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ABSTRACT

The problem of predicting the induced roll phe-
nomena associated with finned missiles at high angles of
attack has been approached by examining the interacticn be-
tween the body wake vortex system and the finned swrfaces
of the missile. The application of the classic Blasius
Moment Integral to this problem permits the independent
evaluation of each singularity in the flow field which may
contribute to the moments. This method is applicable to
missiles employing fin schemes of any geometry and is used
hereinr to analyze the induced roll of a typical cruciform
missile configuration.

A ccmputer program has been developed to generate
numerical soluticns utilizing those parameters which affect
the magnitude and direction of the induced :oll.
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LIST OF SYMBOLS

(c4 —R4)l/4

Fin semi-span (see Fig. 1)

2 (LR+RY, bQ)/Z = radius of circle in the
V (b / g plane (see Fig. 3)

M
Rolling moment coefficient = o )

1/2 )0'\'3'2132 L

Vortex strength coefficient

—r__
2TRT

- n"

£® w? ()

4

T/AE

See Appendix A
See Equ. (32)
See Egqu. (27)

Blasius integral around pole of order m at‘§°
(see Equ. (8))

Blasius integral around branch cut bestween § I

a e
ant si11

Blasius integral around branch cut between E VII
and ¥y =t

Unit pure imaginary number
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List of Symbols (continued)}

J 1/Cz+gz/2 (see Equ. (18))
K VC"—RZ/Z (see Equ. (19)})

L Chord length of fin

M Cross flow Mach number

My Rolling moment/unit length of fin

Mg Roliing moment

m Order of pole

g Dynamic pressure =—}2—f’ V.z.

R Radius of cylindrical body (see Figure 1)

r Polar coordinate (see Pigs. 5 and 6)

Ly Cross flow velocity=Vee SiNn X

u Velocity in x direction or real cemponent of com-

plex velocity

Voo Free stream velocity

v Velocity in y direction or imaginary component of
complex velocity

W Complex velocity potential
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List of Symbols (continued)

1<

« M ® R

m

g
5

EI

o

Coiaplex velocity=u~{v
Fin axic in tail body plane {see Figs. 1 and 2)

Axis perpendicular to x axis in tail body plane
(see Figs. 1 and 2)

Complex plane (see Fig. 2)

Angle of attack of missile

Residue (see Equ. (7))

Vortex strength

Arbitrary circulation around bedy

Radius of contour about Ltranch point (see
Figs. 5 and 6)

Complex plane of the circle (see Fig. 3)
Position of a pole in the § plane

Position of stagnation point on the circle in the
E plane (see Appendix B)

EIlgm-—Branch points in the E plane

n(r)

See Equ. (26)
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List of Symbols {continued)

(S

P

Q ~H-~ N T

Polar cooréinate (see Figs. 5 and 6)
Argument of E; (see Appendix B)
See Equ. (42)

See Equ. (45)

Fluid density

See Equ. (41)

Roll angle (see Fig. 1)

Stream function (imaginary part of W)
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SECTION I. Introcduction

Rockets and missiles employing f£ins of cruciform
arrangement have been found to develop aromalous aerodynam-—
ic rolling moments which are functions of, among other
things, the angle of attack, the bank orientation of the
wings and Mach number. These rclling moments tend to up-
set the stability by roliing the m’'ssile, ané unless they
are counteracted by roll-control measures, the actual flight
path control accuracy is apt to deterioraic at a crucial
time. It is generally accepted that the absolute magnitude
of the induced rolling moment is of primary concern.

Induced roll phenomena, whicl. could be significant
for some configurations at low angles of attack, become of
increased importance as the angle-of-attack range is extend-
ed for the purpose of increased maneuverability. The sourxce
of high angle of attack problems has been found to be az-
sociated with bedy-wing or body-tail interference.

Without the mitigation of these induced rolling
moments, high-angle-of-attack maneuvers in some cases nay
be precludel or in other cases result in increased control
system complexity or increased size of the wing surfaces.
Such alternatives usually result in overall performance
degradations.

The possible major sources of anomalous induced
rolling moments for typical rocket configurations were
discussed and evaluated in Ref. 1. The magnitude of some
of these rolling moments have been found to be negligible
compared to the induced rolling moments observed from ex-
perimental investigations. Strong evidence is available
(Ref. 2) to support the argument that the interaction of




SR i B 2 0802 Sng)

RACGI MR SRk e

T T

LTy T 103 TG T Th, # 4

"
E:
2
-

VECTEITT IO LAy LEPMAN 1

T

T T R

POSTRCR-N T D)

the wing or tail surfaces with the vortex system generated
by the bedy is largely responsible for the induced rolling
moment phenomenon.

