * i,j o y ^ m 

points, w’ and on Ei j a small distance away from WT and 

on each side of WT; is on the same side of WT as P0. œT, 

the change in n at WT is equal to -1 if is hidden by Fm and 

is not; it is equal to +1 if is hidden by Fm and W“ is not. 

For T o-transition points between PÄ and V., T < T’, 
O J ssi 

T 
o(V,) « o(P.) + z 0)T. (6.4) 

j U T«1 

/- 

When o(Vj) has been computed by (6.4), o(P0) is said to have 

been propagated from po- t0 vy 
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If an intersection between the chains representing j 

and E' ^ has been found, we must perform a 3-I> test on as many 

points on E. . as necessary before and after the approxjjnate W . 
ly J ' - ^ T 

If visibility change is found to occur between and Pk, , 

^k-l^k ^ur^^er subdivided to find a closer approximation 

of the exact n-transition point. 

6.4 Propagating the Order of Invisibility from Edge to Edge 

To reduce the number of evaluations of q(P0), the order 

of invisibility may be propagated from one edge to another via 

the connecting vertex instead of starting at a new PQ on each 

edge. However, an ambiguity in the order of invisibility may 

arise at a boundary vertex. Suppose we are approaching Vj along 

Ei j* A point P1 on that segment of E^ j which lies between 

Vj and the o-transition point nearest to Vj may be hidden 

by one or more of the front faces forming Vj. Since Vj is not 

hidden by any of the front faces forming V. o(V.) is actually 
J J J 

smaller than o(P^) instead of being equal to 0^) as indicated 

by (6.4). To account for this discrepancy, we define the local 

order of invisibility of,a boundary vertex Vj with respect to 

Ei j, denoted by ^l(vj/eí j)* as the number of front faces hiding 

P1 on the segment of E^ j between Wjj and Vj WN being the n- 

transition point nearest to Vj. niP^) is deemed the apparent 

order of Invisibility of Vj as Vj is approached on E^ j, and 

is denoted by n(vj/Ei j)* We thus have the relationship: 

DfVj) - (6.5) 
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Clearly, c(Vj) is independent of the edges at Vj. To start 

propagating o(Vj) to another edgè^Jgj ^ wo simply compute 

Ol(Vj/Ej k) and add it to n(V^to obtain Q(Vj/Ej^k). 

Since all the edges at a frontKJvertex are edges by 

-definition, the local order of invisibility of a front vertex 
'' ' / 

Vj with respect to-any of the edges at Vj is equal to zçro. /' 

Hence, for a-front vertex. 

7 

n(v/Ei,p = = ^vj>* 
(6.6) 

By means of (6.4),* (6.5) and (ó.ôX^th^ order of invisibility 

can be propagated from a single starting^pQirrtjto many potentially 

visible edges via the connecting vertices. Louttel’s basic 

strategy [19] for traversing a path of edges is applicable here, - 

namely: whenever a front vertex Vj is reached, the edges at 

will be tested next. If one or'inaj^eV^ occurs at Vj, o(Vj) 

is not defined and no edge will ever be tested from V,. 

flUadi 



VII. IMPLEMENTATION 

7.1 The Program 

A complete procedure for drawing orthographic projections 

of quadric objects has been implemented in a program named 

"QUADRAW" written in FORTRAN IV - the language was chosen for 

its machine independence and wide availability in the academic 

community. QUADRAW has run successfully on an IBM 360/9I 

computer, and is also being tested on a UNIVAC II08 computer. 

The program is quite efficient; it uses about a second of the 

360/91 CPU time, on the average, to compute a view of the 

"spacecraft" shown In Fig. 12 and Fig. 13 (see Sec. 7.2). The 

object program excluding the data structure and the plotter 

subroutines occupies about 15,000 words of memory of the 360/91. 

