
f

r?
k

71^1 ^

a

TcCHi.IC/’l r,EP3RT 4C>15

A CO::P'JTER P-IOCEWR: ’^CR GEf!CP;\Tirj3
VI‘jI3I.E-LIi'E uP- !Ii:3S CF SCLItS

BClfJDEO BY g'JADSi: SURFACES

Peter Hoon

Ccceiter 1970
\

'

•f

DEPARTMD4T of ELECTRICAL ENQ
SCHOOL of ENONEERMC and SCXNa

NEW YORK UNIVERSTTY
UMVERSITY HBCHTS BRONX, NEW YORK 10453

NATKMALTEd^NICAL

[

TECHlilCAL REPORT 403-15

A CaWTER PfjOCED>JRE FOR GETIPJiTirJu
VISIOLC-LIi'E OH' fliJjS OF SOLIDS

BCJNOEO BY q'JAORIC SURFACES

Peter Moon

1970

a. - r ->.;r-sd for 8
— 1-'t' Ir’ti9.

Prepired
tXU YORK UKIVERSITY

SCHOOL OF ENBItCERIHG AND SCIENCE
OepertMnt of ElectHcel Engineerieg

University Heights
Bronx. i:oM York 10453

' AIR RWCE OFFICE OF SCIENTIFIC RESEARCH
1 Ur.(ier

RRAHT NUNKR #-AF0SR-70-1854

8«carity Clagsificatioii

Otmaot shuiUsMiLBL
NATINO ACTIVITY (Co ONWINATIMO

document Control data -rad
^£0¿4££g£jUStfa3áU!9Lfi52¡*!¿2££>!£L££-i—!£L££2L!S£J£!!!!ü£££L¿£^!£&SkÍ£sL

orpormtm muthor) /
ol rill#, bo

York mmniSf
«C lUrttiMl

as.

!■. REPORT SECURITY CL ASSIFICATIOM

REPORT TITLE

4. OSSCiRIPTIVE NOTES (Typ* ol report and Inehiol** dot**)

iMtmrit
S. AUTMORIS' (Flr*t nom*, mtddl* Inlllal, loot nomo)

S. REPORT DATE

1970
%. TÔTAL kiö. ftii l»A(5ii '

MjLMl

Wlî&Tèr Sirs

n

•a. CONTRACT OR ORANT NO.

AVOti 70*1194
6. PROJECT NO. 9749

ta. ORIOINATOR'S REPORT NUMOERISI n 409-13

'411029

ÆU6L

•A. OTHER REPORT NOISI (Any aifwr

Hilo rapar (J

»FOG-71~ "

that may bo aaafjnatf

n

10. DISTRIBUTION STATEMENT

1. Iku >■■—r kat
rmlaaai mi mImi lu 4ftscrlb«tl«i

im pUlit
U

11. SUPPLEMENTARY NOTES
IE SPe«f»«!NO MILITARY ACTIVITY

Air VMM Of flM ai
ttlMft im

no

IS. ABSTRACT

x A computer procedure for generating line drawings of solid
objects bounded by quadric surfaces is described. It embodies an
efficient solution to the "hidden-line" problem, that is, the problem
of determining which parts of an opaque object are invisible when the
object is viewed from a given vantage point. A view of a quadric
object is represented by the orthographic projection of surface
boundaries visible from the given vantage point. The procedure is
implemented in a FORTRAN program and can be extended to do per¬
spective drawing and shading; it may be used as the basis of a system
for interactive computer-aided design of solids on a CRT display
console.

DD
FORM

t NOV •• 1473
Security CUttlîîcîîtlô«

wMwniiiipiaiiiiiBRpniiMi

ii

ACKNOWLEDGMENT

The research described in this report was sponsored

by the Air Force Office of Scientific Research, Air Force

System Command, USAF, under grant Ä-AF0SR-70-1854, Professor

H. Freeman, Principal Investigator.

i

ill

ABSTRACT

A computer procedure for generating line drawings of

solid objects bounded by quadric surfaces has been developed.

It embodies an efficient solution to the "hidden-line" prob¬

lem, that is, the problem of determining which parts of an

opaque object are invisible when the object is viewed from

a given vantage point. The major intended area of appli¬

cation is in computer-aided design of machine-made objects.

A general method of specifying a "quadric object" -

an object bounded by quadric surfaces - is presented. A

quadric object Is characterized In terms of generalized,

view-dependent definitions of "vertices", "edges" and "faces".

Such a characterization has made it possible to develop a

hidden-line determination technique that is analogous to one

that has been successfully applied to polyhedra.

A view of a quadric object is represented by the or¬

thographic projection of surface boundaries visible from

the given vantage point. The invisibility of a point is

measured quantitatively by the number of surfaces hiding it.

Point-by-point visibility determination can be avoided by

finding the points at which visibility changes; the projec¬

tions of these points are the intersections of the projec¬

tions of surface boundaries. For conics, the equations of

their projections may be derived and solved to find the

iv

intersections, t>ut piecewise-linear techniques are necessary

for handling curves represented by higher-degree equations.

The procedure is implemented in a FORTRAN program,

which can efficiently generate high-quality line drawings

of quadric objects of fairly complicated shapes. The proce¬

dure can be extended to do perspective drawing and shading,

and may be used as the basis of a system for interactive

computer-aided design of solids on a CRT display console.

í

V

TABLE OF CONTENTS

ACKNOWLEDGMENTS

ABSTRACT

LIST OF ILLUSTRATIONS

LIST OF SYMBOLS

I. INTRODUCTION

1.1 Statement of the Problem
1.2 Basic Definitions
1.3 Work Done by Others

II. OBJECT SPECIFICATION AND RENDERING

2-, 1 Mathematical Specification of a Quadric Object
2.2 Projection and Frames of Reference
2.3 Curves Used for Rendering ,.

ii

iii

vii

viii

1

1
2
3

8

8
14
17

III. A VIEW-DEPENDENT CHARACTERIZATION OF A QUADRIC OBJECT 20

3.1 Generalized Definitions of Vertices, Edges and
Faces 20

3.2 Classification According to Orientation 24

IV. COMPUTATION OF REAL VERTICES AND SURFACE INTERSECTIONS 30

4.1 Computation of Real Vertices 30
4.2 Computation of Points on a Surface Intersection 32
4.3 Obtaining the Equations of Planes Containing a

Planar Surface Intersection. 34

V. EDGE AND PROJECTION COMPUTATION 37

5.1 Determining Virtual Vertices and Limbs 37
5.2 Ordering Vertices 38
5.3 Determining the Front-Face Edges and Their

Projections | 39

VI. EDGE VISIBILITY TESTS 42

6.1 Determining Intersections of Edge Projections 42
6.2 The Order of Invisibility of a Point 53
6.3 Propagating the Order of Invisibility Along

an Edge 53
6.4 Propagating the Order of Invisibility from

Edge to Edge 53

1 U'l! um-ll! lin

vi

VII. IMPLEMENTATION 57

7.1 The Program 57
7.2 Illustrative Examples 60

VIII. EXTENSIONS

8.1 Perspective Projection
8.2 Shading
8.3 Higher-order Surfaces
8.4 A 3-D CRT Sketchpad

IX. CONCLUSION

71

71
73
76
77

79

80 X BIBLIOGRAPHY

mmmm

vii

LIST OF ILLUSTRATIONS

Figure No.

1 Examples to Illustrate Object Specification

2 Frames of Reference and the Picture Plane
for Orthographic Projection

3 Characterization of a Quadric Object

4 Orientation of P. on S with Respect to Q
K r

3 Ordering Points on a Conic

6 Changes in the Order of Invisibility along
an Edge

7 Chain Elements

8 Associative List for Finding Chain
Intersections

9 Intersection of Two Chains

10 QUADRAW Main Program Flowchart

11 Test Object

12 Normal Views of a Spacecraft

13 More Views of the Spacecraft

14 Views of the Spacecraft with the Hidden

Lines Shown

15 Stacks of Spheres

16 Three Simple Objects

17 A Table of QUADRAW Execution Times

18 Perspective Projection of P^

19 Scanning a Line Drawing for Shading

10

16

21

25

40

43

46

48

49

61

62

64

65

66

68

69

70

72

75

1
1

viii

LIST OF SYMBOLS

Tí

0-X"Y"Z"

q"(x",y",z")=0
r or q>0

r

O-XYZ

or Wp®0

O-YZ

qr(x,y,z)»0
or q^»»0

Any quadric object

rth component surface of S

Vantage point

Picture plane

Cartesian frame of reference v;ith respect to
which an object is specified

Equation of Sr referred to 0-X"Y"Z"

"h Vi

p auxiliary bounding surface

Frame of reference for a specified view

Frame of reference in TT

Equation of Sr referred to O-XYZ

e, ♦

R

h* »l'Yl'
1=1,2,3

Pi

4ph

pkph

Angles of rotation from 0-X"Y"Z" to O-XYZ

Matrix of rotation from O-X'^'Z” to O-XYZ

Direction cosines of OX,OY,OZ with respect
0-X"Y"Z"

to

■f* Vi
point whose coordinates with respect to

O-XYZ are xk, yk, zR

Projection of Pk in TT

Straight line joining Pk and P^

Vector extending from Pk to Ph

iVh' Magnitude of PkPh

I

ix

V V uz

qr(pk)

ñ'r<V

grad qr(Pk)

r,s

Vi

*l,}
eLj
m

F1
m

n(Pk)

Unit vectors with the directions of the
positive X-, Y- and Z-axes respectively

Value of qr(x,y,z) at (xk,yk,zk)

Outward unit normal vector on Sr at Pk

Gradient of qr(x,y,z) at Pk (qr may be regarded

as a scalar function of the vector extending

from 0 to (x,y,z))

Intersection of Sr and S8

Limb of Sr

a, y.

1 vertex

Projection of onto TT

Edge between and Vj

The ath edge between and Vj

Projection of j onto TT

m*'*1 face

W.

Projection of Fm onto TT

Orientation of Pk on Sr with respect to Q

Order of invisibility of Pk

x^h visibility transition point on an edge

I. HîTRODUCT ION

1.1 Statement of the Problem

In computer graphics, techniques for generating pic¬

torial representations of three-dimensional objects are of

fundamental Importance. In most of the existing computer

drawing algorithms, objects are represented by combinations

of planar surfaces only; curved surfaces must be approxi¬

mated by numerous small polygons. Progress in the develop¬

ment of nonplanar-surface algorithms has been slow primarily

because of the computational difficulties presented by non-

linear equations.

The simplest of the curved surfaces are the quadric

surfaces. In a Cartesian coordinate system, a quadric sur¬

face is the locus of the general second-degree equation of

the form

q(x,y,s) - ajX2 + a^ + »./ + ^ + Vz + *6“

+ a^ + a8y + agz + a0 - ft < 1’1)

where the ^ are real numbers, quadric surfaces are so sim¬

ple and familiar that they can be readily conceived by a

designer. An object of fairly complex shape can be repre¬

sented by the combination of a few quadric surfaces. Most

of the mechanical parts in commercial machines have simple

quadric surfaces.