The vortices formed in the wake of a body affect
the attached lifting surfaces by altering the local flow
characteristics~-i..e., angle of attack, Mach number, static
pressure, etc.--across the span. The variations in the
magnitude and spanwise distribution of the panel normal
forces, which are produced by these changes in local flow
characteristics, are, therefore, functions of both the
strength of the vortices and the geometry of the wing-
vortex system. Conseguently, comprehension and prediction
of the effects of wing-vortex interactions must depend
critically on the description of the vortex system itself,
Fortunately, experimental data are available (Ref. 3} which
describe- the wake vortex system generated by the body of
the wing-boedy configuration considered in the present stvdy.
These vortex data eliminate the additional complexity of
relying on theoretical estimates of the vortex system and
are used herein as a basis for analysis.

It should be noted that the Blasius moment inte-
gral has been recently applied (see Ref. 1) in evaluating
the induced roll of planar missile configurations.
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SECTION II. General Formulation of the Problem

In order to simplify the problem we will assume
(as was Gone in Ref. 1 for the planar model) that the flow
is steady, incompressible, and inviscid. The assumption of
negligible missile roll rate will allow for the steady flow
condition.

A typical body-tail configuration utilizing four
equally-spaced rectangular fins will serve as our model for
analysis; (as will be shown later the fin can be of any de-
sired shape such as triangular, trapezoidal, etc.). The
model in the cross-flow plane (Fig. 1) shows the cross flow
velocity, O, the missile roll attitude, ¢ , and pertinent
model dimensions. ?Y

&

VeoSIN X =T

-~ R

ot

|

l

|
Figure 1. The Cross-Flow Plane

We- may now represent the complex potential for

this flow in the Z plane (Fig. 2) by W (% ) where the two
body vortices are shown relative to the fins and the
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cross—flow velocity U. Because of the missile roll the
vortices are not necessarily symmetric or of equal strengths.

iy
N
o
'ﬁr%
Z,
+ -

SIRY

Figure 2. The 2 Plane

For steady state rolling moments about the origin
the Blasius moment integral is gyiven as

!/
e —ga dw)?
Mo 'Qezsgz(dz dz

where the contour is along the outside of the body surface.
The analysis can be considerably simplified if
the configuration in the Z plane is conformally mapped into
a circle. The mapping procedure for the cruciform shape
can be found in Ref. 4. Thus the E plane (Fig. 3) repre-~
sents the mapping of the missile contour into a circie of
radius ¢. (Note that the magnitude and direction of the

(1)
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cross-flow velocity and the magnitude of the two body
vertices are unalitered by the mapping.¥*)

Figure 3. The E plane

The relationships between corresponding points in both
planes are

E=% \7‘;_5 "\/(2-'24-%) t\/(22+='§_§)":- 4ot (2a)

and

Z= _t.v'?o\/\ﬁs"z+ %) i\/@2+%~)2__4/?4 (2b)

where C—=-°\/2(bz+—§-;) /2 .

*
See Appendix A of Reference 1.




The choice of

lowing rules:

)

(2)

The
derivation of
tained in the

signs in (2a) and (2b) is based on the fel-

The "outside" plus and minus signs hold for
the right half and the left half of the 2
or?; planes, resrectively.

The "inside" plus and minus signs are chosen
accordingly to insure that the exterior of
the body maps to the exterior cf the circle.

reader is referred to Ref. 1 (r. 15) for the
the complex potential W( E) wnich was ob-
following form:

W(5) =T (e5+e®g)
* AL | Ln(s-5) (- 5), )

2T

—ile| 2(5-5)-tn(E s} +L50n5

zmr

where the velocity potentlal takes into account the pos-

sible presence of a Kutta condition by including an arbi-

trary votex of strength ¥ with center at the origin.
As shown in Ref. 1 (p. 16) the Blasius integral
may also be expressed as

Mz—Re £ & f(5W(5)d5 a

where % ( E‘ =

dz/dé.:
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and W(S)= "‘%"’ :

The use of the expression for 2 as a function of E (Equ. (2b))
and its first derivative

" “§2+c‘*/§2

a5 0 V7

dzZ _ | é_c“') V(32 + Y55 —4RY
. 52 ) | V(ECY82) £\ (52 C¥/5*) - 4%

gives, after algebraic expansion,

= 15 oot URYEY
'D/ (%)= G (E- I_S ’ TS AR H(5 %) | °

The reader is referred to Appendix A for a list of deriva-
tives of {(?) .