The data structure for the spacecraft, on the average, takes up 

about 25^000 words. QUADRAW was written in such a way as to 

minimize debugging effort. Its modular design alloxired for easy 

experimentation with various alternative algorithms. Much of 

the code can be '‘tightened up" considerably to make the program 

run even faster. Like most hidden-line elimination programs, 

QUADRAW really calls for a fast computer with a large memory. 

The complexity of the object that can be drawn by QUADRAW is 

limited only by the memory space available. However, many of 

the large number of subroutines of QUADRAW as well as some park)* 

of the data structure may be overlaid during execution. 
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A considerable amount of effort was spent on implementing 

the analytical techniques for handling planar curves, but it 

failed to yield satisfactory results. Finding the inter¬ 

sections of two conics by solving the resultant quartic équa¬ 

tion is just not reliable enough, especially when the two curves 

are nearly tangent to each other, which is quite common in a 

picture. Moreover, the analytical techniques turned out to be 

not more efficient overall than the piecewise-linear techniques 

that are applicable co both planar and nonplanar curves. Hence 

in QUADRAW, all curves on an object are traced and subjected 

to the same visibility test procedure. 

From the beginning, it was realized that loss of accuracy 

through computer arithmetic operations would be a formidable 

problem for QUADRAW which performs a large number of calculations 

with nonlinear equations. Algorithms were carefully formulated, 

and error analyses were made to set suitable error tolerances 

for various steps of computation (for checking convergence in 

root-finding, singularity of a matrix, satisfaction qf an equa¬ 

tion, etc.) After much struggle, 32-bit single-precision 

arithmetic was found to be adequate for all subroutines except 

the library subroutine for obtaining roots of a polynomial [15]» 
\ 

The quality of the pictures produced by QUADRAW \is very 

good. Because the algorithm for computing points on space 

curves yields evenly-spaced points, the curves appear smooth 
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from all angles even if the grid used is fairly coarse. QUADRAW 

computes all curves on an object with the same precision. This 

is wasteful of computing time. However, it would require only 

a small change in the program to compute the larger features 

of an object, such as the body of the spacecraft, with a coarser 

grid. 

A subroutine package in a program library [16] was used 

to plot the output of QUADRAW on either a CALCOMP plotter or a 

Stromberg-Carlson 4020 microfilm recorder. It may be of interest 

to note that just outputing the vectors representing a view of 

the spacecraft onto a magnetic tape for the off-line SC 4020 

consumed as much CPU time as the view computation itself. For 

interactive computer-aided design, the efficiency of program and 

hardware for the actual drawing of the vectors is certainly as 

important a consideration as the efficiency of view computation. 

Besides pictures from which hidden lines are omitted, QUADRAW 

can generate "wire-frame" pictures in which all lines are shown, 

or pictures in which the hidden lines are dashed. QUADRAW can 

also draw a set of nonintersecting objects. 

During the execution of QUADRAW, numerous operations are 

performed Just to store, link and retrieve data. The data 

structure was carefully designed for execution speed and memory 

conservation. A group of data items that are usually required 

together in computation is stored in a block of contiguous 
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memory, and contiguous blocks containing similar groups of 

data form a table. Storage for all data is dynamically allocated 

from a single storage pool in the form of a one-dimensional 

FORTRAN array placed in Block COMMON, An INTEGER-type name as 

well as a REAL-type name is given to the array by means of an 

EQUIVALENCE statement so that the array can accommodate data 

of mixed types. Whenever two tables are being built up simul¬ 

taneously, one grows from the top down, the other grows from the 

bottom up. Linkage between groups of data items is effected by 

pointers, which are themselves elements of the array whose in¬ 

teger values indicate the positions of the linked items in the 

array. Storage allocation and data structure handling are 

delegated exclusively to a set of "access subroutines". Con¬ 

sequently, major changes to the data structure have been made 

without disturbing the main program logic. However, the numerous 

subroutine calls do cost computing time. To achieve still higher 

speed in QUADRAW, these access subroutines can be converted to 

in-line code in the most frequently executed portions of the 

program. 