- 2 -

The phenomenon that light is stopped by opaque matter

plays a major part in our visual experience. If a picture

of a real object is to reflect this reality, those portions

of the object that are hidden by itself from an observer at

a given vantage point should be omitted from the picture.

Visibility determination is generally regarded as the most

formidable problem in computer rendering of solid objects.

The objective of the research reported in this thesis

was to develop an efficient computer procedure for making a

line drawing (see Sec. 2.3) of any view of an object bounded

by qui.dric surfaces, with the hidden parts of the object

omitted from the drawing. The major application in mind was

computer-aided design of common machine-made objects.

1.2 Basic Definitions

A surface is the locus of a point in three-space whose

Cartesian coordinates always satisfy one equation. A bounded

surface is a finite, connected portion of a surface delim¬

ited by intersections with other surfaces. A self-bounded

surface is a surface on which a path of finite length can

be traced between two arbitrary points on that surface, e.g.,

a sphere or an ellipsoid. An object (a model of a real ob¬

ject, in fact) is either a self-bounded surface or a finite

set of bounded surfaces every one of which is bounded by one

or more of the other surfaces in the set. Any one of the

- 3 **

bounded surfaces of an object is called a component surface

of the object. A storle-conpartment object is an object

that divides the three-space into a totally enclosed inte¬

rior region and an exterior region extending to infinity.

A continuous path can be traversed between two arbitrary

points in the same region without intersecting any one of

the component surfaces of the object, but any path between

two points in different regions must intersect at least one

of the component surfaces. To an observer situated outside ^

a single-compartment object, the object appears to be “solid",

and one side of every one of its component surfaces is never

visible. A quadric object is a single-compartment object,

every component surface of which is a bounded quadric surface.

Let Pk be any point on an object S, and « he the vantage

point in the exterior region. Pk is said to be Invisible or

hidden if the straight line qPk pierces at least one of the

component surfaces of S in at least one point between Q and

Pk. (This definition implies that all of the component

surfaces of 3 are opaque). A hidden curve segment or hidden

line is a curve segment all points on which are hidden.

1.3 Work Done by Others

m his work on the reconstruction of a solid object

from a photograph of the object, Roberts [22] solved the

hidden-line problem for objects constructed from cubes, wedges

- 4 -

and hexagonal prisms. Using a computer to make perspective

movies, Zajac [31] also had a method for eliminating hidden

lines for restricted cases of polyhedra. The first general

and efficient computer algorithms for making line-drawings

of opaque polyhedra were developed by Appel [1] and Loutrel

[19] 5 'the former went on to develop a technique for shading

a line-drawing of a polyhedron and exhibiting the shadows

cast by the polyhedron [2]. Galimberti and Montanari [14]

also developed a method similar to Loutrel's.

Luh and Krolak [20] first used simple quadric surfaces

to model and draw machine parts. Weiss [28] developed a

ccopíete procedure for drawing any combination of bounded

quadric surfaces. These three researchers adopted a point-

by-point solution to the hidden-line problem: closely-spaced

points on surface boundaries are computed and a visibility

test is performed on each point against all the bounded sur¬

faces. Davis et. al. [9] used a method called "combinatorial

gecmotry" to describe and display objects constructed by

combining a number of simple geometric shapes such as cylin¬

ders, ellipsoids and rectangular parallelepipeds. Comba [6]

dealt with the problem of detecting intersections between

convex quadric objects. A by-product of his work is a method

for determining hidden lines, which, though mathematically

elegant, is less efficient than Weiss' method in general.

- 5 -

Coons [7,8] has developed a very powerful mathematical

technique for specifying and displaying on a CRT console

free-form" surfaces such as those found on the bodies of

airplanes, ships, etc. In Coons' method a complicated sur¬

face is constructed by smoothly piecing together surface

patches" specified by boundary curvesj the surface is ren¬

dered by the perspective projection of a set of parametrically

defined curves on the surface. No attempt has been made to

solve the hidden-line problem for "Coons' surfaces", which

are essentially sixth-order surfaces. Higher-order surfaces

have also been treated by Kubert et. al. [18] for the pur¬

pose of visualizing any continuous, single-valued function

of two variables. A portion of the surface defined by such

a function is rendered by the perspective projection of two

orthogonal families of curves on the surface. Determination

of the curve segments hidden by the surface itself is made

only after the surface has been approximated by planar tri¬

angles whose vertices are the points of intersection between

the two families of curves.

At present, research is most active on programming

and hardware techniques for generating shaded or "half-tone"

pictures of solids on a CRT display screen. By means of

raster scanning and hardware aids, a photograph-like picture

of a planar-surfaced structure is displayed in the form of a

- 6 -

fine grid of light spots of varied intensities. Such a method

is not, however, directly applicable to making line-drawings

of objects with curved surfaces. This trend of research was

initiated by Wylie et. al. [30], and successive improvements

on their techniques have been made by Warnock [25*26],

Bouknight [3] and Watkins [27]. Kelley [17] extended

Bouknight's method to do shadowing.

The researchers at the General Electric Electronics

Research Laboratory took a total-hardware approach [4,11].

A large array of special-purpose circuitry (05,000 logic gates

in 52,000 integrated circuits) was used to build a simulator

that can display a moving, planar-surfaced spacecraft in

color; bidder parts are removed as quickly as the vehicle

turns.

Watkins [27] made an appropriate classification of the

existing hidden-line algorithms. According to his claasifi-

cation, the algorithms belong to either of two major cate¬

gories: the "path-of-edges” category and the "sample-space"

category. In the former category, various methods are used

to trace along the edges (surface boundaries) of objects

and determine which portions of the edges are invisible; this

type of algorithm is represented by the work of Roberts, Appel,

Loutrel and Weiss. In the latter category, the hidden-line

problem is solved at discrete points on a two-dimensional

- 7 -

picture grid; this type of algorithm is represented by the

work of Wylie et. al., Davis et. al., Warnock, Bouknight and

Watkins. The procedure described in this report belongs to

the path-of-edg^s category.

- 8 -

II. OBJECT SPECIFICATION AND RENDERING

2.1 Mathematical Specification of a ftuadrle Object

A polyhedron can be conveniently specified in terms of

its vertices, edges and faces, but to specify a quadric ob¬

ject unambiguously Is not so simple, m one form or another,

a complete specification must contain the equivalent of the

following information:

1. The equations of the surfaces from which the

component surfaces of the object are formed.

They will be referred to as the "equations of
*

the component surfaces".
'i

2. The polarity of each component surface, that

is, an indication as to which of the two sides

of the surface is on the outside of the object.

(Note that from the definition of* a quadric ob-

ject, the inner side is never visible from any

point outside the object).

3. The bounds of each component surface, that is,

a Boolean combination of inequalities specifying

exactly how the component surface is bounded.

Each inequality expresses the bounding effect

of another component surface or that of an

auxiliary bounding surface which is a transparent

surface Introduced for the sole purpose of elimi¬

nating ambiguities.

- 9 -

In more precise terms, a quadric object is specified as fol¬

lows:

An object S is composed of N component surfaces de¬

noted by S±, i = 1,2,...,N. Each is a portion of a sur¬

face represented by an equation of the form of (1.1):

q^x^z) * 0. i2*1)

The polarity of Sr is given implicitly by the equation above

such that grad qr at.every point on Sr is a normal vector

pointing into the exterior region. Every point on Sr satis¬

fies not only (2.1) but also a specified Boolean combination

of inequalities each of which is either of the form

qs(x,y,z) o 0, (2-2)

where qs(x,y,z) » 0 is the equation of Ss bounding Sr, and

o denotes one of the relational operators =; or of the form

Wp(x,y,z) o 0, (2.3)

where w (x,y,z) * 0 is the equation of an auxiliary bounding
P

surface bounding Sr.

In Pig. 1, two sets of simple quadric objects are shown

in orthographic projection (see Sec. 2.2). The objects in

Fig. la are all formed by a sphere intersecting an ellipsoid

of revolution, and they are viewed in such a direction that

the curves of intersection appear as straight lines. The

object in Pig. la(i) is specified as follows:

i

IC

(i)

A

2=0 1*0

1_1 i_T.
s>

(i •)

(0)

(iii)

AN ELLIPSOID INTERSECTING A SPHERE

(U
(m

(b)

cylinders and planes intersecting
one another

FIGURE 1 ’

examples to illustrate object specification

- il -

a X2 + y2 + z2 - 9>

qg = 36x2 + 36y2 + z2 - 2'¿i

^3 ^ ^2 ^

wx = z;

qi = o

52 *

S3: q3 - 0

A

A

A

q2 = 0;
> >

qx = ° A v;1 = 0;
> < .

q. « 0 A v/j = 0.

Very small changes in the preceding specification lead to a

quite different object shovm in Pig. la(ii):

*1
- X2 - y2 - z2 + 9;

36x2 + 36'/ + z2 - 36;

W1 ” z;

¾
a 0 A VJ1 o;

^1: ^i 0 ^

S2: (¾ = 0 A qx - 0 A ï 0.

Note that the polarity of is changed because the inner

(concave) side of the sphere is now required to be the outside

of the object.

The object in Pig. la(iii) is specified by:

q1 = + S* + z2 - 95

qg » 36x2 + 36y2 + z2 - 36;

w1 » z;

31:

32:

^1
0 A qg a ° A W.

0 (w1 a 0 V q^ = 0)

HUMUUIMádUtilttÉáMilkiU

- 12

Figure lb shows the "end-on" views of two objects each

of which is formed by the intersection of two parallel planes

and S2) with a ring of eight circular cylinders (S^ i=3A

...,10). The axes of symmetry of the cylinders are parallel

to the direction of view and lie on a cylinder w^ « 0 which

is an auxiliary bounding surface with such a polarity that

w1 > 0 outside the cylinder. The two planes are perpendicular

to the direction of view. Omitting the details, let the equa¬

tions of the parallel planes be " 0 and q2 * 0 the equa¬

tions of the eight cylinders be q^ * 0, q^ • 0, ..., q^Q “ 0.

The object shown in Fig. lb(i) is specified as follows, where

the q^ i-3,4, ..., 10, are required to be less than zero

outside the cylinders qA ■ 0;

: qx « 0 A wx £ 0 A q3 £ 0 A q^ £ 0 A ... A q10 £ 0;

S2: q2 - 0 A £ 0 A q3 £ 0 A q4 £ 0 A ... A q10 £ Oj

S3: q3 - 0 A J 0 A Qi J 0 A q2 i 0 A q10 S 0 A á 0;

S4: q4 - 0 A Wj * 0 A qx á 0 A q2 * 0 A q3 * 0 A q5 S Oj

• /

S10! ^ - 0 A »I S 0 A ^ i 0 A qs S 0 A qg S o A q3 á o.