The expression for W2(§) can be found in Ref. 1
(p. 17) where the singularities are shown to be poles,
located at

Y 4 4
C C
El EZ
£ £
(The poles at '%" and ~'§‘ are inside the circle.) Since
. 2 .
?, and anre- ex'terlor to the circle 7§ =(C , they need not
be accounted for as contributions to the integral.
The remaining singularities of the integrand all
lie on the circle and are due to J(E) (Equ. (5)). These are
poles at? =t cand E = t{c and branch points where the

(5)
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square root radical vanishes

(5%+C¥) = 4r5%= 0
orx

THecl = £ 2R7FZ
Rearranging, we have
¥ F7ZR?*5*+C¥=0

and

i

E= xR+ RH-CH .

Thus branch points are located at

¥ =t ViRZ+ia?

where

a"EW/C"‘“R“

That is, eight branch points appear at
- 5L (VERE —/ErRe) |
w= 5 (VERZ +1V/ TR )
Emr= 5 -—-/"m «-—a-\./EEITzE)
w= e ‘v’E'ZEi +iVEZARE )
Sy= V“E‘(W ~iY/c*=R% )
Sp= o (VCHRE  +iVCRRR )
Syn=v5 (VEFHRE —iVCERT )
Sur=SL(Ve#FE  +iVc R

(6)
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SECTION III. Contour Intearal Evaluation

The procedure for evaluation of the poles is
shown in Ref. 1 (p. 20). Thus, if a compliex function has
a pole of order m at§ = §, , then its residue there is

(m-1) "
p= ’gfg (n-:_.;)!jg(m-') (5-5) F@®)| - 7

Referring to Equ. (4), a contour around a pole of order m
of the Blasius integral located at § = §_ can be expressed as
m

]’_’§ = —ReTr{ f’lg'(g,lm) (8)

o

where p. can be defined as

FE)=4EWA(E) ®)

in Equ. (7).
For the simple pcles at ¥ =c the integral is

I l= -KeTrie 4@/”5,2 ) 5 WYZ(E\) / §4+C“ QRYEY
S ng-C (B2CANs*C) C@:“#ﬁ)‘-—tiﬂﬁ %)

"l
. z— __ K
= -—,?e’lTL-E- C*F a—s}z}“] w2() .
Similarly, for the pole at § =-c the integral is
I . l— 2 R 2
I_C"“ "ECTrL-g LC +a2icz ] w ("C) .

The total contribution due to the poles at ¢ and -c is thus
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"+T = e p | R 2
IC+I—C—Re7TL-?§ m*cz W:ZCC)'FW @C) . (10)
since Ke W(C)-':EeW('C) = O , it follows that
Reiw?3(c)=fe: wz(_c)_—,g and therefore
!
Ic'{"I.{C_: o .

Similarly, the total contribution due tc the poles

(11)

at. tc. and ~{c is

! g : __R* 2(; 2(.;
I5C+I-ic_=l?€7rc%g C’%+W w \LC)-HA/ (LC) (12)

Since Im w{éic) = Im w(~ic)= 0, it follows that
Re iwz(t'c) = Re iw2(~ic) = O and therefore

1 1l
Iic:"'I-ic =0. (13)

The contribution to the total moment due to the
simple pole at £ = 0 is

I;=-—Rémf£€g E‘g(ﬂ“’g "(%Y( gfg, - g-;zci)“t"" .

—
—

{
Since {’(ox-—-o: (Equ. (5)),

'
I,.=0. (14)
The contribution of the second order pole at
¥= 0 is of the identical form as Equ. (21) in Ref. 1 where
-7?(O)=O and -5’ (0)=-1 (see Appendix A). Thus, after differen-
tation, elimination of imaginary numbers, and collection of
terms we have, as in Equ. (22) in Ref. 1,
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= — 9] H{=-%5)-L{=—% . J

Io Eef e '\E, l 2\ %, 2
The contributions to the total moment due to the

third and fourth order poles at § =0 are

3
I.=0 (16)

since 7’” (0)=0 (gee Appendix A), and

TS=0 (17)

since -b’m (0)=0 (see Appendix A).

. = ot

For the simple poles at & = and § = the
contribution to the total moment is of the identical form
as Equs. (25) and (26) of Ref. 1, respectively.

z Finally, the remaining second order poles at
E= < ana €= EF are similarly evaluated as Equ. (27) in
Ref. 1. Express:.g'ns for ?f in Equs. (25) and (26) and for
{' in Equ. (27) are contained in Appendix A.

The remaining singularities to be evaluated are
the eight branch points (EI’EII' ————,“gVIII) which lie
on the circle. We may conveniently choose branch cuts
joining these branch points as straight line segments as

shown in Fig. 4.