The main program logic of QUADRAW is shown in a flow 

diagram in Fig. 10. 

7.2 Illustrative Examples 

Several orthographic views of the test object used to 

illustrate object characterization are shown in Fig. 11. Even 
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for such a simple object, it would be quite a task to specify a 

planar approximation of the object. 

The normal views of a spacecraft are shown in Fig. 12. 

Auxiliary views are shown in Fig. 13. Although QUADRAW in its 

present form is not easy to use, it took only a few hours (total 

elapsed time) of interaction between one person and a batch¬ 

processing computer to attain the final shape of the spacecraft. 

If a planar approximation method had been used, it would have 

been very difficult to make the many changes in the object 

specification. The midsection of the spacecraft is a circular 

cylinder. It is Joined at one end with a nose-cone capped by 

a paraboloid of revolution, and at the other end with a tail 

section consisting of concatenated sections of three paraboloids 

of revolution. The body of the spacecraft is actually a thick 

shell with a set of inside surfaces back-to-back with the outside 

surfaces. Two elliptic cylinders are poked through the cone to 

^ make two windows. Protruding from the side is an antenna made 

\ up'-bf two cylindrical rods supporting a spherical dish. (Note 

• thaV-spheres are used there instead of paraboloids for variety 

rather than reality). As an element of surprise, a small cube 

,. floats Inside the spacecraft which can be peeked at from certain 
\ 

angles. To give an appreciation of the complexity of this ob¬ 

ject, two views of it with the hidden lines shown are given in 

Fig. 14. In Fig. 14a, a "wire-frame" view is shown, and in 

Fig. 14b, the hidden lines appear dashed. 
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FIGURE 12 

NORMAL VIEWS OF A SPACECRAFT 
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FIGURE 13 

MORE VIEWS OF THE SPACECRAFT 
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Two stacks of spheres are shown in Fig. 15, and three 

other simple objects are shown in Fig. 16. 

Some 360/91 execution times of QUADRAW are tabulated in 

Fig. IT. It is clear that per-view execution time varies with 

view complexity, which may be measured by the number of edge 

projection intersections. To get some idea of how execution 

time varies with object complexity, one measure of which may 

be the number of component surfaces of the object, a succession 

of simplified versions of the spacecraft were drawn, each with 

fewer parts than the preceding one. First, the small cube inside 

was put away. Then the two windows and the inside surfaces were 

eliminated. Then the spacecraft was stripped of its antenna. 

Finally, the tail section was taken off. The table also contains 

the execution times for stacks of 3* 9, •••, 27 spheres. For 

these two particular sets of objects (spacecrafts and spheres), 

per-view execution time increases approximately linearly with 

the number of component surfaces for a given view. However, we 

cannot establish from these times a meaningful figure for the 

rate of variation of execution time with object canplexity since 

it depends very much on the object configurations considered. 



FIGURE 15 

STACKS OF SPHERES 
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FIGURE 16 

THREE SIMPLE OBJECTS 



FIGURE 17 

A TABLE OF QUADRAW EXECUTION TIMES 
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VIII. EXTENSIONS 

Some extensions of this research work are suggested in 

this section. They are well-defined projects that can be 

pursued immediately, using QUAORAW as the base. The perspective 

drawing capability only needs implementation, whereas the others 

call for more research. 

8.1 Perspective Projection 

Fig. 18 Illustrates how P¿, the perspective projection 

of a point Pk' can be obtained. A rotational transformation 

of the coordinates of Pk (0-X"Y"Z" to O-XYZ) is first performed 

as in orthographic projection. Besides the three angles, two 

more parameters are needed to specify a perspective view: the 

distance from Q to the origin of the object reference frame, 

denoted by D, and the distance of TT from Q, denoted by d. Q is 

now the point (D, 0,0), and TT is the plane x»D-d, both referred 

to 0-XYZ. We can choose the picture reference frame O'-Y'Z1, 

such that the Y' and the Z' axes are parallel to the Y and the 

Z axes respectively, and 0' is the point (D-d,0,0) referred to 

0-XYZ. By similar triangles, the coordinates of P£ referred to 

O'-Y'Z' are given by 

y¿ zi d 
yk D-Xjç (8.1) 