A very different object lb(ii)) results from the following

specification in which the q^, i“3>^# •••> 10# ar® now required

to be greater than zero outside the cylinders q^ 0*

- 13 -

V Qi - o A (Wj £ 0 V q3 £ 0 V q4 S 0 V v qio ^ 0).

s2: q2 - 0 A (w. S o V q3 ¿ O V 94 í O V ... V q1Q ^ 0);

S3: q3 - 0 A w1 à 0 A 91 S 0 A q2 $ 0 A q10 ^ 0 A q4 ^ 0;

S4: 94 - 0 A w1 i o A qx á O A q2 <¡ 0 « q3 ¿ 0 A q5 à 0¡

S10! 4l0 “ 0 A W1 è 0 11 ^ 0 A % S 0 4 99 à 0 A q3 ¿ 0.

Even from these simple examples one can see that finding

suitable auxiliary bounding surfaces for specifying a complicated

object could be quite tricky. The difficulty is due to our use

of equations that represent whole surfaces to describe bounded

surfaces. However, the method Just described gives the user

considerable flexibility in modeling real objects. A language

such as that designed by Mcllroy [21] for using Weiss' pro¬

grams [28] simplifies the task of specifying the equations of

surfaces, but it cannot help the user in finding the right

bounds. A common approach to the design of a system for mod¬

eling three-dimensional objects is to enable the user to

construct an object by relating and transforming some basic

geometric components [5»9]. A most effective means to help a

user specify an object would be an interactive system that

allows the user to manipulate and assemble geometric components

on a CRT display console. Such a system is suggested in Sec. 8.4.

- 14 -

2.2 Projection and Frames of Reference

Perspective projection maps an arbitrary point P in

space to a point P' on a picture plane TT such that all lines

PP* intersect in a common point Q which corresponds to the

vantage point of an observer. Let 0* be a point on TT such

that 0'Qi.Tr. O'Qis called the line of sight. Orthographic

projection may be defined as a special case of perspective

projection with Q at infinity, and with all lines PP' parallel

to the line of sight. Orthographic projection is uniquely

specified by the direction of the line of sight, which can be

expressed in terms of direction cosines referred to a Cartesian

frame of reference. Although perspective projection best re¬

presents objects as we see them, orthographic projection

offers the advantage that distances along parallel lines in

an orthographic view can be measured with a constant scale.

In other words, orthographic projection shows the true

relative dimensions of parallel lines on an object. The

procedure presented in this report is based on orthographic

projection, but it can be readily adapted to perspective pro¬

jection as described in Sec. 8.1.

Let 0-X"Y"Z" be the Cartesian frame of reference with

respect to which an object is defined. Using OQ as the line

of sight, an orthographic view of the object can be specified

by an azimuth angle 9 and an elevation angle^e^of the vantage

- 15 -

point Q, and by an angle of twist Y about OQ. Consider another

frame of reference O-XYZ which initially coincides with 0-X"Y"Z"

and which moves with Q. For a specified view, O-XYZ is suc¬

cessively rotated through angles 9, e, Y about the Z, Y and

X axes, respectively. We choose the YZ-plane to be the picture

plane and O-YZ to be the picture reference axes (see Fig. 2).

Thus the X-axis always coincides with OQ. The coordinates of

a point with respect to 0-X"Y"Z" and to O-XYZ are related by

the rotational transformation

z

where

cosepcose

R« -costpsinesinY -sinçpcosY

-cos^sinecost -HslnçainY

sintpcose

-s imps in es in y +cosq>cosY

-sintpsinecosY -cosepsinY

sine

cos es in Y

cos ecosY

(2.5)

The projection of a point (x'^y",z") is simply (y>z)» To

transform the equation of a surface referred to 0-X"Y"Z" into

an equation referred to O-XYZ, the inverse of (2.4) is required:

(2.6)

FIGURE 2

FRAMES OF REFERENCE AND THE PICTURE PLANE
FOR ORTHOGRAPHIC PROJECTION

- 17 -

-1 T
where R and R denote the inverse and transpose of R,

respectively. Let q'^x'^y'^z") «* 0 be the equation of a

surface referred to 0-X,,YnZ,,, By substituting (2.6) into

this equation the transformed equation q(x,y,z) » 0 is obtained.

Although it is more natural to specify a direction of

view by <p, e and Y, teost mathematical relations in analytical
\ ,

geometry are expressed in terms of direction cosines. An

equivalent form of R is :,

(2.7)

where Xx, X2, \í2» Y2í ^ ^3^ ^3' Y3 are respectively

the three sets of direction cosines of the X-, Y-, and Z-axes

with respect to O-X^Z". The direction cosines are related

to (p, e and y simply by equating corresponding elements of

the matrices in (2. 5) and (2.7). The rotation from O-X^Z"

to O-XYZ simplifies the task of deriving the formulae for view

computation.

2.3 Curves Used for Rendering

Two types of curves on an object convey the essential

information about the shape of the object; the view-independent

^From this point on, unpriced symbols will be used in place of
primed symbols (q^x^y^z", etc.) except where distinction is
necessary.

R «

X1 ^1 Y1

X2 y2

x3 u3 v3

- 18 -

curves of intersection between component surfaces and the view-

dependent curves that are the apparent ("natural") boundaries

of the component surfaces. These two types of curves are

usually used to represent an object in a line drawing.

Surface Intersection

The intersection of two surfaces is the locus of the

point whose coordinates satisfy the equations of the two

surfaces. The intersection of two quadric surfaces may

consist of a single continuous section or two disjoint sec¬

tions each of which is continuous. Each continuous section

of an intersection may be a closed curve called a circuit, or

an unbounded open curve. The intersection of two quadric

surfaces is said to be planar if it (or each of its disjoint

sections) lies entirely in one plane; the intersection is

nonolanar (or twisted) if no section of it lies entirely in

one plane. We are interested only in those segments of a

surface intersection that actually exist on a given object,

that is, those segments on which the coordinates of all points

satisfy not only the equations but also the bounds of the two

intersecting component surfaces. The intersection of Sr and S

is denoted by 1^. Ir#8 iß to be protrusive (recessive)

if qs(Pk)*0 (q8(Pk)*0) for all Pfc on Sr in the immediate

neighborhood of ^ and qr(Ph)^0 (qr(?*)*>) for all Ph on

S in the immediate neighborhood of s. For example,
8

- 19 -

in Fig. Ib(i) is a protrusive intersection, whereas 1^4 in

Fig. rb(ii) is a recessive intersection. The object specifi¬

cation scheme described in Sec. 2.1 does not allow for any

surface intersection that is partially protrusive and partially

recessive.

Limb

For a given Q, the apparent boundary of a surface is

the locus of the point P on the surface such that PQ is always

tangent to the surface. Following the suggestion by Comba [6],

we shall call this locus the limb of the surface - a term used

by astronomers. The limb of Sr is denoted by Lr. Every point

on Lr must satisfy qr-0, the bounds of Srand the equation

3 • grad qr - 0, (2,8)

where 3 - For a quadric surface, (2.8) is the

equation of a plane, called the polar plane of q, with respect

to S . (We shall refer to it as the “polar plane of Sr , Q

implied). Hence lyrf a quadric surface is always a conic

For orthographic projection as defined, u ■ ux, a unit vector

in the positive direction of the X-axis, and thus (2.8) becomes

2a X + aj,y + agz + a^ « 0. (2>9)

If ax - aj, - a6 - 0, no Lr exists for the given Q.

- 20

III. A VIEW-DEPENDENT CHARACTERIZATION OP A QUADRIC OBJECT

A quadric object raay be characterized in terms of "

generalized, view-dependent "vertices", "edges", and "faces",

which can be classified according to their orientation with

respect to a given vantage point. Such a characterization

makes it possible to develop analogues to Loutrel's technique

for determining hidden lines on polyhedra [19]. To illustrate

the definitions and classification given in this section, a
I

quadric object is shown in Fig. 3 with the hidden lines dashed.

The midsection of this object is an ellipsoid of revolution

(Sg) which intersects a sphere (S^ above and a paraboloid of

revolution (S^) below. The paraboloid is cut by1 two planes,

and Sy which also intersect each other. The object is

specified such that 0Z"isthe axis of revolution of each of the

three quadric surfaces, is parallel to the X"Y"-plane and

S5 is parallel to the X"Z"-plane. The view angles for the

orthographic projection shown in Pig. 3 are: 7°* 19°# 0°.

3.1 Generalized Definitions of Vertices. Edges and Faces

Vertices

There are two types of vertices on a quadric object:

real vertices and virtual vertices.
.-—.. — 1 —.

A real vertex is a point of intersection of three or

more component surfaces. Its coordinates satisfy the equations

- 22

and bounds of all the component surfaces that form it. It Is

the only view-independent element in our definitions.

A virtual vertex is a point at which the intersection

of two component surfaces meets the limb of one of the two

component surfaces. In other words, it is a point of inter¬

section of two component surfaces and the polar plane of one

of the two component surfaces. Its coordinates satisfy the

equation of the polar plane and the equations and bounds of

the two component surfaces. It is possible for a virtual

vertex to coincide with a real vertex. In Fig. 3* Vg a

real vertex formed by Sj^ and S^. and Vg are virtual

vertices formed by Sg and the polar plane of Vy is

a virtual vertex formed by and the polar plane of

Edges

There are two types of edges on a quadric object:

real edges and virtual edges.

A real edge is either:

1. a circuit of a surface intersection on which no

vertex occurs, or

2. a segment of a surface intersection between two

vertices, V^, Vj, on which no vertex other than

and Vj occurs.

- 23 -

A virtual edge is either;

1. an entire limb (a circuit) on which no vertex

occurs, or:

2. a segment of a limb between two vertices, V^,

Vj, on which no vertex other than and Vj

occurs.

An edge between two vertices, and Vj, is denoted by

More than one edge may share the same pair of vertices. When*
y.

ever distinction is necessary, the a (by arbitrary designa¬

tion) edge between and Vj is denoted by In Pig. 3*

gl 2 is a real edge and E^2 is a virtual edge.

Faces

A ring of edges is a set of edges joined end to end

such that every edge in the set joins exactly two other edges

in the set and that no subset has this property. A border

of S is either a ring of edges on or a single edge on S
r r -1

that is an entire circuit. A face, Fm, on Sr is the whole or

a portion of Sr bounded by one or more disjoint borders of Sr

such that a continuous paCh can be traversed between two

arbitrary points on Fm without crossing the border(s). Two

faces may share the same border. An example of a face (F1)

on the object shown in Fig. 3 is the portion of S1 bounded by

the border that may be represented by an alternating sequence

of vertices and edges: (V^, E-j^* ^2* ^1,2' •

♦

- 24 -

3.2 Classification According to Orientation

Th« faces, ele.es and vertices of a quaJric object are

classified according to their orientation with respect to a

specified vantage point. The purpose of such classification

is to reduce the amount of coeqputatlon that Is required for

the tlne-cons;inlng visibility tests described In Sec. VI.