Figure 4. Branch points and branch lines of'j%zg)

Let us define the coordinates J and K as

I= “V C2+R2/2

We can enclose each branch line, e.g.,~§ T to ¥§II etc.,
with the contour ABCDEFA as shown in Figure 5.

r
e /o

X
5r Bx

N
G

Figure 5. Branch Line Contour

(18)

(19)
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Referring to equations (4) and (5), we wish to
evaluate the integral

__ i3 F URYTHWR(E)dE
Lrp=-Re _,;if E+AELD

ABCDEFA -\/(E%C“)%‘LH? 95+ £(54cY)
Trg=+Re2 ,?"j Fw(S)dE
SRR ¥ v Y e o P e S
ABCOEFA

The evaluation of the integrals around ABC and
DEF was shown to be equal to zerc (see Appendix C in Ref. 1).
Using the analysis contained in Ref. 1 for the
evaluation of the integrals along the lines FA and DC, we
find that

[ L v rIrI[' on FA

'\/(E_‘gr\)(‘g'_*g_m) = . (21)

- V frro on CD

On FA,

E=%r—1r ad d¥=—dry




iy

\

gt e MDA ey

and

E-8p=2{d—Ir )
E-Exx= 2¥Exr—i1

¥- S = En—tor + (T-iK)

&~ Sxr= S ~tx— (J+iK)

§—Swr= Su~fr—(J-iK)

5~ Bwm= Br—tt+ (T+iK) )

< (22)

Substitution of (21) and (22) into (20) gives
2K

[ s pezer?|  (Su—fr) wWi(Sn-rm)(Cdrm
_} = *ReZf 6{:(’51:""11:)2 +C2]EE§E*?%)2-C2]L5."/ rr I -

FA

- @T- 25zt (Ea—raHo- Bt 0+ LK)

Er—ra— (=) Bt (T Q) +(Br—1a) 9] .

Dropping the subscript on Y1 and@ replacing T by 2K—rII,

we have
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2K

- FRezprt|  (Sm-rYwWi(Bx-r)dr
jf:,q f [(Em—'r)?-;-c?][@n__ r) 2 CQ:)[L T2 {23)

(2T-r ) 28x-r)-—--(Em-r+({T+K)) + (5~ "Y‘*‘Cq)]

Similarly, by extending the analysis along CD we find that

n ° (Ex—r) Wz(fzr—r‘)df’
[ FReZfK [(Ewr) R [Gen—r)2c EcVzer)yr-

cD
(24)

@iT-N@Ez-r)———-—- ~Br-r (@ k)
+((5z-r)+CH ]

where the only change in the integral is indicated by
Equ. (21). Addition of (25) and (24) yields, after algebraic
reduction

n=hr)w2(E)dr
I§I,§m= [ [ *RetifKR [ (ec )[h )+ +C"')2] (25)

FA CO

where

'((r)-i%—zr—-r:(K"r)'f*iJ (26)
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and

h(r)= +'\/( k- (2 T-r)([2K+2iT-r K+ T +i(T-K)-r)-

(k=T + i (T-K) 1) (K= T+ L (T+K)—r YK T+i(T+K)~r) .

The same procedure is used for the evaluation of
the integral around the branch cut cornnection ¥§III with
§iv and produces

2K
~5T /2, 2 _\d
_ + gewipei | T hOIWHRdr
ST T (e ]

Igm ;EIY:

where

7[(") =8m—r=(k-r)—iJ

and

b= V(=P r C2iT=r\ak-2i-r K+ T-i(T+K)-T)

(K-Fi(T+&)-r K-T-i(FK)-T ) K+ T-L(TK)-T) .

It should be noted that the only difference between the
integrals of (25) and (28) is in the sign of iJ.

(27)

(28)

(29)

(36)
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We may combine (25) and (28) to obtain

2K

IEI;EJ-IFIEJEJE_]]Z': + Re ‘Hf!&"*ﬂ:H wz’(r()-rL ﬁwz(if)]dr (31)
P

where

g
H 1 h

(=< +(+c7Y ]

i

and

0

T q ) '
D D -

It was shown in Ref. 1 (p. 30) that Equ. (31) can be
modified to

I—E::: ;E]r'*'IE:n: B

2K
t/?etnffe"‘fﬁ [Wz('ﬂ—wz(*lﬂdr : (34)

w? is given in Ref. 1 (p. 17), H by (32), N by (26), and
h by (27).

The procedure used to obtain (34) is now used to
evaluate the contribution to the rolling moment due to the
four remaining branch points § v "o E VIIT® Referring to
Figures 4 and 6 we can enclose the branch cut connecting

9 ] ] ] ] 1] ) ]
EVI and EVII with the Contour A'B'C'D'E'F'A’,
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Figure 6. Branch Line Contour

The integral we wish to evaluate is

BSwi(E)ds

= © —_— .
Im,m-ik.‘é?fk' ‘/;‘:.z‘ﬁcz)@acz)‘[ﬂ (.g—‘———_&)__ - (Tt (§4+C4) . (35)

ABCOEF

Now, we may use the polar coordinates
E~Syr= lqre'®a (36a)
-5y = fyn e S (36b)
. (s
where both 9VI and eVII are allowed to vary from -5 to

31T .
2
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On F'AY, QVI 2‘ and eVII I
Ipt = =22 =

On C'D', S yy 3T and Sy11 ar

Thus,

@) on F'a!