The equation (2.8) can also represent the polar plane 

for perspective projection, but now 

- yUy - zuz). u (8.2) 
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FIGURE 18 

PERSPECTIVE PROJECTION OF Pk 
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For the global visibility test, a subroutine is required 

to find the point of intersection between a surface qr ■ 0 and 

PkQ, where Pk is a point on the object, or W|Q, where W| is an 

edge projection intersection in Tí. 

8.2 Shading 

The associative list method described in Sec. 6.1 can 

be used in an algorithm for shading a line drawing of a quadric 

object. After all the visible curve segments have been de- 
% 

termined, the points on these segments are all linked together 

to the associative store. A nonempty list of points linked to 

the k*h.cell of the associative store represents the sequence 

of intersections of a left-to-right scan-line at z-k with the 

projections of the visible surface boundaries. At every such 

intersection, we can determine whether the scan-line is enter¬ 

ing or exiting from the projection of a front face and begin a 

new set of shading calculations. 

Let PJ denote the ith intersection on a scan-line z«k, 
1, X 

and let it be a point of entry into the projection of a face on 

Sr. For each point on z-k such that y¿, j^i, j-i + 6P'6P 

being the picture resolution, and y^j < we can solve 

for x1#;J in j, k)-0 to obtain Pi, j-(xi,yy{, j' k)* 

Then an intensity function. itP^j), is evaluated. On a CRT 

display console with intensity variation capability, l(Piij) 

gives the brightness of a displayed light spot. On a device 
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such as the SC 4020, elves the sreyness level. Depend- 

Ing on the nature of the drawing device and the desired picture 

coÄtrast, I(Pi j) is usually chosen to be an increasing function 

of the cosine of the angle of incidence of «Plji3 at P1, J> that 

is, sx.grad t"11 a decreasing function of distance 

fren 4 [26]. Since intensity calculation is performed at a 

great nember of points, it must be as efficient as possible. 

Because ip is smkll. x1(J can be determined without solving any 

equation by trying small increments or decrements on 

substituting into qr-0. KP^j) W ^180 be lncr*' 
mentally. On many drawing devices, the intensity or greyness 

resolution is not very fine} therefore, a few points may be 

skipped between successive Intensity calculations. 

In Fig. 19, three scan-lines are shown crossing the 

projection, of front face. Fl; F2. Fj and F4. The visible edge 

segments in the borders of these faces are labelled by lower¬ 

case letters whereas their intersections with the scan-lines 

are labelled by upper-case letters, b 1. a front edge} a.c, and 

d are boundary edge.} e and f are segments of boundary edges. 

At Ak on the scan-line at z-k, intensity calculations based on 

F1 begin. At B^, intensity calculations are switched to Fg. 

Complications arise at an exit from a face projection on a 

boundary edge. Between Ck and Dk, for instance, the scan-line 

is in the projection of seme face whose border has not yet been 



FIGURE 19 

SCAITITHIG A LINE DRAWING FOR SHADING 
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crossed by this scan-line. Therefore, a visibility test must 

be performed to determine what is the face visible from 4 between 

Ck and Dk - a time-consuming process. A method is needed to 

take advantage of the information gained from the preceding 

scan in order to minimise the number of faces that must be 

examined. This is the "crux" of the problem. 