The actual procedure for determining and classifying vertices

and edges is described In Sac. V. Let be a point on S^.

The cutward unit normal vector to 3^ at Pj^ Is:

grad qr(Pjt)

Igrad q^CPu)!

The orientation of Pj^ on S^. with respect to Q Is defined as;

Br'V - (3.1)

Where

If 3jj*Kj.(Pjj)>o,

if

If (3.2)

1 (3.3)
|*r*d q,(P|j)l

Pj^ is said to be front-oriented, orthogonally-oriented or

back-oriented on S^. with respect to Q according as a,(Pjt) i»

equal to +1, 0 or -1, respectively. In the two-dimensional

illustration In Pig. P^^, Pg »nd P^ are respectively back-,

orthogonally- and front-oriented on S^ with respect to ^

*

Q

i

FIGURE 4

ORIENTATION OF .P^ ON Sr WITH RESPECT TO Q

- 25 -

Face Classification

Loutrel [19] took much advantage of the property that

the orientation of an entire face of a polyhedron is determined

by the direction of a single normal vector on the face. On a

quadric surface, the direction of a normal vector to the surface

varies over the entire surface. However, the faces of a quadric

object can be classified according to orientation by virtue

or the following property:

Front-oriented points and back-oriented points

cannot coexist on a face of a quadric object.

Proof: Let us assume that there exist two points and P2

on F , which is a part of S„, such that one of the two points

is front-oriented while the other is back-oriented. Fm is

continuous within its border(s), and the direction of the

outward normal vector to Fm varies continuously over Fm.

Choose a continuous path on Fm between,P1 and P2 such that it

does not meet the border(s) of Fm anywhere. Then, in order

that and Ar(P2) ®ay have opposite signs there must be

a point P^ on that path where A^P^) - 0, which can occur

only on a virtual edge. In other words, a virtual edge not

on the border’ of Fjjj is found on Fm. Hence the definition of

a face is violated. Q.E.D.

A front (back) face of Sr is a face on which all points

ate front-(back-) oriented except possibly on the border of the

- 27
*

face where orthogonally - oriented points may occur. A back

face is invisible. A front face may be totally visible, or

partially or totally hidden from view by other faces. Since

a back face (the inner side of it, actually) is hidden by one

or more front faces, any point hidden by a back face must also

be hidden by one or more front faces. Therefore, the hiding

effect of a back face on any other face need not be considered.

A component surface may consist of a single front face, or a

single back face, or both a front face and a back face. In

Fig* 3/ the visible portion of is a front face, whereas

the irrisible portion of is a back face.

*

Edge Classification

On a virtual edge j in Lr, ^(P^) “ 0 for all on

E¿ j. On a real edge E^ j in s' MPk) or Äs(pk) is the

same for all P^ on E^ j except possibly for or Vj. This

property of Invariant orientation follows directly from our

definitions of edges and orientation, and is significant in

that the orientation of an entire edge can be determined by

testing only one point on it.

A real edge Ei j in Ir ß is of Class if and only if

there exists P^ other than and Vj on E^ ^ such that

MVs0 A MVS0 (3.4)

,(

- 28 -

A real edge E. , in I e is of Class H. if and only if
1 > J r >s 1 4

there exists other than and Vj on j such that

(3.5) Ar(Pk)>0 A As(Pk)>0.

A real edge E, , in I e is of Class m if and only if
j-jJ r>B -

there exists other than and on E^ such that

(3.6)

and that „ is recessive.
r,s

A real edge E. . in 1,. „'is of Class if and only if 1^ j Tsa J

there exists Pk other than and Vj on Ej^^j such that (3.6) is

true and that 1,. 0 is protrusive,
r, s

A virtual edge is always of Class H^.

Since an edge is the intersection of two front faces,

it may he called a front edge. Since an edge is the inter¬

section of two back faces, it may be called a back edge. An

Hg or edge is the intersection of a front face and a back

face, and hence may be called a boundary edge. An edge is

said to be potentially visible whenever the invisibility of

the edge cannot be established'by considering only the surfaces

forming the edge. H1 and Hg edges are invisible, whereas

and edges are potentially visible. In Fig 3> *it2 con,fcain8

four edges: an edge, 2» 8111 Hi edße> E9,io' 811(1 two ¾

edges, g and %2,10' E5,7 in ^^3,4 is 8 real H3 ed8e* *±,2

in L1 is a virtual edge.

i

4

- 29

The classification of an edge E1 ^ may be considered a

local visibility test, as it does not involve component surfaces

other than the surface(s) forming

Vertex Classification

A front (back) vertex is a vertex that is (front-) back-

oriented on all the surfaces forming it. A boundary vertex is

a vertex that is orthogonally-oriented on at least one of the

surfaces forming it. Front vertices and back vertices are real

vertices whereas a boundary vertex may be either real or virtual.

Back vertices are invisible, but front vertices and boundary

vertices are potentially visible. On the object in Fig. 3*

both Vg and Vg are the intersections of and S^;

Vg is a back vertex, whereas Vg and all the other vertices

on the object are boundary vertices.

IV. COMPUTATION CF REAL VERTICES AND SURFACE INTERSECTIONS

Since in most design applications, many views are usually

desired of an object, it is advantageous to separate the com¬

putation task into two parts: the per-object computation and

the per-view computation. The per-object computation, which

may be regarded as "preprocessing" for the subsequent per-view

computations, is described in this section. The per-view

computation is described in the two succeeding sections. It

is not necessary to compute points on a planar intersection

in space because the equation of its projection can be obtained

and used for the computation of each view. To prepare for the

per-view computation for planar intersections, the equations

of the planes containing the intersections are obtained. The

projection of a nonplanar surface intersection is, however,

a quartic curve in general, and it is practically infeasible

to use the equation of such a curve for view computation. Thefe-*

fore, on each nonplanar surface intersection, closely-spaced

points are computed, and for the computation of each view, the

projections of the points are used instead of the equation of

the curve of projection.

4.1 Computation of Real Vertices

The real vertices formed by three or more component

curfaces may be computed by solving the equations of three of

the surfaces simultaneously. Although there are many good

- 31 -

methods for solving systems of nonlinear equations, none of

them is efficient or reliable for finding all solutions without

initial approximations supplied by the user. Therefore, we

resort to the classical method of Sylvester [23]. By the

successive elimination of two variables from the three equations,

a resultant equation in one variable is obtained. Subroutines

for finding all roots of a polynomial equation of one variable

without requiring the user to supply initial trial values can

be found in many computer program libraries [15]. However, if

all three equations are of the second degree, the computation
X y.

of the coefficients of the 16 degree resultant equation and

the subsequent solution of the equation would be extremely

time-consuming. In such cases, vertices can be determined in

the process of computing points on a surface intersection

(see Sec. 4.2). Vertices formed by three or more curved surfaces

rarely occur on machine-made objects for the simple reason that

it is very difficult to make such a joint with ordinary machines;

most of them are formed by planes and no more than two curved

surfaces.

Not all the points obtained by solving the equations of

the surfaces are vertices of the object. A vertex must satisfy

the bounds of all the component surfaces forming it.

Wherever possible, the relative positions of the computed

vertices along the surface intersections of the object are noted.

- 32 -

For example, if V1 is the only vertex formed hy S2 and

and V2 is the only vertex formed by S2, and then must

be Joined to V2 by I2#3. However, if two or more vertices are

formed by either or both of the two groups of component surfaces,

the interconnection among these vertices must be determined by

other means (see Secs. 4.2 and 5»3)»

4.2 Computation of Points on a Surface Intersection

A simple and efficient method is used to compute closely

and evenly-spaced points on a surface intersection. The 3-D

Cartesian space is partitioned by three sets of parallel planes

represented by:

X » ms, y » ms, z » ms, (4.1)

where m - ±1, x2, ±3, ..., and S is the chosen resolution. We

want to find points in which a surface intersection pierces

these planes such that the distance between two consecutive

points does not exceed a specified limit (e.g. 26). Suppose

that, having started from a vertex, we have already computed k

points on Ir g. Pk+1 is the next point to be determined. Since

6 is small compared to the radius of curvature of 8 at any

point, the direction of Pk_1Pk is used to estimate the direction

of P^PTV. If the magnitude of the x-component of Pk-1Pk is
K K+J.

larger than that of the other two components, xk+1 is calculated

as follows:

I

- 33 -

xk+l = xk + fi*SIGN(xk -
(4.2)

X, is then substituted into qr = 0 and qs = 0 to obtain two
K+x

equations in and zk+i:

fr(yk+l' Zk+1) “ 0î ^^k+l' zk+l) “ ^
(4.3)

These two equations can be solved simultaneously by Newton’s

method, using yk and zk as the initial approximations for

yk+^ and zk+^ respectively. It is possible that may have

such a sharp bend at Pk that it fails to intersect

In that case, there is no solution for (4.3) near the initial

approximation, and we must try the y or the z direction instead.

The process of computing points on Ir^s by this method is called

"tracing”.

If real vertices have been determined on Ir^g by the

method described in Sec. 4.1, they are used as the starting and

end points for tracing Ir#s. Otherwise, starting points can be

obtained by cutting 1^s with a suitable plane which can be

given in the input object specification. Undetermined vertices

on I can then be found while I s is being traced. After

I has been traced, the interconnections among all the vertices
r,s

on Ir s have also been established.

* At the starting point of a trace, there is no preced¬

ing point with which to estimate the direction of IriS* Hence

the second point ?2 must be found by trying one by one of the

six planes (of (4.1)) closest to and surrounding P-^.

-3^-

A method [27] has been developed to generate a repre¬

sentation of each segment of g as a 3-D chain - a sequence

of incremental vectors joining nodes of the 3-D grid formed by

the planes (4.1)i the nodes closest to s are chosen for the

chain. If the grid is sufficiently fine, the projection of a

3-D chain gives the appearance of a smooth curve in a drawing.

This method is very efficient as no iterative solution of

simultaneous equations is required. However, for visibility

tests, we need the exact points on 1^s* A chain representation

may nevertheless be useful for quick display of a surface inter¬

section without hidden-line elimination.

4.3 Obtaining the Equations of Planes Containing a Planar
Surface Intersection____—-

The projection of a section of a planar intersection

between two quadric surfaces is a conic. The equation obtained

by eliminating x between the equations of the two surfaces is,

in general, a quartic equation. It is actually the product of

the equations of the projections of two sections one of which

may be an imaginary conic in some plane. In order to obtain

the quadratic equation representing the projection of a section

of a planar intersection rather than the entire surface inter¬

section, the equation of the plane containing that section must

be determined. To accomplish this we make use of the following

theorems which, together, express the conditions for the existence

- 35 -

of a planar Intersection between two quadric surfaces.