é9§§'+'€9331:=
2T on C'D'

Therefore,

€hn+492n
_\/(E'Em)(g"gm) V 1 ( )
\/ Vo e ei.oon F'A'

— anm on C'D!

—

From (36b}, along F'A' and C'D'

E=Fyr + om et O
==\§Eu[‘+ ﬁﬁﬂiffiTnkz

=Fwm+
and dE = idbyy |

Also, on F'A' we note that
5-5z= B +ifm) - %5
= (J-iK+ir )= (CT+ik)
= 2(T-ik )+ir

where r=ryrq and similarly

(37)
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E-Eypr = J- ikt - (CT-iK )= 2T+ir

F-%r1 = Fkeir-Crrid)= T+K+ir—  (J+K)
5-gm= J-ikwir—(K+iT)=J-K+ir - (T+K)

T E= T-ik+ir-(K—iJ)=J-K+ir + L (T-K)
¥y = Tk ir-CReiT) = THKHC +i(T-K) |

Also

V = \F(z;@r) r

Substitution of (37) into (35) gives, on F*A'

-

| Y (Em*"uﬂs 2 (B +in)(idr)
’/F iy +Rezf [(§mw-w3 +C ]Kgmnr)z 9]{ NzK=rY -

(38)

-(EJ' K L (THK)) - — —(2T+iF ) i((%m-:-.:r)“-;-c‘*)j— .

Similarly, on C'D', where YorT varies between 2K and O
O
f EeZ'fE"‘ (§m+uf§ w (Em-*-u’)(tdr)
" KEm+Lr)2+C2.][(§JZE+‘r\)2 QJ[ V(ZK=1) -
C

(39)

(J'+K+—Lr——L(J+K))———-(2J+Lr)+((§ +ir)tect) ]




adding (38) to (39) we obtain

-

T5p(WAT) idr

j—i— f = Igﬂl§m= -i-E'e‘hf R f (T2+C1)('T’ 2)[? +@:q.+cl})2]
Fa C'

where
T=%g+iur=J-iK+il.
Since q:K—V—FLI (see Equ. (26))
sz-iz
and therefore,

T5=—i 75'.

then

Also,

piry = +\ RN (FHRA (T FKeir= i (T+K) -

(T ire iKYk ir +i(JK)2F-2iK+r 2T+ ir)

We may also show that

ip=V* +‘\/(z/<~r)r (((T+K)~t +(T- +K)) -

(i(J'—K)—r -f—J'-H(X F.(JT-K) —r+K-3) -

(a(J+—1<)—r+K~;r)(2aJ—-r+2/<)(zeJ"—-r)

= B (see Equ. (27)),

(40)

(41)

(42)
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Thus, 2 2
+h'=-p", (43)

The same procedure is used for the branch cut
connecting § y with E yryr- Replacing T by -Tand P by
—~P we thus obtain 1
oot GEEIWAET)r

= 74 — = =
Lygma PR e 6T - P e o . 19
(o]

If we let
p= +Tp |
@A TP+ T+ (45
then
) +T°P
S e (SR e e 0
Therefore
! 2K
~ - . b 2 B 2/ =
: T vt Lo, v = FRe 4ifR f [Pw (0)+Pw (—r)]dr (47)
o
or, alternatively 2k
+ = 5 Re 4R ‘Wz—’f-W"’T]dr. (48)
Teyvar’ Tegngn™ *RetipR?| B ECD-04D)
i °
We have proved that
t T""-i'z (see Equ. (41))
and —-P2= hz (see Equ. (43)).
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Substitutien into Equ. (45) gives
p- —in*h/i
) ) [ T
(2= P+ D[R+ (n*+cF]

and therefore,

(43)

-H

L]

2K
R, R i-E’e‘:‘ifI?‘f/‘ﬁ [Wzé‘iﬂ—wz’i'ﬁ]df . (50)
’ (o]

Adding this result to Equ.(34)will give the total moment
contributed by the four branch lines

Lo et Lomsw t Ioa mmt Do om =
2K

 ReepR*| A{[WERD-7E)] (s
W DT Jr

In summary, the total rolling moment is the sum of the
contour integrals around the singularities

/| -2 -3 4§
M= Te+TI! o T, C+I_".C+ I+ +L, +1.
, _ z_,_ .
+ Tevg +Tevg,+ Ie¥s + Ly, (52)

+ IEJ: /§11+ I§m ,EN+I§321 ,E:zzr-f-I Sy, S
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The equation for each integral in
tabulated below.