b.3 Higher-order Surfaces 

The procedure for drawing quadric objects can be general¬ 

ised, in theory, to higher-order algebraic surface, or even to 

other classes of curved surfaces. The algorithm for tracing 

surface Intersections is applicable to any surfaces, provided 

that subroutines for evaluating qr, Sq/S*. et°- *” supplled- 

The associative list method for finding chain intersection, is 

obviously independent of what kinds of curve, are represented 

by the chains. The object characterisation presented in Sec. Ill 

can be generalised to higher-order surfaces. (2.8), in general, 

can represent any surface besides a plane. For actual imple¬ 

mentation, however, there are problems. For example, tracing 

» surface intersection 1. simple except that we need a starting 

point on the curve, which is not easy to get for higher-order 

surfaces. Finding the intersection of a straight line with a 

higher-order surface is much more difficult than it is for 

quadric surfaces. 
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It seems that generalization of QUADRAW to handle 

arbitrary higher-order surfaces would not be practical because 

of computation and object specification difficulties. (One 

should probably resort to Coons' surfaces [8] for modeling 

objects with very complicated surfaces and use planar approxi¬ 

mation for hidden-line elimination). Nevertheless, some sur¬ 

faces especially useful for design, such as a toroid, may be 

admitted by adding the necessary subroutines to QUADRAW. 

8.4 A 3-D CRT Sketchpad 

It is inherently difficult for most of us to translate 

a mental conception of a solid into mathematical terms. A 

computer-aided designer of solids should not have to have a 

working knowledge of solid analytical geometry. An interactive 

system that enables a user to construct a 3-D object from 

components on a CRT display console will be an exceedingly 

valuable design tool. 

A "menu" of geometric components formed of sections of 

quadric surfaces may be displayed on the side of a CRT screen. 

Each component is shown as a wire frame composed of a few 

suitably chosen surface curves. By means of a light-pen, the 

user may select any one of the components, move it to the center 

of the screen and start manipulating it. 1? 

devices such as a "Joystick" and function keys, the user may 

turn the component around in space, or cause it to change its 



size and shape. For example, he may make an ellipsoid grow 

longer or fatter. After he is satisfied with the look of the 

component, the user can work on another component and then Join 

the two together by manipulating them in different views. If 

he pushes a particular function key, the intersection of the 

two components will appear. If a component is cut into several 

sections by other components, the light-pen can be used to 

eliminate the unwanted sections. Thus, component by component, 

an object of complicated shape can be constructed. The pressing 

of a "hidden-line" key will change the wire-frame representation 

into a rendering free from hidden lines. While the "sketching 

is going on, the data structure containing the object description 

is constantly being updated. When the hidden-line key is pressed, 

the final description is used to execute QUADRAS. To give a 

reasonably fast response to the designer, QUADRAW requires a 

powerful computer; yet it would be too costly for this computer 

to interact directly with the designer. Therefore, the 3-D 

sketchpad Just described is an ideal application for a system 

consisting of a time-shared large computer coupled to a "graphics 

terminal" - a «mail computer controlling a CRT console. The 

large computer will do the heavy computation on demand while 

the graphics terminal will play the interactive part. If a 

camera or video tape recorder is attached to such a system, 

the 3-D Sketchpad will be all ready for 3-D animation. 
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IX. CONCLUSION 

A view-dependent characterization of a quadric object 

has made it possible to develop a hidden-line determination 

method that is analogous to one that has been successfully 

applied to polyhedral objects. Employing a combination of 

analytical and piecewise-linear techniques, a complete pro¬ 

cedure for drawing visible-line projections of quadric objects 

has been developed. Some of the algorithms embodied in this 

procedure, such as those for computing surface intersections 

and finding chain intersections, may have applications beyond 

computer drawing. The procedure is implemented in a FORTRAN 

program whose capability has been demonstrated by many examples. 

Current research on computer-drawing algorithms leans 

heavily towards the planar-approximation and sample-space 

approach (see Sec. 1.3)* often relying on special-purpose 

hardware to speed up picture generation. Although shading 

adds realism to a picture, a line drawing is still the most 

efficient form of rendering that can be produced on any ordinary 

plotting device or CRT screen. Without hardware aids, the pro¬ 

cedure presented can efficiently generate line drawings of 

higher quality than that can be produced by any planar-ap¬ 

proximation method. The procedure is potentially extendible 

to handle shading and higher-order surfaces. 
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