THEOREM 1. [10,24] Let = 0 and q5 » 0 be the equations of
two quadric surfaces. The equation

Qi - Hq2 « 0 (4.4)

represents for all real values of k a quadric surface
passing through all the points common to q, » 0 and
q2 » 0.

THEOREM 2. [10] If the rank of the discriminant matrix of a
quadric surface is less than 3, the locus of the
equation of the quadric surface consists of two planes.
[The discriminant matrix of a quadric surface
represented by an equation q = 0 of the form of
(1.1) is defined as r

pi V2 V2 V2"
D » ¡alj/2 Cg Cj^/2 c0/2

cq/2 cc/2 c^/2

c7/2 Cg/2 C9/2 c0

(4.5)

where the c^, i = 0,1, ..., 9, are the coefficients
m qr « 0.)

THEOREM 3. [10] if the sum of the (n-1)-rowed principal minors
of a singular symmetric matrix vanishes, its rank is
less than n-1.

Let q3 * Qi - *q2 * 0, and let a±, bi, Ci, i«0,l, .,., 9,

be the coefficients of the terms of resPectlvely. Then

Ci » ai - Kbi, i « 0,1,...,9 (4.6)

and by Theorem 1, q3 » 0 contains the intersection of the quadric

surfaces represented by qi 0 0 and q2 ■» 0. By Theorem 2, if the

locus of q3 » 0 is to consist of two planes, the rank of D, its

- 36 -

discriminant matrix, must be less than 3* Since D is symmetric.

Theorem 3 can be used lo express this condition as:

|D| - 0; (4.7)

Z D.. * 0, (4.8)
i=l 11

where |D| is the determinant of D and Di, is the principal

'oh
minor of order 3 obtained by striking out the i° row and the

ith column of D. If we form D by substituting (4.6) into

(4.5), then (4.7) becomes a fourth-degree equation in K and

(4.8) becomes a third-degree equation in -. Therefore, the

existence of a common real solution to (4.7) and (4.8)

guarantees that the intersection between the two quadric sur¬

faces is planar. Ylith the value of n thus obtained, (4.4) can

be factored into the linear equations of the two planes con¬

taining the intersection. The plane that contains an unwanted

section of the intersection (according to specified bounds)

is rejected.

- 37 -

V. EDGE AND PROJECTION COMPUTATION

The first step in the computation of a view is to

transform the coordinates of all the real vertices and the

equations of all the surfaces to refer to O-XYZ (see Sec.

2.2). The next step is to determine virtual vertices and

limbs. From the surface intersections and limbs we obtain

the edges of the front faces and the projections of these

edges, which will then undergo the edge visibility tests de¬

scribed in Sec, VI. As mentioned in the preceding section,

a limb or a planar urface intersection need not be traced;

an edge from such a curve can be represented by the equations

and bounds of its projection. The set of techniques for

handling untraced edges is deemed "analytical1 , whereas the

set of techniques for handling traced edges is deemed

"piecewise-linear".

5.1 Determining Virtual Vertices and Limbs

Of the three surfaces forming a virtual vertex, at

least one is a plane - the polar plane of one of the surfaces.

Therefore, virtual vertices can alwayr be determined by

solving simultaneous equations (see Dec. 4.1). Virtual ver¬

tices on a traced segment of surface intersection, I , can
r, s'

also be found by a simple search for points at which ôq^ôx

or aqs/ax vanishes or changes sign.

♦

- 38 -

After all the virtual vertices on a limb are found,

L„ can be traced by the method of Se• 4.2 as the intersection
r

of Sr and its polar plane. However, since Lr is planar, it

can be handled by analytical techniques.

5.2 Ordering Vertices

The interconnections among the vertices on a traced

curve are already established. On an untraced, planar curve,

the interconnections among the vertices on the curve can be

determined by ordering the projections of the vertices along

the projection of the curve in a counterclockwise sense. This

method requires, first of all, getting the equation of the

curve projection. Let denote the projection of and g

the projection of I _. The equation of (the curve containing) r, a

1^. is obtained by eliminating the variable x between q^, » 0

and iqy/ax »0. If either or both of qr « 0 and qs ■ 0 are

linear, elimination is made between these two equations. If

both q_ * 0 and q_ » 0 are of the second degree, elimination
i O

is made between one of these equations and the plane containing

Ir s (see Sec. 4.3).

The equation of a curve projection may represent a pair

of straight lines, such as the projection of the limb of a

cylinder. In that case, the equation is factored into two

linear equations. The vertex projections can be separated and

ordered on each of the tv/o straight lines by a simple sort of

i «

- 39 -

the y or z coordinates.

If a curve projection is a conic, vertex projections

can be separated and ordered by sorting on the single-valued

8-gÇtj.ons of the conic. A single-valued section of a 2-D

curve is a continuous section of the curve such that there

is a one-to-one correspondence betttfeen y and z values on

this section and that no portion of the curve larger than and

containing this section possesses this property. A conic may

have up to four single-valued sections, each of which is as¬

sociated with a unique combination of the signs of dz/dy and

d2z/dy2. The sections are numbered 1,2,3 and 4, corresponding

to the four sign combinations (-,+), (+,+), (-,-) and (+,-),

respectively. The point of connection of two single-valued

sections is an extremum, where dz/dy or dy/dz vanishes. In

Pig. 5j a tilted parabola has two extrema, and K,, and

three single-valued sections: sections 4,1 and 2. Vj^ and

Y4 lie on secti°n 4, lies on section 1 and V¿ lies on

section 2. The counterclockwise order of V£, V£, and

is: V£, V¿, V^, Vg, which is taken as the order of V^, v^,

Vg and in space.

5.3 Determining the Front-face Edges and their Projections

‘be the counterclockwise sequence

of vertices on a surface intersection or limb. On every ■

curve segment between V1 and Vi+1, i = 1,2, ... n-1, an

ï I

Z
A M| AND Mz ARE EXTREMA

OF THE PARABOLA

FIGURE 5

ORDERING POINTS ON A CONIC

arbitrary point is tested. If Pk does not satisfy the

bounds on the surfaces forming the curve, the (mathematically

defined) curve segment between and Vi+1 does not actually

lie on the object. If satisfies the bounds, its orienta¬

tions are determined to classify Ei i+1 as described in Sec.

3.2. The edges are discarded, but all the other classes

of edges are retained.

Let E^j denote the projection of E^^ 1. If Ei j is a

traced edge, E| j is represented simply by the y and the z

coordinates of the list of points computed for .. If E. j

is not traced, EJ ^ is represented by:
J

1. The equation of the curve containing EJ .,
J

2. The y and the z coordinates of ^ and Vy
3. The numbers of the single-valued sections that

are contained partially or wholly in EJ ., in
■W J

counterclockwise order along the curve

To reduce the computation required for finding edge

projection intersections (see Sec. 6.1), the maximum and mini¬

mum y and z values on each edge projection are determined.

For a traced E. ., the maxima and minima on EJ . are found in

the process of computing the transformed coordinates of the

points on E^ For an untraced E1 j, the maxima and minima

can be obtained from the y and z coordinates of and

the extrema, if any, that occur on EJ .•
1 J J

r 42

VI. EDGE VISIBILITY TESTS

Having determined the edges a,nd their projections, we

the hiding effect of front faces on potentially visible edges.

Only the projections of the visible edge segments will be

drawn. The order of invisibility of a point P^, den'oted by

n(Pk), is defined by Loutrel [19] as a non-negative integer

equal to the number of front faces hiding P^ from Q. An edge

segment every point on which has an order of invisibility of

zero is visible. The principle of the method to be presented

is illustrated in Pig. 6. Consider a point P moving along an

edge E. ... o(P)changes only where QP intersects a boundary
Aj J

edge at a point between Q and P; the change is +1 at where

P just begins to hide behind the front face, the border of

which contains the boundary edge; the change is -1 atW2 where

P just comes out from behind the front face. There is no change

in n(P) when QP intersects a front edge between P and Q because

P is then simultaneously coming out from behind one front face

and going behind another. The points on E^ j where n(P)

changes are called '''-transition points. The projections of

these points are the points of intersection of E¿ j with the

projections of boundary edges.

6.1 Determining Intersections of.Edge Projections

Finding the intersections of the projections of edges is

ASSUME F IS ONLY FRONT FACE

HIDING aÏÏy PORTION OF E
W

BOUNDARY EDGES

n(p)= i

fl(P) = 0

CURVE SEGMENT

BETWEEN Vj ANO V

IS E.,.

LINES
OF VIEW

FIGURE 6

CHANGES IN THE ORDER OF INVISIBILITY ALONG AN EDGE

-2^-

the most time-consuming part of visibility computation for a

quadric object. A simple envelope test is first performed on

edge projections to detect certain non-intersecting cases.

The envelope of an edge projection is a rectangle whose sides

correspond to the maximum and minimum values of y and z on the

edge. Let YMIN^j, ZMIN^j,^YMAX^j, ZMAXi,j denote respectively

the minima and maxima of y and z values on The edge pro¬

jections Ei and E' ^ cannot intersect if their envelopes do
* i* j a,d

not overlap. The nonoverlapping condition can be expressed as

follows :

YMIN1#J>YMAXaíl) V ZMIN^ ^ZMAX^ V YMIN^^YMAX^V ZMI^^MAX^

(6.1)

Let E. j be an untraced edge in a planar surface
Xß J

intersection I 0 and Ea * be an untraced edge in a planar
rj s u

intersection The intersection of EJ ^ and E' h can be

determined by solving the equations of the projection of Ir^s

and I simultaneously. If both equations are of the second
IA j V

degree, Sylvester's method of elimination is used. Let

be a solution to the equation pair. (y^ z^) is immediately

rejected as an intersection if it falls outside the envelope

of either EJ ., or E2 Otherwise, it is tested for boundedness

as follows. Let x1 be a common solution of qr(x,yk,zk) = 0 and

qs(x,yk,zk) » 0, and x2 be a common solution of qu(x>yk*zk) ° 0

and qv(x*yk,zk) = 0- If (xi>yk>zk) satisfies the bounds of Sr

- 45 -

and Sg and satisfies the bounds of Su and Sv, then

(yk,zk) is an actual intersection of E| j and E¿ If either

of the edges, say y is a virtual edge, the polar plane of
S„ takes the place of S .
r s

The intersections of the projections of two traced edges,

E, ^ and E_ are determined by comparing the y and the z
i, j a,o

coordinates of the list of points representing E, ^ with those

representing E& An associative list method is devised that

requires essentially one pass through each point list to find

the intersections, if any, of the two edge projections.