(52) is conveniently

Table 1
Integral Equ. Number
Ié.;.IiCE O (11)
IZc"'IiicE © )
I;. =0 (14)
I: (15)
I =0 (16)
_]'_'::—. (17}
I'c7§, (Ref.1l, Equ.(25))
I’c’ "g_z (Ref.1, Equ. (26))
Iiz/g‘ +Izcz/§z (Ref.1l, Equ. (27))
I%r,?zc +I§m‘ S (51)
+ Toor on* 15 5w
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The final result presented by Equ. (52) is pro-
grammed (see Section IV) to obtain numerical solutions with
the use of a high speed digital computer. It is apparent,
however, that results may be obtained for limiting cases.
Thus, for example, if we consider that no external vortices
are assumed to be nresent in the flow fields (r}=f;=0),
then Equation (15) equals zero as well as Equations (25),
(26), and (27), of Ref. 1. Therefore the total sectional
rolling moment in (52)is rednced to

Mo= tRe #ipR fH w(i)- w3k “’()]

(53)
- [wim-w ]} dr
Using the expression for Wz(E) in Ref. 1 we may note that
=2 2L¢
wiEm)=T @+ A i c) 41r2
Uy e—‘:¢ (P ~2

“w Tt
g and "
3 3 2L¢
w(u@ o <:¢+ 2c 48 ¢)+ 47r=7
? Ty | e -i¢ c?
: - =+ =3 ;
L 7
; therefore,
WA Can) = DR e ) See o)
j - T[ (QL¢ L¢>+. -=—(e‘¢ ""¢>] (54)
ct 1. z0¥isme [ S2
é’ isin2p| I~ 7 Th n
é §
| %
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ny

By the same procedure,

wi(7)-w ("D—-ZUzcsmw[ ]+2U?;T‘f{°s¢ [! ’—?15] © (55)

After subtracting (55)from (54) and substituting the result
in (53) we obtain

2K
Mo=*tRetiPR*|H r_%z O*%’;)(ismqb— icosqb)]dr
° ax

= FRe4pR*[H (U.X(' 2/\ Yoma-cos ‘p)]d"

ox,

2K
Ma=TY (D) Re 3_)"___{;*0’ (sin p—cos ) f -%—- <‘- ‘%’; >dr . 158

The expression for H (obtained from Equ. (49)) is now sub-
stituted in (56) to obtain the final result:
2K —
— Nes [ 7*hdr
= .,.x(cp)[zeé-fl?—- SINP-CosP) = T
Mo- m ( ‘b)ﬂqz +C")[Rz + (.'iq._*_ Cq.)?.] . (57)
o

(See Appendix B for a derivation of X(¢))

Equation (57) may now be investigated in the fol-
lowing for two dimensional flow, in the absence of external
vortices, past certain configurations which are oriented

at a roll angle ¢ with respect to the cross flow velocity
vector U .

A simple cross configuration is obtained if we
reduce the body radius R to zero. If R=0, then it is
obvious that (57) equals zero and that this configuration
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experiénces zero net rolling moment at any roll angle qb ’
free stream flow density T’ and velocity U .* mghe other
limiting c¢ass to consider is that of a finless cylinder

where R=b (see Fig. 1l). Becauss é=b (by the conformal trans-
formatior of the 2 plane to the }5 plan
since K=0 (see Equ. (19)), Equ. (57) equalis zero since the
upper limit of integration vanishes. Thus the rolling moment.

¢ . . . .
M,. for a finless cylinder is zero for this case, as ex-

2) it is obvious that,

pected.

*
See Reference 5.
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SECTION IV. Numerical Analysis and Digital Computer Results

FEREAA S ke S 1A )

SRS

'
The sectional rolling moment M, has been found
{(see Equ. (52}) to be a function of the following para-
meters:

7 RN g e b

M;=Mc,> (b;glgl)EZ)n) Pz)f)U)¢JX) .

. . ! .
As is shown in Ref. 1 (Equ. (43)) M may be expressed in

dimensionless form where

CM;ECM;(ﬁ) E) E’ )C[‘;)CQ)¢)§—%—U~>. (58)

RANTORVEAE SR SrAPIRa s G

¥ <

Y ewt Lay v

Equation (58) is used to obtain numerical data with the aid
of a digital computer. For presentation of the computed
data, however, the following changes were made in the above

Ealai et g SO DA BN R S AN g

parameters:

(1) The reciprocal form b/R, is plotted with b
used as the independent variable.

B 2

(2) Vortex positions -3 and —= are presented

as ’Z.I/R and lZZ!/R , respectively, which
are obtained by mapping the positions in the

¥ plane to the corresponding positions in
. the Z plane.

(3) The free vortex circulation, & , is dependent
on the presence of a Kutta condition and is

therefore not specified independently.

AR At A

b The two dimensiocnal (rectangular) fin and vortex
data used for the wind tunnel model in Ref. 3 provided the
inputs to the computer program tc generate numerical data.
For a two dimensional fin, the total moment in dimensionless




Erze S T AN 2]

TR Y

EAT PO A Copti]

AR

pros o

gt ok o p s N L RIS ¥ L L T

.

el

bR i chut b evscd it LS TiOG LU

Shen

T A

=

Rt s\ oy 2 e P SR

Fat SEI I T A AErEY

30

form is defined as

_ Mo
Cma™ L£PTE L

where Mo= the total moment, L = the chord length.

The wind tunnel model geometry and flow conditions used for
the parametric study are as follows:

b= 2.8 in.

L= 2.5 in.

R= .75 in.

U= 430 in./sec

f=1.45 % 1078 slugs/in.3
&= 20 degrees

r,'= f}: 285 in. 2/sec.

l'Zd:['Zz‘ = 1.312 in. (Separated by an included angle of
36 degrees)

(It was reported by C. Wong (Ref. 3) that these vortex
positions are essentially symmetric with respect to the
body.)

To illustrate the vortex-fin interaction at various
£oll angles of interest, Fig. 7 shows the relative positions
of the vortices with respect to the fins. The numerical
results obtained from the computer study are shown in Figures
8-13.

(To check the validity of the above results this
writer performed a hand calculation of the individual terms
of Equ. (52). Except for Equ. (51), which proved difficult

and time consuming to hand calculate, the results agreed to
within five percent.)
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VORTEX POSITIONS iIN THE Z-PLAME
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SECTION V. Conclusions

Induced rolling moments at high angles of attack
are due principally to the interaction of the vortex pair
generated by the body with the attached fins. It is evi-
dent that these rolling moments are strong nonlinear functions

of fin span and vortex strengths and positions.
One important assumption made for this report is

’Iﬂ“\\"‘da *tan

that the flow is two dimensional., If this restriction is

e WA

removed, the problem is further complicated in that wing

tip vortices as well as the bodv vortices must be accounted

SHACRAEY 357 ) &)

for. This is necessary as the hody vortizes are undoubted-
ly influenced by the wing tip vortex system as they pass

VRN ke e

cver the fins. The resulting interaction between the vor-
tices of both svstems depends on their relative positions

£AEa3

in the flow, relative strengths and directions of rotation.
For example, two vortices of equal rotational directions

EXR LY v

1 will induce velocities on one another causing them to move
in opposite directions, while two vortices of opposite ro-
tations will move towards each other. The above inter-

3 actions, combined with vortex-fin interaction and missile

G ST

roll motions disturb the flow symmetry which would other-
wise prevail if these effects did not take place.

AT AR Y

The vortex data used for this report was obtained
by experiment with the use of the subsonic wind tunnel at
! Boston University's College of Engineering. The preliminary
data (see Section 1V) indicates that the body vortices are
symmetric with respect to the body, even in the vicinity
g of the model fins. This observation was made aftexr reviewing

photographs of the missile model and vortex geometry .n the
wind tunnel.
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The variation of roll moment with roll argle is
shown graphically in Figure 8. It is cbserved that, as
the roll angle approaches 18 degrees, vortex Z approaches
the horizeontal £in causing a vapid asymptotic increase i
roll moment and stability. In the physical sense, however,
the vertex may not be capable of moving so close to the fin
as to cause the roll moment to approach infinite values.
The interaction between the vortex and its image results in
the vertex (and image) moving outbeoard and parallel to the
fin. (The reader is referred to Reference 6 for a theoreti-
cal treatment of this interaction.) Also, the sign of the
rolling moment in the vicinity of a fin depends on which
side of the fin the vortex is lccated. In Figure 8§, for
example, the sign convention of the roll moment indicates
that the vortex attracts the fin as it approaches it.

Fiqure 9 shows the sensitivity of the roll moment
to perturbations made in vortex pusition (IZ.’ / R ). This
sensitivity is most pronounced when vortex 1 lies in close
proximity to the vertical fin. In the vicinity of the ver-
tical fin tip, the roll moment becomes highly stable when
vortex 1 is to the left of the fin and highly unstable for
positions to the right of the fin. (Refer to Figure 7.)
The influence is less pronounced at roll angles where the
vortex is located further away from the fin. A similar
situation exists in Figure 10 where perturbations in posi~
tion are made for vortex 2. Here, the roll moment shows
greatest sensitivity when vortex 2 is in close proximity
to the horizontal fin. Included in this figure is the
effect of simultaneously increasing the perturbations of
both vortices at ¢ = 17.9°.