The list of y and z coordinates of the points on each

edge is first converted into a 2-D chain [12], A 2-D chain is

a sequence of concatenated vectors, called the elements of the

chain, each of which extends from one node to another of a

mesh in a 2-D square grid. As shown in Fig. 7, the eight

possible combinations of directions and (relative) magnitudes

of chain elements are designated by the numbers 0 through 7,

called the values of the chain elements. The nodes on the chain

are called chain points. For the purpose of drawing, the mesh

size is determined by the desired picture resolution. All

coordinates are normalized so that they lie between zero and NR,

the maximum number of resolution units on either axis (e.g.,

Np « 512). Conversion to chain is achieved simply by rounding

off the coordinates of each point to the nearest node of the

i

i

¿t:

I

figure 7

CHAIN ELEMENTS

- 47 -

picture grid. If two successive points fall on the same node,

no chain element is generated; however, if they are more than

one mesh apart, interpolation is made to generate the necessary
«

chain elements between them.

The chain representing one of the edge projections whose

intersections are to be found, say EJ ., is linked to an
J

"associative store" of NR cells as follows. All the chain

points whose z coordinates equal k are linked by pointers to

the kth cell of the associative store. As shown in Fig. 8, a

pointer is stored in the kth cell, pointing to the first of a

pointer-linked list of chain points in ascending sequence of

the y coordinates of the chain points. A zero would be stored

in the k cell if there were no chain point whose z coordinate

equals k. Having thus linked the chain of E,' to the associ-
Iß J

ative store, we test the chain of E' . point by point to look

for its intersections with the chain of EJ ,. Let P be the
th ^ J ®

m point in the chain of E^ and zm = k* A search is made

through the list of chain points of EJ ^ that are linked to
th «

the k cell. One of the following situations may occur:

1* ym eQuals y coordinates of one of the chain

points of E^jj a nodal intersection is found. An

example of a nodal intersection is shown in Ftfi. 9a.

y« differs from the y coordinate of a chain pöint m j

of E^j by one. A "nearness flag", NEAR , id set
/

/

I

2.

ASSOCIATIVE STORE

z =0

Z=1

z

ZsNa

0

Smaltest y*Valu«
at zsk

Largest y-Valu#
at zsk

Rotnttr ta Aanodatad
pt.onadga

Pointar ta Àasocioiaa
pt.onadga

I
:

FIGURE 8 !

ASSOCIATIVE LIST FOR FINDING CHAIN INTERSECTIONS

■mumm

A

B \ —

■ ’

\

(a)
NODAL INTERSECTION

ß

FIGURE 9

INTERSECTION OF TWO CHAINS

»
lUMMiMliaK

such that NEARm - +1 o»- -1 »wording as yn is

greater or smaller than the other y coordinate,

respectively. If a nearness flag has been set for

and that NEAVl ^ & P.onnodal
section has been detected. An example of a non-

nodal intersection is shown in Pig. 9b. If

NEAR^-NEAR,, or if NEAVi haS "0t 6660 Set’

there is no intersection yet.

3. yffi differs from the y coordinates of all the chain

points United to the ltth cell by more than one.

There is no intersection.

After a chain intersection has been detected, the points in

the point list of E1(3 and Ea>b corresponding to the Intersection

are United to each other via an entry In a list of edge pro¬

jection intersections. Since an intersection of two chains

is not, in general, exactly the intersection of the curve,

represented by the chains, the chain intersection is used only

a. a very good estimate of the exact point in the visibility

test described in Sec. 6.3*

Xf E is a traced nonplanar edge and E1>j is an un¬

traced planar edge, a "hybrid" method can be used to find their

intersection. Let f(y,s) - 0 be the equation of the curve

containing Ei>;). At every point PB on the chain representing

-, that falls within the envelope of E^y f(ym' V 18
a, to

and the chain evaluated. A possible intersection between

E¿ t occurs at Pm if f(ym, zm) » 0, or at a point between Pm_1

and Pm if f(ymiZm) and fíy^, have opposite signs. The

derivatives of f(y,z) at this point are then evaluated to

determine if the point actually lies on The equation of

the general conic is :

f(y,z) = a1y2 + a2z2 + + a4y + a5z + a6 = 0. (6.2)

f(y,z) at every chain point can be evaluated incrementally,

using the value of f(y,z) at the preceding chain point. Let

V and be the y and z increments respectively of a chain
i >

element of value i, and let the chain element P^FJ have the

value i. is evaluated incrementally as follows:

■ 'm-l' + (2alvi+ a3í:i>ym-l+*2a2C

+ [»!('’i)2-'- a2(C1)2+ 03(^)(^)+ *n\+ »5C1)

- f(yn-l' Vl)+ «I*1)ym-l+ «2(1)Vl+ g3(1)' (6-3)

where g^, gg and 83 are functions whose values do not depend

on the y and z values, and need be evaluated once only for

each i, i = 0, 1, ..., 7»

On a computer for which arithmetic operations are

considerably slower than operations such as comparison and data

fetching, a more efficient alternative to the hybrid method is

to obtain the chain representation of j and then determine

the intersections of two chains fcy the associative list method.

Freeman and this author [13] have developed a simple algorithm

for generating a chain representation of a section of a curve

represented ty f(y,t) ■= ?. It makes use of a common property

of curves that the immediate neighborhood of a curve is

"polarised" into one region in which f(y,z) is positive and

another region in which f(y,z) is negative. Guided by the sign

of fty.z), successive chain points are determined by selecting

nodes of the square grid that lie "closest" to the curve, close¬

ness being measured by |f(y,s)| evaluated at the nodes. f(y,s)

is evaluated incrementally toy (6.3)«

Yet another alternative to the hybrid method is to trace

all curves, convert their projections to chains, and then find

the projection intersections. This has the advantage that no

separate procedures are required for handling planar and non-

planar curves.

It may seem that the computation time for determining

, edge projection intersections would increase very rapidly with

the number of edges. Let »E be the number of edges. If we

had to determine the intersections of all the edge projections

with one another. Indeed HE(HE - D/2 intersection determinations

would be required. But the actual number of necessary inter¬

section determinations is always very much smaller than that.

First of all, a large number of edges are usually eliminated as

i

- 53 -

edges. No intersections need be determined between edges

of the same face. Envelope tests rule out many more possible

intersections. Furthermore, edge classification enables us

to test only the and H3 edges against the Hg and H3 edges.

6.2 The Order of Invisibility of a Point

A point Pk is hidden by the front face of a component

surface Sr if and only if:'.

1. qr(x,yk,zk) = 0 has real roots, and

2. one of the real roots, x^, satisfies the following

conditions :

a. xh > xk, that is, (xh,yk,zk) lies between Pk

and Q,

b. (xh,yk, zk) satisfies the bounds of Sr, and

c. (xh,yk,zk) is front-oriented on Sr.

fi(P,) is equal to the number of front faces hiding PR. Of

course, if (yk*zk) does not fal1 inside the envelope of the

projection of the front-face border on Sr, we know Pk is not

hidden by that front face without further testing. o(Pk) is

not defined if QPk intersects any boundary edge. If QPk

intersects a front edge, only one of the faces forming the

edge will be counted in determining o(Pk).

6.3 Propagating the Order of Invisibility Along an Edge

A constant-fi segment on an edge E^ j is a segment between

two neighboring n-transition points on j* The order of

- 54 -

invisibility of any point on a constant-fi segment is said

to be the "n of the segment." To determine the n of every

cons tant-ii segment on we can start at a point PQ on

find 0(Po), and going toward or Vj, increment or

decrement Q at the o-transition points. PQ may be any point

whose projection, P¿, does not lie on the projection of a

boundary edge. Let W^W^,.... W^, be the intersections between

E. * and the projections of boundary edges, encountered from
J

P1 to VI. To determine the o-transition points on E. A between

PQ and Vj, væ examine each W^, starting with . Let a

boundary edge of F„, whose projection, E' intersects E.' j at

W^. Suppose the line of view through intersects j at

Wt, and Ea b at Wj (see Fig. 6). For Wt to be an o-transition
^ a. y.

point, must lie betxieen Q and W^. Let WT, the t o-transition

point on E, 4 betv/een P^ and V,, be caused by F,,. Take two * i,j o y ^ m

points, w’ and on Ei j a small distance away from WT and

on each side of WT; is on the same side of WT as P0. œT,

the change in n at WT is equal to -1 if is hidden by Fm and

is not; it is equal to +1 if is hidden by Fm and W“ is not.

For T o-transition points between PÄ and V., T < T’,
O J ssi

T
o(V,) « o(P.) + z 0)T. (6.4)

j U T«1

/-

When o(Vj) has been computed by (6.4), o(P0) is said to have

been propagated from po- t0 vy

- 55 -

If an intersection between the chains representing j

and E' ^ has been found, we must perform a 3-I> test on as many

points on E. . as necessary before and after the approxjjnate W .
ly J ' - ^ T

If visibility change is found to occur between and Pk, ,

^k-l^k ^ur^^er subdivided to find a closer approximation

of the exact n-transition point.

6.4 Propagating the Order of Invisibility from Edge to Edge

To reduce the number of evaluations of q(P0), the order

of invisibility may be propagated from one edge to another via

the connecting vertex instead of starting at a new PQ on each

edge. However, an ambiguity in the order of invisibility may

arise at a boundary vertex. Suppose we are approaching Vj along

Ei j* A point P1 on that segment of E^ j which lies between

Vj and the o-transition point nearest to Vj may be hidden

by one or more of the front faces forming Vj. Since Vj is not

hidden by any of the front faces forming V. o(V.) is actually
J J J

smaller than o(P^) instead of being equal to 0^) as indicated

by (6.4). To account for this discrepancy, we define the local

order of invisibility of,a boundary vertex Vj with respect to

Ei j, denoted by ^l(vj/eí j)* as the number of front faces hiding

P1 on the segment of E^ j between Wjj and Vj WN being the n-

transition point nearest to Vj. niP^) is deemed the apparent

order of Invisibility of Vj as Vj is approached on E^ j, and

is denoted by n(vj/Ei j)* We thus have the relationship:

DfVj) - (6.5)

- 5c -

Clearly, c(Vj) is independent of the edges at Vj. To start

propagating o(Vj) to another edgè^Jgj ^ wo simply compute

Ol(Vj/Ej k) and add it to n(V^to obtain Q(Vj/Ej^k).

Since all the edges at a frontKJvertex are edges by

-definition, the local order of invisibility of a front vertex
'' ' /

Vj with respect to-any of the edges at Vj is equal to zçro. /'

Hence, for a-front vertex.

7

n(v/Ei,p = = ^vj>*
(6.6)

By means of (6.4),* (6.5) and (ó.ôX^th^ order of invisibility

can be propagated from a single starting^pQirrtjto many potentially

visible edges via the connecting vertices. Louttel’s basic

strategy [19] for traversing a path of edges is applicable here, -

namely: whenever a front vertex Vj is reached, the edges at

will be tested next. If one or'inaj^eV^ occurs at Vj, o(Vj)

is not defined and no edge will ever be tested from V,.

flUadi

VII. IMPLEMENTATION

7.1 The Program

A complete procedure for drawing orthographic projections

of quadric objects has been implemented in a program named

"QUADRAW" written in FORTRAN IV - the language was chosen for

its machine independence and wide availability in the academic

community. QUADRAW has run successfully on an IBM 360/9I

computer, and is also being tested on a UNIVAC II08 computer.