The variation of roll moment with f£in span is

shown in Figure 11. It is apparent that large moments exist
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whenever a body vortex is located close to a fin tip. In-
creasing the span reduces the roll moment to 2w asymptotic
value vhich indicates that the unbalanced loads inducing
the roll are located near the inboard portions cf the fins.
It follows that for any particular condition of body vor-
tex-fin geometry, a particular value of span will result
in zero-induced rolling moment.

An almost linear variation of roll moment with
verturbations in vortex strength is indicated in Figures
12 and 13. Again, thz greatest variation in roll moment
occurs for a vortex position clcse to the fin.

Results of Figures 8-13 are cross-plotted in
Figures 14-20. These figures are felt to be self explana-
tory based on previous discussions and are therefore not
described in detail.

Before analytical work is continued by including
unsteady, viscons and compressible effects, it is strongly
suggested that measured wind tunnel data be obtained to
support the results of this report. Further, since Refer-
ence 3 does not consider stagnation point locations on the
bedy, it is suggested that actual locations of the stagna-
tion point be determined from experiment and compared with
the theoretical locations assumed in Appendix B.
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APPEIIDIY A
Derivatives of ,5 (§)

The derivatives of {(E} are listed here for reference.

From Equ. (5)

{ (§)= (5% +(§)(§’“—~C2) ’ C}(E)

where
g(5)= Thctx 4R*+E

-\/(v-s-4+ C‘&)’{_ yRYet + Cg ‘I~+C'+>

e\ 3E%ct 5 /
1 Cr—mereey 1 mema #®
where

Ehch-zr*
[V(e4+c‘*)2-+z4§* +(§*+C“)]léf8“§"—16f?“§’ @uc*)z.ws*tﬂ

G4 4R E+ (B CT £ 2B+ COV 5 N aret

gE@)=45F

Also

& _ ,2§7+2064§3 B IE*tnct )
{ (§> E%CVEET ?(E\) 2 VAN s ()

1 "
+ e ¢
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and

2\ o COB +WHCHEL L0 o\ | o 12% -z-zoc“'ss '
(§) - (’52+C2)*(§2—: Cz)'f- C}(E +3 (§ N Ca\.s( Czji‘ 3 (E)

35+ 0
(r— C:z)z(gz r?)a ? [§2 + Cz)(Ez Czs

- [li/g) .

It is easy to show that

e 9(0o) ~c*

and
a-a(o‘)_;_ 9_//(03 =0
Therefore
f @)=~

{'@=4"@)=0 -
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APPENDIX B

The purpose of this appendix is to find an analytical
expression for the free vortex, ¥ , as well as the location
of the stagnation point to satisfy the Kutta condition for
the flow described by Equ. (3). The limited case will be
considered where f1l= rg=0.

Po find &, the following procedure is used: The
stagnation point is assumed to "move” with the cross flow
vector, U, as it is permitted to rotate about the body.
Thus, in the Z plane the stagnation point, Zo’ is located
on the budy contour, as follows,

J+b P=0
\ Rel(M+®) 0<@<T/2 (59)

|-ib P=T/2

Zo=

To obtain the corresponding point in the plane, we
make use of the conformal mapping (see Equ. (2a))

¥ -t V_%__\/(z:-»zyz:)i-wz:-»fz‘yzfﬁ ¥ (60)

Substitution of (59) into (60) gives, for 0<p<TT/2
¥/ =—"\/R*os2(@+Tr) i VC*-R*cos*2(p+)

Tre complex velocity is obviously zero at a stagnation
point. Therefore, if we first differentiate Equ. (3) to
obtain M/(E) (the complex velocity) and equate this result
to zero, we have
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After algebraic reduction we obtain the general ex-
pression

¥(@5.)= zrrU[(’s‘ tg )Sm¢+~(‘s‘~ = -)cos ¢]

sé

”“2(‘"*’ E.:E" - s:-—c?* 'é;) '

Obviously, for the simple limited case where

r:::r’zzo , we have

Y(¢,§L} =20 [CE{;*— %; )sm ¢ + c'.("s"',—' —%z:)c:os cpJ .

To express ?f as a real gquantity, we can further define

/
as
Eo' §/ — Cei_eo
o .

Substitution in the above expression gives

¥(®,65) = 4mTC(cO58,5INP ~SiNOCOS ).
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It is easy to show, by substitution; that ¥ is zero whex-
ever flow symmetry exists about the configuration; that is
where ¢=0, TI/4 and TI/2.
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