The program is quite efficient; it uses about a second of the

360/91 CPU time, on the average, to compute a view of the

"spacecraft" shown In Fig. 12 and Fig. 13 (see Sec. 7.2). The

object program excluding the data structure and the plotter

subroutines occupies about 15,000 words of memory of the 360/91.

The data structure for the spacecraft, on the average, takes up

about 25^000 words. QUADRAW was written in such a way as to

minimize debugging effort. Its modular design alloxired for easy

experimentation with various alternative algorithms. Much of

the code can be '‘tightened up" considerably to make the program

run even faster. Like most hidden-line elimination programs,

QUADRAW really calls for a fast computer with a large memory.

The complexity of the object that can be drawn by QUADRAW is

limited only by the memory space available. However, many of

the large number of subroutines of QUADRAW as well as some park)*

of the data structure may be overlaid during execution.

- 58 -

A considerable amount of effort was spent on implementing

the analytical techniques for handling planar curves, but it

failed to yield satisfactory results. Finding the inter¬

sections of two conics by solving the resultant quartic équa¬

tion is just not reliable enough, especially when the two curves

are nearly tangent to each other, which is quite common in a

picture. Moreover, the analytical techniques turned out to be

not more efficient overall than the piecewise-linear techniques

that are applicable co both planar and nonplanar curves. Hence

in QUADRAW, all curves on an object are traced and subjected

to the same visibility test procedure.

From the beginning, it was realized that loss of accuracy

through computer arithmetic operations would be a formidable

problem for QUADRAW which performs a large number of calculations

with nonlinear equations. Algorithms were carefully formulated,

and error analyses were made to set suitable error tolerances

for various steps of computation (for checking convergence in

root-finding, singularity of a matrix, satisfaction qf an equa¬

tion, etc.) After much struggle, 32-bit single-precision

arithmetic was found to be adequate for all subroutines except

the library subroutine for obtaining roots of a polynomial [15]»
\

The quality of the pictures produced by QUADRAW \is very

good. Because the algorithm for computing points on space

curves yields evenly-spaced points, the curves appear smooth

- 59 -

from all angles even if the grid used is fairly coarse. QUADRAW

computes all curves on an object with the same precision. This

is wasteful of computing time. However, it would require only

a small change in the program to compute the larger features

of an object, such as the body of the spacecraft, with a coarser

grid.

A subroutine package in a program library [16] was used

to plot the output of QUADRAW on either a CALCOMP plotter or a

Stromberg-Carlson 4020 microfilm recorder. It may be of interest

to note that just outputing the vectors representing a view of

the spacecraft onto a magnetic tape for the off-line SC 4020

consumed as much CPU time as the view computation itself. For

interactive computer-aided design, the efficiency of program and

hardware for the actual drawing of the vectors is certainly as

important a consideration as the efficiency of view computation.

Besides pictures from which hidden lines are omitted, QUADRAW

can generate "wire-frame" pictures in which all lines are shown,

or pictures in which the hidden lines are dashed. QUADRAW can

also draw a set of nonintersecting objects.

During the execution of QUADRAW, numerous operations are

performed Just to store, link and retrieve data. The data

structure was carefully designed for execution speed and memory

conservation. A group of data items that are usually required

together in computation is stored in a block of contiguous

- 60 -

memory, and contiguous blocks containing similar groups of

data form a table. Storage for all data is dynamically allocated

from a single storage pool in the form of a one-dimensional

FORTRAN array placed in Block COMMON, An INTEGER-type name as

well as a REAL-type name is given to the array by means of an

EQUIVALENCE statement so that the array can accommodate data

of mixed types. Whenever two tables are being built up simul¬

taneously, one grows from the top down, the other grows from the

bottom up. Linkage between groups of data items is effected by

pointers, which are themselves elements of the array whose in¬

teger values indicate the positions of the linked items in the

array. Storage allocation and data structure handling are

delegated exclusively to a set of "access subroutines". Con¬

sequently, major changes to the data structure have been made

without disturbing the main program logic. However, the numerous

subroutine calls do cost computing time. To achieve still higher

speed in QUADRAW, these access subroutines can be converted to

in-line code in the most frequently executed portions of the

program.

The main program logic of QUADRAW is shown in a flow

diagram in Fig. 10.

7.2 Illustrative Examples

Several orthographic views of the test object used to

illustrate object characterization are shown in Fig. 11. Even

- 61 -

i fin p ut Ob .1 cct S pe c j. f 1 c e. 11 v ri i
l

rc^pute' Real' Vertices!
U.
[Trace Surface Intersections

~-— -- - •

['Input View Specification}
T

Transform Equations of Surfaces
and Coordinates of Real Vertices

.. ■■1 iiii'i .i i i 11^1-11...1- ■..m .

. i
ÍDetennlne Virtual Vertices !
' I ‘
[Determine and fclassify [Real Edge's
_i
[Trace Virtual Ëdg'esl

^Select Potentially Intersecting

1
Determine Edge Projection Inter¬
sections by Associative List Method

i
Perform Global Visibility Tests I

t
¿raw Edge Segments of Zero Order

of Invisibility

FIGURE 10

QUADRAW MAIN PROGRAM FLOWCHART

FIGURE 11

TEST OBJECT

«

■ÜaiakMMMMMia

- 63 -

for such a simple object, it would be quite a task to specify a

planar approximation of the object.

The normal views of a spacecraft are shown in Fig. 12.

Auxiliary views are shown in Fig. 13. Although QUADRAW in its

present form is not easy to use, it took only a few hours (total

elapsed time) of interaction between one person and a batch¬

processing computer to attain the final shape of the spacecraft.

If a planar approximation method had been used, it would have

been very difficult to make the many changes in the object

specification. The midsection of the spacecraft is a circular

cylinder. It is Joined at one end with a nose-cone capped by

a paraboloid of revolution, and at the other end with a tail

section consisting of concatenated sections of three paraboloids

of revolution. The body of the spacecraft is actually a thick

shell with a set of inside surfaces back-to-back with the outside

surfaces. Two elliptic cylinders are poked through the cone to

^ make two windows. Protruding from the side is an antenna made

\ up'-bf two cylindrical rods supporting a spherical dish. (Note

• thaV-spheres are used there instead of paraboloids for variety

rather than reality). As an element of surprise, a small cube

,. floats Inside the spacecraft which can be peeked at from certain
\

angles. To give an appreciation of the complexity of this ob¬

ject, two views of it with the hidden lines shown are given in

Fig. 14. In Fig. 14a, a "wire-frame" view is shown, and in

Fig. 14b, the hidden lines appear dashed.

■wuspwnwr

f
!

FIGURE 12

NORMAL VIEWS OF A SPACECRAFT

à

FIGURE 13

MORE VIEWS OF THE SPACECRAFT

I
1

¿í- s

WIRE-FRAME
!

FIGURE 14

VIEWS OF THE SPACECRAFT WITH THE HIDDEN LINES SHOWN

ã «üMÜattltaMMteAHINariAÉIMMÉÉlVHHMllk

- 67 -

Two stacks of spheres are shown in Fig. 15, and three

other simple objects are shown in Fig. 16.

Some 360/91 execution times of QUADRAW are tabulated in

Fig. IT. It is clear that per-view execution time varies with

view complexity, which may be measured by the number of edge

projection intersections. To get some idea of how execution

time varies with object complexity, one measure of which may

be the number of component surfaces of the object, a succession

of simplified versions of the spacecraft were drawn, each with

fewer parts than the preceding one. First, the small cube inside

was put away. Then the two windows and the inside surfaces were

eliminated. Then the spacecraft was stripped of its antenna.

Finally, the tail section was taken off. The table also contains

the execution times for stacks of 3* 9, •••, 27 spheres. For

these two particular sets of objects (spacecrafts and spheres),

per-view execution time increases approximately linearly with

the number of component surfaces for a given view. However, we

cannot establish from these times a meaningful figure for the

rate of variation of execution time with object canplexity since

it depends very much on the object configurations considered.

FIGURE 15

STACKS OF SPHERES

■NHIMMIIHIIIttMIMIMNliiMMiaiKBIHHIHMIiMttlllli

FIGURE 16

THREE SIMPLE OBJECTS

FIGURE 17

A TABLE OF QUADRAW EXECUTION TIMES

- 71 -

VIII. EXTENSIONS

Some extensions of this research work are suggested in

this section. They are well-defined projects that can be

pursued immediately, using QUAORAW as the base. The perspective

drawing capability only needs implementation, whereas the others

call for more research.

8.1 Perspective Projection

Fig. 18 Illustrates how P¿, the perspective projection

of a point Pk' can be obtained. A rotational transformation

of the coordinates of Pk (0-X"Y"Z" to O-XYZ) is first performed

as in orthographic projection. Besides the three angles, two

more parameters are needed to specify a perspective view: the

distance from Q to the origin of the object reference frame,

denoted by D, and the distance of TT from Q, denoted by d. Q is

now the point (D, 0,0), and TT is the plane x»D-d, both referred

to 0-XYZ. We can choose the picture reference frame O'-Y'Z1,

such that the Y' and the Z' axes are parallel to the Y and the

Z axes respectively, and 0' is the point (D-d,0,0) referred to

0-XYZ. By similar triangles, the coordinates of P£ referred to

O'-Y'Z' are given by

y¿ zi d
yk D-Xjç (8.1)

The equation (2.8) can also represent the polar plane

for perspective projection, but now

- yUy - zuz). u (8.2)

Z

FIGURE 18

PERSPECTIVE PROJECTION OF Pk

- 73 -

For the global visibility test, a subroutine is required

to find the point of intersection between a surface qr ■ 0 and

PkQ, where Pk is a point on the object, or W|Q, where W| is an

edge projection intersection in Tí.

8.2 Shading

The associative list method described in Sec. 6.1 can

be used in an algorithm for shading a line drawing of a quadric

object. After all the visible curve segments have been de-
%

termined, the points on these segments are all linked together

to the associative store. A nonempty list of points linked to

the k*h.cell of the associative store represents the sequence

of intersections of a left-to-right scan-line at z-k with the

projections of the visible surface boundaries. At every such

intersection, we can determine whether the scan-line is enter¬

ing or exiting from the projection of a front face and begin a

new set of shading calculations.

Let PJ denote the ith intersection on a scan-line z«k,
1, X

and let it be a point of entry into the projection of a face on

Sr. For each point on z-k such that y¿, j^i, j-i + 6P'6P

being the picture resolution, and y^j < we can solve

for x1#;J in j, k)-0 to obtain Pi, j-(xi,yy{, j' k)*

Then an intensity function. itP^j), is evaluated. On a CRT

display console with intensity variation capability, l(Piij)

gives the brightness of a displayed light spot. On a device

- 74 -

such as the SC 4020, elves the sreyness level. Depend-

Ing on the nature of the drawing device and the desired picture

coÄtrast, I(Pi j) is usually chosen to be an increasing function

of the cosine of the angle of incidence of «Plji3 at P1, J> that

is, sx.grad t"11 a decreasing function of distance

fren 4 [26]. Since intensity calculation is performed at a

great nember of points, it must be as efficient as possible.

Because ip is smkll. x1(J can be determined without solving any

equation by trying small increments or decrements on

substituting into qr-0. KP^j) W ^180 be lncr*'
mentally. On many drawing devices, the intensity or greyness

resolution is not very fine} therefore, a few points may be

skipped between successive Intensity calculations.

In Fig. 19, three scan-lines are shown crossing the

projection, of front face. Fl; F2. Fj and F4. The visible edge

segments in the borders of these faces are labelled by lower¬

case letters whereas their intersections with the scan-lines

are labelled by upper-case letters, b 1. a front edge} a.c, and

d are boundary edge.} e and f are segments of boundary edges.

At Ak on the scan-line at z-k, intensity calculations based on

F1 begin. At B^, intensity calculations are switched to Fg.

Complications arise at an exit from a face projection on a

boundary edge. Between Ck and Dk, for instance, the scan-line

is in the projection of seme face whose border has not yet been

FIGURE 19

SCAITITHIG A LINE DRAWING FOR SHADING

- 76 -

crossed by this scan-line. Therefore, a visibility test must

be performed to determine what is the face visible from 4 between

Ck and Dk - a time-consuming process. A method is needed to

take advantage of the information gained from the preceding

scan in order to minimise the number of faces that must be

examined. This is the "crux" of the problem.

b.3 Higher-order Surfaces

The procedure for drawing quadric objects can be general¬

ised, in theory, to higher-order algebraic surface, or even to

other classes of curved surfaces. The algorithm for tracing

surface Intersections is applicable to any surfaces, provided

that subroutines for evaluating qr, Sq/S*. et°- *” supplled-

The associative list method for finding chain intersection, is

obviously independent of what kinds of curve, are represented

by the chains. The object characterisation presented in Sec. Ill

can be generalised to higher-order surfaces. (2.8), in general,

can represent any surface besides a plane. For actual imple¬

mentation, however, there are problems. For example, tracing

» surface intersection 1. simple except that we need a starting

point on the curve, which is not easy to get for higher-order

surfaces. Finding the intersection of a straight line with a

higher-order surface is much more difficult than it is for

quadric surfaces.

- 77 -

It seems that generalization of QUADRAW to handle

arbitrary higher-order surfaces would not be practical because

of computation and object specification difficulties. (One

should probably resort to Coons' surfaces [8] for modeling

objects with very complicated surfaces and use planar approxi¬

mation for hidden-line elimination). Nevertheless, some sur¬

faces especially useful for design, such as a toroid, may be

admitted by adding the necessary subroutines to QUADRAW.

8.4 A 3-D CRT Sketchpad

It is inherently difficult for most of us to translate

a mental conception of a solid into mathematical terms. A

computer-aided designer of solids should not have to have a

working knowledge of solid analytical geometry. An interactive

system that enables a user to construct a 3-D object from

components on a CRT display console will be an exceedingly

valuable design tool.

A "menu" of geometric components formed of sections of

quadric surfaces may be displayed on the side of a CRT screen.

Each component is shown as a wire frame composed of a few

suitably chosen surface curves. By means of a light-pen, the

user may select any one of the components, move it to the center

of the screen and start manipulating it. 1?

devices such as a "Joystick" and function keys, the user may

turn the component around in space, or cause it to change its

size and shape. For example, he may make an ellipsoid grow

longer or fatter. After he is satisfied with the look of the

component, the user can work on another component and then Join

the two together by manipulating them in different views. If

he pushes a particular function key, the intersection of the

two components will appear. If a component is cut into several

sections by other components, the light-pen can be used to

eliminate the unwanted sections. Thus, component by component,

an object of complicated shape can be constructed. The pressing

of a "hidden-line" key will change the wire-frame representation

into a rendering free from hidden lines. While the "sketching

is going on, the data structure containing the object description

is constantly being updated. When the hidden-line key is pressed,

the final description is used to execute QUADRAS. To give a

reasonably fast response to the designer, QUADRAW requires a

powerful computer; yet it would be too costly for this computer

to interact directly with the designer. Therefore, the 3-D

sketchpad Just described is an ideal application for a system

consisting of a time-shared large computer coupled to a "graphics

terminal" - a «mail computer controlling a CRT console. The

large computer will do the heavy computation on demand while

the graphics terminal will play the interactive part. If a

camera or video tape recorder is attached to such a system,

the 3-D Sketchpad will be all ready for 3-D animation.

- 79 -

IX. CONCLUSION

A view-dependent characterization of a quadric object

has made it possible to develop a hidden-line determination

method that is analogous to one that has been successfully

applied to polyhedral objects. Employing a combination of

analytical and piecewise-linear techniques, a complete pro¬

cedure for drawing visible-line projections of quadric objects

has been developed. Some of the algorithms embodied in this

procedure, such as those for computing surface intersections

and finding chain intersections, may have applications beyond

computer drawing. The procedure is implemented in a FORTRAN

program whose capability has been demonstrated by many examples.

Current research on computer-drawing algorithms leans

heavily towards the planar-approximation and sample-space

approach (see Sec. 1.3)* often relying on special-purpose

hardware to speed up picture generation. Although shading

adds realism to a picture, a line drawing is still the most

efficient form of rendering that can be produced on any ordinary

plotting device or CRT screen. Without hardware aids, the pro¬

cedure presented can efficiently generate line drawings of

higher quality than that can be produced by any planar-ap¬

proximation method. The procedure is potentially extendible

to handle shading and higher-order surfaces.

- öo -

X. BIBLIOGRAPHY

ACM Puto. P-6?, Thompson Book Co., Washington, D.C., PP of

393, 1967.

2 Appel, A., "Some Techniques for Shading Machine Rendering
of soildà;" tPTPS Conf. Proc. 32, PP- 37-45, 1968.

-s n/>iiirrt4 ,»vi+- u T "a Procedure for Generation of Three t|
3- dimensfonal^Haif -toned Computer GraphicsPresentatlons,

r.nmm. ACM 13. pp. 527-536, September 1970.

4. Burhaum, W., "Visual Simulations: Computer vs^ Conventional.“

G. E. Hews Bureau Release 3439-907-390, uctooer

5.

6.

7.

8.

9.

10.

11.

12.

13.

Comha, P.O., "A Language for Three-Dimensional Geometry, "

IBM Systems Journal 7, 3, 19dö»

SLasi^i'

aided* Deslgn"syBtem^""AFIPSjDCTif/JProcTj?!^ P?" 2^^963.

Coons, S.A., "Surfaces for Computer-aided Design of Space
Forms " MAC-TR-41, Clearing House for Federal Scientiric
and^Teclmical Information, Springfield, Virginia, 196?.

_ . T n r and Guber, W., "A Model Making and
Sîsp^y i^hniqSe for'3-D Pictures, " Private report.
Mathematical Applications Group, MAGI, INC.

Dresden, A., Solid Analytical Geometry and Determinants,
Dover Publications^Inc.,wsw York.

■et a«« R "Color TV Generated by Computer to Evaluate
Spacehorñé Systems/ Aviation Week and Space Technology

October 1967.

Freeman, H., "On the Encoding of Arbitrary Geometric
Configurations, " IRE Trans. Electron, Comp. EC-10, 2,

June 1961.

« TJ««« P "An Algorithm for the Incremental
Generation* of Optimal Cu'rve Approximations Square Mid,

Unpublished report. Department °iJâ£î‘£ri?gLEnglnee 8.
New York University, New York, New York, 1967.

14. GalImberti. R., and Montanari, U., "An Algoritta for Hidden
Line Elimination," Comm. ACM 12, pp. 20b-¿±±, apriJ. .i.yvy

ir TRM Gort) "Sv8tem/360 Scientific; Subroutine Package
15- (36OA-CM-Ó3X) Version HX.” Programmer’s Manual. Form Ho.

H20-0205-3, pp. I8I-I97, I968.

TRM Com "SC 4020 Reference Information," Computing
16> Oenter^ewsletter, T.J. Watson Research Center, Yorktown

Heights, New York, 1970.

Tv kaVIpv K C "A Computer Graphics Program for the Generation
17 • ofâîf-^’lmagesSïth Shadows,'' Report R-444, Coordinated

Soiree Laboratory, University of Illinois, Urbana, Illinois,

November 1969.

18. Hubert, B., Szabo, J., and Gi^1^eri/ro^;
Representation of Functions of Two Variab .es, J. ACM

2, pp. 193-204, April 1968.

io Toutrel P "A Solution to the Hidden-line Problem for
9' Computer-Drawn Polyhedra, " tf-CT! Trans. Computers, £^2,

(3), March 1970, pp..2.05-213*

20. Luh, J.Y.S., and Krolak, R.J., "A Mathematical Model for
Mechanical Part Description, Comm. ACM 8, pp. 125 129,
February 1965.

pi Mdirov M.D., "A Language for Drawing Pictures by Computer,'
2 ' Private communication, sill Telephone Laboratories,

Murray Hill, New Jersey.

00 Roberts LG., "Machine Perception of Three Dimensional
loliS!'1 Tech* Rep? No. 315, Lincoln Lab., MIT, Cambridge,

Massachusetts, 1963.

23. Salmon, G., Modern Higher Algebra, Metcalfe and Son, 1885.

24. SommerviIle, D.M.Y.. Analytical Geometry of Three Dimensions,

Cambridge University Press, 1959.

Warnock, J.E., "A Hidden Line Algorithm for Halftone Picture
Representation," Tech. Rep. No. 4-5, University of Utah,

Salt Lake City, Utah.

of Utah, Salt Lake City, Utah, June 19o9.

iwMHllHakliHilttÉ

- 82

Watkins G.S., "A Real-time Visible Surface Algorithm,
7' Tech^Rep? No. UTECH-OSO-70-101, University of Utah,

Salt Lake City, Utah, June 1970.

?8 Weiss R A , "BE VISION, A Package of IBM 7090 FORTRAN
2B- Programs to Draw Orthographic

Planes and Quadric Surfaces, J. ACM 2, pp.

April 1966.

29. Woon. P.Y.. ''On Îhe C^puter^rawing of Solid Objects^

Bounded by Quadric Surfaces, Tech. Rep. York
of Electrical Engineering, New York University,

June 1969»

30. Wylie, C., Romney, G., Evans, D. and A*' t0ne
Perspective Drawings by Computer, ^®?h. * *
University of Utah, Salt Lake City, Utah, 1967.

31. Zajac, E.E., “Computer-made Perspectiye Movies^^a
and Communications Tool, Comm. ACM. X, PP» ^

1964.

